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Abstract 

 

Longevity and the rate of senescence are determined by the ecological 

conditions experienced during a population‟s recent evolutionary history, and are 

intrinsically linked to other components of life history and to fitness. These traits should 

be examined in an ecological context, in which other aspects of the life history are 

taken into account. However, although many mutations which promote longevity in 

model organisms disrupt mechanisms that are involved in responding to environmental 

change, trade-offs associated with increased lifespan have typically been examined in 

benign laboratory conditions. In the nematode Caenorhabditis elegans, long-lived, 

stress resistant age-1(hx546) mutants can compete with wild type worms in favourable 

growth conditions, but display fitness costs when populations are periodically starved. 

By monitoring temporal changes in genotype frequencies, I have established that age-1 

mutants can have higher fitness than the wild type strain if mixed genotype populations 

are exposed to periods of thermal or oxidative stress when food is available. Genotype-

by-environment interactions, and spatial and temporal distributions of the FOXO 

transcription factor DAF-16, suggest that this is because age-1 mutants are more able 

to survive, develop and reproduce during and/or after exposure to environmental 

stress, due to increased expression of genes involved in somatic maintenance and 

repair. Using population projection matrices, I have demonstrated that the age-

1(hx546) mutant allele can confer a selective advantage over the wild type genotype 

when populations experience abiotic stress, even if periods of starvation are frequently 

endured. This is the first demonstration that a long-lived, laboratory-derived mutant can 

have higher fitness than a wild type genotype under specific environmental conditions. 

The results imply that, if genetic variation is present in populations which encounter 

harsh conditions, increased longevity can evolve as a consequence of selection for 

greater resistance to stress. I have also established that the effects of mutations which 

promote longevity on the ability to tolerate environmental stress can be context 

dependent, and that long-lived age-1(hx546) mutants display increased cold tolerance, 

relative to wild type worms, due to increased expression of Δ9 desaturase genes and 

additional transcriptional targets of DAF-16. The results presented in this thesis 

suggest that genetic and life history responses to environmental stress deserve a more 

prominent role in evolutionary studies of ageing. 
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Chapter 1 - Introduction 

 

1.1 Is death an inevitable consequence of life? 

 

Senescence can be defined as the progressive physiological deterioration and 

associated declines in fecundity and survival that occur with advancing age (Finch, 

1990). Though the term „ageing‟ can be applied to any period of life, it is generally used 

synonymously with senescence and will be used as such throughout this thesis.  

 

1.11 Mortality dynamics and functions of survival  

The rate at which mortality increases with age is the principal measure of the 

rate of senescence. Mortality rates have traditionally been described using the 

Gompertz-Makeham law (Gompertz, 1825; Makeham, 1860). This incorporates two 

parameters: the age-independent mortality rate (the Makeham term), and the age-

dependent mortality rate (the Gompertz function), which increases exponentially after 

maturity. Mortality rates are quantified using the equation: m(t) = AeGt + M, where m(t) is 

the mortality rate as a function of age (t), A is a constant which describes age-

independent mortality, G is the exponential (Gompertz) mortality coefficient, which 

represents how mortality accelerates with age, and M is the age-independent mortality 

rate (the Makeham term). In protected environments, the age-independent component 

is often negligible and mortality rates can be described using the Gompertz function 

(AeGt) alone. An alternative measure is the Weibull function, which can be used to 

quantify the rate of senescence independently of extrinsic mortality (Weibull, 1951). 

Whilst the Gompertz function may be appropriate when age-related increases in 

mortality are caused by increasing vulnerability to extrinsic hazards, the Weibull 

function may be more suitable when age-related increases in mortality are a result of 

intrinsic causes (Ricklefs & Scheuerlein, 2002). 

 

1.12 ‘Somatic slaves’ and the immortal germ-line 

Most multi-cellular metazoans possess two types of cells: germ (sex) cells, 

which constitute the germ-line, and somatic (body) cells, which constitute the soma. 

Whilst the germ cell lineage is passed indefinitely from one generation to the next, 

somatic cells are required only for the maintenance and propagation of the germ-line 

during a single generation. The distinction between the germ-line and the soma, which 

was first recognised by August Weismann (1882), has had a profound impact upon 

current understanding of the biology of ageing, and is fundamental to the disposable 

soma theory (Kirkwood, 1977) which is described in 1.22.  
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1.13 Diversity in longevity and the rate of senescence 

By considering the diversity in patterns of age-dependent mortality among 

different species, it becomes clear that senescence is not necessarily inevitable. Some 

groups of simple organisms, including certain Cnidarians, such as Hydra, do not 

appear to age at all and this can typically be attributed to a lack of distinction between 

the germ-line and the soma (Finch, 1990; Martinez, 1998; Kirkwood & Austad, 2000). 

Variation in longevity is extensive among complex multicellular eukaryotes and there 

are numerous examples of organisms which survive for longer or shorter periods than 

one might predict. For instance, certain species of rockfish, such as Sebastes 

aleutianus, can survive for over 200 years (Cailliet et al., 2001), and some vascular 

plants, such as the Great Basin bristlecone pine, Pinus longaeva, can survive for 

millennia (Lanner & Connor, 2001). In contrast, some semelparous organisms die 

almost immediately after reproduction. Pacific salmon (genus Oncorhynchus), for 

example, stop feeding during the reproductive period and die very soon after spawning 

has ceased (Finch, 1990). Such variation is intriguing to evolutionary biologists and the 

extent to which different ecological and evolutionary processes influence longevity, and 

the relative contributions that genes and the environment make in shaping senescence, 

have been subjects of intense debate.   

 

1.14 A demographic time bomb: longevity in the 21st century 

 During the past 200 years, human life expectancy has steadily increased in the 

developed world. This was initially attributed to a decline in age-independent mortality 

(the Makeham component), due to factors such as improved sanitation, the availability 

of vaccinations and the widespread use of antibiotics (Olshansky et al., 2001). 

However, in the past few decades the decline in mortality rate has been age-dependent 

(the Gompertz component), characterised by an increased probability of survival at late 

ages (Olshansky et al., 2001). This may be due, at least in part, to increased medical 

care for the elderly. Concurrent with the increase in life expectancy, birth rates have 

declined in many countries (Christensen et al., 2009). These changes have led to 

considerable modifications in the age structure of populations in the developed world. 

With an increase in the number of elderly people requiring treatment for age-related 

diseases, and a decline in the proportion of the population being of working age, these 

demographic transitions may have major socio-economic consequences in the coming 

decades. Biogerontology, the study of biological processes which contribute to 

senescence, is thus of great contemporary importance. Though current medical 

intervention focuses on the treatment of age-related diseases, insights into the 
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mechanisms which underly ageing suggest that it may become possible to target the 

process of senescence itself. 

 

1.2 Ageing – an evolutionary enigma 

 

The concept of senescence presents a paradox to evolutionary biologists. This 

is because traits which have been moulded by natural selection should theoretically 

maximise individual fitness, yet age-related reductions in fertility and survival cause 

individual fitness to decline. Although some researchers argue that individuals may 

senesce and die to provide space and resources for subsequent generations (Longo et 

al., 2005; Dytham & Travis, 2006), the vast majority of researchers maintain that ageing 

has not arisen as a product of selection. Opinion on this matter is so strong that 52 

biologists signed a statement insisting that „ageing is a product of evolutionary neglect, 

not evolutionary intent‟ (Olshansky et al., 2002). 

 

1.21 Ageing as an adaptive trait 

Senescence was first considered from an evolutionary perspective by Alfred 

Russel Wallace (quoted in Weismann, 1889). He reasoned that senescence may have 

evolved as an adaptive trait which enhances the fitness of subsequent generations by 

reducing competition for limited resources. 

 

“…. when one or more individuals have provided a sufficient number of successors 

they themselves, as consumers of nourishment in a constantly increasing degree, are 

an injury to their successors. Natural selection therefore weeds them out, and in many 

cases favours such races as die almost immediately after they have left their 

successors.”  

 

Wallace‟s views were later reiterated and formalised by August Weismann 

(1882). However, Weismann reversed his initial claims following his realisation that 

traits may degenerate if they are no longer beneficial (Kirkwood & Cremer, 1982). 

Several problems have been identified with adaptive explanations of senescence. 

Perhaps the most prominent is that, due to extrinsic hazards such as predation or 

disease, senescence is rarely regarded as a significant source of mortality in nature 

(Kirkwood & Austad, 2000). There is, therefore, little need for selection to „weed out‟ old 

individuals which would otherwise compete with younger kin, and little opportunity for 

genes which cause senescence to evolve (Kirkwood, 2005). Although recent studies 

have reported that senescence may constitute a source of mortality in some wild 
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populations (reviewed in Nussey et al., 2008), consequences for population level 

fitness may be negligible and too indirect to have considerable impacts upon 

evolutionary dynamics. Another flaw is that adaptive theories of ageing require 

selection to work on a kin or group basis. To exemplify why this is an issue, Kirkwood 

(2005) described a scenario in which a non-ageing mutant produces more offspring 

than other individuals; eventually its descendants would succeed the ageing members 

of the species. Finally, adaptive theories assume that old individuals are already in 

some way less fit than their younger successors without explaining how or why this has 

become the case (Kirkwood, 2005).  

Despite these issues, several theoretical biologists have recently attempted to 

reinstate adaptive theories of ageing (Goldsmith, 2004; Travis, 2004; Mitteldorf, 2004, 

2006; Longo et al., 2005; Dytham & Travis, 2006). This has been motivated, at least in 

part, by the realisation that numerous conserved genes modulate longevity in a variety 

of model organisms (reviewed in Kenyon, 2005). Some theoreticians have interpreted 

the existence of so called „gerontogenes‟ as evidence that a conserved program has 

evolved specifically to cause senescence (Travis, 2004; Longo et al., 2005). 

Theoretical studies have been used to examine associations between longevity and 

dispersal. For instance, using spatially explicit patch occupancy models, Travis (2004) 

and Dytham & Travis (2006) demonstrated that, when fecundity declines with 

increasing age, longevity can be correlated with dispersal distance. When dispersal 

events occur at a local scale, longevity may be constrained because individuals who 

benefit from senescent deaths are likely to be closely related kin. In contrast, greater 

dispersal distances may lead to the evolution of increased longevity as individuals who 

benefit from increased space and resources are unlikely to be related. Interestingly, 

Dytham and Travis (2006) made an attempt to integrate controversial adaptive views of 

ageing with more accepted non-adaptive theories, suggesting that, as these are non-

mutually exclusive, both may play a role in the evolution of senescence in natural 

populations.  

 

1.22 Ageing as a non-adaptive by-product of evolution  

"Senescence has no function; it is the subversion of function." 

Alex Comfort (1956) 

 

In age structured populations, an individual‟s expected contribution to lifetime 

fitness at a given age changes throughout life and declines beyond maturity (Fisher, 

1930; Hamilton, 1966). This is because, in wild populations, individuals succumb to 

extrinsic mortality sources, such as predation, starvation and disease, and become 
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progressively less likely to survive and reproduce with increasing age. To maximise 

lifetime fitness, traits which influence age-specific survival and fecundity should thus be 

under stronger selection early in life, when future fitness contributions are likely to be 

high, than late in life, when future fitness contributions are likely to be low. This 

constitutes the basis of the non-adaptive evolutionary theories of ageing (Medawar, 

1952; Williams, 1957; Kirkwood, 1977), and is discussed in more detail in 1.23.  

The concept of ageing as a non-adaptive trait was first discussed by Medawar 

(1952). He suggested that senescence may be caused by late-acting, deleterious 

mutations which have not been removed by natural selection and, subject to genetic 

drift, have accumulated within the germ-line throughout time. The development of 

Medawar‟s mutation accumulation theory was instigated by Haldane‟s (1941) notes 

regarding Huntington‟s disease, a fatal neurodegenerative disorder which is caused by 

a dominant mutation and does not affect carriers until they reach 30-35 years of age. 

Haldane (1941) suggested that the disease has not been eliminated from the human 

population because carriers are likely to pass the mutant allele to subsequent 

generations prior to the onset of the disease. Support for the mutation accumulation 

theory is mixed and controversial. If ageing results from an accumulation of random 

deleterious mutations then additive genetic variation in fertility and survival should 

increase with age. However, whilst some studies have provided evidence for mutation 

accumulation in Drosophila melanogaster (Hughes & Charlesworth, 1994; Tatar et al., 

1996; Hughes et al. 2002) and in wild populations of red deer, Cervus elaphus, and 

soay sheep, Ovis aries (Wilson et al., 2007), another study using D. melanogaster 

found no association between genetic variation and age (Rose & Charlesworth, 1980). 

Though Medawar‟s theory has lost favour in recent years due to discoveries of single 

genes and conserved pathways which modulate longevity, it remains plausible that 

mutation accumulation may represent a „private‟ mechanism of senescence which 

contributes to ageing in specific evolutionary lineages (Partridge & Gems, 2002). 

Later non-adaptive theories of ageing take into account the fundamental 

concept of life history theory, which stipulates that life-history strategies, i.e. age-

specific schedules of survival and fecundity, are characterised by co-variances among 

traits which must be optimised according to the conditions of a particular ecological 

niche (Stearns, 1992; Roff, 2002). These theories predict that trade-offs should arise 

which favour early life fitness components over longevity. The antagonistic pleiotropy 

theory (Williams, 1957) predicts that senescence occurs because mutations with late-

acting, detrimental effects may be selected and maintained in populations if they occur 

in genes with pleiotropic effects and confer benefits to fitness earlier in life. The related 

disposable soma theory (Kirkwood, 1977), which is based upon the well supported idea 
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that during an individual lifetime senescence occurs due to the accumulation of un-

repaired damage to somatic molecules and cells, considers that trade-offs arise 

because metabolic resources must be optimally allocated among growth, reproduction 

and somatic maintenance and repair mechanisms. Because the soma is required 

purely for the protection and propagation of the germ-line, the disposable soma theory 

predicts that resources should only be invested in somatic maintenance and repair 

functions whilst individuals are likely to survive and reproduce in wild populations. 

Senescence thus occurs when individuals survive beyond such an age. Support for the 

antagonistic pleiotropy and disposable soma theories of senescence is discussed 

throughout the remainder of this chapter. 

An important prediction of the evolutionary theories of ageing is that rates of 

intrinsic mortality (senescence) should be modified according to the rates of extrinsic 

mortality experienced during a population‟s recent evolutionary history (Williams 1957). 

This provides a convenient testable hypothesis for assessing the validity of the non-

adaptive theories of ageing and is supported by numerous comparative studies. For 

instance, bats and birds, which through flight can avoid hazards such as predation and 

starvation, tend to live longer than non-volant mammals of a similar size (Holmes & 

Austad, 1994). Additionally, Virginia opossums, Didelphis virginiana, from a predator-

free island age more slowly than conspecifics inhabiting the more hazardous mainland 

(Austad, 1993). The hypothesis is also supported by empirical evidence as imposing 

high levels of extrinsic mortality over multiple generations led to more rapid rates of 

intrinsic mortality and reduced longevity in populations of D. melanogaster relative to 

controls (Stearns et al., 2000). However, the relationship between extrinsic mortality 

and the rate of senescence may not be quite so straight forward. Individuals are not all 

equally susceptible to mortality sources regardless of age and condition, and the 

effects of extrinsic mortality may be altered when density dependence is taken into 

account (Abrams, 1993; Graves & Mueller, 1993). Consistent with this, Reznick et al. 

(2004) demonstrated that the rate of ageing in guppies, Poecilia reticulata, derived from 

rivers with high levels of predation was lower than that of guppies from rivers with low 

levels of predation. This may be because high levels of predation reduce population 

density and thereby decrease competition for resources among surviving individuals. 

Furthermore, age-specific fecundity and mortality rates are likely to vary according to 

population density (Williams et al., 2006), and, as described in 1.23, changes in these 

traits modify fitness and the rate at which the efficiency of selection declines with 

increasing age.  
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1.23 The dynamics of selection across the lifespan 

The intrinsic growth rate (r) of an age (or stage) structured population at a 

stable distribution is typically used as a measure of that population‟s fitness (Fisher, 

1930). Fisher demonstrated that r, which he referred to as the Malthusian parameter, is 

a function of age-specific schedules of survival and reproduction and can be quantified 

using the following equation, where l(x) is the probability of survival to age x, and m(x) 

is the expected number of daughters produced by a female at age x: 

∫
∞

0
e-rxl(x)m(x)dx = 1

  

This has since become known as the Euler-Lotka equation, based upon the earlier 

work of Euler (1760) and Sharpe and Lotka (1911). By modifying this equation, Fisher 

(1930) developed the concept of the reproductive value, a measure of an individual‟s 

expected contribution to future fitness at a given age, which he considered to be 

directly proportional to the intensity of selection at that age. As individuals become 

progressively less likely to survive and reproduce with increasing age, Fisher argued 

that reproductive values, and thus the intensity of selection, should progressively 

decline beyond maturity.  

Using Fisher‟s Malthusian parameter as a measure of fitness, Hamilton (1966) 

formulated scaling functions to represent the intensity of selection acting upon age-

specific fecundity and survival by quantifying the sensitivity of fitness to perturbations in 

these traits. He demonstrated that reproductive values do not always provide an 

appropriate measure of the intensity of selection at a particular age, but provided 

rigorous quantitative support for the decline in the efficiency of selection after the onset 

of reproduction. Hamilton (1966) conveyed that selection acting on survival is maximal 

during development and progressively declines throughout the reproductive period, 

reaching zero at the last age of reproduction. Consequently, with the possible 

exception of species which exhibit grand maternal care (Lahdenperä et al., 2004), 

selection does not act directly upon post reproductive lifespan and longevity is 

expected to evolve in response to selection upon associated traits (Parsons, 1993; 

Parsons, 2002; Kenyon, 2010). This principle is explored in chapters 4, 5 and 7 of this 

thesis. Empirical support for Hamilton‟s scaling functions and the influence of selection 

dynamics on senescence has been derived from artificial selection experiments using 

D. melanogaster (Rose & Charlesworth, 1980; Rose, 1984). By discarding eggs from 

young mothers for many generations to obtain flies with a late age at maturity, these 

experiments demonstrated that longevity can be substantially increased if the onset of 

the decline in selection is delayed.  
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1.24 Ageing and life history theory 

The evolutionary theories of senescence form a subset of a set of concepts, 

collectively termed life history theory, which address age-specific variation in and 

interactions among the demographic (life-history) traits which determine fitness. Life 

history theory forms a fundamental component of evolutionary biology because the 

traits which it concerns, including the age at maturity and age-specific schedules of 

reproduction and survival, constitute the basis upon which selection acts. Roff (2002) 

outlined three major assumptions underlying life history theory: i) that there is some 

measure of fitness which is maximised by selection, ii) that the variety of possible life-

history strategies is limited by constraints and trade-offs, and iii) that populations 

harbour sufficient genetic variation for the optimal life-history strategy to be attained.  

As growth, reproduction and somatic maintenance and repair mechanisms 

require metabolic resources, physiological constraints and trade-offs are typically 

considered to arise because resources must be partitioned among different life-history 

traits (Stearns, 1992; Roff, 2002). Several studies have investigated resource allocation 

trade-offs (negative co-variances) by manipulating one trait and looking for a response 

in another. For instance, by modifying the number of eggs in each clutch, Lack (1954) 

exemplified that infant mortality increases as brood size rises above an assumed 

optimum in the common starling, Sternus vulgaris. A well established resource 

allocation trade-off arises from the cost of reproduction. Consistent with the disposable 

soma theory of ageing, increased reproductive output is associated with low 

subsequent fecundity and/or accelerated senescence and reduced longevity in a range 

of organisms (Williams, 1966; Reznick, 1985; Sgro & Partridge, 1999; Barnes & 

Partridge, 2003). Furthermore, the act of mating itself appears to reduce lifespan in a 

variety of organisms (Chapman et al., 1995; Gems & Riddle, 1996).  

Phenotypic correlations do not necessarily imply causation, particularly when 

observed in quantitative traits that are influenced by a large number of genes (Reznick, 

1985; Roff, 2002). Methods which investigate trade-offs by examining both phenotypic 

and genetic correlations between traits are considered to be more robust. Genetic 

correlations are thought to occur as a result of pleiotropic interactions or linkage 

disequilibrium, and can be examined via pedigree analyses or artificial selection (Roff, 

2002). Artificial selection experiments have been used to investigate the antagonistic 

pleiotropy theory of ageing. For instance, in a long term experiment selecting D. 

melanogaster for late-life fecundity and increased longevity, early fecundity initially 

declined in long lived lines relative to the controls (Rose, 1984). Remarkably, after 

several years of continued selection, the decline in early fecundity was obscured when 

populations were maintained in favourable growth conditions, suggesting that the 
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manifestation of trade-offs between longevity and early components of fitness can be 

context dependent (Leroi et al., 1994). Negative genetic correlations can also be 

assessed by examining the consequences of single gene mutations which modify life-

history traits in model organisms. As described in 1.32, trade-offs consistent with the 

antagonistic pleiotropy and disposable soma theories of ageing have been observed 

between longevity and early fitness components in numerous long-lived mutants 

(reviewed in Van Voorhies et al., 2006). Life history consequences of various mutations 

which promote longevity in the nematode Caenorhabditis elegans are investigated in 

chapter 3 of this thesis, and context dependent trade-offs are examined in chapters 4, 

5 and 7. 

To maximise fitness, resource allocation strategies must be optimised according 

to current ecological conditions. Consequently, life-history traits differ independently of 

genotype across a variety of environmental gradients. For instance, longevity can be 

modified in many organisms in response to environmental factors, such as food 

availability (reviewed in Guarente et al., 2008) and temperature (reviewed in Munch & 

Salinas, 2009). There are also extreme examples in which longevity differs dramatically 

among individuals regardless of genotype. For instance, in social insect colonies, 

queens can survive for extremely long periods relative to other castes (Keller & 

Genoud, 1997), and in the nematode Strongyloides ratti, free-living females live for only 

a few days whilst parasitic morphs can survive for over a year (Gardner et al., 2004). 

When traits exhibit discrete or continuous variation independently of genotype in 

response to different environmental cues, this is referred to as phenotypic plasticity. 

The set of phenotypes expressed by a single genotype across an environmental 

gradient is known as the reaction norm (Schmalhausen, 1949), and when reaction 

norms differ among genotypes a genotype-by-environment interaction (GEI) becomes 

manifest (Falconer, 1952). Understanding the genetic basis of phenotypic plasticity and 

GEI can provide important insights into the mechanisms underlying the evolution of 

longevity and other life-history traits in heterogeneous environments. 

 

1.3 Phenotypic plasticity and the genetics of ageing  

 

“Developmental biologists are prying open the black-box of life history; evolutionary 

biologists should rejoice”. Armand Leroi, 2001 

 

1.31 From proximate mechanisms to ultimate causation 

Biogerontology has traditionally been divided into two interrelated categories 

which focus on the causes of ageing from the molecular to the population level. 
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Mechanistic approaches focus on proximate causes during an individual lifetime, i.e. 

how ageing occurs, whereas evolutionary approaches attempt to explain ultimate 

causes, i.e. why ageing occurs. However, it is clear that in order to gain a 

comprehensive understanding of senescence both approaches must be considered 

simultaneously. The disposable soma theory provides a platform for integrating an 

evolutionary explanation for ageing with a more mechanistic understanding of the 

processes involved in senescence during an individual‟s lifetime.  

There is considerable evidence to suggest that proximal causes of ageing 

during an individual lifetime involve the progressive accumulation of stochastic damage 

to cellular components, including nucleic acids, proteins and lipids (reviewed in Nemoto 

& Finkel, 2004; Kirkwood, 2005; Partridge & Gems, 2006). Though exposure to 

different endogenous and exogenous damaging agents can be species specific and/or 

context dependent, several basic principles are relevant to most eukaryotes. For 

instance, all aerobic organisms are exposed to reactive oxygen species (ROS) as a 

consequence of mitochondrial respiration. These constitute a major source of cellular 

and molecular damage (Finkel & Holbrook, 2000), and may play an important role in 

senescence (Harman, 1956). Furthermore, all organisms have the ability to produce a 

variety of highly conserved protective proteins, such as anti-oxidant enzymes, DNA 

repair enzymes and heat-shock proteins/molecular chaperones (Kültz, 2005). 

Longevity and the rate of senescence may thus be largely determined by the balance 

between the occurrence of damage and the ability to protect and repair somatic 

molecules and cells.  

During the past two decades it has become increasingly apparent that a variety 

of interventions increase lifespan in model organisms ranging from yeast to mice, and 

that certain „public‟ mechanisms which modulate the rate of senescence have been 

conserved among distinct eukaryotic lineages (reviewed in Partridge & Gems, 2002; 

Kenyon, 2005). These interventions are diverse and modify factors such as stress 

resistance, caloric intake, sensory perception, protein synthesis, mitochondrial function 

and telomere attrition (Guarente et al., 2008). Consistent with the disposable soma 

theory of ageing, several methods which can be applied to extend lifespan in model 

organisms appear to increase the allocation of metabolic resources to somatic 

maintenance and repair mechanisms.  

 

1.32 Stress and the molecular determinants of longevity  

Hutchinson (1957) made the distinction between the realized niche, the range 

of biotic and abiotic conditions to which an organism is most well adapted, and the 

fundamental niche, the range of conditions under which an organism can potentially 
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exist. Ecological stress can be regarded as a condition in which an organism is brought 

near to or over the edge of its fundamental niche (Van Straalen, 2003). Though the 

term „stress‟ can refer to either an external factor or to an organism‟s internal state, 

from an ecological and evolutionary perspective these definitions are often viewed as 

integrative (Bijlsma & Loeschcke, 1997). In this thesis, „environmental stress‟ is used 

synonymously with „ecological stress‟ to refer to abiotic factors and/or an organism‟s 

response to adverse conditions. To distinguish between abiotic stress and nutritional 

stress, for the purposes of this thesis the latter is typically referred to as resource 

limitation, caloric restriction or starvation. 

To maintain cellular homeostasis and the integrity of essential physiological 

functions, organisms possess a variety of cellular defence systems which, within limits, 

promote survival during periods of stress (Kültz, 2005). Whilst some of these are 

specific to particular forms of stress, others are more general and different systems 

may cooperate as a „single, integrated, cellular stress-defence system‟ (Korsloot et al., 

2004). Genetic manipulations which inappropriately activate stress response 

mechanisms in favourable growth conditions can extend longevity in a variety of model 

organisms (reviewed in Kenyon, 2005, 2010). These include mutations which disrupt 

sensory perception (Apfeld & Kenyon, 1999), or signal transduction and transcriptional 

regulation (reviewed in Kenyon, 2005; Baumeister et al., 2006), and modifications 

which cause genes encoding stress response proteins to be over-expressed (Orr & 

Sohal, 1994; Tissenbaum & Guarente, 2001; Walker & Lithgow, 2003). By inducing 

physiological shifts which enhance the protection and repair of somatic cells at the 

expense of growth and reproduction, such modifications typically incur trade-offs, 

consistent with the antagonistic pleiotropy and disposable soma theories of ageing, 

which reduce lifetime fitness (reviewed in Van Voorhies et al., 2006; Kenyon, 2010). 

However, although genetic manipulations which promote longevity by activating cellular 

defence mechanisms disrupt wild type responses to environmental change, trade-offs 

associated with increased lifespan have rarely been examined in heterogeneous 

environments which are likely to be experienced in nature. For a comprehensive 

understanding of the consequences of increasing longevity by manipulating such 

mechanisms, long-lived mutants should ideally be examined in an ecological context. 

This principle forms the basis of the studies described in this thesis. 

Several genes which modulate longevity and the rate of senescence in model 

organisms encode components of signal transduction pathways which respond to 

environmental change. The most extensively characterised of these is the highly 

conserved insulin/insulin growth factor-1 (IGF-1) signalling (IIS) pathway. The role of 

this endocrine signalling pathway in the determination of lifespan first became apparent 
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in a study using C. elegans (Kenyon, 1993). It later became clear that the IIS pathway 

influences lifespan in the budding yeast, Saccaromyces cerevisiae (Fabrizio et al., 

2001), D. melanogaster (Tatar et al., 2001), and the mouse, Mus musculus 

(Holzenberger et al., 2003), and there is evidence to suggest that it may also play an 

important role in human longevity (Bonafe et al., 2003; van Heemst et al., 2005). In 

distinct eukaryotic lineages, the IIS pathway regulates the activity of FOXO family 

transcription factors and the expression of genes involved in metabolism and cellular 

defence mechanisms (reviewed in Kenyon, 2005, 2010). Mutants which are defective 

in components of the IIS pathway are long-lived and stress resistant (Johnson et al., 

2001), and typically display trade-offs consistent with the antagonistic pleiotropy and 

disposable soma theories of senescence (reviewed in Van Voorhies et al., 2006). 

Though it could be argued that the pathway evolved because its ability to limit lifespan 

has some adaptive benefit, it is more likely that it arose to promote survival during 

periods of environmental stress (Kenyon, 2010). 

In C. elegans, the IIS pathway modulates development, metabolism, stress 

resistance and longevity. In conditions which are favourable for growth and 

reproduction, insulin-like ligands bind to the DAF-2 insulin/IGF-1 receptor on the cell 

membrane and initiate a kinase signalling cascade which negatively regulates the 

FOXO transcription factor DAF-16 (Lin et al., 1997; Ogg et al., 1997). When the 

pathway is disrupted by low food availability, exposure to environmental stress or a 

mutation, DAF-16 translocates to the nucleus and activates the transcription of genes 

involved in cellular defence, metabolism and detoxification (Henderson & Johnson, 

2001; Lin et al., 2001; Lee et al., 2003; Murphy et al., 2003; McElwee et al., 2004, 

2007). By modifying DAF-16 activity, transitions in insulin/IGF-1 signalling thus appear 

to generate physiological shifts which either promote growth, reproduction and ageing 

or increase lifespan and stress resistance by enhancing the protection and repair of 

somatic molecules and cells (Henderson & Johnson, 2001) (Figure 1.1). Life history 

consequences of mutations which disrupt insulin/IGF-1 signalling in C. elegans are 

examined in favourable growth conditions in chapter 3, and in a variety of 

heterogeneous environments in chapters 4-7. 
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Figure 1.1: The insulin/IGF-1 signalling (IIS) pathway and DAF-16. In Caenorhabditis 

elegans, the IIS pathway regulates the activity of the transcription factor DAF-16. In favourable 

growth conditions, DAF-16 is inactive and genes encoding proteins which promote ageing are 

expressed. In harsh conditions, or when the IIS pathway is disrupted by a mutation, DAF-16 

translocates into the nucleus and activates the expression of genes encoding proteins which 

promote longevity. From Gems and McElwee (2003). 

 

1.33 Stress response hormesis 

“That which does not kill us makes us stronger”. Friedrich Nietzsche.  

 

 The term „hormesis‟ is derived from toxicology and refers to the beneficial 

effects of low doses of toxins which are harmful at higher levels (Calabrese & Baldwin, 

2003). In ecology, hormesis describes the phenomenon in which exposure to a mild 

stress during early life can enhance a trait such as fecundity, stress resistance or 

longevity at a later age (Forbes, 2000; Mangel, 2008). Hormetic effects upon longevity 

can be induced in a variety of organisms in response to environmental factors such as 

high temperatures or oxidative stress (reviewed in Gems & Partridge, 2008; Le Bourg, 

2009). This may be because exposure to non-lethal stressors stimulates the 

expression of stress response proteins which enhance the protection of somatic 

molecules and cells (Gems & Partridge, 2008). It is important to make a distinction 

between the effects of mild stress and chronic stress. Whilst brief exposure to mild 
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forms of stress can promote longevity, prolonged exposure to stress is likely to have 

the opposite effect (Gems & Partridge, 2008; Monaghan et al., 2008). Few studies 

which have examined the effects of mild stress on lifespan have assessed how 

additional traits are modified (Forbes, 2000). However, it seems likely that treatments 

which temporarily increase the allocation of resources to somatic maintenance and 

repair functions should be associated with reductions in growth rate and/or 

reproduction. Consistent with this, relative to un-stressed controls, fecundity declined in 

D. melanogaster females following exposure to brief periods of heat-shock (Krebs & 

Loeschcke, 1994; Hercus et al., 2003). 

 

1.34 Caloric restriction 

Moderate reductions in caloric intake extend lifespan in a wide range of 

eukaryotes, including S. cerevisiae (Lin et al., 2000), C. elegans (Klass, 1977), D. 

melanogaster (Chippindale et al., 1993), rodents (Weindruch & Walford, 1988) and 

primates (Mattison et al., 2003). It has been proposed that this highly conserved form 

of hormesis may have evolved to promote survival and future reproductive capacity 

during periodic fluctuations in resource availability (Harrison & Archer, 1988; Holliday, 

1989). Like other forms of mild stress, caloric restriction appears to induce the 

expression of genes involved in somatic maintenance and repair (reviewed in Kenyon, 

2010). Consistent with the disposable soma theory, increased lifespan mediated by 

caloric restriction is often associated with trade-offs such as delayed maturation and 

reduced fecundity (Shanley & Kirkwood, 2000; Partridge et al., 2005). The life history 

consequences of a mutation which induces caloric restriction in C. elegans by reducing 

the rate of feeding are examined in chapter 3. 

Research in model organisms has identified several genes which are required 

for life extension under calorie restricted feeding regimes. For instance, in S. cerevisiae 

this appears to be regulated, at least in part, through the action of Sir2 (Lin et al., 

2000). This gene encodes a histone deacetylase enzyme which physically modifies 

DNA by removing specific acetyl groups from histones surrounding the DNA molecules, 

and is thought to mediate transcriptional silencing (Hekimi & Guarente, 2003). 

Homologues of the Sir2 gene also influence lifespan in C. elegans (Tissenbaum & 

Guarente, 2001), D. melanogaster (Rogina & Helfand, 2004), and possibly mice 

(Bordone et al., 2007). Interestingly, in C. elegans, lifespan extension caused by over-

expression of sir-2.1 is dependant upon daf-16 (Tissenbaum & Guarente, 2001), and 

SIR-2.1 physically interacts with DAF-16 to modulate responses to certain forms of 

stress (Berdichevsky et al., 2006). 
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1.4 The role of ecology in ageing research 

 

Contemporary biogerontology is largely biased towards research focusing on a 

small number of model organisms which are observed in laboratory conditions. Though 

remarkable advances have been made regarding our understanding of the molecular 

determinants of longevity, there are of course limitations associated with this approach. 

For instance, we cannot extrapolate much from model organisms about the extensive 

variation in longevity that exists within and among populations and species in nature 

(Partridge & Gems, 2007; Monaghan et al., 2008; Nussey et al., 2008). Furthermore, 

longevity and the rate of senescence are products of an organisms‟ ecological niche 

and are intrinsically linked to other components of life history and to fitness. These 

traits should therefore be examined in an ecological context, ideally in natural 

environments or in conditions which are representative of nature, in which other 

aspects of the life history are taken into account.   

 

1.41 Senescence and selection in wild populations 

 Organisms live in heterogeneous environments which are likely to vary over 

time and space. Such variation can have considerable repercussions for population 

dynamics and impose different selection pressures on different components of life 

history. During an individual‟s lifetime, longevity can be affected by a variety of 

environmental factors, whether experienced directly at an early age or throughout life, 

or indirectly through the maternal environment (Metcalf & Monaghan, 2001). For 

instance, in a wild population of red deer, Cervus elaphus, females which were born 

when population density was high displayed more rapid rates of senescence than 

females which were born when population density was low (Nussey et al., 2007). 

Similarly, rates of reproductive senescence in the common guillemot, Uria aalge, were 

increased when harsh conditions were encountered early in life (Reed et al., 2007).  

Environmental heterogeneity is also likely to have an impact upon longevity 

over multiple generations. As previously described, non-adaptive evolutionary theories 

of ageing predict that longevity can evolve in response to the level of extrinsic mortality 

experienced during recent evolutionary history due to changes in the dynamics of 

selection across the lifespan. Another theory, referred to as the ecological stress theory 

of ageing (Parsons, 1995, 2002), predicts that increased longevity may evolve in wild 

populations which experience harsh environmental conditions as a consequence of 

selection for increased resistance to stress. Consistent with this, variation in the ability 

to tolerate environmental stress appears to be correlated with differences in longevity 

among wild populations of D. melanogaster (Nevo et al., 1998), the nematode 
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Heterorhabditis bacteriophora (Grewal et al., 2002), and the gypsy moth Lymantria 

dispar (Lazarevic et al., 2007), and among closely related Caenorhabditis species 

(Amrit et al., 2010). Furthermore, artificial selection for resistance to stress has been 

associated with increased lifespan in the parasitic wasp Aphytis lingnanensis (White et 

al., 1970), D. melanogaster (Rose, 1992; Hoffman & Parsons, 1993) and the butterfly 

Bicyclus anynana (Pijpe et al., 2008). The ecological stress theory of ageing 

emphasises the importance of the energetic costs of living in heterogeneous 

environments, and considers that genotypes which utilise metabolic resources most 

efficiently over a range of environmental conditions should be long-lived and display 

greater survival than other genotypes during periods of stress (Parsons, 1995). The 

potential for the evolution of increased longevity in heterogeneous environments as a 

consequence of selection acting upon genetic variation in the ability to tolerate stress is 

examined in chapters 4, 5 and 7 of this thesis. 

 

1.42 Ecological genetics: from molecules to populations 

 Recent advances in genetics and genomics have led to the emergence of a 

new integrative discipline, referred to as evolutionary and ecological functional 

genomics (EEFG), which „focuses on the genes that affect evolutionary fitness in 

natural environments and populations‟ (Feder & Mitchell-Olds, 2003). This field aims to 

investigate the functional significance of genetic and genomic variation among 

individuals and populations in their natural environments and to elucidate the 

evolutionary processes which create and maintain this variation. As some important 

genetic and genomic technologies are currently limited to a few model organisms which 

are not well characterised in an ecological setting, considerable effort is required to 

establish EEFG research in non-model organisms (Van Straalen & Roelofs, 2006). 

However, there is also potential for using laboratory model systems to examine the 

functional relevance and fitness consequences of genetic variation in environments 

which may be representative of natural conditions. Although many genes which 

modulate longevity in model organisms modify responses to environmental change, 

fitness costs in long-lived mutants have typically been examined in benign laboratory 

conditions. In this thesis, an ecological genetics approach is used to examine how a 

mutation which increases lifespan in C. elegans alters molecular, individual and 

population level responses to environmental conditions which may be encountered by 

wild populations.  
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1.5 Aims and thesis structure 

 

The studies which are described in this thesis were performed with the overall 

objective of investigating the life history consequences of mutations which extend 

longevity in an ecologically relevant context. These studies encompass a variety of 

methods, from genetic approaches which were used to examine the underlying 

molecular basis of life history variation in different environments, to demographic 

approaches which were used to make inferences regarding the conditions under which 

increased longevity can evolve.  

 Chapter 2 introduces the study system, C. elegans, and describes some of the 

attributes which make this organism of great value in contemporary biology and in 

ageing research. It provides an overview of the life history and discusses what is 

known regarding the natural habitat and diversity of C. elegans outside of the 

laboratory. It finishes with a description of standard methods which are applicable to 

chapters 3-6.  

Chapter 3 describes a comprehensive comparison of age-specific changes in 

fecundity and survival, in favourable growth conditions, among a variety of long-lived 

mutants and the wild type strain. Differences between the genotypes are discussed in 

the context of selection and the evolutionary theories of senescence.  

Using a multidisciplinary approach, chapters 4 and 5 examine the manifestation 

of trade-offs in long-lived age-1(hx546) mutants in ecologically relevant conditions, and 

consider the potential for the evolution of increased longevity in environments in which 

resource availability and abiotic factors vary over time. To do this, molecular to 

population level responses to environmental and nutritional stress were compared 

between age-1(hx546) mutants and wild type worms. Chapter 4 considers responses 

to thermal stress and chapter 5 deals with responses to oxidative stress.  

Chapter 6 describes a previously unreported phenomenon, that long-lived age-

1(hx546) mutants display increased resistance to low temperatures relative to wild type 

worms. A combination of loss-of-function mutations and RNA interference was used to 

examine the contribution of desaturase enzymes to the cold tolerant phenotype 

observed in these mutants.  

Chapter 7 uses a demographic framework to assess how exposure to 

stochastic environments can influence the evolution of longevity in C. elegans. Using 

data which were reported in chapters 4 and 5 to construct population projection 

matrices, the invasion potential of the age-1(hx546) mutant allele was examined under 

a variety of conditions in which periods of resource limitation and environmental stress 

were encountered at random intervals.  
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Chapter 8 summarises the results presented in the five data chapters and 

discusses the implications of these with respect to the evolution of senescence and 

stress resistance in natural populations. This chapter also reiterates the importance of 

evolutionary ecology and ecological genetics in the future of ageing research. 
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Chapter 2 – The study system 

  

2.1 C. elegans as a model organism 

 

“You have made your way from worm to man, and much within you is still worm.” 

Friedrich Nietzsche 

 

 Caenorhabditis elegans is a simple, free living nematode worm which feeds on 

micro-organisms and is found in temperate regions and some tropical regions 

throughout the world. Populations are androdioecious, i.e. consist of both males and 

hermaphrodites; however, males are rarely encountered and hermaphrodites 

reproduce mainly through self fertilisation. C. elegans was first established as a model 

organism in the late 1960s, by the acclaimed geneticist Sydney Brenner, primarily due 

to its simplicity and potential for addressing questions regarding development, 

neurobiology and genetics (Brenner, 1974). It has since become perhaps the most well 

characterised multi-cellular eukaryote and, during the past two decades, has acquired 

a fundamental role in ageing research. Numerous attributes contribute to its suitability 

as a model organism. It is small in size (mature adults are ~1mm in length), has a rapid 

life-cycle (~3 days at 20°C) and short lifespan (~3 weeks at 20°C), and requires only a 

humid environment, a bacterial food source and atmospheric oxygen for growth (Hope, 

1999). Furthermore, it is possible to maintain stocks indefinitely by freezing in liquid 

nitrogen (Brenner 1974). 

 C. elegans is the only metazoan in which the entire cell lineage (959 cells in 

hermaphrodites and 1031 cells in males) has been traced from egg to adult (Sulston & 

Horvitz, 1977), a feat made possible by complete transparency at all stages of 

development. This is relevant to the study of vertebrate development as C. elegans 

contains highly differentiated and specialised cell types, such as neurons and muscle 

cells, of a similar form to those found in higher eukaryotes (Hope, 1999). C. elegans 

was the first multi-cellular eukaryote for which the entire genome was sequenced (The 

C. elegans genome consortium, 1998), and 60-80% of human genes have C. elegans 

orthologues (Kaletta & Hengartner, 2006). Forward and reverse genetics approaches 

are well established in C. elegans research and provide the means to functionally 

annotate many of the approximately 22,000 protein-coding genes, in the 100 

megabase (Mb) genome, through phenotypic observations. Knockout mutations can be 

generated using methods such as chemical mutagenesis, ionising radiation or 

transposon hopping, and the attainment of homozygous mutants is facilitated by the 

hermaphrodite mode of reproduction following mendelian segregation of the diploid 
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genome. RNA interference (RNAi), a method of post-transcriptional gene silencing 

which was initially discovered in the worm (Fire & Mello, 1998), can be administered by 

feeding, injection or immersion to suppress the expression of specific genes, and the 

relative ease of germ-line transformations can be exploited to create transgenic lines 

for a variety of purposes. The standard wild type genotype, N2, was isolated from 

mushroom compost in Bristol in 1956. Except when stated otherwise, information 

presented throughout this thesis refers to observations made using N2 and mutant 

derivatives of this strain.  

 

2.2 Life history and phenotypic plasticity 

 

2.21 Growth in favourable environments  

 In favourable conditions the C. elegans lifecycle is rapid, taking approximately 

three days from egg to reproductive adult at 20°C (Figure 2.1). Embryogenesis begins 

within the hermaphrodite uterus and is completed externally. After hatching, larvae 

progress through four stages (L1-L4) which are separated by successive moults then 

mature as fertile adults (Figure 2.1). In hermaphrodites, a limited number of sperm are 

produced during L4 then, from the same germ-line tissue, a larger number of oocytes. 

Approximately 200-300 offspring are produced over 3-4 days. After sperm has been 

depleted, post-reproductive adults continue to lay unfertilised oocytes for several days 

(Kadandale & Singson, 2004), then can survive for an additional 1-2 weeks before 

dying of old age. 

Males arise at a very low frequency (~ 0.2%), following non-disjunction of the X 

chromosomes during meiosis (Hodgkin, 1983), but can substantially increase 

hermaphrodite fecundity. Following a successful mating, the larger male sperm out-

competes the hermaphrodite self-sperm (LaMunyon & Ward, 1997), and 50% of the 

resulting offspring are male. However, the increased proportion of males rapidly 

declines over a few generations (Stewart & Phillips, 2002). This may be because 

hermaphrodites that are mated make use of their own sperm, in addition to the more 

competitive male sperm, and thus a greater number of hermaphrodite than male 

offspring are produced (Wegewitz et al., 2008). 
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~ 3 days at 20°C

 
 

Figure 2.1: The C. elegans life-cycle in favourable growth conditions 

(adapted from www.wormatlas.org) 

 

 As it is likely that the majority of hermaphrodites progress throughout life without 

encountering a single male, it could be suggested that producing a larger number of 

self-sperm may confer a selective advantage by increasing fecundity. However, 

additional spermatogenesis delays the onset of oogenesis and the number of self-

sperm has likely been optimised for early maturity (Hodgkin and Barnes, 1991). 

Though the continued production of oocytes after the depletion of self-sperm may 

reflect a „bet hedging‟ strategy, whereby if a male is encountered hermaphrodites can 

recommence reproduction at a later age, it is perhaps more likely that the excess 

number of oocytes produced in laboratory conditions reflects upon the environment. 

Indeed, there is evidence to suggest that reproduction is only sperm limited when 

excess food is available (Goranson et al., 2005).  

 

2.22 Dealing with stress 

 In unfavourable growth conditions, C. elegans display several discrete forms of 

phenotypic plasticity (Figure 2.2). Some of these involve entrance into states of 

diapause during which survival is dramatically prolonged beyond the „normal‟ lifespan 

observed in favourable conditions. Studies of the molecular basis of phenotypic 

http://www.wormatlas.org/


 

22 

 

plasticity in C. elegans have become prominent in biogerontology, and have provided 

many important insights regarding the determinants of longevity. 

 

i) L1 arrest 

 If eggs hatch in the absence of food, development arrests and starved L1s can 

survive in a state of diapause for several weeks until conditions improve (Johnson et 

al., 1984). Starved L1s respond rapidly when food becomes available (Baugh et al., 

2009), which likely reflects strong selection for rapid growth when conditions are 

permitting. L1 arrest is, at least in part, regulated by insulin/IGF-1 signalling and the 

FOXO transcription factor DAF-16 (Baugh & Sternberg, 2006). Consistent with the role 

of insulin/IGF-1 signalling and DAF-16 in stress resistance as described in chapter 1, 

starved L1s display increased tolerance to various environmental challenges relative to 

fed L1s (Derry et al., 2001; Baugh & Sternberg, 2006; Weinkove et al., 2006). Baugh 

and colleagues (2009) identified additional signalling pathways and transcription factors 

which are activated during L1 arrest. These include the target-of-rapamycin (TOR) 

pathway and SIR-2.1, both of which are known to interact with insulin signalling and 

DAF-16 (Jia et al., 2004; Berdichevsky et al., 2006), and NHR-49, a key regulator of 

fatty acid metabolism. Importantly, all of these have been implicated in stress 

responses and/or the maintenance of energy homeostasis, and are known to play a 

role in the determination of longevity (Tissenbaum & Guarente, 2001; Vellai et al., 

2003; Van Gilst et al., 2005a).  

 

ii) Dauer formation 

 In response to low food availability, high population density and high 

temperature, larvae can arrest in a morphologically distinct state of diapause known as 

the dauer stage (Cassada & Russell, 1975; Golden & Riddle, 1982; Golden & Riddle, 

1984). Population density is perceived via concentrations of a pheromone which is 

constitutively produced by all worms, and entry into the dauer stage is largely 

determined by the ratio of this pheromone to food availability (Golden & Riddle, 1982). 

The dauer state is a non-feeding alternative to the third larval stage and is specialised 

for endurance in harsh environments. Dauers are highly resistant to various forms of 

stress and can survive for several months in anticipation of more favourable conditions 

(Golden & Riddle, 1984). Fat reserves are stored during entry into the dauer stage and 

metabolism is suppressed to promote long-term survival (Holt & Riddle, 2003). Dauers 

are thought to be analogous to the infective larvae of many parasitic nematodes 

(Burglin et al., 1998; Ogawa et al., 2009), and, though they often appear to be 
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motionless, are likely to be important for dispersal to new food patches (Cassada & 

Russell, 1975). 

 The decision to enter the dauer stage is made early in development and is 

under neuroendocrine control. Mutant analyses have identified 36 „daf‟ genes which 

are involved in dauer formation, including daf-23 which is more often referred to as 

age-1 and is discussed throughout this thesis. Epistatic analyses of these genes have 

revealed that dauer formation is regulated by conserved signal transduction cascades, 

including the insulin / IGF-1 signalling (IIS) pathway (Kimura et al., 1997), a 

transforming growth factor (TGF-β) pathway (Ren et al., 1996), a guanylyl cyclase 

pathway (Birnby et al., 2000) and a steroid hormone pathway (Jia et al., 2002), which 

control the activation of transcription factors, including the aforementioned DAF-16 

(Kimura et al., 1997), and the nuclear hormone receptor DAF-12 (Antebi et al., 2000). 

Prolonged survival is dependent on an additional signalling cascade, known as the 

adenosine monophosphate-activated protein kinase (AMPK) pathway, which down-

regulates lipid hydrolysis in adipose-like tissues and prevents the rapid depletion of 

energy reserves (Narbonne & Roy, 2009). Investigating the molecular basis of dauer 

formation and survival has been a major focus of ageing research and several of the 

genes involved have been implicated in the determination of longevity (reviewed in 

Fielenbach & Antebi, 2008).   

 

iii) Reproductive diapause 

 The adult reproductive diapause state is a form of arrest observed in young 

adults which have been starved during L4 (Angelo & Van Gilst, 2009). Development of 

the first few fertilised embryos arrests within the hermaphrodite uterus and the onset of 

reproduction is delayed until conditions improve. A striking feature of reproductive 

diapause is the apoptotic loss of the germ-line (Angelo & Van Gilst, 2009). A small 

population of germ-line stem cells is maintained from which the germ-line can be 

regenerated when food becomes available. Angelo and Van Gilst (2009) proposed a 

„disposable germ-line‟ hypothesis, whereby autophagy and/or phagocytosis of oocytes 

and meiotic germ cells provide the nutrients necessary for survival and viability during 

diapause. As somatic cells are post-mitotic in adult worms, germ cells are the only cells 

which can provide a source of nutrition whilst retaining the ability to regenerate. Angelo 

and Van Gilst (2009) demonstrated that the nuclear hormone receptor gene nhr-49 is 

required for entry into reproductive diapause. This transcription factor is known to be a 

key regulator of glucose and fat metabolism during starvation and, as previously 

mentioned, has a role in L1 arrest and longevity (Van Gilst et al., 2005a).  
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iv) Facultative vivipary  

 When gravid hermaphrodites are deprived of food, eggs are retained until they 

hatch internally. Larvae consume the parents‟ body contents and, depending on the 

number developing within a single adult, can use the resources to reach the dauer 

stage (Chen & Caswell-Chen, 2003). This switch from ovipary (egg laying) to facultative 

vivipary (internal hatching) is commonly referred to as „bagging‟ because the adult body 

resembles a bag of worms. Internal hatching has been implicated in the evolution of 

lifespan in C. elegans hermaphrodites (McCulloch & Gems, 2003a). This is because 

internal hatching represents an important sex-specific source of mortality which may 

increase the age-specific rate of decline in the efficiency of selection in hermaphrodites 

relative to males. Consistent with this, males from a variety of wild populations are 

longer lived than isogenic hermaphrodites (McCulloch & Gems, 2003a). 

 

 
 

Figure 2.2: Plasticity in response to nutritional and environmental stress. Solid black 

arrows represent lifecycle stages in favourable conditions whilst broken red arrows represent 

forms of plasticity observed in harsh environments (adapted from Angelo & Gilst, 2009). 

 

2.23 Plasticity in quantitative traits 

 C. elegans demonstrate continuous plasticity in quantitative traits such as the 

age at maturity, body size at maturity, fecundity and lifespan, in response to nutrient 

availability, temperature and other environmental variables (Goranson et al., 2005; 

Gutteling et al., 2007; Harvey et al., 2007, 2008). If genetic variation in the phenotypes 

expressed in different conditions exists in nature, plasticity in quantitative traits can 

have an important role in the evolution of life-history strategies in heterogeneous 

environments. This is discussed further in section 2.32. 
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2.3 Beyond the laboratory 

 

 Very little is known about C. elegans natural ecology. Though a few attempts 

have been made to simulate natural conditions (Goranson et al., 2005; Van Voorhies et 

al., 2005) and to observe populations in nature (Barrière & Félix, 2007), C. elegans is 

typically observed in benign laboratory conditions. Whilst this does not necessarily 

present a problem for disciplines concerned with highly conserved developmental 

processes, it can become an issue for studies of a more ecological nature. 

Furthermore, as the expression and/or function of many genes may be context 

dependent, this lack of knowledge presents a hindrance to ongoing attempts to 

annotate the genome. As most of the major laboratory model organisms are not well 

characterised in their natural environments (Peňa-Castillo & Hughes, 2007), this issue 

is not specific to C. elegans.  

 

2.31 Natural habitat and diet 

 Wild strains have been isolated from anthropogenic habitats such as garden 

soil, compost heaps and mushroom beds, in geographic locations as diverse as 

Hawaii, the UK, continental Europe, North America, South Africa, Japan and Australia 

(Barrière & Félix, 2005a). They have also been collected from terrestrial arthropods 

and gastropods, suggesting either a phoretic (aiding dispersal) or necromenic 

(providing a food source following death of the host) association or both (Baird, 1999). 

Worms have generally been isolated from nature in the dauer stage (Barrière & Félix, 

2005b), consistent with the role of dauers in dispersal and indicative of „boom and bust‟ 

population dynamics. Free-living nematodes such as C. elegans are likely to be 

susceptible to a variety of extrinsic hazards which may have an impact upon the 

dynamics of selection across the lifespan. These include predation by micro-

invertebrate predators and nematode trapping fungi, pathogen infections, intra and 

interspecific competition for limited resources, and frequent fluctuations in abiotic 

conditions, such as temperature, oxygen concentrations and humidity (Neher, 2010).  

 In the laboratory C. elegans is typically provided with Escherichia coli as a food 

source. However, this bacterium does not constitute a natural food source and many 

different species of bacteria are likely to be encountered by C. elegans in nature. Whilst 

some of these will be nutritious and readily digested, others may not support rapid 

growth and many could be pathogenic. The nutritional content and/or pathogenicity of 

different species of bacteria are likely to have an impact upon C. elegans life history. 

Consistent with this, Coolon et al. (2009) recently demonstated that several genes 

involved in metabolism and immunity, which are differentially regulated in response to 
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feeding upon different soil bacteria, have functional significance in the determination of 

life-history traits in specific bacterial environments.    

 

2.32 Intra-specific variation  

 It has been suggested that the standard wild type stain, N2, may inadequately 

represent a natural population because it passed through a large number of 

generations in laboratory conditions before a freezing protocol was developed (Reznick 

& Gershon, 1999; Gershon & Gershon, 2002; Chen et al., 2005). Being subject to 

inadvertent selection and genetic drift, and passing through numerous population 

bottlenecks, it is plausible that some genetic and phenotypic characteristics may have 

diverged from their original states. This may be particularly true of life-history traits as 

these are influenced by many genes and, therefore, constitute a large mutational target 

(Delattre and Felix, 2001). Indeed, there is evidence to suggest that the N2 lifespan, 

though variable among different laboratories, is short relative to other wild isolates 

(Gems & Riddle, 2000). Making use of the available wild isolates provides the means to 

extrapolate information regarding intra-specific variation in genetic and phenotypic 

characteristics. 

 Numerous phenotypic characteristics vary among wild isolate genotypes. For 

instance, wild populations exhibit either „solitary‟ or „social‟ foraging behaviours, in 

which individuals either forage in isolation or cluster together in groups around the 

edges of the bacterial food source (De Bono & Bargmann, 1998). Several aspects 

related to mating also differ among wild populations. The proportion of males varies 

(Teotónio et al., 2006), as does male mating efficiency (Wegewitz et al., 2008), and 

males of some wild strains deposit a copulatory plug onto the hermaphrodite vulva after 

mating (Hodgkin & Doniach, 1997). Age at maturity, lifetime fecundity and adult body 

size differ among wild isolates in constant laboratory conditions (Hodgkin & Doniach, 

1997). There is also considerable variation in lifespan among different wild genotypes 

(McCulloch & Gems, 2003b). These disparities may reflect upon different selection 

pressures in the ecological conditions to which the wild populations were adapted in 

nature. Genotype-by-environment interactions have also been observed in several 

ecologically relevant traits. For example, different genotypes display variation in 

pathogen resistance (Schulenberg & Ewbank, 2004; Schulenberg & Muller, 2004), in 

the propensity to form dauers when exposed to different concentrations of dauer 

pheromone (Viney et al., 2003), and in life history responses to different temperatures 

(Harvey et al., 2007). Using recombinant inbred lines (RILs) derived from crosses 

between different wild isolate genotypes, the molecular basis of such plasticity has 
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been examined through the identification of quantitative trait loci (QTL) (Shook et al., 

1996; Kammenga et al., 2007; Gutteling et al., 2007; Harvey et al., 2008). 

 Considerable genetic and genomic variation exists among wild isolate 

genotypes. For instance, some wild genotypes have a high copy number of active Tc1 

transposons present in the genome relative to others (Hodgkin & Doniach, 1997). Wild 

isolates also vary in susceptibility to RNAi inactivation of genes expressed in the germ-

line (Tijsterman et al., 2002), genome size (Maydan et al., 2007), and copy number of 

over 5% of genes in the genome (Maydan et al., 2010). Furthermore, some strains 

display evidence of genetic incompatibility (Dolgin et al., 2007; Seidel et al., 2008). 

 

2.33 Population structure 

 The same mitochondrial (Denver et al., 2003), microsatellite (Sivarsundar & 

Hey, 2003) and AFLP (Barrière & Felix, 2005b) variants have been found in North 

America and in Europe. Such patterns of variation are indicative of metapopulation 

dynamics, characterised by low global diversity, long distance migrations and frequent 

local extinctions (Sivasundar & Hey, 2003; Cutter, 2005). Given the anthropogenic 

habitat of C. elegans wild isolates, it is concievable that dispersal between continents 

may be facilitated by human activity. Outbreeding frequencies are determined by the 

rate of spontaneous production of males and male mating efficiency, and can be 

investigated by examining levels of heterozygosity or linkage disequilibrium. Though 

males occur at a very low frequency in laboratory conditions, the rate at which 

outbreeding occurs in nature remains unclear. Depending upon the methods and 

populations used for analyses, estimates have ranged from 0.1% (Barrière & Félix, 

2005b) to 20% (Sivasundar & Hey, 2005). Morran et al. (2009) recently suggested that 

outcrossing may be facultative in some environmental conditions because, in some 

wild isolates, the proportion of males can be increased substantially following periods 

of starvation. Furthermore, C. elegans appear to exhibit plasticity in sex determination 

as, in specific bacterial environments, hermaphrodite offspring derived from a mating 

event can lose an X chromosome during the L1 stage and subsequently develop into 

males (Prahlad et al., 2003). 

 

2.4 C. elegans in ageing research 

 

 C. elegans is often considered to be the premier model system used in ageing 

research (Johnson, 2008). In addition to the rapid generation time and short lifespan, 

this is, at least in part, due to the many single gene mutations which increase lifespan 

that have been identified and characterized in this organism. C. elegans exhibit several 

http://www.wormbook.org/chapters/www_ecolCaenorhabditis/ecolCaenorhabditis.html
http://www.wormbook.org/chapters/www_ecolCaenorhabditis/ecolCaenorhabditis.html
http://www.wormbook.org/chapters/www_ecolCaenorhabditis/ecolCaenorhabditis.html
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phenotypes associated with senescence which are observed in other organisms, 

including humans. For example, feeding and mobility decline (Klass, 1977), muscle 

mass degenerates (Herndon et al., 2002), an ageing pigment known as lipofuscin 

accumulates (Klass, 1977) and susceptibility to infection increases (Herndon et al., 

2002). C. elegans also display symptoms of reproductive senescence which occur 

even when sperm is not limited (Hughes et al., 2006). 

 Although C. elegans has proved to be an excellent system for examining the 

molecular determinants of longevity, there are disadvantages associated with using this 

model in ageing research. The most apparent of these are the poor understanding of C. 

elegans ecology and concurrent lack of knowledge regarding the selective pressures 

which are relevant in natural populations. There is also a distinct lack of information 

regarding how genes which modulate longevity influence fitness in ecologically relevant 

conditions. Due to the major emphasis on a single wild type genotype, there is currently 

no information available concerning natural variation in candidate genes involved in the 

determination of longevity. It is thus unclear how epistatic interactions between these 

genes and other components of the genome may influence lifespan in different wild 

isolate strains. This may be important as studies in Drosophila have indicated that the 

effects of single gene mutations upon longevity may be genotype and/or sex dependent 

(Spencer et al., 2003; Burger & Promislow, 2004). Despite these issues, the value in 

obtaining data from different wild populations is increasingly being acknowledged. For 

instance, there has recently been a study investigating the life extending effects of 

caloric restriction in wild isolate genotypes (Sutphin & Kaeberlein, 2008), and efforts 

are currently underway to obtain complete genome sequences for a variety of wild 

strains.  

  

2.5 Standard methods in C. elegans research 

 

This section describes some basic procedures which are relevant for chapters 3-6. 

 

2.51 Obtaining and storing strains 

 The Caenorhabditis Genetics Centre (CGC) at the University of Minnesota 

stores an abundance of different genotypes, including the standard C. elegans wild 

type (N2) and mutant derivatives of this strain, transformed lines expressing reporters 

fused to genes of interest, wild isolates from various geographic origins, and a variety 

of closely related Caenorhabditis species. Any of these can be requested by email and 

received by post within 2-3 weeks.  
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 Strains were stored at -80°C and in liquid nitrogen. To prepare strains for 

freezing, populations had to be recently starved. Populations were washed off agar 

plates in 1 ml of M9 buffer solution (3g KH2PO4, 6g Na2HPO4, 5g NaCl, 1 ml MgSO4, 

diluted to 1 litre with H2O and sterilised by autoclaving) and centrifuged briefly at 

2000rpm. After removing 0.5 ml of the supernatant, 0.5 ml of Liquid Freezing Solution 

(129 ml 0.05 M K2HPO4, 871 ml 0.05 M KH2PO4, 5.85g NaCl, pH 6 + 30% glycerol (v/v) 

and sterilised by autoclaving) was added and the mixture was vortexed (Stiernagle, 

1999). Aliquots of 0.2 ml were then placed into two cryovial tubes and three standard 

Eppendorf tubes. These were placed in styrofoam boxes to prevent rapid freezing and 

were maintained at -80°C overnight. The following day, one Eppendorf tube was 

removed and the worms were defrosted to ensure that some had survived. Remaining 

eppendorf tubes were then transferred to permanent locations at -80°C and cryovial 

tubes were placed in liquid nitrogen. 

 

2.52 Preparation of NGM agar plates and the food source  

 Worms were maintained on Nematode Growth Medium (NGM) agar in petri 

dishes which were 6cm in diameter. To prepare the NGM, 3g NaCl, 17g agar and 2.5g 

peptone were dissolved in H2O and diluted to 1 litre then autoclaved. After cooling to 

approximately 55°C, 1 ml 1 M MgSO4, 1 ml 1M CaCl, 1 ml 5 mg/ml cholesterol in 

ethanol, and 25 ml 1 M KPO4 buffer were added and the solution was mixed 

(Stiernagle, 1999). For the experiments described in this thesis, 50 mg/l streptomycin 

and 10 mg/l nystatin were also added to the NGM before plates were poured.  

 Worms were provided with E. coli as a food source. Though the OP50 strain is 

most frequently used, the experiments described in this thesis were performed using a 

streptomycin and nystatin resistant strain known as HB101, which was kindly provided 

by Dr Jolanta Polanowska. It was chosen over OP50 due to problems with 

contamination during multi-generation experiments involving large populations. Brooks 

et al. (2009) recently demonstrated that HB101 has higher levels of monounsaturated 

fatty acids and higher carbohydrate content than OP50, but that the different diets have 

no significant effects upon lifespan. However, wild type worms grow more rapidly on 

HB101 than OP50 (Soukas et al., 2009). Stocks of HB101 were maintained on LB agar 

plates (10g Bacto-tryptone, 5g Bacto-yeast, 5g NaCL and 15g agar, diluted to 1 litre 

with H2O then autoclaved) at 4°C (Stiernagle, 1999). Liquid media stocks were 

obtained by inoculating L Broth (10g Bacto-tryptone, 5g Bacto-yeast and 5g NaCl, 

diluted to 1 litre with H2O and brought to pH 7.0 using 1 M NaOH then autoclaved) with 

a few colonies of HB101, and incubating at 37°C overnight (Stiernagle, 1999). These 

solutions were used to seed NGM agar plates, with added streptomycin and nystatin, 
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by pipetting approximately 200 µl onto the centre of the agar and allowing a bacterial 

lawn to grow overnight.  

 

2.53 Observing, culturing and transferring C. elegans 

 For the experiments described in this thesis, worms were typically observed 

using a stereomicroscope with a zoom magnification system. Strains were maintained 

at 20°C except when stated otherwise. A platinum „worm pick‟ which was shaped into a 

microspatula and was regularly sterilised in a Bunsen burner flame was used to 

transfer C. elegans from one agar plate to another.  

   

2.54 Age synchronisation 

 Age-synchronised larvae were typically obtained by transferring large numbers 

of eggs, from well fed young adults, onto new seeded plates and returning after 1-2 

hours to collect the hatched L1s. Whilst transferring the eggs, care was taken to avoid 

picking up young larvae which had already hatched. Larvae can also be synchronised 

using a bleaching protocol to isolate eggs then allowing L1s to hatch in the absence of 

food (Sulston & Hodgkin 1988).  

 

2.55 Fluorescence microscopy  

Populations were washed off NGM plates in M9 buffer solution and transferred 

to sterile eppendorf tubes. After allowing 1-2 minutes for worms to settle at the bottom 

of the tubes, worms were spotted onto 8-well slides and were paralysed to facilitate 

observations by adding 5mM levamisole. Glass coverslips were placed over each slide. 

Epifluorescence imaging was performed using a Leica DMR HC confocal microscope 

and photographs were taken using a Photometrics CoolSNAP camera and Improvision 

Openlab software.  

 

2.56 Obtaining males and crossing genotypes 

 Males can be easily identified by tail shape due to the presence of posterior 

rays. Males were obtained by exposing young adult hermaphrodites to heat-shock at 

30°C for approximately 6 hours. This treatment increases the likelihood of non-

disjunction of the sex chromosomes and typically 2-5% of the offspring are male 

(Hodgkin, 1999). When large numbers of males were required, several males were 

transferred onto an agar plate containing a small lawn of bacteria, 1-2 cm in diameter, 

and two to three hermaphrodites at the L4 stage. After successful matings, typically 

50% of the offspring in the next generation were male. 
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 Crosses between hermaphrodites and males of different genotypes were 

performed by setting up mating plates with a small lawn of bacteria as described 

above. F1 generations were monitored for the presence of males to determine if mating 

had occurred, then hermaphrodites were transferred onto seperate plates to self-

fertilise. F2 generations contained a mixture of homozygote and heterozygote 

individuals for the locus of interest. When possible, homozygote mutants were 

identified by screening individuals for a particular phenotype (many of the crosses 

performed for experiments in this thesis could be examined by monitoring dauer 

formation at 27ºC) and successful crosses were later confirmed using PCR.  

 

2.57 Single worm PCRs 

 Immediately prior to use, 1 μl of 50 μg/μl proteinase K was added to 100 μl 

Lysis buffer (0.1 M NaCl, 10 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% (w/v) SDS and 1% 

(v/v) β-mercaptoethanol). For each PCR reaction, 2 μl of this solution was then pipetted 

into a 200 μl PCR tube and a single worm was picked into the solution. Worms were 

tapped to the bottom of the PCR tubes then were placed in a freezer at -80°C for 

approximately 30 minutes. Tubes were transferred to a PCR machine and were heated 

to 60°C for 1 hr, then to 95°C for 15 mins to lyse the worms and release the genomic 

DNA. 28 μl of PCR mix (18.95μl distilled H2O, 3μl PCR buffer, 1.2μl MgCl2, 0.6μl of 

each 10 μM dNTP, 1.5μl of each 10pM primer (Integrated DNA Technologies) and 

1.25μl red Taq DNA polymerase) was then added to each tube, giving a total volume of 

30 μl per PCR reaction. PCR reactions were run for 35 cycles with an extension time of 

1 min at 50°C (times and temperatures varied for some reactions). 6μl of each PCR 

product and 6μl of a 1 kb DNA ladder were run on a 1% (w/v) agarose gel (0.55g 

agarose, 55 ml TAE, 3μl 10 mg/ml ethidium bromide) using electrophoresis (~100 volts) 

for 20-30 mins. DNA bands were then viewed under UV light. For deletions it was 

possible to detect the presence of a mutation by comparing band sizes with wild type 

controls. With single base mutations it was necessary to prepare the DNA for 

sequencing. DNA bands were cut out under UV light using a sterile scalpel. PCR 

products were then purified from agarose gels using a PCR Purification Kit (QIAGEN 

Ltd) and the DNA was diluted to appropriate concentrations with distilled H2O and sent 

to the University of Leeds sequencing centre. 

 

2.58 RNAi by feeding 

 RNAi was induced by feeding using clones obtained from the Ahringer library 

(Kamath et al., 2003). Worms were provided with HT115, an IPTG inducible and RNase 

III deficient E. coli strain which has been transformed with the vector L4440 to contain 
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specific C. elegans genome fragments. The bacteria express double-stranded (ds) 

RNA corresponding to the transcript sequence of the gene of interest. Worms provided 

with HT115 containing empty vectors (L4440) were used as negative controls in each 

RNAi experiment. 

 

a) Restriction digests 

 To ensure that the RNAi clones were correct, the presence of specific genomic 

fragments was assessed using restriction digest. After removal from -80C, clones 

were streaked onto LB agar plates (see 2.52) containing 50 μg/ml ampicillin and 12.5 

μg/ml tetracycline and were left to grow overnight at 37C. A single colony was then 

transferred into 3 mls LB solution (see 2.52) containing 50 µg/ml ampicillin and was left 

to grow overnight in an incubator shaker at 37C. Plasmid DNA was extracted using a 

QIAprep Spin Miniprep Kit (QIAGEN Ltd). For each digest, 3 µl of DNA was mixed with 

1.5 µl Bovine Serum Albumin (BSA), 0.5 µl restriction enzyme, 1.5 µl buffer and 8.5 µl 

distilled H2O. Restriction enzymes and corresponding buffers were selected using NEB 

cutter. After incubating for 2-3 hours at 37C, solutions containing the digested 

plasmids were run on a 1% (w/v) agarose gel (see 2.57) with a 1kb DNA ladder using 

electrophoresis (~100 volts) for 20-30 mins. DNA bands were viewed under UV light 

and sizes were assessed to confirm the presence of the appropriate genomic fragment. 

 

b) Peparation of RNAi agar plates  

 RNAi agar was prepared by adding 50 μg/ml ampicillin, 12.5 μg/ml tetracycline 

and 1 mM IPTG to standard NGM (see 2.52). Plates were always poured at least 4 

days before seeding. 

 
c) Feeding protocol  

 Liquid solutions were obtained for each gene by transferring colonies from LB 

agar plates to L Broth (see 2.52) containing 50 μg/ml ampicillin and allowing the 

colonies to grow overnight (fresh solutions were prepared for each batch of plates). 

Plates were then seeded with 400-500 μl of the relevant bacterial solution and left to 

dry overnight. The following day a few young adults were transferred to each plate. To 

minimize the amount of HB101 that was transferred from the original plates, only 

worms which had moved off the bacterial lawn were selected. After several hours these 

worms were removed and their progeny were left to develop for several days (times 

differed according to genotype). When these worms had attained maturity, progeny 

from the next generation were transferred to new RNAi plates seeded with the same 

bacteria and were left to develop before being screened for the relevant phenotype.  
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Chapter 3 – Demographic consequences of increased longevity in 

Caenorhabditis elegans 

 

3.1 Abstract 

 

 Mutations which activate stress responses, reduce caloric intake or impair 

mitochondrial function promote longevity in model organisms ranging from yeast to 

mice. To assess how these processes alter additional components of life history, and 

how variation in age-specific fecundity and survival modify fitness and the dynamics of 

selection, in this study a range of long-lived C. elegans mutants were compared with 

the wild type genotype in favourable growth conditions. Consistent with the antagonistic 

pleiotropy and disposable soma theories of ageing, trade-offs including delayed 

maturity and reduced early fecundity were observed in stress resistant daf-2 mutants 

with reduced insulin/IGF-1 signalling, calorie restricted eat-2 mutants and clk-1 mutants 

with impaired mitochondrial function. Relative to the wild type genotype, these trade-

offs reduced lifetime fitness by 18% in daf-2 mutants, by 30% in eat -2 mutants and by 

37% in clk-1 mutants. In contrast, long-lived, stress resistant age-1 mutants with 

reduced insulin/IGF-1 signalling exhibited similar patterns of growth and reproduction to 

wild type worms and displayed no fitness cost in favourable growth conditions. 

Variation in age-specific survival and fecundity among the different genotypes altered 

additional demographic parameters and the manner in which the intensity of selection 

changes across the lifespan. Whilst selection dynamics in age-1 mutants were similar 

to those observed in wild type worms, the onset of the age-specific decline in selection 

acting upon survival was delayed in the other long lived mutants due to delayed 

maturity. Additionally, selection continued to act until a later age in these genotypes due 

to delayed reproductive senescence. Mutations which promote longevity thus modify 

life-history strategies to different extents depending upon the mechanism involved and 

mutations which increase lifespan via the same mechanism can have dramatically 

different consequences for fitness and the dynamics of selection. 
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3.2 Introduction 

 

 Life-history strategies are subject to physiological constraints and are 

characterised by co-variances among traits which have been optimised to maximise 

fitness in a particular ecological niche (Stearns, 1992; Roff, 2002). By disrupting 

optimal patterns of growth and/or reproduction, interventions which promote longevity 

in model organisms typically incur trade-offs, consistent with the antagonistic pleiotropy 

(Williams, 1957) and disposable soma (Kirkwood, 1977) theories of senescence 

(reviewed in Van Voorhies et al., 2006). Furthermore, life history perturbations, induced 

directly by extending longevity or indirectly via associated trade-offs, are likely to have 

considerable repercussions for the dynamics of selection across the lifespan (Lande, 

1982; Benton & Grant, 1999; Caswell, 2001). There has been a lack of comparative 

studies exploring the life history consequences of disrupting different mechanisms 

which modulate lifespan in model organisms. Consequently, although understanding 

the impacts of life history variation upon fitness and the intensity of selection at a given 

age is fundamental to the evolutionary theories of senescence, it is unclear how 

different processes which are used to increase lifespan modify these parameters.  

 Several genetic, hormetic and pharmacological modifications which promote 

longevity act through mechanisms that appear to have been conserved among distinct 

eukaryotic lineages (Guarente et al., 2008). For instance, numerous single gene 

mutations increase lifespan in a range of model organisms by inappropriately activating 

conserved stress response mechanisms, reducing caloric intake or disrupting 

mitochondrial function (reviewed in Wolff & Dillin, 2006; Kenyon, 2010). Responses to 

environmental stress and/or low food availability are thought to enhance survival during 

harsh conditions by inducing physiological shifts from growth and reproduction to 

somatic maintenance and repair (Sinclair, 2005; Kenyon, 2010). Mutations which 

activate such responses in favourable conditions thus appear to increase lifespan by 

modifying the expression of genes involved in cellular defence and metabolism 

(reviewed in Kenyon, 2010). In accordance with the free radical theory of ageing 

(Harman, 1956), it is conceivable that mutations which disrupt mitochondrial function 

may promote longevity by reducing the production of reactive oxygen species (ROS). 

However, several studies have suggested that this may not be the case (Braeckman et 

al., 1999; Yang et al 2007; Christina et al., 2009). Christina et al. (2009) recently 

demonstrated that several long-lived C. elegans mitochondrial mutants display a 

transcriptional profile analogous to that of the yeast retrograde response (Kirchman et 

al., 1999), which promotes the expression of nuclear genes involved in metabolism and 

protection of somatic molecules and cells (Butow & Avadhani, 2004). Consequently, 
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interventions which activate stress responses, reduce caloric intake or disrupt 

mitochondrial function may all promote longevity by up-regulating the expression of 

genes which reduce the rate at which somatic damage accumulates with age, albeit via 

different mechanisms.  

 In this study, a variety of long-lived C. elegans mutants were selected to 

examine the demographic consequences of increasing longevity via different 

mechanisms. Mutations in daf-2, which encodes the insulin / IGF-1 receptor 

homologue, and age-1, which encodes a phosphatidylinositol 3-kinase catalytic 

subunit, extend lifespan by disrupting insulin / IGF-1 signalling and activating the 

expression of stress response proteins (reviewed in Kenyon, 2010). Mutations in eat-2, 

which encodes a subunit of a ligand-gated ion channel required for stimulation of the 

pharyngeal muscle (McKay et al., 2004), promote longevity by reducing the rate of 

pharyngeal pumping and restricting caloric consumption (Lakowski & Hekimi, 1998). 

Mutations in clk-1, which encodes an enzyme required for the synthesis of ubiquinone, 

an important component of the electron transport chain, increase lifespan by reducing 

mitochondrial function (Wong et al., 1995). Although trade-offs associated with 

increased longevity have been identified in a range of long-lived mutants (reviewed in 

Van Voorhies et al., 2006), the majority of studies have focussed upon single 

components of life history rather than the set of traits which determine fitness (though 

see Walker et al., 2000; Jenkins et al., 2004; Chen et al., 2007). In contrast, this study 

compares a range of traits, including age-specific fecundity, lifetime fecundity, and egg 

size and viability, and uses population projection matrices, or Leslie matrices (Leslie, 

1945), to examine how variation in age-specific schedules of survival and reproduction 

modify fitness and additional demographic properties of populations. Population 

projection matrices are constructed using values obtained from a life-cycle graph, a 

schematic representation of the life-cycle which defines the projection interval (the time 

necessary for a transition from one age or stage to the next), probabilities of survival 

from one age or stage to the next (Px), and the expected number of offspring produced 

at each reproductive age (Fx). In C. elegans, the wild type life-cycle in favourable 

growth conditions is characterised by rapid maturity, high fecundity during a relatively 

short reproductive period and a short lifespan (Figure 3.1a). In contrast, a typical long-

lived mutant life-cycle is characterised by delayed maturity, lower fecundity during a 

prolonged reproductive period and a longer lifespan (Figure 3.1b).  
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Figure 3.1: Life-cycle graphs for wild type worms and long-lived mutants. Life-cycle graphs 

for a) the C. elegans wild type genotype, and b) a typical long-lived mutant maintained in 

favourable conditions at 15ºC. Circles represent age classes in 1 day increments and arrows 

connecting them represent probabilities of survival (Pi) from one age class to the next. Loops to 

the first age class (eggs) represent age-specific fecundities (Fi). These parameters are used to 

construct population projection matrices to examine the demographic consequences of life 

history variation. 
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3.3 Methods and Materials 

 

3.31 Strains and Culture Conditions 

The following genotypes were obtained from the Caenorhabditis Genetics 

Centre: N2 Bristol (wild type), TJ1052: age-1(hx546), CB1370: daf-2(e1370), DA465: 

eat-2(ad465), and MQ130: clk-1(qm30). Strains were cultured on nematode growth 

media (NGM) plates, containing 10 μg/ml nystatin and 50 μg/ml streptomycin, and 

seeded with E. coli (HB101). Strains were cultured and monitored at 15°C because daf-

2(e1370) mutants arrest development at higher temperatures. During life history 

assays, individuals were maintained on separate plates with ad lib food. 

 

3.32 Age specific fecundity and survival 

 Generation times were estimated for each genotype at 15°C by collecting small 

samples of newly hatched larvae then monitoring the time taken until larvae in the next 

generation began to hatch. Young adult hermaphrodites were then obtained for each 

genotype by collecting eggs several days in advance depending on developmental 

rate. Age-synchronised cohorts were initiated for each genotype by transferring as 

many eggs as possible from these young adults onto empty seeded plates and then 

returning after 1-2 hours to collect the newly hatched larvae. Although this method does 

not account for differences among the genotypes in the rate of embryogenesis, it 

provides a convenient approach to age-synchronise cohorts for demographic analyses 

(Chen et al., 2006, 2007; Muschiol et al., 2009).  

 Before reaching maturity, L4 larvae of each genotype were separated onto 

individual NGM plates with ad lib food. To monitor age-specific fecundity, worms were 

then transferred to new seeded plates daily throughout the reproductive period. 

Transferrals began approximately 24 hours after reproduction had commenced in the 

majority of wild type worms. After allowing time for development (times varied 

according to genotype), offspring were placed in a cold room at 4°C ± 0.5°C and were 

stored until time was available for counting. When the number of offspring on a plate 

was relatively low, counting was performed simply by eye. When many offspring were 

present on a plate, worms were removed individually using a platinum pick. Age-

specific adult survival was monitored daily during and after the reproductive period. If 

survival status was not obviously apparent, worms were gently touched with a platinum 

wire in order to stimulate a response. Age-specific fecundity and survival was 

monitored in approximately 50-60 worms per genotype over 9 separate blocks. 

 

 



 

38 

 

3.33 Egg size and viability  

 Egg lengths were measured to determine if genotype had an effect upon per 

offspring investment. Young adults were obtained for each genotype as described in 

3.32. Samples of eggs were then collected from these adults and separated onto plates 

containing 8-10 eggs each. Egg lengths were measured from tip to tip, at a 

magnification of x 40, using a Nikon SMZ1500 stereomicroscope and LENet imaging 

software. After allowing sufficient time for embryogenesis, the proportion of these eggs 

which were viable was determined by counting the number of hatched larvae and the 

number of un-hatched eggs on each plate. The timing of embryogenesis is prolonged 

and highly variable in clk-1(qm30) mutants (Wong et al., 1995). Consequently, clk-1 

mutants were monitored for up to 3 days after eggs had been laid. Egg lengths were 

measured and viability was monitored in approximately 150 embryos per genotype 

over 5 separate blocks. 

 

3.34 Construction of population projection matrices  

 Projection matrices with 1 day increments were constructed for each genotype 

in R version 2.10.1 (R Development Core Team, 2010). Matrices contained mean daily 

fecundity values (Fi) on the first row and daily probabilities of transition (survival) from 

one age class to the next (Pi) on the sub-diagonal. Wong et al. (1995) demonstrated 

that completion of embryogenesis from the 2-cell stage at 15ºC takes 23.6 ± 1.8 hours 

(mean ± standard deviation) in N2 and 46.1 ± 12.1 hours (mean ± standard deviation) 

in clk-1(qm30) mutants. There is no evidence to suggest that the timing of embryonic 

development in age-1, daf-2 and eat-2 mutants differs from wild type worms. 

Embryogenesis was thus assumed to take 1 day in N2, age-1, daf-2 and eat-2 mutants 

and 2 days in clk-1 mutants. As described in 3.32, age-specific fecundities had been 

obtained by counting viable offspring only. The mean number of eggs laid per day was 

thus extrapolated for each genotype by dividing the mean number of viable offspring by 

the mean proportion of viable eggs. The proportion of viable eggs was then placed in 

the P0 element of each projection matrix.  

   

3.35 Eigen analyses  

 The algebraic properties of a projection matrix describe demographic 

parameters of a population or genotype (Caswell, 2001). When a population is growing 

at a stable age distribution, the dominant eigenvalue (λ) provides an estimate of the 

population growth rate in each time step. This is the natural logarithm of the intrinsic 

rate of increase (r = log (λ)), and is typically used as a measure of fitness (Lande, 

1982; Benton & Grant, 1999). The right eigenvector (w) describes the stable age 
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distribution and the left eigenvector (v) corresponds to age-specific reproductive 

values, the expected contributions to future fitness for an individual at a given age 

(Caswell, 2001). These parameters can be used to infer how perturbations in age-

specific survival or fecundity modify fitness. Whilst sensitivities represent how absolute 

changes in age-specific survival or fecundity alter λ (Caswell, 1978), elasticities 

represent how proportional changes in age-specific survival or fecundity alter λ (De 

Kroon et al., 1986). As selection acts upon changes which modify fitness, sensitivity 

and elasticity values are used to quantify the intensity of selection acting upon genes 

which influence survival or fecundity at a specific age (Lande, 1982; Benton & Grant, 

1999). Population growth rates (λ), reproductive values (v) and elasticities of λ to 

changes in age-specific survival and fecundity were calculated for each genotype using 

the eigen.analysis function in the DemogR package (Jones, 2007), and stable age 

distributions (w) were determined using the popbio package (Stubben & Milligan, 2007) 

in R version 2.10.1. To examine variation in population growth rate, populations of each 

genotype were projected for 500 iterations (days). Populations were initially projected 

from a predefined starting population vector (N0), then from a new population vector 

which was derived at each subsequent time step using the equation Nt+1 = MNt, where 

M is the projection matrix and Nt is the population vector at time t (Benton & Grant, 

1996). Each starting population vector contained 100 individuals which were spread 

according to the stable age distribution (SAD) for the relevant genotype. Relative 

proportions in each age-class were obtained from the right eigenvector (w) of an 

eigenanalysis of the projection matrix for each genotype.  

 

3.36 Analysis 

All analyses were performed in R version 2.10.1. 

 

a) Survival analysis  

 Individuals which had crawled off the agar or died from mortality sources other 

than old age (e.g. internal hatching or rupturing of the vulva) were removed from the 

analysis. Parametric survival models were compared using all possible error 

distributions and a Weibull error structure was chosen following examination of the 

plotted residuals. A parametric survival model with a Weibull error structure was then 

fitted to the data using the psm function in the Hmisc and Design packages.  

 

b) Age-specific fecundity and lifetime fecundity 

 Data for age-specific changes in fecundity and lifetime fecundity of individuals 

which had died due to internal hatching were only included in the analysis if death 
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occurred during the last 1-2 days of reproduction. Changes in age-specific fecundity 

were compared among the different genotypes using a mixed-effects model. To 

account for repeated measures on the same individuals over time, the data were first 

defined as a groupedData object. A linear mixed-effect model with random effects 

terms for individual and block was then fitted to the data using the nlme package. A 

linear mixed-effect model was also used to determine how genotype influenced lifetime 

fecundity. To allow for non-independence of individuals observed within the same block, 

replicates were nested within blocks and these were fitted as random effects.  

 

c) Associations between lifespan and lifetime fecundity  

To examine if an association exists between lifespan and lifetime fecundity 

within and among the different genotypes, linear mixed effects models were fitted to the 

data using the nlme package. Block was fitted as a random effect and only data from 

individuals which had not died due to internal hatching were included in the analysis. 

 

d) Egg size and viability 

 To determine how genotype affected egg size, a linear mixed-effect model was 

fitted to the data using the nlme package. Block was fitted as a random factor to correct 

for non-independence of eggs obtained from hermaphrodites within the same 

population. To assess how genotype influenced the proportion of eggs which were 

viable, a generalized linear mixed effect model was fitted to the data using the lmer 

function in the lme4 package. This model was fitted using the laplace approximation 

method (Pinheiro & Bates, 1995) and had a binomial error structure and a logit link 

function. Again, block was fitted as a random factor to account for non-independence of 

eggs obtained from hermaphrodites within the same population. 

 

e) Stage structure 

 Differences among genotypes in the proportions of a population at a stable 

(st)age distribution which are made up by different stages (eggs, larvae, reproductive 

adults and post-reproductive adults) were examined using Chi-squared goodness of fit 

tests. For each long-lived mutant genotype, the observed counts in each stage were 

compared with the wild type (expected) proportions. 
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3.4 Results 

 

3.41 Age-specific survival 

 As expected, survival was prolonged in all of the long-lived mutant genotypes 

compared to the wild type genotype N2 (Figure 3.2). Relative to N2, mean survival 

times were increased by 71 % in age-1 mutants (z = 17.5, p < 0.001), by 69 % in daf-2 

mutants (z = 16.0, p < 0.001), by 45 % in eat-2 mutants (z = 11.4, p < 0.001), and by 50 

% in clk-1 mutants (z = 13.4, p < 0.001). Whilst age-1 and daf-2 mutants were 

considerably longer-lived than eat-2 and clk-1 mutants, survival times of daf-2 mutants 

were not significantly different from age-1 mutants (z = -1.79, p = 0.073), and survival 

times of clk-1 mutants were not significantly different from eat-2 mutants (z = 1.39, p = 

0.165).  
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Figure 3.2: Variation in survival among long-lived mutants and wild type worms. Survival 

curves for wild type worms (N2), and for long-lived age-1 mutants, daf-2 mutants, eat-2 mutants 

and clk-1 mutants. Survival was monitored in approximately 40 replicates per genotype, over 9 

separate blocks, after removal of individuals which had died from causes other than old age. 

 

3.42 Age-specific fecundity schedules 

 Remarkably, age-specific schedules of fecundity did not differ between wild type 

worms (N2) and age-1 mutants (Figures 3.3a and 3.3b). Both genotypes began to 

produce offspring 4 days after hatching and both displayed high fecundity during the 

first 3 days of the reproductive period which peaked 5 days after hatching. However, 
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although the subsequent decline in fecundity occurred at a similar rate in N2 and age-1 

mutants, mean fecundity was slightly higher in age-1 mutants 7 and 8 days after 

hatching (Figure 3.3f). Consequently, whilst schedules of fecundity did not differ 

between the two genotypes, the mean number of offspring produced during the entire 

reproductive period was slightly higher in age-1 mutants (t = 2.27, p = 0.024) (Figure 

3.3f and Table 3.1). Reproduction commenced approximately 5 days after hatching in 

daf-2 mutants and, after rapidly reaching a peak, the daily production of offspring 

declined more gradually than in N2 (t = 9.45, p < 0.001) (Figure 3.3c). However, the 

mean number of offspring produced by daf-2 mutants throughout the reproductive 

period was relatively low compared to N2 (t = -10.88, p < 0.001) (Figure 3.3f and Table 

3.1). Reproduction began 5-6 days after hatching in eat-2 mutants and also peaked 

rapidly then declined more gradually than in N2 (t = 14.61, p < 0.001) (Figure 3.3d). 

Mean lifetime fecundity was extremely low in eat-2 mutants relative to wild type worms 

(t = -25.57, p < 0.001) (Figure 3.3f and Table 3.1). In clk-1 mutants, reproduction 

commenced 6-7 days after hatching and patterns of fecundity throughout the 

reproductive period were considerably different from N2 (t = 16.57, p < 0.001) and the 

other long-lived genotypes (Figure 3.3e). The rate of reproduction increased more 

slowly in clk-1 mutants, and reached a relatively flat peak 8-9 days after hatching 

before declining gradually. This pattern of reproduction can explain the more sigmoidal 

curve in cumulative fecundity observed in clk-1 mutants than in the other genotypes 

(Figure 3.3f). Mean lifetime fecundity was considerably lower in clk-1 mutants than in 

wild type worms (t = -20.34, p < 0.001) (Figure 3.3f and Table 3.1). Despite similarities 

between wild type worms and age-1 mutants, these results suggest that mutations 

which promote longevity in C. elegans are often associated with delayed maturity, 

reduced fecundity across the lifespan and delayed reproductive senescence. However, 

the life history consequences of mutations which increase lifespan clearly differ 

according to the mechanism involved. 
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Figure 3.3: Fecundity schedules and mean cumulative fecundity. Age-specific fecundity 

schedules for a) N2, b) age-1 mutants, c)  daf-2 mutants,  d) eat-2 mutants and e) clk-1 mutants, 

and f) mean cumulative fecundity for N2 (○), and age-1 mutants (∆), daf-2 mutants (+), eat-2 

mutants (x) and clk-1 mutants (◊). Fecundity was monitored in approximately 50 replicates per 

genotype over 9 separate blocks.  
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3.43 Associations between lifespan and lifetime fecundity 

After removing individuals which had died due to internal hatching or additional 

sources of mortality other than old age (10-15 worms per genotype), no significant 

association was observed between lifespan and lifetime fecundity when data for all of 

the genotypes were considered (Figure 3.4). However, this was primarily due to the 

high fecundity and long-lifespan of age-1 mutants because a highly significant negative 

association was observed between lifespan and lifetime fecundity when data from age-

1 mutants had been removed, (t = -5.79, p < 0.001). Within genotypes the association 

between lifespan and fecundity was consistently negative but was not significantly 

different from zero in any strain. 
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Figure 3.4: Associations between lifespan and lifetime fecundity. Lifespan and lifetime 

fecundity were monitored in 30-40 replicates per genotype after removal of individuals which 

had died due to internal hatching. The solid line represents the correlation between lifespan and 

fecundity when all genotypes were considered. As a trade-off between lifespan and fecundity 

became apparent when data for age-1 mutants had been removed, the dashed line represents 

the correlation between lifespan and fecundity when only N2, daf-2 mutants, eat-2 mutants and 

clk-1 mutants were considered.  
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3.44 Egg size and viability 

 Although wild type worms produce a higher number of offspring during the 

reproductive period than daf-2 mutants and clk-1 mutants, investment in terms of size 

per egg is comparatively low. Relative to N2, larger eggs were produced by age-1 

mutants (t = 6.69, p < 0.001), daf-2 mutants (t = 24.80, p < 0.001), and clk-1 mutants (t 

= 17.84, p < 0.001) (Table 3.1). This may suggest that per egg investment is higher in 

these genotypes than in wild type worms. In contrast, egg size did not differ between 

N2 and eat-2 mutants. No differences were observed in the proportion of viable eggs 

produced by wild type, age-1 mutants, daf-2 mutants and eat-2 mutants. However, egg 

viability was considerably lower in clk-1 mutants than in the wild type strain (z = -4.27, p 

< 0.001) (Table 3.1).  

 

Genotype Egg length 

(μm) 

Proportion egg 

viability 

Lifetime 

fecundity 

Fitness (λ) 

mean ± 

S.D 

p* mean ± 

S.D 

p* mean ± 

S.D 

p* absolute relative 

N2 49.99 ± 

3.05 

n/a 

 

0.985 ± 

0.02 

n/a 

 

254.2 ± 

29.0 

n/a 2.51 1 

age-1 52.27 ± 

2.73 

< 0.001 

 

0.976 ± 

0.02 

0.58 

 

268.5 ± 

31.0 

0.024 2.52 1.00 

daf-2 58.53 ± 

3.04 

< 0.001 

 

1.000 ± 

0.00 

0.99 

 

186.4 ± 

38.9 

< 0.001 2.07 0.82 

eat-2 50.33 ± 

2.49 

0.817 

 

0.996 ± 

0.01 

0.97 

 

93.9 ± 

26.7 

< 0.001 1.75 0.70 

clk-1 56.11 ± 

3.73 

< 0.001 

 

0.866 ± 

0.05 

< 0.001 

 

128.0 ± 

38.4 

< 0.001 1.59 0.63 

 

p* = p –value relative to the wild type genotype (N2). 

 

Table 3.1: Variation among genotypes in egg size, egg viability, fecundity and fitness. 

Mean egg lengths (μm) ± standard deviations (S.D), mean proportions of viable eggs ± standard 

deviations (S.D), mean lifetime fecundity ± standard deviations (S.D), and absolute and relative 

fitness values for each genotype. Egg lengths and viabilities were monitored in approximately 

150 eggs per genotype over 5 separate blocks and, after removal of individuals which died early 

during the reproductive period due to internal hatching, lifetime fecundity was monitored in 

approximately 50 individuals over 9 separate blocks. Absolute fitness was calculated as λ, the 

dominant eigenvalue of the projection matrix for each genotype, and relative fitness was 

obtained by dividing absolute values for each genotype by the wild type value. 
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3.45 Fitness and demographic properties of populations 

 Absolute fitness estimates were highest for wild type worms (N2) and age-1 

mutants (λ = 2.51 and 2.52 respectively) and relative fitness did not differ between 

these genotypes (Table 3.1). Consequently, population growth rate was equal for wild 

type and age-1 mutants in favourable conditions (Figure 3.5). Due to prolonged 

development and reduced early fecundity, absolute fitness estimates were considerably 

lower for daf-2 mutants (λ = 2.07), eat-2 mutants (λ = 1.75) and clk-1 mutants (λ = 

1.59), and relative fitness/population growth rate was reduced in each of these 

genotypes compared to the wild type strain (Table 3.1 and Figure 3.5). These results 

imply that fitness costs typically arise in long-lived C. elegans mutants, but that age-1 

mutants display no fitness deficit relative to wild type worms in favourable growth 

conditions.  
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Figure 3.5: Variation among genotypes in population growth rate. Population growth 

(fitness), over 500 days in favourable conditions, for wild type worms (N2), age-1 mutants, daf-2 

mutants, eat-2 mutants and clk-1 mutants. N2 and age-1 mutant populations grow at equal rates 

(overlapping lines). However, growth rates of daf-2 mutant, eat-2 mutant and clk-1 mutant 

populations are considerably reduced relative to these genotypes. 

 

 The proportions of different stages which make up a population growing at a 

stable (st)age distribution were significantly different from the wild type in the eat-2 

(Χ2=19.26, p < 0.001) and clk-1 mutant (Χ2= 45.4, p < 0.001) genotypes (Figure 3.6a). 

In eat-2 mutants this was primarily due to differences in the proportions of eggs and 

larvae, with eggs constituting approximately 40% of a stable population and larvae 
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constituting approximaly 57%, compared to 60% and 35% in the wild type respectively.  

Similar differences were observed in daf-2 mutants, but these were not statistically 

significant. Although the proportion of post-reproductive adults which made up a stable 

(st)age population was extremely low in all of the genotypes, a higher proportion was 

observed in clk-1 mutants, with post-reproductive adults constituting 8.1 x 10-4% 

compared to approximately 1.5x10-6% in the wild type and the other strains. These 

results suggest that trade-offs associated with increased lifespan can modify the 

proportions of each stage in populations growing at a stable distribution, but that 

variation in longevity does not substantially alter the proportions of reproductive and 

post-reproductive adults in the majority of strains.                                                                        
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Figure 3.6: Variation among genotypes in the demographic properties of populations. a) 

Stable stage distributions, b) age-specific reproductive values (v), c) elasticities of λ to changes 

in age-specific survival, and d) elasticities of λ to changes in age-specific fecundity in N2 (○), 

age-1 mutants (∆), daf-2 mutants (+), eat-2 mutants (x) and clk-1 mutants (◊). 
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Whilst reproductive values (v) varied during development and reproduction in a 

similar manner in all of the genotypes, the age at which reproductive values peak and 

the magnitude of the peaks differed among strains (Figure 3.6b). In wild type, age-1 

mutants and daf-2 mutants, the highest values were observed 5 days after hatching 

and correspond to the peak in reproductive output displayed in figure 3.3. In eat-2 

mutant and clk-2 mutants, the peak in reproductive value was delayed until 6 and 9 

days after hatching respectively. Elasticities of λ to changes in age-specific survival 

were highest in all genotypes before reproduction begins; however, elasticity values 

were higher in N2 and age-1 mutants than in the other genotypes during the first 3 

days after hatching (Figure 3.6c). An increase in survival during this time would thus 

have a larger impact upon the fitness of wild type and age-1 mutants than on the 

fitness of any other genotype. Conversely, an increase in survival 5 or 6 days after 

hatching would increase fitness in the other genotypes, particularly in eat-2 and clk-1 

mutants, considerably more than in wild type worms or age-1 mutants. The elasticities 

of λ to changes in age-specific fertility were highest during the beginning of the 

reproductive period for each genotype (Figure 3.6d). Consequently, whilst an increase 

in fertility 5 days after hatching would have the highest impact on the fitness of daf-2 

mutants, an increase on day 8 would have the highest impact on the fitness of clk-1 

mutants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

49 

 

3.5 Discussion 

 

 Mutations which activate stress responses, reduce caloric intake or impair 

mitochondrial function promote longevity in model organisms ranging from yeast to 

mice (Barbieri et al., 2003; Bishop & Guarente, 2007; Christina et al., 2009). To assess 

how mutations which increase lifespan via these different mechanisms alter additional 

components of life history, and how resulting variation in age-specific fecundity and 

survival modify fitness and the dynamics of selection, in this study a variety of long-

lived C. elegans mutants were compared with the wild type genotype using a 

demographic approach. The majority of the long-lived mutants displayed trade-offs 

which reduced fitness to different extents relative to the wild type strain. Furthermore, 

variation in age-specific survival and fecundity among these genotypes altered 

additional demographic parameters and the manner in which the intensity of selection 

changes across the lifespan. However, long-lived age-1 mutants displayed remarkably 

similar patterns of growth and reproduction to wild type worms and had equal fitness in 

favourable growth conditions. 

  Long-lived age-1 mutants and daf-2 mutants with reduced insulin / IGF-1 

signalling displayed similar patterns of age-specific survival. Despite considerable 

variation in schedules of fecundity between these genotypes, this similarity may reflect 

the common mechanism of life extension which is activated in these worms. Long-lived 

eat-2 mutants and clk-1 mutants also displayed similar patterns of age-specific survival. 

Whilst the mechanisms by which eat-2 and clk-1 modulate longevity are distinct from 

the insulin / IGF-1 signalling pathway (Lakowski & Hekimi, 1996, 1998; Houthoofd et 

al., 2003), simultaneous mutations in eat-2 and clk-1 do not have additive effects upon 

lifespan (Lakowski & Hekimi, 1998). It is, therefore, unclear if caloric restriction and clk-

1 mediated mitochondrial dysfunction modify longevity by completely independent 

processes. The lack of distinction in longevity between eat-2 mutants and clk-1 mutants 

may thus reflect similarities in the mechanisms by which lifespan is increased in these 

genotypes. Though a clear negative correlation between lifespan and lifetime fecundity 

was observed among the different genotypes when age-1 mutants were not 

considered, the lack of an association between these traits within individual genotypes 

is consistent with a previous study (Chen et al., 2007). 

 Although age-specific fecundity was similar between wild type worms and age-1 

mutants, mean lifetime fecundity was slightly higher in age-1 mutants. This difference 

appeared to arise because a small number of age-1 mutants displayed comparatively 

high fecundity 7 and 8 days after hatching, suggesting that age-1 mutants exhibit a 

moderate reduction in the rate of reproductive senescence relative to wild type worms. 
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Consistent with this, the insulin/IGF-1 signalling pathway has previously been 

acknowledged as a determinant of reproductive senescence (Hughes et al., 2007). 

Despite this difference, age-1 mutants displayed equal fitness to the wild type genotype 

in favourable growth conditions. Though this anomaly may initially appear to contradict 

evolutionary theory, it has previously been reported that age-1 mutants exhibit fitness 

costs when exposed to nutritional stress (Walker et al., 2000). The relative fitness of 

age-1 mutants in additional environmental conditions which are likely to be ecologically 

relevant is examined in chapters 4, 5 and 7 of this thesis.  

 Relative to wild type worms, maturity was slightly delayed in daf-2 mutants and 

eat-2 mutants and was considerably delayed in clk-1 mutants. Furthermore, early 

fecundity was reduced in all of these genotypes compared to wild type worms. 

Consistent with the antagonistic pleiotropy and disposable soma theories of 

senescence, daf-2, eat-2 and clk-1 mutants, therefore, had considerably lower fitness 

than the wild type genotype in favourable growth conditions. The most severe fitness 

deficit was observed in clk-1 mutants. Although the number of offspring produced by 

these worms throughout the entire reproductive period was higher than in eat-2 

mutants, clk-1 mutants attain maturity at a later age and have lower early fecundity. As 

these traits have a major impact upon the rate of increase of a population (Birch, 1948; 

Roff, 2002), these results exemplify the importance of considering the entire set of traits 

which determine fitness when investigating trade-offs in long-lived mutants. Chen et al. 

(2007) compared the fitness of daf-2 (e1368) mutants and clk-1 (qm30) mutants with 

wild type worms and obtained higher absolute λ values for all three genotypes than in 

this study. However, the parameters that Chen et al. (2007) used to construct projection 

matrices were obtained from variation in age-specific survival and fecundity observed 

at 20ºC. Furthermore, Chen et al. (2007) did not take account of the variation in the 

timing of embryogenesis among the different genotypes and investigated 

consequences of a daf-2 mutant allele which has less severe reproductive defects than 

the one examined in this study (Gems et al., 1998).  

 In a common environment, larger eggs are expected to give rise to higher 

quality offspring (Roff, 2002). Although relationships between the „quality and quantity‟ 

of eggs were not examined within genotypes in this study, there does not appear to be 

a consistent association between egg size and lifetime fecundity or fitness among the 

different genotypes. The increased egg length observed in daf-2 mutants and clk-1 

mutants relative to the wild type is consistent with the larger body sizes observed in 

adults of these genotypes (McCulloch & Gems, 2003b; personal observations). 

Conversely, though lengths of wild type and eat-2 mutant eggs were similar in this 

study and in a previous study (Mörck & Pilon, 2006), adult body lengths in eat-2 
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mutants are reduced by approximately 34% relative to wild type worms (Mörck & Pilon, 

2006).  

 Despite considerable variation in life-history strategies among wild type, age-1 

mutants and clk-1 mutants, populations at a stable age distribution contain similar 

proportions of eggs, larvae and reproductive adults in these genotypes. This may be 

because the rapid growth and high fecundity of wild type worms and age-1 mutants, 

and the prolonged embryogenesis of clk-1 mutants, ensure that a high proportion of 

eggs is present in populations at a stable distribution at any point in time. The lower 

proportion of eggs and the higher proportion of larvae in daf-2 mutant and eat-2 mutant 

populations may reflect the slower rate of post-embryonic development and reduced 

fecundity in these genotypes relative to wild type worms. Though the genotypes display 

considerable variation in post-reproductive longevity, little difference in the proportion of 

post-reproductive adults in stable populations was observed among long-lived age-1, 

daf-2 and eat-2 mutants and the wild type strain.  

 Fisher (1930) proposed that the reproductive value at age x is directly 

proportional to the intensity of selection at age x and argued that both decline beyond 

maturity because individuals become progressively less likely to survive and reproduce 

with increasing age. As described in chapter 1, current understanding of the evolution 

of senescence has been derived from these concepts. However, though Hamilton 

(1966) provided rigorous quantitative support for the decline in selection throughout 

adult life, he demonstrated that reproductive values do not provide an appropriate 

measure of the intensity of selection acting on survival at a particular age. Consistent 

with Hamilton‟s (1966) findings, whilst reproductive values increased during 

development and peaked at the beginning of the reproductive period in each genotype, 

elasticity values indicated that the intensity of selection acting on survival is highest 

before the onset of reproduction then progressively declines until the last age of 

reproduction. These results are intuitive because, in order for an individual to mature 

and contribute offspring to future generations, there must be strong selection acting on 

genes which influence survival during development. Reproductive values followed a 

similar pattern to the elasticities of λ to changes in fertility and thus more accurately 

represent the intensity of selection acting on age-specific fecundity. 

 Though selection acting on survival was most intense during development in all 

genotypes, elasticities of λ to changes in age-specific survival were highest in wild type 

worms and age-1 mutants. As the values represent proportional contributions of 

changes in age-specific survival to fitness, this may be because the reproductive period 

is shorter in these worms than in the other genotypes. Although clk-1 mutants are not 

the longest lived of the genotypes examined in this study, elasticities of λ to changes in 
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age-specific survival indicate that, after the onset of reproduction, the rate of decline in 

selection acting upon survival is slower in these worms than in the other long-lived 

mutants. This is because clk-1 mutants display higher fecundity than any of the other 

genotypes late in life and thus the rate of decline in selection acting on survival is 

reduced because surviving individuals retain the capacity to contribute to fitness at a 

late age. Whilst reproductive values represent age-specific contributions to future 

fitness, elasticities of λ to perturbations in fertility represent proportional contributions of 

fecundity to fitness at each reproductive age. Though reproductive values begin to rise 

during development and elasticities of λ to changes in fertility begin to rise at the onset 

of reproduction, the values of these two parameters are therefore similar in each 

genotype. Elasticities of λ to changes in age-specific fertility indicate that the intensity 

of selection acting on fecundity is highest at the beginning of the reproductive period in 

wild type worms and in age-1, daf-2 and eat-2 mutants. Conversely, in clk-1 mutants 

the intensity of selection reaches a maximum two days after reproduction has 

commenced. This is likely to reflect the slow rate of increase in fecundity at the 

beginning of the reproductive period in these worms. The elasticity values which were 

obtained in this study do not take account of co-variances between different 

components of life history. In reality an increase in one matrix element may have a 

negative impact on another. However, although methods have been developed to 

account for associations between traits (Benton et al., 1995; Van Tienderen, 1995), the 

approach used in this study is useful for making basic inferences regarding selection 

dynamics in the different genotypes. 

 The methods which were used in this study to quantify fitness and additional 

demographic parameters assume constant, unlimited conditions which may not be 

relevant in nature. However, the approach provides a convenient way to make simple 

comparisons among different genotypes in a common environment (Caswell, 2001), 

and has previously been used to examine demographic variation between wild 

populations of C. elegans (Chen et al., 2006) and C. remanei (Diaz et al., 2008), and 

among long-lived C. elegans mutants (Chen et al., 2007). The results in this study 

suggest that in favourable conditions, in which population growth is not constrained and 

age-specific changes in survival and reproduction do not change over time, mutations 

which activate stress responses, reduce caloric consumption and impair mitochondrial 

function reduce fitness to different extents relative to wild type worms. Furthermore, 

disrupting the different mechanisms produces considerable variation in life-history 

strategies which alter additional demographic properties of populations. 
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Chapter 4 – Fitness costs are context dependent in long-lived age-1 

mutants: Part 1 - Thermal stress 

 

4.1 Abstract 

 

 Long-lived mutants typically display trade-offs, consistent with the antagonistic 

pleiotropy and disposable soma theories of ageing, which ultimately reduce lifetime 

fitness. However, though many mutations promote longevity by disrupting mechanisms 

which regulate responses to environmental change, fitness costs have rarely been 

examined in an ecological context. In C. elegans, age-1(hx546) mutants are long-lived 

and stress resistant yet have equal fitness to the wild type genotype when maintained 

in favourable growth conditions. Fitness costs arise when these mutants are exposed 

to repeated cycles of starvation. In this study, fitness was compared between age-1 

mutants and wild type worms by monitoring temporal changes in genotype frequencies 

when mixed genotype populations, maintained at low densities with excess food or at 

high densities with limited food, were periodically exposed to mild (27°C) or intense 

(30°C) thermal stress. Although fitness costs were observed in age-1 mutants when 

populations were maintained at high densities regardless of temperature, remarkably 

frequencies of age-1 mutants rapidly increased in low density populations which were 

periodically exposed to intense thermal stress. This clearly demonstrates that age-1 

mutants can have a selective advantage over the wild type genotype in harsh 

environments if excess food is available. Consistent with this, spatial and temporal 

distributions of the FOXO transcription factor DAF-16 indicate that protection of somatic 

cells is enhanced in age-1 mutants before, during and after exposure to thermal stress, 

and age-1 mutants displayed higher survival and fecundity and matured more rapidly 

than wild type worms after exposure to high temperatures when food was not limited. 

This is the first study to demonstrate that a long-lived, laboratory-derived mutant can 

have higher fitness than a wild type genotype under specific environmental conditions. 

The results exemplify the importance of investigating trade-offs in an ecological 

context, and imply that harsh environments may lead to the fixation of stress resistant 

alleles and indirectly promote the evolution of increased longevity.  
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4.2 Introduction 

 

 Numerous genes have been identified which modulate longevity in model 

organisms ranging from yeast to mice (reviewed in Kenyon, 2005; Partridge, 2010). 

Loss-of-function mutations in many of these genes appear to promote longevity by 

activating highly conserved stress response mechanisms which enhance the protection 

of somatic molecules and cells (reviewed in Kenyon, 2005). Consequently, genetic 

manipulations which increase lifespan are often associated with a concurrent increase 

in resistance to environmental stress. Long-lived mutants typically display trade-offs 

consistent with the antagonistic pleiotropy (Williams, 1957) and disposable soma 

theories of ageing (Kirkwood, 1977), but these have rarely been examined in an 

ecologically relevant context. It thus remains unclear how mutations which promote 

longevity and increase stress resistance modify fitness in heterogeneous environments 

which are representative of natural conditions. This is remarkable given that many 

mutations which extend lifespan disrupt mechanisms which are involved in responding 

to environmental change (reviewed in Kenyon, 2005). 

 The antagonistic pleiotropy and disposable soma theories of senescence are 

based upon the principle that traits are under stronger selection early in life than late in 

life (Medawar, 1952; Williams, 1957; Hamilton, 1966), and predict that trade-offs should 

arise which favour early fitness components over longevity. Both entail the fundamental 

concept of life history theory that life-history strategies are subject to physiological 

constraints and are characterised by co-variances among traits which have been 

optimised to maximise fitness in a particular ecological niche (Stearns, 1992; Roff, 

2002). However, the nature and magnitude of co-variances among life-history traits can 

differ depending upon the context in which they are observed (Sgro & Hoffman, 2004). 

In some cases, trade-offs which are apparent in harsh environments may be obscured 

in more favourable conditions (Reznick et al., 2000; Tessier et al., 2000). For instance, 

Messina and Fry (2003) demonstrated that a trade-off between fecundity and longevity 

arises in the seed beetle, Callosobruchus maculatus, only when individuals are 

nutritionally stressed. Though the majority of long-lived mutants display distinct trade-

offs in benign laboratory environments, some appear to have equal fitness to wild type 

genotypes when maintained in such conditions (Rogina et al., 2000; Walker et al., 

2000; Marden, et al., 2003; Scheckhuber et al., 2007). These mutants typically display 

trade-offs when resources are limited (Walker et al., 2000; Marden et al., 2003), but it is 

unclear how fitness is modified by additional ecological factors. 

Throughout evolutionary history, mutations which promote longevity in model 

organisms may have arisen in natural populations. As these are expected to disrupt 
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optimal life-history strategies, such mutations would likely confer a disadvantage under 

at least some environmental conditions and eventually be purged by selection (Van 

Voorhies et al., 2006). With the possible exception of species which exhibit grand 

maternal care, selection does not act upon post reproductive lifespan (Williams, 1957; 

Hamilton, 1966; Lahdenperä et al., 2004). However, given the association between 

longevity and stress resistance, it has been suggested that selection may indirectly 

influence post reproductive lifespan by acting upon genetic variation in the ability to 

tolerate harsh conditions (Parsons, 1995, 2002; Kenyon, 2010). Consistent with this, 

artificial selection for resistance to environmental stress has been used successfully to 

increase lifespan in Drosophila melanogaster (Rose, 1992) and in the butterfly Bicyclus 

anynana (Pijpe et al., 2008). This implies that mutations which promote stress 

resistance and longevity may not necessarily incur fitness costs under all 

environmental conditions. 

 In C. elegans, the conserved insulin / IGF-1 signalling (IIS) pathway modulates 

development, metabolism, stress resistance and longevity by regulating the cellular 

localisation of the FOXO transcription factor DAF-16. In conditions which are 

favourable for development and reproduction, the IIS pathway negatively regulates 

DAF-16 (Lin et al., 1997; Ogg et al., 1997), and the transcription factor is distributed 

evenly throughout somatic cells (Henderson & Johnson, 2001). In harsh environments, 

insulin signalling is disrupted and DAF-16 molecules accumulate within nuclei and 

promote the expression of genes involved in cellular defence and metabolism 

(Henderson & Johnson, 2001; Lin et al., 2001; Lee et al., 2003; Murphy et al., 2003; 

McElwee et al., 2003). The IIS pathway is involved in regulating entry into the long-

lived, stress resistant dauer stage, a facultative state of diapause formed in response to 

low food availability, high population density and/or high temperatures (Golden & 

Riddle, 1984), which is dependent upon daf-16 (Kenyon et al., 1993). Transitions in 

insulin signalling thus appear to generate physiological shifts which either promote 

growth and reproduction or enhance protection of somatic cells (Henderson & Johnson, 

2001). Mutants of the IIS pathway are long lived and display increased resistance to 

various forms of environmental stress (reviewed in Kenyon, 2005), perhaps due to 

partial activation of the dauer program throughout life (Kenyon et al., 1993; McElwee et 

al., 2004, 2006). Consistent with this, whilst severe loss-of-function mutations induce 

constitutive dauer arrest, many long-lived IIS mutants form dauers at temperatures 

which are permissive for wild type development and reproduction (Malone et al., 1996; 

Gems et al., 1998). At temperatures which do not induce dauer arrest, IIS mutants 

typically display other trade-offs, such as delayed maturity and/or low fecundity which 
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reduce fitness relative to wild type worms (Tissenbaum & Ruvkun, 1998; Gems et al., 

1998; Jenkins et al., 2004).  

Mutations in the age-1 gene, which encodes a phosphatidylinositol 3-kinase 

(PI3K) that constitutes a central component of the IIS pathway, increase lifespan by up 

to 80% (Friedman & Johnson, 1988). Remarkably, age-1(hx546) mutants have equal 

fitness to wild type worms when excess food is available (Walker et al., 2000). 

However, fitness costs arise when these mutants are exposed to repeated cycles of 

starvation (Walker et al., 2000). As age-1 mutants exhibit increased resistance to 

challenges such as high temperatures (Lithgow et al., 1994, 1995) and oxidative stress 

(Larsen, 1993; Vanfleteren 1993), it is conceivable that exposure to additional forms of 

stress may also alter fitness relative to wild type worms. However, the manner in which 

fitness could be modified is unclear. Whilst Gershon & Gershon (2002) predicted that 

exposure to additional stresses may reduce fitness in age-1 mutants further than 

starvation conditions alone, Kenyon (2005) noted that wild type worms may not always 

have a selective advantage as age-1 mutants are more likely to survive during periods 

of stress.  

In this study, fitness was compared between age-1 mutants and wild type 

worms by monitoring temporal changes in genotype frequencies when mixed genotype 

populations of different density were exposed to either mild or intense thermal stress. 

As C. elegans have been isolated from temperate and tropical regions throughout the 

world (Barrière & Félix, 2005a), thermal stress is likely to present an important 

selection pressure in wild populations. Whilst low density populations were always 

maintained with excess food, high density populations were maintained in more 

ecologically relevant conditions in which worms had to compete for limited resources. 

To determine why observed differences in fitness arose between the two genotypes in 

each condition, post stress survival, times to maturity and fecundity were monitored in 

each genotype, and spatial and temporal distributions of a DAF-16::GFP fusion protein 

were compared during and after exposure to thermal stress. This study therefore uses 

an integrative approach to assess how a laboratory generated mutation which extends 

lifespan and confers increased resistance to environmental stress modifies fitness in 

different ecological conditions.  
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4.3 Methods  

 

4.31 Strains and Culture Conditions  

 The following genotypes were obtained from the Caenorhabditis Genetics 

Centre: N2 Bristol (wild type), TJ1052: age-1(hx546) and TJ356: N2; zIs356 [daf-

16p::daf-16::gfp; rol-6(su1006)]. The latter strain carries an integrated daf-16::gfp 

translational fusion construct, in which GFP is fused to the last predicted amino acid of 

the DAF-16a2 isoform (Henderson & Jonson, 2001). Expression of the DAF-16::GFP 

fusion protein is driven by 6 kb upstream of the daf-16 gene and is sufficient to restore 

a wild type phenotype in daf-16(mu84) null mutants. To obtain the age-1(hx546); zIs356 

[daf-16p::daf-16::gfp; rol-6(su1006)] genotype, age-1(hx546) mutant males were 

crossed with young adult hermaphrodites of the TJ356 strain as described in chapter 2. 

After allowing F1 hermaphrodites to self-fertilise, successful crosses were initially 

identified by scoring F2 and F3 progeny for dauer formation at 27°C, and for a roller 

locomotion phenotype resulting from the rol-6(su1006) mutation. The presence of the 

age-1(hx546) non-synonymous substitution (c→t, causing amino acid change P→S) 

was later confirmed by PCR and automated DNA sequencing, using the primer 

sequences 5‟ CCAGTATTATGCCTGCTTCA and 3‟ TGCGTACGGGTTCAAACAGC, as 

described in chapter 2. Strains were cultured on nematode growth media (NGM) plates, 

containing 10 μg/ml nystatin and 50 μg/ml streptomycin, seeded with E. coli (HB101). 

Strains were maintained at 20°C except when stated otherwise.  

 

4.32 Laboratory selection experiments. 

 To establish if changes in fitness induced by exposure to thermal stress differ 

between wild type worms and age-1 mutants, mixed genotype populations were either 

maintained at the control temperature (20°C) or periodically exposed to mild (27°C) or 

intense (30°C) heat shock treatments, and genotype frequencies were monitored over 

time. To determine if observed differences were dependent upon nutritional status 

and/or an interaction between temperature and nutritional status, populations were kept 

either at low densities, with excess food, or at high densities, representing more 

ecologically realistic conditions where food was limited. 

 

a) Preparation and maintenance of mixed genotype populations 

Age-synchronised worms were obtained by transferring eggs from well fed young 

adults onto empty seeded plates and then returning after 1-2 hours to collect the newly 

hatched larvae. When these had reached the fourth larval stage (L4), mixed genotype 

populations were established by transferring 2 individuals of each genotype on to each 
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NGM plate (24 populations were prepared on each occasion in two separate blocks). 

Half of the replicate populations were selected for low density treatments and half for 

high density treatments. To maintain the required densities, populations were washed 

off the NGM plates, in 500μl M9 buffer solution, and transferred to new seeded plates 

every second day. Low densities were maintained by transferring approximately one 

fifth of each original population in 100μl M9 buffer solution, and high densities were 

maintained by transferring the entire populations. For low density populations this 

procedure began on day 3, before food became limited, and for high density 

populations it began on day 5, when food had become limited or had been depleted. 

After transferrals populations were briefly left to dry in an extractor cabinet.  

To monitor the occurrence of mating between the two genotypes, populations 

were intermittently examined for the presence of males. These arose at a very low 

frequency, even in populations which had been periodically exposed to thermal stress, 

and mating was not considered to influence the results. 

.  

b) Stress treatments 

 In each block, 4 low density and 4 high density replicate populations were 

allocated to each temperature treatment. Whilst control populations were constantly 

maintained at 20ºC, stressed populations were placed in Sanyo incubators at either 

27ºC or 30ºC for 24 hours on days 6, 12 and 18. 

 

c) Genotype frequencies 

To monitor changes in genotype frequencies, approximately 50 eggs were 

collected from each population on days 6, 12 and 18, before stress treatments 

commenced, and on day 24. To ensure that sufficient numbers of eggs were available 

in the high density populations, eggs were always collected less than 24 hours after 

populations had been transferred to a new food source. Eggs were placed onto seeded 

NGM plates then were transferred to 27°C to develop for 3 days. Whilst age-1 mutants 

arrest as dauers at 27°C, wild type develop into adults at this temperature (Malone et 

al., 1996). The frequency of each genotype in the populations could thus be 

determined by counting the number of dauers and adults on each plate. Eggs of known 

genotype were also placed at 27°C as positive controls. On a few occasions early in 

the project a small proportion of these controls did not arrest or mature as expected 

and the experiments were terminated. This problem was not encountered after a 

different, and likely more reliable, incubator became available for use.  
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4.33 Post-stress survival, times to maturity and fecundity 

 To determine why potential differences in fitness arose between the genotypes 

in each condition, post-stress survival, post-stress times to maturity and post-stress 

fecundity were compared after well fed and starved larvae had been maintained at 

20°C or stressed at 27°C or 30°C for 24 hours. Whilst fed larvae were stressed during 

either the first or third larval stage (L1s or L3s), starved larvae were stressed as either 

arrested L1s or dauers. To obtain fed L1s, larvae were age-synchronised, as described 

in 4.32a, then separated onto seeded NGM plates, containing approximately 20 

individuals each, immediately before stress treatments commenced. To obtain fed L3s, 

this procedure was performed 24 hours in advance. Arrested L1s and dauers were 

obtained from high density populations which had been starved for approximately 24 

hours before stress treatments were implemented. As worms are awkward to transfer 

in the absence of bacteria, entire populations were stressed or maintained at 20°C. 

Immediately after the 24 hour stress period, arrested L1s and dauers were selected at 

random and separated, according to temperature treatment and stage, onto seeded 

NGM plates containing approximately 20 individuals each. Whilst post-stress survival 

and times to maturity were monitored in 5 separate blocks, post-stress fecundity was 

examined in 3 separate blocks. 

 

a) Post-stress survival 

 Survival status was examined after the stress period then intermittently until 

maturity (worms which matured were considered to have survived even if they later 

died as young adults). If survival status was unclear, worms were gently touched with a 

platinum wire to stimulate a response. 

 

b) Post-stress times to maturity 

 Before reaching maturity, surviving larvae were separated onto individual plates 

and developmental stage was monitored regularly until late L4. To compare maturity 

times, individuals were subsequently examined every 1-2 hours until reproduction 

commenced (worms were considered to have matured when the first egg had been 

laid). Worms which had matured during periods when they could not be monitored 

were removed from the analysis. These occurrences were minimised by performing 

late evening and early morning checks when necessary and, to ensure that sufficient 

data were obtained for each genotype, treatment and stage, different blocks 

commenced at different times of day. 
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c) Post-stress fecundity 

 To monitor post-stress fecundity, adults were transferred regularly to new 

seeded plates until reproduction had ceased (to facilitate counting, transferral 

frequency varied depending upon the rate at which eggs were being laid). After 

allowing 1-2 days for development at 20°C, plates containing offspring were placed in a 

cold room at 4°C ± 0.5°C and were stored at this temperature until time was available 

for counting. Offspring were counted soon after removal from the cold room (prolonged 

periods at 4°C ± 0.5°C reduce the rate of movement). When the number of offspring on 

a plate was relatively low, counting was performed simply by eye. When many offspring 

were present on a plate, worms were removed individually using a platinum pick.  

 

4.34 Spatial and temporal expression of DAF-16::GFP   

 To examine how changes in the activity of DAF-16 contribute to the observed 

phenotypes in each condition, spatial and temporal distributions of a DAF-16::GFP 

fusion protein were compared between fed and starved TJ356 and age-1(hx546); 

zIs356 [daf-16p::daf-16::gfp; rol-6(su1006)] L1s, during and after exposure to thermal 

stress, using methods described in chapter 2. DAF-16::GFP localisation was 

categorised from 1-4, where 1 represents a uniform distribution throughout cells and 2, 

3 and 4 represent increasingly nuclear distributions (see 4.43 for examples of each 

category).  

 Several low density populations, which had been maintained with excess food, 

and several high density populations, which had been starved for approximately 24 

hours, were obtained for each genotype. As multiple populations were required at each 

temperature, these were divided onto additional plates as necessary (low density 

populations were divided onto seeded plates whilst high density populations were 

divided onto un-seeded plates). Immediately before temperature treatments were 

imposed, DAF-16::GFP localisation was recorded in approximately 40 L1s from low 

density populations and 40 arrested L1s from high density populations for each 

genotype. For each genotype and density, 4-5 populations were then either maintained 

at 20°C or placed at 27°C or 30°C for 24 hours. DAF-16::GFP localisation was 

recorded as above for each genotype, density and treatment after 6 hours and 24 

hours. After the 24 hour stress period, populations were washed off their original plates, 

in 500μl M9 buffer solution, and were transferred to new seeded plates. To prevent high 

density populations from becoming re-starved only a proportion of each of these 

populations was transferred, in 100ml M9 buffer solution. After plates had dried in an 

extractor cabinet they were placed at 20°C. DAF-16::GFP localisation was then scored 
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as above after 6 hours and 24 hours recovery. Observations were recorded under 

these conditions in three separate blocks. 

 

4.35 Analysis 

All analyses were performed in R version 2.10.1. 

 

a) Laboratory selection experiments  

 To account for variation in sample size among populations, the analysis was 

performed on the binomial count data (numbers of each genotype in each population) 

rather than genotype frequencies. A generalised linear mixed effects model (GLMM) 

with a binomial error distribution and a logit link function was fitted to the data using the 

penalised quasi-likelihood (PQL) method (Breslow & Clayton, 1993) in the nlme library. 

The model was fitted using PQL to allow an auto-correlation function to be included to 

account for repeated measures on the same populations over time. The model 

contained a random effects term for block and all explanatory variables (day, 

temperature and density) and their interactions.  

 

b) Post-stress survival, times to maturity and fecundity 

 Differences in survival at 30°C were compared between genotypes and 

between fed L1s and L3s using a generalized linear model (GLM) with a quasi-binomial 

error distribution and a logit link function. The model was fitted using a quasi-binomial 

error distribution because the data were under-dispersed. After removal of non-

significant terms (stage and an interaction between genotype and stage), the minimum 

adequate model contained only genotype as an explanatory variable. 

 As post-stress times to maturity were dependent upon the stage which had 

been attained before stress treatments commenced, each stage was analysed 

separately. Times were compared between genotypes and among temperature 

treatments with generalised linear mixed effects models. These models, which were 

fitted using the penalised quasi-likelihood (PQL) method, had gamma error distributions 

and random effects terms to account for variation among blocks.  

 Post-stress fecundity was compared between genotypes and among stages 

and treatments using a linear mixed effects model. This model was used to account for 

variation in sample sizes and random effects of block and contained all explanatory 

variables (genotype, stage and temperature) and their interactions. 
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c) DAF-16 localisation  

 Cellular distributions of DAF-16::GFP were compared between genotypes and 

among treatments before and during exposure to stress (0 hours, 6 hours stress, 24 

hours stress), and during recovery from stress (24 hours stress, 6 hours recovery, 24 

hours recovery), using ordinal multinomial continuation-ratio logit models (Agresti, 

2002; Thompson, 2009). These models were fitted using the VGAM library (Yee & Wild, 

1996) and took account of the ordering in the categorical response (i.e. 1 < 2 < 3 < 4). 

Continuation-ratio logit models were used to determine the likelihood of continuing past 

a certain category level given that that category has been reached in the first place. 

Increased nuclear localisation of DAF-16::GFP was modelled before and during stress 

periods using the forward argument and translocation of DAF-16::GFP out of the 

nucleus during recovery from stress was modelled using the reverse argument, which 

fits the corresponding logits in reverse order (i.e. 4 < 3 < 2 < 1). Minimal adequate 

models were obtained based upon AIC values. The minimal model used to compare 

DAF-16::GFP distributions before and during exposure to stress contained all 

explanatory variables and interactions except for a four way interaction between time, 

genotype, treatment and density, and a three way interaction between genotype, 

treatment and density. The minimal model for recovery from stress contained all 

explanatory variables and interactions except for a four way interaction between time, 

genotype, treatment and density, and three way interactions between genotype, 

treatment and density, time, genotype and density, and time, genotype and treatment. 

When certain categories were not displayed by one or both genotypes in a particular 

density, or following a particular thermal treatment, it was not possible to obtain 

parameters to describe all of the observed category transitions. These situations are 

described within parenthesis in 4.43. P-values were obtained using likelihood ratio tests 

to compare between models following sequential removal of explanatory variables and 

interactions. 
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4.4 Results 

 

4.41 Fitness costs are context dependent in age-1 mutants. 

 In low density populations which had been maintained at 20°C, genotype 

frequencies remained relatively constant over time (Figure 4.1a). However, in high 

density populations which had been maintained at 20°C, the frequency of age-1(hx546) 

mutants declined over time relative to in low density populations (t = -17.25, p < 0.001, 

based upon binomial count data rather than frequencies), from 0.5 to 0.17 ± 0.04 

(mean ± standard deviation) by day 24 (Figure 4.1b). These results clearly indicate that 

there is a fitness cost associated with the age-1(hx546) mutant allele when populations 

are maintained in putatively resource limited conditions at 20°C.  

 Although age-1 mutant larvae arrest as dauers at 27°C when food is available 

whilst wild type larvae do not, frequencies of age-1 mutants in low density populations 

which had been periodically exposed to this temperature did not differ over time relative 

to controls maintained at 20°C (Figure 4.1c). This suggests that life-history strategies 

may also be modified in wild type worms under these conditions. In high density 

populations which had been stressed at 27°C, frequencies of age-1 mutants did not 

differ from those observed in high density control populations (Figure 4.1d). This is 

perhaps because larvae arrest development in both genotypes when resources are 

limited regardless of temperature. 

 Remarkably, in low density populations which had been periodically stressed at 

30°C, frequencies of age-1 mutants increased considerably over time relative to in low 

density populations which had not been stressed (t = 12.69, p < 0.001), from 0.5 to 

0.90 ± 0.06 (mean ± standard deviation) by day 24 (Figure 4.1e). However, in high 

density populations which had been periodically stressed at 30°C the frequencies of 

age-1 mutants did not differ from high density controls (Figure 4.1f). These results 

suggest that age-1 mutants can have a selective advantage over wild type worms when 

populations are periodically exposed to intense thermal stress if resources are 

abundant. However, exposure to thermal stress does not modify the fitness cost 

observed in age-1 mutants when populations are maintained in resource limited 

conditions. 
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Figure 4.1: Temporal changes in age-1(hx546) frequencies. Plots represent age-1(hx546) 

frequencies relative to wild type in low density (a, c and e) and high density (b, d and f) 

populations maintained at 20°C (a and b) or periodically stressed at 27°C (c and d) or 30°C (e 

and f). Red arrows indicate days on which stress treatments were implemented and coloured 

lines represent replicate populations (4 populations were exposed to each treatment in 2 

separate blocks). 
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4.42 Thermotolerance in age-1 mutants is dependent upon nutritional status  

 To determine why fitness differences arise between the two genotypes in each 

condition, post stress survival, times to maturity and fecundity were examined in each 

genotype. No mortality was observed in either genotype when fed larvae, arrested L1s 

or dauers had been maintained at 20°C or stressed at 27°C. Survival was reduced in 

both genotypes when fed larvae had been stressed at 30°C. However, the proportion of 

individuals which survived was considerably higher in age-1 mutants than in wild type 

worms (F = 197.68, p < 0.001) under these conditions (Figure 4.2). Remarkably, no 

differences in survival were observed between the two genotypes when starved larvae 

had been stressed at 30°C (Figure 4.2). These results indicate that the age-1(hx546) 

mutant allele may only enhance resistance to thermal stress when food is available.  
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Figure 4.2: Survival following exposure to thermal stress. Bar plots represent the mean 

proportion of individuals, from 5 separate blocks, which survived after being stressed as L1s, 

L3s, arrested L1s (Arr. L1s) or dauers at 30°C. Error bars represent standard errors of the 

means. Survival was monitored in approximately 100 individuals per genotype, treatment and 

stage. 

 

 When fed larvae or arrested L1s had been maintained at 20°C, no differences 

were observed between genotypes in times to maturity (Figures 4.3a and 4.3b). 

However, times to maturity were considerably prolonged in age-1 mutants relative to 

wild type worms (t = -26.79, p < 0.001) after larvae had been maintained in the dauer 

stage at 20°C (Figure 4.3b). This difference may explain why fitness costs arise in age-
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1 mutants in resource limited conditions. Intermittent observations after food had been 

provided indicated that this was clearly due to a delay in exit from the dauer stage in 

age-1 mutants. Times to maturity were also delayed in age-1 mutants relative to wild 

type worms (t = -20.6, p < 0.001) after fed L1s had been stressed at 27°C for 24 hours 

(Figure 4.3a). This discrepancy is likely to have arisen because age-1 larvae arrest as 

dauers at 27°C. Though wild type worms develop into adults at 27°C, after exposure to 

this temperature maturity was slightly delayed compared to wild type controls which 

had been maintained at 20°C (t = -5.34,  p < 0.001). No differences in times to maturity 

were observed between the two genotypes when fed L3s or arrested L1s had been 

stressed at 27°C (Figure 4.3a). Although maturity was slightly delayed in both 

genotypes under these conditions relative to controls maintained at 20°C, these 

differences were not significant. When dauers had been stressed at 27°C, age-1 

mutants again matured considerably later than wild type worms after food became 

available. 

 Relative to controls which had been maintained at 20°C, times to maturity were 

substantially delayed in both genotypes after fed L1s and L3s had been stressed at 

30°C (Figure 4.3a). However, though times were highly variable in both genotypes, 

age-1 mutants consistently attained maturity more rapidly than wild type worms after 

exposure to this temperature (L1s: t = 8.04, p <  0.001; L3s: t = 8.88, p < 0.001). 

Remarkably, no differences in times to maturity were observed between wild type and 

age-1 mutants that had been stressed at 30°C as arrested L1s (Figure 4.3b). Whilst 

wild type worms which had been stressed at 30°C as dauers again matured more 

rapidly than age-1 mutants, maturity times were not significantly different from those 

observed at 20°C (Figure 4.3b). Consistent with the survival data described above, 

these results suggest that age-1 mutants may display increased resistance to high 

temperatures only when food is not limited. 

 Although individuals which had arrested as L1s or dauers had been starved for 

approximately 48 hours, remarkably no differences in fecundity were observed 

between genotypes or among stages after worms had been maintained at 20°C 

(Figures 4.3c and 4.3d). However, post-stress fecundity was considerably higher in 

age-1 mutants than in wild type worms (t = 17.07, p < 0.001) when larvae had been 

stressed at 27°C as fed L1s (Figure 4.3c). This is perhaps because age-1 mutants had 

arrested as dauers under these conditions and were thus more protected against the 

damaging effects of high temperatures. Post-stress fecundity was extremely low in both 

genotypes after worms had been stressed at 27°C as fed L3s. However, no significant 

difference between age-1 mutants and wild type worms was observed (Figure 4.3c). 
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Similarly, no differences in fecundity were observed between the two genotypes after 

worms had been stressed at 27°C as either arrested L1s or dauers.  
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Figure 4.3: Post-stress times to maturity and fecundity. Plots represent mean times to 

maturity, from 5 separate blocks, in fed (a) and starved (b) larvae, and mean fecundity, from 3 

separate blocks, in fed (c) and starved (d) larvae which had been maintained at 20°C or 

stressed at 27°C or 30°C for 24 hours. Error bars represent standard deviations of the means. 

Times to maturity were monitored in 80-100 individuals per genotype, stage and treatment, and 

lifetime fecundity was monitored in approximately 50 individuals per genotype, stage and 

treatment. In both cases the number of replicates was lower for fed wild type worms which had 

been stressed at 30°C during L1 or L3 due to mortality. 
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 Though fecundity was dramatically reduced in both genotypes after fed L1s had 

been exposed to 30°C (Figure 4.3c), age-1 mutants produced a larger number of viable 

offspring than wild type worms (t = 4.80, p < 0.001). However, no differences were 

observed between the two genotypes when worms were exposed to 30°C as fed L3s 

(Figure 4.3c). Relative to controls which had been maintained at 20°C, fecundity was 

slightly reduced in both genotypes after worms had been stressed at 30°C as either 

arrested L1s or dauers; however, no significant differences were observed between the 

two genotypes in these conditions (Figure 4.3d). Although age-1 mutants displayed 

similar reductions in fecundity to wild type worms after being exposed to either mild or 

intense thermal stress as fed L3s, the differences observed between the two genotypes 

are broadly congruent with the suggestion that age-1 mutants may only display 

increased resistance to thermal stress when food is available.  

 

4.43 DAF-16 activity protects age-1 mutants during and after thermal stress. 

 Spatial distributions of a DAF-16::GFP fusion protein were categorised on a  

continuum from 1 to 4, where 1 represents a uniform distribution throughout cells and 

2, 3 and 4 represent increasingly nuclear distributions (Figure 4.4). In L1s that had 

been maintained at 20°C with excess food, DAF-16::GFP was mainly distributed 

throughout somatic cells in wild type, but was more nuclear localised in age-1 mutants 

(no fed wild type displayed categories 3 or 4; categories 1-2: t = 13.62, p < 0.001) 

(Figures 4.5a and 4.5d). Relative to fed L1s, an increase in nuclear localisation was 

observed after 24 hours in starvation conditions in wild type L1s (no fed wild type 

displayed categories 3 or 4; categories 1-2: t =13.66, p < 0.001) and in age-1 mutant 

L1s (no starved age-1 mutants displayed category 1; categories 2-3: t =14.85, 

categories 3-4: t = 9.02, p < 0.001) (Figures 4.5g and 4.5j, time 0). However, nuclear 

localisation remained more intense in age-1 mutants under these conditions (no 

starved age-1 mutants displayed category 1; categories 2-3: t = 9.65, categories 3-4: t 

= 4.71, p < 0.001). Whilst transitions in cellular distributions of DAF-16::GFP were 

similar in the two genotypes during prolonged starvation (Figures 4.5g and 4.5j, times 6 

and 24), DAF-16::GFP distributions appeared to reverse more rapidly in wild type 

worms than in age-1 mutants after food had been provided (Figures 4.5g and 4.5j, 

times 6R and 24R). However, the recovery model described in 4.35c was not sensitive 

enough to demonstrate this response. 

Although the proportion of fed L1s which displayed slight nuclear localisation of 

DAF-16::GFP increased when wild type were stressed at 27°C (no fed wild type 

displayed categories 3 or 4 at either 20°C or 27°C; categories 1-2: t = 2.74, p < 0.001), 

a more dramatic transition towards intense nuclear localisation was observed in age-1 
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mutants under these conditions (no age-1 mutants displayed category 1 at 27°C; 

categories 2-3: t = 8.00, categories 3-4: t = 3.31,  p < 0.001) (Figures 4.5b and 4.5e, 

times 6 and 24). This difference may underlie the constitutive dauer arrest observed in 

age-1 mutants at 27°C. Furthermore, whilst wild type DAF-16::GFP distributions had 

returned to those observed in control conditions after 6 hours recovery at 20°C, in age-

1 mutants this response was delayed until after 24 hours recovery (Figures 4.5b and 

4.5e, times 6R and 24R). However, the recovery model described in 4.35c was not 

sensitive enough to reveal this response. Remarkably, in starved L1s which had been 

stressed at 27°C, no significant differences in cellular distributions of DAF-16::GFP 

were observed in either genotype relative to starved L1s which had been maintained at 

20°C. 

When fed L1s were stressed at 30°C, the proportion of individuals which 

displayed nuclear localisation of DAF-16::GFP increased dramatically in both wild type 

worms (no wild type displayed categories 3 or 4 at 20°C; categories 1-2: t = 4.17, 

categories 2-3: t = 1.43, p < 0.001) and age-1 mutants (no age-1 mutants displayed 

category 1 or 2 at 30°C; categories 2-3: t = 5.42, categories 3-4: t = 4.56,  p < 0.001), 

and nuclear localisation remained intense in both genotypes during the stress period 

(Figures 4.5c and 4.5f, times 6 and 24). However, DAF-16::GFP distributions appeared 

to reverse more rapidly in wild type than in age-1 mutants after removal from the stress. 

However, the recovery model described in 4.35c was not sensitive enough to 

demonstrate this response. In starved L1s which had been stressed at 30°C no 

differences were observed in either genotype relative to starved L1s maintained at 

20°C. Though spatial and temporal distributions of DAF-16::GFP differ between the two 

genotypes in starvation conditions, these results suggest that neither genotype 

responds to high temperatures via DAF-16 when worms are nutritionally stressed. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Cellular distributions of a DAF-16::GFP fusion protein. From left to right photos 

represent categories 1 (uniform distribution), 2, 3 and 4 (nuclear localisation). 
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Figure 4.5: Effects of genotype and treatment on DAF-16::GFP localisation. DAF-16::GFP 

is more nuclear localised in age-1 mutants than in wild type worms when food is available (a 

and d) and in starvation conditions (g and j) at 20°C. When food is available, exposure to 27°C 

induces intense nuclear localisation of DAF-16::GFP in age-1 mutants (e) and exposure to 30°C 

induces intense nuclear localisation of DAF-16::GFP in wild type worms (c) and in age-1 

mutants (f). However, exposure to high temperatures during starvation does not considerably 

alter DAF-16::GFP distributions in either genotype relative to starved worms maintained at 20°C 

(g-l). During recovery from starvation and/or exposure to stress, DAF-16::GFP distributions 

appeared to reverse more rapidly in wild type worms than in age-1 mutants. Bar plots represent 

the mean proportion of individuals, from 3 separate blocks, which displayed categories 1-4 of 

DAF-16::GFP localisation before stress treatments were implemented (0 hrs), during stress 

treatments (6 and 24 hrs) and after removal from stress and/or after food had been provided 

(6R and 24R hrs). A-c represent fed wild type L1s, d-f represent fed age-1 mutant L1s, g-i 

represent starved wild type L1s and j-l represent starved age-1 mutant L1s which had been 

maintained at 20°C (a, d, g and j), stressed at 27°C (b, e, h and k) or stressed at 30°C (c, f, i 

and l). Error bars represent standard errors of the means. DAF-16::GFP localisation patterns 

were scored in approximately 120 fed and starved L1s per genotype, treatment and time. The 

number of replicates was lower for fed wild type L1s which had been stressed at 30°C due to 

mortality.  
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4.5 Discussion 

 

In this study an integrative approach was used to examine how increased 

longevity and resistance to environmental stress can modify fitness in ecologically 

relevant conditions. Whilst fitness costs consistently arise when age-1 mutants are 

exposed to nutritional stress, I have demonstrated that the age-1(hx546) mutant allele 

can confer a selective advantage if populations encounter periods of intense thermal 

stress when excess food is available. This result, which has not previously been 

demonstrated for any long-lived mutant, does not refute the antagonistic pleiotropy and 

disposable soma theories of senescence. Instead it implies that, given a specific 

ecological niche, mutations which promote longevity could be selected and maintained 

in wild populations and an optimal life history strategy which is characterised by long 

life and an ability to tolerate harsh environments may evolve. 

As previously demonstrated by Walker et al. (2000), age-1 mutants had equal 

fitness to wild type worms when populations were maintained in favourable growth 

conditions. Consistent with this, no differences were observed between the two 

genotypes in survival to adulthood, age at maturity or lifetime fecundity in these 

conditions. However, cellular distributions of DAF-16::GFP clearly indicate that the age-

1(hx546) allele induces constitutive expression of genes involved in somatic 

maintenance and repair. As the two genotypes appear to invest equally in growth and 

reproduction, this raises the possibility that wild type worms may store metabolic 

resources that are unused in favourable growth conditions, or that age-1 mutants are 

more efficient at converting food into energy. When populations were maintained at 

high densities with limited access to food, age-1 mutants displayed reduced fitness 

relative to wild type worms. This has also been previously reported (Walker et al., 

2000), and indicates that the age-1(hx546) mutant allele disrupts the optimal response 

to nutritional stress. This is perhaps because times to maturity were considerably 

prolonged in age-1 mutants after worms had been maintained as dauers. C. elegans 

has typically been isolated from nature in the dauer stage (Barrière & Felix, 2005b), 

suggesting that resource limited conditions and/or high population densities are 

frequently encountered in nature. If the fitness costs observed in age-1 mutants 

primarily arise due to the delay in exit from the dauer stage, this may explain why the 

hx546 mutant allele has not been found in wild populations.   

 Nuclear localisation of DAF-16::GFP is induced in wild type worms when 

starvation conditions are imposed (Henderson & Johnson, 2001). However, Weinkove 

et al. (2006) demonstrated that DAF-16::GFP translocates to the cytoplasm after 

prolonged starvation in wild type worms but remains nuclear localised in age-1 
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mutants. Consistent with this, a considerable proportion of starved wild type L1s did not 

display nuclear localisation of DAF-16::GFP when observed after 24 hours in starvation 

conditions, and nuclear localisation of DAF-16::GFP was considerably more intense in 

age-1 mutants throughout the starvation period. Weinkove et al., (2006) proposed that 

the wild type response may prevent excessive expenditure of resources on somatic 

maintenance and repair during prolonged periods of starvation, and permit the 

retention of energy reserves for development and/or reproduction when conditions 

improve. They also suggested that the disruption of this response may explain why 

age-1 mutants display reduced fitness when exposed to starvation conditions. It is 

possible that prolonged nuclear distribution of DAF-16::GFP both during starvation and 

after a food source becomes available may explain why exit from the dauer stage is 

delayed in age-1 mutants. 

Remarkably, no differences in fecundity were observed in either genotype after 

starved worms had arrested in the L1 diapause stage or as dauers relative to worms 

which had unlimited access to food throughout development. This is consistent with 

previous studies (Kim & Paik, 2008; Morran et al., 2009), and could imply that no trade-

off arises between fecundity and increased investment in somatic maintenance and 

repair during these states of diapause. However, this may reflect upon the relatively 

brief duration of the starvation period. Indeed, Kim and Paik (2008) demonstrated that 

fecundity declines with increased time spent in the dauer stage, but is not altered when 

dauer arrest has been prolonged only for a few days. It remains possible that a trade-

off may become apparent in worms which arrested as L1s or dauers if less favourable 

conditions are encountered during adulthood. 

 Although age-1 mutants arrest as dauers at 27°C, no differences in fitness were 

observed between the two genotypes when low density populations were periodically 

exposed to this temperature. This may be because population growth rate is reduced to 

a similar extent in each genotype, due to low fecundity in wild type worms and to 

arrested development in age-1 mutants, when larvae were exposed to 27°C early in 

development. It is conceivable that a difference in fitness may have arisen between the 

two genotypes if populations had been stressed at 27°C for prolonged periods of time. 

Whilst all age-1 mutants would eventually arrest as dauers or become post-

reproductive, the low fecundity of wild type worms would ensure slow but positive 

population growth. It has previously been demonstrated that hermaphrodite fecundity 

declines in wild type worms when growth temperatures exceed 24°C (Hirsh et al., 

1976). Harvey and Viney (2007) demonstrated that, at 25°C, this may be primarily due 

to a reduction in the number of viable self-sperm. As hermaphrodites produce sperm 

during the fourth larval stage and larvae which had been placed at 27°C as L3s would 
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have reached this stage during the 24 hour stress period, the lack of distinction in post-

stress fecundity between wild type worms and age-1 mutants in these conditions may 

be because high temperatures damage sperm in both genotypes. A high proportion of 

fed age-1 mutant L1s displayed intense nuclear localisation of DAF-16::GFP at 27°C, 

but an increase in nuclear localisation was observed in only a small proportion of wild 

type worms under these conditions. This is consistent with a previously study 

(Henderson & Johnson, 2001), and may explain why age-1 mutant larvae arrest as 

dauers at 27°C. Several studies have reported that wild type larvae occasionally arrest 

as dauers at 27°C (Ailion & Thomas, 2000; Morley & Morimoto, 2004; Lee et al., 2009). 

However, Ailion and Thomas (2000) demonstrated that wild type worms rapidly exit the 

dauer stage at this temperature and continue developing into mature adults.  

In low density populations which had been periodically stressed at 30°C, age-1 

mutants clearly displayed higher fitness than wild type worms. Consistent with the 

ecological stress theory of ageing (Parsons, 1995, 2002), this implies that if sufficient 

genetic variation exists in populations which frequently encounter harsh conditions, an 

optimal life history strategy may evolve which is characterised by long life and an ability 

to tolerate environmental stress. Thermal stress and other environmental challenges 

present important selection pressures acting upon life-history strategies in nature 

(Hoffman & Hercus, 2000), and variation in stress resistance has been associated with 

differences in longevity among wild populations of D. melanogaster (Nevo et al., 1998), 

the nematode Heterorhabditis bacteriophora (Grewal et al., 2002) and the gypsy moth 

Lymantria dispar (Lazarevic et al., 2007), and among closely related Caenorhabditis 

species (Amrit et al., 2010). This is the first study to demonstrate that a mutation which 

promotes longevity can confer a selective advantage over a wild type genotype under 

certain environmental conditions. Scheckhuber et al. (2007) claimed that a mutation 

which extends lifespan in Podospora anserine and Saccaryomyces cerevisiae 

increases fitness in both of these organisms. However, their conclusion was based 

upon differences in the replicative capacities of old cells observed in benign laboratory 

conditions. Given that early life-history traits have a greater impact upon population 

growth rates than those expressed late in life, it is not clear if the differences observed 

by Scheckhuber et al. (2007) would in fact increase the relative fitness of these long-

lived mutants in any environmental condition.  

The higher fitness of age-1 mutants may be principally due to the previously 

reported increase in survival during exposure to intense thermal stress (Lithgow et al., 

1994, 1995). However, age-1 mutants also attained maturity more rapidly than wild type 

worms, and post-stress fecundity was moderately higher in age-1 mutants than in wild 

type when worms had been stressed as L1s. Intense nuclear localisation of DAF-
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16::GFP was induced in age-1 mutants and in wild type worms at 30°C, suggesting that 

stress response proteins are up-regulated in both genotypes under these conditions. 

However, Walker et al. (2001) demonstrated that higher levels of the heat-shock protein 

HSP-16 accumulate in age-1 mutants than in wild type worms during exposure to high 

temperatures. Furthermore, the age-1(hx546) mutant allele clearly promotes the 

expression of genes involved in somatic maintenance and repair in control conditions, 

and nuclear localisation of DAF-16::GFP appeared to be prolonged relative to wild type 

worms after removal from the stress. As DAF-16 target genes are thus likely to be up-

regulated before, during and after exposure to high temperatures, fitness differences 

may arise between the genotypes because the increased activity of heat-shock 

proteins/molecular chaperones and other stress response proteins alleviate symptoms 

associated with thermal stress in age-1 mutants. Consequently, these worms are more 

able to survive and to resume development and/or reproduction when conditions 

improve. 

 The relative fitness of age-1 mutants in high density populations which were 

periodically exposed to 27°C or 30°C did not differ from controls which had been 

maintained at 20°C. Whilst considerable differences in post-stress survival, 

developmental rate and fecundity were observed between age-1 mutants and wild type 

worms which had been stressed when food was available, differences observed in 

these traits when larvae had been starved prior to and during the stress period were 

similar to those observed between starved controls maintained at 20°C. Furthermore, 

cellular distributions of DAF-16::GFP in starved L1s during and after exposure to 

thermal stress did not differ considerably in either genotype relative to controls which 

had been maintained at 20°C. These results suggest that the discrepancy between the 

two genotypes in resistance to high temperatures does not exist under starvation 

conditions. The long-lived, stress-resistant phenotype of IIS mutants is thought to arise 

due to partial activation of the dauer expression profile throughout life (Kenyon et al., 

1993; McElwee et al., 2004). Consequently, the lack of distinction between the two 

genotypes when larvae were stressed as dauers may be because the up-regulation of 

DAF-16 target genes is equivalent during this stage. As dauers are highly resistant to 

several forms of stress, including high temperatures (Anderson, 1978), and it has been 

reported that arrested L1s are resistant to at least some forms of stress (Baugh & 

Sternberg, 2006; Weinkove et al., 2006), it could be argued that starvation-induced 

thermotolerance may be specific to these forms of developmental arrest. However, it 

has also been reported that survival at high temperatures is enhanced in wild type 

adults under starvation conditions, and that this is at least partially independent of daf-

16 (Henderson et al., 2006; Steinkraus et al., 2008).  
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It has been suggested that DAF-16 acts as a nutrient sensor which is primarily 

activated during starvation conditions, and that additional transcription factors may be 

more important for responses to other forms of stress (Henderson et al., 2006). Though 

DAF-16 is clearly activated in response to high temperatures when food is available, as 

the cellular distributions of DAF-16::GFP observed in starved larvae did not vary 

substantially in either genotype among the different thermal treatments, the results of 

this study are broadly consistent with this hypothesis. To maintain cellular homeostasis 

following a rapid increase in temperature, cells elicit a highly conserved response 

which is regulated by heat-shock factor-1 (HSF-1) and involves the rapid transcription 

of genes encoding a variety of heat-shock proteins/molecular chaperones (Feder & 

Hoffman, 1999). Remarkably, the C. elegans hsf-1 gene is required for the increased 

lifespan of IIS mutants and for temperature-induced dauer formation in age-1 mutants 

(Hsu et al., 2003; Morley & Morimoto, 2004). This suggests that DAF-16 and HSF-1 

work together to activate the expression of specific genes and indicates that an 

interesting association exists between the heat-shock response and longevity. 

Furthermore, whilst starvation induced thermotolerance is at least partially independent 

of daf-16 (Henderson et al., 2006), the response is dependent upon hsf-1 (Steinkraus 

et al., 2008). This may explain why no differences in resistance to thermal stress were 

observed between age-1 mutants and wild type worms in starvation conditions, and 

why the relative fitness of age-1 mutants in high density populations did not vary 

among thermal treatments.  

Whilst daily and seasonal fluctuations in ambient temperature require short term 

ecological responses, global climate change may necessitate long term evolutionary 

responses. It is possible that adaptive selection in genes involved in signal transduction 

pathways which respond to changes in ambient temperature by regulating the 

expression of molecular chaperones and other stress response proteins may facilitate 

the ability of species to adapt to new climatic conditions. Consistent with this, studies in 

D. melanogaster have identified natural variation in genes encoding components of the 

IIS pathway (Williams et al., 2006; Paaby et al., 2010), and other genes which 

modulate longevity and/or resistance to high temperatures (Krebs & Feder, 1997; 

Schmidt et al., 2000; Bettencourt et al., 2002), which appear to be associated with 

different latitudinal clines. Adaptive selection in such genes may promote transitions in 

optimal life-history strategies that modify longevity in natural populations which 

experience different thermal conditions. Consistent with this, whilst flies from temperate 

regions have rapid development, high fecundity and short life spans, flies from 

equatorial regions display slower development, lower fecundity and increased longevity 

(Edgar, 2006). 
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 Natural populations of C. elegans are likely to experience fluctuations in 

resource availability which either provide opportunities for rapid population growth or 

promote developmental arrest and dispersal. Furthermore, periods of thermal stress of 

equal intensity are unlikely to recur on a predictable temporal scale. The likelihood that 

age-1 mutants would prevail or decline in more stochastic environments is explored 

using population projection matrices in chapter 7. The results of this study provide the 

first demonstration that a long-lived, laboratory-derived mutant can potentially have 

higher fitness than a wild type genotype, and imply that selection acting upon the ability 

to tolerate harsh conditions may indirectly promote the evolution of increased longevity 

in populations which experience periods of intense environmental stress. 
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Chapter 5 – Fitness costs are context dependent in long-lived age-1 

mutants: Part 2 - oxidative stress 

 

5.1 Abstract 

 

 In C. elegans, long-lived age-1(hx546) mutants display increased resistance to 

a variety of environmental challenges, including oxidative stress. These mutants 

display trade-offs in resource limited conditions, but have equal fitness to the wild type 

genotype when food is available, and can have higher fitness when populations are 

exposed to intense thermal stress. In this study, fitness was compared between age-1 

mutants and wild type worms by monitoring temporal changes in genotype frequencies 

when mixed genotype populations of different density were periodically exposed to 

juglone, a superoxide generator which induces oxidative stress. Remarkably, 

frequencies of age-1 mutants increased over time when low density populations which 

had constant access to food were periodically exposed to either 50μM or 100μM 

juglone. Although frequencies of age-1 mutants consistently declined when populations 

were maintained at high densities with limited resources, exposure to 100μM juglone 

reduced the rate at which this occurred. These results demonstrate that age-1 mutants 

can have a selective advantage over the wild type genotype if exposed to oxidative 

stress when resources are abundant, and that exposure to intense oxidative stress can 

reduce the fitness deficit observed in age-1 mutants in resource limited conditions. 

Consistent with this, age-1 mutants displayed higher survival and fecundity and 

matured more rapidly than wild type worms after exposure to oxidative stress except 

when stressed during the dauer stage. Spatial and temporal distributions of the FOXO 

transcription factor DAF-16 suggest that these differences arise because stress 

response proteins, including antioxidant enzymes which degrade reactive oxidants into 

non-reactive compounds, are expressed at higher levels in age-1 mutants than in wild 

type worms before, during and after exposure to oxidative stress. The results in this 

study indicate that age-1 mutants can exhibit higher fitness than wild type worms in a 

range of harsh conditions, and that genetic variation in the ability to tolerate 

environmental challenges may promote the evolution of increased longevity in 

populations which frequently experience periods of oxidative stress. 
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5.2 Introduction 

 

 Free radicals, such as the superoxide (O•
2
-), hydroxyl (OH•) and nitric oxide 

(NO•) radicals, and non-radical oxidants, such as singlet oxygen (1O2) and hydrogen 

peroxide (H2O2), are collectively referred to as reactive oxygen species (ROS). These 

can generate damage in a variety of cellular components, including nucleic acids, 

proteins and lipids. Endogenous ROS are predominantly produced as a by-product of 

mitochondrial metabolism and, to a lesser extent, as a consequence of peroxisome 

metabolism and of certain cytosolic enzyme reactions (Finkel & Holbrook, 2000; 

Thannickal, 2009). ROS can also be generated in response to exogenous factors such 

as ultraviolet (UV) radiation, hyperoxia, industrial pollution, traffic exhaust fumes and 

certain heavy metals, xenobiotics and pesticides (Finkel & Holbrook, 2000; Schröder & 

Krutman, 2005; Van Straalen & Roelofs, 2006). Although certain ROS play an important 

role in cellular processes, such as host defence and signal transduction (Finkel & 

Holbrook, 2000; Thannickal, 2009), the ubiquitous presence of these damaging 

oxidants in aerobic organisms has ensured that cells can generate a range of anti-

oxidant enzymes, including superoxide dismutases (SOD), catalases and glutathione 

peroxidases, which degrade ROS into non-reactive compounds (Finkel & Holbrook, 

2000; Thannickal, 2009).  

 According to the free radical theory of ageing (Harman, 1956), the accumulation 

of oxidative damage to macromolecules constitutes a major mechanism contributing to 

senescence. Consistent with this, certain loss-of-function mutations which promote 

longevity also confer resistance to oxidative stress in C. elegans (Larsen, 1993; 

Vanfleteren, 1993), Drosophila melanogaster (Lin et al., 1998; Clancy et al., 2001) and 

mice (Migliaccio et al., 1999). In C. elegans, the FOXO transcription factor DAF-16 

regulates the expression of a variety of genes encoding antioxidant enzymes and other 

stress response proteins (Lee et al., 2003; Murphy et al., 2003; McElwee et al., 2003, 

2004). DAF-16 also regulates the activities of SKN-1, a transcription factor known to 

play an important role in responding to ROS (Tullet et al., 2008), and SMK-1, a 

transcriptional co-activator required for the expression of DAF-16 target genes involved 

in resistance to oxidative stress (Wolff et al., 2006). As described in chapter 4, DAF-16 

target genes are up-regulated in mutants of the insulin / IGF-1 signalling (IIS) pathway 

(Murphy et al., 2003; McElwee et al., 2004). Consequently, some of these mutants, 

including long-lived age-1(hx546) mutants, display increased resistance to a variety of 

forms of oxidative stress (Larsen, 1993; Vanfleteren, 1993; Duhon et al., 1996; Honda 

& Honda, 1999; Yanase et al., 2002; de Castro et al., 2004; Przybysz et al., 2009). As I 

have previously demonstrated that age-1(hx546) mutants can exhibit higher fitness 
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than the wild type genotype when populations are exposed to high temperatures, it is 

conceivable that the age-1(hx546) mutant allele may also confer a selective advantage 

when populations experience periods of oxidative stress.  

 There are distinctions between responses to thermal stress and ROS which 

make it difficult to predict how relative fitness may be modified in age-1 mutants under 

oxidative stress conditions. Firstly, whilst age-1 mutants are more thermotolerant than 

wild type worms throughout life when food is available (Lithgow et al., 1994), several 

studies have implied that increased resistance to ROS may only occur with advancing 

age (Larsen, 1993; Vanfleteren, 1993; Przybysz et al., 2009). As selection is ineffectual 

late in life (Williams, 1957; Hamilton, 1966), a relative increase in survival or fecundity 

at late ages is not likely to have a considerable impact upon fitness. Secondly, the 

association between nutritional status and stress resistance may differ depending upon 

the nature of the stress. Young adults with a wild type background are more resistant to 

thermal stress when starved than when fed, but are more sensitive to oxidative stress 

under these conditions (Henderson et al., 2006). Consequently, if environmental 

sources of ROS are encountered by populations maintained in resource limited 

conditions, a mutation which enhances resistance to oxidative stress when wild type 

worms are highly susceptible may be favoured by selection.  

 In this study, fitness was compared between age-1(hx546) mutants and wild 

type worms by monitoring temporal changes in genotype frequencies when mixed 

genotype populations of different density were exposed to oxidative stress. Whilst low 

density populations had constant access to food, high density populations were 

constrained by resource limitation. As populations are likely to encounter periodic 

fluctuations in resource availability in nature, high density treatments may reflect more 

ecologically relevant conditions than low density treatments. To determine why 

potential differences in fitness arose between the two genotypes in each condition, post 

stress survival, post stress times to maturity and post stress fecundity were monitored 

in each genotype, and spatial and temporal distributions of a DAF-16::GFP fusion 

protein were compared before, during and after exposure to oxidative stress. As 

described in chapter 4, when DAF-16 is distributed evenly throughout somatic cells it is 

considered to be inactive but when nuclear localised it promotes the expression of 

genes involved in somatic maintenance and repair (Henderson & Johnson, 2001; Lee 

et al., 2003; Murphy et al., 2003; McElwee et al., 2003). To induce oxidative stress, 

worms were exposed to juglone (5-hydroxy-1,4-naphthoquinone), a quinone produced 

by walnut and butternut trees of the Juglans genus. Juglone penetrates the cuticle (de 

Castro et al., 2004) and is reduced to the semiquinone radical (∙Q-) inside cells (Khare 

et al., 2009). The semiquinone radical is produced as a by-product of the mitochondrial 
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electron transport chain and reacts with molecular oxygen to generate the superoxide 

radical (Finkel & Holbrook, 2000). Exposure to juglone thus increases the production of 

a major endogenous source of ROS. 
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5.3 Methods  

 

5.31 Strains and Culture Conditions  

See chapter 4.  

 

5.32 Laboratory selection experiments. 

 

a) Preparation and maintenance of mixed genotype populations 

See chapter 4. 

 

b) Stress treatments 

 To induce oxidative stress, populations were periodically transferred onto NGM 

agar plates containing juglone. 10 mM stock solutions were prepared by dissolving 

juglone powder (Sigma) in 98% ethanol. Final concentrations of 50μM and 100μM were 

then obtained by diluting the solutions in melted NGM which was prepared as 

described in chapter 2. NGM containing juglone was poured into petri dishes in a sterile 

extractor hood and left to set. Juglone loses its toxicity over time in solution and in agar 

(de Castro et al., 2004), so a fresh solution was prepared on each occasion and NGM 

agar plates were always poured 5-6 hours prior to use.  

 At the beginning of the stress period, populations were washed off standard 

NGM plates in 500μl M9 buffer solution and transferred directly to NMG plates 

containing juglone. To ensure that low density populations did not become starved 

during the stress period, the bacterial lawn was also washed off and transferred to the 

new plates. Populations were left to dry in a sterile extractor hood then were placed in 

an incubator at 20ºC for the remainder of the 24 hour stress period. Although the 

toxicity of juglone would progressively decline during this time, all replicate populations 

would experience this at the same rate. After the stress period, populations were 

washed off NGM plates containing juglone in 500μl M9 buffer solution and transferred 

to sterile Eppendorf tubes. To remove any traces of juglone, the populations were 

centrifuged briefly at 2000g then, after removing the supernatant, were washed in 

500μl M9 buffer solution and vortexed. Populations were centrifuged as above, then, 

after removing the supernatant, 500μl M9 buffer solution was added and the 

populations were vortexed again. Populations were then transferred to seeded NGM 

plates and were left to dry in a sterile extractor hood before being replaced in an 

incubator at 20ºC. To account for any effects of the transferral procedures, control 

populations were treated as above, but were moved to and from standard NGM plates. 
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c) Genotype frequencies 

See chapter 4. 

 

5.33 Post-stress survival, times to maturity and fecundity 

 Age-synchronised larvae maintained with excess food and high density, starved 

populations were obtained as described in chapter 4. These were transferred to and 

from NGM plates containing 50μM or 100μM juglone as described in 5.32b. As larvae 

could be lost during the transferral procedures, 30-40 fed L1s and fed L3s were 

stressed in each block (large numbers of arrested L1s and dauers were always 

available in the high density populations). Approximately 20 worms of each stage were 

then randomly selected for post-stress observations. Controls were treated as above, 

but were moved to and from standard NGM plates. Whilst post-stress survival and 

times to maturity were monitored in 4 separate blocks, post-stress fecundity was 

monitored in 3 separate blocks. 

 

a) Post-stress survival 

See chapter 4. 

 

b) Post-stress times to maturity 

See chapter 4. 

 

c) Post-stress fecundity 

See chapter 4. 

 

5.34 Spatial and temporal expression of DAF-16::GFP   

 Low density and high density populations were transferred to and from NGM 

plates containing 50μM or 100μM juglone as described in 5.32b. Controls were treated 

in the same manner, but were moved to and from standard NGM plates. Spatial and 

temporal distributions of a DAF-16::GFP fusion protein were monitored in each 

genotype as described in chapter 4. However, data were collected in only 2 separate 

blocks. 

 

5.35 Analysis 

All analyses were performed in R version 2.10.1. 
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a) Laboratory selection experiments  

 A generalised linear mixed effects model with a binomial error distribution and a 

logit link function was fitted to the data using the penalised quasi-likelihood (PQL) 

method as described in chapter 4. The model contained all explanatory variables (day, 

temperature and density) and their interactions, an auto-correlation function to account 

for repeated measures on the same populations over time, and a random effects term 

for block. 

 

b) Post-stress survival and performance 

 Differences in survival following exposure to 50μM and 150μM juglone were 

compared between genotypes and among stages using a generalized linear model. 

The data were under-dispersed so the model was fit with a quasibinomial error 

distribution and a logit link function. The model contained all explanatory variables 

(genotype, stage and treatment) and their interactions. Post-stress times to maturity 

and fecundity were analysed as described in chapter 4.  

   

c) DAF-16 localisation  

 Cellular distributions of DAF-16::GFP were compared between genotypes and 

among treatments before and during exposure to stress (0 hours, 6 hours stress, 24 

hours stress), and during recovery from stress (24 hours stress, 6 hours recovery, 24 

hours recovery), using ordinal multinomial continuation-ratio logit models as described 

in chapter 4. The minimal model used to compare DAF-16::GFP distributions before 

and during exposure to stress contained all explanatory variables and interactions, 

except for a four way interaction between time, genotype, treatment and density, and a 

three way interaction between genotype, treatment and density. The minimal model for 

recovery from stress contained all explanatory variables and interactions, except for a 

four way interaction between time, genotype, treatment and density, and three way 

interactions between time, genotype and density, and time, genotype and treatment. 

When certain categories were not displayed by one or both genotypes in a particular 

density, or following a particular treatment, it was not possible to obtain parameters to 

describe all of the observed category transitions. These situations are described within 

parenthesis in 5.43. P-values were obtained using likelihood ratio tests to compare 

between models following sequential removal of explanatory variables and interactions. 
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5.4 Results 

 

5.41 Fitness costs are context dependent in age-1 mutants. 

 

 In low density populations which had not been stressed, genotype frequencies 

remained relatively constant over time (Figure 5.1a). However, in high density 

populations which had not been stressed, frequencies of age-1(hx546) mutants 

declined over time relative to in low density populations (t = -9.09, p < 0.001, based 

upon binomial count data rather than frequencies), from 0.5 to 0.15 ± 0.04 (mean ± 

standard deviation) by day 24 (Figure 5.1b). In low density populations which had been 

periodically stressed on NGM plates containing 50μM juglone, frequencies of age-1 

mutants increased slightly over time relative to in control populations which had not 

been stressed (t = 3.55, p < 0.001), from 0.5 to 0.57 ± 0.06 (mean ± standard 

deviation) by day 24 (Figure 5.1c). In contrast, frequencies of age-1 mutants in high 

density populations which had been exposed to these conditions declined over time, 

from 0.5 to 0.18 ± 0.04 (mean ± standard deviation) by day 24 (Figure 5.1d). Though 

the rate at which this occurred was reduced relative to the decline observed in high 

density populations maintained in control conditions, this difference was not significant. 

In low density populations which had been periodically exposed to 100μM juglone, 

frequencies of age-1 mutants increased dramatically over time relative to in control 

populations which had not been stressed (t = 14.37, p < 0.001), from 0.5 to 0.71 ± 0.04 

(mean ± standard deviation) by day 24 (Figure 5.1e). In high density populations which 

had been exposed to NGM containing 100μM juglone, frequencies of age-1 mutants 

again declined over time, from 0.5 to 0.23 ± 0.04 (mean ± standard deviation) by day 

24 (Figure 5.1f). However, the rate at which this occurred was reduced relative to in 

high density populations which had not been stressed (t = 3.28, p = 0.002). These 

results indicate that the age-1(hx546) mutant allele confers a selective advantage when 

low density populations are periodically exposed to either 50μM or 100μM juglone, and 

that the fitness deficit observed in age-1 mutants maintained in high density 

populations with limited resources can be reduced if populations are periodically 

exposed to high levels of oxidative stress. 
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Figure 5.1: Temporal changes in age-1(hx546) frequencies. Plots represent age-1(hx546) 

frequencies relative to wild type in low density (a, c and e) and high density (b, d and f) 

populations maintained in control conditions (a and b) or periodically stressed on NGM agar 

plates containing 50µM (c and d) or 100µM juglone (e and f). Red arrows indicate days on 

which stress treatments were implemented and coloured lines represent replicate populations (4 

populations were exposed to each treatment in 2 separate blocks). 
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5.42 Resistance to juglone is higher in age-1 mutants than in wild type worms 

except for during the dauer stage 

 To determine why fitness differences arise between the two genotypes in each 

condition, post stress survival, times to maturity and fecundity were examined in each 

genotype. No mortality was observed in either genotype when fed and starved larvae 

had been maintained in controls conditions. However, survival was reduced in both 

genotypes relative to unstressed controls when fed L1s, fed L3s or arrested L1s had 

been exposed to 50μM juglone (Figure 5.2a). Survival was higher in age-1 mutants 

under these conditions when larvae had been stressed as fed L1s (t = 2.46, p = 0.018) 

or fed L3s (t = 3.10, p = 0.003). Survival was reduced further in each genotype when 

fed and starved larvae had been exposed to 100μM juglone (Figure 5.2b). However, 

whilst survival was considerably higher in age-1 mutants than in wild type worms when 

larvae had been stressed as fed L1s (t = 8.55, p < 0.001), fed L3s (t = 7.90, p < 0.001) 

or arrested L1s (t = 4.35, p < 0.001), no significant difference was observed between 

the two genotypes when larvae had been stressed during the dauer stage. 

Interestingly, intermittent observations of mixed genotype populations and populations 

of transgenic worms expressing DAF-16::GFP during exposure to 100μM juglone 

indicated that worms which had not arrested as L1s or dauers are highly sensitive to 

oxidative stress when starved.  

 When fed larvae or arrested L1s had been maintained in controls conditions, no 

differences were observed between the two genotypes in times to maturity (Figures 

5.3a and 5.3b). However, wild type worms matured considerably earlier than age-1 

mutants after being maintained in the dauer stage (t = -55.71, p < 0.001) (Figure 5.3b). 

After exposure to 50μM juglone, maturity was delayed in both genotypes relative to 

controls except when stressed during the dauer stage (Figures 5.3a and 5.3b). Though 

age-1 mutants attained maturity more rapidly than wild type worms when larvae had 

been stressed as fed L1s (t = 2.77, p = 0.006) or fed L3s (t = 4.57, p < 0.001), no 

significant difference was observed between the two genotypes when larvae had been 

stressed during L1 arrest. Maturity was further delayed in both genotypes when worms 

had been stressed on NGM plates containing 100μM juglone (Figures 5.3a and 5.3b). 

Again age-1 mutants attained maturity more rapidly than wild type worms when larvae 

had been stressed as fed L1s (t = 5.06, p < 0.001) or fed L3s (t = 9.01, p < 0.001). 

Though maturity times were slightly delayed in both genotypes when worms had been 

exposed to 100μM juglone during L1 arrest or the dauer stage, no significant 

interactions between genotype and treatment were observed. 
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Figure 5.2: Survival following exposure to oxidative stress. Bar plots represent the mean 

proportion of individuals, from 4 separate blocks, which survived after being stressed as L1s, 

L3s, arrested L1s (Arr. L1s) or dauers on NGM plates containing a) 50μM or b) 100μM juglone. 

Error bars represent standard errors of the means and survival was monitored in approximately 

75 individuals per genotype, treatment and stage.  

 

 In one set of fed controls fecundity was slightly higher in age-1 mutants than in 

wild type worms (L1s: t = 2.19, p = 0.028). However, no other differences in fecundity 

were observed between the genotypes in control conditions (Figures 5.3c and 5.3d). 

Post-stress fecundity was reduced in both genotypes relative to controls when worms 

had been exposed to 50μM juglone as fed L1s, fed L3s or arrested L1s (Figures 5.3c 

and 5.3d). Though age-1 mutants produced a larger number of viable offspring than 

wild type adults when individuals had been exposed to 50μM juglone as fed L1s (t = 

4.18, p < 0.001) or fed L3s (t = 5.39, p < 0.001), no difference in post-stress fecundity 

was observed between the genotypes when larvae had been stressed as arrested L1s. 

More dramatic reductions in fecundity were observed in each genotype when larvae 

had been exposed to 100μM juglone (Figures 5.3c and 5.3d). However, fecundity 

remained higher in age-1 mutants than in wild type worms when larvae had been 

exposed to these conditions as fed L1s (t = 7.22, p < 0.001) or fed L3s (t = 7.80, p < 

0.001), and was also higher in age-1 mutants which had been stressed during L1 arrest 

(t = 2.21, p = 0.028). A small decline in fecundity was observed in each genotype when 

larvae had been exposed to 100μM juglone during the dauer stage, but no significant 

interaction between genotype and treatment was observed. These results suggest that, 

relative to wild type worms, post-stress survival, developmental rate and fecundity are 

substantially higher in age-1 mutants when larvae are exposed to ROS when food is 
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available, and that post-stress survival and fecundity are moderately higher in age-1 

mutants when larvae are stressed during L1 arrest.  

 

a. b.

c. d.Treatment

P
o
s
t-

s
tr

e
s
s
 t

im
e
 t

o
 m

a
tu

ri
ty

 (
h
o
u
rs

)

Control 50µM 100µM

0

10

20

30

40

50

60

Treatment
P

o
s
t-

s
tr

e
s
s
 t

im
e
 t

o
 m

a
tu

ri
ty

 (
h
o
u
rs

)

Control 50µM 100µM

0

10

20

30

40

50

60

P
o
s
t-

s
tr

e
s
s
 f

e
c
u
n
d
it
y

Control 50µM 100µM

0

50

100

150

200

250

300

P
o
s
t-

s
tr

e
s
s
 f

e
c
u
n
d
it
y

Control 50µM 100µM

0

50

100

150

200

250

300

 

 

1.0 1.2 1.4 1.6 1.8 2.0

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

Index

c
(1

, 
2

)

N2 L1s

age-1 L1s

N2 L3s

age-1 L3s

N2 Arrested L1s

age-1 Arrested L1s

N2 Dauers

age-1 Dauers

1.0 1.2 1.4 1.6 1.8 2.0

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

Index

c
(1

, 
2

)

N2 L1s

age-1 L1s

N2 L3s

age-1 L3s

N2 Arrested L1s

age-1 Arrested L1s

N2 Dauers

age-1 Dauers

1.0 1.2 1.4 1.6 1.8 2.0

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

Index

c
(1

, 
2

)

N2 L1s

age-1 L1s

N2 L3s

age-1 L3s

N2 Arrested L1s

age-1 Arrested L1s

N2 Dauers

age-1 Dauers

1.0 1.2 1.4 1.6 1.8 2.0

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

Index

c
(1

, 
2

)

N2 L1s

age-1 L1s

N2 L3s

age-1 L3s

N2 Arrested L1s

age-1 Arrested L1s

N2 Dauers

age-1 Dauers
 

 

Figure 5.3: Post-stress times to maturity and fecundity. Plots represent mean times to 

maturity, from 4 separate blocks, in fed (3a) and starved (3b) larvae, and mean fecundity, from 3 

separate blocks, in fed (3c) and starved (3d) larvae which had been maintained in control 

conditions or stressed on NGM plates containing 50μM or 100μM juglone for 24 hours. Error 

bars represent standard deviations of the means. Times to maturity were monitored in 60-75 

individuals per genotype, stage and treatment, and lifetime fecundity was monitored in 40-50 

individuals per genotype, stage and treatment. In both cases the number of replicates was lower 

for 100μM juglone treatments due to mortality. 
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5.43 DAF-16 activity protects age-1 mutants during and after oxidative stress. 

 Spatial distributions of a DAF-16::GFP fusion protein were categorised on a  

continuum from 1 (uniform distribution) to 4 (nuclear distribution) as described in 

chapter 4. When L1s were maintained in control conditions with excess food, DAF-

16::GFP was mainly distributed throughout somatic cells in wild type, but was more 

nuclear localised in age-1 mutants  (no fed wild type displayed categories 3 or 4; 

categories 1-2: t = 8.58, p < 0.001) (Figures 5.4a and 5.4d). After 24 hours in starvation 

conditions, an increase in nuclear localisation was observed in wild type L1s (no fed 

wild type displayed categories 3 or 4; categories 1-2: t = 6.29, p < 0.001) and in age-1 

mutant L1s (no starved age-1 mutants displayed category 1; categories 2-3: t = 5.30, 

categories 3-4: t = 3.68, p < 0.001). However, nuclear localisation remained more 

intense in age-1 mutants under these conditions (no starved age-1 mutants displayed 

category 1 and no wild type displayed category 4; categories 2-3: t = 9.02, p < 0.001). 

(Figures 5.4g and 5.4j, time 0). Furthermore, DAF-16::GFP appeared to translocate out 

of the nucleus more rapidly in wild type worms than in age-1 mutants after food had 

been provided (Figures 5.4g and 5.4j, times 6R and 24R). However, this difference was 

not significant according to the recovery model described in 5.35c, which was not 

sensitive enough to reveal this response. 

 Following exposure to 50μM juglone, the proportion of fed L1s displaying 

nuclear localisation of DAF-16::GFP increased in wild type worms (no fed wild type 

displayed category 1 when stressed with 50μM juglone or category 4 in control 

conditions; categories 2-3: t  = 3.42, p < 0.001) and in age-1 mutants (no age-1 

mutants displayed category 1 when stressed with 50μM juglone; categories 2-3: t 

=5.25, categories 3-4: t = 2.50, p < 0.001) (Figures 5.4b and 5.4e, times 6 and 24). 

However, nuclear localisation remained more intense in age-1 mutants under these 

conditions (neither genotype displayed category 1 when stressed with 50μM juglone; 

categories 2-3: t = 1.73, categories 3-4: t = 3.85, p < 0.001). Furthermore, DAF-

16::GFP distributions appeared to reverse more rapidly in wild type worms than in age-

1 mutants after removal from stress. However, the recovery model described in 5.35c 

was not sensitive enough to demonstrate this response. When starved L1s were 

exposed to 50μM juglone, spatial and temporal distributions of DAF-16::GFP were 

similar in both genotypes to those observed in starved L1s maintained in control 

conditions (Figures 5.4h and 5.4k). Although the intensity of nuclear localisation 

increased slightly in age-1 mutants when food was available, DAF-16::GFP responses 

did not differ substantially in either genotype when fed L1s (Figures 5.4c and 5.4f) or 

starved L1s (Figures 5.4i and 5.4l) were exposed to 100μM juglone compared to larvae 

which were exposed to 50μM juglone. These results indicate that nuclear localisation of 
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DAF-16::GFP can be induced in response to starvation and oxidative stress in both 

genotypes, but that exposure to juglone has very little effect upon DAF-16::GFP 

distributions in starvation conditions. Importantly, DAF-16::GFP distributions indicate 

that DAF-16 target genes may be up-regulated in age-1 mutants in control conditions, 

and that nuclear localisation remains more intense than in wild type worms during and 

after exposure to starvation and/or oxidative stress.  
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Figure 5.4: Effects of genotype and treatment on DAF-16::GFP localisation. DAF-16::GFP 

is more nuclear localised in age-1 mutants than in wild type worms when food is available (a 

and d) and in starvation conditions (g and j) when no oxidative stress treatment is applied. 

When food is available, exposure to 50μM juglone and 100μM juglone induces nuclear 

localisation of DAF-16::GFP in wild type (b and c) and age-1 mutants (e and f), but nuclear 

localisation remains more intense in age-1 mutants under these conditions. Exposure to juglone 

during starvation does not substantially alter DAF-16::GFP distributions in either genotype 

relative to starved controls (g-l). During recovery from starvation and/or exposure to stress, 

DAF-16::GFP distributions appeared to reverse more rapidly in wild type worms than in age-1 

mutants. Stacked bar plots represent the mean proportion of individuals, from 2 separate blocks, 

which displayed categories 1-4 of DAF-16::GFP localisation before stress treatments were 

implemented (0 hours), during stress treatments (6 and 24 hours) and after removal from stress 

and/or after food had been provided (6R and 24R hours). A-c represent fed wild type L1s, d-f 

represent fed age-1 mutant L1s, g-i represent starved wild type L1s and j-l represent starved 

age-1 mutant L1s which had been maintained in control conditions (a, d, g and j), exposed to 

50μM  juglone (b, e, h and k) or exposed to 100μM juglone (c, f, i and l). Error bars represent 

standard errors of the means. DAF-16::GFP localisation patterns were scored in 60-70 fed and 

starved L1s per genotype, treatment and time.  
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5.5 Discussion 

 

 In this study an integrative approach was used to examine how molecular to 

population levels responses to ROS modify the fitness of long-lived age-1 mutants 

relative to wild type worms. I have demonstrated that the age-1(hx546) mutant allele 

confers a selective advantage when low density populations which have constant 

access to food encounter periods of oxidative stress, and that exposure to intense 

oxidative stress can reduce the fitness deficit observed in age-1 mutants in resource 

limited conditions. Given the role of DAF-16 in regulating antioxidant enzymes and 

other stress response proteins, this may be because age-1 mutants invest more 

resources in somatic maintenance and repair than wild type worms before, during and 

after exposure to oxidative stress and are thus more able to survive, develop and 

reproduce after the stress has been removed. These results imply that the age-

1(hx546) mutant allele confers a selective advantage over the wild type genotype 

under a range of harsh environmental conditions, and that this phenomenon is not 

specific to thermal stress. Furthermore, if wild populations encounter exogenous 

sources of ROS when resources are abundant, these results suggest that increased 

longevity may evolve as a by-product of selection for greater resistance to oxidative 

stress. 

 DAF-16::GFP distributions suggest that the age-1(hx546) mutant allele 

promotes the expression of genes involved in somatic maintenance and repair even 

when no stress is applied. Despite this, no differences in fitness were observed 

between age-1 mutants and wild type worms when populations were maintained at low 

densities with constant access to food. In contrast, frequencies of age-1 mutants 

rapidly declined in high densities populations which were maintained with limited food. 

This is perhaps because nuclear localisation of DAF-16::GFP is more intense in age-1 

mutants than in wild type worms during and after starvation, as these differences may 

explain why exit from the dauer stage is delayed. As described in chapter 4, these 

results are consistent with a previous study (Walker et al., 2000) and suggest that costs 

associated with increased lifespan do not necessarily arise in favourable environments, 

but become apparent in conditions which are likely to be encountered in nature. These 

results support the antagonistic pleiotropy (Williams, 1957) and disposable soma 

(Kirkwood, 1977) theories of senescence. 

 When low density populations were periodically exposed to 50µM juglone, 

frequencies of the age-1(hx546) mutant allele increased slightly over time. As relative 

fitness is, therefore, moderately higher under these conditions, these results suggest 

that age-1 mutants do not only display increased resistance to oxidative stress late in 
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life. Indeed, post-stress survival and fecundity were higher in age-1 mutants than in 

wild type worms when larvae had been exposed to 50µM juglone as fed L1s or fed L3s, 

and, relative to controls which had not been stressed, post-stress times to maturity 

were delayed to a lesser extent in age-1 mutants than in wild type worms. Consistent 

with this, it has previously been reported that survival is prolonged in age-1 mutants 

relative to the wild type when worms are exposed to 240µM juglone on the first day of 

adulthood (de Castro et al., 2004), and age-1 mutants display higher resistance to the 

superoxide generator paraquat (Honda & Honda, 1999; Yanase et al., 2002) and to 

hydrogen peroxide (Duhon et al., 1996) when stressed during late L4 or as young 

adults. However, as an association between age and resistance to ROS was not 

directed examined in this study, it remains possible that the distinction in survival 

between the two genotypes during and after exposure to oxidative stress may become 

greater with increasing age.  

 Spatial distributions of DAF-16::GFP indicate that antioxidant enzymes and 

other stress response proteins which can be induced in wild type worms in response to 

stress may be expressed in age-1 mutants regardless of current environmental 

conditions. Consistent with this, in the absence of stress, several antioxidant enzymes 

are expressed at higher levels in age-1 mutants than in wild type worms during early 

adulthood (Honda & Honda, 1999; Yanase et al., 2002) and late in life (Larsen, 1993; 

Vanfleteren, 1993). This suggests that age-1 mutants are prepared in advance to deal 

with environmental challenges if and when they arise. Exposure to 50μM juglone 

caused DAF-16::GFP to translocate into the nucleus in wild type worms and intensified 

the nuclear localisation of DAF-16::GFP observed in age-1 mutants. These results are 

consistent with previous studies which have described DAF-16::GFP responses to 

oxidative stress in wild type worms (Henderson & Johnson, 2001; Kondo et al., 2005; 

Hartwig et al., 2009; Przybysz et al., 2009; Heidler et al., 2010). Although nuclear 

localisation does not ensure constitutive activation of all DAF-16 target genes 

(Henderson et al., 2006), these results indicate that the expression of proteins which 

protect cells from damage induced by ROS increases in both genotypes during 

exposure to oxidative stress. Indeed, Heidler et al. (2010) recently demonstrated that 

exposing wild type worms to 40μM juglone enhances the daf-16 dependent expression 

of a superoxide dismutase enzyme, SOD-3, and a heat-shock protein, HSP-16.2, which 

may promote resistance to oxidative stress (Walker & Lithgow, 2003).  

 The relative fitness of age-1(hx546) mutants increased dramatically when low 

density populations were periodically exposed to 100µM juglone. Consistent with this, 

post-stress survival and fecundity were considerably higher and maturity was attained 

more rapidly in age-1 mutants than in wild type worms after fed larvae had been 
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exposed to these conditions. Although survival, developmental rate and fecundity were 

reduced to a greater extent in both genotypes following exposure to 100µM juglone 

than to less intense oxidative stress, DAF-16::GFP responses to 100µM juglone were 

similar to those observed in worms stressed on NGM agar containing 50µM juglone. 

Despite similarities in cellular distributions of DAF-16::GFP across different 

concentrations, Heidler et al. (2010) recently demonstrated that superoxide dismutase 

and catalase activities, and the daf-16 dependent expression of a SOD-3::GFP fusion 

protein, were substantially higher when wild type worms were exposed to 40µM than to 

100µM or 250µM concentrations of juglone. This implies that the integrity of protective 

mechanisms may be jeopardised when levels of oxidative stress become overly 

intense, and may suggest that ROS are rarely encountered at such high concentrations 

in nature. As survival was considerably reduced in age-1 mutants as well as in wild 

type worms following exposure to 100µM juglone, it is possible that a reduction in the 

activity of antioxidant enzymes disrupts the ability of cells to maintain homeostasis in 

both genotypes under these conditions.  

 The relative fitness of age-1 mutants in high density populations which had 

been periodically exposed to 50µM juglone was similar to the high density populations 

maintained in control conditions. Consistent with this, differences between the 

genotypes in molecular and individual level responses to 50µM juglone during 

starvation were similar to those observed in response to starvation conditions alone. In 

contrast, periodic exposure of high density populations to more intense oxidative stress 

reduced the fitness deficit of age-1 mutants observed in control conditions. Although 

DAF-16::GFP distributions were similar in starved L1s exposed to 100µM juglone and 

in starved controls which had not been stressed in both genotypes, nuclear localisation 

was consistently more intense in age-1 mutants than in wild type worms in starvation 

conditions. This distinction may explain why survival, developmental rate and fecundity 

were slightly higher in age-1 mutants than in wild type worms when larvae were 

exposed to 100µM juglone during L1 arrest. Furthermore, this may explain why the 

fitness deficit of age-1 mutants in resource limited conditions is reduced when high 

density populations experience intense oxidative stress. Consistent with these 

observations, Baugh and Sternberg (2006) demonstrated that starvation does not 

completely suppress insulin / IGF-1 signalling in wild type worms, and age-1 mutants 

also display greater resistance than wild type when starved L1s are exposed to 

hydrogen peroxide (Weinkove et al., 2006). In contrast, no differences in survival or 

post-stress fecundity were observed between the two genotypes when larvae were 

stressed during the daf-16 dependent dauer stage. This may be because the stress 

resistant phenotype observed in age-1 mutants is analogous to that observed in wild 
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type dauers (Kenyon et al., 1993; McElwee et al., 2004, 2006), and because the up-

regulation of DAF-16 target genes is likely to be equivalent in the two genotypes during 

this stage.  

Though it has been reported that starvation reduces the ability to tolerate 

oxidative stress in wild type worms (Henderson et al., 2006), this was not observed in 

the stages examined in this study. However, it has previously been demonstrated that 

arrested L1s are more resistant to hydrogen peroxide than fed L1s (Weinkove et al., 

2006; Kang & Avery, 2009), and dauers are highly resistant to a variety of 

environmental challenges, including oxidative stress (Anderson, 1982; Larsen, 1993). It 

is, therefore, possible that resistance to oxidative stress during the L1 diapause and the 

dauer stage may be specific to these forms of developmental arrest. Indeed, 

intermittent observations of entire populations during the stress periods suggested that 

worms of other stages are highly sensitive to oxidative stress when starved. 

The results from this study and from chapter 4 indicate that spatial and temporal 

distributions of DAF-16::GFP are not considerably altered in response to oxidative 

stress or high temperatures during starvation conditions. Weinkove et al. (2006) 

reported that exposure to hydrogen peroxide causes DAF-16::GFP to translocate out of 

the nucleus in starved wild type L1s, but does not modify DAF-16::GFP localisation in 

age-1 mutants. Consistent with the results in this study, they also reported that neither 

juglone nor paraquat have any effect upon DAF-16::GFP localisation in wild type 

worms during starvation conditions. Interestingly, Weinkove et al. (2006) demonstrated 

that starved wild type L1s continue to display increased resistance to hydrogen 

peroxide relative to fed L1s even after DAF-16::GFP has translocated out of the 

nucleus following prolonged starvation, and that this is dependent upon daf-16. This 

may suggest that increased transcription of DAF-16 target genes during the first day or 

two of starvation is sufficient to provide long term stress resistance when starvation is 

prolonged. If the activity of antioxidant enzymes and other stress response proteins is 

already enhanced during starvation conditions, this may explain why no additional 

responses to oxidative or thermal stress were observed. It remains unclear if DAF-

16::GFP localisation is modified in response to abiotic stressors in starved stages other 

than L1 arrest. 

 In comparison to previous studies which have examined fitness costs in long-

lived mutants in benign laboratory conditions, the treatments that were applied in this 

study may be more representative of natural environments. However, as described in 

chapter 4, wild populations of C. elegans are expected to experience fluctuations in 

resource availability, and periods of environmental stress are unlikely to recur on a 

predictable temporal scale. Accordingly, the responses to oxidative stress observed in 
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this study have been incorporated into population projection models which are used in 

chapter 7 to examine the invasion success of the age-1(hx546) mutant allele in more 

stochastic environments. This study provides additional evidence to suggest that a 

long-lived, laboratory derived mutant can have higher fitness than a wild type genotype 

under certain conditions, and implies that increased longevity may evolve in 

populations which frequently encounter harsh environments as a consequence of 

selection for greater resistance to stress. 
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Chapter 6 - Cold tolerance in long-lived age-1 mutants is induced by Δ9 

desaturase genes and additional targets of DAF-16 

 

6.1 Abstract 

 

 To promote survival at low temperatures, poikilotherms preserve membrane 

fluidity, and thus the integrity of vital membrane functions, by increasing the proportion 

of unsaturated fatty acids in membrane phospholipids. This response, homeoviscous 

adaptation, is primarily mediated by the activity of Δ9 desaturase enzymes. In C. 

elegans, the expression of the Δ9 desaturase genes fat-5, fat-6 and fat-7 is regulated 

by the insulin / IGF-1 signalling (IIS) pathway and the transcription factor DAF-16. 

These genes are up-regulated in long-lived IIS mutants and during the facultative, daf-

16 dependent, dauer stage. However, though it is well established that IIS mutants and 

dauers display enhanced resistance to various forms of stress, no assessment of cold 

tolerance has previously been reported. In this study I demonstrate that long-lived age-

1(hx546) mutants are remarkably resilient to low temperature stress relative to wild 

type worms, following direct transfer from 20°C to 4°C, and that this is dependent upon 

daf-16. I also show that dauers display increased cold tolerance relative to wild type 

adults under these conditions, suggesting that this state of developmental arrest may 

be important for survival in natural populations which experience rapid reductions in 

ambient temperature. Using a combination of loss-of-function mutations and RNA 

interference, I reveal that the cold tolerant phenotype of age-1 mutants is 

predominantly due to the up-regulation of Δ9 desaturase genes, but that additional 

transcriptional targets of DAF-16 are also involved. These results indicate that 

mechanisms other than the preservation of membrane fluidity may play a role in cold 

tolerance in poikilotherms.  
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6.2 Introduction 

 

 The ability to tolerate and respond to fluctuations in ambient temperature is 

essential for survival and fitness. This is particularly true for poikilotherms, which 

cannot regulate their own body temperature yet must be able to function in a range of 

thermal conditions. A variety of behavioural and physiological strategies have evolved 

to allow poikilotherms to cope with low temperatures. For instance, Monarch butterflies, 

Danaus plexippus, avoid seasonal temperature declines by migrating thousands of 

miles south from North America to southern Mexico (Urquhart & Urquhart, 1978), and 

in response to changes in temperature and/or photoperiod, numerous invertebrates 

enter states of diapause which facilitate overwinter survival (Denlinger, 2002; Bale & 

Hayward, 2010). Whilst molecular chaperones are known to play a key role in 

preventing and repairing damage induced by exposure to high temperatures (Lindquist, 

1986), the mechanisms which promote survival at low temperatures are less 

understood. However, there is substantial evidence to suggest that the preservation of 

cell membrane fluidity may be an important factor in cold acclimation (the processes 

involved in physiologically adjusting to cope with conditions following a gradual 

temperature change) and cold tolerance (the ability to survive at low temperatures) in 

poikilotherms, and that this can be achieved through alterations in membrane lipid 

composition (Sinensky, 1974).  

At physiological temperatures to which organisms are either adapted or 

acclimated, membrane lipids are maintained in a fluid or liquid-crystalline phase. 

However, when temperatures drop below a threshold level, lipid structure changes to a 

more ordered, rigid gel phase and the integrity of fundamental membrane functions is 

impaired (Hazel, 1995). To promote survival in cold conditions, poikilotherms can 

reduce the average temperature at which this transition occurs by increasing the 

proportion of unsaturated fatty acids in their cell membranes (Cossins, 1994). 

Numerous studies have revealed that this response, referred to as homeoviscous 

adaptation (Sinensky, 1974), is at least partially dependent upon the activity of Δ9 

desaturase enzymes (Uemura et al., 1995; Tiku et al., 1996). Consistent with this, Δ9 

desaturase genes have been implicated in cold tolerance in bacteria (Wada et al., 

1990), plants (Ishizaki-Nishizawa et al., 1996), and poikilothermic animals (Gracey et 

al., 2004; Brock et al., 2007; Murray et al., 2007). However, a recent study in C. 

elegans demonstrated that the cold tolerant phenotype acquired following a period of 

acclimation is not exclusively dependent upon the activity of Δ9 desaturase enzymes 

(Murray et al., 2007). Additional mechanisms may, therefore, be involved in cold 

adaptation and cold tolerance in poikilothermic animals.  
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 The conserved insulin / IGF-1 signalling (IIS) pathway modulates development, 

metabolism and longevity in C. elegans, in response to environmental heterogeneity, by 

regulating the activity of the FOXO transcription factor DAF-16. The IIS pathway 

terminates with the phosphorylation of DAF-16 and, in this state, the transcription factor 

is uniformly distributed throughout somatic cells (Lin et al., 2001). However, when 

signalling is disrupted, for instance via mutation or exposure to some forms of 

environmental stress, unphosphorylated DAF-16 accumulates within the nucleus, 

where it binds to and activates the promoters of genes involved in metabolism and 

cellular defence (Henderson & Johnson, 2001; Lin et al., 2001; Lee et al., 2003; 

Murphy et al., 2003). Mutants which are defective in components of the IIS pathway are 

long lived and display enhanced resistance to a broad spectrum of environmental 

challenges, including oxidative stress (Larsen, 1993; Vanfleteren, 1993), heat shock 

(Lithgow et al., 1994), ultraviolet light (Murakami & Johnson, 1996), heavy metals 

(Barsyte et al., 2001), hypoxia (Scott et al., 2002), microbial infections (Garsin et al., 

2003), and hypertonic stress (Lamitina & Strange, 2005). The long lived, stress 

resistant phenotype is also a characteristic of the dauer stage, a facultative state of 

diapause which is partially regulated by the IIS pathway and is dependent upon daf-16. 

Consistent with this, genome wide microarray analyses have identified numerous 

genes downstream of DAF-16 which are up-regulated in both IIS mutants and dauers, 

and among these are the three C. elegans Δ9 desaturase genes: fat-5, fat-6 and fat-7 

(Murphy et al., 2003; Wang & Kim, 2003; McElwee et al., 2004; McElwee et al., 2006). 

As the proportion of unsaturated fatty acids in cell membranes should, therefore, be 

higher in these worms than in non-dauer wild type, it is likely that IIS mutants and 

dauers may also exhibit enhanced resistance to low temperatures, at least in the 

absence of an acclimation period. Furthermore, given the abundance of genes 

associated with stress resistance and metabolism which are up-regulated in IIS 

mutants and dauers, and that cold acclimation is not exclusively dependent upon the 

activity of Δ9 desaturase enzymes (Murray et al., 2007), it is conceivable that additional 

transcriptional targets of DAF-16 may contribute to cold tolerance in C. elegans.  

 In this study, survival was compared between wild type and age-1(hx546) 

mutant adults, and between adults and dauers of each genotype, during prolonged 

exposure to low temperatures. Although the C. elegans Δ9 desaturase enzymes exhibit 

slight differences in function, with FAT-5 primarily converting palmitic acid to palmitoleic 

acid whilst FAT-6 and FAT-7 convert stearic acid to oleic acid (Watts & Browse, 2000), 

there is considerable overlap in biochemical activity and loss-of-function mutations in 

either fat-6 or fat-7 induce compensatory responses in the expression of the remaining 

Δ9 desaturase coding genes (Brock et al., 2006). Consequently, mutants which are 
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defective for single Δ9 desaturase genes display no obvious phenotype (Brock et al. 

2006). Therefore, to assess the extent to which Δ9 desaturase genes contribute to 

survival at low temperatures in wild type and age-1(hx546) mutant adults, a 

combination of loss-of-function mutations and RNAi was used to simultaneously 

eliminate or presumably reduce their expression. Contributions of Δ9 desaturase genes 

to cold tolerance were also assessed in the wild type and age-1 mutant backgrounds 

by comparing recovery times among different strains following brief periods at low 

temperatures. This approach has previously been used to characterise variability in 

cold tolerance among different populations of Drosophila melanogaster (David et al., 

1998; Hoffman et al., 2002; Anderson et al., 2005; Burger & Promislow, 2006). 
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6.3 Methods and Materials 

 

6.31 Strains and culture conditions  

 The following genotypes were obtained from the Caenorhabditis Genetics 

Centre: N2 Bristol (wild type), TJ1052 age-1(hx546), CF1038 daf-16(mu86), BX107 fat-

5(tm420), BX106 fat-6(tm331), BX153 fat-7(wa36), BX160 fat-6(tm331); fat-5(tm420), 

BX110 fat-7(wa36); fat-5(tm420), BX156 fat-6(tm331); fat-7(wa36) and TJ356 N2; 

zIs356 [pGP30 (daf-16::GFP)]. Strains with the following genotypes were obtained by 

crossing age-1(hx546) mutant males with young adult hermaphrodites of each relevant 

strain: age-1(hx546); daf-16(mu86), age-1(hx546); fat-5(tm420), age-1(hx546); fat-

6(tm331), age-1(hx546); fat-7(wa36), age-1(hx546); fat-6(tm331); fat-7(wa36) and  

age-1(hx546); zIs356 [pGP30 (daf-16::GFP)]. After allowing F1 hermaphrodites to self-

fertilise, homozygous age-1(hx546) mutants were identified by scoring F2 and F3 

progeny for dauer formation at 27°C as described in chapter 4. To obtain age-1(hx546); 

daf-16(mu86) double mutants, which are dauer defective, „partial dauers‟ were selected 

based on developmental arrest at 27°C, then genotype was confirmed by PCR using 

the primers listed in appendix 6.1. For the age-1(hx546); zIs356 [pGP30 (daf-16::GFP)] 

genotype, individuals were also screened for a roller phenotype as described in chapter 

4. For the remaining genotypes, hermaphrodites with an age-1(hx546) background 

were separated on to individual NGM plates and allowed to self fertilise. To examine 

the presence of the fat-5(tm420), fat-6(tm331) and fat-7(wa36) mutations in these lines, 

growth rates and survival of progeny were monitored and compared with wild type and 

age-1 mutant controls at 10°C. An age-1(hx546); fat-6(wa36); fat-7(wa36) triple mutant 

line was identified based upon reduced growth rates and survival at this temperature, 

and this was subsequently confirmed by PCR using the primers listed in appendix 6.1. 

However, the remaining double desaturase mutants were not obtained in the age-

1(hx546) mutant background. All three single desaturase mutants were obtained in the 

age-1(hx546) mutant background by PCR screening, using the primers listed in 

appendix 6.1. The presence of the fat-5(tm420) or fat-6(tm331) deletions were 

confirmed by comparing band sizes with controls of known genotype following gel 

electrophoresis. The presence of the fat-7(wa36) substitution (c→t, producing a 

premature stop codon) was confirmed by automated DNA sequencing. Strains were 

maintained on nematode growth media (NGM) plates, containing 10 μg/ml nystatin and 

50 μg/ml streptomycin, and seeded with E. coli (HB101) except where stated 

otherwise. Strains were maintained at 20°C until cold tolerance assays commenced. 
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6.32 RNAi  

 As age-1(hx546); fat-5(tm331); fat-6(wa36) and age-1(hx546); fat-5(tm331); fat-

7(wa36) triple mutants were not obtained, these combinations were achieved using 

RNAi to suppress the expression of fat-5 in age-1(hx546); fat-6(tm331) double mutants 

and in age-1(hx546); fat-7(wa36) double mutants. RNAi was also used to suppress the 

expression of fat-5 in the equivalent wild type strains. Simultaneous mutations in all 

three Δ9 desaturase genes cause embryonic lethality (Brock et al., 2006). Therefore, to 

obtain individuals in which the expression of all three Δ9 desaturase genes had been 

knocked down or knocked out, RNAi was used to: i) reduce fat-5 expression in fat-6; 

fat-7 double mutants and in age-1; fat-6; fat-7 triple mutants, and ii) reduce fat-6 and 

fat-7 expression in fat-5 mutants and in age-1; fat-5 double mutants. As fat-6 and fat-7 

have ~84% nucleotide homology, expression of both is knocked down when either is 

targeted by RNAi (Brock et al., 2006). Though growth rate was slow, and many eggs 

were not viable, adults were obtained for each condition using this approach. 

 RNAi was induced by feeding, using clones from the Ahringer library, as 

described in chapter 2. N2 and age-1(hx546) mutant adults fed on HT115 bacteria 

containing empty RNAi plasmid vectors were used as negative controls. To ensure that 

the expression of the relevant genes had been suppressed, strains were maintained on 

RNAi plates for at least one generation before young adults were collected for cold 

tolerance assays. Before RNAi agar plates were prepared, the presence of the 

corresponding genomic fragments in the fat-5 and fat-6/fat-7 RNAi clones was 

confirmed using restriction digests as described in chapter 2. Restriction enzymes NdeI 

and AseI were used for the fat-5 digests, and AseI and AccI were used for the fat-6 

digests. 

 

6.33 Cold tolerance assays 

a) Adults 

 Cold tolerance assays were performed using well fed young adults which had 

been synchronised to reach maturity on the day that the experiments began. As the 

different genotypes grow at different rates (e.g. fat-6; fat-7 mutants take approximately 

2 days longer to mature than wild type), eggs were collected several days in advance 

depending upon developmental rate. During development the worms were maintained 

at 20°C. Twenty individuals, on each NGM or RNAi plate, were transferred directly to 

4°C ± 0.5°C on the first day of adulthood. This temperature is considerably below the 

thermal range for wild type growth and activity of 15°C - 25°C (Dusenbery & Barr, 

1980). Survival was then monitored regularly (usually daily but in some cases every 2nd 

day) following approximately 20 minutes recovery at room temperature. If survival 
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status was not immediately apparent, worms were gently touched with a platinum wire 

to stimulate a response. 

 

b) Dauers 

 Populations of N2 and age-1(hx546) mutants were initiated with an equal 

number of age-synchronised adults. These populations, which were maintained at 

20°C, grew at similar rates and depleted their food patches at roughly the same time. 

Dauers were collected approximately 24 hours later and 20 individuals were transferred 

directly to 4°C ± 0.5°C on each NGM plate. Survival was monitored as above until all of 

the non-dauer controls (N2 and age-1(hx546) mutant adults) had died.  

 

6.34 Cold coma recovery times 

 Recovery times were monitored in a representative set of genotypes, including 

N2, age-1(hx546) mutants, fat-6(tm331); fat-7(wa36) double mutants and age-

1(hx546); fat-6(tm331); fat-7(wa36) triple mutants, following 6 hours exposure to 4°C ± 

0.5°C. Well fed young adults, which had been synchronised to reach maturity on the 

same day, were separated onto 5 plates containing 10 individuals each. After the stress 

period, the plates were randomised and divided among four observers who, using stop 

watches, recorded the time taken for recovery at room temperature (approximately 

22°C). Worms were considered to have recovered once they had begun to actively 

move around the plates. Data were collected in 2 separate blocks. 

 

6.35 DAF-16::GFP localisation  

 To assess the activity of DAF-16 at low temperatures, cellular distributions of a 

DAF-16::GFP fusion protein were compared among well fed TJ356 and age-1(hx546); 

zIs356 [pGP30 (daf-16::GFP)] young adults using methods described in chapter 2. 

These worms had either been maintained at the control temperature (20°C) or had 

been exposed to 4°C for 6 hours. DAF-16::GFP localisation was categorised from 1-4, 

where 1 represents a uniform distribution throughout cells and 2, 3 and 4 represent 

increasingly nuclear distributions as described in chapter 4. Localisation was scored in 

approximately 120 individuals per genotype and treatment over three separate blocks. 

 

6.36 Analysis 

All analyses were performed in R version 2.10.1. 
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a) Survival analysis  

 A small number of individuals which had died from mortality sources other than 

exposure to low temperatures (e.g. rupturing of the vulva) were removed from the 

analysis. Due to slight variation in survival times among controls (N2 adults) observed 

in separate experiments, each experiment was analysed independently. All survival 

experiments were analysed using parametric regression models with Weibull error 

distributions (Hmisc and Design libraries).  

 

b) Cold coma recovery times  

 Cold coma recovery times were compared among genotypes using a 

generalised linear mixed effects model. The model was fitted using the penalised 

quasi-likelihood (PQL) method (nlme library) and had gamma error distributions and a 

random effects term to account for variation among plates and between blocks.  

 

c) DAF-16 localisation 

 Cellular distributions of DAF-16::GFP were compared between genotypes and 

among temperatures using an ordinal multinomial continuation-ratio logit model 

(Agresti, 2002; Thompson, 2009) in the VGAM library (Yee & Wild, 1996). This analysis 

took account of the ordering in the categorical response (i.e. 1 < 2 < 3 < 4) and was 

used to determine the likelihood of continuing past a certain category level given that 

that category has been reached in the first place. The minimal adequate model was 

obtained based upon AIC values and, after removal of an interaction between genotype 

and treatment, contained genotype and treatment as explanatory variables. When 

certain categories were not displayed by one or both genotypes at a particular 

temperature, it was not possible to obtain parameters to describe all of the observed 

category transitions. These situations are described within parenthesis in 6.45. P-

values were obtained using likelihood ratio tests to compare between models following 

sequential removal of explanatory variables. 

 

 

 

 

 

 

 

 

 



 

109 

 

6.4 Results 

 

6.41 Reduced insulin signalling promotes cold tolerance in a daf-16 dependent 

manner  

To establish if insulin signalling plays a role in resistance to low temperatures, 

survival times at 4°C were compared between young wild type (N2) and age-1(hx546) 

mutant adults following direct transfer from 20°C. To assess if differences in cold 

tolerance were due to differences in the activity of DAF-16, survival times were also 

monitored in daf-16(mu86) null mutants and in age-1(hx546); daf-16(mu86) double 

mutants under these conditions. age-1 mutants displayed prolonged survival at 4°C 

relative to the wild type genotype (z = 12.02, p < 0.001), with mean survival times 

increased by 85% (Figure 6.1a). However, no significant differences in survival were 

observed among wild type worms, daf-16 mutants and age-1; daf-16 double mutants. 

This suggests that daf-16(+) is required for increased cold tolerance in age-1 mutants, 

but does not contribute to wild type survival at 4°C. Survival at 4°C was also compared 

among N2 and age-1 mutant dauers and fed adults. In both genotypes, more than 90% 

of dauers survived until after all fed adults had died (Figure 6.1b), and no significant 

difference between wild type and age-1 mutants was observed during this stage. This 

indicates that wild type and age-1 mutant dauer larvae are remarkably resilient to cold 

temperatures relative to fed adults (wild type: z = 13.49, p < 0.001, age-1 mutants: z = 

8.12 p < 0.001), at least in the absence of an acclimation period. Preliminary 

observations suggested that, in both genotypes, arrested L1s, adults in reproductive 

diapause and post-reproductive adults which were maintained without food also survive 

at low temperatures for longer periods than fed adults (data not shown). 

 

6.42 Cold tolerance in age-1 mutants is facilitated by Δ9 desaturases  

 An age-1; fat-7 double mutant had not yet been obtained when cold tolerance 

was monitored in single desaturase mutants. However, loss-of-function mutations in fat-

5, fat-6 and fat-7 in the wild type background and in fat-5 and fat-6 in the age-1 mutant 

background had only marginal effects upon cold tolerance (appendix 6.2). In contrast, 

simultaneous mutations in fat-6 and fat-7 reduced cold tolerance considerably in both 

the wild type (z = -7.79, p < 0.001) and age-1 mutant backgrounds (z = -14.5, p < 

0.001) (Figure 6.2a). Mean survival times at 4°C were reduced by 40% in fat-6; fat-7 

double mutants relative to wild-type and by 57% in age-1; fat-6; fat-7 triple mutants 

relative to age-1 mutants. However, although age-1; fat-6; fat-7 triple mutants were 

more sensitive to 4°C than wild type worms (z = -2.53, p = 0.012), they remained more 
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cold tolerant than equivalent individuals with a wild type background (z = 5.27, p < 

0.001).  
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Figure 6.1: Variation in cold tolerance among genotypes and between stages. Survival 

curves for a) wild type (N2), age-1(hx546) mutants, daf-16(mu86) mutants and age-1(hx546); 

daf-16(mu86) double mutants at 4°C, and b) wild type (N2) and age-1(hx546) mutant adults and 

dauers at 4°C. Survival was monitored in 90-100 individuals per genotype and stage. 
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RNAi of fat-5 in fat-6 and fat-7 mutants and in age-1; fat-6 and age-1; fat-7 

double mutants reduced survival times at 4°C in both the wild type and age-1 mutant 

backgrounds (Figure 6.2b). Relative to wild type controls on HT115 bacteria containing 

empty RNAi plasmid vectors, suppressing the expression of fat-5 in fat-6 mutants 

reduced mean survival times, by 23% (z = -3.48, p < 0.001), and suppressing the 

expression of fat-5 in fat-7 mutants reduced mean survival times by 30% (z = -4.84, p < 

0.001). Similarly, relative to age-1 mutant controls on HT115 bacteria containing empty 

RNAi plasmid vectors, RNAi of fat-5 in age-1; fat-6 double mutants reduced mean 

survival times by 33% (z = -6.67, p < 0.001), and RNAi of fat-5 in age-1; fat-7 double 

mutants reduced mean survival times by 38%  (z = -7.81, p < 0.001). Although survival 

times were reduced slightly further in both the wild type and age-1 mutant backgrounds 

when fat-5 was suppressed in fat-7 mutants than when fat-5 was suppressed in fat-6 

mutants, these differences were not significant. However, whilst age-1; fat-6 double 

mutants on fat-5 RNAi plates remained more cold tolerant than wild type controls on 

HT115 bacteria containing empty RNAi plasmid vectors (z = 2.66, p = 0.008), survival 

in age-1; fat-7 double mutants on fat-5 RNAi plates was not significantly different from 

wild type controls. 

 Survival times at 4°C were reduced dramatically in both wild type and age-1 

mutant backgrounds when the function of all three Δ9 desaturase genes was reduced or 

eliminated (Figure 6.2c). Relative to wild type controls on HT115 bacteria containing 

empty RNAi plasmid vectors, RNAi of fat-5 in fat-6; fat-7 double mutants reduced mean 

survival times by 67% (z = -10.60, p < 0.001), and RNAi of fat-6 and fat-7 in fat-5 

mutants reduced mean survival times by 59% (z = -8.23, p < 0.001). Relative to age-1 

mutant controls on HT115 bacteria containing empty RNAi plasmid vectors, RNAi of fat-

5 in age-1; fat-6; fat-7 triple mutants reduced mean survival times by 69% (z = -11.40, p 

< 0.001), and RNAi of fat-6 and fat-7 in age-1; fat-5 double mutants reduced mean 

survival times by 62% (z = -9.58, p < 0.001). In both genetic backgrounds, fat-6; fat-7 

mutants on fat-5 RNAi appeared to be more sensitive than fat-5 mutants on fat-6/fat-7 

RNAi; however, these differences were not statistically significant. Although survival 

times were reduced dramatically in both genotypes when all three Δ9 desaturase genes 

were either knocked out or presumably knocked down by RNAi, individuals with an 

age-1 mutant background remained more cold tolerant than equivalent individuals in a 

wild type background. Mean survival times were 75% higher in age-1; fat-6; fat-7 triple 

mutants on fat-5 RNAi than in fat-6; fat-7 double mutants on fat-5 RNAi, (z = 5.35, p < 

0.001), and were 66% higher in age-1; fat-5 double mutants on fat-6/fat-7 RNAi than in 

fat-5 mutants on fat-6 / fat-7 RNAi (z = 4.92, p < 0.001). These results imply that 
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additional transcriptional targets of DAF-16 contribute to the cold tolerant phenotype of 

age-1 mutants. 
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Figure 6.2: Variation in cold tolerance following knockout or knockdown of Δ
9 

desaturase 

genes. Survival curves at 4°C in wild type and age-1 mutant backgrounds following knockout or 

knockdown of Δ
9 

desaturase genes. a) fat-6; fat-7 double mutants and age-1; fat-6; fat-7 triple 

mutants have reduced survival compared to wild type (N2) and age-1 mutants on HB101 

bacteria. Survival was monitored in 90-100 individuals per genotype. b) fat-5 RNAi in fat-6 and 

fat-7 mutants and in age-1; fat-6 and age-1; fat-7 double mutants reduced cold tolerance 

relative to respective controls on HT115 bacteria containing empty RNAi plasmid vectors (N2(e) 

and age-1(e)). Survival was monitored in 50-60 individuals for N2(e) and age-1(e) controls and 

in 90-100 individuals of each mutant genotype on fat-5 RNAi bacteria. c) Knockdown/knockout 

of all three Δ
9 
desaturase genes reduced survival times at 4°C in the wild type and age-1 mutant 

backgrounds. Survival was monitored in 50-60 individuals per genotype/treatment. 

  

6.43 Δ9 desaturase enzymes promote rapid recovery from cold shock 

 Considerable variation in cold coma recovery times was observed among the 

different genotypes following 6 hours exposure to 4°C (Figure 6.3). Although age-1 

mutants recovered more rapidly than wild type worms (t= 7.18, p < 0.001), differences 

in recovery between the two genotypes were less apparent than differences in survival 

following prolonged periods at 4°C. Relative to wild type worms, recovery times were 

substantially prolonged in fat-6; fat-7 double mutants (t = -12.37, p <0.001). Similarly, 

relative to age-1 mutants, recovery was delayed in age-1; fat-6; fat-7 triple mutants (t = 

-12.65, p <0.001). This indicates that FAT-6 and FAT-7 promote rapid recovery in both 

genotypes after exposure to low temperatures. Although age-1; fat-6; fat-7 triple 

mutants took longer to recover than wild type worms (t = -6.07, p <0.001), they 
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recovered more rapidly than equivalent individuals with a wild type background (t = 

6.89, p < 0.001).  
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Figure 6.3: Variation in cold coma recovery times. Lines represent variation in recovery 

times among wild type (N2), age-1 mutants, fat-6; fat-7 double mutants and age-1; fat-6; fat-7 

triple mutants following 6 hours cold shock at 4°C.  Recovery times were recorded in 95-100 

individuals per genotype over 2 separate blocks. 

 

6.45 DAF-16 is not activated during exposure to low temperatures.  

 Spatial distributions of a DAF-16::GFP fusion protein were categorised on a  

continuum from 1 (unlocalised) to 4 (nuclear localised) as described in chapter 4. 

Whilst the cellular distribution of DAF-16::GFP was almost entirely uniform in wild type 

adults at 20°C, it was more nuclear in age-1(hx546) mutant adults (no fed wild type 

displayed categories 3 or 4; category 1-2: t = 17.26, p < 0.001) (Figure 6.4). Although 

there was a slight increase in the intensity of nuclear localisation in age-1 mutant adults 

at 4°C (a transition was observed between categories 2 and 3: t = 2.79, p = 0.029), no 

significant change in DAF-16::GFP subcellular localisation was observed in wild type 

adults following exposure to this temperature (Figure 6.4).  
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Figure 6.4: Effects of genotype and temperature on DAF-16::GFP localisation. Bar plots 

represent the mean proportion of wild type adults and age-1 mutant adults which displayed 

categories 1-4 of DAF-16::GFP localisation at a) 20°C and b) after exposure to 4°C. Error bars 

represent standard errors of the means. Subcellular localisation of DAF-16::GFP was scored in 

approximately 120 individuals per genotype and treatment, over 3 separate blocks. 
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6.5 Discussion 

       

 In C. elegans, mutations which disrupt insulin/IGF-1 signalling initiate a 

conserved stress response due to the inappropriate activation of the transcription factor 

DAF-16 (reviewed in Kenyon, 2005, 2010). As transcriptional targets of DAF-16 are 

thus up-regulated in standard growth conditions, age-1 mutants and other IIS mutants 

are prepared in advance to deal with various environmental challenges should they 

arise. Dauers, which in wild type are formed in unfavourable growth conditions, are 

also protected against various forms of impending stress due, at least in part, to the up-

regulation of DAF-16 target genes. However, although it is well established that IIS 

mutants and dauers display enhanced resistance to several forms of environmental 

stress relative to non-dauer wild type, no assessment of cold tolerance in these worms 

has previously been reported. In this study I have demonstrated for the first time that 

IIS mutants and dauers have increased cold tolerance relative to non-dauer wild type 

after direct transfer from 20°C to 4°C. Although it remains unclear how mutations which 

disrupt insulin/IGF-1 signalling modify the ability to tolerate cold temperatures following 

a more gradual decline in ambient temperature, this implies that long-lived age-1 

mutants display increased resistance to a previously unreported form of environmental 

stress which may be encountered in nature.  

 At 20°C, the optimum temperature for population growth, the proportion of 

unsaturated fatty acids is likely to be higher in IIS mutants or dauers than in wild type 

adults due to the up-regulation of Δ9 desaturase genes. Indeed, the proportion of 

unsaturated fatty-acids in cell membranes is lower in Δ9 desaturase mutants than in 

wild type maintained at control temperatures (Brock et al., 2007; Murray et al., 2007). 

Furthermore, Hellerer et al. (2007) demonstrated that the ordering of stored lipids in the 

hypodermal cells of daf-2 (e1370) mutants, which are defective for the insulin / IGF-1 

receptor, is reduced compared to in wild type worms. This reduced order state, which is 

characteristic of the fluid or liquid-crystalline lipid phase, indicates that a higher 

proportion of unsaturated fatty acids is present in daf-2 mutants than in wild type 

worms. Consequently, the ability to maintain membrane fluidity following a sudden drop 

in temperature should be greater in IIS mutants and dauers as they are „prepared‟ in 

advance for the impending stress, at least with regard to the threat to membrane 

function. Though it remains unclear if the observed differences relative to wild type 

adults would be maintained following a period of acclimation, the results presented in 

this study support this proposed scenario as the cold tolerant phenotype of age-1 

mutants is substantially reduced, and cold coma recovery times are prolonged, when 

the expression of Δ9 desaturase genes is disrupted. 
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 When the expression of two Δ9 desaturase genes was reduced simultaneously, 

the largest reduction in survival at 4°C was observed in age-1; fat-6; fat-7 triple mutants 

relative to age-1 mutants. This difference was greater than in fat-6; fat-7 double 

mutants relative to the wild type, suggesting that fat-6 and fat-7 play a major role in the 

cold tolerant phenotype of age-1 mutants. Despite this, age-1; fat-6; fat-7 triple mutants 

remained more tolerant than equivalent individuals with a wild type background, 

suggesting that increased expression of fat-5 and/or additional targets of DAF-16 

contribute to cold tolerance in age-1 mutants. Consistent with this, age-1; fat-6; fat-7 

triple mutants recovered more rapidly than fat-6; fat-7 double mutants after 6 hours cold 

shock at 4°C. In both genetic backgrounds, the decline in cold tolerance following RNAi 

of fat-5 in fat-6 or fat-7 mutants was slightly less distinct than that observed in the 

double desaturase mutants. As these combinations were achieved using both mutation 

and RNAi, this may simply reflect reduced efficiency of RNAi relative to loss-of-function 

mutations. However, Brock et al., (2007) also demonstrated that, whilst survival to 

adulthood was reduced in all three double Δ9 desaturase mutants at 10°C and 15°C 

relative to the wild type, this was most apparent in fat-6; fat-7 double mutants. 

Furthermore, fat-6; fat-7 double mutants display additional defects, including reduced 

fat storage, slow growth, reduced fecundity and a high proportion of embryonic lethality, 

which are not observed in the double mutants involving fat-5 (Brock et al., 2007). 

Though the expression of fat-5 is increased > 40-fold in fat-6; fat-7 double mutants 

(Brock et al., 2007), these observations may reflect the close evolutionary relationship 

and resulting sequence similarity and substrate specificity of FAT-6 and FAT-7 (Watts & 

Browse, 2000). As fat-7 expression is up-regulated in wild type worms during 

acclimation at 10°C whilst fat-5 and fat-6 expression remain unchanged (Murray et al., 

2007), it is also possible that, of the three Δ9 desaturase genes, fat-7 has the most 

important role in cold tolerance. Consistent with this, although the differences were not 

statistically significant, survival at 4°C was slightly prolonged in fat-6 mutants and age-

1; fat-6 double mutants on fat-5 RNAi relative to fat-7 mutants and age-1; fat-7 double 

mutants on fat-5 RNAi respectively. 

When the function of all three Δ9 desaturase genes was targeted, cold tolerance 

was reduced more dramatically in the age-1 mutant than in the wild type background. 

Despite this, however, individuals with an age-1 mutant background remained more 

cold tolerant than the equivalent individuals with a wild type background. This suggests 

that, the cold tolerance in age-1 mutants is principally due to the up-regulation of Δ9 

desaturase genes, but that additional transcriptional targets of DAF-16 are also 

involved. This supports the findings of Murray et al. (2007), who demonstrated that 

mechanisms in addition to the preservation of membrane fluidity must be involved in 
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cold acclimation in C. elegans. IIS mutants and dauers do differ from wild type adults in 

additional aspects of metabolism which may be involved in cold tolerance. For 

instance, genes involved in the synthesis of trehalose sugars, which have been 

implicated in cold acclimation and/or survival in Saccharomyces cerevisiae (Schade et 

al., 2004), D. melanogaster (Overgaard et al., 2007), the nematode Heterorhabditis 

bacteriophora (Jagdale et al., 2005), and the codling moth, Cydia pomonella (Khani et 

al., 2007), are up-regulated in dauers and daf-2 (e1370) adults (Wang & Kim, 2003; 

McElwee et al., 2006; Honda et al., 2010), and trehalose levels are approximately 2-

fold higher in age-1 mutants than in wild type (Lamitina & Strange, 2005). Glycerol, 

which has a well established role as a cryoprotectant and has been implicated in rapid 

cold-hardening in several insect species (Lee et al., 1987), is also found at higher 

levels in age-1 mutants than in wild type worms (Lamitina & Strange, 2005). In addition, 

several genes encoding heat-shock proteins, which have a role in cold tolerance in S. 

cerevisiae (Pacheco et al., 2009) and in a variety of insect species (Rinehart et al., 

2007), are expressed at higher levels in IIS mutants and dauers than in wild type adults 

(Murphy et al., 2003; Wang & Kim, 2003; McElwee et al., 2004). Furthermore, certain 

antioxidants are present at higher levels in age-1 mutants and dauers than in wild type 

adults (Larsen, 1993), and antioxidant enzymes have been implicated in resistance to 

low temperatures in insects (Joanisse & Storey, 1996) and plants (Thomashow, 1999; 

Dai et al., 2009). Any of these mechanisms may make a contribution to cold tolerance 

beyond that provided by the desaturase genes. 

 Though cold tolerance in age-1 mutants and dauers is clearly daf-16 dependent 

(dauer formation is dependent on functional daf-16), daf-16 mutant adults do not 

display reduced cold tolerance relative to wild type adults. Furthermore, DAF-16 was 

not activated at low temperatures in adults with a wild type background in this study. 

These results suggest that daf-16 is not required for wild type adult survival at 4°C. 

Using a transgenic line created with a different DAF-16::GFP fusion construct, Wolf et 

al. (2008) reported activation of DAF-16 in worms with a wild type background following 

2 hours exposure to 1°C or 8°C. It is unclear which strain most accurately represents 

changes in spatial distributions of DAF-16::GPF under different thermal conditions. 

However, Wolf et al. (2008) also reported that DAF-16::GFP was nuclear localised in 

approximately 40% of adults at 20°C. Given the rapid development and high fecundity 

of wild type worms at this temperature, it is possible that the construct used in this 

study provides a more accurate portrayal of DAF-16::GFP distributions. Although DAF-

16::GFP becomes nuclear localised during exposure to high temperatures, oxidative 

stress and starvation (Henderson & Johnson, 2001), DAF-16 is not activated in 

response to other forms of stress to which IIS mutants display increased resistance, 
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such as ultraviolet light (Henderson & Johnson, 2001) and hypertonic stress (Lamitina 

& Strange, 2005). This may be because different forms of stress elicit distinct 

responses which involve different signalling pathways and transcription factors. Several 

transcription factors, in addition to DAF-16, are known to be important in the regulation 

of Δ9 desaturase genes. These include the nuclear hormone receptors NHR-49 and 

NHR-80, and SBP-1, the C. elegans homologue of sterol-regulatory-element-binding-

protein (SREBP) transcription factors which are key regulators of lipid homeostasis in 

mammals (Ashrafi et al., 2003; Van Gilst et al., 2005a, 2005b; Brock et al., 2006; Yang 

et al., 2006). It is conceivable that one or more of these may play an important role in 

cold tolerance and/or cold acclimation in C. elegans. 

 C. elegans has been isolated from temperate regions throughout the world 

(Barrière & Félix, 2005a) and populations of this species are likely to experience daily 

as well as seasonal fluctuations in temperature. Though cold tolerance in wild type 

adults can be enhanced following a period of acclimation (Murray et al., 2007), these 

worms also show a degree of resistance following a sudden drop in temperature which 

is at least partially due to the activity of FAT-5, FAT-6 and FAT-7. However, given that 

the level of resistance observed in wild type dauers was considerably higher than in 

wild type adults following direct transfer from 20°C to 4°C, the results presented in this 

study may elucidate a mechanism that is important for the survival of C. elegans 

populations in natural environments in which rapid changes in temperature occur. 

Although there is currently no evidence to suggest that dauer formation can be induced 

by exposure to low temperatures, states of diapause are induced in response to 

changes in temperature and/or photoperiod in other invertebrates (reviewed in 

Denlinger, 2002; Bale & Hayward, 2010). For instance, in some insects the adult 

reproductive diapause state, which is considered to be important for over-winter 

survival, is formed in response to shortening day length (Kimura, 1984). Furthermore, 

reproductive diapause appears to be regulated, at least in some species, by the 

conserved insulin signalling pathway and orthologues of DAF-16 (Tartar et al., 2001; 

Williams et al., 2006; Sim & Denlinger, 2008).  

 In this study I have identified a previously unreported form of stress to which IIS 

mutants and dauers exhibit increased resistance. I suggest that, relative to wild type 

adults, these worms display prolonged survival at low temperatures because they are 

physiologically prepared in advance for the impending stress. In age-1 mutants this is 

primarily due to the up-regulation of Δ9 desaturase genes in standard growth 

conditions, but additional DAF-16 target genes also appear to be involved. This 

supports the suggestion that factors other than membrane lipid composition may 

contribute to cold tolerance in poikilothermic animals.  
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Chapter 7 – The evolution of longevity in stochastic environments 

 

7.1 Abstract 

 

 Environmental stress constitutes a major factor shaping evolutionary trajectories 

in wild populations and selection acting upon the ability to tolerate harsh conditions 

may indirectly affect the evolution of associated phenotypes. In this study a 

demographic framework was used to assess how exposure to stochastic environments 

can influence the evolution of longevity in C. elegans. Using a combination of projection 

matrices to represent how schedules of fecundity and survival are modified in different 

conditions, Monte Carlo simulations were used to project populations of wild type 

worms and long-lived, stress resistant age-1 mutants in a variety of heterogeneous 

environments. Stochastic growth rates (λs) were used as a measure of fitness and the 

invasion success of the age-1(hx546) mutant allele was determined by comparing 

these values between the two genotypes in each set of conditions. When populations 

frequently encountered periods of starvation, relative fitness was reduced in age-1 

mutants. Though age-1 mutants could coexist with the wild type genotype under these 

conditions when populations were not subject to density-dependent regulation, 

frequencies of the age-1(hx546) mutant allele, therefore, remained lower than those of 

the wild type genotype over time. In contrast, the fitness of age-1 mutants relative to 

wild type worms was greater when populations experienced periods of environmental 

stress, even when resource availability varied over time. The magnitude of the 

discrepancy between the two genotypes was determined by the frequency at which 

harsh conditions were imposed. These results indicate that the age-1 mutant life history 

strategy confers a selective advantage in certain stochastic environments and that the 

age-1(hx546) mutant allele can successfully invade wild type populations over time. 

Consequently, short term ecological responses to environmental stress can lead to the 

fixation of stress resistant alleles and indirectly promote the evolution of increased 

longevity. This may have important implications for the evolution of life-history 

strategies in an increasingly stressful world. 
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7.2 Introduction 

 

 Evolutionary theories of senescence predict that longevity is determined by the 

level of extrinsic mortality experienced in a particular ecological niche (Williams, 1957). 

When mortality is high, longevity is constrained because few individuals survive and 

reproduce until a late age. Conversely, when mortality is low, longer life-spans may 

evolve if a considerable proportion of individuals continue to contribute to future 

generations late in life. It could, therefore, be argued that exposure to stressful 

environments may inhibit the evolution of increased longevity by imposing a source of 

mortality which reduces the number of individuals which survive and reproduce until a 

late age. However, given the association between stress resistance and longevity 

described throughout this thesis, if sufficient genetic variation exists in populations 

which experience harsh conditions, it is conceivable that selection may inadvertently 

promote the evolution of longer life-spans by favouring genotypes with the greatest 

ability to tolerate stress (Parsons 1995, 2002; Kenyon, 2010).  

Exposure to environmental stress is considered to be an important factor 

shaping evolutionary dynamics in wild populations (Calow, 1989; Hoffman & Parsons, 

1991; Bijlsma & Loeschcke, 1997; Hoffman & Hercus, 2000). Stressful conditions may 

facilitate micro-evolutionary transitions by increasing the rate at which new genotypes 

arise and by imposing selection pressures which accelerate the rate at which alleles 

become fixed in a population (Hoffman & Parsons, 1991; Nevo, 2001; Wright, 2004). 

However, if trade-offs associated with increased stress resistance reduce fitness 

relative to other genotypes in favourable growth conditions, stress resistant genotypes 

are only likely to be favoured in certain environments (Hoffman & Parsons, 1991). The 

ecological stress theory of ageing (Parsons, 1995, 2002) predicts that selection for 

resistance to environmental stress may underlie evolutionary changes which increase 

longevity in wild populations. Consistent with this, variation in the ability to tolerate 

stress has been associated with differences in longevity between populations of 

Drosophila melanogaster from distinct microhabitats (Nevo et al., 1998), and with 

differences in dauer longevity among wild populations of the nematode Heterorhabditis 

bacteriophora (Grewal et al., 2002). Furthermore, greater longevity was observed in 

populations of the gypsy moth Lymantria dispar from stressful habitats than from more 

benign habitats (Lazarevic et al., 2007). In laboratory studies, artificial selection for 

resistance to stress has been associated with increased lifespan in the parasitic wasp 

Aphytis lingnanensis (White et al., 1970), D. melanogaster (Rose, 1992; Hoffman & 

Parsons, 1993) and the butterfly Bicyclus anynana (Pijpe et al., 2008).  
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 This study uses a demographic framework to assess how selection can 

indirectly influence the evolution of longevity in C. elegans by acting upon genetic 

variation in the ability to tolerate environmental stress. Using a combination of 

population projection matrices to represent how age-specific fecundity and survival are 

modified in wild type worms and long-lived, stress resistant age-1(hx546) mutants in 

different environments, the potential for long term evolutionary transitions is examined 

by investigating the invasion success of the age-1 mutant life history strategy into a 

wild type population in a variety of stochastic conditions. As described in chapters 4, 5 

and 6, age-1 mutants display resistance to various environmental challenges. However, 

it is unclear which of these constitute important selective pressures in nature. In this 

study I have attempted to simulate natural conditions by projecting populations in 

stochastic environments which could conceivably be encountered by wild populations. 

The available data permitted temporal variation in resource availability, temperature 

and oxidative stress to be considered. Whilst wild populations are likely to experience 

resource limitation and fluctuations in ambient temperature, the importance of oxidative 

stress is less clear. However, reactive oxygen species (ROS) can be produced in 

response to environmental factors such as UV radiation, hyperoxia, industrial pollution 

and certain heavy metals, xenobiotics and pesticides (Finkel & Holbrook, 2000; 

Schröder & Krutman, 2005; Van Straalen & Roelofs, 2006). In this study exposure to 

oxidative stress is thus used as a proxy for the combined effects of these different 

environmental stressors. Despite temporal variation in resource availability, for 

simplicity it is assumed that populations occupy a single patch and that population 

dynamics are not subject to density-dependent regulation.  
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7.3 Methods 

All procedures were performed in R version 2.10.1 

 

7.31 Construction of projection matrices 

 To simulate responses to different environmental conditions, eighteen 

irreducible matrices were created for each genotype. Each matrix contained daily 

fecundity values on the top row and daily probabilities of transition (survival) from one 

stage/age to the next on the sub-diagonal. The matrices contained 26 different 

stage/age classes (Figure 7.1) which had been simplified to reflect the life history of 

each genotype at 20ºC when populations were projected in 1 day increments. When it 

was necessary to estimate age-specific fecundity or survival values, estimates were 

identical for the two genotypes unless stated otherwise. Following periods of starvation 

and/or stress, it was assumed that no effects of the maternal environment arose in 

subsequent generations. 

 

a) Matrix 1: favourable conditions (deterministic growth)  

 Data for age-specific fecundity at 20ºC were available for the wild type genotype 

from experiments which have not been reported in this thesis. These data had been 

collected as described in chapter 3 except that adults had been transferred every 12 

hours during the reproductive period. Reproductive schedules were not available for 

age-1(hx546) mutants at 20ºC. To deal with this issue, mean lifetime fecundity values 

were determined for each genotype using the data reported for fed controls at 20ºC in 

chapters 4 and 5. Age-specific fecundities were then extrapolated from these mean 

values by using the reproductive schedules for the wild type genotype to determine the 

proportion of total offspring which should be produced each day. With each projection 

from stage 1 (eggs), worms progress through stages 2 (L1-L2), 6 (L3-L4), 8 (1st day of 

reproduction), 12 (2nd day of reproduction), 16 (3rd day of reproduction), 20 (4th day of 

reproduction) then 24 (5th day of reproduction) (Figure 7.1). As very little mortality is 

observed during development or reproduction in favourable growth conditions (chapter 

3), in both genotypes it is assumed that 100% of worms progress to each successive 

stage. Though the timing required to complete embryogenesis is over estimated for 

20ºC, the developmental period of 3 days is approximately correct (times vary 

according to the food source and when provided with HB101 development is slightly 

more rapid).  
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Figure 7.1: Projection matrix classes. Stage/age classes included in each projection matrix to 

represent responses to different environmental conditions. Dashed arrows represent transitions 

which occur primarily in starvation conditions. Dotted arrows represent transitions which occur 

during or after exposure to abiotic stress. In parentheses, „2‟ refers to worms which were 

stressed during stage 2 (L1/L2), „6‟ refers to worms which were stressed during stage 6 (L3/L4), 

and „RD‟ refers to worms which had arrested in the adult reproductive diapause state during 

starvation. 

 

b) Matrices 2-5: Starvation conditions 

Matrix 2: Starvation day 1 

 Newly hatched larvae arrest development in the L1 diapause state; L1-L2s 

arrest as dauers; 50% of L3-L4s arrest in reproductive diapause and 50% mature as 
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reproductive adults (estimated from Angelo & Van Gilst, 2009). At each reproductive 

age fecundity is reduced to 10% of that observed in favourable conditions (estimated). 

 

Matrix 3: Starvation day 2+ 

 On the first iteration (starvation day 2), 25% of eggs hatch externally and larvae 

arrest development in the L1 diapause state (stage 3), but 75% of eggs hatch internally 

and larvae progress to stage 2 (estimated). These larvae have sufficient resources to 

reach the dauer stage on the second iteration. Arrested L1s, dauers and adults in 

reproductive diapause remain in these states throughout the starvation period. All 

reproductive adults die due to internal hatching. 

 

Matrix 4: Recovery day 1 

 Arrested larvae resume development. To account for the delay in maturity 

observed in age-1 mutants relative to wild type worms after larvae had arrested in the 

dauer stage (wild type mature ~ 30 hours and age-1 mutants mature ~ 40 hours after 

food has been provided, chapters 4 and 5), 70% of wild type and 30% of age-1 mutants 

attain maturity. Adults in reproductive diapause commence reproduction but fecundity 

at each reproductive age is reduced to 20% of that observed in favourable conditions 

regardless of the length of the starvation period (estimated from Angelo & Van Gilst, 

2009). 

 

Matrix 5: Recovery days 2-5 

 All worms which had arrested in the L1 diapause state and all remaining dauers 

mature. The age specific fecundity of adults which had arrested as L1s or as dauers is 

equal to that of adults which had developed in control conditions (chapter 4 and 5). 

After each starvation period populations were projected using this matrix for 4 time 

steps to ensure that all adults which had arrested in reproductive diapause became 

post-reproductive.  

 

c) Matrices 6-8: heat shock 27ºC 

Matrix 6: heat shock 27ºC (1 day only) 

 Only 50% of eggs are viable (estimated); wild type L1-L2s progress to stage 4 

(L3-L4 when stressed during L1-L2) and age-1 mutant L1-L2s arrest as dauers; L3-L4s 

progress to stage 9 (1st day of reproduction when stressed during L3-L4). At each 

reproductive age fecundity is reduced to 5% of that observed in favourable conditions 

(estimated). It is assumed that post-stress reproduction is similar in worms that are 
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stressed during adulthood and in worms that are stressed during L3/L4. Therefore, 

depending on current age, reproductive adults progress to stages 13, 17, 21 or 25.  

 

Matrix 7: Recovery day 1 

 All eggs are viable (low fecundity during the stress accounts for reduced 

reproductive investment and reduced viability) and newly hatched larvae progress to 

stage 2. Wild type larvae which had been stressed as L1-L2s progress from stage 4 to 

stage 7. Whilst 70% of age-1 mutants which had been stressed as L1-L2s remain in the 

dauer stage, 30% progress to stage 8. When larvae had been stressed as L3-L4s, 

post-stress fecundity at each reproductive age class was reduced to 4.4% in wild type 

worms and to 6.9% in age-1 mutants (these values were determined by dividing the 

relevant mean post-stress fecundities from chapter 4 by the mean fecundities for each 

genotype in control conditions). It was assumed that when worms had been stressed 

during the reproductive period remaining post-stress fecundity was the same as when 

larvae had been stressed during L3-L4. 

 

Matrix 8: Recovery days 2-6 

 Remaining age-1 mutant dauers mature. When wild type larvae had been 

stressed as L1-L2s, post-stress fecundity at each reproductive age class was reduced 

to 36% of that observed in control conditions (this was determined by dividing mean 

post-stress fecundity from chapter 4 by mean fecundity in control conditions). When 

age-1 mutants had been stressed as L1-L2s, post-stress fecundity at each reproductive 

age class was similar to unstressed controls (chapter 4). Populations were projected 

using this matrix for 5 time steps to ensure that all wild type adults which had been 

stressed as L1-L2s became post-reproductive. 

 

d) Matrices 9-12: heat shock 30ºC 

Matrix 9: heat shock 30ºC (1 day only) 

 All eggs are non-viable (estimated); 60% of wild type L1-L2s die and 10% of 

age-1 mutant L1-L2s die; 50% of wild type L3-L4s die and 10% of age-1 mutant L3-L4s 

die (chapter 4). In both genotypes surviving larvae arrest development. Though adult 

mortality is likely to differ between the two genotypes in a similar manner to larval 

mortality, reproductive adults are unlikely to contribute further to population growth after 

the stress period. Accordingly no reproductive adults progress to subsequent ages. 
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Matrix 10: Recovery day 1 

 To account for the delay in maturity observed after removal from the stress 

(chapter 4), all surviving wild type larvae remain arrested. Though surviving age-1 

mutant L1-L2s remain arrested, 20% of age-1 mutant L3-L4s progress to stage 9. 

 

Matrix 11: Recovery days 2-3 (wild type) or day 2 (age-1 mutants) 

 In both genotypes, L1s-L2s progress to stage 4 and remaining L3-L4s progress 

to stage 9. When larvae had been stressed during L3-L4, post-stress fecundity at each 

reproductive age class was reduced to 2.5% in wild type worms and to 4.8% in age-1 

mutants (these values were determined by dividing mean post-stress fecundities from 

chapter 4 by mean fecundities for each genotype in control conditions). To account for 

the delay in maturity in wild type worms which had been stressed during L1-L2 (chapter 

4), wild type populations were always projected for 2 time steps using this matrix. 

 

Matrix 12: Recovery days 4-9 (wild type) or days 3-9 (age-1 mutants) 

 In both genotypes worms which had been stressed during L1-L2 progress from 

stage 4 to stage 7 (this occurs on recovery day 3 for age-1 mutant populations and on 

recovery day 4 for wild type populations). When larvae had been stressed during L1-

L2, post-stress fecundity at each reproductive age class was reduced to 4.8% in wild 

type worms and to 26.5% in age-1 mutants (these values were determined by dividing 

mean post-stress fecundities from chapter 4 by mean fecundities in control conditions). 

Populations were always projected using this matrix until all wild type adults which had 

been stressed during L1-L2 became post-reproductive (6 iterations for wild type 

populations and 7 iterations for age-1 mutant populations). 

 

e) Matrices 13-15: Oxidative stress  

Matrix 13: Oxidative stress (1 day only) 

 As it is unclear how likely populations are to encounter oxidative stress in 

natural conditions, only data for responses to low concentrations of juglone (50μM) are 

used in this chapter. In both genotypes 50% of eggs are viable (estimated); 14% of wild 

type L1-L2s die and 4% of age-1 mutant L1-L2s die; 17% of wild type L3-L4s die and 

4% of age-1 mutant L1-L2s die (chapter 5). Surviving L1-L2s progress to stage 4. To 

account for the slight delay in maturity observed in both genotypes when larvae are 

stressed during L3-L4 (chapter 5), 66% of wild type L3-L4s progress to stage 9 whilst 

17% remain in stage 6, and 77% of age-1 mutant L3-L4s progress to stage 9 whilst 

19% remain in stage 6. At each reproductive age, 15% of wild type adults die and 4% 

of age-1 mutant adults die (estimated). In both genotypes fecundity of surviving adults 
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is reduced to 10% of that observed in favourable conditions at each reproductive age 

(estimated).  

 

Matrix 14: Recovery day 1 

 To account for the delay in maturity after larvae had been stressed during L1-L2 

(chapter 5), 75% of surviving wild type larvae progress to stage 7 whilst 25% remain in 

stage 4, and 80% of surviving age-1 mutant larvae progress to stage 7 whilst 20% 

remain in stage 4. In both genotypes, remaining larvae which were stressed during L3-

L4 progress to stage 9. When larvae had been stressed during L3-L4, post-stress 

fecundity at each reproductive age was reduced to 51% in wild type worms and to 71% 

in age-1 mutants (these values were determined by dividing mean post-stress 

fecundities from chapter 5 by mean fecundities in control conditions). It was assumed 

that when worms had been stressed during the reproductive period post-stress 

fecundity remained at 10% of that observed in control conditions. 

 

Matrix 15: Recovery days 2-7 

 In both genotypes, remaining larvae which had been stressed during L1-L2 

progress to stage 7. When larvae had been stressed as L1-L2s, post-stress fecundity 

at each reproductive age class was reduced to 62% in wild type worms and to 80% in 

age-1 mutants (these values were determined by dividing mean post-stress fecundities 

from chapter 5 by mean fecundities in control conditions). Populations were projected 

using this matrix for 6 time steps to ensure that all adults which had been stressed 

during L1-L2 became post-reproductive. 

 

f) Matrix 16: 27ºC heat shock - starved (1 day only) 

 As described in 7.32, matrices 16-18 were only applied after populations had 

already been projected in starvation conditions using matrices 2 and 3. Consequently, 

populations were comprised of worms which had arrested in stages 3, 5 and 10. After 

populations have been projected using one of these matrices, they were always 

projected using matrix 3 (continued starvation) for at least 1 time step. Recovery 

matrices were therefore not required. In matrix 16, all arrested L1s and dauers survive 

and remain in these states (chapter 4). Given that adults have increased resistance to 

thermal stress when maintained in starvation conditions (Henderson et al., 2006), it 

was assumed that all adults in reproductive diapause should also survive and remain in 

this state.  
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g) Matrix 17: 30ºC heat shock - starved (1 day only) 

 As survival was not reduced in either genotype when arrested L1s or dauers 

were exposed to 30ºC (chapter 4), this matrix does not differ from matrix 16.  

 

h) Matrix 18: Oxidative stress - starved (1 day only) 

 10% of wild type arrested L1s die and 1% of age-1 mutant arrested L1s die 

(chapter 5). All dauers survive. It was unclear how adults in reproductive diapause 

respond to oxidative stress so survival was not altered in either genotype.  

 

7.32 Randomisation of matrix sequences  

 In each set of projections, the age-1 mutant population was initiated after the 

wild type population had been growing for 50 days. For simplicity, to ensure that the 

mutant population always arose in control conditions, the first 50 iterations for the wild 

type population were defined as follows: 10 days in favourable conditions (matrix 1 x 

10), 20 days in starvation conditions (matrix 2 x 1, matrix 3 x 19), then 20 days in 

favourable conditions (matrix 4 x 1, matrix 5 x 4, matrix 1 x 15). Populations were then 

projected for 950 time steps using matrix sequences which had been randomised as 

described below. These were identical for the two genotypes except when stated 

otherwise. 

 

Step 1 

 Two vectors were created containing lists of different possible options. The first 

contained environmental states which could only be encountered when populations had 

previously been projected in favourable growth conditions or had fully recovered from 

periods of starvation or stress. These included a) favourable growth conditions (matrix 

1), b) starvation conditions (matrix 2), c) 27ºC heat shock (matrix 6), d) 30ºC heat 

shock (matrix 9) and e) oxidative stress (matrix 13). The second contained states which 

could only be encountered when populations had previously been projected in 

starvation conditions. These included a) continued starvation (matrix 3), b) recovery 

from starvation (matrix 4), c) starvation and 27ºC heat shock (matrix 16), d) starvation 

and 30ºC heat shock (matrix 17), and e) starvation and oxidative stress (matrix 18). 

 

Step 2 

 Probability distributions were created for each vector to control the frequency at 

which different states could arise. These distributions were modified for different sets of 

projections as described in 7.33.  
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Step 3 

 A set of rules was devised to ensure that, after the first 50 iterations, new 

environmental states were selected at random from the appropriate vector at a 

frequency determined by the relevant probability distribution. Matrices were placed in a 

specific order when necessary (Figure 7.2). For instance, when a state of 

environmental stress was selected after populations had been projected in favourable 

growth conditions, the stress matrix was used for a single iteration then was followed 

by a specific sequence of recovery matrices. These sequences were identical for wild 

type populations and age-1 mutant populations except after exposure to 30ºC (7.31d). 

When starvation conditions were selected, populations were first projected using matrix 

2 (starvation day 1), then, for subsequent iterations, using matrix 3 (starvation day 2+). 

After a minimum number of time steps in starvation conditions (7.33), a new 

environmental state was randomly selected from the starvation specific vector. If 

starvation and an additional form of stress were selected, populations were projected 

using the stress matrix for a single iteration then were again projected using matrix 3. If 

favourable growth conditions were selected, populations were projected using a 

specific sequence of recovery matrices before a new environmental state could again 

be selected at random. 

 

7.33 Projection of populations in stochastic environments 

 Populations do not necessarily converge to a stable age distribution when age-

specific fecundities and probabilities of survival vary over time (Benton & Grant, 1996). 

However, for simplicity, the wild type starting population vector contained 100 

individuals which were spread according to the stable age distribution in favourable 

growth conditions. Relative proportions in each stage/age class were obtained from an 

eigenanalysis of matrix 1 as described in chapter 3. To simulate a mutant invasion, the 

age-1 mutant starting population vector contained a single egg. Though in reality a 

mutation would arise in only one allele, it was assumed that the mutant was 

immediately homozygous. After projection from the starting population vector (N0), a 

new population vector was derived at each subsequent time step according to the 

equation Nt+1 = MNt, where M is the projection matrix at time t and Nt is the population 

vector at time t (Benton & Grant, 1996).  
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Figure 7.2: Randomisation of matrix sequences. Responses to different environmental 

conditions were represented by 18 projection matrices per genotype. Purple print corresponds 

to favourable growth conditions, red corresponds to intense thermal stress (30°C), orange 

corresponds to intermediate thermal stress (27°C), blue corresponds to oxidative stress (ROS), 

and green corresponds to starvation conditions. Environmental states were selected at random 

according to a predefined probability. When necessary, populations were projected using a 

specific sequence of matrices until favourable conditions were restored.  
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Populations were projected using the following sets of randomised matrix sequences: 

 

a) Resource fluctuation 

 Populations were projected in stochastic environments in which only resource 

availability varied over time. When populations had previously been projected in 

favourable growth conditions, continued projection in favourable growth conditions 

(matrix 1) was selected at a frequency of 0.5 and projection in starvation conditions 

(matrix 2) was selected at a frequency of 0.5. After populations had been projected for 

a single iteration using matrix 2, matrix 3 (starvation day 2+) was applied for at least 4 

time steps before a new matrix could be selected at random. Continued starvation 

(matrix 3) was then selected at a frequency of 0.8 and recovery (matrix 4) was selected 

at a frequency of 0.2. As favourable conditions were always restored for at least 5 time 

steps during recovery from starvation (matrix 4 x 1, matrix 5 x 4), the minimum 

starvation period of 5 days ensured that populations were not projected in favourable 

growth conditions more frequently than in starvation conditions.  

 

b) Low frequency stress 

 Populations were projected in stochastic environments in which resource 

availability varied over time and periods of environmental stress were encountered at 

very low frequencies. When populations had previously been projected in favourable 

growth conditions, continued projection in favourable growth conditions (matrix 1) was 

selected at a frequency of 0.425, projection in starvation conditions (matrix 2) was 

selected at a frequency of 0.425, exposure to 27ºC (matrix 6) was selected at a 

frequency of 0.06, exposure to 30ºC (matrix 9) was selected at a frequency of 0.06, 

and exposure to oxidative stress (matrix 13) was selected at a frequency of 0.03. After 

populations had been projected for a single iteration using matrix 2, matrix 3 (starvation 

day 2+) was applied for at least 9 time steps before a new matrix could be selected at 

random. Continued starvation (matrix 3) was then selected at a frequency of 0.425, 

recovery (matrix 4) was selected at a frequency of 0.425, exposure to starvation and 

27ºC (matrix 6) was selected at a frequency of 0.06, exposure to starvation and 30ºC 

(matrix 9) was selected at a frequency of 0.06, and exposure to starvation and 

oxidative stress (matrix 13) was selected at a frequency of 0.03. As favourable 

conditions were always restored for at least for 5 time steps during recovery from 

starvation or periods of environmental stress, the minimum starvation period of 10 days 

ensured that populations were not projected in favourable growth conditions more 

frequently than in starvation conditions. 
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c) High frequency stress 

 Populations were projected in stochastic environments in which resource 

availability varied over time and periods of environmental stress were encountered at 

relatively high frequencies. When populations had previously been projected in 

favourable growth conditions, continued projection in favourable growth conditions 

(matrix 1) was selected at a frequency of 0.25, projection in starvation conditions 

(matrix 2) was selected at a frequency of 0.25, exposure to 27ºC (matrix 6) was 

selected at a frequency of 0.20, exposure to 30ºC (matrix 9) was selected at a 

frequency of 0.20, and exposure to oxidative stress (matrix 13) was selected at a 

frequency of 0.10. After populations had been projected for a single iteration using 

matrix 2, matrix 3 (starvation day 2+) was applied for at least 24 time steps before a 

new matrix could be selected at random. Continued starvation (matrix 3) was selected 

at a frequency of 0.25, recovery (matrix 4) was selected at a frequency of 0.25, 

exposure to starvation and 27ºC (matrix 6) was selected at a frequency of 0.20, 

exposure to starvation and 30ºC (matrix 9) was selected at a frequency of 0.20, and 

exposure to starvation and oxidative stress (matrix 13) was selected at a frequency of 

0.10. As favourable conditions were always restored for at least for 5 time steps during 

recovery from each period of starvation or environmental stress, the minimum 

starvation period of 25 days ensured that populations were not predominantly projected 

in favourable growth conditions. 

   

7.34 Estimation of fitness (λs) in stochastic environments  

 To obtain fitness values in favourable conditions, the deterministic growth rate 

(λ) for each genotype was derived from the dominant eigenvalue of matrix 1 as 

described in chapter 3. In heterogeneous environments, in which schedules of 

fecundity and survival vary over time, population growth rates are not predetermined. 

To obtain fitness values in stochastic environments, Monte Carlo simulations were used 

to estimate the average per capita growth rate for each genotype. To do this, 1000 

randomised matrix sequences for each set of stochastic conditions were used to 

project populations for 1000 time steps, then the stochastic growth rate (λs) was 

determined for each genotype using the equation log λs ≈  1/950 log (N1000-N50), where 

N1000 is the population size after 1000 time steps and N50 is the population size after 50 

time steps when age-1 mutants were introduced (Tuljapurkar, 1990; Metz et al., 1992; 

Benton et al., 1995; Benton & Grant, 1996). The invasion success of the age-1(hx546) 

mutant allele could then be determined by comparing fitness estimates in each set of 

stochastic environments and by monitoring the proportion of projections in which the 

frequency of age-1 mutants exceeded that of the wild type genotype. 
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7.4 Results 

 

7.41 Temporal variation in resource availability reduces the relative fitness of 

age-1 mutants  

In favourable growth conditions, age-specific schedules of fecundity and 

survival do not vary over time. Consequently, wild type and age-1 mutant populations 

increase in size at a steady rate (Figure 7.3a). Under these conditions, fitness (the 

deterministic growth rate, λ) of the two genotypes is remarkably similar (Table 7.1), and 

genotype frequencies converge towards a stable equilibrium after the age-1 mutant 

allele has been introduced (Figure 7.3b). When resource availability varies over time, 

age-specific schedules of fecundity and survival are modified accordingly. Fitness (the 

stochastic growth rate, λs) is considerably reduced in both genotypes compared to in 

favourable growth conditions but is reduced to a greater extent in age-1 mutants than 

in wild type worms (Table 7.1). Relative fitness is reduced by approximately 3% in age-

1 mutants; however, λs > 1 in each genotype when periods of starvation occur at the 

frequency imposed in this study, indicating that both genotypes can persist under these 

conditions (Figure 7.3c, Table 7.1). Therefore, when resource availability varies 

periodically, but population dynamics are not subject to density-dependent regulation, 

age-1 mutants can coexist with the wild type genotype albeit remaining at lower 

frequencies throughout time (Figure 7.3d). 

 

7.42 age-1 mutants can invade in stochastic environments 

 When resource availability varies over time and periods of environmental stress 

are encountered at low frequencies, fitness is reduced in both genotypes compared to 

in favourable growth conditions (Figure 7.4a, Table 7.1). However, though populations 

frequently encounter periods of starvation and stress is rarely imposed, fitness is 

reduced to a greater extent in wild type worms than in age-1 mutants under these 

conditions (Table 7.1). Relative fitness is increased by approximately 3% in age-1 

mutants, suggesting that the age-1 mutant life history strategy can successfully invade 

if populations occasionally encounter periods of environmental stress (Figure 7.4b, 

Table 7.1). Consistent with this, the frequency of the age-1 mutant allele exceeded that 

of the wild type genotype within 950 time steps in approximately 44% of simulations 

(Table 7.1). 
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Figure 7.3: Deterministic and stochastic growth rates. Population growth (a and c) and 

temporal variation in genotype frequencies (b and d) in favourable conditions (a and b) and in a 

representative stochastic projection in which resource availability varies over time (c and d). 

Black lines represent the wild type genotype and red lines represent age-1 mutants. Relative 

proportions of fed versus starved days in the projection presented in 1c are displayed in 

appendix 7.1. 

 

When resource availability varies over time and periods of environmental stress 

are experienced at a relatively high frequency, fitness is considerably reduced in both 

genotypes compared to in favourable growth conditions (Table 7.1). However, under 

these conditions, the reduction in fitness is much more apparent in wild type worms 

than in age-1 mutants (Figure 7.4c, Table 7.1). Relative fitness was 11% greater in age-

1 mutants, and the frequency of the age-1 mutant allele exceeded that of the wild type 

genotype within 950 time steps in approximately 98% of simulations (Figure 7.4d, Table 

7.1). The large distinction between the genotypes under these conditions suggests that 

the mutant allele may replace that of the wild type even when populations are regulated 

by density-dependent processes. These results indicate that, when responses to stress 
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vary among different genotypes, increased lifespan can evolve as an indirect 

consequence of selection for greater ability to tolerate harsh environmental conditions.  
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Figure 7.4: Population growth in stochastic environments. Representative projections of 

population growth (a and c) and temporal variation in genotype frequencies (b and d) in 

stochastic environments with fluctuating resource availability and low frequency stress (a and b) 

and in stochastic environments with fluctuating resource availability and high frequency stress (c 

and d). Black lines represent the wild type genotype and red lines represent age-1 mutants. The 

relative proportions of different environmental states applied in the projections presented in a 

and c are displayed in appendix 7.2 and 7.3 respectively. 
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Genotype Wild type (N2) age-1 

Favourable 

environments 

Absolute fitness (λ) 3.594 3.603 

Relative fitness 1.0 1.002 

I50 -  0 
S

to
c
h

a
s

ti
c

 e
n

v
ir

o
n

m
e

n
ts

 

Resource 

fluctuation 

only 

Absolute fitness (λs) 1.850 1.794 

Relative fitness 1.0 0.970 

Environmental impact 0.515 0.498 

I50 - 0 

Resource 

fluctuation and 

low frequency 

stress 

Absolute fitness (λs) 1.754 1.808 

Relative fitness 1.0 1.031 

Environmental impact 0.488 0.502 

I50 - 0.437 

Resource 

fluctuation and 

high frequency 

stress 

Absolute fitness (λs) 1.546 1.703 

Relative fitness 1.0 1.101 

Environmental impact 0.430 0.473 

I50 - 0.985 

 

Table 7.1: Fitness in different environmental conditions. Absolute and relative fitness values 

in different environmental conditions. Deterministic growth rates (λ) were derived from an 

eigenanalysis of matrix 1 and stochastic growth rates (λs) were estimated from 1000 separate 

population projections for each set of environmental conditions. Environmental impact values 

describe the reduction in fitness in each stochastic environment relative to favourable 

conditions, and I50 values represent the proportion of simulations in which the frequency of the 

age-1 mutant allele exceeded that of the wild type genotype. 
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7.5 Discussion 

 

 In this study a demographic approach was used to examine how environmental 

stochasticity can influence the evolution of longevity in C. elegans. As selection does 

not act directly upon longevity, lifespan is expected to evolve in response to selection 

on associated traits. Consistent with this, I have demonstrated that long-lived age-1 

mutants can invade wild type populations which intermittently experience harsh 

conditions due to selection for greater resistance to environmental stress. Though age-

1 mutants display higher fitness than the wild type genotype in certain ecological 

contexts, this does not contest the evolutionary theories of senescence. Instead, it 

suggests that when sufficient genetic variation is present in populations which 

encounter periods of environmental stress, an optimal life history strategy may evolve 

which is characterised by long life and an ability to tolerate harsh conditions. 

As previously demonstrated (Walker et al., 2000; chapters 4 and 5), no costs 

were associated with increased longevity in favourable growth conditions, but the 

relative fitness of age-1 mutants was reduced when resource availability varied over 

time. Despite this, age-1 mutants were able to coexist with wild type worms, albeit at 

lower frequencies, when populations experienced transient changes in resource 

availability. However, density dependence was not taken into account in this study and 

populations were assumed to exist in discrete habitat patches. When resources 

become limited, populations are unlikely to remain spatially static until conditions 

improve, and the ability to disperse to and exploit new patches of food is likely to have 

a considerable influence upon evolutionary dynamics (Hanski & Gilpin, 1997). Given 

that dauers are highly specialised for dispersal (Cassada & Russell, 1975), and that 

age-1 mutants exhibit delayed exit from the dauer stage after food is encountered 

(chapters 4 and 5), it is conceivable that the age-1(hx546) mutant allele may be rapidly 

purged from natural populations if it arose in environments in which resource 

availability varies over time but are otherwise relatively benign.  

 When populations experienced transient changes in resource availability and 

periods of environmental stress were occasionally encountered, fitness was slightly 

increased in age-1 mutants relative to wild type worms. This indicates that age-1 

mutants may be able to invade wild type populations even when starvation conditions 

arise more frequently than additional forms of stress. However, the relatively small 

difference in fitness between the two genotypes may suggest that both could be 

maintained by balancing selection if the age-1(hx546) mutant allele arose under such 

conditions. This could be true at a local scale or on a broader spatial gradient. The 

reduction in fitness in age-1 mutants under resource limited conditions has repeatedly 
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been cited as an important example in which trade-offs consistent with the evolutionary 

theories of senescence (Williams, 1957; Kirkwood, 1977) arise in a long lived mutant in 

ecologically relevant conditions. Though the results in this study are of course based 

upon a simplified model in which density dependent processes are not taken into 

account, they imply that fitness costs in age-1 mutants may be insignificant in 

environments in which additional factors vary over time. This does not contradict the 

evolutionary theories of senescence. It simply suggests that in certain environmental 

conditions the age-1 mutant life history strategy may be favoured over that of the 

resident wild type. Consistent with this, when periods of environmental stress were 

encountered at high frequencies and resource availability continued to vary over time, 

the age-1(hx546) mutant allele clearly conferred a selective advantage over the wild 

type genotype. Under these conditions there is therefore considerable potential for 

adaptive selection of the age-1(hx546) mutant allele, suggesting that increased 

longevity can evolve when genetic variation in the ability to tolerate harsh conditions is 

present in populations which frequently experience environmental stress. 

Responses to stress have been examined extensively in C. elegans and other 

model organisms. However, some forms of stress may rarely be experienced in nature 

or may be encountered at lower intensities than imposed in laboratory studies (Van 

Straalen & Roelofs, 2006). C. elegans exhibit phenotypic adaptations which clearly 

promote survival in resource limited conditions, and worms have been isolated from 

geographic regions in which high temperatures may be experienced. The stochastic 

environments imposed in this study are therefore likely to be ecologically relevant. 

Exposure to low temperatures was not considered because insufficient information was 

available to create accurate projection matrices. However, as C. elegans have been 

isolated from temperate regions, low temperatures may impose an important selection 

pressure in wild populations. It is conceivable that wild populations may also 

experience temporal variation in factors such as pathogen infection, salinity and 

humidity. Though it has previously demonstrated that age-1 mutants display increased 

resistance to pathogen infections (Garsin et al., 2003) and hypertonic stress (Lamitina 

& Strange, 2005), it is unclear if age-1 mutants have greater resistance than wild type 

worms to low humidity. However, dauers are resistant to desiccation (Riddle, 1988), 

suggesting that the ability to tolerate low humidity may be enhanced by the activity of 

genes which are regulated by DAF-16, and trehalose sugars, which have been 

implicated in desiccation resistance in a variety of organisms (Crowe et al., 1984), are 

present at higher levels in age-1 mutants than in wild type worms (Lamitina & Strange, 

2005). It is therefore plausible that age-1 mutants display resistance to several 

environmental challenges that have not been considered in this study which are likely 
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to be experienced by wild populations. This implies that selection may act upon genetic 

variation in age-1 and other genes associated with stress resistance in nature.  

In C. elegans, wild isolates display genetic variation for several traits associated 

with fitness, and the expression of these traits differs across environmental gradients 

(Shook et al., 1996; Gutteling et al., 2007; Kammenga et al., 2007; Harvey & Viney, 

2007; Harvey et al., 2008).  For instance, the manner in which lifetime fecundity varies 

across a thermal gradient differs among wild isolate genotypes (Harvey & Viney, 2007). 

These genotype-by-environment interactions may reflect adaptations to local 

conditions. It is conceivable that natural variation in age-1 and/or other genes which 

modify responses to stress may be observed among wild populations. Whilst certain 

alleles may be favoured in relatively benign environments, others may be favoured 

when harsh conditions are frequently encountered. Though longevity differs among wild 

isolate genotypes in favourable growth conditions (McCulloch & Gems, 2003b), the 

genetic basis of this variation is currently unclear. Future studies may reveal that 

variation in age-1 and/or other genes encoding components of the IIS pathway underlie 

these differences. Indeed, it has previously been suggested that genetic variation in 

regulatory pathways which modulate responses to environmental stress may play an 

important role in the evolution of longevity in nature (Kenyon, 2010). Furthermore, it 

has recently been reported that differences in lifespan among closely related 

Caenorhabditis species are associated with variation in stress resistance and immunity, 

and in expression levels of homologues of daf-16 (Amrit et al., 2010).  

Stress resistance is clearly associated with increased longevity in many 

artificially selected genotypes and long-lived mutants (Rose, 1992; Hoffman & Parsons, 

1993; Johnson et al., 2001). However, it is important to note that these phenotypes are 

not likely to be expressed simultaneously. It is well established that lifespan can be 

increased in various organisms following exposure to low intensities of stress (reviewed 

in Gems & Partridge, 2008), but more extreme forms of stress are likely to inhibit 

longevity by disrupting mechanisms which maintain cellular homeostasis (Yu, 2004). 

Consequently, although long-lived genotypes can increase in frequency when 

populations experience periods of environmental stress, the potential longevity of these 

genotypes may only become apparent in benevolent conditions. Consistent with this, 

certain long-lived C. elegans and D. melanogaster mutants only display increased 

longevity in benign laboratory conditions (Van Voorhies et al., 2005; Baldal et al., 

2006).  

Consistent with the ecological stress theory of ageing (Parsons, 1995, 2002), 

this study has demonstrated that stochastic exposure to harsh environments can lead 

to the fixation of novel life-history strategies and promote the evolution of longevity. 
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Given contemporary transitions in global climate and additional anthropogenic 

pressures, this may have important implications for the evolution of life-history 

strategies in an increasingly stressful world. 
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Chapter 8 – Discussion 

 

Several mutations which promote longevity in model organisms disrupt 

mechanisms which are involved in responding to environmental change. For a 

comprehensive understanding of the consequences of manipulating these processes, 

long-lived mutants should ideally be examined in an ecological context. Using a 

multidisciplinary approach, I have assessed how a mutation which increases lifespan in 

C. elegans alters molecular to population level responses to different environmental 

conditions. The results have implications for the evolution of longevity in wild 

populations, and exemplify the importance of investigating trade-offs associated with 

increased longevity in ecologically relevant conditions. 

 

8.1 Fitness costs in long-lived mutants 

 

8.11 Fitness costs in favourable growth conditions 

 The antagonistic pleiotropy (Williams, 1957) and disposable soma (Kirkwood, 

1977) theories of ageing predict that senescence occurs as a consequence of reduced 

selection late in life and that longevity is constrained because life-history strategies are 

optimised to maximise lifetime fitness in a particular ecological niche. By disrupting 

optimal life-history strategies, mutations which promote longevity are thus expected to 

reduce fitness relative to shorter lived controls. Although fitness is a measure of relative 

population growth rate and is determined by age-specific schedules of survival and 

reproduction (Fisher, 1930), the majority of studies which have examined fitness costs 

in long-lived mutants have focussed on single components of life history, such as the 

age at maturity or lifetime fecundity. In contrast, chapter 3 described a comprehensive 

comparison of age-specific changes in survival and fecundity among a variety of long-

lived mutants and the wild type strain. A demographic approach was used to assess 

how changes in these traits modify fitness in favourable growth conditions. The mutants 

were chosen to reflect some of the different mechanisms which modulate longevity and 

included stress resistant daf-2 and age-1 mutants with reduced insulin/IGF-1 signalling, 

calorie restricted eat-2 mutants and clk-1 mutants with impaired mitochondrial function.   

 In favourable growth conditions, fitness (the deterministic growth rate) was 

reduced by 18% in daf-2 mutants, by 30% in eat -2 mutants and by 37% in clk-1 

mutants relative to the wild type genotype. Although mutations in age-1 increase 

lifespan via the same mechanism and to a similar extent as mutations in daf-2, no 

fitness cost was observed in age-1 mutants when age-specific schedules of survival 

and fecundity were recorded in benign laboratory conditions. This is consistent with a 
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previous study (Walker et al., 2000), and implies that trade-offs associated with 

increased longevity do not necessarily arise in constant environments when excess 

food is available. Mutations which promote longevity, therefore, modify life-history 

strategies to different extents depending upon the mechanism involved and mutations 

which disrupt the same pathway can have dramatically different consequences for 

fitness. Variation in age-specific survival and fecundity among the different genotypes 

was also used to infer how mutations which extend longevity could in theory modify the 

intensity of selection at different ages. Whilst selection dynamics in age-1 mutants were 

similar to those observed in wild type worms, the onset of the age-specific decline in 

selection acting upon survival was delayed in the other long lived mutants due to later 

age at maturity. Furthermore, selection continued to act until a later age in these 

genotypes due to delayed reproductive senescence. Although the deterministic 

methods which were used in chapter 3 assume constant, unlimited conditions which 

are not likely to be relevant in an ecological context, the approach provides a 

convenient way to make comparisons among different genotypes in a common 

environment.  

 

8.12 The age-1 mutant anomaly 

 As described in chapter 4, co-variances among life-history traits can differ 

depending upon the context in which they are observed (Sgro & Hoffman, 2004). 

Trade-offs may not always become apparent in favourable conditions, particularly if 

excess food is available (Reznick et al., 2000; Tessier et al., 2000). Consistent with 

this, a small number of long-lived mutants have been identified which do not display 

trade-offs in benign laboratory environments (Rogina et al., 2000; Walker et al., 2000; 

Marden, et al., 2003; Scheckhuber et al., 2007). For instance, in Drosophila 

melanogaster, Indy mutants live approximately twice as long as wild type flies yet 

display no reduction in growth rate or fecundity when food is not limited (Rogina et al., 

2000). To my knowledge, age-1 mutants are the only long-lived C. elegans mutants 

which have been identified that do not exhibit fitness costs in favourable growth 

conditions. Despite increased expression of genes involved in somatic maintenance 

and repair, this suggests that age-1 mutants invest metabolic resources in processes 

involved in growth and reproduction equally to wild type worms. This perhaps implies 

that wild type worms store unused resources in favourable growth conditions and/or 

when males are not present. As fecundity is sperm-limited, it is conceivable that a 

fitness cost may become apparent when males are present if reproductive output is 

increased to a greater extent in wild type worms than in age-1 mutants. However, it is 

also possible that age-1 mutants are more efficient at converting food into energy.  
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 Although studies which have examined metabolic rate in insulin/IGF-1 signalling 

(IIS) mutants have produced contrasting results (Vanfleteren and De Vreese, 1995; Van 

Voorhies and Ward, 1999), it is well established that the IIS pathway plays an important 

role in regulating metabolism. As metabolism is suppressed in dauers to promote long-

term survival (Holt & Riddle, 2003), and IIS mutants display similar transcription profiles 

to wild type dauers (McElwee et al., 2004, 2006), the expression of many genes 

involved in metabolism is modified in these worms (Murphy et al., 2003; McElwee et 

al., 2003, 2004, 2006). Using microarray data to examine transcript profiles in daf-2 

mutant adults, McElwee et al. (2006) suggested that energy availability is increased in 

daf-2 mutants relative to wild type worms due to higher conversion of fats to 

carbohydrates and higher storage of ATP. As mutations in daf-2 and age-1 both disrupt 

insulin/IGF-1 signalling and activate the transcription factor DAF-16, this may also 

apply to age-1 mutants and could potentially explain why fitness costs do not arise in 

favourable environments despite increased investment of resources in somatic 

maintenance and repair. 

 

8.13 Fitness costs in resource limited conditions 

 As fitness is a measure of relative population growth rate, it should ideally be 

examined in a population context, in which different genotypes compete for resources 

in conditions which are likely to be experienced in nature. When long-lived age-1 

mutants are maintained in mixed genotype populations with limited resources, fitness is 

clearly reduced relative to wild type worms (Walker et al., 2000; chapters 4 and 5). 

Context dependent trade-offs have also been observed in long-lived D. melanogaster 

Indy mutants when flies are cultured with low food availability (Marden et al., 2003), 

and are likely to arise because mutations which promote longevity disrupt the optimal 

partitioning of limited resources among growth, reproduction and somatic maintenance 

and repair mechanisms.  

I have demonstrated that the fitness cost observed in age-1 mutants in resource 

limited conditions may be primarily due to a delay in maturity after worms have been 

maintained in the dauer stage (chapters 4 and 5). This perhaps occurs because 

nuclear localisation of DAF-16 is more intense and prolonged in age-1 mutants than in 

wild type worms during and after starvation (Weinkove et al., 2006; chapters 4 and 5). 

C. elegans have mainly been isolated from nature as dauers (Barrière & Felix, 2005b), 

and this stage is likely to be of major importance for dispersal to new food patches and 

for the persistence of populations in nature. To maximise fitness and ensure rapid 

population growth when favourable growth conditions are encountered, exit from the 

dauer stage is likely to be under strong selection in wild populations (Burnell et al., 
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2005). This may explain why the hx546 mutant allele has not (yet) been found in 

nature.    

 

8.2 Molecular to population level responses to environmental stress 

 

8.21 The insulin/IGF-1 signalling pathway and resistance to stress 

 Different forms of stress can induce similar forms of damage to essential 

cellular components including DNA, proteins and membrane lipids (Kültz, 2005). 

Consequently, although some cellular responses can be specific to particular 

environmental conditions, highly conserved proteins involved in processes such as 

DNA and protein repair are often expressed regardless of the source of the stress 

(Kültz, 2005; Van Straalen & Roelofs, 2006; Roelofs et al., 2008). For instance, a 

variety of different types of stress induce the expression of heat-shock proteins 

(molecular chaperones) and antioxidant enzymes (Kültz, 2005; Roelofs et al., 2008). 

Nuclear localisation of DAF-16 does not necessarily ensure constitutive expression of 

all DAF-16 target genes (Henderson et al., 2006), and additional transcription factors, 

transcriptional co-activators and/or other proteins may be required for transcriptional 

specificity in different environmental conditions (Wolff et al., 2006; Berdichevsky et al., 

2006; Hsu et al., 2008; Li et al., 2008). However, as described in chapters 4-6, IIS 

mutants and dauers display increased resistance to several different types of 

environmental stress, suggesting that reduced insulin/IGF-1 signalling mediates a 

general rather than a specific cellular stress response. Furthermore, age-1 mutants 

display resistance to some forms of stress which do not appear to activate DAF-16 in 

wild type worms (Henderson & Johnson, 2001; Lamitina & Strange, 2005; chapter 6, 

though see Wolf et al., 2008). This implies that constitutive expression of stress 

response genes in age-1 mutants facilitates the prevention and/or repair of somatic 

damage in these worms regardless of the source of stress.  

 I have demonstrated for the first time that age-1 mutants and dauers display 

increased resistance to cold temperatures relative to wild type adults (chapter 6). 

Although genes which are known to promote cold tolerance are up-regulated in 

response to low temperatures in wild type worms (Murray et al., 2007), this may not be 

mediated by DAF-16 activity as exposure to cold conditions did not induce nuclear 

localisation of a DAF-16::GFP fusion protein in this study (though see Wolf et al., 

2008). However, the increased cold tolerance observed in age-1 mutants was clearly 

daf-16 dependent, suggesting that constitutive expression of DAF-16 target genes prior 

to and during exposure to low temperatures promotes resistance to low temperatures 

in these worms. Using a combination of loss-of-function mutations and RNAi, I have 
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demonstrated that this is largely due to the up-regulation of Δ9 desaturase genes, but 

that additional transcriptional targets of DAF-16 are likely to be involved. Following an 

assessment of factors known to promote survival at low temperatures in other 

organisms, it became apparent that numerous genes which are up-regulated in IIS 

mutants and dauers could potentially contribute to the cold tolerant phenotype. These 

include genes which are involved in the synthesis of trehalose sugars and glycerol, and 

genes encoding antioxidant enzymes and heat shock proteins. As DAF-16 activity does 

not appear to be induced by exposure to low temperatures, this is consistent with the 

suggestion that reduced insulin signalling mediates a general stress response. 

 

8.22 Stress resistance and nutritional state 

 Many long-lived mutants display enhanced resistance to various forms of 

environmental stress (reviewed in Johnson et al., 2001; Kenyon, 2010). However, 

stress resistance in long-lived mutants has rarely been considered in different 

nutritional conditions. In wild type worms, stress resistance differs according to 

nutritional status and stage. It is well established that dauers are highly resistant to a 

variety of environmental challenges (Anderson, 1978, 1982; Larsen, 1993; Lithgow et 

al., 1995), and larvae which have arrested in the L1 diapause stage are more resistant 

than fed L1s to at least some forms of stress (Baugh & Sternberg, 2006; Weinkove et 

al., 2006, chapters 4 and 5). However, resistance during other stages in starvation 

conditions appears to be dependent upon the type of stress which is applied. For 

instance, adults are more resistant to thermal stress when starved but are more 

resistant to oxidative stress when food is available (Henderson et al., 2006). 

Given that the long-lived, stress-resistant phenotype of IIS mutants is likely to 

result from partial activation of the dauer program throughout life (Kenyon et al., 1993; 

McElwee et al., 2004, 2006), transcriptional profiles of age-1 mutants and wild type 

worms may not differ during the dauer stage. It thus seems intuitive that age-1 mutant 

and wild type dauers should display similar abilities to tolerate environmental stress. 

Consistent with this, no differences in survival were observed between wild type and 

age-1 mutants when dauers were exposed to high temperatures (chapter 4), oxidative 

stress (chapter 5) or low temperatures (chapter 6) for the durations that these stresses 

were applied. In contrast, although no difference was observed between the two 

genotypes when arrested L1s were exposed to thermal stress (chapter 4), age-1 

mutants display higher resistance to oxidative stress than wild type worms during this 

stage (Weinkove et al., 2006; chapter 5). It remains unclear how the two genotypes 

differ in resistance to thermal and oxidative stress during other stages in starvation 

conditions; however, these results imply that the effects of life-extending mutations on 
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resistance to environmental stress depend upon the context in which they are 

observed.   

Although exposure to thermal or oxidative stress had little effect upon cellular 

distributions of DAF-16 in starved worms (chapters 4 and 5), as the transcription factor 

is activated in starvation conditions it is possible that starvation-induced stress 

resistance may be partially mediated by DAF-16. Consistent with this, increased 

resistance to hydrogen peroxide in starved L1s relative to fed L1s is dependent upon 

daf-16 (Weinkove et al., 2006). This increased tolerance is observed even after 

prolonged periods of starvation when DAF-16::GFP is no longer nuclear localised 

(Weinkove et al., 2006). Furthermore, Henderson et al. (2006) demonstrated that 

starved daf-16 mutant adults are considerably more sensitive to oxidative stress than 

starved wild type adults. This suggests that the expression of DAF-16 target genes is 

necessary for survival under starvation conditions when oxidative stress is applied. In 

contrast, starvation-induced resistance to thermal stress is not entirely dependent upon 

daf-16 (Henderson et al., 2006). As DAF-16 target genes are up-regulated in IIS 

mutants, this distinction may explain why exposure to oxidative stress reduced the 

fitness deficit observed in age-1 mutants maintained in high density populations with 

limited resources whilst exposure to thermal stress did not.  

 

8.23 Costs and benefits of a long life in heterogeneous conditions 

The fitness cost observed in age-1 mutants under resource limited conditions 

has repeatedly been cited as an important example in which trade-offs consistent with 

the evolutionary theories of senescence arise in a long lived mutant in ecologically 

relevant conditions. However, wild populations are likely to experience spatial and 

temporal variation in ecological factors in addition to resource abundance, and genetic 

variation in the ability to survive and reproduce in different environmental conditions is 

likely to have a major impact upon the evolution of life-history strategies in nature. I 

have established that age-1 mutants can have higher fitness than wild type worms if 

mixed genotype populations are exposed to thermal or oxidative stress when food is 

available (chapters 4 and 5). This is the first demonstration that a mutation which 

promotes longevity can confer a selective advantage over a wild type genotype (though 

see Scheckhuber et al., 2007). The results imply that, given a particular ecological 

niche, selection acting upon genetic variation in the ability to tolerate environmental 

stress may lead to the fixation of stress resistant alleles and indirectly promote the 

evolution of increased longevity. This is consistent with the ecological stress theory of 

ageing (Parsons, 1995, 2002), and with studies which have reported life history 
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consequences of artificial selection for increased resistance to stress (White et al., 

1970; Rose, 1992; Hoffman & Parsons, 1993; Pijpe et al., 2008). 

 DAF-16 distributions and genotype-by-environment interactions suggest that 

age-1 mutants have higher fitness than wild type worms in low density populations 

which encounter periods of stress because increased expression of stress response 

proteins promotes the ability to survive, develop and reproduce during and/or after 

exposure to harsh conditions. However, in high density populations, frequencies of the 

age-1(hx546) mutant allele consistently declined over time. This occurred despite more 

intense nuclear localisation of DAF-16::GFP than in wild type worms before, during and 

after exposure to stress in starvation conditions. This may be because a large 

proportion of worms of each genotype would have arrested development in the L1 

diapause state or as dauers. There appears to be no distinction between the two 

genotypes in resistance to thermal stress during L1 arrest and in resistance to thermal 

or oxidative stress during the dauer stage. Furthermore, age-1 mutants took 

considerably longer to attain maturity than wild type worms after being maintained as 

dauers regardless of the environmental conditions which were imposed. This suggests 

that if the age-1(hx546) mutant allele was to arise in a population which experiences 

periods of environmental stress, its fate may ultimately depend upon the availability of 

food.  

 

8.4 The evolution of longevity in natural populations 

 

8.41 The evolution of longevity in stochastic environments 

 The experiments which were reported in chapters 4 and 5 fail to account for 

environmental stochasticity as populations were maintained either at low densities, with 

excess food, or at high densities, with limited food, and periods of environmental stress 

of equal intensity were imposed at regular intervals. In reality, populations are likely to 

experience fluctuations in resource availability and stochastic variation in factors such 

as temperature, humidity, oxidative stress and pathogen infection. Using a 

demographic approach, I examined the conditions under which the age-1(hx546) 

mutant allele can invade a wild type population which has already been established 

(chapter 7). I have demonstrated that when populations experience stochastic variation 

in resource availability only, age-1 mutants are always at a disadvantage and cannot 

invade a wild type population. In contrast, when resource availability varies over time 

and populations experience periods of thermal or oxidative stress at random intervals, 

the age-1(hx546) mutant allele confers a selective advantage over the wild type 

genotype. The relative fitness of age-1 mutants was slightly higher than wild type 
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worms when populations experienced periods of environmental stress at very low 

frequencies but was considerably higher when stress was encountered on a more 

regular basis. These results are remarkable because they imply that the age-1(hx546) 

mutant allele could invade a wild type population even if periods of starvation are 

frequently endured. Consequently, although they are based upon a simplified model in 

which density dependent processes are not taken into account, they suggest that 

fitness costs in age-1 mutants may be insignificant in environments in which additional 

factors vary over time. As the conditions which were considered in this study are likely 

to be ecologically relevant, the results have implications for the evolution of longevity in 

nature. This is particularly true given current transitions in global climate and additional 

anthropogenic pressures. 

 Non-adaptive evolutionary theories of senescence (Medawar, 1952; Williams, 

1957; Kirkwood, 1977) are based upon the principle that the efficiency of selection 

declines with increasing age (Fisher, 1930; Hamilton, 1966). These theories predict 

that, in natural populations, longevity and the rate of senescence reflect the level of 

extrinsic mortality experienced in a particular ecological niche (Williams, 1957). This is 

because the efficiency of selection at a given age is ultimately determined by the 

likelihood of survival and reproduction at that age. It would be interesting to ascertain 

how changes in age-specific schedules of survival and reproduction which are induced 

by stochastic exposure to harsh conditions modify the dynamics of selection across the 

lifespan. Although I have demonstrated that a mutation which promotes longevity and 

confers resistance to environmental stress can increase fitness relative to a wild type 

genotype in conditions which are likely to be encountered in nature, the results in this 

study do not contradict the antagonistic pleiotropy and disposable soma theories of 

ageing. To ensure continued propagation of the germ-line, individuals must invest 

metabolic resources in somatic maintenance and repair mechanisms to be able to 

survive in adverse environments, and to retain the ability to develop and reproduce 

when conditions improve. Genes which influence the ability to tolerate harsh conditions 

are, therefore, likely to be under strong selection in natural populations. Whilst resource 

allocation trade-offs associated with increased investment in somatic maintenance and 

repair may arise in favourable growth conditions and/or in resource limited conditions, 

fitness benefits over long time scales may outweigh these disadvantages. Consistent 

with the ecological stress theory of ageing (Parsons, 1995, 2002), and the 

consequences of artificial selection for increased resistance to stress (White et al., 

1970; Rose, 1992; Hoffman & Parsons, 1993; Pijpe et al., 2008), the results presented 

in chapters 4, 5 and 7 indicate that, for a comprehensive understanding of the factors 

which influence the evolution of longevity in natural populations, the effects of 
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ecological sources of stress which are not necessarily lethal must be considered in 

addition to levels of extrinsic mortality. 

 

8.42 Ecological genetics in ageing research 

 The major objective of the majority of studies focussing on ageing in model 

organisms is to elucidate the processes which underlie senescence in humans 

(Partridge & Gems, 2007). Given that some of the molecular determinants of longevity 

appear to have been conserved among distinct eukaryotic lineages (reviewed in 

Kenyon, 2005, 2010), inferences from research using model organisms such as C. 

elegans may have important medical implications. However, it is less clear how studies 

using model organisms in benign laboratory conditions can contribute to our 

understanding of the evolution of senescence and longevity in wild populations. Most of 

the major model organisms are not well characterised in an ecological setting (Peňa-

Castillo & Hughes, 2007), and there is a distinct lack of knowledge regarding the 

selective pressures which are relevant to these species in nature. Furthermore, the 

majority of studies in model organisms focus upon single wild type genotypes and 

mutant derivatives of these strains. Some „wild type‟ model organisms may have 

diverged considerably from their natural states, and it is unclear how epistatic 

interactions between „gerontogenes‟ and other genes which vary among individuals in 

nature may influence the rate of senescence and longevity in wild populations 

(Partridge & Gems, 2007). Evolutionary and ecological studies of the factors which 

influence these traits may benefit from using a variety of wild genotypes and from 

establishing model systems which are more characterised in an ecological context. 

Until relatively recently, ageing was not considered to constitute an important 

source of mortality in wild populations. However, it is becoming increasingly apparent 

that senescence occurs in nature more often than previously assumed (reviewed in 

Nussey et al., 2008). Although natural variation in genes which modulate longevity has 

been associated with entry into diapause, lifespan and adaptation to different climatic 

regions in D. melanogaster (Schmidt et al., 2000; Williams et al., 2006; Paaby et al., 

2010), the significance of mutations which increase lifespan in model organisms for 

senescence in wild populations is unclear (Monaghan et al., 2008). Furthermore, 

longevity is determined by both genetic and environmental factors during an individual 

lifetime, and certain mutations which increase longevity in model organisms can have 

opposite effects upon lifespan in different environmental conditions (VanVoorhies et al., 

2005; Baldal et al., 2006). This suggests that the effects of variation in genes which 

modulate longevity can be context dependent. Consistent with this, I have 
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demonstrated that the life history consequences of a mutation which increases lifespan 

differ according to the conditions in which they are observed. 

There was previously a distinct lack of information regarding how genes which 

modulate longevity in model organisms can influence fitness in ecologically relevant 

conditions. However, I have addressed this issue using empirical and theoretical 

studies to examine the fitness consequences of the age-1(hx546) mutant allele in a 

variety of conditions which may be experienced by wild populations. Using an 

ecological genetics approach, I have, therefore, contributed to the understanding of 

how genetic variation in lifespan and the ability to tolerate environmental stress may 

influence the evolution of longevity in nature. The studies described in this thesis 

indicate that important inferences regarding the factors which influence longevity and 

the rate of senescence in wild populations may be derived from model organisms when 

these are investigated in an ecologically relevant context. 

 

8.5 Conclusions  

 

Longevity and the rate of senescence are ultimately determined by the 

ecological conditions experienced during a population‟s recent evolutionary history, and 

are intrinsically linked to other components of life history and to fitness. These traits 

should be examined in an ecological context, ideally in natural environments or in 

conditions which are representative of nature, in which other aspects of the life history 

are taken into account. Using a multidisciplinary approach, I have demonstrated that if 

genetic variation is present in populations which encounter harsh conditions, longevity 

can evolve as a consequence of selection for greater resistance to environmental 

stress. I have also established that long-lived age-1(hx546) mutants and dauers display 

increased cold tolerance relative to wild type adults, and that the effects of mutations 

which promote longevity on resistance to stress can be context dependent. The results 

presented in this thesis imply that genetic and life history responses to ecological 

stress deserve a more prominent role in evolutionary studies of ageing. 
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Appendices 

 

Appendix 6.1 Primer sequences 

 

age-1(hx546)  

Non-synonymous substitution (c→t) causing amino acid change P→S. Primers 

amplified a 564 bp region containing the substitution. 

5‟ CCAGTATTATGCCTGCTTCA 

3‟ TGCGTACGGGTTCAAACAGC 

 

daf-16(mu86)  

10980 bp deletion. Primers amplified a 857 bp region in the wild type only. 

5‟ CATCCATCCATACACCCACA (internal) 

3‟ CAATTGATCGGTTGGCTTCT (internal) 

 

fat-5(tm420)  

779 bp deletion. External primers amplified a 1480 bp region in the wild type and a 701 

bp region in the mutant. Internal primer with 5‟ external primer amplified an additional 

502 bp region in the wild type only. 

5‟ AGACTCCGCCCCTTCTTTT (external) 

3‟ AAGTGCTTTAGGCTTGGGCTC (external)  

3‟ CTGAATTAGGAAACGTAGGC (internal)  

 

fat-6(tm331) 

1232 bp deletion. External primers amplified a 1767 bp region in the wild type and a 

535 bp region in the mutant. Internal primer with 5‟ external primer amplified an 

additional 905 bp region in the wild type only. 

5‟ CCAGAGACGCAATATCTCGC (external) 

3‟ CACATCCATGATTGGATACC (external) 

3‟ GATGAGCTCCGGCGGTTATT (internal) 

 

fat-7(wa36)  

Substitution (c→t) producing a premature stop codon. Primers amplified a 457 bp 

region containing the substitution. 

5‟ ACAAGGCAACCACACCAATG 

3‟ ATGCACCAAGTGGCGTGAAGT 
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Appendix 6.2 Cold tolerance in single Δ9 desaturase mutants 
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Survival curves at 4°C for wild type (N2), age-1(hx546) mutants and single desaturase mutants 

in each genetic background. Survival was monitored in 90-100 individuals per genotype and 

stage. 
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Appendix 7.1 Fluctuating resource availability 
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Relative frequencies of fed versus starved days which were applied in the stochastic 

projection presented in figures 7.3c and 7.3d. 
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Appendix 7.2 Low frequency stress 
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Relative frequencies of different environmental states which were applied in the 

stochastic projection presented in figures 7.4a and 7.4b. F and S refer to fed and starved 

respectively and ROS refers to oxidative stress. 
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Appendix 7.3 High frequency stress 
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Relative frequencies of different environmental states which were applied in the 

stochastic projection presented in figures 7.4c and 7.4d. F and S refer to fed and starved 

respectively and ROS refers to oxidative stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


