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ABSTRACT 

Particulate matter (PM) as an important part of ambient air pollution has been associated 

with increased risks of cardiovascular diseases. Fibrin clot structure alteration is an emerging 

risk factor of many cardiovascular diseases, especially thrombosis. Therefore, the aim of this 

study was to investigate whether and how air particulate matter affects fibrin clot structure 

and endothelial cell behaviour. 

Turbidity assay, turbidity lysis assay and laser scanning confocal microscopy were used to 

analyse clots formed from normal pooled plasma or purified fibrinogen, in the presence of 

varying concentrations of PM. It was found that clots formed from plasma with higher 

concentrations of particles led to prolonged lysis time compared to control. No differences 

were seen for clots formed from fibrinogen.  

In a study of clots formed from plasma samples collected as part of a previous study on the 

effects of air pollution on deep vein thrombosis (DVT), alterations were observed in clots 

formed from plasma of DVT patients exposed to high levels of PM compared to those exposed 

to low levels, but the same differences were not observed in clots formed from plasma of 

control subjects. 

To investigate the potential role of venous endothelial cells in moderating clot structure 

following exposure to PM, human umbilical vein endothelial cells (HUVEC) were treated with 

PM for 24 hours and clots subsequently formed on the cells. Clots formed from plasma on the 

treated cells were altered compared to controls. RT-PCR and ELISA results showed increased 

gene expression of tissue factor (TF), protein expression of von Willebrand Factor (VWF) and 
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plasminogen activation inhibitor-1 (PAI-1) and decreased thrombomodulin mRNA expression 

which were consistent with changes observed in clot structure.  

Engineered SiO2 nanoparticles caused denser clot structure in clots formed from normal 

pooled plasma. The gene expression of thrombomodulin was inhibited by SiO2 nanoparticles, 

but there were no significant difference in the TF mRNA expression between control and 

treated cells. Silica NPs caused increased concentrations of VWF, but not PAI-1 produced by 

endothelial cells. 

The results presented here show that PM can induce changes to clot structure and function, 

and that changes in gene expression induced in endothelial cells may be a mechanism by 

which a prothrombotic state is induced in response to PM exposure. Furthermore, some, but 

not all, similar changes were observed in clots and cells exposed to SiO2 nanoparticles, raising 

the possibility that such engineered nanoparticles may also have the potential to contribute 

to cardiovascular toxicity.  
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 Introduction  

1.1 Air Pollution 

Air pollution is a combination of gases and particulate matter (PM) varying in chemical 

compositions and concentrations that originate from man-made and natural resources  

(Brook, 2008; Gold and Samet, 2013). Air pollution is significantly associated with increased 

risk of mortality and morbidity (Franchini and Mannucci, 2012; Peters, 2005). The World 

Health Organisation described the worldwide impact of air pollution with 3.6 million 

premature deaths being attributable to ambient air pollution each year in both rural and 

urban areas (Mills et al., 2009; Newby et al., 2014; World Health Organisation, 2011). Many 

studies have shown that exposure to air pollution could lead to adverse effects on the 

pulmonary and cardiovascular systems. It is estimated that there are 80% of premature 

deaths related to ischaemic heart diseases and strokes, 14% of deaths caused by chronic 

obstructive pulmonary diseases or acute lower respiratory infections, and 6% of deaths due 

to lung cancer (World Health Organisation, 2011). Ambient air pollution ranked ninth among 

the modifiable disease risk factors, with other commonly recognized factors such as low 

physical activity, high cholesterol and drug use were all listed below air pollution (Newby et 

al., 2014). The American Heart Association writing group in 2004 illustrated that short-term 

air pollution exposure, especially to the PM, contributes to acute cardiovascular mortality and 

morbidity. For the long-term exposure, life expectancy would be reduced by a few years by 

high PM exposure (Brook et al., 2004).  
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Air pollution includes both indoor air pollution and outdoor air pollution. Indoor air pollution 

refers to the air pollution found in indoors and they are mainly from insufficient combustion 

of biomass fuels such as wood, charcoal, and animal/crop residues for cooking, lighting and 

heating, as well as fabric of buildings, and emissions from building materials such as chemical 

pollutants (Jones, 1999; Rajagopalan and Brook, 2012; World Health Organisation, 2015a, 

2014). According to the World Health Organization, there are still approximately 3 billion 

people using open fires and simple stoves burning biomass and coal for cooking and heating. 

76% of these people are from low- and middle- income countries. The house-hold air pollution 

exposure is particularly high among women and young children (Rajagopalan and Brook, 2012; 

World Health Organisation, 2015b). After exposure to the house-hold air pollution, children 

under five are susceptible to acute lower respiratory infections. And for the adults, ischaemic 

heart disease, stroke, chronic obstructive pulmonary disease and lung cancer are associated 

with the exposure. In 2012, household air pollution contributed 7.7% to global mortality 

(World Health Organisation, 2015b). Outdoor air pollution is an important cause of indoor air 

pollution, similarly, indoor air pollution also contributes to the outdoor air quality (World 

Health Organisation, 2014). In this study, we mainly focused on outdoor air pollution but 

there may be cross over for effects of indoor pollutants, especially from combustion.  

 

 Historical Perspective 

As early as 1273, the use of coal as a fuel in London raised concerns regarding the bad 

influences of air pollution on health (Routledge and Ayres, 2005). In 1872, Robert Angus Smith 

published one of the first feature length air pollution related books, which was entitled “Air 
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and Rain, The Beginning of Chemical Climatology” (Simkhovich et al., 2008; Smith, 1872). 

There were several major air pollution incidents in the 20th century that highlighted the 

impact of air pollution on human health. In the December of 1930, high atmospheric pressure 

mixed with mild winds created a thick and motionless fog in the Meuse Valley in Belgium, the 

fog caused 60 deaths. This air pollution incident was caused by the thick low fog which 

entrapped pollutants from chimney exhausts and created a toxic cloud (Nemery et al., 2001; 

Simkhovich et al., 2008). On the 26th of October, 1945, industrial pollutants from a local 

smelting plant started to accumulate in the air over Donora, Pennsylvania. This incident 

caused 20 fatalities, with approximately 5,000 to 7,000 people (of 14,000 residents) becoming 

ill (Helfand et al., 2001; Simkhovich et al., 2008). In 1952, a dramatic air pollution event, 

referred to as the Great Smog, occurred in Greater London. From 5th to 9th of December, the 

entire city was almost paralysed by the heavy fog carrying pollutants from local industrial 

plants. The PM10 level was between 3,000 to 14,000 µg/m3. The hospital admission rate was 

increased by 48%, especially the respiratory disease related admissions increased by 163%. In 

three months’ time (from December 1952 to February 1953), 12,000 more deaths induced by 

this environmental incident (Davis et al., 2002; Simkhovich et al., 2008; Utell et al., 2002).   
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Figure 1-1. Great Smog in Great London, December 1952 

Source: Elliot Wagland, 2013 

After these environmental incidents, at the early 1970s, many countries started to introduce 

and enforce regulations aimed at limiting the effects of air pollutants (Simkhovich et al., 2008; 

Utell et al., 2002). 

 

 Air Pollutants 

Urban air pollution is a heterogeneous mixture of gaseous pollutants and PM (Sun et al., 2010). 

The components of the air pollutants are various depend on the meteorological conditions, 

time of the day, industrial operations, traffic density, etc. (Langrish et al., 2012). But, in 

general, the main components of gaseous pollution include ozone (O3), nitrogen oxides (NOx), 

sulphur dioxide (SO2), carbon monoxide (CO), carbonyl compounds, and organic solvents 

(Newby et al., 2014; Polichetti et al., 2009; Sun et al., 2010). The primary pollutants originate 

from the combustion of fossil fuels, releasing pollutants such as soot particles and oxides of 

nitrogen and sulphur directly into the air (Newby et al., 2014). The major sources of these 
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gaseous pollutants, NOx, SO2, and CO are from high temperature industrial processes (Brook 

et al., 2010). The secondary pollutants are recombined in the atmosphere, for example, ozone 

is formed by complex photochemical reactions of nitrogen oxides and volatile organic 

compound (Newby et al., 2014). 

The PM in air pollution is a mixture of particles, with different sizes, shapes, surface area, 

chemical composition, solubility, and different origins that are suspended in the air (Pope  3rd, 

2009). PM is categorized by aerodynamic diameter to include coarse particles with a diameter 

range less than 10 μm (PM10), fine particles with a diameter less than 2.5 μm (PM2.5), and 

ultrafine particles with a diameter less than 100 nm (PM0.1) (Brook, 2008; Polichetti et al., 

2009). Hence, PM10 contains both PM2.5 and PM0.1. PM10 and PM2.5 are measured in their mass 

per volume of air (μg/m3). However, in consideration of the particle size, ultrafine particulate 

matter are measured by their number per cubic meter (Brook et al., 2010).  

PM consists of many chemical compounds, including organic carbon species, elemental or 

black carbon, and trace metals (e.g. lead and arsenic) (Brook et al., 2010). In terms of the 

origins of PM, coarse particles are mainly from a number of human and natural activities, such 

as mechanical grinding in industries and transportation (Shah et al., 2013). Non-combustion 

surface or randomly releases that arise from agriculture emissions and industrial processes, 

as well as waste management all contribute to the production of coarse particles or even 

larger sizes (Brook et al., 2010). PM2.5 represents approximately 50-70% of the total mass of 

PM10, which is worth noting that PM2.5 can travel larger distances (over 100 km) compared to 

PM10 (Newby et al., 2014). PM2.5 is mainly originated from combustion processes of fossil and 

bio-fuels, as well as high temperature industrial processes and can contribute to smoke and 
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haze in urban areas (Pope, 2009, Brook et al., 2010). The ultrafine particulate matter is mainly 

from fresh combustion and traffic–related pollution (Brook et al., 2010). PM0.1 is very short-

lived and found mainly within only a few hundred meters of its sources (Brook, 2008). 

Ultrafine PM are included in both coarse and fine PM, nevertheless PM0.1 contribute particle 

numbers instead of the mass as they have negligible weight. For the same mass concentration 

of PM, ultrafine PM have much larger surface area and high number of particles compared to 

the larger size of PM. Ultrafine PM acts as a carrier to the lung for absorbed reactive gases, 

free radicals, and metal or organic compounds (Wichmann and Peters, 2000).  

According to the World Health Organisation statistics, the guideline values for PM10 and PM2.5 

are 50 μg/m3 and 25 μg/m3 as the 24-hour mean concentrations; 20 μg/m3 and 10 μg/m3 as 

the annual concentrations (World Health Organisation, 2011). According to the database of 

WHO in 2014, ambient air pollution was monitored in approximately 1600 cities in 91 

countries from 2008 to 2012. The world’s average level of PM10 was 71 μg/m3, region range 

from 26 to 208 µg/m3. Compared to high-income countries, middle- and low- income 

countries had higher PM10 levels, especially those in the Eastern Mediterranean reached the 

highest PM10 level, 208 µg/m3. Africa and South-East Asia also had high levels of PM10 which 

were 78 and 128 µg/m3 respectively (World Health Organisation, 2014). The details of PM10 

levels in other regions are shown in the following figure.  
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Figure 1-2: PM10 levels by region (2008-2012) 

* PM10 values are regional urban population-weighted. 

Afr: Africa;  

Amr: America,  

Emr: Eastern Mediterranean,  

Sear: South-East Asia,  

Wpr: Western Pacific;  

LMI: Low- and Middle-Income countries;  

HIC: High-Income Countries.  

Source: Adapted from World Health Organisation, 2014 (World Health Organisation, 2014) 

PM10 are identified as “inhalable particles” (Mills et al., 2009) as they are able to enter into 

the lung through the respiratory tract (Shah et al., 2013). Coarse particles most likely deposit 

in upper and larger airways. Fine particulate matter can transfer into deeper respiratory tract, 

with deposition in the alveolar region (Snow et al., 2014, Sun et al., 2010) then affect the 

cardiovascular system (Shah et al., 2013). PM0.1 is able to be inhaled deeply into the lungs. 
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Due to the small size, those particles are difficult to be cleared by alveolar macrophages as 

alveolar macrophages may not be able to recognize particles with a diameter less than 500nm 

(Snow et al., 2014), hence, ultrafine PM is able to be exempted from phagocytosis. While 

PM0.1 deposits in the deeper alveolar region, particles may interfere with cells, fluids, and 

tissues of the lungs due to their large surface area. Also, the ultrafine particles may be able to 

translocate to different organs by crossing into the circulatory and/or lymphatic systems 

(Wichmann and Peters, 2000). 

Population and individual level of exposure to the air pollutants are different due to greatest 

impact on concentrations by multiple time scales, weather patterns, seasonal cycles in solar 

radiation and temperature (Brook et al., 2010). Compared to PM10 and PM0.1, PM2.5 has the 

longest atmospheric lifetime and can be spread by the prevailing winds over large geographic 

regions and leads to greater number of people being exposed to similar levels (Brook et al., 

2010). Also, actual exposure to all pollutants vary at the personal level can be various 

depending on the different microenvironments or activities an individual experiences (Brook 

et al., 2010). 

Air particulate matter could increase the risks of cardiovascular diseases through two 

pathways. Firstly, PM may have direct effects on the lung and cardiovascular system. 

Alternatively, particles may provoke either pulmonary inflammation or oxidative stress or 

both, with release of prothrombotic and inflammatory cytokines into the circulation (Chuang 

et al., 2007, Mills et al., 2009). But there are limited evidence in the specific particulate 

constituents and sources responsible (Brook et al., 2010). 
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 Routes of Exposure 

Humans are exposed to air pollutants mainly through the respiratory system. Food and water 

are contaminated by the ambient air pollutants; therefore, ingestion can be the second major 

route of air pollutants intake (Kampa and Castanas, 2008; Thron, 1996). Also, dermal contacts 

may also be taken into account as a minor route of exposure to air pollutants. To a certain 

degree, the air pollutants can be eliminated though excretion (Kampa and Castanas, 2008; 

Madden and Fowler, 2000). 

 

1.2 Cardiovascular System and Diseases  

The cardiovascular system is composed of the heart, blood vessels and blood (Aaronson and 

Ward, 2007). The heart includes two muscle pumps, the right and left ventricles (Aaronson 

and Ward, 2007; Levy et al., 2007). Each pump is connected with a contractile reservoir, the 

right or left atrium; and serves different circulations (Aaronson and Ward, 2007). The 

pulmonary circulation starts from the right ventricle. The deoxygenated blood is pumped 

through the pulmonary trunk to the lungs, four pulmonary veins return oxygenated blood 

from the lungs to the left atrium to complete the short and low pressure circulation (Aaronson 

and Ward, 2007). The left ventricle propels the oxygenated blood to all other tissues of the 

body. The tissues absorb some of the oxygen, and partly deoxygenated blood returns via two 

great veins, the superior vena cava and inferior vena cava, to the right atrium. This second, 

systemic circulation loop is under higher pressure and is longer compared to the pulmonary 

circulation (Aaronson and Ward, 2007; Levick, 2003). 
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The primary function of the cardiovascular system (CVS) is distributing oxygen, glucose, amino 

acids, fatty acids, hormones, vitamins and water to the tissues; and removing the metabolic 

by-products from the tissues (carbon dioxide, urea, creatinine) (Aaronson and Ward, 2007; 

Levy et al., 2007). Secondly, the CVS regulates the body temperature through transporting 

the heat from deep organs to the skin surface and regulate heat loss from the skin. Thirdly, 

the CVS maintains the body under homeostatic stasis by controlling the humoral 

communication throughout the body (Aaronson and Ward, 2007; Levick, 2003; Levy et al., 

2007). 

According to World Health Organisation (WHO), a group of disorders affecting the heart, brain, 

and blood vessels are classified as cardiovascular diseases (CVDs), such as coronary heart 

disease, cerebrovascular disease, raised blood pressure, venous thrombosis, pulmonary 

embolism, peripheral artery disease, rheumatic heart disease, congenital heart disease and 

heart failure (World Health Organisation, 2011). According to the WHO Statistics, CVDs are 

the number one cause of death around the world. About 17.3 million people died from CVDs 

in 2008 representing 30% of all deaths worldwide. CVDs are projected to be the single leading 

cause of death and it is estimated that 25 million people will die from CVDs by 2030 (World 

Health Organisation, 2011).  

In the UK, CVD accounted for about 180,000 deaths in 2010 – about one in three of all deaths 

that year (British Heart Foundation, 2012). In addition, the report from the Centre for Disease 

Control and Prevention (CDC) in the U.S demonstrated that CVD caused 761,085 deaths in 

1981 and 700,142 in 2001 (Brook et al., 2010). The main types of CVD are coronary artery 

disease (CAD) and stroke, of which 45% of CVD mortality is from CAD and 28% is from stroke 
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(British Heart Foundation, 2012). There are also a variety of cardiovascular diseases, but 

atherosclerosis and hypertension are the most common types (Ajjan and Ariens, 2009). Many 

factors increase the risks for developing CVDs, including tobacco use, physical inactivity, 

diabetes, obesity and raised blood pressure (Frayn et al., 2005). Modern lifestyle changes lead 

to the increase of many of these CVD risk factors.  

 

 Coronary Artery Disease 

The coronary artery disease also known as coronary heart disease, is a condition in which the 

walls of the coronary arteries supplying the oxygen-rich blood to the muscle of the heart 

become thickened, therefore, the coronary artery lumen gets narrowed and the blood flow 

reduces (Libby and Theroux, 2005). The presence of atherosclerosis plaque leads to coronary 

artery disease that is a chronic process starting from early of adolescent life and continues to 

develop throughout the life time (Libby and Theroux, 2005). 

CAD causes the highest mortality rate in the UK which is approximately 82,000 deaths per 

year. Men have higher mortality rate of CAD which is one in five compared to women’s one 

in ten (British Heart Foundation, 2012). However, after the age of 50, men and women have 

a similar risk rate. One recent study showed there were about 2.7 million people suffering 

from CAD, in which about 2 million people were affected by angina in the UK (Mahmood, 

2009). There are also two other common symptoms as well as angina, heart attacks and heart 

failure (Frayn et al., 2005).  
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 Thrombosis 

Thrombus formation is a dynamic process and in which shear stress, flow, turbulence, and the 

number of platelets in the circulation greatly impact the structure of the clot. Thrombosis 

refers to the clot formation within the vessel that reduces the blood flow or blocks the vessel 

completely therefore leading to myocardial tissue infarction (Mackman, 2012). The two most 

common types of thrombosis occur in the arteries and veins.  

Arterial thrombosis refers to the thrombus forms in the arteries. In most cases, arterial 

thrombosis is caused by the rupture of plaques. Myocardial infarction, unstable angina, 

ischemia stroke, arterial fibrillation and peripheral arterial diseases are all belonging to 

arterial thrombosis. The risk factors of arterial thrombosis include age, smoking, obesity, high 

blood pressure, lack of physical activity, high cholesterol level, and diabetes (Celinska-

Lowenhoff et al., 2011; Meltzer et al., 2007). 

Venous thromboembolic diseases include deep vein thrombosis (DVT), which occurs in the 

legs or arms, and pulmonary embolism, which occurs when a piece of the deep vein thrombus 

in the leg (or arm) breaks off (embolism) and travels to the lung through the vena cava, right 

atrium/ventricle and pulmonary artery to block a blood vessel in the lung (Mackman, 2012). 

Venous thrombosis begins at the venous valves (Esmon, 2009). A triad of causes for venous 

thrombosis was proposed by Virchow in 1856 including 1) changes in blood coagulability, 2) 

changes in vessel wall and 3) circulatory stasis (Esmon, 2009). Elevated level of coagulation 

factors and defects of natural anti-coagulants are both associated with risk of venous 

thrombosis (Esmon, 2009). However, compared to age and carcinoma, these factors are less 

frequent contributors to venous thrombosis. Cancer is able to increase the risks of venous 
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thrombosis about 6 to 10 fold through three pathways: generating tissue factor (TF) to initiate 

the coagulation, shedding procoagulant lipid microparticles, or impairing blood flow (Esmon, 

2009). Venous thrombosis is the second leading cause of death in patients with cancer (Furie 

and Furie, 2008). High levels of FVIII, FIX and FXII are able to increase the risk of venous 

thrombosis  two-fold (Bouma and Mosnier, 2006; Koster et al., 1995; Meijers et al., 2000; van 

Hylckama Vlieg et al., 2000). Factor V Leiden is a gene defect which is found in one third of 

the Caucasian patients with venous throboembolism. Factor V Leiden has a mutation Arg506 

which is between Arg to Gln mutation. This form of FV is not be able to be cleaved by activated 

protein C, thus can not support the APC-driven inactivation of FVIIIa. Subjects with 

heterozygous or homozygous FV Leiden will have 5 and 50 fold increased risks of venousm 

thrombosis, respectively (Bertina et al., 1994; Dahlbäck and Villoutreix, 2005; Rosendaal and 

Reitsma, 2009; Versteeg et al., 2013).  

 

1.3 PM Effects on Cardio-respiratory System 

Many epidemiological and experimental studies have shown that the cardiovascular system 

and the respiratory system are particularly influenced by PM (Kampa 2008, Cohen 2005, 

Huang 2006, Kunzli 2005, Sharma 2005). 

The PM in urban air pollution has been associated with cardiovascular mortality and morbidity 

in a number of studies (Brook et al., 2010; Newby et al., 2014). There are several 

cardiovascular diseases where exposure to PM has been shown to contribute to risk, including 
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ischemic heart disease, heart failure, cerebrovascular disease, cardiac arrhythmias, peripheral 

arterial and venous diseases (Brook et al., 2010; Mills et al., 2009; Newby et al., 2014).  

The epidemiological studies can be broadly categorized to short-term exposure studies and 

long-term exposure studies. Different types of effects may be expected with different 

exposure terms. For the short-term exposure, acute effects can be induced such as autonomic 

imbalance and systematic inflammation (Brook, 2008). Both initiation and aggravation of 

diseases are caused after long term air pollution exposure, for example, the progression of 

atherosclerosis. Also, carcinogenesis is another possible latent effect (Brook, 2008; Routledge 

and Ayres, 2005). Observational studies and experimental studies of different sizes of PM are 

described respectively as follows.  

 

 PM10 

There are many epidemiological studies focused on the long-term effects of PM10 on the 

cardiovascular system. Several key studies are summarised in the table 1-1.  

There is a study focused on the associations between air pollution and cardiovascular hospital 

admissions for people aged over 65 years from 1986 to 1989 in Michigan, U.S, an increase of 

32 μg/m3 of PM10 concentrations were associated with increased ischemic heart disease 

hospitalisation (adjusted relative risk (RR) = 1.018, 95% confidence interval (CI)  = 1.005--1.032) 

(Schwartz and Morris, 1995). A German cohort study carried out from 1985-2003 showed 

cardiopulmonary mortality was associated with residents living within a 50-meter radius of a 

major road (RR = 1.70; 95% CI = 1.02--2.81) and with PM10 exposure (adjusted RR = 1.34; 95% 
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CI = 1.06--1.71 for 1-year average) (Gehring et al., 2006). A 67% increase in risk of deep vein 

thrombosis for each 10 µg/m3 elevation of PM10 was observed in a large cohort study with 16 

year follow up (from 1995 to 2005) in the Lombardy region (OR = 1.70; 95% CI = 1.30--2.23) 

(Baccarelli et al., 2008). A retrospective cohort study carried out from 1998-2009 in Shenyang, 

China, reported that every 10 µg/m3 of PM10 caused a 55% increased cardiovascular mortality 

(hazard ratio HR = 1.55; 95% CI = 1.51--1.60) and 49% increase in cerebrovascular morbidity 

(HR = 1.49; 95% CI = 1.45--1.53), respectively (Zhang et al., 2011). A census mortality study 

from New Zealand from 1996-1999 showed that every 10 μg/m3 increase in average PM10 

exposure was related to a 7% (95% CI = 3%--10%) increase of all-cause mortality in adults aged 

30-74 years at census (Hales et al., 2012). According to another cohort study from 1985 to 

2008, an increase of 10 μg/m3 PM10 was associated with an increased hazard ratio for all-

cause mortality (HR = 1.15, 95% CI = 1.04--1.27), cardiopulmonary mortality (HR = 1.39, 95% 

CI = 1.17--1.64), and lung cancer mortality (HR = 1.84, 95% CI = 1.23--2.74) (Heinrich et al., 

2013). In a prospective cohort study of 71,431 middle-aged Chinese men who were studied 

from 1990 to 2006, PM10 was significantly correlated with mortality from cardiopulmonary 

diseases, with every 10 µg/m3 of PM10 increase being associated with 1.6% increased total 

mortality rate (95% CI = 0.7%--2.6%), 1.8% increased cardiovascular mortality rate (95% CI = 

0.8%--2.9%), and 1.7% increased respiratory mortality rate (95% CI = 0.3%--3.2%) (Zhou et al., 

2014). Another retrospective cohort study focused on the association between long-term 

PM10 exposure and cardiovascular mortality rate in 4 cities of China from 1998-2009. Each 

elevated 10 µg/m3 of PM10 lead to the increase of relative risk ratios (RRs) of all-cause 

mortality, 1.24 (95% CI = 1.22--1.27), cardiovascular disease mortality, 1.23 (95% CI = 1.19--

1.26), ischemic heart disease mortality, 1.37 (95% CI = 1.28--1.47), heart failure disease 
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mortality, 1.11(95% CI = 1.05--1.17), and cerebrovascular disease mortality, 1.23(95% CI = 

1.18--1.28) (Zhang et al., 2014). Every 10 µg/m3 elevation of PM10 concentration increases the 

risks of hospitalization for myocardial infarction  (Mu et al., 2014; Polichetti et al., 2009).  

This meta-analysis showed that every 10 μg/m3 elevation in PM10 concentration was 

associated with 1.63% increased heart failure hospitalisation or death rate (95% CI = 1.20%--

2.07%) (Morris, 2001). Also, a systematic review focused on the Chinese population and 1464 

articles and indicated that every 10 μg/m3 increase in PM10 results in 23–67% increase in the 

risk of total mortality (Lu et al., 2015). 

There are a few epidemiological studies focused on short-term exposure of PM10 (Table 1-1). 

Schwartz investigated admissions to all hospitals in Tucson, Arizona, for cardiovascular 

disease in people aged over 65 years. An inter-quartile range increase (23 micrograms per m3) 

in PM10 was associated with increased hospital admissions by 2.75% (95% CI = 0.52%--5.04%) 

(Schwartz, 1997). Revised Analysis of National Morbidity, Mortality, and Air Pollution Study 

(NMMAPS) recruited from 20 to 100 cities in the U.S. Data was collected from 1987 to 1994. 

The results showed that PM10 significantly increased the risks of both cardiovascular and 

respiratory deaths. Every 10 μg/cm3 elevation of PM10 increased 0.68% of death (95% 

posterior interval, 0.20 to 1.16 percent) (Samet et al., 2000). The European Approach 2 

(Agency for Public Health Education Accreditation APHEA2) project conducted in eight 

European cities (Barcelona, Birmingham, London, Milan, the Netherlands, Paris, Rome, and 

Stockholm) focused on the short-term effects of ambient PM on the mortality rate in 29 

European countries. For all ages, every daily increase of 10 μg/m3 of PM10 or black smoke 

were associated with 0.6% increase in daily deaths (95% CI = 0.4--0.8%), for the elderly it was 
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slightly higher (Katsouyanni et al., 2001). It also found that 0.5% (95% CI = 0.2--0.8) of cardiac 

hospital admissions for all ages was correlated with 10 μg/m3 of PM10, and 0.7% (95% CI = 0.4-

-1.0) for cardiac admissions over 65 years (Le Tertre et al., 2002). Another study was 

conducted in 7 United States cities from 1986 and 1999 focused on the association between 

daily levels of PM10 and the rate of hospitalization for congestive heart failure (CHF) in 

Medicare recipients (age > or = 65 years). It indicated a 10 μg/m3 increase in PM10 was 

associated with a 0.72% (95% CI = 0.35%--1.10%) increase in the rate of admission for CHF on 

the same day (Wellenius et al., 2006). From 1987 to 1993, Ponka et al. investigated the 

association between daily concentrations of SiO2, NO2, O3, and PM10, and the daily number of 

deaths from all causes and cardiovascular causes. The results showed that every 10 μg/m3 of 

PM10 were associated with 3.5% (95% CI = 1.0--5.8) and 4.1% (95% CI = 0.4--10.3) increases of 

total mortality and cardiovascular mortality respectively (Pönkä et al., 2010). Analitis et al. 

investigated the short-term effects of ambient particle concentrations (on cardiovascular and 

respiratory mortality from 29 European cities. The results showed 10 μg/m3 increase of PM10 

was associated with increases of 0.76% (95% CI = 0.47%--0.05%) in cardiovascular deaths and 

0.58% (0.21 to 0.95%) in respiratory deaths (Rajzer et al., 2012). PM10 includes particles 

derived from non-anthropogenic sources such as salt and dust particles. In a study conducted 

in 13 south-European cities the association between PM10 originating from desert and from 

other sources with daily mortality and emergency hospitalizations rate was investigated. The 

results showed that increases of 10 μg/m3 in non-desert and desert PM10 were associated 

with increases in natural mortality of 0.55% (95% CI = 0.24%--0.87%) and 0.65% (95% CI = 

0.24%--1.06%), respectively (Stafoggia et al., 2015).  
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A systemic review focused on the association between short term exposures of fine PM and 

morbidity and mortality rate of heart failure. This review contains 1146 articles in 5 databases. 

It showed every 10 μg/m3 increase in PM10 caused 1.63% (95% CI = 1.20%--2.07%) increase of 

total heart failure mortality and morbidity rate (Shah et al., 2013). Wang et al. focused on the 

short term effects of ambient particulate matter on cerebrovascular events which contained 

all observational human studies from January 1966 to January 2014. Meta-analysis was 

performed to evaluate the associations in this systematic review that each 10 μg/m3 increase 

in PM10 was associated with 0.5% (95% CI = 0.3%--0.7%) increased in total cerebrovascular 

deaths (Wang et al., 2014). Another systematic review and meta-analysis focused on the 

Chinese population and 1464 articles were included from PubMed, Web of Science, and China 

National Knowledge Infrastructure databases. For the short term effects, cardiovascular 

mortality and respiratory mortality increased 0.36% (95%CI = 0.24%--0.49%), and 0.42% 

(95%CI = 0.28%--0.55%) after 10 μg/m3 increase in PM10 (Lu et al., 2015). 
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Study Key Findings Year References 

Long-term Study: Study in 

Michigan, US 

An increase of 32 μg/m3 of PM10 concentrations were associated with 

ischemic heart disease hospitalisation (RR = 1.018, 95% CI = 1.005--

1.032) 

1986-1989 Schwartz & Morris, 

1995 

Long-term Study: German 

cohort study  

 

Cardiopulmonary mortality was associated with living within a 50-

meter radius of a major road (RR = 1.70; 95% CI = 1.02--2.81) with PM10 

(RR = 1.34; 95% CI = 1.06--1.71 for 1-year average) 

1985-2003 Gehring et al., 2006 

Long-term Study: Cohort 

Study in Lombardy, Italy 

A 70% increase in risk of deep vein thrombosis for each 10 µg/m3 

elevation of PM10 was observed with 16 year follow up (OR = 1.70; 95% 

CI = 1.30--2.23)  

1995-2005 Baccarelli et al., 2008 

Long-term Study: 

Retrospective Cohort Study 

in Shenyang, China 

An increase of every 10 µg/m3 of PM10 caused 55% increased 

cardiovascular mortality (HR = 1.55; 95% CI = 1.51--1.60) and 49% 

increase in cerebrovascular mobility (HR = 1.49; 95% CI = 1.45--1.53)  

1998-2009 Zhang et al., 2011 

Long-term Study: New 

Zealand Census Mortality 

Study 

Every 10 μg/m3 increase in average PM10 exposure increased 7% (95% 

CI = 3%--10%) of all-cause mortality in adults (aged 30-74 years at 

census) 

1996-1999 Hales et al., 2012 
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Long-term Study: German 

Women Perspective Cohort 

Study 

An increase of 10 μg/m3 PM10 was associated with an increased hazard 

ratio (HR) for all-cause (HR = 1.15, 95% CI = 1.04--1.27), 

cardiopulmonary (HR = 1.39, 95% CI = 1.17--1.64), and lung cancer 

mortality (HR = 1.84, 95% CI = 1.23--2.74) 

1985-2008 Heinrich et al., 2013 

Long-term Study: 

Retrospective cohort Study 

in 4 cities of China 

For each elevated 10 µg/m3 of PM10  lead to the increase of relative risk 

ratios of all-cause mortality, cardiovascular disease mortality, ischemic 

heart disease mortality, heart failure disease mortality, and 

cerebrovascular disease mortality were 1.24 (95% CI = 1.22--1.27), 1.23 

(95% CI = 1.19--1.26), 1.37 (95% CI = 1.28--1.47), 1.11(95% CI = 1.05--

1.17), and 1.23(95% CI = 1.18--1.28), respectively. 

1998-2009 Zhang et al., 2014 

Long-term Study: Systematic 

Review &  Meta-Analysis 

Every 10 μg/m3 elevation in PM10 concentration was associated with 

1.63% increased heart failure hospitalisation or death rate (95% CI = 

1.20%--2.07%). 

 Morris, 2001 

Long-term Study: Systematic 

Review &  Meta-Analysis in 

Chinese Population 

After the long term exposure, 10 μg/m3 increase in PM10 result in 23–

67% increase in the risk of total mortality. 

 Lu et al., 2015 

Short-term Study: Tucson An inter-quartile range increase (23 micrograms per m3) in PM10 was associated with 

increased hospital admissions by 2.75% (95% CI = 0.52%--5.04%) 

Schwartz, 1997 
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Short-term Study: NMMAPS 

Study 

PM10 significantly increased the risks of both cardiovascular and respiratory caused 

deaths. Every 10 μg/cm3 elevation of PM10 increased 0.68% of death (95% posterior 

interval = 0.20%--1.16%). 

Samet et al., 2000 

Short-term Study: APHEA2 

Study 

For all ages, every daily increase of 10 μg/m3 of PM10 or black smoke were associated 

with 0.6% of daily deaths (95% CI = 0.4--0.8%), for the elderly it was slightly higher 

Katsouyanni et al., 

2001 

Short-term Study: APHEA2 

Study 

The association between PM and cardiovascular caused hospital admissions. 0.5% 

(95% CI = 0.2--0.8) of cardiac admissions for all ages was correlated with 10 μg/m3 of 

PM10, and 0.7% (95% CI = 0.4--1.0) for cardiac admissions over 65 years 

Le Tertre et al., 2002 

Short-term Study: 7 United 

States cities 

10 μg/m3 Increase in PM10 was associated with a 0.72% (95% CI = 0.35%--1.10%) 

increase in the rate of admission for CHF on the same day  

Wellenius et al., 

2006 

Short-term Study: Helsinki, 

Finland 

Every 10 μg/m3 of PM10 were associated with 3.5% (95% CI = 1.0--5.8) and 4.1% (95% 

CI = 0.4--10.3) increases of total mortality and cardiovascular mortality respectively 

Pönkä et al., 2010 

Short-term Study: 29 

European cities 

10 μg/m3 Increase of PM10 was associated with increases of 0.76% (95% CI = 0.47--

0.05%) in cardiovascular deaths and 0.58% (0.21 to 0.95%) in respiratory deaths 

Rajzer et al., 2012 

Short-term Study: 13 South-

European Cities 

Increases of 10-μg/m3 in non-desert and desert PM10 were associated with increases 

in natural mortality of 0.55% (95% CI = 0.24%--0.87%) and 0.65% (95% CI = 0.24%--

1.06%), respectively  

Stafoggia et al., 2015 
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Table 1-1. Summary of the some important studies on both short-term and long-term effects of PM10 on the cardiovascular system 

 

Short-term Study: 

Systematic Review 

Every 10 μg/m3 increase in PM10 caused 1.63% (95% CI = 1.20%--2.07%) increase of 

total heart failure mortality and morbidity rate 

Shah et al., 2013 

Short-term Study: 

Systematic Review 

Every 10 μg/m3 increase in PM10 was associated with 0.5% (95% CI = 0.3%--0.7%) 

increased in total cerebrovascular deaths 

Wang et al., 2014 

Systematic Review For the short term effects, cardiovascular mortality and respiratory mortality 

increased 0.36% (95%CI = 0.24%--0.49%), and 0.42% (95%CI = 0.28%--0.55%) after 10 

μg/m3 increase in PM10 

Lu et al., 2015 
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 PM2.5 

According to the World Health Organisation, there are approximately 80,000 premature 

deaths every year caused by the long-term exposure to PM2.5, ranking it as the 13th leading 

cause of death worldwide (Brook et al., 2010). Evidence for the role of PM2.5 in cardiovascular 

disease comes from several studies of short term exposure. One of the difficulties with this 

type of epidemiological study is the accurate measurement of exposure. Some studies have 

compared health outcomes between cities based on the average exposure levels in the 

different cities (Dockery, 1993; Pope et al., 1995; C. Arden Pope et al., 2004). A large cohort 

study followed-up for 9 years on 8096 people living in 6 U.S cities from 1979 to 1988. PM2.5 

exposure measurement was based on the city-specific mean concentrations of PM2.5. Each 

elevated 10 μg/m3 in PM2.5 was associated with increased cardiovascular mortality (RR = 1.28; 

95% CI = 1.13--1.44) and lung cancer (RR = 1.27; 95% CI = 0.96--1.69) (Laden et al., 2006). 

However, these approaches miss potentially important effects of more local variations in 

exposure. To address this, Miller et al (2007) assigned exposure data from community level 

monitors (based on average yearly data from the monitor closest to the subject’s address 

based on ZIP code) to query the role of PM2.5 exposure in cardiovascular disease among a 

cohort of 65,893 postmenopausal women without previous cardiovascular diseases recruited 

in the U.S and followed up for 6 years from 1994 to 1998. The average yearly exposure 

concentrations of PM2.5 ranged from 3.4 to 28.3 μg/m3. Every increase of 10 μg/m3 of PM2.5 

was associated with a 24% increase in the risk of a cardiovascular event (HR = 1.24; 95% CI = 

1.09--1.41) and a 76% increase in the risk of death from cardiovascular disease (HR = 1.76; 95% 

CI = 1.25--2.47) (Miller et al., 2007).  
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In a study in Massachusetts, USA, conducted from 2000 to 2008, Kloog et al used more 

sophisticated geographical grid based methods for estimating exposure to PM2.5. This 

approach used air pollution prediction modelling at a solution of 50 m2 as a basis for studying 

particle related mortality. The results showed that every 10 μg/m3 increase in long-term PM2.5 

exposure was associated with an OR of 1.6 (95% CI = 1.5--1.8) for particle-related diseases 

(Kloog et al., 2013).  Using a time-series approach to study short term exposure effects, the 

same study found that for every 10 μg/m3 increase in PM2.5 exposure there was a 2.8% 

increase in PM-related mortality (95% CI= 2.3--3.5) (Kloog et al., 2013).  

 A Harvard Six Cities Extended Follow-Up study was conducted for 11 additional years. From 

2001, average PM2.5 concentration was less than 18 μg/m3. Every 10 μg/m3 elevation of PM2.5  

caused 14% (95% CI = 7--22%) increased risk of total mortality, and 26% (95% CI, 14-40%)  

cardiovascular mortality and 37% (95% CI = 7--75%) lung-cancer mortality (Lepeule et al., 

2012). A systemic review focused on 33 Chinese studies of short-term air pollution exposure, 

every 10 µg/m3 elevation of PM2.5  was associated with a 0.38% (95% CI = 0.31--0.45) increase 

in total mortality, a 0.51% (95% CI = 0.30--0.73) in respiratory mortality, and a 0.44% (95% CI 

= 0.33--0.54) in cardiovascular mortality  (Shang et al., 2013). An exposure study of PM2.5 in 

Massachusetts, United States also investigated the short-term exposure effects of on 

cardiovascular and respiratory diseases. The results indicated that every 10 μg/m3 increase in 

PM2.5 exposure there was a 2.8% increase in PM-related mortality (95% CI = 2.0--3.5) (Kloog 

et al., 2013).  

A systemic review of 33 Chinese studies of short-term air pollution exposure, included a meta-

analysis that found that every 10 µg/m3 elevation of PM2.5 was associated with a 0.38% (95% 
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CI = 0.31--0.45) increase in total mortality, a 0.51% (95% CI = 0.30--0.73) in respiratory 

mortality, and a 0.44% (95% CI = 0.33--0.54) in cardiovascular mortality (Shang et al., 2013). 

The authors calculated that reducing PM2.5 exposure average to 10 μg/m3 would lead to a 

reduction of premature deaths of between 1.7 and 6.2% in 4 Chinese megacities (Beijing, 

Shanghai, Guangzhou and Xi’an). A systemic review focused on the association between short 

term exposures of fine particulate matter and morbidity and mortality rate of heart failure. It 

showed every 10 μg/m3 increase in PM2.5 caused 2.12% (95% CI = 1.42%--2.82%) increase of 

total heart failure mortality and morbidity rate (Shah et al., 2013). Want et al. conducted a 

systematic review focused on the short term effects of ambient particulate matter on 

cerebrovascular events which contained all observational human studies from January 1966 

to January 2014. Meta-analysis was performed to evaluate the associations that after 10 

μg/m3 increase in PM2.5, total cerebrovascular deaths  increased 1.4% (95% CI = 0.9%--1.9%) 

(Wang et al., 2014). Another systematic review and meta-analysis focused on the Chinese 

population and 1464 articles were included from PubMed, Web of Science, and China 

National Knowledge Infrastructure databases. For the short term effects, after 10 μg/m3 

increase in PM2.5 cardiovascular mortality and respiratory mortality had 0.63% (95%CI = 

0.35%--0.91%), and 0.75% (95%CI = 1.39%--1.11%) increased risk, respectively (Lu et al., 2015). 
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Study Key Finding Time References 

Long-term Study: Harvard Six 

Cities Studies (Extended) 

Each elevated 10 μg/m3 in PM2.5 was associated with increased 

cardiovascular mortality (RR, 1.28; 95% CI = 1.13--1.44) and lung cancer 

(RR, 1.27; 95% CI = 0.96--1.69).  

1979-1988 Laden et al., 2006 

Long-term Study : 

Postmenopausal Women 

Cohort Study, U.S 

Every increase of 10 μg/m3 of PM2.5 was associated with a 24% increase 

in the risk of a cardiovascular event (HR, 1.24; 95% CI = 1.09--1.41) and a 

76% increase in the risk of death from cardiovascular disease (HR, 1.76; 

95% CI = 1.25--2.47). 

1994-1998 Miller et al., 2007 

Long-term Study: Study in 

Massachusetts,  U.S 

Every 10 μg/m3 increase in long-term PM2.5 exposure of 1.6 (CI = 1.5--1.8) 

for particle-related diseases. 

2000-2008 Kloog et al., 2013 

Short-term Study: Harvard Six 

Cities Extended Follow-Up 

Study 

Every 10 μg/m3 elevation of PM2.5 caused 14% (95% CI = 7%--22%) increased risk of total 

mortality, and 26% (95% CI, 14-40%) cardiovascular mortality and 37% (95% CI = 7%--75%) 

lung-cancer mortality. 

Lepeule et al., 

2012 
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Short-term Study: Systemic 

Review, China 

Every 10 µg/m3 elevation of PM2.5 was associated with a 0.38% (95% CI = 0.31--0.45) 

increase in total mortality, a 0.51% (95% CI = 0.30--0.73) in respiratory mortality, and a 

0.44% (95% CI = 0.33--0.54) in cardiovascular mortality. 

Shang et al., 2013 

Short-term Study: Study in 

Massachusetts,  U.S 

Every 10-μg/m3 increase in PM2.5 exposure there was a 2.8% increase in PM-related 

mortality (95% CI = 2.0–3.5). 

Kloog et al., 2013 

Short-term Study: Systematic 

Review 

Every 10 μg/m3 increase in PM2.5 caused 2.12% (95% CI = 1.42%--2.82%) increase of total 

heart failure mortality and morbidity rate. 

Shah et al., 2013 

Short-term Study: Systematic 

Review 

Every 10 μg/m3 increase in PM2.5 was associated with 1.4% (95% CI = 0.9%--1.9%) increased 

in total cerebrovascular deaths (Wang et al., 2014). 

Wang et al., 2014 

Short-term Study: Systematic 

Review 

For the short term effects, after 10 μg/m3 increase in PM2.5 cardiovascular mortality and 

respiratory mortality had 0.63% (95%CI = 0.35%--0.91%), and 0.75% (95%CI = 1.39%--1.11%) 

increased risk, respectively. 

Lu et al., 2015 

Table 1-2.Summary of the some important studies on both short-term and long-term effects of PM2.5 on the cardiovascular system 
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 PM0.1 

Ultrafine particles (below 0.1 µm) are small enough to be potentially taken up into the 

circulatory system. An in vivo human study has confirmed this by using inhaled technetium-

99m labelled carbon particles, which are similar in size to ambient ultrafine air pollution 

particles, to test whether such particles could translocate from the respiratory system to the 

circulatory system. Through γ-ray camera images, substantial radioactivity was found in the 

liver and other organs of the body, indicating that the inhaled particles could be able to pass 

rapidly into the systemic circulation (Nemmar et al., 2002). 

Another study showed the potential for ultrafine particles to induce oxidative damage 

investigated whether the soluble ultrafine particles could induce procoagulant responses in 

human coronary artery endothelial cells (Snow et al., 2014). The results showed that soluble 

ultrafine particles could induce procoagulant responses in human coronary artery endothelial 

cells and result in the increased production of intracellular ROS and activation of the NOX-4 

enzyme that regulates tissue factor mRNA (Snow et al., 2014).  

There is a study focused on effects of ultrafine petrol exhaust particles on human A549 lung 

cells and alveolar macrophages (murine RAW 264.7 cells). After 24 hours treatment, the 

particles induced significant oxidative stress (A549 cell line: 20 and 50 µg/ml; macrophage: 10 

and 20 µg/ml) with membrane leakage, lipid peroxidation, cell inflammation and protein 

release (Durga et al., 2014). 
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 Diesel Particles 

Diesel exhaust emission is one kind of the key sources of urban PM10 exposure, so the 

epidemiological studies discussed above have included such PM in the exposure data, as it is 

difficult to separate out the specific contribution of diesel PM in such studies. There have 

been experimental studies showing the effects of typical ambient diesel exhaust particles on 

cardiovascular and respiratory systems.  

In a randomized, double-blinded exposure study, 19 healthy young volunteers (mean age, 25 

± 3 years) were divided into three groups that respectively exposed to filtered air, diesel 

exhaust with particle trap, and diesel exhaust without particle trap for 1 hour (Lucking et al., 

2011). Compared to those volunteers who exposed to filtered air, those inhaled diesel 

exhaust had reduced vasodilatation and increased ex vivo thrombus formation under both 

low- and high- shear conditions. The diesel exhaust in the presence of particle trap had 

significantly decreased particle number (150,000 - 300,000/cm3 to 30 – 300/cm3) and mass 

(320 ± 10 to 7.2 ± 2.0 µg/m3) compared to the diesel exhaust in the absence of particle trap, 

and showed increased vasodilatation, reduced thrombus formation and increased tPA 

expression compared to the latter group (Lucking et al., 2011).  

Understanding the effects of diesel PM on the types of cells likely to be exposed is another 

approach to investigating the health effects of such PM. In one study, human primary small 

airway epithelial cells and human lung carcinoma epithelial A549 cells were treated with 

diesel particles for 2 hours. Atomic force microscope measurements indicated that short-term 

diesel particle exposure led to a significant decrease in cell elasticity and a dramatic change 

in membrane surface adhesion force. The ELISA results showed that DEP-induced 
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inflammatory responses were found in both cell types after the quantification of cytokines 

and chemokines production (Tang et al., 2012). 

An in vitro study from Solomon et al. investigated the effects of diesel particle on platelets. 

The results indicated that diesel particle physically interacted with platelets aggregation, 

induced signaling and functioning of the activation of platelets, suggesting a possible 

mechanism to link exposure to diesel particles with platelet driven thrombotic events 

(Solomon et al., 2013).  

 

 Subclinical Pathophysiological Responses 

Systemic Inflammation 

There is abundant evidence have shown that exposure to PM leads to the elevation of 

circulating pro-inflammatory biomarkers which indicates a systemic response after PM air 

pollution inhalation (Brook et al., 2010). After the short-term exposure of ambient PM, acute-

phase proteins such as C-reactive protein (CRP), fibrinogen and white blood cells counts 

increased in young overweight adults (Zeka et al., 2006), and the elderly (Pope et al., 2004); 

also the tumour necrosis factor-α (TNF-α) and interleukin (IL)-1β increase in children 

(Calderón-Garcidueñas et al., 2008). Increased ultrafine PM concentration also led to an 

immediate elevation in soluble CD40-ligand in patients with coronary artery disease (Rückerl 

et al., 2007). For the long-term PM10 exposure, elevated white blood cells count was reported 

after approximately 1-year exposure in the Third National Health and Nutrition Examination 

Survey (Brook et al., 2010). Overall, positive associations have been seen between the 
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exposure of PM and systemic inflammatory response; but there is variation in the strength of 

changes among the variety of biomarkers and populations (Brook et al., 2010).  

 

Thrombosis and Coagulation 

There have been many studies that have reported the associations between PM exposure and 

thrombosis/coagulation. Early studies demonstrated that plasma viscosity and elevated 

concentrations of fibrinogen were associated with the PM exposure (Pekkanen et al., 2000; 

Peters et al., 1997). In Taipei, PM levels were correlated with the increases in plasminogen 

activator inhibitor (PAI)-1 and fibrinogen levels in healthy adults (Chuang et al., 2007). 

Increased fibrinogen level is directly correlated with denser fibrin clot structure. 

According to Chuang et al., a penal study recruited 76 young, healthy students from University 

of Taipei to investigate whether biological mechanisms linking air pollution to cardiovascular 

events. After exposure to PM10, levels of C-reactive protein and fibrinogen were increased 

which indicated that the urban air pollution was associated with systemic oxidative stress and 

activation of blood coagulation in young and healthy volunteers (Chuang et al., 2007).  

Metassan et al. investigated the effect of filtered particulate matter (diameter less than 0.22 

µm) on fibrin clot properties in vitro. The results showed that after exposure to filtered PM, 

fibrin clot structure was altered and formed a heterogeneous network according to the 

formation of clustered fibrin fibres through the generation of reactive oxygen species (ROS). 

The formation of small clusters of fibrin fibres may break off and block small blood vessels 

and consequently led to thrombosis (Metassan et al., 2010a).  
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Atherosclerosis 

According to results from the German Heinz Nixdorf Recall Study, the subjects living near the 

major road traffic had increased coronary artery calcium scores (a surrogate marker for 

coronary atherosclerosis) compared to those living further away (Hoffmann et al., 2007; 

Langrish et al., 2012). In another study in Denmark that recruited 1223 subjects, the coronary 

artery calcium scores were significantly higher in the subjects living in a city centre 

environment (OD=1.8, 95% CI 1.3-4) who were exposed to 30%-40% higher concentrations of 

PM10 compared to those living outside of the city (Lambrechtsen et al., 2012). 

 

1.4 Haemostasis 

Haemostasis is a process which maintains the blood throughout the body under normal 

physiological conditions that include preventing loss of blood from blood vessels and removal 

of blood clots following restoration of vascular integrity (Versteeg et al., 2013). From zebra 

fish to human, the haemostatic system is a highly conserved machinery which tightly 

regulates the necessary equilibrium (Teruel-Montoya et al., 2014; Versteeg et al., 2013). 

Haemostasis encompasses four main components, firstly the endothelium, secondly the 

coagulation cascade, and thirdly platelet activation which is able to accelerate the coagulation 

cascade, and finally fibrinolysis removes the redundant clots by proteolytic mechanisms 

(Allford and Machin, 2004; Riddel et al., 2007; Versteeg et al., 2013). The Greek philosopher 

Plato described the fibres formed from blood approximately 2,000 years age. The word “fibrin” 

also originated from Plato (Versteeg et al., 2013).   
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 Coagulation Cascade 

Blood clot formation involves a cascade of two pathways which are (i) the contact pathway 

including factor (F) XII (Hageman factor), XI, IX and VIII, and (ii) the tissue factor pathway 

including FVII activated by tissue factor. In terms of the contact pathway, all the components 

are present in the blood. But for the tissue factor pathway, tissue factor as an external factor 

was required, which can be found in the extravascular tissue (Versteeg and Ruf, 2013). These 

two pathways finally merge into a common pathway involving FX, V, thrombin and fibrinogen 

(Ajjan and Grant, 2006; Ajjan and Ariens, 2009).  

The coagulation cascade can be divided roughly into three phases. In the first or initiation 

phase, there are only limited amounts of thrombin generated. Then in the second or 

amplification phase, the coagulation cascade is accelerated. Finally, in the third or 

propagation phase, fibrin clots are completely formed.  
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Figure 1-3. Coagulation Cascade 

The coagulation cascade consists of two pathways which are (i) the contact pathway including 

FXII XI, IX and VIII, and (ii) the tissue factor pathway including FVII activated by TF. These two 

pathways finally merge into a common pathway involving FX, V, thrombin and fibrinogen 

(Ajjan & Ariens, 2009; Butenas & Mann, 2002; Dahlbäck, 2000; Ajjan & Grant, 2006). 
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Initiation Phase 

The contact pathway becomes activated once blood contacts negatively charged surfaces, 

FXII starts to get activated and then cleaves prekallikrein into kallikrein, which in turn gives 

rise to a subsequent activation of FXI, FIX and FX to FXIa, FIXa and FXa respectively. According 

to Burman et al. (1994), patients with severe FXII deficiency do not have bleeding problems, 

and as a result FXII is not necessary for thrombin generation (Burman et al., 1994). Therefore, 

compared to factor XII, tissue factor is emphasized as the main physiological initiator of in 

vivo coagulation (Adams and Bird, 2009), but FXII and the contact pathway of coagulation may 

play an important role in thrombosis. In terms of the activation of the tissue factor pathway, 

classically refers to damage or activation of endothelium in the vessel wall leads to exposure 

sub-endothelial cells to the blood resulting in the exposure of tissue factor (a transmembrane 

protein expressed by sub-endothelial smooth muscle cells and fibroblasts) to the blood. 

Platelets adhere to the site of injury and then become activated by the interaction of von 

Willebrand factor (VWF) and collagen (Ajjan and Ariens, 2009). TF is a 47 kDa cell-bound 

transmembrane glycoprotein and member of the class II cytokine superfamily (Adams and 

Bird, 2009). TF is the key initiator of blood coagulation, which is expressed by sub-endothelial 

cells (e.g. smooth muscle cells) and cells surrounding blood vessels (e.g. fibroblasts). These 

two kinds of cells are located outside of the vasculature, i.e., not normally in contact with the 

circulating blood which is protected from tissue factor exposure by the intact, healthy 

endothelium (Adams and Bird, 2009; Golino, 2002).  

In the initiation phase, FVII accesses TF and is bound to TF with high affinity and specificity, 

after which FVII is rapidly converted to FVIIa via proteases and auto-activation (Ajjan and 
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Ariens, 2009; Golino, 2002). Activated TF/FVIIa complexes, on the phospholipids surface of 

the cell membrane,  catalyse the conversion of FIX to FIXa, FX to FXa and FV to FVa (Adams 

and Bird, 2009; Ajjan and Ariens, 2009; McVey, 1999). FXa and FVa cleave prothrombin to 

generate trace amounts of thrombin. The duration of the initiation phase is primarily 

dependent on the concentration of TF/FVIIa and tissue factor pathway inhibitor (TFPI) (Adams 

and Bird, 2009; Butenas and Mann, 2002).  

 

Amplification Phase 

In the amplification phase, the intrinsic tenase complex is formed by FIXa and its thrombin-

activated cofactor FVIIIa. The tenase complex FIXa/FVIIIa, aggregating on a membrane surface 

in the presence of calcium,  accelerates FXa production at a 50 to 100 fold higher rate than 

TF/FVIIa complex and generates more thrombin than FIX alone (Adams and Bird, 2009; 

Butenas and Mann, 2002). The reaction efficiency of both the intrinsic factor tenase complex 

and prothrombinase complex is accelerated in the presence of calcium by their co-localization 

on the surface of platelet with phospholipid membrane (Adams and Bird, 2009; Ajjan and 

Grant, 2006). The platelets are activated by local collagen at the site of injury in the initial 

haemostatic plug. Collagen-bond, partially activated platelets are further activated by 

thrombin through interactions with protease-activated receptor-1 (PAR-1). The fully activated 

platelets change shape and degranulate. More FVIIIa is generated by thrombin through 

liberation of FVIII from its complex with von Willebrand factor (FVIII/VWF). Thrombin also 

activates FXI to FXIa which binds to the surface of platelets. Platelet surface FXa/FVa 

complexes are the primary activator of prothrombin and lead to the efficient generation of 
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large amounts of thrombin from prothrombin (Adams and Bird, 2009; Ajjan and Grant, 2006; 

Butenas and Mann, 2002).  

 

Propagation Phase 

The propagation phase depends on the recruitment of activated platelets at the site of injury 

to generate enough thrombin through the necessary components including intrinsic tenase 

complex, the prothrombinase complex, calcium and a phospholipid surface. The sufficient 

amount of thrombin generates fibrinogen to fibrin and forms a stable fibrin clot structure 

(Adams and Bird, 2009; Ajjan and Grant, 2006; Ajjan and Ariens, 2009).  

Except FXII, all other coagulation factors deficiency are associated with bleeding disorders of 

varying severity. There are three common hereditary bleeding disorders, FVIII deficiency 

causes haemophilia A, FIX deficiency causes haemophilia B, and VWF deficiency causes von 

Willebrand diseases (Dahlbäck, 2000; Riddel et al., 2007). 

 

 Regulation of Blood Coagulation 

Apart from the deficiency of clotting factors, the coagulation cascade can be restricted by 

several coagulation inhibitors. There are at least four plasma proteins (anti-thrombin, protein 

C, protein S, and tissue factor pathway inhibitor) and one trans-membrane protein 

(thrombomodulin) that regulate the anti-coagulant process (Butenas and Mann, 2002). 

Thrombin has important roles in both pro- and anti-coagulation. As in the initiation phase, 
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the rate of thrombin generation depends on the concentration of complex TF/FVIIa. Tissue 

factor pathway inhibitor is the primary inhibitor in the initiation phase (Butenas and Mann, 

2002). In the propagation phase, TF/FVIIa complex and TFPI have little effects, while protein 

C and antithrombin start to play pronounced roles in inhibiting the FVa thus limiting thrombin 

generation (Butenas and Mann, 2002; Dahlbäck, 2000). Protein C regulates coagulation by 

restricting the activities of FVIIIa and FVa (Dahlbäck, 2000). Antithrombin can inactive a series 

of serine proteases (Norris, 2003).  

 

 Platelets 

Platelets are the smallest blood cells with diameter 2 to 3 µm, also they are the second most 

numerous corpuscles in the blood (red blood cells are the most abundant) circulating at 

between 150 x109/L and 450 x109/L. Their half-life in circulation is around ten days  (George, 

2000; Harrison, 2005). Generally, concentrations of less than 10,000 platelets/L are defined 

as extreme thrombocytopenia (Clemetson, 2012), a condition that increases the risk for 

bleeding. Platelets are biconvex discoid in shape before activation, and they are anucleated 

cells. Platelets are produced by megakaryocytes in the bone marrow, a large cell that releases 

platelets by fragmentation of the cell membrane and by packaging mitochondria, dense and 

alpha granules in the newly formed platelets (Clemetson, 2012; George, 2000; Harrison, 2005). 

Platelets are multifunctional and participate in many pathophysiological processes such as 

haemostasis, clot retraction, vessel constriction and repair, and inflammation, of which 

haemostasis (protection against blood loss) is the most important role of platelets (Clemetson, 

2012).  



Page 62 of 265 

 

The platelets can be activated by two independent pathways which act in parallel or 

separately (Furie and Furie, 2008). One of the pathways involves the activation of platelets by 

the exposure to sub-endothelial collagen. The other pathway in platelets can be initiated by 

thrombin, generated by tissue factor or present in flowing blood. Although the platelets are 

activated by different mechanisms, the consequences are the same (Furie and Furie, 2008).  

For the first pathway, activation of the platelet by collagen is independent of thrombin. 

Platelets aggregate to the site of injury, via interactions between platelet glycoprotein VI with 

collagen and platelet glycoprotein Ib-V-IX with collagen and VWF (Furie and Furie, 2008). 

Glycoprotein VI is a collagen receptor on platelets, and glycoprotein Ib-V-IX is a cluster of 

adhesive receptors on platelets (Furie and Furie, 2008). The second pathway of platelet 

activation occurs through tissue factor driven thrombin generation without disruption of the 

endothelium. Also, this pathway is independent of VWF and glycoprotein VI. Thrombin is 

generated through tissue factor pathway that activates FVII and forms the TF/FVIIa complex, 

which then also activates IX. Thrombin activates platelets by cleaving the PAR-1 on the surface 

of platelets and causing them to release adenosine diphosphate (ADP), serotonin, and 

thromboxane A2. Afterwards, these agonists activate other platelets and amplify the signals 

for thrombus formation (Furie and Furie, 2008). 

During the activation, platelets are deformed from their discoid shape to irregular shapes with 

long dendritic extensions that helps adhesion (George, 2000). Four kinds of secretary granules 

are released from platelets in activation, but two of them are more important. Firstly the 

dense granules, also called delta granules, which produce ADP and calcium and promote the 

platelets aggregation. Secondly the alpha granules secrete a variety of proteins, P-selectin and 
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fibronectin enhance platelets activation and aggregation to the site of injury; von Willebrand 

factor, fibrinogen, and coagulation factors V and XIII  further assist in the acceleration 

platelets activation and clots formation (Clemetson, 2012; George, 2000; Harrison, 2005; 

Lindemann et al., 2007). 

 

 Fibrinogen and Fibrin Clot Structure 

The Fibrinogen Molecule 

Fibrinogen is the most abundant coagulation factor in the blood with an average 

concentration of 2 to 4 mg/ml (6 – 12 µM) (Ariens, 2013). It is mainly synthesized in the liver, 

which produces approximately 1.7g to 5g daily (Standeven et al., 2005). Fibrinogen is a 340 

kDa glycoprotein and possesses properties of both globular and fibrous proteins (Standeven 

et al., 2005). The fibrinogen molecule is composed of two sets of three polypeptide chains, 

denominated Aα, Bβ and γ, cross-linked by 29 disulfide bonds in a dimeric structure with 

bilateral symmetry (Ariens, 2013; Wolberg, 2007). The central part of the molecule includes 

the E region, which contains N-termini of all six polypeptide chains. The chains intertwine and 

connect to two distal D region via α-helical coiled-coil structure which provide elasticity to the 

molecule (Ariens, 2013; Standeven et al., 2005; Wolberg and Campbell, 2008). The C-terminal 

region of both the Bβ- and γ- chains end in the D region, however, the Aα-chain protrudes 

from the D region, form a flexible αC region and extends back to the E region (Ariens, 2013; 

Standeven et al., 2005; Weisel, 1986).  

https://en.wikipedia.org/wiki/Fibronectin
https://en.wikipedia.org/wiki/Von_Willebrand_factor
https://en.wikipedia.org/wiki/Von_Willebrand_factor
https://en.wikipedia.org/wiki/Fibrinogen
https://en.wikipedia.org/wiki/Coagulation_factor
https://en.wikipedia.org/wiki/Factor_V
https://en.wikipedia.org/wiki/Factor_XIII
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The Aα-chain contains 610 residues; the Bβ-chain contains 461 residues and the major γ-chain 

form, γA contains 411 residues. The complete human fibrinogen molecule is therefore made 

up of 2964 amino acids, yielding a calculated molecular weight of 329 818 (Standeven et al., 

2005). There are four carbohydrate clusters present – one on each Bβ- and γ- chain – which 

contribute another 10 000 in molecular weight, adding up to the total molecular weight of 

around 340 000 (Standeven et al., 2005). In the γ-chain, the γA chain consists of 411 amino 

acids and is composed of 10 exons and 9 introns. A minor γ-chain variant termed γ’, arises 

from alternative processing at the exon 9/exon 10 boundaries of the mRNA. The alternative 

γ′-chain arises when polyadenylation occurs at an alternative polyadenylation signal in intron 

9. In this case, intron 9 is not spliced out, leading to the substitution of 4 γA amino acids 

(γA408-411; AGDV) of exon 10 by a unique 20-amino acid extension (γ′408-427; 

VRPEHPAETEYDSLYPEDDL) encoded by intron 9 (Campbell et al., 2010; Cooper et al., 2003; 

Uitte de Willige et al., 2009). The γ′-chain occupies about 8% of the total fibrinogen γ-chain 

population and the majority of them are in heterodimeric fibrinogen molecules accounting to 

15% of plasma fibrinogen molecules. Homodimeric  γ′/γ′-molecules are present in circulating 

fibrinogen molecules in blood at less than 1% (Ariens, 2013; Campbell et al., 2010; Cooper et 

al., 2003; Uitte de Willige et al., 2009).  
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Fibrin Clot Formation 

 

Figure 1-4. Fibrin Clot Formation.  

Fibrinogen consists 2Aα, 2Bβ, and 2γ chains. Thrombin firstly cleaves fibrinopeptide A leading 

the formation of half-staggered and double-stranded twisting protofibrils. FpB is cleaved by 

thrombin at a slower rate and the cleavage of FpB facilitates the lateral aggregation of 

protofibrils (Ariens, 2013; Scott et al., 2004; Standeven et al., 2005; Undas & Ariëns, 2011). 

Thrombin first cleaves fibrinopeptide A leading to oligomers and protofibrils. Fibrinopeptide 

B is cleaved at a slower rate and is associated with the release of the αC-region and lateral 

aggregation of protofibrils into fibers and fiber bundles.  
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The final stage in the coagulation cascade is conversion of fibrinogen to fibrin and the 

formation of a fibrin clot (Standeven et al., 2005). The trigger to start the conversion is the 

thrombin catalysed cleavage of the fibrinopeptide. Thrombin binds to the central E nodule of 

fibrinogen and removes the N-terminal peptides of the Aα- and Bβ- chains. Firstly, thrombin 

cleaves the fibrinogen Aα-chain between Arg16 and Gly17, the N-terminal 16 residue peptides 

(fibrinopeptide A, FpA) are removed and expose a binding site (GPR) which is known as ‘A’ 

site in the E region. The ‘A’ site binds to the ‘a’ pocket in the γ-chain of the D region of another 

fibrinogen molecule. These interactions result in the formation of half-staggered and double-

stranded twisting protofibrils (Ariens, 2013; Campbell et al., 2010; Standeven et al., 2005; 

Wolberg, 2007). The length of fibrinogen molecule is 45nm. The half-staggered protofibrils 

maintain a periodicity of 22.5nm (half the length of the full-length fibrinogen). Fibrils branch 

out and there are two possible types of branching determining the structure of the clot. The 

first type of branching supports strength and rigidity in the clot as double-stranded 

protofibrils align side by side to form a tetra-molecular or bilateral branch-point. The second 

type of branching is tri-molecular or equilateral which is formed by the combination of three 

fibrinogen molecules in which three double-stranded protofibrils are connected to each other 

via ‘E:D’ associations (shown as figure 1-5). This situation happens when the rate of 

fibrinopeptide release is slow (Mosesson, 2005; Standeven et al., 2005). Additional fibrin 

monomers can add longitudinally to the dimer and trimer to form larger oligomers which are 

long enough for lateral aggregation. The length of a protofibril is approximately 0.5 to 0.6 µm, 

accordant with 20 to 25 half-staggered fibrin monomers (Weisel and Litvinov  I., 2013).  
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Figure 1-5. Tri-molecular or equilateral branch point.  

The tri-molecular branch point is formed by the combination of three fibrinogen molecules in 

which three double-stranded protofibrils are connected to each other via ‘E:D’ associations 

(Mosesson, 2005; Standeven et al., 2005). 

Subsequently, the N-terminal 14 residue peptide of the Bβ-chain (fibrinopeptide B, FpB) are 

removed which expose a second binding site ’B’ with the amino acid sequence GHR in the E 

region. The ‘B’ site interacts with another specific binding pocket ‘b’ in the Bβ-chain of the D 

region of another molecule (Ariens, 2013; Campbell et al., 2010; Standeven et al., 2005; Undas 

and Ariëns, 2011; Wolberg, 2007). FpB is cleaved by thrombin at a slower rate compared with 

FpA. In the meantime of removal of FpB occurs, the αC domains are liberated but still interact 

with the distal D region in fibrinogen (Standeven et al., 2005). The αC domains originate at 

residue 220 in the D domain and end at Aα610 (Campbell et al., 2010). Interactions of αC 
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domains change from intramolecular to intermolecular, which promote the lateral 

aggregation of protofibrils.  

The cleavage of FpA is necessary for protofibril formation, nevertheless, the release of FpB in 

fibrin clot formation is highly controversial. It has been assumed that the cleavage of FpB 

facilitates the lateral aggregation of protofibrils to form thicker fibres, however, this can 

actually occur through cleavage of FpA only by several enzymes in the absence of FpB 

cleavage (Standeven et al., 2005; Wolberg, 2007).  

Fibres are twisted structure; the protofibrils need to maintain the periodicity of 22.5nm. 

When the new protofibrils are added to the growing fibres, they have to undergo a certain 

degree of stretching. The degree to which a protofibril can be stretched is the determinant of 

the thickness that the fibres can grow. The growth of the fibril ceases when the energy 

necessary to stretch an added protofibril exceeds the energy of protofibril bonding 

(Standeven et al., 2005; Weisel and Litvinov  I., 2013).  

 

 Factor XIII  

Coagulation factor XIII (FXIII), belongs to the enzyme family of transglutaminases, and is the 

last enzyme to be activated in the blood coagulation pathway (Laudano and Doolittle, 1978). 

There are two forms of FXIII, the first is a cellular of FXIII (cFXIII), which exists as a dimer (FXIII-

A2) in the cytoplasm of certain cells, particularly in platelets, monocytes, and macrophages. 

In platelets, the amount of FXIII-A2 is 46-82 fg/platelet which amounts to around 3% of total 

platelet protein. The second form of FXIII is present in the plasma (pFXIII), and is a tetramer 
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consisting of two catalytic A subunits (FXIII-A) and two carrier/inhibitor B subunits (FXIII-B). In 

plasma, FXIII circulates as a pro-enzyme (FXIII-A2B2), and the concentration in normal 

conditions is 14-28 mg/L. The A-subunit, containing the catalytic part of the enzyme, is a non-

glycosylated single polypeptide chain molecule with 731 amino acid and a molecular weight 

of 83 kDa (Ariëns et al., 2002). FXIII-A subunit is mainly synthesized in macrophages, 

megakaryocytes, and placenta with bone marrow origin. The A subunit is constituted by five 

domains, an activation peptide (AP-FXIII, residues 1-37), a β-sandwich (residues 38-183), a 

catalytic core region (residues 184-515), and two β-barrels (barrel 1, residues 516-627; barrel 

2, residues 628-731). FXIII-B subunit is secreted and synthesized by hepatocytes in liver. The 

B subunit is a typical mosaic protein which is assembled from ten short consensus repeats, 

also known as sushi domains, GP-I structure or complement control protein (CCP) module. 

FXIII-B molecule is constituted by 641 amino acids (each sushi domain contains 60 amino acid) 

and 8.5% carbohydrate, and the total molecular weight is approximately 80kDa  (Weisel & 

Litvinov, 2013; Bagoly et al., 2012; Bagoly et al., 2012; Ariëns et al., 2002). 

The main function of FXIII is the stabilization of the fibrin clot which constitutes the last stage 

in the coagulation cascade. Plasma FXIII is activated by thrombin and Ca2+. At first, thrombin 

cleaves off the AP-FXIII by hydrolysing the Arg37-Gly38 peptide bond. Then, in the presence 

of Ca2+, the carrier FXIII-B subunits dissociate from the catalytically active thrombin-cleaved 

FXIII-A subunits. The removal of B-subunits from the FXIII complex is necessary for the Ca2+-

induced transformation into an active tranglutaminase FXIIIa. The activation process is 

accelerated 80-100 fold by the presence of fibrin. The fibrin polymer is held together by non-

covalent forces at the beginning. After the activation of FXIII by thombin, Ca2+ (and fibrin), 

fibrin is covalently cross-linked by FXIIIa. FXIIIa induces intermolecular ε-(γ-glutamyl)-lysine 
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covalent bond between the γ406Lys of one γ-chain and the γ398/399Gln of another γ-chain 

in two adjacent molecules that are aligned in a longitudinal orientation. γ-Chain dimer 

formation significantly contributes to clot rigidity. α-Chain cross linking plays an important 

role in regulation of fibrinolysis and enhances fibrin stiffness and viscoelasticity (Bagoly et al., 

2012; Ariëns et al., 2002). Alpha-gamma cross-linking is negligible in quantity compared to g-

g and a-a. FXIII also cross-links between Gln2 in the amino terminus of α2 antiplasmin and 

Lys303 in the fibrin α-chains to protect the fibrin clot from lysis (Ariëns et al., 2002). In 

summary, FXIIIa is able to stabilize the fibrin clot, introducing thinner fibre formation, and 

increasing the fibre density, as well as protecting from shear stresses and producing a clot 

with increased resistance to fibrinolysis (Ariëns et al., 2002; Doolittle et al., 1998; Standeven 

et al., 2007).  

 

 Fibrinolysis 

The fibrin clot is the essential and primary product of haemostasis. The purpose of fibrinolysis 

is to remove the excess clot formed either in response to vascular damage or in pathological 

thrombosis and atherosclerosis (Adams and Bird, 2009; Chapin and Hajjar, 2015). The 

efficiency of fibrinolysis can be influenced by many factors, including the structure of the clot, 

the rate of thrombin generation, and the reactivity of thrombin-associated cells. Similarly to 

the coagulation process, fibrinolysis is also regulated by cofactors, inhibitors and receptors 

(Chapin and Hajjar, 2015). The key proteolytic enzyme in the fibrinolysis process is plasmin, 

which can be activated by the hydrolysis of plasminogen by two serine proteases, tissue-type 

plasminogen activator (tPA) and urokinase-type of plasminogen activator (uPA) (Adams and 
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Bird, 2009; Chapin and Hajjar, 2015; Lord, 2011). Whereas tPA is produced by endothelial cells, 

uPA is synthesized by monocytes, macrophages, and urinary epithelial cells (Chapin and Hajjar, 

2015). Compared with uPA, tPA has a higher affinity for plasminogen. The rate of plasminogen 

activation by tPA is increased in the presence of fibrin. Two sites of fibrin are involved in this 

process, Aα148-160 and γ312-324 (Mosesson, 2005). The cleavage of fibrin by plasmin 

initiates in the αC domain followed by cleavages in D and E regions (Ajjan and Grant, 2006).  

Both the fibrin structure and mechanical properties may affect the rate of fibrinolysis. 

Individual thicker fibres are lysed slowly compared to the thin fibres, but denser fibrin clots 

contained thinner fibres with greater number of fibres requires longer fibrinolysis time as 

denser clot had smaller port sizes which causes prolonged transportation of the fibrinolytic 

agents through the fibrin clot (Undas et al., 2006).   

Several fibrinolysis inhibitors are able to control the excess plasmin and plasminogen activator 

activities. There are three important serpins in the fibrinolysis, plasminogen activator 

inhibitor-1, plasminogen activator inhibitor-2, and α2-antiplasmin (A2AP) (Chapin and Hajjar, 

2015).  

Plasminogen activator inhibitors are produced by endothelial cells, platelets and other cells 

and released into the circulation. PAI-1 is a linear glycoprotein that consists of 379 amino acids 

with a molecular weight 48,000. It is the main inhibitor of plasminogen activators tPA and uPA 

(Binder et al., 2002; Chapin and Hajjar, 2015; Kohler and Grant, 2000). In its free, unbound, 

active form, PAI-1 is unstable with a half-life of 30 minutes, however, when bound to the 

matrix protein vitronectin in plasma, PAI-1 stabilizes at the active form and the half-life is 

prolonged over ten times (Binder et al., 2002; Kohler and Grant, 2000). Fibrinolysis is initiated 
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when tPA and plasminogen both bind to the fibrin as plasmin is formed when plasminogen is 

partially cleaved by tPA on the surface of fibrin. This process promotes the activation of 

plasminogen and acceleration of fibrinolysis (Binder et al., 2002; Chapin and Hajjar, 2015; 

Kohler and Grant, 2000). In addition, the rate of PAI-1 inhibitory activity was reduced by 80 

to 90% in the presence of fibrin. However, once fibrin monomers are cross-linked by activated 

FXIII, the binding sites for tPA are reduced. PAI-1 rapidly binds to tPA or uPA, forming a 1:1 

complex which can be cleared by hepatocytes in the circulation (Chapin and Hajjar, 2015; 

Kohler and Grant, 2000). PAI-1 can be upregulated by a number of proinflammatory cytokines, 

as well as thrombin (Binder et al., 2002; Kohler and Grant, 2000). PAI-2 is also a key inhibitor 

of tPA and uPA but mainly during pregnancy, and the concentration increases as the 

pregnancy progresses (Chapin and Hajjar, 2015).  

A2AP binds plasmin to form an irreversible complex. Once plasmin is bound to fibrin, it is 

protected from A2AP inhibition (Ajjan and Grant, 2006). There is a non-serpin fibrinolysis 

inhibitor named thrombin activated fibrinolysis inhibitor (TAFI). TAFI is a carboxypeptidase 

which removes the C-terminal lysine and arginine residues on fibrin thereby decelerating the 

plasmin generation by reducing the plasminogen binding sites (Ajjan and Grant, 2006; Chapin 

and Hajjar, 2015). 

 

 Vascular Endothelium 

The vascular endothelium is a monolayer that covers the inner surface of the entire vascular 

system, with a surface area of approximately 1 to 7 m2 in man (Cines et al., 1998; Esper et al., 
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2006). The vascular endothelial surface of an adult human contains approximately 1 to 6 x 

1013 endothelial cells and the weight is almost 1kg (Cines et al., 1998; Esper et al., 2006; 

Sumpio et al., 2002). Therefore, the endothelium represents the largest and most important 

gland of the body (Ajjan and Grant, 2006). It is important to emphasize that endothelial cells 

exhibit phenotypic variation in different sections of the vasculature. Within an individual, 

endothelial cells at different locations are not only able to express different markers but can 

also react differently to the same stimulus. For different individuals, such cells vary greatly in 

the responses to stimuli (Sumpio et al., 2002). 

The endothelial cells have a similar basic structure as other cells in the human body, including 

the presence of a cytoplasm, nucleus, organelles and cell membrane. The cellular membrane 

is formed by two layers of phospholipids containing various proteins as receptor or ion 

channels (Cines et al., 1998; Esper et al., 2006). Many types of contractile proteins, such as 

actin, myosin, and tropomyosin, cross the cytoplasm and contribute to the motor activities of 

the cell (Esper et al., 2006). Some of these cells are organised as structure like cortical web 

and junction-associated actin filament system, and stress fibres (Esper et al., 2006; Sumpio et 

al., 2002). Cortical web adhering to the internal surface of the sarcolemma, controls the shape 

and elasticity of the cells, and it changes the stiffness of itself in accordance with the 

intravascular pressure. The junction-associated actin filament system exists in the 

intercellular space and the main function is controlling the intercellular space through 

contraction and dilatation. Stress fibres are myofibril-like straight filament bundles containing 

actin filaments and myosin filaments, that cross the cytoplasm in all directions. The 

contraction and relaxation of stress fibres depend on the intracellular Ca2+ concentration and 

presence of adenosine tri-phosphate (ATP). The aim of these fibres is to reduce the possibility 
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of cell lesions through adjusting the shape of cells based on the forces of blood flow and wall 

distension (Cines et al., 1998; Esper et al., 2006).  

The endothelium, as a barrier of the vessel wall, has a semi-permeable structure that controls 

the transfer of small and large molecules (Sumpio et al., 2002). The cell membrane is covered 

by “caveolae”, flask-shaped membrane invaginations which occupy 5 to 10% of total cellular 

surface area. The endothelial caveolae regulate the fluid and transport macromolecules in a 

transcellular pathway (Esper et al., 2006). 

Promotion of vasodilatation 

Anti-coagulant effects 

Anti-inflammatory effects 

Anti-oxidant effects 

Inhibition of leukocyte adhesion and migration 

Inhibition of smooth muscle cell proliferation and migration 

Inhibition of platelet aggregation and adhesion 

Pro-fibrinolytic effects 

Table 1-3. Healthy Endothelium Functions  

Source: adapted from Esper et al., 2006; Cines et al., 1998; Sumpio et al., 2002 

The endothelial cells are versatile and multifunctional as shown in the above figure (Sumpio 

et al., 2002). The major functions of endothelium are providing a mechanical barrier and 
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regulating the vascular tone (Ajjan and Grant, 2006). Endothelial cells are able to secrete a 

variety of molecules, vasodilators and vasoconstrictors, procoagulants and anticoagulants, 

fibrinolytics and anti-fibrinolytics, inflammatory and anti-inflammatory, oxidants and anti-

oxidants, to balance the effects of both directions to maintain the integrity of the vascular 

surface, ensure the protection of the vessel wall and provide healthy blood flow. Endothelial 

cells play a role in the coagulation process by producing a series of procoagulant agents 

including VWF, factor V, plasminogen activator inhibitor, and tissue factor  (Modena et al., 

2002). Endothelial cells also have anticoagulant effects by secreting nitric oxide (NO), 

postacyclin, tissue plasminogen activator, thrombomodulin (THBD), protein C, and protein S. 

Nitric oxide works in concert with prostacyclin to restrain the platelet adhesion and 

aggregation. The expression of THBD causes a transformation of thrombin from a pro-

coagulant converter of fibrinogen to fibrin to an anti-coagulation activator of protein C. 

Activated protein C and protein S synergistically inactivate several clotting factors. 

Furthermore, endothelial cells have proinflammatory roles through the production of a 

number of adhesion molecules (e.g. intercellular adhesion molecule-1, ICAM-1) and cytokines 

(Ajjan and Grant, 2006). Under the healthy environment, endothelium is able to maintain the 

balance of protein production. However, endothelium damage upsets the balanced secretion 

of the molecules,  reducing the ability to maintain the protection of the vessel wall and ensure 

healthy blood flow, and initiating the progression of the atherosclerotic process (Ajjan and 

Grant, 2006).  

A sign of endothelial dysfunction is the reduction of bioavailability of vasodilators, especially 

NO; in addition, the vascular contracting factors are increased (Modena et al., 2002). NO can 

be found in all tissues and due to its low molecular weight and lipophilic properties, it 
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permeates easily through cell membranes (Ajjan and Ariens, 2009). Reduced NO production 

leads to the promotion of platelet adhesion and aggregation, increased leukocytes infiltration, 

and proliferation of vascular smooth muscle cells (VSMC) (Ajjan and Grant, 2006). Endothelial 

dysfunction causes the release of VWF which mediate the platelet adhesion on damaged 

endothelium. The VWF plasma level is a marker of endothelial dysfunction (Ajjan and Grant, 

2006; Sumpio et al., 2002; Whincup et al., 2002). TF is also secreted by endothelium only if 

the cells are dysfunctional. TF cannot be found in normal endothelial cells, but can be 

detectable in atheromatous plaques, indicating TF is a risk marker of atherosclerosis in 

diseases pathogenesis (Suefuji et al., 1997). As endothelial dysfunction is characterised as pro-

coagulant, pro-inflammatory and proliferation status that contribute to the progression of 

atherosclerosis, endothelial dysfunction reflects the tendency of an individual to develop 

atherosclerotic diseases (Cines et al., 1998; Modena et al., 2002).   

 

1.5 Engineered Nanoparticles  

As described above, there is a large and growing amount of evidence showing that PM is 

associated with human health risks, including cardiovascular health risks. Consequently, there 

is concern that engineered nanoparticles (NPs) which are defined as having at least one, and 

usually two dimensions less than or equal to 100nm, may also exhibit human health risks 

(Tiede et al., 2008, Savolainen et al., 2010a, Teow et al., 2011).  
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 ENPs Definition 

Engineered nanoparticles (ENPs) are different from the ultrafine particles (UFPs) discussed 

above. Both of them have similar sizes which are less than 100nm, however, the different 

sources of these two kinds of particles have different physicochemical properties (Xia et al., 

2009). Ultrafine particles are incidental particles arising mainly from combustion. These 

particles originated from fossil fuel combustion process or through the condensation of semi-

volatile substances (Xia et al., 2009). Different from UFPs, ENPs include a variety of particles 

manufactured from various materials on an industrial scale for a variety of purposes. As a 

consequence of the small size of the nanoparticles, ENPs possess different physicochemical 

properties compared to their respective bulk material (Duffin et al., 2007). In some crucial 

respects, ENPs show different performance physically and chemically compared to UFPs 

(Kendall and Holgate, 2012). According to Xia et al. (2009), table 1-4 shows the differences 

and similarities of UFPs and ENPs (Xia et al., 2009). As the UFPs are derived incidentally and 

ENPs are engineer manufactured, the uniformity for UFPs is low and for ENPs is high. Both of 

them have high surface to volume ratio. The major exposure route of UFPs is through 

inhalation. Besides inhalation, ENPs also could be exposed through skin, ingestion, and 

injection. UFPs have been verified to have adverse health effects on humans, however, the 

effects of ENPs on humans are still unknown (Xia et al., 2009).  
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 UFPs ENPs 

Source Incidental Engineered  

Surface area to volume ratio High High 

Uniformity Low High 

Organic chemical content High Low 

Metal impurities High Varies 

ROS generation Yes Varies 

Exposure route Inhalation Inhalation, skin, ingestion, injection 

Adverse health effects Yes Unknown 

Table 1-4. Differences between ENPs and nanoparticles 

Source: adapted from Xia et al., 2009 

When studying ENPs, it is important to fully characterise the particles by measuring various 

parameters, e.g. size distribution, shape, concentration, dispersion, aggregation, structure, 

chemical composition, etc (Fanning et al., 2009, Savolainen et al., 2010a).  

 

 Functions of ENPs 

The functionality of many commercial products has been improved by the nanomaterials that 

have both novel physical and chemical properties. From the beginning of the 21st century, 

the unique physicochemical properties of nanoparticles have given rise to applications in 

many fields, including biomedical and pharmaceutical products, cosmetics, clothing, building 

materials, electronics, food packaging, food additives, and some personal care products. 

According to the Nanotechnology Consumer Products Inventory in August 2009, there are 
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more than 1000 self-claimed nano-products produced by 485 companies in 24 countries. The 

total worldwide sales revenues for nanotechnology were $11.6billion in 2009, and are 

expected to increase to more than $26 billion in 2015 (Teow et al., 2011; Xia et al., 2009). 

There are some kinds of ENPs which are frequently used, including carbon nanotubes (CNTs); 

TiO2, ZnO, CeO2, Si(O), Fe(O), Ag(O), and Au(O) nanoparticles; fullerenes; nanowires; and 

Dendrimers (Fanning et al., 2009, Stone et al., 2010). With high exploitation of nanoparticles, 

people could be exposed to ENPs through many routes. There are few studies focusing on the 

exposure measurement of ENPs. Measurement and monitoring of the engineered 

nanoparticle are needed to collect all relevant information about the amount (number, 

surface area or mass concentration), shape, chemical composition, surface charge,  and size 

distribution, as well as solubility and persistence (Savolainen et al., 2010b). Unfortunately, 

current available techniques for measuring airborne particulates are not developed enough 

to measure the exposure to particulates with nanoscale dimensions (Hubbs et al., 2011, 

Savolainen et al., 2010b).  

 

 Exposure 

Humans could be exposed to ENPs both intentionally and unintentionally. The unintentional 

exposure pathways include dermal, respiratory system, gastrointestinal tract, and ocular 

pathway  (Abbott and Maynard, 2010). The human skin could protect from nanoparticles and 

other chemicals owing to the strong stratum corneum, without sweat glands and hair follicles 

provide gaps in this barrier that NPs are able to penetrate to the dermis (Xia et al., 2009). 
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Titanium dioxide nanoparticles are added to sunscreen cream for UV protection, therefore 

TiO2 NPs is exposed to human through penetrating the skin and reaching hair follicles (Xia et 

al., 2009). Moreover, nanocrystalline silver has been reported as an anti-bacterial agent 

added in wound dressings (Hubbs et al., 2011). Where it can directly contact with the 

wounded area and reach the dermis and epidermis (Hubbs et al., 2011, Cooper et al., 2003, 

Teow et al., 2011, Savolainen et al., 2010a). The human lung consists of about 2300km of 

airways and 300 million alveoli. Particles with diameters less than 400nm have higher 

probability to penetrate the lung epithelial barrier, enter into the blood stream, and transport 

to different organs afterward (Xia et al., 2009). Nasal cilia and the action of coughing could 

get rid of coarser particulates (Li et al., 2010, Nemmar et al., 2004). Owing to the size of ENPs, 

they could easily cross the lung epithelial barrier and penetrate the alveoli. The size and shape 

of the NPs could affect the region of deposition in the respiratory system; smaller sized 

particles could penetrate deeper in the lung. Macrophages may not be able to recognize 

particles with a diameter less than 500nm, and for this reason, NPs could easily enter the 

blood or the lymphatic system and then transfer to different organs (Teow et al., 2011, 

Savolainen et al., 2010a). Nanoparticles are applied in food industries as food additives or 

anti-microbial in food packaging. Silver NPs are used in toothpaste as antibacterials and 

therefore there may be expose to gastrointestinal tract (Savolainen et al., 2010b). The 

intentional exposure to ENPs is through targeted drugs that lead to the nanoparticles 

transport and deposit in organs and tissues  (Abbott and Maynard, 2010).  

Most ENPs are used without toxicological consideration. They do not need any type of toxicity 

tests under the law even though they have some novel properties both in physical and 

chemical respects (Kendall and Holgate, 2012). Focusing on the risk assessment of ENPs, 
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nanoparticle samples were collected from 40 companies, a survey was carried out in Germany 

and Switzerland from December 2005 to February 2006. In response to the question “Does 

your company conduct risk assessments where nano-particulate materials are involved?” 26 

(65%) of them answered no, 13 companies (32.5%) implemented risk assessments sometimes 

or always, and 1 company (2.5%) did not answer the question (Savolainen et al., 2010b). Many 

of the most serious health and safety concerns about nanoparticles are due to the limited 

information of health effects and the types of exposure during the production and 

applications (Savolainen et al., 2010b). Since the increased exploitation of nanoparticles, 

there is a rising debate concerning the possible risks to human health and the environment 

(Medina et al., 2007). Therefore, research is focused on unravelling how and why the 

behaviours of engineered nanoparticles are different from the respective bulk materials. 

 

 Silicon Dioxide Nanoparticles 

As one of the most important engineered nanoparticles, silicon dioxide NPs have been 

considered as a kind of ideal material for biomedical applications and are being widely 

explored as medical diagnostics, biosensor, biomarker, cancer/gene therapy, molecule 

imaging and DNA/drug delivery (Liu and Sun, 2010). Furthermore, silica NPs are manufactured 

on an industrial scale as additives to cosmetics, food additives, paints and printer toners 

(Ahamed, 2013; Yang et al., 2014).  



Page 82 of 265 

 

Due to the extremely small size of the SiO2 NPs widely used in many industries, a concern 

raised that SiO2 NPs may directly get into the human body and interact with cells and body 

fluids (Rim et al., 2013). The effects of SiO2 NPs were demonstrated as follows. 

As SiO2 NPs can be used as additives in cosmetics and paints, a study by Ahamed and colleges 

investigated the cytotoxicity of SiO2 NPs on human skin epithelial cells (A431) and human lung 

epithelial cells (A549). The results indicated that SiO2 NPs induced significantly cell death at 

the concentration of 25 µg/ml on both cell lines after 72 hours treatment and caused dose-

dependent cytotoxicity (Ahamed, 2013). Eom and Choi studied the cytotoxicity of SiO2 NPs on 

human bronchial epithelial cells (Beas-2B) and demonstrated that after 24 hours incubation, 

1 µg/ml of NPs caused 20% cell death compared to control (Eom and Choi, 2009). Another 

study investigated the toxicity of SiO2 NPs on human gastric epithelial cells (GES-1) and 

colorectal adenocarcinoma cells (Caco-2). There was no significant toxicity on both cell line 

after treatment with 100 µg/ml of SiO2 NPs for 24 hours incubation. But after longer time and 

high concentrations, SiO2 NPs showed dose- and time- dependent effect on these cell lines 

(Yang et al., 2014). A couple of studies have shown that NPs can translocate from the 

respiratory tract to the systemic circulation, and thus interact with endothelial cells of the 

blood vessel (Berry et al., 1977; Guarnieri et al., 2014; Nemmar et al., 2002). A study 

investigated the effects of SiO2 NPs on endothelial cells; human dermal microvascular 

endothelial cells were treated with 5 and 50 µg/ml of SiO2 NPs for 72 hours, both 

concentrations did not cause significant cell death compared to the control (Peters et al., 

2004).  
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As the small size of SiO2 NPs, particles may get into the circulation and interact with cells 

directly. The cytotoxicity of SiO2 NPs on cells were detected before, but whether SiO2 NPs 

have effects on blood coagulation were largely unknown.  

 

1.6 Aim of Study 

The overall aims of this study were to understand how diesel or urban PM can affect clot 

structure and function and to examine whether engineered nanoparticles may exhibit similar 

hazard.  

Hypotheses: 

Particulate matter and diesel particles alter fibrin network structure, mediated by 

both direct and indirect effects through modulation of endothelial cell function. 

Specific aims were to:  

1) Determine whether clot structure formed from plasma or purified fibrinogen is 

affected by presence of PM10, PM0.2, diesel particles and filtered diesel particles  

2) Determine whether exposure to PM10 was associated with changes in clot structure 

and function in samples from a susceptible population (deep vein thrombosis patients) 

3)  Determine how exposure of vascular endothelial cells to PM10, PM0.2, diesel particles 

and filtered diesel particles, affects clot formation and investigate changes induced in 

the endothelial cells as a possible mechanism of action of the particles 
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4) Determine whether engineered silica nanoparticles induce changes in clot structure 

and function similar to those induced by ultrafine particles 
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 Methods  

This chapter described the general procedures of each method that were used in this study.  

 

2.1 Materials 

Reagent Preparation/Purchasing Company 

Double distilled water Milli-Q Integral purification system 

Human Thrombin 

 

Stock concentration: 250 U/ml 

Stored at -80˚C 

(Calbiochem, Merck Chemicals, UK) 

Calcium Chloride 

 

Stock concentration: 1M (with double distilled 

water) 

Stored at room temperature 

(Sigma Aldrich, UK) 

Permeation buffer Double distilled water 

0.05 M Tris base (Fisher Scientific, UK) 

0.1 M NaCl (Sigma Aldrich, UK) 

pH 7.5 (using 5 M HCl, Sigma Aldrich, UK) 

Fluorescein isothiocyanate Alexa 

Fluor® 488 Protein (FITC) 

(Life Technology, UK) 

Purified human fibrinogen (Merck Chemicals, UK) 

Normal pooled plasma Plasma was collected from 30 healthy individuals in 

University of Leeds 
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5ml of sodium citrate and 45ml of whole blood from 

each individual were transferred to 50ml 

polypropylene tube. 

The cells were removed from plasma by 

centrifugation for at least 15 minutes at 2200-2500 

RPM at room temperature. 

After the centrifugation, all plasma was immediately 

transferred into a clean polypropylene tube and 

mixed together. 

Normal pooled plasma was apportioned into 2ml 

aliquots and stored at –80°C 

Tissue Plasminogen Activator Stock concentration: 100µg/ml 

(TechnoClone, UK) 

FXII deficiency plasma (Cambridge Bioscience, UK) 

FXII zymogen (Enzyme Research Laboratories, UK) 

Chromogenic substrate S2302 S2302 is a chromogenic substrate for plasma FXIIa 

and kallikrein. 

(Instrumentation Laboratory, US) 

Triton (Generon, UK) 

Standard Reference Material 

2787 particulate matter (<10 μm) 

(National Institute of Standards & Technology, NIST, 

USA) 

Standard Reference Material 

2975 diesel particulate matter 

(industrial forklift) 

(National Institute of Standards & Technology, NIST, 

USA) 

Silicon Dioxide nano-powder (10 

to 20 nm) 

(Sigma-Aldrich, UK) 
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µ-Slides 6 channel slides (Thistle Scientific, UK) 

µ-slide 8 well slides (ibiTreat) (Thistle Scientific, UK) 

Dulbecco's phosphate-buffered 

saline without calcium and 

magnesium (DPBS Gibco®) 

(Life Technologies, UK) 

Endothelial cell growing media 380ml of M199 Media (Sigma-Aldrich, UK) 

100 ml of Fetal Bovine Serum (FBS) 

10ml of Hepes (Life Technologies, UK) 

5ml of Antibiotic Antiomycotic Solution (Life 

Technologies, UK) 

2.5ml of Endothelial Cell Growth Supplements 

(ECGS) (Sigma-Aldrich, UK) 

2.5 ml of 1000 U/ml of Heparin (obtained from St. 

James University Hospital, Leeds) 

1ml of Sodium Pyruvate (Sigma-Aldrich, UK) 

Sodium pyruvate solution It was prepared with 2.75g of sodium pyruvate 

diluted with 50ml of double distilled water, filtered 

through 0.2mm diameter filter.  

The solution was aliquoted to 1ml and stored -20°C. 

Trypsin-EDTA It was diluted with DPBS 1:9. 

(Lonza, UK) 

Human Umbilical Vein 

Endothelial Cells (HUVEC) 

(PromoCell, Germany) 

Trypan Blue (Sigma-Aldrich, UK) 
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3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium Bromide 

(MTT) 

(Life Technologies, UK) 

Dimethyl Sulfoxide (DMSO) (Lonza, UK) 

96-Well plate (Corning®) (Sigma-Aldrich, UK) 

Von Willebrand Factor ELISA Kit (Thermo Fisher Scientific, UK) 

Plasminogen Activator Inhibitor-

1 ELISA Kit 

(Abcam, UK) 

PRB322 Plasmid DNA (Thermo Fisher Scientific, UK) 

SYBR GREEN PCR Master Mix (Thermo Fisher Scientific, UK) 

Blue Juice Gel Loading Buffer 

(10x) 

(Thermo Fisher Scientific, UK) 

GelRed Nucleic Acid Gel Stain (Cambridge Bioscience, UK) 

Tips and tubes (DNase/RNase 

free) 

(Roche, UK) 

96-well plate and 384-well plate 

for PCR 

(Roche, UK) 

DNA ladder (100bp and 1kb) (Thermo Fisher Scientific, UK) 

 

 Turbidity Method 

Plasma Samples 

The kinetics of fibrin formation was evaluated by turbidimetry. The fibrin clot formation is 

characterised by three parts, which are lag phase, followed by lateral aggregation, and finally 
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a plateau of maximum absorbency (Metassan et al., 2010a). The lag phase is the time that the 

optical density value increases up to 0.01. The lag phase of the turbidity curve reflects the 

time required for fibrin protofibrils to grow up to sufficient length to allow lateral aggregation 

to occur (Undas et al., 2010). The lag phase starts from the moment that the activation 

mixture is added. Lateral aggregation is the slope of the turbidity curve, which is determined 

by the rate of fibrin polymerization. Maximum absorbance at the plateau phase reflects the 

number of protofibrils per fibre. Polymerisation rate can also be analysed by measuring the 

slope of the turbidity curve at its steepest or inflexion point. 

An aliquot of 25 µl of plasma samples and 75 µl of permeation buffer were transferred in 

triplicate to the 96-well microplate. Activation mixture contained 0.3 U/ml human thrombin 

and 15 mM CaCl2. Immediately on addition of 50 µl of activation mix, absorbency was read 

every 12 seconds at 340 nm for 30 minutes with a Kinetic Plate Reader (Spectramax Plus 384, 

Molecular Devices, UK). The temperature of the reaction was set at 37 °C. The final 

concentrations of thrombin and CaCl2 were 0.1 U/ml and 5 mM.  
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Figure 2-1. Turbidity Assay – Fibrin Clot Formation 

The fibrin clot formation is characterised by three parts, which are lag phase, followed by 

lateral aggregation, and finally a plateau of maximum absorbency (Metassan et al., 2010). 

 

Normal Pooled Plasma 

To set up the clot, 25 µl of normal pooled plasma and 25 µl of permeation buffer were added 

to the 96-well microplate. Four types of particles were used which were PM10, PM0.2, total 

diesel particles and filtered diesel particles.  Particles were diluted with permeation buffer to 

the working concentrations 150 µg/ml, 30 µg/ml, 3 µg/ml, 0.3 µg/ml, and 0.03 µg/ml. 50 µl 

of different concentrations of particle suspensions were added in triplicate to the microplate. 

The activation mixture contained 0.3 U/ml human thrombin and 15 mM CaCl2. Immediately 
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on addition of 50 µl of activation mix, absorbency was read every 12 seconds at 340 nm for 

60 minutes with a Kinetic Plate Reader (Spectramax Plus 384, Molecular Devices, UK). The 

temperature of the reaction was set at 37˚C. The final concentrations of thrombin and CaCl2 

were 0.1 U/ml and 5 mM respectively. The concentrations of particles were 50 µg/ml, 10 

µg/ml, 1 µg/ml, 0.1 µg/ml, and 0.01 µg/ml. 

 

Purified Human Fibrinogen 

50 µl of the human purified fibrinogen was added to each well of the 96-well plate. Same 

concentrations of particle suspension were used. 50 µl of each concentration of particle 

suspension were added in triplicate to the microplate. Activation mixture contained 0.3 U/ml 

human thrombin and 15 mM CaCl2. Immediately on addition of 50 µl of activation mix, 

absorbency was read every 12 seconds at 340 nm for 30 minutes with a Kinetic Plate Reader 

(Spectramax Plus 384, Molecular Devices, UK). The temperature of the reaction was set at 

37˚C. The final concentration of fibrinogen, thrombin and CaCl2 was 1 mg/ml, 0.1 U/ml and 5 

mM. The concentrations of particle suspension were 50 µg/ml, 10 µg/ml, 1 µg/ml, 0.1 µg/ml, 

and 0.01 µg/ml. 
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 Turbidity Lysis Assay 

Normal Pooled Plasma 

33.3 µl of normal pooled plasma and 16.7 µl of permeation buffer were added to the 96-well 

microplate. Particles were diluted with permeation buffer to the working concentrations 200 

µg/ml, 40 µg/ml, 4 µg/ml, 0.4 µg/ml, and 0.04 µg/ml. 50 µl of different concentrations of 

particle suspension were added in triplicate to the microplate. The lysis mixture was consisted 

of 0.4 µg/ml tPA. The activation mixture contained 0.4 U/ml human thrombin and 20 mM 

CaCl2. Immediately on addition of 50 µl of lysis mixture and 50 µl of activation mix, absorbency 

was read every 12 seconds at 340 nm for 60 minutes with a Kinetic Plate Reader (Spectramax 

Plus 384, Molecular Devices, UK). The temperature of the reaction was set at 37˚C. The final 

concentrations of tPA, thrombin and CaCl2 were 0.1 µg/ml, 0.1 U/ml and 5 mM respectively. 

The concentrations of particle suspension were 50 µg/ml, 10 µg/ml, 1 µg/ml, 0.1 µg/ml, and 

0.01 µg/ml.  

 

Purified Human Fibrinogen 

50 µl of 3 mg/ml of purified fibrinogen was added to the 96-well microplate. Particles were 

diluted with permeation buffer to the working concentrations 150 µg/ml, 30 µg/ml, 3 µg/ml, 

0.3 µg/ml, and 0.03 µg/ml. 50 µl of different concentrations of particle suspension were 

added in triplicate to the microplate. The lysis mixture was consisted of 1.5 µM of 

Plasminogen. The activation mixture contained 0.6 µg/ml tPA, 0.6 U/ml human thrombin and 

30 mM CaCl2. Immediately on addition of 25 µl of lysis mixture and 25 µl of activation mix, 
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absorbency was read every 12 seconds at 340 nm for 60 minutes with a Kinetic Plate Reader 

(Spectramax Plus 384, Molecular Devices, UK). The temperature of the reaction was set at 

37˚C. The final concentrations of plasminogen, tPA, thrombin and CaCl2 were 0.25 µM, 0.1 

µg/ml, 0.1 U/ml and 5 mM respectively. The concentrations of particle suspension were 50 

µg/ml, 10 µg/ml, 1 µg/ml, 0.1 µg/ml, and 0.01 µg/ml.  

 

2.2 Laser Scanning Confocal Microscopy 

Laser Scanning Confocal Microscopy (LSCM) allows direct quantification of fibrin clot 

structure by image.  

 

 

Figure 2-2: Laser Scanning Confocal Microscopy 700 T-PMT ZEISS 
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 Clot Preparation 

Plasma Samples 

30 µl of plasma samples was added to the microtube. 30 ul of activation mixture which 

contained 100 µg/ml of human fibrinogen amino terminal labelled with Fluorescein 

Isothiocyanate (FITC), 0.2 U/ml of human thrombin and 10 mM CaCl2 were introduced into 

the microtube and mixed with the plasma sample. Fibrin clots were prepared in a total volume 

of 60 µl, immediately upon the addition of activation mixture, 30 µl was slowly transferred to 

the channel of µ-slide VI0.4. Care was taken to ensure there were no bubbles in the channel. 

The slides were stored in a humidity chamber to prevent dehydration of the clot and stored 

at room temperature for 30 minutes. The final concentrations of FITC, thrombin and CaCl2 

were 50 µg/ml, 0.1 U/ml and 5 mM respectively.  

 

     

Figure 2-3: 6 channel µ-slide VI0.4 (Ibidi, Martinsried, Germany)  

Source: Ibidi Official Website µ-Slide VI 0.4 
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Figure 2-4: Fibrin clot in µ-slide VI 

 

Normal Pooled Plasma 

An aliquot of 15 µl of normal pooled plasma mixed with 15 µl of permeation buffer were 

added to microtube. Silica nanoparticle suspension was prepared to concentrations 150 

µg/ml, 30 µg/ml, 3 µg/ml, 0.03 µg/ml, and 0.0003 µg/m. 30 µl of each concentration of SiO2 

nanoparticle suspension was added to the plasma sample. 24 µl of activation mixture which 

contained 150 µg/ml of human fibrinogen amino terminal labelled with Fluorescein 

Isothiocyanate (FITC) and 15 mM CaCl2 were introduced into the microtube. Finally, 6 µl of 

0.3 U/ml of human thrombin added to the tube and mixed with the plasma and nanoparticle 

suspension in the microtube. Fibrin clots were prepared in a total volume of 90 µl, 

immediately upon the addition of thrombin 30 µl of solution was slowly transferred to the 

channel of µ-slide VI0.4 (Ibidi, Martinsried, Germany). There should be no bubbles in the 

channel. The slides were stored in a humidity chamber to prevent dehydration of the clot. 
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The final concentrations of FITC, thrombin and CaCl2 were 50 µg/ml, 0.1 U/ml and 5 mM 

respectively. The concentrations of nano-silica suspension were 100 µg/ml, 10 µg/ml, 1 µg/ml, 

0.01 µg/ml, and 0.0001 µg/ml. 

 

Purified Human fibrinogen 

An aliquot of 30 µl of purified human fibrinogen was introduced into each eppendorf tube. 

30 µl of nanoparticle suspensions with concentrations 150 µg/ml, 30 µg/ml, 3 µg/ml, 0.3 

µg/ml, and 0.03 µg/ml were added into the eppendorf in duplicate and mixed with the 

fibrinogen. Activation mixture contained 150 µg/ml of human fibrinogen amino terminal 

labelled with Fluorescein Isothiocyanate (FITC), 1.5 U/ml of human thrombin and 45 mM CaCl2. 

24 µl of activation mixture which contained 150 µg/ml of human fibrinogen amino terminal 

labelled with Fluorescein Isothiocyanate (FITC) and 15 mM CaCl2 were introduced into the 

microtube. Finally, 6 µl of 0.3 U/ml of human thrombin added to the tube and mixed with the 

plasma and nanoparticle suspension in the microtube. Fibrin clots were prepared in a total 

volume of 90 µl, immediately upon the addition of thrombin 30 µl of solution was slowly 

transferred to the channel of µ-slide VI0.4 (Ibidi, Martinsried, Germany). Care was taken to 

ensure there were no bubbles in the channel. The slides were stored in a humidity chamber 

to prevent dehydration of the clot. The final concentrations of FITC, thrombin and CaCl2 were 

50 µg/ml, 0.1 U/ml and 5 mM respectively. The concentrations of nano-silica suspension were 

50 µg/ml, 10 µg/ml, 1 µg/ml, 0.1 µg/ml, and 0.01 µg/ml. 
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 Image Analysis 

The 3D structure of the clot was visualized by confocal microscopy on a LSM 700 T-PMT ZEISS 

microscope (ZEISS, Jena, Germany). Clot structure was viewed using 63x oil immersion lens 

with a 5-W argon laser and 488nm laser filter. The images were collected in the format of 512 

x 512 pixels. Fibre density was calculated as the number of fibres crossing a straight line of 

fixed length across the scanfield. All measurements were performed with Image J version 

1.25s software. 

 

 

Figure 2-5: Fibrin clot image under LSCM 

Structure of fibrin clots can be visualized through confocal microscope.  

 

2.3 Permeation Method 

 Permeability Experimental Apparatus 

Fibrin clot permeation involves a gravity-driven tube system as shown in figure 2-6. 
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Figure 2-6: Permeability Experimental Apparatus 

There are four parts of this apparatus, syringe (A), plastic tube (B), plastic pipette tip (C), and 

a small plastic microtube (D). The syringe was filled with permeation buffer. The plastic tube 

was the connection between syringe and the plastic pipette tip. The plastic pipette tip was 

cut from a disposable plastic pipette. 4.5cm from the tip of the disposable plastic pipette was 

sheared as the plastic pipette tip. The interior surface of the pipette tip was roughened. The 

screw cap of the microtube was drilled in the middle with the diameter of the plastic pipette 

tip. The pipette tip could pass through the cap. The pipette tip and microtube were linked.  
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The fibrin clot permeation method is used to measure the flow rate of liquid through the fibrin 

clot. The flow rate represents the pore size of fibrin clot structure.  

 

 Clot Preparation 

Plasma Samples 

Plasma samples were defrosted in the water bath at 37˚C for 3 minutes just before use. After 

defrosting, plasma samples were agitated briefly to ensure thorough mixing. 100 µl of plasma 

was transferred to each eppendorf tube. Activation mixture contained 176 mM of CaCl2 and 

11 U/ml of thrombin. 10 µl of activation mixture was transferred to each eppendorf tube and 

mixed with plasma. Fibrin clot started to form. 100 µl of clotting mixture was carefully and 

immediately transferred from the eppendorf tube to the plastic pipette tip. There should not 

be any bubbles in the clotting tip. The final concentrations of thrombin and CaCl2 were 1 U/ml 

and 16 mM. Then the pipette tip was kept in the humidity chamber horizontally for two hours 

at room temperature. During this time, fibrin gel cross-linking started to occur and stabilise 

the fibrin clot structure in the humidity chamber horizontally. The humidity chamber was 

prepared, as follows, before making the fibrin clot, a folded piece of paper towel was soaked 

with distilled water and placed in the petri dish. After the 2 hours, the plastic pipette tip was 

connected to the syringe through a plastic tube. The syringe was filled with permeation buffer. 

The height of the buffer was 4 cm from the bottom of the plastic pipette tip (Fig 2-6). Pressure 

was created on the clot due to the buffer. The clot was washed by the permeation buffer for 

90 to 120 minutes. 
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Figure 2-7: The graphical representation of the pressure to the clot 

 

 Pore Size Measurement of Fibrin Clot  

After 90 to 120 minutes washing, the volume of the permeation buffer through the fibrin clot 

was measured for the next 120 minutes. The permeation buffer was collected and measured 

every 30 minutes. To avoid evaporation, the buffer through the fibrin clot dropped into a 

closed microtube. The microtubes were weighed prior to use, in order to calculate the drops 

weight accurately. After every 30 minutes, the old microtube was removed and replaced with 

a new one. After 120 minutes, 4 microtubes were collected. The volume of the permeation 

buffer through the fibrin clot was calculated (1 g=1 ml). 
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The permeation coefficient (Darcy constant [Ks]), which indicates the pore size of fibrin clot 

and represents the surface of the gel allowing flow, was calculated from the equation:  

 

Ks = Permeability Coefficient 

Q = volume of liquid (1ml = 1cm3) 

L = the length of fibrin clot gel (1.7cm) 

η = viscosity of the liquid (10-2 poise = 10-7 N.s.cm-2) 

T = time (second) 

A = cross-sectional area (0.071 cm2) 

ΔP = pressure drop (density x weight x height = 1 x 980 x 4 = 3920 dyne/cm2 = 0.03920 N.cm-

2)  

 

As the constants are substituted, L = 1.7 cm, η = 10-7 N.s.cm-2, A = 0.071, and ΔP = 0.03920 

N.cm-2 

Ks = Q/T x 6.108 x 10-5 

Q = Volume (ml) 

T = Time (second) 
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2.4 Factor XII Activation Test 

Method A 

Silicon dioxide nanoparticles was diluted with double distilled water and the working 

concentrations were 150 µg/ml, 30 µg/ml, 3 µg/ml, 0.3 µg/ml, and 0.03 µg/ml. 50 µl of silica 

suspensions, 25 µl of FXII deficiency plasma and 25 µl of permeation buffer were added in the 

96-well plate in triplicates.  

The stock concentration of FXII zymogen is 4.1 µg/ml. FXII plasma concentration is 375 nM 

(30 µg/ml). 1 µl of FXII zymogen was diluted with 136.67 µl of double distilled water. 3.42 µl 

of FXII zymogen was mixed with 996.58 µl of FXII deficiency plasma. 50 µl of silicon dioxide 

nanoparticle suspension were added in triplicate. 25 µl of FXII deficiency with plasma FXII 

zymogen and 25 µl of permeation buffer were added into the 96 well-plate. 50 µl of silica 

suspensions, 25 µl of normal pooled plasma and 25 µl of permeation buffer were added in 

triplicate in the 96-well plate as control. 

Activation mixture contained 0.3 U/ml human thrombin and 15 mM CaCl2. Immediately on 

addition of 50 µl of activation mix, absorbency was read every 12 seconds at 340 nm for 60 

minutes with a Kinetic Plate Reader (Spectramax Plus 384, Molecular Devices, UK). The 

temperature of the reaction was set at 37˚C. The final concentrations of thrombin and CaCl2 

were 0.1 U/ml and 5 mM respectively. The concentrations of nano-silica suspension were 50 

µg/ml, 10 µg/ml, 1 µg/ml, 0.1 µg/ml, and 0.01 µg/ml. 
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Method B 

Silicon dioxide nanoparticles was diluted with double distilled water and the working 

concentrations were 500 µg/ml, 100 µg/ml, 10 µg/ml, 1 µg/ml, and 0.1 µg/ml. 10 µl of 

different concentrations of SiO2 NPs were added to 96-well plate. 0.25% Triton, 625 nM of 

FXII zymogen, 10 mM S2302 (a kind of chromogenic substrate for plasma kallikrein, factor XIa 

and factor XIIa) and permeation buffer was added into each well. For a positive control of FXII, 

PTT automate was added and mixed with 625 nM of FXII zymogen. Absorbency was read every 

12 seconds at 340 nm for 180 minutes with a Kinetic Plate Reader (Spectramax Plus 384, 

Molecular Devices, UK). The temperature of the reaction was set at 37˚C. The final 

concentrations of Triton, FXII zymogen, and S2302 were 0.05%, 125 nM, and 2 mM 

respectively. The concentrations of nano-silica suspension were 50 µg/ml, 10 µg/ml, 1 µg/ml, 

0.1 µg/ml, and 0.01 µg/ml. 

 

2.5 Endothelial Cell Culture 

Endothelial cell growth media (ECGM) was prepared before defrosting the cells. 500 ml of 

ECGM consisted of 380 ml of M199 media, 100 ml of fetal bovine serum, 10 ml of 1 M Hepes, 

5 ml of antibiotic antiomycotic solution, 2.5 ml endothelial cell growth supplements solution, 

2.5 ml of 1000 U/ml Heparin, and 1 ml of sodium pyruvate solution. ECGM was stored at -4 

degree and prewarmed before use. 

Frozen human umbilical vein endothelial cells (HUVEC) were purchased from PromoCell. The 

vial containing the cells was thawed in a water bath and gently shook for 2 or 3 minutes. Once 
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the cells were defrosted, they were immediately transferred into a T25 flask containing 9ml 

pre-warmed ECGM. 

Cells were cultured and underwent passaging after 80-90% confluent in the flask. HUVEC were 

used only between passage 3 to passage 7. 

 

 Passaging 

When the cells were 80-90% confluent in the T25 flask, they were prepared for passaging. All 

media was removed completely. The cells were washed once with 5 ml DPBS. Then 1 ml of 

Trypsin-EDTA (10 fold diluted) was added to the T25 flask which was enough to cover the 

whole bottom surface of the flask. Cells were incubated for 2 to 3 minutes. Afterwards, all 

cells should detached from the bottom surface of the flask, 8 ml of pre-warmed ECGM was 

added to flask to stop trypsinization. Cells were transferred into a sterile 15 ml tube and 

centrifuged for 5 min at 1000 x g. Then, the supernatant was discarded and the cell pellet was 

re-suspended with 1 ml of ECGM. Based on the experiment requirements, different number 

of cells were seeded to either flasks, plates, or slides.  
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 Counting Cells  

After the cells were re-suspended with 1 ml fresh ECGM, 10 µl of cell suspension was taken 

transferred into a small eppendorf and 30 µl of Trypan Blue was added. The haemocytometer 

was prepared for counting cells by placing cover slip onto the grooves on the glass slide. 10 µl 

of mixed cell suspension was transferred to one side of the slide under the cover slip. Cells 

were counted in large square in four corners (Fig 2-8. A parts) of the slide.  

 

 
 

 

Figure 2-8: Image Showing Haemocytometer 

The cells were counted in the area A. For each light blue square, the number of cells in 4 A 

parts were added up which refers to ‘the number of cells counted’ in the formula. The number 

of cells per ml was calculated following the formula. 
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 Freezing Cells 

The freezing media was prepared with 90% fetal bovine serum and 10% of sterile DMSO. After 

passaging the cells, 200 μl of cell suspension was transferred to a cryotube (Nunc) containing 

800 μl of the freezing mixture. The cell number would be approximately 1.0 x 106 cells per ml. 

The vials were placed into Nalgene Mr Frosty (Sigma-Aldrich, UK) which is a polycarbonate 

container holding isopropanol. Isopropanol controls the cooling at a constant rate of 1°C per 

minute which was required for successful cryopreservation of cells. The Mr Frosty container 

was placed in the -80°C freezer overnight. Then the vials were moved to the liquid nitrogen 

storage tank for long term storage. Cells were only frozen until passage three.  

 

2.6 Cytotoxicity Test 

The particles cytotoxicity was measured by using the 3-(4, 5-dimerthylthia-zol-2-yl)-2, 5-

diphenyltetrazolium bromide (MTT) reduction assay. MTT is a water soluble tetrazolium salt, 

which can be converted to a purple formazon product by enzymes in living cells. MTT assay is 

a colorimetric method for cytotoxicity detection that measures the reduction of MTT by 

mitochondrial succinate dehydrogenase. The MTT entered cells and passed into the 

mitochondria. Then it became an insoluble, dark purple formazan product. After adding 

solubilising solution (an organic solvent), the formazan reagent was solubilised and released. 

Reduction of MTT reagent only occurs in live cells. More mitochondria activities induced the 

darker colour of cells and indicated more viable cells. The colour was measured 

spectrophotometrically  (Supino, 1995). 
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For the treatment, cells were seeded into a 96-well plate. Each well contained 2x104 cells at 

the beginning. After the cells were 80 to 90% confluent, cells were ready to be treated with 

nano-silica. All the media was removed from the well completely. Particle solution was diluted 

with ECGM without fetal bovine serum. The concentrations were 50 µg/ml, 10 µg/ml, 1 µg/ml, 

0.1 µg/ml, 0.01 µg/ml and 0 µg/ml. 100 µl of different concentrations of particle suspension 

was added to each well in triplicate. The cells were incubated for 24 hours at 37˚C with 5% 

CO2. 

To prepare the MTT, 100 mg of MTT powder was added into a 50 ml falcon tube covered with 

aluminium foil containing 20 ml of tissue-culture DPBS. The MTT solution was mixed well and 

incubated in the water bath for 15 minutes at 37˚C. The MTT solution was filtered by a 0.2 

µm filter in the flow hood without light. The tube containing filtered MTT solution was 

wrapped with aluminium foil.  

The whole process should be conducted in the flow hood without the light on. 10 µl of MTT 

solution was added to each well without taken the previous treatment solution. 96-well plate 

was covered with aluminium foil and transferred into the incubator for 4 hours. After 

incubation, all media was removed completely. 100 ul of sterile DMSO was added to each well 

for solubilising the MTT reagent. The plate was incubated overnight. The plate was read at 

540 nm and 690 nm (reference absorbance) with 10 seconds shaking on the ASCENT software.  
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2.7 Fibrin Clot Formation on HUVEC 

To set up the fibrin clot structure, 300 µl of cell suspension containing 5 x 104 cells were 

seeded on the µ-slide. After 80 to 90% confluent in the µ-slide, the cells were ready for 

treatment. The particle suspension was prepared with ECGM without fetal bovine serum for 

treatment. The concentrations were 50 µg/ml, 10 µg/ml, 1 µg/ml, 0.1 µg/ml, 0.01 µg/ml and 

0 µg/ml. 300 µl of each concentration and control were added in duplicate to each well of the 

slide. The treatment lasted for 24 hours. Then, all solution was removed completely by 

vacuum pump.  

 

 Purified Human fibrinogen 

Clot formation were performed on the cells after the treatment. 1 mg/ml of purified 

fibrinogen was mixed with the activation mixture consisted of 50 µg/ml of FITC, 15mM of 

CaCl2, 5 U/ml of thrombin and ECGM without fetal bovine serum. 300 µl of the clotting 

mixture was immediately introduced into the well. The slides were kept in the incubator for 

15 to 30 min for the clot to form. The final concentrations of fibrinogen, FITC, thrombin and 

CaCl2 were 1 mg/ml, 50 µg/ml, 0.5 U/ml and 15 mM respectively.  

 

 Normal Pooled Plasma 

To set up the clot, 100 µl of normal pooled plasma was mixed with the 200 µl of activation 

mixture consisted of 0.5 mg/ml of FITC, 150 mM of CaCl2, 5 U/ml of thrombin and M199 media. 
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300 µl of the clotting mixture was immediately introduced into each well. The slides were 

kept in the incubator for 30 min allowing the clot formation. The final concentrations of FITC, 

thrombin and CaCl2 were 50 µg/ml, 0.5 U/ml and 15 mM respectively. 

This method was confirmed after trying different concentrations of thrombin and CaCl2, also 

different reagents (DPBS, permeation buffer, ECGM without serum, M199 media) were used 

to dilute the activation mixture. M199 media was the most appropriate reagent to mix with 

thrombin and CaCl2 and setting up the clots.  

 

2.8  Enzyme-Linked Immunosorbent Assay (ELISA)  

Enzyme-Linked Immunosorbent Assay (ELISA) was used to measure the concentrations of 

VWF and Plasminogen Activator Inhibitor-1 (PAI-1) which are secreted by endothelial cells 

and released into the circulation afterwards. 

 

 Von Willebrand Factor 

Enzyme-Linked Immunosorbent Assay (ELISA) was used to measure the concentration of 

Human VWF in the cell culture supernatant. We purchased the Human VWF ELISA Kit from 

Abcam. 96-well plate had been coated with VWF antibody. The brief procedures were as 

following. The Standards and samples were added to the wells, incubated and then washed 

with wash buffer. The VWF biotinylated detection antibody was then added, incubated, and 

washed by wash buffer. Thirdly, Streptavidin-Peroxidase Conjugates was added, incubated, 
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and washed with wash buffer. Chromogenic substrate (TMB, 3,3', 5,5;-tetramethylbenzidine) 

is catalyzed by Streptavidin-Peroxidase to produce a blue color product which was added to 

visualize Streptavidin-Peroxidase enzymatic reaction. Finally, an acidic stop solution was 

added and the chromogenic substrate produce color changed to yellow. The density of yellow 

was measured by a microplate reader and indicated the amount of VWF captured on the plate.  

 

Cell Treatment 

HUVEC was treated with different particles with different concentrations 0 μg/ml, 0.01 μg/ml, 

0.1 μg/ml, 1 μg/ml, 10 μg/ml, and 50 μg/ml, respectively. The cells were incubated with 

particle suspension for 24 hours.  

 

Reagent Preparation 

All reagents were warmed up to room temperature (18-25°C) prior to use. Diluent N 

Concentration was diluted 1:10 with MilliQ water and mixed well. Wash Buffer Concentrate 

was diluted with MilliQ water 1:20 and mixed well.  

Von Willebrand Factor Standard was prepared. The stock concentration was 240 mU/ml. The 

standard were diluted to concentrations 80 mU/ml, 40 mU/ml, 20 mU/ml, 10 mU/ml, 5 

mU/ml, 2.5 mU/ml and 0 mU/ml. 50x Biothinylated Von Willebrand Factor Detector Antibody 

was diluted with Diluent N.  
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Cell Culture Supernatants Preparation 

After the cells were treated for 24 hours, the cell supernatants were transferred to 

microtubes. The supernatants were centrifuged at 3,000 x g for 10 minutes to remove debris.  

 

ELISA 

All materials and prepared reagents were warmed up to room temperature prior to use. 50 

μl of standards, controls and samples were added into the wells in triplicate. The plate was 

covered by a sealing tape and incubated for 2 hours. Each well was inverted and washed five 

times using 200 μl of 1X Wash Buffer, tapped 4 to 5 times on absorbent paper towel to 

completely remove the liquid. 50 μl of 1X Biotinylated Von Willebrand Factor Antibody were 

added to each well and incubated for 2 hours. Plate was washed as described above. Then, 

50 μl of 1X SP Conjugate were added to each well and incubated for 30 minutes, followed by 

plate washing as described above. 50 μl of Chromogen Substrate were added to each well 

and incubated for 20 minutes and finally 50 μl of Stop Solution were added. The color changed 

from blue to yellow. Plate was read immediately in microplate reader at a wavelength of 

450nm. 

 

Calculation 

To generate the standard curve, the graph used the standard concentrations on the x-axis and 

the corresponding mean 450 nm absorbance on the y-axis. The samples concentrations were 

calculated from the standard curve.  
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 Plasminogen Activator Inhibitor - 1 

Enzyme-Linked Immunosorbent Assay (ELISA) was used to measure the concentration of 

Human PAI-1 in the cell culture supernatant. Human PAI-1 ELISA Kit was purchased from Life 

Technologies. 

 

Cell Treatment 

HUVEC was treated with different particles with different concentrations from 0 to 50 μg/ml. 

The cells were incubated with the suspension for 24 hours.  

 

Standard Preparation 

PAI-1 Standard was prepared. Each well was added 100 μl of standard. The stock 

concentration was 4,000 pg/ml. The standard was diluted to 2,000 pg/ml, 1,000 pg/ml, 500 

pg/ml, 250 pg/ml, 125 pg/ml, and 0 pg/ml.  

Streptavidin-HRP (100X) is in 50% glycerol. Streptavidin-HRP was diluted with Streptavidin-

HRP Diluent 1:100. This reagent was prepared within 15 minutes of usage.  

Wash Buffer Concentrate (25X) was diluted with MilliQ water 1:25.   
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Cell Culture Supernatants Preparation 

After the cells were treated for 24 hours, the cell supernatants were transferred to 

microtubes. The supernatants were centrifuged at 3,000 x g for 10 minutes to remove debris.  

 

ELISA 

All materials and prepared reagents were warmed up to room temperature prior to use.  

All standards, controls and samples were in triplicates. 100 μl of standards were added to 

each well. Controls and samples were diluted with Standard Diluent Buffer 1:1 (50 μl : 50 μl) 

and added into each well in triplicate. The plate was covered by a sealing tape and incubated 

for 2 hours at room temperature. Then, each well was washed with 300 μl of 1X Wash Buffer 

for four times, tapped 4 to 5 times on absorbent paper towel to completely remove the liquid. 

100 μl of Biotinylated Human PAI-1 Biotin Conjugate Solution was added into each well and 

incubated for another 2 hours at room temperature with sealing tape. The plate was washed 

as described above. Then 100 μl of Streptavidin-HRP Working Solution was added to each well 

and incubated for 30 minutes at room temperature with plate cover. The plate was washed 4 

times as described above. 100 μl of Stabilized Chromogen was added to each well and 

incubated for 30 minutes at room temperature in the dark. Finally, 100 μl Stop Solution was 

added to each well. Read the plate immediately at 450nm.  
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Calculation 

To generate the standard curve, the graph was plotted using the standard concentrations on 

the x-axis and the corresponding mean 450 nm absorbance on the y-axis. The samples 

concentrations were calculated from the standard curve.  

 

2.9 Real Time Polymerase Chain Reaction (RT-PCR) 

The real time polymerase chain reaction is one of the most useful technologies in molecule 

biology which can be used to quantify the DNA or RNA in a sample. Specific sequences in a 

DNA or cDNA template can be amplified thousands to millions fold using sequence specific 

oligonuceotides. PCR amplifies DNA exponentially, doubling the number of target molecules 

in each amplification cycle. Fluorescent DNA-binding dyes and real time PCR machine are used 

to quantify the amplified products by measuring the fluorescence dyes that yield increasing 

fluorescent signal in direct proportion to the number of PCR product molecules generated.  

RT-PCR method was used to quantify the gene expression of tissue factor and 

thrombomodulin as both of them are membrane proteins secreted by endothelial cells.  

 

 Cell Treatment 

Human umbilical vein endothelial cells were seeded in T25 flasks with 0.7x106. When the T25 

flasks were 80 to 90% confluent, cells were treated with different concentrations of particles. 

Each particles were diluted to six concentrations for cell treatment which were 0 µg/ml, 0.01 
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µg/ml, 0.1 µg/ml, 1 µg/ml, 10 µg/ml and 50 µg/ml respectively. Cell were treated for 24 hours 

in the incubator at 37 ᵒC with 5% CO2. After the treatment, the cells were trypsinzed and 

collected in the tubes. Then, those cells were washed with DPBS one more time to remove 

the serum completely. Afterwards, the cells were ready for total RNA extraction.  

 

 RNA Extraction 

RNeasy Mini Kit from Qiagen (Germany) was used for total RNA extraction from endothelial 

cells. After treatment, the harvest cell number was approximately 1 – 1.5 x105 per flask. Cells 

were mixed with 350 µl of RLT buffer for 15 minutes with gentle shaking which allowed the 

cells to be lysed completely. Then, 350 µl of 70% of ethanol was added to the lysate and mixed 

well by pipetting. 700 µl of each sample was transferred to an RNeasy Mini spin column placed 

in a 2 ml collection tube. The tubes were centrifuged for 1 min at 4,000 x g, and 5 seconds at 

6,000 x g. The flow through was discarded. 700 µl of Buffer RW1 was added to each RNeasy 

Mini spin column. The tubes were centrifuged for 1 min at 4,000 x g, and 5 seconds at 6,000 

x g. The flow through was discarded. 500 µl of Buffer RPE was added to each RNeasy Mini spin 

column. The tubes were centrifuged for 1 min at 4,000 x g, and 5 seconds at 6,000 x g. The 

flow through was discarded. Another 500 µl of Buffer RPE was added to each spin column. 

The tubes were centrifuged for 2 min at 4,000 x g, and 15 seconds at 6,000 x g. The flow 

through was discarded. The tubes were centrifuged again for 2 min at the maximum speed to 

dry the membranes.  The 2 ml collection tubes were discarded and replaced by the new 1.5 

ml collection tubes. Finally, 30 µl of RNase/DNase Free water was added to each spin column 

membrane. The tubes were centrifuged for 1.5 min at 6000 x g to elute the total RNA. 
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The quantity and quality of total RNA from each sample was measured by NanoDrop 1000 

Spectrophotometer (UK).  

 

 Reverse Transcription 

For reverse transcriptase from totol RNA to cDNA, we used Taqman Reserve Transcription 

Reagents (Life Technologies, UK). The total RNA samples were diluted to 100 ng/ul. Each 

reaction was made up to 20 µl of the reaction volume (as shown below). The enzymes should 

be kept in the freezer until immediately prior to use.  

Component Volume Final Concentrations 

DNase/RNase Free H2O 1.6 µl - 

10x RT Buffer 2 µl 1x 

25 mM MgCl2 1.4 µl 1.75 mM 

10 mM dNTP mix 1 µl 0.5 mM 

100 mM DTT 1 µl 5mM 

RNase Inhibitor (20 U/µl) 1 µl 1 U/µl 

MultiScribe RT (50 U/µl) 1 µl 2.5 U/µl 

50 µM Random Hexamers 1 µl 2.5 µM 

Template RNA (100 µg/µl) 10 µl 50 µg/ul 

 Figure 2-9. Reverse Transcription Reagents Preparation 
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After making up the reaction, the tubes were moved to the PCR machine for incubation in a 

thermal cycle (as shown below). 

Temperature Time 

25 ᵒC 10 minutes 

37 ᵒC 30 minutes 

95 ᵒC 5 minutes 

4 ᵒC Indefinitely 

Figure 2-10. Reverse Transcription thermal cycle setup 

After the incubation, the total RNA was reverse transcript to the cDNA and ready for real time 

PCR. 

 

 Primer Design 

Good primer design is an important parameter in real time PCR. The primers should be 18 to 

24 nucleotides in length and the amplicon length should be between 50 to 150 bp. The primer 

pairs should have compatible melting temperature (Tm) (within 1 ᵒC) and contain 

approximately 50% GC content.  

We needed to choose primers for housekeeping genes and target genes. There are many 

common used housekeeping genes. According to the literatures, we chose glyceraldehydes-

3-phosphate dehydrogenase (GAPDH) and beta actin (ACTB) as the housekeeping gene. The 

two target genes were TF and THBD. We found the adaptive primers for each gene from 

national centre of biotechnology institute (NCBI).  
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Gene Primer Sequence (5’ – 3’) Tm GC% Amplicon Length 

GAPDH 

NM_001256799.2 

Forward AAGCCTGCCGGTGACTAAC 60 ᵒC 57.89 111 bp 

Reverse GCATCACCCGGAGGAGAAAT 59.82 ᵒC 55% 

ACTB 

NM_001101.3 

Forward TCGAGCAAGAGATGGC 62 ᵒC 56% 194 bp 

Reverse TGAAGGTAGTTTCGTGGATG 66 ᵒC 45% 

TF 

NM_001178096.1 

Forward AAACCTCGGACAGCCAACAA 60.11 ᵒC 50 116 bp 

Reverse CCCGGAGGCTTAGGAAAGTG 60.11 ᵒC 60 

THBD 

NM_000361.2 

Forward AGCCCCTGAACCAAACTAGC 59.96 ᵒC 55 176 BP 

Reverse GAAACCGTCGTCCAGGATGT 60.04 ᵒC 55 

Figure 2-11. Details of primers of housekeeping genes and target genes 

To confirm the specificity of the primers, BLAST® search was used to be sure that the primers 

were only recognized in the target of interests.  

 

 RT-PCR 

There were three main steps of real time PCR and the reaction ran for 40 cycles. Before 

making up the reactions, the LC480 RT-PCR instrument was set up as following. 
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Program Analysis Mode Cycle Segment Temperature Time Acquisition 

Mode 

Denaturation None 1  95 °C 10 min None 

Amplification Quantification 40 Denaturation 95 °C 15 s None 

Annealing/ 

Extension 

60 °C 1 min Single 

Melting Curves Melting Curves 1 Denaturation 95 °C 5 s None 

Annealing/ 

Extension 

60 °C 1 min None 

Melting 95 °C  Continuous 

Cooling None 1  40 °C 30 s None 

Figure 2-12. Real Time PCR thermal cycle setup 

 

After setting up the instrument, the reactions were prepared as following. SYBR Green Master 

Mix (Thermo Fisher, UK) was used in the RT-PCR for fluorescence quantification after double 

stranded DNA binding to the SYBR® Green. 

Component Volume (96-well Plate) Final Concentrations 

2x SYBR Green PCR Master Mix 10 μl 1x 

Forward Primer 1 μl 500 nM 

Reverse Primer 1 μl 500 nM 

cDNA Template 8 μl 40 ng 

Figure 2-13. Real Rime PCR reagents preparation 
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After making up the reactions, the plate was covered by the foil and centrifuged for 2 min at 

1,500 x g. Then, the plate was transferred into the instrument LC480 to start the progress 

immediately.  

 

2.10 Plasmid Strand Break Assay 

The plasmid strand break assay was used to investigate the strand breaks in the plasmid DNA 

caused by exogenous agents such as ionizing radiation, or by endogenously generated reactive 

oxygen species (Lodge et al., 1989; Schnaith et al., 1994; Smiałek et al., 2009). The pBR supercoiled 

plasmid DNA was incubated with different concentrations of particles for 12 hours allowing the 

single strand or double strand breaks to occur and generating nicked or relaxed plasmid DNA. pBR 

plasmid DNA is 4,361 bp in length. But supercoiled plasmid DNA travels faster than nicked DNA, 

the relaxed DNA travels the most slowly through an agarose gel during electrophoresis. 

  

  Plasmid DNA Precipitation 

PBR 322 Plasmid DNA was purchased from Thermo Fisher Scientific and stored in the buffer 

with 10 mM Tris-HCl and 1mM EDTA. The plasmid need to be precipitated to remove the 

chelating agent, EDTA, completely. 

The pBR 322 supercoiled plasmid DNA was transferred to the RNase/DNase free 1.5 ml tube 

and then 20 µl of 3M Sodium Acetate buffer was added to the tube. After adding another 500 

µl of cold 100% ethanol, the tube was placed in -20 °C freezer for one hour. The plasmid DNA 
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was centrifuged for 15 minutes at the highest speed (13000 rpm) in a 4°C.  The supernatant 

was removed as much as possible and 250 µl of cold 70% ethanol was added. The plasmid 

was centrifuged again for 5 minutes in a 4 °C centrifuge at maximum speed. The supernatant 

was discarded completely. The remaining ethanol was evaporated by using SpeedVac for 10 

min. The plasmid DNA pellet was resuspended in 100 µl of DNase/RNase free water. The stock 

concentration of plasmid DNA was 1 µg/µl and stored in -20°C freezer.  

 

  Plasmid Strand Break Assay 

PBR322 plasmid was diluted with DNase/RNase free water to 0.2 µg/µl. Different 

concentrations of particles were prepared for treatment. 5 µl of plasmid DNA was incubated 

with 5 µl of treatment at room temperature in dark (avoid UV damage of plasmid).  

After 12 hours incubation, the gel was prepared with 1 g agarose in 100 ml 1x TBE buffer 

(0.5M EDTA, Tris Base, Boric Acid), adding 1 µl of gel red. After the gel cooled down, the 

samples were added. Each sample was mixed with 1 µl of 10x blue juice gel loading buffer and 

10 µl of sample was loaded into the gel. Gel electrophoresis was run at 60V for 2 hours with 

1x TBE buffer. The gel was visualized. The strand breaks were able to be quantified using 

BioRad QuantityOne software (Bio-Rad, Hercules, CA) by calculating the proportion of 

supercoiled plasmid DNA remaining of each sample compared to the control.  
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 Effects of Particulate Matter and Diesel Particles 

on Fibrin Clot Structure  

3.1 Introduction 

PM has been associated with cardiovascular diseases in many epidemiological studies. Some 

studies have shown air pollution is associated with increased risks of cardiovascular diseases, 

such as myocardial infarction, deep vein thrombosis and coronary artery diseases (Franchini 

and Mannucci, 2007; Langrish et al., 2012; Newby et al., 2014). An epidemiological study from 

Kloog et al. investigated the short-term and long-term PM2.5 exposure effects, the results 

indicated that every 10 µg/m3 of PM2.5 caused 0.63% (95% CI = 0.03%--1.25%) increase in DVT 

admissions in short-term exposure and 6.98% (95% CI = 5.65%--8.33%) in long-term exposure. 

In terms of the pulmonary embolism, 0.38% (95% CI = −0.68%--1.25%) and 2.67% (95% 

CI = 5.65%--8.33%) increased risks were induced by PM2.5 short- and long-term exposure 

respectively (Kloog et al., 2015). Some studies also confirmed that the alterations in fibrin clot 

structure, its mechanical properties and resistance to lysis were correlated with different 

cardiovascular diseases and diseases of both arterial and venous thrombosis. Altered fibrin 

clot structure with compact, highly branched networks, reduced permeability and prolonged 

lysis time has been associated with several thromboembolic events, e.g. ischemic stroke and 

venous thrombosis. The patients with those CVD had altered fibrin clot structure with greater 

number of fibres and more compact arrangement fibre network (Hooper et al., 2012; Undas 

and Ariens, 2011; Weisel, 2007). However, the underpinning mechanisms were still unclear. 

Therefore, in view of the association between exposure to particulate matter and thrombosis, 
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and of the association between thrombosis and abnormal fibrin clot structure, the aim of this 

study was to investigate whether particulate matter and diesel particles could induce fibrin 

clot structure alteration in vitro. Normal pooled plasma samples and purified fibrinogen 

samples were used as in vitro models to detect the effects of PM.  

 

3.2 Methods 

PM10 (SRM 2787) and diesel particles (SRM 2975) was purchased from the National Institute 

of Standard and Technology (NIST). PM10 was collected from an air intake filtration system of 

a major exhibition centre in Prague, Czech Republic, and generally represents the 

atmospheric particulate matter obtained from an urban area, which contains polycyclic 

aromatic hydrocarbons (PAHs), nitro-substituted PAHs (nitro-PAHs), polybrominated 

diphenyl ether (PBDE) congeners, hexabromocyclododecane (HBCD) isomers, sugars, 

polychlorinated dibenzo-р-dioxin (PCDD) and dibenzofuran (PCDF) congeners, inorganic 

constituents, and particles-size characteristics in atmospheric particulate material. Total 

diesel particles was collected from an industrial diesel-powered forklift and contained PAHs 

and nitro-PAHs in diesel particulate matter.  

Both particles were diluted with double distilled water, with a stock concentration of PM10 of 

1 µg/ml. Both particles were then diluted to 1 µg/ml and centrifuged for 30 min at maximum 

speed, and then filtered through a 0.2 μm membrane filter respectively. The diameters of the 

filtered particles were less than 0.2 μm. The mass fraction of PM0.2 is 30% of the PM10. And 

filtered diesel particles is 35% of the total diesel particles. 
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Five concentrations of particle suspension were used in the experiments; 50 µg/ml, 10 µg/ml, 

1 µg/ml, 0.1 µg/ml and 0.01 µg/ml. Different concentrations of PM and diesel particles were 

added to the normal pooled plasma and fibrinogen samples, respectively. Three methods, 

turbidity assay, turbidity-lysis assay and laser scanning confocal microscope assay, were used 

to analyse the fibrin clot structure. The details of the methods were as described in chapter 

2. 

 

3.3 Results 

 Turbidity Assay 

The results of the turbidity assay are shown in the following figure (Fig. 3-1 and 3-2). The four 

types of particles used in experiments in which fibrin clots were formed with 1) normal pooled 

plasma and 2) purified fibrinogen.  

 

Normal Pooled Plasma Samples 

Clots were formed from normal pooled plasma samples in the presence of particles. 

Compared to the control, the clots formed with particles had no significantly higher 

absorbance. But, there was a trend that as the concentrations of particles increased, the 

maximum OD values increased as well (Fig. 3-1). 
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Figure 3-1. Turbidity Assay -- Maximum Absorbance of Plasma Samples Exposed to Different 

Concentrations of Particles (n=5) 

The normal pooled plasma samples were mixed with particle suspension from 0 to 50 µg/ml. 

The final concentrations of thrombin and CaCl2 were 0.1 U/ml and 5 mM respectively. The 

maximum absorbance of the clots formed with different concentrations of particles were 

shown in the figure. 

 

Fibrinogen Samples 

In terms of the fibrinogen samples, after the incubation with increased concentrations of 

PM10, there were no significant differences compared to controls. The total diesel particles 

showed similar results as PM10. However, for the PM0.2 and filtered diesel particles, the 

maximum fluorescence intensity of the clots showed no changes, even after treatment with 

50 µg/ml of particles (Fig. 3-2)  
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Figure 3-2. Turbidity Assay -- Maximum Absorbance of Fibrinogen Samples Exposed to 

Different Concentrations of Particles (n=5) 

The purified fibrinogen samples were mixed with particle suspension from 0 to 50 µg/ml. The 

final concentrations of fibrinogen, thrombin and CaCl2 were 1 mg/ml, 0.1 U/ml and 5 mM 

respectively. The maximum absorbance of the clots formed with different concentrations of 

particles were shown in the figure. 

 

 Turbidity Lysis Assay 

Normal Pooled Plasma Samples 

In the presence of particles, as the concentrations of particles increased, the t50% was 

increased in a dose-dependent manner. Clot lysis time was the time in which absorbance 

decreased by 50% of the peak value (t50%) (Undas et al., 2014). Higher concentration of 

particles also had higher OD value and longer t50%. Compared to control, t50% were significantly 
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longer at 10 µg/ml of PM10 and total diesel particles. PM0.2 and filtered diesel particles only 

caused statistically longer t50% at 50 µg/ml which were 13.8 and 14.3 min. The results 

indicated that fibres formed in the presence of particles, especially at the high concentrations, 

were much less sensitive to fibrinolysis compared to control.  

Figure 3-3. Turbidity Lysis Assay – T50% of Normal Pooled Plasma Samples Exposed to 

Different Concentrations of Particles (n=3)  

*p<0.05; **p<0.001 

The clot lysis time was shown based on the concentrations and particle types. The final 

concentrations of tPA, thrombin and CaCl2 were 0.1 µg/ml, 0.1 U/ml and 5 mM respectively. 

As the concentrations of particles increased, the T50% was increased in a dose dependent 

manner.  
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Fibrinogen Samples 

In terms of the fibrinogen samples, t50% had no significantly difference between control and 

high concentrations of particles. The clot lysis time was similar and around 10 to 12 minutes. 

Figure 3-4. Turbidity Lysis Assay – T50% of Purified Fibrinogen Samples Exposed to Different 

Concentrations of Particles (n=3) 

The clot lysis time was shown based on the concentrations and particle types. The final 

concentrations of fibrinogen, plasminogen, tPA, thrombin and CaCl2 were 1 mg/ml, 0.25 µM, 

0.1 µg/ml, 0.1 U/ml and 5 mM respectively. As the concentrations of particles increased, the 

T50% was increased in a dose dependent manner.  
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 Laser Scanning Confocal Microscopy 

Normal Pooled Plasma Samples 

Fully hydrated fibrin clot structure was analysed under the laser scanning confocal 

microscope.  The four kinds of particles were incubated with plasma samples and the clots 

formed with 0.1 U/ml of thrombin and 5 mM CaCl2. Fig 3-5 to 3-8 represents the fibrin clot 

structure of plasma samples with different concentrations of different particles. 

Coarse particulate matter were added to the normal pooled plasma samples. The effects of 

different concentrations of PM10 after clots formed from plasma samples were shown in the 

figures below. Six different concentrations of PM10 were incubated with the plasma samples. 

From 0 µg/ml to 50 µg/ml of PM10 (Fig 3-5), the clot structure showed similar fibrin clot 

structure with similar fibre numbers per μm. Compared to the control, there were no 

differences after incubation with PM10. The same concentrations of PM0.2 were incubated with 

plasma samples (Fig 3-6). The figures showed fibrin clots formed from plasma samples were 

similar. The average fibre numbers per um were between 3.10 and 3.43 after treatment with 

different concentrations of PM0.2.  

In the normal pooled plasma samples, total diesel particles had almost no effects on fibrin 

clot structure. Compared to control, 50 µg/ml of total diesel particles lead to slightly denser 

clot formation but there was no significantly difference (Fig 3-7). In figure 3-8, filtered diesel 

particles also had no significant effects on alteration of fibrin clot structure formed from 

normal pooled plasma samples. From 0 µg/ml to 50 µg/ml of filtered diesel particles, the 

number of fibres was similar. 
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Fig 3-9 shows that fibre numbers per μm of the clots formed from plasma samples after 

exposure to different concentrations of particle suspensions. Compared to the control, fibre 

numbers of the clots with all these four different particles had no difference even at the 

highest concentration of 50 μg/ml. These four particles did not cause significantly denser 

fibrin clot structure in the plasma samples.  
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               Control                                          0.01 µg/ml of PM10 

  

              0.1 µg/ml of PM10                                   1 µg/ml of PM10 

  
              10 µg/ml of PM10                                 50 µg/ml of PM10 

Figure 3-5. LSCM--Effects of PM10 on Plasma Samples 

The structure of clots formed from plasma samples with PM10 from 0 to 50 µg/ml. 
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                 Control                                           0.01 µg/ml of PM0.2 

  
                 0.1 µg/ml of PM0.2                                 1 µg/ml of PM0.2 

  
                    10 µg/ml of PM0.2                                  50 µg/ml of PM0.2 

Figure 3-6. LSCM--Effects of PM0.2 on Plasma Samples 

The structure of clots formed from plasma samples with PM0.2 from 0 to 50 µg/ml. 
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            Control                           0.01 µg/ml of Total Diesel Particles 

  
              0.1 µg/ml of Total Diesel Particles            1 µg/ml of Total Diesel Particles 

  
10 µg/ml of Total Diesel Particles          50 µg/ml of Total Diesel Particles 

Figure 3-7. LSCM—Effects of Total Diesel Particle on Plasma 

The structure of clots formed from plasma with total diesel particles from 0 to 50 µg/ml. 
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Control                             0.01µg/ml of Filtered Diesel Particles 

  
               0.1µg/ml of Diesel Particles                       1µg/ml of Diesel Particles 

  
               10µg/ml of Diesel Particles                      50µg/ml of Diesel Particles 

Figure 3-8. LSCM—Effects of Filtered Diesel Particle on Plasma 

The structure of clots formed from plasma with total diesel particles from 0 to 50 µg/ml. 
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Figure 3-9. Fibre Bundles of Fibrin Clots Formed from Plasma Samples with Different 

Concentrations of Particles (n=9) 

The clots formed from plasma samples with particles from 0 to 50 µg/ml was shown. The final 

concentrations of thrombin, CaCl2 and FITC were 0.1 U/ml, 5 mM and 50 µg/ml respectively. 

There were no significant differences in the fibre numbers between the clots with and without 

particles.  

 

Purified Fibrinogen Samples 

Compared to fibrin clots formed from plasma samples, purified fibrinogen samples had looser 

clot structure with a lower number of fibres per μm (Fig 3-14). To form the clots, the same 

concentrations of thrombin and CaCl2 were used in plasma and fibrinogen samples. In the 

normal pooled plasma, there are coagulation factors which may improve the thrombin 

formation and lead to more fibres produced compared to purified fibrinogen system. The 
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fibre number of the control was around 2 per µm in the fibrinogen samples, however, in the 

plasma samples, the fibre number was approximately 3 per µm. In the fibrinogen samples, 

from 0.1 µ/ml to 50 µg/ml of the particles, there were no significant differences from control. 

For the purified fibrinogen samples, same concentrations of PM10 were used. In the following 

figures, it can be seen that there were no significantly differences in the fibrin clot structure 

formed with or without participation of PM10. The fibre numbers per µm were around 2 (Fig 

3-10). Similar as the PM10 results, when the clots were formed with PM0.2, the clot structure 

was similar among different concentrations (Fig 3-11). 

For the purified fibrinogen samples, the fibrin clot structure was not altered after adding 

different concentrations of total diesel particles compared to control. The fibre numbers were 

similar at low and high concentrations of total diesel particles (Fig 3-12). Figure 3-13 shows 

that filtered diesel particles added in the purified fibrinogen samples did not increased or 

reduce the fibre numbers per µm compared to the control.  
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Control                                       0.01 µg/ml of PM10 

  
0.1 µg/ml of PM10                                     1 µg/ml of PM10 

  
10 µg/ml of PM10                               50 µg/ml of PM10 

Figure 3-10. LSCM--PM10 Effects on Fibrinogen 

The structure of clots formed from fibrinogen samples with PM10 from 0 to 50 µg/ml. 
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Control                                                0.01 µg/ml of PM0.2 

  
0.1 µg/ml of PM0.2                                    1 µg/ml of PM0.2 

  
10 µg/ml of PM0.2                                     50 µg/ml of PM0.2 

Figure 3-11. LSCM--PM0.2 Effects on Fibrinogen 

The structure of clots formed from fibrinogen samples with PM0.2 from 0 to 50 µg/ml. 
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Control                              0.01 µg/ml of Total Diesel Particles 

  

0.1 µg/ml of Total Diesel Particles               1 µg/ml of Total Diesel Particles 

  

10 µg/ml of Total Diesel Particles           50 µg/ml of Total Diesel Particles 

Figure 3-12. LSCM—Effects of Total Diesel Particle on Fibrinogen 

The structure of clots formed from fibrinogen with total diesel particles from 0 to 50 µg/ml. 
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Control                                0.01 µg/ml of Filtered Diesel Particles 

  
0.1 µg/ml of Filtered Diesel Particles      1 µg/ml of Filtered Diesel Particles 

  
10 µg/ml of Filtered Diesel Particles      50 µg/ml of Filtered Diesel Particles 

Figure 3-13. LSCM—Effects of Filtered Diesel Particle on Fibrinogen 

The structure of clots formed from fibrinogen with filtered diesel particles from 0 to 50 µg/ml. 
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Figure 3-14. Fibre Bundles of Fibrin Clots Formed from Purified Fibrinogen Samples with 

Different Concentrations of Particles (n=9) 

The number of fibres bundles per µm of the clots formed from purified fibrinogen samples 

with particles from 0 to 50 µg/ml was shown. The final concentrations of fibrinogen, thrombin, 

CaCl2 and FITC were 1mg/ml, 0.1 U/ml, 5 mM and 50 µg/ml respectively. Figure 3-14 showed 

that there were no significant differences in the fibre bundles between the clots with and 

without particles.  

 

3.4 Discussion 

In this study, the effects of PM10, PM0.2, total diesel particles and filtered diesel particles on 

fibrin clot structure were investigated. The concentrations chosen were from 0.01 to 50 µg/ml 

which was different from the other study (Metassan et al., 2010a). In the realistic 

environment, the highest concentration was measuring 14,000 µg/m3 (Davis et al., 2002) 
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which is equal to 0.014 µg/ml in H2O. Also, as the people keep exposed to particulate matter, 

it is able to accumulate in the body and the concentrations will increase. Therefore, I chose 

the start concentration was 0.01 µg/ml and hypothesized that the highest concentration 

people may have was 50 µg/ml. Three methods were applied to study the effects of particles 

from air pollution, turbidity assay, turbidity lysis assay and laser scanning confocal microscopy 

in both normal pooled plasma and purified fibrinogen system. The experiments results from 

turbidity assay and LSCM assay showed that these four particles did not significantly alter 

fibrin clot structure formed from normal pooled plasma samples. But the clot lysis time was 

significantly longer as the concentrations of particles increased. The fibres formed from 

plasma were getting more resistance to fibrinolysis and t50% were significantly longer at 50 

µg/ml of these four particles compared to control. In terms of the purified fibrinogen system, 

the clots had similar structure as control even at the highest concentration 50 µg/ml of those 

particles. In summary, PM10 and total diesel particles had more effects on the fibrin clot 

structure alterations compared to PM0.2 and filtered diesel particles. This was because both 

filtered particles were extracted from the total particles, the mass fraction of PM0.2 and 

filtered diesel particles were only 30% and 35% of PM10 and total diesel particles which 

represented the percentages of filtered particles occupied in the total particles realistically. 

In other words, at the concentration 10 µg/ml of PM10 and total diesel particles, the 

concentrations of PM0.2 and filtered diesel particles were 3 and 3.5 µg/ml respectively.  

Fibrin clot structure has been associated with several thromboembolic diseases (Undas and 

Ariëns, 2011). A large number of case-control studies have reported the associations. Undas 

et al. (2008) investigated the fibrin clot structure of 40 patients with acute coronary 

syndromes and 40 controls. The results showed that the patients had faster fibrin 
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polymerization (p=0.008) and prolonged fibrinolysis time (p<0.001) than controls (Undas et 

al., 2008).  Undas and her collages also measured the fibrin clot structure and functions of the 

patients with idiopathic venous thromboembolism and their first-degree relatives. The ex vivo 

plasma was used to form the clots. Compared to healthy controls, those patients with DVT 

and their relatives were characterized by lower clot permeability (p<0.001), lower compaction 

(p<0.001), higher maximum clot absorbency (p<0.001), and prolonged clot lysis time (p < 

0.001) (Undas et al., 2009). These studies indicated that denser fibrin clot structure with 

prolong clot lysis time may represent an emerging risk factor for arterial and venous 

thromboembolism.  

A study from the Leeds laboratory showed that PM was able to alter fibrin clot structure and 

functions in human plasma and purified systems (Metassan et al., 2010a). The concentrations 

used in the study from Metassan et al. were 100 and 200 µg/ml which were higher than the 

concentrations used in this study. But in this study, the particle did not significantly alter fibrin 

clot structure. The concentrations used in this study were lower (0.01 µg/ml to 50 µg/ml) 

compared to the concentrations in the study of Metassan et al (100 µg/ml to 200 µg/ml). 

There was still a trend that as the concentrations of particles increased, the clot structure was 

getting denser in a dose-dependent manner. In addition, the clot lysis time were significantly 

longer compared to control. These results showed that particles from air pollution caused 

altered fibrin clot structure which possessed similar properties as the clots formed from the 

plasma of thromboembolic patients. Therefore, air pollution may increase the risks of 

thrombosis.  
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The mechanisms of how air pollution increases the risk of thrombosis are not clear. So, for 

the further investigation, more studies were performed.  
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 Italian Cohort Study of Long-term Air Particulate 

Matter Exposure 

4.1 Introduction 

Exposure to air pollution is associated with adverse effects on the pulmonary and 

cardiovascular systems, as reviewed in chapter 1. In particulate, the PM in urban air pollution 

has been associated with cardiovascular mortality and morbidity, as discussed. 

A range of possible mechanisms by which PM may damage the cardiovascular system have 

been proposed, including atherogenesis and thrombosis as a result of activation of 

inflammation, oxidative stress, endothelial dysfunction and increased levels of circulating 

coagulation proteins (eg. factor VIII [FVIII], VWF and fibrinogen) (Baccarelli et al., 2007a, 

2007b; Vermylen et al., 2005). Exposure to air pollution particles induces pulmonary 

inflammation with release of cytokines that are capable of mediating acute-phase proteins 

and leading to hypercoagulability (Baccarelli et al., 2007a; Esmon, 2004; Seaton et al., 1999). 

However, the mechanisms underpinning the increased risk of thrombosis after exposure to 

ambient air pollution are still poorly understood. 

In view of these associations between thrombosis and fibrin structure, the effects of 

particulate matter on fibrin clot structure have previously been investigated in this laboratory. 

It was found that diesel PM caused changes in fibrin clot structure and function in clots 

formed from both purified fibrinogen and from human plasma (Metassan et al., 2010a). 

However, no changes in fibrin clot structure were observed in clots formed from plasma taken 
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from healthy individuals after 2 hours exposure to PM while performing moderate exercise 

(Metassan et al., 2010b). The exposure in the latter study was of short duration, so the 

possibility remained that fibrin clot structure could be affected by long-term exposure to high 

levels of air pollution, or that susceptible subjects, such as patients with thrombosis could 

respond differently to the healthy young subjects in the earlier study.  

To test this possibility, a sub-study was based on samples from a large cohort study in the 

Lombardy Region of Italy (Baccarelli et al. 2007; Baccarelli et al. 2009; Baccarelli et al. 2008), 

which had reported that every 10 μg/m3 elevation of PM10 exposure was associated with a 

67% increase of DVT. The aim of this study was to determine the effects of PM10 on patient 

with DVT and healthy controls.   

 

4.2 Methods 

Stored plasma samples from an existing large epidemiological study in the Lombardy Region, 

North Italy (Baccarelli et al., 2007; Baccarelli et al., 2008; Baccarelli et al., 2007; Baccarelli et 

al., 2009) were used for this study. 224 subjects were randomly chosen from this study. The 

previous study examined the association between PM10 and the risk of deep vein thrombosis. 

The main result showed that every 10 μg/m3 elevation of PM10 was associated with 67% 

increased risk of DVT. This sub-study was to investigate the fibrin clot structure alteration 

after exposure to different concentrations of PM10 by analysing the fibrin clot structure 

formed from the plasma samples of each subject.  
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 Study Population 

The study population of patients and controls has been previously described in detail 

(Baccarelli et al., 2007; Baccarelli et al., 2008; Baccarelli et al., 2007; Baccarelli et al., 2009). 

Briefly, patients from the Lombardy region, Northern Italy were referred to the Angelo Bianchi 

Bonomi Thrombosis Centre in Milan from January 1995 to September 2005 for a 

thrombophilia screening after a first episode of objectively confirmed lower-limb deep vein 

thrombosis with or without pulmonary embolism. Controls were healthy individuals, friends 

or partners of the patients referred to the same Thrombosis Centre, who were residents in 

the Lombardy region and volunteered to undergo thrombophilia screening. All patients and 

controls provided informed written consent and the duty was approved by the local ethics 

committee. General characteristics of patients and controls including age, BMI, gender, 

education, and smoking status, and fibrinogen and FVIII levels were provided by Angelo 

Bianchi Bonomi Thrombosis Centre. Methods for exposure assignment were previously 

described in detail (Baccarelli et al., 2008; Baccarelli et al., 2007). Hourly concentrations of 

PM10 were obtained from the Regional Environmental Protection Agency (ARPA Lombardia) 

which recorded the hourly air pollution data from January 1994 to September 2005 using 

monitors located at 53 different sites throughout the Lombardy region (Baccarelli et al. 2007). 

 

 Method 

Three methods were used to analyse the fibrin clots structure formed from ex vivo plasma 

samples of the patients and controls, permeability assay, turbidity assay and laser scanning 
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confocal microscope assay. Permeability assay was applied to measure the average pore size 

of the fibrin clot structure formed from the plasma samples. Fibres arrangements in the clots 

can be detected through turbidity assay. Laser scanning confocal microscopy method 

provided a direct 3D visualisation of the clots. The details of each method were as described 

in chapter 2. 

 

4.3 Results 

There were significant correlations between maximum absorbance and the number of fibres 

(r = 0.4, p < 0.001), maximum absorbance and Ks (r = -0.5, p < 0.001), and number of fibres 

and Ks (r = -0.5, p < 0.001). Maximum absorbance and fibre number were both positively 

correlated with age, body mass index (BMI), fibrinogen concentration and plasma level of FVIII, 

whereas Ks was negatively correlated, indicating that with increasing age, BMI, fibrinogen 

concentrations and FVIII levels, the fibrin fibres grew thicker, and were more compactly 

woven in the three-dimensional clot network, and that the clot was less permeable. Except 

for Ks, both fibre thickness (r = 0.1, p = 0.04) and fibre number (r = 0.2, p = 0.001) were 

associated with PM10 concentrations. 
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 Maximum Absorbance Fibre Number Ks 

Coefficient P-value Coefficient P-value Coefficient P-value 

Case 0.12 0.07 0.16 0.02 -0.12 0.25 

Age (years) 0.23 0.001 0.24 <0.0001 -0.37 <0.0001 

Male 0.09 0.18 0.07 0.30 -0. 17 0.12 

Non-Smokers -0.002 0.98 -0.08 0.32 0.06 0.60 

BMI 0.33 <0.0001 0. 30 <0.0001 -0. 36 0.001 

Fibrinogen (mg/dl) 0.70 <0.0001 0.26 <0.0001 -0. 45 <0.0001 

Factor VIII (%) 0.22 0.00 0.17 0.02 -0.33 0.003 

PM10 Concentration (µg/ml) 0.14 0.04 0.22 0.001 -0.03 0.76 

Maximum Absorbance (mOD) 1.00  0.41 <0.0001 -0.51 <0.0001 

Fibre Number (per µm) 0.41 <0.0001 1.00  -0. 48 <0.0001 

Ks (x10-10 cm2) -0.51 <0.0001 -0.48 <0.0001 1.00  

Table 4-1. Pearson’s and Chi-Square Correlations of Clot Parameters to Other Variables 

Correlations between continuous parameters were tested using Pearson’s, and between clot structure and categorical variables (case, sex, and 

smoking) using Chi-Square analysis. 
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Figure 4-1. Representative fibrin clot structure formed from plasma samples of patients and 

controls 

The fully hydrated fibrin clot were formed with the plasma samples from patients and healthy 

controls and visualized under laser scanning confocal microscope.  
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General characteristics, fibrinogen level, factor VIII, thrombophilia abnormalities and fibrin 

clot structure parameters of patients and controls are shown in Table 4-2. In terms of the 

general characteristics of these subjects, age was similar between patients and controls. But 

the BMI and gender were significantly different, the patients had higher BMI compared to 

healthy controls; and there were more males than females. Fibrinogen concentrations in 

patients plasma were slightly higher than those in healthy controls (p = 0.070). The patients 

with DVT had significantly higher FVIII plasma levels compared to controls (p < 0.001). There 

were more subjects with thrombophilia abnormalities in the patients group (p < 0.001). In 

terms of the clot structure, only fibre number was significantly different between patients 

and controls (p = 0.018). However, there was a tendency showed that patients possessed 

denser fibrin clot structure with thicker fibres, more number of fibres per clot area and less 

permeable clots compared to controls. 

Patients exposed to high levels of air pollution showed higher concentrations of fibrinogen 

compared to those exposed to low levels, whereas thrombophilia factors did not differ 

between exposure groups (Table 4-3). We also compared the fibrin clot structure parameters 

by exposure levels in patients and controls. Patients in the high exposure group had more 

compactly arranged fibres and less permeable structure compared to those in the low 

exposure levels. However, in controls only plasma levels of coagulation FVIII were different 

between the two exposure groups (p = 0.029). 

Table 4-4 shows logistic regression analysis of risk factors for DVT. The continuous data age, 

BMI, fibrinogen concentration, FVIII level were categorized into high and low groups, the cut-

off points being 51.9 for age, 24.7 for BMI, 299.7 for fibrinogen, and 125.3 for FVIII, 
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respectively. The model showed that increased age, BMI and fibrinogen concentrations did 

not contribute to the development of DVT in this study. Male sex was a risk factor for DVT, as 

well as FVIII, thrombophilia abnormalities and high level of PM10.
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Variables 
Patients 

Mean ±SD or percentage% 
Controls 

Mean ±SD or percentage% 
P-Value 

Number of subjects 103 121  

Age (years) 53.7 ±14.7 50.4 ±13.9 0.085 

Male % 48.5% 25.6% <0.001 

BMI 25.5 ±4.2 24.0 ±4.3 0.014 

Non-Smokers % 81.0% 76.9% 0.584 

Primary education or below % 70.9% 77.7% 0.187 

Fibrinogen (mg/dl) 309.4 ±80.7 290.7 ±50.9 0.070 

Factor VIII (%) 141.6 ±43.1 108.1 ±27.4 <0.001 

Thrombophilia^ % 40.8% 14% <0.001 

Ks (x10-10 cm2) 28.8 ±8.8 31.4 ±12.2 0.248 

Fibre Number (per µm) 22.5 ±3.5 21.3 ±3.8 0.018 

Maximum Absorbance (mOD) 719.2 ±175.2 679.3 ±156.9 0.073 

Table 4-2. Characteristics of patients with DVT and controls 

^ Thrombophilia was classified as being positive for at least one of the following: factor V Leiden, prothrombin G20210 mutation, 

antithrombin-, protein C-, protein S-deficiency, antiphospolipids antibodies and hyperhomocysteinemia. 
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Variables 
Patients Control 

Low Exp (n=23) High Exp (n=80) P-Value Low Exp (n=72) High Exp (n=49) P-Value 

Age (years) 55.3 ±16.5 53.3 ±14.3 0.420 48.7 ±13.7 53.0 ±14.0 0.768 

Male˄ 39.1% 51.2% 0.060 29.2% 20.4% 0.027 

BMI 24.9 ±3.9 25.7 ±4.3 0.202 24.5 ±4.5 23.4 ±3.8 0.684 

Non-Smokersᴓ 84.6% 79.3% 0.416 77.8% 75.5% 0.569 

PM10 Levels (µg/m3) 39.3 ±8.5 48.9 ±2.6 <0.001 41.61 ±4.8 49.20 ±3.0 <0.001 

Thrombophilia≠ 47.8% 38.8% 0.435 12.5% 16.3% 0.552 

Factor VIII (%) 132.2 ±38.0 144.2 ±44.3 0.260 114.2 ±30.2 101.7 ±22.9 0.029 

Fibrinogen (mg/dl) 277.2 ±81.3 320.4 ±78.1 0.026 283.8 ±64.9 300.4 ±45.3 0.168 

Maximum Absorbance (mOD) 626.4 ±155.5 745.8 ±172.2 0.003 675.9 ±171.2 684.2 ±134.7 0.776 

Fibre Number (per µm) 20.4 ±3.9 23 ±3.1 0.001 21 ±4 21.7 ±3.4 0.307 

Ks (x10-10 cm2) 33.7 ±11.2 26.3 ±6.1 0.006 30.1 ±11.4 35.2 ±14.5 0.236 

Table 4-3. General characteristics and clotting parameters (mean ± SD) in patients and controls of high and low PM10 exposure 

˄The percentage of male subjects in each group 

ᴓThe percentage of non-smokers in each group 

≠The percentage of subjects with positive thrombophilia in each group 
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Determinants or Variables OR 95% CI p-value 

Age > 51.9 years 0.70 0.32-1.52 0.368 

Men 3.02 1.36-6.74 0.007 

BMI > 24.73 0.88 0.39-1.95 0.748 

Thrombophilia 2.65 1.16-6.05 0.020 

FVIII > 125.27% 5.52 2.52-12.10 <0.001 

Fibrinogen > 299.73 mg/dl 1.44 0.65-3.17 0.371 

PM10 Exposure Level > 45.6 µg/m3 3.85 1.79-8.28 0.001 

Table 4-4. Logistic regression analysis of risk factors for DVT
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Finally, we analysed the relative contributions of age, sex, BMI, thrombophilia abnormalities, 

PM10 and interaction of thrombophilia abnormalities and PM10 with the variation in maximum 

absorbance, fibre number and Ks by linear regression in patients and controls, respectively 

(Table 4-5). In the maximum absorbance model, BMI and PM10 exposure both significantly 

contributed to the formation of thicker fibres in patients only, whereas age was significantly 

correlated with maximum absorbance in controls. In the fibre number model, PM10 and BMI 

were risk factors for more branched fibre formation for both patients and controls. In the Ks 

model, exposure to PM10 did not contribute to the alterations of clot structure in patients or 

controls. Permeability of the clot reduced with BMI increased in patients but not in controls. 

Neither thrombophilia abnormalities nor the interaction of thrombophilia abnormalities and 

PM10 contributed to the alteration of fibrin clot structure in this study. Neither thrombophilia 

abnormalities nor the interaction of thrombophilia abnormalities and PM10 were contributing 

to the alteration of fibrin clot structure in this study. The reason for the absence of an effect 

of thrombophilia on clot structure likely reflects the large degree of heterogeneity of the 

causes of thrombophilia in this group, including deficiencies of antithrombin, protein C, and 

protein S, hyperhomocysteinemia, antiphospholipids, FV Leiden mutation or prothrombin 

mutation (table 4-6). Each of these could have differential effects on fibrin clot structure. 

When we compared the larger subgroups of thrombophilia (i.e. FV Leiden, prothrombin 

mutation or hyperhomocysteinemia) to patients without thrombophilia there were also no 

differences in clot structure, likely due to the small sample size. The number of patients with 

other causes of thrombophilia (i.e. antithrombin, protein C or protein S deficiency, or 

antiphospholipid syndrome) were too small to perform any meaningful statistical analysis. 
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Determinants 

Maximum Absorbance 
Correlation Coefficient  (95% CI) 

Fibre Number 
Correlation Coefficient  (95% CI) 

Ks 
Correlation Coefficient  (95% CI) 

Case Control Case Control Case Control 

Age (years) 
0.47 

(-1.75-2.70) 
2.30* 

(0.10-4.49) 
-0.02 

(-0.07-0.03) 
0.09 *** 

(0.04-0.14) 
-0.15 

(-0.33-0.02) 
-0.26 

(-0.52-0.01) 

Men 
9.01 

(-56.58-74.60) 
-47.2 

(-112.65-18.24) 
-0.18 

(-1.58-1.22) 
-0. 42 

(-1.84-1.00) 
-1.16 

(-6.64-4.33) 
3.03 

(-5.68-11.74) 

BMI 
18.12 *** 

(10.34-25.91) 
5.93 

(-1.26-13.12) 
0.22 * 

(0.06-0.39) 
0.22 ** 

(0.06-0.37) 
-0.65 * 

(-1.30-(-0.01)) 
-0.53 

(-1.30-0.24) 

Thrombophilia 
358.56 

(-128.83-845.96) 
-227.89 

(-886.78-431.00) 
8.03 

(-2.67-18.74) 
7.78 

(-6.48-22.04) 
-16.08 

(-48.96-16.81) 
-70.42 

(-153.83-12.99) 

PM10 Exposure Level 
(µg/m3) 

10.07 ** 
(3.58-16.56) 

-1.44 
(-6.90-4.03) 

0.22 ** 
(0.08-0.35) 

0.12* 
(0.01-0.24) 

-0.32 
(-0.75-0.12) 

0.41 
(-0.48-1.31) 

Interaction 
(Thrombophilia and 

PM10 Exposure) 

-7.62 
(-17.95-2.71) 

4.99 
(-9.29-19.26) 

-0.157 
(-0.38-0.07) 

-0.21 
(-0.52-0.10) 

0.34 
(-0.39-1.08) 

1.85 
(-0.10-3.80) 

Table 4-5. Multiple regression analysis of risk factors for Maximum Absorbance, Fibre Number and Ks (cases/controls) 

The correlation coefficient is of statistical significance *p<0.05; **p<0.01; ***p<0.001 
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Patients With/Without Thrombophilia Abnormalities 

Clotting Parameters 

Maximum Absorbance (mOD) 

Mean (±SD) 

Fibre Number (per µm) 

Mean (±SD) 

Ks (x10-10 cm2) 

Mean (±SD) 

Patients without Thrombophilia Abnormalities (n=42) 721.5 (±169.5) 22.2 (±3.8) 29.3 (±9.7) 

Patients with Thrombophilia Abnormalities (n=61)¶ 715.7 (±185.2) 22.8 (±3.0) 28.3 (±7.4) 

Patients with Antiphospholipid Antibodies (n=4) 755.0 (±109.3) 25.2 (±1.9) 23.0 (±2.8) 

Patients with Antithrombin Deficiency (n=3) 581.0 (±86.7) 22.4 (±2.5) 27.3 (±9.0) 

Patients with Factor V Leiden (n=13) 778.8 (±226.5) 21.9 (±3.8) 33.9 (±9.7) 

Patients with Hyperhomocysteinemia (n=13) 762.0 (±187.9) 22.9 (±2.4) 27.3 (±7.7) 

Patients with Protein C Deficiency (n=2) 558.5 (±1.1) 20.2 (±3.6) 30.4 (±2.9) 

Patients with Protein S Deficiency (n=3) 700.3 (±59.6) 23.1 (±2.6) 26.2 (±2.9) 

Patients with Prothrombin G20210A (n=10) 620.5 (±141.8) 22.3 (±3.3) 33.9 (±8.8) 

Table 4-6. Clotting parameters (mean ± SD) in patients with/without different thrombophilia abnormalities 

¶Some patients had more than one thrombophilia abnormality. 
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4.4 Discussion 

According to World Health Organisation statistics, air pollution causes 3 million premature 

deaths each year (World Health Organisation, 2011). So far, it is still very difficult to determine 

the approximate concentrations of particles that reach the human blood in circulation. The 

only available data related to PM exposure is the PM mass concentration measured by PM 

monitors (Baccarelli et al. 2008; Baccarelli et al. 2009; Metassan et al. 2010a).  

Consistent with a larger previous study on the association between air pollution and venous 

thrombosis (Baccarelli et al., 2008), PM10 exposure in the current study was a strong risk factor 

for DVT and men had higher risk of DVT than women. Baccarelli et al. (2008) showed that DVT 

risk was associated with the concentrations of PM10 measured during the year before 

diagnosis. In the current study, sex, levels of factor VIII, thrombophilia abnormalities, and 

PM10 exposure level were all significantly associated with the risk of DVT. Increased levels of 

coagulation factors, such as factor VIII, have previously been associated with increased risk of 

thrombosis (Undas et al., 2009). Thrombophilia abnormalities are also contributing factors 

that modulate fibrin clot structure. The prothrombin G20210 mutation leads to the increase 

plasma level of prothrombin which triggers the formation of denser clot structure composed 

of more branched thinner fibres (Wolberg and Campbell, 2008). Age, BMI and fibrinogen 

concentrations were not significantly associated with DVT. 

In table 4-2, it can be seen that the gender and BMI were not balance between patients and 

healthy controls. There were more women than men, and more subjects with higher BMI in 

patients compared to controls. Women have higher risks of DVT. Subjects with higher BMI 

contribute increased risks of thrombosis. Therefore, the group with more women and 
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subjects with higher BMI may both contribute to the increased risk of DVT and denser clot 

structure.  

Some differences in clot structure between patients and controls were also observed. Clots 

formed from plasma of patients had denser, less permeable fibrin clot structure containing 

more, thicker fibres compared to controls, although the differences did not reach statistical 

significance, possibly due to the relatively small number of subjects studied. These data 

provide some support to previous studies by Undas et al. (2009), in which plasma from 

patients with DVT and pulmonary embolism formed clots with lower clot permeability and 

higher maximum absorbency than controls (Undas et al., 2009). From this study, it also has 

been found that after long-term and high-level exposure to PM10 (concentrations over 45.6 

µg/m3), patients with deep vein thrombosis had significantly denser fibrin clot structure 

compared to those living in areas with lower levels of exposure (PM10 less than 45.6 µg/m3). 

In the high exposure group, clots from patients possessed more compact fibre arranged fibre 

networks with thicker fibres and less permeable structure. However, in healthy subjects group, 

there were no significant differences found in clot structure between high and low exposure 

levels.  

The mechanisms underpinning this difference between patients and healthy controls are 

unknown but may be related to the differences in susceptibility of fibrin clot structure to air 

pollution PM exposure. Susceptibility means there will be an aggravating risks of a particular 

cardiovascular end point or event may occur in a certain group of population (such as subjects 

with diabetes or old ages) compared to the general population when all of them expose to 

same concentration of PM to occur for a particulate cardiovascular end event compared with 
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the general population after the exposure to same concentration of PM (Brook et al., 2010). 

In the first American Heart Association scientific statement, the susceptibility factors include  

the elderly; individuals with diabetes; patients with pre-existing coronary heart disease, 

chronic lung disease, or heart failure; and individuals with low education or social economic 

status (Brook et al., 2010). The effects of transient exposure (2 hours) to diesel particle air 

pollution were previously investigated in a controlled environment in healthy, young 

individuals. This study provided similar results that fibrin clot structure in plasma from 

subjects after short-term diesel exhaust exposure was not significantly different compared to 

those who were exposed to filtered air (Metassan et al., 2010b). It is possible that healthy 

subjects are more resistant to oxidative stress than patients with venous thrombosis, since 

the latter may have an enhanced inflammatory state (Franchini and Mannucci, 2011), that 

increases oxidative stress. Alternatively, due to increased levels of inflammatory proteins and 

coagulation activation in patients with venous thrombosis, any additional oxidative effects 

caused by air pollution on fibrin clot structure could be more pronounced, perhaps due to a 

threshold effect, or a minimum level of oxidative stress needed for effects on clot structure 

to become apparent. Finally, due to the inflammatory state, pulmonary function may be 

impaired, leading to translocation of ultrafine PM into the circulation. However, these 

considerations remain speculative as there currently are no reliable methods to analyse PM 

in the blood, nor do we have detailed information regarding the pulmonary function in our 

patients. 

Mills et al. reported that diesel exhaust inhalation causes vascular dysfunction and impaired 

endogenous fibrinolysis (Mills et al., 2005). Furthermore, previous studies have shown that 

denser fibrin clot structure was associated with prolonged lysis time (Ajjan and Grant, 2006; 
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Ariens, 2013; Scott et al., 2004; Undas and Ariens, 2011). Therefore, as patients exposed to 

high levels of air pollution had denser fibrin clot structure, the lysis time compared to those 

patients exposed to low levels of air pollution is likely to be longer. In Chapter 3, it has been 

found that after normal pooled plasma exposed to air pollution particles, the clots were 

getting denser with more compact arrangements and prolonged lysis time. Future studies will 

be needed to further evaluate the effects of air pollution exposure on fibrinolysis in patients 

with venous thrombosis. 

Possible limitations of this study include the relatively small study sample size (due to the 

time-consuming nature of fibrin structure analysis), and that we had no information regarding 

personal levels of air pollution exposure for the participants. The concentrations of PM10 in 

this study were measured according to the area of residence for the subjects, which were 

different for each subject and spanned several residential areas in Lombardy. Therefore, 

although exposure to air pollution was not measured with personal monitors, the data 

obtained did provide average daily, specific and long-term individual exposure to air pollution.  

In conclusion, this study shows that patients with venous thrombosis exposed to high level of 

air pollution had denser fibrin clot structure with thicker fibres (higher maximum absorbance), 

decreased permeability (lower Ks value) and higher fibre numbers compared to those in the 

low exposure group, indicative of a prothrombotic clot structure. There were no differences 

in fibrin clot structure measurements between the two exposure groups in controls, 

suggesting that air pollution may trigger differences in fibrin clot structure only in patients 

predisposed to thrombotic diseases.  
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 Effects of PM and Diesel Particles on Human 

Umbilical Vein Endothelial Cells  

5.1 Introduction 

According to the Italy cohort study in the previous chapter, the results have shown that 

people exposed to PM10 had increased risk of deep vein thrombosis, and that those patients 

with DVT had denser fibrin clot structure after long term exposure to high level of PM10. 

Several other epidemiological studies also indicated associations between air pollution and 

cardiovascular diseases as indicated in the previous chapters. There are a few mechanisms 

that have been proposed for underpinning this increased cardiovascular risk, which include 

pulmonary and systemic inflammation, enhanced coagulation, reduced fibrinolysis, and 

autonomic system dysfunction.  

In chapter 3, the effects of PM and diesel particles on plasma or fibrinogen samples were 

investigated through in vitro experiments. The results showed that particles were not able to 

alter fibrin clot structure formed from plasma and fibrinogen. But the clot lysis time was 

significantly longer with particles (50 µg/ml) compared to control. In chapter 4 the Italy ex 

vivo study showed that after high level PM exposure, patients with DVT had significantly 

denser fibrin clots structure compared to those patients exposure to low level of exposure. 

Both in vitro and ex vivo studies have shown that particles from air pollution were able to 

influence the fibrin clot structure formed from plasma samples. Therefore, the possible 

mechanisms why air pollution particles altered the fibrin clot structure needs to be 

investigated.  
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To assess whether air pollutant particles can pass into the systemic circulation, Nemmar et al. 

measured the distribution of radioactivity after 5 healthy volunteers inhaled the aerosol 

contains technetium-99m labelled carbon particles (<100 nm). Gamma camera images 

showed radioactivity was detected in the liver and bladder indicating that ultrafine PM is able 

to pass into the circulation and directly interfere with endothelial cells (Nemmar et al., 2002). 

This chapter would focus on the human umbilical vein endothelial cells. It is hypothesized that 

particulate matter and diesel particles may interfere with the endothelial cells directly and 

lead to altered fibrin clot structure.  

 

5.2 Methods 

HUVECs were cultured as described in chapter 2.3.3. Briefly, cells were treated for 24 hours 

with different concentrations of PM. Cytotoxicity of the cells was measured by the MTT assay. 

The same concentrations of PM10 and diesel particles were used as for the previous plasma 

and fibrinogen in vitro study (Chapter 3). The concentrations of particles were chosen which 

caused less than 20% cell death for further investigation. Cells were seeded on the ibidi µ-

slide and incubated with chosen concentrations of particles for 24 hours. The treatment was 

removed, after which fibrin clots were formed with thrombin and CaCl2 on the cells. Laser 

scanning confocal microscopy method were used to measure the fibre number of the clots 

through images. Then, we used Enzyme-linked immune-sorbent assay (ELISA) to quantify the 

proteins produced by HUVEC after incubation with PM. Some transmembrane proteins may 

be produced by endothelial cells as well after exposure, but they were not able to be 

measured by ELISA. To assess changes to gene expression after exposure to the PM for the 
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genes coding these proteins real time polymerase chain reactions (RT-PCR) were used. The 

details of each methods were described in chapter 2. 

 

5.3 Results 

 Cytotoxicity 

HUVECs were treated with PM10, PM0.2, total diesel particles and filtered diesel particles at 6 

different concentrations for 24 hours. The toxicity of these four particles is shown in the 

following figure. At the highest concentration 50 μg/ml, these four particles caused less than 

10% cell death. Compared to diesel particles, PM10 and PM0.2 had more cytotoxicity. PM10 had 

the most toxicity on HUVEC, but even at the highest concentration this effect was not 

significant harmful (Fig 5-1).  
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Figure 5-1. Cytotoxicity of Endothelial Cells after 24 hours Particles Exposure (n=10) 

HUVEC were treated with different concentrations of different particles for 24 hours. MTT 

assay was performed to detect the particle cytotoxicity. The results showed that there was 

no significantly cell death even at the highest concentration 50 µg/ml. 

 

 LSCM of Particulate Matter 

After the cytotoxicity test, all concentrations of particles could be used in the following 

experiments as the cell viability was over 80%. 

Cells were treated with different concentrations of particles for 24 hours. Then the cell 

supernatant was removed completely. The fibrin clots were formed from either normal 

pooled plasma samples or purified fibrinogen with thrombin and CaCl2 in the presence of 
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treated cells. The clots were incubated at 37 °C for 30 minutes for analysis. The number of 

fibres was measured through LSCM image. 

 

Normal Pooled Plasma Samples 

The fibrin clot structure formed from normal pooled plasma samples with cells exposed to 

PM10, PM were shown as following. After the cells were treated with particles at 

concentration of 0.01 μg/ml, 0.1 μg/ml, 1 μg/ml 10 μg/ml and 50 μg/ml, the fibrin clot 

structure was altered compared to control. These four particles showed a similar trend that 

as the concentrations of particles increased, the clot structure became denser as the number 

of fibre per μm increased gradually in a dose-dependent manner. 

The following figures represent the fibrin clot structure formed on the cells after treatment 

with different particles at different concentrations. As the concentrations of PM10 increased, 

the clots were getting much more complex. The clots started to have significantly denser 

structure after cells treated with 10 µg/ml of PM10 compared to control (Fig 5-2). 

Figure 5-3 shows that the fibre number increased as the concentration of particles increased. 

Clots were similar as control after cells were treated with 0.1 μg/ml of PM0.2. The fibre number 

of the clots was significantly higher at 10 μg/ml. 

In figure 5-4, it can be seen that when the cells were treated with 0.01 μg/ml of total diesel 

particles, the clots had similar fibre numbers as control. The increased concentrations of total 

diesel particles led to increased number of fibres formed in the clots. At 50 μg/ml, total diesel 

particles caused the densest clots with highest number of fibres. 
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In terms of the filtered diesel particles, from 10 µg/ml, the fibre numbers were significantly 

higher compared to control. The clots were getting denser with more branched networking 

as the concentration of filtered diesel particles increased (Fig 5-5).   
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                  Control                                       0.01 µg/ml of PM10 

  
            0.1 µg/ml of PM10                                   1 µg/ml of PM10 

  
10 µg/ml of PM10                                                  50 µg/ml of PM10 

Figure 5-2. LSCM—Effects of PM10 on HUVEC (Normal Pooled Plasma) 

The fibrin clots were formed with plasma samples in the presence of cells exposed to PM10.  
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           Control                                              0.01 µg/ml of PM0.2 

  
                     0.1µg/ml of PM0.2                                 1µg/ml of PM0.2 

  
              10µg/ml of PM0.2                                         50µg/ml of PM0.2 

Figure 5-3. LSCM—Effects of PM0.2 on HUVEC (Normal Pooled Plasma) 

The fibrin clots were formed with plasma samples in the presence of cells exposed to PM0.2.  
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            Control                              0.01 µg/ml of Total Diesel Particles 

  
                0.1 µg/ml of Total Diesel Particles          1 µg/ml of Total Diesel Particles 

  
                10µg/ml of Total Diesel Particles          50µg/ml of Total Diesel Particles 

Figure 5-4. LSCM—Effects of Total Diesel Particles on HUVEC (Plasma) 

The fibrin clots were formed with plasma in the presence of cells exposed to total DEP. 
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Control                           0.01 µg/ml of Filtered Diesel Particles 

  
              0.1 µg/ml of Filtered Diesel Particles     1 µg/ml of Filtered Diesel Particles 

  
10 µg/ml of Filtered Diesel Particles      50 µg/ml of Filtered Diesel Particles 

Figure 5-5. LSCM—Effects of Total Diesel Particles on HUVEC (Plasma) 

The fibrin clots were formed with plasma in the presence of cells exposed to filtered DEP. 
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As can be seen from figure 5-2 to 5-6, the clots had significantly denser structure than control 

at the concentration of 10 μg/ml. The fibre bundles were around 3 per µm after the cells 

treated with different particles at same concentration. PM0.2 and filtered diesel particles had 

less fibre bundles compared to PM10 and total diesel particles (Fig 5-6). The fibre bundles were 

measured through LSCM images. The details of the calculation were as described in Chapter 

2. 

 

 

Figure 5-6. Fibre Bundles of Clots Formed from Plasma Samples with Different 

Concentrations of Particles on HUVEC (n=9) 

*p<0.05; **p<0.001 

Laser scanning confocal microscope assay was used to measure the fibrin clot structure. After 

the cells were treated with different concentrations of particles for 24 hours, the fibrin clots 

were set up with plasma samples in the presence of treated cells. As the concentrations of 

particles increased, the number of fibre bundles were increased in a dose-dependent manner. 
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Fibrinogen Samples 

For the fibrinogen samples, the clots were set up with purified fibrinogen samples in the 

presence of endothelial cells exposed to different concentration of particles.  The following 

four figures (5-7 to 5-10) represent the fibrin clot structure formed from purified fibrinogen 

in the presence of endothelial cells treated with different concentrations of PM10, PM0.2, total 

diesel particles and filtered diesel particles, respectively. The clot structure was similar as 

control even the cells exposed to the highest concentration of particles. The data (figure 5-

11) showed even after the cells treated with the highest concentration of those particles, the 

fibrin clot structure was still similar as the control. In contrast to the clots formed from plasma, 

there wasn't any significant difference of the structure between treated and untreated cells. 
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  Control                                              0.01µg/ml of PM10 

  
0.1µg/ml of PM10                                            1µg/ml of PM10 

  

10µg/ml of PM10                                    50 µg/ml of PM10 

Figure 5-7. LSCM—Effects of PM10 on HUVEC (Purified Fibrinogen) 

The fibrin clots were formed with fibrinogen samples in the presence of cells exposed to PM10.  
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         Control                                                 0.01µg/ml of PM0.2 

  

    0.1µg/ml of PM0. 2                                        1µg/ml of PM0.2 

  

    10µg/ml of PM0.2                                         50µg/ml of PM0.2 

Figure 5-8. LSCM—Effects of PM0.2 on HUVEC (Purified Fibrinogen) 

The fibrin clots were formed with fibrinogen samples in the presence of cells exposed to PM0.2.  
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Control                                   0.01µg/ml of Total Diesel Particles 

  
0.1µg/ml of Total Diesel Particles            1µg/ml of Total Diesel Particles 

  
10µg/ml of Total Diesel Particles              50µg/ml of Total Diesel Particles 

Figure 5-9. LSCM—Effects of Total Diesel Particles on HUVEC (Purified Fibrinogen) 

The fibrin clots were formed with fibrinogen in the presence of cells exposed to total DEP.  
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Control                            0.01µg/ml of Filtered Diesel Particles 

  
0.1µg/ml of Filtered Diesel Particles        1µg/ml of Filtered Diesel Particles 

  
10µg/ml of Filtered Diesel Particles     50µg/ml of Filtered Diesel Particles 

Figure 5-10. LSCM—Effects of Filtered Diesel Particles on HUVEC (Purified Fibrinogen) 

The fibrin clots were formed with fibrinogen in the presence of cells exposed to filtered DEP.  
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Figure 5-11. Fibre Bundles of Clots Formed from Purified Fibrinogen Samples with Different 

Concentrations of Particles on HUVEC (n=9) 

Laser scanning confocal microscope assay was used to measure the fibrin clot structure. After 

the cells were treated with different concentrations of particles for 24 hours, the fibrin clots 

were set up with purified fibrinogen samples in the presence of treated cells. Compared to 

the control, the fibre numbers of the clots formed with particles treated cells had no 

significant difference. 

 

 RT-PCT 

Real time polymerase chain reaction was used to quantify the genes of interests that 

expressed by endothelial cells after incubation with air pollution particles for 24 hours. Two 

different genes, tissue factor and thrombomodulin, were measured by RT-PCR. 
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Tissue Factor 

Tissue factor is a transmembrane glycoprotein which is produced by endothelial cells only 

while exposed to stimuli that activate the endothelial cells such as cytokines. After endothelial 

cells were incubated with different types and concentrations of particles for 24 hours, the 

gene of tissue factor was quantified by RT-PCR.  

After the cells were treated with PM10 and total diesel particles at 0.1 μg/ml, gene expression 

of tissue factor were significantly higher compared to control. PM0.2 caused significantly 

increased expression of tissue factor gene from 1 μg/ml. Filtered diesel particles had less 

effect on TF gene expression in comparison with the other three types of particles as shown 

in the figure. Until 50 μg/ml, all four kinds of particles induced TF mRNA expression 

significantly more than control. PM10 caused three times more tissue factor gene expression 

compared to control, the other three particles induced 1.85, 1.72, and 1.49 times elevation 

of TF mRNA, respectively (Fig 5-12).  
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Figure 5-12. Gene Expression Level of Tissue Factor (TF) in Human Umbilical Vein Endothelial 

Cells after Treatment with the Different Particles (n=3)  

*p<0.05; **p<0.001; ***p<0.0001 

Relative gene expression level of tissue factor was determined by real-time polymerase chain 

reaction. As the concentrations of particles increased, the TF mRNA expression level increased 

as well.  

 

Thrombomodulin 

Thrombomodulin is also a membrane protein expressed by endothelial cells. 

Thrombomodulin binds thrombin and alters its substrate activity so that it activates Protein C 

(a naturally occurring anticoagulant) rather than fibrinogen. Activated Protein C in turn 

inactivates activated Factors V and VIII reducing thrombin generation. Therefore, 

thrombomodulin acts as a potent anticoagulant on intact, healthy endothelial cells. The cells 
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without particle treatment had the highest level of THBD mRNA expression. As the 

concentration of particles increased, the gene expression of THBD decreased in a dose-

dependent manner. PM10, PM0.2 and total diesel particles significantly suppressed THBD 

mRNA expression by endothelial cells at 1 μg/ml, and followed by filtered diesel particles at 

10 μg/ml. At 50 μg/ml, PM10 and total diesel particles inhibited the THBD gene expression by 

70% reduction compared to control, PM0.2 and filtered diesel particles led to approximately 

55% less THBD mRNA secretion by HUVECs. 

 

 

Figure 5-13. Gene Expression Level of Thrombomodulin (THBD) gene in Human Umbilical 

Vein Endothelial Cells after Treatment with the Different Particles (n=3) 

*p<0.05; **p<0.001; ***p<0.0001 

Relative gene expression level of thrombomodulin was determined by real-time polymerase 

chain reaction. As the concentrations of particles increased, the THBD mRNA expression level 

decreased as well.  
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 ELISA 

Enzyme-linked immunosorbent assays were used to quantify the levels of proteins secreted 

by endothelial cells after incubation with different concentrations of PM. Two proteins were 

chosen to be measured as both of them were closely correlated with alteration fibrin clot 

structure and clot fibrinolysis, von Willebrand factor and plasminogen activator inhibitor-1. 

 

Von Willebrand Factor 

Endothelial cells were treated for 24 hours, then the cell supernatant was taken for measuring 

the concentration of VWF. As the concentrations of PM increased, the levels of VWF 

expressed by treated HUVECs increased in a dose-dependent manner (Fig 5-14). At 50 µg/ml, 

PM10 caused highest concentration of VWF secretion compared to the other three particles, 

followed by PM0.2, total diesel particles and filtered diesel particles. 
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Figure 5-14. Concentrations of Von Willebrand Factor (VWF) from Human Umbilical Vein 

Endothelial Cells after 24h Treatment with Different Concentrations of Particles (n=5) 

*p<0.05; **p<0.001; ***p<0.0001 

ELISA was used to measure the VWF protein levels. After the cells were treated with different 

concentrations of particles for 24 hours, the cell supernatants were taken for measuring the 

concentrations of VWF secreted by endothelial cells. Compared to control, the VWF 

concentrations were increased as the concentrations of particles increased in a dose-

dependent manner. 

 

Plasminogen Activator Inhibitor–1  

PAI-1 as the main inhibitor of tPA was expressed more when endothelial cells were stimulated 

by PM. At 0.1 μg/ml of PM10, the concentration of PAI-1 increased to approximately 250 pg/ml 

which was significantly higher compared to control 200 pg/ml. Total diesel particles induced 

significant PAI- expression at 1 μg/ml (Fig 5-15). PM0.2 and filtered diesel particles caused 
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similar levels of PAI-1 expression after cells were treated with concentrations of 5 and 10 

μg/ml. 

 

 

Figure 5-15. Concentrations of Plasminogen Activator Inhibito-1 (PAI-1) from Human 

Umbilical Vein Endothelial Cells after 24h Treatment with Different Concentrations of 

Particles (n=5) 

*p<0.05; **p<0.001; ***p<0.0001 

ELISA was used to measure the PAI-1 protein levels. Compared to control, the concentrations 

PAI-1 were increased as the concentrations of particles increased in a dose-dependent 

manner. 

 

 Plasmid Strand Break Assay 

Plasmid strand break assay was used to detect the free radicals released from the particles 

when incubated with supercoiled plasmid DNA.  
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After 12 hours incubation in the dark, there were more single strand breaks in pBR322 DNA 

as the concentrations of particles increased (Fig 5-16). PM had more free radicals released 

compared to the diesel particles. Over 60% of supercoiled plasmid changed to the nicked form 

induced by PM10 and PM0.2. In terms of both diesel particles, there were only 35% of nicked 

plasmid. PM10 released the most free radicals and caused significantly more strand breaks at 

concentration of 10 µg/ml. The other three types of particles caused the significantly nicked 

DNA at 50 µg/ml. 

 

Figure 5-16. Induction of Single Stand Breaks in pBR322 DNA Following Incubation with 

Different Particles (n=3) 

Figure 5-16 showed that gel electrophoresis results of strand breaks induced by different 

concentrations of particles. 
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Figure 5-17. Induction of Single Stand Breaks in pBR322 DNA Following Incubation with 

Different Particles (n=3) 

*p<0.05; **p<0.001; ***p<0.0001; 

Plasmid DNA was incubated with different concentrations of particles from 0 to 50 µg/ml for 

12 hours in the darkness. The induction of strand breaks were assessed and expressed as the 

percentage of nicked DNA observed. The results indicated that PM10 started to induce 

significantly stand breaks at 10 µg/ml. The other three particles caused damage to plasmid 

DNA at 50 µg/ml. 

 

5.4 Discussion 

In this chapter, the effects of air pollution on human umbilical vein endothelial cells were 

investigated using five methods, MTT cytotoxicity test, laser scanning confocal microscope, 

Real-Time PCR, ELISA, and plasmid strand break assay. The results indicated that the particles 

concentrations used in the study had little cytotoxicity to the cells after 24 hours treatment. 
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But, the fibrin clots formed on the treated cells were altered compared to the control in 

plasma samples. In terms of the purified fibrinogen samples, there were no significant 

differences between treated and untreated cells on the clot structure.  

 

 Components of Particles 

There were some differences between PM and diesel particles effects on HUVEC as PM had 

more critical effects compared to the diesel particles due to the differences on the 

components of these particles. Total diesel particles (SRM 2975) were collected from an 

industrial diesel-powered forklift and mainly contained PAHs and nitro-PAHs. However, PM10 

(SRM 2787) contained not only PAHs, nitro-PAHs, but also polybrominated diphenyl ether 

(PBDE) congeners, hexabronocyclododecane (HBCD) isomers, sugars, polychlorinated 

dibenzo-р-dioxin (PCDD) and dibenzofuran (PCDF) congeners, inorganic constituents, 

especially metals, such as Zn, Fe and Cu. The differences of the components may account for 

the different effects on endothelial cells and clot structure.  

 

 Cytotoxicity 

Cells were treated with endothelial cell growth media without fetal bovine serum. The serum 

contains albumin which could act as a metal chelator and thus reduce the effects of PM as 

both PM10 and PM0.2 contained metals. After 24 hours treatment, these four particles did not 

cause any significant cell death. PM10 and total diesel particles were more toxic than their 

own filtered particles, but PM10 is the most toxic particle (PM10 > PM0.2 > Total Diesel Particles > 
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Filtered Diesel Particles). Similar results were seen by Akhtar et al. (2010), although in a 

different cell line. In that study, human alveolar epithelial cells (A549) exposed to two 

particles, SRM 2795 and SRM 1648a (another type of urban particles from NIST), for 24 hours 

treatment from concentration 10 to 1000 μg/ml. MTT results showed SRM 1648a total urban 

particles lead to more cell death compared to SRM 2795 total diesel particles. At 50 μg/ml, 

SRM 2795 had no significant cytotoxicity compared to control (Akhtar et al., 2010). Snow et 

al. demonstrated ultrafine particles had no toxicity to human coronary artery endothelial cells 

at 50 μg/ml after 24 hours treatment. Ultrafine particles had similar sizes as PM0.2 and filtered 

diesel particles (Snow et al., 2014). Another study investigated diesel particles cytotoxicity on 

human aortic endothelial cells and after 50 μg/ml concentration and 24 hours treatment, 

there was no significant cell death induced by diesel particles (Wu et al., 2012). However, PM 

and diesel particles can cause cellular death at high concentration and long term treatment; 

but in these experiments, the concentrations of PM and diesel particles used were non-toxic 

(cell viability > 80%) which indicated that the endothelial cells changed from normal 

physiological condition to procoagulant and anti-fibrinolytic status caused by endothelial 

dysfunction after treatment with PM and diesel particles rather than cell apoptosis.  

It has been confirmed that after HUVECs 24 hours exposure to particulate matter and diesel 

particles, fibrin clots formed from normal pooled plasma samples were significantly denser 

compared to the controls. These four types of particles caused significantly denser fibrin clot 

structure from 10 µg/ml compared to control. Increased evidence supports that air pollution 

is linked with different CVD, and the patients with CVD have altered fibrin clot structure which 

was mentioned in Chapter 3 that patients with thromboembolic diseases had denser fibrin 

clot structure with more compact arranged network and prolonged lysis time. A study showed 
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that patients with peripheral artery disease were characterised by thrombotic fibrin clot 

phenotype with 32% lower clot permeability (Ks) (P <0.001) and 7% longer clot lysis time (t50%) 

(P = 0.004) compared with controls (Okraska-Bylica et al., 2012). The other study from Palka 

et al. also indicated that patients with chronic heart failure predisposed thromboembolic 

complications with 23% lower permeability (p < 0.0001), 13% less clot compaction (p < 0.001), 

15% faster fibrin polymerisation ( p < 0.0001) and prolonged lysis time (p = 0.1) compared to 

control (Palka et al., 2010). 

As HUVECs formed denser fibrin clot structure after air pollution particles exposure, several 

methods were used to detect the underpinning mechanisms of fibrin clot structure alteration 

which were enzyme-linked immunosorbent assays, real time polymerase chain reaction 

assays and strand break assays. After 24 hours cells treatment, the gene expression of tissue 

factor and thrombomodulin were quantified in the RT-PCR experiments. Tissue factor gene 

expression by endothelial cells significantly increased after exposed to particles compared to 

control. The level of thrombomodulin mRNA decreased after particles exposure in a dose-

dependent manner. ELISA results showed that both von Willebrand factor and plasminogen 

activator inhibitor-1 increased compared to the control. Through the plasmid strand break 

assay, free radicals were detected after the plasmid DNA was incubated with particles for 12 

hours. The particles induced endothelial dysfunction with increased levels of von Willebrand 

factor, plasminogen activator inhibitor-1 and tissue factor mRNA expression, decreased level 

of thrombomodulin mRNA expression and oxidative stress may be caused by free radicals.  
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 Tissue factor & Thrombomodulin 

Tissue factor and thrombomodulin both are transmembrane proteins which were measured 

by using real time PCR.  

Tissue Factor, formerly known as thromboplastin, is a key initiator of the coagulation cascade. 

TF is 47 kDa transmembrane glycoprotein containing 263 amino acids expressed in vascular 

and non-vascular cells (Napoleone et al., 1997). The TF gene is located on chromosome 1 and 

consists of 6 exons. Under normal physiological conditions, TF is only expressed in 

subendothelial cells such as vascular smooth muscle cells in response to the initiation of 

coagulation cascade when the vessel wall is damaged.  

The tissue factor pathway of coagulation cascade is initiated when TF contacts with Factor VII 

and form the TF/FVIIa complex. Activated TF/FVIIa complexes convert FIX to FIXa, FX to FXa 

and FV to FVa. FXa and FVa cleave prothrombin to generate thrombin, thereby the fibrin clot 

is formed (Adams and Bird, 2009; Ajjan and Ariens, 2009; McVey, 1999; Steffel et al., 2006).  

Endothelial cells and monocytes only express TF when the cells are exposed to stimuli such as 

cytokines (Steffel et al., 2006). Endothelial cells express TF when in contact with cytokines, 

e.g. tumor necrosis factor (TNF) -α, interleukin (IL) -1, or CD40 ligand; or biogenic amines, e.g. 

serotonin, or histamine; or mediators, e.g. thrombin, oxidized low density lipoprotein, or 

vascular endothelial growth factor (Steffel et al., 2005; Napoleone et al., 1997; Steffel et al., 

2005; Kawano et al., 2001; Drake et al., 1991; Camera et al., 1999; Bavendiek et al., 2002).  

The coagulation cascade is activated to protect from blood loss when the vessel wall is injured. 

Tissue Factor is the key initiator of coagulation cascade. However, heightened activation of 
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coagulation due to TF expression on endothelial cells and monocytes can cause thrombophilia 

and atherosclerosis (Steffel et al., 2006). In the RT-PCR experiments, tissue factor mRNA 

increased in a dose dependent manner. It indicated that air pollution particles act as stimuli 

when the endothelial cells were treated with particles, cells expressed more TF mRNA, and 

increased concentrations of particles triggered increased TF gene expression. Increased level 

of TF mRNA thereby increased the availability for exposure to FVII/FVIIa and more likely to 

activate the coagulation cascade. Tissue factor as the pathway initiator, forms complex 

TF/FVIIa with FVII, then in turn activates FIX, FX and FVIII. FXa and FVa cleave prothrombin to 

thrombin and sufficient amount of thrombin generates fibinogen to fibrin. There were also a 

few studies focused on the TF gene expression from endothelial cells after exposure to air 

pollution. Snow et al. Studied the effects of air pollution particles on human coronary arterial 

endothelial cells. Their results showed that soluble ultrafine particulate matter (diameter less 

than 0.1 µm) induced a significant 3.8 and 5.1 fold increased gene expression of TF after 50 

and 100 µg/m3 treatment respectively (Snow et al., 2014). Another study demonstrated the 

TF gene expression after human pulmonary arterial endothelial cells treated with ultrafine 

particulate matter. Four concentrations of PM0.1 were used in this study, 0, 1, 10 and 100 

µg/m3, after treatment for 4 hours, expression level of TF was upregulated in a dose-

dependent manner. In the Western blot analysis, as well as the results in RT-PCR, the protein 

expression of TF was increased after 18 hours particle treatment (Karoly et al., 2007). Milano 

et al. focused on different cell lines, macrophages, after exposure to different concentrations 

of PM10, TF mRNA levels were consistantly increased from 10 to 100 µg/m3 compared to the 

control in a dose-dependent manner (Milano et al., 2015).  
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Increased levels of TF expression is associated with elevated risks of procoagulability and 

increased tendency of thrombosis (Chu, 2005). Tissue factor initiates the extracellular 

coagulation which provokes the intracellular inflammation signalling. The coagulation factors 

(FVIIa, FXa, and thrombin) and fibrin are proinflammatory, all of which can activate the cells 

independently (Chu, 2005). Inflammation boosts coagulation through feedback upregulation 

on TF expression that sustains the coagulation TF pathway and coagulation dependent 

inflammation to refuel the coagulation-inflammation cycle. Therefore, regulation of TF 

expression is crucial in inhibition of coagulation-dependent inflammation (Chu, 2005).  

Thrombomodulin, a transmembrane protein produced by endothelial cells, causes a 

transformation of thrombin from a pro-coagulant converter of fibrinogen to fibrin to an anti-

coagulation activator of protein C. Activated protein C synergistically deactivates the 

coagulation cascade by supressing the activities of FVa and FVIIIa (Fuentes-Prior et al., 2000; 

Li et al., 2012). In this study, after endothelial cells were treated with different concentrations 

of PM, the results showed the mRNA level of thrombomodulin decreased in a dose-

dependent manner. The reduced level of thrombomodulin may cause low level of activated 

protein C. In a cross-sectional study conducted in 2009-2010, after the healthy subjects were 

exposed to different levels of air pollution over 6 months, mRNA of THBD was measured. It 

indicated that the participants who exposed to high levels of PM10 had reduced level of THBD 

compared to those exposed to low levels of PM10, although the difference was not significant 

(Poursafa et al., 2011). In an in vitro study, human coronary artery endothelial cells were 

incubated with 10, 50, and 100 µg/ml of soluble Ultrafine PM for 6 and 24 hours. The results 

showed that even after 24 hours and highest concentration of PM treatment, the level of 

THBD produced by treated cells were similar as untreated cells (Snow et al., 2014). 
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Besides the anti-coagulant function, thrombin-thrombomodulin complex also inhibits 

fibrinolysis by activating the thrombin activatable fibrinolysis inhibitor (TAFI) (Fuentes-Prior 

et al., 2000). TAFIa is activated by thrombin from TAFI. TAFIa removes COOH-terminal lysine 

residues from partially degraded fibrin and causes impaired fibrinolysis (Versteeg et al., 2013). 

 

 Von Willebrand Factor & Plasminogen Activator Inhibitor-1 

Von Willebrand factor is a large glycoprotein which plays a pivotal role in haemostasis, 

circulating in human plasma at concentrations of 10 µg/ml. VWF is synthesized by vascular 

endothelial cells and encoded by a gene on chromosome 12 (Lenting et al., 2012; Mannucci, 

1998; Vischer, 2006). VWF is secreted from endothelial cells in a bipolar manner, through 

both the luminal and abluminal membranes. When secreted through the luminal membrane, 

VWF directly reaches the bloodstream; when it is secreted through the abluminal membrane, 

VWF is deposited on the sub-endothelium as an extracellular matrix protein that helps to 

aggregate and activate platelets when the endothelium is disrupted (Mannucci, 1998).  

VWF mediates platelet aggregation and adhesion to the site of vascular injuries, which is 

particularly important under high shear stress (Mannucci, 1998; Vischer, 2006). There are two 

platelets receptors for VWF in the platelets which are glycoprotein (GP) Ibα in the GP Ib-IX-V 

complex and the integrin αIIbβ3 (GP IIb-IIIa complex) (Ruggeri and Ruggeri ZM, 2003). VWF also 

acts as a plasma carrier for factor VIII and protects it from degradation and cellular uptake, 

when not bound to VWF the plasma half-life of FVIII is reduced from 12  hours to 1 to 2 hours 
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(Meyer et al., 2009; Ruggeri and Ruggeri ZM, 2003; Vischer, 2006). Pro-VWF is expressed in 

endothelial cells and platelets and stored in Weibel-Palade bodies and α-granules respectively. 

An animal study investigated the effects of diesel particles on rats after exposed to 5 

hours/day, 1 day/week for 16 weeks, the results demonstrated that as the mRNA levels pf TF, 

PAI-1 and VWF as the biomarkers of thrombosis were increased in the aorta (Kodavanti et al., 

2011).  

VWF contributes with atherothrombotic diseases and venous thromboembolism (Lenting et 

al., 2012).  The connection between VWF and these two diseases was related to FVIII. VWF as 

the FVIII protein carrier, the levels of VWF and FVIII were closely correlated that high level of 

VWF induce high level of FVIII, which, contributes to atherothrombotic diseases and venous 

thromboembolism (Koster et al., 1995; Lenting et al., 2012, 1998). Several animal studies also 

provided evidence that inhibition and genetic deficiency of VWF protects against venous 

thrombosis (Brill et al., 2011; Chauhan et al., 2007; Lenting et al., 2012; Yamamoto et al., 

1998). 

Plasmin is the main fibrinolytic enzyme which can be activated by two serine proteases, tPA 

and uPA. PAI-1 supresses the fibrinolysis by inhibiting tPA and uPA. High plasma PAI-1 

concentration is associated with many thrombotic disorders, thus it is considered as astrong 

marker of reduced fibrinolytic function (Kohler and Grant, 2000; Su et al., 2006). In this study, 

the results showed that, after endothelial cells were treated with those particles, the protein 

levels of PAI-1 increased in a dose-dependent manner. All types of particles, PM10, PM0.2, total 

diesel particles and filtered diesel particles induced significantly increased levels of PAI-1 

expression from 10 µg/ml.  
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In an animal study, Budinger et al. indicated that after exposed to PM2.5, mice had increased 

levels of PAI-1 mRNA and protein compared to the mice only exposed to filtered air (Budinger 

et al., 2011).  In a panel study from Taiwan investigated the effects of urban air pollution on 

human. The results showed that after exposure to PM10 or PM2.5 in single-pollutant models, 

healthy young humans had increased high-sensitivity C reactive protein, PAI-1, fibrinogen, 

and decreased heart rate variability, which indicated the potential mechanisms that urban air 

pollution was associated with inflammation, oxidative stress, blood coagulation and 

autonomic dysfunction (K. Chuang et al., 2007). However, Su et al. showed slightly different 

results that compared to the patients, PAI-1 levels were significantly elevated in the patients 

with CHD exposed to high level of air pollution. However, the PAI-1 levels in the participants 

with multiple CHD risk factors were not different whether exposed to high or low level of air 

pollution. This may suggest that urban air pollution probably caused adverse effects in plasma 

fibrinolytic function in the susceptible population (Su et al., 2006).   

Fibrinolysis initiates when tPA and plasminogen both bind to the fibrin as plasmin is formed 

when plasminogen is partially cleaved by tPA on the surface of fibrin. The elevated level of 

PAI-1 effectively supresses fibrinolysis through inhibiting tPA and uPA, less plasmin is 

activated and impair fibrinolytic function, resulting in fibrin deposition in the vessel wall, thus 

facilitating thrombosis (Kohler and Grant, 2000). An impaired fibrinolytic system also 

contributes to thrombosis formation and propagation. Mills et al. recruited 30 healthy men 

in a double-blind, randomized, cross-over study to study the effects of diluted diesel particles. 

The level of tPA secreted from endothelial cells showed significant reductions after exposure 

to the diluted diesel exhaust compared with controls. The fibrinolytic function was impaired 
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and persisted for 6 hours after the exposure (Franchini and Mannucci, 2011; Mills et al., 2007, 

2005). The reduction of tPA was possibly due to the increased secretion of PAI-1.  

Elevated levels of PAI-1 are an independent risk factors for cardiovascular diseases in large 

prospective studies such as Northwick Park Heart Studies (Carter, 2005; Kohler and Grant, 

2000). 

 

 Oxidative Stress 

Plasmid strand break assay was used to test whether there were free radicals released from 

particles. Free radicals refer to the molecules possessing one or more unpaired electron 

(Bahorun et al., 2006; Halliwell and Gutteridge, 2007; Pham-Huy et al., 2008). Air pollutants 

are able to induce oxidative stress and inflammatory responses as pro-oxidants of lipids and 

proteins or as free radicals generators (Kampa and Castanas, 2008; Menzel, 1994; Rahman 

and MacNee, 2000). A previous study from this lab showed that diesel particles released free 

radicals. Therefore, plasmid strand break assay was used to detect whether particles triggered 

the free radicals. In accordance with the literature, the results showed that PM10, PM0.2, total 

diesel particles and filtered diesel particles released different amounts of free radicals in a 

dose-dependent manner that higher concentrations of particles lead to more plasmid DNA 

strand breaks. The free radicals released from those particles may be formed via the breakage 

of a chemical bond or via redox reactions (Halliwell and Gutteridge, 2007; Pham-Huy et al., 

2008). Free radicals have adverse effects on cellular lipids, proteins, and also interfere with 

signalling pathways within the cells (Kampa and Castanas, 2008; Valko et al., 2007). PM and 
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diesel particles cause oxidative stress mainly through oxidant hydrogen peroxide (H2O2), free 

radical superoxide (•O2-), and free radical hydroxyl radical (OH•) (Akhtar et al., 2010).  

Free radicals are not only released from the air pollutants but also continuously produced 

during human normal metabolism and in response to exogenous environmental exposure. 

The cells used oxygen to generate energy, adenosine triphosphate (ATP) and free radicals are 

produced by the mitochondria as the consequence (Kampa and Castanas, 2008; Pham-Huy et 

al., 2008). The human body is able to produce antioxidants either in situ or externally supplied 

by food or supplements to neutralize the oxidative stress (Pham-Huy et al., 2008). As the 

concentration of free radicals increases and the imbalance between the two antagonistic 

effects comes into being, oxidative stress is generated and gradually plays the major role in a 

range of diseases, such as atherosclerosis, chronic inflammatory diseases, central nervous 

system disorders, age related disorders and finally cancer (Kampa and Castanas, 2008; Pham-

Huy et al., 2008). As the components of these particles were different, among those 

components, PM were enriched in metals, such as Cu, Fe, and Zn which induced high 

concentrations of free radicals than diesel engine particles (Akhtar et al., 2010). Heavy metals 

also can induce free radical release and cause DNA damage (Kampa and Castanas, 2008).  

 

 Summary 

This chapter focused on the effects of air pollution on human umbilical vein endothelial cells. 

These cells are in contact with blood and more likely to receive air pollution components 

when they get into the blood stream. These results provide a potential pathogenic role of PM 
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and diesel particles in endothelial cell system and imply that PM had more adverse effects 

compared to diesel particles. Furthermore, PM and diesel particles can cause cellular death 

at high concentration and long term treatment; but in these experiments, the concentrations 

of PM and diesel particles used were non-toxic (cell viability > 80%) which indicated that the 

endothelial cells changed from normal physiological condition to procoagulant and anti-

fibrinolysis status were caused by endothelial dysfunction after treatment with PM and diesel 

particles rather than cell apoptosis. 

This is the first study that investigated the structure of fibrin clots setting upon on the HUVEC 

after cells exposed to PM and diesel particles. The procoagulant and proinflammatory 

proteins and fibrinolysis inhibitors released from endothelial cells after 24 hours treatment 

with exposure to air pollution all contribute to endothelial dysfunction, fibrin clot structure 

alteration and prothrombotic tendency. The results in this study demonstrated that both PM 

and diesel particles caused impaired endothelial function with pro-inflammatory and 

oxidative state, thus induced the changes of fibrin clot structure formed from plasma samples.  

Healthy endothelial cells have several functions such as anti-coagulation, anti-inflammation, 

anti-oxidation and pro-fibrinolysis. However, after the cells were exposed to air pollution 

particles, the endothelial cells were pro-inflammatory with increased TF gene expression, 

anti-fibrinolysis with increased levels of PAI-1 and decreased thrombomodulin mRNA 

expression and pro-oxidation. Also, as the increased VWF expression, platelets were 

promoted to aggregate. The significant elevation and reduction of levels of protein or gene 

expression expressed by HUVEC after exposed to air pollution particles not only indicated 

endothelial dysfunction but also contributed to the denser fibrin clot structure formation. 
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Many studies have confirmed that patients with thrombotic diseases had abnormal fibrin clot 

structure such as thinner fibres, more compact arrangements and prolonged lysis time. These 

features are in accordance with the clots formed from plasma samples on HUVEC after 

exposed to air pollution particles. Therefore, air pollution may contribute to the denser fibrin 

clot structure formation, thereby inducing a prothrombotic state.   
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 Effects of Silicon Dioxide Nanoparticles on Fibrin 

Clot Structure 

6.1 Introduction 

Silicon dioxide nanoparticles (SiO2 NP) are one the most widely applied engineered 

nanoparticles. SiO2 NPs can be used as additives to cosmetics, printer toners, and varnishes. 

In addition, silica NPs are applied in biotechnological applications such as gene therapy, drug 

delivery, DNA transfection, and enzyme immobilization (Duan et al., 2014a; Napierska et al., 

2010).  

Owing to the wide applications, the cytotoxicity and other effects of SiO2 NP were worth to 

be investigated. Some studies had shown that SiO2 NP had does- and time- dependent 

manner on cell cytotoxicity (Ahamed, 2013; Eom and Choi, 2009; Napierska et al., 2010; 

Peters et al., 2004; Yang et al., 2014). Malvindi et al. documented that silica NPs had good 

biocompatibility when applied in a reasonable concentration, under 2.5 nM (Guo et al., 2015; 

Malvindi et al., 2012). However, as the diameter of nanoparticles are less than some of the 

cellular organelles, particles may penetrate the plasma membrane, deposit in mitochondria 

or nucleus, and finally lead to cell death (Guo et al., 2015; Liang et al., 2014; Zhu et al., 2013). 

The cardiovascular system may be affected by nanoparticles through direct interaction with 

vasculature, blood, and the heart (Guo et al., 2015; Nemmar et al., 2002). However, there 

were few related research focused on SiO2 NPs. Therefore, this chapter would either confirm 

or deny that SiO2 NPs was able to alter fibrin clot structure and cause endothelial dysfunction.  
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6.2 Methods 

Silicon dioxide nanoparticle powder with size 10-20 nm was purchased from Sigma Aldrich. 

Particles were diluted with double distilled water, and the stock concentration was 1 mg/ml. 

Different concentrations of particle suspensions were used in the experiments which included 

50 µg/ml, 10 µg/ml, 1 µg/ml, 0.1 µg/ml and 0.01 µg/ml. Different concentrations of SiO2 NPs 

were added to normal pooled plasma and purified fibrinogen samples, respectively. Three 

methods, turbidity assay, turbidity lysis assay and laser scanning confocal microscope assay 

were used to analyse the fibrin clot structure formed with or without SiO2 NPs. The details of 

the methods were as described in chapter 2.  

Human umbilical vein endothelial cells were also used to investigate the effects of SiO2 NPs. 

Particle cytotoxicity was firstly measured using MTT assay. Then, the clots were formed with 

plasma or fibrinogen samples on the cells. LSCM was used direct visualisation of fibrin clot 

structure. 

To detect the mechanisms that how SiO2 NP affected the fibrin clot structure, coagulation 

factors activation test, plasmid strand break assay, ELISA and RT-PCR were used. 

 

6.3 Results  

 Effects of SiO2 NPs on Fibrin Clot Structure 

Three methods, turbidity assay, turbidity lysis assay, and laser scanning confocal microscope 

assay, were used to investigate the effects of SiO2 NPs on fibrin clot structure.  
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Turbidity Assay 

These figures represent the kinetic curves of the clots formation from plasma samples and 

purified fibrinogen samples with different concentrations of SiO2 NPs. The curves showed a 

lag period before clots started to form (in some cases is this very short), an exponential 

growth phase during the clot rapidly formed and finally a plateau when the clots formed 

completely and reached the maximum OD value. 

 

Normal Pooled Plasma Samples 

In the normal pooled plasma samples, control had highest OD value and SiO2 NPs caused 

decreased OD value as the concentration increased. But it is hard to say whether the fibre is 

thicker or thinner, as clots formed from plasma sample can lead to same OD value with either 

more number of thinner fibres or less number of thicker fibres. 
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Figure 6-1. Turbidity Assay of SiO2 NPs with Plasma Samples (n=5) 

*p<0.05; **p<0.001 

Fibrin clots were formed with plasma samples in the presence of silica nanoparticles. The final 

concentrations of thrombin and CaCl2 were 0.1 U/ml and 5 mM respectively. The figure shows 

the maximum absorbance of the clots with different concentrations of particles.  

 

Fibrinogen Samples 

In the purified fibrinogen samples, there were no differences in the fibrin clot structure 

between different concentrations of SiO2 NPs. The highest concentration of SiO2 NPs and 

control had similar maximum OD value. The clots were formed similar structure even with 

different concentrations of SiO2 NPs. This figure illustrated that silica nanoparticles had no 

effects on the fibrin clot structure formed from purified fibrinogen samples (Fig 6-2). 
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Figure 6-2. Turbidity Assay of SiO2 NPs with Purified Fibrinogen Samples (n=5) 

Fibrin clots were formed with purified fibrinogen samples in the presence of silica 

nanoparticles. The final concentrations of fibrinogen, thrombin and CaCl2 were 1 mg/ml, 0.1 

U/ml and 5 mM respectively. The figure shows the kinetic curve of the clots formation and 

maximum absorbance with different concentrations of particles. 

 

Turbidity Lysis Assay 

Normal Pooled Plasma Samples 

The rate of clots degradation was measured by turbidity lysis assay. In the presence of 

particles, the maximum OD value was decreased as the concentrations of particles increased; 

but the time to 50% fibrinolysis (t50%) was similar between control and other concentrations 

of particles (figure 6-3).  
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Figure 6-3. Turbidity Lysis Assay of SiO2 NPs with Plasma Samples (n=3) 

The T50% were shown in the figure. The final concentrations of tPA, thrombin and CaCl2 were 

0.1 µg/ml, 0.1 U/ml and 5 mM respectively.  

 

Purified Fibrinogen Samples 

Similar results was found in the purified fibrinogen samples in that t50% was similar between 

control and other concentrations of particles (figure 6-4). The silica nanoparticles did not 

cause any prolonged lysis time. 
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Figure 6-4. Turbidity Lysis Assay of SiO2 NPs with Purified Fibrinogen Samples (n=3) 

The clot lysis time was shown based on the concentrations and particle types. The final 

concentrations of fibrinogen, plasminogen, tPA, thrombin and CaCl2 were 1 mg/ml, 0.25 µM, 

0.1 µg/ml, 0.1 U/ml and 5 mM respectively. 

 

LSCM 

Fibrin clots were formed with either plasma or fibrinogen samples with different 

concentrations of SiO2 NPs. The clot structure was visualised by LSCM and measured using 

Image J.  
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Normal Pooled Plasma Samples 

In the normal pooled plasma samples, after adding the nanoparticles suspension, fiber 

bundles was increased as the concentration of particles increased. From 10 µg/ml, SiO2 NPs 

caused significantly denser fibrin clot structure formation with increased numbers of fibers. 

Combined with the turbidity assay results, lower OD value indicated the denser fibrin clot 

structure formed from plasmas with different concentrations of SiO2 NPs. 
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Figure 6-5 (A): LSCM—Clot Structure Formed from Plasma Samples with Different 

Concentrations of SiO2 NPs;  

Figure 6-6 (B): LSCM—Number of Fibre Bundles from Plasma Samples with Different 

Concentrations of SiO2 NPs (n=9) 

**p<0.001 

The clots formed from plasma samples with SiO2 NPs from 0 to 50 µg/ml. The final 

concentrations of thrombin, CaCl2 and FITC were 0.5 U/ml, 15 mM and 50 µg/ml respectively. 

 

Purified Fibrinogen Samples 

In the purified fibrinogen samples, there were no significant differences between the clots 

with and without SiO2 NPs which indicated that silica had no effects on purified fibrinogen 

system (Fig 6-6). The result in LSCM was consistent with the turbidity result. 
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Figure 6-6 (A): LSCM—Clot Structure Formed from Purified Fibrinogen with Different 

Concentrations of SiO2 NPs;  

Figure 6-6 (B): LSCM—Number of Fibre Bundles from Purified Fibrinogen with Different 

Concentrations of SiO2 NPs (n=9) 

**p<0.001 

The clots formed from purified fibrinogen with SiO2 NPs from 0 to 50 µg/ml. The final 

concentrations of fibrinogen, thrombin, CaCl2 and FITC were 1 mg/ml, 0.5 U/ml, 15 mM and 

50 µg/ml respectively. 
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Factor XII Activation Test 

The results of fibrin clot formed from plasma showed that the clots had become denser as 

the concentrations of silicon dioxide nanoparticles increased. A possible mechanism could be 

that the coagulation factors in plasma caused the dose-dependent effects which needed to 

be further investigated. Factor XII was tested to explore the reasons for denser fibrin clot 

formation as FXII is activated by negatively charged surfaces.  

In the first method, FXII deficient plasma was used. In figure 6-7, the fibrin clots were formed 

from FXII deficient plasma with different concentrations of silicon dioxide nanoparticles and 

activation mixture. There was a trend that increased concentrations of SiO2 NPs caused 

decreased OD value which were similar as the clot structure formed from normal pooled 

plasma. In figure 6-8, FXII zymogen was added to the clots with the presence of FXII deficient 

plasma, different concentrations of silicon dioxide nanoparticles and activation mixture. 

Similar trend was found as the clots formed from FXII deficient plasma without FXII zymogen. 

But in the presence of FXII zymogen, the clots were getting into the maximum absorbance 

faster with higher OD value. However, FXII zymogen seemed no effect on fibrin clot structure 

in the presence of SiO2 NPs.  
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Figure 6-7: Turbidity Assay -- SiO2 NPs with FXII deficient plasma (n=3) 

The clots were formed with FXII deficient plasma and SiO2 NPs 0 to 50 µg/ml.  

 

 

Figure 6-8: Turbidity Assay -- SiO2 NPs with FXII deficient plasma and FXII zymogen (n=3) 

The clots were formed with FXII deficient plasma, FXII zymogen and SiO2 NPs 0 to 50 µg/ml.  
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In the second method, different concentrations of silica NPs were mixed with and without 

FXII zymogen. PTT automate as the positive control was added to FXII zymogen. Compared to 

the positive control in figure 6-9 (C), figure 6-9 (A) and 6-10 (B) illustrated silicon dioxide 

nanoparticle were not able to activate FXII zymogen. The OD value for the positive control 

was approximately 3.5 at 30 min. However, after 1 hour’s interaction, the OD value was only 

0.5 even with the highest concentration, 50 µg/ml. This method also showed the SiO2 NPs 

was not able to activate FXII zymogen.  
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Figure 6-9 (A): Turbidity Assay -- SiO2 NPs without FXII Zymogen (n=3);  

Figure 6-10 (B): Turbidity Assay -- SiO2 NPs with FXII Zymogen (n=3);  

Figure 6-11 (C): Turbidity Assay -- SiO2 NPs with PTT Automate and FXII Zymogen (n=3) 

In Figure 6-9 (A), there were no clots formed as only SiO2 NPs were added into the plate. In 

Figure 6-9 (B), SiO2 NPs were mixed with FXII zymogen, the final concentration of FXII zymogen 

was 125 nM. In Figure 6-9 (C), PTT was added to the mixture as the positive control.  
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Therefore, these two methods confirmed that silica NPs did not react with FXII, thus FXII was 

not the reason for denser fibrin clot structure in the presence of SiO2 NPs. 

 

Plasmid Strand Break Assay 

Plasmid strand break assay was used to detect the free radicals released from the silicon 

dioxide nanoparticles when they were incubated with supercoiled plasmid DNA.  

After 12 hours incubation in the dark, silica NPs did not have more free radical released 

compared to control (Fig 6-10). The nicked plasmid was between 10 to 20% after the plasmid 

pBR322 incubated with 0 to 50 µg/ml of SiO2 NPs. This result indicated that silicon dioxide 

nanoparticles were not able to release free radicals. 
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Figure 6-12. Induction of Single Stand Breaks in pBR322 DNA following Incubation with SiO2 

NPs (n=6) 

Plasmid DNA was incubated with SiO2 NPs from 0 to 50 µg/ml for 12 hours in the darkness. 

The induction of strand breaks were assessed and expressed as the percentage of nicked DNA 

observed. The results indicated that there were no significantly higher number of stand 

breaks caused by SiO2 NPs. 

 

 Effects of SiO2 NPs on HUVEC  

To investigate the effects of SiO2 NPs on fibrin clot structure formed from plasma and 

fibrinogen samples were not enough, which was not able to represent the in vivo 

environment. Human umbilical vein endothelial cells were used to develop mechanisms of 

the effects of SiO2 NP. 
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Endothelial Cell Cytotoxicity 

Human umbilical vein endothelial cells were treated with 50 µg/ml, 10 µg/ml, 1 µg/ml, 0.1 

µg/ml, and 0.01 µg/ml of silicon dioxide nanoparticles for 24 hours. 

 

 

Figure 6-13. Cytotoxicity of Endothelial Cells after 24 hours SiO2 NPs Treatment (n=9) 

Cells were treated for 24 hours with different concentrations of SiO2 NPs. After the cells 

exposed to 10 µg/ml of particles, there were approximately 10% cell death which was 

significantly more compared to control. 

 

Fibrin Clot Formation on Endothelial Cells 

After the cell cytotoxicity test, LSCM was used to investigate the fibrin clot structure. The clots 
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either normal pooled plasma samples or purified fibrinogen with thrombin and CaCl2 upon 

the treated cells. The slides were incubated at 37 degree for 30 minutes which allowing the 

clots for form completely. The structure of the fibrin was analysed through confocal 

microscope. 

 

Normal Pooled Plasma Samples 

The fibrin clot structure formed from normal pool plasma samples in the presence of treated 

cells are shown below. After the cells were treated with SiO2 NPs at concentration of 0.01 

μg/ml, 0.1 μg/ml, 1 μg/ml 10 μg/ml and 50 μg/ml, the fibrin clot structure was altered 

compared to control. As the concentration of particles increased, the clot structure became 

much denser with increased number of fibres per μm in a dose-dependent manner. The clots 

had significant denser structure from the concentration of 1 μg/ml.  
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Figure 6-14 (A): LSCM—Clot Structure Formed from Plasma Samples on Human Umbilical 

Vein Endothelial Cells after Treatment with Different Concentrations of SiO2 NPs;  

Figure 6-15 (B): LSCM—Number of Fibre Bundles from Plasma Samples on Human 

Umbilical Vein Endothelial Cells after Treatment with Different Concentrations of SiO2 NPs 

(n=9)  

*p<0.05; **p<0.001 

The clots formed from plasma samples in the presence of cells exposed to SiO2 NPs s from 0 

to 50 µg/ml. The final concentrations of thrombin, CaCl2 and FITC were 0.5 U/ml, 15 mM and 

50 µg/ml respectively. 

 

  

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Control 0.01ug/ml 0.1ug/ml 1ug/ml 10ug/ml 50ug/ml

N
u

m
b

er
 o

f 
Fi

b
er

 B
u

n
d

ls
 p

er
 u

m

Concentrations of SiO2 NPs

*

**
**

B



Page 223 of 265 

 

Purified Fibrinogen Samples 

For the fibrinogen samples, the clots were formed with purified fibrinogen samples in the 

presence of treated endothelial cells. The data showed even after the cells treated with the 

highest concentration of those particles, the fibrin clot structure was similar as the control. In 

contrast to the clots formed from plasma, the clots formed from purified fibrinogen did not 

have any significant difference in the structure between treated and untreated cells. 
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Figure 6-16 (A): LSCM—Clot Structure Formed from Purified Fibrinogen on Human Umbilical 

Vein Endothelial Cells after Treatment with Different Concentrations of SiO2 NPs;  

Figure 6-17 (B): LSCM—Number of Fibre Bundles from Purified Fibrinogen on Human 

Umbilical Vein Endothelial Cells after Treatment with Different Concentrations of SiO2 NPs 

(n=9) 

The clots formed from purified fibrinogen in the presence of cells exposed to SiO2 NPs s from 

0 to 50 µg/ml. The final concentrations of fibrinogen, thrombin, CaCl2 and FITC were 1 mg/ml, 

0.5 U/ml, 15 mM and 50 µg/ml respectively. 

 

RT-PCR 

Real time polymerase chain reaction was used to quantify the genes of interests that released 

from endothelial cells after incubation with silicon dioxide nanoparticles for 24 hours. Two 

different genes, tissue factor and thrombomodulin, were measured by RT-PCR. 
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Tissue Factor 

Tissue factor is a transmembrane glycoprotein. After endothelial cells were incubated with 

the particles for 24 hours, the gene expression of tissue factor was quantified by RT-PCR. 

Concentrations of SiO2 NPs were 0.01 µg/ml, 0.1 µg/ml, 1 µg/ml, 10 µg/ml and 50 µg/ml were 

used. Compared to control, there were no significant difference in the TF gene expression 

after HUVEC treated with SiO2 NPs. 

 

 

Figure 6-18. Relative Gene Expression Level of Tissue Factor (TF) in Human Umbilical Vein 

Endothelial Cells after Treatment with Different Concentrations of SiO2 NPs (n=3)  

Relative gene expression level of tissue factor was determined by real-time polymerase chain 

reaction.  
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Thrombomodulin 

Thrombomodulin is produced by endothelial cells. After the cells were treated with SiO2 NPs, 

increased concentrations of SiO2 NPs caused decreased thrombomodulin mRNA secretion 

with a dose-dependent manner. From 10 µg/ml of SiO2 NPs, the level of THBD gene expression 

was decreased significantly compared to control. Figure 6-15 showed that SiO2 NPs inhibited 

the THBD gene expression on HUVEC. 

 

 

Figure 6-19. Relative Gene Expression Level of Thrombomodulin (THBD) in Human Umbilical 

Vein Endothelial Cells after Treatment with Different Concentrations of SiO2 NPs (n=3)  

Relative gene expression level of thrombomodulin was determined by real-time polymerase 

chain reaction. The THBD mRNA level was decreased as the concentrations of SiO2 NPs 

increased.  
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ELISA 

ELISA was used to quantify the protein level of von Willebrand factor and plasminogen 

activator inhibitor-1 produced by endothelial cells after the stimuli by air pollution particles.  

 

Von Willebrand Factor 

HUVEC were treated with different concentrations of SiO2 NPs for 24 hours. The cell 

supernatant was taken for the measurement of protein levels of VWF produced by cells. 

Figure 6-12 showed that after 10 µg/ml of SiO2 NPs treatment, endothelial cells produced 

significantly high levels of VWF with concentration of 9.8 ng/ml. From 0.01 µg/ml to 50 µg/ml 

of SiO2 NPs, VWF secretion increased gradually in a dose-dependent manner. 
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Figure 6-20. ELISA -- Concentrations of Von Willebrand Factor (VWF) from Human Umbilical 

Vein Endothelial Cells after 24h Treatment with Different Concentrations of SiO2 NPs (n=3) 

**p<0.001 

ELISA was used to measure the VWF protein levels. After the cells were treated different 

concentrations of SiO2 NPs for 24 hours, the cell supernatant was taken and measured the 

concentrations of VWF released from cells. From 10 µg/ml, SiO2 NPs induced significantly 

more VWF secretion from endothelial cells. 

 

Plasminogen Activator Inhibitor - 1 

After the endothelial cells were treated with different concentrations of silica nanoparticles, 

PAI-1 was produced at similar levels. There were no significant higher concentrations of PAI-

1 secreted by treated cells compared to control (as shown in figure 6-13).   
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Figure 6-21. ELISA -- Concentrations of Plasminogen Activator Inhibitor-1 (PAI-1) from 

Human Umbilical Vein Endothelial Cells after 24h Treatment with Different Concentrations 

of SiO2 NPs (n=3) 

ELISA was used to measure the PAI-1 protein levels. After the cells were treated different 

concentrations of SiO2 NPs for 24 hours, the cell supernatant was taken and measured the 

concentrations of PAI-1 released from cells.  
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confocal microscope, plasma samples formed increased denser fibrin clot structure with 
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pollution particles. Air particulate matter and diesel particles showed plasma samples formed 

denser fibrin clot structure with higher OD value. Compared with previous data, there was a 

discrepancy in the results linking clot maximum absorbance with network density and there 

are two potential explanations for this. Clot maximum absorbance is a composite measure of 

both clot density and fibre thickness; therefore lower maximum absorbance does not 

necessarily mean less compact clots but may simply reflect thinner fibres. Alternatively, it is 

possible the SiO2 NPs directly affect clot maximum absorbance, resulting in this discrepancy. 

These findings further emphasise the importance of complementing turbidimetric analyses 

with clot visualisation techniques such as confocal microscopy. The fibrin clot lysis time was 

prolonged as the concentration of silica NP increased in plasma samples. In the in vitro cell 

work, silica NPs induced significantly endothelial cell death from 10 µg/ml with a dose-

dependent manner. In addition, fibrin clots formed from normal pooled plasma in the 

presence of SiO2 NPs treated cells were getting denser as the concentrations of NPs increased 

and showed prothrombotic tendency. Real time PCR results indicated that the gene 

expression of thrombomodulin was inhibited by SiO2 NPs, but there were no significant 

difference in the tissue factor mRNA expression between control and treated cells. ELISA 

results showed silica NPs caused increased concentration of von Willebrand factor produced 

by endothelial cells, however, PAI-1 was not influenced by SiO2 NPs. 

Plasma contains not only fibrinogen, but also other coagulation factors, such as cascade 

initiators, factor XII. These factors may interact with the nanoparticles and induced the denser 

fibrin clot structure formation and longer fibrin lysis time. FXII was chosen to be tested as FXII 

can be activated by negatively charged surfaces such as silica and glass. However, FXIIa did 

not interact with SiO2 NPs.  
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According to the literature, silicon dioxide nanoparticles are able to trigger oxidative stress 

(Duan et al., 2013a; Eom and Choi, 2009; Liu and Sun, 2010; Park and Park, 2009), therefore, 

plasmid strand break assay was used to detect the free radicals releasing from SiO2 NPs. The 

results showed that silica did not produce significantly more free radicals compared to control 

which means that SiO2 NPs may cause ROS through other pathways.  

The effects of SiO2 NPs on human umbilical vein endothelial cells were also investigated. 

Silicon dioxide nanoparticles were able to cause different extent of cell death according to 

the treatment time and different cell lines. For the human umbilical vein endothelial cell, 

Duan et al. found that SiO2 NPs caused cell death in a dose- and time-dependent manner. 

After 24 hours treatment, 50 µg/ml of SiO2 NPs triggered approximately 15% cell death (Duan 

et al., 2013a)  which was in accordance with the findings of the cytotoxicity of SiO2 NPs in this 

study. Similar results were found in another study that showed after 24 hours incubation with 

50 µg/ml of SiO2 NPs, HUVEC viability was 83.49% (Duan et al., 2013b). There is also a study 

that demonstrated that 50 µg/ml of SiO2 NPs exerted toxicity and led to 10% reduction of live 

cells after 48 hours treatment (Peters et al., 2004). Cuo et al. investigated the cytotoxicity of 

SiO2 NPs on HUVEC. The results showed that after 24 hours treatment, SiO2 NPs caused 

significant cell death at 25 µg/ml (Guo et al., 2015). In most of the studies, SiO2 NPs caused 

significantly endothelial cell death from 50 µg/ml after 24 hours treatment. Some studies 

confirmed that silicon dioxide nanoparticles are able to enter the cells easily through 

endocytosis (Corbalan et al., 2011; Guo et al., 2015; He et al., 2009). Silica NPs were 

internalised by the cells and distributed in the cytoplasm and deposited in mitochondria 

(Guarnieri et al., 2014). As the concentrations of particles increased, the endocytosis of 

endothelial cells increased (Guo et al., 2015). Duan et al. also mentioned that the endothelial 
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cell death was caused by both apoptosis and necrosis, and that release of lactate 

dehydrogenase as an indicator of necrosis was increased from 25 µg/ml of SiO2 NPs treatment, 

while apoptosis rate was significantly elevated at 50 µg/ml of SiO2 NPs (Duan et al., 2014). 

Endothelial cells apoptosis significantly contributed to atherothrombosis (Duan et al., 2013; 

Tedgui & Mallat, 2003). 

It has been shown that endothelial cell death would cause the decrease of cell integrity and 

increased in vascular permeability. Monocytes and adhesion molecules will migrate into the 

vessels and increase the expression of chemokines, thus contributing to the initiation of 

atherosclerosis (Guo et al., 2015). Guo et al. (2015) and Duan et al. (2014) indicated that SiO2 

NPs induced inflammatory response as the mRNA expression for IL-1β, IL-6, IL-8, TNF-α, ICAM-

1, VCAM-1, and MCP-1 by endothelial cells were increased after the treatment (Guo et al., 

2015; Duan et al., 2014). IL-6 not only increases CRP in the liver but also fibrinogen and PAI-1. 

IL-1 also triggers the synthesis of PAI-1 (Esper et al., 2006).  

In this study, there was no significantly increased free radicals release detected from SiO2 NPs, 

but many studies demonstrated that SiO2 NPs induced oxidative stress. According to the 

literature, silica NPs lead to redox imbalance and inflammation response which is possibly 

through other pathways, such as MARK-Nrf2 and Nf-kB signalling pathway (Guo et al., 2015).  

The fibrin clots were produced on top of endothelial cells after treatment with different 

concentrations of SiO2 NPs. The clots formed with plasma samples in the presence of treated 

cells were getting denser as the concentrations of treatment increased. There was no 

difference in the clots formed from purified fibrinogen between control and treated cells. To 

get a closer insight into the Silica NPs effects, real time PCR and ELISA were used for further 
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investigation on the effects of SiO2 NPs on endothelial cells and the mechanisms of denser 

fibrin clot structure formation as endothelial dysfunction can be evaluated by quantifying 

circulation adhesion molecules, proatherogenic substances and antifibrinolytics (Esper et al., 

2006). Von Willebrand factor, tissue factor, and plasminogen activator inhibitors are all 

procoagulant proteins secreted by endothelial cells. In this study, silica NPs had no effects on 

tissue factor mRNA and PAI-1 protein expression even in cells exposed to the highest 

concentration 50 µg/ml for 24 hours. Von Willebrand factor increased after particle treatment 

and the gene expression of thrombomodulin decreased in a dose-dependent manner. 

Significantly decreased mRNA thrombomodulin and increased VWF expression indicated the 

endothelial dysfunction after HUVEC were exposed to SiO2 NPs. Increased level of VWF 

promotes coagulation and platelets activation and aggregation. The reduced level of 

thrombomodulin caused low level of activated protein C (Sofat et al., 2010). VWF plays an 

important role in haemostasis and thrombosis. VWF not only stabilizes the FVIII activities, but 

also promotes platelet aggregation (Wu and Thiagarajan, 1996). Especially at high shear stress, 

VWF binds to platelets glycoprotein IIb-IIIa to support agonist-induced platelet aggregation 

(Wu and Thiagarajan, 1996). In addition, thrombomodulin is able to inhibit a number of 

procoagulant activities of thrombin, for example, fibrinogen, activation of FV and FXIII, and 

inactivation of protein S. Therefore, increased VWF protein expression and decreased 

thrombomodulin both may lead to denser fibrin clot structure formation. 

In conclusion, SiO2 nanoparticles caused alterations of fibrin clot structure with denser clot 

structure, more compact arrangement, and prolonged lysis time from normal pooled plasma. 

There was no effects found in purified fibrinogen. In the in vitro cell work, silica NPs triggered 

significant endothelial cell death from 10 µg/ml in a dose-dependent manner. In addition, 
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fibrin clots formed from normal pooled plasma in the presence of SiO2 NPs treated cells were 

getting denser as the concentrations of NPs increased and showed prothrombotic tendency. 

The gene expression of thrombomodulin was inhibited by SiO2 NPs, but there were no 

significant difference in the tissue factor mRNA expression between control and treated cells. 

Silica NPs caused increased concentrations of von Willebrand factor produced by endothelial 

cells, PAI-1 was not influenced by SiO2 NPs. This adds to existing evidence as to the hazards 

associated with such NPs.



Page 236 of 265 

 

 Discussion 

A number of pathological mechanisms by which air pollution exposure may impact 

cardiovascular disease have been proposed, with the most relevant being the induction of 

oxidative stress, systemic inflammation, endothelial dysfunction, atherothrombosis, and 

arrhythmogenesis (Newby et al., 2014).  

There are three possible pathways that the exposure to particles may be capable of affecting 

remote cardiovascular territories. Pathway 1: after exposure to the particles, pro-

oxidative/proinflammatory mediators (e.g. cytokines or activated immune cells) and 

vasculoactive molecules (e.g. histamine or microparticles) are released from the lungs, which 

in turn have indirect effects on cardiovascular system. Pathway 2: an imbalance of the 

autonomic nervous system (parasympathetic nervous system withdraw and/or sympathetic 

nervous system activation) is caused by the interaction between particles and nerves. 

Pathway 3: nano-sized particles, soluble PM and particles constituents (e.g. organic 

compounds or metals) may directly get into the blood circulation (Brook, 2008). 

These three pathways may be activated at different time points or overlap temporally, also 

can act alone or together to prompt some cardiovascular event (Brook, 2008).  Hyperacutely 

(within minutes to hours), pulmonary inflammation and autonomic system imbalance are the 

most probable dominant pathways. Acute and sub-acute responses (hours to days) may be 

applied through pathways 2 and 3 firstly and induce systemic oxidative stress and 

inflammation secondarily. The chronic actions, such as enhancement of atherosclerosis and 

thrombosis generation, are plausibly induced by the chronic pro-oxidative and pro-

inflammatory state.  
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Particles’ sizes and types also can determine the pathways. Ultrafine particles and the soluble 

components of larger particles may be able to get into the circulation directly. Whereas the 

coarse particles or larger fine particles may have effects on the cardiovascular system only 

through acquired secondary pro-oxidative or inflammatory responses  by activation and 

irritation of the lung alveolae (Brook, 2008). 

The investigations from this study focused on the first and third pathway. For the first 

pathway, air pollution may contribute to the development of thrombosis involve local 

pulmonary inflammatory and oxidative responses with the release of prothrombotic factors 

and inflammatory cytokines into the circulation after the inhalation of particles (Emmerechts 

and Hoylaerts, 2012; Mills et al., 2009; Newby et al., 2014). Previous animal studies showed 

that PM10 caused lung inflammation following intrapulmonary instillation of PM and 

inhalation of concentrated ambient particles (Donaldson et al., 2005; Elder et al., 2004; Mills 

et al., 2009). In clinical studies, pulmonary inflammation occurred after inhalation of both 

concentrated ambient particulate matter and dilute diesel particles (Donaldson et al., 2005; 

Fujii et al., 2002; Mills et al., 2009). After exposure, plasma concentrations of pro-

inflammatory cytokines such as interleukin (IL) - 1β, IL-6 and tumour necrosis factor-α 

increased (Elder et al., 2004; Mills et al., 2009; Schwartz, 2001). In both animal and clinical 

studies, exposure of PM also led to the elevation of fibrinogen concentrations. High 

concentrations of fibrinogen shorten the lag phase of polymerisation, increase branch point 

densities, fibre thickness and clot rigidity, with concurrent increases in the resistance of the 

clot to fibrinolysis (Scott et al., 2004; Weisel, 2007).  
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For the third pathway, airborne particles are capable direct translocation from the pulmonary 

alveoli into the blood circulation, crossing the pulmonary epithelium and vascular 

endothelium barrier (Emmerechts and Hoylaerts, 2012; Mills et al., 2009; Newby et al., 2014). 

PM and diesel particles would affect fibrin clot structure and interfere with endothelial cells. 

Particles with diameters less than 10 μm can be inhaled deeply into the lungs. A number of 

other factors may influence the possible translocation of PM, including charge, chemical 

composition, and propensity to form aggregates (Mills et al., 2009). The size and shape of the 

particles could affect the region of deposition in the respiratory system, with smaller sized 

particles penetrating deeper into the lung. Macrophages may not be able to recognize 

particles with a diameter less than 500 nm, and for this reason, ultrafine PM may enter the 

blood or lymphatic systems more easily and transfer to different organs (Teow et al., 2011). 

Once in the circulation, the particles could interact with vascular endothelial cells and have 

direct effects on the atherosclerotic plaque, platelets and fibrin clot formation, structure and 

stability (Lauer et al., 2009; Mills et al., 2009).  

In this study, the effects of PM10, PM0.2, total diesel particles and filtered diesel particles on 

fibrin clot structure were investigated. Standard Reference Materials were used in the study 

which were directly purchased from NIST. There are some advantages to use SRMs for the 

investigation. Firstly, the components of the SRMs had been measured and certified. Secondly, 

based on the collection method of SRMs, several studies had confirmed that SRMs were able 

to represent the urban/diesel PM (Akhtar et al., 2010; Boland et al., 2001; Hetland et al., 2004). 

Thirdly, compared to the particles that were obtained from different areas in various studies, 

SRMs were more homogenous, thus increasing the consistency in the measurement of 
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different biological endpoints and promoting the reproducibility of the same biological 

endpoint (Akhtar et al., 2010).  

It is difficult to compare airborne exposure concentrations with concentrations used in in vitro 

experiments. According to the World Health Organisation statistics, the guideline values for 

PM10 and PM2.5 are 50 μg/m3 and 25 μg/m3 for the 24-hour mean concentration; 20 

μg/m3 and 10 μg/m3 for the annual concentration (World Health Organisation, 2011). The 

PM10 level in the Great Smog in London in 1952 was from 3,000 to 14,000 µg/m3. Some in 

vitro studies chose concentrations of air pollution particles above 50 µg/ml which is too high 

compared to the level at which people may be exposed. Therefore, based on those data, the 

concentrations of PM chosen to investigate the effects on fibrin clot structure and human 

endothelial cells in this study were from very low concentrations (0.01 μg/ml) to intermediate 

and high, which may better reflect environmental exposures.  

In this study, the effects of PM10, PM0.2, total diesel particles and filtered diesel particles on 

fibrin clot structure were investigated. Three methods were applied to study the effects of 

particles from air pollution, turbidity assay, turbidity lysis assay and laser scanning confocal 

microscopy in both normal pooled plasma and purified fibrinogen system. The experiments 

results from turbidity assay and LSCM assay showed that for clots formed from pooled plasma, 

there was a trend that higher concentrations of particles led to denser fibrin clot structure 

formation compared to control. The results from turbidity lysis provided more obvious 

consequences that as the concentrations of particles increased, the fibres formed from 

plasma were getting less sensitive to fibrinolysis and times to 50% lysis were significantly 

longer at 50 µg/ml of these four particles compared to control. In terms of the purified 
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fibrinogen system, the clots had similar structure as control even at the highest concentration 

50 µg/ml of those particles. The results demonstrated these four particles were able to alter 

the fibrin clot structure. Filtered PM (PM0.2) and filtered diesel particles with diameter than 

less than 200 nm represented the ultrafine particles which were able to get into the 

circulation (Nemmar et al., 2002). These two types of filtered particles had less effect on fibrin 

clot structure alterations and endothelial dysfunction compared to the larger particles, as 

PM0.2 and filtered diesel particles occupied 30% and 35% of PM10 and total diesel particles, 

respectively.  

In view of the associations between thrombosis and fibrin structure, the effects of particulate 

matter on fibrin clot structure have previously been investigated in this laboratory. It was 

found that diesel PM caused changes in fibrin clot structure and function in clots formed from 

both purified fibrinogen and from human plasma (Metassanet al., 2010a). However, no 

changes in fibrin clot structure were observed in clots formed from plasma taken from healthy 

individuals after 2 hours exposure to PM while performing moderate exercise (Metassan, et 

al., 2010b). The exposure in the latter study was of short duration, so the possibility remained 

that fibrin clot structure could be affected by long-term exposure to high levels of air pollution, 

or that susceptible subjects, such as patients with thrombosis could respond differently to the 

healthy young subjects in the earlier study.  

To test this possibility, a sub-study was performed using samples from a large cohort study in 

the Lombardy Region of Italy (Baccarelli et al. 2007; Baccarelli et al. 2009; Baccarelli et al. 

2008), which had reported that every 10 μg/m3 elevation of PM10 exposure was associated 

with a 67% increased risk of DVT. The aim of the sub-study was, therefore, to investigate the 
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possible association between fibrin clot structure and PM10 levels in a well-characterized 

group of patients with DVT and healthy controls. The sub-study results showed that after 

long-term and high-level exposure to air pollution (PM10 concentrations over 45.6 µg/m3), 

patients with DVT had significantly denser fibrin clot structure compared to those living in 

areas with lower levels of exposure (PM10 less than 45.6 µg/m3). In the high exposure group, 

clots from patients contained thicker fibres, more compact fibre arrangements and less 

permeable clot structure. There were no significant differences in fibrin clot structure 

between the two exposure levels in healthy subjects. This shows that patients with existing 

prothrombotic susceptibility may be affected by PM exposure. This raises the possibility that 

high PM exposure contributes to the onset of the DVT through changes to clot structure. The 

observation in this and a previous study (Metassan et al., 2010b) that there were no changes 

in clot structure in healthy individuals suggests that only people with an existing risk show 

changes to clot structure in response to PM exposure. 

As the endothelial cell plays an important role in modulating thrombosis in blood vessels, the 

effects of PM exposure on endothelial cells was studied. At 50 µg/ml of PM that did not induce 

significant cell death after 24 hours exposure, the fibrin clots formed from pooled plasma on 

the treated cells were altered compared to the controls. For the clots formed from purified 

fibrinogen samples, there were no significant differences on the clot structure between 

treated and untreated cells. Changes in expression of TF, THBD, VWF and PAI-1 following PM 

exposure of HUVECs were consistent with changes observed in clot structure, which adds 

evidence for PM affecting thrombosis via influences on endothelial cells. 
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Whilst there is an acknowledged risk of increased CVD associated with air pollution, and PM 

in particular, there is currently no epidemiological evidence of risk associated with engineered 

nanoparticles in the same size range. Nevertheless, there is a body of data showing that 

engineered nanoparticles such as silica NPs induce toxicity, including cytotoxicity and 

genotoxicity, and silica nanoparticles are widely used in many industries. It was therefore 

decided to investigate whether silica NPs induced changes to clot structure similar to those 

seen for PM.  

Silica nanoparticles caused denser fibrin structure in clots formed only from normal pooled 

plasma, but not from purified fibrinogen. Also, the fibrin clot lysis time was prolonged as the 

concentration of silica NP increased in plasma samples. These results are consistent with 

those seen for PM, which suggests the potential for silica NPs to be toxic to the cardiovascular 

system in an analogous manner. In the cell experiments, silica NPs induced significant 

endothelial cell death from 10 µg/ml in a dose-dependent manner. In addition, fibrin clots 

formed from normal pooled plasma in the presence of SiO2 NPs treated cells were getting 

denser as the concentrations of NPs increased and showing a prothrombotic tendency. Real 

time PCR results indicated that the gene expression of thrombomodulin was inhibited by SiO2 

NPs, but there were no significant difference in the TF mRNA expression between control and 

treated cells. ELISA results showed silica NPs caused increased concentration of VWF 

produced by endothelial cells, but PAI-1 was not influenced by SiO2 NPs. It can be seen that 

not all results mirrored those seen with diesel PM, but there were some similar results, raising 

the potential for toxicity of silica NPs on these cells. It is known that PM can release free 

radicals in solution, as a result of metal ions associated with the PM. This was confirmed for 

the PM used in this study, raising the possibility that oxidative stress could be one mechanism 
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responsible for changes induced in endothelial cells. Such free radical production was not 

observed in solution for the silica NPs, but it may be that free radicals were released within 

the cellular environment as this was not measured in this study. 

The comparison of effects of air particulate matter and silicon dioxide nanoparticles are 

shown as following tables. 
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Fibrin Clot Structure PM10 PM0.2 Total Diesel Particles Filtered Diesel Particles SiO2 NPs 

Plasma 

Maximum 

Absorbance 
No difference˄ No difference˄ No difference˄ No difference˄ 

Decreased 

From 10 µg/ml¶ 

Lysis Time 
Increased 

From 10 µg/ml¶ 

Increased 

From 50 µg/ml¶ 

Increased 

From 10 µg/ml¶  

Increased 

From 50 µg/ml¶  
No difference˄ 

Fibre Number No difference˄ No difference˄ No difference˄ No difference˄ 

Increased 

From 10 µg/ml¶ 

Fibrinogen 

Maximum 

Absorbance 
No difference˄ No difference˄ No difference˄ No difference˄  No difference˄ 

Lysis Time No difference˄ No difference˄ No difference˄ No difference˄ No difference˄ 

Fibre Number No difference˄ No difference˄ No difference˄ No difference˄ No difference˄ 

Table 7-1. Summary of Parameters of Fibrin Clot formed from Plasma or Purified Fibrinogen Samples 

¶ Concentrations: Parameters significantly increased/decreased after different concentrations of particles treatment 

˄There were no significant difference found after particles treatment from control. 
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 PM10 PM0.2 Total Diesel Particles Filtered Diesel Particles SiO2 NPs 

Von Willebrand Factor 
Increased 

From 0.1 µg/ml¶ 

Increased 

From 0.1 µg/ml¶ 

Increased  

From 0.1 µg/ml¶  

Increased 

From 1 µg/ml¶  

Increased 

From 1 µg/ml¶ 

Plasminogen Activator Inhibitor-1 
Increased 

From 0.1 µg/ml¶ 

Increased 

From 10 µg/ml¶ 

Increased 

From 1 µg/ml¶  

Increased 

From 10 µg/ml¶  
No difference˄ 

Tissue Factor mRNA 
Increased 

From 0.1 µg/ml¶ 

Increased 

From 1 µg/ml¶ 

Increased 

From 0.1 µg/ml¶ 

Increased 

From 50 µg/ml¶ 
No difference˄ 

Thrombomodulin mRNA 
Decreased 

From 0.1 µg/ml¶ 

Decreased 

From 0.1 µg/ml¶  

Decreased 

From 0.1 µg/ml¶  

Decreased 

From 1 µg/ml¶  

Decreased 

From 10 µg/ml¶  

Free Radicals 
Increased 

From 10 µg/ml¶ 

Increased 

From 50 µg/ml¶ 

Increased 

From 50 µg/ml¶  

Increased 

From 50 µg/ml¶  
No difference˄ 

Fibre Number--Plasma 
Increased 

From 10 µg/ml¶ 

Increased 

From 10 µg/ml¶ 

Increased 

From 10 µg/ml¶ 

Increased 

From 10 µg/ml¶ 

Increased 

From 1 µg/ml¶ 

Fibre Number--Fibrinogen No difference˄ No difference˄ No difference˄ No difference˄ No difference˄ 

Table 7-2. Summary of Proteins/Gene Expression and Fibrin Clot Structure of HUVEC after Treatment with Different Particles 

¶ Concentrations of Particles: Proteins/Gene expressions or fibre numbers significantly increased or decreased after different concentrations of 

particles treatment 

˄There were no significant difference found after particles treatment from control.
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There is increasing recognition that PM in air pollution is associated with cardiovascular 

mortality and morbidity. The results presented here show that PM can induce changes to clot 

structure and function, and that changes in gene expression induced in endothelial cells may 

be a mechanism by which a prothrombotic state is induced in response to PM exposure. 

Furthermore, some, but not all, similar changes were observed in clots and cells exposed to 

silica NPs, raising the possibility that such engineered nanoparticles may also have the 

potential to contribute to cardiovascular toxicity. This adds to existing evidence as to the 

hazards associated with such NPs. 
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