Predicting the environmental fate and ecotoxicological and toxicological effects of pesticide transformation products

Christopher John Sinclair

PhD Thesis

University of York Environment Department

October 2009

Predicting the environmental fate and ecotoxicological and toxicological effects of pesticide transformation products

Christopher John Sinclair

PhD Thesis

Supervisor: Dr Alistair Boxall

EcoChemistry Team University of York, Environment Department & Food and Environment Research Agency, York

October 2009

Abstract

Following the application of pesticides during normal agricultural practice these compounds can degrade to form transformation products. When assessing the risks posed by pesticides it is important to include any additional risks posed by these compounds. Current guidance within the EU suggests that data requirements for transformation products during the risk assessment do not necessarily need to be addressed with experimental studies but alternative techniques can be explored and used. Therefore the aim of this research was to investigate and develop pragmatic approaches for assessing the fate and effects of transformation products in the absence of experimentally determined data.

Approaches designed to provide information on the physico-chemical properties, environmental parameters, ecotoxicology and toxicology of pesticide transformation products are explored and evaluated, and recommendations made on how to obtain the most appropriate estimates of these factors. Hydrophobicity, dissociation constant, soil sorption, daphnid aquatic ecotoxicology and rat oral lethality can all be estimated with confidence.

Moreover, approaches were developed to 1) indicate whether a transformation product may exhibit pesticidal activity and subsequently estimate its acute aquatic ecotoxicity in the absence of experimental data, 2) combine well known techniques and experimental data to obtain estimates of transformation product mutagenicity with limited risk of obtaining false negatives and 3) prioritise transformation products of most concern to drinking water supplies and its consumers.

Overall, recommendations are made throughout this thesis on appropriate approaches and methods for generating estimates of transformation product properties, ecotoxicity and toxicity for use in risk assessment and prioritisation frameworks.

Acknowledgements

Studying for this PhD over the past seven years has been a long and eventful journey which has seen a change in University, a change in jobs, moving house twice and gaining a beautiful son, Dillon. Over this period many people have provided guidance and support in both my professional and personal life and it is difficult to name everyone but I would like to say a big thank you to you all, particularly friends at the Cranfield Centre for EcoChemistry and at the EcoChemistry team of the Food and Environment Research Agency.

I would like to thank Dr Alistair Boxall who persuaded me to start this PhD seven years ago and through all that time has provided advice, support and guidance not only during my study but also during my career development.

I would also like to than Ann Ainsley for her help with statistics, Qasim Chaudhry for his help with QSAR and Helen Glover for populating my reference software so thoroughly. I would like to thank John Solbé, Allan Walker, Joop Hermens, Paul Ashby and Mark Clook for comments on earlier versions of Chapter 4. I would like thank the workshop participants and organising committee (Steve Maund, Dana Kolpin, Kathrin Fenner, Andrew Craven and Alice Fulmer) who provided input for the approach proposed in Chapter 5 as well as the comments from Simon Parsons on earlier versions of Chapters 2 and 5. I would also like to thank Miles Thomas for the supply of pesticide estimates of usage. In addition I would like thank all the funding organisations that have made this research possible including Department of Environment, Food and Rural Affairs, Pesticide Safety Directorate and American Water Works Association Research Foundation and its Co-funding Utilities.

Finally this thesis would not have been possible without the support of my family, my deepest felt love, gratitude and thanks go to Elaine, without whose support, friendship and motivation I would never have completed this study.

Table of Contents

Abstract	5
Acknowledgements	ł
Table of Contents	5
List of Tables	1
List of Figures)
Author's Declaration	2
1 Introduction	\$
1.1 The control of pests	5
1.2 Pesticide degradation	ŀ
1.3 Risk of transformation products	;
1.4 Aim and objectives	;
1.5 Format of the presentation	5
2 Transformation Products in the Environment)
2.1 Introduction)
2.2 Formation in the Environment	l
2.3 Methods for Determining Transformation Routes	1
2.4 Characteristics of Transformation Products of Major Pesticides)
2.5 Fate of Transformation Products in the Environment	5
2.6 Occurrence in the Environment	1
2.7 Occurrence and Fate in Drinking Water	;
3 Estimation of the Properties of Transformation Products	2
3.1 Introduction	2
3.2 Material and Methods	ł
3.3 Results and Discussion)
3.4 Conclusions	1
4 Assessing the Ecotoxicity of Pesticide Transformation Products	7
4.1 Introduction	7
4.2 Materials and Methods	•
4.3 Results and Discussion	2
4.4 A pragmatic method for estimating ecotoxicity	1
	5

4.5 Conclusions	
5 Prioritization of Transformation Product	ts in Drinking Water Supplies 110
5.1 Introduction	
5.2 Development of Prioritisation Scher	ne112
5.3 Results and Discussion	
5.4 Conclusions	
6 The Consideration of Environmental	Pesticide Transformation Product
Mammalian Toxicity for Use in Risk-Based I	Human Health Prioritisations 130
6.1 Introduction	
6.2 Materials and Methods	
6.3 Results and Discussion	
6.4 Conclusions	
7 Final Discussion and Conclusions	
7.1 Introduction	
7.2 Evaluation of approach(es) to estimate	ate aquatic ecotoxicity 150
7.3 Environmental assessment of transfe	-
	lusions and recommendations 169
8 Reference List	
Appendix A	
Appendix B	
Appendix C	
Appendix D	

List of Tables

Table 1. Examples of biodegradation reactions that are relevant to pesticides
(Hill 1978)
Table 2. Summary of the most prevalent major transformation products formed
from each pesticide with available data from aerobic soil degradation
studies
Table 3. Summary of transformation product degradation rate constants
determined in aerobic topsoil in the laboratory
Table 4. Summary containing collated mean values for organic carbon partition
coefficients (K_{∞}) of pesticide transformation products
Table 5. A summary of maximum concentrations of pesticide transformation
products identified in surface waters (rivers only) and groundwater 49
Table 6. Summary of maximum concentrations of transformation products in
raw and finished drinking waters
Table 7. Drinking water standards set for pesticide transformation products 61
Table 8. The predictive approaches evaluated during this study
Table 9. Summary of the data availability for transformation product and
pesticide analytical datasets
Table 10. Percentage of transformation product physico-chemical properties,
one, two and three orders of magnitude greater than or less than their
respective pesticide properties
Table 11. Summary of best performing approach for six properties (mean rank
score)
Table 12. Summary of the data available for parent compounds and their
transformation products92
Table 13. Possible explanations for increases in toxicity observed for the
transformation products for a) fish (F), b) daphnids (D) and c) algae (A)95
Table 14. Assessment factors for determining LC/EC/IC ₅₀ values of
transformation products during the assessment scheme
Table 15. Categories to be used when classifying the transformation product
data availability
7

Table 16. Proposed conservative default values to be used during a
transformation product prioritisation when experimental data are
unavailable122
Table 17. Priority list of transformation products in Great British drinking water
supplies as a result of pesticide application
Table 18. Priority list of transformation products in California drinking water
supplies as a result of pesticide application
Table 19. The comparative classification of rat oral LD_{50} values for
transformation products and their respective parent pesticides, occasions
where a transformation product was allocated to a more toxic class than the
parent pesticide are in bold136
Table 20. The predictive ability of DEREK and TOPKAT to estimate
mutagenicity for pesticide transformation products
Table 21. The consideration of different predictive interpretation and parent
toxicity to predict transformation product mutagenicity and reduce the
number of false negatives with DEREK
Table 22. The consideration of different predictive interpretation and parent
toxicity to predict transformation product mutagenicity and reduce the
number of false negatives with TOPKAT 141
Table 23. A system to score pesticide transformation products based on their
estimated mutagenicity and rat oral toxicity
Table 24. Estimated toxicity score of transformation products formed from the
ten most used pesticides in the US and Great Britain
Table 25. Rank scores for the statistics selected with which to evaluate the
performance of five approaches for estimating transformation product
ecotoxicity to daphnids (48h EC50) 159
Table 26. Transformation product risk index for North Yorkshire (compounds
ranked on their risk index from high to low) 165

List of Figures

Figure 1. Diagrammatic representation of this thesis
Figure 2. Degradation of the triazine herbicides to deisopropylatrazine and
deethylatrazine
Figure 3. The transformation and cleavage degradation pathways of
chloroacetamide and sulfonylurea herbicides
Figure 4. The oxidative desulphurisation of the insecticide chlorpyrifos
Figure 5. Selected degradation pathways for the insecticide carbaryl (Boxall et
al. 2004)
Figure 6. Formation of pesticide transformation products as a percentage of the
parent pesticide (each transformation product is represented by the
degradation study where it was most prevalent)
Figure 7. The degradation of pesticide transformation products, classified
according to the SSLRC soil persistence classification
Figure 8. The comparative persistence of pesticides and their transformation
products in various environmental media (aquatic photolysis (0), surface
water (•), sterile hydrolysis (\Box), aerobic soil (\blacksquare), anaerobic soil (Δ),
sediment (\blacktriangle) and sediment/water system (×) (The diagonal line represents
equal persistence)
Figure 9. The comparative sorption of transformation products and their parent
pesticides
Figure 10. A comparison of physicochemical properties of pesticides and their
transformation products (fungicides - \blacksquare ; herbicides - \square ; insecticides - \blacktriangle ;
mixed mode of action - Δ) (line - x=y)
Figure 11. The predictive ability of six techniques for providing K_{ow} for
transformation products (all compounds)74
Figure 12. Estimation of transformation product hydrophobicity using a mean
value from KOWWIN, CLogP and ALogPS
Figure 13. Estimation of transformation product minimum K_{∞} using the
relationship of Kanazawa (1989)78

Figure 14. A correlation between experimental pKa values those estimated by
SPARC and ASTER for transformation products (all compounds)
Figure 15. The predictive ability of the BIOWIN primary degradation survey
model evaluated against experimental transformation product aerobic soil
degradation rate constants
Figure 16. Generalisation between the ecotoxicity (to fish, daphnids and algae)
of parent compounds and their transformation products that a) contain a
toxicophore (black diamonds), b) are pro-pesticides (white diamonds), c)
are more hydrophobic than the parent (black triangles), d) are less
dissociated than the parent (white triangles), e) might be expected to have a
more potent mode of action (black squares), or f) exhibit none of these
characteristics (white squares)
Figure 17. Toxicophores identified for major pesticide classes
Figure 18. Flow chart summarising proposed transformation product assessment
approach 103
Figure 19. Relationship between parent ecotoxicity values (mmol L^{-1}) and the
difference between parent and transformation product toxicity values for;
fish (black diamonds), daphnids (white squares) and algae (white triangles)
for a) transformation products containing a pesticide toxicophore; b)
transformation products that are more hydrophobic, less dissociated or have
a more potent mode of action than the parent; and c) the remaining
transformation products. The the higher the value of the y-axis the less
potent the transformation product toxicity is compared to the parent
pesticide105
Figure 20. Comparison of pesticide and transformation product rat oral LD_{50}
values (where both values are reported as numerics) (solid line $x=y$, hashed
lines equal one order of magnitude more or less toxic)
Figure 21. Comparison of experimental rat oral LD_{50} values and those estimated
by TOPKAT for transformation products (where experimental values where
reported as numerics) (solid line x=y, hashed lines equal one order of
magnitude under or over estimated)143

Figure 22. Performance of the approach proposed in Chapter 4 at estimating
daphnid acute ecotoxicity (48h EC ₅₀) for a dataset of 92 transformation
products; a, correlation with experimental data (dashed line x=y) and b,
residual plot (positive = underestimation)152
Figure 23. Evaluation of approach proposed in Chapter 4 using daphnid
ecotoxicity data for 92 transformation products (dashed lines represent the
taxa generic assessment factors)154
Figure 24. Correlation with experimental daphnid ecotoxicity data (dashed line
x=y) and residual plot (positive = underestimation) for a, DEMETRA, b,
Escher et al., c, ECOSAR and d, TOPKAT 158
Figure 25. A comparison of daphnid acute ecotoxicity data for 92 transformation
products a, the most potent estimates and b, the geometric means provided
by the five evaluated approaches (dashed line x=y)
Figure 26. Proposed approach for beverage manufacturers to identify which
transformation products they should add to their regular analytical screens
Figure 27. Proposed approach for agrochemical companies to generate
ecotoxicological estimates for transformation products
Figure 28. Risk characterisation ratio's for daphnids calculated for pesticides
and their metabolites measured in US surface waters

Author's Declaration

The work in this thesis was undertaken as a part-time PhD student based initially within the Cranfield Centre for EcoChemistry, Cranfield University at Shardlow (October 2002 – September 2004) and then within the EcoChemistry Team at the Food and Environment Research Agency (formerly the Central Science Laboratory) and the University of York (October 2004 – October 2009).

The research was undertaken whilst performing projects for Government departments (Defra, PSD) and non-governmental organisations (AwwaRF) and have therefore previously been presented to the funding bodies in the form of research reports. Subsequently Chapters 4 and 5 have been written as papers for international peer-reviewed journals. Within this thesis these papers have been reworked to maintain a consistent style and format, however the copyright for these papers rests with the publishers.

Chapter 4 - Sinclair C.J. and Boxall A.B.A. (2003) Assessing the ecotoxicity of pesticide transformation products, Environmental Science and Technology, 37:4617-4625.

Chapter 5 - Sinclair C.J., Boxall A.B.A., Parsons S.A., and Thomas, M.R. (2006) Prioritization of Pesticide Environmental Transformation Products in Drinking Water Supplies, Environmental Science and Technology, 40:7283-7289.

All papers and reports presented in this thesis have joint authorship and reflect the contribution of the main co-author in the role of supervisor (Dr. Alistair Boxall). All were written by the candidate as leading author, however it should be noted that all papers and reports have gained through suggestions and advice from co-authors and the published papers have also benefitited from the comments of anonymous referees as part of the review process.

1 Introduction

1.1 The control of pests

Plant protection products, commonly known as pesticides play an important role in modern intensive agriculture and are used to increase crop quality and yield to meet quantity and quality requirements of consumers. They are employed to control pests or elicit a desired response in the growing crop or final product. Pests fall into many categories but can be considered as any organism having an undesired effect on the output of the agricultural practice. They can compete for resources, bestow disease, directly or as a vector, and/or cause crop damage often through feeding activities.

The application of chemicals to control pests is not a modern concept, the use of sulphur powder dates back thousands of years. Compounds based on organic chemistry and exhibiting modes of action still used in modern pesticides were not identified till the nineteenth century, e.g. the extraction of pyrethrum from the flower heads from Tanacetum sp (Tomlin 2006). The development and implementation of modern synthetic pesticides is generally attributed to the middle of the twentieth century triggered by the development of dichlorodiphenyltrichloroethane (DDT) used during World War II for the control of mosquitoes and later employed in agriculture and public health to great effect (Mellanby 1992). DDT went from hero to villain in a relatively short space of time with Paul Müller winning a Nobel Prize in 1948 for identifying the potent effect of DDT on arthropods (Cremlyn 1991), whilst only fifteen years later it was suggested that organochlorine insecticides were drastically effecting bird populations (Carson 1963; Blus et al. 1971). Today, from those humble beginnings we have an impressive array of pesticides exhibiting a multitude of modes of action against a vast range of pests. Together with chemical development, there has also been extensive progress developing the most comprehensive chemical risk assessment process to ensure human and environmental safety.

1.2 Pesticide degradation

Pesticidal persistence in environmental matrices plays a critical role when determining the risk a compound may pose to humans and ecosystems. Following application these organic compounds can be susceptible to abiotic and biotic degradation, e.g. hydrolysis, photolysis or the action of microflora. Microbial populations can become adapted to individual chemicals resulting in increased rates of degradation in soils previously exposed to the compound (Smith and Aubin 1991). During pesticide mineralisation a range of compounds can be formed, which can collectively be termed metabolites, degradation products, degradates and transformation products. In this thesis these compounds will be referred to as transformation products. These compounds can be very similar to the parent molecule due to small changes in structure or can be significantly different due to molecular cleavage forming substantially different compounds.

The pesticide risk assessment process specified in EU Directive 91/414/EEC (European Commission 1994) its subsequent amendments and supporting documents does have provision assessing the risk of transformation products but it is only required for those determined to be relevant. Determining relevance can include measures of, but not limited to, molecular size and composition, amount formed, ecotoxicity and bioaccumulative potential.

During pesticide risk assessments it is common practice during regulatory studies to identify only the transformation products formed in the greatest amounts, e.g. usually $\geq 10\%$ of the applied parent pesticide. However during academic studies that have the ability to explore the capability of more and more competent analytical equipment, many transformation products from just one pesticide can be identified. For example within the UK Pesticide Safety Directorate evaluation document for alachlor, three transformation products were identified in studies examining degradation in natural waters (PSD 1990a), whilst a subsequent academic study identified in excess of twenty transformation

products from alachlor in groundwaters, numerous at relative low levels (Potter and Carpenter 1995).

1.3 Risk of transformation products

Some transformation products have been shown to be more mobile (Brouwer et al. 1990), more persistent (Bromilow et al. 1999), more ecotoxic to non-target organisms (Stratton and Corke 1982; Jones and Winchell 1984) and can be present in surface waters (Thurman et al. 2000; Kalkhoff et al. 2003) and groundwaters (Kolpin et al. 1996b; Kolpin et al. 1997). Therefore it is important that any additional risks posed by these compounds are also considered when determining the risk of parent pesticides (Kolpin et al. 2001). To determine the risk, through experimental studies, for a large number of transformation products from any one pesticide could be a drain on resources. Therefore for that reason guidance has suggested that alternative means could be used, rather than experimentation to provide the required data (European Commission 2002a).

1.4 Aim and objectives

The overall aim of this PhD is to investigate and develop pragmatic approaches for assessing the fate and effects of transformation products in the absence of experimentally determined data. Specific objective are:

- 1. To identify relationships that exist between parent pesticides and their transformation products in terms of the physico-chemical properties, ecotoxicology and toxicology;
- 2. To identify and evaluate methods by which the most important physicochemical properties and effects of transformation products can be estimated;
- To develop approaches for assessing the ecotoxicity, toxicity and pesticidal activity of transformation products to non-target organisms; and

4. To develop methodologies for identifying and ranking those transformation products that could pose the greatest risk to the public through exposure via drinking water.

1.5 Format of the presentation

The aim and objectives have been addressed in six chapters which constitute this thesis. At the end of this introduction a diagrammatic thesis overview is provided (Figure 1) together with an introduction to the individual chapters below.

Chapter 2 is a review of data from the publicly available scientific literature on the environmental fate of transformation products. Date are collated on the occurrence of transformation products in different environmental compartments, their formation in different systems during the degradation of the parent pesticide together with their mobility and persistence once formed in the environment.

Chapter 3 presents an investigation into transformation products inherent physico-chemical properties and environmental parameters to identify what relationships exist between these and the properties of their parent pesticides. Estimation techniques such as QSAR (Quantitative structure-activity relationships) are also explored to determine whether such approaches are suitable to estimate properties that can be important during the risk assessment process.

Chapter 4 investigates the ecotoxicological impact transformation products may have on non-target aquatic organisms. Explanations for increases in ecotoxicity from pesticides to transformation products are suggested and then used to develop a pragmatic approach for providing a conservative estimate of non-target aquatic acute ecotoxicity in the absence of experimental data. Moreover a qualitative approach for identifying whether a transformation product may exhibit the specific mode of action of the parent pesticide based on the identification of structural moieties is proposed.

Chapter 5 contains the development of a risk based prioritisation approach that can be applied to different geographical regions to identify which pesticide metabolites should be of most concern in terms of their potential to contaminate source drinking waters and subsequently pose a risk to consumers.

Chapter 6 investigates the mammalian toxicity of transformation products, specifically mutagenicity and rat oral LD50. Attempts are made to identify the general relationships between pesticide and transformation product toxicity and whether predictive approaches are suitable methodologies for their estimation.

Chapter 7 is the final chapter that attempts to bring this research together, evaluates some of the proposed methodology against recently released approaches, discusses some of the most important issues concerning pesticide transformation products in the environment and provides suggestions on what further research is required for pesticide transformation products.

(

of transformation products on aquatic noneffects target organisms in surface waters the image from www.kidfish.bc.ca) Investigates Chp. 4

Investigates chemical properties that are important in determining the environmental fate of transformation products and tools which can estimate them image from www.soil-net.com) 3 Chp.

and groundwaters

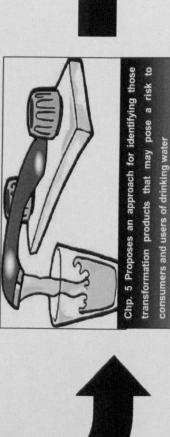


Figure 1. Diagrammatic representation of this thesis

image from www.voiceofcanada.files.wordpress.com)

Chapter 1

2 Transformation Products in the Environment

2.1 Introduction

Once released into the environment, pesticides are susceptible to degradation by biotic and abiotic means. This can result in the formation of a range of compounds (Roberts 1998; Roberts and Hutson 1999). The transformation of a pesticide includes all processes where structural change takes place (Somasundaran and Coats 1991). Therefore, pesticide transformation can produce a diverse range of compounds and it is important that transformation products are considered when determining the risks to the environment and human health posed by their application. However, the risks posed by transformation products should not be considered individually but always in conjunction with the risks posed by parental pesticides.

Once pesticides are applied during agricultural practice there is the potential for transformation products to form. These compounds together with the parent pesticide can then, depending on properties, move from the soil to other environmental compartments. Some compounds can volatilize into the air and move large distances in the particulate or gaseous phase and be deposited by rainfall large distances away from the site of application (Goolsby et al. 1997; Majewski et al. 1998). Some can move vertically through the soil profile to groundwater and then away from the site of application via aquifer transport (Schiavon 1988; Widmer and Spalding 1995; Broholm et al. 2001). Additionally, there is also the potential for these compounds to enter surface waters when they travel laterally either via overland runoff due to heavy rainfall or via sub-soil tile drains, entering agricultural ditches and streams and then on to major rivers, reservoirs and ultimately to estuaries and the marine environment (Muir and Baker 1976; Phillips et al. 1999; Aga and Thurman 2001).

With pesticide transformation products entering major rivers, reservoirs, and groundwater, there is the potential for these compounds to be present in water abstracted for drinking water treatment (Heberer and Dünnbier 1999). Whether these transformation products are present in this raw water will depend on their rate of formation in the environment, the extent of their parental use in the particular catchment, and the physico-chemical properties and rate of degradation of themselves and their parents (Boxall et al. 2004). When considering the movement of transformation products through the environment, the movement of the parent pesticide needs also to be considered, because any point along the pesticide 'journey' can witness degradation and the formation of additional transformation products. Therefore, transformation products with low mobility can occur a distance from the site of application (Brouwer et al. 1990).

Drinking water standards specific to particular transformation products are limited in the USA (aldicarb sulfone and sulfoxide), whilst in the EU transformation product drinking water standards are covered by the $0.5\mu g L^{-1}$ limit for total pesticides (and their 'relevant metabolites'). The term 'relevant metabolite' was introduced in the EU Directive 91/414/EEC (European Commission 1994) and its subsequent amendments. This legislation concerns the placing of plant protection products on the market and subsequent guidance has been provided on determining the relevance of a transformation product (European Commission 2003). Water treatment processes designed to remove pesticides may not be as efficient at removing the smaller, more polar transformation products. An important consideration during drinking water treatment is the additional formation of transformation products from either the pesticides or the environmental transformation products (Zhang and Pehkonen 1999).

Available information relating to the monitoring and measurement of transformation products in the environment is dominated by the triazine and chloroacetamide herbicides (e.g. Thurman et al. 1991; Pereira et al. 1992; Albanis and Hela 1998; Boyd 2000). A large volume of data are available

concerning the environmental occurrence of the cotton and corn herbicides from studies performed in the USA. Their environmental fate and that of their transformation products has been documented for soil, sediment, surface waters including runoff, streams, rivers, estuaries, lakes and reservoirs, ground waters, rain and air (e.g. Muir and Baker 1976; Assaf and Turco 1994; Lerch et al. 1995; Thurman and Cromwell 2000; Scribner et al. 2000). A large proportion of the available work focuses on atrazine, while cyanazine, metolachlor, and alachlor are also studied in detail. The main transformation products under investigation were: deethylatrazine (DEA), hydroxyatrazine (HA) and deisopropylatrazine (DIA), cyanazine amide and the ethane sulfonic acids (ESA) and oxanilic acids (OA) of metolachlor and alachlor.

In this Chapter, information from the literature and industry data are used to identify the nature and amounts of pesticide transformation products that are formed in the environment through biotic degradation, e.g. soil and sediment or abiotic degradation pathways, e.g. surface and aqueous photolysis or hydrolysis. Information is also presented on their occurrence, persistence and mobility in the environment.

2.2 Formation in the Environment

Once pesticides are applied in the environment during either normal agricultural practice or via alternative uses such as domestic, industrial, and amenity, they are susceptible to biotic and abiotic degradation. The major abiotic processes include hydrolysis, photolysis, and oxidation/reduction. Hydrolysis is a chemical transformation process in which an organic molecule reacts with water. Substances that are potentially susceptible to hydrolysis include alkyl halides, amides, amines, carbamates, epoxides, nitriles, phosphoric acid esters, and sulphonic acid esters (Samiullah 1990). Photolytic degradation can occur directly (where the substance itself absorbs solar radiation) or indirectly (where the energy is transferred from some other species).

Biodegradation is one of the most important forms of degradation in the environment (Pavel et al. 1999; Rice et al. 2002). It is generally a significant loss mechanism in soils and aquatic systems and is essential to wastewater treatment. Although higher organisms can metabolise a substance, it is the microbes that play the most important role in the degradation of a substance in environmental media. The majority of biodegradation reactions can be categorized as oxidative, reductive, or conjugative (Hill 1978) (Table 1).

Table 1. Examples of biodegradation reactions that are relevant to pesticides (Hill 1978)

Type of reaction	Example(s)			
ß-oxidation	Phenoxyalkanoates			
Oxidative dealkylation; N-dealhylation	Alkyl carbamates, phenylureas, s-traizines			
O-dealkylation	Organophosphorous pesticides, phenoxyalkanoates			
C-dealkylation	Methoxychlor			
Thioether oxidation	Carbophenothio, prometryn, aldicarb			
Decarboxylation	Nicotinic acid			
Epoxidation	Aldrin, heptachtor			
Aromatic hydroxylation	2,4-D, nicotinic acid			
Aromatic, non-heterocyclic ring cleavage	Catechois, phenois, phenoxyalkanoate herbicides, carbaryl			
Aromatic, heterocyclic ring cleavage	Paraguat, picloram, amitrole			
Hydrolysis	Carbamates, organophosphates, urea and anilines			
Hydrolytic dehalogenation	TCA, dalapon, chlorobenzoates			
Halogen migration	Anisoles, 2,4-D			
Reductive dehalogenation	DDT			
Dehydrohalogenation	p,p-DDT, lindane			
Nitro-reduction	Parathion			

Selected transformation products identified in the environment can result from multiple pesticides or even from non-pesticidal sources. For example, the transformation product DIA is a transformation product of three triazine herbicides: atrazine, cyanazine, and simazine; while DEA is a transformation product of atrazine, propazine, and cyprazine (Muir and Baker 1976; Thurman et al. 1994; Scribner et al. 2000) (Figure 2). The chlorinated phenols, e.g. 2,4-dichlorophenol, a transformation product of the herbicide 2,4-D, can enter the environment either during their manufacture and use or via the degradation of phenoxycarboxylic acids. Therefore, when monitoring the occurrence of transformation products in raw water sources such as rivers and groundwater, in some cases it may be difficult to identify the particular source of a transformation product.

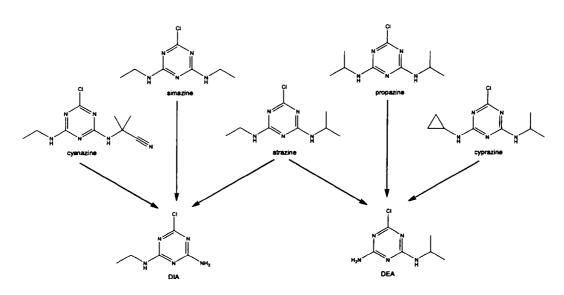
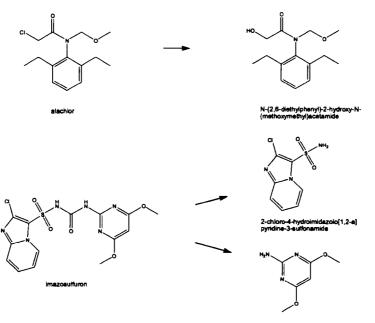



Figure 2. Degradation of the triazine herbicides to deisopropylatrazine and deethylatrazine (adapted from Scribner et al. 2000)

The structural changes seen between a pesticide and transformation product can be large or small alterations of a single structural moiety. Structural cleavage generally forms two much smaller compounds such as the hydrolytic cleavage of the sulfonylurea herbicides. The process of pesticide degradation does not have to be a reduction in structural size. Transformations can also slightly alter the structure of a pesticide, producing a structurally similar transformation product such as the hydrolytic de-chloroination of the chloroacetamide herbicides (Roberts 1998) (Figure 3).

4.6-dimethoxypyrimidine-2-viamina

Figure 3. The transformation and cleavage degradation pathways of chloroacetamide and sulfonylurea herbicides

When a small modification to a pesticide's structure occurs and the majority of the pesticide structure is still intact, it is possible for the transformation product to maintain the same specific mode of action of the parent compound. Some pesticides are specifically designed to use a process such as this to enable greater efficiency. The precursor compound can be more stable or can enter the target organism more effectively. A transformation then takes place, producing the more active pesticide. Pesticides that act in this manner are known as propesticides which includes the thiophosphate class of organophosphorus insecticides which undergo oxidative desulphurisation once in the target organism to the oxon form, which are much more potent acetylcholinesterase inhibitors (Drabek and Neumann 1985) (Figure 4). In the environment, the transformation of the pro-pesticide to the active form can occur. Current legislation in Europe for placing new pesticides on the market ensures that the environmental risk assessment process considers the active component of a pesticidal application (European Commission 1994).

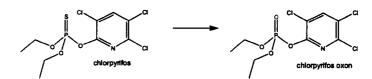


Figure 4. The oxidative desulphurisation of the insecticide chlorpyrifos

When pesticides are released into the environment a number of different transformation products can be produced. The extent of pesticide degradation and the identity and quantity of transformation products formed depend on the degradation pathways and environmental conditions that are experienced (Roberts 1998; Roberts and Hutson 1999). Transformation product formation in soil is influenced by soil properties and conditions, these can be inherent properties such as soil texture or transient properties such as organic carbon content, microbial ecology, water content and pH.

The structural identity of transformation products formed during pesticide degradation is not necessarily dependent on the degradation pathway followed, e.g. during the aerobic and anaerobic soil degradation of carbaryl, 1-napthol is formed from both pathways, while 2-hydroxy-1,4-napthaquinone is only formed via aqueous photolysis (Figure 5). Due to the high total usage of pesticides in agriculture when compared to other applications (Donaldson et al. 2002), pesticide degradation in soil is one of the most important processes determining which transformation products could be present in other environmental Many factors determine the rate and route of pesticide compartments. degradation and hence, transformation product formation. Once a pesticide has undergone a degradation step, additional transformation products can then be formed from this transformation product and alternative transformation products formed from the pesticide via a different degradation pathway. Following application of triazine herbicide atrazine, transformation product concentrations in the vadose zone were in the order DEA > didealkylatrazine > DIA >hydroxyatrazine (HA). In the following season when atrazine was not applied,

transformation product concentrations were in the order didealkylatrazine > DEA > DIA > HA. This change in transformation product concentration ratio is due to the degradation of the DEA and DIA to didealkylatrazine (Pashin et al. 2000). This branching degradation of pesticides, influenced by environmental conditions, can therefore produce a wide range of transformation products.

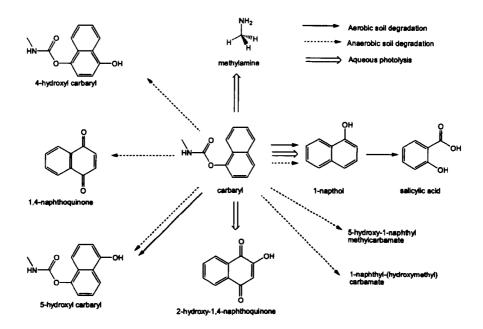


Figure 5. Selected degradation pathways for the insecticide carbaryl (Boxall et al. 2004)

The diversity of the microbial community is very important in the biotic degradation of pesticides. The biotic degradation rate constant of endosulfan is influenced by the degrading microbes; the fungal species *Fusarium ventricosum* can degrade endosulfan faster than the bacterium *Pandoraea sp.* (Siddique et al. 2003). Moreover, microbial communities can adapt to degrade compounds, increasing the degradation rate constant of a compound following its subsequent application and therefore, transformation product formation (Smith and Aubin 1991). However, not all pesticides show this increase in degradation rate constants following repeated application as some compounds show no change, e.g. chloropyrifos, while others show a reduction in degradation rate constants, e.g. chlorothalonil (Singh et al. 2002). Generally, the biotic degradation of

compounds decreases with depth through the soil profile, due to the decrease in microbial biomass and organic carbon content. The degradation of the chlorpyrifos primary transformation product, 3,5,6-trichloro-2-pyridinol, adheres to this principle whilst the degradation rate constants of the parent compound can increase down the soil profile. This increase in the chlorpyrifos degradation rate constant has been attributed to an increase in soil pH with depth in the specific soil (Baskaran et al. 2003). Where soil is amended with organic material such as manure, slurry or straw, pesticide and transformation product degradation rate constants in the top soil can be increased due to the increase in biological activity (Benoit and Barriuso 1997; Wagner and Zablotowicz 1997).

The oxygen levels under which degradation occurs can drastically alter the degradation of pesticides and the formation of transformation products. The degradation rate constants and pathways of a pesticide in soil, sediment or groundwater can vary depending on whether the environmental compartment is under aerobic or anaerobic conditions. The degradation rate constant of alachlor and the formation ratio of two transformation products (alachlor ESA and alachlor OA) differ when under aerobic and anaerobic conditions (Graham et al. 2000). These two transformation products are commonly identified in aerobic environmental compartments (Kalkhoff et al. 1998; Aga and Thurman 2001). Different transformation products, e.g. acetyl alachlor and diethyl aniline, are identified under methanogenic and sulphate-reducing conditions (Novak et al. 1997).

2.3 Methods for Determining Transformation Routes

A number of approaches are available for identifying transformation products of a pesticide including experimental methods and predictive approaches.

2.3.1 Experimental methods

The pathway of degradation of a substance in soil is typically determined according to specified guidelines, e.g. Organisation for Economic Co-operation and Development (OECD) guideline No. 307 (OECD 2002). Soil is treated with the radio-labeled test substance and incubated in the dark in biometer-type flasks or in a flow-through system under controlled laboratory conditions (at constant temperature and soil moisture). The soil used is typically a sandy loam, silty loam, loam or loamy sand with a pH of 5.5-8.0, an organic carbon content of 0.5-2.5% and a microbial biomass of at least 1% of the total organic carbon. After appropriate interval times, soil samples are extracted and analyzed for the parent compound and transformation products. Volatile products are also collected for analysis using appropriate adsorption devices. The studies are typically performed for up to 120 days. Following removal from the test system, the substrate is extracted and total radioactivity in the extracts is determined by liquid scintillation counting (LSC). Extracts can be further investigated using thin layer chromatography (TLC) and radioscanning, by high performance liquid chromatography (HPLC) with a radiomatic flow detector, or by fraction collection with LSC. Transformation products can be identified by liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR).

Sediment/water degradation studies are carried out using a similar approach to the soil degradation studies. Experiments are typically performed on sediments with high and low organic matter contents and are carried out in static systems. The water/sediment systems are pre-incubated to establish an anaerobic environment. During pre-incubation pH, oxygen content and redox potential are carefully monitored. Radio-labeled test substance is added to the water phase and incubated for up to 14 weeks. Carbon dioxide evolution is monitored at regular intervals and both sediment and water phases are analyzed separately for parent compound, major transformation products and bound residues.

2.3.2 Predictive approaches

Degradation route studies are complex and costly, and it is often very difficult to identify the minor transformation products in a system. Information is available for a wide range of pesticides (e.g. Roberts 1998; Roberts and Hutson 1999), but limited information is available for other substances. An alternative to experimental testing might be to use structure-biodegradability relationships (SBR) to predict degradation pathways from the chemical structure of the parent Predictive techniques that estimate toxicity, physico-chemical compound. properties and biodegradation are collectively known as QSAR. A number of systems have been developed for predicting degradation pathways, these include BESS (Punch et al. 1997), PPS (Hou et al. 2003) and CATABOL (Jaworska et al. 2002). BESS is a computerized system that simulates the biodegradation of compounds through sequential application of plausible biochemical reactions (Punch et al. 1997). PSS is a web-based system that can predict biodegradation of most aliphatic and aromatic organic functional groups containing C, H, N, O and halogens (Hou et al. 2003). CATABOL is a probabilistic approach to modeling biodegradation based on aerobic microbial transformation pathways generated from inherent biodegradability tests (e.g. OECD 1981) and expert judgment (Jaworska et al. 2002). CATABOL has been evaluated for determining transformation pathways for pesticides in soil (Sinclair et al. 2003). Comparison of predictions with experimental observations indicated that only 24% of experimentally derived transformation products are predicted correctly. Further development of CATABOL and other expert systems is therefore required before they can usefully be used to identify or predict transformation products.

2.4 Characteristics of Transformation Products of Major Pesticides

Data collated throughout this research on the formation of transformation products in different environmental systems, including aqueous photolysis, hydrolysis, aerobic soil (laboratory and field), anaerobic soil and sediment/water systems are provided in Appendix A, Table A1. (During 2004 the collated transformation product formation data were investigated, at that point data were available for 215 transformation products formed from 62 pesticides, the discussion below focuses on the data available at that time). 122 transformation products were identified as being formed at \geq 10% of the applied pesticide in one or more degradation studies. Therefore, based on the definition in the EU, these compounds can be considered 'major metabolites'.

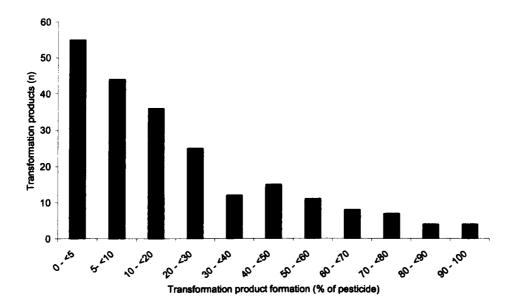


Figure 6. Formation of pesticide transformation products as a percentage of the parent pesticide (each transformation product is represented by the degradation study where it was most prevalent)

The extent of transformation product formation is presented in Figure 6, where each identified transformation product is represented by the extent of its formation in the degradation study where it was most prevalent. There are a number of transformation products (8) with a formation >80% of the applied pesticide. Four of these compounds are pesticides that act as a pro-pesticide and their transformation to the active component can be expected at a high rate, e.g. diclofop-methyl, fluzifop-p-butyl, fluoroglucofen-ethyl and carbofuran. The

remainder were dihydroxy anilazine from anilazine, ethyl-m-hydroxyphenyl carbamate from desmedipham, propargyl butyl carbamate from IPBC and saccahrin from metsulfuron-methyl. The data in Figure 6 includes aerobic and anaerobic soil degradation, sterile hydrolysis, aquatic and soil photolysis, column and lysimeter leachate studies and degradation in water/sediment systems. The most common formation data available in the literature is transformation product formation during pesticide degradation in aerobic soil; ~44% of data points were of this type.

No conclusions should be drawn about the ratio of major to minor transformation products identified. Degradation studies and the relevant legislation are biased toward identifying those transformation products formed in greater amounts. Due to constraints on time and money, limitations in analytical capabilities, and the perceived unimportance of transformation products formed in small quantities, these compounds are rarely identified or quantified during degradation studies undertaken for the purposes of pesticide registration. For example, when the fate of alachlor is investigated, alachlor ESA, alachlor OA, and 2,6-diethylaniline are commonly identified in surface water, groundwater, soil and sediment (e.g. Graham et al. 1999; Scribner et al. 2000; Graham et al. 2000; Fava et al. 2000; Osano et al. 2003). However, an extensive investigation into the occurrence of alachlor transformation products in groundwater following agricultural application identified at least twenty different transformation products, a number of which occurred in the ng L^{-1} range (Potter and Carpenter Therefore, a number of transformation products may be formed in 1995). quantities two or three orders of magnitude less than the major transformation products of a pesticide. However, the importance of these compounds is probably negligible in most cases when compared to the possible risks posed by either the pesticide itself or its major transformation product(s). A summary of the most prevalent major transformation products formed during aerobic soil degradation studies are provided in Table 2.

Table 2. Summary of the most prevalent major transformation products formed from each pesticide with available data from aerobic soil degradation studies

Transformation product	Parent pesticide *	% of pesticide ^b	Time ^e	Reference
(EZ)-3-chloroacrylic acid	1,3-dichloropropene	37%	28 days	EFSA 2006a
2,4-dichlorophenol	2.4-D	11%	-	Roberts 1998
	2,4-DB	26.1%	- A9 down	EU 2002a
2,4-D			48 days	
methamidophos	acephate	major ^d	•	EPA 2001c
N-(2-ethyl-6-methylphenyl)-2- sulfoneacetamide	acetochlor	> 10%	-	Roberts 1998
2,6-diethyl-N-methoxymethyl-2-sulpho- acetanilide	alachlor	15 - 25%	4 - 7 weeks	PSD 1990a
aldicarb sulfoxide	aldicarb	67 -92%	-	APVMA 2001
HOE 101630	amidosulfuron	49.6%	7 days	PSD 1994a
BTS 27919	amitraz	35%		EPA 1996a
	anilazine	43%	366 days	PSD 1994b
dihydroxy anilazine	armazine	43/8	JOU days	Assaf and Turc
nydroxyatrazine	atrazine	19%	95 days	1994
azoxystrobin acid	azoxystrobin	20%	-	Roberts and Hutson 1999
benalaxyl M2	benalaxyl	34.1%	98 days	EU 2004c
carbofuran	benfuracarb	73 - 93%	0 days	PSD 1998a
bensulide oxon	bensulide	13.8%	270 days	PMRA 2003c
bitertanol benzoic acid	bitertanol	19%	30 days	Roberts and Hutson 1999
		Þ	•	
M510F49	boscalid	14% ^b	•	PMRA 2004c
3,5-dibromo-4-hydroxybenzoic acid	bromoxynil	16.1 - 34.8% ^b	1 day	EU 2004d
promoxynil	bromoxynil octanoate	44.6% ^b	4 days	EU 2004d
etrahydrophthalamide	captan	66%	7 days	EPA 1999a
1-napthol	carbaryl	major ^d	•	EPA 2004d
2-chlorobenzoic acid	clofentazine	major ⁴	-	Tomlin 2000
5-amino-4-chloropyridazin-3(2H)-one	chloridazon	43.2 - 46.6%	187 days	Roberts 1998
	chlorothalonil	32%	60 days	EPA 1999b
4-hydroxy-2,5,6-trichloroisophthalonitrile				
3,5,6-trichloro-2-pyridinol	chlorpyrifos	30 - 38%	14 - 360 days	EU 2005d
3,5,6-trichloro-2-pyridinol	chlorpyrifos-methyl	43% ^d	7 days	EU 2005e
2-chlorobenzene sulfonamide	chlorsulfuron	50%	2 months	PSD 1991a
3-(3-chloro-p-tolyl)-1-methylurea	chlorotoluron	30%	16 - 84 days	EU 2005c
5-chloro-3-fluoro-2-hydroxy-pyridine	clodinafop-propargyl	9 -14%	-	PSD 1995a
loguintocet acid	cloquintocet-mexyl	<20%	•	PSD 1995a
cyanazine acid	cyanazine	>50%	40 days	Blumhorst and Weber 1992
CCIM	cyazofamid	18.4 - 31.3%	3 -10 days	EU 2002c
T2SO	cycloxydim	48%	7 days	PSD 1990b
	lambda-cyhalothrin	12% °	63 days	EU 2001c
compound XV		31%		EU 20076
4-fluoro-3-phenoxybenzoic acid	cyfluthrin		118 days	
3-phenoxybenzoic acid	cypermethrin	23-48%	364 days	EU 2004b
CGA 249287	cyprodinil	12%	50 days	PSD 1997a
nelamine	cyromazine	20 - 44%	29 weeks	PSD 1993a
nethylisothiocyanate	dazomet	major ^a	-	APVMA 1997b
decamethrinic acid	deltamethrin	23% [•]	14 days	EU 2002e
ethyi-m-hydroxyphenyl carbamate	desmedipham	16%	7 days	PSD 1993b
pyrimidinol	diazinon	72.9%	14 davs	PSD 1991b
	dicamba	31%	6 weeks	Smith 1974
3,6-dichlorosalicylic acid	dichlofluanid		U WOORS	HSE 2003
dimethylaminosulfanilide 2,6-dichlorobenzamide	dichotenil diclobenil	major 13.1% ^b	- 50 wee ks	EPA 1998d
2,4-dichlorophenoł	dichlorprop	10%	8 days	Haberhauer et al. 1999
diclofop acid	diclofop-methyl	90%	2 days	PSD 1991c
N.N-dimethylacetoacetamide	dicrotophos	20%	5 days	EPA 2002b
	diflubenzuron	37% ^b	7 - 14 days	EPA 1997
4-chlorophenyl urea			7 - 14 Udys	
M9	diflufenzopyr	major	•	PMRA 1999b

Table 2. Summary of the most prevalent major transformation products formed from each pesticide with available data from aerobic soil degradation studies

Transformation product	Parent pesticide ^a	% of pesticide ^b	Time ^c	Reference
N-demethyldimefuron	dimefuron	16.6 - 29.98%	93 days	PSD 1993c
	disulfoton	35%	50 0dy5	EPA 2002a
disulfoton sulfone			- DCE dava	EPA 2002a
N'-(3,4-dichlorophenyl)-N-methylurea	diuron	20.9 - 22.5%	365 days	
endosulfan sulphate	endosulfan	major ^a	•	EPA 2002c
CONH ₂ -fen	esfenvalerate	32% ^b	12 months	PSD 1992b
triazine amine C	ethametsulfuron-	major	-	PMRA 1992
	methyl	-		ED4 4005
2-hydroxy ethyl phosphonic acid	ethephon	63.5%	30 days	EPA 1995a
RH-9129	fenbuconazole	major	•	PMRA 2003f
HOE 72829	fenchlorazole-ethyl	36%	2 days	PSD 1990d
3-methyl-4-nitrophenol	fenitrothion	30%	1 - 2 weeks	APVMA 1999
3-phenoxybenzoic acid	fenpropathrin	14%	-	PSD 1989
M3	fenpyroximate	2.6 - 10.8%	14 - 28 davs	PSD 1995b
RPA 200766	fipronil	57%	157 days	PSD 2004a
	flamprop-M-isopropyl	major ⁴	io, adyo	Roberts 1998
flamprop-M acid	florasulam	72%	- 3 days	PMRA 2001b
5-hydroxy-XDE-570			•	PSD 1988d
fluzaifop acid	fluazifop-P-butyl	97%	2 days	
compound XII	fluazinam	11.4%	30 days	PSD 1994d
MKH 6562 sulfonamide	flubcarbazone-sodium	46 - 69%	•	PMRA 2000b
FOE sulfonic acid	flufenacet	14 - 23%	120 days	PMRA 2000c
4-(2-chloro-α,α,α-trifluoro-p-tolyloxy)-2- fluorophenyl urea	flufenoxuron	9.5 - 14% ^b	30 days	HSE 1995
RH-5781	fluoroglycofen-ethyl	79%	21 days	PSD 1992c
FBC 96912	fuquinconazole	28.7%	365 days	PSD 1999b
	Indaniconazola		ooo daya	
4-amino-3,5-dichloro-6-	fluroxypyr	17.8% ^ኮ	28 days	EU 1999
fluoromethoxypyridine			•	
RE 54488	flurtamone	10.8%	•	PSD 2000a
fomesafen amine	fornesafen	20.5%	59 days	PSD 1995c
carbamoylphosphonic acid	foseamine-ammonium	94%	0 days	EPA 1995c
• • • • • • • • • • • • • • • • • • •	glufosinate	52%	05 days	PSD 1990e
3-methyl phosphinico-proprionic acid	ammonium		95 days	F3D 19908
aminomethylphosphonic acid	glyphosate	26 - 29% ^b	14 days	EU 2002i
aminomethylphosphonic acid	glyphosate trimesium	15.4% ^b	14 days	EU 2002i
	•••			PMRA 1995;
1,2,4-triazole	hexaconazole	> 10%	•	PMRA 1999a
3-hydroxy-cyclohexyl-6-(dimethylamino)-1- methyl-1,3,5-triazine-2,4(1H,-3H)-dione	hexazinone	18.7%	365 days	EPA 1994a
1,5-bis(-p-tolyl)-1,4-pentadiene-3-one	hydramethylnon	25.9%	3 months	PSD 1994e
1-(2,4-dichlorophenyl)-2-imidazolylethan- 1-ol	imazalil	major ^d	-	Roberts 1998
3,5-di-iodo-4-hydroxybenzoic acid	ioxynil	20.4% ^b	3 days	EU 2004e
ioxynil	ioxynil octanoate	52.6% b	•	EU 2004e
propargyl butyl carbamate	IPBC	>90%	6 hours	HSE 1994
RP 30228	iprodione	31% "	•	EU 2002i
	irgarol 1051	>10%		HSE 2002
CA 30-0155		15.6%	- 4 weeks	PSD 1995d
desmethylisoproturon	isoproturon			
2,6-dimethoxybenzoic acid	isoxaben	14%	118 days	Roberts 1998
RPA 202248	isoxaflutole	83 - 68.4%	-	PMRA 2000d
kresoxim-methyl acid	kresoxim-methyl	84%	•	PSD 1997b
malathion dicarboxylic acid	malathion	62%	7 days	PSD 1995e
ethyleneurea	maneb	36.1 - 63.8%	•	EU 2005g
MCPA	MCPA-thioethyl	66% ^b	2 days	EU 2005h
	mefenpyr-diethyl	72.2%	64 days	PSD 1999a
HOE 094270				EPA 1994b
CGA-62826	metalaxyl	53.6%	66 days	
methylisothiocyanate	metam-sodium	75%	•	APVMA 1997
amino-N-benzothiazol-2-yl-N-methylamide	methabenzthiazuron	major ^d	•	Roberts 1998
methiocarb sulfoxide	methiocarb	30% Ľ	29 days	PSD 1998b
ethylenebisisothiocyanide sulfide	metiram	57% ^b	0 days	EU 2005j
	metolachlor	28.09%	90 days	EPA 1995d

Table 2. Summary of the most prevalent major transformation products formed from each pesticide with available data from aerobic soil degradation studies

Transformation product	Parent pesticide *	% of pesticide ^b	Time ^c	Reference
IN-A4098	metsulfuron-methyl	33% ^b	12 weeks	EU 2000a
1,2,4-triazole	myclobutanil	major ^d	-	PMRA 1993
ASDM	nicosulfuron	85.2%	148 davs	PSD 2000b
desmethyl norflurazon	norflurazon	31 - 36%	365 days	EPA 1996b
ketone metabolite	paclobutrazol	18% ^b	-	PSD 1995f
MHPC	phenmedipham	54% ^b	5 days	EU 2004f
CL 153815	picolinafen	major ^d	-	PMRA 2003h
dichlorobenzoic acid	piperalin	21%	14 days	EPA 1994c
5,6-dimethyl-2-dimethylamino-pyrimidin-4-	piperaini		14 Gays	
ol	pirimicarb	30 - 36%	-	PSD 1994f
2-diethylamino-6-methylpyrimidin-4-ol	pirimiphos-methyl	72 - 75%	-	PSD 1997c
CGA-171683	primisulfuron methyl	88.6%	-	PMRA 2001a
2,4-bis(isopropylamino)-6-hydroxy-s-			•••	
triazine	prometryn	26.2%	360 days	EPA 1996c
RH24644	pronamide	27%	-	EPA 1994d
propachlor oxanilic acid	propachlor	33.3%	1 month	EPA 1998e
Ro 17-3102	propaguizafop	25.9 - 38.8%	1 month	PSD 1994g
CGA 118 245	propiconazole	22%	•	EU 2003e
propylene urea	propineb	40% ^b	2 days	EU 2003f
propylene urea N-(1,1-dimethylacetonyl)-3,5-	• •		£ 44j0	
dichlorobenzamide	propyzamide	77%	-	Roberts 1998
	pymetrozine	16.5%	_	PMRA 2002
CGA 180777 6 ablance 3 abaand avridania 4 al		88% ^b	- 3 days	EU 2001d
6-chloro-3-phenyl-pyridazin-4-ol	pyridate		186 - 243	
ZK 512723	pyrimethanil	52 - 58%	100 - 243 days	PSD 1995g
BH518-2	quinmerac	42.4%	224 days	PSD 1998c
guizalofop acid	quizalofop-methyl	36%	15 days	PSD 1987
IN-70941	rimsulfuron	30.3 - 33.1%	365 days	PSD 1996
hydroxysimazine	simazine	<0.1 - 11%	294 days	PSD 1992d
sulphonamide	sulfosulfuron	12.8% ^b		PMRA 1998
haloaniline	tau-fluvalinate	10% *	-	PSD 1997d
3.5-dichloro-2.4-difluorophenyl urea	tebflubenzuron	10.4%	-	PSD 1991d
2.3.5.6-tetrafluoro-4-methylbenzoic acid	tefluthrin	10% *	122 days	PSD 1991e
tetraconazole acid	tetraconazole	~80%	7 days	PSD 1999c
thiophene sulfonimide	thifensulfuron-methyl	21 - 29%	-	PSD 1991f
methomyt	thiodicarb	81.3%	7 davs	PSD 1992e
carbendazim	thiophanate-methyl	76%	3 weeks	EPA 2001d
DM-TM	tolclofos-methyl	10.5% ^b	90 days	PSD 1993d
DMST	tolyfluanid	~60% *	-	PSD 1995i
tralkoxydim metabolite 8	tralkoxydim	11.8% ^b	- 61 davs	PSD 1993e
CGA 150829	triasulfuron	30%	28 weeks	EU 2000b
triazamate metabolite II	triazamate	91% <u></u>	1 dav	PSD 1998d
nazamate metabolite il SAS 9256	triazoxide	21%	64 days	PSD 1993f
	tribenuron methyl	91.1% ^b	14 days	PSD 1992f
triazine amine A	triclopyr	26%	<30 davs	EPA 1998g
3,5,6-trichloro-2-pyridinol	trifloxystrobin	20% major ^d	-30 days	PMRA 2004e
CGA-321113		84% ^b	- 20. dava	
methyl saccahrin	triflusulfuron-methyl	04%	29 days	PSD 1995
trinexapac acid	trinexapac ethyl	major ^d	-	PSD 1995k
RPA 406341	triticonazole	20.2%	240 days	PSD 2000c

a - pesticide identified in the reference as the source of the transformation product

b - peak percentage formation of transformation product during study

c - time to peak transformation product formation

d - no precise formation data provided

2.5 Fate of Transformation Products in the Environment

Like all organic substances, once formed in the environment, a transformation product may be degraded by biotic and abiotic processes and may be transported between the different environmental compartments. A large body of data are available on the persistence and mobility of pesticide transformation products (Appendix A, Table A2 and A3 respectively).

2.5.1 Degradation in the Environment

Available data on the degradation rate constants of pesticide transformation products in different environmental compartments and under different conditions are provided in Appendix A, Table A2. Table 3 provides a summary of available transformation product degradation rate constant data determined in aerobic topsoil in the laboratory. Collated persistence data comprises disappearance time for 50% of a compound data (DT_{50}) and half-life data ($t_{1/2}$). DT_{50} is the time required for one-half the initial concentration of a compound to dissipate from a system were no assumption as to the rate equation is made, while half-life is the time taken for the concentration of a pesticide in a compartment to decline by one half were degradation can be described by first order kinetics (Holland 1996). The data are summarized in Figure 7 demonstrate that transformation products (55%), are moderately (22 to 60 days) to very persistent (>60 days) in aerobic and anaerobic soil, as determined by the Soil Survey and Land Research Centre (SSLRC) soil persistence classification system (Hollis 1991).

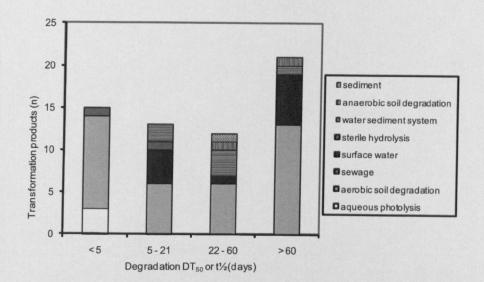


Figure 7. The degradation of pesticide transformation products, classified according to the SSLRC soil persistence classification

When degradation data for pesticide transformation products (Appendix A, Table A2) are compared to their parental compounds (Figure 8), 73.6% of the transformation products have equal or greater persistence than the pesticide. When summarizing these data, it is not possible to generalize that transformation products are more persistent than parent pesticide, because the data are probably skewed. Data pertaining to more persistent transformation products are probably more likely to be reported during a study while data concerning rapidly degrading transformation products is unlikely to be reported at all (Boxall et al. 2004). Although no generalizations can be made about a pesticide and its transformation products that are more persistent than their parent pesticides. Therefore, these compounds can remain in the environment longer than the parent and have the potential to impact non-target organisms and/or move to other environmental compartments such as surface waters and groundwaters.

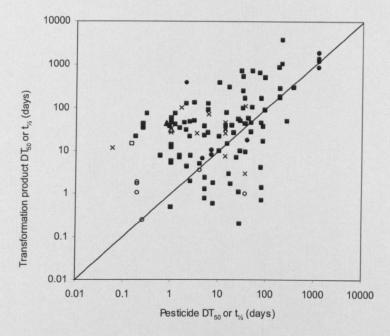


Figure 8. The comparative persistence of pesticides and their transformation products in various environmental media (aquatic photolysis (○), surface water (●), sterile hydrolysis (□), aerobic soil (■), anaerobic soil (△), sediment (▲) and sediment/water system (×) (The diagonal line represents equal persistence)

Transformation product	Parent pesticide ^a	Half-life / DT ₅₀	Reference
3-chloroaryl alcohol (mean of isomers)	1,3-dichloropropene	0.1 - 0.6 days	EFSA 2006a
3-chloroacrylic acid (mean of isomers)	1,3-dichloropropene	0.7 - 19.8 days	EFSA 2006a
trans-3-chloroallylalcohol	trans-1,3- dichloropropene	0.4 - 1.4 days	Dijk 1974; Leistra et al. 1991
cis-3-chloroallylalcohol	cis-1,3-dichloropropene	1.2 - 4.2 days	Dijk 1974; Leistra et al. 1991
2,4-D	2,4-DB	2.3 - 17.1 days	EU 2002a
methamidophos	acephate	3.5 - 9.3 days	Sundaram 1993; PSD 1995a
2-chloro-2',6'-diethylacetanilide	alachlor	2.4 days	Fava et al. 2000
2-hydroxy-2',6'-diethylacetanilide	alachlor	0.8 days	Fava et al. 2000
2,6-diethylaniline	alachlor	1.3 days	Fava et al. 2000
aldicarb sulfone	aldicarb	18 - 154 days	APVMA 2001
aldicarb sulfoxide	aldicarb	20 - 53 days	APVMA 2001
BTS 27271	amitraz	67 - 82 days	EPA 1996a

 Table 3. Summary of transformation product degradation rate constants determined in aerobic topsoil in the laboratory

Table 3. Summary of transformation product degradation rate constants determined in aerobic topsoil in the laboratory

Transformation product	Parent pesticide *	Half-life / DT ₅₀	Reference
BTS 27919	amitraz	61 -117 days	EPA 1996a
dihydroxy anilazine	anilazine	21 - 45 days	PSD 1994b
deethylatrazine	atrazine	26 days	Solomon et al. 1996
deisopropylatrazine	atrazine	17 days	Solomon et al. 1996
diaminochloroatrazine	atrazine	19 days	Solomon et al. 1996
hydroxyatrazine	atrazine	121 days	Solomon et al. 1996
benalaxyi M1	benalaxyl	49 - 90 days	EU 2004c
benalaxyl M2	benalaxyl	66 - 118 days	EU 2004c
carbofuran	benfuracarb	11 - 44 days	PSD 1998a
3,5-dibromo-4-hydroxybenzamide	bromoxynil	0.47 - 5.2 days	EU 2004d
		0.16 - 0.48 days	
3,5-dibromo-4-hydroxybenzoic acid	bromoxynil		EU 2004d
3,5,-dibromo-4-hydroxybenzonitrile	bromoxynii octanoate	31 - 51 hours	EPA 1998b
tetrahydrophthalamide	captan	5.4 - 19.5 days	EPA 1999a
1-naphthol	carbaryl	14.93 days	Menon and Gopal 2003
N-phenyl-3-methyloxazoline-2,5- dione	carbetamide	21 - 23 days	Cantier et al. 1988
2-(phenylcarbamoyloxy)propionic acid	carbetamide	3.25 - 3.55 hours	Cantier et al. 1988
N-phenyl-2-hydroxypropionamide	carbetamide	25.4 - 27.9 days	Cantier et al. 1988
4-hydroxy-2,5,6- richloroisophthalonitrile	chlorothalonil	6 – 130.6 days	PSD 2002; EU 2005b
R417888	chlorothalonil	121.1 days	EU 2005b
	chlorothalonil	103 days	EU 2005b
3-carbamyl-2,4,5-trichlorobenzoic	chiorothaionn	105 uays	EC 2003b
		9 070 days	Tamlin 2000, ADV/AA
3,5,6-trichloro-2-pyridinol	chlorpyrifos /	8 - 279 days	Tomlin 2000; APVMA
	chlorpyrifos-methyl /		2000; Baskaran et al.
	triclopyr		2003; EU 2005d
3-methoxy-3,5,6-trichloropyridine	chlorpyrifos / triclopyr	30 - >300 days	PMRA 1991; Belfroid et al. 1996; APVMA 2000
chlorthal-dimethyl mono-acid	chlorthal-dimethyl	2.8 days	Wettasinghe and Tinsle 1993
chlorthal-dimethyl di-acid	chlorthal-dimethyl	> 300 days	Wettasinghe and Tinsle 1993
clodinafop acid	clodinafop-propargyl	4.9 - 23 days	PSD 1995a; Tomlin 2000
cloquintocet acid	cloquintocet-mexyl	5 - 90 days	PSD 1995a
CCIM	cyazofamid	1.2 - 28.6 days	EU 2002c
CCIM-AM	cyazofamid	1 - 57 days	EU 2002c
CTCA	cyazofamid	17.7 - 395 days	EU 2002c
DCVA	cyfluthrin	12 - 62 days	EU 2002b
compound XV	lambda-cyhalothrin	7 - 16 days	EU 2001c
2,4,6-triamino-1,3,5-triazine nelamine	cyromazine	263 - 1086 days	Belfroid et al. 1996
ИТР	dacthal	2.8 days	EPA 1998c
nethyl isothiocyanate	dazomet / metam- sodium	4 - 10 days	Belfroid et al. 1996; Roberts and Hutson
			1999
lecamethrinic acid	deltamethrin	0.7 - 9.1 days	EU 2002e
thyl-m-hydroxyphenyl carbamate	desmedipham	9 - 27 days	PSD 1993b
liazoxon	diazinon	17 hours	PSD 1991b
3,6-dichlorosalicylic acid	dicamba	> 40 days	Pearson et al. 1996
	diclofop-methyl	6 - 63 days	PSD 1991c
liclofop acid		d - uu udya	
omethoate	dimethoate	17 days	Belfroid et al. 1996
lisulfoton sulfone	disulfoton	166 days	EPA 2002a
lisulfoton sulfoxide	disulfoton	166 days	EPA 2002a
V-(3,4-dichlorophenyl)-1- nethylurea	diuron	217 - 1733 days	EPA 2003c
lipropylamine	EPTC	7 days	EPA 1999c
	EPTC		
EPTC sulfoxide	famoxadone	13 - 14 days 1.5 - 10.3 days	EPA 1999c PMRA 2003e
N-KZ007			

Table 3. Summary of transformation product degradation rate constants determined in aerobic topsoil in the laboratory

Transformation product	Parent pesticide *	Half-life / DT ₅₀	Reference
IN-KF015	famoxadone	1.2 days	PMRA 2003e
IN-JS940	famoxadone	6 -23 hours	PMRA 2003e
fenamiphos sulfoxide	fenamiphos	62 days	PSD 1990b
fenamiphos sulfone	fenamiphos	29 days	PSD 1990b
3-methyl-4-nitrophenol	fenitrothion	6 - 13 days	EPA 1995b; PMRA
			2003d
fenoxaprop-ethyl acid	fenoxaprop-ethyl	5 - 14 days	PSD 1990c
5-hydroxy-XDE-570	florasulam	10 - 57 days	PMRA 2001b
fluazifop	fluazifop-p-butyl	3 - 16 weeks	PMRA 1988
fluazifop	fluazifop-butyl	3 - 16 weeks	PMRA 1988
MKH 6562 sulphonamide	flubcarbazone-sodium	> 400 days	PMRA 2000b
RH-5781	fluoroglycofen-ethyl	14 - 128 days	PSD 1992c
FBC 96912	fluquinconazole	448 days	PSD 1999a
4-amino-3,5-dichloro-6-fluoro-2-	fluroxypyr	21 - 53 days	EU 1999
pyridinol		-	
4-amino-3,5-dichloro-6-	fluroxypyr	20 - 429 days	EU 1999
fluoromethoxypyridine		,-	
fluroxypyr	fluroxpyr-meptyl	< 7 days	Roberts 1998
phthalimide	folpet	17.2 days	PSD 1997a
AE F153745	formasulfuron	< 1 day	PMRA 2003g
dimethoate	formothion	7 - 40 days	Belfroid et al. 1996
formothioic acid	formothion	9 - 10 days	Belfroid et al. 1996
HOE 35950	glufosinate ammonium	4 - 42 days	PSD 1990e
3-methyl phosphinico-proprionic	glufosinate ammonium	7 - 165 days	PSD 1990e
acid			
aminomethylphosphonic acid	glyphosate / glyphosate	119 - 958 days	EPA 1993
4.0.4.4.1	trimesium	4.4	DMDA 4000
1,2,4-triazole	hexaconazole	14 weeks	PMRA 1995
metsulfuron-methyl	iodosulfuron-methyl	20 - 99 days	PMRA 2004d
AE F161778	iodosulfuron-methyl	9.4 - 21.1 days	PMRA 2004d
AE F059411	iodosulfuron-methyl	119 - 269 days	PMRA 2004d
3,5-di-iodo-4-hydroxybenzamide	ioxynił / ioxynił octanoate	3.7 - 7.7 days	EU 2004e
3,5-di-iodo-4-hydroxybenzoic acid	ioxynil	<2 days	EU 2004e
ioxynil	ioxynil octanoate	1.5 - 2.5 days	EU 2004e
propargyl butyl carbamate	IPBC	4.3 days	PSD 1987; HSE 1994
RP 30228	iprodione	215 - 319 days	EU 2002j
desmethylisoproturon	isoproturon	22 - 65 days	EU 2002
RPA 202248	isoxaflutole	24 - 96 days	PMRA 2000d
RPA 203328	isoxaflutole	289 - 977 days	PMRA 2000d
kresoxim-methyl acid	kresoxim-methyl	38 -131 days	PSD 1997b; Roberts
Riesoxiii-motilyi dola	Ricconstitution	oo lol aays	and Hutson 1999;
			PMRA 2003b
MCPA acid	МСРА	24 days	PSD 1988c
MCPA add MCPA	MCPB	24 days	EU 2005i
	mancozeb / maneb /	24 days 2 hours - 2.5 days	
ethylenethiourea	metiram	2 noura - 2.0 uays	Calumpang et al. 1993
	THOUR OF T		PSD 2004b; EU 2005f;
athu da na uran	mancozeb / maneb	18-76 days	EU 2005g Columnana et al. 1003
ethyleneurea	manouzeu / maneu	4.8 - 7.6 days	Calumpang et al. 1993
والمتعالمة والمتعالية والمتعالم والمتعالمة والمتعالمة والمتعالمة والمتعالمة والمتعالية والمتعالمة وال	mench / method	0.00 0.0 4	EU 2005f; EU 2005g
ethylenebisisothiocyanide sulphide	maneb / metiram	0.09 - 0.8 days	EU 2005g
TDIT	metiram	0.3 - 0.9 days	EU 2005j
carbimid	metiram	0.009 - 0.9 days	EU 2005
HOE 113225	mefenpyr-diethyl	9 days	PSD 1999a
HOE 094270	mefenpyr-diethyl	135 days	PSD 1999a
2-ethyl-6-methylaniline	metolachlor	1.7 days	Fava et al. 2000
N-A4098	metsulfuron-methyl	210 days	EU 2000a
N-D5803	metsulfuron-methyl	<< 1 month	EU 2000a
ADMP	nicosulfuron	2 - 7 davs	PSD 2000b
ASDM	nicosulfuron	2 - 7 days 95 - 113 davs	
AQUMI			PSD 2000b
AUSN	nicosulfuron	53 - 91 days	PSD 2000b

Table 3. Summary of transformation product degradation rate constants determined in aerobic topsoil in the laboratory

Transformation product	Parent pesticide *	Half-life / DT _{se}	Reference
UCSN	nicosulfuron	128 days	PSD 2000b
phorate sulfoxide	phorate	65 - 137 days	PMRA 2003a
phorate sulfone	phorate	65 - 137 days	PMRA 2003a
CL 153815	picolinafen	30 - 77 davs	PMRA 2003h
1.2.4-triazole	propiconazole	2 - 12 davs	EU 2003e
CGA 118 245	propiconazole	<1 day	EU 2003e
propylene urea	propineb	4 - 93 days	EU 2003f
propylenethiourea	propineb	1.5 - 2.6 davs	EU 2003f
2-(3.5-dichlorophenyl)-4,4-dimethyl-	propyzamide	25.8 - 37.9 days	EU 2003h
5-methyleneoxazoline	p p. j		
N-(1,1-dimethylacetonyl)-3,5- dichlorobenzamide	propyzamide	12.4 - 16.7 days	EU 2003h
BH518-2	quinmerac	17 - 1080 days	PSD 1998c
BH518-5	guinmerac	4 - 3850 days	PSD 1998c
anilino acid	tau-fluvalinate	5.7 - 7.1 days	PSD 1997d
2,6-di-tert-butyl-4-methylphenyl	terbuto!	291 days	Suzuki et al. 2001
carbamate		•	
2.6-di-tert-butyl-4-carboxyphenyl N-	terbutol	173 days	Suzuki et al. 2001
methylcarbamate		-	
2,6-di-tert-butyl-4-carboxyphenyl	terbutol	184 days	Suzuki et al. 2001
carbamate			
thifensulfuron acid	thifensulfuron-methyl	2.2 - >365 days	EU 2001e
O-desmethyl thifensulfuron-methyl	thifensulfuron-methyl	< 2.9 - 15.3 days	EU 2001e
thiophene sulfonimide	thifensulfuron-methyl	9.6 - 96.6 days	EU 2001e
N-Å4098	thifensulfuron-methyl	22 - 176 days	EU 2001e
2-ester-3-sulfonamide	thifensulfuron-methyl	6 - 7 days	EU 2001e
methomyl	thiodicarb	45 days	EPA 1998f
carbendazim	thiophanate-methyl	39.8 - 320 days	EPA 2001d; EU 2005k
ridimenol	triadimeton	> 2 years	Bromilow et al. 1999
CGA 150829	triasulfuron	159 - 289 days	EU 2000b
riazamate metabolite II	triazamate	1.7 - 70 days	PSD 1998d
riazine amine A	tribenuron methyl	110 - 240 days	PSD 1991d; EFSA 2004
N-A4098	tribenuron-methyl	22 - 39 days	EFSA 2004
saccahrin	tribenuron-methyl	230 days	EFSA 2004
2-butoxyethanol	triclopyr butoxyethyl ester	0.058 - 0.375 days	EPA 1998g
CGA-321113	trifloxystrobin	250 - 350 days	PMRA 2004e
rinexapac acid	trinexapac ethyl	1.1 - 21.4 days	PSD 1995k
RPA 406341	triticonazole	165 - 330 days	PMRA 2004b
RPA 407922	triticonazole	0.5 - 1.1 days	PMRA 2004b

a - pesticide identified in the reference as the source of the transformation product

2.5.2 Routes into environmental waters for nonagricultural pesticides and transformation products

The monitoring and measurement of pesticides and their transformation products is understandably dominated by the occurrence of agricultural herbicides in agricultural areas. However, pesticides are also widely used in other areas which could be an important source of transformation products in environmental waters. Non-agricultural pesticide market sectors include industrial, commercial, government and domestic (Donaldson et al. 2002). Due to the method or site of application, pesticides used in these sectors can have the potential for direct entry into surface waters. Following herbicidal application to hard surfaces such as asphalt and concrete, more than half of applied atrazine and diuron can be lost to the highway drainage system during the first 5mm of rainfall (Ramwell et al. 2002). In the UK, five herbicides (2,4-D, dichlobenil, diquat, glyphosate and terbutryn) and one plant growth regulator (maleic hydrazide) are approved for use in or near water (Whitehead 2004). Obviously, this method of application can provide the pesticides with a direct entry route into surface waters where they could degrade and produce transformation products in relatively large quantities. In contrast to agricultural streams, the total insecticide concentration in urban streams exceeds that of the total herbicide concentration. However, no insecticidal transformation products were detected in urban streams when sampled during one study, with DEA the only herbicide transformation product identified (Hoffman et al. 2000).

2.5.3 Effects of climate and season

One of the dominant factors affecting the occurrence of transformation products in environmental waters (surface and ground) is climatic conditions. High concentrations of triazine transformation products (DEA and DIA) are identified in agricultural ditches if there is heavy rainfall soon after atrazine application (Thurman et al. 1994). Moreover, if dry summer conditions follow the spring application of atrazine, then the first large rainfall event can 'flush' transformation products from the soil resulting in peak concentrations in agricultural ditches. It is hypothesized that during the summer, transformation product quantities increase and are stored in soil which are then readily transported to surface waters by heavy rainfall. Metolachlor ESA and metolachlor OA concentrations in agricultural ditch samples peaked in the first flow event in November following a dry summer. These concentrations quickly declined once the stored transformation products had been flushed out of the soil (Phillips et al. 1999). These large peak concentrations are observed in

subsequent surface waters such as streams and rivers (Albanis and Hela 1998; Clark et al. 1999).

2.5.4 Mobility in the environment

One of the most important physico-chemical properties of a transformation product for determining whether it will be mobile is its organic carbon normalized sorption coefficient (K_{∞}) . The data collected during this review for transformation products on K_{oc} , K_{d} , K_{f} and K_{foc} are provided in Appendix A, Table A3, K_{oc} data are summarized in Table 4. This property is a measure of the extent to which a chemical will adsorb to the soil. Compounds with a high K_{oc} bind to the organic material in soil and hence, have a low degree of mobility. Boxall et al. (2004) investigated the relationship between the sorption of transformation products and their pesticidal parents from K_{∞} data collected from numerous databases. Approximately one third of the transformation products had a K_{∞} value of at least an order of magnitude lower than the corresponding parent compound. During this study, sorption data were collated from studies where both the parent and the transformation product Koc were determined. This was done so that comparative analysis would not be affected by inter-laboratory variability. When K_{oc} is determined experimentally, it is usual to use a number of different soils with varying properties, e.g. pH, clay content, % organic carbon content. This usually provides a range of K_{oc} values for each compound from the range of soil types used. A comparison was undertaken between the mobility of a pesticide to that of its transformation product(s), the minimum K_{oc} value for each compound derived in a study were used (Figure 9). Seventeen of the transformation products had a K_{∞} greater than the parent pesticide whilst 21 pesticides had a K_{oc} greater than their transformation product. When the mobility of the transformation products (including those without pesticide comparative data) are classified according to the SSLRC mobility classification (Hollis 1991), 50% of the transformation products are categorized as mobile to very mobile (K_{oc} <75) with 35.5% categorized as slightly mobile (K_{oc} 75 - 499).

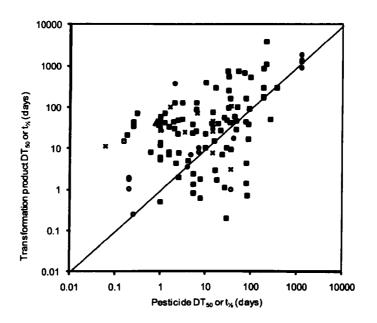


Figure 9. The comparative sorption of transformation products and their parent pesticides

The lower sorption coefficients and increased solubility of two atrazine transformation products, (DEA and DIA), indicate that they have a greater potential to move through the soil profile to groundwater than the parent compound (Mills and Thurman 1994). The rate of degradation and the sorptive behavior of pesticides and their transformation products will determine their persistence in soil and their mobility to surface and ground waters. Transformation products of the triazine herbicides, cyanazine (Reddy et al. 1997) and atrazine (Krutz et al. 2003), show equal or lower levels of sorption to a range of soil types than the parent compound. This could increase their mobility and thus, the potential to enter surface and ground waters. Moreover, the sorption of transformation products of the chloroacetamide herbicides alachlor and metolachlor is approximately equal to or less than that for the parent compounds. However, the rapid rate of degradation (<2.4 days) for all the transformation products of these two herbicides will influence the extent of their persistence and hence mobility (Fava et al. 2000).

Transformation product	Parent pesticide	K			Reference(s)	
		range	mean	n		
	1.3-					
(EZ)-3-chloroacrylic acid	dichloropropene 1.3-	<1-17.5	3.8		EFSA 2006a	
(EZ)-3-chloroallyl alcohol	dichloropropene	5.3-11.9	9.4		EFSA 2006a	
2,4-dichlorophenol	2,4-D		108	_	Haberhauer et al. 2000; Fava et al. 2005	
2,4-D•	2,4-DB	31-74	47.8	5	EU 2002a	
R1	acequinocyl	1175- 22813	95264.3	3	PMRA 2007a	
IM-1-5	acetamiprid	453-563	508	2	EU 2004a	
2,6-diethylaniline	alachlor		357*		Fava et al. 2000	
2-chloro-2',6'-diethylacetanilide	alachlor		148"		Fava et al. 2000	
2-hydroxy-2',6'- diethylacetanilide	alachior		45"		Fava et al. 2000	
alachlor ethane sulfonic acid	alachlor	15-182	98.5	2	APVMA 2001; Aga and Thurman 2001	
3-phenoxybenzoic acid	alpha-cypermethrin		73°		EU 2004b	
2-amino-4,6-	amidosulfuron		29"		PSD 1994a	
dimethoxypyrimidine						
4,6-dihydroxypyrimidin-2-yl- urea	amidosulfuron		0.4ª		PSD 1994a	
HOE 101630*	amidosulfuron		3"		PSD 1994a	
			•		Brouwer et al. 1990; PSD 1992a; Mills and	
deethylatrazine	atrazine	10-67	38.9	18	Thurman 1994; Solomon et al. 1996;	
GoonyidaaLino					APVMA 1997a; Steinheimer and Scoggin	
					2001; EPA 2003b Brouwer et al. 1990; PSD 1992a; PSD	
	atrazine &			4-	1992d; Mills and Thurman 1994; Solomon	
deisopropylatrazine	simazine		58.6	17	et al. 1996; APVMA 1997a; Steinheimer	
					and Scoggin 2001; EPA 2003b	
diaminochlorotriazine	atrazine &	31-76	55	4	PSD 1992d; Solomon et al. 1996; APVMA	
	simazine		•••	•	1997a; EPA 2003b	
hydroxyatrazine	atrazine	103-13797	1677.6	12	Brouwer et al. 1990; PSD 1992a; Solomon et al. 1996; APVMA 1997a; EPA 2003b	
reference compound 2	azoxystrobin	33-770	328.7	6	PMRA 2000a; PMRA 2007d	
reference compound 28	azoxystrobin	90-810	285	6	PMRA 2000a; PMRA 2007d	
reference compound 30	azoxystrobin	40-250	106	6	PMRA 2000a; PMRA 2007d	
benalaxyi M1	benalaxyl	151-455	375.6	3	EU 2004c	
benalaxyl M2	benalaxyl	80-756	321	3	EU 2004c	
carbofuran	benfuracarb	17-28	22	4	EFSA 2006b	
N-methyl bentazone	bentazone	250-350	300	2	Gaston et al. 1996	
DCVA•	beta-cyfluthrin	14-356	133.7	3	EU 2002b	
D1989	bifenazate	3725-3962	3864 6189 ⁴	3	EU 2005a EU 2005a	
D0500	hifenerate		8710 ⁵		EU 2005a EU 2005a	
D3598	bifenazate	3.8-110	45.2	6	EFSA 2006c	
THPAM	captan carbaryi	3.0-110	43.2 245 ^e	0	EFSA 2006d	
1-naphthol	•					
4-hydroxy-2,5,6- trichloroisophthalonitrile	chlorothalonil	95-1100	467.5	18	PSD 2002; EU 2005b	
R417888	chlorothalonil	6-17	10	6	EU 2005b	
3,5,6-trichloro-2-	chlorpyrifos &	565-1308	888	5	EU 2005d; EU 2005e	
methoxypyridine	chlorpyrifos-methyl	27-389	165	29	APVMA 2000	
		77-242	148.5	4	EPA 1998g; EPA 1999d; EU 2005d; EU	
		67.2-316.3	172.4	5	2005e EFSA 2005d; EU 2005d; EU 2005e	
chloroacid cyanazine	cyanazine	7-11	9.7	4	Reddy et al. 1997	
			0.7	-		

Table 4. Summary containing collated mean values for organic carbon partition coefficients (K_{oc}) of pesticide transformation products

Table 4. Summary containing collated mean values for organic carbon partition coefficients (K_{oc}) of pesticide transformation products

Transformation product	Parent pesticide		K		Reference(s)
		range	mean	n	
		40.75	45.0		
cyanazine amide	cyanazine	16-75	45.3	4	Reddy et al. 1997
desmethylpropanenitrile cyanazine	cyanazine	89-133	105.3	4	Reddy et al. 1997
deethylcyanazine	cyanazine	26-82	62.3	4	Reddy et al. 1997
nydroxyacid cyanazine	cyanazine	11-130	75.5	4	Reddy et al. 1997
2,4-dichloroaniline	cyclanilide	349-681	508.8	4	EU 2001a
cyhalofop-acid	cyhalofop-butyl	176-195	185.5	2	EU 2002d
cyhalofop-diacid	cyhalofop-butyl	27-401	149.3	4	EU 2002d
3,6-dichlorosalicylic acid	dicamba		504		Pearson et al. 1996
2,6-dichlorobenzoic acid	dichlobenil		<18		Fava et al. 2005
liclofop acid	diclofop-methyl	191-334	269.3	3	PSD 1991c
M23	dimethenamid & dimethenamid-P	3.5-17.2	7.7	6	EU 2003a; EFSA 2005a
A27	dimethenamid & dimethenamid-P	0.0-14.4	6.7	6	EU 2003a; EFSA 2005a
ndosulfan sulphate	endosulfan		<12 °		Fava et al. 2005
N-JS940	famoxadone	33-591	330	4	EU 2002f; PMRA 2003e
N-KF015	famoxadone	130-1300	505	4	EU 2002f; PMRA 2003e
		1238-			
N-KZ007	famoxadone	34423	13705	4	EU 2002f; PMRA 2003e
ASTCA	florasulam	24-110	53.1	10	EU 2002g
OFP-ASTCA	florasulam	27-159	83	10	EU 2002g
GA 265378	fludioxonil	0.65-0.83	0.75	4	EFSA 2007a
V460	flupyrsulfuron- methyl	65-106	83.3	3	EU 2001b
(C576	flupyrsulfuron- methyl	22-48	36.7	3	ЕU 2001Ь
(Y374°	flupyrsulfuron- methyl	3-39	16.5	6	EU 2001b
FAA	flurtamone	3.2-27.5	22.9		EU 2003b
N-F7321	flusilazole	164-822	532.3	4	EU 2007a
N-H9933	flusilazole	8-22	16.5	4	EU 2007a
AE F153745	formasulfuron	35-63	49.3	3	EU 2002h; PMRA 2003g
netabolite M01	fuberidazole	13-15	14	3	EFSA 2007b
IOE 35956	glufosinate ammonium		16		PSD 1990e
N-JT333	indoxacarb	8200- 25000	17300	4	Strek et al. 2007
E F161778	iodosulfuron- methyl		~60		EU 2003c
MPA	iprovalicarb	118-575	290.3	4	EU 2002k
PA 202248	isoxaflutole	94-159	129.8	4	PMRA 2000d
RPA 203328	isoxaflutole	47-100	80	4	PMRA 2000d
			23 ^d		PMRA 2000d
resoxim-methyl acid	kresoxim-methyl	17-69	37.4	4	PSD 1997b; EU 1998; PMRA 2003b
ompound XV	<i>lambda</i> -cyhalothrin	36000- 61000	44000	6	EU 2001c
-methyl-4-chlorophenoi	MCPA		93*		Haberhauer et al. 2000; Fava et al. 2005
ICPA*	MCPB	10-157	74	8	EU 2005i
nethiocarb sulfoxide	methiocarb		31.3		EFSA 2006e
ethyl-6-methylaniline	metolachlor	1	197		Fava et al. 2000
netolachlor ethane sulfonic	metolachlor		195		Aga and Thurman 2001
CGA-51202	metolachlor & S- metolachlor	2.82-62	12.2	7	EPA 1995d; EU 2004g

Table 4. Summary containing collated mean values for organic carbon partition coefficients (K_{oc}) of pesticide transformation products

Transformation product	Parent pesticide	190.00	K	-	Reference(s)
	,	range	mean	n	
	metsulfuron-				
	methyl.				
IN-A4098	thifensulfuron-	17-226	98	7	EU 2000a; EU 2001e; EFSA 2004
	methyl &				
	tribenuron-methyl				
	metsulfuron-methyl				
saccharin	&	5.7-10.6	8.9	4	EU 2000a
	propoxycarbazone			_	
		4.6-15.5	5.2°	5	EU 2003g
hexamethyleneimine	molinate	226-603	426.2	5	EU 2003d
molinate sulfoxide	molinate	93-234	168.8	5	EU 2003d
UCSN	nicosulfuron	1.1-5.6	2.7	4	PSD 2000b; PMRA 2008
RP017272	oxadiargyi		856		EU 2002m
RP025496	oxadiargyl		468		EU 2002m
N-A2213	oxamyl	4-11	7	5	EFSA 2005b
N-D2708	oxamyl	2-10	6	5	EFSA 2005b
N-N0079	oxamyl	2-25	8	5	EFSA 2005b
C1801	oxasulfuron	54-213	146	3	EU 2002n
CGA 27913	oxasulfuron	3-6	4	3	EU 2002n
MET-42	pethoxamid	1.29-2.97	2.13	2	EU 2006a
CL 153815	picolinafen	160-783	440	4	EU 2002o; PMRA 2003h
42	pinoxaden	4.2-27	13.1	5	PMRA 2006a
43	pinoxaden	23-48	31.6	5	PMRA 2006a
propachlor oxanilic acid	propachior	2-10	6.8	4	EPA 1998e
propachor sulfonic acid	propachior	3-7	5.3	4	EPA 1998e
3,4-dichloroaniline	propanil		258		Fava et al. 2005
propylene urea	propineb	13-26	18	4	EU 2003f
I-hydroxy saccharin	propoxycarbazone	456.9-	2033.8	5	EU 2003g
Hydroxy sacchainn	propoxycarbazone	2872.7		-	
N-methyl propoxy triazolinone	propoxycarbazone	8.9-75.5	20.6	5	EU 2003g
N-methyl propoxy triazolinone	propoxycarbazone	10.4-551.5	99.9	5	EU 2003g
2-(3,5-dichlorophenyl)-4,4-	propyzamide	993-3910	1894	6	EU 2003h
dimethyl-5-methyleneoxazoline					
N-(1,1-dimethylacetonyl)-3,5- dichlorobenzamide	propyzamide	96-210	153	6	EU 2003h
prosulfocarb sulfoxide	prosulfocarb	61-88	70.7	3	EFSA 2007c
	prosulfuron &			-	
CGA 150829	triasulfuron	55-281	144	4	EU 2000b; EU 2002p
CGA 159902	prosulfuron	48-96	77	4	EU 2002p
CGA 300406	prosulfuron	43-126	66.8	4	EU 2002p
CGA 325025	prosulfuron	60-238	123	4	EU 2002p
CGA 325030	prosulfuron	18-41	21	4	EU 2002p
CGA 32508	prosulfuron	11-31	20	5	EU 2002p
CGS 349707	prosulfuron	37-52	45	3	EU 2002p
	prothioconazole	U. UL	129		PMRA 2007e
orothioconazole-thiazocine	S-metolachlor	3-22	9°	7	EU 2004g
CGA 354743	-		-	7	EU 2004g EU 2004g
CGA 376944	S-metolachlor	8-12	10°	3	
CGA 40172	S-metolachlor	143-204	182	3	EU 2004g
CGA 41507	S-metolachlor	81.3-93.8	84.9°	3	EU 2004g
BAJ 2740-dioxoketone	spirodiciofen		3720		PMRA 2006b
M09	spiromesifen	1040 4	3		EFSA 2007d
		1042.4- 8278	4660.2	2	PMRA 1998; EU 2002g
ulabonomido	sulfosulfuron	60.9-260.5	163	4	
ulphonamide	SUIUSUIUIUIUI	00.8-200.9	163	4	PMRA 1998; EU 2002q

Transformation product	Parent pesticide		K		Reference(s)
		range mean		n	
		5400			
2,3,5,6-tetrachloroaniline	tecnazene	5102- 26700	12662.3	4	PSD 1995h
DP-1	tepraloxydim	48-1107	252.5	6	PMRA 2004a; EU 2004h
		63-4193	791.3	6	EU 2004h
M34	thiacloprid	2.94-6.27	5.02	4	EU 2004i
CGA 322704	thiamethoxam	63-77	70	3	EU 2006b
CGA 355190	thiamethoxam	37.6-187.5	91.5	6	EU 2006b; PMRA 2007b
NOA 407475	thiamethoxam	433-1550	761.2	6	EU 2006b; PMRA 2007b
IN-L9225	thifensulfuron- methyl	6.9-13.5	11.2	3	EU 2001e
IN-L9226	thifensulfuron- methyl	34-199	111	3	EU 2001e
carbendazim	thiophanate-methyl		2100		EPA 2001d
DM-TM	tolclofos-methyl	11-22.2	15	3	EFSA 2005c
triazamate metabolite II	triazamate	23-314	102	5	PSD 1998d
triazamate metabolite III	triazamate	34-493	150.4	5	PSD 1998d
triazamate metabolite IV	triazamate	28-376	115	5	PSD 1998d
IN-00581	tribenuron-methyl	12-20	15	3	EFSA 2004
IN-L5296	tribenuron-methyl	53-138	89	3	EFSA 2004
NOA 413161	trifloxystrobin		4.2		EU 2003i
RPA 406341	triticonazole	61-163	122.5	4	PMRA 2004b
RPA 407922	triticonazole	467-1305	761	4	PMRA 2004b

Table 4. Summary containing collated mean values for organic carbon partition coefficients (K_{oc}) of pesticide transformation products

* - determined by HPLC

^b – determined by column leaching

° - median value

^d - sediment

* - pH dependent adsorption identified

2.6 Occurrence in the Environment

Whether pesticides are present in environmental waters (surface water and groundwater) following their agricultural application is determined by a large number of factors including climatic conditions, e.g. rainfall and temperature, mass transfer processes, chemical properties, e.g. solubility, degradation and sorption, agricultural practices, e.g. application rate, tillage practices and land use, specific location properties, e.g. soil properties, hydrological properties and topography, application methods, e.g. foliar application and soil incorporation, and product formulation (Lerch and Blanchard 2003). All of these factors are also important in determining whether transformation products are present in surface water and groundwater. However the importance of these factors in determining the fate of transformation products when compared to pesticides

will differ. If a pesticide degrades rapidly in soil, then it is unlikely that this compound will be detected in environmental waters; however, its transformation products could form in relatively large quantities. Therefore, rapid pesticide degradation is an advantageous property in preventing pesticide contamination but possibly disadvantageous for preventing its transformation products from entering environmental waters. When the chloroacetamide herbicides are applied at the same rate during normal agricultural practice, the ESA transformation product of alachlor is present at higher concentrations than metolachlor ESA in soil. This difference is due to the relatively longer half-life of metolachlor (15.5 d) in soil and thus slower formation of metolachlor ESA when compared to alachlor (8 d) (Aga and Thurman 2001). However, pesticide usage will be of greater importance in determining the degree of transformation product occurrence in environmental waters. In the US in 1997, 5.8 - 7.3 million kg of alachlor was used in the agricultural sector compared to 28.6 - 31.3 million kg of metolachlor (Kiely et al. 2004). Therefore even though the relative formation of alachlor ESA is greater than metolachlor ESA, the higher usage of metolachlor in the agricultural sector will mean that metolachlor transformation products will be detected at higher concentrations and more frequently than alachlor. Monitoring studies of surface and ground waters identify metalchlor ESA detected at higher concentrations and more frequently than the alachlor ESA (Kolpin et al. 1998; Kalkhoff et al. 1998).

Pesticide transformation products have been detected in numerous environmental compartments: soil, soil leachate, tile drains, surface waters including agricultural ditches, streams, rivers, reservoirs, canals, ponds, lakes and estuaries, groundwater, sediment, air including gaseous, and particulate phases and rain. Appendix A, Table A4 provides a summary of these occurrences in soil, surface water, groundwater, raw source water, and finished drinking water (occasions where transformation products were anaylsed and not detected are also included). Table 5 provides maximum concentration of transformation products identified in river water and groundwaters.

48

Table 5. A summary of maximum concentrations of pesticide transformation products identified in surface waters (rivers only) and groundwater

Transformation product	Parent pesticide *	Concentration	Limit of detection	Country	Reference
Surface water (Rivers)					
acetochlor oxanilic acid	acetochlor	ND - 0.15 µg L ⁻¹	0.01 µg L ⁻¹	USA	Ferrer et al. 1997
alachlor ethane sulfonic acid	alachior	1.55 - 4.75 µg L ⁻¹	0.1 µg L ⁻¹	USA	Battaglin and Goolsby 1999
alachlor oxanilic acid	alachlor	ND - 0.21 µg L ⁻¹	0.01 µg L ⁻¹	USA	Ferrer et al. 1997
2,6-diethylaniline	alachlor	ND - 0.924 µg L ⁻¹	5 ng L ⁻¹	USA	Pereira and Rostad
2-chloro-2',6'- diethylacetanilide	alachlor	ND - 0.35 µg L ⁻¹	5 ng L ⁻¹	USA	Pereira and Rostad 1990
2-hydroxy-2',6'- diethylacetanilide	alachlor	ND - 0.9 µg L ⁻¹	5 ng L ⁻¹	USA	Pereira and Rostad 1990
8-hydroxy-bentazone	bentazone	ND - 27 µg L ⁻¹	2 ng L ⁻¹	Italy	Lagana et al. 2002
cyanazine amide	cyanazine	0.47 - 0.57 µg L ⁻¹	0.05 µg L ⁻¹	USA	Battaglin and Goolsby 1999
deethylcyanazine	cyanazine	< 0.05 µg L ^{-1 c}	0.05 µg L ⁻¹	USA	Battaglin and Goolsby 1999
deethylcyanazine amide	cyanazine	< 0.05 µg L ⁻¹ °	0.5 µg L ⁻¹	USA	Battaglin and Goolsby 1999
deethylatrazine	atrazine and propazine	12 - 28 μg L ^{-1 c}	-	USA	Solomon et al. 1996
deisopropylatrazine	atrazine, cyanazine and simazine	4.9 - 15 μg L ^{-1 c}	-	USA	Solomon et al. 1996
ρ,ρ'-DDE	DDT	4 ng L ^{-1 b}	0.3 ng L ⁻¹	USA	Liu et al. 2002
dimethenamid ethane sulfonic acid	dimethenamid	0.05 µg L ^{1 c}	0.03 µg L ⁻¹	USA	Zimmerman et al. 2002
dimethenamid oxanilic acid	dimethenamid	0.05 µg L ^{-1 c}	0.02 µg L ⁻¹	USA	Zimmerman et al. 2002
endosulfan sulphate	endosulfan	6 ng L ⁻¹	0.3 ng L ⁻¹	USA	Liu et al. 2002
flufenacet ethane sulfonic acid	flufenacet	0.06 µg L ^{-1 c}	0.01 µg L ⁻¹	USA	Zimmerman et al. 2002
flufenacet oxanilic acid	flufenacet	0.05 µg L ^{-1 c}	0.07 µg L ⁻¹	USA	Zimmerman et al. 2002
metolachlor oxanilic acid	metolachior	ND - 0.29 µg L ⁻¹	0.01 µg L ⁻¹	USA	Ferrer et al. 1997
metolachlor ethane sulfonic acid	metolachior	0.33 - 1.82 µg L ⁻¹	0.01 µg L ⁻¹	USA	Ferrer et al. 1997
3,4-dichloroaniline	propanil	ND - 26 ppb	0.05 ppb	USA	PSD 1988b
Groundwater					
3-chloroallyl alcohol	1,3- dichloropropene	trace - 13.5 ppb	0.05 ppb	USA	EPA 1998a
3-chloroacrylic acid	1,3- dichloropropene	trace - 8.79 ppb	0.05 ppb	USA	EPA 1998a
2,4-dichlorophenol	2,4-D	4 µg L ⁻¹⁶	•	Denmark	Helweg et al. 2002
acetochlor ethane sulfonic acid	acetochlor	8.6 µg L ⁻¹⁶	0.1 µg L ⁻¹	USA	Kolpin et al. 1996a
acetochlor oxanilic acid	acetochlor	11.5 µg L ^{-1 b}	0.2 µg L ⁻¹	USA	Kolpin et al. 2000
α-N-[(2'-6'- diethylphenylamino]ethanol	alachlor	< 2 - 480 ng L ⁻¹	-	USA	Potter and Carpenter 1995
2-chloro-2'-ethyl-6'-ethyl-N- (methoxymethyl)acetanilide	alachlor	< 2 - 310 ng L ⁻¹	-	USA	Potter and Carpenter 1995
2'-acetyl-6'-ethylacetanilide	alachlor	28 - 120 ng L ⁻¹	•	USA	Potter and Carpenter 1995
2'-acetyl-6'-ethyl-N- methoxymethyl)acetanilide	alachior	68 - 240 ng L ⁻¹	-	USA	Potter and Carpenter 1995
2-hydroxy-2',6'-diethyl-N- methyl)acetanilide	alachlor	< 2 - 130 ng L ⁻¹	-	USA	Potter and Carpenter 1995

Transformation product	Parent pesticide *	Concentration	Limit of detection	Country	Reference
2-hydroxy-2',6'-diethyl-N- methoxymethyl)acetanilide	alachior	< 2 - 100 ng L ⁻¹	-	USA	Potter and Carpenter 1995
2,6-diethylaniline	alachlor	0.085 µg L ^{-1 b}	0.003 µg L ⁻¹	USA	Kolpin et al. 1998
2',6'-diethylacetanilide	alachlor	< 2 - 130 ng L ⁻¹	-	USA	Potter and Carpenter 1995
2',6'-diethylformanilide	alachlor	< 2 - 87 ng L ⁻¹	-	USA	Potter and Carpenter 1995
7-ethylindoline	alachlor	< 2 - 35 ng L ⁻¹	-	USA	Potter and Carpenter 1995
alachlor ethane sulfonic acid	alachlor	0.06 - 9.32 µg L ⁻¹	0.05 µg L ⁻¹	USA	Aga et al. 1994
alachlor oxanilic acid	alachlor	33.4 µg L ^{-1 b}	0.2 µg L ⁻¹	USA	Kolpin et al. 2000
N-(2,6-diethylphenyl) methylene	alachlor	< 2 - 10 ng L ⁻¹	-	USA	Potter and Carpenter 1995
N-(2,6-diethylphenyl)-N- (methoxymethyl)acetamide	alachlor	100 - 550 ng L ⁻¹	-	USA	Potter and Carpenter 1995
deethylatrazine	atrazine	5 µg L ⁻¹	0.02 µg L ⁻¹	USA	Adams and Thurman 1991
deisopropylatrazine	atrazine, cyanazine, simazine	1.17 µg L ⁻¹⁶	0.05 µg L*1	USA	Kolpin et al. 1996b
deisopropylhydroxyatrazine	atrazine, cyanazine, simazine	0.04 µg L ^{-1 c}	0.04 µg L ⁻¹	USA	Steinheimer and Scoggin 2001
hydroxyatrazine	atrazine	1.3 µg L ^{-1 b}	0.2 µg L ⁻¹	USA	Kolpin et al. 2000
2-aminobenzimidazole	carbendazim *	0.03 µg L ^{-1 b}	• •	Spain	Hernandez et al. 2008
carbofuran-7-PhOH-3CO	carbofuran	0.06 µg L ⁻¹	-	Spain	Hernandez et al. 2008
3-carbamyl-2,4,5- trichlorobenzoic acid	chlorothalonil	2 - 12.6 µg L ⁻¹	2 µg L ⁻¹	USA	EPA 1999b
3-cyano-6-hydroxy-2,4,5- trichlorobenzamide	chlorothalonil	2 - 5 µg L ⁻¹	2 µg L-1	USA	EPA 1999b
4-hydroxy-2,5,6- trichloroisophthalonitrile	chlorothalonil	3.6 µg L ⁻¹	2 µg L ^{.1}	USA	EPA 1999b
3-cyano-2,4,5,6- tetrachlorobenzamide	chlorothalonil	2.8 µg L ⁻¹	2 µg L ^{.1}	USA	EPA 1999b
3,4-dichloroaniline	chlorpyrifos, diuron, linuron, propanil	<0.025 µg L ^{-1 b}	-	Spain	Hernandez et al. 2008
cyanazine amide	cyanazine	0.64 µg L ^{-1 b}	0.05 µg L ⁻¹	USA	Kolpin et al. 2000
chlorthal-dimethyl di-acid	chlorthal- dimethyl	2.22 µg L ^{-1 b}	0.01 µg L ⁻¹	USA	Kolpin et al. 1996b
ρ,ρ'-DDE	DDT	0.03 µg L ^{-1 b}	0.03 µg L ⁻¹	-	Kolpin et al. 1996b
2,6-dichlorbenzamide	diclobenil	180 ppb	-	Netheria nds	EPA 1998d
endosulfan sulphate	endosulfan	ND - 1.4 ppb	0.005 ppb	USA	EPA 2002c
AMPA	glyphosate	1.6 µg L ^{-1 b}	-	Denmark	Helweg et al. 2002
a-HCH	gamma-HCH	0.059 µg L ^{-1 b}	0.002 µg L ⁻¹	USA	Kolpin et al. 1998
monodesmethyl isoproturon	isoproturon	~0.05 µg L ⁻¹	≤ 0.05 µg L°	France	Baran et al. 2008
didesmethylisoproturon	isoproturon	ND	≤ 0.05 µg L` 1	France	Baran et al. 2008
metolachlor ethane sulfonic acid	metolachlor	15.2 µg L ⁻¹	-	USA	Steele et al. 2008
metolachlor oxanilic acid	metolachior	15.3 µg L ^{-1 b}	0.2 µg L ⁻¹	USA	Kolpin et al. 2000
2,4-bis(isopropylamino)- 6-hydroxy-s-triazine	prometryn	0.61 ppb	•	USA	EPA 1996c
hydroxysimazine	simazine	0.15 µg L ^{-1 c}	0.04 µg L ⁻¹	USA	Steinheimer and Scoggin 2001

Table 5. A summary of maximum concentrations of pesticide transformation products identified in surface waters (rivers only) and groundwater

Transformation product	Parent pesticide *	Concentration	Limit of detection	Country	Reference
desethyl-2- hvdroxvterbuthylazine	terbuthylazine	0.21 µg L ^{-1 ь}	-	Spain	Hernandez et al. 2008
desethylterbuthylazine	terbuthylazine	1.42 µg L ^{-1 b}	-	Spain	Hernandez et al. 2008
hydroxyterbuthylazine	terbuthylazine	0.15 µg L ¹⁶	-	Spain	Hernandez et al. 2008
desethylterburneton	terburneton	1.62 µg L ^{-1 b}	-	Spain	Hernandez et al. 2008
methomyl	thiodicarb	0.1 -0.4 ppb	-	USA	EPA 1998f

 Table 5. A summary of maximum concentrations of pesticide transformation products identified in surface waters (rivers only) and groundwater

a - pesticide identified in the reference as the source of the transformation product

b - peak concentration during study

c - median or mean concentration

2.6.1 Soil

Transformation products can be expected to be present in soil following the application of the parent pesticide if it is susceptible to biotic or abiotic degradation. This review identified six transformation products that have been detected in soil at concentrations greater than 5 mg kg⁻¹: carbofuran, 2-hydroxy-4-chlorobenzoic acid, 2,4-dichlorobenzoic acid, p,p'-DDD, o,p'-DDD, and p.p'-DDE. The three DDT transformation products were detected in soil from a former cattle tick dip site in Australia (Van Zweiten et al. 2001). Therefore, these concentrations can be considered an exception rather than the rule because sampling was targeted to a known hotspot. Similarly, high concentrations of the chlorfenvinphos transformation products, 2-hydroxy-4-chlorobenzoic acid (5.7 mg kg⁻¹) and 2,4-dichlorobenzoic acid (7.9 mg kg⁻¹) in soil were detected following a targeted sampling strategy (reported in PSD 1994c). Chlorfenvinphos was applied around the stem of cauliflower and brussel sprout plants, with subsequent soil samples collected 10cm around the base of the plants again targeting the sampling to known hotspots, which may not be representative of the field as a whole. The final transformation product identified was the active component of the insecticide benfuracarb, carbofuran (6.3 mg kg⁻¹) (PSD) 1988a). This pro-pesticide utilizes the degradation of benfuracarb to form the potent acetylchloinesterase inhibitor carbofuran and, in soil, undergoes

hydrolysis to carbofuran (Roberts and Hutson 1999), so high concentrations can be expected.

2.6.2 Surface water

Whether transformation products are present in surface waters at higher or lower levels than the parent compound depends on the pesticide and transformation products concerned. Seven transformation products have been identified in tile drain water (Appendix A, Table A4). Four of these have been observed at peak concentrations greater than 3 μ g L⁻¹: cyanazine amide, DEA, metolachlor OA and metolachlor ESA. Following the agricultural application of atrazine and cyprazine, the peak concentrations observed in tile drains were larger for the parent compounds for two consecutive seasons than for the transformation product DEA. However, the total loss over the same period was greater for DEA than for either herbicide. Total losses via tile drains of two cyanazine transformation products (cyanazine amide and DIA) are an order of magnitude greater than the parent compound, loses of DIA formed solely from atrazine are an order of magnitude less than the parent compound (Muir and Baker 1976). Metolachlor transformation products (metolachlor ESA and metolachlor OA) were detected in tile drain samples at concentrations at least two orders of magnitude greater than their herbicidal parent (Phillips et al. 1999).

A study of streams in the Midwestern US monitored for triazine and chloroacetamide herbicides and their transformation products (Kalkhoff et al. 2003). The transformation products monitored for were the ESA and OA of alachlor, acetochlor, and metolachlor and the triazine transformation products cyanazine amide, DEA, DIA, and HA. The frequency of detection for individual transformation products in 70 streams varied from 23 to 96%, with seven transformation products detected in more than 50% of the samples. Multiple transformation products were detected in all samples analyzed (Kalkhoff et al. 2003). In a study of streams and rivers of Northern Missouri and Southern Iowa, DEA, DIA, HA, atrazine, and cyanazine amide were detected in > 95% of the

samples (Lerch and Blanchard 2003). In surface water, the two main metolachlor transformation products, ESA and OA, were the major residue of metolachlor present (Phillips et al. 1999).

If these surface waters are to be used for drinking water supply, it is important to determine in which phase the contaminants are found. In one study no atrazine and alachlor transformation products were detected in suspended sediment in the Mississippi River and its tributaries, while both parents and their transformation products were detected in the dissolved phase (Pereira and Rostad 1990). This is important in determining which processes will be the most effective in removing these compounds during water treatment. Treatment methods that use sorption, e.g. granular activated carbon and power activated carbon, maybe most effective for transformation products in the dissolved phase, while filtration methods, e.g. rapid gravity sand filters, maybe better for removing transformation products that are sorbed to suspended sediment.

Ultimately when transformation products are present in rivers and streams, they will be transported to estuarine and marine environments. The annual load of atrazine discharge to the Gulf of Mexico in 1993 was estimated at 642 t (Clark et al. 1999). These calculations did not take into account the discharge of atrazine transformation products which could drastically increase the total atrazine residue. The estimated discharge of DEA into the Greek Amvrakikos Gulf is greater than atrazine, 127.5g day⁻¹ and 122.7g day⁻¹, respectively (Albanis and Hela 1998).

2.6.3 Groundwater

Transformation products have been detected in groundwater at higher concentrations (Albanis et al. 1998; Ferrer et al. 2000) and more frequently (Kolpin et al. 2000; Kolpin et al. 2001) than their parental compounds. A number of transformation products have been identified in groundwater during monitoring studies (Appendix A, Table A4). Primarily it is the transformation

products of the triazines, i.e. atrazine, cyanazine and simazine, and the chloroacetamides, i.e. alachlor, acetochlor and metolachlor, that have been detected in groundwater. Twenty-four transformation products observed in groundwater originate from these six herbicides while monitoring data concerning transformation products from other pesticide chemical groups are limited. The presence of transformation products in groundwater depends on the aquifer type, well depth, surrounding geography, time of sampling, i.e. pre or post application, extent of pesticide usage, transformation product formation, mobility, and persistence (Burkart and Kolpin 1993; Kolpin et al. 1996a; Blanchard and Donald 1997; Kolpin et al. 1997). The peak water concentration for transformation products identified in this review was 158.2 μ g L⁻¹ from the combined concentration of dacthal diacid and dacthal monoacid in a groundwater sample collected from the Malheur River Basin, Oregon (Monohan et al. 1995).

As well as the vertical movement of vadose zone water, the transport of transformation products to groundwater has been attributed to the hydraulic connection of groundwater to surface waters such as rivers. The movement of transformation products from rivers, through aquifers and into collector wells, driven by the abstraction of water has been identified as a means for pesticides and their transformation products to enter drinking waters (Verstraeten et al. 1999). Once transformation products have entered groundwater, their subsequent movement can be more, e.g. DIA, and less, e.g. DEA, retarded when compared to their parents, e.g. atrazine (Widmer and Spalding 1995).

During comprehensive monitoring programs of pesticides and their transformation products in groundwater, transformation products are some of the most frequently detected compounds (Kolpin et al. 1996b; Kolpin et al. 1997; Kolpin et al. 1998; Kolpin et al. 2000). Moreover, p,p'-DDE, a transformation product of the insecticide DDT, is still being detected in groundwater decades after a ban on the use parent compound was imposed (Kolpin et al. 1996b). The detection frequency of individual herbicides in groundwater is increased considerably when their transformation products are considered (Kolpin et al.

1998). Moreover, for a number of herbicides, the majority of the total herbicide concentration was in the form of transformation products (Kolpin et al. 2000; Kolpin et al. 2001). Therefore, to fully establish the effect pesticide use has on groundwater, it is necessary to quantify the transformation products present. Generally, when groundwater monitoring for transformation products is undertaken, it is a few primary transformation products that are actively sought for each pesticide. However, a range of additional transformation products present in low concentrations will also be present in the groundwater.

2.7 Occurrence and Fate in Drinking Water

Pesticide transformation products have been regularly identified in groundwater and surface waters (Table 5; Appendix A, Table A4). Hence, transformation products must be present in raw water abstracted from these sources. There is therefore, the potential for these transformation products to be present in finished drinking water if they are not removed during the treatment process. Table 6 provides a summary of transformation product occurrence data in raw and finished drinking waters. Five OP insecticide transformation products have been identified in water-supply reservoirs. Azinphos-methyl oxon, the active form of the pesticide azinphos-methyl has been monitored at a mean concentration of $0.26 \ \mu g \ L^{-1}$ in the raw water for eleven drinking water treatment plants in the US (Nguyen et al. 2004). Moreover, the three most commonly identified atrazine transformation products, DEA, DIA, and HA have been measured at 0.38, 0.14 and 0.8 μ g L⁻¹ respectively in reservoirs (Solomon et al. 1996). DDA is a polar transformation product of the organochlorine insecticide DDT, the use of which has been banned for a number of decades. However, in Germany, several drinking water wells have been closed to keep the DDA concentrations below the 0.1 μ g L⁻¹ drinking water tolerance level set by the EU (Heberer and Dünnbier 1999).

Table 6. Summary of maximum concentrations of transformation products in raw and finished drinking waters

Transformation product	Parent pesticide *	Concentration	Limit of detection	Country	Reference
Raw source water					
hydroxyacetochlor	acetochlor	198 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
deschloroacetochlor	acetochlor	35 ng L ^{-1 b}	0.07 ng L ⁻¹	USA	Hladik et al. 2006
acetochlor oxanilic acid	acetochlor	1170 ng L ^{-1 b}	7 ng L ⁻¹	USA	Hladik et al. 2006
acetochlor ethane sulfonic	acetochlor	1080 ng L ^{-1 b}	100 ng L ⁻¹	USA	Hladik et al. 2000
acid	80010011101	-	loo ng L	004	
2-chloro-2'-ethyl-6'- methylacetanilide	acetochlor	167 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
2-hydroxy-2'-ethyl-6'- methylacetanilide	acetochlor	105 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
2-ethyl-6-methylaniline	acetochlor	<25 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
2'-ethyl-6'-	acetochlor	57 ng L ^{-1 b}	8 ng L ⁻¹	USA	Hladik et al. 2006
methylacetanilide	alaablaa	43 ng L ^{-1 b}	3 ng L ⁻¹	USA	
hydroxyalachlor	alachlor	43 ng L ^{-1 b}	0.2 ng L ⁻¹		Hladik et al. 2006
deschloroalachlor	alachlor	14 ng L 15 ng L ^{-1 b}	•	USA	Hladik et al. 2006
2-chloro-2'-6'- diethylacetanilide	alachlor	iong L 👘	0.1 ng L ⁻¹	USA	Hladik et al. 2006
diethylacetanilide 2-hydroxy-2'-6'- diethylacetanilide	alachlor	104 ng L ^{-1 b}	0.7 ng L ^{•1}	USA	Hladik et al. 2006
2-hydroxy-2'-6'-diethyl-N- methylacetanilide	alachlor	1.7 ng L ^{-1 b}	4 ng L ⁻¹	USA	Hladik et al. 2006
2'-6'-diethylacetanilide	alachlor	43 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
2,6-diethylaniline	alachlor	<11 ng L ^{-1 b}	10 ng L ⁻¹	USA	Hladik et al. 2006
alachlor oxanilic acid	alachlor	216 ng L ^{-1 b}	7 ng L ⁻¹	USA	Hladik et al. 2006
alachlor ethane sulfonic acid	alachior	945 ng L ^{-1 b}	100 ng L ⁻¹	USA	Hladik et al. 2006
deethylatrazine	atrazine	0.682 µg L ^{-1 b}	•	USA	Coupe and Blomquist 2004
deethylatrazine continued	atrazine	594 ng L ^{-1 b}	0.3 ng L ⁻¹	USA	Hladik et al. 2006
deisopropylatrazine	atrazine	199 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
hydroxyatrazine	atrazine	0.8 µg L ^{-1 c}	•	USA	Solomon et al. 1996
azinphos-methyl-oxon	azinphos-methyl	0.263 µg L ^{-1 c}	0.031 µg L ⁻¹	USA	Nguyen et al. 2004
p-p'-DDA	DDT	0.28 µg L ⁻¹	•	Germany	Heberer and Dünnbier 1999
p-p'-DDA	DDT	1.7 μg L ⁻¹	•	Germany	Heberer and Dünnbier 1999
deschlorodimethenamid	dimethenamid	14 ng L ^{-1 b}	0.1 ng L ⁻¹	USA	Hladik et al. 2006
disulfoton sulfone	disulfoton	0.013 µ g L ⁻¹ °	0.005 µg L ⁻¹	USA	Nguyen et al. 2004
lisulfoton sulfoxide	disulfoton	0.06 µg L ^{1 c}	0.016 µg L ⁻¹	USA	Nguyen et al. 2004
enamiphos sulfone	fenamiphos	0.005 µg L ⁻¹ °	0.008 µg L ⁻¹	USA	Nguyen et al. 2004
enamiphos sulfoxide	fenamiphos	0.021 µg L ^{1c}	0.008 µg L ⁻¹	USA	Nguyen et al. 2004
nalaoxon	malathion	ND	0.005 µg L ⁻¹	USA	Nguyen et al. 2004
nydroxymetolachlor	metolachlor	217 ng L ^{-1 b}	1 ng L ⁻¹	USA	Hladik et al. 2006
deschiorometolachior	metolachlor	32 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hiadik et al. 2006
netolachlor morpholinone	metolachior	63 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
netolachior propanol	metolachlor	208 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	
•••		200 ng L ^{-1 b}			Hladik et al. 2006
leschloroacetylmetachlor	metolachior	39 HUL 47	0.1 ng L ⁻¹	USA	Hladik et al. 2006
Jeschloroacetyi metachlor propanol	metolachior	17 ng L ⁻¹⁶	0.8 ng L ⁻¹	USA	Hladik et al. 2006
netachlor oxanilic acid	metolachlor	687 ng L ^{-1 b}	7 ng L ⁻¹	USA	Hladik et al. 2006
metachlor ethane sulfonic acid	metolachlor	1580 ng L ^{-1 b}	90 ng L ⁻¹	USA	Hladik et al. 2006

Table 6. Summary of maximum concentrations of transformation products in raw and finished drinking waters

Transformation product	Parent pesticide *	Concentration	Limit of detection	Country	Reference
Finished drinking water					
hydroxyacetochlor	acetochlor	64 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
deschloroacetochlor	acetochlor	31 ng L ¹⁶	0.07 ng L ⁻¹	USA	Hladik et al. 2006
acetochlor oxanilic acid	acetochlor	551 ng L ^{-1 b}	7 ng L ⁻¹	USA	Hladik et al. 2006
acetochlor ethane sulfonic acid	acetochlor	845 ng L ^{-1 6}	100 ng L ⁻¹	USA	Hladik et al. 2006
2-chloro-2'-ethyl-6'- methylacetanilide	acetochlor	163 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
2-hydroxy-2'-ethyl-6'- methylacetanilide	acetochlor	67 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
2-ethyl-6-methylaniline	acetochlor	<25 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
2'-ethyl-6'- methylacetanilide	acetochlor	57 ng L ^{-1 b}	8 ng L ⁻¹	USA	Hladik et al. 2006
hydroxyalachior	alachior	34 ng L ^{-1 b}	3 ng L ⁻¹	USA	Hladik et al. 2006
deschloroalachlor	alachlor	0.7 ng L ^{-1 b}	•	USA	Hladik et al. 2006
2-chloro-2'-6'- diethylacetanilide	alachlor	11 ng L ^{-1 b}	0.1 ng L ⁻¹	USA	Hladik et al. 2006
2-hydroxy-2'-6'- diethylacetanilide	alachlor	85 ng L ^{-1 b} 1.7 ng L ^{-1 b}	0.7 ng L ⁻¹ 4 na L ⁻¹	USA	Hladik et al. 2006
2-hydroxy-2'-6'-diethyl-N- methylacetanilide	alachlor	•		USA	Hladik et al. 2006
2'-6'-diethylacetanilide	alachlor	38 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
2,6-diethylaniline	alachlor	<11 ng L ⁻¹⁶	10 ng L ⁻¹	USA	Hladik et al. 2006
alachlor oxanilic acid	alachlor	136 ng L ^{1 b}	7 ng L ⁻¹	USA	Hladik et al. 2006
alachlor ethane sulfonic acid	alachior	743 ng L ⁻¹⁶	100 ng L ⁻¹	USA	Hladik et al. 2006
deethylatrazine	atrazine	0.352 µg L ^{-1 b} 75 ng L ^{-1 b}	- 0.0 1 ⁻¹	USA	Coupe and Blomquist 2004
deisopropylatrazine	atrazine		0.2 ng L ⁻¹	USA	Hladik et al. 2006
azinphos-methyl-oxon	azinphos-methyl	0.026 µg L ^{-1 c} 25 ng L ^{-1 b}	0.031 µg L ⁻¹ 0.1 ng L ⁻¹	USA USA	Nguyen et al. 2004
deschlorodimethenamid	dimethenamid	-			Hladik et al. 2006
disulfoton sulfone	disulfoton	ND	0.005 µg L ⁻¹	USA	Nguyen et al. 2004
disulfoton sulfoxide	disulfoton	ND	0.016 µg L ⁻¹	USA	Nguyen et al. 2004
fenamiphos sulfone	fenamiphos	0.011 µg L ^{-1 c}	0.008 µg L ⁻¹ 0.008 µg L ⁻¹	USA	Nguyen et al. 2004
fenamiphos sulfoxide	fenamiphos	0.022 µg L ^{-1 c}		USA	Nguyen et al. 2004
malaoxon	malathion	0.106 µg L ^{-1 c}	0.005 µg L ⁻¹	USA	Nguyen et al. 2004
hydroxymetolachlor	metolachior	61 ng L ⁻¹⁶	1 ng L ⁻¹	USA	Hladik et al. 2006
deschlorometolachlor	metolachior	30 ng L ^{1b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
metolachlor morpholinone	metolachlor	37 ng L ^{-1 b}	0.2 ng L ⁻¹	USA	Hladik et al. 2006
metolachior propanol	metolachlor	73 ng L ⁻¹⁶	0.2 ng L ⁻¹	USA	Hladik et al. 2006
deschloroacetylmetachlor	metolachlor	35 ng L ^{-1 b}	0.1 ng L ⁻¹	USA	Hladik et al. 2006
deschloroacetyl metachlor propanol	metolachior	22 ng L ^{-1 b}	0.8 ng L ⁻¹	USA	Hladik et al. 2006
metachlor oxanilic acid	metolachlor	215 ng L ⁻¹⁶	7 ng L ⁻¹	USA	Hladik et al. 2006
metachlor ethane sulfonic acid	metolachlor	1530 ng L ^{-1 b}	90 ng L ⁻¹	USA	Hladik et al. 2006

a - pesticide identified in the reference as the source of the transformation product

b - peak concentration during study

c - median or mean concentration

Two areas of importance concerning the fate of pesticide transformation products during drinking water treatment are, their removal from raw water; and their possible transformation during treatment. Treatment processes such as coagulation, flocculation, sedimentation, and membrane filtration will assist in the removal of transformation products associated with suspended sediment in the raw water. Activated carbon adsorption, reverse osmosis, and nanofiltration can assist in the removal of transformation products associated with the aqueous phase (Wang and Song 2004), there is the potential for disinfection processes used during water treatment such as oxidation and advanced oxidation utilizing, ozone, hydrogen peroxide, and UV to transform organic compounds present in the raw water to additional compounds that need to be considered (EPA 2001a).

It is the presence and transformation of both pesticides and their environmental transformation products to additional water treatment transformation products that could pose a risk to human health. There is very limited data available in the literature identifying which degradation pathways pesticides and their environmental transformation products would undergo during water treatment. There are a number of processes utilized during water treatment that remove pesticides and their transformation products, however, chemical treatments can transform pesticides and their transformation products into additional compounds (EPA 2001a).

Data are available on the removal of pesticides from raw water by various water treatment processes, such as advanced oxidation with ozone and UV radiation (Collivignarelli and Sorlini 2004), nanofiltration (Van der Bruggen et al. 2001) and granular activated carbon (Feleke and Sakakibara 2001). Generally, pesticide transformation products are smaller and more polar than the parent compounds which could decrease the removal efficiency during treatment processes. However, only limited data are available on water treatment process removal efficiencies of pesticide environmental transformation products.

The oxidative desulphorisation of organophosphorus insecticides occurs during chlorination when the pesticides are present in raw water. This is where the thiophosphate moiety (P=S) is transformed to a P=O moiety (Zhang and Pehkonen 1999). This is an important transformation, especially for human health, because it is the oxon form that is the active component of the pesticide. These transformation products are very potent acetylcholinesterase inhibitors, a mode of action that can affect humans (Giesy et al. 1999). During the monitoring of supply reservoirs in the USA, the oxon transformation product of malathion, malaoxon, was not detected in the raw water, while the parent compound was detected at 0.032 μ g L⁻¹. Following water treatment, malathion was not detected in the finished drinking water but maloxon was detected at 0.106 μ g L⁻¹ (Nguyen et al. 2004). These oxon transformation products of OP insecticides, such as diazoxon, are stable in water after their formation even The carbamate insecticide thiobencarb and its following chlorination. transformation products formed following chlorination are degraded completely within 2 hours by the presence of chlorine in the water (Magara et al. 1994). Therefore depending on the pesticide in question, the chlorination process can both transform insecticides to stable active transformation products and rapidly degrade them and their transformation products. The herbicide isoxaflutole rapidly degrades to a stable phytotoxic transformation product, diketonitrile, under environmental conditions. Chlorination of water containing diketonitrile rapidly degrades this compound to a nonbiologically active benzoic acid transformation product (Lin et al. 2003).

Using ozonation as a disinfection process instead of chlorination can also transform organic compounds present in the raw water. DEA, DIA, deisopropylatrazine amide, and 2-chloro-4,6-diamino-s-triazine have been identified as transformation products formed from the major degradation pathway following the ozonation of water containing atrazine (Adams and Randtke 1992). When atrazine undergoes advanced oxidation during the water treatment process, two transformation products, not observed during environmental degradation, are formed, 2-chloro-4-ethylimino-6-

59

isopropylamino-s-triazine and 6-amino-2-chloro-4-ethylimino-s-triaizne (Acero et al. 2000).

Two transformation products of the insecticide aldicarb, aldicarb sulfoxide and aldicarb sulfone, can be removed during water treatment by reverse osmosis. The efficiency of removal of these compounds depends on the membrane composition used. However, when these transformation products are present in raw water (groundwater) in the 11-47 μ g L⁻¹ concentration range, removal efficiency is in excess of 90% (reported in EPA 2001a).

2.7.1 Drinking Water Standards

The EPA has set maximum contaminant levels (MCL) for three individual pesticide transformation products, heptachlor epoxide, aldicarb sufone and aldicarb sulfoxide (Table 7). An MCL of 7 μ g L⁻¹ has been set for a combined concentration of aldicarb and its two transformation products (EPA 2004a). Current drinking water standards for pesticides in the EU are governed by the Drinking Water Directive (98/83/EC). There are no discrete pesticide or pesticide transformation product drinking water quality standards set in the EU, however, concentrations of any individual pesticide and its "relevant metabolites" must not exceed 0.1 μ g L⁻¹, with a total pesticide concentration not exceeding 0.5 μ g L⁻¹ (European Commission 1998). In Australia, the maximum acceptable concentration (MAC) for atrazine is set at 40 μ g L⁻¹. This concentration is set on the basis that DEA, DIA, diaminochlorotriazine and HA may constitute approximately 50% of the total atrazine-derived triazine compounds in environmental waters (NHMRC 1996). Currently the health based guidelines for drinking water set by the World Health Organisation contain drinking water standards for pesticides. There is a combined pesticide and transformation product guideline for DDT of 1 μ g L⁻¹ (WHO 2004).

Region	Compound Parent	pesticide	Standard (µg L ⁻¹)	Source
Australia	heptachlor and heptachlor epox	ide	0.05 ^b	NHMRC 1996
Canada	2,3,4,6- pentach tretrachlorophenol	lorophenol	100 °	Health Canada 1987
Canada		lorophenol	5 °	Health Canada 1987
Canada	•	carboxylic	900 °	Health Canada 1987
Canada	aldicarb, aldicarb sulfone a sulfoxide	nd aldicarb	9 °	Health Canada 1995
Canada	atrazine and N-dealkylated mel	abolites	5°	Health Canada 1993
Canada (Ontario)	DDT and metabolites		30	OCWA 2002
Canada (Ontario)	heptachlor and heptachlor epox	ide	3	OCWA 2002
Canada (Ontario)	total lindane		4	OCWA 2002
EU	pesticides and their relevant me	tabolites	0.1	European Commission 1998
EU	total pesticides		0.5	European Commission 1998
USA	aldicarb sulfone aldicarb		3*	EPA 2004a
USA	aldicarb sulfoxide albicarb		4	EPA 2004a
USA	aldicarb, aldicarb sulfone an sulfoxide	nd aldicarb	7*	EPA 2004a
USA	heptachlor epoxide heptachl	or	0.2 *	EPA 2004a
World	DDT and metabolites		1 -	WHO 2004

Table 7. Drinking water standards set for pesticide transformation products

a - maximum contaminate level (MCL)

b - guidance level

c - maximum acceptable concentration (MAC)

3 Estimation of the Properties of Transformation Products

3.1 Introduction

An extensive range of transformation products have been identified during the examination of biotic and abiotic degradation of pesticides and other synthetic chemicals (Roberts 1998; Roberts and Hutson 1999; Aizawa 2001). A number of transformation products may be formed from any one compound and whilst physico-chemical property information maybe determined for the most prevalent, it would be beneficial if validated techniques were available to allow the information to be ascertained for all.

Current EU guidance suggests that data requirements for pesticide transformation products, determined during the generation of a dossier for the parent pesticide, do not have to be addressed solely by experimental studies (European Commission 2002a). Physico-chemical properties and environmental parameters required for risk assessment are currently determined experimentally for relevant transformation products but not for more minor compounds (European Commission 1994). Whilst the determination for minor or non-relevant compounds is not required for pesticide registration, these would be useful data to acquire for the application of screening and prioritisation methodologies (Gustafson 1989; Sinclair et al. 2006). Such approaches can be used to focus analytical monitoring towards compounds of concern and adjust treatment methods to ensure they are removed from finished drinking waters. Predictive approaches could be utilised to provide physico-chemical and environmental properties for transformation products during prioritisation, ranking and/or priority setting activities (Russom et al. 2003).

Recently concern has been expressed over the potential for the production of harmful by-products from pesticide transformation products formed during drinking water treatments employed to waters prior to distribution to consumers (European Commission 2007). Processes such as chlorination can activate proinsecticides to transformation products with specific modes of action to which humans are susceptible, e.g. acetylcholine esterase inhibition (Magara et al. 1994; Zhang and Pehkonen 1999). In order to screen or identify compounds of concern there is a requirement to determine those which may contaminate source drinking waters, identify the by-products that maybe formed and determine those compounds that may pose a hazard to human health. The accurate determination of physico-chemical properties, such as vapour pressure and octanol-water partition coefficient, and environmental parameters, such as rate of degradation and sorption behaviour in soils, would be critical to modelling and prioritisation techniques employed to determine the risks posed to ecosystems and/or consumers.

The range of quantitative structure property relationships (QSPR) available either within the literature, integrated into freely available or propriety software or available via the web, is vast. The predictive domain of these approaches is determined by the chemicals used to develop the relationship. Approaches are available that can provide a physico-chemical property for estimates for specific chemical classes or a diverse range of compounds. Whilst the suitability and accuracy of some approaches have been examined for various properties, e.g. acid dissociation constant (Hilal and Karickhoff 1995), vapour pressure (Dearden 2003) and soil sorption (Dearden 2004), little work has been conducted to confirm whether these approaches are suitable for providing property predictions specifically for pesticide transformation products. Therefore the aim of this study was to explore the use of predictive techniques for estimating key environmental and physico-chemical properties for pesticide transformation products necessary to implement priority approaches. A pesticide and transformation product experimental property dataset was collated and briefly compared. The dataset was then used to statistically evaluate a variety of OSPR approaches suitable for estimating, octanol-water partition coefficient (Kow), acid dissociation constant (pKa), vapour pressure, henry's law constant, organic carbon partition coefficient (K_{∞}) and soil persistence ($DT_{50}/t^{1/2}$).

3.2 Material and Methods

3.2.1 Collation and comparison of transformation product and pesticide datasets

Environmental pesticide transformation products were identified using degradation route compendiums (Roberts 1998; Roberts and Hutson 1999; Aizawa 2001), regulatory review documents (EPA 2005; PSD 2005; PMRA 2005; European Commission 2005; APVMA 2005) and the publicly available literature. Only those transformation products produced from biotic and abiotic degradation in the environment were considered. For each of the transformation products and pesticides identified, physico-chemical property and environmental property data were collected from KOW, PHYSPROP and EFDB databases (SRC 2005a; SRC 2005b; SRC 2005c), The Pesticide Manual (Tomlin 2000), degradation route compendiums (Roberts 1998; Roberts and Hutson 1999), the report of Belfroid et al. (1996) and regulatory review documents (EPA 2005; PSD 2005; PMRA 2005; European Commission 2005).

A comparison between parent pesticide and transformation product physicochemical properties was undertaken to establish whether any general principles could be ascertained. Where possible a direct comparison was undertaken for properties such as K_{ow} and water solubility which are represented by single data points and allow a direct comparison. In order to increase the number of comparative data points for the analysis of vapour pressure, pesticide and transformation product data were compared if the temperature reported during the experimental derivation was within 5°C. A comparison of dissociation data was more complicated since within the literature if no dissociation data are available for transformation products then it is impossible to determine whether this is because they do not dissociate or no experimental data are available. For pesticides there is no uncertainty since information is readily abundant. Therefore transformation products that had collated dissociation data were compared to data for their respective parent compounds, no comparison was undertaken to examine the relationships that exist between transformation products that do not dissociate and their parent pesticides. (For an equivalent comparison of environmental properties, adsorption and soil persistence, see Chapter 2).

3.2.2 Property estimation

A number of predictive approaches were chosen for evaluation that provide the user with estimates of physico-chemical and environmental properties for pesticides and transformation products. Approach selection was dependent on their ease of use, availability and appropriateness for agrochemicals. The selected approaches either operated via a software or web-based front-end or were simple linear relationships. Approaches were not selected for evaluation that required complicated property/structural molecular descriptors as suitable programs were not available to generate these input parameters. The predictive approaches considered are provided in Table 8.

All the single linear relationships chosen use an alternative physico-chemical property from which to estimate the property of interest, therefore data collated to evaluate methods that estimate the required property were used for this purpose. Linear relationships were therefore constrained by the availability of experimentally determined input data, approaches that require structural entry for estimation were not constrained by such an extent.

Property	Method (version)	Data Input Availability/Relationship		Reference	
Koc	PCKOCWIN (1.66)	SMILES notation	Free software	Meylan and Howard 1995; EPA	
NOC	• •			2004b	
	ASTER C	SMILES notation	Limited access software	Russom et al. 1991	
	Briggs 1981 Hodson and	Log K _{ow}	Log K _{oc} = 0.52 log K _{ow} + 1.12	Briggs 1981	
	Williams 1988	Log K _{ow}	Log K _{oc} = 0.827log K _{ow} + 0.293	Hodson and Williams 1988	
	Kanazawa 1989	Log Kow	Log K _{oc} = 0.402 log K _{ow} + 1.071	Kanazawa 1989	
	Kenaga and Goring 1980	Log K _{ow}	Log K _{oc} = 0.544 log K _{ow} + 1.377	Kenaga and Goring 1980	
	Lyman et al. 1990	Log Kow	Log K _{oc} = 1.029 log K _{ow} - 0.18	Lyman et al. 1990	
	Sabljić et al. 1995	Log Kow	Log K _{oc} = 0.47 log K _{ow} + 1.09	Sabljic et al. 1995	
	Seth et al. 1999	Log Kow	Log K _{oc} = 1.03 log K _{ow} - 0.61	Seth et al. 1999	
	Briggs 1981 (WS)	Log S (S in ppm)	Log K _{ac} = -0.356 log S + 3.01	Briggs 1981	
	Kenaga and Goring 1980 (WS)	Log S (S in mg/L)	Log K _{oc} = -0.55 log S + 3.64	Kenaga and Goring 1980	
K _{ow}	KOWWIN (1.67)	SMILES notation	Free software	Meylan and Howard 1995; EPA 2004b	
	ClogP (4.82)	SMILES notation	Web based	Daylight Chemical Information	
	LogP	SMILES notation	Web based	Systems 2004 Interactive Analysis 2004	
	10g.	•••••••••••		Tetko et al. 2001b; Tetko and	
				Tanchuk 2002: Virtual	
	AlogPS (2.1)	SMILES notation	Web based	Computational Chemistry	
				Laboratory 2004	
	miLogP ^b	SMILES notation	Web based	Molinspiration Cheminformatics 2004	
	XLogP (2.0) b	SMILES notation	Web based	Wang et al. 1997; Institute of	
	, Log . (L .c)			Physical Chemistry 2004	
lenry's				Meylan and Howard 1991; EPA	
aw	HENRYWIN (1.90)	SMILES notation	Free software	2004b	
onstant	ASTER C	SMILES notation	Limited access software	Russom et al. 1991	
	ASTER	SMILES notation	Limited access soltware	Russom et al. 1991	
/apour	MPBPWIN (1.41)	SMILES notation	Free software	EPA 2004b	
ressure	ASTER C	SMILES notation	Limited access software	Russom et al. 1991	
	ASIER	SMILES HOUND	Chines access software	rtussom et al. 1991	
Vater	WSKOWWIN	SMILES notation	Free software	Meylan et al. 1996; EPA 2004b	
olubility	(1.41)			Tetko et al. 2001a; Virtual	
	AlogPS (2.1)	SMILES notation	Web based	Computational Chemistry	
				Laboratory 2004	
	LogS ^b	SMILES notation	Web based	Virtual Computational Chemistry	
	•			Laboratory 2004	
	ASTER C	SMILES notation	Limited access software	Russom et al. 1991	
ioi l				Howard at al. 1002: Beathing at a	
egradatio	BIOWIN (4.02)	SMILES notation	Free software	Howard et al. 1992; Boethling et a 1994; EPA 2004b	
	DDT	0.411 50	Mah hanad		
	PBT profiler	SMILES notation	Web based	EPA 2004c	

Table 8. The predictive approaches evaluated during this study

- data input maybe possible by other means, e.g. CAS Number, SMILES or 2D chemical structure, but this

was the method used to generate predictions during the study ^b - predictions made through the Virtual Computational Chemistry Laboratory website [Virtual Computational

Chemistry Laboratory 2004] ⁶ - predictions provided by the US Environmental Protection Agency after supplying the transformation product and pesticide SMILES notation in .bxt file format

The software or web-based front end approaches examined require chemical structure as the input. This is usually in the form of Simplified Molecular Input Line Entry System (SMILES) notation (Weininger 1988). Pesticide SMILES notation were obtained by using the CAS/SMILES database present in

KOWWIN version 1.67 (EPA). CAS numbers for pesticides were obtained from The Pesticide Manual (Tomlin 2000). Transformation product SMILES notation were derived from their two-dimensional structure identified within degradation compendiums and regulatory review documents. Two-dimensional transformation product structures were saved as .cdx files in ChemDraw version 8.0 (CambridgeSoft Corporation). Structures were either drawn manually, downloaded from the website Chemfinder.com (CambridgeSoft Corporation) or when the structure was solely provided as an IUPAC name, then the structure was generated using the ChemDraw add-on NamExpert version 6.0 (ChemInnovation Software). SMILES notation were then generated using the 'convert to SMILES' function in Accord for Excel version 5.0 (Accelrys Inc.), an Excel 2000 version 9.0 (Microsoft Corporation) add-on.

3.2.3 Statistical Analysis

The approaches were evaluated using a revised version of the methodology proposed by Moore et al. (2003), i.e. the best performing approach is identified by ranking the approaches based on selected individual summary statistics and then determining an overall rank. However the ordinal ranking system was replaced by a ranking system that provided a measure of the ability of a technique within each of the chosen statistics. The techniques were ranked on their distance from the optimum summary statistic value standardized using the maximum distance from the optimum for all the techniques tested. An overall score was obtained by then calculating the mean of the individual rank scores, the best performing technique was identified as the one with a mean rank score nearest to zero, i.e. perfect performance. Genstat version 7.2 (VSN International) and Excel version 9.0 (Microsoft Corporation) were used to analyse the data. The statistics generated for each technique are detailed below; the summary statistics used for ranking are identified with an asterisk (*).

- actual number of compounds a technique could provide a prediction for*
- percentage positive deviation*

- mean absolute deviation*
- maximum absolute deviation
- minimum absolute deviation
- mean squared absolute deviation*
- % of compounds > 1 order of magnitude from experimental value*
- % of compounds > 2 orders of magnitude from experimental value
- % of compounds > 3 orders of magnitude from experimental value
- pearson correlation coefficient*
- slope
- intercept

The percentage positive deviation is the percentage of predictions that were over or under estimated from perfect correlation. If a predictive technique does not have a tendency to over or under predict values, i.e. over predicts as many values as it under predicts then you would expect the percentage positive deviation to be 50%. Therefore this statistic is used as a measure of the tendency of a package to over or under predict. The data reported for this statistic is the distance from 50%, i.e. if positive the technique has a tendency to under predict the data, if negative the technique has a tendency to over predict the data, whilst the further away from zero the more exaggerated this tendency. A one sample binomial test was used to identify whether the tendency was significant at the 95% confidence limit. Statistics were chosen to quantify different prediction capabilities. The Pearson correlation coefficient was chosen instead of the slope of correlation because it would be less influenced by a few large outliers. Mean absolute deviation and mean squared absolute deviation where chosen to provide a measure of the extent of 'scatter'.

For each approach two analyses were undertaken, the ability to provide data for 'all' chemicals with experimentally derived test data and the ability to provide data for chemicals 'common' to all the predictive approaches for that end-point, i.e. the set of compounds that all approaches evaluated could provide a prediction for. An evaluation of 'all' compounds includes a measure of the ability of a specific approach to provide an estimate for a query molecule, whilst an evaluation of 'common' compounds provides a fairer means by which to interpret the accuracy between approaches. Where a number of approaches where identified as performing well, then an examination of whether predictive ability could be increased for the transformation product dataset by combining the best performing approaches was undertaken.

3.3 Results and Discussion

3.3.1 Collated Dataset

Table 9 provides a summary of the available transformation product and pesticide data that was considered suitable for evaluating the selected predictive approaches, information on the extent of pesticide class coverage within the dataset is also provided. The analytical dataset for environmental transformation products comprised 320 compounds from 125 pesticide parent compounds, whilst the pesticide dataset comprised 476 pesticides from 61 chemical classes.

Data type	Transformation product data	Pesticide data	
Physico-chemical properties			
Henry's law constant	50	61	
Kow	160	445	
рКа	91	442 ^b	
Vapour pressure	93	410	
Water solubility	139	463	
Environmental properties			
Koc	115	300	
Soil DT50/t%	85	-	
Dataset composition			
Number of compounds	320	476	
Herbicides	64*	174	
Fungicides	25"	103	
Insecticides	28*	155	
Other	8*	44	
Chemical classes	47 °	61	

 Table 9. Summary of the data availability for transformation product and pesticide

 analytical datasets

- data for parental pesticides

^b - includes pKa data where pesticides were reported not to dissociate

3.3.2 Pesticide and Transformation Product Property Comparison

Overall pesticide transformation products were more hydrophilic (81.1%), more water soluble (88.6%) and more volatile (91.2% for vapour pressure and 71.4% for henry's law constant) than their respective parental pesticides (Figure 10). It is inevitable that transformation products exhibit properties different to their parents since there has been slight and/or extensive structural change and they are not subjected to the extensive selection pressures placed on pesticides during their development. Whilst high volatility is a desirable trait for some classes of pesticides, e.g. fumigants and soil sterilants, most pesticides could not perform the desired task if, once applied they where lost to the atmosphere. Transformation products are generally more volatile with 71.7% exhibiting a vapour pressure of more than two orders of magnitude more than their pesticides. When soil sterilants and fumigants were removed from the comparison, the remaining transformation products from pesticides with a vapour pressure greater than 0.01 Pa were all more volatile than their respective parent pesticides. Moreover, only three transformation products exhibited a decrease in volatility by more than an order of magnitude.

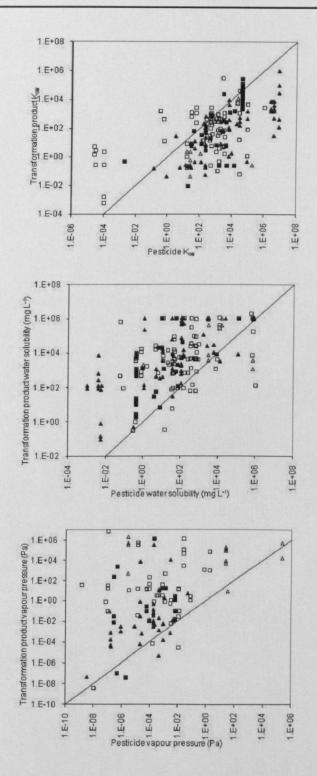


Figure 10. A comparison of physicochemical properties of pesticides and their transformation products (fungicides - ■; herbicides - □; insecticides - ▲; mixed mode of action - △) (line - x=y)

Herbicide and fungicide physico-chemical properties are very important for their uptake and translocation to the required site of action. Water solubility has been correlated to permeation through membranes (Ersoz et al. 1996), whilst water solubility, lipophilicity and dissociation are important for uptake by roots and xylem transport (Sicbaldi et al. 1997; Chamberlain et al. 1998). Approximately half (49.5%) of the transformation products were more than one order of magnitude more hydrophilic than their parent pesticides (Table 10). Only 6% of the transformation products formed from insecticides exhibited an increase in hydrophobicity, whereas 21% and 31% of transformation products of fungicides and herbicides respectively, exhibit the same increase. Transformation products of highly hydrophilic herbicides, e.g. $K_{ow} < 1$, were all more hydrophobic than their parents. Moreover only 5.2% and 7.7% of insecticidal and fungicidal transformation products respectively, were less water soluble than their parent pesticides, but none were less water soluble by more than an order of magnitude.

Orders of magnitude	Water solubility	Hydrophobicity	Vapour pressure	Henry's law constant
Less				
3	0.6	14.3	0	10.7
2	1.7	26	1.8	14.3
1	4	49.5	3.5	21.4
More				
1	69.9	8.2	80.5	39.3
2	41.5	5.1	71.7	35.7
3	28.4	3.6	54	32.1
lo. of comparisons	176	196	113	28

 Table 10. Percentage of transformation product physico-chemical properties, one, two and

 three orders of magnitude greater than or less than their respective pesticide properties

Available transformation product pKa values allowed 112 comparisons of dissociation with parent pesticides to be undertaken. Within this comparative data, 64% of the parent pesticides do not dissociate at all, whilst at pH 7 58% of the transformation products would be more than 50% dissociated. Comparisons between transformation products and pesticides that both dissociate (40/112), indicated that 90% of the pesticides and 62.5% of the transformation products would be more than 50% dissociated at neutral pH. Whilst, when pesticides that

do not dissociate and their transformation products are compared (72/112), 56.9% of the transformation products would be more than 50% dissociated at neutral pH. Therefore the dissociation of the parental pesticide has limited influence on the dissociation of subsequent transformation product(s).

3.3.3 Estimation of Transformation Product and Pesticide Properties

The determination of predictive ability for all techniques investigated generated extensive figures and tables which are provided in Appendix B. A summary of the best performing technique for each property for pesticide and transformation products is provided in Table 11.

Property	All compounds		Common compound	5
Transformation produc	ts			
Kac	Kanazawa (1989)	(0.24)	Kanazawa (1989)	(0.25)
Kaw	KOWWIN	(0.41)	CLogP	(0.4)
pKa	SPARC	(0.39)	SPARC	(0.32)
Water solubility	WSKOWWIN	(0.59)	WSKOWWIN	(0.68)
Vapour pressure	Mobowin	(0.59)	ASTER	(0.69)
Henry's law constant	Henrywin-bond	(0.71)	Henrywin-bond	(0.64)
Pesticides				
Kac	Briggs et al. (1981)	(0.45)	Briggs et al. (1981)	(0.43)
Kaw	ALogPS	(0.46)	ALogPS	(0.52)
pKa	ASTER	(0.84)	SPARC	(0.57)
Water solubility	LogS	(0.52)	LogS	(0.57)
Vapour pressure	Mpbpwin	(0.59)	Mpbpwin	(0.68)
Henry's law constant	Henrywin-bond	(0.58)	Henrywin-bond	(0.57)

Table 11. Summary of best performing approach for six properties (mean rank score)

A combined approach was developed

3.3.3.1 Hydrophobicity

KOWWIN, CLogP, LogP, ALogPS and XLogP all had a tendency to under predict K_{ow} , whilst miLogP had a tendency to over predict (Figure 11; Table B1 in Appendix B), only the under prediction of XLogP was identified as being significant (95% confidence limits). KOWWIN, CLogP, LogP and ALogPS all had a mean rank score within 0.09 rank units of each other for predictions of all and common transformation products, indicating that their ability to provide estimates for the transformation product dataset was similar. Moreover these four techniques also predict \geq 95% of compounds to within one order of magnitude of experimentally determined values (Figure 11), XLogP and miLogP performed less well. When the techniques were evaluated for 'all' transformation products, KOWWIN was the best performing technique (mean rank score 0.41), whilst CLogP was the best performing technique for 'common' transformation products (mean rank score 0.4) (Table 9).

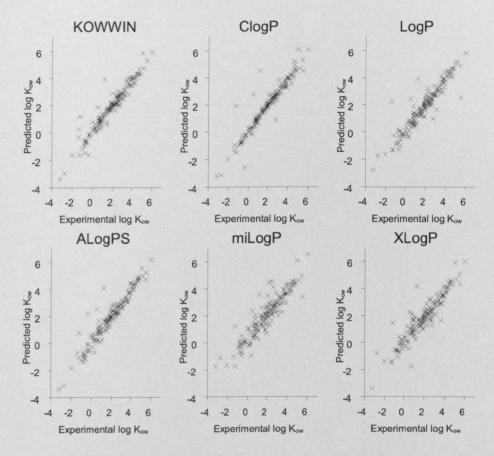


Figure 11. The predictive ability of six techniques for providing K_{ow} for transformation products (all compounds)

Independent evaluations have suggested that for pharmaceuticals CLogP outperforms KOWWIN (Mannhold and Petrauskas 2003; Machatha and Yalkowsky 2005), however these compounds are generally more complex than

transformation products, for simple organic datasets, similar to the complexity of transformation products considered here, performance was equivalent (Sakata et al. 1992) as demonstrated during this evaluation. Four transformation products were consistently under or over predicted by four or more approaches, suggesting that either the approaches can't accurately provide estimates for these compounds or experimentally collated data were inaccurate; bifenox anthranilic acid (bifenox), fluroxypyr (fluroxypyr-meptyl), 6-chloro-3-phenyl-pyridazin-4-ol (pyridate) and 2-(3,5-dichlorophenyl)-4,4-dimethyl-5-methyleneoxazoline (propyzamide).

It has been proposed that the prediction K_{ow} for agricultural chemicals can be significantly improved by combing the estimates from a number of different approaches (Clarke et al. 2004). Therefore all possible combinations of the four best performing techniques (KOWWIN, CLogP, LogP and ALogPS), from the individual method to a mean value from all four methods, were evaluated for the 156 'common' transformation products and evaluated statistically. This analysis indicated that predictions for the dataset could be improved using a mean value from estimates provided by KOWWIN, CLogP and ALogPS. This combined prediction enabled >98% of transformation products to be estimated to within one order of magnitude of experimentally determined values with a Pearson correlation coefficient of 0.971 (Figure 12; Table B3 in Appendix B). If the four transformation products that were consistently under or over predicted were removed then all estimates were within one log unit of experimental values (data not shown).

At the time of the evaluation these three approaches were freely available for use as a web-based front end or as a software download and can all be considered sub-structural approaches, KOWWIN and CLogP cleave query molecules into groups/fragments with K_{ow} estimated using atom and fragment contributions, whilst ALogPS uses atom and bond-type E-state indices as well as hydrogen atom numbers developed within a neural network to produce estimates. It has been suggested that sub-structural approaches continuously outperform those that consider whole molecule (Mannhold and Petrauskas 2003; Sakuratani et al. 2007) since they do not have such a confined structural domain as wholemolecule approaches and are therefore applicable as long as the fragments/groups within the query molecules are covered and unlike whole molecule approaches are not susceptible to unknown effects (Mannhold and Petrauskas 2003). The combination of methods may perform better than any individual technique for a diverse range of compounds because this will 'smooth out' any problems an individual technique may have with certain compounds, group of compounds or compound fragments.

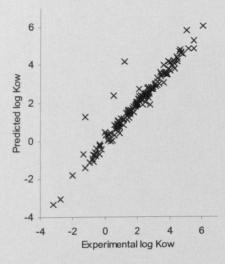


Figure 12. Estimation of transformation product hydrophobicity using a mean value from KOWWIN, CLogP and ALogPS

When pesticides were considered, none of the approaches performed as accurately as they had for transformation products (Figure B2 in Appendix B) ALogPS was the best performing technique (Table 9), however ~16% (n=71) of pesticides had their K_{ow} value predicted more than one log unit away from experimentally determined values. There were a number of pesticidal chemical classes where three or more pesticide predictions were more than one log unit away from experimentally derived values; arylphenoxypropionic acids (n=3), cyclohexanedione oximes (n=3), morpholines (n=3), aryloxyalkanoic acids

(n=4), organophosphorus insecticides (n=7), synthetic pyrethroids (n=8) and sulfonylurea herbicides (n=8).

3.3.3.2 Soil sorption

Eleven separate techniques were evaluated for providing soil sorption data, two software based approaches, seven linear relationships that use K_{ow} as the input parameter and two linear relationships that use water solubility as the input parameter (Table 8). The experimentally determined soil sorption data collected for pesticides and their transformation products generally comprised a range of values since the determination of this property can vary with soil properties, i.e. pH, clay content, organic carbon content and soil texture (OECD 2000). Minimum K_{oc} values were therefore selected as the parameter to evaluate predictive techniques against, since this was a consistent data parameter within the dataset available for the majority of compounds and represents 'worst-case' in terms of the mobility through the environment. Therefore it was anticipated that the techniques would over-estimate the minimum K_{oc} values if they had been developed using mean K_{oc} data.

As expected the majority of the evaluated approaches over-estimated minimum K_{oc} values for transformation products and pesticides (Table B10 in Appendix B). However the two linear relationship approaches that use water solubility as the input, Briggs (WS) (1981) and Kenaga and Goring (WS) (1980) consistently under-estimated minimum K_{oc} values. When common transformation products were considered, three of the evaluated approaches, Sabljić et al. (1995), Kanazawa (1989) and Briggs (1981) were proficient at providing minimum K_{oc} data. All these approaches used hydrophobicity as the input parameter, had mean rank scores within 0.5 units of each other, did not have a significant tendency to under or over predict minimum K_{oc} data and >96% of estimates where within one log unit (Table B10 in Appendix B).

Estimation approaches such as these, based on hydrophobicity, model sorption to organic carbon but do not consider other processes such as sorption to clay

minerals or the effects of pH (Doucette 2003). Since sorption behaviour is normalised for the organic carbon content, i.e. K_{oc} , then K_{ow} based techniques will provide accurate estimates when sorption to organic matter is the dominate process, where other sorptive interactions are important, i.e. providing larger values of K_{oc} , then estimates will be less accurate since not all the sorptive behaviour will be modelled. The sorption of neutral hydrophobic organic compounds could be well modelled by just considering the sorption to organic matter (Lambert et al. 1965; Chiou et al. 1979), whilst the influence of other process would need to be considered to accurately model the sorptive behaviour of ionic compounds (Kah and Brown 2007).

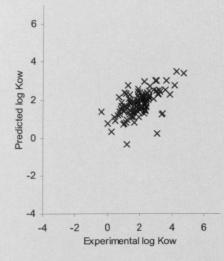


Figure 13. Estimation of transformation product minimum K_{oc} using the relationship of Kanazawa (1989)

An evaluation of whether a combination of the three best approaches for providing minimum K_{oc} data for transformation products would be more accurate than any individual approach was undertaken. This was carried out in the same manner as for the prediction of hydrophobicity, however during this evaluation the two transformation products estimated to be greater than one log unit away from experimental values, 2,4-D (2,4-DB) and dicofol (DDT) by all approaches, were removed from the analysis. Sorption estimates could not be improved by combing methods and the relationship of Kanazawa (1989) was still the best performing relationship (Figure 13; Table B12 in Appendix B). Moreover, an attempt to increase the potential accuracy of this technique by highlighting potential outliers by the extent of their dissociation was undertaken. This analysis proved unsuccessful (results not provided).

Dearden (2004) undertook an assessment of methods for providing Koc estimates using an experimental dataset of 100. PCKOCWIN was selected as the best approach as it provided the most accurate predictions and is freely available However during the current study the to download from the internet. relationships of Sabljić et al. (1995) and Kanazawa (1989) were the most consistent performing approaches, not PCKOCWIN. It is possible that since Sabljić et al (1995) and Kanazawa (1989) were developed using agricultural chemicals then they are more relevant to pesticide transformation products than other general chemicals. The training set for Sabljić et al. (1995) is extensive, 216 compounds with log Kow between 1-7, however the relationship of Kanazawa (1989) is based on data from just 15 pesticides (nine insecticides and six herbicides). Therefore it could be argued that the relationship of Sabljić et al. (1995) maybe the more appropriate to use to provide transformation products data because it has a larger prediction space. However during this evaluation it was the relationship of Kanazawa (1989) that out performed all other tested methodologies. When using such an approach to provide K_{∞} data for risk assessment or screening it may be advisable to incorporate a safety factor into the estimation. The relationships of Sabljić et al. (1995) and Kanazawa (1989) predict > 95% of minimum K_{oc} values to within one log unit, therefore a safety factor of 0.1 maybe appropriate. This would provide a conservative estimate of mobility for a transformation product where the user can be confident that the estimated value is lower than the actual value if it were determined experimentally.

When the pesticide dataset were considered none of the approaches were found to be as accurate as for the transformation products. The three most accurate approaches were Sabljić et al. (1995), Kanazawa (1989) and Briggs (WS) (1981). No individual approach could predict greater than 82% of minimum K_{∞} values to within one log unit of experimentally derived data.

3.3.3.3 Additional properties

When estimating water solubility for transformation products, WSKOWWIN was the best performing technique (mean rank score 0.68) (Figure B3 & Table B4 in Appendix B), whilst LogS was the best performing technique for pesticides (mean rank score 0.57) (Figure B4 & Table B5 in Appendix B). However overall, the techniques performed relatively poorly, with no technique able to predict more than 80% of either dataset to within an order of magnitude of experimentally determined values and mean absolute deviation greater than 0.7 log units for all approaches/datasets. Throughout the evaluation ASTER was ranked behind the other approaches, achieving the highest mean score in all assessments.

When the estimation of vapour pressure was evaluated ASTER was the most accurate technique for providing data for transformation products (Figure B5 & Table B6 in Appendix B), whilst Mpbpwin was identified as the most accurate technique for providing data for pesticides (Figure B6 & Table B7 in Appendix B). Three transformation products, namely nitric acid, nitrogen dioxide and nitrogen tetraoxide from chloropicrin, drastically altered the overall ability of Mpbpwin. Mpbpwin estimated that these compounds, comprised solely of nitrogen and oxygen, were non-volatile which incorrectly estimated vapour pressure by at least 17 orders of magnitude. When removed from the evaluation the overall performance of Mpbpwin improved (data not shown), without these outliers Mpbpwin performed better than ASTER for estimating transformation product vapour pressure.

The evaluation of approaches for predicting henry's law constant values was hampered by the lack of experimental data for pesticides and transformation products. This evaluation had by far the smallest available dataset of any of the prediction approach evaluations (Table 9). The bond-contribution method of Henrywin had the lowest rank score for all compound datasets evaluated (Table B6 & B7 in Appendix B). This approach provided predictions for 100% and 98% for transformation products and pesticides respectively whilst the groupcontribution method could only provide predictions for 68% and 23% respectively. When the common datasets were evaluated the bond contribution method of Henrywin was determined as the best performing approach for transformation products and pesticides.

When estimating dissociation, SPARC can provide the user with more than one pKa value for each compound examined, since pKa values are provided for each reaction centre in the molecule (Karickhoff et al. 1991). Where compounds had more than one estimate they where removed from the subsequent statistical analysis since it would be difficult to determine which of the predicted values should be considered when using the approach for an unknown compound. A prediction of non-ionisation was assumed when; a negative estimate of pKa was provided, the approach did not identify a reaction centre in the molecule or the output was 'non-applicable'.

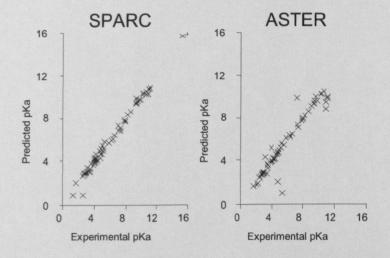


Figure 14. A correlation between experimental pKa values those estimated by SPARC and ASTER for transformation products (all compounds)

When dissociation was estimated for transformation products, SPARC and ASTER predicted that 6.7% and 17.8% respectively, would not dissociate, when experimental data proved otherwise. SPARC provided more than one pKa value for 18 transformation products (20%) and was the best performing technique (Figure 14). When common transformation products were evaluated, all SPARC predictions were within one pH unit of experimentally determined values and the Pearson correlation coefficient was 0.996. This evaluation demonstrates that SPARC is a very accurate tool for providing dissociation data for pesticide transformation products in accordance with previous evaluations (Hilal and Karickhoff 1995).

Experimental data were available on 279 pesticides that do not dissociate and ASTER correctly predicted that 94.3% (n = 263) of these compounds would not dissociate whilst SPARC provided pKa estimates for 17.6% (n = 49). When pesticides with experimentally derived pKa values were considered, SPARC and ASTER predicted that 52.8% and 31.9% would not dissociate. In comparison to transformation product estimates both approaches performed poorly in providing accurate pKa values for pesticides (Figure B10 in Appendix B).

Degradation of organic chemicals in soils, like sorption, is heavily influenced by the soil and experimental conditions. The predictive approaches assessed during this study provide degradation estimates quantitatively, qualitatively and as a probability. Therefore the ability of each approach was examined individually and not compared. Predictive approaches were evaluated against the 'worst-case' data, i.e. the maximum degradation data available for a compound. An evaluation for degradation of pesticides was not undertaken. BIOWIN contains three separate degradation models. During this evaluation two of those approaches were evaluated. The primary degradation survey model provides a qualitative prediction, e.g. days - weeks, whilst the biodegradation model (linear and non-linear) provides the user with a probability of biodegradation. Using information provided in the user manual this probability can be converted to a 'does not biodegrade' or 'biodegrades fast' categorisation. The primary degradation survey model did not accurately provide any estimates for aerobic soil degradation. Transformation products categorised by the model as degrading within days-weeks had maximum experimental degradation rate constants spanning less than a day to greater than a thousand days (Figure 15). Similarly no correlation was observed between transformation product soil degradation data and the linear and non-linear biodegradation models (Figure B14 in Appendix B). Transformation products with experimental aerobic soil degradation rate constants that range from less than a day to greater than one thousand days were allocated to both the degrades fast and does not biodegrade categories.

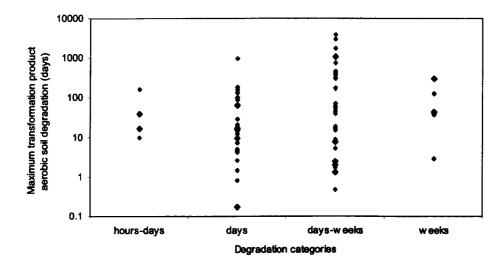


Figure 15. The predictive ability of the BIOWIN primary degradation survey model evaluated against experimental transformation product aerobic soil degradation rate constants

The second approach evaluated for estimating aerobic soil degradation rate constants for transformation products was the PBT Profiler which allocated all the transformation products to aerobic soil degradation rate constants of either 30, 75, 120 or 360 days and uses the ultimate degradation model of BIOWIN to estimate degradation. A correlation between the median experimental

degradation rate constants and the predicted values ($r^2 = 0.981$) was observed, however this correlation fell down when the mean data values were examined ($r^2 = < 0.1$).

3.4 Conclusions

When physico-chemical properties of transformation products are compared to their parental pesticides, they indicate that these compounds will be more mobile in the environment since they are less hydrophobic, more water soluble and more volatile than their respective parent pesticides. Generally transformation products are more hydrophilic than their respective parent pesticides but there are exceptions, transformation products of hydrophilic herbicides were all more hydrophobic than their parental pesticides. The properties considered here are both important for quantifying the mobility of a compound through the environment as well as determining the fate during drinking water treatment processes. Therefore it is important that the fate of transformation products in the environment and fate during water treatment are considered when investigating the risk to ecosystems and humans of parent pesticides.

When approaches where evaluated for estimating water solubility, vapour pressure, henry's law constant and soil degradation performed poorly. Whilst estimates of hydrophobicity and dissociation were extremely accurate with the accuracy of pesticide transformation products hydrophobicity estimates increased by combining the predictions from three freely approaches, KOWWIN, ALogPS and CLogP. Moreover, SPARC is recommended as the technique for estimating dissociation since it performed extremely well for the diverse range of transformation products present in the evaluation dataset. The linear relationship of Kanazawa (1989) based on just sixteen pesticides out performed all other approaches evaluated for estimating a conservative minimum K_{oc} value for transformation products. When using this approach it may be useful to employ a safety factor of 0.1 to provide a conservative estimate. Therefore for certain important properties predictive approaches may offer a low

cost tool for rapidly providing data for transformation products in the absence of experimental data which could be used for risk assessment and/or prioritisation exercises. However for certain properties such as water solubility, vapour pressure and soil degradation rate constants the accuracy of the tested approaches was poor. This is unfortunate since these are properties that are often required when using higher-tier exposure models. There is therefore a requirement to further develop approaches to increase their ability to estimate these properties for transformation products.

The lack of an appropriate tool to provide accurate estimates of soil degradation rate constants was very disappointing as this can be the crucial property when determining the fate of a compound in the environment. Unlike other physicochemical properties the result of soil degradation rate constant studies can be highly influenced by experimental conditions. Whilst certain parameters are easy to control through the use of appropriate laboratory equipment (e.g. temperature and humidity) and the selection of appropriate soils (e.g. soil pH, organic carbon content and clay content), the activity and diversity of microbial populations is difficult to quantify and standardise. However attempts have been made to provide standard soils for use during regulatory risk assessment studies (Kuhnt and Muntau 1994) and result variability is limited within experimental study protocols that stipulate the number and properties of soil used. However, during the development of predictive approaches, an average degradation rate constant per chemical from a number of soils is used in the training set. This ignores a whole level of important appropriate data on soil properties that could be utilised in the development of better techniques. There must be scope to develop more accurate approach(es) by using the extensive data available for pesticides and transformation products and combining this with targeted experimental studies.

3.4.1 Appendices

Extensive supporting information is available in Appendix B this includes all correlations between experimental and estimated data for all properties and approaches evaluated using common transformation product and pesticide datasets. Moreover all derived statistics and mean rank scores are also available.

4 Assessing the Ecotoxicity of Pesticide Transformation Products¹

4.1 Introduction

When released to the environment, pesticides may be degraded either by microorganisms or chemical processes (Roberts 1998; Roberts and Hutson 1999). Generally pesticide transformation products will have a lower toxicity to biota than the parent compound (Stratton 1981; Day and Maguire 1990; Day and Hodge 1996). However, in some instances a transformation product may be more toxic and consequently these substances may pose a greater risk to the environment than the parent compound (Stratton and Corke 1982; Osano et al. 2002a; Osano et al. 2002b). Differences in the environmental behaviour of many transformation products compared to the parent, e.g. where a transformation product may have increased mobility compared to the parent (Kolpin et al. 2001), could also mean that even when a transformation product is less toxic it may still have the potential to have an adverse impact on the environment. Consequently there is a need to consider transformation products during the environmental risk assessment process. In Europe, under EU Directive 91/414/EEC (European Commission 1994) and its subsequent amendments, data must be provided for all metabolites, degradation and reaction products which account for more than 10% of the amount of active substance added. Guidance on assessing the relevance of transformation products has been developed (European Commission 2002a; European Commission 2002b; European Commission 2003).

The effect of a compound on an organism will be dependent on the individual chemical and the interaction between that chemical and the species of interest (Bradbury 1994; Wroath and Boxall 1996). There are a number of possible explanations for a transformation product being more toxic than its parent

¹ Sinclair C.J. and Boxall A.B.A. (2003) Assessing the ecotoxicity of pesticide transformation products, Environmental Science and Technology, 37:4617-4625.

compound: 1) the active moiety of the parent compound is still present in the transformation product and hence the transformation product has the same toxic mechanism as the parent; 2) the transformation product is the active component of a pro-pesticide, where the applied substance is designed to be absorbed by an organism and once absorbed is metabolised to an active substance that elicits the desired effect (Drabek and Neumann 1985); 3) the bioconcentration factor for the transformation product is greater than the parent and hence more will reach the site of action. This is a key factor affecting the ecotoxicity of compounds which act via a similar mode of action (Lipnick 1990; Escher and Hermens 2002); and 4) the transformation pathway results in a product with a different and more potent mode of action than the parent compound. Differences in toxicity between pesticides and their transformation products could also be due to the variability inherent in toxicity testing.

If information on the modes of action of parent compounds and transformation products can be obtained and differences in accumulation can be determined, it may be possible to identify at a very early stage, which transformation products require testing. This study was therefore performed to determine whether the environmental effects of pesticide transformation products can be estimated based on data for the parent compound and information on structure in order to develop a pragmatic approach for their identification and risk assessment. The specific objectives of the study were to: 1) collect and collate available data on pesticide transformation products; 2) provide a qualitative means of identifying transformation products which maintain the specific toxic mechanism of their parental pesticides; 3) investigate the relative ecotoxicity to non-target organisms of pesticide transformation products compared to their associated parent compound; and 4) derive a framework for estimating the effects of transformation products on the environment.

4.2 Materials and Methods

4.2.1 Data collation

Initially, an extensive search was undertaken to identify the environmental degradation products of a wide range of pesticides. The majority of the degradation products and pathways were identified using the reviews of Roberts (1998) and Roberts and Hutson (1999) and disclosure documents produced for individual active substances by the UK Pesticides Safety Directorate (PSD 2003). Only those transformation products that are formed by biological, chemical and/or physical processes in soil, water, sediment or air were selected. Transformation products formed solely as a product of metabolism by plants and/or animals were not considered. If a compound was identified to occur as a result of pesticide degradation it was assessed, no matter what amount relative to the parent compound was formed during the transformation process.

Once structures of the transformation products had been identified data were collected on the physico-chemical properties (pKa, log K_{ow} and log K_{oc}), ecotoxicity and fate and behaviour of both pesticides and their transformation products. Data were collected from multiple sources including the open literature, databases such as the USEPA ECOTOX database (EPA 2003a), the IUCLID database (ECB 2000), the EFDB and PHYSPROP databases (SRC 2003a; SRC 2003b), PSD disclosure documents (PSD 2003) and the report by (Belfroid et al. 1996).

The ecotoxicity data obtained covered a wide range of test species and endpoints. Moreover, multiple values were often available from a number of sources for a particular endpoint. Only a limited amount of information was available on the chronic effects of the transformation products, effects on aquatic macrophytes and effects on terrestrial organisms. Therefore, for comparative reasons, only data derived from acute tests using fish, daphnids and algae and following OECD guidelines (OECD 1984a; OECD 1984b; OECD 1992) were selected for further analysis. An algal endpoint (72-96h EC_{50} population), not detailed in the OECD guidelines was included to increase the number of algal data points.

As many of the data points were obtained from online databases that cite data from the published literature, it was necessary to assess the accuracy of the citations. As a large amount of information was obtained it was impractical to assess all data points by obtaining the original data source that was cited in the database. The original citation was only obtained in the following instances: 1) when a large number of data points were available on a particular substance from a number of sources and where the values for one or more of the data points exhibited a large difference compared to the majority of the data points; and 2) when three or fewer data points were reported for a particular substance. If appropriate, the data were revised in light of the results of the quality assessment. All assessed data were then entered into an Accord for Excel Version 5.0 spreadsheet (Accelrys Inc. 2001) which was used for subsequent analyses. Where multiple data points were available for a particular endpoint, the median value was calculated and used in the analyses.

4.2.2 Comparison of toxicity values of parent and transformation product

The ecotoxicity data for transformation products and their parent compound were compared to determine whether the transformation products had similar ecotoxicity or were more or less toxic. All of the transformation products were then examined, using the approaches described below, to determine which contained a toxicophore (a chemical moiety that is necessary for a specific toxic mechanism), which were more hydrophobic or less dissociated and which might have a more potent mode of action than the parent compound.

4.2.3 Identification of transformation products containing toxicophores

The specific toxic action of a pesticide is due to an interaction between a target site in the organism and the active moiety or toxicophore of the pesticide (Rand et al. 1995). Toxicophores for each of the major classes of pesticide were identified by looking for sub-structural similarities within a pesticidal class. The Pesticide Manual (Tomlin 1997) was used as a basis for this work. The structure of each transformation product for which ecotoxicity data were available was then examined to determine whether or not it contained a pesticide toxicophore.

4.2.4 Identification of transformation products with increased accumulation

Accumulation has been shown to relate to hydrophobicity and dissociation of a compound (Könemann 1981; Esser and Moser 1982; Hermens et al. 1984). Therefore to determine whether increases in ecotoxicity observed for many of the transformation products could be explained by increases in accumulation, the octanol-water partition coefficients (which give a measure of hydrophobicity) and acid dissociation constants (which provide an indication of the degree of dissociation of a substance at neutral pH) for parent compounds and transformation products were compared. Generally experimentally-determined values were used. However, in instances where experimental data were not available for log K_{ow} or pKa, the values were predicted, based on chemical structure, using KOWWIN v 1.6 (Meylan and Howard 1995; Meylan and Howard 1999) for K_{ow} and SPARC (Karickhoff et al. 1991) for pKa. Transformation products that had a greater K_{ow} value than their parent or which were less dissociated than the parent were considered likely to bioaccumulate to a greater extent than the parent.

4.2.5 Identification of toxic modes of action for transformation products

The structures of each of the transformation products were examined to determine whether or not they might be expected to have a reactive mode of action (Bradbury 1994). Three 'rule-based' approaches were used (Lipnick 1991; Verhaar et al. 1992; Russom et al. 1997). Each approach identified structural fragments associated with a range of modes of action, if one of these fragments was contained in the molecule of a transformation product and not in the parent compound then it was assumed that the product might have the mode of action associated with the fragment and that it might be more toxic than the parent.

4.3 Results and Discussion

Using the search strategy, information was obtained on the transformation pathways of 60 active compounds and based on these pathways the structures of 485 transformation products were identified. The active compounds examined covered a range of chemical classes and included 27 herbicides, 20 insecticides, 12 fungicides and one compound used as a herbicide, fungicide and insecticide. All the major classes of pesticide were represented by at least one active compound.

Physico-chemical property/ Taxonomic group	Number of parents	Number of transformation products
log K _{ow}	36	71
pKa	35	64
log K _{oc} *	12	33
fish	30	60
daphnids	27	57
alcae	11	18

Table 12. Summary of the data available for parent compounds and their transformation products

* - These data were analysed independently with a different dataset

The final database (Table C1 in Appendix C) only comprised property and ecotoxicity values for 89 transformation products arising from 37 parent compounds. Twenty-three parent compounds with identified transformation pathways had either no corresponding data or only unsuitable data for their respective transformation products. Log K_{ow} values were available for 71 transformation products, pKa values were available for 64 transformation products and K_{oc} values were available for 33 transformation products (Table 12). In terms of the ecotoxicity data, fish 96h LC₅₀ values were available for 67 transformation products, whilst only 16 transformation products had acute algae ecotoxicity data (Table 12).

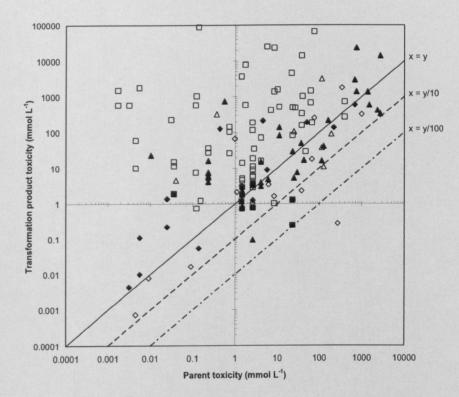


Figure 16. Generalisation between the ecotoxicity (to fish, daphnids and algae) of parent compounds and their transformation products that a) contain a toxicophore (black diamonds), b) are pro-pesticides (white diamonds), c) are more hydrophobic than the parent (black triangles), d) are less dissociated than the parent (white triangles), e) might be expected to have a more potent mode of action (black squares), or f) exhibit none of these characteristics (white squares)

A comparison of parent and transformation product ecotoxicity data (Figure 16) demonstrated that the majority (70%) of transformation products have either a similar toxicity to the parent compound or are less toxic. However, a significant proportion (30%; Table 13) are more toxic than their parent compound and 4.2% of transformation products are more than an order of magnitude more toxic. In terms of ecotoxicity values, in only 20 instances did a transformation product have an acute toxicity value of less than Img L^{-1} , one of the threshold values used in classifying chemicals in the EU, typically separating the classes 'very toxic' from 'toxic' (ECB 2003).

Parent compound	Pesticidal class ^a	Transformation product	Toxicophore present	Pro-pesticide	Increase in hydrophobicity	Decrease in dissociation	Change in mode of action	Unknown
2,4-D	arytoxyalkanoic acid	2,4-dichlorophenol 4-chlorophenol 4-chlorocatechol			F, D	F, D, A		
acephate	organophosphorus	methamidophos		F, D				
aldicarb	oxime carbamates	aldicarb sulfone	۵					
atrazine	1,3,5-triazine	deisopropydeethyl atrazine	٥					
azocyclotin	organotin	cyhexatin		F, D			Ŀ	
butylate	thiocarbamate	diisobutylamine						۵
carbary	carbamates	1,4-dihydroxybenzene 5-hydroxy-,1,4-naphthoquinone					Ŀ	
dazomet	methyl isothiocyanate precursor	hydrogen sulphide methyl isothiocyanate		F, D, A				LL.
diuron	urtea	3,4-dichloroanline			۵			
fluometuron	nea	3-trifluoromethyl benzenamine			۵			
Auridone		m-(trifluoromethyl) benzaldehyde			u.			
gamma HCH	orgenochlorine	1,2,3,5-tetrachtorobenzene alpha-HCH			۵ ۵			
ghyphosate		formaldehyde			۵			

. 3 e A fich ¢ 1 4 4 4 4 ł 5 à rivity \$. . ŝ ÷ . ahl. à ç 14

Chapter 4

Parent compound	Pesticidal class ^a	Transformation product	Toxicophore present	Pro-pesticide	Increase in hydrophobicity	Decrease in dissociation	Change in mode of action	Unknown
Continued								
napropamide	alkanamide	1-naphthol						u.
parathion	organophosphorus	paraoxon		F, D				
quinmerac	quinoliecarboxylic acid	BH-518-2	۲					
quintozene	aromatic hydrocarbon derivative	2,3,4,6-tetrachlorophenol 2,3,5,6-tetrachlorophenol 3,4,5-trichlorophenol pentachlorophenol pentachloroanisole			шD		<u>۵</u> ۴	۵
rimsulturon	suffonyAurea	IN-70842			٥			
techazene		2,3,4,5-tetrachloroaniline 2,3,5,6-tetrachlorothioanisole			L		Ŀ	
thiodicarb	oxime carbamates	methomyt	۵					
triclopyr	artoxyalitanoic acid	3,5,6-trichloro-2-pyridinol			is.			
triflusuffuron- methyl	suffonyturea	IN-D8526-2			Ľ			
zineb	alitylenebis (dithiocarbamates)	ethylenethiourea		۲				

Chapter 4

96

Fifty-four toxicophores associated with a wide range of pesticide classes were identified (Figure 17). It was not possible to identify a toxicophore for all the active compounds considered in the study. Some classes contained too few members within their pesticidal class for reasonable toxicophore identification, whilst some compounds had an undefined mode of action and/or were not a member of a defined pesticidal class.

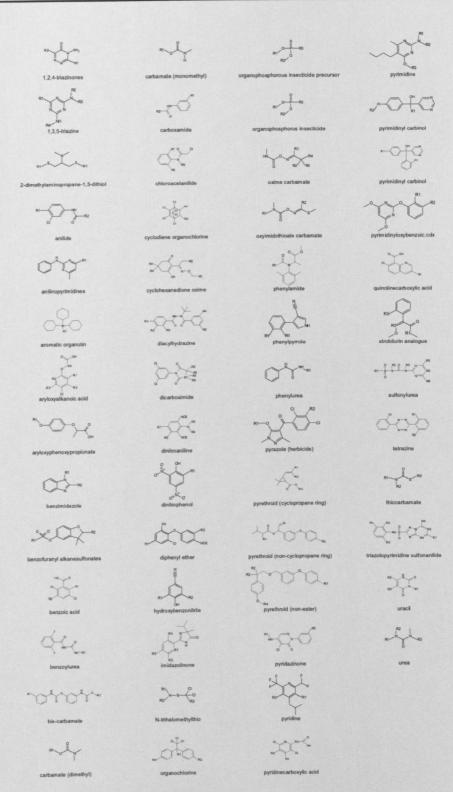


Figure 17. Toxicophores identified for major pesticide classes

When those substances identified as having increased toxicity in relation to their parent compound were evaluated it was found that over 90% of the observed increases in toxicity could be explained by the presence of a toxicophore, differences in accumulation or differences in mode of action (Table 13; Figure 16). Four substances still contained the parent toxicophore, five substances were the active substances resulting from a pro-pesticide, 13 substances were more hydrophobic than their parent compound and two substances would be expected to be less dissociated than their parent compound. Five substances would have a reactive mode of action or act via respiratory uncoupling; these were 5-hydroxy-1.4-naphthoquinone, 1,4-dihydroxybenzene, tetrachloroaniline, 2,3,4,6tetrachlorophenol and 2,3,5,6-tetrachlorophenol. 5-hydroxy-1,4-naphthoquinone and 1,4,-dihydroxybenzene are known to be highly reactive (Verhaar et al. 1992; Russom et al. 1997). The high toxicity of quinones has been attributed to enzymatically based redox cycling resulting in superoxide formation and the regeneration of the quinine (Mason 1990). It has been suggested that the 1,4dihydroxybenzene can be oxidised to a quinone and thus exhibit the same futile metabolism (Cronin Pers. Comm. 2003). Tetrachloroaniline and tetrachlorophenol are uncouplers of oxidative phosphorylation (Russom et al. 1997). For transformation products that did not have a specific mode of action (i.e. did not contain a toxicophore or are active component of a pro-pesticide), the difference between the toxicity of the parent and the toxicity of the transformation product appeared to depend on the potency of the parent. In situations where a parent compound was highly potent the difference between toxicity values for the parent and transformation product was large whereas in situations where the parent compound was less potent the difference between the parent and transformation product was small. One possible explanation for this is that most transformation products, after having lost the active moiety, exhibit baseline toxicity, which is considerable lower than the specific toxic effects of the pesticides.

Whilst, information on accumulation and mode of action explained the increases in toxicity for a significant proportion of the transformation products, a large proportion (30%) of products that were less toxic than the parent compound also had one or more of the characteristics. Many of these observations could however be explained by the following:

1) The presence of a toxicophore in a transformation product does not necessarily mean that the substance will be more potent than the parent compound. For example, the product may still have pesticide activity but be accumulated to a lesser extent than the parent.

2) The presence of a toxicophore in a molecule does not always mean that the molecule will have pesticidal activity. For example, interactions with other functional groups in the molecule may mean the toxicophore cannot interact with the site of action.

3) The mode of action of the toxicophore may not be relevant for certain test species. For example, a substance containing a herbicidal toxicophore would not be expected to exhibit an increase in toxicity to fish and daphnids. Data for the pro-pesticides support this. For insecticidal pro-pesticides increases in toxicity of the transformation products were observed in fish and daphnids whereas for herbicidal and fungicidal pro-pesticides, the transformation products were less toxic than their parents to fish and daphnids.

4) A transformation product that is more hydrophobic than its parent compound and does not have pesticidal activity is unlikely to be more toxic than its parent to sensitive species that have a receptor site relevant to the parent mode of action. Examination of the dataset supports this and indicates that transformation products which are more hydrophobic than and do not contain the parent toxicophore of an insecticide parent compound are generally less toxic than the parent to fish and daphnids. Similarly, transformation products not containing a toxicophore and which are more hydrophobic than a herbicide parent compounds are generally less toxic than the parent to algae. 5) A transformation product that is less dissociated than its parent may also be much less hydrophobic, the effect on accumulation of the decrease in dissociation may therefore be offset by the reduction in hydrophobicity. This may explain why succinic acid is less toxic than 2,4-D even though it is less dissociated, succinic acid has a log K_{ow} of -0.6 compared to a log K_{ow} of 2.81 for 2,4-D.

Therefore, when assessing the potential impacts of a particular transformation product, ideally as much information as possible should be used on the mechanism(s) of action of the parent, the sensitivity of the different taxa to the parent compound and the properties of both the parent compound and the transformation product.

The availability of data has meant that it has been only possible to investigate the relationships between acute aquatic toxicity endpoints (for fish, daphnids and algae) for parent compounds and their transformation products. Recent studies using chronic data for aquatic species and data for terrestrial organisms (Maroni et al. 2002) indicate that when these endpoints are considered, parents are generally of equal toxicity to or are more toxic than their transformation products. However, as in the current study, there were instances where a transformation product was more toxic than the parent compound. Unfortunately, the studies are based on confidential data so it is not possible to determine whether the factors that explain the increases in acute aquatic ecotoxicity values used in the present study also explain the increases in chronic or terrestrial ecotoxicity.

4.4 A pragmatic method for estimating ecotoxicity

The findings described above indicate that it is possible to begin to prioritise transformation products based on information on mode of action and accumulation. On the basis of the results obtained it is possible to begin to develop a framework that might be used to assess the potential effects of transformation products on aquatic organisms. A three-step process is proposed (Figure 18) which uses information on parent toxicity, transformation product structure and properties along with assessment factors. The assessment factors were derived from the ecotoxicity data using a cautious systematic approach which ensured that all data-points were covered. The assessment factors were generated by creating a series of 'bins'. These 'bins' were identified using the ecotoxicity comparison data and, for ease of use, ranges of parent toxicity values and assessment factors were selected to be factors of 10.

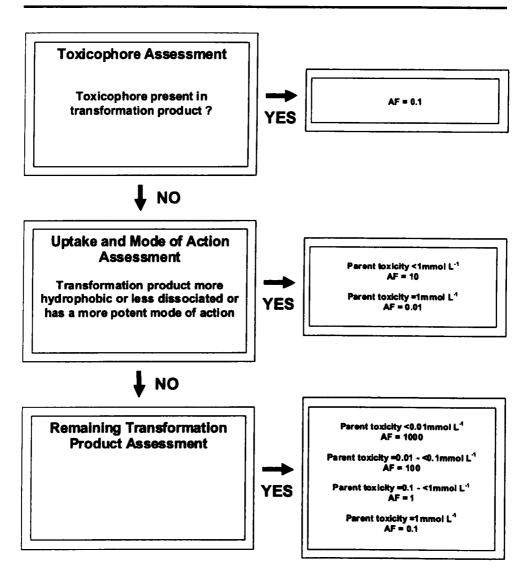


Figure 18. Flow chart summarising proposed transformation product assessment approach

4.4.1 Step 1 – Toxicophore assessment

The structure of the transformation product should be examined to determine whether it contains the parent toxicophore. If the parent toxicophore is present, then the effect of the transformation product can be estimated from ecotoxicity data for the parent compound using Equation 1 and an assessment factor (AF) of 0.1 (i.e. transformation products which maintain the toxicophore of the parent can be ten times more toxic than the pesticide). The AF is derived from the relationship between parent toxicity values and the difference between parent and transformation product toxicity for substances containing the toxicophore (Table 14; Figure 19). In Figure 19 increThe toxicity endpoint for the parent $(LC/EC/IC_{50})$ used in Equation 1 should be that for the most susceptible species (fish, daphnids and algae) to the parent pesticide.

Equation 1. $LC/EC/IC_{50 transformation product} = LC/EC/IC_{50 parent} * AF$

Table 14. Assessment factors for determining $LC/EC/IC_{50}$ values of transformation

LC/EC/IC ₅₀ for parent compound (mmol L ⁻¹)	Assessment factor (AF)
Step 1	
Any value	0.1
Step 2	
<1	10
≥1	0.01
Step 3	
<0.01	1000
≥0.01 - <0.1	100
≥0.1 - <1	1
≥1	0.1

products during the assessment scheme

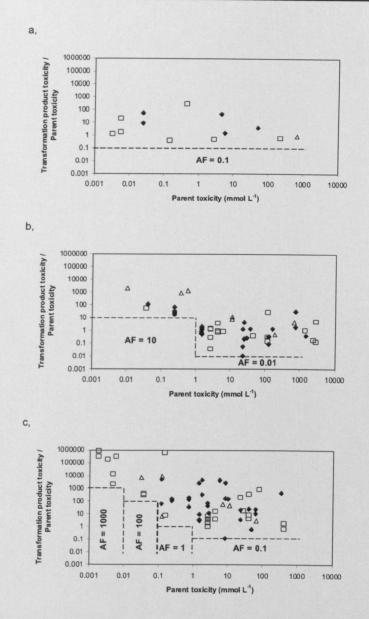


Figure 19. Relationship between parent ecotoxicity values (mmol L⁻¹) and the difference between parent and transformation product toxicity values for; fish (black diamonds), daphnids (white squares) and algae (white triangles) for a) transformation products containing a pesticide toxicophore; b) transformation products that are more hydrophobic, less dissociated or have a more potent mode of action than the parent; and c) the remaining transformation products. The the higher the value of the y-axis the less potent the transformation product toxicity is compared to the parent pesticide

4.4.2 Step 2 – Assessment of accumulation and mode of action

Those substances that do not contain the parental toxicophore are then assessed to determine whether: 1) the product is more hydrophobic than the parent compound; 2) the product is less dissociated than the parent compound; or 3) the product has a different but more potent mode of action than the parent compound. To determine the hydrophobicity (Kow) of the parent compound and the transformation product it is recommended that SRC's KOWWIN software is used to estimate the octanol-water partition coefficient. Whilst it is recommended that SPARC is used to determine dissociation. The rule based systems of Lipnick (1991), Verhaar et al. (1992) and Russom et al. (1997) should be used to determine whether a transformation product has a reactive mode of action or whether it is a respiratory uncoupler. Such rule based systems were not necessarily developed for pesticides and their transformation products so may not be appropriate for all occasions.

For all compounds that are shown to be more hydrophobic, less dissociated or which have a more potent mode of action than the parent compound, the assessment factors listed in Table 14 should be used along with Equation 1. The assessment factors have been derived from the relationship between parent toxicity and the difference between parent and transformation product toxicity for transformation products that are more hydrophobic, less dissociated or which might be expected to have a more potent mode of action (Figure 19) – this overcomes the issue of species sensitivity. All compounds that are less hydrophobic than the parent, equally or more greatly dissociated and which do not have a reactive mode of action or are not respiratory uncouplers, should move on to Step 3 assessment.

4.4.3 Step 3 – Assessment of remaining products

The effects of all remaining transformation products should be determined based on the ecotoxicity data for the parent compound using assessment factors and Equation 1. The assessment factors (Table 14) have been derived from the relationship between the toxicity of the parent compound and the difference between the toxicity of transformation product and parent for all compounds that do not contain a toxicophore, which would not be expected to accumulate to a greater extent than the parent and which would not be expected to have a more potent mode of action (Figure 19).

Such an approach is precautionary. As information on the hydrophobicity and dissociation of transformation products can be accurately predicted from chemical structure using quantitative structure-property relationships (QSPR's) (Sinclair and Boxall 2002b), the only information required to perform the assessments are the structures of the transformation products for the substance of interest and experimental ecotoxicity values for the parent compound. The methodology could therefore be used at an early stage in the risk assessment process to identify transformation products that might pose a risk to the environment. These compounds could then be taken forward for experimental testing. The application of an approach of this type will result in clear cost and time savings and will minimise the use of laboratory animals.

The scheme and the assessment factors proposed are based on a limited dataset and whilst the dataset does cover a range of pesticide classes and modes of action, evaluation and validation against additional data would be beneficial and could allow further refinement of the methodology. This would probably be a requirement if the approach is to be adopted by regulatory authorities. Other studies into the effects of transformation products (Maroni et al. 2002; European Crop Protection Association 2002) have had access to unpublished data produced by industry and these indicate that a large body of data has been generated that could be used for evaluation purposes. These datasets not only include information on acute toxicity to fish, daphnids and algae but also include data on aquatic plants, sediment dwellers, earthworms and chronic endpoints.

The assessment process focuses solely on the determination of the potential effects of a particular transformation product. In order to identify transformation products that might pose a risk to the environment, it will also be necessary to assess exposure. Work has been done assessing the overall persistence and environmental concentrations in different compartments for solvent, surfactant and herbicidal transformation products (Fenner 2001). The development of approaches to assess exposure was beyond the scope of this study. In order to perform such assessments, information will be required on the persistence and mobility of transformation products. Assessment of currently available QSPR's for determining the sorption of a transformation product in soil or sediment systems, indicate that these approaches could be used to assess mobility (Sinclair and Boxall 2002b). If these data were supplemented with information arising from fate studies (e.g. degradation route studies and lysimeter investigations) and used in exposure models (FOCUS 2002), it may be possible to derive an estimate of exposure for a transformation product. This could then be used along with the effects estimate to derive a toxicity exposure ratio (TER) (i.e. the ratio of the aquatic ecotoxicity endpoint and the exposure concentration) and hence assess the risk of a particular transformation product.

4.5 Conclusions

In conclusion therefore, there is an increasing need for pragmatic approaches to assess the risks posed to the environment by pesticide transformation products. Generally, transformation products have similar toxicity to or are less toxic than their parent compound. However, in instances where a transformation product is more toxic, the increase in toxicity can be explained by a knowledge of pesticide and transformation product mode of action and the relative accumulation of the transformation product and parent. Using this information, a pragmatic approach has been developed that can be used to assess transformation products at a very early stage in the risk assessment process to identify those products that do and do not need further testing. The use of such an approach offers a range of benefits including cost and time savings and the reduction in animal testing. The results of the current study are feeding into the EU aquatic ecotoxicology guidance document (European Commission 2002a). Although the current work focuses on the pesticide registration process in Europe, the approach developed here could be adopted by other geographical areas and used with other biologically active molecules (e.g. biocides, human medicines and veterinary medicines). The framework has been evaluated for use in the environmental risk assessment of biocides (Sinclair and Boxall 2002a). Initial results indicate the approach shows promise in this area.

4.5.1 Appendices

Ecotoxicity and physico-chemical property data for parent compounds and associated transformation products collated and utilised during this chapter are available in Table C1 in Appendix C.

5 Prioritization of Transformation Products in Drinking Water Supplies²

5.1 Introduction

Pesticide application in agriculture is used to increase crop yield and maintain plant health by eradicating unwanted organisms that compete for resources, bestow disease and/or cause crop damage due to feeding activities. During a normal growing season a wide variety of pesticides can be applied, their identity depends on a range of factors including the specific pest and crop of interest. Once released into the environment, the pesticide is susceptible to biotic and abiotic degradation, which may result in the formation of a range of different transformation products (Roberts 1998; Roberts and Hutson 1999; Aizawa 2001). It is important that during the characterisation of risks posed by pesticides to aquatic ecosystems, the impact of pesticide transformation products is also considered (Belfroid et al. 1998; Kolpin et al. 2001; Fenner et al. 2002; Boxall et al. 2004).

Once formed in the environment, transformation products can move vertically through the soil profile to underlying groundwaters and away from the site of application via aquifer transport (Schiavon 1988; Widmer and Spalding 1995; Broholm et al. 2001). There is also the potential for transformation products to enter surface waters when they travel laterally via either overland runoff due to heavy rainfall or via sub-soil tile drains, entering agricultural ditches and streams and are then transported on to major rivers, reservoirs and ultimately estuaries and the marine environment (Muir and Baker 1976; Phillips et al. 1999; Aga and Thurman 2001). Mobile pesticides and transformation products can be susceptible to degradation at any point during their transport. Mobile and non-mobile transformation products formed from mobile pesticides or transformation

² Sinclair C.J., Boxall A.B.A., Parsons S.A., and Thomas, M.R. (2006) Prioritization of Pesticide Environmental Transformation Products in Drinking Water Supplies, Environmental Science and Technology, 40:7283-7289.

products can therefore be identified away from the site of application (Brouwer et al. 1990). Pesticide transformation products have been identified in rivers, reservoirs and groundwater (Albanis and Hela 1998; Kolpin et al. 2000; Battaglin et al. 2000; Mills et al. 2005). There is therefore the potential that raw water abstracted for treatment and subsequent human consumption is contaminated with transformation products and parent pesticides.

Some high profile transformation products, such as deethylatrazine formed from the triazine herbicide atrazine, have been identified in finished drinking waters and Blomquist 2004), whilst transformation products (Coupe of organophosphorus insecticides that have conserved the acetylcholine esterase inhibitory activity of the parent pesticide, a toxic action known to effect human health, have been identified in both raw source water and treated drinking water (EPA 2001b). Moreover chronic effects caused by some transformation products have been identified. The environmental transformation products formed from the chloroacetamide herbicide alachlor have been shown to be more teratogenic than the parent compound (Osano et al. 2002b) and some transformation products have exhibited mutagenic effects (Tessier and Clark 1995). Whilst not all transformation products will exhibit toxicity to mammalian endpoints and even less will exhibit effects greater than their parent pesticide, these examples indicate that the risk of transformation products in source drinking water needs to be considered. There is therefore a need to identify those transformation products that have the greatest potential to reach drinking water supplies and those that are of the greatest concern to human health.

At an American Water Works Association Research Foundation (AwwaRF) workshop (5th June 2004, Prague, Czech Republic), it was agreed that a risk based approach was required by the water industry and pesticide manufacturers. Therefore this chapter describes a simple approach developed to identify pesticide transformation products of potential concern to drinking water supplies. It is envisaged that water companies and water regulators may use the approach to focus future monitoring and water testing programmes. The approach can be

applied to any specific geographical area that has suitable pesticide usage data available. We illustrate the approach with two geographical areas that have suitable data, agricultural pesticide use in Great Britain and agricultural and amenity pesticide use in California which includes use in parks, golf courses, cemeteries, pasture and along roadsides and railways.

5.2 Development of Prioritisation Scheme

5.2.1 Workshop

To aid in the development of a prioritisation scheme for pesticide transformation products, a workshop was organized on 5^{th} June 2004 in Prague, Czech Republic. Thirty scientists with a variety of expertise and backgrounds were brought together to discuss and develop a possible prioritisation scheme. The delegates had experience in environmental fate and effects, pesticide regulation, water treatment, environmental monitoring and analysis, toxicity, ecotoxicity and human health effects. The prioritisation approach described below was developed based on discussions during the workshop.

The impact of a pesticide transformation product on drinking water quality will be determined by 1) its potential to enter drinking water supplies; 2) its treatability and 3) its potential effects on human health. The prioritisation scheme is therefore a risk based approach that considers both exposure and effects. The exposure part of the approach does not predict transformation product concentration in drinking waters but provides a normalised value for the three components used to determine exposure (formation, sorption and degradation). Possible values for each component used to determine exposure can lie between 0 and 1. The approach is therefore designed to rank a transformation product among other transformation products identified within a system.

The extent to which transformation products will be present in finished drinking water will be heavily influenced by the drinking water treatment processes employed to prepare source water for human consumption. The proposed scheme has been developed so that it is not specific to a particular location and therefore specific treatment processes. Determining the impact of water treatment on transformation products would require data relating to their fate in a range of treatment processes. However, extensive data of this nature is not currently available. Therefore the scheme was restricted to prioritising transformation products in source drinking water and not finished drinking water.

5.2.2 Stage 1: Exposure

The potential for a transformation product to reach drinking water supplies will be determined by a range of factors most notably the amount of parent pesticide used, the scenario in which the parent compound is used, the amount of a particular transformation product formed, the mobility of the transformation product and its persistence in the environment. Therefore in the exposure component of the prioritisation approach the potential for a transformation product to enter drinking water is determined using data on each of these factors.

5.2.2.1 Input into the system

The first action is to define the scope of the prioritisation by identifying the geographical area. This could be a country, an administrative region, an individual catchment or an area determined by other geographical factors such as an area covered by a water company. Once the geographical area (or system) is defined then data from usage surveys can be used to identify the pesticides in use in that area. Using this list of pesticides, their environmental transformation products can be identified from compendia of degradation route studies (Roberts 1998; Roberts and Hutson 1999; Aizawa 2001) along with information on the amounts formed in soil, water and water/sediment degradation studies.

Using the data collected on pesticide usage and transformation product formation an index (A) that reflects the amount of a transformation product that will be released into the system of interest is then calculated using Equation 2.

Equation 2
$$A = \frac{U}{U_{--}} \cdot f$$

Where:

A = Transformation product amount index

- *U*=
- Total amount of the transformation product's parent pesticide used in the geographical area over a specified time period (e.g. kg yr⁻¹)
- U_{max} = Total amount of the highest used pesticide in the geographical area over a specified time period (e.g. kg yr⁻¹)
- f= Maximum fraction of transformation product formed within the environmental compartment of interest

The f value used in the prioritisation should be the maximum fraction of the transformation product formed during a laboratory degradation study. The selection of degradation studies from which the transformation product formation data are drawn will depend on the pesticide usage scenario under investigation. If the prioritisation was for transformation products from agricultural pesticides then formation data from soil and aqueous degradation studies should be considered. However if a scenario where pesticides could directly enter surface waters was under consideration, e.g. hard surfaces, then only aqueous degradation studies should be considered. If several maximum values are collated for a transformation product from degradation studies for the same compartment then the highest identified value should be used to maintain the conservative nature of the scheme.

5.2.2.2 Mobility

Once a transformation product has been formed in the environment, the potential for it to enter and remain in water bodies will be determined by its sorption to soils and/or sediments. The sorptive behaviour of a compound can be described by the distribution coefficient K_d , which is a simple measure of its distribution between the soil/sediment and aqueous phases (Lyman 1995). The sorptive behaviour of a compound is usually influenced by the amount of organic matter present in the soil/sediment (Lambert et al. 1965). Therefore the K_d is often normalized by the amount of organic carbon present in the matrix of interest, yielding the organic carbon normalized adsorption coefficient (K_{∞}). In the second stage of the exposure assessment the mobility index (F) is calculated. This is the fraction of the transformation product that is likely to be in the aqueous compartment of the environment and is therefore likely to enter drinking water supplies. It is determined using Equation 3.

Equation 3
$$F = \frac{1}{1 + K_d r_{sw}}$$

Where:

F =	Mobility index
$K_d =$	Distribution coefficient for adsorption $(cm^3 g^{-1})$
$r_{sw} =$	Ratio of the aqueous volume and solid phase mass of the
	compartment of interest

The ability of a transformation product to move to source drinking water will be influenced by its sorptive behaviour, e.g. K_{oc} , and the exposure to sorptive material, i.e. soil and sediment. Transformation products that result from the agricultural application of pesticides will be exposed to more sorptive material than transformation products that are formed as a result of pesticide application to hard surfaces and/or direct application to surface water. Therefore for the agricultural/soil application of pesticides an $r_{sw} = 7.5$ is proposed (volume

fraction of solids in soil - 0.6 $m_{solid}^{3} m_{soil}^{-3}$, volume fraction of water in soil - 0.2 $m_{water}^{3} m_{soil}^{-3}$, density of the solid phase - 2500 kg_{solid} m_{solid}^{-3}), whilst for applications that do not involve the soil compartment an $r_{sw} = 0.005$ is proposed (volume fraction of solids in sediment - 0.2 $m_{solid}^{3} m_{sed}^{-3}$, volume fraction of water in sediment - 0.8 $m_{water}^{3} m_{sed}^{-3}$, density of the solid phase - 2500 kg_{solid} m_{solid}^{-3} , depth of water in surface water body - 3m and depth of sediment in that surface water - 0.03m). These values are from the standard environmental characteristics proposed in the European Chemicals Bureau Technical Guidance Document on Risk Assessment (TGD) (ECB 2003). Within the available literature, transformation product sorption data are often reported as K_{oc} and not as K_d. Moreover, K_{oc} values are often reported without the total organic carbon content (TOC) of the soil in which the determination was made. Therefore, if this is the case, a TOC of 2% for the soil/sediment was assumed to derive K_d, again this value having been proposed in the TGD (ECB 2003).

5.2.2.3 Persistence

Once formed in the environment the potential for a transformation product to enter drinking water supplies will depend on the time the compound remains in the environment. The persistence of the compound in the environment will be determined by how susceptible it is to biotic and abiotic degradation. In the third phase of the exposure assessment, a persistence index (P) is therefore determined using Equation 4. When characterizing the environmental persistence of transformation products, a compound's degradation rate constant in both the soil and water compartments will significantly influence the overall persistence and hence the potential to enter source drinking waters. Therefore the persistence index is derived from degradation half-lives for both compartments. The two factors assume that degradation follows first order kinetics and calculate the fractions remaining in both compartments after a designated period of time, which are then multiplied to provide the overall persistence index. Potential values for this index range from 0 to 1.

Equation 4
$$P = e^{-\frac{\ln 2}{DT_{50w}} t} \cdot e^{-\frac{\ln 2}{DT_{50w}} t}$$

Where

<i>P</i> =	Persistence index
$DT_{50 w} =$	The time for 50% of a transformation product to be reduced in an
	aqueous degradation study (days)
$DT_{50s} =$	The half time for 50% of a transformation product to be reduced
	in a soil degradation study (days)
<i>t</i> =	Residence time of water in the system (days)

Pesticide transformation product degradation half-lives are often available for different environmental compartments, e.g. soil and sediment/water systems and different degradation processes, e.g. hydrolysis and surface photolysis. When prioritising transformation products resulting from the agricultural application of pesticides then the determination of P should include degradation rate constants in both soil and water (Equation 4). Where pesticides are applied directly to surface waters and/or used on hard surfaces, then only the water persistance component $(DT_{50 w})$ should be used to determine P in Equation 4 because the degradation rate constants in soils will not influence the environmental fate of these transformation products. When selecting a water degradation half-life to calculate P, the lowest value from either a hydrolysis study, aqueous photolysis study or a sediment/water degradation study should be used, as it will be this process that drives the degradation of the transformation product in water. The TGD (ECB 2003) water residence value of 40 days is suggested for use as the t parameter. However it may be required to alter this value depending on the drinking water source under consideration, e.g. for drinking water sourced primarily from groundwater this value may need to be increased.

5.2.2.4 Calculation of the Exposure Index

The three previously described parameters; formation, mobility and persistence, are multiplied in the final stage of the exposure assessment to provide a single

index for exposure (E) using Equation 5. E is a unitless value that allows a transformation product to be ranked on its potential to enter drinking water supplies relative to the other transformation products that could be formed within the system of interest.

Equation 5
$$E = A.F.P$$

Where

E = Transformation product exposure index

5.2.3 Stage 2: Effects

Limited data are available on the mammalian and human health toxicity of pesticide transformation products (Parsons et al. 2006). Therefore in the absence of suitable information, the potential health effects of the associated parent compound should be used in the effects component of the prioritisation exercise. Parent compounds are generally more toxic than transformation products (Heydens et al. 2000; Sinclair and Boxall 2003) and so the use of parent pesticide data is likely to be conservative. The most relevant toxicological safety value for drinking water is the acceptable daily intake (ADI). These values are therefore used in the prioritisation approach. ADIs are usually calculated for risk assessment, generally by extrapolating the lowest no-observable effect level (NOEL) identified during mammalian toxicity studies to humans with the use of a safety factor, which is often 100. Many governments and organizations have adopted this approach so that there can be several ADIs available for any pesticide. If available then the ADI for the specific jurisdiction should be used, however if this is not available then to err on the conservative side, the lowest ADI identified should be used in the prioritisation scheme.

5.2.4 Stage 3: Risk characterization and ranking

In the final stage of the prioritisation, a risk index (RI) is derived from the transformation product exposure index and the parent ADI using Equation 6. The larger the RI the greater the potential risk posed by a transformation product to drinking water supplies within the defined system. By ranking each transformation product formed in a study system according to its RI, it is possible to identify those substances that pose the greatest risk to drinking water supplies. This information can then be used to steer future monitoring and research.

Equation 6
$$RI = \frac{E}{ADI}$$

Where

RI = Transformation product risk index ADI = Acceptable daily intake (mg kg⁻¹ day⁻¹)

When the same transformation products are produced from different parents, e.g. deisopropylatrazine is a product of both atrazine and simazine then the RI should be summed to provide an RI that represents the overall risk posed by that transformation product within the system of interest.

5.2.5 Input data and data gaps

In order to complete a priority list, once a system has been defined, it may be necessary to use transformation product data from a variety of sources, e.g. experimentally determined data and/or default values. The quality and accuracy of the data used to generate a priority list can vary. Therefore it is suggested that transformation products should be classified by the quality of the data used, grouped according to these classifications and only then be ranked according to their *RI*. A proposed classification system is provided in Table 15. This grouping allows those transformation products that have been prioritised based on potentially less accurate data to be distinguished from those transformation products with good quality datasets. The *RI* for transformation products that are categorized as Class A can be considered a representation of the risks posed by these compounds compared to the other transformation products in that class. Transformation products that have a *RI* generated using four default values, i.e. Class E should be omitted from a final priority listing until some experimentally derived data becomes available.

 Table 15. Categories to be used when classifying the transformation product data

 availability

Data class	Default values required * °
Α	0
Br	1 (formation) b
8,	1 (mobility)
B,	1 (persistence)
B, C	["] 2
D	3
E	4

* - There are four parameters in the classification: f, Kd, DT50 and DT50 w

^b - Transformation product formation data in the form of minor/major should be considered as default data

^c - The subscript *f*, *m* and *p* on the B data class represent the single default value data type required in the prioritisation was for formation, mobility or persistence respectively

5.2.6 Priority list for California and Great Britain

To illustrate the proposed approach two priority lists were developed: 1) agricultural pesticide use in Great Britain and 2) agricultural and amenity pesticide use in California, USA.

A pesticide usage dataset compiled by the Pesticide Usage Survey Group (PUSG) of the Central Science Laboratory was used to define the scope of the Great Britain priority list. The PUSG undertakes surveys of all crops grown commercially throughout the UK at regular intervals, using fully stratified samples of farmers and growers. The data are then extrapolated to provide a national estimate of use (Thomas 2001). The dataset used during this

prioritisation comprised 'field' pesticide usage in Great Britain during 2003. These data did not include pesticides applied during food storage practices and pesticide applications under covered scenarios such as glasshouses and mushroom production.

The California Department of Pesticide Regulation (CDPR) carries out a comprehensive program for monitoring pesticide usage throughout the state. Under this program all pesticide usage has to be reported on a monthly basis. This data includes the date of application, the location of application, pesticide identity and quantity used (CDPR 2000). The pesticide usage data used for California was defined as 'agricultural' but also included applications to parks, golf courses, cemeteries, pasture, and along roadsides and railways. The usage data excludes home and garden use and most industrial and institutional use (CDPR 2000). The dataset used during this prioritisation comprised pesticide usage during 2003 (CDPR 2005).

Principally, data for the generation of priority lists for Great Britain and California were obtained from regulatory documents. Where no regulatory data were available, data were obtained by searching the publicly available literature (Parsons et al. 2006). If no experimentally determined data could be identified, conservative default values were used (Table 16). When several data values and/or ranges of values had been collated for a given transformation product then the most conservative value was used during the prioritisation. Where an information source provided reported data as less than a specified value, e.g. <5%, the specified value was used in the prioritisation and this value was not classified as a default value.

Parameter	Collated value	Proposed default value	Units
f	-	1	-
f	minor	0.1	-
f	major	1	-
f	< X%	X / 100 ^b	-
f	> X%	1	-
Ka	-	0.2 *	cm³ g
DT _{50 s} and DT _{50 w}	-	300 *	cm³ g ⁻ days

 Table 16. Proposed conservative default values to be used during a transformation product

 prioritisation when experimental data are unavailable

* - conservative default values derived from ECB (2003)

^b - For example if available formation data was, < 8%, f = 0.08

5.3 Results and Discussion

The dataset used to illustrate the prioritisation scheme for agricultural pesticide use in Great Britain contained 227 compounds which had annual usage greater than 500 kg. Those compounds that were considered to be inorganic, e.g. sulphur and/or had an undefined chemistry, e.g. tar oil were removed (n = 11). Sixteen of the remaining pesticides were characterised within the literature as having no environmental transformation products, whilst 23 pesticides had transformation products identified but no environmental formation data available and were therefore excluded from the list (the illustration was restricted to transformation products with quantitative or qualitative formation data) (Table D1 in Appendix D). No environmental transformation products could be identified for 55 of the pesticides, however, 371 transformation products with environmental formation data were identified for the remaining 122 pesticides. The top four transformation products with data availability categorised as Class A, B_f, B_m, B_p, C and D for agricultural pesticide usage in Great Britain are provided in Table 17. When the priority list for Great Britain was compiled, approximately 74% of the identified transformation products required three or more default values (Class D and E), with only 12 compounds (3%) having a complete dataset.

Transformation product	Parent pesticide(s)	Pesticide usage (U) (kg yr ⁻¹)	Formation fraction (f)	Sorption (K ₄) (cm ³ g ⁻¹)	Persistence soil (DT _{50.s}) (d)	Persistence water (DT _{50 w}) (d)	Data availability classification	Pesticide ADI (mg kg ⁻¹ d ⁻¹)	Risk index
3.5.6-trichioro-2-ovridinot	chlorpvrifos / triclopyr	67684 / 38295	0.32 / 0.26	0.53	279	383	۷	0.003 / 0.005	0.69
thifensulturon acid	thifensulturon-methyl	16786	0.25	0.138	365	109	A	0.01	0.066
kresoxim-methvl acid	kresoxim-methyl	94944	0.84	0.34	131	383	۲	0.4	0.019
O-desmethyl thifensulturon-methyl	thitensulturon-methyl	16786	0.19	0.68	15.3	51	۲	0.01	0.002
CGA-321113	trifloxystrobin	76011	-	96.0	350	289	2	0.038	0.091
carbendazim	thiophanate-methyl / benomyl	18633 / 922	0.76/1	0.45	320	743	Bf •	0.02 / 0.03	0.066
1,2,4-triazole	fluquinconazole / tebuconazole tetraconazole / propiconazole myclobutanii	22443 / 126787 4906 / 10760 3877	0.161/0.06 0.1/0.43 1	0.86	86	190	Bť	0.006 / 0.03 0.004 / 0.04 0.1	0.044
CL 153815	picolinafen	3103	-	3.2	11	31.4	Bf	0.014	0.001
dictofon acid	dictofoo-methyl	33683	6.0	0.2	63	105	đ	0.001	2.653
ethy-m-hydroxyohenyl carbamate	desmedipham	4349	0.16	0.2	27	26	ď	0.0018	0.008
triazine amine A	tribenuron-methyl	4074	0.91	0.2	240	105	ď	0.12	0.004
BTS 27919	amitraz	642	0.35	0.2	150	21	đ	0.0025	0.004
desmethvisoototuron	isoproturon	2260278	0.14	1.07	65	30	æ	0.015	0.615
deethvlatrazine	atrazine	139758	0.19	1.7	121	300	Bp	0.006	0.277
deisopropylatrazine	simazine / atrazine	139758	0.11/0.1	0.16	17	300	B	0.005 / 0.006	0.201
thiophene suffonimide	thifensulfuron-methy!	16786	0.29	0.052	96.6	300	Bp	0.01	0.106
propachlor oxanilic acid	propachior	138592	0.33	0.03	300	300	U	0.009	1.539
propachlor ethane suffonic acid	propachlor	138592	0.19	0.03	300	300	ပ	600.0	0.883
4-hydroxy-2,5,6-trichloroisophthalonitrile		479833	0.32	0.2	43	300	U	0.018	0.722
triazemete metabolite II	triazamate	1020	0.91	0.28	300	300	ပ	0.0003	0.367
1-methyl-3-(4-isopropyl phenyl)-urea	isoproturon	2260278	0.16	0.2	300	300	0	0.015	3.458
TCPSA	tri-allate	372093	0.18	0.2	300	300	٥	0.005	1.916
3-carbamy1-2,4,5-trichtorobenzoic acid	chlorothalonil	479833	0.25	0.2	300	300	٥	0.018	0.98
methiocarb suffoxide	methiocarb	38567	0.3	0.2	300	300	٥	0.002	0.851

123

Chapter 5

The dataset used for the prioritisation of transformation products from pesticide usage in California contained 100 of the most used compounds (by mass) during 2003. Those compounds that were considered to be inorganic, e.g. sulphur, had an undefined chemistry, e.g. petroleum oil and/or were known pesticide adjuvants were removed (n = 41). The prioritisation was then undertaken on the remaining 56 compounds. Eighty-six transformation products were identified from 33 pesticides, the remaining 24 pesticides were either characterised within the literature as having no environmental transformation products or no data were available on their environmental degradation (Table D2 in Appendix D). The top four transformation products with data availability categorised as Class A, B_p, C and D for agricultural and amenity pesticide usage in California are provided in Table 18 (no transformation products were classified as B_f or B_m). Approximately 70% of the transformation products identified for California required three or more default values (Class D and E) to complete the prioritisation, with only 4 transformation products (5%) having a complete dataset.

Transformation product	Parent pesticide(s)	Pesticide usage (U) (kg yr ⁻¹)	Formation fraction (1)	Sorption (K _a) (cm ³ g ⁻¹)	Persistence soil (DT ₅₀ ,) (d)	Persistence water (DT ₅₀ w) (d)	Data availability classification	Pesticide ADI (mg kg ⁻¹ d ⁻¹)	Risk index
carbendazim	thiophanate-methyl	57118	0.76	0.45	320	61	<	0.02	0.08
aldicarb suffoxide	aldicarb	118867	0.92	0.17	53	2.3	•	0 003	50 001 50 001
RP 30228	iprodione	130467	0.31	132	319	1.8	<	0.02	<0.001
aldicarb suffone	aldicarb	118887	0.8	60.0	154	6.0	. <	0.003	<0.001
3,5,6-trichloro-2-pyridinol	chlorpyritos	701468	0.32	0.53	279	300	8	0.003	3 549
tetrahydrophthalamide	captan	226783	0.66	0.04	19.5	300	æ	0.1	0.043
aminomethytphosphonic acid	glyphosate	2702064	0.29	15	958	300	8	0.3	0.007
3-phenoxybenzoic acid	cypernethrin	84414	0.48	1.46	300	°	Bp	0.015	<0.001
methylisothiocyanate	metam-sodium	6720247	0.75	0.2	9	300	υ	0.01	2.671
N'-(3,4-dichlorophenyl)-N-methylurea	diuron	609442	0.23	0.2	1733	300	U	0.007	1.635
deisopropylatrazine	simazine	305784	0.11	0.16	300	300	v	0.005	0.557
melathion dicarboxylic acid	malethion	296716	0.62	0.2	300	365	υ	0.05	0.289
pyrimidinot	diazinon	237584	0.73	0.2	30	300	0	0.002	6.695
3,5,6-trichloro-2-methoxypyridine	chlorpyrifos	701468	0.08	0.2	300	300	۵	0.003	1.446
2-hydroxy ethyl phosphonic acid	ethephon	260529	0.64	0.2	300	300	۵	0.018	0.711
1-napthol	carbary	93022	-	0.2	15	300	0	0.003	041

Table 18. Priority list of transformation products in California drinking water supplies as a result of besticide annication

Chapter 5

If a prioritisation were to be used to focus monitoring studies on the highest risk transformation products then compounds that are present at the top of the separate data classes (Class A, B_f, B_m, B_p and C) may be selected. These compounds could be considered as those that would pose the greatest risk to drinking water resources within a system, based on currently available data. Generally, the identity of the transformation products ranked at the top of each data availability classification are different for Great Britain and California. Therefore it may not be appropriate to use standard transformation product determinand lists when monitoring surface water and groundwaters. It is difficult to compare surface and groundwater transformation product monitoring data to the generated priority lists because data specific to the defined systems are not available. However when we consider the top of the priority lists for Great Britain and California (Table D3 and D4 in Appendix D, respectively) a number of the transformation products have previously been identified in surface and groundwater (Sinclair and Boxall 2005), e.g. 3,5,6-trichloro-2-pyridinol, deisopropylatrazine and deethylatrazine.

The aim of this study was to develop a prioritisation scheme that could be used as a tool to allow the water industry and regulators to focus future research and monitoring towards those pesticide transformation products of most importance in terms of their tendency to entering drinking water supplies and to negatively affect human health. The approach can be applied to different geographical areas where suitable pesticide usage data are available. The approach was not devised to provide estimated concentrations of transformation products in environmental waters or determine whether individual transformation products will be present in drinking water supplies, but to rank the potential for pesticide transformation products to enter drinking water supplies in relation to other transformation products present within a specified system of interest, i.e. geographical area or specific use scenario. It is important to recognize that the approach has been developed for ranking purposes only and a high *RI* does not indicate that a substance actually poses an unacceptable risk to human health but that it may pose a higher risk than other transformation products in that system.

A number of approaches have previously been derived to assist in the identification of pesticides, veterinary medicines and other persistent, bioaccumulative and toxic chemicals (Mitchell et al. 2002; Boxall et al. 2003) that are of most concern in terms of their impact to environmental ecosystems (Russom et al. 1995). These methodologies generally consider the risk of parent compounds in terms of their impact to the environment and not human health. Due to the lack of available data within the open literature it has been difficult to draw any conclusions upon the risk of pesticide transformation products (Belfroid et al. 1998). Moreover some of the approaches developed for characterising risk are very data intensive, incorporating physico-chemical properties, site specific parameters and mammalian toxicity endpoints (Enfield et al. 1982; Rao et al. 1985; Capleton et al. 2006). Techniques of this nature maybe useful for determining the most important well known chemicals at wellcharacterised sites but it would be difficult to apply them to larger, generally uncharacterised geographical areas and extensive transformation product inventories.

The environmental fate and effects data availability for pesticide transformation products severely hampers the generation of a complete priority list once pesticide usage data has been identified. Russom et al. (1995) acknowledged that environmental screening methodologies for pesticides were restricted by the availability of suitable exposure and effects data. Therefore they developed an approach that used quantitative structure activity relationships (QSAR) to fill ecotoxicological data gaps, quantitative structure biodegrability relationships (QSBR) to determine persistence and fugacity models to estimate partitioning. The use of relatively accurate estimated values for persistence and mobility would allow compounds to be placed realistically during a prioritisation. The more default values that are used for a transformation product then the larger the allocated *RI*, due to the conservative nature of these values. In this scheme a default of 300 days for $DT_{50 s}$ and $DT_{50 w}$ was proposed, as suggested by the EC (European Commission 2002a). This value, when compared to experimentally derived data is rather conservative, 88% of transformation products have a $DT_{50 s}$ less than this value, with 42% having a $DT_{50 s}$ an order of magnitude less than this value (Sinclair and Boxall 2005). However, if predictive values were to replace conservative default values, there is a requirement to identify the most suitable techniques to use for this purpose.

Due to the very limited availability of mammalian and human effects data, parent pesticide ADIs were used for the hazard input within the prioritisation scheme. These data are probably very conservative, however it is probable that pesticides that are toxic to humans are more likely to degrade to transformation products that are toxic to humans, than pesticides that are not toxic to humans, i.e. if a structural moiety which infers a specific toxic action is maintained within a transformation product there is the possibility that the transformation product will exhibit the same toxic mechanism as the parent. Currently there is a trend to reduce the number of mammalian toxicity studies that are performed and identify suitable alternative methodologies (ECVAM 2006). Expert methods that identify structural alerts that may cause molecules to exhibit known toxicological mechanisms, e.g. DEREK for Windows (Lhasa Ltd), could be used to provide transformation product specific toxicological data for future prioritisations.

5.4 Conclusions

The advantages of the proposed scheme are that transformation products identified within a system of interest can be rapidly ranked in terms of their risk to drinking water supplies. This information could be invaluable in prioritising chemicals for analytical method development, monitoring programs and experimental toxicology and ecotoxicological studies. The approach could be expanded in the future to include predictive toxicological and environmental parameter approaches that could negate the requirement for conservative default values and thereby refine priority lists for pesticide transformation products.

5.4.1 Appendices

Supporting information are available in Appendix D: Details of the pesticides eliminated from the Great Britain and California prioritisations and the reasoning for their omission (Table D1 and D2 respectively), all transformation products considered and their risk index for the Great Britain and California prioritisations (Table D3 and D4 respectively) and calculated indices (A, F, P, E and RI) for the top four transformation products from each illustrative example (Table D5).

6 The Consideration of Environmental Pesticide Transformation Product Mammalian Toxicity for Use in Risk-Based Human Health Prioritisations

6.1 Introduction

Following release to the environment, pesticides may remain at the site of application, move laterally to surface waters, vertically to groundwater or succumb to biotic or abiotic degradation. The breakdown process can form transformation products that maybe more mobile and/or more persistent than their parent pesticide and are therefore regularly detected more frequently and at higher concentrations in surface and groundwaters than their parent pesticides (Kolpin et al. 2000). Those formed from herbicides, such as atrazine and glyphosate, are commonly found in environmental waters in Europe (Skark et al. 1998; Albanis et al. 1998) and North America (Kolpin et al. 1997; Wan et al. 2006), whilst the detection of insecticidal and fungicidal transformation products Within an individual catchment >350 are reported less frequently. transformation products may be formed from the pesticides applied (Sinclair et al. 2006), however only very few of these compounds are regularly monitored for in surface and groundwaters (Gilliom et al. 2006) and recently transformation products from intensively used herbicides have been detected in finished drinking waters up to 1.5µg/L (Hladik et al. 2006), so there is potential for consumer exposure.

Within the environment the majority of transformation products exhibit reduced ecotoxicity to non-target aquatic organisms when compared to their parent pesticides, however some can be more potent (e.g. Stratton and Corke 1982; Osano et al. 2002b), with increased potency attributed to changes in accumulation and mode of action or maintenance of the toxicophore allowing exhibition of the parental mode of action (Sinclair and Boxall 2003).

Detrimental environmental effects caused by pesticide transformation products are not a recent phenomenon, some of the most publicised impacts of pesticides on non-target organisms in the past have been a result of transformation products rather than parent pesticides. For example, egg shell thinning in wild birds was attributed to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), a primary transformation product of the organochlorine insecticide DDT (Blus et al. 1971). In comparison to the ecotoxicological effects to non-target organisms, data availability on the toxicological effects of transformation products to mammals is relatively limited. However some transformation products have demonstrated mutagenicity (Tessier and Clark 1995; Matsushuta et al. 2002) and estrogenic activity (Kelce et al. 1995; Gaido et al. 1999).

In the absence of experimental data, predictive toxicological techniques are often used to identify the most potentially harmful chemicals so that experimental resources can be exploited most effectively (Russom et al. 1995; Chaudhry et al. 2006). Previously in Chapter 5, transformation product risk characterisation for drinking water consumers has used parent pesticide acceptable daily intake values (ADI) as a surrogate for transformation product toxicological data (Sinclair et al. 2006). Whilst surrogate data are suggested to fill data gaps (Swanson and Socha 1997), it is anticipated that transformation product toxicity will be over estimated in the majority of cases but sometimes could be under estimated. Therefore due to a general absence of experimental toxicological data for most transformation products that may be formed in the environment, the aims of this study were to 1) Explore the relationships between available experimentally derived transformation product and parent toxicological data; 2) Evaluate models that could be used in the absence of experimental data; and 3) Undertake a case study to illustrate how transformation products specific toxicological data can be combined with exposure methods to identify those compounds of most concern.

6.2 Materials and Methods

6.2.1 Experimentally determined transformation product toxicity

Experimental data were collated on transformation product and parent pesticide toxicity from a number of sources (EPA 2007; PSD 2007; EU 2007b; EU 2007b; PMRA 2007c; EFSA 2007e). Collection focussed on the most frequently reported endpoints, mutagenic/genotoxic potential and rat oral LD₅₀. The available data on the mutagenic potential of transformation products are inconsistent, therefore three groups of data types were identified; 1) result of the Ames test is specified, e.g. 'Ames test negative', 2) result of a test which refers to a bacterial and/or gene reversion assay but does not specify the Ames test, e.g. 'in-vitro bacterial gene mutation negative' and 3) result reports general mutagenic/genotoxic potential, e.g. 'no mutagenic activity'. Collated transformation product and respective parent pesticide mutagenic and rat oral LD₅₀ toxicological data were compared.

6.2.2 Evaluation of predictive methodologies

Collated transformation product experimental mutagenic and rat oral LD_{50} data were used to evaluate the predictive ability of two commonly used predictive toxicological approaches, namely DEREK for Windows version 9.0.0 (Lhasa Ltd.) (Sanderson and Earnshaw 1991) and TOPKAT version 6.2 (Accelrys Inc.) (Enslein 1988; Enslein et al. 1994). DEREK attempts to match structural alerts to the structure of query molecules and then provides a qualitative likelihood of the query compound exhibiting the toxicity linked to the matched alert, with likelihoods ranging from 'certain' to 'impossible'. The structural alerts are a 'set of structural features' in a molecule that would allow an expert toxicologist to suggest that a compound may exhibit a particular toxic effect (Anon. 2005). TOPKAT contains multivariate statistical relationships to estimate a range of toxicological (and ecotoxicological) endpoints. Chemical descriptors used to quantify chemical transport properties and the biochemical interaction with the target site are derived from query molecules and then used within the relationships to provide quantitative or probabilistic estimates. TOPKAT also provides the user with a measure of whether a query compound fits within the predictive domain of the model, termed 'optimum prediction space' by TOPKAT which is a multivariate descriptor space (Anon. 2004).

Transformation product structures were drawn in ChemDraw Ultra version 10.0 (CambridgeSoft Corporation) and saved as '.cdx' files. SMILES notation (Weininger 1988) were produced using the 'convert to SMILES' function in the Excel version 9.0 (Microsoft Corporation) add-on, Accord for Excel version 6.1 (Accelrys Software Inc.). Mol files were produced by converting '.cdx' files to '.mol' files using ISIS/Draw version 2.5 (MDL Information Systems Inc.).

6.2.3 Predictive interpretation

TOPKAT provides the user with a quantitative estimate of toxicity, e.g. rat oral LD_{50} in mg kg⁻¹ body weight or a probability that the query compound would produce a positive response in an experimental assay (Enslein et al. 1994). Following standard interpretation (Cariello et al. 2002; Anon. 2004), if probabilities were >70% then the compound was considered likely to produce a positive response, whilst if the probability was <30% then the compound was considered unlikely to produce a positive response. If TOPKAT probabilities were between these two values then this was considered too near to chance (50%) and it was acknowledged that the software could not provide a meaningful (indeterminate) estimate for that endpoint (Anon. 2004). TOPKAT predictions were only used if they fell within the optimum prediction space or they fell outside the optimum prediction space but within a permissible range (as determined by TOPKAT). Results were not considered for end-points were the program identified that a prediction may be unreliable because either 1) the prediction was outside the optimum prediction space and outside the permissible range or 2) the prediction was outside the optimum prediction space and within

the permissible range but a structural fragment from the query compound was not represented in the training set of the model.

DEREK does not provide a probability or a quantitative estimate for a query compound but identifies whether specific structural alerts, i.e. sub-structural moieties linked to specific end-points, are present within the query molecule and also provides the user with a qualitative indication of the potential for the compound to exhibit that end-point. Therefore DEREK estimations were considered to provide a positive response for an end-point when an alert for that end-point was identified within a query molecule and that estimate was categorised as at least 'plausible'. DEREK was assumed to provide a negative response for the end-point of interest if no structural alerts for that end-point were identified.

6.3 Results and Discussion

6.3.1 Comparison of pesticide and transformation product toxicity

During data collation, the mutagenic/genotoxic potential of 149 transformation products was collated, 116 of which had their chemical structure identified. Rat oral LD₅₀ data were collated for 153 transformation products with chemical structure identified for 115, 106 transformation products had data available for both toxicological end-points. There was a tendency for pesticide and transformation product rat oral lethal dose data to be reported as an inequality, e.g. >5000 mg kg⁻¹ body weight, with only 49 comparisons (32%) between parent and transformation product reported with both values as exact numerics. The majority of these transformation products (71%) were within an order of magnitude of parent pesticide lethal dose values (Figure 20).

Nine transformation products were more than an order of magnitude more toxic than the respective parent pesticide, with most attributed to a comparison with

parental insecticides that require activation to exhibit acetylcholinesterase inhibition. These included the active transformation product carbofuran and its primary degradate 3-hydroxycarbofuran both formed from carbamate proinsecticides, benfuracarb and carbosulfan, the active cholinesterase inhibitor omethoate formed from the phosphorothiolothionate organophosphorus insecticide dimethoate (Copping and Hewitt 1998; Roberts and Hutson 1999) and three transformation products formed from the organophosphorus insecticide diazinon, S,S-TEPP, O,S-TEPP and TEPP. These are at least two orders of magnitude more toxic than diazinon which requires metabolism to diazoxon to become active and whilst this occurs when dosing rats, a number of additional major metabolites are also formed, thereby reducing the effective dose (Roberts and Hutson 1999). Distinct from this insecticidal trend is the transformation product RPA 412708, formed from the imidazolinone fungicide fenamidone (Tomlin 2006).

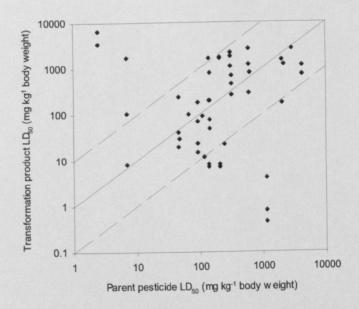


Figure 20. Comparison of pesticide and transformation product rat oral LD₅₀ values (where both values are reported as numerics) (solid line x=y, hashed lines equal one order of magnitude more or less toxic)

When all LD_{50} pesticide and transformation product comparative data were analysed in a qualitative manner, including data reported as an inequality, by comparing their allocated class according to the Hodge and Sterner scale (Hodge and Sterner 1949), 51 transformation products (33%) were allocated to a more toxic class than their parent pesticide with eleven of those (which included the three diazinon transformation products) allocated to toxicity classes two or more classes, more toxic than their parent pesticide (Table 19).

Table 19. The comparative classification of rat oral LD₅₀ values for transformation products and their respective parent pesticides, occasions where a transformation product was allocated to a more toxic class than the parent pesticide are in **bold**

			Tra	nsformation prod	ucts	
	Toxicity class *	extremely high toxicity	high toxicity	moderate toxicity	low toxicity	very low toxicity
	extremely high toxicity	-	-	-	•	-
	high toxicity	-	7	3	5	1
Pesticides	moderate toxicity	-	9	10	18	4
	low toxicity	2	1	3	25	3
	very low toxicity	-	•	8	28	26

* - The Hodge and Stemer class 'relatively harmless' is not provided within the table since no pesticide or transformation product was allocated to that class

When mutagenicity was considered the majority (86.6%) of transformation products demonstrated no reported mutagenic/genotoxic potential. The remaining 20 compounds produced a positive result in one or more mutagenicity studies. Eleven of those were formed from parent pesticides that exhibit a potential for mutagenicity and nine were formed from pesticides with no reported genotoxic potential. Again activation of benfuracarb and carbosulfan produced transformation products, carbofuran and 3-hydroxycarbofuran, that exhibit a toxicity not present in their pre-cursor, whilst the other transformation products that exhibited mutagenicity, reportedly absent from their parent pesticide were KIF-230-M4 formed from the fungicide benthiavalicarb, three transformation products of the fungicide mepanipyrim and phenoxazone formed from the insecticide phosalone. Whilst it is indisputable that some transformation products exhibit increased mammalian toxicity compared to their parent pesticide, the extent demonstrated here is probably skewed towards over exhibition of this tendency. Toxicological studies are not performed lightly, particularly with a desire to reduce unnecessary animal testing. It is therefore probable that studies reported within pesticide evaluation summary documents, used in this study, will tend to have been triggered and performed when a potential hazard had been identified, maybe due to its structure, the potency of its parent pesticide or maybe its own potency in other studies, e.g. ecotoxicological. Toxicological studies are therefore not routinely undertaken for all transformation products thereby skewing the results of this analysis towards those that are most likely to pose a hazard.

6.3.2 Evaluation of predictive approaches

Evaluation of predictive ability was only possible for transformation products where molecular structure could be determined since this was the required input parameter for both evaluated methods.

6.3.2.1 Mutagenic potential

93% of non-mutagenic transformation products had no mutagenic alerts identified in their structure by DEREK, with only 7 compounds identified as false positives (<7%). Eighteen transformation products have experimental data that indicate they will exhibit mutagenic potential, of these only three were correctly estimated by DEREK to be mutagens by highlighting a structural alert for mutagenesis in their structure. Therefore 15 mutagenic transformation products had no mutagenic structural alerts identified and can therefore be considered false negatives (Table 20).

TOPKAT was unable to provide an estimate for four transformation products due to structural parameterisation problems, whilst 4 compounds were allocated an indeterminate probability for mutagenicity and 27 compounds were estimated to be outside the optimum prediction space and the optimum prediction space limits of the model(s). When the three types of mutagenic data were considered by TOPKAT, 56% of the non-mutagenic compounds were estimated as nonmutagens and 12 compounds identified as false positives. If compounds with a valid estimate were considered, i.e. not indeterminate, and were within the applicability domain of TOPKAT, the predictive ability for correctly identifying non-mutagens increased to 83%. TOPKAT correctly identified two mutagenic transformation products as mutagens whilst thirteen were estimated to be nonmutagens, i.e. false negatives (Table 20).

Table 20. The predictive ability of DEREK and TOPKAT to estimate mutagenicity for pesticide transformation products

Date type	Exper	imental	DEI	REK		TOP	ркат	
			concordant	discordant	concordant	discordant	indeterminate	OOPS
Ames test	-'ve	67	63	4	43	5	0	19
	+'ve	8	0	8	1	7	0	0
Bacterial/gene	-'ve	9	8	1	5	3	0	1
reversion	+'ve	4	0	4	0	3	1	0
General mutagenic/	-'ve	26*	24	2	9	4	2	7
genotoxic potential	+'ve	6	3	3	1	3	1	1
Overall	-'ve	102	95	7	57	12	2	26
	+'ve	18	3	15	2	13	2	1

- TOPKAT was unable to process four transformation products in the -ve general mutagenic/genotoxic potential class ^b - Outside optimum prediction space and optimum prediction space limits

Prior to this study no techniques had been evaluated for their ability to estimate mammalian end-points specifically for pesticide transformation products. However, DEREK and TOPKAT have been evaluated for their ability to estimate mutagenicity for a number of other chemical classes. TOPKAT performed better than DEREK when evaluated for their ability to correctly predict whether pharmaceuticals would produce positive or negative responses in a bacterial mutagenicity assay, 73% of molecules were correctly classified as either mutagens or non-mutagens. Importantly, TOPKAT generated more false negatives for actual mutagens than DEREK, with 60% of the compounds known to produce positive results in a mutagenic assay estimated as non-mutagens, whilst DEREK only fared slightly better with 54% (Cariello et al. 2002). During a similar evaluation of 100 structurally diverse chemicals, the overall predictive ability of TOPKAT was similar (74%), whilst the ability to correctly allocate these chemicals as mutagens was substantially better (71% against 40%) (Zeiger et al. 1996). During this study DEREK correctly classified 82% correctly as mutagens or non-mutagens whilst the TOPKAT performance was lower (49%) since 26% of compounds where outside the domain of the model or were provided an indeterminate estimate. The increased overall performance of DEREK could be attributed to the bias within the transformation product dataset for non-mutagens since only 17% of mutagens were estimated correctly.

DEREK and TOPKAT have demonstrated a better predictive ability when correctly categorising pharmaceutical mutagens that contained the 'Ashby carcinogenic alerts' (Ashby and Tennant 1991) (83% and 73% respectively) than those without obvious structural alerts (27% and 18% respectively) (Snyder et al. 2004). Whilst the mutagenic predictive ability can vary depending on chemical type and/or moieties present, it has been suggested that since SAR based approaches, such as TOPKAT, do not use presumed mechanisms of action then their ability to predict other effects such as carcinogenicity will be similar to their ability to estimate mutagenicity. However it would be difficult for any predictive approach to achieve 100% concordance with experimentally determined mutagenic potential when inter- and intra- laboratory reproducibility for these studies can only produce positive and negative concordance of 85% (Zeiger et al. 1996). Therefore it is unfair to expect models to fair better than the reproducibility of the end-point they attempt to predict. The previous evaluations of TOPKAT and DEREK were undertaken using earlier versions of the programs, therefore it is difficult to make exact comparisons between their ability to estimate the toxicity of pharmaceuticals, industrial chemicals and transformation products since it may be a differences in the programs themselves rather than an actual perceived ability to perform better estimating toxicity for a certain group of chemicals.

Whilst these approaches performed considerably better correctly predicting nonmutagenic compounds, the high number of false negatives, 15 and 13 for DEREK and TOPKAT respectively would be a concern if either approach were to be implemented to estimate transformation product toxicity during risk assessment or prioritisation activities. In previous studies it has been suggested that the rate of false negatives could be decreased, generally resulting in an increase in false positives, by combining the estimates from both programs (Cariello et al. 2002). As with other predicted end-points, e.g. physico-chemical properties and ecotoxicity, some of the most accurate estimates for a diverse chemical inventory can be achieved when the predictions from more than one approach are combined (Clarke and Delaney 2003; Clarke et al. 2004; Sinclair and Boxall 2005). However, limited concurrence was observed between DEREK and TOPKAT when positively estimating transformation products that were mutagenic (4 compounds). This lack of concurrence could support the notion that the two approaches are estimating mutagenicity based on different criteria. Predictive ability, particularly through a reduction in false negatives, may be enhanced by:

- adjusting predictive interpretation by considering related endpoints or widening the probability limits (Cariello et al. 2002);
- combining the predictive ability of approaches (Chaudhry et al. 2006); and/or
- considering the experimental or predicted toxicity of the parent pesticides (Sinclair and Boxall 2003; Escher et al. 2006).

Therefore these proposed methods were considered in an attempt to improve identification of mutagenic transformation products. Mutagenicity alerts in DEREK were combined with alerts for carcinogenicity and chromosome damage, within TOPKAT probability limits were relaxed and compounds outside the applicability domain were considered and the mutagenic/genotoxic potential of the parent pesticide, experimental and estimated, were also considered (Table 21; Table 22).

 Table 21. The consideration of different predictive interpretation and parent toxicity to

 predict transformation product mutagenicity and reduce the number of false negatives with

 DEREK

	parent pesticide is mutagenic/ genotoxic	estimates parent to be mutagenic	mutagenicity alerts	mutagenicity & chromosome damage alerts	mutagenicity & carcinogenicity alerts
False positives	19	13	7	10	31
False negatives	7	13	15	8	12
True positives	11	5	3	9	6

 Table 22. The consideration of different predictive interpretation and parent toxicity to

 predict transformation product mutagenicity and reduce the number of false negatives with

 TOPKAT

•	Parent pesticide is mutagenic/ genotoxic	estimates parent to be mutagenic ^b	standard [∎] ≥ 70% +'ve ≤ 30% -'ve	≥ 60% +'ve ≤ 40% -'ve	ignore OPS
False positives	19	8	12	12	21
False negatives	7	7	13	13	13
True positives	11	3	2	3	3

* - two mutagenic transformation products had an indeterminate estimate of mutagenicity

^b - eight pesticides had estimates outside the applicability domain

Relaxation of the probability limits had not effect on the number of false negatives for TOPKAT whilst ignoring the optimum prediction space increased the number of false positives. Conversely when the applicability domain has been ignored previously this has had little effect on predictive ability (Cariello et al. 2002). The inclusion of alerts for carcinogenicity in DEREK decreased false negatives but considerably increased false positives from 7 to 31 compounds, whilst the inclusion of chromosome damage rather than carcinogenicity reduced false negatives from 15 compounds for mutagenic alerts to only 8 compounds with only a limited increase in false positives, from 7 to 10 compounds. Only seven compounds, from eighteen, were false negatives for mutagenicity if the transformation product was attributed the experimental mutagenic/genotoxic potential of the parent pesticide. This is logical if the transformation products exhibit only a small change in molecular structure during degradation then they could still maintain the structural moieties responsible for the effect. Therefore if parental experimental mutagenicity was considered together with DEREK alerts of mutagenicity and chromosome damage and TOPKAT using the standard predictive interpretation then this combined approach produced only one false negative, seventeen mutagens. Combining predictive approaches in a similar manner to estimate the mutagenic potential has also provided improvement in overall performance for pharmaceuticals (White et al. 2003).

6.3.2.2 Rat oral lethality

TOPKAT could not provide rat oral LD₅₀ estimates for four transformation products due to parameterisation problems and thirteen compounds were outside the optimum prediction space and the optimum prediction space limits. Where exact numerical values were available and TOPKAT could provide a valid estimate, 81.8% of estimates where within an order of magnitude of experimental values. The potency of 53% of transformation products was overestimated with four overestimated by more than an order of magnitude; DTPU and TPSA from flazasulfuron, IM-2-1 from acetamiprid and INN-79 from oxamyl. The transformation products that had their potency most underestimated were produced from the degradation of the organophosphorus insecticide diazinon, namely TEPP and O,S-TEPP. For experimental data reported as an inequality, 51% of transformation product estimates were more potent that the reported greater than value. There is therefore a slight tendency for TOPKAT to overestimate the potency of transformation product rat oral LD₅₀ values (Figure 21). This could therefore provide the user with a conservative estimate that is more favourable than the reverse when undertaking a prioritisation to evaluate hazard. Rat oral LD₅₀ models within TOPKAT were

developed using data from the Registry of Toxic Effects of Chemical Substances (RTECS) and during development if multiple values were identified for a single compound then the most potent was used within the training set of the model (Anon. 2004), thereby providing the model with a tendency to estimate that compounds are more potent than substantiated by some of the experimental data. During a previous evaluation of TOPKAT to estimate this end-point for an extensive chemical dataset, the Danish EPA concluded that performance was poor ($r^2 = 0.31$), however 86% of results were within an order of magnitude of experimental values, similar to the results here ($r^2=0.12$, 82%), and it was suggested that the approach is appropriate to give an approximation of toxicity (Danish EPA 2001).

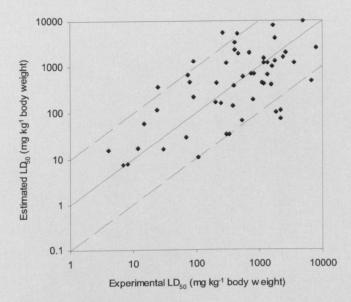


Figure 21. Comparison of experimental rat oral LD₅₀ values and those estimated by TOPKAT for transformation products (where experimental values where reported as numerics) (solid line x=y, hashed lines equal one order of magnitude under or over estimated)

6.3.3 The Risk of Transformation Products Formed from High Use Pesticides

In the proposed methodology to rank transformation products on their potential risk to humans through the consumption of drinking water in a catchment, parental pesticide ADI was used for the hazard component as a surrogate for transformation product mammalian toxicity since these data are scarce (Chapter 5). Using ADI could over-estimate (or underestimate) the potency of some transformation products, since this approach assumes transformation product toxicity is equivalent to the parental pesticide toxicity. The potential risk of transformation products formed from the ten most used pesticides in the US (Gianessi and Reigner 2006a; Gianessi and Reigner 2006b) and Great Britain (Thomas Pers. Comm. 2008) were prioritised for their exposure to drinking waters supplies according to the exposure component of the approach proposed in Chapter 5. The potential ranking of these transformation products where hazard was expressed using parental ADI against estimates of transformation products rat oral LD₅₀ and mutagenicity as discussed earlier was investigated. To provide a ranking score, a system just incorporating rat LD₅₀ and mutagenic potential similar to that proposed by Capelton et al. (2006) was used (Table 23).

29 transformation products were identified from the ten most used pesticides in the US and 23 from the ten most used pesticides in Great Britain, chlormequat, the most used pesticide in Great Britain by weight of active ingredient had no environmental transformation products identified. Environmental formation data as a result of parent pesticide degradation were collated from a range of documents (EPA 2007; PSD 2007; EU 2007b; EU 2007b; PMRA 2007c; EFSA 2007e) as were persistence and mobility. Where absent, mobility data (K_d) were estimated using the approach proposed in Chapter 3, the octanol-water partition coefficient (K_{ow}) was estimated from the average of three approaches; CLogP (BioByte Corporation), ALogPS (Virtual Computational Chemistry Laboratory) and KOWWIN (Syracuse Research Corporation). This is then transformed to organic carbon normalized adsorption coefficient (K_{ow}) using the quantitative structure property relationship (QSPR) of Kanazawa (1989) and then the distribution coefficient (K_d) is determined assuming a soil organic carbon content of 2% (ECB 2003). Transformation products without experimentally determined persistence data ($DT_{50}/t_{\frac{1}{2}}$) were allocated the 75th percentile of values from the collated experimental persistence data (30 days) since no adequate predictive approach has been identified (Chapter 3).

 Table 23. A system to score pesticide transformation products based on their estimated

 mutagenicity and rat oral toxicity

End-point	Score ^a	Criteria			
Rat oral LD ₅₀	0	<1 mg kg ⁻¹ body weight	(extremely high toxicity)*		
110101010050	4	1 – 9 mg kg ⁻¹ body weight	(high toxicity)		
	Ā	10 – 49 mg kg ⁻¹ body weight	(high toxicity) ^{a, c}		
	6 7	50 – 99 mg kg ⁻¹ body weight	(moderate toxicity)*		
	8	100 – 499 mg kg ⁻¹ body weight	(moderate toxicity)		
	9	500 – 999 mg kg ⁻¹ body weight	(low toxicity) ^a		
	10	1000 – 4999 mg kg ⁻¹ body weight	(low toxicity) ^a		
	10	$6000 - 4999 \text{mg kg}^2 \text{body weight}$			
		5000 – 9999 mg kg ⁻¹ body weight	(very low toxicity)*		
	12	≥ 10000 mg kg ⁻¹ body weight	(very low toxicity)*		
Mutagenicity (genotoxicity)	0		ity or DEREK identifies alerts in the nicity or chromosome damage or n product to be a mutagen		
	3	All required data/estimates are not available ^b			
	6	identify alerts in the transforma	mutagenicity and DEREK does not tion product for mutagenicity or estimates the transformation product		

* – Hodge and Sterner scale 1949

^b – Either parental pesticide mutagenic/genotoxic potential is not available, DEREK or TOPKAT are unable to process the molecule or the molecule falls outside the applicability domain of TOPKAT

- If valid rat oral LD₅₀ estimates were not possible molecules were given a score of 6

^d - Once attributed the scores were normalised to provide values within an equivalent order of magnitude of ADI values by dividing by 200

Table 24 provides those transformation products with the most potent scoring according to the system in Table 23 and their respective parent pesticide ADI and their exposure index calculated according to the approach in Chapter 5. This example only considers a limited number of transformation products, when compared to the total number that could be expected to be formed following pesticide application within a catchment, however they are all from high use pesticides (>4000 tonne yr⁻¹ US and >275 tonne yr⁻¹ Great Britain). Including a consideration of transformation product estimated toxicity provides information

on those compounds that may pose a hazard from these high use pesticides. The transformation product of trifluralin, 2-ethyl-7-nitro-1-propyl-5-(trifluoromethyl) benzimidazole is allocated the most potent score (4) since the estimated rat oral LD_{50} is 7.4 mg kg⁻¹ body weight, categorised as a high toxicity and both DEREK and TOPKAT estimate that this compound will be mutagenic. In terms of identifying possible substance of concern for further investigation this compound is ranked relatively low for both exposure (26/29 in the US and 20/23 in Great Britain) and toxicity of its parent pesticide (12/29 in the US and 14/23 in Great Britain) highlighting that estimation of mammalian toxicity in the absence of experimental data could be another tool used to narrow the field when considering whether any transformation products pose a risk to consumers via drinking water.

Table 24.	Estimated toxicity score of transformation products formed from the ten most
	used pesticides in the US and Great Britain

Transformation product	Parent	Transformation product toxicity		Transformation product exposure		Parent pesticide ADI	
•	pesticide	scon	e * `	index	b	(mg kg ⁻¹ bw d ⁻¹)	
		value	rank	value	_ rank	value	rank
US							
2-ethyl-7-nitro-1-propyl-5-(trifluoromethyl) benzimidazole	trifluralin	4	1	1.78E-06	26	0.024	12
2-ethyl-7-nitro-1-propyl-5-(trifluoromethyl) benzimidazole-3-oxide	trifluralin	6	2	1.08E-06	28	0.024	12
methylisothiocyanate	metam sodium	8	3	2.98E-03	8	0.01	9
nitromethane	chloropicrin	8	3	2.04E-03	11	0.001	1
chloronitromethane	chloropicrin	8	3	2.57E-04	15	0.001	1
cis-3-chloroallyl alcohol	1,3-D	8	3	8.63E-05	17	0.025	17
trans-3-chioroallyl alcohol	1,3-D	8	3	5.78E-12	29	0.025	17
2,4-dichlorophenol	2, 4- D	9	8	2.36E-04	16	0.05	21
2,4-dichloroanisole	2, 4- D	9	8	1.58E-04	19	0.05	21
2-ethyl-7-nitro-5-(trifluoromethyl) benzimidazole	trifluralin	9	8	1.14E-05	24	0.024	12
Great Britain							
2-ethyl-7-nitro-1-propyl-5-(trifluoromethyl) benzimidazole	trifluralin	4	1	6.01 E-06	20	0.024	14
2-ethyl-7-nitro-1-propyl-5-(trifluoromethyl) benzimidazole-3-oxide	trifluralin	6	2	3.63E-06	22	0.024	14
3-cyano-2,4,5,6-tetrachlorobenzamide	chlorothalonil	6	2	6.92E-04	2	0.015	6
3-cyano-6-hydroxy-2,4,5- trichlorobenzamide	chlorothalonil	6	2	2.06E-04	9	0.015	6
4-hydroxy-2,5,6-trichloroisophthalonitrile	chlorothalonil	6	2	1.07E-05	18	0.015	6
3-cyano-2,5,6-trichlorobenzamide	chlorothalonil	8	6	3.71E-04	6	0.015	6
acetaldehyde	metaldehyde	8	6	3.41E-04	8	0.025	19
ethylenethiourea	mancozeb	8	6	4.01E-226	23	0.03	21
2-ethyl-7-nitro-5-(trifluoromethyl) benzimidazole	trifluralin	9	9	3.83E-05	14	0.024	14
paraldehyde	metaldehyde	9	9	1.61E-05	16	0.025	19

* - Toxicity score according to estimated rat oral LD₃₀ and mutagenic potential following the scoring provided

in Table 23

^b- Transformation product exposure index calculated according to Sinclair et al. (2006)

In the UK the regular monitoring of pesticide transformation products in both surface and groundwaters and raw and finished drinking waters by the Environment Agency and water companies, respectively, is generally limited to the determination of transformation products of the organochlorine insecticides DDT and heptachlor, active ingredients which have not been used in the UK for a number of years. Over the past 5 years very limited monitoring has been carried out for any other transformation products and following current regulations there are no requirements to measure the levels of transformation products other than those mentioned in Guidance (DWI 2008). Whilst in the US, transformation products, particularly from herbicides are routinely monitored for by the USGS.

Transformation products from intensively used herbicides have been identified in finished drinking waters ready for distribution (Coupe and Blomquist 2004; Hladik et al. 2006). Whilst some drinking water treatment methods, such as activated carbon adsorption, reverse osmosis and nanofiltration can remove pesticides and their transformation products associated with the aqueous phase (Wang and Song 2004), there is the potential for harsh disinfection processes such as oxidation using ozone, hydrogen peroxide or UV radiation to transform organic compounds present in the raw water to alternative compounds (Nguyen et al. 2004). Recently, concern over the potential toxicology of compounds formed from environmental transformation products of certain pesticides following drinking water treatment led to their (temporary) commercial withdrawal (European Commission 2007).

Predictive techniques are available that can be used to estimate the biodegradation of chemicals (e.g. Jaworska et al. 2002), however when these are examined for their ability to correctly identify environmental pesticide transformation products their performance for a range of pesticides is very variable. The identity of transformation products formed in soil from some pesticides can be predicted whilst others have none correctly identified (Sinclair et al. 2003). No predictive approaches are currently available to identify the

structure of compounds that maybe formed from pesticides and their environmental transformation products during drinking water treatments, but approaches are available to determine how reactive organic contaminats are to harsh treatments such as chlorination or ozonation (Lei and Snyder 2007). Such techniques can help indicate the most reactive and therefore the most likely to form treatment by-products which in the absence of predictive tools can focus the efforts of experimental studies investigating by-product identity. When such research is further developed, we can begin to assess the hazard posed by byproducts produced during drinking water treatment using mammalian estimation approaches such as DEREK and TOPKAT, to get a measure of whether they pose a risk to consumers.

The predictive power of estimation techniques is based on the experimentally determined toxicological knowledge of compounds present in their training set, and whilst interpolation between similar chemicals, within limits, for the same toxicological response can be undertaken these approaches are unable to estimate new effects not previously identified. For this reason, it is unlikely that predictive techniques will completely replace experimental determination of some of the most important end-points, particularly for biologically active molecules such as pesticides and pharmaceuticals. However these techniques have an important role in aiding the implementation of the 3R's and during prioritisation and scoring exercises. Therefore whilst the transformation products under investigation in this chapter can be ranked on their toxicological profile using current knowledge it would be impossible to conclude that certain compounds posed little risk when their effect could be via a yet unidentified mode of action.

6.4 Conclusions

Generally pesticides demonstrate a greater mammalian toxicity than their transformation products, however some compounds can exhibit an increased toxicity or exhibit toxicity not seen in the parent pesticide. When the predictive ability of TOPKAT and DEREK are compared to experimentally determined data, they perform better when estimating compounds that are non-toxic than attributing a toxicity to a transformation product, however the number of false negatives can be decreased when these approaches are used together and the toxicity exhibited by the parent pesticide is also considered. Parental pesticide ADI may not be a suitable surrogate for transformation product toxicity and predictive approaches maybe a more suitable approach for providing information on their toxicity in the absence of experimental data. Moreover with the implementation of the 3R's and in the face of the large number of transformation products formed in the environment and the number of additional compounds that maybe created during drinking water treatment, predictive techniques will play a role in prioritisation and ranking exercises to identify those that maybe of concern.

7 Final Discussion and Conclusions

7.1 Introduction

During risk assessment activities transformation products do not receive the attention of their pesticidal parents. Generally, due to constraints of time and money experimental testing is limited to one major transformation product with little or no consideration given to the remainder of the compounds produced during pesticide degradation. Therefore this thesis has developed and explored approaches for determining through non-experimental means the fate, occurrence, ecotoxicity and toxicity of pesticide transformation products. This thesis was written over a seven year period and many of the chapters are based on scientific papers published at the time of writing. During this time the field of transformation product risk assessment, particularly the estimation of ecotoxicity, has been moving rapidly, so in this final chapter:

1, The proposed approach to assess aquatic ecotoxicity is evaluated against a newly available dataset and comparisons are made with approaches now available from other research groups;

2, Two case studies are used to illustrate how the methodologies proposed and evaluated throughout this thesis can be applied to the environmental assessment of transformation products; and

3, Finally, major knowledge gaps are identified, overall conclusions from this research are presented and recommendations made on future research priorities in the area of transfromation product risk assessment.

7.2 Evaluation of approach(es) to estimate aquatic ecotoxicity

On the basis of the investigation of available acute aquatic data and development of the reasoning, a pragmatic approach was developed in Chapter 4 to allow the user to generate a conservative estimate of transformation product aquatic

ecotoxicity to non-target organisms (fish, daphnids and/or green algae) in the absence of experimental data. This approach uses information on parent pesticide ecotoxicity and properties and the properties and structure of the transformation product. During its development the approach was not evaluated against data not used in its development or tested against the performance of other methodologies. This was due to; 1) the lack of additional ecotoxicological data against which to evaluate the approach because all the limited available data was required to generate a suitable training set, and 2) no other pesticide transformation product specific estimation methodologies were available against which to test the proposed approach. This however is not the current situation, additional data on acute daphnid ecotoxicity of 92 transformation products were collated from newly available regulatory review documents (EFSA 2009, EPA 2009, PMRA 2009, PSD 2009b) and used to test the proposed approach and compare its performance to approaches developed for transformation products; 1) DEMETRA (Benfenati 2007) and 2) the approach of Escher et al. (2006). To also ascertain whether approaches developed specifically for pesticide and/or pesticide transformation products are required or whether approaches developed using chemicals from other chemical classes can be used, the commonly utilised OSAR approaches ECOSAR (EPA) and TOPKAT (Accelrys Inc.) were also included in the evaluation.

The approach proposed in Chapter 4 was developed with a combination of ecotoxicity data from three trophic levels since data availability for individual trophic levels was insufficient. Fifty-seven daphnid data points were used during development, therefore it can be considered that the use of 92 data points to test the approach is rather disproportionate. Generally when predictive techniques are developed, collated data is randomly divided into a training set and a test set, generally in a 70% to 30% ratio, respectively. Based on the evaluation with new daphnid ecotoxicity data it appears that the approach does not provide a conservative estimate for all of the transformation products within the test set (Figure 22). Fifty-one transformation products had their daphnid ecotoxicological potency conservatively estimated, whilst the potency of twenty-

nine was underestimated, with five more than two orders of magnitude underestimated, i.e. not providing the anticipated or desired conservatism for risk assessment and/or prioritisation exercises.

a.

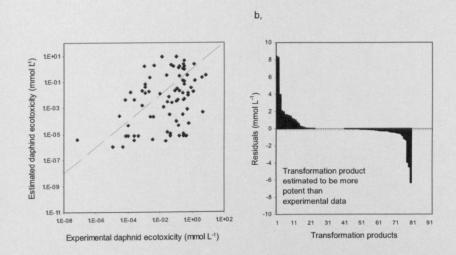


Figure 22. Performance of the approach proposed in Chapter 4 at estimating daphnid acute ecotoxicity (48h EC₅₀) for a dataset of 92 transformation products; a, correlation with experimental data (dashed line x=y) and b, residual plot (positive = underestimation)

During the determination of assessment factors (Chapter 4, Figure 4), the daphnid data utilised does not appear to have been totally representative for all transformation product potency to daphnids. When the data used for this evaluation is plotted in the same manner as the data used to develop the assessment factors it is clear that the determined assessment factor values are not always appropriate (Figure 23). With the significant increase in the availability of transformation product ecotoxicological data for daphnids and other aquatic taxa such as green algae, fish as well as *Lemna sp.*, then it appears the assessment factors rather than the taxa generic values determined during Chapter 4. Examining the data in Figure 23 it appears that an assessment factor of 0.01 for transformation products that contain the parental pesticide toxicophore and an assessment factor of 0.1 for the remaining transformation products could be appropriate daphnid specific assessment factors, moreover the application of a

safety factor, e.g. 0.1, may be prudent to ensure the conservative nature of the approach.

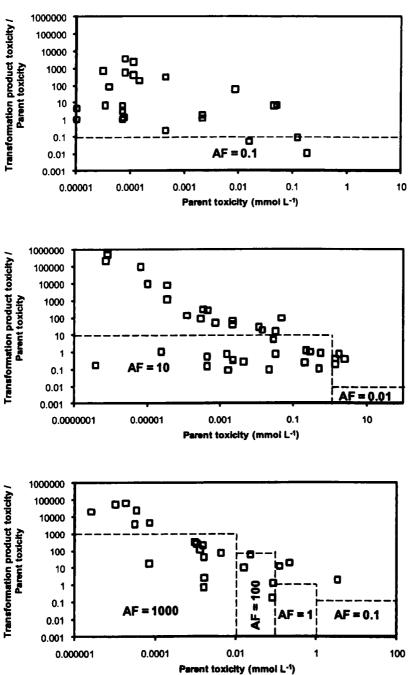


Figure 23. Evaluation of approach proposed in Chapter 4 using daphnid ecotoxicity data for 92 transformation products (dashed lines represent the taxa generic assessment factors)

7.2.1 Comparisons with newly available approaches

At the time the approach proposed in Chapter 4 was developed no other tools were available specifically to estimate acute aquatic ecotoxicological endpoints for pesticide transformation products, i.e. fish 96h LC₅₀, daphnid 48h EC₅₀ and green algal 72h EC₅₀. Alternative approaches have subsequently been developed for generating ecotoxicity estimates for these compounds, some as a result of the publishing of the proposed approach. The DEMETRA QSAR program, freely available on the internet, was the result of a large EU project with numerous international collaborators. This approach is reported to be suitable to estimate the aquatic ecotoxicological (fish and daphnid) and terrestrial ecotoxicity (bird and bee) for pesticides and transformation products, even though no ecotoxicity data for transformation products were used during its development (Benfenati In addition an expert system based on the principal of the toxic ratio 2007). (Verhaar et al. 1992) has been proposed by Escher et al. (2006) which can provide the potential ecotoxicological range of a transformation product on the basis of the potency of the parent compound and the use of narcotic QSARs. This approach was originally developed using transformation products of human pharmaceuticals but is equally applicable to transformation products of pesticides (Escher et al. 2009).

The approach proposed by Escher et al. (2006) provides a methodology for estimating the ecotoxic range of a transformation product, for the purposes of this evaluation the most potent extreme of that range was used as the prediction against which experimental data were compared. This approach uses the principle of the toxic ratio proposed by Verhaar et al. (1992) which is the ratio between baseline (or narcotic) toxicity and the toxicity determined experimentally for the end-point under investigation. Applying this approach involves calculating the toxic ratio of the parent pesticide using available experimental data and by estimating baseline toxicity using a recommended nonpolar narcotic QSAR (ECB 2003). The maximum potency of the transformation product can then estimated by applying the toxic ratio of the parent pesticide to the baseline toxicity estimate of the transformation product.

DEMETRA is a collection of QSAR developed using a wide range of pesticide experimental ecotoxicity data which allows the prediction of pesticide (and transformation product) ecotoxicity to fish, daphnia, bee and quail (oral and dietary exposure). DEMETRA contains a hybrid combinative model for each endpoint which incorporates intelligent integration of several individual validated QSARs. Transformation product molecular descriptors are generated from structural files (.mol) using Dragon (Milano Chemometrics) and entered into DEMETRA to generate the estimates for daphnid ecotoxicity.

ECOSAR is a freely available software system which matches the structure of a query molecule to one (or more) of its defined chemical class(es). For most classes, aquatic ecotoxicity values are predicted using available linear correlations between toxicity and hydrophobicity, if not available experimentally K_{ow} is estimated for the query molecule using KOWWIN. For the purposes of assessing transformation product daphnid ecotoxicity in instances where the query compound was matched to one or more chemical classes, the most potent ecotoxicity estimate for daphnids was selected for comparative purposes.

TOPKAT is a commercially available system and contains a range of crossvalidated QSARs, which are multivariate statistical relationships between experimentally derived toxicity data and chemical descriptors that quantify chemical transport properties and biochemical interaction with the target site. It also provides the user with a measure of whether the query molecule fits within the prediction space of the chosen relationship and therefore whether the estimation is reliable. For this comparison exercise, estimated daphnid data were only compared if they fell within the optimum prediction space or outside but within a permissible range as determined by TOPKAT. To measure predictive performance the statistics developed in Chapter 3 were used (number of chemicals from the test set an estimate could be generated, percentage positive deviation, mean absolute deviation, mean squared absolute deviation, percentage of compounds greater than an order of magnitude greater than experimental values and the Pearson correlation coefficient).

When quantifying the accuracy with which the approach proposed in Chapter 4 can estimate daphnid ecotoxicity with the ability of other available methodologies, a poor performance was initially anticipated since the proposed approach was developed to provide a conservative estimate, i.e. a value more potent than experimental data would suggest, whilst the other methods against which it was to be compared were designed to accurately estimate experimental values (apart from that of Escher et al.). However in the previous section it was demonstrated that the proposed approach is not as conservative as first anticipated. The performance of the four comparative approaches can be seen in Figure 24.

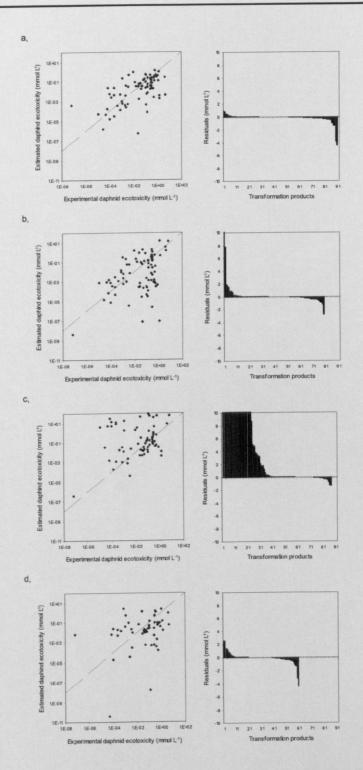


Figure 24. Correlation with experimental daphnid ecotoxicity data (dashed line x=y) and residual plot (positive = underestimation) for a, DEMETRA, b, Escher et al., c, ECOSAR and d, TOPKAT

TOPKAT performed well but was limited by the number of compounds it could provide a valid estimate (66%) and ECOSAR had a significant tendency to underestimate toxicity with 59 compounds underestimated, 28 by two orders of magnitude or more. Both 'general' approaches were out-performed by those developed specifically for the estimation of pesticide and/or transformation product ecotoxicity, which indicates that approaches used to estimate transformation product ecotoxicity should be based on pesticide and/or transformation data rather than data for general chemicals. The approach proposed in Chapter 4 performed better than the general approaches but was out performed by DEMETRA and the approach of Escher et al. (Table 25). Based on the statistics the approach of Escher et al. was the best performer overall and was not the poorest performer in any of the selected statistical parameters. This is surprising as this approach is based on a relatively simple concept and indicates that transformation product toxicity is substantially linked to that of its parent pesticide, or at least for transformation products within this evaluation dataset.

Table 25. Rank scores for the statistics selected with which to evaluate the performance of five approaches for estimating transformation product ecotoxicity to daphnids (48h EC50)

			Rank scores for		
Statistics	Proposed approach	DEMETRA	Escher et al	ECOSAR	TOPKAT
Number of chemicals	0.387	0.032	0.387	0.129	1
Percentage positive deviation	0.758	1	0.276	0.940	0.859
Mean absolute deviation	0.008	0.003	0.006	1	0.005
Mean squared absolute deviation	<0.001	<0.001	<0.001	1	< 0.001
% of compounds > 1*	1	0.417	0.763	0.709	0.645
Pearson correlation coefficient	1	0.796	0.343	0.542	0.833
Overali mean rank score	0.53	0.37	0.30	0.72	0.56

* - order of magnitude greater than experimental values

7.2.2 Combining approaches for aquatic ecotoxicity estimation

When the individual approaches were evaluated, it was apparent that some approaches performed better than others with the majority of techniques considerably over or under estimating the potency of some compounds. Generally these compounds, commonly known as 'outliers', fall outside the predictive space of the technique in question producing an inaccurate estimate of Therefore to increase the accuracy of transformation product ecotoxicity. ecotoxicity estimation it would seem prudent to develop a structured methodology that allows the selection of the most accurate/appropriate method. The simplest way of combining approaches would be to generate a conservative estimate of transformation product ecotoxicity, i.e. estimating ecotoxicity using all approaches and then selecting the most potent prediction (Figure 25a). Combining approaches in this manner would provide a conservative estimation of ecotoxicity that could be used in a low tier of the risk assessment process, and if no appreciable risk is identified with the conservative estimate then it would be a waste of resources developing a more accurate estimate and/or an experimentally derived value as this will in all likelihood just reduce the already low risk, which has been identified as acceptable.

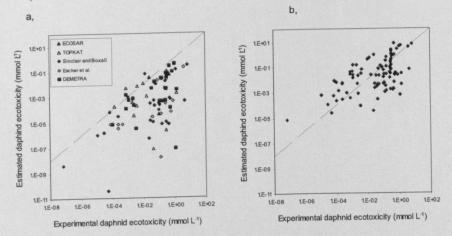
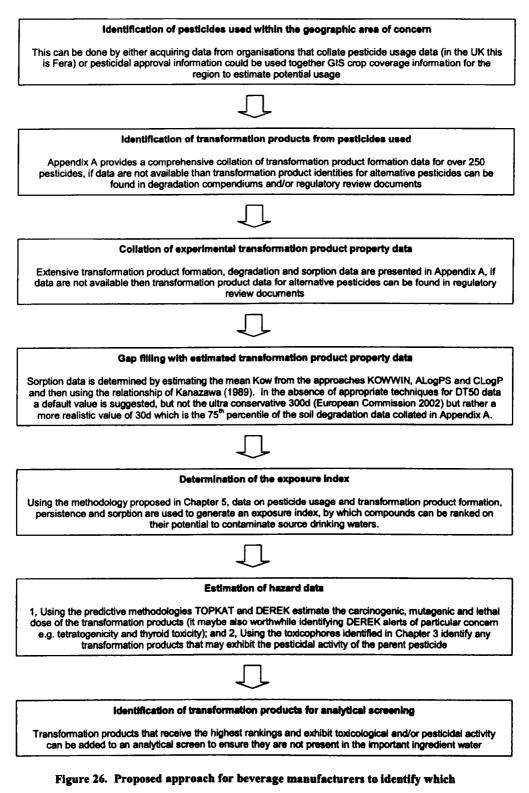


Figure 25. A comparison of daphnid acute ecotoxicity data for 92 transformation products a, the most potent estimates and b, the geometric means provided by the five evaluated approaches (dashed line x=y)


Combining techniques with a structured methodology would allow the selection of the most accurate/appropriate method and would reduce the impact of outliers when compared to using an individual technique. Techniques could be combined and hence increase predictive ability by using an average of these estimates as previously suggested for the prediction of physico-chemical properties (Clarke et al. 2004). When generating an average the geometric mean is the most appropriate as this would reduce the impact of significant outliers (e.g. Figure 25b). However it would be more prudent to develop a rule-based methodology that allows the user to select the most appropriate/accurate technique for the specific query transformation product. This would require a thorough investigation into: 1) quantifying the predictive domain of each suitable approach, 2) rationalising the identity of outliers for each approach and 3) identifying which chemical types/categories are most appropriate for each approach. Developing such an approach would require a large transformation product dataset that extensively covers a range of taxa, physico-chemical properties, transformation product chemical classes and parent pesticidal chemical classes.

7.3 Environmental assessment of transformation products

It is important that transformation products are included during any risk assessment activities for pesticides as they can add significantly to the overall impact (Kolpin et al. 2001; Gasser et al. 2007). The aim of this thesis was to investigate and develop pragmatic approaches for assessing the fate and effects of transformation products in the absence of experimentally determined data. Throughout this work various approaches have been proposed and/or evaluated. Such approaches maybe used by organisations requiring knowledge on pesticide transformation products but their reasons maybe quite different. Some may need to determine the specific risk of individual transformation products whilst others may need to identify those compounds from a plethora that need further consideration. The approach taken will be dependent on the scope and requirements of the results, some organisations maybe considering the downstream implications of pesticide usage and transformation product formation in waters and may want to identify those compounds that are of most concern, e.g. drinking water companies, beverage and food manufactures or regulators of these commodities. Whilst other organisations may want to identify the exposure or hazard from transformation products formed from a specific pesticide in the absence of experimental data e.g. agrochemical companies or pesticide regulators. Therefore two case studies with worked examples are described in the subsequent sections through which the appropriate organisations can work to provide their required data and outcome.

7.3.1 Potential contamination of source waters

The contamination of water by pesticides and some transformation products abstracted for human consumption has been well documented (e.g. Hladik et al. 2006) and is why many water treatment plants employ sorption technologies to remove these organic contaminants, e.g. activated carbon. Water can be the integral component of some companies' final products, e.g. canned beverages, and like all their ingredients foremost producers generally want to ensure that their raw ingredients are of the highest quality. If contamination of their finished product is identified it may severely impact their sales and/or reputation. Therefore analytical screens are routinely employed and generally contain ranges of target pesticides but generally no transformation products. The range of contaminants can be so vast e.g. when considering pesticide transformation products, companies may want to undertake a prioritisation, as suggested in Chapter 5, to identify the most probable potential contaminants. Required data can either be collated from the literature or from the review and detailed data tables presented in Chapter 2 and Appendix A. In the absence of experimental data information on physico-chemical properties and mammalian toxicity can be estimated by the methods described in Chapter 3 and Chapter 6 respectively. Figure 26 presents a flow diagram detailing a methodology of how those transformation products that may need adding to an analytical screen can be identified.

transformation products they should add to their regular analytical screens

7.3.1.1 Transformation product analytical determinand list

This example considers a fictitious company based in York, North Yorkshire that uses large volumes of locally sourced water in the production of their canned beverage products. To ensure quality and safety the company wish to add the most important pesticide transformation products to their routine source water analytical screen. Below is a summary of the stages to be performed following the protocol proposed in Figure 26 to identify the compounds to be added to the analytical screen.

- Pesticide usage data for North Yorkshire was obtained from the Pesticide Usage Survey Team at the Food and Environment Research Agency. These data comprised the identity of 209 pesticides used in the area, together with estimates of their usage per annum.
- Using Appendix A together with regulatory review documents and pesticide degradation compendiums 410 transformation products formed from the pesticide were identified.
- Experimental formation data (all compounds), sorption data (89 transformation products), soil persistence data (56 transformation products) and water persistence data (24 transformation products) were collated from Appendix A.
- In the absence of experimental data, sorption data were estimated for 286 compounds by first generating a combined estimate of K_{ow} using KOWWIN, CLogP and ALogPS and then using this as the input parameter in the relationship of Kanazawa (1989). Thirty transformation products were given a default value for K_d of 0.2 since estimation was not possible due to a lack of structural data. Compounds without soil persistence data were given a default DT₅₀/t¹/₂ values of 30d.
- The exposure index was then calculated for all 405 transformation products and the compounds ranked on this basis. The top 25 had their toxicological hazard estimated using DEREK and TOPKAT and scored according to Table 23 in Chapter 6, the results are provided in Table 26.

 Based on this case study the company should therefore consider including transformation products from 1,3-dichloropropene, chlorothalonil, kresoxim-methyl, chloridazon, isoproturon, cymoxanil and aldicarb in their analytical screen of source water(s).

Pesticide	Transformation product	Exposure Index	Hazard score	Risk index
1.3-dichloropropene	(EZ)-3-chloroacrylic acid	0.0124	10	0.2483
chlorothalonil	R417888	0.0099	8	0.2483
1.3-dichloropropene	(EZ)-3-chloroaliyi alcohol	0.0018	8	0.0450
chlorothalonil	3-carbamyl-2,4,5-trichlorobenzoic acid	0.0017	11	0.0312
kresoxim-methyl	kresoxim-methyl acid	0.0022	16	0.0280
chloridazon	5-amino-4-chloro-3-(2H)-pyridazinone	0.0010	8	0.0242
isoproturon	desmethylisoptoturon	0.0015	15	0.0202
cymoxanil	JX915	0.0011	12	0.0182
cymoxanil	W3595	0.0008	9	0.0182
cymoxanil	KP533	0.0014	15	0.0181
aldicarb	aldicarb sulfoxide	0.0007	10	0.0137
aldicarb	aldicarb sulfone	0.0008	13	0.0125
chlorothalonil	3-cyano-2,4,5,6-tetrachiorobenzamide	0.0003	6	0.0113
isoproturon	3-[4-(2'-hydroxy-2'-propyi)-phenyi]-methyl urea	0.0004	15	0.0054
cymoxanil	R3273	0.0003	13	0.0052
thiophanate-methyl	carbendazim	0.0003	10	0.0052
chlorothalonil	3-carbamyl-1,2,4,5-tetrachlorobezoic acid	0.0002	11	0.0039
phenmedipham	MHPC	0.0003	18	0.0038
propyzamide	N-(1,1-dimethylacetonyl)-3,5-dichlorobenzamide	0.0003	14	0.0036
propachlor	propachlor oxanilic acid	0.0002	10	0.0034
chlorotoluron	3-(3-chloro-p-tolyi)-1-methylurea	0.0002	13	0.0031
simazine	deisopropylatrazine	0.0002	16	0.0030
chlorothalonil	3-cyano-2,5,6-trichlorobenzamide	0.0002	14	0.0026
atrazine	deethylatrazine	0.0001	16	0.0016
amidosulfuron	HOE 101630	0.0001	18	0.0015

 Table 26. Transformation product risk index for North Yorkshire (compounds ranked on their risk index from high to low)

- transformation products suggested to be included on analytical determinand list are in bold

7.3.2 Generation of aquatic ecotoxicological estimates

Since it is stipulated in guidance that alternative techniques can be used to provide aquatic ecotoxicological data for transformation products (European Commission 2002a) then it would be prudent for agrochemical companies to investigate these approaches for meeting their regulatory requirements. Undertaking experimental ecotoxicological studies for the three main taxa can cost tens of thousands of pounds, the use of predictive tools would be considerable less costly and could provide data very rapidly. An approach is proposed in Chapter 4 and in this chapter four additional approaches are evaluated for their ability to estimate aquatic ecotoxicological end-points for pesticide transformation products. During Chapter 3 tools were evaluated that provide some of the required physico-chemical property data to perform the estimations, assuming that limited data, apart from structure, is known about the query transformation product. Figure 27 presents a methodology that could be employed by an agrochemical company or other stakeholder to generate aquatic ecotoxicological estimates for pesticide transformation products.

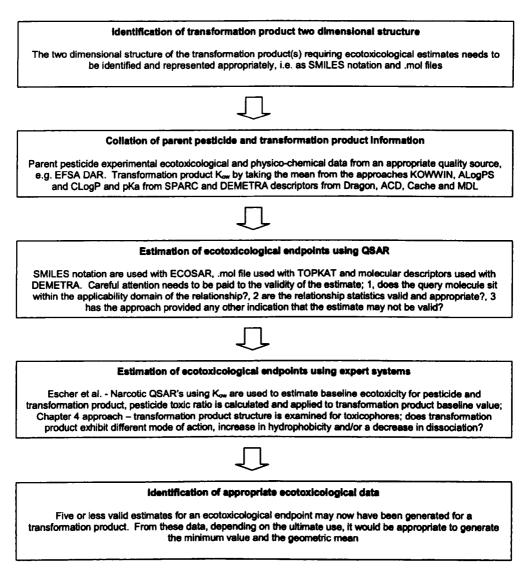


Figure 27. Proposed approach for agrochemical companies to generate ecotoxicological

estimates for transformation products

7.3.2.1 Transformation product risk to aquatic organisms

The major thrust of this work has been to evaluate existing and develop new methods to determine the exposure and/or hazard of pesticide transformation products to human health or ecosystems, in the absence of suitable experimentally determined data. This work has evaluated and proposed methodologies for estimating ecotoxicity of transformation products but to determine the risk these compounds pose, these data need to be associated with measures of exposure. Determining the risk of transformation products would: 1) identify whether the risk they pose should be of concern; and 2) identify whether that risk is a significant part of the overall risk posed by the parent pesticide.

In reality non-target aquatic organisms will not be exposed to individual compounds but rather mixtures of the parent compound and some of its transformation products. Moreover, it is probable that aquatic ecosystems that receive water from agricultural land will be exposed to a mixture of different parent pesticides and their associated transformation products in varying concentrations, therefore it can be important to consider the impact of the overall mixture. The mixture risk quotient is a measure that assumes dose additivity assuming that parent pesticides and their transformation products act in the same manner, and can therefore be used as a measure of the risk of a parent pesticide and its transformation products (Fenner et al. 2002; Boxall et al. 2004). This measure has demonstrated that when a parent compound is solely considered the risk can be acceptable but when the risk from any transformation products are included the overall risk quotient can be greater than one (Fenner et al. 2002).

To consider the risk of transformation products to aquatic ecosystems a unique dataset of parent pesticide and associated transformation products concentrations, monitored in raw surface water abstracted for drinking water were used (Hladik et al. 2006). Risk quotients (mixture and individual pesticide) for five herbicides (alachlor, metolachlor, acetochlor, dimethanamid and

atrazine) and their 28 transformation products were calculated. Individual pesticide and mixture exposure concentrations for peak concentrations identified in the study from six sampling sites in the US, were compared to acute ecotoxicity data for daphnids. In the absence of experimental data ecotoxicity estimates were generated following the approach proposed in Figure 27, ultimately data from the approach of Escher et al. (2006) was used since this was evaluated as the best performing individual technique (Table 25). A summary of the stages performed is provided below.

- Two-dimensional structures for pesticides and their 28 transformation products were collated from regulatory review documents and pesticide degradation compendiums.
- Experimental daphnid ecotoxicity and hydrophobicity data were collated for all pesticides from regulatory review documents. Daphnid ecotoxicity data were also available for two transformation products of alachlor.
- Hydrophobicity (K_{ow}) was estimated for all transformation products using a mean value from KOWWIN, CLogP and ALogPS.
- Daphnid baseline acute ecotoxicity was estimated using the predicted K_{ow} values and recommended narcotic QSAR (ECB 2003). The toxic ratio was estimated for pesticides and then applied to the narcotic estimation of the transformation products to generate a maximum ecotoxicity estimate as proposed by the method of Escher et al. (2006).
- Predicted no-effect concentrations (PNEC) were then generated using the estimated ecotoxicity data and an assessment factor of 100.
- Risk characterisation ratios were then calculated by comparing the measured surface water concentrations against the calculated PNECs.

Overall the risks posed to daphnids from the peak measured concentrations are low (Figure 28), these measured concentrations were for abstracted water, taken from larger water bodies were pesticide and transformation product concentration will be effected by dilution. The risk posed by metolachlor, acetochlor, dimethenamid and atrazine are all greater than the combined risk of their transformation products, whilst combined the transformation products of alachlor pose a greater (but still very low) risk to daphnids than alachlor itself. This suggests that whilst the risks are low it can be important to include the hazards posed by transformation products as well as the parent pesticide. The only suitable available data to perform such a comparison was for herbicides, insecticides and their transformation products may pose a greater hazard to daphnids but in contrast would probably be present in surface waters at lower concentrations, therefore it is difficult to predict whether combined with their transformation products would pose more or less of a risk to aquatic organisms.

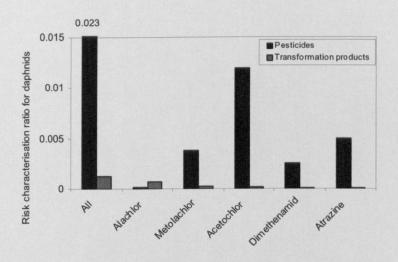


Figure 28. Risk characterisation ratio's for daphnids calculated for pesticides and their metabolites measured in US surface waters

7.4 Major knowledge gaps, overall conclusions and recommendations

Impacts on the environment associated with pesticide transformation products were identified in the late 1960's (Blus et al. 1971) but it is only over the past decade or so that increased attention has been paid to the additional risks posed by these compounds. In this final section some of the existing knowledge gaps for assessing the risks of pesticide transformation products are discussed, the overall conclusions of the work in this thesis are presented and recommendations made on future work priorities in this area.

7.4.1 Major knowledge gaps

7.4.1.1 Transformation product ecotoxicity

Ecotoxicological hazard, be it aquatic or terrestrial, is a critical parameter to determine for any compound entering the environment with the potential to impact non-target organisms and ecosystems. Compounds such as pharmaceuticals, industrial chemicals and those compounds present in products used in the household can enter environmental compartments following their disposal rather through their intended use. Pesticides are intentionally released into the environment and can subsequently move from site of application, degrade to form transformation products and/or mineralise. It is important that following their application their impact to non-target organisms is limited and that during their evaluation any potential effects caused by their transformation products are considered (Kolpin et al. 2001; Gasser et al. 2007).

Within the EU changes are imminent to the process by which the impact of pesticides are deemed acceptable and therefore gain approval for use (PSD 2009a). The current Directive (91/414/EEC) stipulates that a risk based process (incorporating elements of exposure and hazard) are used to determine whether a pesticide can be placed on the market. It has been suggested that the replacement for this directive will focus more on a hazard based approach. However the details of the new Directive are not clear and under the current Directive and guidance it is detailed that data on transformation product aquatic ecotoxicity does not necessarily need to be addressed with experimental studies but rather alternative methods can be used to generate the required data (European Commission 2002a). At the time this guidance was issued, limited approaches were available to take advantage of the this option for data

generation at a reduced cost, therefore the work performed in Chapter 4 on transformation product ecotoxicity was undertaken. Data were collated and reasoning exploring why some transformation products may exhibit an increased ecotoxicity to non-target aquatic organisms compared to parent pesticides was developed. The majority of occurrences were transformation products were more potent than pesticides could be explained by one of five reasons:

- the applied pesticide acted as a pro-pesticide where the primary transformation product was the active molecule;
- following degradation the parental toxicophore was maintained in the structure of the transformation product;
- the structural change generated a completely different active moiety than that present in the pesticide;
- the transformation product would exhibit increased accumulation due to an increase in hydrophobicity; and
- the transformation product would exhibit increased accumulation due to a decrease in dissociation.

Available acute aquatic data were used to develop this reasoning and it may only be applicable to short-term effects experienced by organisms present in aquatic systems and may not be applicable to explain occasions were transformation products display increased chronic effects. Whilst this is possibly an unusually phenomenon, it is not without precedent since some of the first identified impacts of pesticide transformation products were chronic e.g. egg shell thinning by a transformation product of DDT (Blus et al. 1971). The exhibition of a pesticidal mode of action either through a pro-pesticidal mechanism or maintenance of the parental toxicophore could be of lower important when considering chronic effects since pesticidal modes of action are predominantly designed to act rapidly. A complete change in mode of action could see transformation products exhibiting long-term effects on ecosystems not exhibited by the parent pesticide.

Moreover the reasoning developed in Chapter 4 will not be appropriate for explaining increases in ecotoxicity to terrestrial non-target organisms such as earthworms. In the same manner as aquatic non-target organisms, demonstrated in Chapter 4, transformation products generally exhibit an equivalent or lower toxicity to earthworms than their parent pesticides, with only 9% demonstrating Whilst increases in increased toxicity (Sinclair and Boxall 2009). hydrophobicity can explain increases in toxicity to aquatic organisms due to increased partitioning between the aqueous phase and the organism, it is not as straight forward for terrestrial organisms. Hydrophobicity is correlated to sorptive behaviour of uncharged chemicals in soil (Briggs 1981) and thereby the less hydrophobic a compound the greater the proportion will be present in the porewater and potentially bioavailable but very low hydrophobic chemicals would never reach excessive concentrations due to high elimination rates (Belfroid et al. 1995). Moreover bioavailability can be time-dependent where increased residence can exhibit decreases in bioavailability (Alexander 2000). Transformation products have limited potency to earthworms in general, however it would be useful, if suitable data were available to identify the reasoning why some compounds exhibit increased potency when compared to their parent pesticide for this taxa and other terrestrial organisms.

7.4.1.2 Estimation of environmental properties

During Chapter 3 estimation techniques were evaluated to determine their suitability at estimating physico-chemical and environmental properties of pesticides and their transformation products. Hydrophobicity and dissociation were found to be accurately estimated, soil sorption (K_{oc}) was adequately estimated, but could have been better, water solubility, vapour pressure, henry's law constant and soil persistence ($DT_{50}/t_{\frac{1}{2}}$) were poorly estimated. The environmental parameters K_{oc} and soil $DT_{50}/t_{\frac{1}{2}}$ are crucial when assessing environmental risk of anthropogenic substances.

Computational chemical scientists generally develop methodologies to estimate physico-chemical and environmental properties in the same manner, i.e. individual values for each compound are gathered into a training set and used to develop a statistical relationship, which is evaluated with a test set. Physico-chemical properties such as vapour pressure and water solubility can vary depending on the test conditions, comparable equivalent data for different compounds are simple to identify and collate, e.g. determinations at 25°C. However for environmental properties the experimental matrices are highly variable and can significantly influence the value of the parameter being determined.

When determined experimentally, K_{oc} and $DT_{50}/t_{1/2}$ are measured in a number of soils with differing properties, e.g. pH, % organic carbon content and % clay content, and the mean value then used for risk assessment and often used during the development of predictive approaches (e.g. Dearden 2004). The exact soils used to determine these properties can significantly influence the ultimate value(s) determined experimentally, when considering K_{∞} the organic carbon content is important for neutral compounds (Lambert et al. 1965) and alternative properties can be important for ionic compounds (Kah and Brown 2007). Guidelines suggest soils used experimentally fit specific criteria (OECD 2000) but two laboratories could still use very different soils to determine the same property for the same compound. However whilst the mean value from a number of soils will reduce the influence of soil type it will not eradicate it therefore; 1) the mean value will depend on the soils selected and 2) using the mean value in the development of predictive approaches loses a significant level of information that is particularly rich in the pesticide (and pesticide transformation product) field.

Rather than using mean values it would be pertinent to collate the substantial data that is available on K_{oc} or $DT_{50}/t_{1/2}$ and associated soil properties. Multiple values for some compounds linked to the soil property data could then be used for the development or refinement of predictive approaches. As a minimum this

should include clay content, pH and organic matter content. It is anticipated that there must have been hundreds and hundreds of sorption and soil degradation studies performed on pesticides and their transformation products in one or more soils. If these data were collated it is probable that an estimation methodology could be developed that is appropriate for pesticides and their transformation products and appreciably better than those methodologies currently available for these crucial parameters. When considering soil sorption this approach would be relatively straightforward but may not be so when considering soil persistence as the soil properties controlling this process are not as clear as those for sorption. However a significant dataset is also available to investigate this property and can be considered imperative as current approaches are unsuitable (Fenner et al. 2007).

7.4.1.3 Use of predictive approaches within the risk assessment framework Predictive techniques, QSAR in particular, can be relatively simple and quick to use, even by the inexperienced. Generally all that is required is the derivation of the correct input parameter for the query molecule, be it structural, property or molecular descriptor based, it is then entered into the model/relationship and the prediction can be generated. However it is imperative that the model used is valid, applicable to the query molecule, i.e. fits within the applicability domain of the model (Jaworska et al. 2005), and is relevant for regulatory purposes. It is therefore important that predictive techniques are used cautiously by non-experts and when used the appropriateness of the model and the appropriateness of applying the model to the query molecule are documented. Currently no guidance exists when using predictive approaches for the ecotoxicological and toxicological estimation of pesticide transformation products (and impurities). Regulators currently appear to accept results from 'known' methodologies and question alternative methodologies.

Within other chemical risk assessment frameworks, e.g. REACH Directive, the use of predictive methodologies is structured requiring the development of specific documents that report on the suitability of the model itself and the prediction generated for the query molecule. This supporting documentation are generally based on the five QSAR principles, commonly known as the 'Setubal principles' which have now been accepted by the OECD and these state a model should; 1) have a defined endpoint, 2) be based on an unambiguous algorithm; 3) have a defined domain of applicability, 4) have appropriate measures of goodness-of-fit, robustness and predictivity and 5) if possible a mechanistic interpretation. Rather than just accept the use of well known approaches, because the appropriateness of even common place methodologies can be called into question (e.g. Kaiser et al. 1999), guidance should be developed that specifies what information is required to support the submission of estimated values for pesticide transformation products.

It is anticipated that predictive techniques will never replace experimental studies for parent pesticides themselves. Estimation techniques are developed using known toxicological and ecotoxicological data and can therefore only provide estimates based on these data. They may predict extremes of a specific mode of action the extent of which has not been previously measured based extrapolation, but it would be impossible to identify significant potency based on a previously unknown mode of action. Therefore it is unlikely that pesticide regulators would (ever) accept estimated toxicological and ecotoxicological end-points for parent pesticides. Even within the REACH Directive and guidance, QSAR will not be used alone but rather in a weight of evidence approach using additional supporting data. Therefore QSAR do have a role to play during the risk assessment of pesticides providing data for transformation products and formulation impurities but their use in these field needs guidance to be developed.

7.4.2 Overall Conclusions

• When experimental data are considered transformation products are generally more hydrophilic, more water soluble and more volatile than their respective parent pesticides. Transformation products can sometimes be more mobile and more persistent than their respective parent pesticides.

- When predictive techniques are evaluated, available approaches that estimate water solubility, vapour pressure, henry's law constant and soil degradation rate constants of transformation products perform poorly whilst acid dissociation constants using SPARC and hydrophobicity using a mean from KOWWIN, ALogPS and CLogP can be estimated accurately.
- Generally transformation products are less toxic to non-target aquatic organisms but there are occasions were they can be more toxic which can be explained by the transformation product maintaining the mode of action of the parent pesticide, a complete change in mode of action from pesticide to transformation product and/or an increase in accumulation relative to the parent pesticide. To gain a conservative estimation of transformation product ecotoxicity it is appropriate to use a battery of approaches and take the most potent valid estimate. The use of common structural moieties present within the molecules of all members of a pesticidal chemical class can be one way of determining whether a transformation product will exhibit the pesticidal mode of action of the parent pesticide.
- When the potential for pesticide transformation products to contaminate raw source dinking waters was performed for pesticides used in Great Britain transformation products from chlorpyrifos, triclopyr, trifloxystrobin, diclofop-methyl, isoproturon and propachlor were of most concern. When these were compared to another geographical area (California) different transformation products were identified as posing the greatest risk, therefore it can be concluded that it is not appropriate to use standardised determinand lists when monitoring surface waters and groundwater, site specific lists would be more appropriate.

In general the availability of mammalian toxicity data for a range of endpoints for pesticide transformation products are relatively limited. However when available experimentally determined data are examined transformation products generally exhibit a lower toxicity than their parental pesticides, most transformation products are not mutagenic and most transformation products rat oral LD₅₀ can be considered of low toxicity. When these endpoints are estimated predictive toxicological approaches perform better at identifying compounds with limited toxicological concerns rather than identifying specific concerns in certain molecules. To estimate whether a transformation product exhibits mutagenicity it is most appropriate to consider parent pesticide mutagenicity together with DEREK alerts for mutagenicity and chromosome damage and TOPKAT estimates of mutagenicity. When estimating rat oral LD50 the model available in TOPKAT can provide useful data on this end-point.

7.4.3 Recommendations for further work

During this study a number of areas have been identified as requiring further study. These are detailed below:

• Degradation rate constants within environmental compartments of interest are key parameters when undertaking modelling, prioritisation and risk assessment methodologies, together with sorptive behaviour the dataset available for these parameters for pesticides and their transformation products is of the highest quality and is abundantly available (if only in summary form). Therefore it would be beneficial if these data can be used to investigate and develop high quality methods suitable for the estimation of $DT_{50}/t_{1/2}$ and K_{oc} for pesticide transformation products in soil.

- Estimation techniques are commonly accepted by regulators for pesticide formulation impurities as well as transformation products. Whilst this makes sense as they are all chemically/structurally related it would be prudent to evaluate that these methodologies are appropriate for this group of compounds also.
- Data are available that suggest that pesticides and transformation products can be present in raw source waters that are subsequently treated for drinking purposes. Limited studies have indicated that harsh treatments such as ozonation, chlorination and/or UV treatment can alter the structure of compounds present in the waters, sometimes to more toxic compounds. Work is required to 1) identify the fate of pesticides and transformation products during drinking water treatment, 2) identify what compounds can be formed and 3) determine whether any of these products pose a risk to consumers.
- Identification of transformation products produced following the degradation of pesticides in different systems is very complicated and very expensive. Approaches have been successfully developed to identify compounds formed in other systems e.g. mammalian metabolism. It would be advantageous if an accurate approach can be developed that provides the identity of potential transformation products in important degradation studies, i.e. soil and water/sediment systems.
- Most of the ecotoxicological work undertaken for transformation products focuses on acute aquatic end-points. However there are only limited data available on the effects these compounds may have longterm and on terrestrial organisms. Therefore further work is required to ensure that aquatic systems are not effected long-term by pesticides, transformation products and mixtures of these and that transformation products do not effect organisms residing in the terrestrial compartment.

8 Reference List

Accelrys Inc. (2001) Accord for Microsoft Excel User's Guide, Cambridge, UK.

- Acero, J. L., Stemmler, K. and Von Gunten, U. (2000) Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: A predictive tool for drinking water treatment, *Environmental Science and Technology*, 34:591-597.
- Adams, C. D. and Randtke, S. J. (1992) Removal of atrazine from drinking water by ozonation, Journal of the American Water Works Association, 84:91-102.
- Adams, C. D. and Thurman, E. M. (1991) Formation and transport of deethylatrazine in the soil and vadose zone, *Journal of Environmental Quality*, **20**:540-547.
- Aga, D. S. and Thurman, E. M. (2001) Formation and transport of the sulfonic acid metabolites on alachlor and metolachlor in soil, *Environmental Science and Technology*, 35:2455-2460.
- Aga, D. S., Thurman, E. M. and Pomes, M. L. (1994) Determination of alachlor and its sulfonic acid metabolite in water by solid-phase extraction and enzyme-linked immunosorbent assay, *Analytical Chemistry*, 66:1495-1499.
- Aizawa, H. (2001) Metabolic Maps, Academic Press, San Diego, USA.
- Albanis, T. A., Hela, D. G., Sakellarides, T. M. and Konstantinou, I. K. (1998) Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography, Journal of Chromatography A, 823:59-71.
- Albanis, T. A. and Hela, D. G. (1998) Pesticide concentrations in Louros River and their fluxes in the marine environment, International Journal of Environmental Analytical Chemistry, 70:105-120.
- Alexander, M. (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants, *Environmental Science and Technology*, 34:4259-4265.
- Anon. (2004) The TOPKAT User Guide, Version 6.2, Accelrys Inc., San Diego, USA.
- Anon. (2005) Derek for Windows, Version 9.0.0, User Guide, Lhasa Limited, Leeds, UK.
- APVMA (1997a) The NRA Review of Atrazine, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- APVMA (1997b) The NRA Special Review of Metham-sodium, Dazomet and Methylisothiocyanate, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- APVMA (1999) The NRA Review of Fenitrothion, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- APVMA (2000) The NRA Review of Chlorpyrifos, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- APVMA (2001) The NRA Review of Aldicarb, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- APVMA (2005) Chemical Review Program and Reports, http://www.apvma.gov.au/chemrev/chemrev.shtml, Australian Pesticides and Veterinary Medicines Authority, Barton, Australia, Last accessed 1 February 2005.
- Ashby, J. and Tennant, R.W. (1991) Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP, *Mutation Research*, 257:229-306
- Assaf, N. A. and Turco, R. F. (1994) Influence of carbon and nitrogen on the mineralization of

atrazine and its metabolites in soil, Pesticide Science, 41:41-47.

- Baran, N., Lepiller, M. and Mouvet, C. (2008) Agricultural diffuse pollution in a chalk aquifer (Trois Fontaines, France): Influence of pesticide properties and hydrodynamic constraints, *Journal of Hydrology*, 358:56-69.
- Baskaran, S., Kookana, R. S. and Naidu, R. (2003) Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyridinol), with depth in soil profiles, *Australian Journal of Soil Research*, 41:749-760.
- Battaglin, W. A., Furlong, E. T., Burkhardt, M. R. and Peter, C. J. (2000) Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998, *The Science of the Total Environment*, 248:123-133.
- Battaglin, W. A. and Goolsby, D. A. (1999) Are shifts in herbicide use reflected in concentration changes in Midwestern rivers?, *Environmental Science and Technology*, 33:2917-2925.
- Belfroid, A., Vandenberg, M., Seinen, W., Hermens, J. and Vangestel, K. (1995) Uptake, bioavilability and elimination of hydrophobic compounds in earthworms (*Eisenia* andrei) in field contaminated soil, *Environmental Toxicology and Chemistry*, 14:605-612.
- Belfroid, A. C., van Drunen, M., Beek, M. A., Schrap, S. M., van Gestel, C. A. M. and van Hattum, B. (1998) Relative risks of transformation products of pesticides for aquatic ecosystems, *The Science of the Total Environment*, 222 :167-183.
- Belfroid, A. C., van Drunen, M., van Gestel, C. A. M. and van Hattum, B. (1996) Relative Risks of Transformation Products of Pesticides for Aquatic Ecosystems, Institute for Environmental Studies and Institute for Inland Water Management and Waste Water Treatment, Amsterdam, Netherlands.
- Benfenati, E. (2007) Quantitative Structure-Activity Relationships (QSAR) for Pesticide Regulatory Purposes, Elsevier, Amseterdam, The Netherlands.
- Benoit, P. and Barriuso, E. (1997) Fate of ¹⁴C-ring-labeled 2,4-D, 2,4-dichlorophenol and 4chlorophenol during straw composting, *Biology and Fertility of Soils*, 25:53-59.
- Blanchard, P. E. and Donald, W. W. (1997) Herbicide contamination in groundwater beneath claypan soils in North-Central Missouri, *Journal of Environmental Quality*, 26:1612-1621.
- Blumhorst, M. R. and Weber, J. B. (1992) Cyanazine dissipation as influenced by soil properties, Journal of Agricultural and Food Chemistry, 40:894-897.
- Blus, L. J., Heath, R. G., Gish, C. D., Belisle, A. A. and Prouty, R. M. (1971) Eggshell thinning in Brown Pelican - Implication of DDE, *Bioscience*, 21:1213-1215.
- Boethling, R. S., Howard, P. H., Meylan, W., Stiteler, W., Beaumann, J. and Tirado, N. (1994) Group contribution method for predicting probability and rate of aerobic biodegradation, *Environmental Science and Technology*, 28:459-465.
- Boxall, A. B. A., Sinclair, C. J. and Parsons, S. A. (2004) Pesticide degradates and adjuvants: Prioritisation scheme, Draft document for discussion, International Symposium on Pesticides, Their Degradates and Adjuvants, Prague, Czech Republic.
- Boxall, A. B. A., Fogg, L. A., Kay, P., Blackwell, P. A., Pemberton, E. J. and Croxford, A. (2003) Prioritisation of veterinary medicines in the UK environment, *Toxicology Letters*, 142:207-218.
- Boxall, A. B. A., Sinclair, C. J., Fenner, K., Kolpin, D. and Maund, S. J. (2004) When synthetic chemicals degrade in the environment, *Environmental Science and Technology*, 38:368A-375A.
- Boyd, R. A. (2000) Herbicides and herbicide degradates in shallow groundwater and the Cedar

River near a municipal well field, Cedar Rapids, Iowa, The Science of the Total Environment, 248:241-253.

- Bradbury, S. P. (1994) Predicting modes of toxic action from chemical structure: an overview, SAR and QSAR in Environmental Research, 2:89-104.
- Briggs, G. G. (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor, *Journal of Agricultural and Food Chemistry*, **29**:1050-1059.
- Broholm, M. M., Rügge, K., Tuxen, N., Hojberg, A. L., Mosbaek, H. and Bjerg, P. L. (2001) Fate of herbicides in a shallow aerobic aquifer: A continuous field injection experiment (Vejen, Denmark), *Water Resources Research*, 37:3163-3176.
- Bromilow, R. H., Evans, A. A. and Nicholls, P. H. (1999) Factors affecting degradation rates of five triazole fungicides in two soil types: 1. Laboratory incubations, *Pesticide Science*, 55:1129-1134.
- Brouwer, W. W. M., Boesten, J. J. T. I. and Siegers, W. G. (1990) Adsorption of transformation products of atrazine by soil, *Weed Research*, **30**:123-128.
- Burkart, M. R. and Kolpin, D. W. (1993) Hydrologic and land-use factors associated with herbicides and nitrate in near-surface aquifers, *Journal of Environmental Quality*, 22:646-656.
- Calumpang, S. M. F., Medina, M. J. B., Roxas, N. P. and Magallonas, E. D. (1993) Movement and degradation of mancozeb fungicide and its metabolites, ethylenethiourea and ethyleneurea in silty clay loam soil, *International Journal of Pest Management*, **39**:161-166.
- Cantier, J. M., Bastide, J., Yan, Z. and Coste, C. (1988) degradation of carbetamide and its cheif metabolites in alkaline soil, *Pesticide Science*, 23:327-335.
- Capleton, A. C., Courage, C., Rumsby, P., Holmes, P., Stutt, E., Boxall, A. B. A. and Levy, L. S. (2006) Prioritising veterinary medicines according to their potential indirect human exposure and toxicity profile, *Toxicology Letters*, 163:213-223.
- Cariello, N. F., Wilson, J. D., Britt, B. H., Wedd, D. J., Burlinson, B. and Gomber, V. (2002) Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity, *Mutagenesis*, 17:321-329.
- Carson, R. (1963) Silent Spring, Hamish Hamilton, London, UK.
- CDPR (2000) Pesticide Use Reporting: An Overview of California's Unique Full Reporting System, California Department of Pesticide Regulation, Sacramento, USA.
- CDPR (2005) Top 100 Pesticides used Statewide (all sites combined) in 2003, http://www.cdpr.ca.gov/docs/pur/pur03rep/top100_ais.pdf, California Department of Pesticide Regulation, Sacramento, USA, Last accessed 31 July 2006.
- Chamberlain, K., Patl, S. and Bromilow, R. H. (1998) Uptake by roots and translocation to shoots of two morpholine fungicides in barley, *Pesticide Science*, 54:1-7.
- Chaudhry, Q., Cotterill, J., Watkins, R., and Price, N. (2006) A molecular modelling approach to predict the toxicity of compounds generated during heat treatment of foods, In *Acrylamide and Other Hazardous Compounds in Heat Treated Foods*, Skog, K. and Alexander, J. Eds., Woodhead Publishing Limited, Cambridge, UK, pp 132-160.
- Chiou, C. T., Peters, L. J. and Freed, V. H. (1979) A physical concept of soil-water equilibria for nonionic organic compounds, *Science*, **206**:831-832.
- Clark, G. M., Goolsby, D. A. and Battaglin, W. A. (1999) Seasonal and annual load of herbicides from the Mississippi River Basin to the Gulf of Mexico, *Environmental Science and Technology*, 33:981-986.

- Clarke, E. D., Draper, E., Holliday, J. D. and Mullier, G. W. (2004) ELOGP: Improving the prediction of Log P octanol for agrochemicals, Poster at 11th International Workshop on Quantitative Structure-Activity Relationships (QSAR) in Human Health and Environmental Sciences, 9-13 May, Liverpool, UK.
- Clarke, E. D. and Delaney, J. S. (2003) Physical and molecular properties of agrochemicals: an analysis of screen inputs, hits, leads, and products, *Chimia*, 57:731-734.
- Collivignarelli, C. and Sorlini, S. (2004) AOPs with ozone and UV radiation in drinking water: contaminants removal and effects on disinfection byproducts formation, *Water Science* and Technology, **49**:51-56.
- Copping, L. G. and Hewitt, H. G. (1998) Chemistry and Mode of Action of Crop Protection Agents, The Royal Society of Chemistry, Cambridge, UK.
- Coupe, R. H. and Blomquist, J. D. (2004) Water-soluble pesticides in finished water of community water supplies, *Journal of the American Water Works Association*, 96:56-68.
- Cremlyn, R. J. (1991) Agrochemicals: Preparation and Mode of Action, Biddles Ltd, Guildford, UK.
- Cronin, M. T. (2003) Personal communication, School of Pharmacy and Chemistry, Liverpool John Moores University, UK.
- Danish EPA (2001) Report on the Advisory List for Self-classification of Dangerous Substances, Environmental project No.636, Danish Environmental Protection Agency, Kobenhavn, Denmark.
- Day, K. E. and Hodge, V. (1996) The toxicity of the herbicide metolachlor, some transformation products and a commercial safener to an alga (Selenastrum capricornutum), a cyanophyte (Anabaena cylindrica) and a macrophyte (Lemna gibba), Water Quality Research Journal of Canada, 31:197-214.
- Day, K. E. and Maguire, R. J. (1990) Acute toxicity of isomers of the pyrethroid insecticide deltamethrin and its major degradation products to Daphnia magna, Environmental Toxicology and Chemistry, 9:1297-1300.
- Daylight Chemical Information Systems (2004) ClogP, http://www.daylight.com, Aliso Viejo, USA, Last accessed September 2004.
- Dearden, J. C. (2003) Quantitative structure-property relationships for prediction of boiling point, vapour pressure and melting point, *Environmental Toxicology and Chemistry*, 22:1696-1709.
- Dearden, J. C. (2004) QSAR modelling of soil sorption, In Predicting Chemical Toxicity and Fate, Cronin, M. T. D. and Livingstone, D. J. Eds., CRC Press, Boca Raton, USA, pp 357-371.
- Dijk, H. v. (1974) Degradation of 1,3-dichloropropenes in the soil, Agro-Ecosystems, 1:193-204.
- Donaldson, D., Kiely, T. and Grube, A. (2002) Pesticides Industry Sales and Usage; 1998 and 1999 Market Estimates, USEPA, Washington, USA.
- Doucette, W. J. (2003) Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals, *Environmental Toxicology and Chemistry*, 22:1771-1788.
- Drabek, J. and Neumann, R. (1985) Proinsecticides, In Insecticides, Hutson, D. H. and Roberts, T. R. Eds., John Wiley & Sons, Chichester, UK, pp 35-86.
- DWI (2008) Guidance on the Water Supply (Water Quality) Regulations 2000 (England) incorporating the Water Supply (Water Quality) Regulations 2000 (Amendment) Regulations 2007 and the Water Supply (Water Quality) Regulations 2001 (Amendment) Regulations 2007, Drinking Water Inspectorate, London, UK.

- ECB (2000) IUCLID CD-ROM, Public data on high volume chemicals, European Chemicals Bureau, Brussels, Belgium.
- ECB (2003) Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market, European Chemicals Bureau, Brussels, Belgium.
- ECVAM (2006) Validated Methods, http://ecvam.jrc.it/, European Centre for the Validation of Alternative Methods, Ispra, Italy, Last accessed 31 July 2006.
- EFSA (2004) Conclusion regarding the peer review of the pesticide risk assessment of the active substance tribenuron, EFSA Scientific Report, 15:1-52.
- EFSA (2005a) Conclusion regarding the peer review of the pesticide risk assessment of the active substance dimethenamid, *EFSA Scientific Report*, **53**:1-73.
- EFSA (2005b) Conclusion regarding the peer review of the pesticide risk assessment of the active substance oxamyl, EFSA Scientific Report, 26:1-78.
- EFSA (2005c) Conclusion regarding the peer review of the pesticide risk assessment of the active substance tolclofos-methyl, *EFSA Scientific Report*, **32**:1-65.
- EFSA (2005d) Conclusion regarding the peer review of the pesticide risk assessment of the active substance triclopyr, *EFSA Scientific Report*, **56**:1-103.
- EFSA (2006a) Conclusion regarding the peer review of the pesticide risk assessment of the active substance 1,3-dichloropropene, EFSA Scientific Report, 72:1-99.
- EFSA (2006b) Conclusion regarding the peer review of the pesticide risk assessment of the active substance benfuracarb, EFSA Scientific Report, 89:1-81.
- EFSA (2006c) Conclusion regarding the peer review of the pesticide risk assessment of the active substance captan, EFSA Scientific Report, 71:1-89.
- EFSA (2006d) Conclusion regarding the peer review of the pesticide risk assessment of the active substance carbaryl, *EFSA Scientific Report*, **80**:1-71.
- EFSA (2006e) Conclusion regarding the peer review of the pesticide risk assessment of the active substance methiocarb, EFSA Scientific Report, 79:1-82.
- EFSA (2007a) Conclusion regarding the peer review of the pesticide risk assessment of the active substance fludioxonil, EFSA Scientific Report, 110:1-85.
- EFSA (2007b) Conclusion regarding the peer review of the pesticide risk assessment of the active substance fuberidazole, EFSA Scientific Report, 118:1-65.
- EFSA (2007c) Conclusion regarding the peer review of the pesticide risk assessment of the active substance prosulfocarb, EFSA Scientific Report, 111:1-81.
- EFSA (2007d) Conclusion regarding the peer review of the pesticide risk assessment of the active substance spiromesifen, EFSA Scientific Report, 105:1-69.
- EFSA (2007e) Conclusions on the Peer Review of Pesticide Risk Assessments, http://www.efsa.europa.eu/en/about_efsa.html, European Food Safety Authority, Parma, Italy, Last accessed 30 April 2007e.
- EFSA (2009) Conclusions on the Peer Review of Pesticide Risk Assessments, http://www.efsa.europa.eu/en/about_efsa.html, European Food Safety Authority, Parma, Italy, Last accessed 10 February 2009.
- Enfield, C. G., Carsel, R. F., Cohen, S. Z., Phan, T. and Walters, D. M. (1982) Approximating pollutant transport to ground water, *Ground Water*, 20:711-722.
- Enslein, K. (1988) An overview of structure-activity relationships as an alternative to testing in

animals for carcinogenicity, mutagenicity, dermal and eye irritation, and acute oral toxicity, *Toxicology and Industrial Health*, 4:479-498.

- Enslein, K., Gombar, V. K. and Blake, B. W. (1994) Use of SAR in computer-assisted prediction of carcinogenicity and mutagnicity of chemicals by the TOPKAT program, *Mutation Research*, **305**:47-61.
- EPA (1993) Reregistration Eligibility Decision for Glyphosate, EPA 738-R-98-016, Environmental Protection Agency, Washington, USA.
- EPA (1994a) Reregistration Eligibility Decision for Hexazinone, EPA 738-R-94-022, Environmental Protection Agency, Washington, USA.
- EPA (1994b) Reregistration Eligibility Decision for Metalaxyl, EPA 738-R-94-017, Environmental Protection Agency, Washington, USA.
- EPA (1994c) Reregistration Eligibility Decision for Piperalin, EPA 738-R-94-033, Environmental Protection Agency, Washington, USA.
- EPA (1994d) Reregistration Eligibility Decision for Pronamide, Environmental Protection Agency, Washington, USA.
- EPA (1995a) Reregistration Eligibility Decision for Ethephon, EPA 738-R-95-003, Environmental Protection Agency, Washington, USA.
- EPA (1995b) Reregistration Eligibility Decision for Fenitrothion, EPA 738-R-95-018, Environmental Protection Agency, Washington, USA.
- EPA (1995c) Reregistration Eligibility Decision for Foseamine-ammonium, EPA 738-R-95-004, Environmental Protection Agency, Washington, USA.
- EPA (1995d) Reregistration Eligibility Decision for Metolachlor, EPA 738-R-95-006, Environmental Protection Agency, Washington, USA.
- EPA (1996a) Reregistration Eligibility Decision for Amitraz, Environmental Protection Agency, Washington, USA.
- EPA (1996b) Reregistration Eligibility Decision for Norflurazon, Case 0229, Environmental Protection Agency, Washington, USA.
- EPA (1996c) Reregistration Eligibility Decision for Prometryn, EPA 738-R-95-033, Environmental Protection Agency, Washington, USA.
- EPA (1997) Reregistration Eligibility Decision for Diflubenzuron, EPA 738-R-97-008, Environmental Protection Agency, Washington, USA.
- EPA (1998a) Reregistration Eligibility Decision for 1,3-Dichloropropene, EPA 738-R-93-014, Environmental Protection Agency, Washington, USA.
- EPA (1998b) Reregistration Eligibility Decision for Bromoxynil, EPA 738-R-98-013, Environmental Protection Agency, Washington, USA.
- EPA (1998c) Reregistration Eligibility Decision for DCPA, EPA 738-R-98-005, Environmental Protection Agency, Washington, USA.
- EPA (1998d) Reregistration Eligibility Decision for Diclobenil, EPA-738-R-98-003, Environmental Protection Agency, Washington, USA.
- EPA (1998e) Reregistration Eligibility Decision for Propachlor, EPA 738-R-015, Environmental Protection Agency, Washington, USA.
- EPA (1998f) Reregistration Eligibility Decision for Thiodicarb, EPA 738-R-98-022, Environmental Protection Agency, Washington, USA.
- EPA (1998g) Reregistration Eligibility Decision for Triclopyr, EPA 738-R-98-011, Environmental Protection Agency, Washington, USA.

- EPA (1999a) Reregistration Eligibility Decision for Captan, EPA 738-R-99-015, Environmental Protection Agency, Washington, USA.
- EPA (1999b) Reregistration Eligibility Decision for Chlorothalonil, EPA 738-R-99-004, Environmental Protection Agency, Washington, USA.
- EPA (1999c) Reregistration Eligibility Decision for EPTC, EPA 738-R-99-006, Environmental Protection Agency, Washington, USA.
- EPA (1999d) Reregistration Eligibility Science Chapter for Chlorpyrifos: Fate and Environmental Risk Assessment, Environmental Protection Agency, Washington, USA.
- EPA (2001a) The Incorporation of Water Treatment Effects on Pesticidae Removal and Transformations in Food Quality Protection Act (FQPA) Drinking Water Assessments, Environmental Protection Agency, Washington D.C., USA.
- EPA (2001b) Organophosphate Pesticides: Preliminary OP Cumulative Risk Assessment, Environmental Protection Agency, Washington DC, USA.
- EPA (2001c) Reregistration Eligibility Decision for Acephate, EPA 738-R-01-013, Environmental Protection Agency, Washington, USA.
- EPA (2001d) Revised EFED's RED Document for Thiophanate-methyl and its Major Degradate, MBC (methyl 2-benzimidazolycarbamate), Environmental Protection Agency, Washington, USA.
- EPA (2002a) Interim Reregistration Eligibility Decision for Disulfoton, Environmental Protection Agency, Washington, USA.
- EPA (2002b) Reregistration Eligibility Decision for Dicrotophos, Environmental Protection Agency, Washington, USA.
- EPA (2002c) Reregistration Eligibility Decision for Endosulfan, EPA 738-R-02-013, Environmental Protection Agency, Washington, USA.
- EPA (2003a) The ECOTOX Database, http://www.epa.gov/ecotox/, Environmental Protection Agency, Washington DC, USA, Last accessed 25 January 2003a.
- EPA (2003b) Interim Reregistration Eligibility Decision for Atrazine, Environmental Protection Agency, Washington, USA.
- EPA (2003c) Reregistration Eligibility Decision for Diuron, Environmental Protection Agency, Washington, USA.
- EPA (2004a) 2004 Edition of the Drinking Water Standards and Health Advisories, Environmental Protection Agency, Washington D.C., USA.
- EPA (2004b) EPI Suite v3.12, http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm, Environmental Protection Agency, Washington DC, USA, Last accessed 12 September 2004b.
- EPA (2004c) *PBT Profiler*, http://www.pbtprofiler.net/, Environmental Protection Agency, Washington DC, USA, Last accessed 12 September 2004c.
- EPA (2004d) Reregistration Eligibility Decision for Carbaryl, Environmental Protection Agency, Washington, USA.
- EPA
 (2005)
 Pesticide
 Reregistration
 Status,

 http://www.epa.gov/pesticides/reregistration/status.htm,
 Environmental
 Protection

 Agency,
 Washington DC, USA, Last accessed 1 February 2005.
 Protection
- EPA
 (2007)
 Pesticide
 Reregistration
 Status,

 http://cfpub.epa.gov/oppref/rereg/status.cfm?show=rereg,
 Environmental
 Protection

 Agency, Washington DC, USA, Last accessed 11 April 2007.
 Protection
 Protection

EPA (2009) Pesticide Reregistration Status,

http://www.epa.gov/pesticides/reregistration/status.htm, Environmental Protection Agency, Washington DC, USA, Last accessed 10 February 2009.

- Ersoz, M., Duncan, H. J., Lale, M. and Ucan, H. I. (1996) Herbicide penetration through isolated periderm and cuticlar membranes, *Environmental Technology*, 17:87-93.
- Escher, B. I., Baumgartner, R., Lienert, J., and Fenner, K. (2009) Predicting the Ecotoxicological Effects of Transformation Products, In *Transformation Product of Synthetic Chemicals* in the Environment, Boxall, A. B. A. Ed., Springer, Dordrecht, Germany, pp 205-244.
- Escher, B. I., Bramaz, N., Richter, M. and Lienert, J. (2006) Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action based test battery and a QSAR approach, *Environmental Science and Technology*, **40**:7402-7408.
- Escher, B. I. and Hermens, J. L. M. (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects, *Environmental Science and Technology*, 36:4201-4217.
- Esser, H. O. and Moser, P. (1982) An appraisal of problems related to the measurement and evaluation of bioaccumulation, *Ecotoxicology and Environmental Safety*, 6:131-148.
- EU (1998) Review Report for the Active Substance Kresoxim-methyl, 7583/VI/97-Final, European Commission, Brussels, Belgium.
- EU (1999) Review Report for the Active Substance Fluoxypyr, 6848/VI/98-final, European Commission, Brussels, Belgium.
- EU (2000a) Review Report for the Active Substance Metsulfuron-methyl, 7593/V1/97-final, European Commission, Brussels, Belgium.
- EU (2000b) Review Report for the Active Substance Triasulfuron, 7589/VI/97-final, European Commission, Brussels, Belgium.
- EU (2001a) Review Report for the Active Substance Cyclanilide, 7463/VI/98-final, European Commission, Brussels, Belgium.
- EU (2001b) Review Report for the Active Substance Flupyrsulfuron-methyl, 5050/VI/97-final, European Commission, Brussels, Belgium.
- EU (2001c) Review Report for the Active Substance Lambda-Cyhalothrin, 7572/VI/97-final, European Commission, Brussels, Belgium.
- EU (2001d) Review Report for the Active Substance Pyridate, 7576/VI/97-final, European Commission, Brussels, Belgium.
- EU (2001e) Review Report for the Active Substance Thifensulfuron-methyl, SANCO/7577/VI/97final, European Commission, Brussels, Belgium.
- EU (2002a) Review Report for the Active Substance 2,4-DB, 7601/VI/97-final, European Commission, Brussels, Belgium.
- EU (2002b) Review Report for the Active Substance Beta-Cyfluthrin, 6841/VI/97-final, European Commission, Brussels, Belgium.
- EU (2002c) Review Report for the Active Substance Cyazofamid, SANCO/10379/2002-final, European Commission, Brussels, Belgium.
- EU (2002d) Review Report for the Active Substance Cyhalofop-butyl, 6500/VI/99-Final, European Commission, Brussels, Belgium.
- EU (2002e) Review Report for the Active Substance Deltamethrin, 6504/VI/99-final, European Commission, Brussels, Belgium.
- EU (2002f) Review Report for the Active Substance Famoxadone, 6505/VI/99-final, European Commission, Brussels, Belgium.

186

i

- EU (2002g) Review Report for the Active Substance Florasulam, SANCO/1406/2001 final, European Commission, Brussels, Belgium.
- EU (2002h) Review Report for the Active Substance Foramsulfuron, SANCO/10324/2002-Final, European Commission, Brussels, Belgium.
- EU (2002i) Review Report for the Active Substance Glyphosate, 6511/VI/99-final, European Commission, Brussels, Belgium.
- EU (2002j) Review Report for the Active Substance Iprodione, 5036/VI/98-final, European Commission, Brussels, Belgium.
- EU (2002k) Review Report for the Active Substance Iprovalicarb, SANCO/2034/2000-FINAL, European Commission, Brussels, Belgium.
- EU (20021) Review Report for the Active Substance Isoproturon, SANCO/3045/VI/99-final, European Commission, Brussels, Belgium.
- EU (2002m) Review Report for the Active Substance Oxadiargyl, SANCO/3053/99-final, European Commission, Brussels, Belgium.
- EU (2002n) Review Report for the Active Substance Oxasulfuron, SANCO/4323/2000-final, European Commission, Brussels, Belgium.
- EU (20020) Review Report for the Active Substance Picolinafen, SANCO/1418/2001-final, European Commission, Brussels, Belgium.
- EU (2002p) Review Report for the Active Substance Prosulfuron, SANCO/3055/99-FINAL, European Commission, Brussels, Belgium.
- EU (2002q) Review Report for the Active Substance Sulfosulfuron, 7459/VI/98-FINAL, European Commission, Brussels, Belgium.
- EU (2003a) Review Report for the Active Substance Dimethenamid-P, SANCO/1402/2001-Final, European Commission, Brussels, Belgium.
- EU (2003b) Review Report for the Active Substance Flurtamone, Sanco/10162/2003-Final, European Commission, Brussels, Belgium.
- EU (2003c) Review Report for the Active Substance Iodosulfuron, SANCO/10166/2003-Final, European Commission, Brussels, Belgium.
- EU (2003d) Review Report for the Active Substance Molinate, SANCO/3047/99-final, European Commission, Brussels, Belgium.
- EU (2003e) Review Report for the Active Substance Propiconazole, SANCO/3049/99-final, European Commission, Brussels, Belgium.
- EU (2003f) Review Report for the Active Substance Propineb, SANCO/7574/97-final, European Commission, Brussels, Belgium.
- EU (2003g) Review Report for the Active Substance Propoxycarbozone, SANCO/4067/2001-Final, European Commission, Brussels, Belgium.
- EU (2003h) Review Report for the Active Substance Propyzamide, 6502/VI/99-final, European Commission, Brussels, Belgium.
- EU (2003i) Review Report for the Active Substance Trifloxystrobin, SANCO/4339/2000-Final, European Commission, Brussels, Belgium.
- EU (2004a) Review Report for the Active Substance Acetamiprid, SANCO/1392/2001 Final, European Commission, Brussels, Belgium.
- EU (2004b) Review Report for the Active Substance Alpha-cypermethrin, SANCO/4335/2000 final, European Commission, Brussels, Belgium.
- EU (2004c) Review Report for the Active Substance Benalaxyl, SANCO/4351/2000 final,

European Commission, Brussels, Belgium.

- EU (2004d) Review Report for the Active Substance Bromoxynil, SANCO/4347/2000-final, European Commission, Brussels, Belgium.
- EU (2004e) Review Report for the Active Substance Ioxynil, SANCO/4349/2000-final, European Commission, Brussels, Belgium.
- EU (2004f) Review Report for the Active Substance Phenmedipham, SANCO/4060/2001-final, European Commission, Brussels, Belgium.
- EU (2004g) Review Report for the Active Substance S-Metolachlor, SANCO/1426/2001 rev. 3 , European Commission, Brussels, Belgium.
- EU (2004h) Review Report for the Active Substance Tepraloxydim, SANCO/10388/2002 rev. 4, European Commission, Brussels, Belgium.
- EU (2004i) Review Report for the Active Substance Thiacloprid, SANCO/4347/2000 Final, European Commission, Brussels, Belgium.
- EU (2005a) Review Report for the Active Substance Bifenazate, SANCO/10158/2005 rev. 3, European Commission, Brussels, Belgium.
- EU (2005b) Review Report for the Active Substance Chlorothalonil, SANCO/4343/2000 final, European Commission, Brussels, Belgium.
- EU (2005c) Review Report for the Active Substance Chlorotoluron, SANCO/4329/2000 final, European Commission, Brussels, Belgium.
- EU (2005d) Review Report for the Active Substance Chlorpyrifos, SANCO/3059/99 rev. 1.5, European Commission, Brussels, Belgium.
- EU (2005e) Review Report for the Active Substance Chlorpyrifos-methyl, SANCO/3601/99rev.1.6, European Commission, Brussels, Belgium.
- EU (2005f) Review Report for the Active Substance Mancozeb, SANCO/4058/2001 rev. 4.3, European Commission, Brussels, Belgium.
- EU (2005g) Review Report for the Active Substance Maneb, SANCO/4057/2001-rev.3.3, European Commission, Brussels, Belgium.
- EU (2005h) Review Report for the Active Substance MCPA, SANCO/4062/2001-final, European Commission, Brussels, Belgium.
- EU (2005i) Review Report for the Active Substance MCPB, SANCO/4063/2001-final, European Commission, Brussels, Belgium.
- EU (2005j) Review Report for the Active Substance Metiram, SANCO/4059/2001-rev.3.3, European Commission, Brussels, Belgium.
- EU (2005k) Review Report for the Active Substance Thiophanate-methyl, 5030/V1/98 final, European Commission, Brussels, Belgium.
- EU (2006a) Review Report for the Active Substance Pethoxamid, SANCO/10396/2002 -Final, European Commission, Brussels, Belgium.
- EU (2006b) Review Report for the Active Substance Thiamethoxam, SANCO/10390/2002 rev. final, European Commission, Brussels, Belgium.
- EU (2007a) Review Report for the Active Substance Flusilazole, 6850/VI/97 final, European Commission, Brussels, Belgium.
- EU (2007b) Technical Review Reports, http://ec.europa.eu/food/plant/protection/evaluation/existactive/list1-47_en.pdf, European Union, Brussels, Belgium, Last accessed 11 April 2007b.

European Commission (1994) Council Directive of 15 July 1991 concerning the placing of plant

protection products on the market (91/414/EEC), Official Journal of the European Communities, 230:1-194.

- European Commission (1998) Council Directive of 3 November 1998 on the quality of water intended for human consumption (98/83/EC), Official Journal of the European Communities, 330.
- European Commission (2002a) Guidance Document on Aquatic Ecotoxicology in the Context of the Directive 91/414/EEC, Sanco/3268/2001 rev.4 (final), Brussels, Belgium.
- European Commission (2002b) Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC, SANCO/10329/2002 rev 2 final, Brussels, Belgium.
- European Commission (2003) Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated Under Council Directive 91/414/EEC, Sanco/221/200-rev.10, Brussels, Belgium.
- European Commission (2005) Decision and Review Reports, http://ec.europa.eu/food/plant/protection/evaluation/exist_subs_rep_en.htm, Brussels, Belgium, Last accessed 1 February 2005.
- European Commission (2007) Commission decision of 4 May 2007 laying down protective measures concerning uses of plant protection products containing tolyfluanid leading to the contamination of drinking water, Official Journal of the European Communities, 119:49-50.
- European Crop Protection Association (2002) Comparison of Parent and Metabolite Toxicity for Aquatic Organisms - Preliminary Findings, Report of the ECPA ad hoc Aquatic Ecotoxicology Group, Brussels, Belgium.
- Fava, L., Bottoni, P., Crobe, A. and Funari, E. (2000) Leaching properties of some degradation products of alachlor and metolachlor, *Chemosphere*, **41**:1503-1508.
- Fava, L., Orrù, A., Crobe, A., Caracciolo, A. B., Bottonic, P. and Funari, E. (2005) Pesticide metabolites as contaminants of groundwater resources: Assessment of the leaching potential of endosulfan sulfate, 2,6-dichlorobenzoic acid, 3,4-dichloroaniline, 2,4dichlorophenol and 4-chloro-2-methylphenol, *Microchemical Journal*, 79:207-211.
- Feleke, Z. and Sakakibara, Y. (2001) Nitrate and pesticide removal by a combined bioelectrical/adsorption process, *Water Science and Technology*, **43**:25-33.
- Fenner, K. B. (2001) Transformation Products in Environmental Risk Assessment: Joint and Secondary Persistence as New Indicators for the Overall Hazard of Chemical Pollutants, Doctoral Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.
- Fenner, K., Kooijman, C., Scheringer, M. and Hungerbühler, K. (2002) Including transformation products into the risk assessment for chemicals: The case of nonylphenol ethoxylate usage in Switzerland, *Environmental Science and Technology*, 36:1147-1154.
- Fenner, K., Lanz, V., Scheringer, M., and Borsuk, M. (2007) Relating atrazine degradation rate in soil to environmental conditions: Implications for global fate modeling, *Environmental Science and Technology*, 41:2840–2846.
- Ferrer, I., Thurman, E. M. and Barceló, D. (1997) Identification of ionic chloroacetanilideherbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray, Analytical Chemistry, 69:4547-4553.
- Ferrer, I., Thurman, E. M. and Barceló, D. (2000) First LC/MS determination of cyanazine amide, cyanazine acid, and cyanazine in groundwater samples, *Environmental Science* and Technology, 34:714-718.
- FOCUS (2002) FOCUS Surface Water Scenerios in the EU Evaluation Process under 91/414/EEC, FOCUS Working Group on Surface Water Scenerios, Sanco/4802/2001-rev-1, Brussels, Belgium.

- Gaido, K. W., Leonard, L. S., Maness, S. C., Hall, J. M., McDonnell, D. P., Saville, B. and Safe, S. (1999) Differential interaction of the methoxychlor metabolite 2,2-bis-(phydroxyphenyl-1,1,1-trichloroethane with estrogen receptors α and β, *Endocrinology*, 140:5746-5753.
- Gasser, L., Fenner, K. and Scheringer, M. (2007) Indicators for the exposure assessment of transformation products of organic micropollutants, *Environmental Science and Technology*, **41**:2445-2451.
- Gaston, L. A., Locke, M. A., Wagner, S. C., Zablotowicz, R. M. and Reddy, K. N. (1996) Sorption of bentazon and degradation products in two Mississippi soils, Weed Science, 44:678-682.
- Gianessi, L. and Reigner, N. (2006a) Pesticide Use in U.S. Crop Production: 2002, Fungicides & Herbicides, CropLife Foundation, Washington DC, US.
- Gianessi, L. and Reigner, N. (2006b) Pesticide Use in U.S. Crop Production: 2002, Insecticides and Other Pesticides, CropLife Foundation, Washington DC, US.
- Giesy, J. P., Solomon, K. R., Coats, J. R., Dixon, K. R., Giddings, J. M. and Kenaga, E. E. (1999) Chlorpyrifos: Ecological risk assessment in North American aquatic environments, *Reviews of Environmental Contamination and Toxicology*, 160:1-129.
- Gilliom, R. J., Barbash, J. E., Crawford, C. G., Hamilton, P. A., Martin, J. D., Nakagaki, N., Nowell, L. H., Scott, J. C., Stackelberg, P. E., Thelin, G. P. and Wolock, D. M. (2006) The Quality of Our Nation's Waters - Pesticides in the Nation's Stream and Ground Water, 1992-2001, Circular 1291, U.S. Geological Survey,
- Goolsby, D. A., Thurman, E. M., Pomes, M. L., Meyer, M. T. and Battaglin, W. A. (1997) Herbicides and their metabolites in rainfall: Origin, transport, and deposition patterns across the Midwestern and Northeastern United States, 1990-1991, *Environmental Science and Technology*, 31:1325-1333.
- Graham, D. W., Miley, M. K., Denoyelles, F., Smith, V. H., Thurman, E. M. and Carter, R. (2000) Alachlor transformation patterns in aquatic field mesocosms under variable oxygen and nutrient conditions, *Water Research*, 34:4054-4062.
- Graham, W. H., Graham, D. W., Denoyelles Jr., F., Smith, V. H., Larive, C. K. and Thurman, E. M. (1999) Metolachlor and alachlor breakdown product formation patterns in aquatic field mesocosms, *Environmental Science and Technology*, 33:4471-4476.
- Gustafson, D. I. (1989) Groundwater ubiquity score: A simple method for assessing pesticide leachability, *Environmental Toxicology and Chemistry*, 8:339-357.
- Haberhauer, G., Temmel, B. and Gerzabek, M. H. (1999) Effects of elevated ozone concentration on the degradation of dichlorprop in soil, *Chemosphere*, **39**:1459-1466.
- Haberhauer, G., Pfeiffer, L. and Gerzabek, M. H. (2000) Influence of molecular structure on sorption of phenoxyalkanoic herbicides on soil and its particle size fractions, *Journal of Agricultural and Food Chemistry*, 48:3722-3727.
- Health Canada (1987) Guidelines for Canadian Drinking Water Quality: Chlorophenols, Health Canada, Ottawa, Canada.
- Health Canada (1993) Guidelines for Canadian Drinking Water Quality: Atrazine, Health Canada, Ottawa, Canada.
- Health Canada (1995) Guidelines for Canadian Drinking Water Quality: Aldicarb, Health Canada, Ottawa, Canada.
- Heberer, T. and Dünnbier, U. (1999) DDT metabolite bis(chlorophenyl)acetic acid: The neglected environmental contaminant, *Environmental Science and Technology*, 33:2346-2351.
- Helweg, A., Bay, H., Hansen, H. P. B., Rabolle, M., Sonnenborg, A. and Stenvang, L. (2002)

Pollution at and below sites used for mixing and loading of pesticides, International Journal of Environmental Analytical Chemistry, 82:583-590.

- Hermens, J., Canton, H., Janssen, P. and De Jong, R. (1984) Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anaesthetic potency: acute lethal and sublethal toxicity to *Daphnia magna*, *Aquatic Toxicology*, 5:143-154.
- Hernandez, F., Marin, J. M., Pozo, O. J., Sancho, J. V., Lopez, F. J. and Morell, I. (2008) Pesticide residues and transformation products in groundwater from a Spanish agricultural region on the Mediterranean Coast, International Journal of Environmental Analytical Chemistry, 88:409-424.
- Heydens, W. F., Wilson, A. G. E., Kraus, L. J., Hopkins II, W. E. and Hotz, K. J. (2000) Ethane sulfonate metabolite of alachlor: Assessment of oncogenic potential based on metabolic and mechanistic considerations, *Toxicological Sciences*, **55**:36-43.
- Hilal, S. H. and Karickhoff, S. W. (1995) A rigorous test for SPARC's chemical reactivity models: Estimation of more than 4300 ionization pK₄s, *Quantitative Structure-Activity Relationships*, 14:348-355.
- Hill, I. R. (1978) Microbial transformations of pesticides, In *Pesticide Microbiology*, Hill, I. R. and Wright, S. J. L. Eds., Academic Press, New York, US,
- Hladik, M. L., Roberts, A. L. and Bouwer, E. J. (2006) Chloroacetamide Herbicides and Their Transformation Products in Drinking Water, Report No. 91123, Awwa Research Foundation, Denver, US.
- Hodge, H. C. and Sterner, J. H. (1949) Tabulation of toxicity classes, American Industrial Hygiene Association Journal, 10:93-98.
- Hodson, J. and Williams, N. A. (1988) The estimation of the adsorption coefficient (Koc) for soils by high performance liquid chromatography, *Chemosphere*, 17:67-77.
- Hoffman, R. S., Capel, P. D. and Larson, S. J. (2000) Comparison of pesticides in eight U.S. urban streams, *Environmental Toxicology and Chemistry*, 19:2249-2258.
- Holland, P. T. (1996) Glossary of terms relating to pesticides, Pure and Applied Chemistry, 68:1167-1193.
- Hollis, J. M. (1991) Mapping and vulnerability of aquifers and surface water to pesticide contamination at national/regional scale, Monograph no. 47, Pesticides in Soils and Water: Current Perspectives, Warwick, UK.
- Hou, B. K., Wackett, L. P. and Ellis, L. B. M. (2003) Microbial pathway prediction: a functional group approach, Journal of Chemical Information and Computer Sciences, 43:1051-1057.
- Howard, P. H., Boethling, R. S., Stiteler, W. M., Meylan, W. M., Hueber, A. E., Beauman, J. A. and Larosche, M. E. (1992) Predictive model for aerobic biodegrability developed from a file of evaluated biodegradation data, *Environmental Toxicology and Chemistry*, 11:593-604.
- HSE (1994) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on IPBC (2), No. 115, The Health and Safety Executive, Bootle, UK.
- HSE (1995) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Flufenoxuron Use as a Public Hygiene Insecticide, No. 143, The Health and Safety Executive, Bootle, UK.
- HSE (2002) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Environmental Risk Assessment of Booster Biocide Antifouling Products, No. 205, The Health and Safety Executive, Bootle, UK.
- HSE (2003) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Booster Biocides in Antifouling Products, Full Reveiw of Dichlofluanid, No. 206, The

Health and Safety Executive, Bootle, UK.

- Institute of Physical Chemistry (2004) XlogP v2.0 Users Guide, http://inka.mssm.edu/docs/molmod/xlogp/intro.html, Peking University, Beijing, China, Last accessed 9 December 2004.
- Interactive Analysis (2004) LogP, http://www.logp.com, Massachusetts, USA, Last accessed 9 December 2004.
- Jaworska, J., Dimitrov, S., Nikolova, N. and Mekenyan, O. (2002) Probabilistic assessment of biodegradability based on metabolic pathways: Catabol system, SAR and QSAR in Environmental Research, 13:307-323.
- Jaworska, J., Nikolova_Jeliazkova, N. and Aldenberg, T. (2005) QSAR applicability doamin estimation by projection of the training set in descriptor space: A review, *ALTA* -*Alternatives to Laboratory Animals*, 33:445-459.
- Jones, T. W. and Winchell, L. (1984) Uptake and photosynthetic inhibition by atrazine and its degradation products on four species of submerged vascular plants, *Journal of Environmental Quality*, 13:243-247.
- Kah, M. and Brown, C. D. (2007) Prediction of the adsorption of ionizable pesticides in soils, Journal of Agricultural and Food Chemistry, 55:2312-2322.
- Kaiser, K. L. E., Dearden, J. C., Klein, W. and Schultz, T. W. (1999) A note of caution to users of ECOSAR, *Water Quality Research Journal of Canada*, 34:179-182.
- Kalkhoff, S. J., Kolpin, D. W., Thurman, E. M., Ferrer, I. and Barceló, D. (1998) Degradation of chloroacetanilide herbicides: The prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwaters and surface waters, *Environmental Science and Technology*, 32 :1738-1740.
- Kalkhoff, S. J., Lee, K. E., Porter, S. D., Terrio, P. J. and Thurman, E. M. (2003) Herbicides and herbicide degradation products in upper midwest agricultrual streams during August base-flow conditions, *Journal of Environmental Quality*, 32:1025-1035.
- Kanazawa, J. (1989) Relationship between the soil sorption constants for pesticides and their physicochemical properties, *Chemosphere*, 8:477-484.
- Karickhoff, S. W., McDaniel, V. K., Melton, C., Vellino, A. N., Nute, D. E. and Carreira, L. A. (1991) Predicting chemical reactivity by computer, *Environmental Toxicology and Chemistry*, 10:1405-1416.
- Kelce, W. R., Stone, C. R., Laws, S. C., Gray, L. E., Kemppainen Jon A. and Wilson, E. M. (1995) Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist, *Nature*, 375:581-585.
- Kenaga, E. E. and Goring, C. A. I. (1980) Relationships between water solubility, soil sorption, octanol-water partitioning and bioconcentration of chemicals in biota, In Aquatic Toxicology, Eaton, J. C., Parrish, P. R. and Hendricks, A. C. Eds., American Chemical Society for Testing and Materials, Philadelphia, USA,
- Kiely, T., Donaldson, D. and Grube, A. (2004) Pesticides Industry Sales and Usage; 2000 and 2001 Market Estimates, USEPA, Washington, USA.
- Kolpin, D. W., Thurman, E. M. and Linhart, S. M. (1998) The environmental occurrence of herbicides: The importance of degradates in ground water, Archives of Environmental Contamination and Toxicology, 35:385-390.
- Kolpin, D. W., Thurman, E. M. and Linhart, S. M. (2000) Finding minimal herbicide concentrations in ground water? Try looking for their degradates, *The Science of the Total Environment*, 248:115-122.
- Kolpin, D. W., Barbash, J. E. and Gilliom, R. J. (1998) Occurrence of pesticides in shallow groundwater of the United States: Initial results from the National Water-Quality

Assessment Program, Environmental Science and Technology, 32:558-566.

- Kolpin, D. W., Kalkhoff, S. J., Goolsby, D. A., Sneck-Fahrer, D. A. and Thurman E. Michael (1997) Occurrence of selected herbicides and herbicide degradation products in Iowa's ground water, 1995, Ground Water, 35:679-688.
- Kolpin, D. W., Nations, B. K., Goolsby, D. A. and Thurman, E. M. (1996a) Acetochlor in the hydrologic system in the Midwestern United States, 1994, *Environmental Science and Technology*, 30:1459-1464.
- Kolpin, D. W., Thurman E. Michael and Goolsby, D. A. (1996b) Occurrence of selected pesticides and their metabolites in near-surface aquifers of the Midwestern United States, *Environmental Science and Technology*, 30:335-340.
- Kolpin, D. W., Thurman, E. M. and Linhart, S. M. (2001) Occurrence of cyanazine compounds in groundwater: Degradates more prevalent than the parent compound, *Environmental Science and Technology*, 35:1217-1222.
- Krutz, L. J., Senseman, S. A., McInnes, K. J., Zuberer, D. A. and Tierney, D. P. (2003) Adsorption and desorption of atrazine, desethylatrazine, deisopropylatrazine, and hydroxyatrazine in vegetated filter strip and cultivated soil, *Journal of Agricultural and Food Chemistry*, **51**:7379-7384.
- Könemann, H. (1981) Quantitative structure-activity relationships in fish toxicity studies. Part 1: relationship for 50 industrial pollutants, *Toxicology*, **19**:209-221.
- Kuhnt, G. and Muntau, H. (1994) EURO Soils: Identification, Collection, Treatment and Characterization, Special Publication No. 1.94.60, Joint Research Centre, Ispra, Italy.
- Lagana, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G. and Marino, A. (2002) Occurrence and determination of herbicides and their major transformation products in environmental waters, *Analytica Chimica Acta*, **462**:187-198.
- Lambert, S. M., Porter, P. E. and Schieferstein, R. H. (1965) Movement and sorption of chemicals applied to soil, *Weeds*, 13:185-190.
- Lei, H. and Snyder, S. (2007) 3D QSPR models from the removal of trace organic contaminants by ozone and free chlorine, *Water Research*, 41:3271-3280.
- Leistra, M., Groen, A. E., Crum, S. J. H. and van der Pas, L. J. T. (1991) Transformation rate of 1,3-dichloropropene and 3-chloroallyl alcohol in topsoil and subsoil material of flowerbulb fields, *Pesticide Science*, 31:197-207.
- Lerch, R. N. and Blanchard, P. E. (2003) Watershed vulnerability to herbicide transport in Northern Missouri and Southern Iowa streams, *Environmental Science and Technology*, 37:5518-5527.
- Lerch, R. N., Donald, W. W., Li, Y.-X. and Alberts, E. E. (1995) Hydroxylated atrazine degradation products in a small Missouri stream, *Environmental Science and Technology*, 29:2759-2768.
- Lin, C.-H., Lerch, R. N., Garrett, H. E. and George, M. F. (2003) Degradation of isoxaflutole (Balance) herbicide by hypochlorite in tap water, *Journal of Agricultural and Food Chemistry*, 51:8011-8014.
- Lipnick, R. L. (1990) Narcosis: Fundamental and baseline toxicity mechanism for nonelectrolyte organic chemicals, In Practical Applications of Quantitative Structure-Activity Realtionships (QSAR) in Environmental Chemistry and Toxicology, Karcher, W. and Devillers, J. Eds., Kluwer Academic Publishers, Dordrecht, Netherlands, pp 281-293.
- Lipnick, R. L. (1991) Outliers: their origin and use in the classification of molecular mechanisms of toxicity, *The Science of the Total Environment*, 109/110:131-153.
- Liu, B., McConnell, L. L. and Torrents, A. (2002) Herbicide and insecticide loadings from the Susquehanna River to the Northern Chesapeake Bay, Journal of Agricultural and Food

Chemistry, 50:4385-4392.

- Lyman, W. J. (1995) Transport and transformation processes, In *Fundamentals of Aquatic Toxicology*, Rand, G. R. Ed., Taylor & Francis, Philadelphia, USA, pp 449-492.
- Lyman, W. J., Reehl, W. F. and Rosenblatt, D. H. (1990) Handbook of Chemical Property Estimation Methods: Environmental Behaviour of Organic Compounds, American Chemical Society, Washington DC, USA.
- Machatha, S. G. and Yalkowsky, S. H. (2005) Comparison of the octanol/water partition coefficients calculated by ClogP, ACDlogP and KowWin to experimentally determined values, *International Journal of Pharmaceutics*, 294:185-192.
- Magara, Y., Aizawa, T., Matumoto, N. and Souna, F. (1994) Degradation of pesticides by chlorination during water purification, *Water Science and Technology*, **30**:119-128.
- Majewski, M. S., Foreman, W. T., Goolsby, D. A. and Nakagaki, N. (1998) Airborne pesticide residues along the Mississippi River, *Environmental Science and Technology*, 32:3689-3698.
- Mannhold, R. and Petrauskas, A. (2003) Substructure versus whole-molecule approaches for calculating Log P, QSAR & Combinatorial Science, 22:466-475.
- Maroni, M., Auteri, D., Grasso, P., Alberio, P., Redolfi, E., Azimonti, G., Giarei, C. and Visentin, S. (2002) Statistical Evaluation of Available Ecotoxicology Data on Plant Protection Products and Their Metabolites, Intermediate Report to the European Commission, International Centre for Pesticides and Health Risk Prevention, Milan, Italy.
- Mason, R. P. (1990) Redox cycling of radical anion metabolites of toxic chemicals and drugs and the Marcus Theory of electron transfer, *Environmental Health Perspectives*, **87**:237-243.
- Matsushuta, T., Matsui, Y., Taniwaki, S. and Inoue, T. (2002) Changes in mutagenicity during biodegradation of fenitrothion, *Chemosphere*, 47:9-14.
- Mellanby, K. (1992) The DDT Story, BCPC, Farnham, UK.
- Menon, P. and Gopal, M. (2003) Dissipation of ¹⁴C carbaryl and quinalphos in soil under a groundnut crop (Arachis hypogaea L.) in semi-arid India, Chemosphere, 53:1023-1031.
- Meylan, W. M. and Howard, P. H. (1991) Bond contribution method for estimating henry's law constants, *Environmental Toxicology and Chemistry*, 10:1283-1293.
- Meylan, W. M. and Howard, P. H. (1999) User's Guide for KOWWIN, Syracuse Research Corporation, Syracuse, USA.
- Meylan, W. M., Howard, P. H. and Boethling, R. S. (1996) Improved method for estimating water solubility from octanol/water partition coefficient, *Environmental Toxicology and Chemistry*, 15:100-106.
- Meylan, W. M. and Howard, P. H. (1995) Atom/fragment contribution method for estimating octanol-water partition coefficients, *Journal of Pharmaceutical Sciences*, 84:83-92.
- Mills, M. S. and Thurman, E. M. (1994) Reduction of nonpoint source contamination of surface water and groundwater by starch encapsulation of herbicides, *Environmental Science* and Technology, 28:73-79.
- Mills, P. C., Kolpin, D. W., Scribner, E. A. and Thurman, E. M. (2005) Herbicides and degradates in shallow aquifers of Illinois: Spatial and temporal trends, *Journal of the American Water Resources Association*, 41:537-547.
- Mitchell, R. R., Summer, C. L., Blonde Shari A., Bush, D. M., Hurlburt, G. K., Snyder, E. M. and Giesy, J. P. (2002) SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes - Resulting

chemical scores and ranking, Human and Ecological Risk Assessment, 8:537-557.

- Molinspiration Cheminformatics (2004) Interactive logP calculator, http://www.molinspiration.com/cgi-bin/properties, Slovensky Grob, Slovak Republic, Last accessed 9 December 2004.
- Monohan, K., Tinsley, I. J., Shepherd, S. F. and Field, J. A. (1995) Quantitative determination of the acidic metabolites of dacthal in ground water by strong anion exchange solid-phase extraction, *Journal of Agricultural and Food Chemistry*, 43:2418-2423.
- Moore, D. R. J., Breton, R. L. and MacDonald, D. B. (2003) A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish, *Environmental Toxicology and Chemistry*, **22**:1799-1809.
- Muir, D. C. and Baker, B. E. (1976) Detection of triazine herbicides and their degradation products in tile-drain water from fields under intensive corn (maize) production, *Journal of Agricultural and Food Chemistry*, 24:122-125.
- Nguyen, M.-T. L., Abel, S. W., Al-Mudallal, A., Hetrick, J. A. and Ellis, J. L. (2004) Incorporation of water treatment effects on pesticide removal and transformations in drinking water assessments - USEPA/OPP's interim science policy and progress report, International Symposium on Pesticides, Their Degradates and Adjuvants, 4 June, Prague, Czech Republic.
- NHMRC (1996) Australian Drinking Water Guidelines, National Health and Medical Research Council, Canberra, Australia.
- Novak, P. J., Christ, S. J. and Parkin, G. F. (1997) Kinetics of alachlor transformation and identification of metabolites under anaerobic conditions, *Water Research*, 31:3107-3115.
- OCWA (2002) Safe Drinking Water Act; Ontario Drinking-Water Quality Standards, Ontario Regulation 17/04, Ontario Clean Water Agency, Toronto, Canada.
- OECD (1981) Guideline for the Testing of Chemicals Test no. 302C, Inherent Biodegradability, Organisation for Economic Co-Operation and Development, Paris, France.
- OECD (1984a) Guidelines for the Testing of Chemicals, Alga l Growth Inhibition Test, No. 201, Organisation for Economic Co-Operation and Development, Paris, France.
- OECD (1984b) Guidelines for the Testing of Chemicals, Daphnia sp. Acute Immobilisation Test, No. 202, Organisation for Economic Co-Operation and Development, Paris, France.
- OECD (1992) Guidelines for the Testing of Chemicals, Fish Acute Toxicity Test, No. 203, Organisation for Economic Co-Operation and Development, Paris, France.
- OECD (2000) Guidelines for the Testing of Chemicals: Adsorption Desorption Using a Batch Equilibrium Method, No. 106, Organisation for Economic Co-Operation and Development, Paris, France.
- OECD (2002) Guidelines for the Testing of Chemicals Test no. 307, Aerobic and Anaerobic Transformation in Soil, Organisation for Economic Co-Operation and Development, Paris, France.
- Osano, O., Admiraal, W., Klamer, H. J. C., Pastor, D. and Bleeker, E. A. J. (2002a) Comparative toxic and genotoxic effects of chloroacetanilides, formamidines and their degradation products on *Vibrio fischeri* and *Chironomus riparius*, *Environmental Pollution*, 119:195-202.
- Osano, O., Admiraal, W. and Otieno, D. (2002b) Developmental disorders in embryos of the frog *Xenopus laevis* induced by chloroacetanilide herbicides and their degradation products, *Environmental Toxicology and Chemistry*, **21**:375-379.
- Osano, O., Nzyuko, D., Tole, M. and Admiraal, W. (2003) The fate of chloroacetanilide herbicides and their degradation products in the Nzoia Basin, Kenya, *Ambio*, 32:424-

427.

- Parsons, S. A., Boxall, A. B. A., Sinclair, C. J. and Ramwell, C. T. (2006) Pesticides, Their Degradates, and Adjuvants of Concern to the Drinking Water Community, AwwaRF, Denver, USA.
- Pashin, S. Y., Carter, D. S. and Bayless, E. R. (2000) Analysis of atrazine and four degradation products in the pore water of the vadose zone, Central Indiana, *Environmental Science* and Technology, 34:2131-2137.
- Pavel, E. W., Lopez Alfredo R., Berry, D. F., Smith Eric P., Reneau Jr., R. B. and Mostaghimi, S. (1999) Anaerobic degradation of dicamba and metribuzin in riparian wetland soils, *Water Research*, 33:87-94.
- Pearson, R. J., Inskeep, W. P., Wraith, J. M., Gaber, H. M. and Comfort, S. D. (1996) Observed and simulated solute transport under varying water regimes: II 2,6-difluorobenzoic acid and dicamba, *Journal of Environmental Quality*, 25:654-661.
- Pereira, W. E., Rostad, C. E. and Leiker, T. J. (1992) Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries: Distribution, transport and fate, *Journal of Contaminant Hydrology*, 9:175-188.
- Pereira, W. E. and Rostad, C. E. (1990) Occurrence, distributions, and transport of herbicides and their degradation products in the Lower Mississippi river and its tributaries, *Environmental Science and Technology*, 24:1400-1406.
- Phillips, P. J., Wall, G. R., Thurman, E. M., Eckhardt, D. A. and Vanhoesen, J. (1999) Metolachlor and its metabolites in tile drain and stream runoff in the Canajoharie Creek watershed, *Environmental Science and Technology*, 33:3531-3537.
- PMRA (1988) Discussion Document on Fluzifop-butyl, E88-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1991) Decision Document on Triclopyr, E91-02, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1992) Decision Document on Ethametsulfuron-methyl, E92-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1993) Discussion Document on Myclobutanil, E93-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1995) Proposed Regulatory Decision Document on Hexaconzole Wood Preservative, PRDD95-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1998) Proposed Regulatory Decision on Sulfosulfuron, PRDD98-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1999a) Proposed Regulatory Decision Document on Hexaconazole, PRDD99-05, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1999b) Regulatory Note on Diflufenzopyr, REG99-02, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2000a) Regulatory Note on Azoxystrobin, REG2000-15, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2000b) Regulatory Note on Flucarbazone-sodium, REG2000-09, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2000c) Regulatory Note on Flufenacet, REG2000-11, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2000d) Regulatory Note on Isoxaflutole, REG2000-16, Pest Management Regulatory

Agency, Ottawa, Canada.

- PMRA (2001a) Proposed Regulatory Decision Document on Primisulfuron-methyl, PRDD2001-02, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2001b) Regulatory Note on Florasulam, REG2001-12, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2002) Re-evaluation of Pymetrozine, PRDD2002-03, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003a) Proposed Acceptability for Continuing Registration: Re-evaluation of Phorate, PACR2003-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003b) Proposed Regulatory Decision Document on Kresoxim-methyl, PRDD2003-05, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003c) Re-evaluation of Bensulide, PACR2003-06, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003d) Re-evaluation of Fenitrothion, PACR2003-08, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003e) Regulatory Note on Famoxadone, REG2003-10, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003f) Regulatory Note on Fenbuconazole, REG2003-03, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003g) Regulatory Note on Formasulfuron, REG2003-08, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003h) Regulatory Note on Picolinafen, REG2003-02, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004a) Proposed Regulatory Decision Document on Tepraloxydim, PRDD2004-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004b) Proposed Regulatory Decision Document on Triticonazole, REG2004-06, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004c) Regulatory Note on Boscalid/BAS 510, REG2004-2, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004d) Regulatory Note on Iodosulfuron-methyl-sodium, REG2004-04, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004e) Regulatory Note on Trifloxystrobin, REG2004-03, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2005) *Publications*, http://www.pmra-arla.gc.ca/english/pubs/pubs-e.html, Pest Management Regulatory Authority, Ottawa, Canada, Last accessed 1 February 2005.
- PMRA (2006a) Regulatory Note on Pinoxaden, REG2006-14, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2006b) Regulatory Note on Spirodiclofen, REG2006-06, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007a) Evaluation Report on Acequinocyl, ERC2007-10, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007b) Evaluation Report on Thiamethoxam, ERC2007-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007c) Re-evaluation Documents, http://www.pmra-arla.gc.ca/english/pubs/reevale.html, Pest Management Regulatory Agency, Ottawa, Canada, Last accessed 30 April

2007c.

- PMRA (2007d) Regulatory Note on Azoxystrobin and Dynasty 100FS Fungicide, REG2007-02, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007e) Regulatory Note on Prothioconazole, REG2007-03, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2008) Proposed Re-evaluation Decision on Nicosulfuron, PRVD2008-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2009) *Publications*, http://www.pmra-arla.gc.ca/english/pubs/pubs-e.html, Pest Management Regulatory Authority, Ottawa, Canada, Last accessed 10 February 2009.
- Potter, T. L. and Carpenter, T. L. (1995) Occurrence of alachlor environmental degradation products in groundwater, *Environmental Science and Technology*, **29**:1557-1563.
- PSD (1987) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Quizlofop-methyl, No. 2, Pesticide Safety Directorate, York, UK.
- PSD (1988a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Benfuracarb, No. 5, Pesticide Safety Directorate, York, UK.
- PSD (1988b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Cyfluthrin, No. 3, Pesticide Safety Directorate, York, UK.
- PSD (1988c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Cyhalothrin, No. 21, Pesticide Safety Directorate, York, UK.
- PSD (1988d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fluazifop-P-butyl, No. 10, Pesticide Safety Directorate, York, UK.
- PSD (1989) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fenpropathrin, No. 23, Pesticide Safety Directorate, York, UK.
- PSD (1990a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Alachlor (1), No. 22, Pesticide Safety Directorate, York, UK.
- PSD (1990b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Cycloxydim, No. 31, Pesticide Safety Directorate, York, UK.
- PSD (1990c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fenoxaprop-ethyl, No. 18, Pesticide Safety Directorate, York, UK.
- PSD (1990d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on HOE 070542 Triazole Coformulant, No. 19, Pesticide Safety Directorate, York, UK.
- PSD (1990e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on HOE 39866 (Glufosinate-ammonium), No. 33, Pesticide Safety Directorate, York, UK.
- PSD (1991a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Chlorsulfuron, No. 37, Pesticide Safety Directorate, York, UK.
- PSD (1991b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Diazinon (1), No. 35, Pesticide Safety Directorate, York, UK.
- PSD (1991c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Diclofop-methyl, No. 46, Pesticide Safety Directorate, York, UK.
- PSD (1991d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Teflubenzuron, No. 40, Pesticide Safety Directorate, York, UK.
- PSD (1991e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tefluthrin, No. 42, Pesticide Safety Directorate, York, UK.
- PSD (1991f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Thifensulfuron-methyl, No. 39, Pesticide Safety Directorate, York, UK.

- PSD (1992a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Atrazine, No. 51, Pesticide Safety Directorate, York, UK.
- PSD (1992b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Esfenvalerate, No. 55, Pesticide Safety Directorate, York, UK.
- PSD (1992c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fluoroglycofen-ethyl, No. 50, Pesticide Safety Directorate, York, UK.
- PSD (1992d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Simazine (1), No. 52, Pesticide Safety Directorate, York, UK.
- PSD (1992e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Thiodicarb, No. 49, Pesticide Safety Directorate, York, UK.
- PSD (1992f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tribenuron-methyl, No. 61, Pesticide Safety Directorate, York, UK.
- PSD (1993a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Cyromazine, No. 89, Pesticide Safety Directorate, York, UK.
- PSD (1993b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Desmedipham, No. 75, Pesticide Safety Directorate, York, UK.
- PSD (1993c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Dimefuron, No. 79, Pesticide Safety Directorate, York, UK.
- PSD (1993d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tolclofos-methyl, No. 69, Pesticide Safety Directorate, York, UK.
- PSD (1993e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tralkoxydim (PP604), No. 70, Pesticide Safety Directorate, York, UK.
- PSD (1993f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Triazoxide, No. 97, Pesticide Safety Directorate, York, UK.
- PSD (1994a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Amidosulfuron, No. 91, Pesticide Safety Directorate, York, UK.
- PSD (1994b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Anilazine, No. 93, Pesticide Safety Directorate, York, UK.
- PSD (1994c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Chlorfenvinphos, No. 107, Pesticide Safety Directorate, York, UK.
- PSD (1994d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fluazinam, No. 100, Pesticide Safety Directorate, York, UK.
- PSD (1994e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Hydramthylon Use in Public Hygiene, No. 102, Pesticide Safety Directorate, York, UK.
- PSD (1994f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Pirimicarb, No. 134, Pesticide Safety Directorate, York, UK.
- PSD (1994g) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Propaguizafop, No. 94, Pesticide Safety Directorate, York, UK.
- PSD (1995a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Clodinafop-propargyl and Cloquintocet-mexyl, No. 121, Pesticide Safety Directorate, York, UK.
- PSD (1995b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fenpyroximate, No. 130, Pesticide Safety Directorate, York, UK.
- PSD (1995c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fomesafen, No. 118, Pesticide Safety Directorate, York, UK.

- PSD (1995d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Isoproturon, No. 140, Pesticide Safety Directorate, York, UK.
- PSD (1995e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Malathion, No. 135, Pesticide Safety Directorate, York, UK.
- PSD (1995f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Paclobutrazol, No. 142, Pesticide Safety Directorate, York, UK.
- PSD (1995g) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Pyrimethanil, No. 138, Pesticide Safety Directorate, York, UK.
- PSD (1995h) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tecnazene, No. 127, Pesticide Safety Directorate, York, UK.
- PSD (1995i) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tolyfluanid, No. 136, Pesticide Safety Directorate, York, UK.
- PSD (1995j) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Triflusulfuron-methyl, No. 139, Pesticide Safety Directorate, York, UK.
- PSD (1995k) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Trinexapac-ethyl, No. 141, Pesticide Safety Directorate, York, UK.
- PSD (1996) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Rimsulfuron, No. 146, Pesticide Safety Directorate, York, UK.
- PSD (1997a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Cyprodinil, No. 169, Pesticide Safety Directorate, York, UK.
- PSD (1997b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Kresoxim-methyl, No. 163, Pesticide Safety Directorate, York, UK.
- PSD (1997c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Pirimiphos-methyl, No. 167, Pesticide Safety Directorate, York, UK.
- PSD (1997d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tau-fluvalinate, No. 162, Pesticide Safety Directorate, York, UK.
- PSD (1998a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Benfuracarb, No. 5, Pesticide Safety Directorate, York, UK.
- PSD (1998b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Methiocarb, No. 179, Pesticide Safety Directorate, York, UK.
- PSD (1998c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Quinmerac, No. 177, Pesticide Safety Directorate, York, UK.
- PSD (1998d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Review of Triazamate for Use as an Agricultural Insecticide, No. 172, Pesticide Safety Directorate, York, UK.
- PSD (1999a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on AEF 107892, No. 186, Pesticide Safety Directorate, York, UK.
- PSD (1999b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fluquinconazole, No. 184, Pesticide Safety Directorate, York, UK.
- PSD (1999c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tetraconazole, No. 185, Pesticide Safety Directorate, York, UK.
- PSD (2000a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Flurtamone, No. 196, Pesticide Safety Directorate, York, UK.
- PSD (2000b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Nicosulfuron, No. 198, Pesticide Safety Directorate, York, UK.

- PSD (2000c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Triticonazole, No. 199, Pesticide Safety Directorate, York, UK.
- PSD (2002) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Chlorotalonil: Use as a Booster Biocide in Antifouling Products, No. 204, Pesticide Safety Directorate, York, UK.
- PSD (2003) ACP Published Evaluation Documents, http://www.pesticides.gov.uk/psd_evaluation_all.asp, Pesticide Safety Directorate, York, UK, Last accessed 25 January 2003.
- PSD (2004a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fipronil (horticultural uses), No. 212, Pesticide Safety Directorate, York, UK.
- PSD (2004b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Zineb: Use as a Booster Biocide in Antifouling Products, No. 210, Pesticide Safety Directorate, York, UK.
- PSD (2005) ACP Published Evaluation Documents, http://www.pesticides.gov.uk/psd_evaluation_all.asp, Pesticide Safety Directorate, York, UK, Last accessed 1 February 2005.
- PSD (2007) ACP Published Evaluation Documents, http://www.pesticides.gov.uk/psd_evaluation_all.asp, Pesticide Safety Directorate, York, UK, Last accessed 11 April 2007.
- PSD (2009a) EU Thematic Strategy for Pesticides: News, http://www.pesticides.gov.uk/approvals.asp?id=1980#authorisation_regulation_and_sus tainable_use_directive, Pesticide Safety Directorate, York, UK, Last accessed 27 October 2009.
- PSD (2009b) ACP Published Evaluation Documents, http://www.pesticides.gov.uk/psd_evaluation_all.asp, Pesticide Safety Directorate, York, UK, Last accessed 10 February 2009.
- Punch, W. F., Forney, L. J., Patton, A., Wight, K., Masscheleyn, P., and Larson, R. J. (1997) BESS, a computerised system for predicting biodegradation potential of new and existing chemicals, In *Quantitative Structure-Activity Relationships in Environmental Sciences - VII*, Chen, F. and Schuurmann, G. Eds., SETAC, Florida, US, pp 81-92.
- Ramwell, C. T., Heather, A. I. J. and Shepherd, A. J. (2002) Herbicide loss following application to a roadside, *Pest Management Science*, 58:695-701.
- Rand, G. M., Wells, P. G., and McCarty, L. S. (1995) Introduction to aquatic toxicology. In Fundamentals of Aquatic Toxicology: Effects, Environmental Fate and Risk Assessment, Rand, G. M. Ed., Taylor and Francis, Philadelphia, USA, pp 3-67.
- Rao, P. S. C., Hornsby, A. G. and Jessup, R. E. (1985) Indices for ranking the potential for pesticide contamination of groundwater, Soil and Crop Science Society of Florida Proceedings, 44:1-8.
- Reddy, K. N., Locke, M. A. and Zablotowicz, R. M. (1997) Soil type and tillage effects on sorption of cyanazine and degradation products, *Weed Science*, **45**:727-732.
- Rice, P. J., Anderson, T. A. and Coats, J. R. (2002) Degradation and persistence of metolachlor in soil: Effects on concentration, soil moisture, soil depth, and sterilization, *Environmental Toxicology and Chemistry*, 21:2640-2648.
- Roberts, T. (1998) Metabolic Pathways of Agrochemicals, Part One: Herbicides and Plant Growth Regulators, The Royal Society of Chemistry, Cambridge, UK.
- Roberts, T. and Hutson, D. (1999) Metabolic Pathways of Agrochemicals, Part Two: Insecticides and Fungicides, The Royal Society of Chemistry, Cambridge, UK.
- Russom, C. L., Bradbury, S. P. and Carlson, A. R. (1995) Use of knowledge bases and QSARs to

estimate the relative ecological risk of agrichemicals: a problem formulation exercise, SAR and QSAR in Environmental Research, 4:83-95.

- Russom, C. L., Anderson, E. B., Greenwood, B. E. and Pilli, A. (1991) ASTER: an integration of the AQUIRE database and the QSAR system for use in ecological risk assessments, *The Science of the Total Environment*, 109/110:667-670.
- Russom, C. L., Bradbury, S. P., Broderius, S. J., Hammermeister, D. E. and Drummond, R. A. (1997) Predicting modes of toxic action from chemical structure: acute toxicity in the fathead minnow (Pimephales promelas), Environmental Toxicology and Chemistry, 16:948-967.
- Russom, C. L., Breton, R. L., Walker, J. D. and Bradbury, S. P. (2003) An overview of the use of quantitative structure-activity relationships for ranking and prioritizing large chemical inventories for environmental risk assessments, *Environmental Toxicology and Chemistry*, 22:1810-1821.
- Sabljic, A., Güsten, H., Verhaar, H. and Hermens, J. (1995) QSAR modelling of soil sorption. Improvements and systematics of log K_{oc} vs log K_{ow} correlations, *Chemosphere*, 31:4489-4514.
- Sakata, S., Mikami, N. and Yamada, H. (1992) Degradation of pyrethroid optical isomers in soils, Journal of Pesticide Science, 17:169-180.
- Sakuratani, Y., Kasai, K., Noguchi, Y. and Yamada, J. (2007) Comparison of predicitivities of Log P calculation models based on experimental data for 134 simple organic compounds, QSAR & Combinatorial Science, 26:109-116.
- Samiullah, Y. (1990) Prediction of Environmental Fate of Chemicals, Elsevier Applied Science, London, UK.
- Sanderson, D. M. and Earnshaw, C. G. (1991) Computer prediction of possible toxic action from chemical structure; The DEREK system, Human and Experimental Toxicology, 10:261-273.
- Schiavon, M. (1988) Studies of the leaching of atrazine, of its chlorinated derivatives, and of hydroxyatrazine from soil using ¹⁴C ring-labeled compounds under outdoor conditions, *Ecotoxicology and Environmental Safety*, 15:46-54.
- Scribner, E. A., Thurman, E. M. and Zimmerman, L. R. (2000) Analysis of selected herbicide metabolites in surface and ground water of the United States, *The Science of the Total Environment*, 248:157-167.
- Seth, R., Mackay, D. and Muncke, J. (1999) Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals, *Environmental Science and Technology*, 33:2390-2394.
- Sicbaldi, F., Sacchi, G. A., Trevisan, M. and Del, A. A. M. (1997) Root uptake and xylem translocation of pesticides from different chemical classes, *Pesticide Science*, **50**:111-119.
- Siddique, T., Okeke, B. C., Arshad, M. and Frankenberger Jr., W. T. (2003) Biodegradation kinetics of endosulfan by Fusarium ventricosum and a pandoraea species, Journal of Agricultural and Food Chemistry, 51:8015-8019.
- Sinclair, C. J. and Boxall, A. B. A. (2002a) Assessing the Environmental Properties and Effects of Biocide Transformation Products, Final report for Health and Safety Executive, Cranfield University, Bedfordshire, UK.
- Sinclair, C. J. and Boxall, A. B. A. (2002b) Assessment of the Environmental Properties and Effects of Pesticide Transformation Products, Final report for Pesticide Safety Directorate, Cranfield University, Bedfordshire, UK.
- Sinclair, C. J. and Boxall, A. B. A. (2005) Screening Level Assessment of the Environmental Fate and Properties of Pesticide Transformation Products, Central Science Laboratory

report for Pesticide Safety Directorate, York, UK.

- Sinclair, C. J. and Boxall, A. B. A. (2009) Ecotoxicity of transformation products, In Transformation Product of Synthetic Chemicals in the Environment, Boxall, A. B. A. Ed., Springer, Dordrecht, Germany, pp 177-204.
- Sinclair, C. J., Boxall, A. B. A., Parsons, S. A. and Thomas, M. R. (2006) The prioritisation of pesticide environmental transformation products in drinking water supplies, *Environmental Science and Technology*, 40:7283-7289.
- Sinclair, C. J., Dimitrov, S., Hetheridge, M. J., Boxall, A. B. A., Mekenyan, O. and Comber, M. (2003) Assessment of the Expert System CATABOL for Predicting Transformation Pathways and Products in Soil, Poster at SETAC Europe 13th Annual Meeting, 27 April - 1 May, Hamburg, Germany.
- Sinclair, C. J. and Boxall, A. B. A. (2003) Assessing the ecotoxicity of pesticide transformation products, *Environmental Science and Technology*, **37**:4617-4625.
- Singh, B. K., Walker, A. and Wright, D. J. (2002) Degradation of chlorpyrifos, fenamiphos, and chlorothalonil alone and in combination and their effects on soil microbial activity, *Environmental Toxicology and Chemistry*, 21:2600-2605.
- Skark, C., Zullei-Seibert, N., Schottler, U. and Schlett, C. (1998) The occurrence of glyphosate in surface water, *International Journal of Environmental Analytical Chemistry*, 70:93-104.
- Smith, A. E. (1974) Breakdown of the herbicide dicamba and its degradation product 3,6dichlorosalicylic acid in prairie soils, Journal of Agricultural and Food Chemistry, 22:601-605.
- Smith, A. E. and Aubin, A. J. (1991) Metabolites of (¹⁴C)-2,4-dichlorophenoxyacetic acid in Saskatchewan soils, Journal of Agricultural and Food Chemistry, 39:2019-2021.
- Snyder, R. D., Pearl, G. S., Mandakas, G., Choy, W. N., Goodsaid, F. and Rosenblum, I. Y. (2004) Assessment of the sensitivity of the computational programs DEREK, TOPKAT and MCASE in the prediction of the genotoxicity of pharmaceutical molecules, *Environmental and Molecular Mutagenesis*, 43:143-158.
- Solomon, K. R., Baker, D. B., Richards, R. P., Dixon, K. R., Klaine, S. J., La Point, T. W., Kendall, R. J., Weisskopf, C. P., Giddings, J. M., Geisy, J. P., Hall Jr., L. W. and Williams, W. M. (1996) Ecological risk assessment of atrazine in North American surface waters, *Environmental Toxicology and Chemistry*, 15:31-76.
- Somasundaran, L. and Coats, J. R. (1991) Pesticide transformation products in the environment, In *Pesticide Transfromation Products*, Somasundaran, L. and Coats, J. R. Eds., American Chemical Society, Washington DC, US,
- SRC (2003a) Environmental Fate Database (EFDB), http://esc.syrres.com/efdb.htm, Syracuse Research Corporation, Syracuse, USA, Last accessed 25 January 2003a.
- SRC (2003b) The Physical Properties Database (PHYSPROP), http://esc.syrres.com/interkow/Physprop.htm, Syracuse Research Corporation, Syracuse, USA, Last accessed 25 January 2003b.
- SRC (2005a) Environmental Fate Data Base (EFDB), http://www.syrres.com/esc/chemfate.htm, Syracue Research Corporation, Syracuse, USA, Last accessed 1 February 2005a.
- SRC (2005b) Interactive LogKow (KowWin) Demo, http://www.syrres.com/esc/est_kowdemo.htm, Syracuse Research Corporation, Syracuse, USA, Last accessed 1 February 2005b.
- SRC (2005c) The Physical Properties Database (PHYSPROP), http://esc.syrres.com/interkow/Physprop.htm, Syracuse Research Corporation, Syracuse, USA, Last accessed 1 February 2005c.
- Steele, G. V., Johnson, H. M., Sandstrom, M. W., Capel, P. D. and Barbash, J. E. (2008)

Occurence and fate of pesticides in four contrasting agricultural settings in the United States, *Journal of Environmental Quality*, **37**:1116-1132.

- Steinheimer, T. R. and Scoggin, K. D. (2001) Fate and movement of atrazine, cyanazine, metolachlor and selected degradation products in water resources of the deep Loess Hills of Southwesteren Iowa, USA, *Journal of Environmental Monitoring*, 3:126-132.
- Stratton, G. W. (1981) The effects of selected pesticides and their degradation products on micro-organisms and Daphnia magna, Doctoral Thesis, The University of Guelph, Ontario, Canada.
- Stratton, G. W. and Corke, C. T. (1982) Toxicity of the insecticide permethrin and some degradation products towards algae and cyanobacteria, *Environmental Pollution Series* A - Ecological and Biological, 29:71-80.
- Strek, H. J., Barefoot, A. C., Mackay, N., and Huber, A. (2007) Perspective on sorption and degradation of pesticides in soil, In *Environmental Fate and Ecological Effects of Pesticides*, Del Re, A. A. M., Capri, E., Fragoulis, G. and Trevisan, M. Eds., La Goliardica Pavese, Milan, Italy, pp 2-9.
- Sundaram, K. M. S. (1993) Partitioning and fate of acephate and its metabolite, methamidophos, from white spruce cones into soil and water, Journal of Environmental Science and Health Part B - Pesticides, Food Contaminants and Agricultural Wastes, 28:29-66.
- Suzuki, T., Yaguchi, K., Suzuki, S. and Suga, T. (2001) In vitro pesticide degradation in turfgrass soil incubated under open and sealed conditions, *Journal of Environmental Quality*, **30**:18-23.
- Swanson, M. B. and Socha, A. C. (1997) Chemical Ranking and Scoring: Guidelines for Relative Assessments of Chemicals, SETAC, Florida, USA.
- Tessier, D. M. and Clark, J. M. (1995) Quantitative assessment of the mutagenic potential of environmental degradative products of alachlor, *Journal of Agricultural and Food Chemistry*, 43:2504-2512.
- Tetko, I. V. and Tanchuk, V. Y. (2002) Application of associative neural networks for prediction of lipophilicity in ALogPS 2.1 program, Journal of Chemical Information and Computer Sciences, 42:1136-1145.
- Tetko, I. V., Tanchuk, V. Y., Kaheva, T. N. and Villa, A. E. P. (2001a) Estimation of aqueous solunility of chemical compounds using E-state indices, *Journal of Chemical Information and Computer Sciences*, **41**:1488-1493.
- Tetko, I. V., Tanchuk, V. Y. and Villa, A. E. P. (2001b) Prediction of n-octanol/water partition coefficients from PHYSPROP database using artifical neural networks and E-state indices, Journal of Chemical Information and Computer Sciences, 41:1407-1421.
- Thomas, M. R. (2001) Pesticide usage monitoring in the United Kingdom, Annals of Occupational Hygiene, 45:S87-S93.
- Thomas, M. R. (2008) Personal communication, The Food and Environment Research Agency, York, UK.
- Thurman, E. M., Bastian, K. C. and Mollhagen, T. (2000) Occurence of cotton herbicides and insecticides in playa lakes of the High Plains of West Texas, *The Science of the Total Environment*, 248:189-200.
- Thurman, E. M. and Cromwell, A. E. (2000) Atmospheric transport, deposition, and fate of triazine herbicides and their metabolites in pristine areas at Isle Royale National Park, *Environmental Science and Technology*, 34:3079-3085.
- Thurman, E. M., Goolsby, D. A. and Kolpin, D. W. (1991) Herbicides in surface waters of the Midwestern United States: The effect of spring flush, *Environmental Science and Technology*, 25: 1794-1796.

- Thurman, E. M., Meyer, M. T., Mills, M. S., Zimmerman, L. R. and Perry, C. A. (1994) Formation and transport of deethylatrazine and deisopropylatrazine in surface water, *Environmental Science and Technology*, 28:2267-2277.
- Tomlin, C. D. S. (1997) The Pesticide Manual, 11th Edition, British Crop Protection Council, Farnham, UK.
- Tomlin, C. D. S. (2000) The Pesticide Manual, 12th Edition, British Crop Protection Council, Farnham, UK.
- Tomlin, C. D. S. (2006) The e-Pesticide Manual Version 4.0, British Crop Protection Council, Hampshire, UK.
- USGS National Water-Quality Assessment (NAWQA) Program, http://water.usgs.gov/nawqa/, Last accessed 16 January 2009.
- Van der Bruggen, B., Everaert, K., Wilms, D. and Vandecasteele, C. (2001) Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation, *Journal of Membrane Science*, 193:239-248.
- Van Zweiten, L., Admad, N., Marolt, R. S., Ayres, M. and Morris, S. (2001) Determination of DDT and its metabolites in cattle dip soil available in aqueous phase after remediation, Journal of Environmental Science and Health Part B - Pesticides, Food Contaminants and Agricultural Wastes, 36:501-516.
- Verhaar, H. J. M., van Leeuwen, C. J. and Hermens, J. L. M. (1992) Classifying environmental Pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity, *Chemosphere*, 25:471-491.
- Verstraeten, I. M., Carr, J. D., Steele, G. V., Thurman, E. M., Bastian, K. C. and Dormedy, D. F. (1999) Surface water-ground water interaction: Herbicide transport into municipal collector wells, *Journal of Environmental Quality*, 28:1396-1405.
- Virtual Computational Chemistry Laboratory (2004) ALogPS 2.1, http://146.107.217.178/lab/alogps/start.html, The Institute of Bioinformatics and Systems Biology, Neuherberg, Germany, Last accessed 9 December 2004.
- Wagner, S. C. and Zablotowicz, R. M. (1997) Effect of organic amendments on the bioremediation of cyanazine and fluometuron in soil, Journal of Environmental Science and Health Part B - Pesticides, Food Contaminants and Agricultural Wastes, 32:37-54.
- Wan, M. T., Kuo, J. N., McPherson, B. and Pasternak, J. (2006) Agricultural pesticide residues in farm ditches of the Lower Fraser Valley, British Columbia, Canada, JJournal of Environmental Science and Health Part B - Pesticides, Food Contaminants and Agricultural Wastes, 41:647-669.
- Wang, J., Song, R. (2004) Herbicide monitoring and removal at Louisville Water Company, International Symposium on pesticides, Their Degradates and Adjuvants, Prague, Czech Republic.
- Wang, R., Fu, Y. and Lai, L. (1997) A new atom-additive method for calculating partition coefficients, *Journal of Chemical Information and Computer Sciences*, 37:615-521.
- Weininger, D. (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, *Journal of Chemical Information and Computer Sciences*, 28:31-36.
- Wettasinghe, A. and Tinsley, I. J. (1993) Degradation of dacthal and its metabolites in soil, Bulletin of Environmental Contamination and Toxicology, 50:226-231.
- White, A. C., Mueller, R. A., Gallavan, R. H., Aaron, S. and Wilson, A. G. E. (2003) A multiple in silico program approach for the prediction of mutagenicity from chemical structure, *Mutation Research*, 539:77-89.

Whitehead, R. (2004) The UK Pesticide Guide 2004, BCPC, Hampshire, UK.

- WHO (2004) WHO Guidelines for Drinking Water Quality, 3rd Edition, World Health Organisation, Geneva, Switzerland.
- Widmer, S. K. and Spalding, R. F. (1995) A natural gradient transport study of selected herbicides, *Journal of Environmental Quality*, 24:445-453.
- Wroath, A. and Boxall, A. B. A. (1996) Modes of Toxic Action, R&D Technical Report W52, Environment Agency.
- Zeiger, E., Ashby, J., Bakale, G., Enslein, K., Klopman, G. and Rosenkranz, H. S. (1996) Prediction of *Salmonella* mutagenicity, *Mutagenesis*, 11:471-484.
- Zhang, Q. and Pehkonen, S. O. (1999) Oxidation of diazinon by aqueous chlorine: Kinetics, mechanisms, and product studies, Journal of Agricultural and Food Chemistry, 47:1760-1766.
- Zimmerman, L. R., Schneider, R. J. and Thurman, E. M. (2002) Analysis and detection of the herbicides dimethenamid and flufenacet and their sulfonic and oxanilic acid degradates in natural water, *Journal of Agricultural and Food Chemistry*, 50:1045-1052.

Transformation product	Parent pesticide *	% of parent pesticide *	Time ^c	Reference
erobic soil (laboratory)				
is-3-chloroallyl alcohol	1,3-dichloropropene	major ^e	-	EPA 1998a
rans-3-chloroallyl alcohol	1,3-dichloropropene	major ⁹		EPA 1998a
	1,3-dichloropropene	major ^a	-	EPA 1998a
is-3-chloroprop-2-enoic acid			-	EPA 1998a
rans-3-chloroprop-2-enoic acid	1,3-dichloropropene	major ^a	-	
EZ)-3-chloroacrylic acid	1,3-dichloropropene	37%	28 days	EFSA 2006a
EZ)-3-chloroaliyi alcohol	1,3-dichloropropene	1.4%	3 days	EFSA 2006a
4-dichlorophenol	2,4-D	3 ± 1%	8 days	Smith and Aubin 1991
		11%	-	Roberts 1998
		trace	14 days	PSD 1993a
		2-5%	10 days	PSD 1993a
,4-dichloroanisole	2,4-D	10 ± 1%	16 days	Smith and Aubin 1991
,4-Giorno Camadic	2,1 0	2-5%	10 days	PSD 1993a
.4-D	2,4-DB	26.1%	48 days	EU 2002a
ethamidophos	acephate	major ⁹	40 GBya	EPA 2001a
		> 10%		Roberts 1998
cetochlor oxanilic acid	acetochlor	> 1076	•	KODella 1990
-([N-(ethoxymethyl)-N-(2-ethyl-6-				
nethylphenyl)carbornyl]methylsulfon	acetochior	> 10%	•	Roberts 1998
I) acetic acid				
ethoxymethyl)-N-(2-ethyl-6-		> 109/		Deberte 1009
ethylphenyl)-2-sulfoneacetamide	acetochlor	> 10%	•	Roberts 1998
-(2-ethyl-6-methylphenyl)-2-		- 400/		D-1-4-4000
ulfoneacetamide	acetochlor	> 10%	-	Roberts 1998
6-diethyl-N-methoxy-methoxanilic	alachlor	13 - 22%	4 - 7 weeks	PSD 1990a
,6-diethyl-N-methoxymethyl-2-	alachlor	15 - 25%	4 - 7 weeks	PSD 1990a
ulpho-acetanilide				
lachior ethane sulfonic acid	alachlor	20%	9 days	Aga and Thurman 200
		24.9% ^b	50 days	EPA 1998b
		6.5% ^b	30 days	EPA 1998b
lachlor sulfinylacetic acid	alachior	15.9%	•	EPA 1998b
Bolliol Sulling Books Bola		15.9 - 16.2% ^b	62 days	EPA 1998b
lachlor DM-oxanilic acid	-la abtas	15.8 - 17%	175 days	EPA 1998b
achior DM-oxanilic acid	alachior			
		14.4% ^b	62 days	EPA 1998b
achlor oxanilic acid	alachlor	12.7 - 22.4%	28 - 50 days	EPA 1998b
		9.7 - 10% ^b	20 days	EPA 1998b
',6'-diethyl-2-hydroxy-N-	alachlor	6.4 - 10.2% ^b	7 - 21 days	EPA 1998b
ethoxymethylacetanilide	alacitor	0.4 - 10.2 /6	r - z i uaya	
Idicarb sulfoxide	aldicarb	67 -92%	•	APVMA 2001
		86.1%	14 days	APVMA 2001
		70 - 90%	7 -28 days	APVMA 2001
letionark authorse	aldicarb	50 - 73%	-	APVMA 2001
Idicarb sulfone	alucarb	80.1%	21 days	APVMA 2001
OE 101630	amidosulfuron	7%	3 days	PSD 1994a
		5.2%	14 days	PSD 1994a
		49.6%	7 days	PSD 1994a
		40.4%	49 days	PSD 1994a
		21%	49 days	PSD 1994a
-amino-4,6-dihydroxypyrimidine	amidosulfuron	30%	49 days	PSD 1994a
TS 27271	amitraz	13%		EPA 1996a
TS 27919	amitraz	35%		EPA 1996a
		13%	-	EPA 1996a
TS 24868	amitraz		-	
hydroxy anilazine	anilazine	19.2%	72 hours	PSD 1994b
		43%	366 days	PSD 1994b
		21%	46 hours	PSD 1994b
		0.5%	•	PSD 1994b
		9 - 12%	3 - 112 days	PSD 1994b
		13.2%	111 days	PSD 1994b
		4.6%	0 days	PSD 1994b
		6.8% (sterile)	28 days	PSD 1994b
		15.7%	2 days	PSD 1994b
		15.7% 7%		PSD 1994b
			100 days	
uphanilamide	asulam	3.6%	•	EPA 1995a
nic form of asulam	asulam	22.7%	•	EPA 1995a
onjugated form of asulam	asulam	6.2%	-	EPA 1995a
niugated acetyl asulam	asulam	trace ^g	•	EPA 1995a
onjugated acetyl sulphanilamide	asulam	trace ⁹	-	EPA 1995a
	asulam	trace ^g	-	EPA 1995a
ethylbenzenesulfonyl carbamate			- 05 de:	Assaf and Turco 1994
ydroxyatrazine	atrazine	19%	95 days	
		0.7%	62 days	Solomon et al. 1996
		<5%	•	APVMA 1997a
eethylatrazine	atrazine	12.4%	142 days	Assaf and Turco 1994
		4.18%	244 days	Solomon et al. 1996
		8%	· · · ·	APVMA 1997a
nicon mulatrazione	atrazine	10.1%	95 dava	Assaf and Turco 1994
eisopropylatrazine		1.61%	244 days	Solomon et al. 1996
			277 UBYB	APVMA 1997a
		<5%		

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
Aerobic soil (laboratory) continued				
diaminochloroatrazine	atrazine	6.7%	95 davs	Assaf and Turco 1994
		0.7%	3 days	Solomon et al. 1996
		<5%	-	APVMA 1997a
DEHA	atrazine	11%	250 days	Assaf and Turco 1994
DIHA	atrazine	7.8%	250 days	Assaf and Turco 1994
			200 0035	Roberts and Hutson
azoxystrobin acid	azoxystrobin	20%	•	1999
eference compound 2	azoxystrobin	major ⁹	-	PMRA 2000a
eference compound 3	azoxystrobin	minor ^a	-	PMRA 2000a
eference compound 10	azoxystrobin	minor ^e	-	PMRA 2000a
eference compound 20	azoxystrobin	minor ⁹	•	PMRA 2000a
eference compound 28	azoxystrobin	minor ^g		PMRA 2000a
eference compound 36	azoxystrobin	minor ⁹	_	PMRA 2000a
enalaxyi M1	benalaxyl	31%	133 days	EU 2004c
	benalaxyl	34.1%	98 days	EU 2004c
enalaxyl M2				
enalaxyl acid	benalaxyl	4.9%	28 days	EU 2004c
,6-dinitro-4-trifluoromethyl-phenol	benfluralin	6%	:	EPA 2004a
arbofuran	benfuracarb	73 - 93%	0 days	PSD 1998a
arbendazim	benomyl	major ⁹	-	Roberts and Hutson
	,	÷		1999 Roberts and Hutson
enzimidazole-2-ylamine	benomyl	minor ⁹	-	1999
ensulide oxon	bensulide	13.8%	270 days	PMRA 2003e
-methyl-bentazone	bentazone	1.7 - 4.5%	48 days	Wagner et al. 1996
-(2,4-dichlorophenoxy)-2-			10 0030	-
itrobenzoic acid	bifenox	principal ^g	-	Roberts 1998
hiobenizoic acia				
ichlorophenoxy)anthranilate	bifenox	principal ^e	-	Roberts 1998
itertanol benzoic acid				Roberts and Hutson
	bitertanol	19%	30 days	1999
		8.6%	29 days	PSD 1994c
itertanol ketone	bitertanol	< 2%	-	Roberts and Hutson
				1999
I510F49	boscalid	14% ^b	-	PMRA 2004e
-bromo-6-methyluracil	bromacil	3.4% ^b	304 days	EPA 1996c
-bromo-3-(alpha-	bromacil	1. 5% ^b	154 days	EPA 1996c
ydroxymethylpropyl)-6-methyluracil -bromo-3-sec-butyl-6-	bromacil	0.6% •	184 days	EPA 1996c
ydroxymethyluracii -bromo-3-(2-hydroxy-1-	bromacil	0.8% ^b	304 days	EPA 1996c
nethylpropyl)-6-methyluracil			•	
-sec-butyl-6-methyluracil	bromacil	0.7%	304 days	EPA 1996c
,5-dibromo-4-hydroxybenzamide	bromoxynii	20.9 - 21.6% ^b	1 day	EU 2004d
		21.6%	3 hours	PSD 1995
,5-dibromo-4-hydroxybenzoic acid	bromoxynii	16.1 - 34.8% ^b	1 day	EU 2004d
romoxynil	bromoxynil octanoate	44.6% ^b	4 days	EU 2004d
5-dibromo-4-hydroxybenzamide	bromoxynil octanoate	20% ^b	28 hours	EU 2004d
PA 401527	bromuconazole	0.02%	•	PSD 1996a
S 860976	bromuconazole	0.09%	•	PSD 1996a
S 860551	bromuconazole	0.03%	•	PSD 1996a
hydroxy buprofezin	buprofezin	< 3%	150 days	PSD 19936
uprofezin sulphoxide	buprofezin	< 3%	150 days	PSD 1993b
uprofezin metabolite 9	buprofezin	< 3%	150 days	PSD 1993b
tert-butyl-3-isopropyl-5-phenyl-2-	•		•	
uret	buprofezin	< 3%	150 days	PSD 1993b
isopropyl-3-phenyl urea	buprofezin	< 3%	150 days	PSD 1993b
	butralin	2.2%		
NTBA			365 days	EPA 1998d
trahydrophthalamide	captan	66%	7 days	EPA 1999a
napthol	carbaryi	major ^s	-	EPA 2004b
		0.02%	-	Munthy and Raghu
				1989 Muthy and Bashu
-hydroxy carbaryl	carbaryl	2.53%	-	Murthy and Raghu 1989
hydroxy carbaryl	carbaryl	0.16%	•	Murthy and Raghu 1989
	-			
napthyl N-hydroxy methyl	carbaryi	0.2%	-	Murthy and Raghu
arbamate	•			1989
chiorobenzoic acid	ciofentazine	major ⁹	•	Tomlin 2000
amino-4-chioropyridazin-3(2H)-one	chloridazon	43.2 - 46.6%	187 days	Roberts 1998
amino-4-chloro-2-methyl-2-	chioridazon	1.2 - 1.3%	187 days	Roberts 1998
ydropyridazin-3-one			ioi daye	
-carbamyl-2,4,5-trichlorobenzoic cid	chlorothalonil	25%	56 days	Regitano et al. 2001
/m/		13.2% ^b	30 days	EU 2005b
hydroxy-2,5,6-	chlorothalonil	< 10%	0 - 14 days	
1) UION . E.O.O.				Regitano et al. 2001
ichloroisophthalonitrile	Chiorograiomi	- 10%		Nogitario di al. 2001

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time *	Reference
Aerobic soil (laboratory) continued				
		22.3%	13 weeks	PSD 2002
		32%	60 days	EPA 1999b
		32% ^b	60 days	EU 2005b
3-cyano-2,4,5,6-	chlorothalonil	< 10%	0- 14 days	Regitano et al. 2001
etrachlorobenzamide	Chloroutaionii		0- 14 Gays	-
		<10%	90 days	PSD 2002
		10.4%	13 weeks	PSD 2002
		7%	7 - 16 days	EPA 1999b
		10% *	7 days	EU 2005b
-carbamyl-1,2,4,5-tetrachlorobezoic	chlorothaionil	4.3%	13 weeks	PSD 2002
acid	GINOROGIAIONI	4.070	TO HOURS	
3-cyano-6-hydroxy-2,4,5- richlorobenzamide	chlorothalonil	3.8%	13 weeks	PSD 2002
-cyano-2,5,6-trichlorobenzamide	chlorothalonil	3.2%	13 weeks	PSD 2002
		20%	62 - 181 days	EU 2005b
R417888	chlorothalonil	2076 110/b	02 - 101 Uays	
R417811	chiorothalonil	11%	•	EU 2005b
19492	chlorothalonil	12.4%	120 days	EU 2005b
esethyl chlorfenvinphos	chiorfenvinphos	< 7%	4 months	PSD 1994d
,4-dichlorophenyl)-ethan-1,2-diol	chlorfenvinphos	< 7%	4 months	PSD 1994d
-(2,4-dichlorohenyl) ethan-1-ol	chlorfenvinphos	< 7%	4 months	PSD 1994d
4-dichloroacetophenone	chlorfenvinphos	< 7%	4 months	PSD 1994d
4-dichlorophenyl chloride	chlorfenvinphos	< 7%	4 months	PSD 1994d
4-dichlorophenvloxrane	chlorfenvinphos	< 7%	4 months	PSD 1994d
alts or conjugates desethyl	chlorfenvinphos	< 7%	4 months	PSD 1994d
hiorfenvinphos	chonenverprios	~ 1 /0		100 10040
2,4-dichloro-1-(1-hydroxyethyl)	chlorfenvinphos	0.4 - 6.7%	•	APVMA 2000a
enzene 1,5,6-trichloro-2-pyridinol	chlorpyrifos	29%	24 months	Baskaran et al. 1999
	anophila	18.5%	21 days	Baskaran et al. 2003
		32%	365 days	EPA 1999d
		22% ^b	360 days	EPA 1999d
		0.9 -32.4%	360 days	APVMA 2000b
		30 - 38%	14 - 360 days	EU 2005d
3,5,6-trichloro-2-methoxypyridine	chlorpyrifos	< 8%	•	EPA 1999d
3,5,6-trichloro-2-pyridinol	chlorpyrifos-methyl	43% ^e	7 days	EU 2005e
-chlorobenzene sulfonamide	chlorsulfuron	50%	2 months	PSD 1991a
-(3-chloro-p-tolyl)-1-methylurea	chlorotoluron	30%	16 - 84 days	EU 2005c
-chloro-3-fluoro-2-hydroxy-pyridine	clodinafop-propargyl	9 -14%	•	PSD 1995a
loguintocet acid	cloquintocet-mexyl	<20%		PSD 1995a
		0.1%	- 9 months	EPA 1996d
i-hydroxyl-3-methylbenzofuran	coumaphos			EPA 1996d
hiorfen	coumaphos	6.2%	6 months	
oumaphoxon	coumaphos	0.2%	• 9	EPA 1996d
-methyl-6-hydroxybenzofuran	coumaphos	4.1%	3 months	EPA 1996d Blumhorst and Weber
yanazine acid	cyanazine	>50%	40 days	1992
CIM	cyazofamid	18.4 - 31.3%	3 -10 days	EU 2002e
CIM-AM	cyazofamid	9.6 - 13.7%	7 - 10 days	EU 2002e
	cyazofamid	17.1 - 21.3%	15 - 21 days	EU 2002e
250	cycloxydim	39%	7 days	PSD 1990b
280 280 ₂	cycloxydim	3-4%	21 days	PSD 1990b
		48%		PSD 1990b
250	cycloxydim		7 days 21 days	
2SO ₂	cycloxydim	10%		PSD 1990b
SO2	cycloxydim	7%	43 days	PSD 1990b
150	cycloxydim	3%	21 days	PSD 1990b
15	cycloxydim	3%	1 days	PSD 1990b
ompound XV	<i>lambda-</i> cyhaiothrin	1270	63 days	EU 2001d
		11%	•	PMRA 2003d
ompound 1a	<i>lambda-</i> cyhalothrin	7%	•	PMRA 2003d
OCVA	cyfluthrin	>10%	-	EU 2002c
-fluoro-3-phenoxybenzoic acid	cyfluthrin	31% *	118 days	EU 2002c
-phenoxybenzoic acid	alpha-cypermethrin	major ^e	-	Roberts and Hutson 1999
yano(3-hydroxyphenyl)methyl 3-		-		
2,2-dichlorovinyl)-2,2- limethylcyclopropanecarboxylate	alpha-cypermethrin	m aj or ⁹	•	Roberts and Hutson 1999
-hydroxy cypermethrin	alpha-cypermethrin	major ^e	-	Roberts and Hutson
	•	23-48%	384 dava	1999 EU 20046
)-phenoxybenzoic acid	cypermethrin	23-48%	364 days	EU 20045 Class 1992
204	overenterin		•	
	cypermethrin	0.2-0.4%	•	Class 1992 Class 1992
-phenoxybenzaidehyde	cypermethrin	0.2-0.4%	•	Class 1992
-phenoxybenzoic acid	zeta-cypermethrin	major ^a	-	Roberts and Hutson 1999
yano(3-hydroxyphenyl)methyl 3-				
	zeta-cypermethrin	major ^e	-	Roberts and Hutson
2,2-dichlorovinyl)-2,2-	Tore-choundense	Triagon .		1999

Transformation product	Parent pesticide *	% of parent pesticide *	Time °	Reference
Aerobic soil (laboratory) continued				
4-hydroxy cypermethrin	zeta-cypermethrin	major ^a	•	Roberts and Hutson 1999
CGA 249287	cyprodinil	6%	30 days	PSD 1997a
		9%	45 days	PSD 1997a
		12%	50 days	PSD 1997a
		7.9%	21 days	PSD 1997a
melamine	cyromazine	32%	30 days	PSD 1993c
melamine	Cyromazine	~70%	2 - 3 weeks	PSD 1993c
		20 - 44%	29 weeks	PSD 1993c
		41%		
			27 weeks	PSD 1993c
formaldehyde	daminozide	trace ⁹	-	EPA 1993a
methylisothiocyanate	dazomet	major ⁹	-	APVMA 1997b
decamethrinic acid	deltamethrin	23% *	14 days	EU 2002g
ethyl-m-hydroxyphenyl carbamate	desmedipham	16%	7 days	PSD 1993d
		4.5%	14 days	PSD 1993d
		13.8% ^b	3 days	EU 2004e
		4.5% ^b	14 days	EPA 1996e
pyrimidinol	diazinon	72.9%	14 days	PSD 1991b
F)		2%	3 weeks	PSD 1991b
		8% (sterile)	3 weeks	PSD 1991b
hydroxyl-pyrimidinol	diazinon	1.5%	166 days	PSD 1991b
3.6-dichlorosalicylic acid	dicamba	28%	5 weeks	Smith 1973
o,o-ฉเฉแบเบอลแบรแบ สมเน	Ulivani IVa	31%	6 weeks	Smith 1974
dim othe domine a still - 101 d -	diable for an int	major	U WOOKS	HSE 2003a
dimethylaminosulfanilide	dichlofiuanid			
methylaminosulfanilide	dichlofluanid	8.2%	97 days	HSE 2003a
2,6-dichlorobenzamide	diclobenil	13.1% ^b	50 weeks	EPA 1998e
2,4-dichlorophenol	dichlorprop	10%	8 days	Haberhauer et al. 1999
1-(2-chlorophenyl)-1-(4'-	o,p'-dicofol	major ⁹	_	EPA 1998f
chiorophenyl)-2,2-dichloroethanol		•	-	
o.p'-dichlorobenzophenone	o,p'-dicofol	major ⁹	-	EPA 1998f
2-chlorobenzoic acid	o p'-dicofol	major ⁹	-	EPA 1998f
3-hydroxy-2,4-	•	•		
dichlorobenzophenone	o,p'-dicofol	major ⁹	-	EPA 1998f
2,4'-dichlorobenzhydrol	o,p'-dicofol	major ⁹	_	EPA 1998f
1,1-(p-chlorophenyl)-2,2-		•	-	
dichloroethanol	p,p'-dicofol	major ^e	-	EPA 1998f
p,p'-dichlorobenzophenone	p,p'-dicofol	major ⁹	-	EPA 1998f
3-hydroxy-4,4'-	p,p'-dicofol	major ⁹		EPA 1998f
dichlorobenzophenone	•••	80 - 87%	1 day	PSD 1991c
diclofop acid	diclofop-methyl	77%	8 days	PSD 1991c
		90%	2 days	PSD 1991c
		77.7% ^b	1 - 2 days	EPA 2000b
4-(2,4-dichlorophenoxy)phenol	diclofop-methyl	0.7 - 3%	16 days	PSD 1991c
		trace	14 days	PSD 1991c
		1 - 10%	-	PSD 1991c
		11%	8 days	PSD 1991c
		2.5%	6 days	PSD 1991c
		4% ^b	•	EPA 2000b
N.N-dimethylacetoacetamide	dicrotophos	20%	5 days	EPA 2002b
4-chlorophenyl urea	diflubenzuron	37% "	7 - 14 days	EPA 1997a
2,6-difluorobenzoic acid	diflubenzuron	minor	-	EPA 1997a
2,6-difluorobenzamide	diflubenzuron	minor	-	EPA 1997a
	diflubenzuron	minor	-	EPA 1997a
p-chloroaniline		major	-	PMRA 1999b
	diffufenzopyr		- 03 de	
N-demethyldimefuron	dimeturon	16.6 - 29.98%	93 days	PSD 1993e
compound B	dimeturon	0.5 - 2.2%	92 days	PSD 1993e
compound C	dimeturon	ND - 2.23%	92 days	PSD 1993e
compound D	dimeturon	0.32 - 2.8%	92 days	PSD 1993e
O-desmethyldimethoate	dimethoate	2.1%	•	PSD 1993f
		1.9 - 2.1%	2 days	EPA 1999e
0,0-dimethylphosphorothioic acid	dimethoate	1%	-	PSD 1993f
		0.4 - 1%	1 - 4 days	EPA 1999e
omethoate	dimethoata	6%	2 weeks	PSD 1993f
3-desmethyl dimethomorph and 4-	dimethomorph	<0.5%	-	PSD 1994g
desmethyl dimethomorph combined	•			-
dinitro octyl phenol	dinocap	5.5%	30 days	PSD 1991d
disulfoton sulfone	disulfoton	35%	-	EPA 2002a
N'-(3,4-dichlorophenyl)-N-	diuron	20.9 - 22.5%	365 days	EPA 2003b
methylurea		_	JUJ GBYS	
3,4-dichlorophenylurea	diuron	minor [®]	•	EPA 2003b
endosulfan sulphate	endosulfan	major ⁹	•	EPA 2002c
EPTC sulfoxide	EPTC	5.6%	14 days	EPA 1999c
		≤6%		EPA 1999c
desphenyl-fenvalerate	esferivalerate	0.9 - 6.4%	12 weeks	PSD 1992c
	esfenvalerate	1.5%	180 days	PSD 1992c
CONH ₂ -fen				

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time °	Reference
Aerobic soil (laboratory) continued.				
		1 - 4%	30 days	PSD 1992c
4'-OH-fen	esfenvalerate	1.3%	14 days	PSD 1992c
		3%	1 month	PSD 1992c
		1 - 4%	30 days	PSD 1992c
-benzylbenzoic acid	esfenvalerate	1.4%	14 days	PSD 1992c
	esfenvalerate			
I-Vacid	esterivalerate	3%	12 months	PSD 1992c
		1 - 4%	30 days	PSD 1992c
D 50365	esfenvalerate	1%	3 months	PSD 1992c
		1 - 4%	30 days	PSD 1992c
iazine amine C	ethametsulfuron-methyl	major	•	PMRA 1992
thviene	ethephon	15%	21 days	EPA 1995b
-hydroxy ethyl phosphonic acid	ethephon	63.5%	30 days	EPA 1995b
, , , , ,	•		**,*	Roberts and Hutson
eethyl ethirimol	ethirimol	major ^e	•	1999
droxybutyl ethirimol	ethirimol	major ^g	-	Roberts and Hutson
,,		-		1999
I-JS940	famoxadone	major ⁹	•	PMRA 2003h
I-KZ007	famoxadone	major ^g	•	PMRA 2003h
-MN467	famoxadone	minor ⁹	-	PMRA 2003h
H-6467	fenbuconazole	<10%	-	PSD 1995c
	ICIDUCORAZOI8			
		<7.9%	-	PSD 1995c
		minor	-	PMRA 2003i
H-9129	fenbuconazole	<10%	-	PSD 1995c
		major	•	PMRA 2003i
		minor	-	PMRA 2003i
H-9130	fenbuconazole	<4.5%	-	PSD 1995c
H-3130	renouconazole		-	
.		minor	•	PMRA 2003i
2,4-triazole	fenbuconazole	minor	•	PMRA 2003i
OE 83348	fenchlorazole-ethyl	4.5%	8 days	PSD 1990e
	•	20%	97 days	PSD 1990e
OE 88988	fenchlorazole-ethyl	1.5%	8 days	PSD 1990e
				PSD 1990e
OE 88989	fenchiorazole-ethyl	14.2%	8 days	
		27%	97 days	PSD 1990e
OE 72829	fenchlorazole-ethyl	2.1%	8 days	PSD 1990e
		36%	2 days	PSD 1990e
OE 87606	fenchlorazole-ethyl	1%	8 days	PSD 1990e
OE 87607	fenchlorazole-ethyl	11%		PSD 1990e
			• 07 down	
OE 89628	fenchiorazole-ethyl	7%	97 days	PSD 1990e
methyl-4-nitrophenol	fenitrothion	major ^g	•	PMRA 1993a
		10 - 20%	30 days	APVMA 1999
		5 - 7%	50 days	APVMA 1999
		30%	1 - 2 weeks	APVMA 1999
		20.5%	3 days	APVMA 1999
		20%		
			1 - 3 days	EPA 1995c
nitrooxon	fenitrothion	0.7%	1 day	APVMA 1999
		<0.9%	21 days	EPA 1995c
smethyl fenitooxon	fenitrothion	0.6%	1 - 5 days	APVMA 1999
,		<0.9%	21 days	EPA 1995c
methyl-4-nitroanisole	fenitrothion	0.5%	10 days	APVMA 1999
moury				
		<0.9%	21 days	EPA 1995c
rmylaminofenitrothion	fenitrothion	0.4%	10 days	APVMA 1999
(6-chloro-2-	fonovonon - attaid	-294		DED 10004
nzoxazolyloxy)phenol	fenoxaprop-p-ethyl	<3%	-	PSD 1990d
o 16-8797	fenoxycarb	<8%	•	PSD 1997b
5 17-3192		<8%	-	PSD 1997b
	fenoxycarb		-	
o 1-1374	fenoxycarb	<10%	-	PSD 19976
carbomoyl-3-phenoxybenzyl-				
2,3,3-tetramethyl cyclopropane				
rboxviate and α-carboxy-3-	fenpropathrin	14%	•	PSD 1989a
enoxybenzyl-2,2,3,3-tetramethyl				
clopropane carboxylate combined				
		7%	8 weeks	PSD 1989a
carboxy-3-phenoxybenzyl-2,2,3,3-				
ramethyl cyclopropane	fenpropathrin	0.3%	26 weeks	PSD 1989a
			au 114400	
nboxylate				
phenoxybenzoic acid	fenpropathrin	14%	-	PSD 1989a
		0.6%	160 days	PSD 1989a
2,3,3-tetramethyl cyclopropane			-	
	fenpropathrin	7%	8 weeks	PSD 1989a
nboxylic acid				
		<0.1%	60 days	PSD 1989a
) 18-5445	fenpropidin	1 5%	•	PSD 1993g
12-7124	fenpropidin	1 - 5%		PSD 1993g
	fenpyroximate	2.6 - 10.8%	- 14 - 28 days	PSD 1995d
3	ion pyrowniau			
		4.9 - 7.9%	16 - 32 days	PSD 1995d
3-dimethyl-5-phenoxypyrazole-4-	fenpyroximate	8.2 - 8.8%	28 days	PSD 1995d
o-dilligatifi o buonovijeji emoto i				

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
Aerobic soll (laboratory) continued.				
RPA 200766	fipronil	26 - 36%	-	HSE 1999
	•	>30 - 47%	1 year	HSE 1999
		38%		PSD 2004a
		57%	157 daum	PSD 2004a
	Empore 1		157 days	
MB 46136	fipronil	14 - 22%	-	HSE 1999
		20 - 23.6%	•	HSE 1999
		22%	•	PSD 2004a
RPA 200761	fipronil	21%	•	PSD 2004a
MB 45950	fipronil	<5%	-	PSD 2004a
		<9%	-	PSD 2004a
		<8%		PSD 2004a
10 40540	f		•	
MB 46513	fipronil	<5%	•	PSD 2004a
		<9%	•	PSD 2004a
AB 45897	fipronil	<5%	-	PSD 2004a
		<9%	•	PSD 2004a
		<8%	-	PSD 2004a
AB 46233		<8%	-	PSD 2004a
	fipronil	<9%	_	PSD 2004a
PA 105048			-	
PA 105320	fipronil	<9%	-	PSD 2004a
		<8%	•	PSD 2004a
PA 106681	fipronil	<8%	•	PSD 2004a
IB 46400	fipronil	<8%	-	PSD 2004a
amprop-M acid	flamprop-M-isopropyl	major ^g	•	Roberts 1998
-hydroxy-XDE-570	florasulam	72%	3 days	PMRA 2001c
		50%	14 days	PMRA 2001c
(2.6. diffuorophonid) 5		3070	i - uaya	, 1010120010
I-(2,6-difluorophenyl)-5-	6 1	409/	ED da -	DMD 4 0004
minosulphonyl-1H-1,2,4-triazole-3-	florasulam	18%	59 days	PMRA 2001c
arboxylic acid				
i-(aminosulphonyl)-1H-1,2,4-	fiorasulam	40%	60 days	BMBA 2001a
riazole-3-carboxylic acid	norasulam	4076	59 days	PMRA 2001c
H-1,2,4-triazole-3-sulphonamide	florasulam	16%	100 days	PMRA 2001c
(-(2.6-difluorophenyl)-1H-1.2.4-	noi daulam	10/1	100 0433	1 101 20010
	florasulam	<4%		PMRA 2001c
riazole-3-sulphonamide				
luazifop acid	fluazifop-butyl	major ⁹	•	PMRA 1988
i-trifluoromethyl-pyrid-2-one	fluazifop-butyl	major ⁹	•	PMRA 1988
uzaifop acid	fluazifop-P-butyl	97%	2 days	PSD 1988d
		major ^g		PMRA 1988
i-trifluoromethyl-pryid-2-one	fluazifop-P-butyl	major ^g		PMRA 1988
	illaziop-i -bulyi	major	-	1 10104 1000
-trifluoromethyl-2-pyridone and 2-	Annalis - O hash t	E 08/	0.40	DDD 40004
4-hydroxyphenoxy)-5-trifluoromethyl	fluazifop-P-butyl	50%	2 - 12 weeks	PSD 1988d
yridine combined				
ompound VII	fluazinam	2.5%	90 days	PSD 1994i
•		<2%	•	PSD 1994i
ompound VIII	fluazinam	1.5%	30 days	PSD 1994i
		<2%	00 00,0	PSD 1994i
	•		• ••	
ompound XII	fluazinam	11.4%	30 days	PSD 1994i
		7%	•	PSD 1994i
		major ⁹	-	PMRA 2003j
IKH 6562 sulfonamide	flubcarbazone-sodium	46 - 69%	•	PMRA 2000c
IKH 6562 sulfonic acid	flubcarbazone-sodium	11%	-	PMRA 2000c
	flubcarbazone-sodium	15%		PMRA 2000c
-desmethyl MKH 6562			-	
IMT	flubcarbazone-sodium	14.2%	-	PMRA 2000c
ODT	flubcarbazone-sodium	4.7%	-	PMRA 2000c
IKH 6562 sulfonyl urea	flubcarbazone-sodium	2%	-	PMRA 2000c
OE sulfonic acid	flufenacet	14 - 23%	120 days	PMRA 2000d
OE oxaite	flufenacet	10 - 16%	14 - 56 days	PMRA 2000d
OE thioglycolate sulfoxide	flufenacet	minor ⁹	··· ··································	PMRA 2000d
			-	
OE methyl sulfoxide	flufenacet	minor ^g	-	PMRA 2000d
OE methyl sulfone	flufenacet	minor	-	PMRA 2000d
hiadone	flufenacet	minor ⁹	•	PMRA 2000d
-(2-chioro-a,a,a-trifluoro-p-tolyloxy)-	flufenoxuron	9.5 - 14% ^b	30 daya	LICE 1005
-fluorophenyl urea		∂.0 • 14476	30 days	HSE 1995
-aminodiphenyl ether	flutenoxuron	0.1 - 1% *		HSE 1995
	fluoroglycofen-ethyl	79%	21 davs	PSD 1992d
H-5781			≂ i uaya	
H-9985	fluoroglycofen-ethyl	8.1%	•	PSD 1992d
H-5349	fluoroglycofen-athyl	6%	51 days	PSD 1992d
-(4,6-dimethoxypyrimidin-2-yl)-7-				
rifluoromethyl)-1,3-	A			B
hydropyridino[2,3-d]pyrimidine-2,4-	flupyrsulfuron-methyl	major	-	Roberts 1998
	-			
lone				
-sulfamoyl-6-				
rifluoromethyl)pyridine-3-carboxylic	flupyrsulfuron-methyl	major	•	Roberts 1998
cid	•••	-		-
nethyl 2-[(4-hydroxy-6-				
ethoxypyrimidin-2-yi)amino]-6-	flupyrsulfuron-methyl	minor		Roberts 1998
rifluoromethyl)pyridine-3-				

Fransformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
Aerobic soli (laboratory) continued.				
2,4-triazole	fluquinconazole	16.1%	365 days	PSD 1999b
,2,4-0102010	index country of	4.8 - 8%	100 days	PSD 1999b
BC 96912	fluquinconazole	28.7%	365 days	PSD 1999b
BC 30312	Industonazora	6.6 - 10.3%	100 days	PSD 19996
amino-3,5-dichloro-6-fluoro-2- yridinol	fluroxypyr	11.5% ^b	7 days	EU 1999
-amino-3,5-dichloro-6-	fluroxypyr	17.8% ^b	28 days	EU 1999
uoromethoxypyridine	flusilazole	4 - 5%	52 weeks	PSD 1989b
is (4-fluorophenyl)methyl silanol	flurtamone	9.8%	32 WEEKS	PSD 2000a
ifluoroethanoic acid	flurtamone	10.8%	•	PSD 2000a PSD 2000a
E 54488 mesafen amino acid	fomesafen	10.2%	- PP down	PSD 2000a PSD 1995f
mesalen amino aciu mesalen amine	fomesafen	20.5%	88 days 59 days	PSD 1995/
mesaten amne mesaten nitro acid	fomesafen	<1%	59 Uays	PSD 1995
E F130619	formasulfuron	major ^e		PMRA 2003k
E F092944	formasulfuron	major ⁹	-	PMRA 2003k
E F153745	formasulfuron	minor ^g	•	PMRA 2003k
E F148003	formasulfuron	minor ⁹		PMRA 2003k
	formasulfuron	minor ⁹	•	PMRA 2003k
E F099095 athamovlohosphonic acid	foseamine-ammonium	94%	0 days	EPA 1995d
arbamoylphosphonic acid	foseamine-ammonium	26%	1 month	EPA 1995d
arboxylphosphonic acid OE 35956		26% 25 - 53%	35 days	PSD 1990f
	glufosinate ammonium	25 - 53%		PSD 1990f
methyl phosphinico-proprionic acid	glufosinate ammonium	35% 52%	96 days	PSD 1990f
		52% 32%	95 days	
		32% 15-47%	16 days 7 - 14 days	PSD 1990f
			7 - 14 days	PSD 1990f
05 64610	akifasinata ammanium	31%	37 days	PSD 1990f
OE 64619	giufosinate ammonium	18%	95 days	PSD 1990f
		15%	16 days	PSD 1990f
OE 64619 ^f	3-methyl phosphinico-	26% 8%	14 days	PSD 1990f PSD 1990f
JE 64619	proprionic acid	070 31 - 38%	16 days	PSD 1990f
OE 65594	alufacinata ammonium	8%	21 days 8 days	PSD 1990f
UE 65594	glufosinate ammonium	5%	o uaya	
OF REARS	al decinete emmonium	5%	05 days	PSD 1990f
OE 86486	glufosinate ammonium	2%	95 days	PSD 1990f
		276 34%	16 days	PSD 1990f
OE 85355	glufosinate ammonium		0 days	PSD 1990f
ninomethylphosphonic acid	glyphosate	26 - 29%	14 days	EU 20021
		major ^g	-	EPA 1993b
		major ⁹	•	PMRA 1991c
ninomethylphosphonic acid	glyphosate trimesium	15.4% 5	14 days	EU 2002I
2,4-triazole	hexaconazole	> 10%	-	PMRA 1995; PMRA 1999a
hydroxy-cyclohexyl-6-				10000
limethylamino)-1-methyl-1,3,5- azine-2,4(1H,-3H)-dione (ketocyclohexyl)-6-	hexazinone	18.7%	365 days	EPA 1994a
limethylamino)-1-methyl-1,3,5- jazine-2,4(1H,3H)-dione	hexazinone	10.9%	365 days	EPA 1994a
etabolite B hexazinone	hexazinone	2.3%	•	EPA 1994a
etabolite D hexazinone	hexazinone	4.8%	•	EPA 1994a
5-bis(-p-tolyl)-1,4-pentadiene-3- ne	hydramethylnon	25.9%	3 months	PSD 1994j
(2,4-dichlorophenyl)-2-	imazalii	major ^e		Roberts 1998
idazolylethan-1-ol		-		
1 (6-chloro-pyridine-3-yimethyl)-N-	imazaquin	7.6%	12 months	PSD 1993h
tro-2-imino-2,3-dihydro-imidazole nd 1-(6-chloro-pyridine-3-ylmethyl)	imidacloprid	<1.8%	100 days	PSD 1993i
idazolidine-2,4-dione combined				
(6-chloro-pyridine-3-ylmethyl)-N-	imidacloprid	<1.8%	100 days	PSD 1993i
troso-2-imino-imidazolidine			-	
		<3%	-	PSD 1993i
		<2%	•	PSD 1993
(6-chloro-pyridine-3-yimethyl)-2-	imidacloprid	<1.8%	100 days	PSD 1993i
	·	4 394	•	
ino-imidazoidine		4.3%	•	PSD 1993i
Ing-Imgazongina		<2%	•	PSD 1993i
(6-chloro-pyridine-3-ylmethyl)-N-				
(6-chloro-pyridine-3-ylmethyl)-N- tro guanidine and 3-(6-chloro-	imidacloprid	<1.8%	100 dave	PSD 1993i
(6-chloro-pyridine-3-yimethyl)-N- iro guanidine and 3-(6-chloro- rridine-3-yimethyl) irnidazolidine-	imidacloprid	<1.8%	100 days	PSD 1993i
(6-chloro-pyridine-3-ylmethyl)-N- tro guanidine and 3-(6-chloro- ridine-3-ylmethyl) imidazolidine- 5-dione combined	•		·	
(6-chloro-pyridine-3-yimethyi)-N- iro guanidine and 3-(6-chloro- ridine-3-yimethyi) imidazolidine- 5-dione combined	lmidacloprid imidacloprid	<1.8%	100 days 100 days	PSD 1993i
ino-Imidazolidine (6-chloro-pyrldine-3-ylmethyl)-N- tro guanidine and 3-(6-chloro- ridine-3-ylmethyl) inidazolidine- 5-dione combined chloro-nicotinic acid (6-chloro-pyrldine-3-ylmethyl)-N-	•		·	

ransformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
erobic soli (laboratory) continued				
		3.4%	•	PSD 1993i
-(6-chloro-pyridine-3-ylmethyl)-N-	imidacloprid	<3%	-	PSD 1993i
itro-2-imino-imidazollidine-5-ol	•			
netsulfuron-methyl	iodosulfuron-methyl	major *	-	PMRA 2004f
E F059411	iodosulfuron-methyl	major ^e	•	PMRA 2004f
E F161778	iodosulfuron-methyl	major ^g	•	PMRA 2004f
E F145741	iodosulfuron-methyl	minor ⁹ minor ⁹	•	PMRA 2004f PMRA 2004f
E F145740	iodosulfuron-methyl iodosulfuron-methyl	minor ⁹	•	PMRA 2004f
E 0000119	ioxynil	10.5% ^b	- 3 days	EU 2004g
,5-di-iodo-4-hydroxybenzamide	ЮХУГНІ	6.23%	1 day	PSD 1995m
E di iodo 4 hudrombanzois asid	ioxynil	20.4%	3 days	EU 2004g
,5-di-iodo-4-hydroxybenzoic acid	io.yim	19.67%	1 day	PSD 1995m
oxynil	ioxynil octanoate	52.6%		EU 2004g
.5-di-iodo-4-hydroxybenzamide	ioxynii octanoate	15.3% ^b	-	EU 2004g
ropargyl butyl carbamate	IPBC	>90%	6 hours	HSE 1994
P 30228	iprodione	31%	-	EU 2002n
F 30220	prodone	6.92% ^b	14 days	EPA 1998g
P 36221	iprodione	17%	-	EU 2002n
5-dichloroaniline	iprodione	9.02% ^b	30 days	EPA 1998g
P 25040	iprodione	9.47% ^b	30 days	EPA 1998g
A 30-0155	irgarol 1051	>10%	•	HSE 2002
esmethylisoproturon	isoproturon	14%	8 days	PSD 1995g
Jerrie a Bagebiota off		15.6%	4 weeks	PSD 1995g
		11%	•	PSD 1995g
-[4-(2'-hydroxy-2'-propyl)-phenyl]-				•
ethyl urea	isoproturon	1 - 2%	•	PSD 1995g
6-dimethoxybenzoic acid	isoxaben	14%	118 days	Roberts 1998
-(1-ethyl-1-methylpropyl)-4-			-	
ydroisoxazol-5-one	isoxaben	12%	118 days	Roberts 1998
emethyl isoxaben	isoxaben	11%	118 days	Roberts 1998
hydroxy-6-methoxybenzamide	isoxaben	3%	118 days	Roberts 1998
-(1-ethyl-1-methylpropyl)isoxazole-			•	Debasta 4000
ylamine	isoxaben	12%	118 days	Roberts 1998
PA 202248	isoxaflutole	83 - 68.4%	•	PMRA 2000e
PA 203328	isoxaflutole	33.7 - 55.1%	-	PMRA 2000e
		404/	400 days	Roberts and Hutson
esoxim-methyl acid	kresoxim-methyl	43%	180 days	1999
		84%	-	PSD 1997c
		66%	•	PSD 1997c
		81%	-	PSD 1997c
		4.8% (sterile)		PSD 1997c
90M0	kreosoxim-methyl	<2.5%	-	PSD 1997c
		4.4%	-	PSD 1997c
90M4	kreosoxim-methyl	3.3%	•	PSD 1997c
oxolenacil	lenacil	7 - 9%	-	Zhang et al. 1999
HCH	lindane	1.62% 9	224 days	PSD 1996e
ntachlorocyclohexane	lindane	3.84% 9	336 days	PSD 1996e
(3,4-dichlorophenyl)-1-methylurea	linuron	3% 5	120 days	EPA 1995e
(3,4-dichlorophenyl)-1-			•	
ethoxyurea	linuron	4.3 - 5.6%	6 months	PSD 1995h
		2.1% ^b	365 days	EPA 1995e
(3,4-dichlorophenyl)urea	linuron	0.9 - 1.1%	6 months	PSD 1995h
(=, - ==========; / , /====		1.9% •	28 days	EPA 1995e
•			< 7 dava	Roberts and Hutson
alaoxon	malathion	1.4%	 ✓ uays 	1999
		0.6 - 1.4%	0 days	PSD 1995i
alathion dicarboxylic acid	malathion	62%	7 days	PSD 1995i
		19.3%	2 days	PSD 1995i
alathion monocarboxylic acids	malathion	7%	16 hours	PSD 1995i
ombined		-		
alic acid and factic acid combined	matathion	16.4%	31 days	PSD 1995
aleic acid	maleic hydrazide	<5%	•	EPA 1994b
aleimide	maleic hydrazide	<5%	•	EPA 1994b
hylenethiourea	mancozeb	3.1% ^b	•	EU 2005h
hyleneurea	mancozeb	8.5% [°]	•	EU 2005h
hylenebisisothiocyanide sulfide	mancozeb	8.2% ^b	-	EU 2005h
hylenethiourea	maneb	9.6 - 20.4%	-	EU 2005i
hyleneurea	maneb	36.1 - 63.8%	-	EU 2005i
hylenebisisothiocyanide sulfide	maneb	4.1 - 12.8%	•	EU 2005
chloro-2-methyl phenol	mecoprop	2 - 3%	20 days	PSD 1994k
enera e mentre prese		3.5%	•	EU 2003j
chloro-2-methyl phenol	mecoprop-P	2 - 3%	20 days	PSD 1994I
annan a maang prone.	• ·•	1.95%	16 days	EU 2003k
	MCPA	minor *	•	EU 2005j
methyl-4-chlorophenol	MOFA			
-methyl-4-chlorophenol ICPA	MCPA-thioethyl	66% ^b	2 days	EU 2005

Fransformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
Aerobic soil (laboratory) continued				
Aerobic soli (laboratory) continueu ACPA	MCPB	6.2% ^b	8 days	EU 2005k
vdroxyMCPA	MCPB	9.5% ^b	8 days	EU 2005k
IOE 113225	mefenpyr-diethyl	42.6%	2 davs	PSD 1999a
IOE 113223	melonpyr aloury.	44.1%	4 days	PSD 1999a
		46.7%	3 days	PSD 1999a
IOE 094270	mefenpyr-diethyl	50%	16 days	PSD 1999a
101 034210	molonpy, alouly	72.2%	64 days	PSD 1999a
		34.9%	63 days	PSD 1999a
IOE 109453	mefenpyr-diethyl	4.9%	63 days	PSD 1999a
I-methylpiperidine	mepiguat chloride	<5%	-	EPA 1997b
iperidine	mepiquat chloride	<5%		EPA 1997b
iperidine	mepiquatemoniae		-	Roberts and Hutson
GA-62826	metalaxyl	50%	21 days	1999
		53.6%	66 days	EPA 1994c
cetaldehyde	metaldehyde	5%	•	PSD 1996b
	metaidehyde	0.4%		PSD 1996b
araldehyde	metam-sodium	75%		APVMA 1997b
ethylisothiocyanate		major ⁹	•	Tomlin 2000
etazachlor oxalic acid	metazachlor	major -	•	
etazachlor sulfonic acid	metazachlor	major ⁹	-	Tomlin 2000
mino-N-benzothiazol-2-yl-N-	methabenzthiazuron	major ^a	•	Roberts 1998
ethylamide		-		
-benzothiazol-2-	methabenzthiazuron	minor ^a	-	Roberts 1998
(methylamino)carboxamide			6 . 4	
ethiocarb phenol	methiocarb	2%	0 days	PSD 1998b
ethiocarb sulfoxide	methiocarb	30% ^b	29 days	PSD 1998b
ethiocarb sulfoxide phenol	methiocarb	18% "	64 days	PSD 1998b
ethiocarb sulfone	methiocarb	1% ^b	29 days	PSD 1998b
ethiocarb sulfone phenol	methiocarb	9% ^b	91 days	PSD 1998b
ethiocarb sulfone quinone	methiocarb	8% ^b	217 days	PSD 1998b
ethiocarb metabolite A	methiocarb	1% ^b	29 days	PSD 1998b
-methyl-N-hydroxythioacetimidate	methomyl	≲2%	•	EPA 1998h
H-113154	methoxyfenozide	3.2%	•	PMRA 2004g
thylenethiourea	metiram	12% 9	4 days	EU 2005I
thylenebisisothiocyanide sulfide	metiram	57% ^b	0 days	EU 2005I
arbimid	metiram	14.9% ^b	0 days	EU 2005
	metiram	13.5% *	0 days	EU 2005
		28.09%	90 days	EPA 1995f
etolachlor oxanilic acid	metolachior			
GA-37735	metolachlor	14.85%	272 days	EPA 1995f
GA-41638	metolachlor	2.06%	90 days	EPA 1995f
GA-13656	metolachlor	1.02%	0 days	EPA 1995f
etolachlor ethane sulfonic acid	metolachlor	5%	14 days	Aga and Thurman 200
arbinol	metolachlor	24.3%	120 days	Rice et al. 2002
orpholinone	metolachlor	2.9%	120 days	Rice et al. 2002
TSA	metosularn	27.7% ^b	•	PSD 1996c
-hydroxymetosulam	metosulam	21.8% ^b	•	PSD 1996c
-hydroxymetosulam	metosulam	5.7% ^b	•	PSD 1996c
eaminated diketo metribuzin	metribuzin	major ^g	•	EPA 1998i
iketo metribuzin	metribuzin	major ^g	-	EPA 1998i
eaminated metribuzin	metribuzin	minor ⁹	•	EPA 1998i
methyl-deaminated diketo				
etribuzin	metribuzin	minor ⁹	•	EPA 1998i
-methyl-deaminated diketo				
etribuzin	metribuzin	minor [®]	-	EPA 1998i
-amino-deaminated metribuzin	metribuzin	minor ⁹	-	EPA 1998i
-amino-deaminated metroduzin N-D5119	metsulfuron-methyl	16%	- 24 weeks	PSD 1991e
-03118	moto unu offensou yr	19% (sterile)	-	PSD 1991e
		8 - 29%	- 8 weeks	PSD 1991e
		0 - 2078 129/ ^b		
		16% ^b	24 weeks	EU 2000c
I-D5803	metsulfuron-methyl	17%	14 weeks	EU 2000c
N-B5685	metsulfuron-methyl	17% ^b	14 weeks	EU 2000c
1-A4098	metsulfuron-methyl	33%	12 weeks	EU 2000c
4-NC148	metsulfuron-methyl	16%	12 weeks	EU 2000c
-desmethyl metsulfuron	metsulfuron-methyl	11% ^b	10 days	EU 2000c
ethyl-2-(aminosulfonyl)benzoate	metsulfuron-methyl	2 - 14%	-	PSD 1991e
	-	38 - 51%	04	DCD 1001-
		(sterile)	24 weeks	PSD 1991e
		6 - 9%	2 weeks	PSD 1991e
acchartin	metsulfuron-methyl	32%	16 weeks	PSD 1991e
accharin	motorial of Photos		IU WOOKS	PSD 1991e
		4 - 7% (sterile)	- -	
		16 - 32%	2 - 4 weeks	PSD 1991e
	 .	47% *	8 weeks	EU 2000c
olinate sulfoxide	molinate	1.91%	30 days	EU 2003m
examethyleneimine	molinate	0.66% ^b	30 days	EU 2003m
2,4-triazole	myclobutanii	major ⁹	•	PMRA 1993b
MUD	nicosulfuron	6.5 - 18.5% ⁹	0 - 182 days	PSD 2000c
		12.9% 9	31 days	PSD 2000c

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
Aerobic soil (laboratory) continued.				
ADMP	nicosulfuron	13 - 26.9% ⁹	0 - 182 days	PSD 2000c
		7.2% 9	31 days	PSD 2000c
ASDM	nicosulfuron	85.2% 9	148 days	PSD 2000c
	moosulluton	21.5% *	85 days	PSD 2000c
	nicosulfuron	26.8% 9		PSD 2000c
AUSN			238 days	
JCSN	nicosulfuron	11% 9	238 days	PSD 2000c
N-V9367	nicosulfuron	>80%	-	PMRA 1996a
N-J290	nicosulfuron	>80%	-	PMRA 1996a
lesmethyl norflurazon lemethylomethoate and (2-	norflurazon	31 - 36%	365 days	EPA 1996f
nethylamino-2-oxoethyldithio)acetic acid	omethoate	4.9%	•	PSD 1993j
phosphonothioacetic acid	omethoate	6.3%	49 days	PSD 1993j
2.2-dithiobis (N-methylacetamide)	omethoate	2.4%		PSD 1993j
-methyl-2-methylsulfonyl-				•
icetamide	omethoate	2.6%	-	PSD 1993j
l-hydroxy-3,5-dinitro- enzenesulfonamide	oryzalin	4.7%	1 month	EPA 1994d
-ethyl-7-nitro-1-propyl-1H-		4.7%	23 days	EPA 1994d
z-etnyi-7-nizo-1-propyi-11 nenzimidazole-5-sulfonamide-3- pxide	oryzalin	2.1%	23 days	EPA 1994d
,3'-azoxybis[4-(propylamino)-5- itro] benzenesulfonamide	oryzalin	1.4%	23 days	EPA 1994d
3,5-dinitro-4-(propylamino) penzenesulfonamide	oryzalin	1.2%	23 days	EPA 1994d
xadixyl acid	oxadixyl	main ^o	-	Tomlin 2000
	oxamyl	major 9		EPA 2000a
ixamyl oxime		major ⁹	-	EPA 2000a
limethyloxamic acid	oxamyl	major - 18% ^b	•	PSD 1995i
etone metabolite -chlorobenzvlamine	paciobutrazol pencycuron	major ⁹		Roberts and Hutson
•		•	-	1999 Roberts and Hutson
-chlorobenzylformamide	pencycuron	major ^g minor ^g	-	1999 EPA 1997d
2,6-dinitro-3,4-xylidine	pendimethalin		•	EFA ISSIG
l-[(1-ethylpropyl)amino]-2-methyl- l,5-dinitro benzyl alcohol	pendimethalin	minor ⁹	•	EPA 1997d
-{(1-ethylpropyl)amino}-3,5-dinitro- -toluic acid	pendimethalin	minor ⁹	-	EPA 1997d
horate sulfoxide	phorate	major ⁹		PMRA 2003a
		major ^e	_	PMRA 2003a
horate sulfone	phorate		- E daun	
AHPC	phenmedipham	54% ^b	5 days	EU 2004i
APMP	phenmedipham	4%	56 days	EU 2004i
CL 153815	picolinafen	major ^e	-	PMRA 2003m
-fluoroaniline	picolinafen	minor ⁹	-	PMRA 2003m
ichlorobenzoic acid	piperalin	21%	14 days	EPA 1994e
-(2-methylpiperi-dino) propyl	••		-	
icohol	piperalin	10.7%	3 days	EPA 1994e
,6-dimethyl-2-dimethylamino- yrimidin-4-ol	pirimicarb	30 - 36%	•	PSD 1994m
6-dimethyl-2-methylamino-4- yrimidin-4-ol	pirimicarb	10 - 30%	•	PSD 1994m
6-dimethyl-2-methylamino-	pirimicarb	10 - 30%	-	PSD 1994m
yrimidin-4-yl-dimethylcarbamate -diethylamino-6-methylpyrimidin-4-	pirimiphos-methyl	36 - 56%	2 weeks	PSD 1997d
1	Para Para Para Para Para Para Para Para	72 - 75%	-	PSD 1997d
),2-diethylamino-6-methylpyrimidin-	pirimiphos-methyi	< 4.1%	-	PSD 1997d
-yl-0,0-dimethyl phosphate				DOD 1007-1
-ethylamino-6-methylpyrimidin-4-ol	pirimiphos-methyl	< 4.1%	•	PSD 1997d
		1 - 3%	-	PSD 1997d
I,N-diethylguanidine	pirimiphos-methyl	12.8 - 35.1%	•	PSD 1997d
-amino-6-methylpyrimidin-4-ol	pirimiphos-methyl	1 - 3%	•	PSD 1997d
GA-171683	primisulfuron methyl	88.6%	-	PMRA 2001a
accharin	primisulfuron methyl	23.1%	-	PMRA 2001a
GA-191429	primisulfuron methyl	14.6%	•	PMRA 2001a
	primisulfuron methyl	6.7%	-	PMRA 2001a
GA-177288			-	
GA-120844	primisulfuron methyl	3.9%	•	PMRA 2001a
rochioraz-formylurea	prochloraz	0.3%	-	Höllrigi-Rosta et al. 1999
rochloraz-urea	prochloraz	0.2%	•	Hölirigi-Rosta et al. 1999
2,4-bis(isopropylamino)-	prometryn	26.2%	360 days	EPA 1996g
	• • •			
	nometron	1 1%	30 daya	EDA 1008-
5-hydroxy-s-triazine 2-amino-4-isopropytamino-6- nethylthio-s-triazine	prometryn	1.1%	30 days	EPA 1996g

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
Aarabia sali (ishamtan) aastinu a				
Aerobic soil (laboratory) continued	pronamide	14%		EPA 1994f
RH24580	pronamide	4%	-	EPA 1994f
RH26521			•	
propachlor oxanilic acid	propachlor	33.3%	1 month	EPA 1998j
propachlor ethane sulfonic acid	propachlor	19.1%	1 month	EPA 1998j
propachlor sulfinylacetic acid	propachior	6.7%	1 month	EPA 1998j
hydroxypropachlor	propachior	6%	5 days	EPA 1998j
propachior methyl sulfone	propachior	3.2%	4 months	EPA 1998j
norchloropropachlor	propachior	1.2%	-	EPA 1998
Ro 17-3102	propaquizafop	25.9 - 38.8%	1 month	PSD 1994n
10 11-0102	b. ob a da mano b	2.8 - 9% (sterile)	1 month	PSD 1994n
D- 46 4076	propaquizafop	2.7 - 4.7%	1 month	PSD 1994n
Ro 16-1976		6.5 - 16.1%	1 month	PSD 1994n
Ro 40-2724	propaquizafop		1 monun	
1,2,4-triazole	propiconazole	24 - 43%	•	EU 2003n
CGA 118 245	propiconazole	22%	•	EU 2003n
propylene urea	propineb	40% ^b	2 days	EU 2003o
2-(3,5-dichlorophenyl)-4,4-dimethyl-	propyzamide	9%		Roberts 1998
5-methyleneoxazoline		11 - 21%	60 - 90 days	EU 2003g
		10.4 - 31.9%	21 - 45 days	EU 2003q
N-(1,1-dimethylacetonyl)-3,5-	propyzamide	77%		Roberts 1998
dichlorobenzamide	Propyrainide	4.5 - 30.2%	- 21 - 120 davs	EU 2003q
2-(3.5-dichlorophenyl)-4,4-dimethyl-			21 - 120 Uays	
1,3-oxazolin-5-ylidene]methan-1-ol (3,5-dichlorophenyl)-N-(3-hydroxy-	propyzamide	0.1 -1.6%	•	Roberts 1998
1,1-dimethyl-2- oxopropyl)carboxamide	propyzamide	0.1 -1.6%	•	Roberts 1998
(3,5-dichlorophenyl)-N-(3-hydroxy- 1,1-dimethylpropyl)carboxamide	propyzamide	0.1 -1.6%	-	Roberts 1998
(3,5-dichlorophenyl)-N-(2,3-				
dihydroxy-1,1-	propyzamide	0.1 -1.6%	•	Roberts 1998
dimethylpropyl)carboxamide				
3-{(3,5-				Babaat dees
dichlorophenyl)carbonylamino]-3- methylbutanoic acid 2-[(3,5-	propyzamide	0.1 -1.6%	•	Roberts 1998
dichlorophenyl)carbonylamino]-2- methylpropanoic acid	propyzamide	0.1 -1. 6%	-	Roberts 1998
3-[(3,5-		01.46%	_	Dobarta 1008
dichlorophenyl)carbonylamino]-3-	propyzamide	0.1 -1.6%	•	Roberts 1998
methyl-2-oxobutanoic acid		40 54		
CGA 180777	pymetrozine	16.5%	-	PMRA 2002
CGA 359009	pymetrozine	7.7%	-	PMRA 2002
CGA 319251	pymetrozine	0.5%	-	PMRA 2002
CGA 294849	pymetrozine	7%	•	PMRA 2002
CGA 215525	pymetrozine	3.45%	-	PMRA 2002
GS23199	pymetrozine	7.3%		PMRA 2002
	pymetrozine	<2%	-	PMRA 2002
CGA 249257			-	PMRA 2002
pymetrozine metabolite VI	pymetrozine	5.2%	-	
BF 500-3	pyraclostrobin	18%	-	PMRA 2003n
BF 500-6	pyraclostrobin	18%	•	PMRA 2003n
BF 500-5	pyraciostrobin	minor ^e	-	PMRA 2003n
BF 500-7	pyraclostrobin	minor [®]	-	PMRA 2003n
6-chloro-3-phenyl-pyridazin-4-ol	pyridate	88% ^b	3 days	EU 2001e
ZK 512723	pyrimethanil	8%	62 days	PSD 1995k
		52 - 58%	186 - 243 days	PSD 1995k
BH518-2	quinmerac	<4%	211 days	PSD 1998c
	7	42.4%	224 days	PSD 1998c
	quinmerac	<4%	211 days	PSD 1998c
BH518-1	4444110100	6%	a riudya	PSD 1998c
			•	
BH518-4	quinmerac	<4%	211 days	PSD 1998c
		1 - 4%	90 days	PSD 1998c
		6%	•	PSD 1998c
BH518-5	quinmerac	<4%	365 days	PSD 1998c
		26.4%	196 days	PSD 1998c
3-hydroxuquioxyfen	quinoxyfen	<8 %	•	Roberts and Hutson 1999
5,7-dichloro-4-hydroxyquinoline	quinoxyfen	6% ⁹	-	Roberts and Hutson
guizalofop acid	guizalofop-methyl	36%	15 days	1999 PSD 1987
	rimsulfuron	30.3 - 33.1%	365 days	PSD 1996f
N-70941	rimsulfuron	20.2 - 23.5%		
N-70942			365 days	PSD 1996f
IN-E9260	rimsulfuron	16.3%	365 days	PSD 1996f
IN-J290	rimsulfuron	0.9%	365 days	PSD 1996f
		0.5%	365 days	PSD 1996f
IN-T5831	rimsulfuron simazine	10.9% 4	JUJ GEYS	PSD 1992e

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time °	Reference
Aerobic soil (laboratory) continued				
		3% (sterile)	3 months	PSD 1992e
		3.9%	3 months	PSD 1992e
		4.6 - 4.8%	294 days	PSD 1992e
deisopropyl hydroxyatrazine	simazine	2.4% (sterile)	3 months	PSD 1992e
		1.3%	3 months	PSD 1992e
hydroxysimazine	simazine	2.2% (sterile)	3 months	PSD 1992e
ny aroxy annu 2110	Sinidizato	5.6%	3 months	PSD 1992e
		<0.1 - 11%	294 days	PSD 1992e
		4%	365 days	PSD 1992e
diaminochlorotriazine	simazine	1.4% ^b	365 days	PSD 1992e
sulphonamide	sulfosulfuron	12.8%	JUJ uays	PMRA 1998
aminopyrimidine	sulfosulfuron	10.6%	-	PMRA 1998
	sulfosulfuron	5.2%	-	PMRA 1998
sulfosulfuron desmethyl	sulfosulfuron	minor ⁹	•	
sulfosulfuron guanidine			-	PMRA 1998
anilino acid	tau-fluvalinate	5% ^b	•	PSD 1997e
		<9%	•	PSD 1997e
		14% ^b (sterile)	•	PSD 1997e
		9% °	14 days	PSD 1997e
naloaniline	tau-fluvalinate	3% "	-	PSD 1997e
		10% ^b	-	PSD 1997e
		A% ^D (storila)	•	PSD 1997e
		6% ^b	30 days	PSD 1997e
licarboxylic acid	tau-fluvainate	3% °	30 days	PSD 1997e
-phenoxybenzoic acid	tau-fluvalinate	2% °	7 days	PSD 1997e
3-phenoxybenzaldehyde	tau-fluvalinate	1% "	0 days	PSD 1997e
1,2,4-triazole	tebuconazole	<0.1%		PSD 1993k
		3 - 6%	123 days	PSD 1993k
SN 320-1	tebuconazole	<5%		PSD 1993k
SN 3678-7/A	tebuconazole	<5%	_	PSD 1993k
SN 3678-7/B	tebuconazole	<5%		PSD 1993k
SN 320-1, SN 3678-7/A and SN	LAD DODINAZOIA	-576	-	F30 1885K
	tebuconazole	1 - 2%	123 days	PSD 1993k
678-7/B combined	to be after a set of a	minor ^g	•	
RH-6595	tebufenozide		•	PMRA 1996b
RH-2703	tebutenozide	minor ⁹	•	PMRA 1996b
RH-2651	tebutenozide	minor [®]	•	PMRA 1996b
CL 810 721	tebufenpyrad	<7%	•	PSD 19950
N-[5-(1,1-dimethylethyl)-1,3,4-	tebuthiuron	6.9%	9 months	EPA 1994g
hiadiazol-2-yl]-N-methylurea			o monula	LINIOON
,4-dichloro-2,4-diffuoroaniline	tebflubenzuron	5.4%	-	PSD 1991g
5-dichloro-2,4-diffuorophenyl urea	tebflubenzuron	10.4%	•	PSD 1991g
2,3,5,6-tetrachloroaniline	tecnazene	7.4% 9	28 days	PSD 1995p
2,3,5,6-tetrafluoro-4-methylbenzoic	tefluthrin	2.1% ^b	60 days	PSD 1991h
cid	tenuumn	2.170	62 days	PSD 1991h
		10% °	122 days	PSD 1991h
3,5,6-tetrafluoro-1,4-benzene		1.3% •	•	
licarboxylic acid	tefluthrin		180 days	PSD 1991h
efluthrin compound V	tefluthrin	1% ^b	30 days	PSD 1991h
P890	tefluthrin	7%	31 days	PSD 1991h
)P-1	tepraloxydim	2.8%		PMRA 2004b
P-2	tepraloxydim	7.5 - 9.2%	_	PMRA 2004b
)P-4	tepraloxydim	2.4%		PMRA 2004b
-hydroxy terbutryn	terbutryn	major	-	Roberts 1998
hiomethylol terbutryn	terbutryn	major	-	Roberts 1998
		major minor	-	
ydroxy-N-deethylated terbutryn	terbutryn terbutryn		-	Roberts 1998
niomethylol deethylated terbutryn	terbutryn	minor	•	Roberts 1998
eethylterbuthylazine	terbuthylazine	<5%	-	Roberts 1998
,2,4-triazole	tetraconazole	<1.7%	-	PSD 1999c
iazolylacetic acid	tetraconazole	3.55% ^b	100 days	PSD 1999c
etraconazole acid	tetraconazole	~80%	7 days	PSD 1999c
etraconazole alcohol	tetraconazole	<5%	•	PSD 1999c
-ester-3-sulfonamide	thifensulfuron-methyl	6 - 11%	•	PSD 1991i
nifensulfuron acid	thifensulfuron-methyl	25%	•	EU 2001g
-desmethyl-thifensulfuron-methyl	thifensulfuron-methyl	15%	-	EU 2001g
,	· · · · · · · · · · · · · · · · · · ·	14 - 19%	•	PSD 1991i
niophene sulfonimide	thifensulfuron-methyl	<10%	52 weeks	EU 2001g
		21 - 29%		PSD 1991i
chlorohezoic zoid	thiobencarb	5%	-	
-chlorobezoic acid	thiodicarb	81.3% ^b	• 7 dese	EPA 1997e
nethomyl	u iluuluai D		7 days	PSD 1992f
		79.6%	7 days	EPA 1998k
nethomyl oxime	thiodicarb	2.1% [•]	3 days	PSD 1992f
nethomyl sulfone	thiodicarb	minor ⁹	•	PSD 1992f
nethomyl oxime sulfone	thiodicarb	minor ^e	•	PSD 1992f
nethornyl sulfoxide	thiodicarb	minor ^e	•	PSD 1992f
nethomyl oxime sulfoxide	thiodicarb	minor ⁹	•	PSD 19921
	thiodicarb	minor ^g	-	EPA 1998k
CATODITTIA				
cetonitrile arbendazim	thiophanate-methyl	41.8%	30 days	EPA 2001c

Appendix A

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time *	Reference
Aerobic soil (laboratory) continued.				
		primary ⁹	-	EPA 2004c
		62.8 - 75.8% ^b	3 - 7 days	EU 2005m
DX-105	thiophanate-methyl	<10%	-	EPA 2001c
FH-432	thiophanate-methyl	<10%		EPA 2001c
M-CH2OH	tolclofos-methyl	0.4%	90 days	PSD 1993
		0.5%		PSD 1993
IM-COOH	tolclofos-methyl	0.3%	90 days	
MO	tolclofos-methyl	1.2% ^b	90 days	PSD 1993
MO-CH2OH	toiclofos-methyl	0.3%	30 days	PSD 1993
MO-COOH	toiclofos-methyl	0.3% ^b	180 days	PSD 1993
DM-TM	tolclofos-methyl	10.5% ^b	90 days	PSD 1993I
M-TMO	toiciofos-methyl	3.4% ^b	180 days	PSD 1993I
h-CH3	tolclofos-methyl	4.1% ^b	90 days	PSD 1993I
	tolclofos-methyl	0.4%	180 days	PSD 1993
h-CH2OH	tolclofos-methyl	0.4% ^b	45 days	PSD 1993
h-COOH			45 uays	
DMST	tolyfluanid	~60%	•	PSD 1995q
NH 0189	tolyfluanid	<5%	•	PSD 1995q
NH 0166	tolyfluanid	<5%	•	PSD 1995q
NH 0416	tolyfluanid	<5%	-	PSD 1995g
		5.1% °	7 days	PSD 1993m
alkoxydim metabolite 9	tralkoxydim			
		29.5% ^b (sterile)	30 days	PSD 1993m
alkoxydim metabolite 8	tralkoxydim	11.8% ^b	61 days	PSD 1993m
alkoxydim metabolite 10	tralkoxydim	11.3% [°]	0 days	PSD 1993m
GA 150829	triasulfuron	30% ^b	28 weeks	EU 2000d
		9.9%	116 days	PSD 1992g
	tricoulfuror	2.4%	52 weeks	PSD 1992g
GA 195660	triasulfuron			
		10.4%	42 weeks	PSD 1992g
GA 161149	triasulfuron	9.5%	8 weeks	PSD 1992g
-desmethyl triasulfuron	triasulfuron	<10.2%	-	EU 2000d
iazamate metabolite	triazamate	91% ^b	1 day	PSD 1998d
azamate metaconte n	angeon and	71 - 75%	1 day	PSD 1998d
	• • • • • • • • • •			
iazamate metabolite III	triazamate	37%	2 days	PSD 1998d
		27% [•]	4 days	PSD 1998d
iazamate metabolite IV	triazamate	33 - 40% ^b	10 - 14 days	PSD 1998d
		40 - 50% ^b	101 days	PSD 1998d
iazamate metabolite IX	triazamate	39% ^b	42 days	PSD 1998d
		9 - 12% ^b	368 days	PSD 1998d
riazamate metabolite VIII	triazamate		JUU Uaya	
		<4%	•	PSD 1998d
AS 9256	triazoxide	21%	64 days	PSD 1993n
AS 9709	triazoxide	7% ^b	365 days	PSD 1993n
niazine amine A	tribenuron methyl	91.1% ^b	14 days	PSD 1992h
	<i>a</i>	83% 9	30 days	EFSA 2004
	tails a manage an attack	5.4%		PSD 1992h
)-demethyl triazine amine A	tribenuron methyl	3.476	9 days	
N-A4098	tribenuron methyl	7.8%	112 days	PSD 1992h
		13% ^e	118 days	EFSA 2004
accharin	tribenuron-methyl	119	7 days	EFSA 2004
5.6-trichloro-2-pyridinol	triclopyr	major ⁹		PMRA 1991b
,5,6-tricritoro-z-pyridiilioi	acopy	26%	<30 days	EPA 1998
,5,6-trichloro-2-methoxypyridine	triclopyr	8%	<30 days	PMRA 1991b
GA-321113	trifloxystrobin	major ^e	•	PMRA 2004h
GA-357276	trifloxystrobin	minor ^e	-	PMRA 2004h
	trifloxystrobin	minor [®]	-	PMRA 2004h
GA-373466		minor ⁹		PMRA 2004h
GA-357261	trifloxystrobin		-	
GA-331409	trifloxystrobin	minor ^e	-	PMRA 2004h
GA357262	trifloxystrobin	minor ⁹	-	PMRA 2004h
IOA 413161	trifloxystrobin	minor ⁹	•	PMRA 2004h
	-			
,6-dinitro-4-	trifluralin	0.2%	-	Roberts 1998
rifluoromethylphenyl)amine				
2,6-dinitro-4-	trifluralin	1.7%	1 year	Roberts 1998
rifluoromethyl)phenyl]propylamine	a mai ain i	1.1 /4		
.a.a-trifluoro-2,6-dinitro-N-propyl-p-				554 400C
	trifluralin	2.8 - 4.6%	•	EPA 1996h
bluidine				
,a,a-trifluoro-5-nitro-4-propyl-	trifluralin	1.5 - 2.1%	-	EPA 1996h
oluene-3,4-diamine				
-ethyl-7-nitro-1-propyl-5-				
rifluoromethyl) benzimidazole-3-	trifluralin	0.1 - 0.3%	•	EPA 1996h
xide				
ethyl-7-nitro-1-propyl-5-	trifluralin	0.5 - 1.0%	-	EPA 1996h
rifluoromethyl) benzimidazole		V.V - 1.V/N		
-ethyl-7-nitro-5-(trifluoromethyl)				
	trifturalin	2.1 - 2.6%	•	EPA 1996h
enzimidazole	A-iffe can fin	04 0 ***		
,a,a-trifluoro-2,6-dinitro-p-cresol	trifluralin	0.1 - 2.7%	•	EPA 1996h
,2'-azoxybis (a,a,a-trifluoro-6-nitro-	trifluralin	0.8 - 3.0%	-	EPA 1996h
N-propyl-p-toluidine		0.0 - 0.0 /	-	
nethyl saccahrin	triflusulfuron-methyl	84% •	29 days	PSD 1995r
Iouiyi baccaran		19.9%	368 days	PMRA 1999c
			JOO GEYS	
	And the same of th			
I,N-bis demethyl triazine amine B	triflusulfuron-methyl	<20% 10 - 13%	- 14 days	PSD 1995r PMRA 1999c

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
Aerobio coll (Isharatana) sentinus d				
Aerobic soil (laboratory) continued N-demethyl triazine amine B	triflusulfuron-methyl	<40%	-	PSD 1995r
H-OOHENNI HISTING SHIILIG D	ancouncementation	23.4%	368 days	PMRA 1999c
history and a	triflusulfuron-methyl	<60%		PSD 1995r
triazine amine B	andsunation-moary	39% ^b (sterile)	- 7 days	PSD 1995r
		55.2%	21 days	PMRA 1999c
	this average other	major ^g	2 Tudys	PSD 1995s
trinexapac acid	trinexapac ethyl		•	PSD 19958 PMRA 2001b
	4 141	major ⁹	-	
RPA 406341	triticonazole	10.6%	112 days	PSD 2000d
		15.3% ^b	357 days	PSD 2000d
		16.1% ^b	306 days	PSD 2000d
		14.8%	56 days	PSD 2000d
		10.7% ^b	8 months	PSD 2000d
		20.2%	240 days	PSD 2000d
		15.3%	•	PMRA 2000f
		3 - 15%	-	PMRA 2004c
RPA 404886	triticonazole	<6.7%		PSD 2000d
		minor ^g	-	PMRA 2000f
RPA 406780	triticonazole	9.4% ^b		PSD 2000d
(FA 400700	414001182010	12.8% ^b	363 days	PSD 2000d
		9.9%	-	PMRA 2000f
		9.9% 3-10%	-	PMRA 2000
	Aut 41 1 -	3 - 10% 12.8%	-	PSD 2000d
RPA 407922	triticonazole		266 days	
		10.5 -11.1%	363 days	PSD 2000d
		11.5%	•	PMRA 2000f
		12%	•	PMRA 2004c
PA 404766	triticonazole	9.5% ^b	12 months	PSD 2000d
		8.7% ^b	100 days	PSD 2000d
		9.5%	•	PMRA 2000f
		9.5% [*]	•	PMRA 2004c
RPA 406203	triticonazole	<4%	•	PSD 2000d
dihydroxy tritconazole	triticonazole	<2%	-	PSD 2000d
riticonazole metabolite 8	triticonazole	<2%		PSD 2000d
	zoxamide	major ⁹		PMRA 2001d
RH-139432	zoxamide	major ^g		PMRA 2001d
RH-127450	LUADINIUU		-	
Anaerobic soll (laboratory)				
(EZ)-3-chloroacrylic acid	1,3-dichloropropene	55%	28 days	EFSA 2006a
EZ)-3-chioroaliyi alcohol	1.3-dichloropropene	2.6%	3 days	EFSA 2006a
2.4-D	2,4-DB	26%	31 days	EU 2002a
3-phenoxybenzoic acid	alpha-cypermethrin	67.6%	120 days	EU 2004b
dihydroxy anilazine	anilazine	36%	60 days	PSD 1994b
	di mazino	35.7%	60 days	PSD 1994b
	asulam	major ⁹		EPA 1995a
suiphanilamide		14.3%	7 days	EPA 1995a
acetyl asulam	asulam	2.1%	32 days	Solomon et al. 1996
deethylatrazine	atrazine			
nydroxyatrazine	atrazine	0.4%	94 days	Solomon et al. 1996
Jeisopropylatrazine	atrazine	0.7%	32 days	Solomon et al. 1996
liaminochloroatrazine	atrazine	0.3%	32 days	Solomon et al. 1996
reference compound 2	azoxystrobin	major ^e	•	PMRA 2000a
penalaxyl M1	benalaxyl	50.73%	203 days	EU 2004c
LS 871387	bromuconazole	10.1%	6 months	PSD 1996a
cyclohex-4-ene-2-cyano-1-carboxylic		20%		EPA 1999a
acid	captan	2070	-	
1-napthol	carbaryl	0.04%	•	Murthy and Raghu 1989
5-hydroxy carbaryl	carbaryl	11.17%	-	Murthy and Raghu 1989
4-hydroxy carbaryl	carbaryl	11.11%	-	Murthy and Raghu 1989
1-napthyl N-hydroxy methyl carbamate	carbaryl	1.74%	•	Munthy and Raghu 1989
4-hydroxy-2,5,6-	chiorothaionii	17.7 - 42.8%		PSD 2002
richloroisophthalonitrile	4. AUI 42 ABAY M	43% [•]	•	EU 2005d
3,5,6-trichloro-2-pyridinol	chiorpyrifos	major ⁹ >90%	270 days	PSD 1999a EU 2005d
CCIM	cyazofamid	27.2% *	7 days	EU 2002e
	cyazofamid	14.1% 9	7 days	EU 2002e
CCIM-AM	cyazofamid	21.3%	56 days	EU 2002e
CTCA				
4-fluoro-3-phenoxybenzoic acid	cyfluthrin	19% °	30 days	EU 2002c
compound la	cyhaiothrin and <i>Iambda-</i> cyhaiothrin	17%	-	PSD 1988b
		18% ^b	131 days	EU 2001d
1-(2-chlorophenyl)-1-(4'-	o,p'-dicofol	43%	30 days	EPA 1998f
chlorophenyl)-2,2-dichloroethanol			~~~~~	
2,4'dichlorobenzhydrol	o,p'-dicofol	15%	30 days	EPA 1998f

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
Anaerobic soil (laboratory) continue	ю			
1,1-(p-chlorophenyl)-2,2-	p,p'-dicofol	major ⁹	-	EPA 1998f
dichloroethanol	•••	major ^e		EPA 1998f
4,4'-dichlorobenzhydrol 4-chlorophenyl urea	p,p'-dicofol diflubenzuron	37% "	- 2 - 14 days	EPA 19901 EPA 1997a
2,6-difluorobenzoic acid	diflubenzuron	23% [°]	2 - 14 Udys	EPA 1997a
decamethrinic acid	deltamethrin	52% °	59 days	EU 2002g
decamentation acid	Goldinoviu	11% "	32 days	EU 2002g
ethyl-m-hydroxyphenyl carbamate	desmedipham	28%	-	PSD 1993d
		78% [°]	1 day	EU 2004e
1,3-diphenyl urea	desmedipham	<0.2%		PSD 1993d
aniline	desmedipham	69% ^b	1 day	EU 2004e
N-phenyl carbarnic acid-ethyl ester	desmedipham	<0.2%	•	PSD 1993d
dimethylaminosulfanilide	dichlofluanid	23.3% ^b	•	HSE 2003a
methylaminosulfanilide	dichlofluanid	0.2% ^b	•	HSE 2003a
diclofop acid	diclofop-methyl	64 - 81%	64 days	PSD 1991c
4-(2,4-dichlorophenoxy)phenol	diclofop-methyl	trace	•	PSD 1991c
N,N-dimethylacetoacetamide	dicrotophos	48%	33 days	EPA 2002b
hydroxyl-N,N-	dicrotophos	13%	33 days	EPA 2002b
dimethylacetoacetamide	•		-	
O-desmethyldimethoate	dimethoate	10%	60 days	PSD 1993f
	dimetheate	10%	14 days	EPA 1999e PSD 1993f
0,0-dimethylphosphorothioic acid	dimethoate	5% 4 - 5%	60 days	EPA 19996
a deemothy dimethomorph and 4			14 -32 days	
3-desmethyl dimethomorph and 4- desmethyl dimethomorph combined	dimethomorph	15%	7 days	PSD 1994g
3-desmethyl dimethomorph and 4-				
jesmethyl dimethomorph combined	dimethomorph	~10 - 20%	7 days	PSD 1994g
y-(3,4-dichlorophenyl)-N-				
methylurea	diuron	10.3%	45 days	EPA 2003b
EPTC sulfoxide	EPTC	≤0.2%	•	EPA 1999c
CONH ₂ -fen	esfenvalerate	1%	30 days	PSD 1992c
4'-OH-fen	esferivalerate	4%	30 days	PSD 1992c
Cl-Vacid	esfenvalerate	4%	30 days	PSD 1992c
SD 50365	esfenvalerate	0.4%	30 days	PSD 1992c
N-JS940	famoxadone	major ^e	• •	PMRA 2003h
N-KZ007	famoxadone	minor [®]	•	PMRA 2003h
N-H3310	famoxadone	minor ^g	•	PMRA 2003h
RH-9129	fenbuconazole	minor	•	PMRA 2003i
RH-9130	fenbuconazole	minor	•	PMRA 2003i
RH-6467	fenbuconazole	minor	•	PMRA 2003i
aminofenitrothion	fenitrothion	65%	1 week	APVMA 1999
3-methyl-4-nitrophenol	fenitrothion	<10%	•	APVMA 1999
3-phenoxybenzoic acid	fenpropathrin	71%	•	PSD 1989a
2,2,3,3-tetramethyl cyclopropane	fenpropathrin	39%	8 weeks	PSD 1989a
carboxylic acid	• •			
compound VII	fiuazinam	31.2%	90 days	PSD 1994i
		major ^g	•	PMRA 2003j
compound VIII	fluazinam	12%	30 days	PSD 1994i
		major ^e	•	PMRA 2003j
compound XII	fluazinam	7.2%	30 days	PSD 1994i
	A	major ⁹	• 68 day	PMRA 2003j
RH-4515	fluoroglycofen-ethyl	10.1%	68 days	PSD 1992d
RH-5781	fluoroglycofen-ethyl	47.7%	2 days	PSD 1992d
RH-5349	fluorogiycofen-ethyl	5% 2.7%	2 days	PSD 1992d
RH-9985	fluoroglycofen-ethyl fluoroglycofen-ethyl	2.7% 7.9%	2 days 68 days	PSD 1992d
RH-4514 1.2.4-triazole	fluoroglycofen-ethyl fluguinconazole	7.9% 39.7 - 68.1%		PSD 1992d PSD 1999b
1,2,4-mazole =BC 96912	fluquinconazole	53 - 73.8%	399 days 399 days	PSD 19996
-BC 90912 1-amino-3,5-dichloro-6-	•		•	
1-amino-3,5-dichioro-6- Iuoromethoxypyridine	fluroxypyr	12% "	112 days	EU 1999
AE F130619	formasulfuron	minor ^e		PMRA 2003k
AE F092944	formasulfuron	minor [®]	•	PMRA 2003k
AE F153745	formasulfuron	minor [®]		PMRA 2003k
AE F148003	formasulfuron	minor ^a	-	PMRA 2003k
AE F099095	formasulfuron	minor ⁹		PMRA 2003k
arbamoyiphosphonic acid	foseamine-ammonium	59%	14 days	EPA 1995d
arboxylphosphonic acid	foseamine-ammonium	43%	9 months	EPA 1995d
-methyl phosphinico-proprionic acid	dufosinate ammonium	54%	26 davs	PSD 1990f
A CONTRACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTRACTACTACTACTACTACTACTACTACTACTACTACTACTA		41%	60 days	PSD 1990f
HOE 64619	glufosinate ammonium	22%	26 days	PSD 1990f
M1	imazaquin	0.2%	2 months	PSD 1993h
oxynli	ioxynil octanoata	12.2%	14 days	EU 2004g
oxynii 4-hydroxybenzonitrile	ioxynii octanoate	31.5%	28 days	EU 2004g
RP 30228	iprodione	53%	20 days 81 days	EU 2004g
N-3,4-dichlorophenyl-N-methylurea	linuron	55% ^b	119 days	EU 20020
n-3,4-dichicrophenyi-n-methyurea	malathion	26%	62 days	PSD 1995i

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
Anaerobic soil (laboratory) contin	ued			
ethylenethiourea	mancozeb	30% ⁶		E11 0005
ethyleneurea	mancozeb	12% ^b	•	EU 2005h
CGA-62826	metalaxyl	54.4%	- 90 daum	EU 2005h
methiocarb phenol	methiocarb	47% ^b	89 days	EPA 1994c
methiocarb sulfoxide	methiocarb	24%	64 days 0 days	PSD 1998b
methiocarb sulfoxide phenol	methiocarb	8%		PSD 1998b
methiocarb sulfone	methiocarb	<1% ^b	0 days 64 days	PSD 1998b
methiocarb sulfone phenol	methiocarb	<1% *		PSD 1998b
ethylenethiourea and ethyleneurea			15 days	PSD 1998b
combined	metiram	36% "	1 day	EU 2005I
metolachlor oxanilic acid	metolachior	23.33%	29 days	EPA 1995f
CGA-37735	metolachlor	1.25%	29 days	EPA 1995f
CGA-41638	metolachlor	8.3%	60 days	EPA 1995f
CGA-13656	metolachlor	1.46%	29 days	EPA 1995f
CGA-50720	metolachior	7.34%	60 days	
S-methyl-N-hydroxythioacetimidate	methomyl	≤3%	oo days	EPA 1995f
HMUD	nicosulfuron	8.7%	- 90 days	EPA 1998h
		10.5 - 14.9%	au uays	PSD 2000c
ADMP	nicosulfuron	4.8% 9	-	PSD 2000c
		<3.3%	•	PSD 2000c
AUSN	nicosulfuron	-3.3% 10.9 - 19%	•	PSD 2000c
JCSN	nicosulfuron	4.6%	-	PSD 2000c
N-V9367	nicosulfuron	major ^a	•	PSD 2000c
N-J290	nicosulfuron	major ⁹		PMRA 1996b
2,6-dinitro-3,4-xylidine	pendimethalin	major *	•	PMRA 1996b
-[(1-ethylpropyl)amino]-2-methyl-	•		-	EPA 1997d
5-dinitro benzyl alcohol	pendimethalin	minor ^e	•	EPA 1997d
-((1-ethylpropyl)amino]-3,5-dinitro- -toluic acid	pendimethalin	minor ^e	•	EPA 1997d
IER	phenmedipham	74.3% ^b	07 dava	511 000 41
MHPC	phenmedipham	19%	97 days 32 days	EU 2004i
CL 153815	picolinafen	87% °	63 days	EU 2004i
ichlorobenzoic acid	piperalin	58%		PMRA 2003m
-(2-methylpiperi-dino) propyl	piperalin	14%	60 days	EPA 1994e
Icohol GA-171683	primisulfuron methyl	71.1%	60 days	EPA 1994e
accharin	primisulfuron methyl	32.2%	-	PMRA 2001a
GA-177288	primisulfuron methyl		•	PMRA 2001a
GA-120844		5.7%	•	PMRA 2001a
ropachlor alcohol	primisulfuron methyl	9%	-	PMRA 2001a
0 17-3102	propachior	37.3%	9 months	EPA 1998j
o 16-1976	propaquizafop	29.4 - 31.6%	•	PSD 1994n
0 40-2724	propaquizafop	5.1 - 12.1%	•	PSD 1994n
-(3,5-dichlorophenyl)-4,4-dimethyl-	propaquizafop	5.7 - 12.1%	-	PSD 1994n
methyleneoxazoline	propyzamide	17.6%	123 days	EU 2003g
5-dichlorobenzoic acid	propyzamide	6.2%	•	•
GA 180777	pymetrozine	84.4%	123 days	EU 2003q
metrozine metabolite III	pymetrozine		•	PMRA 2002
metrozine metabolite I	pymetrozine	20.2%	-	PMRA 2002
GA 249257	pymetrozine	11.5%	•	PMRA 2002
S23199		13.2%	•	PMRA 2002
GA 319251	pymetrozine	15.6%	-	PMRA 2002
GA 294849	pymetrozine pymetrozine	minor [®]	-	PMRA 2002
GA 215525		minor ^e	•	PMRA 2002
GA 249257	pymetrozine	minor ^e	-	PMRA 2002
GA 313124	pymetrozine pymetrozine	minor ⁹	-	PMRA 2002
500-3	pymetrozine pyraciostrobin	minor ⁹	•	PMRA 2002
500-4	pyraciostrobin	major ⁹	•	PMRA 2003n
500-5		major ^e	•	PMRA 2003n
1518-2	pyraciostrobin quinmerac	minor ⁹	•	PMRA 2003n
1518-1 and BH518-3 combined	quinmerac quinmerac	9.9%	63 days	PSD 1998c
-70941	quinmerac rimsulfuron	17.3%	31 days	PSD 1998c
70942	rimsulturon	5.5 - 6.1%	60 days	PSD 1996f
-70342 -E9260	rimsulturon	46.8 - 55.9%	60 days	PSD 1996f
J290		22.7%	60 days	PSD 1996f
J250 T5831	rimsulfuron rimsulfuron	6.4%	60 days	PSD 1996f
		1%	60 days	PSD 1996f
I-dichloro-2,4-difluoroaniline	tebflubenzuron	1%	•	PSD 1991g
-dichloro-2,4-difluorophenyl urea	tebflubenzuron	28.2%	-	PSD 1991g
3,5,6-tetrachloroaniline	tecnazene	98.3% ^e	28 days	PSD 1995p
		94.6% *	60 days	PSD 1995p
9,5,6-tetrachlorothioanisole 9,5,6-tetrafluoro-4-methylbenzoic	techazene	3% *	60 days	PSD 1995p
id	tefluthrin	12% ^b	90 days	PSD 1991h
		13.2% ^b		
5 6 tetrafiu oro-1 4 honzone		13.278	•	PSD 1991h
i,5,6-tetrafluoro-1,4-benzane arboxylic acid	tefluthrin	0.2% ^b	- 90 days	PSD 1991h PSD 1991h

Fransformation product	Parent pesticide *	% of parent pestickle ^b	Time °	Reference
Anaerobic soil (laboratory) continue				
efluthrin compound V	tefluthrin	<0.1%	7 days	PSD 1991h
PP890	tefluthrin	17%	94 days	PSD 1991h
DP-1	tepraloxydim	12.1%	•	PMRA 2004b
DP-2	tepraloxydim	minor [®]		PMRA 2004b
DP-6	tepraloxydim	minor ⁹	•	PMRA 2004b
hifensulfuron acid	thifensulfuron-methyl	major ^g	•	EU 2001g
nethomyl	thiodicarb	63.4% ^b	3 davs	PSD 19921
nethomyl oxime	thiodicarb	21.6 % •	7 days	PSD 1992f
M-CH2OH	tolclofos-methyl	0.7 % ^b	60 days	PSD 1993
M-COOH	tolclofos-methyl	0.4 % *	60 days	PSD 1993
MO	tolclofos-methyl	1.9 % ^b	60 days	PSD 1993
MO-CH2OH	tolclofos-methyl	0.7 % "	60 days	PSD 1993
MO-COOH	tolclofos-methyl	0.2 % ^b	60 days	PSD 1993
M-TM	tolclofos-methyl	7.7 % °	60 davs	PSD 1993
M-TMO	tolclofos-methyl	2.5 %	60 days	PSD 1993
h-CH3	tolclofos-methyl	3.7 %	60 days	PSD 1993
h-CH2OH	tolclofos-methyl	0.3 % ^b	60 days	PSD 1993
h-COOH	tolclofos-methyl	0.6 % *	60 days	PSD 1993
alkoxydim metabolite 9	tralkoxydim	5.4% °	3 days	PSD 1993m
	tralkoxydim	8.3% °	3 days	PSD 1993m
alkoxydim metabolite 8	tralkoxydim	30.9% ^b	61 days	PSD 1993m
alkoxydim metabolite 10 GA 150829	triasulfuron	16.2%	-	PSD 1992g
GA 150829 jazamate metabolite II	triazamate	98% ^b	- 14 days	PSD 1998d
iazamate metabolite II iazamate metabolite IV	triazamate	20%	-	PSD 1998d
iazamate metabolite IV	triazamate	13% ^b	-	PSD 1998d
iazamate metabolite IX iazamate metabolite VIII	triazamate	6% ^b	-	PSD 1998d
AS 9256	triazoxide	23%	60 days	PSD 1993n
AS 9256 AS 9709	triazoxide	2378 3% ^b	30 days	PSD 1993n
	tribenuron-methyl	16% ⁹	117 days	EFSA 2004
-demethyl tribenuron-methyl .a.a-trifluoro-5-nitro-N4.N4-	undentrion-meanly	10 /6	(I/ Gelya	EFSA 2004
	trifluralin	5.4 - 13.2%	60 days	EPA 1996h
propyl-toluene-3,4-diamine				
-amino-2-ethyl-1-propyl-5-	trifluralin	7.3 - 8.3%	60 days	EPA 1996h
rifluoromethyl) benzimidazole				
,a,a-trifluoro-N4,N4-dipropyl-	trifluralin	0.3 - 4.1%	•	EPA 1996h
oluene-3,4,5-triamine				
,a,a-trifluoro-2,6-dinitro-N-propyl-p-	trifluralin	≤2.1%	-	EPA 1996h
bluidine				
,a,a-trifluoro-5-nitro-N4-propyl-	trifluralin	≤2.1%	•	EPA 1996h
oluidine-3,4-diamine				
-ethyl-7-nitro-1-propyl-5-	trifluralin	≤2.1%	•	EPA 1996h
irifluoromethyl) benzimidazole				
,2'-azoxybis (a,a,a-trifluoro-6-nitro-	trifluralin	≤2.1%	-	EPA 1996h
I-propyl-p-toluidine				
-ethyl-7-nitro-1-propyl-5-				
trifluoromethyl) benzimidazole-3-	trifluralin	≤1%	-	EPA 1996h
xide				
-amino-2-ethyl-5-(trifluoromethyl)	trifluralin	≤1%	_	EPA 1996h
enzimidazole	UTHUR OWN		-	
nethyl saccahrin	triflusulfuron-methyl	74.6% ^b	67 days	PSD 1995r
iazine amine B	triflusulfuron-methyl	56.9% ^b	67 days	PSD 1995r
inexapac acid	trinexapac-ethyl	major ^s	-	PMRA 2001b
PA 406341	triticonazole	<2.1%	-	PSD 2000d
		11%	-	PMRA 2000f
PA 406766	triticonazole	<2.1%	•	PSD 2000d
PA 405826	triticonazole	<2.1%		PSD 2000d
H-24549	zoxamide	major ^g	-	PMRA 2001d
H-127450	zoxamide	major ^e	-	PMRA 2001d
		-		
ediment /water systems		0 FM (
.4-dichlorophenol	2,4-D	0.5% (estuarine	33 days	PSD 1993a
		sediment)		
.4-D	2,4-DB	3.5 - 4.6%	14 days	EU 2002a
	_,	(sediment)		
',6'-diethyl-N-methoxymethyl-2-	alachior	2.7%	30 days	PSD 1990a
ethyl thioacetanilide				
,6'-diethyl-N-methoxymethyl	alachlor	27.7%	1 wee k	PSD 1990a
cetanilide		(anaerobic)	1 100	
dicarb acid	aldicarb	48.6%	50 hours	APVMA 2001
		14.2% (water,		
ldicarb nitrile	aldicarb	anaerobic)	10 days	APVMA 2001
		2.71%		
		(sediment,	14 deve	APVMA 2001
			14 days	AF VINA 2001
		anaerobic)		
ldicarb oxime	aldicarb	~2% (water,	14 days	APVMA 2001
		anaerobic)		
		~2% (water,		
Idicarb alcohol	aldicarb	- / (weight,	14 days	APVMA 2001

ansformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
diment /water systems continued	I			
dicarb amide	aldicarb	~2% (water, anaerobic)	14 days	APVMA 2001
aldicarb sulfoxide	aldicarb	0.09% (water, anaerobic)	14 days	APVMA 2001
		0.31% (sediment anaerobic)	14 days	APVMA 2001
licarb sulfoxide oxime	aldicarb	<1% (sediment anaerobic)	-	APVMA 2001
dicarb sulfone nitrile	aldicarb	<1% (sediment anaerobic)	•	APVMA 2001
amino-4,6-dihydroxypyrimidine	amdosulfuron	45%	84 days	PSD 1994a
DE 101630	amidosulfuron	30%	61 days	PSD 1994a
S 27271	amitraz	primary ^e	-	EPA 1996a
S 27919	amitraz	primary ^g	•	EPA 1996a
itrole metabolite A	amitrole	7% (anaerobic)	39 weeks	EPA 1996b
itrole metabolite B	amitrole	2% (anaerobic)	26 weeks	EPA 1996b
/droxy anilazine	anilazine	8.5% (water) 0.9% (sediment)	57 days 57 days	PSD 1994b PSD 1994b
ohydroxy anilazine	anilazine	34.3% (water)	7 days	PSD 1994b
Unydruky annazine		1.4% (sediment)	1 day	PSD 19946
oamino anilazine	anilazine	0.6% (water)	4 days	PSD 1994b
		0.9% (sediment)	4 days	PSD 1994b
anilamide	asulam	2.2%	273 days	EPA 1995a
		3.6% (anaerobic)	366 days	EPA 1995a
am metabolite 2	asulam	10.7%	30 davs	EPA 1995a
		(anaerobic) 7.8% ⁵	30 days	EPA 1995a
	a suda m	2.9%	•	EPA 1995a
am metabolite 3	asulam	(anaerobic)	260 days	
		19.8% [•] 23.8%	30 days	EPA 1995a
gated form of asularn	asulam	(anaerobic)	1 day	EPA 1995a
		6.1% ^b	273 days	EPA 1995a
d asulam	asulam	14.3% (anaerobic)	7 days	EPA 1995a
ylatrazine	atrazine	<10% (anaerobic)	-	EPA 2003a
-		5.2%	238 days	APVMA 1997a
propylatrazine	atrazine	<10% (anaerobic)	•	EPA 2003a
oxyatrazine	atrazine	<10% (anaerobic)	•	EPA 2003a
		16.2%	238 days	APVMA 1997a
in a shi ava tri a sin a	office the second se	(anaerobic) <10%	- • -	
inochlorotriazine	atrazine	(anaerobic)	•	EPA 2003a
nythydroxyatrazine	atrazine	<10%	•	EPA 2003a
propythydroxyatrazine	atrazine	<10%	-	EPA 2003a
ince compound 2	azoxystrobin	m aj or ⁹ minor ⁹	•	PMRA 2000a PMRA 2000a
ence compound 3 laxyl M1	azoxystrobin benalaxyl	7.3% ^b (water)	- 100 days	EU 2004c
/I-N-phenylacetyl-N-(2-carboxy-	benalaxyi	1.367	100 days	EU 2004c
thyl)phenyl DL-alinate Iaxyl acid	benalaxyl	(sediment) 5.38% ^b	100 days	EU 2004c
-	-	(sediment) 7.2 - 12.5% ^b		
thylbentazone	bentazone	(water)	30 days	EU 2000a
anol ketone	bitertanol	< 1%	120 days	PSD 1994c
anol benzoic acid	bitertanol	< 1% 80.7% ^b	120 days	PSD 1994c
-butyl-6-methyluracil	bromacii bromoxynii	23.3% ^b (water)	304 days 14 days	EPA 1996c EU 2004d
bromo-4-hydroxy-benazmide	DIGHTOAYIM	3.2% (water)	•	
	h	(sediment)	14 days	EU 2004d
oxynii	bromoxynil octanoate	40.1% ^b (water) 8.5% ^b	7 days 7 days	EU 2004d
		(sediment)	7 days	EU 2004d
		63.1% b (water) <2.1%	2 days	EU 2004d
		(sediment)	-	EU 2004d
droxy benzonitrile	bromoxynil octanoate	36.1% * (water)	14 days	EU 2004d
		9.4% ^b (sediment)	14 days	EU 2004d
		16.3% ^b (water) 9.3% ^b (soil)	14 days	EU 2004d
		9.3% ^o (soil)	14 days	EU 2004d
		25.4% ⁶ (water)	30 days	EU 2004d

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
Sediment /water systems continued	.			
seument /wais/ systems continue		<7.5% (sediment)	30 days	EU 2004d
		45.52% ^b (anaerobic)	14 days	EPA 1998c
5-dibromo-4-hydroxybenzonitrile	bromoxynil octanoate	66.1% ^b (water)	2 days	EU 2004d
,	•	41.5% ^b (soil)	0.5 days	EU 2004d
		48.5%	7 days	EPA 1998c
		(anaerobic) 78.77% ^b	-	EPA 1998c
,5-dibromo-4-hydroxybenzoic acid	bromoxynil octanoate	11.3% ^b (water)	2 days 21 days	EU 2004d
	biointexymi octanoate	5% b (soil)	30 days	EU 2004d
-bromo-4-hydroxybenzonitrile	bromoxynil octanoate	12.1% ^b (water) 11.5% ^b (water)	7 days	EU 2004d
	•	11.5% (water)	7 days	EU 2004d
		1% ^b (sediment)	7 days	EU 2004d
S 860550	bromuconazole	<1% (water)	-	PSD 1996a PSD 1996a
S 860364 S 830730	bromuconazole bromuconazole	<1% (water) <1% (water)		PSD 1996a
uprofezin sulphoxide	buprofezin	13%	56 days	PSD 1993b
trahydrophthalamide	captan	81.2%	0 days	EPA 1999a
		51.1%	30 days	EPA 1999a
HPAm	captan	27%	7 days	EPA 1999a
HPAI	captan	10.8%	14 days	EPA 1999a
HPI epoxide	captan	9.4% 11.2% ^b	1 days	EPA 1999a
,4-dichloro-1-(1-hydroxyethyl) enzene	chlorfenvinphos	(sediment)	63 days	APVMA 2000a
512010		27.7% ^b (water)	63 days	APVMA 2000a
		10.6 - 17.4% ^b	61 days	APVMA 2000a
		(sediment)	01 uays	AFVMA 2000a
-cyano-4,6,7-tichloro2H-1,2- enzisothiazol-3-one	chlorothalonil	30.9% (fresh water)	1 day	PSD 2002
		29.2% (saltwater)	30 days	PSD 2002
		(saitwater) 25 - 30%	•	EPA 1999b
DS-67042 sulphoxide	chlorothalonil	16.5% (fresh water)	9 days	PSD 2002
		12.1% (saltwater)	9 days	PSD 2002
		15%	•	EPA 1999b
5,6-trichloro-4-(glutathione-5-	chlorothalonil	<10% (fresh		PSD 2002
)isophthalonitrile		water)		PSD 2002
5,6-trichloro-4-		<10% (saltwater) <10% (fresh	•	
hio)isophthalonitrile	chlorothalonil	water)	-	PSD 2002
		<10% (saltwater)	•	PSD 2002
-hydroxy-2,5,6- ichloroisophthalonitrile	chlorothalonil	5.4% (fresh water)	•	PSD 2002
		30 - 40%	1 - 2 months	EPA 1999b
		(anaerobic) 5 - 10%		EPA 1999b
vo isomers of 3-cyano-2,5,6-		-	•	
chlorobenzamide combined -cyano-2,4,5,6-	chlorothalonil	9% (anaerobic)	•	EPA 1999b
trachlorobenzamide -cyano-6-hydroxy-2,4,5-	chlorothalonil	7% (anaerobic)	•	EPA 1999b EPA 1999b
-carbamyl-1,2,4,5-trichlorobenzoic	chlorothalonil	4% (anaerobic)	•	EPA 19990
cid	chlorothalonil	≤3% (anaerobic)	•	
-(3-chloro-p-tolyl)-1-methylurea hlorotoluron benzoic acid	chlorotoluron chlorotoluron	12.6% (water) 25.1% (water)	49 days 100 days	EU 2005c EU 2005c
-chloroaniline	chlopropham	9.9% ^o (sediment)	42 days	EU 2003b
,5,6-trichloro-2-pyrindinol	chlorpyrifos-methyl	20 - 35% (sediment) 37 - 60% (water)	30 days 30 days	EU 2005e EU 2005e
		37 - 60% (water) ~100%	30 days	
odinafop acid	ciodinafop-propargyl	(anaerobic) 97.6% ^b	28 days 4 days	PSD 1995a PSD 1995a
		10.5%	•	
GA 302371	ciodinafop-propargyl	(anaerobic)	245 days	PSD 1995a
		45.9%	119 days	PSD 1995a
CIM	cyazofamid	20.8 - 29% ⁹ (water)	21 - 30 days	EU 2002e
		13.3 - 19.5%	21 - 30 dava	EU 2002e
		(sediment)	21 - 30 days	
CIM-AM	cyazofamid	4% ^g (water)	•	EU 2002e

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
Sediment /water systems continue				
Sediment/water systems conduct		7.2% 9		EU 2002a
	A	(sediment)	•	EU 2002e
CTCA	cyazofamid	8.8% ^e (water) 16.2 - 24.6% ^e	100 days	EU 2002e
		(sediment)	100 days	EU 2002e
SO and T2SO combined	cycloxydim	19 - 82% (pH	28 days	PSD 19906
-fluoro-3-phenoxybenzaldehyde	cyfluthrin	9.4) 1.1% ^b (water)	1 day	EU 2002c
-indolo-o-priorioxyberizaiderlydd	Cynddian	16% ^b		
		(sediment)	1 day	EU 2002c
-fluoro-3-phenoxybenzoic acid	cyfluthrin	29% ^b (water) 24% ^b	11 days	EU 2002c
		(sediment)	1 day	EU 2002c
DCVA	cyfluthrin	32.2 - 36% *	28 days	EU 2002c
	••••	(water) 11.2 - 25.6% ^b	,_	
		(sediment)	100 days	EU 2002c
ompound la	cyhalothrin and	26.9 - 32%	32 days	PSD 1988b
	<i>lambda-</i> cyhalothrin	11% ^b (water)	•	
		11% (water) 11% ^b	30 days	EU 2001d
		(sediment)	30 days	EU 2001d
ompound Ib	cyhaiothrin Iemhda cuthalothrin	9 - 15.3% <10%	32 days	PSD 1988b
ompound XV -phenoxybenzoic acid	<i>lambda-</i> cyhalothrin <i>lambda-</i> cyhalothrin	<10% <10%	•	EU 2001d EU 2001d
-phenoxybenzylalcohol	lambda-cyhalothrin	<10%	-	EU 2001d
minooxacetic acid	cymoxanil	minor ^g	-	PMRA 2000b
X915	cymoxanil	minor ⁹		PMRA 2000b
	-	(anaerobic) minor ^g		
/3595	cymoxanil	(anaerobic)	•	PMRA 2000b
3204	cymoxanil	minor ⁹	-	PMRA 2000b
4226	cymoxanil	minor ⁹ minor ⁹	-	PMRA 2000b
P533	cymoxanii	(anaerobic)	•	PMRA 2000b
3273	cymoxanil	minor [®]	-	PMRA 2000b
-phenoxybenzoic acid	alpha-cypermethrin	23% ^b	7 days	EU 2004b
imethylcyclopropane carboxylic cid	alpha-cypermethrin	47% ^b (water)	14 days	EU 2004b
		19.5% ^b	44 day	CU 00045
		(sediment)	14 days	EU 2004b
GA 249287	cyprodinil	14% ^b	112 days	EU 2004b
		(sediment) 17% ^s		
ormaldehyde	daminozide	(sediment)	7 days	EU 2005g
		9.5% ⁹ (water)	7 days	EU 2005g
-R-deltamethrin	deltamethrin	21 - 24%	1 - 2 weeks	EU 2002g
thyl-m-hydroxyphenyl carbamate	desmedipham	84% (water) 1.7% (sediment)	7 days	PSD 1993d PSD 1993d
		06% ^b /water)	21 days 1 day	EU 2004e
		13% "	100 days	EU 2004e
		(sediment)	100 Gays	E0 20048
		87.7% (an ae robic)	15 days	EPA 1996e
niline	desmedipham	72% ^b (water)	0 days	EU 2004e
iclofop acid	diclofop-methyl	70%	7 days	PSD 1991c
		40.2% (water)	14 days	PSD 1991c
		77.9 % (sediment)	168 days	PSD 1991c
-(2,4-dichlorophenoxy)phenol	diclofop-methyl	10%	7 days	PSD 1991c
	-	52.4 %	168 days	PSD 1991c
'-(3-chlorophenyl)-N,N-		(sediment) 25% (whole		
imethylurea	diuron	system)	-	EPA 2003b
·····		major ^a		EPA 2003b
1 /0 4 dt-1		(anaerobic)		
'-(3,4-dichlorophenyl)-N- ethviurea	diuron	minor ^g (sediment)	-	EPA 2003b
	dim in a	minor ⁹		FD 4 0000
-chlorophenyl methylurea	dirvon	(sediment)	-	EPA 2003b
henyl-1,1-dimethylurea	diuron	minor [®]	•	EPA 2003b
		(anaerobic) minor ^s		
'-(3-chlorophenyl)-N-methyl urea	diuron	(anaerobic)	-	EPA 2003b
10 352	epoxiconazole	Ò.4 - 1.1%	90 days	PSD 1994h
31 761	epoxiconazole	0.4 - 0.9%	90 days	PSD 1994h
IPA	esfenvalerate	44 -48%	100 days	EU 2000b

Transformation product	Parent pesticide *	% of parent pesticide *	Time "	Reference
Sediment /water systems continued	d			
3-phenoxybenzoic acid	esfenvalerate	2 - 13%	30 days	EU 2000b
triazine amine C	ethametsulfuron-methyl	major	•	PMRA 1992
saccharin	ethametsulfuron-methyl	major	•	PMRA 1992
ethametsulfuron-methyl acid	ethametsulfuron-methyl	major 50.6 - 52.1%	•	PMRA 1992
ethylene	ethephon	(anaerobic)	14 days	EPA 1995b
2-hydroxy ethyl phosphonic acid	ethephon	42.6% (anaerobic)	30 days	EPA 1995b
IN-JS940	famoxadone	major ⁹ (water)	-	PMRA 2003h
IN-H3310	famoxadone	major ^g (sediment)	-	PMRA 2003h
IN-KZ007	famoxadone	minor ^g	•	PMRA 2003h
IN-JL856	famoxadone	minor ^g	-	PMRA 2003h
WAK 6920	fenhexamid	<10% (anaerobic)	-	PMRA 2003b
KBR 6720	fenhexamid	<10% (anaerobic)	-	PMRA 2003b
KBR 7133	fenhexamid	<10% (anaerobic)	-	PMRA 2003b
KBR 7115	fenhexamid	<10%		PMRA 2003b
		(anaerobic)	-	T MILLY &VVJU
N-acetyl-2,3-dichloro-p-aminophenol	fenhexamid	<10% (anaerobic)		PMRA 2003b
3-methyl-4-nitrophenol	fenitrothion	(anaerobic) major ⁹		PMRA 1993a
		major ^e		PMRA 1993a
		(anaerobic)	- 0	
aminofenitrothion	fenitrothion	15% (anaerobic) major ⁹	2 days	APVMA 1999 PMRA 1993a
ammonemuounon		13% (anaerobic)	3 days	APVMA 1993a
acetlaminofenitrothion	fenitrothion	13% (anaerobic)	3 days	APVMA 1999
formylaminofenitrothion	fenitrothion	5% (anaerobic)	7 days	APVMA 1999
desmethyl fenitrothion	fenitrothion	<1.5% (anaerobic)	•	APVMA 1999
desmethyl fenitrooxon	fenitrothion	<1.5% (anaerobic)	•	APVMA 1999
3-methyl-4-nitroanisole	fenitrothion	<1.5% (anaerobic)	•	APVMA 1999
fenoxaprop-ethyl acid	fenoxaprop-ethyl	47% (water)	1 day	PSD 1990c
6-chloro-3-dlhydrobezoxazol-2-one	fenoxaprop-ethyl	9.3% (water)	21 days	PSD 1990c
fenoxaprop-ethy! acid	fenoxaprop-ethyl	60.4% (sediment)	29 days	PSD 1990c
6-chloro-3-dihydrobezoxazol-2-one	fenoxaprop-ethyl	3.8% (sediment)	21 days	PSD 1990c
R0 15-6045	fenpropidin	15 - 16 %	28 - 84 days	PSD 1993g
M3	fenpyroximate	5.8 - 18.3% ^d	24 hours	PSD 1995d
		(water) 4.6 - 16.1%	90 days	PSD 1995d
1,3-dimethyl-5-phenoxypyrazole-4-	famou maying ata	<5% ^d (water)	24 hours	PSD 1995d
carbonitrile	fenpyroximate		24 1104/8	
MB 45950	fipronil	<8.8% (water) ~80%	•	PSD 2004a
		(sediment)	•	PSD 2004a
RPA 200766	fipronil	<8.8% (water)	-	PSD 2004a
		<6.6%	-	PSD 2004a
MB 46126	fipronil	(sediment) <8.8% (water)	-	PSD 2004a
	· # · = · · ·	<6.6%	-	PSD 2004a
	ferenulam	(sediment) major ^s	-	
5-hydroxy-XDE-570	florasulam	87% ⁵	- 97 davs	PMRA 2001c PMRA 2001c
N-(2,6-difluorophenyl-5-		(anaerobic)	···· • • •	
aminosulphonyl-1H-1,2,4-triazole-3-	fiorasulam	major ^e		PMRA 2001c
carboxylic acid triazolosulfonic carboxylic acid	fiorasulam	major ^e		PMRA 2001c
compound XII	fluazinam	8%	0 weeks	PSD 1994i
DCPA	fluazinam	major ⁹	-	PMRA 2003
compound V	fluazinam fluazinam	major ⁹ major ⁹	-	PMRA 2003j
compound VIII	111024710111	major - 19% (anaerobic)	- 30 dava	PMRA 2003j PMRA 2003j
AMPA	fluezinam	major ⁹		PMRA 2003j
		major ^e (anaerobic)	•	PMRA 2003j
SDS_87200	fluazinam	major ^e		PMRA 2003
SDS-67200		(anaerobic)	-	•
MKH 6562 sulfonamide	flubcarbazone-sodium	14.9 - 16.1% 89% (anaerobic)	•	PMRA 2000c PMRA 2000c
MKH 6562 sulfonic acid	flubcarbazone-sodium	<0.8%	-	PMRA 2000c

ransformation product	Parent pesticide *	% of parent pesticide ^b	Time °	Reference
ediment /water systems continued				
ODT	flubcarbazone-sodium	19%	-	PMRA 2000c
		3.7 - 7%		
		(anaerobic)	-	PMRA 2000c
MT	flubcarbazone-sodium	65% (anaerobic)	-	PMRA 2000c
DE alcohol	flufenacet	minor ⁹	365 days	PMRA 2000d
DE oxalte	flufenacet	24%	365 days	PMRA 2000d
E sulfonic acid	flufenacet	minor ^a	365 days	PMRA 2000d
E amine acetate	flufenacet	minor ^e (anaerobic)	-	PMRA 2000d
adone	flufenacet	minor ^e (anaerobic)	-	PMRA 2000d
adone acetate	flufenacet	minor ^e (anaerobic)	•	PMRA 2000d
4-triazole	fluquinconazole	16.1%	365 days	PSD 1999b
C 96912	fluquinconazole	23.9% (water)	28 days	PSD 1999b
		47% (sediment)	100 days	PSD 1999b
		21.8% (water)	14 days	PSD 1999b
		44.3%	100 days	PSD 1999b
		(sediment)		
i16368 iino-3,5-dichloro-6-fluoro-2-	fluquinconazole	2.1% (water) 44% ^b (water)	- 14 days	PSD 1999b EU 1999
nol	fluroxypyr	44% (water) 13.2% ^b	•	
		(sediment)	7 days	EU 1999
ino-3-chioro-6-fluoro-2-pyridinol	fluroxypyr	17.9% ^b (water) 6.5% ^b	28 days	EU 1999
ino 2 6 dichloro 6 fuero 2		(sediment) 45% ^b (whole	28 days	EU 1999
ino-3,5-dichloro-6-fluoro-2- one	fluroxypyr	system)	8 weeks	EU 1999
53285	Automotio	<4%	_	PSD 2000a
3203	flurtamone	1.2%	-	
		(anaerobic)		PSD 2000a
4589	flurtamone	<4%	•	PSD 2000a
		0.2% (anaerobic)		PSD 2000a
4488	flurtamone	<4%	-	PSD 2000a
4400		0.4%	~	PSD 2000a PSD 2000a
	• • •	(anaerobic)	FO	
4-fluorophenyl)methyl silanol	flusilazole	48 - 60%	52 weeks	PSD 19895
,2,4-triazole	flusilazole	12%	52 weeks	PSD 19895
38795	formasulfuron	major ^s major ^s	•	PMRA 2003k PMRA 2003k
		(anaerobic)	-	
153745	formasulfuron	major ⁹ minor ⁹	-	PMRA 2003k
		(anaerobic)	•	PMRA 2003k
130619	formasulfuron	minor ⁹ minor ⁹	•	PMRA 2003k
000044	1	(an ae robic)	-	PMRA 2003k
092944	formasulfuron	minor [®] minor [®]	•	PMRA 2003k
	4	(anaerobic)	•	PMRA 2003k
148003	formasulfuron	minor ⁹ minor ⁹		PMRA 2003k
		(anaerobic)	-	PMRA 2003k
159255	formasulfuron	minor ⁹		PMRA 2003k
014940	formasulfuron	minor ^e		PMRA 2003k
099095	formasulfuron	minor ^s (anaerobic)	-	PMRA 2003k
amoyiphosphonic acid	foseamine-ammonium	59%	14 days	EPA 1995d
oxylphosphonic acid	foseamine-ammonium	43%	9 months	EPA 1995d
omethylphosphonic acid	glyphosate	16% * (water)	14 days	EU 2002I
		major ⁹ (aerobic) major ⁹	-	EPA 1993b
		(anaerobic)	-	EPA 1993b
nomethylphosphonic acid	glyphosate trimesium	4% ^b (water)	•	EU 2002I
		18% ^b (sediment)	-	EU 2002I
/droxy-cyclohexyl-6- hethylamino)-1-methyl-1,3,5-	hexazinone	5.5% (anaerobic,	365 days	EPA 1994a
zine-2,4(1H,-3H)-dione ketocyclohexyl)-6-		sediment)		_
methylamino)-1-methyl-1,3,5- izine-2,4(1H,3H)-dione	hexazinone	25% (anaerobic, sediment)	365 days	EPA 1994a
yclohexyl-1-methyl-1,3,5-triazine-	hexazinone	24% (aneraobic, sediment)		EPA 1994a
6-1H,3H,5H)-trione				

ansformation product	Parent pesticide *	% of parent pesticide ^b	Time °	Reference
diment /water systems continue	d			
		1.3%		EPA 1994a
(4-ketocyclohexyl)-6-				
methylamino)-1-methyl-1,3,5-	hexazinone	<7%	-	EPA 1994a
zine-2,4(1H,3H)-dione				
2-hydroxycyclohexyl)-6- nethylamino-				
nethyl-1,3,5-triazine-2,4(1H,3H)-	hexazinone	<7%	-	EPA 1994a
ne				
cyclohexyl-6-				
ethylamino)-1-methyl-1,3,5-	hexazinone	<7%	•	EPA 1994a
izine-2,4(1H,3H)-dione)				
6-chloro-pyridine-3-ylmethyl)-2- ino-imidazolidine	imidacioprid	8.8 - 12.3%		PSD 1993i
		64% (anaerobic)	358 days	PSD 1993i
hloro-nicotinic acid	imidacloprid	0.3 - 4.2%	,-	PSD 1993i
-(6-chloro-pyridine-3-ylmethyl)-	imidacloprid	0.3 - 4.2%		PSD 1993i
ane-1,2-diamine	·			
tsulfuron-methyl	iodosulfuron-methyl	major ^g major ^g	•	PMRA 2004f
		(anaerobic)	-	PMRA 2004f
F059411	iodosulfuron-methyl	major ^g	-	PMRA 2004f
		minor [®]	_	PMRA 2004f
		(anaerobic)	-	
0000119	iodosulfuron-methyl	major ^g	•	PMRA 2004f
0014966	iodosulfuron-methyl	major ⁹ minor ⁹	•	PMRA 2004f
		(anaerobic)	-	PMRA 2004f
0034855	iodosulfuron-methyl	major ⁹	-	PMRA 2004f
0014965	iodosulfuron-methyl	minor ⁹	•	PMRA 2004f
F145740	iodosulfuron-methyl	minor ⁹	•	PMRA 2004f
		minor ⁹ (anaerobic)	-	PMRA 2004f
F161778	iodosulfuron-methyl	(anaerooic) minor ⁹	_	PMRA 2004f
F101778	louosuluionanderyi	minor ⁹	-	
		(anaerobic)	•	PMRA 2004f
F145741	iodosulfuron-methyl	minor [®]	_	PMRA 2004f
	•	(anaerobic)	• - ·	
di-iodo-4-hydroxybenzamide	ioxynil	11.3% ^b (water) 3.6% ^b	7 days	EU 2004g
		(nadimont)	7 days	EU 2004g
mil	ioxynil octanoate	(sedament) 52.2% ^b (water) 11.8% ^b	2 days	EU 2004g
		11.8% •	•	-
		(sediment)	7 days	EU 2004g
pargyl butyl carbamate	IPBC	>97% (water,	1 day	HSE 1994
		anaerobic) >80% (sterile)	•	
		8% (sediment,	29 days	HSE 1994
openyl butyl-carbamate	IPBC	anaerobic)	59 days	HSE 1994
	1000	34.7% (water,	50 de:	
openyl butyl-carbamate	IPBC	anaerobic)	59 days	HSE 1994
35606	iprodione	71.3% (water)	•	EU 2002n
20228	inundiar e	< 5% (sediment)	• 24 h	EU 2002n
30228	iprodione	<10% (water) 70% (sediment)	24 hours	EU 2002n EU 2002n
		64.6% ^b	- 14 days	EPA 1998g
		70.7%	•	-
		(anaerobic)	14 days	EPA 1998g
32490	iprodione	14.6%	2 days	EPA 1998g
		8.4%	30 days	EPA 1998g
		(anaerobic) 9.9% ^b	•-	
dichloroaniline	iprodione	(sediment)	30 days	EPA 1998g
methylisoptoturon	isoproturon	19.2% (water)	60 days	EU 2002p
- •		6.8%	60 days	EU 2002p
		(sediment)	•	
202248	isoxaflutole	60 - 63%	2 days	PMRA 2000e
		80% (anaerobic)	14 days	PMRA 2000e
		69% (water, anaerobic)	6 hours	PMRA 2000e
		57% (sediment.		
		anaerobic)	183 days	PMRA 2000e
	isoxaflutole	28% (anaerobic)	6 hours	PMRA 2000e
A 205834				
A 205834		25% (water,	6 hours	PMRA 2000-
A 205834		25% (water, anaerobic) 3% (sediment,	6 hours	PMRA 2000e

ansformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
diment /water systems continued	1			
PA 203328	isoxaflutole	<1.5%	-	PMRA 2000e
11200020		(anae robic) <1.5%		
PA 207048	isoxaflutole	(anaerobic)	•	PMRA 2000e
esoxim-methyl acid	kresoxim-methyl	7.4%	-	PSD 1997c
3,4-dichlorophenyl)-1-methylurea	linuron	10% (water) 2% (sediment)	-	PSD 1995h
dichlorophenyturea	linuron	1.5% (water)	•	PSD 1995h PSD 1995h
Gonorophonylarda		0.5% (sediment)		PSD 1995h
athion monocarboxylic acids	malathion	28% (anaerobic,	4 days	PSD 1995i
	The area and the	water) 4.5% (anaerobic,	4 0090	
		sediment)	0.25 days	PSD 1995i
thiss disades with a sid	malathion	21% (anaerobic,	14 days	DOD 1005
thion dicarboxylic acid	malatrion	water)	14 days	PSD 1995i
		5.2% (anaerobic,	4 days)	PSD 1995i
		sediment) 39% (anaerobic,	• •	
nion demethyl dicarboxylic acid	malathion	water)	45 days	PSD 1995i
nion demethyl monocarboxylic	malathion	21% (anaerobic,	7 days	PSD 1995i
		water)		
		8.1% (anaerobic, sediment)	45 days	PSD 1995i
		41.9% (river	8 h aug-	000 000 **
nethiourea	mancozeb	water)	6 hours	PSD 2004b
		48.5% (pond	1 day	PSD 2004b
		water 6.3% (river	•	
		sediment)	2 days	PSD 2004b
		6.6% (pond	14 days	PSD 2004b
		sediment)	•	
		48.5% ^b (water) 8.1% ^b	1 day	EU 2005h
		8.1% (sediment)	7 days	EU 2005h
neurea	mancozeb	37.5% ^b (water)	14 days	EU 2005h
-		9.1% ^b	30 days	EU 2005h
		(sediment)	JV Gays	CO 20000
		22.5% (river water)	30 days	PSD 2004b
		23.4% (pond		
		water	59 days	PSD 2004b
		7.8% (river	30 days	PSD 2004b
		sediment)	30 u ayo	
		9.1% (pond sediment)	30 days	PSD 2004b
nebisisothiocyanide sulfide	mancozeb	30.9% ^b (water)	0 days	EU 2005h
		3.8% ^b	2 days	EU 2005h
		(sediment)	2 UQYO	EU 2003h
	mancozeb	12.7% (river water)	6 hours	PSD 2004b
		water) 3.8% (pond		
		water	6 hours	PSD 2004b
		3.8% (river	2 days	PSD 2004b
		sediment)		1 00 20040
		1.1% (pond sediment)	2 days	PSD 2004b
		8.6% (river	4.4 .day :=	666 666 <i>4</i>
loin	mancozeb	water)	14 days	PSD 2004b
		5.7% (pond	14 days	PSD 2004b
		water 3% (river		
		sediment)	14 daya	PSD 2004b
		2.2% (pond	14 day-	PSD 2004b
		sediment)	14 days	F30 20040
ethiourea	maneb	31.9% ⁹ (river	1 day	EU 2005i
		water) 7% ^s (river		
		sediment)	7 days	EU 2005i
		47.9% ^g (pond	0 da	EL ODOCT
		water)	2 days	EU 2005i
		13.7% ^a (pond	7 days	EU 2005i
		sediment) 20.6% ^g (river	•	
eneurea	maneb	20.076 * (river water)	14 days	EU 2005i
		5.1% ^e (river	14 days	EU 2005

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
Sediment /water systems continue	ed			
		23.4% ^g (pond	30 days	EU 2005i
		water) 7.3% ^g (pond	00 00,0	
		sediment)	30 days	EU 2005i
thylenebisisothiocyanide sulfide	maneb	45.5% ^e (river water)	0 days	EU 2005i
		2.6% ^g (river sediment)	7 days	EU 2005i
		41.5% ⁹ (pond water)	0 days	EU 2005i
		0.7% ^{'g} (pond sediment)	7 days	EU 2005i
IOE 113225	mefenpyr-diethyl	10.4 - 34.3% (sediment)		PSD 1999a
		53.5 - 87.9% (water)	-	PSD 1999a
IOE 094270	mefenpyr-diethyl	1.2 - 33.9% (sediment)	-	PSD 1999a
		27.1 - 28.5% (water)		PSD 1999a
IOE 109453	mefenpyr-diethyl	4.5 - 5.6% (sediment)	-	PSD 1999a
		38.9 - 42%		PSD 1999a
GA-62826	metalaxyl	(water) 85.5%	265 days	EPA 1994c
		(anaerobic) 20.56%	30 days	EPA 1994c
GA-119857	metalaxyl	16.3%	385 days	EPA 1994c
13	metconazole	(anaerobic) 9% ^b (water)	152 days	PSD 2000b
111, M13, M15, M21, M30 and 119 combined	metconazole	16% ^b (water)	152 days	PSD 2000b
		13% ^b (sediment)	152 days	PSD 2000b
11, M13, M21, M30 and M119	metconazole	0.5% (water)		PSD 2000b
ombined		9% b (sediment)	182 days	PSD 2000b
130	metconazole	5% ^b (sediment)	152 days	PSD 2000b
21 and M119 combined	metconazole	5% ^b (sediment)	152 days	PSD 2000b
ethiocarb phenol	methiocarb	83% " (water) 45% "	7 days	PSD 1998b
		(anaerobic, water)	3 days	PSD 1998b
		51% ^b (anaerobic,	28 days	PSD 1998b
nethiocarb sulfoxide	methiocarb	sediment) 1% ^b (water)	0 days	PSD 1998b
		1% ^b (anaerobic,	0 days	PSD 1998b
nethiocarb sulfoxide phenol	methiocarb	water) 63% ^v (water)	14 days	PSD 1998b
H-117236	methoxyfenozide	12.6%	91 days	PMRA 2004g
H-131154	methoxyfenozide	2% (anaerobic)	91 days	PMRA 2004g
ihyleneticurea	metiram	41 - 49% 9	0.25 days	EU 2005I
		6.4 - 7.6% ⁹ 3.34%	7 days	EU 2005i
GA-41507	metolachior	(sediment)	29 days	EPA 1995f
		1.21 (water) 4.85%	29 days	EPA 1995f
		(anaerobic, water)	6 months	EPA 1995f
		15.88% (anaerobic,	12 months	EPA 1995f
A 50700	metolachica	sediment) 1.17%		EDA 10054
:GA-50720	metolachior	(sediment) 1.67%	•	EPA 1995f
		(anserobic, sediment)	29 days	EPA 1995f
GA-40172	metolachior	1.13% (sediment)		EPA 1995f
		5.64%	40	FDA 40074
		(anaerobic, water)	12 months	EPA 1995f
		3.18% (anaerobic,	12 months	EPA 1995f
04 48407	metalechia	sediment)		
GA-46127	metolachior	1.54 (sediment)	-	EPA 1995f

ransformation product	Parent pesticide *	% of parent pesticide ^b	Time *	Reference
ediment /water systems continued				
enment water systems coutinued		4.69%		
		(anaerobic,	12 months	EPA 1995f
		water)		
		13.02%		
		(anaerobic,	12 months	EPA 1995f
		sediment)		
etolachlor oxanilic acid	metolachior	1.99% (water)	29 days	EPA 1995f
stolachior oxamile acid	metolacillo	4.28%	20 0893	217110001
GA-37913	metolachior	(anaerobic,	6 months	EPA 1995f
JA-37913	metolacilioi	water)	o monula	
		2.33%		
		(anaerobic	6 months	EPA 1995f
		sediment)	0 monula	
atonitrile	methomyt	46%	102 days	EPA 1998h
		14%	7 days	EPA 1998h
amide	methomyl	2.5 - 8.1%	r uays	LFA 19900
SA	metosulam	(water)	28 days	PSD 1996c
			40 dour	DCD 1008-
		8.2% (water)	42 days	PSD 1996c
		8.4% (sediment)	42 days	PSD 1996c
ydroxymetosulam	metosulam	<4%	42 days	PSD 1996c
uccinyl ATSA	metosulam	<4%	42 days	PSD 1996c
cetyl ATSA	metosulam	<4%	42 days	PSD 1996c
charin	metsulfuron-methyl	8%	14 days	PSD 1991e
	······································	26 - 33%	•	PSD 1991e
		(sterile)	24 weeks	F3D 18916
minosulfonyl) benzoic acid	metsulfuron-methyl	14%	14 days	PSD 1991e
		40% (sterile,	•	
		anaerobic)	5 weeks	PSD 1991e
		6 - 13% (non-		
		sterile)	•	PSD 1991a
econolisid motorifician method	metsulfuron-methyl	25% ^b (water)	13 weeks	EU 2000c
esmethyl metsulfuron methyl	measunuron-meanyi	23% (water) 8% ^b (sediment)	8 - 13 weeks	EU 2000c
		•	0 - 13 MAGK2	EO 20000
smethyl metsulfuron methyl	metsulfuron-methyl	15 - 31% ^b	13 weeks	PSD 1995n
	•			
D	nicosulfuron	17% 9	•	PSD 2000c
		19% 9	-	PSD 2000c
N	nicosulfuron	11% *	-	PSD 2000c
		7% ⁹	•	PSD 2000c
N	nicosulfuron	7%	•	PSD 2000c
		4%	•	PSD 2000c
A	nicosulfuron	9% 1	•	PSD 2000c
1	moodunaron	8% *	-	PSD 2000c
athud north unanon	norflurazon	19% (anaerobic)	- 365 days	EPA 1996f
ethyl norflurazon	10110102011	19% (anaerooic)	90 days	EPA 1996f
1141-1-1-1- /h1	emethecte		-	PSD 1993
thiobis (N-methylacetamide)	omethoate	ND - 8.2%	-	
thyl-2-methylsulfinyl-acetamide	omethoate	ND - 4%	•	PSD 1993
roxy-N-methylacetamide	omethoate	ND - 5.7%	-	PSD 1993
thyl-S-2-(methylamino)-2-	omethoate	ND - 27.1	•	PSD 1993i
hylphosphorothicate				
•••••	ne otabu transl	<5% (whole		PSD 1995j
e metabolite	paciobutrazol	system)	-	P30 1883
		<5% (whole		000 4000
metabolite	paciobutrazol	system)	•	PSD 1995j
		<5% (whole		
etabolite	paciobutrazol	system)	-	PSD 1995j
	and obutton to l	9.4%	12 weeks	PSD 1995j
-triazole	paciobuttazoi	9.4% 17%		PMRA 2003a
ildehyde	phorate	1770	14 days	
methyl-2-methylformamido-	pirimicarb	5%		PSD 1994m
nidin-4-yl-dimethyl carbamate	•			
timethyl-2-methylamino-	pirimicarb	6.4%	•	PSD 1994m
nidin-4-yl-dimethylcarbamate	P			
timethyl-2-dimethylamino-	pirimicarb	3.5%	_	PSD 1994m
iidin-4-ol	Punition o		-	100 100-00
		32 - 44% (river		DMD 4 2004-
191429	primisulfuron methyl	water)	•	PMRA 2001a
		52.4 - 54.1%		
		(pond water)	•	PMRA 2001a
-239771	primisulfuron methyl	25.2% (river	-	PMRA 2001a
- avvi f f		water)		
		16.5% (pond	_	PMRA 2001a
		water)	-	CMCV120018
		33% (river		DA4D 4 0001
		sediment)	•	PMRA 2001a
		37.1% (pond		
		sediment)	•	PMRA 2001a
-171683	primisulfuron methyl	3.9% (river water)	•	PMRA 2001a

Transformation product	Parent pesticide *	% of parent pesticide*	Time ^c	Reference
Sediment /water systems continue	d			
www.ment.vater systems continue		4.8% (pond		DMD 4 0004 -
		water)	-	PMRA 2001a
		2.3% (river	_	PMRA 2001a
		sediment)	-	PMPCA 2001a
		1.8% (pond		PMRA 2001a
		sediment)		
CGA-147087	primisulfuron methyl	2.4% (river	•	PMRA 2001a
	F	water)		DMDA 2004-
		4% (pond water) 2.3% (river	•	PMRA 2001a
		sediment)	-	PMRA 2001a
		2.6% (pond		
		sediment)	•	PMRA 2001a
		2.2% (river		
CGA-177288	primisulfuron methyl	water)	-	PMRA 2001a
		9.2% (pond		
		water)	-	PMRA 2001a
		1.2% (river		PMRA 2001a
		sediment)	•	F MINA 200 10
		3.1% (pond		PMRA 2001a
		sediment)	-	
CGA-219741	primisulfuron methyl	4% (river water)	•	PMRA 2001a
		0.9% (pond	•	PMRA 2001a
		water)		
CGA-120844	primisulfuron methyl	0.8% (river sediment)	-	PMRA 2001a
		1% (pond		
		sediment)		PMRA 2001a
		13.4 - 17%		
CGA-191429	primisulfuron methyl	(pond sediment)	-	PMRA 2001a
		1.3 - 14.5%		
Ro 16-1976	propaquizafop	(water)	•	PSD 1994n
		2.3 - 3.2%		000 (004-
		(sediment)	•	PSD 1994n
		13.3 -		DOD 4004-
Ro 19-5081	propaquizafop	13.8%(water)	•	PSD 1994n
		3.7 - 10.2%		PSD 1994n
		(sediment)	•	
Ro 16-1981	propaquizafop	1% (sediment)	•	PSD 1994n
De 48 4084 method	propaguizatop	5.3 -9%	_	PSD 1994n
Ro 16-1981-methyl	propaquizatop	(sediment)	•	100 13341
	propaquizafop	major ⁹ (pH 7	14 days	PSD 1994n
		and 9)	•	
	propaquizafop	major ^g (pH 5)	14 days	PSD 1994n
CGA 217 495	propiconazole	2.8 - 2.9%	90 - 175 days	EU 2003n
CGA 91305	propiconazole	3.1 - 5.0%	90 - 175 days	EU 2003n
propiconazole M3	propiconazole	3.1 - 4.4% 2.1 - 2.3%	90 - 175 days	EU 2003n
1,2,4-triazole	propiconazole	5 2% (uniter)	90 - 175 days 84 days	EU 2003n
		5.2% (water) 93.9% ^b (water)	1 hour	PSD 1993g EU 2003o
propylenethiourea	propineb	93.9% ^b (water) 56.8 % ^b		
		(sediment)	60 days	EU 2003o
		48 - 58% ^b		
6-chloro-3-phenyi-pyridazin-4-ol	pyridate	(water)	1 - 7 days	EU 2001e
		46.7%	00 days	ELL 0004 -
		(sediment)	30 days	EU 2001e
	w wide a	9 - 12% ^b	B4 days	EU 2004-
CL 9673-O-methyl	pyridate	(sediment)	84 days	EU 2001e
ZK 512723	pyrimethanil	6.1 - 10.4%	100 days	PSD 1995k
BH518-2	quinmerac	<1%	-	PSD 1998c
BH518-5	quinmenac	<1%	-	PSD 1998c
3-hydroxyquioxyfen	quinoxyfen	41% 9		Roberts and Hutson
u iyu uxyuuxyi u				1999
6-hydroxyquioxyfen	quinoxyfen	10% ^e	100 days	Roberts and Hutson
	• •			1999 DDD 40001
IN-70941	rimsulfuron	main ^g	•	PSD 1996f
IN-70942	rimsulturon	main ^e	-	PSD 1996f
IN-E9260	rimsulfuron	<7%	•	PSD 1996f
IN-J290	rimsulturon	<7%	21 days	PSD 1996f
deisopropylatrazine	simazine	6.3 - 7.2%	77 days	PSD 1992e
		(water)		
		0.4 - 1.4%	77 days	PSD 1992e
		(sediment)		
فيستعدد والماسي والمتعاطية ومتابع والأربي والأر				
	eimezine	3.3 - 3.9%	77 deur	DSD 1002-
diaminochlorotriazine, deisopropyl hydroxystrzine and hydroxydideethylsimazine combined	simazine	3.3 - 3.9% (water)	77 days	PSD 1992e

ued sulfosulfuron sulfosulfuron tau-fluvalinate tau-fluvalinate tau-fluvalinate	major ⁹ (anaerobic) major ⁹ (anaerobic) 20 - 27% ^b (whole system) 13 - 19% (water) 9.5% ^b <1.5%		PMRA 1998 PMRA 1998
sulfosulfuron sulfosulfuron tau-fluvalinate tau-fluvalinate tau-fluvainate	(anaerobic) major ^g (anaerobic) 20 - 27% ^b (whole system) 13 - 19% (water) 9.5% ^b		
sulfosulfuron tau-fluvalinate tau-fluvalinate tau-fluvalinate	major ^g (anaerobic) 20 - 27% ^b (whole system) 13 - 19% (water) 9.5% ^b	-	
tau-fluvalinate tau-fluvalinate tau-fluvalinate	(anaerobic) 20 - 27% ^b (whole system) 13 - 19% (water) 9.5% ^b		PMRA 1998
tau-fluvalinate tau-fluvainate	(whole system) 13 - 19% (water) 9.5% ^b	-	
tau-fluvainate	9.5% ^b		PSD 1997e
tau-fluvainate	9.5% ^b	•	PSD 1997e
		•	PSD 1997e
		•	PSD 1997e
	15% ^b (whole		PSD 1997e
	system) 10% (water)		PSD 1997e
tebufenozide	major ⁹	•	PMRA 1996b
tebufenozide	major ^g	-	PMRA 1996b
tebufenozide	major ⁹	•	PMRA 1996b
tebufenpyrad	9 - 17%	60 - 100 days	PSD 19950
tepraloxydim	11%	•	PMRA 2004b
	12.1%		PMRA 2004b
	(anaerobic)		
tepraloxydim		-	PMRA 2004b
-	minor ⁹ (anaerobic)	•	PMRA 2004b
te e veleve et:	minor [®]		PMRA 2004b
tepratoxyotm	(anaerobic)	•	
terbuthylazine	6.62%	22 days	PSD 1993a
terbuthylazine	8.72%	30 days	PSD 1993a
thifensulfuron-methyl	80% " (water)	91 days	EU 2001g
	(sediment)	91 days	EU 2001g
	30% ^b (anaerobic,	56 days	EU 2001g
	whole system) 55% ^b (water)	70 dava	EU 2001a
	60 - 87% ^b	13 weeks	PSD 1995n
	minor ⁶	-	PSD 1991i
thifensulfuron-methyl	42% ^b (water)	56 days	EU 2001g
	(anaerobic,	196 days	EU 2001g
	39% ^b (water)	182 days	EU 2001g
	major ^g		PSD 1991i
	40% ^b		
thifensulfuron-methyl	whole system)	112 days	EU 2001g
		-	PSD 1991i
thifensulturon-methyl		196 davs	EU 2001g
a monound of Frido A	whole system)		
	major ^e	-	PSD 1991i
	(anaerobic)	-	
thifensulfuron-methyl	21% (water)	125 days	EU 2001g
	minor ·		PSD 1991i
4-16		183 day-	
	2076 (W8187) 10% ⁶ (unter)	102 04975	EU 2001g EU 2001g
-		-	-
thifensulfuron-methyl	40% ^b (water)	8 weeks	PSD 1995n
thifensulfuron-methyl	(anaerobic)	•	PSD 1991i
thiobencarb	14.2%	-	EPA 1997e
thiodicarb	7.2% (anaerobic)	0 days	EPA 1998k
thiodicarb	72.5%	14 days	EPA 1998k
		1 days	EPA 2001c
thiophanate-methyl	<10%	•	EPA 2001c
thiophanate-methyl	<10%		EPA 2001c
thiophanate-methyl	<10%		EPA 2001c
• •		14 day -	-
tolymulariid	72.7% * (water)	14 Gays	PSD 1995q
		30 dava	PSD 1995g
	tebufenpyrad tepraloxydim tepraloxydim tepraloxydim terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine terbuthylazine thifensulfuron-methyl thifensulfuron-methyl thifensulfuron-methyl thifensulfuron-methyl thiobencarb thiodicarb thiodicarb thiodicarb thiophanate-methyl	tebufenyyrad 9 - 17% tepraloxydim 11% (anaerobic) tepraloxydim minor ⁹ (anaerobic) tepraloxydim (anaerobic) tepraloxydim 6.62% terbuthylazine 8.72% thifensulfuron-methyl 80% ⁶ (water) 32% ⁶ (sediment) 30% ⁶ (water) 32% ⁶ (sediment) 30% ⁶ (water) 32% ⁶ (anaerobic, whole system) 55% ⁶ (water) 60 - 87% ⁶ (water) minor ⁸ (anaerobic, whole system) 39% ⁶ (water) minor ⁸ (anaerobic, whole system) 39% ⁶ (water) major ⁸ (anaerobic, whole system) 39% ⁶ (water) major ⁹ (anaerobic) 40% ⁶ (anaerobic) 40% ⁶ (water) major ⁹ (anaerobic) thifensulfuron-methyl (anaerobic) thifensulfuron-methyl 21% ⁶ (water) minor ⁹ (anaerobic) thifensulfuron-methyl 21% ⁶ (water) thifensulfuron-methyl 19% ⁶ (water) thifensulfuron-methyl 21% ⁶ (water) thifensulfuron-methyl 19% ⁶ (water) thifensulfuron-methyl 10% ⁶ (water) thifensulfuron-methyl 10% ⁶ (water) thifensulfuron-methyl 25% ⁶ (water) thifensulfuron-methyl 10% ⁶ (water)	tebufenpyrad tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim tepraloxydim terbuthylazine 8.52% terbuthylazine 8.55% terbuthylazine 196 days thifensulfuron-methyl 195 days thifensulfuron-methyl 195 days thifensulfuron-methyl 195 days thifensulfuron-methyl 195 days thifensulfuron-methyl 195 (water) 112 days thifensulfuron-methyl 195 (water) 112 days thifensulfuron-methyl 195 (water) 112 days thifensulfuron-methyl 195 (water) 112 days thifensulfuron-methyl 195 (water) 106 days thifensulfuron-methyl 195 (water) 106 days thifensulfuron-methyl 195 (water) 106 days 106 days 107 108 days 108 days 108 days 108 days 100 days 108 days 108 days 108 days 108 days 108 days 109 days 109 days 109 days 109 days 100

ransformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
ediment /water systems continue	d.			
NH 0189	tolyfluanid	6.1% ^b (water)	75 days	PSD 1995g
		6.1% ^b (water) 1.6% ^b	120 days	PSD 1995q
		(sediment)	•	•
alkoxydim metabolite 9	tralkoxydim	10.7% ^b (water) <6% (anaerobic.	14 days	PSD 1993m
		чољ (anaerobic, water)	-	PSD 1993m
		22.2% b	00.4	DOD 4000
		(sediment)	90 days	PSD 1993m
		35 - 39%		
		(anaerobic, sediment)	119 days	PSD 1993m
alkoxydim metabolite 8	tralkoxydim	11.2% ^b (water)	30 days	PSD 1993m
	udmoxydiin	<6% (anaerobic,	,.	PSD 1993m
		water)	-	
		2.7% (sediment)	14 days	PSD 1993m
		<5% (anaerobic, sediment)	-	PSD 1993m
Ikoxydim metabolite 10	tralkoxydim	2.9% ^b (water)	119 days	PSD 1993m
		<6% (anaerobic,	-	PSD 1993m
		water)	-	
		1% (sediment)	0 days	PSD 1993m
		<5% (anaerobic, sediment)	-	PSD 1993m
A 150829	triasulfuron	10 - 11% (water)	10 weeks	EU 2000d
		0.3% (anaerobic,	70 days	EU 2000d
		water)	•	
lesmethyl triasulfuron	triasulfuron	5 - 13% (water) <10% (water)	10 weeks 10 weeks	EU 2000d EU 2000d
orosulfonamide zamate metabolite X	triasulfuron triazamate	45 - 47% (water)	2 days	PSD 1998d
zamate metabolite II	triazamate	18 - 25% (water)	30 days	PSD 1998d
mate metabolite XVII	triazamate	38 - 49% (water)	14 daya	PSD 1998d
		5 -9%	59 days	PSD 1998d
amte metabolite XI	triazamate	(sediment) 16 - 23% (wster)	59 days	PSD 1998d
	unazamate	9 - 12%		
		(sediment)	14 days	PSD 1998d
mate metabolite III	triazamate	4% (water)	-	PSD 1998d
amte metabolite IX	triazamate	2% (water)	-	PSD 1998d
9256	triazoxide	42.1 - 48.5% (whole system)	30 days	PSD 1993n
		3.5 - 11.3%		
10942	triazoxide	(whole system)	-	PSD 1993n
Isulphonamide A	tribenuron methyl	12 - 28%	24 days	PSD 1992h
		(anaerobic)	•	
		19% ^e (water) 70 - 73%	56 days	EFSA 2004
harin	tribenuron methyl	(anaerobic)	24 days	PSD 1992h
		32% ⁹ (water)	14 days	EFSA 2004
methyl tribenuron methyl acid	tribenuron methyl	19%	4 weeks	PSD 1992h
ne amine A	tribenuron methyl	61 - 71% (anerophic)	24 days	PSD 1992h
	•	(anaerobic) 34.8%	4 weeks	PSD 1992h
		42% ⁹ (water)	14 days	EFSA 2004
		86% ^e	56 days	EFSA 2004
		(sediment)	Ju gaya	EF GA 2004
3-trichloro-2-pyridinol	triclopyr	25% (anaerobic, water)	365 daya	EPA 1998i
• •		<5%	30 days	EPA 1998
-321113	trifloxystrobin	major ⁹	•	PMRA 2004h
-331409	trifloxystrobin	minor ⁹	•	PMRA 2004h
yl saccahrin	triflusulfuron-methyl	25 - 38% (water)	•	PSD 1995r
yl saccahrin and unidentified	triflusulfuron-methyl	12% (sediment)	100 days	PSD 1995r
bolite combined sulfuron-methyl acid	trifiusulfuron-methyl	45%	100 days	PSD 1995r
ne amine 8	triflusulfuron-methyl	42.1%	30 days	PSD 1995r
methyl triazine amine B	triffusulfuron-methyl	10 - 15%		PSD 1995r
kapac acid	trinexapac ethyl	48 - 64%	14 days	PSD 1995s
		major ^e	-	PMRA 2001b
hione disulfide	zinc pyrithione	16.9% (whole system)	7 days	HSE 2003b
		system) 28.07%	-	
		(anaerobic,	3 days	HSE 2003b
		whole system)		
thione sulfinic acid	zinc pyrithione	16.5% (whole	1 day	HSE 2003b
		system		

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
Sediment /water systems continued	i			
		13.47%		
		(anaerobic,	0.25 days	HSE 2003b
		whole system)	-	
		31.98%		
yridine sulfinic acid	zinc pyrithione	(anaerobic,	90 days	HSE 2003b
		whole system)		
		22.75%		
yridine sulfonic acid	zinc pyrithione	(anaerobic,	0.75 days	HSE 2003b
-		whole system)		
RH-163353	zoxamide	major ⁹	•	PMRA 2001d
H-127450	zoxamide	major ⁹	-	PMRA 2001d
queous photolysis		. 400/		DOD 4000-
,2,4-benzenetriol	2,4-D	>10%	-	PSD 1993a
		31.7%	30 days	EU 2001a
,6-diethyl-N-methoxymethyl	alachior	≤1.57%	30 days	EPA 1998b
cetanilide		00.00	004 h	DOD 40045
ihydroxy anilazine	anilazine	86.9%	364 hours	PSD 1994b
eethylatrazine	atrazine	2.8%	15 days	Solomon et al. 1996
		38%	7 days	PSD 1992b
	-t	< 4%	• 15 day	APVMA 1997a
ydroxyatrazine	atrazine	2.6%	15 days	Solomon et al. 1996
		14.6%	7 days	PSD 1992b
1	-	<4%	• 8 0 de	APVMA 1997a
eisopropylatrazine	atrazine	1.2%	6.9 days	Solomon et al. 1996
		4.3%	7 days	PSD 1992b
and the state of the		<4%	• 7 alaur	APVMA 1997a
iaminochloroatrazine	atrazine	22%	7 days	PSD 1992b Selemen et al. 1006
		0.9%	15 days	Solomon et al. 1996
		<4%	•	APVMA 1997a
IHA	atrazine	1.2%	6.9 days	Solomon et al. 1996
		<4%	-	APVMA 1997a
EHA	atrazine	0.4%	15 days	Solomon et al. 1996
		<4%	-	APVMA 1997a
ference compound 28	azoxystrobin	minor ⁹	•	PMRA 2000a
ference compound 30	azoxystrobin	minor ⁹	•	PMRA 2000a
isopropyl-2,3-dioxo-5-oxocyclo-				
enteno[d]1H-2,1,3-thiadiazin-4(3H)-	bentazone	21% (pH 7)	-	EU 2000a
ne 6-carbonic acid				
		21% (pH 7)	142 hours	EPA 2001a
[N-(1-methyl-ethyl)]-1-sulfoamino-	bentazone	6.46% (pH 7)	142 hours	EPA 2001a
enzamide			142 10010	
2,4-triazole	bitertanol	52.5%	-	PSD 1994c
-hydroxybiphenyl	bitertanol	12.0%	-	PSD 1994c
bromo-4-hydroxy-benzonitrile	bromoxynii	major ^g	•	EU 2004d
hydroxy-benzonitrile	bromoxynii	major ^g	-	EU 2004d
romoxynil	bromoxynił octanoate	major ⁹	-	EU 2004d
cyano-2-bromophenyl octanoate	bromoxynii octanoate	13.9% ^b	3 days	EPA 1998c
5,-dibromo-4-hydroxybenzonitrile	bromoxynil octanoate	53.4% ^b	30 days	EPA 1998c
henyl carbamate	bromoxynii octanoate	26.6% ^p	2 days	EPA 1998c
NTBA	butralin	31.8%	11 days	PSD 1998a
hydroxy-2,5,6-	chlorothalonii	10%	-	EPA 1999b
chloroisophthalonitrile	GUIDIOUIZIOIU	1070	-	ELV 19990
amino-4-methoxy-8-methyl-1,3,5-	chlorsulfuron	5 - 44%		PSD 1991a
azine			-	
chlorobenzene sulfonamide	chiorsulfuron	4 - 21%	-	PSD 1991a
chlorophenylsulfonyl urea	chlorsulfuron	0 - 4%	•	PSD 1991a
,O-diethyl-O-(3-acetoxy)	coumaphos	43%	83.5 hours	EPA 1996d
nenyiphosphorothioate	•		03.3 nOUN	
oumaphoxon	coumaphos	10.2%	-	EPA 1996d
•		39.6% 9	6 hours - 2	EU 2002e
CIM	cyazofamid		days	
TID	cyazofamid	18.5% ⁹	21 days	EU 2002e
toluamide	cyazofamid	12.1% *	36 days	EU 2002e
CTS	cyazofamid	37.9% 9	3 - 6 hours	EU 2002e
	•	10 - 45% (pH		
18	cycloxydim	5.5)	•	PSD 1990b
		6 - 43% (pH 9.4)	-	PSD 1990b
2S	cycloxydim	3 - 9% (pH 5.5)	-	PSD 1990b
		2 - 7% (pH 9.4)		PSD 1990b
20	cycloxydim	6 - 11% (pH 5.5)	-	PSD 1990b
SO SO: and T2SO: combined	cycloxydim		-	PSD 1990b
SO ₂ and T2SO ₂ combined	cycloxydim cycloxydim	< 3% (pH 5.5) 2 - 8% (pH 9.4)	-	PSD 1990b
SO and T2SO combined	cyfluthrin	2 - 8% (pH 9.4) 37%	- 14 day-	EU 2002c
-fluoro-3-phenoxybenzoic acid		37%	14 days	EU 2002c
-fluoro-3-phenoxybenzaldehyde	cyfluthrin cyfluthrin	12%	14 days	EU 2002c
ompound la	cyfluthrin <i>Iambda-</i> cyhalothrin	>10% major ^s	•	EU 2002C EU 2001d

Fransformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
h - A - h - a				
Aqueous photolysis continued		14%	-	PMRA 2003d
	lambda-cyhalothrin	major ⁹	-	EU 2001d
-phenoxybenzoic acid	lambua-cynaicann	25%	•	PMRA 2003d
	cymoxanil	minor ⁹	•	PMRA 2000b
minooxacetic acid	cymoxanii	52%	•	PMRA 2000b
X915	cymoxanii	minor [®]	•	PMRA 2000b
13204	cymoxanil	minor ⁹	•	PMRA 2000b
4226	cymoxanil	minor ⁹	•	PMRA 2000b
(P533	cymoxanil	35%	•	PMRA 2000b
3273	cyprodinil	19% (pH 7.3)		PSD 1997a
CGA 272749		~16% (pH 7.3)	-	PSD 1997a
CGA 2249287	cyprodinil	1% (pH 7.3)	-	PSD 1997a
henylguanidine	cyprodinil deltermetherin	main ⁹	•	EU 2002g
-phenoxybenzoic acid	deltamethrin	5% (pH 3.8)	•	PSD 1993d
athyl-m-hydroxyphenyl carbamate	desmedipham	10% (pH 3.8)	10 hours	EPA 1996e
-		<1%	10 1104.0	EPA 1996e
ethyl N-(3-hydroxy-4-phenyl	desmedipham	~170	-	
thyl N-(2-phenylcarbamyl-5-		- 4 8/		EPA 1996e
ydroxyphenyl)	desmedipham	<1%	-	El M (0000
arbamate		4 70/	21 day-	EPA 1998e
I-chloro-2(3H)benzoxazolone	diclobenii	17%	21 days	EPA 19980
2-hydroxybenzonitrile	diclobenil	4%	21 days	EPA 1998e
2,6-dichlorobenzoic acid	diclobenil	3%	21 days	EPA 19980
2-chlorobenzonitrile	diclobenil	2%	21 days	EPA 1998e
2.6-dichlorobenzamide	diclobenil	1%	21 days	EPA 19980
s-hydroxy-2,6-dichlorobenzonitrile	diclobenil	1%	21 days	EPA 19986
p.p'-dichiorobenzophenone	o,p'-dicofol	major	•	EPA 19961 EPA 19981
p,p'-dichlorobenzophenone	p,p'-dicofol	major ^a	-	524 19801
-	• •	0 - 33%	237 - 288	PSD 1995b
4-(2,4-dichlorophenoxy)phenol	diclofop-methyl		hours	FRA 4000-
EPTC sulfoxide	EPTC	3.4%	•	EPA 1999c
	EPTC	2%	•	EPA 1999c
EPTC sulfone	EPTC	1.9%	•	EPA 1999c
N,N-dipropylformamide	EPTC	35.7%		EPA 1999c
dipropylamine		a		PSD 1995
s-trifluoromethyl-3-nitro-1,2-	ethalfluralin	24.4%	•	
benzendiamine	esfenvalerate	17.3%	10 days	PSD 1992c
CI-Vacid	famoxadone	major ⁹	•	PMRA 2003h
IN-JS940	famoxadone	major ^e		PMRA 2003h
IN-H3310	famoxadone	minor ^a	-	PMRA 2003h
IN-JL856	famoxadone	minor ⁹	•	PMRA 2003h
IN-KF015		24%	1 hour	PMRA 2003b
WAK 7004	fenhexamid	major ⁹	15 days	PMRA 2003b
hydroxylated fenhexamid	fenhexamid	major ⁹	15 days	PMRA 2003b
succinic acid	fenhexamid	major ⁹		PMRA 1993a
p-nitro-m-cresol	fenitrothion		14 days	APVMA 1999
carboxy-fenitrothion	fenitrothion	10% (pH 5)	•	
n 0-dimethyl 0-(3-carboxyl-4-nitro-	fenitrothion	12.4% ^b	14 - 30 days	EPA 1995c
phenyl) phosphorothioate fenoxaprop-ethyl acid	fenoxaprop-ethyl	6.9%	192 hours	PSD 1990c
4-(6-chloro-2-	fenoxaprop-ethyl	6.4%	192 hours	PSD 1990c
benzoxazolyloxy)phenol		12.3%	360 minutes	PSD 1997b
Ro 43-4756	fenoxycarb	12.3%	6 weeks	PSD 1989a
3-phenoxybenzoic acid	fenpropathrin	11-3970		
2,2,3,3-tetramethyl cyclopropane carboxylic acid	fenpropathrin	2 - 39%	6 weeks	PSD 1989a
α-(2,2,3,3-tetramethylcyclopropyl)-3- phenoxybenzyl cyanide	fenpropathrin	5 - 13%	6 weeks	PSD 1989a
α-carbomoyl-3-phenoxybenzyl- 2,2,3,3-tetramethyl cyclopropane	fenpropathrin	4 - 28%	6 weeks	PSD 1989a
carboxylate M3 and M4 combined	fenpyroximate	10%	24 hours	PSD 1995d
1,3-dimethyl-5-phenoxypyrazole-4-	fenpyroximate	47.5 - 58.3%	6 hours	PSD 1995d
carbonitrile MB 46513	fipronil	43%	6 hours	PSD 2004a PSD 2004a
RPA 104615	fipronil	8.2%	6 hours	
triazolopyrimidine sulphonic acid-	florasulam	17%	-	PMRA 2004a
florasulam			AA A A A A A A A A 	PSD 1994i
compound V	fluazinam	51% (pH 9)	30 days	
overposed v		minor (pH 5)	30 days	PSD 1994i
MKH 6562 sulfonamide	flubcarbazone-sodium	22.6%	-	PMRA 2000c
MKH 6562 sulfonic acid	flubcarbazone-sodium	1.32%	•	PMRA 2000c
	flutenoxuron	>40%	31 days	HSE 1995
2,6-difluorobenzamide 1-(2,6-difluorobenzoyl)-3-(4-	futenoxuron	5.5%	31 days	HSE 1995
hydroxyphenyl) urea		5.8%	-	PSD 1992d
RH-4514	fluoroglycofen-ethyl flusilazole	5.070 <5%	30 days	PSD 1989b
1H-1,2,4-triazole				

 Table A1. Pesticide transformation product formation in environmental systems (Chapter 2)

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
Aqueous photolysis continued				
4-(3-carboxypheny!)-5-methyl amino-	• •			DDD 2000-
2-phenyl -furan-3(2H)-one	flurtamone	33.5%	-	PSD 2000a
3-methyl phosphinico-proprionic acid	glufosinate ammonium	19% (pH 9)	120 hours	PSD 1990f
1,5-bis(α,α,α-p-tolyi)-1,4-pentadien-	hydramethylnon	<8%	90 minutes	PSD 1994j
3-one TDTP	hydramethylnon	<8%	90 minutes	PSD 1994j
	hydramethylnon	<8%	90 minutes	PSD 1994j
α,α,α-trifluoro-p-toluic acid p-trifluoromethyl cinnamic acid	hydramethylnon	<8%	90 minutes	PSD 1994
uinoline-3-carboxylic acid	imazaguin	14%	24 hours	PSD 1993h
2H-azolidino[3,4-b]quinoline-1,3-	•	21%	48 hours	PSD 1993h
lione	imazaquin	2170	40 nours	F30 19930
3-imino-2H-azolidino[3,4-b]quinolin- I-one	imazaquin	13%	48 hours	PSD 1993h
uinoline-2,3-dicarboxylic acid	imazaguin	~30%	48 hours	PSD 1993h
E 0002166	iodosulfuron-methyl	major ^g	•	PMRA 2004f
oxynil	ioxynil octanoate	major ^g	-	EU 2004g
l-hydroxybenzonitrile	ioxynil octanoate	major ⁹	•	EU 2004g
-cyano-2-idophenyl octanaote	ioxynil octanoate	major ^s	•	EU 2004g
-iodo-4-hydroxybenzonitrile	ioxynil octanoate	minor	•	EU 2004g
,5-di-iodo-4-hydroxybenzamide	ioxynil octanoate	minor		EU 2004g
-(4-isopropyl phenyl)-1-methylurea	isoproturon	5%	24 hours	PSD 1995g
-isopropyl phenylurea	isoproturon	3%	24 hours	PSD 1995g
-isopropyl aniline	isoproturon	4%	24 hours 78 hours	PSD 1995g
-aminophenol	isoproturon	26% >20%		PSD 1995g HSE 1993
nalonic acid	kathon 886 kathon 886	>20%	-	HSE 1993
I-methyl malonamic acid nalonamic acid	kathon 886	>20%	•	HSE 1993
cetic acid	kathon 886	<20%	-	HSE 1993
ormic acid	kathon 886	<20%	-	HSE 1993
-(1,2-di(carbethoxy)ethyl)-0-methyl	malathion	10 - 20% (pH 4)	30 days	PSD 1995i
ydrogen phosphorodithioate	МСРА	11.6%		EU 2005
-methyl-4-chlorophenol	MCPB	18% (pH 5)		EU 2005k
-cresol	MCFB	48.5% (pH 7)	-	EU 2005k
		26.2% (pH 9)	-	EU 2005k
I-(4-hydroxy-o-tolyloxy)butyric acid	мсрв	33% (pH 5)	•	EU 2005k
		28.5% (pH 7)	-	EU 2005k
		17.8% (pH 9)	-	EU 2005k
2,4 dihydroxyphenyl formate	мсрв	41.6% (pH 5)	•	EU 2005k
		36.5% (pH 7)	•	EU 2005k
		23.2% (pH 9)	•	EU 2005k
enzoic acid	MCPB	13.8% (pH 5)	•	EU 2005k
		1.6% (pH 7)	•	EU 2005k
		7.4% (pH 9)	-	EU 2005k
2-hydroxyphenyl formate	мсрв	10.4% (pH 5)	-	EU 2005k EU 2005k
		4.9% (pH 7)	•	EU 2005k
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	metalavad	14.4 (pH 9) 6.1%	- 28 days	EPA 1994c
GA-62826	metalaxyl metconazole	14.5%	30 days	PSD 2000b
iydroxymetconazole Iechlorometconazole	metconazole	7.8%	30 days	PSD 2000b
nethiocarb sulfoxide	methiocarb	9.8%	30 days	PSD 1998b
nethiocarb sulfoxide phenol	methiocarb	2.7%	30 days	PSD 1998b
cetonitrile	methomyi	66%	15 days	EPA 1998h
S-methyl-N-hydroxythioacetimidate	methomyl	≤3%	•	EPA 1998h
nethyl-2-(aminosulfonyl)benzoate	metsulfuron-methyl	58% (dark)	14 days	PSD 1991e
	•	13%	4 days	PSD 1991e
accharin	metsulfuron-methyl	7%	14 days	PSD 1991e
-(aminosulfonyl) benzoic acid	metsulfuron-methyl	7%	14 days	PSD 1991e
SDM	nicosulfuron	60.9% (pH 4.9)	•	PSD 2000c
		3.5% (pH 7.3)	•	PSD 2000c
		2.7% (pH 9.2)	•	PSD 2000c
		23.1% (pH 5)	•	PSD 2000c
	alaanulfurar	3.1% (pH 9)	•	PSD 2000c PSD 2000c
IPSA	nicosulfuron	1.6% (pH 9.2)	•	PSD 2000C PSD 2000c
OMPU	nicosulfuron	2.1% (pH 5) 1.6% (pH 9)	•	PSD 2000c
-ites & coning a stille - ide	onzelin	1.6% (pH 9) 2.9%	- 12 hours	EPA 1994d
-nitro-5-aminosulfanilamide	oryzalin			
)-nitro-5-amino-N-	oryzalin	4%	12 hours	EPA 1994d
propyisulfanilamide	oryzalin	5.7%	12 hours	EPA 1994d
3,5-dinitro sulfanilamide	-			
2-ethyl-7-nitro-1-propyl-5- sulfonylaminobenzimidazole 3-oxide	oryzalin	14%	12 hours	EPA 1994d
2-chloro-1-(3-ethoxy-4- hydroxyphenol)-4-(trifluoromethyl)	oxyfluorfen	>10%		PSD 1996a
yaroxypnenoi)-4-(imiuoromeinyi) jenzene				
I-carboxy-1-methylpyridinium	paraquat	6%	85 weeks	EPA 1997c

Transformation product	Parent pesticide *	% of parent pesticide *	Time *	Reference
Aqueous photolysis continued				
2,6-dinitro-3,4-dimethyl aniline	pendimethalin	9.3%		EPA 1997d
phorate sulfoxide	phorate	major ^g	-	PMRA 2003a
phorate sulfone	phorate	major ⁹	-	PMRA 2003a
formaldehyde	phorate	major ^g	•	PMRA 2003a
5,6-dimethyl-2-dimethylamino-	•	•	. .	
pyrimidin-4-ol	pirimicarb	20% (pH 5)	8 days	PSD 1994m
pynindwi-4-or		16% (pH 7)	8 days	PSD 1994m
		24% (pH 9)	8 days	PSD 1994m
5.6-dimethyl-2-methylamino-4-		2470 (p118)	o uaya	F30 188411
pyrimidin-4-ol, 2-amino-5,6-dimethyl-				
pyrimidin-4-ol and guanidine	pirimicarb	<5% (pH 5)	8 days	PSD 1994m
combined		450/ (all 7)	0 daya	DCD 1004
		<5% (pH 7) <1% (pH 9)	8 days	PSD 1994m PSD 1994m
		< 176 (pr19)	8 days	PSD 1994m
5,6-dimethyl-2-methylamino-	pirimicarb	4% (pH 5)	8 days	PSD 1994m
pyrimidin-4-yl-dimethylcarbamate	·	CR((~117)	0. dau	DOD 4004
		6% (pH 7)	8 days	PSD 1994m
		3% (pH 9)	8 days	PSD 1994m
5,6-dimethyl-2-methylformamido-	pirimicarb	16% (pH 5)	8 days	PSD 1994m
pyrimidin-4-yl-dimethyl carbamate	L		-	
		18% (pH 7)	8 days	PSD 1994m
		10% (pH 9)	8 days	PSD 1994m
didesmethyl pirimicarb	pirimicarb	11% (pH 5)	8 days	PSD 1994m
••		9% (pH 7)	8 days	PSD 1994m
		17% (pH 9)	8 days	PSD 1994m
N,N-dimethylguanidine	pirimicarb	17% (pH 5)	8 days	PSD 1994m
and a second	P	22% (pH 9)	8 days	PSD 1994m
N methylau anidina	nicipale and	20% (pH 5)	8 days	PSD 1994m
N-methylguanidine	pirimicarb	20% (pH 9)	8 days	PSD 1994m PSD 1994m
a bi dhe ede de central de constal bi		io a (pri a)	o uays	P30 19940
N,N-dimethylguanidine and N-	pirimicarb	36% (pH 7)	8 days	PSD 1994m
methyiguanidine combined	•		-	
CGA-120844	primisulfuron methyl	54.6%	•	PMRA 2001a
saccharin	primisulfuron methyl	10.2%	•	PMRA 2001a
CGA-191429	primisulfuron methyl	0.7%	•	PMRA 2001a
CGA-171683	primisulfuron methyl	2%	•	PMRA 2001a
Ro 16-1976	propaguizatop	4.1%	3 days	PSD 1994n
Ro 41-0812	propaguizatop	1.2%	3 days	PSD 1994n
Ro 19-6241	propaquizatop	3.3%	3 days	PSD 1994n
nydroxylamine derivative	propaguizatop	6%	3 days	PSD 1994n
sopropoxy phenol	propoxur	major ⁹	-	PSD 1993b
beta-(3,5-dichlorobenzamido)-beta-	proposal	•	-	
	propyzamide	15%	•	EU 2003q
nebutyric acid	pymetrozine	78.8%		PMRA 2002
CGA 215525			-	
CGA 249257	pymetrozine	38.8%	•	PMRA 2002
nydroxyl CGA 215525	pymetrozine	10.2%	•	PMRA 2002
CGA 294849	pymetrozine	5.3%	-	PMRA 2002
500M78	pyraciostrobin	major ^e	•	PMRA 2003n
3F 500-14	pyraciostrobin	major ⁹	•	PMRA 2003n
500M58	pyraclostrobin	major ^e	•	PMRA 2003n
3F 500-13	pyraciostrobin	major ^a	-	PMRA 2003n
3F 500-11	pyraciostrobin	major ⁹	-	PMRA 2003n
		37%	-	PMRA 2003n
2-(2-pyridyloxy) propyl alcohol	pyriproxyfen	15.8 - 30.4%	35 days	PSD 1996d
2-chioro-10-	F1.4.0.1.0.1			
	quinoxyfen	30% ^g	_	Roberts and Hutson
luoro[1]benzopyrano[2,3,4-	dan to value i	30 /	-	1999
jejquinoline				
5,7-dichloro-4-hydroxyquinoline	quinoxyfen	11% *	-	Roberts and Hutson
				1999
N-70941	rimsulfuron	23.2 - 25.1%	21 days	PSD 1996f
N-70942	rimsulfuron	6.9 - 9.8%	21 days	PSD 1996f
N-E9260	rimsulfuron	16.2%	21 days	PSD 1996f
N-J290	rimsulturon	19.1%	21 days	PSD 1996f
aminopyrimidine	sulfosulfuron	major ^e	•	PMRA 1998
sulfamic acid	suifosulfuron	major ⁹	-	PMRA 1998
	sulfosulfuron	major ^o	-	PMRA 1998
N-hydroxyl urea		major ^a	•	
oxamic acid	sulfosulfuron	major ⁹	•	PMRA 1998
sulfonic acid	sulfosulfuron	major ^g	-	PMRA 1998
ulfone	sulfosulfuron	major ^e	•	PMRA 1998
anilino acid	tau-fluvalinate	9%	10 minutes	PSD 1997e
haloaniline	tau-fluvalinate	<5%	-	PSD 1997e
licarboxylic acid	tau-fluvainate	<5%	-	PSD 1997e
	tau-fluvalinate	9.7%	- 7 minutes	PSD 1997e
3-phenoxybenzoic acid	tau-nuvaimate tau-ñuvalinate		1 1111111111111	
3-phenoxybenzaldehyde		<5%	•	PSD 1997e
cyanohydrin	tau-fluvalinate	10.7%	10 minutes	PSD 1997e
JA-231-2	tebuconazole	8 - 38%	-	PSD 1993k
		40%	•	PSD 1993k

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
queous photolysis continued				
KFE 1224	tebuconazole	11 - 21%	_	PSD 1993k
AFE 1224	1000000000	7%		PSD 1993k
		5-6%	•	PSD 1993k
	A-A		•	
IWG 3877	tebuconazole	<2%	•	PSD 1993k
		<3%	-	PSD 1993k
IWG 2061	tebuconazole	<2%	-	PSD 1993k
		<3%	•	PSD 1993k
A-230-4	tebuconazole	<2%	-	PSD 1993k
		<3%		PSD 1993k
A-230-5	tebuconazole	<2%		PSD 1993k
A-230-3	100000102010	<3%		PSD 1993k
	As house a seals		-	PSD 1993k
,2,4-triazole	tebuconazole	0.6 - 14%	-	
		<3%	•	PSD 1993k
) P -1	tepraloxydim	50% (pH 5)	•	PMRA 2004b
)P-2	tepraloxydim	19% (pH 7)	-	PMRA 2004b
P .	tepraloxydim	20% (pH 5)	•	PMRA 2004b
)P-6	tepraloxydim	13% (pH 9)		PMRA 2004b
	(opraioxydani	10 /0 (p11 0)		
-tert-butylamino-4-chloro-6-amino-	terbuthylazine	3.61%	•	PSD 1993a
-triazine				
traconazole dihydro isoquinoline	tatraconazala	9.3% [•]	4 dave	PSD 1999c
iazole	tetraconazole	9.J70	4 days	190 1988C
straconazole alcohol	tetraconazole	7.3% [•]	30 days	PSD 1999c
	~~ · · · · · · · · · · · · · · · · · ·		•	
etrafluoroethoxy triazolyl	tetraconazole	10.3% ^b	30 days	PSD 1999c
sobutanoic acid			•	
,2,4-triazole	tetraconazole	7% ^b	22 days	PSD 1999c
enzimidazole-2-carboxamide	thiabendazole	10.22%	-	EU 2001f
N-A4089	thifensulfuron-methyl	11%	•	PSD 1988c
1711000		11.3%	48 days	PSD 1991i
10		14%	40 days	PSD 1988c
hifensulfuron-methyl triazine urea	thifensulfuron-methyl			
		14.1%	48 days	PSD 1991i
hifensulfuron-methyl TP1	thifensulfuron-methyl	7%	•	PSD 1988c
•	-	7.1 - 7.4%	48 days	PSD 1991i
-chlorobezoic acid	thiobencarb	56%		EPA 1997e
	thiobencarb	29.4%	_	EPA 1997e
-chiorobenzaldehyde		6.1 - 6.7%	4.4. 20 daym	EPA 1997e
-chlorobenzyl alcohol	thiobencarb		14 - 30 days	
hiobencarb sulfoxide	thiobencarb	5%	14 days	EPA 1997e
)-[(4-chlorophenyl)methyl]diethyl	41. July	47 74	Od down	EDA 4007-
arbamate	thiobencarb	17.7%	21 days	EPA 1997e
nethomyl methylol	thiodicarb	1.95%	24 days	PSD 1992f
	thiodicarb		•	
nethomyl	THOUCARD	46.7%	24 days	PSD 1992f
		474/ (mb) 81	22 daym	EPA 1998k
		47% (pH 6)	23 days	EPA 1990K
nethomyl oxime	thiodicarb	1.7%	24 days	PSD 1992f
ieu on yr oxin o			,-	
IC54170	thiodicarb	5%	24 days	PSD 1992f
	thiodicarb			
IC54171	thiogicaro	3%	24 days	PSD 1992f
arbendazim	thiophanate-methyl	49.7%	5.5 days	EPA 2001c
	thiophanate-methyl	14.3%	5.5 days	EPA 2001c
DX-105	анорнанаю-тпешуя			
		4%	5.5 days	EU 2005m
H-432	thiophanate-methyl	4.4%	5.5 days	EPA 2001c
h-CH3	tolclofos-methyl	0.51% (pH 5)	30 days	PSD 1993
-		0.66% (pH 7)	14 days	PSD 1993
		0.78% (pH 9)	14 days	PSD 1993
	talalafae mathid			PSD 1993
MO	tolclofos-methyl	8.16% (pH 5)	30 days	
		11.97% (pH 7)	30 days	PSD 1993
		12.02% (pH 9)	14 days	PSD 1993I
M-TM	toiclofos-methyl	23.1% (pH 5)	30 days	PSD 1993I
		16.08% (pH 7)	30 days	PSD 1993i
				PSD 1993
	A . M	11.24% (pH 9)	30 days	
ralkoxydim metabolite II	tralkoxydim	22%	59.7 days	PSD 1993m
ralkoxydim metabolite 10	tralkoxydim	22%	14.9 days	PSD 1993m
alkoxydim metabolite IV	tralkoxydim	6.3%	89.5 days	PSD 1993m
GA 183859 sulfonic acid derivative	triasulfuron	12.9% ^b (pH 9)		EU 2000d
			748 6	PSD 1992h
iazine amine A	tribenuron methyl	6.5% (pH 9)	716 hours	
I-demethyl triazine amine A	tribenuron methyl	3.8% (pH 9)	716 hours	PSD 1992h
demethyl triazine amine A	tribenuron methyl	1.1% (pH 9)	716 hours	PSD 1992h
	tribenuron methyl	2.2% (pH 9)	716 hours	PSD 1992h
ulphonamide A				
accharin and acid sulphonamide A	tribenuron methyl	3.5% (pH 9)	716 hours	PSD 1992h
5,6-trichioro-2-pyridinol	triclopyr	principal ⁹	•	PMRA 1991b
-chloro-3,6-dihydroxy-2-	A.J. J	• •		504 4000
	triclopyr	48% (sterile)	-	EPA 1998i
vridinoloxyacetic acid		1.64		EDA 1000
oxamic acid	triclopyr	16%	•	EPA 1998i
Cohlem 2 hudross - numidinar-	triclopyr butoxyethyl	17%	30 days	EPA 1998
i/6-chloro-3-hydroxy-s-pyridinone	ester		Ju daya	ELLY 10001
	6.1.1			
ichloropyridinyloxyacetic acid	triclopyr butoxyethył	6%	30 days	EPA 1998i

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
Aqueous photolysis continued	· · · · · · · · · · · · · · · · · · ·			
	triclopyr butoxyethyl	6%	30 days	EPA 1998
2-hydroxy ethyl ester	ester	· · · ·	30 days	
CGA-357261	trifloxystrobin	major ⁹	-	PMRA 2004h
2-ethyl-7-nitro-5-	trifluralin	47.4%	•	EPA 1996h
trifluoromethylbenzimidazole 5-trifluoromethyl-3-nitro-1,2-benzene				
diamine	trifluralin	9.6%	-	EPA 1996h
2-ethyl-7-nitro-1-propyl-5-				
trifluoromethylbenzimidazole	trifluralin	53.8%	-	EPA 1996h
methyl saccahrin	triflusulfuron-methyl	71% ^b (pH 5)	•	PSD 1995r
		18 - 71%	-	PMRA 1999c
triazine amine B	triflusulfuron-methyl	47% ^b (pH 5)	-	PSD 1995r
	-	12 - 34%	-	PMRA 1999c
N-formyl methyl triazine amine B	triflusulfuron-methyl	20% ° (pH 5)	•	PSD 1995r
		20%	•	PMRA 1999c
N-demethyl triazine amine B	triflusulfuron-methyl	7% ^b (pH 5)	-	PSD 1995r
N-demethyl triflusulfuron-methyl	triflusulfuron-methyl	15% ⁶ (pH 7)	-	PSD 1995r
		15%	-	PMRA 1999c
propane-1,2,3-tricarboxylic acid	trinexapac ethyl	major ^s (pH 5.1 &	•	PSD 1995s
· · · · ·	· •	7.4) 56% (pH 7)	_	PSD 1995s
		major ⁹ (pH 5.1 &	-	
crotonyl CGA 163935	trinexapac ethyl	7.4)	•	PSD 1995s
		6% (pH 7)		PSD 1995s
RPA 406203	triticonazole	42%	6 days	PSD 2000d
		42 - 48%	• •	PMRA 2004c
pyrithione sulfonic acid	zinc pyrithione	70.12% (pH 9)	30 days	HSE 2003b
pyrithione sulfinic acid	zinc pyrithione	<10% (pH 9)	30 days	HSE 2003b
		11.59% (pH 9)	30 days	HSE 2003b
dimethyl formamide	ziram	23.7%	24 hours	PSD 1994c
dimethylthioformamide	ziram	18.1%	24 hours	PSD 1994c
RH-150721	zoxamide	15%	•	PMRA 2001d
RH-24549	zoxamide	27.7%	-	PMRA 2001d
RH-139432	zoxamide	42.4%	-	PMRA 2001d
Hydrol ysis (sterile)				
chioroaliyi alcohol	1,2-dichloropropene	72% °	•	EPA 1998a
chioroaliyi alcohol	1,3-dichloropropene	main ^e		EPA 1998a
alachlor oxamic acid	alachlor	2.2 - 25.1%	28 days	PSD 1990a
alachlor ethane sulfonic acid	alachior	0.3 - 5.5%	28 days	PSD 1990a
2-amino-4,6-dimethoxypyrimidine	amidosulfuron	21% (pH 5)	30 days	PSD 1994a
		2% (pH 6)	30 days	PSD 1994a
product A (unidentified)	amidosulfuron	23%	30 days	PSD 1994a
BTS 27271	amitraz	primary ^e	•	EPA 1996a
BTS 27919	amitraz	primary ^g	-	EPA 1996a
BTS 24868	amitraz anilazine	secondary ⁹ 65.3% (pH 8.9)	- 52 hours	EPA 1996a PSD 1994b
monohydroxy anilazine	aniiazine	52.1% (pH 7)	23 davs	PSD 1994b
monohydroxy anilazine continued	anilazine	24.1% (pH 5)	12 days	PSD 1994b
dihvdroxy anilazine	anilazine	0.19% (pH 8.9)	48 hours	PSD 1994b
aniyarony armazine		0.97% (pH 7)	23 days	PSD 1994b
		52.1% (pH 8.9)	18 days	PSD 1994b
reference compound 2	azoxystrobin	major ^g	•	PMRA 2000a
benalaxyl acid	benalaxyl	'main' ^e	•	EU 2004c
carbofuran	benfuracarb	54% (pH 7)	-	PSD 1998a
		9% (pH 9)	•	PSD 1998a
		13.6% (pH 7.1)	21.5 hours	PSD 1998a
carbofuran phenol	benfuracarb	35% (pH 7)	•	PSD 1998a
		76% (pH 9)		PSD 1998a
1 1	hanting-art	10.7% (pH 7.1)	21.5 hours	PSD 1998a
N-hydroxy-methyl carbofuran	benfuracarb bromoxynil octanoate	24% (pH 7.1)	21.5 hours	PSD 1998a EU 2004d
bromoxynii	DIGHIOAYIN OCUMORIO	35% (pH 5) 77.2% (pH 7)	30 days 30 days	EU 2004d
		76% (pH 9)	30 days 120 hours	EU 2004d
3.5-dibromo-				
3,3-albromo- dihdroxycyclohexadienyinitrile	bromoxynil octanoate	10.4% (pH 5)	21 days	EU 2004d
		10.7% (pH 7)	21 days	EU 2004d
3,5-dibromo-4-hydroxybenzonitrile	bromoxynil octanoate	35% °(pH 5)	30 days	EPA 1998c
o,o-albiottio-v-tiyaioAybolizzatiis iib		35% °(pH 5) 77% °(pH 7)	30 days	EPA 1998c
		76% ^b (pH 9)	30 days	EPA 1998c
3,5-dibromo-dihydroxy-	hmmon mil ooteneete	10.4% ^b (pH 5)		EPA 1998c
cyclohexadienyinitrile	bromoxynil octanoate		•	
		10.7% ^b (pH 7)	•	EPA 1998c
		7.9% ^b (pH 9)	-	EPA 1998c
				000 4000
1-tert-butyl-3-isopropyl-5-phenyl-2-	hunnfezin	47% (nH 4)		
1-tert-butyl-3-isopropyl-5-phenyl-2- biuret	buprofezin buprofezin	42% (pH 4) 15% (pH 4)	11 days	PSD 19936 PSD 19936

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time *	Reference
Aqueous photolysis continued				
4-hydroxy-2,5,6-	chlorothalonil	22% (pH 9)	49 days	PSD 2002
trichloroisophthalonitrile	of nor our later in		•	
		11.3% (pH 9)	72 days	PSD 2002
		20% (pH 9)	89 days	EPA 1999b
3-cyano-2,4,5,6- tetrachlorobenzamide	chlorothalonil	54% (pH 9)	49 days	PSD 2002
tetrachiorobenzamide		48.9% (pH 9)	72 days	PSD 2002
		50% (pH 9)	89 days	EPA 1999b
3,5,6-trichloro-2-pyridinol	chiorpyrifos	48% 6	-	EPA 1999d
O-ethyl O-(3,5,6-trichloro-2-pyridinol)				
phosphorothioate	chlorpyrifos	13 % ^b	•	EPA 1999d
deethyl chlorpyrifos	chiorpyrifos	main ^e	-	APVMA 2000b
cloquintocet acid	cloquintocet-mexyl	40 - 91%	-	PSD 1995a
chlorferon	coumaphos	4.3%	•	EPA 1996d
coumaphoxon	coumaphos	4.3%	•	EPA 1996d
5-hydroxy-3-methylbenzofuran	coumaphos	2.6% (pH 7)	•	EPA 1996d
CCIM	cyazofamid	79 - 82% (pH 5)	30 days	EU 2002e
CCIM	cyazofamid	83% (pH 7)	30 days	EU 2002e
CCIM	cyazofamid	74 -77% (pH 9)	30 days	EU 2002e
CCIM-AM	cyazofamid	10% (pH 9)	30 days	EU 2002e
rso	cycloxydim	12 - 16% (pH 7)	32 days	PSD 1990b
		19% (pH 3)	0 days	PSD 1990b
		7 - 11% (pH 5)	14 days	PSD 1990b
	a contractor collect	10 - 18% (pH 9)	7 days	PSD 1990b
r1S	cycloxydim	3 - 6% (pH 7)	32 days	PSD 1990b
		7% (pH 3)	30 minutes	PSD 1990b
		4 - 7% (pH 5)	14 days 7 days	PSD 1990b PSD 1990b
	es colons a colone	4% (pH 9) 3 - 9% (pH 7)	32 days	PSD 1990b
12S	cycloxydim	3% (pH 9)	7 days	PSD 1990b
[250		10% (pH 3)	6 days	PSD 1990b
2	cycloxydim evoloxydim	70% (pH 3)	6 days	PSD 1990b
12	cycloxydim	52% (pH 5)	14 days	PSD 1990b
l-fluoro-3-phenoxybenzaldehyde	cyfluthrin	89% (pH 9)	21 days	EU 2002c
-iluoro-3-prierioxyberizalueriyue	Cyndenni	11% (pH 7)	35 days	EU 2002c
compound la	/ambda-cyhalothrin	major®	-	EU 2001d
-phenoxybenzaldehyde	ambda-cyhalothrin	major ^e	-	EU 2001d
aminooxacetic acid	cymoxanil	minor ^e		PMRA 2000b
IX915	cymoxanii	minor ^a	-	PMRA 2000b
W3595	cymoxanii	39% (pH 9)	•	PMRA 2000b
J3204	cymoxanil	60% (pH 9)	-	PMRA 2000b
<p533< td=""><td>cymoxanil</td><td>57% (pH 7)</td><td>-</td><td>PMRA 2000b</td></p533<>	cymoxanil	57% (pH 7)	-	PMRA 2000b
(Q960	cymoxanil	minor [®]	•	PMRA 2000b
3273	cymoxanil	10% (pH 7)	•	PMRA 2000b
xalic acid	cymoxanil	minor ⁹	•	PMRA 2000b
-phenoxybenzaldehyde	deltamethrin	main ^g	-	EU 2002g
lecamthrinic acid	deitamethrin	trace	•	EU 2002g
liphenylurea	desmedipham	<0.6%	•	PSD 1993d
p'-dichlorobenzophenone	o p'-dicofol	major ^e	•	EPA 1998f
-chlorobenzoic acid	o,p'-dicofol	minor [®]	•	EPA 1998f
p'-dichlorobenzophenone	p,p'-dicofol	major ^s	•	EPA 1998f
A1	diffufenzopyr	major (pH 5)	•	PMRA 1999b
46	diffutenzopyr	major (pH 5)	•	PMRA 1999b
i-demethyldimefuron	dimeturon	<10%	•	PSD 1993e
compound D	dimefuron	<10%	•	PSD 1993e
ompound G	dimefuron	<10%	-	PSD 1993e
(3-chlorophenyl)amino]-N.N-	dimefuron	<10%	-	PSD 1993e
limethylcarboxamide				
(3-chloro-4-hydroxyphenyl)amino}-	dimeturon	<10%	•	PSD 1993e
I,N-dimethylcarboxamide			20 day	
)-desmethyldimethoate	dimethoate	12% (pH 5)	30 days	PSD 1993f
		22% (pH 7)	30 days	PSD 1993f
and the state of the second	dimetheetc	62% (pH 9)	30 days	PSD 1993f
),O-dimethylphosphorothioic acid	dimethoate	ND (pH 5) 2% (pH 7)	30 daya	PSD 1993f
			30 days	PSD 1993f
		36% (pH 9)	30 days	PSD 1993f
,4-dichloroaniline	diuron	0.5% (pH 5, 7 &	-	EPA 2003b
·		9) malas 8		
ndosulfan diol	endosulfan	major [®]	-	EPA 2002c
CI-Vacid	esferivalerate	14.9% (pH 9)	28 days	PSD 1992c
CIPA	esferivalerate	27%	7 days	EU 2000b
N-JS940	famoxadone	major [®] (pH 5, 7	•	PMRA 2003h
		and 9)		
N-JL856	famoxadone	major [®] (pH 7		PMRA 2003h
		and 9)		
	A	minor (pH 5)	-	PMRA 2003h
N-H3310	famoxadone	major ⁹ (pH 7)		PMRA 2003h

Fransformation product	Parent pesticide *	% of parent pesticide *	Time *	Reference
Aqueous photolysis continued				
Aqueous priotorysis communication		minor ^g (pH 5		DMD A 2002h
		and 9)	-	PMRA 2003h
N-MN968	famoxadone	major [°] (pH 9)	-	PMRA 2003h
3-methyl-4-nitrophenol	fenitrothion	15.1% (pH 9)	-	EPA 1995c
		15%	30 days	APVMA 1999
lemethyl fenitrothion	fenitrothion	10.3% (pH 5 &	-	EPA 1995c
		7) 5.8% (-11.0)		EPA 1995c
10	fennurovimato	5.6% (pH 9) 6.7%	- 30 days	PSD 1995e
13 .3-dimethyl-5-phenoxypyrazole-4-	fenpyroximate			
arbonitrile	fenpyroximate	10.1%	30 days	PSD 1995e
20077	fipronil	53% (pH 9)	30 days	HSE 1999
RPA 200766	fipronil	52% (pH 9)	30 days	PSD 2004a
-hydroxy-XDE-570	florasulam	14 - 32%	90 days	PMRA 2001c
uazifop acid	fluazifop-P-butyl	major ⁹	• •	PMRA 1988
uazifop acid	fluazifop-butyl	major ⁹	-	PMRA 1988
•		major ⁹ (pH 7 &	_	PMRA 2003j
ompound V	fluazinam	9)	-	•
IKH 6562 sulfonamide	flubcarbazone-sodium	3.9 - 4.2%	•	PMRA 2000c
H-9985	fluoroglycofen-ethyl	48.1% (pH 5)	30 days	PSD 1992d
		64.7% (pH 7)	30 days	PSD 1992d
		21.3% (pH 9)	30 days	PSD 1992d
H-5781	fluoroglycofen-ethyl	4% (pH 5)	30 days	PSD 1992d
		13.8% (pH 7)	30 days	PSD 1992d
		77.7% (pH 9)	30 days	PSD 1992d
11	imazaquin	10% (pH 9)	30 days	PSD 1993h
-carbamoyl-N-propargylglycine	imiprothrin	24.26% ^h (pH 7)	30 days	PMRA 2003
		87.28% " (pH 9)	5 days	PMRA 2003
-propargylimidazolidine-2,4-dione	imiprothrin	1.81% " (pH 7)	30 days	PMRA 2003
		4.26% ⁿ (pH 9)	5 days	PMRA 2003
xynil	ioxynil octanoate	major ⁹	•	EU 2004g
iodo-4-hydroxybenzonitrile	ioxynil octanoate	major ^g	-	EU 2004g
opargyl butyl carbamate	IPBC	12% (pH 7)	30 days	HSE 1994
		1% (pH 5)	30 days	HSE 1994
P 35606	iprodione	11.4% (pH 5)	30 days	EU 2002n
		15% ⁶ (pH 7)	125 hours	EU 2002n
		11.9% (pH 5)	•	EPA 1998g
P 30228	iprodione	46% (pH 7) 92% [°] (pH 8)	125 hours	EU 2002n
		92% ° (pH 8)	2 hours	EU 2002n
		93.3% (pH 9)	-	EPA 1998g
PA 202248	isoxaflutole	<10%	-	PMRA 2000e
PA 203328	isoxaflutole	<10%	-	PMRA 2000e
PA 205834	isoxaflutole	<10%	-	PMRA 2000e
alonic acid	kathon 886	<20%	•	HSE 1993
-methyl malonamic acid	kathon 886	>20%	•	HSE 1993
alonamic acid	kathon 886	<20%	-	HSE 1993
thylenethicurea	mancozeb	major ^e (pH 5)	-	EU 2005h
		major ^e (pH 7)	•	EU 2005h
thyleneurea	mancozeb	trace ⁹ (pH 5)	•	EU 2005h
		trace ⁹ (pH 7)	•	EU 2005h
thylenebisisothiocyanide sulfide	mancozeb	trace ⁹ (pH 5)	•	EU 2005h
		major ⁹ (pH 7)	•	EU 2005h
nalathion monocarboxylic acids	malathion	1.8% (pH 5)	•	PSD 1995i
-		23% (pH 7)	-	PSD 1995
		40% (pH 9)	•	PSD 1995i
		15% (pH 8)	36 hours	PSD 1995i
hyl hydrogen furnarate	malathion	0.6% (pH 5)	•	PSD 1995
·		19% (pH 7)	•	PSD 1995i
		36% (pH 9)	-	PSD 1995i
iethyl mercaptosuccinate	malathion	23% (pH 7)	•	PSD 1995i
		10% (pH 9)	•	PSD 1995
alathion dicarboxylic acid	malathion	4% (pH 7)	•	PSD 1995i
-		3% (pH 9)	•	PSD 1995i
ethyl fumarate and ethyl hydrogen	malathion	35% (pH 8)	36 hours	PSD 1995
marate combined		33 /a (pri 0)	30 10013	
(1,2-di(carbethoxy)ethyl)-0-methyl	malathion	8 - 10% (pH 4)	30 dava	PSD 1995i
drogen phosphorodithioate		0 - 1076 (pH 4)	30 days	LON 19801
IDT	mancozeb	44.5% (pH 7)	30 hours	PSD 2004b
		93.8% (pH 9)	0 hours	PSD 2004b
GA-41638	metolachior	3.63%	30 days	EPA 1995f
netolachlor oxanilic acid	metolachior	3.54%	30 days	EPA 1995f
GA-46129	metolachior	3.42%	30 days	EPA 1995f
GA-50720	metolachior	3.2%	30 days	EPA 1995f
S-methyl-N-hydroxythioacetimidate	methomyl	41 - 44%	30 days	EPA 1998h
leaminated metribuzin	metribuzin	major ⁹		EPA 1998
	metsulfuron-methyl	~50% ° (pH 5)	-	EU 2000c
N-A4098				

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
Aqueous photolysis continued				
nethyl-2-(aminosulfonyl)benzoate	metsulfuron-methyl	26%	30 days	PSD 1991e
saccharin	metsulfuron-methyl	37%	30 days	PSD 1991e
Baodilaini	mewanaren meury	35% ^b		EU 2000c
ethylene bisisocyanate sulfide	nabam	major ^g		PSD 1994e
ethylenethiourea	nabam	major ⁹	-	PSD 1994e
ASDM	nicosulfuron	53% (pH 5)	32 days	PSD 2000c
ADMP	nicosulfuron	65% (pH 5)	32 days	PSD 2000c
2-chioro-1-(3-hydroxy-4-	Theosonation	00 / (pr 0)	Jr Udya	100 20000
nitophenoxy)-4-(trifluoromethyl)	oxyfluorfen	1.3-1.7%		PSD 1996a
enzene	Oxyndonen	1.3-1.7 /0	•	F3D 19904
MHPC	mb comodinh em	major ^e		EU 2004i
	phenmedipham	major ⁹	•	PMRA 2003a
horate sulfoxide	phorate	major ⁹	•	
horate sulfone	phorate	major ⁹	•	PMRA 2003a
ormaldehyde	phorate	major ^e	•	PMRA 2003a
hosmet oxon	phosmet	major ^e	-	PMRA 2004d
-diethylamino-6-methylpyrimidin-4-	pirimiphos-methyl	main ⁹	2 weeks	PSD 1991a
1	planiplice filealy		-	
),2-diethylamino-6-methylpyrimidin-	niziminhos mothul	significant ^g	2 weeks	PSD 1991a
-yl-O,O-dimethyl phosphate	pirimiphos-methyl	-	T MOOK3	
GA-171683	primisulfuron methyl	43.4%	•	PMRA 2001a
GA-120844	primisulfuron methyl	46.8%	•	PMRA 2001a
H24644	pronamide	<4%	•	EPA 1994f
H24580	pronamide	<4%	-	EPA 1994f
124360	pronamide	<4%	-	EPA 1994f
	•	major [®] (pH 7		
lo 17-3102	propaquizafop	and 9)	14 days	PSD 1994n
and the second	-		14 de-	PSD 1994n
ydroxylamine derivative	propaquizafop	major ⁹ (pH 5)	14 days	
GA 300407	pymetrozine	77.1% (pH 5)	-	PMRA 2002
GA 215525	pymetrozine	47.7% (pH 5)	-	PMRA 2002
GA 249257	pymetrozine	2.6% (pH 5)	-	PMRA 2002
F 500-5	pyraciostrobin	4%	•	PMRA 2003n
IF 500-6	pyraclostrobin	4%	•	PMRA 2003n
F 500-7	pyraciostrobin	4%	•	PMRA 2003n
-chloro-3-phenyl-4-hydroxy-	uu mintata	50%	66.7 hours	PMRA 1991a
vridazine	pyridate	30%	00.7 10018	PMRA 19918
dentified I	RH-287	31.4%	•	HSE 2004
dentified II	RH-287	5%	-	HSE 2004
Jentified III	RH-287	1.9%	-	HSE 2004
N-70941	rimsulfuron	17% ^b	-	PSD 1996f
	rimsulturon	84% ^b	-	PSD 1996f
N-70942		10%	•	
N-E9260	rimsulturon		•	PSD 1996f
N-J290	rimsulfuron	7% °	•	PSD 1996f
N-T5831	rimsulfuron		-	PSD 1996f
ulphonamide	sulfosulfuron	major ⁹	•	PMRA 1998
minopyrimidine	sulfosulfuron	major ^g	•	PMRA 1998
nilino acid	tau-fluvalinate	58% (pH 9)	-	PSD 1997e
		18% ⁸ (pH 7)	-	PSD 1997e
icarboxylic acid	tau-fluvainate	15% (pH 9)	•	PSD 1997e
-phenoxybenzoic acid	tau-fluvalinate	12% (pH 5)	•	PSD 1997e
-phenoxybenzaldehyde	tau-fluvalinate	33% (pH 9)	•	PSD 1997e
		20% (pH 7)	-	PSD 1997e
P-2	tepraloxydim	68%	•	PMRA 2004b
P-8	tepraioxydim	20%	•	PMRA 20046
rr-≎ IP-6	tepraloxydim	2%	_	PMRA 2004b
	tepraloxydim	minor ^g		PMRA 2004b
P-10			-	
	tepraloxydim tepraloxydim	minor ^e	-	PMRA 2004b
	tepraloxydim teft their	minor ⁹	-	PMRA 2004b
is-cyclopropanecarboxylic acid	tefluthrin	31 - 38% (pH 9)	•	PSD 1991h
3,5,6-tetrafluoro-4-methylbenzyl	tefluthrin	21 - 22% (pH 9)	-	PSD 1991h
Icohol				
ydroxyterbuthylazine	terbuthylazine	15.6% (pH 5)	50 days	PSD 1993a
-ester-3-sulfonamide	thifensulfuron-methyl	64%	•	EU 2001g
-ester-3-triuret	thifensulfuron-methyl	8 - 32%	•	EU 2001g
ethyl 3-(aminosulphonyl)-2-	thifensulfuron-methyl	onimen, ^g	10 day	PSD 1991i
iophenecarboxylate	a monacinal cristing	primary ^e	30 days	1901 1991 I
athomyl	thiodicarb	20% (pH 5)	30 days	EPA 1998k
		36% (pH 7)	30 days	EPA 1998k
		66% (pH 9)		EPA 1998k
- de de elles	thiophanate-methyl		1 days	
arbendazim		primary ^g	•	EPA 2001c
V-1951	thiophanate-methy!	primary ^e	•	EPA 2001c
M-TM	toiciofos-methyl	major ⁹	-	PSD 1993
h-CH3	tolclofos-methyl	major ^g	•	PSD 1993
	in the overline	75.8 - 79% (pH	00 day -	DOD 4000-
alkoxydim metabolite 9	tralkoxydim	5)	28 days	PSD 1993m
		18.8% (nH 7)	14 dave	PSD 1993m
3,5,6-tetrafiuorobenzylalcohol	transfluthrin	18.8% (pH 7) 81.9%	14 days 36 days	PSD 1993m HSE 1997

	13% (pH 7)	15 days	PSD 1998d
triazamate	6% (pH 5)	30 days	PSD 1998d
	70% (pH 7)	7 days	PSD 1998d
triazamate	8% (pH 7)	15 days	PSD 1998d
	20% (pH 9)	30 days	PSD 1998d
triazamate	83% (pH 9)	2 days	PSD 1998d
tribenuron methyl	22 - 24% (pH 5	32 dava	PSD 1992h
albertaron meany	& 7)	SE Gaya	r ob roozii
triberuron methyl		32 dava	PSD 1992h
-	& 7)	•	
tribenuron methyl		32 days	PSD 1992h
tribeouron methyl		33 dava	PSD 1992h
albenaron meutyr		00 44,0	
tribenumn methyl	· •	33 days	PSD 1992h
-	7)	00 00,0	
triclopyr butoxyethyl	maior ⁹	-	EPA 1998
ester	• _		
trifloxystrobin		•	PMRA 2004h
triflusulfuron-methyl		-	PSD 1995r
	44 - 99%	-	PMRA 1999c
triflusulfuron-methyl	major ⁹	-	PSD 1995r
	43 - 98%	•	PMRA 1999c
trinexapac ethyl	<10% (pH 9)	•	PSD 1995s
	major ^e (pH 5 &		PSD 1995s
	7)	-	
	major ^e (pH 9)	•	PMRA 2001b
trinexapac ethyl		•	PSD 1995s
zinc pyrithione	21.23% (pH 5)	30 days	HSE 2003b
	16.39% (pH 7)	30 days	HSE 2003b
	< 10% (pH 9)	30 days	HSE 2003b
zinc pyrithione	<10% (pH 7)	30 days	HSE 2003b
	11.59% (pH 9)	30 days	HSE 2003b
Time	81.6% (pH 5 &	72 hours	PSD 1994c
2010011	7)	12 10015	FGD 1884C
	main ⁹ (pH 9)	•	PSD 1994c
zoxamide	37.6% (pH 4)	•	PMRA 2001d
zoxamide	30.9% (pH 4)	•	PMRA 2001d
zoxamide	50.2% (pH 9)	•	PMRA 2001d
zoxamide	24.5% (pH 7)	•	PMRA 2001d
alpha-cypermethrin	17% °	30 days	EU 2004b
alpha-cypermethrin		30 days	EU 2004b
amitrole	9.9% [•]	30 days	EPA 1996b
anilazine	75%	20 days	PSD 1994b
asulam	27.6%	2 hours	EPA 1995a
atrazine	19.2%	3.5 days	Solomon et al. 1996
	7.9%	168 hours	APVMA 1997a
	13.3%	30 days	APVMA 1997a
atrazine	7.9%	7 days	Solomon et al. 1996
	17.4%	168 hours	APVMA 1997a
	11.9%	30 days	APVMA 1997a
atrazine	6.8%	22 days	Solomon et al. 1996
	4.3%	168 hours	APVMA 1997a
azoxystrobin	minor ⁹	-	PMRA 2000a
azoxystrobin	minor ^s	•	PMRA 2000a
bromuconazole	<2%	•	PSD 1996a
bromuconazole	<2%	-	PSD 1996a
bromuconazole	<2%	•	PSD 1996a
bromuconazole	<2%	•	PSD 1996a
bromuconazole	<2%	•	PSD 1996a
butralin	<2.3%	•	PSD 1998a
captan	21.3%	5 days	EPA 1999a
•	0.4%	-	EPA 1999a
captan	U.470	o uays	ELV 1999
chlorotoluron	5.4%	3 days	EU 2005c
	40% 8	7 days	EU 2002e
			EU 2002e
			EU 2002c
			EU 2001d
		-	PMRA 2000b
		-	PMRA 2000b
·		•	PMRA 2000b
		•	PMRA 2000b
cymoxanii cymoxanii	minor ^a	•	PMRA 2000b
cymoxanil	minor ^e		PMRA 2000b
	triazamate triazamate tribenuron methyl tribenuron methyl tribenuron methyl tribenuron methyl tribenuron methyl tribenuron methyl tribenuron methyl tribenuron methyl tribenuron methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl trifusulfuron-methyl zinc pyrithione Zinc pyrithione Ziram zoxamide zoxamide zoxamide zoxamide zoxamide zoxamide zoxamide asularn atrazine atrazine atrazine atrazine atrazine atrazine atrazine captan captan captan choroburon cyszofamid cyfluthrin cymoxanii cymoxanii cymoxanii cymoxanii	Tiazamate 70% (pH 7) triazamate 8% (pH 7) 20% (pH 9) tribenuron methyl & 7) tribenuron methyl Tibenuron methyl 8, 7) tribenuron methyl 8, 7) tribenuron methyl 8, 7) tribenuron methyl 94, 96% (pH 5, 8, 7) tribenuron methyl 5, 6% (pH 5, 8, 7) tribenuron methyl 70, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	Triazamate $70\% (pH 7)$ 7 days triazamate $80\% (pH 7)$ 15 days 20% (pH 9) 30 days tribenuron methyl 8.7) 32 days tribenuron methyl 8.7) 33 days tribonuron methyl 8.7) 33 days tribonuron methyl 7.1 7.3% (pH 5.8.7) 33 days tribonuron methyl 7.1 $7.3\% (pH 5.8.7)$ 33 days tribonuron methyl major 9 - - tribus/turon-methyl major 9 - - trifusul/turon-methyl major 9 - - trinexapac ethyl -10% (pH 9) - - trinexapac ethyl -10% (pH 7) 30 days - zinc pyrithione 21.23% (pH 5) - - zinc pyrithione 21.5% (pH 9) 30 days - zinc pyrithione 31.6% (pH 7) 30 days - zinam

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
Aqueous photolysis continued				
(Q960	cymoxanil	minor ⁹	-	PMRA 2000b
R3273	cymoxanil	minor ^a	•	PMRA 2000b
-(4-chlorophenyl)-2-(1H-1,2,4-	cyproconazole	5%	20 days	PSD 1991f
riazol-1-yl)-ethanone	cyproconazore	0.70	20 0033	
-cyclopropyl-1-(1H-1,2,4-triazol-1-	cyproconazole	4%	20 days	PSD 1991f
I)butanone			20 00,0	
(TP	dacthal	5.2%	•	EPA 1998d
ecamethrinic acid	deitamethrin	36% ^b 7.4% ^b	30 days	EU 2002g
thyl-m-hydroxyphenyl carbamate	desmedipham		488 hours	EPA 1996e
yrimidinol	diazinon	56 - 62% 56%	24 hours	PSD 1991b PSD 1991b
	! diandal	major ^e	24 hours	EPA 1998f
,p'-dichlorobenzophenone	o,p'-dicofol	major ^e	-	EPA 1998f
,p'-dichlorobenzophenone	p,p'-dicofol diflubenzuron	3%	- 7 days	EPA 1997a
-chlorophenyl urea	diflubenzuron	12.9% ^b	10 days	EPA 1997a
,6-difluorobenzoic acid	diflubenzuron	0.6%	10 days	EPA 1997a
P1 K1	diflubenzuron	0.1%	16 days	EPA 1997a
	dimethoate	major ^e	i u uaya	EPA 1999e
-desmethyldimethoate	dimethoate	minor ⁹	-	EPA 1999e
,O-dimethylphosphorothioic acid '-(3,4-dichlorophenyl)-N-	-		-	
-(3,4-alchlorophenyl)-N- jethylurea	diuron	major ^s	•	EPA 2003b
4-dichlorophenylurea	diuron	minor ⁹	-	EPA 2003b
4-dichloroaniline	diuron	minor ^g	•	EPA 2003b
,3',4,4'-tetrachlorobenzene	diuron	minor ⁹	•	EPA 2003b
ONH2-fen	esfenvalerate	48.4%	-	PSD 1992c
· · · · · · · · · · · · · · · · · · ·		25%	10 days	PSD 1992c
OOH-fen	esfenvalerate	2%		PSD 1992c
l-Vacid	esfenvalerate	4.5%	-	PSD 1992c
ec-fen	esfenvalerate	0.9%	-	PSD 1992c
-trifluoromethyl-3-nitro-1,2-		- 4 994		PSD 1995
enzendiamine	ethalfluralin	>4.3%	-	PSD 1995
-(1-methyletenyl)-4-nitro-6-		× 4 20/		DCD 10051
ifluoromethyl-1H-benzimidazole	ethalfluralin	>4.3%	•	PSD 1995
-methyl-7-nitro-5-trifluoromethyl-		- 4 00/		DOD 40051
H-benimidazole-3-oxide	ethalfluralin	>4.3%	•	PSD 1995
thylene	ethephon	major ⁹	-	EPA 1995b
-hydroxy ethyl phosphonic acid	ethephon	major ^a	-	EPA 1995b
N-H3310	famoxadone	major ^g	-	PMRA 2003h
N-MN467	famoxadone	major ^g	-	PMRA 2003h
N-MN468	famoxadone	major ⁹	-	PMRA 2003h
N-KF015	famoxadone	major ^e	•	PMRA 2003h
N-JS940	famoxadone	minor ^a	•	PMRA 2003h
IOE 83348	fenchlorazole-ethyl	8.9%	45 days	PSD 1990e
OE 88988	fenchlorazole-ethyl	3.6%	16 days	PSD 1990e
OE 88989	fenchlorazole-ethyl	1.6%	7 days	PSD 1990e
OE 72829	fenchlorazole-ethyl	13%	3.7 days	PSD 1990e
OE 87606	fenchiorazole-ethyl	4.6%	16 days	PSD 1990e
nitrooxon	fenitrothion	3.6 - 9.4%	1 day	APVMA 1999
		1.6%	30 days	APVMA 1999
-methyl-4-nitrophenol	fenitrothion	22 - 24%	7 days	APVMA 1999
		3.3%	14 days	APVMA 1999
esmethyl fenitrothion	fenitrothion	<1%	-	APVMA 1999
-methyl fenitrothion	fenitrothion	<1%	-	APVMA 1999
arboxy-fenitrothion	fenitrothion	<1%	-	APVMA 1999
arboxy-fenitrooxon	fenitrothion	<1%	-	APVMA 1999
esmethyl fenitrooxon	fenitrothion	1.6%	30 days	APVMA 1999
-carbomoyl-3-phenoxybenzyl-				
.2.3.3-tetramethyl cyclopropane	fenpropathrin	6 - 44%	5 – 7 days	PSD 1989a
arboxylate			-	
-		3 – 26% (dark)	14 days	PSD 1989a
1B 46513	fipronil	6.9%	30 days	PSD 2004a
PA 104615	fipronil	7%	30 days	PSD 2004a
GA 257 777	fludioxonil	8%	7 days	PSD 1995e
BC 96912	fluquinconazole	7.5%	24.7 days	PSD 1999b
H-5781	fluoroglycofen-ethyl	5.3%	13 days	PSD 1992d
H-9985	fluoroglycofen-ethyl	19%	13 days	PSD 1992d
-hydroxy-XDE-570	florasulam	major ^e	•	PMRA 2001c
-fluoro-5-		•		
nethoxy(1,2,4)triazolo(1,5c)-	fiorasulam	major ⁹		PMRA 2001c
vrimidine-2-sulphonamide		•		
invi fluoridetriazolo-florasulum	fiorasulam	minor ^g		PMRA 2001c
orașulam triazolo carboxylic acid	florasulam	minor ⁹		PMRA 2001c
riazolo-florasulam	fiorasulam	minor ⁹		PMRA 2001c
E 54488	flurtamone	3.8%	•	PSD 2000a
E 53285	furtamone	0.5%	-	PSD 2000a

Fransformation product	Parent pesticide *	% of parent pesticide ^b	Time ^c	Reference
Aqueous photolysis continued				
3-methyl phosphinico-proprionic acid	glufosinate ammonium	9.7%	16 days	PSD 1990f
3-cyclohexyl-6-(methylamino)-1-	•		• -	
nethyl-1,3,5-triazine-2,4(1H,3H)-	hexazinone	>10%	•	EPA 1994a
dione				
1-(6-chloro-pyridine-3-ylmethyl)-N-		00 0 <i>0</i> 0	7 45 days	000 1003
hitro-2-imino-imidazollidine-5-ol	imidacloprid	6.3 - 6.5%	7 - 15 days	PSD 1993i
1-(6-chloro-pyridine-3-yimethyl)-N-				000 4000
nitroso-2-imino-imidazolidine	imidacloprid	<3%	7 - 15 days	PSD 1993i
S-chloro-nicotinic acid	imidacloprid	<3%	7 - 15 days	PSD 1993i
1-(6-chloro-pyridine-3-yimethyi)-N-	and booping	•.•		
hitro-2-imino-2,3-dihydro-imidazole				
and 1-(6-chloro-pyridine-3-ylmethyl)-	imidacloprid	<3%	7 - 15 days	PSD 1993i
mazolidine-2-one combined				
AE 0002166	iodosulfuron-methyl	major ^e	•	PMRA 2004f
RP 25040 and LS70942 combined	iprodione	14%	7 days	EU 2002n
RP 25040 and LS70942 combined RP 25040 and LS70942 combined	iprodione	13.75% ^b	7 days	EPA 1998g
	iprodione	27.94% ^b	14 days	EPA 1998g
3,5-dichloroaniline	iprodione	7.72%	0 days	EPA 1998g
RP 30228	isoxaflutole	>70%	-	PMRA 2000e
RPA 202248	isoxatiutole	>30%	-	PMRA 2000e
RPA 203328	isoxanutoie kresoxim-methyl	7.4%	-	PSD 1997c
kresoxim-methyl acid		(.470 <8.4%	-	EPA 1995e
norlinuron	linuron	<8.4%	-	EPA 1995e
tesmethyl linuron	linuron	<8.4%	-	EPA 19956
3,4-dichloroaniline	linuron methomological	<8.4% 2%	- 14 days	PMRA 2004g
RH-131154	methoxyfenozide	276 1.5%	30 days	PMRA 2004g
RH-117236	methoxyfenozide metalaeblar	1.5% 3.4%	21 days	EPA 1995f
netolachlor oxanilic acid	metolachior	3.4% 9%	21 days	EPA 1995f
CGA-37735	metolachior	9% 5.7%	21 days 21 days	EPA 1995f
CGA-41638	metolachior	5.17 6.2%		EPA 19951
CGA-40172	metolachior		21 days 21 days	EPA 1995f
CGA-37913	metolachior	7.3% 40%	21 days	EPA 19951
acetonitrile	methomyl		30 days	EPA 1998i
leaminated metribuzin	metribuzin	major ^e major ^e	•	EPA 1998
pentylidene metribuzin	metribuzin		•	EPA 1998
nexylidene metribuzin	metribuzin	major ^e 10%	- 20 de:-	PSD 1991e
saccharin	metsulfuron-methyl		30 days	
2-aminosulfonyl) benzoic acid	metsulfuron-methyl	8%	30 days	PSD 1991e
nethyl-2-(aminosulfonyl)benzoate	metsulfuron-methyl	<1%	-	PSD 1991e
ASDM	nicosulfuron	23%	30 days	PSD 2000c
ADMP	nicosulfuron	3.5%	0 days	PSD 2000c
DMPU	nicosulfuron	2.6%	0 days	PSD 2000c
HMUD	nicosulfuron	1.1%	0 days	PSD 2000c
desmethyl norflurazon	norflurazon	6%	15 - 43 days	EPA 1996f
3,5-dinitro-4-amino-sulfanilamide	oryzalin	2.6%	•	EPA 1994d
2-ethyl-7-nitro-5-sulfonyl	oryzalin	3.2%		EPA 1994d
penzimidazole				
3,5-dinitro-N,N-dipropyl sulfanilic	oncretin	4.6%		EPA 1994d
acid	oryzalin			
1,2,4-triazole	paciobutrazol	4.2%	33 days	PSD 1995
3-aminophenol and	•			
methoxycarbonylaminophenol	phenmedipham	17.8% [•]	105 hours	EU 2004i
combined				
CGA-120844	primisulfuron methyl	43.9%	-	PMRA 2001a
CGA-171683	primisulfuron methyl	37.9%	-	PMRA 2001a
				Hölingl-Rosta et al.
prochloraz-formylurea	prochloraz	12.4% ^s	-	1999
		0.48X ⁰		Hölingl-Rosta et al.
prochioraz-urea	prochloraz	3.4% *	-	1999
hydroxypropachlor	propachlor	4.3%	-	EPA 1998j
N-(1,1-dimethylacetonyl)-3,5-	• •			•
N-(1,1-dimethylacelonyl)-3,5- dichlorobenzamide	propyzamide	13%	28 days	EU 2003q
	pymetrozine	28.6 - 33.5%	-	PMRA 2002
CGA 359009	pymetrozine	20.0 - 33.3% 7.6%	-	PMRA 2002
CGA 300407		5.7%	-	PMRA 2002
CGA 294849	pymetrozine	5./% minor ⁹	•	PMRA 2002 PMRA 2003n
BF 500-3	pyraciostrobin		•	
BF 500-6	pyraclostrobin	minor ⁹	•	PMRA 2003n
BF 500-7	pyraclostrobin	minor ⁹	•	PMRA 2003n
IN-70941	rimsulfuron	34.4 - 42.4%	27 days	PSD 1996f
IN-E9260	rimsulfuron	12.2%	27 days	PSD 1996f
IN-J290	rimsulfuron	12.7%	27 days	PSD 1996f
IN-T5831	rimsulfuron	9.4%	27 days	PSD 1996f
deisopropylatrazine	simazine	<6%	14 days	PSD 1992e
~~~~p		7.5%	32 days	PSD 1992e
		· · - · -		

Table A1.	Pesticide transformation product formation in environmental systems (Chapter 2)

Transformation product	Parent pesticide *	% of parent pesticide*	Time ^c	Reference
Aqueous photolysis continued				
		9.7%	70 days	PSD 1992e
nydroxysimazine	simazine	<6%	14 days	PSD 1992e
		15 - 90%	32 weeks	PSD 1992e
leisopropyl deethylatrazine	simazine	<6%	14 days	PSD 1992e
ulphonamide	sulfosulfuron	23%	•	PMRA 1998
minopyrimidine	sulfosulfuron	25%	-	PMRA 1998
inilino acid	tau-fluvalinate	<8% 10% ⁵	- 0. day	PSD 1997e
licarboxylic acid	tau-fluvainate tau-fluvalinate	<8%	9 days	PSD 1997e
3-phenoxybenzoic acid 3-phenoxybenzaldehyde	tau-fluvalinate	<8%	-	PSD 1997e PSD 1997e
au-fluvalinate amide	tau-fluvainate	23%	- 9 days	PSD 1997e
vanohvdrin	tau-fluvalinate	<8%	5 uays	PSD 1997e
STJ 5706	tebuconazole	0.8 -1%	-	PSD 1993k
(FE 1224	tebuconazole	0.4 - 1.8%	-	PSD 1993k
IWG 3877	tebuconazole	1.1%	-	PSD 1993k
IWG 2685	tebuconazole	0.8 - 3.3%	-	PSD 1993k
N 3678-7/A and SN 3678-7/B				
ombined	tebuconazole	0.9 - 1.8%	-	PSD 1993k
.2.4-triazole	tebuconazole	0.6 - 1%	•	PSD 1993k
L 810 721	tebufenpyrad	<12%	-	PSD 19950
L 11 148	tebufenpyrad	<3%	•	PSD 19950
L 810 718	tebufenpyrad	<7%	•	PSD 19950
is-cyclopropanecarboxylic acid	tefluthrin	<2.6%	135 hours	PSD 1991h
ans-cyclopropanecarboxylic acid	tefluthrin	1.5%	135 hours	PSD 1991h
,3,5,6-tetrafluoro-4-methylbenzyl		1.6%	126 har	
Icohol	tefluthrin	1.6%	135 hours	PSD 1991h
IP-1	tepraloxydim	11%	-	PMRA 2004b
iP	tepraloxydim	22%	-	PMRA 2004b
P	tepraloxydim	18%	-	PMRA 2004b
P-2	tepraloxydim	5%	-	PMRA 2004b
P-6	tepraloxydim	4%	•	PMRA 2004b
straconazole acid	tetraconazole	13%	60 days	PSD 1999c
		<10%	•	PSD 1999c
straconazole alcohol	tetraconazole	<5%	-	PSD 1999c
,2,4-triazole	tetraconazole	<5%	-	PSD 1999c
traconazole difluoroacetic acid	tetraconazole	<10%	•	PSD 1999c
iazolylacetic acid	tetraconazole	<5%	•	PSD 1999c
-ester-3-sulfonamide	thifensulfuron-methyl	20 - 24%	•	EU 2001g
		20%	30 hours	PSD 1991i
N-A4098	thifensulfuron-methyl	9 - 32%	•	EU 2001g
		32%	30 hours	PSD 1991i
-demethyl thifensulfuron methyl	thifensulfuron-methyl	2%	30 hours	PSD 1991i
	45-16	3%	30 hours	PSD 1991i
-acid-3-sulfonamide	thifensulfuron-methyl	1% 0.3%	30 hours	PSD 1991i
hiophene sulfonamide	thifensulfuron-methyl	2%	30 hours	PSD 1991i
ifensulfuron acid iazine urea	thifensulfuron-methyl thifensulfuron-methyl	2%	30 hours 30 hours	PSD 1991i
ethomyt	thiodicarb	22% °	JUTIOURS	PSD 1991i PSD 1992f
Buloiny	a nodicano	21%	- 30 days	EPA 1998k
ethomut ovimo	thiodicarb	27%	JU Gays	PSD 1992f
ethomyl oxime M-SCH3	toiclofos-methyl	2.5% ^b	- 8 days	PSD 19921 PSD 1993I
MO	toiciofos-methyl	11 % ^b	2 days	PSD 1993
M-TM	toiciofos-methyl	1.0 %	2 days	PSD 1993
M-TMO	toiciofos-methyl	8.4 %	16 days	PSD 1993
M-CH2OH	toiciofos-methyl	5 % 5	8 days	PSD 1993
h-CH3	toiciofos-methyl	12 % *	2 days	PSD 1993
alkoxydim metabolite 9	traikoxydim	10.6 - 12.8%	11.5 days	PSD 1993m
alkoxydim metabolite 10	tralkoxydim	5.8 - 6.7%	2.8 days	PSD 1993m
GA 150829	triasulturon	33%		PSD 1992g
28533 and CGA 188838 and				-
GA 195660 combined	triasulfuron	4.3%	-	PSD 1992g
liphonamide A	tribenuron methyl	46.6% ^b	15 days	PSD 1992h
scharin	tribenuron methyi	58.8% ^b	33 days	PSD 1992h
benuron methyl acid	tribenuron methyl	1.9%	8 days	PSD 1992h
azine amine A	tribenuron methyl	92.9%	15 days	PSD 1992h
-demethyl triazine amine A	tribenuron methyl	2.9%	33 days	PSD 1992h
-demethyl triazine amine A	tribenuron methyl	2.4%	33 dava	PSD 1992h
6-dinitro-N-propyl-4-	· · · · · · · · · · · · · · · · · · ·			
fluoromethylbenzenamine	trifturalin	6%	•	EPA 1996h
ethyl-7-nitro-5-trifluoromethyl-				
enimidazole-3-oxide	trifiuralin	7.1%	-	EPA 1996h
-demethyl triazine urea B	triflusulfuron-methyl	14%		PSD 1995r
activity maante stee p		13.5%		PMRA 1999c
-demethyl triflusulfuron-methyl	triflusulfuron-methyl	12%	-	PSD 1995r
concury and controlly!		12.2%	•	PMRA 1999c
	triflusulfuron-methyl		•	PSD 1995r
lazine amine B		12%		

Transformation product	Parent pesticide *	% of parent pesticide ^b	Time "	Reference
Aqueous photolysis continued				
triazine urea B	triflusulfuron-methyl	7%	•	PSD 1995r
N-demethyl triazine amine B	triflusulfuron-methyl	7%	•	PSD 1995r
methyl saccharin	triflusulfuron-methyl	12%	-	PSD 1995r
···· , ····	•	11.7%	-	PMRA 1999c
rinexapac acid	trinexapac ethyl	main ^e	-	PSD 1995s
	• •	major ⁹	•	PMRA 2001a
trinexapac metabolite 1 (CGA- 163935)	trinexapac ethyl	main ^g	-	PSD 1995s
(66666)		major ^e	-	PMRA 2001a
RPA 406203	triticonazole	10.9%	30 days	PSD 2000d
RPA 406341	triticonazole	<4%	•	PSD 2000d
RPA 406766	triticonazole	<4%	•	PSD 2000d
thriam	ziram	major ^g	-	PSD 1994c
RH-24549	zoxamide	22%	•	PMRA 2001d
RH-127450	zoxamide	11%	•	PMRA 2001d
dihydroxy product	zoxamide	6.73%	•	PMRA 2001d

a - pesticide identified in the reference as the source of the transformation product

b - peak percentage formation of transformation product during study

- c time to peak transformation product formation
- d soil and water system
- e soil before leaching in column leachate study
- f soil after leaching in column leachate study
- g no precise formation data provided
- h percentage of total recovery and not percentage of applied active

Transformation product	Parent pesticide	Half-life / DT _{SP}	Reference
queous photolysis			
Ibendazole sulfoxide	albendazole	0.5 days (pH 7)	Weerasinghe et al. 1992
Ibendazole sulfone	albendazole	0.72 days (pH 7)	Weerasinghe et al. 1992
2-aminoalbendazole sulfone	albendazole	2.18 days (pH 7)	Weerasinghe et al. 1992
aldicarb sulfone	aldicarb	36 - 38 days	APVMA 2001
3-isopropyl-2,3-dioxo-5-oxocyclo-	bentazone	1.6 - 3.6 davs	EU 2000a
	Dontazono	1.0 · 5.0 days	20000
penteno[d]1H-2,1,3-thiadiazin-4(3H)-one			
6-carbonic acid			511 00051
3-carbamyl-2,4,5-trichlorobenzoic acid	chlorothaionil	53.7min (18°C)	EU 2005b
CCIM	cyazofamid	23.2 days	EU 2002e
HTID	cyazofamid	43.9 days	EU 2002e
CCTS	cyazofamid	2.2 days	EU 2002e
	flutenoxuron	stable (>38 days)	HSE 1995
2,5-difluorobenzamide		< 72 hours	HSE 1995
lufenoxuron diphenyl amine	flufenoxuron		
FBC 96912	fluquinconazole	2.3 hours (pH 4)	PSD 19996
		1.4 hours (pH 9)	PSD 19996
ethylenethiourea	metiram	358 days	EU 2005I
CL 153815	picolinafen	24.8 days (pH 5)	PMRA 2003m
	•	31.4 days (pH7)	PMRA 2003m
		22.6 days (pH 9)	PMRA 2003m
			EU 20030
propylene urea	propineb	270 days - > 1year	
propylenethiourea	propineb	> 1 year	EU 2003o
5-chloro-3-phenyl-pyridazin-4-ol	pyridate	3.7 days (pH 5)	EU 2001e
	- *	14.1 days (pH 7)	EU 2001e
		9.5 days (pH 9)	EU 2001e
		46 hours (pH 7)	PMRA 1991a
	tanzalourdim	14 days	PMRA 2004b
DP-1	tepraloxydim		
DP-2	tepraloxydim	6 days	PMRA 2004b
DP-6	tepraloxydim	7 days	PMRA 2004b
nethomyl	thiodicarb	1 day	EPA 1998k
-			
Surface water			
methamidophos	acephate	8.6 - 17.8 days	Sundaram 1993
sthyl-m-hydroxyphenyl carbamate	desmedipham	26 days	PSD 1993d
	disulfoton	10.4 days (estuarine)	Lacorte et al. 1995
lisulfoton sulfoxide			
disulfoton sulfone	disulfoton	8.19 days (estuarine)	Lacorte et al. 1995
enthion sulfoxide	fenthion	6.9 days (estuarine)	Lacorte et al. 1995
resoxim-methyl acid	kresoxim-methyl	337 - 383 days	Roberts and Hutson 1999
BH518-5	quinmerac	stable	PSD 1998c
	terbutol	47.1 months	Suzuki et al. 1998
2,6-di-tert-butyl-4-methylphenyl	serbutor	47.1 HIGHUIS	Suzum et al. 1850
carbamate			
2,6-di-tert-butyl-4-carboxyphenyl N-	terbutoi	63.6 months	Suzuki et al. 1998
methylcarbamate			
2,6-di-tert-butyl-4-carboxyphenyl	terbutol	29.4 months	Suzuki et al. 1998
carbamate			
	terbutol	42 months	Suzuki et al. 1998
2,6-di-tert-butyl-4-methylphenol		25 months	Suzuki et al. 1998
2,6-di-tert-butyl-4-carboxyphenol	terbutol	23 1101018	SULUKI 61 01. 1990
lydrolysis (sterile)		0.0 down (old 0)	ADV/044 2004
aldicarb sulfone	aldicarb	0.9 days (pH 9)	APVMA 2001
aldicarb sulfoxide	aldicarb	2.3 days (pH 9)	APVMA 2001
BTS 27271	amitraz	5 hou <b>rs (alkaline)</b>	EPA 1996a
		2280 days (acidic)	EPA 1996a
3TS 27919	amitraz	stable	EPA 1996a
3,5,-dibromo-4-hydroxybenzonitrile	bromoxynii	stable (pH 5, 7 and 9)	EPA 1998c
		stable (pH 5, 7 and 9)	PSD 2002
4-hydroxy-2,5,6-trichloroisophthalonitrile	chlorothalonii		
I-fluoro-3-phenoxybenzaldehyde	cyfluthrin	stable	EU 2002c
DCVA	cyfluthrin	> 1 year (pH 4, 7 and 9)	EU 2002c
diazoxon	diazinon	28.9 days	PSD 1991b
diclofop acid	dictofop-methyl	stable	EPA 2000b
RPA 200766	fipronil	stable (pH 9)	PSD 2004a
	fluoroglycofen-ethyl	15.1 days (pH 9)	PSD 1992d
RH-9985	HOCH OGIYCO IGH-BUTYI		
	• • •	5.3 days (pH 9)	PSD 1992d
FBC 96912	fluquinconazole	193 days (pH 9)	PSD 19996
1,2,4-triazole	hexaconazole	stable (pH 5, 7 and 9)	PMRA 1995
RP 35606	iprodione	1.1 days (pH 7)	EU 2002n
	*	2.1 days (pH 8)	EU 2002n
	inndiana		
RP 30228	iprodione	stable (pH 7)	EU 2002n
		1.8 days (pH 8)	EU 2002n
malathion monocarboxylic acids	malathion	26 days (pH 8)	PSD 1995i
	malathion	1 year (pH 9)	PSD 1995i
malathion dicarboxylic acid			
CL 153815	picolinafen	stable	PMRA 2003m
2,3,5,6-tetrachioroaniline	tecnazene	stable (pH 5, 7, 9)	PSD 1995p
methomyl	thiodicarb	stable (pH 5 and 7)	EPA 1998k
		30 days (pH 9)	EPA 1998k
			PSD 19921
		10 days (pH 9)	1 JU 10021
2407	to balls some int	5 d	DOD 4005-
	tolyfluanid	> 1 year (pH 4, 7, and 9)	PSD 1995q
DMST triazamate metabolite X	tolyfluanid triazamate	> 1 year (pH 4, 7, and 9) 23.4 days (pH 7) 15.6 hours (pH 9)	PSD 1995q PSD 1998d PSD 1998d

Table A2. The degradation of pesticide transformation products in environmental systems (Chapter 2)

	Parent pesticide *	Half-life / DT ₅₀	Reference
Aerobic soil 3-chloroaryl ałcohol (mean of isomers)	1,3-dichloropropene	0.1 - 0.6 days	EFSA 2006a
3-chloroacrylic acid (mean of isomers)	1,3-dichloropropene	0.7 - 19.8 days	EFSA 2006a
rans-3-chloroallylaicohol	trans-1,3-	0.4 - 0.6 days	Dijk 1974
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _,, _	dichloropropene		
		0.8 - 1.4 days	Leistra et al. 1991
cis-3-chloroallylalcohol	cis-1,3-dichloropropene	1.2 - 1.8 days	Dijk 1974
	2.4 DR	2.3 - 4.2 days	Leistra et al. 1991
2,4-D methamidophos	2,4-DB acephate	2.3 - 17.1 days 3.5 - 9.3 days	EU 2002a Sundaram 1993
methamicophos	acephate	<10 days	PSD 1995a
2-chloro-2',6'-diethylacetanilide	alachior	2.4 days	Fava et al. 2000
2-hydroxy-2'.6'-diethylacetanilide	alachior	0.8 days	Fava et al. 2000
2.6-diethylaniline	alachior	1.3 days	Fava et al. 2000
aldicarb sulfone aldicarb sulfoxide	aldicarb	18 - 154 days	APVMA 2001
		84 - 1100 days (subsoil)	APVMA 2001
	aldicarb	20 - 53 days	APVMA 2001
		84 - 410 days (subsoil)	APVMA 2001
BTS 27271	amitraz	67 - 82 days	EPA 1996a
	14	17 - 110 days (field)	EPA 1996a
3TS 27919	amitraz	61 -117 days 70 - 150 days (field)	EPA 1996a
dihudaana anilanina	enitezine	70 - 150 days (field) 21 - 45 days	EPA 1996a PSD 1994b
Jihydroxy anilazine Jeethylatrazine	anilazine atrazine	26 days	Solomon et al. 1996
jesuryatazine jeisopropylatrazine	atrazine	17 days	Solomon et al. 1996
Jiaminochloroatrazine	atrazine	19 days	Solomon et al. 1996
ydroxyatrazine	atrazine	121 days	Solomon et al. 1996
penalaxyl M1	benalaxyl	49 - 90 days	EU 2004c
penalaxyl M2	benalaxyl	66 - 118 days	EU 2004c
carbofuran	benfuracarb	36 - 44 days	PSD 1998a
		30 - 34 days	PSD 1998a
		11 - 23 days	PSD 1998a
2-amino-N-isopropyl benzamide	bentazone	1 - 10 days (field)	EPA 2001a
3,5-dibromo-4-hydroxybenzamide	bromoxynii	0.47 - 5.2 days	EU 2004d
3,5-dibromo-4-hydroxybenzoic acid	bromoxynil	0.16 - 0.48 days	EU 2004d
3,5,-dibromo-4-hydroxybenzonitrile	bromoxynil octanoate	31 - 51 hours	EPA 1998c
etrahydrophthalamide	captan	5.4 - 19.5 days	EPA 1999a
I-naphthol	carbaryl	14.93 days 21 - 23 days	Menon and Gopal 2003
N-phenyl-3-methyloxazoline-2,5-dione	carbetamide carbetamide	3.25 - 3.55 hours	Cantier et al. 1988 Cantier et al. 1988
2-(phenylcarbamoyloxy)propionic acid	carbetamide	25.4 - 27.9 days	Cantier et al. 1988
N-phenyl-2-hydroxypropionamide 4-hydroxy-2,5,6-trichloroisophthalonitrile	chlorothalonil	6 - 43 days	PSD 2002
		130.6 days	EU 2005b
R417888	chlorothalonil	121.1 days	EU 2005b
3-carbamyl-2,4,5-trichlorobenzoic acid	chiorothalonil	103 days	EU 2005b
3,5,6-trichloro-2-pyridinol	chlorpyrifos /	42 - 117 days	Baskaran et al. 2003
	chlorpyrifos-methyl / triclopyr	-	
	" work have a second se	8 - 279 days	APVMA 2000b
		10 - 67 days	EU 2005d
		10 - 67 days 30 - 90 days	Tomlin 2000
3-methoxy-3,5,6-trichloropyridine	chiorpyrifos / triclopyr	30 - 90 days 8 - 279 days 33 - >72 days	Tomlin 2000 PMRA 1991b Belfroid et al. 1996
9-methoxy-3,5,6-trichloropyridine	chiorpyrifos / triclopyr	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b
		30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days	Tomiin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b
chlorthal-dimethyl mono-acid	chlorthal-dimethyl	30 - 90 daya 8 - 279 daya 33 - >72 daya 1 - 2 months 35 - >300 days 2.8 ± 0.1 daya	Tomlin 2000 PMRA 1991b Bettroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199:
hlorthal-dimethyl mono-acid hlorthal-dimethyl di-acid	chlorthal-dimethyl chlorthal-dimethyl	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199
hlorthal-dimethyl mono-acid hlorthal-dimethyl di-acid	chlorthal-dimethyl	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000
hlorthal-dimethyl mono-acid hlorthal-dimethyl di-acid	chlorthal-dimethyl chlorthal-dimethyl	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 5 - 20 days	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a
hlorthal-dimethyl mono-acid hlorthal-dimethyl di-acid	chlorthal-dimethyl chlorthal-dimethyl	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 5 - 20 days 23 days 9 - 13 days	Tomlin 2000 PMRA 1991b Bettroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a
hlorthal-dimethyl mono-acid hlorthal-dimethyl di-acid	chlorthal-dimethyl chlorthal-dimethyl	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 5 - 20 days 9 - 13 days 9 - 13 days	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a PSD 1995a
hlorthal-dimethyl mono-acid hlorthal-dimethyl di-acid hodinafop acid	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 5 - 20 days 23 days 9 - 13 days	Tomlin 2000 PMRA 1991b Bettroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a
3-methoxy-3,5,6-trichloropyridine chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid	chlorthal-dimethyl chlorthal-dimethyl	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 23 days 9 - 13 days 4.9 days 5.1 days	Tomlin 2000 PMRA 1991b Beffroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a PSD 1995a PSD 1995a
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 23 days 9 - 13 days 4.9 days 5.1 days 90 days	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a PSD 1995a PSD 1995a PSD 1995a
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl	30 - 90 daya 8 - 279 daya 33 - >72 daya 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 daya 9 - 13 daya 4.9 daya 5.1 daya 90 daya 5 -19 daya	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a PSD 1995a PSD 1995a PSD 1995a PSD 1995a
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid cloquintocet acid CCIM	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 9 - 13 days 4.9 days 5.1 days 5.1 days 5.19 days 1.2 - 3.4 days	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a PSD 1995a PSD 1995a PSD 1995a PSD 1995a EU 2002e
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid cloquintocet acid CCIM	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid cyazofamid	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 9 - 13 days 4.9 days 5.1 days 90 days 5.19 days 1.2 - 3.4 days 3.8 - 28.6 days 7.3 - 57 days 1 - 57 days	Tomlin 2000           PMRA 1991b           Betfroid et al. 1996           APVMA 2000b           PMRA 1991b           Wettasinghe and Tinsley 199.           Wettasinghe and Tinsley 199.           Tomlin 2000           PSD 1995a           EU 2002e
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid cloquintocet acid CCIM	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 9 - 13 days 9 - 13 days 4.9 days 5.1 days 5.1 days 5.19 days 1.2 - 3.4 days 3.8 - 28.6 days 7.3 - 57 days 1 - 57 days 236 - 395 days	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a PSD 1995a PSD 1995a PSD 1995a EU 2002e EU 2002e EU 2002e EU 2002e EU 2002e EU 2002e
hiorthal-dimethyl mono-acid hiorthal-dimethyl di-acid iodinafop acid ioquintocet acid CCIM CCIM-AM	chlorthal-dimethyl chlorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid cyazofamid	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 23 days 9 - 13 days 5 - 10 days 5 - 19 days 5 - 19 days 5 - 19 days 3.8 - 28.6 days 7.3 - 57 days 1 - 57 days 236 - 395 days 17.7 - 395 days	Tomlin 2000           PMRA 1991b           Belfroid et al. 1996           APVMA 2000b           PMRA 1991b           Wettasinghe and Tinsley 199           Yomin 2000           PSD 1995a           PSD 1995a           PSD 1995a           PSD 1995a           PSD 1995a           PSD 1995a           EU 2002e
chiorthal-dimethyl mono-acid chiorthal-dimethyl di-acid codinafop acid coquintocet acid cCIM CCIM-AM CTCA	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid cyazofamid cyazofamid cyfuthrin	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 9 - 13 days 9 - 13 days 9 - 13 days 9 - 13 days 5 - 19 days 5 - 19 days 1.2 - 3.4 days 1.2 - 3.4 days 7.3 - 57 days 1 - 57 days 1 - 57 days 12 - 62 days 17.7 - 395 days 12 - 62 days 12 - 62 days	Tomlin 2000           PMRA 1991b           Beffroid et al. 1996           APVMA 2000b           PMRA 1991b           Wettasinghe and Tinsley 199           Wettasinghe and Tinsley 199           Tomlin 2000           PSD 1995a           EU 2002e
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid cloquintocet acid cCIM CCIM-AM CTCA	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid cyazofamid cyazofamid cyłuthrin <i>lambde</i> -cyhalothrin	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 5 - 20 days 9 - 13 days 4.9 days 5.1 days 90 days 5.19 days 1.2 - 3.4 days 3.8 - 28.6 days 7.3 - 57 days 1 - 57 days 236 - 395 days 12 - 62 days 7 16 days	Tomlin 2000           PMRA 1991b           Belfroid et al. 1996           APVMA 2000b           PMRA 1991b           Wettasinghe and Tinsley 199           Wettasinghe and Tinsley 199           Tomlin 2000           PSD 1995a           EU 2002e           EU 2002e           EU 2002e           EU 2002e           EU 2002e           EU 2002c           EU 2002c           EU 2002d           EU 2002d           EU 2002d           EU 2002d           EU 2002d           EU 2002d           EU
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid cloquintocet acid cCIM CCIM-AM CTCA CCVA compound XV	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid cyazofamid cyazofamid cyfuthrin	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 5 - 20 days 9 - 13 days 4.9 days 5.1 days 90 days 5 -19 days 1.2 - 3.4 days 3.8 - 28.6 days 1.3 - 57 days 1 - 57 day	Tomlin 2000           PMRA 1991b           Beffroid et al. 1996           APVMA 2000b           PMRA 1991b           Wettasinghe and Tinsley 199           Wettasinghe and Tinsley 199           Tomlin 2000           PSD 1995a           EU 2002e
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid cloquintocet acid cCIM CCIM-AM CTCA CTCA CCVA compound XV	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid cyazofamid cyazofamid cyłuthrin <i>lambde</i> -cyhalothrin	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 23 days 9 - 13 days 4.9 days 5.1 days 5.1 days 90 days 5.19 days 1.2 - 3.4 days 3.8 - 28.6 days 7.3 - 57 days 2.8 ± 395 days 1.7 - 395 days 12 - 62 days 175 - 166 days (estimated)	Tomlin 2000 PMRA 1991b Beffroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a PSD 1995a PSD 1995a EU 2002e EU 2002e
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid cloquintocet acid cCIM CCIM-AM CTCA CCVA compound XV	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid cyazofamid cyazofamid cyłuthrin <i>lambde</i> -cyhalothrin	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 9 - 13 days 4.9 days 9 - 13 days 4.9 days 5.19 days 5.19 days 1.2 - 3.4 days 3.8 - 28.6 days 1.2 - 3.4 days 3.8 - 28.6 days 1.2 - 3 days 1.2 - 3 days 1.2 - 3.4 days 3.8 - 28.6 days 1.2 - 3 days 1.2 - 1 days 1.2 - 1 days 1.2 - 1 days 7 - 16 days 150 - 7 30 days	Tomlin 2000           PMRA 1991b           Belfroid et al. 1996           APVMA 2000b           PMRA 1991b           Wettasinghe and Tinsley 199           Wettasinghe and Tinsley 199           Tomlin 2000           PSD 1995a           EU 2002e           EU 2002e           EU 2002e           EU 2002e           EU 2002e           EU 2002c           EU 2002c           EU 2002d           EU 2002d           EU 2002d           EU 2002d           EU 2002d           EU 2002d           EU
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid cloquintocet acid CCIM CCIM-AM CTCA COCVA compound XV nelamine	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid cyazofamid cyazofamid cyazofamid cyluthrin <i>lembde</i> -cyhalothrin cyromazine	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 9 - 13 days 9 - 13 days 4.9 days 5.1 days 5.1 days 5.1 days 5.1 days 5.1 days 3.8 - 28.6 days 1.2 - 3.4 days 3.8 - 28.6 days 1.3 - 57 days 236 - 395 days 12 - 62 days 175 - 186 days (estimated) 150 - 730 days (estimated)	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a PSD 1995a PSD 1995a PSD 1995a EU 2002e EU 2002e
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid cloquintocet acid CCIM CCIM-AM CCICA CCVA compound XV melamine	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid cyazofamid cyazofamid cyfluthrin lembda-cyhalothrin cyromazine	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 5 - 20 days 9 - 13 days 9 - 13 days 5 - 19 days 5 - 19 days 5 - 19 days 5 - 19 days 1.2 - 3.4 days 3.8 - 28.6 days 7.3 - 57 days 1 - 57 days 236 - 395 days 17.7 - 395 days 17.5 - 186 days (estimated) 150 - 730 days (estimated) 263 - 1086 days	Tomlin 2000           PMRA 1991b           Belfroid et al. 1996           APVMA 2000b           PMRA 1991b           Wettasinghe and Tinsley 199           Wettasinghe and Tinsley 199           Tomlin 2000           PSD 1995a           PSD 1995a           PSD 1995a           PSD 1995a           PSD 1995a           PSD 1995a           EU 2002e           EU 2002c           EU 2002c           PSD 1993c           PSD 1993c           Belfroid et al. 1996
chlorthal-dimethyl mono-acid chlorthal-dimethyl di-acid clodinafop acid cloquintocet acid CCIM CCIM-AM CTCA CTCA COCVA compound XV nelamine	chiorthal-dimethyl chiorthal-dimethyl clodinafop-propargyl cloquintocet-mexyl cyazofamid cyazofamid cyazofamid cyazofamid cyluthrin <i>lembde</i> -cyhalothrin cyromazine	30 - 90 days 8 - 279 days 33 - >72 days 1 - 2 months 35 - >300 days 2.8 ± 0.1 days > 300 days 5 - 20 days 9 - 13 days 9 - 13 days 4.9 days 5.1 days 5.1 days 5.1 days 5.1 days 5.1 days 3.8 - 28.6 days 1.2 - 3.4 days 3.8 - 28.6 days 1.3 - 57 days 236 - 395 days 12 - 62 days 175 - 186 days (estimated) 150 - 730 days (estimated)	Tomlin 2000 PMRA 1991b Belfroid et al. 1996 APVMA 2000b PMRA 1991b Wettasinghe and Tinsley 199 Wettasinghe and Tinsley 199 Tomlin 2000 PSD 1995a PSD 1995a PSD 1995a PSD 1995a PSD 1995a EU 2002e EU 2002e

Table A2. The degradation of pesticide transformation products in environmental systems (Chapter 2)

Fransformation product	Parent pesticide *	Half-life / DT _{se}	Reference
Aerobic soli continued			
		4 - 5 days	Roberts and Hutson 1999
lecamethrinic acid	deitamethrin	0.7 - 9.1 days (25°C)	EU 2002g
sthyl-m-hydroxyphenyl carbamate	desmedipham	21 days (15°C)	PSD 1993d
suryen-nyaroxyphonyh carbannaro	•	9 days (25°C)	PSD 1993d
		27 days (15°C)	PSD 1993d
		21 days (25°C)	PSD 1993d
liazoxon	diazinon	17 hours	PSD 1991b
	dicamba	> 40 days	Pearson et al. 1996
6-dichlorosalicylic acid			PSD 1991c
ticolfop-methyl and diclofop acid combined	diclofop-methyl	21 - 93 days	PSD 1991C
		10 - 38 days 21 - 52 days	PSD 1991c PSD 1991c
		10 - 30 days	PSD 1991c
diclofop acid	diclofop-methyl		
		6 - 38 days	PSD 1991c
		63 days	PSD 1991c
		26 - 28.4 days	PSD 1991c
omethoate	dimethoate	17 days	Belfroid et al. 1996
lisulfoton sulfone	disulfoton	166 days	EPA 2002a
lisulfoton sulfoxide	disulfoton	166 days	EPA 2002a
V-(3,4-dichlorophenyl)-1-methylurea	diuron	217 - 1733 days	EPA 2003b
	EPTC	7 days	EPA 1999c
lipropylamine		7 days 13 - 14 days	EPA 1999c
EPTC sulfoxide	EPTC		
N-KZ007	famoxadone	1.5 - 10.3 days	PMRA 2003h
N-KF015	famoxadone	1.2 days	PMRA 2003h
N-JS940	famoxadone	6 -23 hours	PMRA 2003h
enamiphos sulfoxide	fenamiphos	62 days	PSD 1990b
enamiphos sulfone	fenamiphos	29 days	PSD 1990b
-methyl-4-nitrophenol	fenitrothion	6 - 13 days	PMRA 2003g
		12 days	EPA 1995c
	fenoxaprop-ethyl	5 - 14 days	PSD 1990c
enoxaprop-ethyl acid		10 - 57 davs	PMRA 2001c
i-hydroxy-XDE-570	florasulam		
luazifop	fluazifop-p-butyl	3 - 16 weeks	PMRA 1988
luazifop	fluazifop-butyl	3 - 16 weeks	PMRA 1988
AKH 6562 sulphonamide	flubcarbazone-sodium	> 400 days	PMRA 2000c
RH-5781	fluoroglycofen-ethyl	14 - 128 days	PSD 1992d
BC 96912	fluguinconazole	448 days	PSD 1999a
-amino-3,5-dichloro-6-fluoro-2-pyridinol	fluroxypyr	21 - 53 days	EU 1999
-amino-3,5-dichloro-6-	fluroxypyr	20 - 429 days	EU 1999
luoromethoxypyridine	• • • •	a 🖷 dau sa	D-1
luroxypyr	fluroxpyr-meptyl	< 7 days	Roberts 1998
hthalimide	folipet	17.2 days	PSD 1997a
AE F153745	formasulfuron	< 1 day	PMRA 2003k
limethoate	formothion	7 - 40 days	Belfroid et al. 1996
ormothioic acid	formothion	9 - 10 days	Belfroid et al. 1996
IOE 35950	glufosinate ammonium	4 - 42 days	PSD 1990f
3-methyl phosphinico-proprionic acid	glufosinate ammonium	165 days	PSD 1990f
		7 - 14 days	PSD 1990f
		13 - 22 days	PSD 1990f
aminomethylphosphonic acid	glyphosate and glyphosate trimesium	18 - 875 days ^b	EU 20021
	All hursen mundernu	127.8 - 140.6 days	EPA 1993b
		127.0 - 140.0 days 119 - 958 days	EPA 19935
0.4.4/	housen	A A	D140 4 4005
,2,4-triazole	hexaconazole	14 WEEKS	PMRA 1995
netsulfuron-methyl	iodosulfuron-methyl	20 - 99 days	PMRA 2004f
AE F161778	iodosulfuron-methyl	9.4 - 21.1 days	PMRA 2004f
AE F059411	iodosulfuron-methyl	119 - 269 days	PMRA 2004f
1,5-di-iodo-4-hydroxybenzamide	ioxynil and ioxynil octanoate	3.7 - 7.7 days	EU 2004g
).5-di-iodo-4-hydroxybenzoic acid	ioxynii	<2 days	EU 2004a
		1.5 - 2.5 days	EU 2004g
oxynil	ioxynil octanoate		
propargyl butyl carbamate	IPBC	4.3 days	HSE 1994
		4.31 days	PSD 1967
RP 30228	iprodione	215 - 319 days	EU 2002n
esmethylisoproturon	isoproturon	22 - 65 days	EU 2002p
	isoxaflutole	24 - 96 days	PMRA 2000e
2PA 202248		11 - 26 days (field)	PMRA 2000e
RPA 202248		289 - 977 days	
	la availat - ! -		PMRA 2000e
RPA 202248 RPA 203328	isoxafiutole		
		9 - 73 days (field)	PMRA 2000e
	isoxaflutole kresoxim-methyl		
RPA 203328		9 - 73 days (field) 38 -131 days	
RPA 203328		9 - 73 days (field) 38 -131 days 38 days	Roberts and Hutson 1999 PSD 1997c
RPA 203328		9 - 73 days (field) 38 -131 days 38 days 131 days	Roberts and Hutson 1999 PSD 1997c PSD 1997c
RPA 203328		9 - 73 days (ñeid) 38 -131 days 36 days 131 days 57 days	Roberts and Hutson 1999 PSD 1997c PSD 1997c PSD 1997c PSD 1997c
RPA 203328		9 - 73 days (field) 38 -131 days 38 days 131 days	Roberts and Hutson 1999 PSD 1997c PSD 1997c

Table A2. The degradation of pesticide transformation products in environmental systems (Chapter 2)

Transformation product	Parent pesticide *	Half-life / DT _{se}	Reference
		12 - 52 days (field)	PMRA 2003c
erobic soil continued			
490M5	kresoxim-methyl	<2 - 13 days (field)	PMRA 2003c
		4 -18 days (field)	PMRA 2003c
MCPA acid	MCPA	24 days	PSD 1988b
MCPA	MCPB	24 days	EU 2005k
thylenethiourea	mancozeb/maneb/metir am	1.3 - 11 hours	PSD 2004b
		2.5 days	Calumpang et al. 1993
		2 hours 2 hours 1 day	EU 2005h EU 2005i
		2 hours - 1 day 0.2 - 2 days	EU 2005
ethyleneurea	mancozeb/maneb	4.8 days	Calumpang et al. 1993
aryeneurea	mancozobimanoo	6.2 days	EU 2005h
		4.8 - 7.6 days	EU 2005i
thylenebisisothiocyanide sulphide	maneb/metiram	0.09 - 0.15 days	EU 2005i
		0.09 - 0.8 days	EU 2005I
TDIT	metiram	0.3 - 0.9 days	EU 2005I
carbimid	metiram	0.009 - 0.9 days	EU 2005I
HOE 113225	mefenpyr-diethyl	9 days	PSD 1999a
HOE 094270	mefenpyr-diethyl	135 days	PSD 1999a Four et al. 2000
2-ethyl-6-methylaniline	metolachior metolachior	1.7 days 210 days	Fava et al. 2000 EU 2000c
N-A4098	metsulfuron-methyl	210 days << 1 month	EU 2000c
N-D5803	metsulfuron-methyl metsulfuron-methyl	<1 month 51 - 156 days ^b	EU 2000C
saccharin	nicosulfuron-metnyi	2 - 7 days	PSD 2000c
ADMP ASDM	nicosulturon	95 - 113 days	PSD 2000c
AUSN	nicosulfuron	53 - 91 days	PSD 2000c
JCSN	nicosulfuron	128 davs	PSD 2000c
Daraoxon	parathion	4 hours	Saffih-Hidadi et al. 2003
phorate sulfoxide	phorate	65 - 137 days	PMRA 2003a
phorate sulfone	phorate	65 - 137 days	PMRA 2003a
CL 153815	picolinafen	30 - 77 days	PMRA 2003m
1.2.4-triazole	propiconazole	2 - 12 days	EU 2003n
CGA 118 245	propiconazole	<1 day	EU 2003n
propylene urea	propineb	4 - 93 days	EU 2003o
propylenethiourea	propineb	1.5 - 2.6 days	EU 2003o
-(3,5-dichlorophenyl)-4,4-dimethyl-5- nethyleneoxazoline	propyzamide	25.8 - 37.9 days	EU 2003q
N-(1,1-dimethylacetonyl)-3,5- lichlorobenzamide	propyzamide	12.4 - 16.7 days	EU 2003q
6-chloro-3-phenyl-pyridazin-4-ol	pyridate	< 14 - 60 days ^b < 33 days (field)	EU 2001e PMRA 1991a
3H518-2	guinmerac	17 - 1080 days	PSD 1998c
3H518-5	quinmerac	4 - 3850 days	PSD 1998c
anilino acid	tau-fluvalinate	5.7 days	PSD 1997e
		7.1 days	PSD 1997e
DP-1	tepraloxydim	28 days (field)	PMRA 2004b
DP-2	tepraloxydim	198 - 235 days (field)	PMRA 2004b
2,6-di- <i>tert</i> -butyl-4-methylphenyl	terbutol	291 days	Suzuki et al. 2001
arbamate 2,6-di- <i>tert</i> -butyl-4-carboxyphenyl N-	terbutol	173 days	Suzuki et al. 2001
nethylcarbarnate 2,6-di- <i>tert</i> -butyl-4-carboxyphenyl	terbutol	184 days	Suzuki et al. 2001
carbamate			
hifensulfuron acid	thifensulfuron-methyl	2.2 - >365 days	EU 2001g
• · · · · · · · · · · · · · · · · · · ·		20 - 157 days	EU 2001g
)-desmethyl thifensulfuron-methyl	thifensulfuron-methyl	10.8 - 15.3 days < 2.9 days	EU 2001g EU 2001g
hiophene sulfonimide	thifensulfuron-methyl	9.6 - 96.6 days	EU 2001g
N-A4098	thifensulfuron-methyl	41 - 69 days 176 days	EU 2001g EU 2001g
	11-18	22 - 43 days	EU 2001g
ester-3-sulfonamide	thifensulfuron-methyl	6 - 7 days	EU 2001g
nethomyf	thiodicarb this honors mathed	45 days	EPA 1998k
carbendazim	thiophanate-methyl	320 days	EPA 2001c
		15 - 94 days *	EPA 2001c
	tab du a - 1-1	39.8 days	EU 2005m
DMST	tolyfluanid hisdimofen	0.24 - 8 days (estimated)	PSD 1995q Bromilow at al. 1000
ridimenol	triadimeton	> 2 years	Bromilow et al. 1999
CGA 150829	triasulturon	159 - 289 days	EU 2000d
riazamate metabolite II	triazamate	1.7 - 5.4 days	PSD 1998d PSD 1998d
	tribenuron methyl	3.2 - 70 days 240 days	PSD 19980 PSD 1991g
uturlina analas A			EFSA 2004
triazine amine A			
riazine amine A		110 - 220 days 38 - 144 days (field)	
	tribenum method	38 - 144 days (field)	EFSA 2004
triazine amine A IN-A4098 seccehrin	tribenuron-methyl tribenuron-methyl		

Table A2. The degradation of pesticide transformation products in environmental systems (Chapter 2)

#### Table A2. The degradation of pesticide transformation products in environmental systems (Chapter 2)

	Parent pesticide *	Half-life / DT ₁₀	Reference
	ester		
GA-321113	ester trifloxystrobin	250 - 350 days	PMRA 2004h
robic soil continued			
		215 - 350 days (field)	PMRA 2004h
nexapac acid	trinexapac ethyl	1.1 - 21.4 days	PSD 1995s
		16 - 18 days	PSD 1995s
		5.1 days (field)	PSD 1995s
		43 days (field)	PSD 1995s
B. 1000//	<u>+</u>	5.1 - 31.5 days (field)	PMRA 2001b
PA 406341	triticonazole	130 days (field)	PSD 2000d
	<u>+ 141 1 -</u>	165 - 330 days	PMRA 2004c
PA 407922	triticonazole	0.5 - 1.1 days	PMRA 2004c
naerobic soil			
dicarb sulfone	aldicarb	5.6 - 131 days (subsoil)	APVMA 2001
dicarb sulfoxide	aldicarb	2 - 27 days (subsoil)	APVMA 2001
CIM	cyazofamid	4.7 days	EU 2002e
CIM-AM	cyazofamid	35.4 days	EU 2002e
TCA	cyazofamid	siow	EU 2002e
		17.7 - 395 days	EU 2002e
clofop acid	diclofop-methyl	> 150 days	PSD 1991c
	store privately.	>60 days	EPA 2000b
noxaprop-ethył acid	fenoxaprop-ethyl	30 days	PSD 1990c
chloro-3-phenyl-pyridazin-4-ol	pyridate	stable	EU 2001e
	thiodicarb	<7 - 14 days	EPA 1998k
ethomyl	triazamate	15.3 - 137 days	PSD 1998d
azamate metabolite II GA-321113	trifloxystrobin	1733 days	PMRA 2004h
JA-021110	***********		
ater/sediment systems	••	0 <b>7</b> dava	FDA (000-
rs 27271	amitraz	6 - 7 days	EPA 1996a
TS 27919	amitraz	9 -21 days	EPA 1996a
romoxynil	bromoxynil octanoate	9.6 - 15.9 days (whole	EU 2004d
		system) 4 -17 days (whole	EU 2004d
		system)	20 20040
		3 - 15 days (water)	EU 2004d
		9.6 - 16 days (water)	EU 2004d
dia-fan anid	aladiaalaa		
odinafop acid	clodinafop-propargyl	56 days (sediment)	PSD 1995a
oquintocet acid	cloquintocet-mexyl	46 days (sediment)	PSD 1995a
CIM	cyazofamid	22.8 - 26.4 days	EU 2002e
fluoro-3-phenoxybenzoic acid	cyfluthrin	~10 days (water)	EU 2002c
phenoxybenzoic acid	alpha-cypermethrin	2.1 - 3 days	EU 2004b
methylcyclopropane carboxylic acid	alpha-cypermethrin	13.9 - 36.8 days	EU 2004b
hyl-m-hydroxyphenyl carbamate	desmedipham	25 days (whole system)	PSD 1993d
		43 days (sediment)	PSD 1993d
		26 days (water)	PSD 1993d
		211.9 days (anaerobic)	EPA 1996e
	diclofop-methyl	27 days	PSD 1991c
clofop acid			PSD 1991c
clofop acid		105 days (anaerobic)	
	diclofop-methyl		PSD 1991c
(2,4-dichlorophenoxy)phenol	diclofop-methyl florasulam	32 days	PSD 1991c
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570	florasularn	32 days 169 days (aerobic)	PSD 1991c PMRA 2001c
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole	florasulam fluquinconazole	32 days 169 days (aerobic) 42 - 190 days (water)	PSD 1991c PMRA 2001c PSD 1999b
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole BC 96912	florasulam fluquinconazole fluquinconazole	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water)	PSD 1991c PMRA 2001c PSD 1999b PSD 1999b
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole 3C 96912 roxypyr	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days	PSD 1991c PMRA 2001c PSD 1999b PSD 1999b Roberts 1998
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole 2,6 96912 iroxypyr	florasulam fluquinconazole fluquinconazole	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole	PSD 1991c PMRA 2001c PSD 1999b PSD 1999b
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole 3C 96912 roxypyr	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) <7 days 34.4 - 55.2 days (whole system)	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole C 96912 roxypyr	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) <7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic,	PSD 1991c PMRA 2001c PSD 1999b PSD 1999b Roberts 1998
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole 3C 96912 iroxypyr etsulfuron-methyl	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f
iclofop acid -(2,4-dichlorophenoxy)phenol -hydroxy-XDE-570 ,2,4-triazole BC 96912 uroxypyr letsutfuron-methyl E F161778	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system)	PSD 1991c PMRA 2001c PSD 1999b PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole BC 96912 iroxypyr etsulfuron-methyl E F161778 E F059411	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system)	PSD 1991c PMRA 2001c PSD 1999b PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole 3C 96912 roxypyr etsulfuron-methyl E F161778 E F059411	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole	PSD 1991c PMRA 2001c PSD 1999b PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole 3C 96912 roxypyr etsulfuron-methyl E F161778 E F059411 E 0014966	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system)	PSD 1991c PMRA 2001c PSD 1998b PSD 1998b Roberts 1988 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole 3C 96912 roxypyr etsulfuron-methyl E F161778 E F059411 E 0014966 opargyl butyl carbamate	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic)	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole 3C 96912 roxypyr etsulfuron-methyl E F161778 E F059411 E 0014966 opargyl butyl carbamate	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole	PSD 1991c PMRA 2001c PSD 1998b PSD 1998b Roberts 1988 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole 3C 96912 roxypyr etsulfuron-methyl E F161778 E F059411 E 0014966 opargyl butyl carbamate	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole system)	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f HSE 1994 PMRA 2000e
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole 3C 96912 iroxypyr etsulfuron-methyl E F161778 E F059411 E 0014966 opargyl butyl carbamate	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole system) 66 - 89 days (water)	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f HSE 1994 PMRA 2000e
-(2,4-dichlorophenoxy)phenol -hydroxy-XDE-570 2,4-triazole BC 96912 uroxypyr ietsutfuron-methyl	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole system) 66 - 89 days (water) 316 days (water,	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f HSE 1994 PMRA 2000e
-(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole BC 96912 uroxypyr ietsulfuron-methyl E F161778 E F059411 E 0014966 ropargyl butyl carbamate PA 202248	florasulam fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl isoxaflutole	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole system) 66 - 89 days (water) 316 days (water, anaerobic)	PSD 1991c PMRA 2001c PSD 1999b PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f HSE 1994 PMRA 2000e PMRA 2000e
-(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole BC 96912 uroxypyr ietsulfuron-methyl E F161778 E F059411 E 0014966 ropargyl butyl carbamate PA 202248	florasulam fluquinconazole fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) <7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole system) 66 - 89 days (water, anaerobic) 52 - 97 days (whole	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f HSE 1994 PMRA 2000e
-(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole BC 96912 uroxypyr ietsulfuron-methyl E F161778 E F059411 E 0014966 ropargyl butyl carbamate PA 202248	florasulam fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl isoxaflutole	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 291 days (anaerobic, whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole system) 66 - 89 days (water) 316 days (water, anaerobic) 52 - 97 days (whole system)	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f HSE 1994 PMRA 2000s PMRA 2000s PMRA 2000s
-(2,4-dichlorophenoxy)phenol -hydroxy-XDE-570 2,4-triazole BC 96912 uroxypyr tetsulfuron-methyl E F161778 E F059411 E 0014966 ropargyl butyl carbamate	florasulam fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl isoxaflutole	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) <7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole system) 66 - 89 days (water, anaerobic) 52 - 97 days (whole	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f HSE 1994 PMRA 2000s PMRA 2000s PMRA 2000s PMRA 2000e
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole BC 96912 iroxypyr etsulfuron-methyl E F161778 E F059411 E 0014966 ropargyl butyl carbamate PA 202248	florasulam fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl isoxaflutole	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole system) 66 - 89 days (water) 316 days (water, anaerobic) 52 - 97 days (whole system) 36 days (water, anaerobic) 52 - 97 days (whole system) 36 days (water, anaerobic) 54 days (water, anaerobic) 58 days (water, anaerobic) 58 days (water, anaerobic)	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f HSE 1994 PMRA 2000s PMRA 2000s PMRA 2000s
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole BC 96912 iroxypyr etsulfuron-methyl E F161778 E F059411 E 0014966 ropargyl butyl carbamate PA 202248	florasulam fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl isoxaflutole	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 29 21.3 days (whole system) 87.6 days (whole system) 58 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole system) 66 - 89 days (water) 316 days (water, anaerobic) 52 - 97 days (whole system) 36 days (water, anaerobic) 52 - 97 days (whole system) 36 days (water, anaerobic) 52 - 97 days (whole system) 36 days (water, anaerobic) 236 days (sediment,	PSD 1991c PMRA 2001c PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f HSE 1994 PMRA 2000s PMRA 2000s PMRA 2000s PMRA 2000e
(2,4-dichlorophenoxy)phenol hydroxy-XDE-570 2,4-triazole BC 96912 iroxypyr etsulfuron-methyl E F161778 E F059411 E 0014966 ropargyl butyl carbamate PA 202248	florasulam fluquinconazole fluroxpyr-meptyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl iodosulfuron-methyl isoxaflutole	32 days 169 days (aerobic) 42 - 190 days (water) 73 - 89 days (water) < 7 days 34.4 - 55.2 days (whole system) 291 days (anaerobic, whole system) 2.9 - 21.3 days (whole system) 87.6 days (whole system) 5.8 - 20.8 days (whole system) 11.5 days (anaerobic) 255 - 703 days (whole system) 66 - 89 days (water) 316 days (water, anaerobic) 52 - 97 days (whole system) 36 days (water, anaerobic) 52 - 97 days (whole system) 36 days (water, anaerobic) 54 days (water, anaerobic) 58 days (water, anaerobic) 58 days (water, anaerobic)	PSD 1991c PMRA 2001c PSD 1999b PSD 1999b Roberts 1998 PMRA 2004f PMRA 2004f PMRA 2004f PMRA 2004f HSE 1994 PMRA 2000e PMRA 2000e PMRA 2000e PMRA 2000e PMRA 2000e

Transformation product	Parent pesticide *	Half-life / DT _H	Reference
kresoxim-methyl acid	kresoxim-methyl	464 - 473 days (whole system)	PSD 1997c
		337 - 383 days (water)	PSD 1997c
		>>92 - 462 days (water)	PMRA 2003c
Vater/sediment systems continued	······································		
······		98 -130 days (anaerobic)	PMRA 2003c
ethylenethiourea	mancozeb/maneb / metiram	4 - 6.3 days (water)	PSD 2004b
		2 - 6.4 days (sediment)	PSD 2004b
		4 - 11.1 days (water) 6.7 - 11.1 days (whole	EU 2005h; EU 2005i EU 2005h
		system) 7.4 - 7.6 days (whole	EU 2005i
		system)	EU 2003
		5.4 days (water)	EU 2005I
		5.9 - 6.5 days (whole system)	EU 2005i
ethyleneurea	maneb	< 20 days (water)	EU 2005i
-		< 20 days (whole system)	EU 2005i
ethylenebisisothiocyanide sulfide	maneb	< 1 day (water)	EU 2005i
	NCDA	< 1 day (whole system)	EU 2005i PSD 1988b
MCPA acid HOE 113225	MCPA mefenpyr-diethyl	> 30 days 31 days (water)	PSD 1999a
102 113223	meionpyr-diautyr	24 - 42 days (sediment)	PSD 1999a
		33 - 67 days (whole	PSD 1999a
		system)	···· <del>·</del>
HOE 094270	mefenpyr-diethyl	44 days (water)	PSD 1999a
		56 days (sediment)	PSD 1999a
		44 days (whole system)	PSD 1999a
HOE 109453	metenpyr-diethyl	41 days (sediment)	PSD 1999a PMRA 2003a
phorate sulfoxide	phorate	9 days 21 days	PMRA 2003a
phorate sulfone CL 153815	phorate picolinafen	45.3 - 70.1 days (water)	PMRA 2003m
SE 100010	picomiaion	10.9 - 24.4 days (water)	PMRA 2003m
		197 days (anaerobic, water)	PMRA 2003m
		645 days (anaerobic, sediment)	PMRA 2003m
propylene urea	propineb	<30 days (whole system)	EU 2003o
propylenethiourea	propineb	4 days (water)	EU 2003o
2,3,5,6-tetrachloroaniline	tecnazene	83 - 105 days	PSD 1995p
DP-1	tepraloxydim	12.4 - 43.2 days	PMRA 2004b
hifensulfuron acid	thifensulfuron-methyl	66 -109 days (water)	EU 2001g
D-desmethyl thifensulfuron acid	thifensulfuron-methyl	27 - 51 days (water)	EU 2001g
IN-A4098	thirensulfuron-methyl	49 - 71 days (water)	EU 2001g EPA 2001c
carbendazim	thiophanate-methyl	61 days 743 days (anaerobic)	EPA 2001c EPA 2001c
OMST	tolvfluanid	41 - 74 days	PSD 1995g
triazine amine A	tribenuron methy!	105 days (anaerobic)	PSD 1992h
		78 days (whole system)	EFSA 2004
accharin	tribenuron-methyl	5.5 days (water)	EFSA 2004
riclopyr	triclopyr butoxyethyi ester	1300 days (anaerobic)	EPA 1998
2-butoxyacetic acid	triclopyr butoxyethyl ester	1 day	EPA 1998i
		73.3 days (anaerobic)	EPA 1998
2-butoxyethanol	triclopyr butoxyethyl ester	1.4 days (anaerobic)	EPA 1998
		0.6 - 3.4 days	EPA 1998
CGA-321113	trifloxystrobin	289 days	PMRA 2004h

Table A2. The degradation of pesticide transformation products in environmental systems (Chapter 2)

a - DT100

b - Soil DT₅₀ during field study

	Bears another	ľ		┢	Y		╞	z		-	K _{loc}			Ę	-	<u>R</u>	Reference(s)
		range	mean	c	range	mean	ء	range	mean	-	range	mean	c	range	mean	c	
					4176	a 7										<u> </u>	EFSA 2006a
(EZ)-3-chloroacryfic acid	1,3-dichloropropene				53-119	0 T										Ш	EFSA 2006a
(EZ)-3-chloroallyl alconol	1.3-dicriminum		1			1001										Ŧ,	Haberhauer et al. 2000;
2,4-dichlorophenol	2,4-D	2.6-5.02	3.7	4		8										ie L	Fava et al. 2005
2 4.0°	2.4-DB	0.22-3.08	1.6	S	31-74	47.8	5									<u>ה</u> ו	EU 2002a
2,4-0	areaninned			-	1175-22813 95264.3	95264.3				_						2	PMRA 2007a
K1 C	acetamiorid							0.57-1.03	0.75	5	70-258	12	5	0.89-1.01	0.95	ۍ ۳	EU 2004a
	accelerior							0.16-3.6	1.12	4	19-95	25	4	0.86-0.94	0.9	_₽	EU 2004a
7-1-WI								0 16-5 79	3.22	4	132-223	171	4	0.71-0.82	0.82	<del>م</del>	EU 2004a
IM-1-4	acetamipro				453.563	508	- -									ឃ	EU 2004a
G-1-MI					202-024	3		03-23	-	ŝ	40-312	138.3	9	0.76-0.87	0.83	<u>سَ</u> 9	EU 2002b
CGA 210007	actoenzotar-s-meuty					367										<u> </u>	-ava et al. 2000
2,6-diethylaniline						148										<u>ų</u>	ava et al. 2000-
2-chloro-2",6"-diethylacetaniitde	alachior					2				_						<u>u</u>	ava et al. 2000
2-hydroxy-2",6"-diethylacetanlide	alachior					2										3	VPVMA 2001; Aga and
alachlor ethane sulfonic acid	alachlor				15-182	98.5	2								:	È.	Thurman 2001
articath suffone	aldicarb										11-32	17.5	4		1.11	2 3	APVMA 2001
												, R				2	APVMA 2001
	ahlinarh			_							13.3-74.3	31.6	4		1.3	Ζ_	APVMA 2001
aldicard sumoxode	auroun											47.9 ^d				<u>₹</u>	APVMA 2001
	shha.c.memethrin					73°							-			-	EU 2004b
3-prieroxyuenzuk: aku 0	-					28 <b>.</b>		1.05-81.3	14.8	80	89-11289	1860.6	æ	0.52-0.86	0.67	<u>8</u>	PSD 1994a
						0.4										<u>ä</u>	PSD 1994a
4,6-dinyoroxypyraniqin-z-yr-urea						ъ.		0.08-0.83	0.51	5	24-63	43.8	ŝ	0.45-0.6	0.53	<u>й</u> ю	PSD 1994a
HOE 101630						I		0.13-1.04	0.44	6	11.6-33.1	19.1	3	0.89-0.97	0.93	е П	EFSA 2007a
•								0.92-7.39	3.81	4	144-437	350.8		0.68-0.88	0.78	4	PSD 1994b
dinydroxy anliazme	au 17Ruus															<u>ā</u> ;	Srouwer et al. 1990; PSD
																ËE	1932a, Millo anu Thurman 1994 : Solomon
		3 9 9 0	106	ţ	10.67	28.0	4 F		0.89							6	et al. 1996; APVMA
deethylatrazine	atrazine	c.o-o0.0	60.		ŝ	3	?									<del>~</del> (	1997a; Steinheimer and
																2.0	ooogan ∠oo i, Er A 2003a

Transformation product         Res         No.	National pondect         Periods from the pondicional         NG         NG<		and southered															
Tanjo         Tanjo <th< th=""><th>Tanjo         Tanjo         Tanjo         Tanjo         Tanjo         Maan         &lt;</th><th></th><th>amoneod wa</th><th>z</th><th></th><th></th><th>Å</th><th></th><th></th><th>z</th><th></th><th></th><th>R R R</th><th></th><th></th><th>Ę</th><th></th><th>Reference(c)</th></th<>	Tanjo         Tanjo         Tanjo         Tanjo         Tanjo         Maan         <		amoneod wa	z			Å			z			R R R			Ę		Reference(c)
Op/ettache         ettache & etmache         016-25         10-11         99-201         10-11         99-201         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10-11         10	Op/Matche         attractive & aitmactive         064-2.54         99-301			range	mean	=	range	mean	٤	range	mean	c	range	mean	c	range	mean	
Op/lettache         ettache         0.64.24         0.64.26         1.71         9         58.6         17 <th<< th=""><th>Op/Intercina         atractive &amp; simuative         0.164.56         1.71         9         56.6         17         -3         -3           Op/Intercina         atractive &amp; simuative         0.164.56         1.71         9         56.6         1         -3         -3           Op/Intercina         atractive &amp; simuative         0.164.56         0.58         4         31.76         56.4         -3         -3           Op/Intercina         atractive &amp; simuative         0.164.56         0.58         4         31.76         56.4         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3</th><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<>	Op/Intercina         atractive & simuative         0.164.56         1.71         9         56.6         17         -3         -3           Op/Intercina         atractive & simuative         0.164.56         1.71         9         56.6         1         -3         -3           Op/Intercina         atractive & simuative         0.164.56         0.58         4         31.76         56.4         -3         -3           Op/Intercina         atractive & simuative         0.164.56         0.58         4         31.76         56.4         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3																	
Op/entractive         anactive & animactive         (16-4)         (171         9         56.6         17         56.6         17         56.6         17         56.6         17         56.6         17         56.6         17         56.6         17         56.6         17         56.6         17         56.6         17         56.6         17         56.6         17         56.6         1         41-73         56.6         1         41-73         56.6         4         31-76         56.6         4         31-76         56.7         6         4         31-76         56.7         6         4         4         7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         57.7         5	Op/leftezine         aftezine & simucrine         0.16-6.6         1.71         0         58.6         17			0.94-2.54			99-201											Oliver et al. 2005
roylehtzine         attacine & bimazine         016-0.6         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66         1.71         9.66	ropjertezine         atruzine & sinuctine         0.16-8.6         1.71         0         58.6         17         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </th <th></th> <th></th> <td></td> <td>Brouwer et al. 1990; PSD</td>																	Brouwer et al. 1990; PSD
oppleterine         atterine & almatrine         0.16-46         1.11         6         55         1         53         1         53         1         53         1         53         1         53         1         53         1         53         1         53         1         53         1         53         1         53         4         7         53         1         1         53         4         53         4         53         4         53         4         53         4         53         53         4         53         53         4         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53	Op/eltricine         effective & effective & effective & 1/1         0         58.6         1/1         <23																	1992a; PSD 1992e; Mills
Mile         Mile <th< th=""><th>Officiential         etractive &amp; familiance         0.14-36         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-56         0.61-56         0.61-56         0.61-57         0.61-56         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-56         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.62-50         0.62-52         0.62-52         0.72-422.0         0.62-50         0.72-422.0         0.62-50         0.72-422.0         0.72-422.0         0.72-422.0         0.72-42.0         0.72-42.0<!--</th--><th></th><th>zine &amp; simazine</th><th>016.86</th><th>171</th><th></th><th></th><th></th><th>t;</th><th></th><th>٢</th><th></th><th></th><th></th><th></th><th></th><th></th><th>and Thurman 1994;</th></th></th<>	Officiential         etractive & familiance         0.14-36         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-56         0.61-56         0.61-56         0.61-57         0.61-56         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-56         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.61-57         0.62-50         0.62-52         0.62-52         0.72-422.0         0.62-50         0.72-422.0         0.62-50         0.72-422.0         0.72-422.0         0.72-422.0         0.72-42.0         0.72-42.0 </th <th></th> <th>zine &amp; simazine</th> <th>016.86</th> <th>171</th> <th></th> <th></th> <th></th> <th>t;</th> <th></th> <th>٢</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>and Thurman 1994;</th>		zine & simazine	016.86	171				t;		٢							and Thurman 1994;
Observiciative         attazine & situazine         0.692.01         41.79         56         4         31.76         56         4         31.76         56         4         31.76         56         4         31.76         56         4         31.76         56         4         31.76         56         4         31.76         56         4         31.76         56         4         31.76         57         13         102-13797         167.16         12         23         102-13797         167.16         12         23         102-13797         167.16         12         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24	Attraction         attraction         0.59-2.01         60-157         50         4         7-3         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7				-	D					7							Solomon et al. 1996;
Offectriative         atractive & simulative         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         41.79         <	Offorotriazine         atrazine & elmazine         0.562_01         60-175         55         4         <23																	APVMA 1997a;
chootische         afrache & afrache & afrache         0.632.01         41.79         55         4         -         <	Officientiable         atractive & attractive & att																	Steinheimer and Scoggin
Otheroritazine         atrazine & simuzine         039-2.01         60-15         55         4         <	Obliconduzitive         atrazine & sitmazine         059-201         60-157         55         4         <23						41-70											2001; EPA 2003a
Observation         attractive & attra	Obserzione         attactive & atmazine         0.1-0/6         11-56         5         4         <3																	APVMA 1997a
ochoordiaztie         afrazine & afrazine         0:1-0.6         0.6         6         3:1-6         5         4 $< 3$ inflazine         afrazine & afrazine         0:1-0.8         11:59         11:59         12         1         12         1         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12	controntinative         atractive & simuative         016-1.56         0.68         4         31-76         55         4         <3			0.59-2.01			60-157											Oliver et al. 2005
Operative         aracine & smacrine & smacrine         01-0.6         1         11-56         55         4         -<3	ontroconsume         affactive		•												-			PSD 1992e: Solomon et
Intercine         atractive         0.10.8         11.56         11.56         12           Intercine         atractive         0.16.369         47.73         13         103-13797         167.16         12           accompound 2         acconstruction         0.16.369         47.73         13         103-13797         167.16         12           ac compound 2         acconstruction         acconstruction         329.7         6         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         <	Intractive         atractive         0.14.0.8         11-56         12-13797         167.16         12           entractive         atractive         0.16-369         47.73         13         103-13797         167.16         12           accompound 2         azonystrobin         azonystrobin         177-1028         32-770         328.7         6           accompound 28         azonystrobin         33-770         328.7         6         40-250         106         6           MMI         benelianyl         7.03-217         3         151-455         375.6         3         84-16.1         4           MMI         benelianyl         7.03-217         3         151-455         375.6         3         84-16.1         4           MMI         benelianyl         7.03-217         3         151-455         375.6         3         84-16.1         4           MMI         benelianyl         7.03-217         3         151-12.28         3         127-12.28         3         127-12.28         3         076-078         3           MMI         benelianyl         122-12.28         3         86-716         3         127-12.23         2899         3         076-078      M		zine & simazine	0.16-1.56	0.68	4	31-76	<b>55</b>	4		V							al. 1996: APVMA 1997a
offective         atractive         0.1-0.38         47.73         13         103-13797         1677.6         12           offective         atractive         0.16-389         47.73         13         103-13797         1677.6         12           offective         atractive         0.16-389         47.73         13         103-13797         1677.6         12           offective         accorrepound 2         accorrepound 2         accorrepound 2         accorrepound 3         33-770         328.7         6           offective         accorrepound 30         accorrepound 30         accorrepound 30         232.1         3         141-16         4           offective         benalexy(1         7.03-21/7         3         154.16         4         4           offective         benalexy(1         7.03-21/7         3         154.16         4         4           offective         benalexy(1         7.03-21/2         3         12.21/2.28         3         12.21/2.28         3         12.21/2.28         3         0.756.078           n         benalexy(1         7.03-21/2         3         12.21/2.28         3         12.21/2.28         3         0.756.078           n         benalexy(1	Intractive         atractive         atractive         11-56         12           Intractive         atractive         atractive         11-58         47.73         13         103-13797         1677.16         12           Be compound 2         azconystrobin         23-770         328.7         6         177-1028         177-1028         177-1028           Be compound 28         azconystrobin         23-770         328.7         6         8         137-170         286         6           Altimotion         28         acconystrobin         20-510         285         6         8         8.4.16.1         4           Altimotion         28         250         106         6         8.4.16.1         4         4         17.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3         15.1.12.28         3																	EPA 2003a
retractive         atractive         atractive         atractive         177-1028         103-13797         1677.6         12           ee compound 2         azxxystrobin         177-1028         33-770         328.7         6           ae compound 2         azxxystrobin         33-770         328.7         6         177-1028         3         14         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	refractive         atractive         atractive         0.16-389         47.73         13         103-13797         1677.6         12           ee compound 2         accorystrobin         accorystrobin         33-770         328.7         6         177-1028         3         37710         328.7         6           ac compound 28         accorystrobin         33-770         328.7         6         40-250         106         6         127-1228         3         164.18.1         4         40-250         106         6         127-1228         3         164.18.1         4         40-250         106         6         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1228         3         127-1223         2899.9         3         0.76-0.78         <			0.1-0.8			11-59											PSD 1992a
retractive         atractive         atractive         atractive         0.16-369         47.73         13         103-13797         167.76         12           compound 2         acconystrobin         acconystrobin         33-770         328.7         6         3         4         1         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 </th <th>retractive         atractive         atractive         0.16-369         47.73         13         103-13797         1677.6         12           De compound 2         accorystrobin         accorystrobin         33-770         328.7         6         177-1028         3-770         328.7         6           De compound 28         accorystrobin         33-770         328.7         6         3-4.168.1         3-4.128.6         3         8.4.18.1         4           De compound 30         accorystrobin         20-910         285         6         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<></th>	retractive         atractive         atractive         0.16-369         47.73         13         103-13797         1677.6         12           De compound 2         accorystrobin         accorystrobin         33-770         328.7         6         177-1028         3-770         328.7         6           De compound 28         accorystrobin         33-770         328.7         6         3-4.168.1         3-4.128.6         3         8.4.18.1         4           De compound 30         accorystrobin         20-910         285         6         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>																	
Mature         andres         U.16-569         4.1/3         13         105-1379/16/15         12           De compound 2         accorystrobin         accorystrobin         33-770         328.17         6         33-770         328.17         6         33-770         328.17         6         33-770         328.17         6         33-770         328.17         6         33-770         328.17         6         33-770         328.17         6         33-770         328.17         6         33-770         328.17         6         33-770         328.17         6         33-770         328.17         6         33-770         328.17         8         44.18.1         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4	matrix         accompound 2         accompound 3			000 01 0	ļ													Brouwer et al. 1990; PSD
compound 2       azoxystrubin       1171-1028         ac compound 28       azoxystrubin       33-170       328.7       6         ac compound 28       azoxystrubin       33-170       328.7       6         ac compound 28       azoxystrubin       90-810       265       6         ac compound 28       azoxystrubin       90-810       265       6         All       benalaxyi       703-217       3       151-455       375.6       3       8.4-18.1       4         All       benalaxyi       703-217       3       151-455       375.6       3       8.4-18.1       4         All       benalaxyi       703-217       3       151-455       375.6       3       8.4-18.1       4         All       benalaxyi       703-217       3       151-455       375.6       3       8.4-18.1       4         All       benalaxyi       703-217       3       151-455       375.6       3       12-12.28       3       0.76-0.78         All       benalaxyi       1.22-12.28       3       8.4-18.1       4       7       3       0.76-0.78         All       benalaxyi       1.22-12.28       3       1.7-12.28       3 <th>a compound 2       azoxystrobin       33-770       328.7       6         ae compound 28       azoxystrobin       33-770       328.7       6         ae compound 30       azoxystrobin       33-770       285.7       6         ae compound 30       azoxystrobin       30-710       285.6       5         ae compound 30       azoxystrobin       17.03-217       3       151-455       375.6       3       8.4-18.1       4         Ait       benalaxyi       7.03-217       3       151-455       375.6       3       8.4-18.1       4         Ait       benalaxyi       7.03-217       3       151-455       375.6       3       8.4-18.1       4         Ait       benalaxyi       7.03-55       0.43       4       17-28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       0.76-0.78       3       0.76-0.78       3       0       1.2-1</th> <th></th> <th></th> <th>0.16-369</th> <th>47.73</th> <th>_</th> <th></th> <th></th> <th>12</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1992a; Solomon et al</th>	a compound 2       azoxystrobin       33-770       328.7       6         ae compound 28       azoxystrobin       33-770       328.7       6         ae compound 30       azoxystrobin       33-770       285.7       6         ae compound 30       azoxystrobin       30-710       285.6       5         ae compound 30       azoxystrobin       17.03-217       3       151-455       375.6       3       8.4-18.1       4         Ait       benalaxyi       7.03-217       3       151-455       375.6       3       8.4-18.1       4         Ait       benalaxyi       7.03-217       3       151-455       375.6       3       8.4-18.1       4         Ait       benalaxyi       7.03-55       0.43       4       17-28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       0.76-0.78       3       0.76-0.78       3       0       1.2-1			0.16-369	47.73	_			12									1992a; Solomon et al
compound 2       azoxystrobin       177-1028       33-770       328.7       6         compound 28       azoxystrobin       10-50       106       6         MM1       benelaxyi       7.03-21.7       3       151-455       375.6       3       8.4-18.1       4         MM2       benelaxyi       1.22-12.28       3       151-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       0.76-0.78       0       0       0       0       0       0       0       0 <th>compound 2       azoxystrobin       177-1028       33-770       328.7       6         ce compound 28       azoxystrobin       33-770       328.7       6       34-161       4         ce compound 28       azoxystrobin       33-770       328.7       6       34-161       4         ce compound 28       azoxystrobin       33-770       328.7       6       34-161       4         ce compound 20       azoxystrobin       122-12.28       3       151-455       375.6       3       84-16.1       4         MM       benalaxyli       1.22-12.28       3       151-12.2       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28</th> <th></th> <th>1990; APVMA 1997;</th>	compound 2       azoxystrobin       177-1028       33-770       328.7       6         ce compound 28       azoxystrobin       33-770       328.7       6       34-161       4         ce compound 28       azoxystrobin       33-770       328.7       6       34-161       4         ce compound 28       azoxystrobin       33-770       328.7       6       34-161       4         ce compound 20       azoxystrobin       122-12.28       3       151-455       375.6       3       84-16.1       4         MM       benalaxyli       1.22-12.28       3       151-12.2       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28																	1990; APVMA 1997;
Recompound 2         azxivystrobin         33-770         328.7         6           ac compound 28         azxivystrobin         33-770         328.7         6           ac compound 30         azxivystrobin         30-810         285         6           ac compound 30         azxivystrobin         40-250         106         6           M M1         benalaxyi         7.03-21.7         3         151-455         375.6         3         64-18.1         4           M M2         benalaxyi         1.22-12.28         3         151-455         321         3         12-12.293         3           M M1         benalaxyi         1.22-12.28         3         15-12.28         3         15-12.28         3         15-12.28         3         17-2.12.28         3         17-2.12.28         3         17-2.12.28         3         12-12.28         3         12-12.28         3         17-2.12.28         3         17-2.12.28         3         17-2.12.28         3         17-2.22         3         17-2.22         3         17-2.12.28         3         17-2.22         3         17-2.22         3         17-2.22         3         17-2.22         3         17-2.22         3         17-2.22         3 </th <th>compound 2       azxxystrobin       33-770       328.7       6         ac compound 28       azxxystrobin       33-770       328.7       6         ac compound 28       azxystrobin       90-810       285       6         ac compound 20       azxystrobin       40-250       106       6         Mil       benalaxyl       7.03-217       3       151-455       375.6       3       84-18.1       4         Mil       benalaxyl       7.03-217       3       151-455       375.6       3       84-18.1       4         Mil       benalaxyl       7.03-217       3       151-455       375.6       3       84-18.1       4         Mil       benalaxyl       1.22-12.28       3       80-756       321       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>77-1028</th> <th></th>	compound 2       azxxystrobin       33-770       328.7       6         ac compound 28       azxxystrobin       33-770       328.7       6         ac compound 28       azxystrobin       90-810       285       6         ac compound 20       azxystrobin       40-250       106       6         Mil       benalaxyl       7.03-217       3       151-455       375.6       3       84-18.1       4         Mil       benalaxyl       7.03-217       3       151-455       375.6       3       84-18.1       4         Mil       benalaxyl       7.03-217       3       151-455       375.6       3       84-18.1       4         Mil       benalaxyl       1.22-12.28       3       80-756       321       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2-12.28       3       1.2						77-1028											
ocompound 2         accorystrobin         33-770         328.7         6         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <	de compound 2         azoxystrobin         33-770         328.7         6           ac compound 28         azoxystrobin         33-770         328.7         6         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		· · · ·			_	0.40											EPA 2003a
accompound 28         accorystrobin         90-810         285         6           accompound 30         accorystrobin         40-250         106         6           accompound 30         accorystrobin         10-2217         3         151-455         375.6         3         84-18.1         4           Mil         benalaxyl         7.03-21.7         3         151-455         375.6         3         84-18.1         4           Mil         benalaxyl         1.22-12.28         3         80-756         321         3         1.2-12.28         3           Mil         bennalaxyl         1.22-12.28         3         80-756         321         3         1.2-12.28         3           Min         bennalaxyl         1.22-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3	accompound 28       accompound 28       accompound 28       accompound 28       accompound 30       accompound 30<		xystrobin				33-770	328.7	9									PMRA 2000a; PMRA
accompound Z8         Z32217         Z3         Z51455         Z515.6         Z3         Z8         Z418.1         4         4           VIM1         benalaxyli         1.22-12.228         3         R4.18.1         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4	accompound 26         accompound 26         accompound 26         accompound 30         accompou																	20071
a compound 30         azoxystrobin         40-250         106         6         44.18.1         4           MM1         benalaxyl         7.03-21.7         3         151.455         375.6         3         8.4.18.1         4           MM2         benalaxyl         7.03-21.7         3         151.455         375.6         3         8.4.18.1         4           MM2         benalaxyl         1.22-12.28         3         161.455         375.6         3         12.12.28         3         10.76.078           NM2         benthacarb         0.3-0.55         0.43         4         17.2         2         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4	as compound 30       acconystrobin       40-250       106       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       7       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		xystrobin				90-810	285	9									PMRA 2000a; PMRA
Mill         benalazyi         7.03-21/7         3         151-455         375.6         3         8.4-18.1         4           MMZ         benalazyi         7.03-21/7         3         151-455         375.6         3         8.4-18.1         4           MMZ         benalazyi         1.22-12.28         3         80-756         321         3         1.2-12.28         3         0.76-078           NM         benalazyi         1.22-12.28         3         8.4-18.1         4         3         0.76-078         3           NM         benalazyi         0.3-0.55         0.43         4         17-28         2         4         3         1.2-12.28         3         0.76-0.78           NM         bentlazone         bentlazone         0.3-0.55         0.43         4         17-28         2         4         3         0.76-0.78           Mentlazone         benthiavalicath         1.728         22         4         1.3-11.2         7.1         3         277.4-42.3         289.9         3         0.76-0.78           Mentlazone         benthiavalicath         benthiavalicath         1.9-5.5         3.9         3         1.16.4-241         168.7         3         0.76-0.78 </th <th>Will       benalaxy(       7.03-21.7       3       151-455       375.6       3       84-18.1       4         MMZ       benalaxy(       7.03-21.7       3       151-455       375.6       3       84-18.1       4         MMZ       benalaxy(       7.03-21.7       3       151-455       375.6       3       84-18.1       4         MMZ       benalaxy(       1.22-12.28       3       80-756       321       3       1.2-12.28       3       1.22-12.28       3       80-756       321       3       1.2-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       0.76-0.78       3       3       1.12-12.28       3       1.22-12.28       3       0.76-0.78       3       0.76-0.78       3       0.76-0.78       3       1.66-0.78       3       0.76-0.78       3       3       0.76-0.78       3       3       0.76-0.78       3       3       0.76-0.78</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ļ</th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Will       benalaxy(       7.03-21.7       3       151-455       375.6       3       84-18.1       4         MMZ       benalaxy(       7.03-21.7       3       151-455       375.6       3       84-18.1       4         MMZ       benalaxy(       7.03-21.7       3       151-455       375.6       3       84-18.1       4         MMZ       benalaxy(       1.22-12.28       3       80-756       321       3       1.2-12.28       3       1.22-12.28       3       80-756       321       3       1.2-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       1.22-12.28       3       0.76-0.78       3       3       1.12-12.28       3       1.22-12.28       3       0.76-0.78       3       0.76-0.78       3       0.76-0.78       3       1.66-0.78       3       0.76-0.78       3       3       0.76-0.78       3       3       0.76-0.78       3       3       0.76-0.78							ļ				_						
M/I         benalaxy( benalaxy( M/Z         7.03-21.7         3         151-455         375.6         3         8.4-16.1         4           M/MZ         benalaxy( benalaxy( 1-22-12.28         1.22-12.28         3         8.0-756         321         3         1.2-12.28         3           M/MZ         benalaxy( benalaxy( 1-22-12.28         1.22-12.28         3         8.4-16.1         4         3           M/Hetopropy benzamide         bentazone         0.3-0.55         0.43         4         17-28         2         4           Metopropy benzamide         bentazone         0.3-0.55         0.43         4         17-28         2         4           Metopropy benzamide         bentazone         0.3-0.55         0.43         4         17-28         3         0.2-0.52         3         0.3-0.55         0.43         4         7         3         0.76-0.76           M bentazone         bentbiavalicatio         250-350         300         2         1.3-11.2         7.1         3         237.2-422.3         289.9         3         0.76-0.76           M bentazone         benthiavalicatio         2         1.3-11.2         7.1         3         237.4-40.78         3         0.76-0.76	M/I         benalaxy(         7.03-21.7         3         151-455         375.6         3         84-18.1         4           M/Z         benalaxy(         1.22-12.28         3         80-756         321         3         1.2-12.28         3         0.3-0.55         0.43         4         17-28         2         4           M/MZ         bent/unacarb         0.3-0.55         0.43         4         17-28         2         4         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.23         299.9         3         0.76-0.78         3         1.2-12.28         3         0.76-0.78         3         1.6-0.78         3         1.6-0.78         3         1.6-0.78         3         1.6-0.78         3         0.76-0.78         3         0.76-0.78         3		Kystroon				40-250	106	9									PMKA 2000a; PMRA
M/L2         benalaxyl         122-1228         3         80-756         321         3         12-1228         3         0           man         benfuracarb         benfuracarb         0.3-0.55         0.43         4         17-28         321         3         1.2-12.28         3           Misopropy benzamide         benfuracarb         0.3-0.55         0.43         4         17-28         32         4           Misopropy benzamide         benfuracarb         0.3-0.55         0.43         4         17-28         32         4         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28	M/L2         benalexyl         1.22-12.28         3         80-756         321         3         1.2-12.28         3         80-756         321         3         1.2-12.28         3         80-756         321         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-12.28         3         1.2-11.2         1.1         1.2         1.2		alaryf	7.03-21.7			151-455	375.6		1.4-18.1		4						
man         bentvacarb         0.3-0.55         0.43         4         17-28         22         4           -N-leopropy benzamide         bentazone         0.3-0.55         0.43         4         17-28         22         4           M bentazone         bentazone         0.3-0.55         0.43         4         17-28         22         4           M bentazone         benthisvalicarb         250-350         300         2         1.3-11.2         7.1         3         237.2-422.3         299.9         3         0.76-0.78           M bentazone         benthisvalicarb         23.3-10.4         6.9         3         237.2-422.3         299.9         3         0.76-0.78           M bentazone         benthisvalicarb         1.9-5.5         3.9         3         116.4.241         168.7         3         0.79-0.022           benthisvalicarb         1.9-5.5         3.9         3         116.4.241         168.7         3         0.79-0.022           benthisvalicarb         1.9-5.5         3.9         3         14.4.7787.3         618.1         3         0.73-0.79           benthisvalicarb         1.4-366         133.7         3         454.4.7787.3         618.1         3         0.73-0.7	Tan         Denfuracarb         0.3-0.55         0.43         4         17.28         22         4         1         2         6         7         9         7         9         7         9         7         9         7         9         7         9         1         7         9         1         1         2         3         1         1         2         3         1         1         1         9         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1<< th=""><th></th><th>alaxy.</th><th>1.22-12.28</th><th></th><th>•</th><th>R0-756</th><th>324</th><th></th><th>2-12 2R</th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th></th1<<>		alaxy.	1.22-12.28		•	R0-756	324		2-12 2R					_			
H-teopropyl bentazone         Dentazone         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-37         30-33         30-37         30-33         30-37         30-33         30-37         30-33         30-37         30-33         30-37         30-33         30-37         30-33         30-33         30-33         30-33         30-36         30-33         30-33         30-33         30-33         30-36         30-33         30	Wiscopropyl bentazone         Dentazone         30-97         20         2           M bentazone         bentazone         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-97         30-76-07.8         3         30-76-07.8         3         30-79-0.82         3         30-79-0.82         3         30-79-0.82         3         3         10-66-7.8         3         3         10-76-0.78         3         3         27-422.3         299.9         3         0.79-0.79         3         3         3         10-60-78         3         3         10-76-0.78         3         3         10-76-0.78         3         3         3         10-76-0.78         3         3         3         3         3         10-76-0.78         3         3         10-76-0.78         3         3         10-76-0.78         3         3         0         73-0.79         3         3         3         3         3         3         3         3         3         3 </th <th>_</th> <th>Imposit</th> <th>01.055</th> <th>0.42</th> <th></th> <th>17.28</th> <th>5</th> <th></th> <th></th> <th></th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>EU 2004c</th>	_	Imposit	01.055	0.42		17.28	5				,						EU 2004c
Montazione         Dentazione         30-97         30-97         30-97         30-97         30-97         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-72         30-73         30-73         1-9-55         30-30-72         30-73         1-9-55         30-30-72         30-73         1-9-55         30-30-72         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55         30-73         1-9-55<	Montazone         Dentazone         2001         2         1.3-11.2         7.1         3         237.2-422.3         299.9         3         0.76-0.78         3           Denthazone         Denthazone         250.350         300         2         1.3-11.2         7.1         3         237.2-422.3         299.9         3         0.76-0.78         3           Denthievalcanb         Denthievalcanb         3         1.9-5.5         3.9         3         116.4.241         168.7         3         0.79-0.62         3         3           Denthievalcanb         Denthievalcanb         3         3-10.4         6.9         3         221.4-407.8         286.8         3         0.73-0.79         3           Deta-cyfluthrin         14-356         133.7         3         454.4-787.3         618.1         3         0.73-0.79         3	annnud hanzamida		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				1	•			·						EFSA 2006b
Deritazione         Deritazione         250-350         300         2         1.3-11.2         7.1         3         237.2-422.3         299.9         3         0.76-0.78           Derithiavalicants         benthiavalicant         1.9-5.5         3.9         3         116.4-241         168.7         3         0.76-0.78           Derithiavalicants         benthiavalicant         1.9-5.5         3.9         3         116.4-241         168.7         3         0.79-0.82           Derithiavalicants         3.3-10.4         6.9         3         221.4-407.8         296.8         3         0.82-0.91           Derithiavalicants         1.4-356         133.7         3         4.6-23.2         16.6         3         494.4-787.3         618.1         3         0.73-0.79	Derifiazione         Derifiazione         250-350         300         2         1.3-11.2         7.1         3         237.2-422.3         299.9         3         0.76-0.78         3         3           benthievalicand         benthievalicand         1         3         237.2-422.3         299.9         3         0.76-0.78         3         3         0.76-0.78         3         3         1         6         3         0.79-0.82         3         3         1         6         2         3         0.79-0.82         3         3         0.75-0.91         3         3         1         6         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>18-05</th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th>Gaston et al. 1996</th></td<>						18-05					_						Gaston et al. 1996
Denthievaluation         1.3-11.2         7.1         3         237.2-422.3         299.9         3         0.76-0.78           Denthievaluant         1.9-5.5         3.9         3         116.4-241         16.8.7         3         0.79-0.62           Denthievaluant         3.3-10.4         6.9         3         221.4-407.8         296.8         3         0.73-0.62           Denthievaluant         4.6-23.2         16.6         3         494.4-787.3         618.1         3         0.73-0.79           Deta-cylluthrin         14-356         133.7         3         4.6-23.2         16.6         3         0.73-0.79	Derithiavalicario         Derithiavalicario         1.3-11.2         7.1         3         237.2-422.3         299.9         3         0.76-0.78         3           Derithiavalicario         1.9-5.5         3.9         3         116.4-241         168.7         3         0.79-0.82         3           Derithiavalicario         3.3-10.4         6.9         3         221.4-407.8         286.8         3         0.82-0.91         3           Derithiavalicario         14-356         133.7         3         4.6-23.2         16.6         3         0.73-0.79         3           Derita-cyfluthrin         14-356         133.7         3         4.6-23.2         16.6         3         0.73-0.79         3	-	azone				250-350					-						Geston et al. 1996
Denthisvalicarb         1.9-5.5         3.9         3         116.4-241         168.7         3         0.73-0.82           Denthisvalicarb         3.3-10.4         6.9         3         221.4-407.8         296.8         3         0.82.0.91           Denthisvalicarb         1.4-356         133.7         3         4.6-23.2         16.6         3         494.4-787.3         618.1         3         0.73-0.79           Deta-cyfluthrin         14-356         133.7         3         4.6-23.2         16.6         3         494.4-787.3         618.1         3         0.73-0.79	Denthievalicanb         1.9-5.5         3.9         3         116.4.241         168.7         3         0.79-0.82         3           Denthievalicanb         3.3-10.4         6.9         3         221.4.407.8         296.8         3         0.82-0.91         3           Denthievalicanb         14-356         133.7         3         4.6-23.2         16.6         3         494.4.787.3         618.1         3         0.73-0.79         3           Deta-cyfluthrin         14-356         133.7         3         4.6-23.2         16.6         3         494.4.787.3         618.1         3         0.73-0.79         3		thiavalicarb							1.3-11.2	7.1		37.2-422.3	299.9		0.76-0.78		
Denthiavalicarib         3.3-10.4         6.9         3         221.4-407.8         30.10.4         0.13-0.02           benthiavalicarib         4.6-23.2         16.6         3         494.4-787.3         618.1         3         0.73-0.79           beta-cyfluthrin         14-356         133.7         3         4.6-23.2         16.6         3         494.4-787.3         618.1         3         0.73-0.79	Denthiavalicarb         3.3-10.4         6.9         3         221.4-407.8         296.8         3         0.73-0.02         3           Denta-cyfluthrin         14-356         133.7         3         46-23.2         16.6         3         221.4-407.8         296.8         3         0.73-0.79         3           Deta-cyfluthrin         14-356         133.7         3         46-23.2         16.6         3         0.73-0.79         3		thiavalicarb							1.9-5.5	3.9	_	16 4-241	168.7		70.0.02		
Deribinarialization         14-356         133.7         3         4.6-23.2         16.6         3         4.94.4-787.3         6.18.1         3         0.73-0.79           Deribinarialization         14-356         133.7         3         4.64.23.2         16.6         3         4.94.4-787.3         618.1         3         0.73-0.79	Destruction         Destruction <thdestruction< th=""> <thdestruction< th=""></thdestruction<></thdestruction<>		histoficath											1.001		70'0-8.1'		
Defruitivateriario beta-cyfluthrin 14-356 133.7 3 4.6-23.2 16.6 3 494.4-787.3 618.1 3 0.73-0.79	Definitivesidantia Defia-cyfluthrin Defia-cyfluthrin									4.01-0.4	<b>P</b> . <b>Q</b>		21.4-407.8	296.8	-	.82-0.91		
beta-cyfluthrin 14-356 133.7	beta-cyfluthrin 14-356 133.7 3	_	Diavalicarb						4	1.6-23.2	16.6	_	94.4-787.3	618.1		.73-0.79		_
			-cyfluthrin				14-356		с С									EU 2002e

D1969 bife D3598 bife 3.5-dibromo-4-hydroxybenzamide bro	Parent pesticide	ž		<b>x</b>	<del>ب</del> ر ۲			Ā			ž			r T			Kelence(s)
D1989 D3598 3,5-dibromo-4-hydroxybenzamide bro			mean	_		mean	-	range	mean	<b>c</b>	range	mean	۲	range	mean	-	
D1969 D3598 3.5-dibromo-4-hydroxybenzamide bro	hierarate			3775	3725-3962	3864		77-84	81.3	с С							EU 2005a
D3598 3,5-dibromo-4-hydroxybenzamide bro				5		6189		•	246								EU 2005a
3,5-dibromo-4-hydroxybenzamide bro	hifana7ata			=	80	8710 ^b											EU 2005a
	homoxvni							0.5-9.2		4	32-330		4	0.67-0.87		4	EU 2004d
	morring							3.1-10.5		3	284-639		e	0.72-0.76		ო	EU 2004d
				3.8	3.8-110	45.2	9										EFSA 2006c
	captari						,				5.7-11	8.1	ç	0.83-1	0.91	5	EFSA 2006c
												2.2					EPA 1999a
						245*											EFSA 2006d
	cartantrazona athul					2		0.12-0.58	0.24	ŝ	541	17.2	ç	0.77-1.01	0.88	ŝ	EU 2003a
	cartentrazono ethyt							0.11-0.59	0.35	ŝ	7.4-46.4	23.4	5	0.86-0.91	0.89	ŝ	EU 2003a
	cartantrazono athul			_				0.35-7.77	2.85	5	44-333	141.8	S	1.1-1.14	1.11	S	EU 2003a
								0 19-6 07	2.05	s	27-260	98.2	5	1.13-1.34	1.21	S	EU 2003a
				ن 	10.70					,							EU 2003a
azole	canenuazone eny			<u> </u>	21-01 16-110												EU 2003a
	carterrazone-erry			2				120100	97.0		10.74	40 C	Y	0 70 0 87	0.83	V	FESA 2007c
	chloridazon									• •	201 20		1 4	0.70.0.00	0.07	4	EFEA 20076
	chloridazon							N. 1-4-0	10.1	0	001-17	81.0	0	0.79-0.32	10.0	Þ	
3-carbamyl-2,4,5-trichlorobenzoic chi	chlorothaloni			2	74-169												PSD 2002; EU 2005b
droxy-2,5,6-					95-1100	467.5	18										PSD 2002; EU 2005b
lonitrile																	
R417888 ch	chlorothalonil		•		6-17	9											
3,5,6-trichloro-2-methoxypyridine	chlorpyrifos &	7.7-39.4	20.1	26	565-1308	888	ŝ										EU 2005d; EU 2005e
5																	EPA 1998I, EPA 1999d;
3,5,6-trichloro-2-pyridinol 8, 6	anopynos, moopyr & chiorpyrifos-methyl	0.45-2.86		~	70-159												APVMA 20005; Baskaran et al. 2003; EU 2005d
				2	27-389	165	8			_							APVMA 2000b
		0.53-1.95	3.8	4	77-242	148.5	4	0.53-1.95									EPA 1998(; EPA 1999d; EU 2005d; EU 2005e
		1.21-13.6	<b>4</b> .6	5 67.2	67.2-316.3	172.4	ŝ	0.68-6.4	2.4	5	50.9-148.8	91.7	ŝ	0.75-0.89	0.81	ŝ	
615M01 cir	cinidon-ethyl			ő	869-5654		•	1.63-7.83		4							EU 2002d

				ľ			7			¥			1,h		Ref	Reference(s)
Transformation product	Parent pesticide		mean		range range	mean	range	mean	-	range	mean	-	range	mean	<u>د</u>	
		8	1	–								<u>.</u>			<u> </u>	EU 2002d
615M03°	cinidon-ethyl	0.11->18.1	4		0->2013	4	151	46	e7	238-365	285.3	ę	0.73-0.89	0.8		EFSA 2005a
CGA 193468"	clodinatop			-						25 1-81 6	49.7	3	0.84-0.96	0.9	3 EFS	EFSA 2005a
CGA 302371	clodinafop						1.1-20.0		,	5 2-34 3	20.5		0.7-1.1		5	EU 2005f
MNG	clothianidin								_	576 3630	2450	, v	0 73-0 85			EU 2005f
TMG	clothianidin								_	12 8-17 3	16		0.87-0.88		3 EU	EU 2005f
TNG	clothianidin									AG 4-05 8	618	) ur	0.84-0.93		_	EU 2005f
TZMU	clothianidin									204 5.432 5	275.4	, v	0.78-0.9		_	EU 2005f
TZNG	clothianidin									0-10-10-L0-L0-Z	5	,			M	PMRA 2003f
chlorferon	coumaphos	91-191	!				0.04 0.40		•						Re	Reddy et al. 1997
chloroacid cyanazine	cyanazine	0.08-0.23	0.17		11-/	4 .	1.0-12.0		•						Å.	Reddy et al. 1997
creatine amide	cyanazine	0.19-1.43	0.84		16-75	45.3 4	c7:7-97.0	-	4						ů Q	Redriv at al 1997
demethytomoneninie cyanazine		1.69-2.85	5	4 85	89-133	105.3 4	0.51-3.88		4							country of all 1997
		0.31-1.76	1,14	1 1 1 1	26-82	62.3 4	0.3-2.3		4							day of al. 1007
	cyanazine	0 13-2 79	1.42	4 1:	11-130	75.5 4	0.91-3.36	6 2.13	4						ž i	≺eody et al. 1997 
	cyanation of the second s			321	327-1615		3.25-13.9	<b>л</b>		657-2900	753	4	0.81-1.13			EU 20026; PMINA 20065
CCIM				156	560-2245		12.4-45.4	4		1941-3398	2396	4	0.92-1			-U ZUUZE; FMIKA ZUUGA
CCIM-AM	cyazorania 			Ř	308-1141		3.94-9.64	4		572-1357	836	4	0.84-1.15			EU 2002e; PMKA 2006a
CTCA	Cyazolaninu 	8			349-681	506.8 4	4									EU 2001b
2,4-dichloroaniline	cyclanilide			<u> </u>	2										Э Ш	EU 2001b
	whatnin-hith	141-195	1.68	2   17	176-195		2									EU 2002f
cynaionop-acu	the states of th		4.0			8			-						<u>ה ו</u>	
cyhalofop-amide	cynaiolop-ouly arhaiofion-build	0 24 4 01	16	4	27-401	~	4		_						<u>1</u>	
cynaiorop-diacad			2				3.48-6.97	11	4	173-867	488	4	0.7-0.76	0.73	4	EFSA 2005b
CGA 249287	cyprount							8.3			1810			0.84	<u>.</u>	EFSA 2005b
CGA 275535	cyprodina						0.27-0.59	5 <b>9 0.41</b>	9	10-44	<b>5</b> 6	3	0.84-0.96		<u>ณี</u> ค	EU 2002g
decamethrinic acid				+	124.335		4								ឃ	EU 2004e
ethyl-m-hydroxyphenyl carbamate	-			-	3		0.13-0.18	8					0.86		<u><u> </u></u>	EFSA 2006e
G27550	diazinon															
	direnta					504									<u>č</u> 1	Pearson et al. 1996
	dichinhani					<18°	-									Fava et al. 2003 H-t-+
															Ĕ	SUUTINUES OF ALL OF ALL OF

Image         Tange         Tang         Tange         Tange <th< th=""><th>Tunneformation product</th><th>Parent pesticide</th><th>2</th><th></th><th>F</th><th><u>د</u></th><th></th><th></th><th>ž</th><th></th><th></th><th>ž</th><th></th><th></th><th>Ę</th><th></th><th></th><th>Reference(s)</th></th<>	Tunneformation product	Parent pesticide	2		F	<u>د</u>			ž			ž			Ę			Reference(s)
disolstramic         0.7.1.6         0.7         3         191.34         283.3         3           disolstramic         disolstop-metric         0.054.35         0.15         6         0.0-144         6.7         6         0.0-143         7         6           dimetricentic         dimetricentic         0.00-043         0.15         6         0.0-144         6.7         6         16-87         413         3         0.01-039         0.05         7         6         16-87         413         3         0.01-039         0.05         7         6         10-14.177         0.05         7         0.01-039         0.05         7         6         10-14.177         0.05         7         9-110         4         7         0.01-039         0.05         7         6         10-14.177         0.05         7         9-110         0.01-039         0.05         7         6         10-14.177         0.05         7         0.01-039         0.05         6         10-14.177         0.05         7         0.01-039         0.05         6         10-14.177         0.05         7         0.01-039         0.05         6         10-14.177         0.05         7         0.01-14.10         10         10 <th></th> <th></th> <th>ange</th> <th>mean</th> <th>c</th> <th>range</th> <th>mean</th> <th><b>c</b></th> <th>range</th> <th>mean</th> <th>-</th> <th>range</th> <th>mean</th> <th>-</th> <th>range</th> <th>mean</th> <th>۲</th> <th></th>			ange	mean	c	range	mean	<b>c</b>	range	mean	-	range	mean	-	range	mean	۲	
Antimistrentiation of interferentiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiation interventiatinterventini interventiation interventiation interventiation interv	distants acid	dichtoo-methvd	0.7-1.8	0.7	<i>ო</i>	191-334	269.3	e										PSD 1991c
Image: Consistent of the formation	M23			0.15	9	3.5-17.2	7.7	g										EU 2003c; EFSA 2005c
Image: constraint of interfamilies	Len			0.15	9	0.0-14.4	6.7	9										EU 2003c; EFSA 2005c
Intervalue         Consection         BT-545         322         4         7         2-35.5         13.1         7         0.74.035         0.87         7           P         dimosyntholin         BT-545         322         4         7         2-35.5         13.1         7         0.74.035         0.87         7           P         dimosyntholin         BT-545         322         4         5         5         133         4         131.1         7         0.74.035         0.87         7           P         dimosyntholin         BT-545         322         4         5         5         101         4         0         101         4           D         dimosyntholin         BT-545         322         4         101         4         0.74.035         0.85         101         4           D         dimosyntholin         BT-545         322         4         15         101         4         0.74.035         0.85         101         4           D         dimosyntholin         BT-545         325.156         355.156         101         4         0.75.010         101         4           D         dimosi         dimosi         3	171	dimethenamid-P										16-87	41.3	ę				EFSA 2006f
minosystrobin dimosystrobin         B7-545         322         4         109-06         7         6         7         6         17-11         0.65         7         0         11-11         4         7         0         11-11         4         7         0         11-11         4         7         0         11-11         0.65         11-11         11         1           P         dimosystrobin         B7-545         322         4         11-11         0.65         11-11         0.65         11-11         11         4           P         dimon         B7-545         322         4         11-11         0.65         11-11         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.74-0.76         11-1         4         0.7	omethoate sost M 4	dimonstrahin							0.02-1.21	0.24	~	2-35.5	13.1	7	0.74-0.93	0.87	2	EFSA 2005d
0         0         0         1         0         0         1         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         0         6         7         6		dimovvetrahin							0.09-0.69	0.35	9	7.8-133	38.8	9	0.91-0.99	0.95	9	EFSA 2005d
0         dincesp $67-45$ $322$ 4 $74.6-501$ $232$ 4 $0.65-113$ $1.01$ 4 $0$ dincesp $65-169$ $124$ 4 $96-136$ $124$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$ 4 $0.740.76$	SUMMO SUMMO	dimoxystrabin							0.14-1.77	0.65	7	9-119	46	7	0.81-0.92	0.86	2	EFSA 2005d
0         dimonsion         Bis-109         124         4         50-165         133         4         151-12800         B31         4         0.22-109         102         4 $0$ dimon         dimon         dimon         33-15.6         4         498-1358         4         0.74-0.76         4         4         6         4         4         6         7         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         4         1         1         1         4         1         1         1         4         1         1         1         4         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td> <th>dinoran</th> <td>87-545</td> <td>332</td> <td>4</td> <td></td> <td></td> <td></td> <td>74.6-501</td> <td>232</td> <td>4</td> <td>930-50100</td> <td>17421</td> <td>4</td> <td>0.85-1.13</td> <td>1.01</td> <td>4</td> <td>EU 2007a</td>		dinoran	87-545	332	4				74.6-501	232	4	930-50100	17421	4	0.85-1.13	1.01	4	EU 2007a
1       duron $3.5+15.6$ $4$ $496+1368$ $4$ $0.740.76$ $4$ MU       duron       duron       duron $4100$ $422-1202$ $4$ $527-961$ $4$ $0.740.76$ $4$ Insulphase       endocutian       endocutian $312-418$ $3$ $126-418$ $4$ $0.740.76$ $4$ Insulphase       endocutian       endocutian $4164-5665$ $2733$ $4$ $0.740.76$ $4$ Insulphase       endocutian $4164-5665$ $2733$ $4$ $0.740.76$ $4$ $0.740.76$ $4$ Insulphase       endocutian $4164-5665$ $2733$ $4$ $0.740.76$ $3$ $3$ Insulphase       endocutian $4100-1367$ $325-102$ $3$ $326-136$ $3$ $092-036$ $3$ $0.77-1$ Insulphase       entocutian $4100-1367$ $326-132$ $326-136$ $3$ $0.72-1$ $3$ $0.72-1$ Insulphase       entocutian $124-456$ $3$ $122+456$ $3$ $0.72-1$ $3$ $0.72-1$ <td></td> <th>dinocan</th> <td>85-169</td> <td>124</td> <td>4</td> <td></td> <td></td> <td></td> <td>50-185</td> <td>133</td> <td>4</td> <td>151-12900</td> <td>8381</td> <td>4</td> <td>0.92-1.09</td> <td>1.02</td> <td>4</td> <td>EU 2007a</td>		dinocan	85-169	124	4				50-185	133	4	151-12900	8381	4	0.92-1.09	1.02	4	EU 2007a
MU         duron $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$ $(276.08)$									3.5-15.6		4	498-1358		4	0.74-0.76		4	EFSA 2005e
WU         Cluron         Nu         Cluron         139-418         3         0.69-0.78         3         5           Insukhike         endoeulian         endoeulian         endoeulian         110-44         3         139-418         3         0.69-0.78         3         5           Symehykhnosphonic acid         ethosynalfuron         ethosynalfuron         ethosynalfuron         2.3-6         3         139-418         3         0.69-0.78         3         5           Mole R-3         ethosynalfuron         ethosynalfuron         ethosynalfuron         3         23-66         3         0.92-0.96         3         0.92-0.96         3         1         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4									4.22-12.02		4	527-861		4	0.76-0.8		4	EFSA 2005e
-12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12**         -12** <th< td=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td>2.3-8</td><td></td><td>6</td><td>139-418</td><td></td><td>e</td><td>0.69-0.78</td><td></td><td>9</td><td>EFSA 2005e</td></th<>									2.3-8		6	139-418		e	0.69-0.78		9	EFSA 2005e
effection         277-55         47-183         3         120555         5         0.92-0.96         3         2           effox/yau/huron         ethoxyau/huron         120555         3         0.92-0.96         3         3         2         47-183         3         3356-6295         5266         3         0.92-0.96         3         3         1         205555         47-183         3         3356-6295         5266         3         0.92-0.96         3         3         2         47-183         3         3356-6295         5266         3         0.92-0.96         3         3         1125-7540         3655         3         0.92-0.96         3         3         1125-7540         3655         3         0.87-0.93         3         3         1125-7540         3655         3         0.72-1         3         1125-7540         365         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1         3         0.72-1		andreitifan					<12"							_				Fava et al. 2005
Tructor         27-55         47-183         3         12055 ⁴ 0.92-0.96         3           ethoxysulfuron         ethoxazole         302-10.4         3         216-360         2 mm         3         0.92-0.96         3         3           ethoxazole         ethoxazole         302-10.4         3         216-360         2 mm         3         0.92-0.96         3         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td>erroceutan suprate 2 tu dana setu dah serbaan anid</td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1464-5656</td> <td>2733</td> <td>4</td> <td></td> <td></td> <td></td> <td>EFSA 2006g</td>	erroceutan suprate 2 tu dana setu dah serbaan anid											1464-5656	2733	4				EFSA 2006g
277-55         47-183         3         3556-6295         5266         3         0.92-0.96         3         2           7         etomazzole         etomazzole         3         217-55         3         215-56         3         0.92-0.96         3         3           7         etomazzole         etomazzole         3         1125-7540         365         3         0.87-0.93         3         3           1         etomazzole         3         1125-7540         365         3         0.87-0.93         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	nne numbruchtingerunder												12055 ^d					EFSA 2006g
3       etomazole       47-183       3       355-6295       5266       3       0.92-096       3         4       etomazole       3       302-10.4       3       216-360       294       3       0.97-093       3         5       etomazole       3       1125-7540       365       3       0.97-093       3       3         6       etomazole       3       1125-7540       365       3       0.87-093       3       3         1       etomazole       3       1125-7540       365       3       0.87-093       3       3         1       etomazole       3       124-456       3       103-351       220       3       0.87-093       3         1       etomazole       3       1225-7540       365       3       0.72-1       3       3       27-946       3       0.72-1       3       3       0.72-1       3       3       0.72-1       3       3       0.72-1       3       3       0.65-092       3       0.72-1       3       3       0.72-1       3       3       0.72-1       3       3       0.72-1       3       3       0.72-1       3       3       0.72-1       3 </td <td>AC E136086</td> <th>ethoxymathuron</th> <td></td> <td></td> <td></td> <td>27-55</td> <td></td> <td>EU 2002h</td>	AC E136086	ethoxymathuron				27-55												EU 2002h
eboxazole         eboxazole         216-360         294         3         0.9-0.93         3         1           eboxazole         eboxazole         3         1125-7540         3665         3         0.87-0.93         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	restatotia R-3	etorazole							47-183		3	335 <del>9-6</del> 295	5266	3	0.92-0.96		e	EU 2004f
eboxazole         eboxazole         3         1125-7540         3665         3         0.87-0.93         3         3           eboxazole         eboxazole         eboxazole         3         125-7540         3665         3         0.87-0.93         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3		etoxazole							3.02-10.4		3	216-360	<b>294</b>	3	0.9-0.93		e	EU 2004f
etoxazole         iz44.56         3         103-351         220         3         0.79-0.86         3           etoxazole         etoxazole         0         32-134         3         23-46         3         0.72-1         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3		etoxazole							14-98		3	1125-7540	3665	e	0.87-0.93		e	EU 2004f
ebxazole         ebxazole         32.46         32.6         3         0.65-0.92         3           ebxazole         ebxazole         ebxazole         33.591         330         4         3         23.46         32.6         3         0.65-0.92         3         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         3         1         3         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         3         1         3         1         3         1         3         1         3         1         3         3         1         3         1         3         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1         3         1		etoxazole			_				1.24-4.56		3	103-351	220	e	0.79-0.86		e	EU 2004f
etoxazole         82-1082         3         13670-83230         4.4480         3         0.72-1         3           famoxadore         1.37-14         6.5         4         130-1300         505         4         0.34-2.35         3         18-308         169         3         0.67-0.92         3         1           famoxadore         1.37-14         6.5         4         130-1300         505         4         17.5-21.6         3         1130-3942         2110         3         0.67-0.92         3         1           famoxadore         1.37-14         6.5         4         130-1300         505         4         17.5-21.6         3         1130-3942         2110         3         0.67-0.92         3         3           famoxadore         1.37-14         6.5         4         130-1300         505         4         17.5-21.6         3         1130-3942         2110         3         0.55-1.02         3         6         6         3         0.61-0.92         0.86         8         17.36         27         8         0.81-0.92         0.86         8         1           famamidore         6.64''         2         2         2         2         2		etnxaznie							0.32-1.34		e	23-46	32.6	e	0.65-0.92		3	EU 2004f
farmoxadore         33-581         330         4         0.34-2.35         3         16-308         169         3         0.67-0.92         3           farmoxadore         1.37-14         6.5         4         130-1300         505         4         17.5-21.6         3         1130-3942         2110         3         0.55-1.02         3           farmoxadore         1.37-14         6.5         4         130-1300         505         4         17.5-21.6         3         1130-3942         2110         3         0.55-1.02         3         5         5         217         8         0.81-0.92         0.86         8         6         8         6         8         0.66         3         0.61-0.92         3         5         6         0.81-0.92         0.86         8         6         8         6         8         17.56         3         0.66         8         0.66         8         0.66         8         0.66         8         0.66         8         0.66         8         0.66         8         0.66         8         0.66         8         0.66         8         0.66         8         17.56         0.86         8         4         0.66         8	metabolis D.13	etoxazole							82-1082			3670-83230			0.72-1		e	EU 2004f
Tamousdone         1.37-14         6.5         4         130-1300         505         4         137-521.6         3         1130-3942         2110         3         0.55-1.02         3         3         1130-3942         2110         3         0.55-1.02         3         3         1130-3942         2110         3         0.55-1.02         3         3         1130-3942         2110         3         0.55-1.02         3         3         1130-3942         2110         3         0.55-1.02         3         3         1130-3942         2110         3         0.55-1.02         3         3         1130-3942         2110         3         0.55-1.02         3         3         1130-3942         2110         3         0.55-1.02         3         3         1130-3942         2110         3         0.55-1.02         3         3         1130-3942         3         1130-3942         3         0.55-1.02         3         15         17         3         0.55-1.02         3         15         15         17         3         0.55-1.02         3         15         15         17         3         0.55         10         15         10         15         10         15         10         15		famoradona				33-591	330	4	0.34-2.35		ę	18-308	169	e	0.67-0.92		e	EU 2002i; PMRA 2003h
Tamoxadore         1238-34423         13705         4         17.5-21.6         3         1130-3942         2110         3         0.55-1.02         3           Tamoxadore         1238-34423         13705         4         17.5-21.6         3         1130-3942         2110         3         0.55-1.02         3         5         5         11-0.92         0.86         8         8         17.36         27         8         0.81-0.92         0.86         8         8         17.36         27         8         0.81-0.92         0.86         8         8         17.36         28"         0.96"         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9		famoradona	1 37-14	65	4	130-1300	505	4										EU 2002i; PMRA 2003h
Tenamidone         0.11-0.88         0.41         8         17-36         27         8         0.81-0.92         0.86         8           Tenamidone         0.64"         28"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.96"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97"         0.97		famovadona		•	•	1238-3442		4	17.5-21.6		e	1130-3942	2110	e	0.55-1.02		e	EU 2002i; PMRA 2003h
Tense         0.64         28         0.96           fenamidone         0.26-0.65         0.42         5         21-52         34.5         4         0.88         4           fenamidone         0.51 ⁴ 0.51 ⁴ 0.97 ⁴ 0.97 ⁴ 0.97 ⁴		fanemichone							0.11-0.88	0.41	80	17-36	27	80	0.81-0.92	0.86	80	EU 2003d; PMRA 2007e
fenamidone 0.26-0.65 0.42 5 21-52 34.5 4 0.85-0.93 0.88 4 0.51 ⁴ 0.51 ⁴ 0.97 ⁴	00071									0.64			28			0.96		EU 2003d; PMRA 2007e
	DDA417708	tenemirtne							0.26-0.65	0.42	5	21-52	34.5	4	0.85-0.93	0.88	4	EU 2003d; PMRA 2007e
										0.51			15			0.97		EU 2003d; PMRA 2007e

		I able AJ. I ne	ausorp.		pesuciae u	THE REAL OF STREET	I ne ausorption of pesicine transformation products in covir onmental systems (Chapter 2)			A SHORE IN		<b>.</b>				
Transformation product	Parent pesticide	z			<del>ب</del> ر ۲		z			Х. °			Ę,			Reference(s)
•		range	mean	c	range	mean n	range	mean	c	range	mean	-	range	mean	-	
RPA413255	fenamidone						3.16-9.01	6.15	4	261-632	491.3	4	0.87-0.93	0.89	4	EU 2003d
								11.07			326			0.95		
fenamiphos suffone	fenamiphos						0.33-4.98		ŝ	52.4-311						EFSA 2006h
-		1.09-2.63														Oliver et al. 2005
fenamiphos sulfone phenol	fenamiphos						1.09-9.84		16	31-207						EFSA 2006h
fenamiphos suffoxide	fenamiphos						0.71-3.6		e	44.8-225						EFSA 2006h
		0.4-1.78			49-125											Oliver et al. 2005
fenamiphos sulfoxide phenol	fenamiphos						0.15-7.88		16	12.5-166						EFSA 2006h
WAK 7004	fenhexamid	10.1-32.1		4	2327-5037	4										PMRA 2003b
3-methyl-4-nitrophenol	fenitrothion						2.42-7.84	5.95	e	270-303	285	e	0.71-0.81		3	EFSA 2006i
chlorobenzoxazolone	fenoxaprop-P						2.85-7.02	5.7	S				0.77-0.86	0.82	S	EFSA 2007d
MB 45950	fipronit						28.1-100	5.7	5	1695-5621	3911.4	ŝ	0.93-1.05		5	PSD 2004a; EFSA 2006j
MB 46136	fpronil						26.6-148.4	<b>66.3</b>	ŝ	1448-6745	4208.6	5	0.95-1.14	1.02	5	PSD 2004a; EFSA 2006j
MB 46513	fipronil									1150-1498	1290	S	0.92-0.94		5	EFSA 2006j
RPA 200766	fipronii						0.86-4.86	2.7	2	96-203	167.4	S	0.89-0.94	0.91	S	PSD 2004a; EFSA 2006j
5-hydroxy-XDE-570	florasularn	0.16-0.72		_												PMRA 2001c
•		0.07-1.73	0.38	9						7-32	18	9	0.88-1.1		9	EU 2002j
ASTCA	florasulam	0.26-1.1	0.71	9	24-110	53.1 10										EU 2002j
DFP-ASTCA	florasulam	0.3-1.87	1.17	9	27-159	83 10										EU 2002j
compound V	fluazinam	4.3-26		9	450-1667	9										PMRA 2003j
compound XII	fluazinem	5-67		4	1284-3784	4						-				PMRA 2003j
2-trifucromethoxy	flucarbazone						0.13-1.59	0.86	2	50-50.2	50.1	2	0.9-0.92	0.91	0	Koskinen et al. 2006
CGA 192156	Audioxon						0.06-0.28	0.21	4	11.7-42.4	23.5	4	0.77-0.84	0.8	4	EFSA 2007e
CGA 339833	fudioxoni						0.01-0.11	90.06	4	1.94-5.79	4.03	4	0.07-1.08	0.73	4	EFSA 2007e
CGA 265378	fludioxonii	36-111	68.3	4	0.65-0.83	0.75 4										EFSA 2007e
oxalate	furienacet									7-23	14	4	0.82-1.42	1.04	4	EU 2003e
sulfonic acid	fufenacet									6-19	12.5	4	0.86-1.18	0.99	4	EU 2003e
M40	fluoxastrobin						-			37-87	65	*	0.86-0.95	0.9	4	EFSA 2005f
MAB®	fluoxastrobin									14-181.5	60.3	4	0.92-0.98	0.95	4	EFSA 2005f
JV460	flupyrsuffuron-methyl				65-106	83.3 3				148-202	182	e				EU 2001c
																-
																-

	Parent pesticide	z		-	K.			¥			Υ. Έ			1/n			Reference(s)
		range	mean	c	range	mean	c	range	mean	=	range	mean	c	range	mean	c	
1					:	1					:	1					
KC576	flupyrsufturon-methyl				22-48	36.7	'n				19-26	2	'n				EU 2001C
KY374°	flupyrsulfuron-methyl				3-39	16.5	9										EU 2001c
fluroxypyr	fluroxpyr-mepty	1.7															Tomlin 2000
TEAN	flurtamone	0.3-11			3.2-27.5	22.9											EU 2003f
TFMBA	flurtamone							0.36-1.94			15-52	32.5		0.52-0.81			EU 2003f
IN-F7321	flusitazole				164-822	532.3	4										EU 2007b
IN-H9833	flusitazole				8-22	16.5	4										EU 2007b
phthakimide"		1.92-12.98		3				2.49-15.6		e	72-385	208.7	e	0.84-0.89		e	EFSA 2006k
AE F082944	foramsulfuron &							1.05-81.3	14.8	ø	89-11289	1860.6	80	0.52-0.86	0.67	80	EU 2002k; PMRA 2003k
								2.47-16.5		5	89-917	447	5	0.62-0.86	0.72	ŝ	EU 2004h
AF F130819	formasulfuron							0.36-2.98	1.5	4	40-144	72.8	4	0.9-0.94	0.93	4	EU 2002k: PMRA 2003k
AF F153745	formasulfuron				35-63	49.3	3										EU 2002k; PMRA 2003k
						48°	,						-				PMRA 2003k
3-formamidophenyf mel	methyl formetanate							0.69-3.15	1.65	4	68-142	107	4	0.86-0.92	0.9	4	EFSA 20061
Ż	formetanate							1.7 <del>9-4</del> 0.2	15.3	4	368-1289	801	4	0.93-0.9	0.87	4	EFSA 2006I
	trumatanate							1 50 0 3	6 3	-	762 337	300		0 85 0 01	0.87	-	EESA 2006
							-	C	, .	• •	40-70	g 6		10.0-00.0		* ~	EFSA 2006
		0000000		,				C.2-01.0	<u>;</u>	<b>.</b>	2-5	ò	°.	0.000.0	0.70	0	
BESOP	fosthiazate	0.18-0.38		3	:							Į	(				
metabolite M01	fuberidazole				13-15	14	5	2.26-4.53	3.7	~	257-308	278	m	0.77-0.79	0.78	m	EFSA 2007f
HOE 35956	glufosinate ammonium		0.4			16											PSD 1990f
	glufosinate							0.16.1.1	0.54	ď				0 71 0 07	0.86	G	EECA JUNEA
	ammonium								5	<b>,</b>				10.011.0	8	>	
MPP	gurtosinate			-				0.22-22	5.4	9				0.85-0.98	0.9	9	EFSA 2005g
	ammonum																•
aminomethy/phosphonic acid	grypnosere divphosete trimesium	15-1554	310	9							1160-24800 8026.7	8026.7	Q	0.75-0.9	0.8	9	EU 2002I
DE-535 phenol	haloxyfop-P	6.53-17.7		7	658-968		7										EFSA 2006m
DE-535 pyridinol	haloxyfop	0.33-0.8		~	23.4-67.8		7										EFSA 2006m
DE-535 pyridinone	haloxyfop	0.26-0.5		7	18.5-46.3		2										EFSA 2006m
CL 312,622	imazamox							0.64-1.81		9	27-279	123	9	0.9-0.97	0.94	9	EU 2002m

	Ta		adsorptio	d jo ue	esticide tra	nsformati	The adsorption of pesticide transformation products in environmental systems (Chapter 2)	n enviro	nmen	al systems (	Chapter	ĥ				
Transformation product	Parent pesticide	Ž			¥ ĸ		3			Å.			1/n			Reference(s)
		range	mean	c	range	mean n	range	mean	-	range	mean	۲	range	mean	c	
							1 07 18 2		ų	101 100	100	ų	000000	02.0	ų	EI 1 20003
CL 334,823	YOUNETRUN						701-10.1		>	+701-100	177	>	60.000.0	2.2	>	
imidactoprid-guanidine	imidacloprid						29.8-156	83.9	ო	2129-3805	3200.3	e	0.85-0.88	0.87	n	Cox et al. 1997
imidacloprid-guanidine-olefin	imidactoprid						32.4-116	<b>8</b> 9	3	2314-3083	2742	e	0.82-0.87	0.85	3	Cox et al. 1997
imidacloprid-urea	imidactoprid						2.93-8.67	ŝ	3	189-211	203	e	0.82-0.85	0.84	3	Cox et al. 1997
IN-JT333	indoxacarb	96-241		4 82	8200-25000 17300	17300 4										Strek et al. 2007
IN-JU873	indoxacarb						56-605		5	5417-31750	13167	S	0.94-1.12	1.02	ŝ	Strek et al. 2007
IN-KG433	indoxacarb						1.2-8.7		ŝ	275-395	314	S	0.88-0.95	0.92	S	Strek et al. 2007
IN-KT413	indoxacarb						1-10.3		4	204-469	344	4	0.83-1.01	0.95	4	Strek et al. 2007
IN-MK638	indoxacarb						0.9-2.6		5	67-300	151	ŝ	0.76-0.94	0.95	S	Strek et al. 2007
IN-MK643	indoxacarb						1.3-4.2		5	189-353	269	ŝ	0.77-0.83		ŝ	Strek et al. 2007
AE F059411	iodosulfuron-methyl						0.3-1.57	0.66	4	15.4-172	70.8	4	0.84-0.91	0.86	4	EU 2003h; PMRA 2004f
AE F161778	iodosulfuron-methyl					န										EU 2003h
metsulfuron-methyl	iodosuffuron-methyl						0.07-0.53	0.19	7	2.9-26.5	12.3	7	0.86-0.98	0.92	2	EU 2003h; PMRA 2004f
3,5-di-iodo-4-hydroxybenzamide	ioxynii & ioxynii octanoate						0.9-5.7	3.1	4	64-475	213.5	4	0.8-1.04	0.92	4	EU 2004g
3,5-di-iodo-4-hydroxybenzoic acid	ioxynii & ioxynii octanoate						0.48-9.44	3.9	4	72-786	266.3	4	0.52-0.9	0.68	4	EU 2004g
RP 30228	iprodione									6608-58120			1.2-2.6			EU 2002n
PMPA	iprovalicarb	0.67-11.09	4.2	4	118-575	290.3 4						-				EU 2002o
desmethylisoproturon	isoproturon						1.07-4.4		4	84-232	147	4				EU 2002p
RPA 202248	isoxaftutole				94-159	129.8 4										PMRA 2000e
						135										PMRA 2000e
										54-159	108	80		0.941	ø	EU 2003i
RPA 203328	is oxaflutole				47-100	8										PMRA 2000e
						-Z3-										PMRA 2000e DSD 4007c: El 1400e
kresoxim-methyl acid	kresoxim-methyl	0.55-0.62	0.59	2	17-69	37.4 4							0.91-0.94	0.93	2	PMRA 2003c
compound XV	7			8	36000-61000 44000	44000 6										EU 2001d
ethylenethiourea	mancozeb, maneb 0.0006-0.	0.0008-0.051	.051 0.035	2			0.51-1.14	0.76	4	34-146	69.7	4	0.33-0.55	0.44	4	EU 2005h; EU 2005i
		0.01-0.05			<u>7</u>											PSD 2004b
ethyleneurae	mancozeb & maneb	0.1-0.44		8	5.4-44.1	7										EU 2005i
				-			_									

Transformation product	Parent pesticide	Ž			ž			z			K		-	11n			Reference(s)
		range	mean	c	range	mean	٤	ange	mean	-	range	mean	c	range	mean	2	
2-methyl-4-chlorophenol	MCPA	1.05-3.72	2.29	4		93 <b>°</b>											Haberhauer et al. 2000; Eave et al. 2005
MCPA"	MCPB				10-157	74	80										FLI 2005k
AE F099095	mesosulturon							2.33-42.8			141-1360	576	ę	0.83-0.86	0.84	3	EU 2004h
AE F154851	mesosulturon						_	0.75-3.1			46-98	89	3	0.92-0.95	0.94		EU 2004h
AMBA	mesotrione										22-158	11	4				EU 2003i
CGA62826	metalaxyl-M	3-72			1-11.4			0.02-0.9									EU 2002r
methiocarb methoxy sulfone	methiocarb	0.9-2.57	1.8	4							123.2-252	189	4	0.84-0.86	0.88	4	EFSA 2006n
methiocarb sulfone phenoi	methiocarb	0.62-1.54	0.99	4							86.3-163	123	4	0.84-0.9	0.88	4	FESA 2006n
methiocarb sulfoxide	methiocarb					31.3										•	FESA 2006n
methiocarb suffixide phenol	methiocarb	0.19-0.66	0.48	4							26.7-101	50.7	4	0.89-0.91	6.0	4	EFSA 2006n
methomyl oxime	methomy									_	6.6-20	114	C.	0.68-0.95	•	· v	EFSA 20060
2-ethyl-6-methylaniline	metolachior					197							)			)	Eava at al 2000
metotechlor ethane sulfonic acid	metolachior					<u>8</u>				<u> </u>							Aga and Thuman 2001
CGA-51202	metolachior & S-	0.13-9.99		2	2,82-62		7	0 04-0 17	0 11	~							EDA 10066. ELL 20046
	metolacmor									-							
	meranenone						<b>.</b>	62.1-264.1	105.8	0 0	2199-21649	6499	ŝ	0.98-1.13	1.01	ŝ	EFSA 2006p
deaminated diketo metribuzin	metribuzin							0.13-0.51	0.33	4	26.6-36.4	32.6	4	0.86-1.04	0.94	4	EPA 1998i; EFSA 2006q
diketo metribuzin	metribuzin							0.15-0.95	0.52	4	42.9-55.8	48.2	4	0.91-1	0.95	4	EPA 1998i
IN-A4098	metsulfuron-methyl, thifensulfuron-methyl & tribenuron-methyl	0.2-6.9		7	17-226	88	~	0.26-6.8		4							EU 2000c; EU 2001g; EFSA 2004
saccharin	metsuffuron-methyl & procoxycarbazone				5.7-10.6	8.8	4	0.03-0.27		4							EU 2000c
		0.02-0.25		ŝ	4.6-15.5	5.2°	S										EU 2003n
hexamethyleneimine	molinate	1.64-7.23	4.9	ŝ	226-603	426.2	ç										EU 2003m
molimate sulfoxide	molinate	0.78-2.81	1.9	ŝ	93-234	168.8	5										EU 2003m
ADMP	nicosulturon						-	0.71-1.7	1.1	4	42-60	51.5	4	0.82-0.92	0.87	4	PSD 2000c; PMRA 2008
ASDM	nicosuffuron							0.05-0.24	0.12	4	2.3-7.7	5.7	4	0.81-1.07	0.91	4	PSD 2000c; PMRA 2008
AUSN	nicosulturon			•				0.3-0.9	0.55	4	13-39	27.5	4	0.91-0.98	0.96	4	PSD 2000c; PMRA 2008
UCSN	nicosulturon	0.02-0.09	0.06	4	1.1-5.6	2.7	4										PSD 2000c; PMRA 2008
desmethyl norflurazon	norflurazon							22.1-41.4									EPA 1996f
RP017272	oxadiargy					856											ELL 2002e

	Parent pesucide	z			<del>ب</del> ر م			X,			K.			1/n			Reference(s)
		range	mean	c	range	mean	-	range	mean	=	range	mean	=	range	mean	-	
RP025496	oxadiargy					468											EU 2002s
N-A2213	oxamv	0.05-0.2	0.11	9	4-11		5 0	0.05-0.2	0.11	S	4-10	7	S	0.87-1.24	1.03	5	EFSA 2005h
N-D2708	oxamyt	0.03-0.31	0.11	ŝ	2-10	9		0.05-0.39	0.17	ŝ	6-14	10	ŝ	0.53-0.76	0.67	5	EFSA 2005h
02001-NI	oxamy	0.03-0.31	0.11	ŝ	2-25		5			-							EFSA 2005h
C1801	oxasulturon				54-213		3										EU 2002t
CGA 27913	oxasulturon				3-6		3										EU 2002t
MET-42	pethoxamid		4.15		1.29-2.97		2	0.04-0.1	0.7	2							EU 2006a
MHPC	phenmedipham	0.57-4.8									212-470	220	4	0.52-0.85	0.74	4	EU 2004i
phorate sulfone	phorate				71-91												PMRA 2003a
phorate suffoxide	phorate				172-210												PMRA 2003a
CL 153815	picolinafen	6.3-16.2		4	160-783	440	4										EU 2002u; PMRA 2003m
M2	pinoxaden	0.06-0.28	0.15	S	4.2-27	13.1 5	2										PMRA 2006b
M3	pinoxaden	0.12-0.86	0.5	5	23-48	31.6 5	5										PMRA 2006b
R31805	pirimicarb										130-80000	14873	ç	0.9-0.95	0.92	9	EFSA 2005i
R34836	pirimicarb										33.6-4320	927	g	0.83-0.93	0.9	9	EFSA 2005i
R34865	pirimicarb										179-9650	2940	9	0.62-0.85	0.76	9	EFSA 2005i
R34885	pirimicarb										57-867	269	ç	0.9-0.95	0.92	9	EFSA 2005i
2,4-bis(isopropylamino)-6-hydroxy- e-hiazine	/- prometryn						0	0.65-7.1									EPA 1996g
2-amino-4-isopropytamino-6-	-						-	57 1 73 U									100
methy/thio-s-triazine							>										
RH24580	pronamide	1.3-2.4			96-210												EPA 1994f
RH24644	pronamide	2.3-9.9			993-3910												EPA 1994f
propachior oxanilic acid	propachior	0.03-0.08	0.05	4	2-10	6.8	4										EPA 1998j
propachor sulfonic acid	propachior	0.03-0.07	0.05	4	3-7	5.3	*										EPA 1998j
3,4-dichloroanlline	propani					258											Fava et al. 2005
Ro 17-3102	propaquizatop						~	2.36-9.29	5.79	4	347-472	411.3	4	0.82-0.88	0.85	4	PSD 1994n
1,2,4-0182018	promioconazole di tebuconazole				43-ZUZ	••	 ი										EU 2003n
					68-251												PMRA 2007g
					21.1-126.7												PMRA 2006e

Transformation product	Parent pesticide	Z			K.			Ā			X ¥			1/n			Reference(s)
		range	mean	-	range	mean	-	range	mean	c	range	mean	۲	range	mean	c	
0GA 118 245	nmoironazoia				101-166		LC.										EI 1 2003 a
prooviene urea	propineb	0.17-0.63	0.44	4	13-26	18	• 4										EU 2003n
2,4-dihydro-5-propoxy-4-methyk-3H- mmmxvcarhazone	+ proceethazone							0 11-2 65	14	~	42 3.93 6	89		0 0-1 02	800	ç	Koekinan at al. 2006
1,2,4-triazol-3-one										1	2.22	3	1	70.1-0.0	200	J	
4-hydroxy saccharin	propoxycarbazone	7.5-46.3		5 45	456.9-2872.7 2033.8	2033.8	ŝ										EU 2003p
ropoxy triazo	propoxycarbazone	0.22-1.22		5	8.9-75.5	20.6	S										EU 2003p
krodovid liv	triazolinone propoxycarbazone	0.26-3.9		5 1	10.4-551.5	<b>6.</b> 66	ç										EU 2003p
amoe 2-(3.5-dichtonohenvl)-4.4-dimethvl-		-															
5-methyleneoxazoline	propyzamide	2.3-56		<u> </u>	993-3910	1894	ç										EU 2003q
N-(1,1-dimethytacetonyl)-3,5- dichlombenzamide	propyzamide	0.3-2.4		9	96-210	153	9										EU 2003q
prosuffocarb suffoxide	prosuitocarb	1.23-2.56	1.9	3	61-88	70.7	9	1.02-1.98	1.5	ę	50-68	56.7	e	0.9-0.91	0.91	ę	EFSA 2007g
CGA 150829	prosulturon &				55-281	144	4										EU 2000d; EU 2002v
CGA 159902	prosutturon				48-96	11	4	0.4-1.24	0.75	4							EU 2002v
CGA 300406	prosulturon				43-126	66.8	4	0.49-1.28	0.69	4							EU 2002v
CGA 325025	prosulturon	_			60-238	123	4	1-1.02	1.01	4							EU 2002v
CGA 325030	prosulturon				18-41	21	4										EU 2002v
CGA 32508	prosulturon				11-31	ଛ	ŝ										EU 2002v
CGS 349707	prosulturon				37-52	42	ŝ										EU 2002v
prothioconazola-desthio	prothioconazole				419-549						523-625	575.4	4	0.79-0.83	0.81	4	PMRA 2007g; EFSA 2007h
prothioconazole-S-methyl	prothioconazole	15.6-64.1		4	2234-3779						1974-2995	2556	4	0.85-0.91	0.88	4	PMRA 2007g; EFSA
prothioconazole-thiazocine	prothioconazole					129											PMRA 2007g
CGA 180777	pymetrozine				5-49												PMRA 2002
CGA 249257	pymetrozine				9-30												PMRA 2002
CGA 358008	pymetrozine				284-436												PMRA 2002
GS23199	pymetrozine				31-48												PMRA 2002
BF 500-3	pyractostobin			4	4240->5000												PMRA 2003n
BF 500-5	pyractostobin				340-1163												PMRA 2003n
BF 500-6	pyractostobin	79-610		<u></u>	3160-71300												EU 2004j
BF 500-7	ovraciostobio	96-738		50	3920-147600												Et annai

	amoneod word a	2		¥.					۲. د		ľ	414			
		range	mean n	range	mean	n range	e mean	c	range	mean	-	anne	00000		Keterence(s)
Ĩ	and a state of the											-Re-re-		-	
. с				81-197		3 2.21-3.02	02	9			_				CI 1 2000
	pyranuren-emyr			1424-2179		3 26.2-52.7	2.7	e7.							
E-3	pyraflufen-ethyl			3098-4354	m	-	46				-			-	EU 2002w
AE B197555	pyrasulfotole				•	_		'n							EU 2002w
6-chloro-3-phenyl-pyridazin-4-of	ovridate	05.35		120		50.0-L0.0	<u>8</u> .		1-2		_	0.53-0.86			PMRA 2007b
2-amin -4 6-dimethylnuminitie	in a standard and a standard and a standard a			2012											PMRA 1991a - EU 2001a
RH618.6						1.24-5.2	.2 2.85	9	56-240	14	9	0.7-0.82	0.78	4	EFCA PINE-
	down in the sec					0.51-1.49	49 1.06	4	28-211	88.8	4	0.88-1.28	2 2		
7-91cH9	quinmerac					0.43-2.38		V	53 00		• •	0.00-1-00-0	5		1998C
IN-70941	rimsulfuron					0.774.86		•		13.0	4	0.77-0.83	0.8	4	PSD 1998c
N-70942	rimsulfuron					0.21-1.		4	34-116	60.8	4	0.92-0.96	0.94	4	EFSA 2005
N-E9260	rime: If who					1.07-3.12		4	145-223	194.3	4	0.84-0.85	0.85	4	EFSA 2005
CP 24/0650*						0.18-1.37	37 0.5	4	16-86	39.8	4	0.93-1.08	000		EECA DANE
	LiBioinas	0.76-2.14	e	77-135	e	3 0.61-1.51	51	3					2	•	
hydroxysimazine	simazine	1.4-39		296-2360				)						<u> </u>	EU 2003r
CGA 354743	S-metolachlor	0.27-0.54	ŝ	3-22	ىر مر									<u>u.</u>	PSD 1992e
CGA 376944	S-metolachior	0.24-0.55	67		40°									<u>u</u>	EU 2004k
CGA 40172	S-metolachior	2.21-6.98		142 204										<u>w</u>	EU 2004k
CGA 41507	S-metolachior	2.88-5.56		9 2 0 2 0	0 1 0 1 0									<u>w</u>	EU 2004k
2,4-dichlorobenzoic acid	spirodictofen		2	0.000.10										-	EU 2004k
BAJ 2510	spirodiciofen			11 2-28 G		Z1.0-c0.0	12 0.07	4	4.7-8.8	7.2	4	0.05-0.82	0.26	4	EFSA 2007i
RA.1.7740-ditructment	a nimeta fara			0.02-2.1				_						<u>.</u>	MRA 2006c
	sproucenter					0.1-1.1	1 0.7	ę	8.9-105	51.4		0.85-0.9	0.87	~	PMRA 2006c; EFSA
BAJ 2740-dioxaketone	spirodictofen				3720								2		2007i
BAJ 2740-enci	spirodictofen					0.06-0.37	37 0.24		11 2 <u>-</u> 28 6	, ,	•			-	PMRA 2006c
BAJ 2740-ketohydroxy	spirodictofen			CCTC-C13					0.02-2.11	9.71	4	0.9-1.01	0.94	4	EFSA 2007i
DCBA	spirodictofen			12 20 2										10	PMRA 2006c; EFSA 2007i
BSN 2060-4-carboxy	spiromesijen		200	0.12-1.4										<u> </u>	PMRA 2006c
			10.0											0	PMRA 20076
BSN 2060-enol (M01)	spiromesifen	0.02-0.05							12-83	4.7		0 0 0 CL 0	000	<u> </u>	MRA 20076' FESA
60W	spiromesiten				"					!	- •	00.0-21.0	70.0	<del>4</del>	2007]
aminopyrimidine	suffosulturon	2.32-2.99		260.400	)									<u>.</u>	EFSA 2007j
			91.9	1042 4.8278 4660 2	4860.0									<u> </u>	PMRA 1998; EU 2002x
														<u> </u>	PMRA 1998; EU 2002x

suffosuituron desmettry/ suf		2			2		2					ſ				
		and a	100m							ž			ţ		æ	Reference(s)
		ofun		╞	ange	mean	n range		mean n	range	mean	c	range	mean	c	
	Liounimeoune	0.32-0.43		М	36.7-104.4										<u>a</u>	PMRA 1998 - FU 2002~
		0.66-0.73		<del>ر</del>	37.3-116											
	sulfosulturon	0.52-2.07		00	60.9-260.5	163	4								<u>ה</u>	FMIRA 1996; EU 2002X
RH-112651 teb	tebutenozide				76-156										<u>ā</u> _	PMRA 1998; EU 2002x
2.3.5.6-tetrachloroaniline ter	lechazene				72 76700 4										<u>ā</u>	PMRA 1996b
				ō	2	_	4 20.4-1009.3		393.3 4						ă	PSD 1995n
	epraioxydim			4	48-1107	252.5 6	6 0.47-3.87	3.87								
DP-2 tep	lepraloxydim	0.34-13.7		17	22-3561											MIRA 20040; EU 2004
						701 2 6	e 0.05 117								đ.	PMRA 2004b
M02 this	thiactoprid			,				Ì							ũ	EU 2004I
M30 this	thiactoorid						-			166-438	258	5	0.76-0.91		ى س	EU 2004m
M34 this	thischool									11.9-26.2	19.8	ŝ	0.91-0.98		-	EU 2004m
The second se					2.94-6.27										ũ	EU 2004m
-	niamerroxam			-	63-77	20						_			ÍŢ	ELL 2006h
					74-382										1	
_	thiamethoxam			<del>ہ</del>	199-1451											
	thiamethoxam			37		915 F									1	PMRA 2007d
NOA 404617 this	thiamethoxam														<u>.</u>	EU 2006b; PMRA 2007d
NOA 407475 thia	thiamethoxam			43	_	781 2 B									٤_	PMRA 2007d
IN-L9225 thire	thifensulfuron-methyl			. «											<u>,</u>	EU 2006b; PMRA 2007d
N-L9226 thife	thifensulturon-methyl														U U	EU 2001g
N-W8268 thife	thifensulturon-methyl				28.42										Ш Ш	EU 2001g
methomyl	thiodicarb	0 2-1 4	a U	, 	2		-								<u></u>	EU 2001g
carbendazim thio	thiophanate-methy	0.45.88.2	2	•	•					13.3-42.8	25.2	ŝ	0.82-0.89	0.86	ы С	EPA 1998k; EFSA 2005k
DM-TM total	tolciofos-methyl	0 18-0 33			, ; ;										8	EPA 2001c
dimethylaminosulfotoluidide totyl	toMituanid	0.41-1 73			1					1					<u>لل</u>	EFSA 2005I
	DOTEMBZONE		R							56-118	76.4	4	0.89-0.93		4	EFSA 2005m
M670H10 toon	looramezone									3-14					2	PMRA 2006d
triazamate metabolite It triaz		0.28-0.48	40	ہ م		Ę				2/90-167					ž	PMRA 2006d
-		0.45-0.7													S	PSD 1998d
		0 34.0 53													S	PSD 1998d
N-00581	-	2000					-								S	2D 1998d
			~ 1	- i 	N2-71	15 3									Ü	EFSA 2004
-	-	P 4	•		52-136	60	0.9-3.2	-2 1.8							Ű	EFSA 2004

	5	Table A3. Th	e adsorptio	n of pesi	ticide trai	nsformatio	The adsorption of pesticide transformation products in environmental systems (Chapter 2)	n enviro	ment	ul systems (	Chapte	( <b>7</b> )				
Transformation product	Parent pesticide	z		-	۲ ۲		¥		F	Y			Ę			Reference(c)
		range	mean	œ د	range n	mean n	range	mean	c	range	mean	-	range	mean	-	
CGA-321113	trifloxystrobin						0.58-18.6		9	84-194	121	9	0.95-1.1	-	9	EU 2003s
CGA-357381				<b>8</b>	48-235											PMRA 2004h
CGA-357776	u muxysu ouri trifforvetrohin				389-56/											PMRA 2004h
CGA-373466	triffoxystrobin triffoxystrobin				96/8-1900											PMRA 2004h
NOA 413161	trifloxystrobin		0.042			4.2	/0.5~/1.0			30-166	88	ŝ	1.01-1.26		5	EU 2003s; PMRA 2004h
methy saccharin	triffusulfuron-methyl					ų	0.00.0	000								EU 2003s
N N-his-demethyl triazine amina	trifficientificano mother						80.0-80.0	0.28		6.9-42	24.3	<del>с</del>	0.95-1.03	0.98	3	PSD 1995r
N demothad trianing anima							0.37-3.42	1.14	ŝ	32-213	97.6	ŝ	0.93-1.05	0.97	5	PSD 1995r
trianing anna anna a							0.59-4.88	1.9	ŝ	51-300	199	ŝ	0.8-0.9	0.86	5	PSD 1995r
	Mutan munon-methy						1.05-10.1	3.8	5	89-2171	611	S	0.87-0.91	0.89	5	PSD 1995r
UMBX8/2010	trinexapac-ethyl						1.54-16.4	5.7	4	145-609	415.8	4	0.85-0.92	0.89	4	PSD 1995s: EFSA 2005o
	triconazole	1.3-2.49	ч N	_				3.63	4	35-133	82.8	4	0.83-0.88	0.85	4	EFSA 2005p
DDA 106344			2.15					1.62 ^d			62			0.88		EFSA 2005p
	unconazoie	0.82-3.31	1.9		61-163 1	122.5 4										PMRA 2004c
		1.71-4.78	3.09				0.82-2.65	1.9	4	61.163	123	e	0.84-0.87	0.86	4	EFSA 2005p
			4.27					3.31	-		127			0.88		PMRA 2004c EFSA
RPA 407922	triticonazole	3.88-19.1	12.3	467-	467-1305	761 4										2005p
		11.3-53.4	28.7				3.9-19.1	12.4	4	467-1305	761	4	0.71-0.83	0.78	4	EFSA 20050
			14.9					10.6 ^d			407			0.87		PMRA 2004c EFSA
RH-127450	zoxamide						11.4-18.1	13.9	6	404-1156	669	~	0.45-0.6	0 50	"	2005p
RH-163353	zoxamide						0.6-3.8	2.3	2	50-79	ş	) (*	0.82.0.84			
RH-24548	zoxamide						1.8-4.9	31		90 5-207 4	5 Fat	, c	0.70.0.52	5 6	<b>,</b> ,	
RH-7281	zoxamide						3.4-25.3	13.3		815-1431	124	о и:	0.0-0-00	10.0		EU 2004n
											ļ	,	10.1-0.0	10.0		

determined by HPLC

^b - determined by column leaching

e-median value

- sediment

- pH dependent adsorption identified

Soli topsoli (0-30 cm) 3-chlorallyl alcohol 2-chloro-2' (5'-diethylacetaniide 2,6-diethylanine alachlor ethane suffonic acid alachlor suffnylacetic acid alachlor DM-oxaniite acid cyanamide deethylatrazine deethylatrazine deitopropylatrazine	1.3-dichloropropene alachlor alachlor alachlor alachlor alachlor atrazine atrazine	ND ND ND 43.5 - 210 µg kg ⁻¹ ≤0.027 ppm 0.003 - 0.01 ppm 50.063 ppm ≤0.039 ppm ≤0.039 ppm ≤0.039 ppm ≤0.039 ppm 0.002 - 0.048 ppm 0.020 - 0.048 ppm 0.020 mg kg ⁻¹ < 12 - 60 µg kg ⁻¹	10 μg kg ¹ 10 μg g ¹	U SA Gemany Gemany U SA U SA U SA U SA U SA U SA U SA	
3-chlorathyl alcohol 2-chloro-2', 6'-diethylacetani 2,6-diethylaaniine alachlor ethane sulfonic acid alachlor sulfinylacetic acid alachlor DM-oxanilic acid deethylatrazine deethylatrazine deisopropylatrazine	1.3-dichloropropene alachlor alachlor alachlor alachlor alachlor alachlor alachlor alachlor alachlor	ND ND A15 - 210 µg kg ⁻¹ 43.5 - 210 µg kg ⁻¹ 50.033 ppm 50.039 ppm 50.039 ppm 50.039 ppm 50.064 ppm 50.064 ppm 0.002 - 0.048 ppm 0.002 mg kg ⁻¹ < 12 - 60 µg kg ⁻¹	10 µg kg ¹ 10 µg g ₁ 	USA Germany Germany USA USA USA USA USA USA USA	
suffonic acti suffonic acti acetic actid initic actid initic actid	alachlor alachlor alachlor alachlor alachlor alachlor atrazine	ND ND 43.5 - 210 µg kg ⁻¹ \$0.003 - 0.01 ppm 0.005 - 0.058 ppm 0.005 - 0.048 ppm 0.006 - 0.048 ppm 0.006 - 0.048 ppm 0.006 - 0.048 ppm 0.022 mg kg ⁻¹ < 12 - 60 µg kg ⁻¹	10 kg g 10 kg g 9 g 1	Germany Germany USA USA USA USA USA USA USA	Obreza and
anyaccetari suffonic acid nitic acid the cid	alactricor alactricor alactricor alactricor atrazine atrazine	ND 43.5 - 210 µg kg ⁻¹ ≤0.027 ppm 50.032 0.01 ppm 50.035 0.058 ppm 50.039 ppm 50.039 ppm 50.064 ppm 0.006 - 0.048 ppm 0.020 mg kg ⁻¹ < 12 - 60 µg kg ⁻¹ < 12 - 60 µg kg ⁻¹	00 10 10 10 10 10 10 10 10 10 10 10 10 1	Gemmany Gemmany USA USA USA USA USA USA USA	Ontermaa 1991
alachtor ethane suffonic acid alachtor suffinylacetic acid alachtor DM-oxanitic acid alachtor DM-oxanitic acid deethylatrazine deitopropryatrazine	alachlor alachlor alachlor alachlor atrazine atrazine	43.5 - 210 μg kg ⁻¹ ≤0.027 ppm 0.003 - 0.01 ppm ≈0.047 ppm 0.005 - 0.058 ppm 0.005 - 0.017 ppm 0.006 - 0.048 ppm 0.006 - 0.048 ppm 0.02 mg kg ⁻¹ < 12 - 60 μg kg ⁻¹ < 12 - 60 μg kg ⁻¹	6	Gemaany USA USA USA USA USA USA USA	Heyer and Stan 1995
atachtor suffinytacetic acid atachtor suffinytacetic acid atachtor DM-oxanitic acid cytanamide deethytatrazine deitoopropytatrazine	alachlor alachlor alachlor alachlor atrazine atrazine	43.5 - 210 µg kg \$0.027 ppm 0.003 - 0.01 ppm 0.005 - 0.058 ppm 0.005 - 0.048 ppm 0.006 - 0.048 ppm 0.002 mg kg ¹ < 12 - 60 µg kg ¹ 14 ± 2 ppb	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8 8888888 555888 5555555555555555555555	Heyer and Stan 1995
alachtor oxanilic acid alachtor suffnytacetic acid alachtor DM-oxanilic acid cyanamide deethylatrazine deisopropylatrazine	alachlor alachlor alachlor anntrole atrazine	s0.027 ppm 0.003 - 0.01 ppm 0.005 - 0.058 ppm s0.039 ppm s0.039 ppm 0.005 - 0.048 ppm 0.006 - 0.048 ppm 0.002 mg kg ⁻¹ < 12 - 60 µg kg ⁻¹ 14 ± 2 ppb		8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7	Aga and Thurman
alachtor oxanilic acid alachtor suffrnylacetic acid alachtor DM-oxanilic acid cyanamide deethylatrazine deisopropylatrazine	alachlor alachlor alachlor antárole atrazine	0.002.0 ppm 50.047 ppm 50.047 ppm 50.039 ppm 50.039 ppm 50.064 ppm 0.006 - 0.048 ppm 0.006 - 0.048 ppm 0.02 mg kg ¹ < 12 - 60 µg kg ¹ 14 ± 2 ppb		8 8 8 8 8 8 8 8 9 9 8 8 9 8 9 9 9 9 9 9	2001
alachlor oxanilic acid alachlor sulfnylacetic acid alachlor DM-oxanilic acid cyanamide deitnylatrazine deisopropylatrazine	alachlor alachlor alachlor atrazine atrazine	0.005 - 0.01 ppm 50.047 ppm 0.005 - 0.058 ppm 0.002 - 0.017 ppm 0.002 - 0.048 ppm 50.066 ppm 0.02 mg kg ¹ < 12 - 60 µg kg ¹ < 12 - 60 µg kg ¹		A S A S A S A S A S A S A S A S A S A S	EPA 1998b
alachtor suffnylacetic acid alachtor DM-oxanitic acid cyanamide deethylatrazine deisopropylatrazine	alachlor alachlor amitrole arrazine	2.0.04, ppm 2.005 - 0.058 ppm 50.039 ppm 0.002 - 0.017 ppm 0.006 - 0.048 ppm 0.02 mg kg ⁻¹ < 12 - 60 µg kg ⁻¹ 14 ± 2 ppb		A A A A A S A S A S D D D D D D D D D D D D	EPA 1998b
alachtor suffinylacetic acid alachtor DM-oxanitic acid cyanamide deethylatrazine deisopropylatrazine	alachlor alachlor amitrole atrazine	0.002 - 0.007 ppm 50.039 ppm 0.002 - 0.017 ppm 5006 - 0.048 ppm 0.02 mg kg ⁻¹ < 12 - 60 µg kg ⁻¹ 14 ± 2 ppb		ASU VSU VSU	EPA 1998b
alachtor DM-oxanitic acid cyanamide deethylatrazine deitopropylatrazine	alachlor alachlor atrazine atrazine	5.0.059 ppm 0.002 0.017 ppm ≤0.061 ppm 0.006 - 0.048 ppm 0.02 mg kg ¹ < 12 - 60 µg kg ¹ 14 ± 2 ppb		ASU USA	EPA 1998b
alachlor DM-oxanilic acid Cytanamide deethylatrazine deisopropylatrazine	alachlor amitrole atrazine	0.002 - 0.017 ppm 0.006 - 0.048 ppm 0.005 - 0.048 ppm 0.02 mg kg ⁻¹ < 12 - 60 µg kg ⁻¹ 14 ± 2 ppb		NSA	EPA 1998b
descrive comparative actu cyanamide deethylatrazine deisopropylatrazine	andruote amitrote afrazine	2.061 ppm 0.006 - 0.048 ppm 0.02 mg kg ¹ < 12 - 60 µg kg ¹ 14 ± 2 ppb			EPA 1998b
cyanamide deethylatrazine deisopropylatrazine	amitrole atrazine	0.000 - 0.048 ppm 0.02 mg kg ¹ < 12 - 60 µg kg ¹ 14 ± 2 ppb		ASU	EPA 1998b
oyanamoe deethylatrazine deisopropylatrazine	arrietoe aftazine	0.02 mg kg ' < 12 - 60 µg kg ' 14 ± 2 ppb		NSA	EPA 1998b
deisopropylatrazine	attazine	< 12 - 60 μg kg" 14 ± 2 ppb		NSA	EPA 1998b
deisopropylatrazine		14 ± 2 ppb		NSA	Mills and Thurman
deisopropylatrazine		14 ± 2 pp0			1994
deisopropylatrazine			1 - 5 ppb	Canada	Khan and Saidak
deisopropylatrazine					1981
deisopropylatrazine			•	Canada	Raju et al. 1993
deisopropylatrazine		6 6d 10:0 I 11:0 - to:0		ASU	Winkelmann and
	atrazina	bart and the bar			Klaine 1991
		fy frd /7 - + <	•	ASU	Mills and Thurman
		✓ 1 = 10 08 the bac ¹			1994
			•	Canada	Raju et al. 1993
			•	NSA	Winkelmann and
hudennuateration		<b>106 : 07 - 016 : 00</b>			Klaine 1991
	04 117 B N B	add nc 7 9/2 - 17 7 9 92	add c - 1	Canada	Khan and Saidak
		< 1 - 60 1 un bo ⁻¹			1961
			•	Canada	Raju et al. 1993
		6 6d c.o - 00.0 I 14.0	•	ASU	Winkelmann and
de ettrution de la companya de			4 		Klaine 1991
		odd 7 2 /1 - 6 2 /6		Canada	Khan and Saidak
deisopropylitydroxyatrazine	atrazine	73 + 7 - 64 + 8 not	1 - 5 nah		
•					
reference compound 2	azoxystrobin	<0.05 µg kg ⁻¹	•	Canada	PMRA 200a
reference compound 28	azoxystrobin	<0.05 µg kg		Canada	DMBA 2000a
reference compound 30	azoxystrobin	<0.05 µg kg ⁻¹		Canada	DUID 2000-
benalaxyi M1	benalaxvi	0.3 - 0.7 ma ka ⁻¹			
benalaxyi M2	benalaxy	< 0.1 ma ka			

Environmental compartment	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
topsoll (0-30 cm) continued	carbofuran	benfuracarb	< 1 - 6.3 mg kg ⁻¹		Japan	PSD 1998a
	2-amino-N-isopropyl benzamide	bentazone	<0.1 ppm	,	Germany	EPA 2001a
			<0.05 ppm		ASU	EPA 2001a
	SDS1449	chlorthal-dimethyl	ND - 0.11 kg ha ⁻¹	0.01 ppm	NSA	Niemczyk and
	SDC064	chtothal dimethod	ND - 2 00 to ha ^{-t}	0.01	4011	Krause 1994
					<b>V</b> SD	NIEMCZYK AND Kraise 1004
	1-(2,4-dichlorophenyl) ethan-1-ol	chlorfenvinphos	QN	2 mg kg1		PSD 1994d
			0.3 mg kg ¹	, ,	Belgium	PSD 1994d
			0.3 mg kg '		Belgium	PSD 1994d
	2-hydroxy-4-chlorobenzoic acid	chlorfenvinphos	5.6±0.2 mg kg ¹	0.02 mg kg ⁻¹	Belgium	PSD 1994d
			3.2 mg kg	•	Belgium	PSD 1994d
			4.7 mg kg	•	Belgium	PSD 1994d
			5.7 mg kg	•	Belgium	PSD 1994d
		•	5.0 mg kg	•	Belgium	PSD 1994d
	2,4-dichioroacetophenone	chlortenvinphos	0.4 mg kg		Belgium	PSD 1994d
			0.4 mg kg	1	Belgium	PSD 1994d
	a distriction of the second		0.3 mg kg	•	Belgium	PSD 1994d
	z,4-aichiorophenacyi chionoe	chlorterwinphos	0.1 mg kg			PSD 1994d
			3.5±0.2 mg kg	0.02 mg kg	Belgium	PSD 1994d
			4.8 mg kg	•	Belgium	PSD 1994d
			4.3 mg kg	ı	Belgium	PSD 1994d
				•	Belgum	PSD 1994d
	1 distantes de la contracta de	محطحمة معاقدها فلم			Eelgum	PSD 1994d
	214-2102000000000000000000	CRIOTEITVINPROS	1.3±0.3 mg kg	0.02 mg kg	Belgium	PSD 1994d
			4.7 mg kg ⁻¹ c		Belgium	PSD 1994d
			4.9 mg kg [	•	Belgium	PSD 1994d
			7.4 mg kg ¹ c	•	Belgium	PSD 1994d
			7.9 mg kg ⁻¹ c	•	Belgium	PSD 1994d
	2,4-dihydroxybenzoic acid	chlorferwinphos	1.5±0.1 mg kg ⁻¹	0.02 mg kg ⁻¹	Belgium	PSD 1994d
			1.1 mg kg ¹ c		Belgium	PSD 1994d
			1.3 mg kg		Belgium	PSD 1994d
	2,4-dihydroxybenzoic acid	chlorfenvinphos	2.5 mg kg	•	Belgium	PSD 1994d
	•		2.0 mg kg	•	Belgium	PSD 1994d
	dichlorobenzyl alcohol	chorterwinphos	0.5 mg kg		Belgium	PSD 1994d
	trichloroacetophenone	chlorferwinphos	0.1 mg kg ⁻¹	•	ı	PSD 1994d
	3,5,6-trichloro-2-pyridinol 3.5,6-trichloro-2-methoxyovridine	chlorpyrifos chlorovrifos	0.09 - 1.01 mg kg ^{1 b} 0.01 - 0.06 mg kg ^{1 b}		NSA	APVMA 20006

Environmental compartment	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
topsoli (0-30 cm) continued	cyanazine amide	cyanazine	<0.01 - 1.1 ppm		France and UK	Beynon et al. 1972a
	2-chloro-4-(1-carbonyt-1- methylathylamiro)-6-amiro-1,3,5-	cyanazine	0.41 - 0.9 ppm < 0.01 - 0.08 ppm		UK France and UK	Beynon et al. 1972b Beynon et al. 1972a
	thazine cyanazine acid	cyanazine	0.72 - 1.66 ppm	•	ž	Beynon et al. 1972b
	cyanazine hydroxy acid 2-[(4-amino-6-chkoro(1,3,5-triazin-2-	cyanazine cyanazine	0.1 - 0.79 ppm < 0.01 - 0.02 ppm		33	Beynon et al. 1972b Beynon et al. 1972b
	yr) jamarop 2-meurypropanenune (4-amino-6-chloro(1,3,5-triazin-2-	cyanazine	0.03 - 0.08 ppm		лĶ	Beynon et al. 1972b
	y / Jeury Milling CCA	cypermethrin	1-10 ng g ¹	ng g ¹ range	Germany	Class 1992
	3-phenoxybenzoic acid	cypermethrin	1-10 ng g	ng girange	Germany	Class 1992
	J-pherioxyderizakoenyde C.C.A. 2.40287	cypermerun cumulinii	0 12 mo ka ⁻¹	ng girange	Germany	Class 1992 DCD 1007a
			0.11 mg kg	0.02 mg kg ⁻¹	33	PSD 1997a
			0.08 mg kg ⁻¹	0.02 mg kg ⁻¹	ž	PSD 1997a
			0.02 - 0.03 mg kg ⁻¹	0.01 mg kg	Switzertand	PSD 1997a
		-	0.05 mg kg	0.01 mg kg ⁻¹	Switzerland	PSD 1997a
		cyromazme	0.05 - 1.4 mg kg		SWIZEFIEID	PSU 1993C
	oecametrimic acid athulmihurimumhanul cathamata	dettametrinn desmedinhem	ND - 0 50 ma ka ⁻¹		ASU ISA	EU 2002g PSD 10034
	o.p. DDE	DDT	> 0.01 ± 0.01 μα α ¹	<b>Fy Rei 0000</b>	Australia	Van Zweiten et al
						2001
	p.p.200E	DOT	17.3 ± 1.6 μg g ¹		Australia	Van Zweiten et al.
	000;000	DDT	20.9 ± 4.9 uo o ¹		Australia	ZUUT Van Zweiten et al
						2001
	000; <i>d'd</i>	001	9.0 ± 1.0 μg g ¹	•	Australia	Van Zweiten et al.
			ģ		Ì	2001
	outcoxon 3 6 distributealitatic acid					
	2.6 dilated and 2.8 dishforesting a sold					
	z.o-uniyanaky-o,o-unamusamuyau aua dichéha acid	dictrine-methyl	0.01-0.28 mo ka ¹			Nueger et al. 1991 PSD 10015
	p-chimohanki	dilutionarium	<0.002 - 0.06 nom		NSD	FPA 1007a
	2.6-diffuorobenzoic acid	diflubenzuron	ND - 0.01 ppm	•	VSN	EPA 1997a
	DM2	difufenican	ND - 20 ± 1 μg kg	2 µg kg ]	Belgium	Rouchaud et al. 1991
	DM3	diflufenican	ND - 26 ± 1 μg kg	2 µg kg	Belgium	Rouchaud et al. 1991
	DM4	difufenican	ND - 23 ± 1 μg kg	2 µg kg	Belgium	Rouchaud et al. 1991
	2,4-diffuoroaniine	difutenican	<u>O</u> N	5 µg kg ¹	Belgium	Rouchaud et al. 1991

Environmental compartment	Transformation product	Parent pesticide *	Concentration	Limit of detection	Country	Reference
topsoil (0-30 cm) continued	3-(trifluoromethyl)phenol	diftufenican	QN	5 ua ka'	Beloium	Reverband at al. 1001
	N-demethyldimeturon	dimeturon	0.1 ma ka ^{-1 b}		X	PSD 10036
	dimethoxon	dimethoate	0.01 - 0.561 ppm	,	VISI	EPA 1000e
	CONH ₂ -fen	esferivalerate	QN	0.01 ma ka .	LIK and LISA	
	RH-6467	fenhuconazole	5 un kn ^{-1b}			
					VSD :	PSU 19950
			0.04/mg kg	0.01 mg kg	ASU	PSD 1995c
	R71R-LIX	Teribuconazole		0.01 mg kg	Germany	PSD 1995c
			0.031 mg kg	0.01 mg kg	NSA	PSD 1995c
			0.05 mg kg	0.01 mg kg	NSA	PSD 1995c
	RH-9130	fenbuconazole	QN	0.01 mg kg ⁻¹	Germany	PSD 1995c
			0.01 mg kg ¹	0.01 mg kg ⁻¹	ASU	PSD 1995c
			0.063 mg kg ⁻¹ b	0.01 ma ka'	USA	PSD 1995c
	FBC 96912	fluquinconazole	0.13 ma ka ³ °	0.02 ma ka	Ĭ	PSD 1000h
			0.16 ma ka ^{-1 b}	0.02 mo ko	115	Den 1000h
					Liance	
		•		0.02 mg kg	Germany	PSD 1999b
	tomesaren amine	tomesaten	<0.02 mg kg	0.01 mg kg ⁻¹	NSA	PSD 1995f
	carbamoyiphosphonic acid	foseamine-ammonium	1.3 - 8.6 ppm	•		EPA 1995d
	3-methyl phosphinico-proprionic acid	glufosinate ammonium	0.03 - 0.2 mg kg ¹	•		PSD 1990f
		I	ND - 0.03 mg kg ⁻¹	< 0.05 ma ka ⁻¹	•	PSD 1990f
	aminomethytphosphonic acid	ghrphosate	0.6 ppm		USA	EPA 1003h
	2-hydroxyquinoxaline	quinalphos	ND - 64 ± 2 µg kg ¹	< 1 mg g ¹	India	Menon and Gonal
				1		2003
	quinoxaline-2-thiol	quinalphos	ND - 35 ± 7 μg kg ⁻¹	< 1 mg g ⁻¹	India	Menon and Gonal
			6 1	9		2003
	RP 30228	iprodione	0.47 ppm		NSA	EPA 19980
			0.01 - 0.08 ppm		NSA	EPA 19980
	RP 32490	iprodione	mod 60.0s		NSA	EPA 10080
	3-(3,4-dichlorophenyl)-1-methylurea	linuron	0.1 ppm	•	Canada	DCD 1005h
	3.4-dichtoroaniline	linuron	1.4 pom	0 1 mm		
			0 4 pmb	1 and		
	3.2' & A'Jahashihamashihamasa				•	
					•	PSD 1995h
	Landstriken 9 melde 1				. (	PSD 1995h
			0 × 0 × 0 × 0	6x 6rl c+ - c1	Spain	Crespin et al. 2001
	HOE 094270	mefenpyr-diethyl	0.0948 mg kg	0.007 mg kg	Germany	PSD 1999a
	methiocarb suffoxide	methiocarb	100 µg kg	10 µg kg ¹	Germany	PSD 1998b
	methiocarb sulfone	methiocarb	22 µg kg ¹ °	10 µg kg ¹	Germany	PSD 1998b
	metolachior ethane sulfonic acid	metokachior	11.91 - 128 μg kg ¹		NSA	Aga and Thuman
						2001
	VISA	metosulam	0.001 - 0.005 mg kg	,	NSA	PSD 1996c

Environmental compartment	Transformation product	Parent pesticide *	Concentration	Limit of detection	Country	Reference
toosoli (0-30 cm) continued	7-hvdroxvmetosulam	metosularn	0.001 - 0.005 ma ka ⁻¹		<b>ASI</b>	PSD 1006c
	2,4-bis(isopropylamino)- 6-hudnovv-e-triazine	prometryn	0.322 - 0.735 ppm		NSA	EPA 1996g
	2-amino-4-isopropylamino-6-methylthio- e-triazine	prometryn	0.025 - 0.066 ppm		NSA	EPA 1996g
	propachion oxanilic acid	propachior	0.668 ppm ^b		USA	EPA 1998i
	propachlor sulfinvlacetic acid	propachlor	0.201 pom b	,	USA	EPA 1998i
	propachlor ethane suffonic acid	propachlor	0.416 ppm b		NSA	EPA 1998
	hydroxypropachlor	propachlor	0.351 ppm b		NSA	FPA 1998
	norchloropropachior	propachlor	0.101 - 0.14 ppm	•	ASU	EPA 1998
	propachlor methy/sultone	propachlor	0.046 ppm	•	ASU	EPA 1998
	6-chloro-3-phenyl-pyridazin-4-ol	pyridate	0.07 - 0.75 mg kg ¹		•	EU 2001e
	BH518-2	quinmerac	ND - 0.078 mg kg ⁻¹	0.01 mg kg ⁻¹	Germany	PSD 1998c
	BH518-5	quinmerac	ND - 0.078 mg kg ⁻¹	0.01 mg kg ⁻¹	Germany	PSD 1998c
	PP890	tefluthrin	0.02 - 0.1 ma ka ⁷	0.01 mg kg ⁻¹	NSN	PSD 1991h
	2,3,5,6-tetrafluoro-4-methyl benzoic	tefluthrin	0.02 - 0.1 mg kg ⁻¹	0.01 mg kg	NSA	PSD 1991h
	acid					
	thiobencarb suffoxide	thiobencarb	s2 ppm	0.01 ppm	NSA	EPA 1997e
	DMST	tolyfluanid	3.15 mg kg	0.1 mg kg ⁻¹	Germany	PSD 1995q
	SAS 9256	triazoxide	0.64 mg kg ⁻¹	0.04 mg kg ⁻¹	Germany	PSD 1993n
	3,5,6-trichloro-2-pyridinol	trictopyr	0.131 ppm	63 weeks	•	EPA 1998I
	3,5,6-trichtoro-2-pyridinol	trictopyr butoxyethyl ester	0.04 - 1.4 ppm	•	NSA	EPA 1998
	3,5,6-trichloro-2-methoxypyridine	trictopyr butoxyethyl ester	0.15 - 0.35 ppm	•	NSA	EPA 1998
	methyl saccharin	triflusulturon-methyl	0.015 mg kg	0.002 mg kg	NSA	PSD 1995r
	triazine amine B	triflusulturon-methyl	0.041 mg kg	0.002 mg kg ¹	NSA	PSD 1995r
	N-demethyl triazine amine B	triflusuffuron-methyl	0.014 mg kg	0.002 mg kg ¹	NSA	PSD 1995r
	N.N-bis-demethyl triazine amine B	triflusuffunon-methyf	0.006 mg kg ⁻¹	0.002 mg kg ⁻¹	USA	PSD 1995r
	trinexapac acid	trinexapac ethyl	0.03 mg kg	0.02 mg kg ³	Switzerland	PSD 1995s
			0.06 mg kg ⁻¹	0.02 mg kg	Switzerland	PSD 1995s
			0.14 mg kg ¹	0.02 mg kg ⁻¹	France	PSD 1995a
			0.13 ma ka ⁻¹ b	0.01 ma ka ⁻¹	NSA	PSD 1995s
			0.42 mg kg ⁻¹ b	0.01 ma ka ⁻¹	ASU	PSD 1995s
			0.7 ma ka ³¹ 5	0.01 mg kg	<b>NSA</b>	PSD 1005e
			0.36 mo ka ⁻¹⁶		ASI1	DCD 10005
subsoli (30 - 60cm)			Au Au		500	SCREI DOL
	3-chlorally/ alcohol	1,3-dichloropropene	QN	10 µg kg ⁻¹	NSA	Obreza and
						Ontermaa 1991
	alachior ethane sulfonic acid	alachior <b>a</b> lachior	80 - 142 µg kg ⁻¹		NSA	Aga and Thurman
	dimethoron	dimethoate	0.012 mm		1 ICA	
			1144 710.0		¥60	

Table A4. The occurrence of pesticide transformation products in environmental systems (Cha

Environmental compartment	Transformation product	Parent pesticide ¹	Concentration	Limit of detection	Country	Reference
subsoll (30 - 60cm) continued	metolachlor ethane sulfonic acid	metolachlor	3.6 - 13.3 µg kg ¹	·	NSA	Aga and Thurman
	propachtor ethane sulfonic acid	propachlor	0.015 ppm b		NSA	EPA 1998j
	2-91018	duinmerac	ND - 0.01 mg kg	0.01 mg kg	Germany	PSD 1998c
	BH310-3 M N H5 44-44-44-44-44-44-44	quinmerac		0.01 mg kg	Germany	PSD 1998c
subsoli (60 - 90cm)			o.uut mg kg	0.002 mg kg	NSA	PSD 1995r
	alachlor ethane sulfonic acid	alachlor	13.3 - 140 µg kg ⁻¹		NSA	Aga and Thurman
			≤0.011 pom		11SA	2001 EDA 1008h
	alachtor oxanilic acid	alachlor	s0.023 ppm		NSA	EPA 1998h
	metolachlor ethane sulfonic acid	metolachlor	18.7 - 122 µg kg ¹		NSA	Aga and Thurman
	CGA-40172	metolachlor	0.07 ppm		<b>NISA</b>	2001 FPA 1005f
	CGA-40919	metolachior	0.21 ppm	•	ASI	EPA 1005
	CGA-50720	metolachior	Q		Š.	EPA 1995
	CGA-51202	metolachlor	0.11 ppm			EPA 1995f
	propachior suffinylacetic acid	propachlor	0.012 ppm		NSA	EPA 1998
	propachlor oxanilic acid	propachior	0.013 ppm "	•	NSA	EPA 1998
	BH518-5	quinmerac	ND - 0.01 mg kg	0.01 mg kg ⁻¹	Germany	PSD 1998c
	Киюлец	modicarb	4 ppb 7	•	NSA	EPA 1998k
Vadose zone water	:					
	alachior ethane sulfonic acid	attachior attachior	3 - 73 µg L°	0.5 µg L'	NSA	Aga and Thurman
	deethylatrazine	atrazine	0.3 µg L¹°	0.04 µg L ⁻¹	NSA	2001 Steinheimer and
						Scoggin 2001
			9 - 19 µg L''	0.1 µg L ⁻¹	NSA	Fermanich et al.
			0 76 - 1 48 un 1 - 1 b		<b>V</b> 011	
			15 - 29 µg L		A SO	Mills and Thurman
						1994
			4.7 - 22.1 µg L ⁻¹ °	0.02 µg L ⁻¹	NSA	Adams and Thurman
	deteopropytatrazine	atrazine	0.6 ua L ^{-1 c}	0.04 µa L ⁻¹	<b>A</b> SU	1991 Steinheimer and
			) -			Scronin 2001
			< 0.5 µg L ⁻¹	0.2 µg L'	NSA	Fermanich et al.
			0.11 - 0.78 uo L'	0.03 ual -1		1996 Bertin et et 2000
			7 - 15 µg L ¹⁶	1 DL	NSN NSN	Milks and Thirman
						1994

	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
Vadose zone water continued			< 0.02 µg L ¹	0.02 µg L ⁻¹	NSA	Adams and Thurman
	didealkdatrazine	ette	1.1.2 1.2 CO	1.1		1661
	hvdroxvatrazine	attazine	0.08 - 0.37 101 -1		A SU	Pashin et al. 2000
	BH518-2	<b>Clinners</b>				Pasnin et al. 2000
	BH518-5	quinmerac	0.16 µg L ^{-1 b}	0.05 µg L ¹	Germany	PSD 1998c
Leachate						
coumn studies						
	2,6-diethylaniline	alachlor	1 µg L ⁻¹		Italy	Fava et al. 2000
	2-chloro-2", 6'-diethylacetanilide	alachior	2.2 - 2.7 ua L ¹		tak	Fava at al 2000
	2-hydroxy-2',6'-diethylacetanilide	alachior	0.8 ug L		hah	
	2-ethyl-6-methylaniline	metolachior	Denol-1			
	RH-6467	fanhi conazola		•	Aim	Fava et al. 2000
				•	1	PSD 1995c
		renouconazole	Trace	•	•	PSD 1995c
	021A-130	tenbuconazole	trace	•	•	PSD 1995c
hrsimetier studies						
		audicarb	1.5 µg L	•	1	APVMA 2001
	aldicarb suffoxde	aldicarb	0.23 µg L ¹	•	•	APVMA 2001
	benalaxyl M1	benalaxy	4.68 - 4.87 µg L ⁻¹ c		Switzertand	EII 2004c
	benałaxy/ M2	benelaxy	4.53 - 7.83 ug L ¹⁶	1	Switterland	
	2,6-dichlorbenzamide	dictobenil	14.2 - 80.4 pmb		Comany	
	trift comethenoic acid			1		ELA 19986
				•	5	PSD 2000a
		nuramone	0.03 - 0.05 µg L	, ,	ž	PSD 2000a
	kresoxim-methy acid	kresoxim-methyl	ND - 0.04 µg L	0.01µg L ⁻¹	Germany	PSD 1997c
			0.25 - 0.33 µg kg ⁻¹ (soil)		Germany	PSD 1997c
Surface water					•	
runofi						
	acetochior oxanilic acid	acetochlor	ND - 0.06 µc L ⁻¹	0.01 un 1 ⁻¹	NCA.	Come of al 4007
	election ethane suffonic acid	alachior	ND - 48 84 101			
					500	Aga and Inuman
	alachtor oxanilic acid	alachior	ND - 0.17 up 1 ⁻¹	0.0111	104	
	deeth data zin e					
					r rance	Party et al. 1997
			1 5 A R 2 - 0		VSN	Thurman et al. 1994
			0.97 µg L°°	0.02 µg L [*]	NSA	Blanchard and
						Donald 1997
		arraicine	0 - 12.14 µg L	•	France	Patty et al. 1997
	merovactvor emane surronic acid	metotachor	ND - 1.26 μg L	0.5 µg L [°]	NSA	Aga and Thurman
						2001
			0.00 - 0.4/ Rot			

	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
	metolachlor oxanilic acid	metolachior	ND - 0.29 µg L ⁻¹	0.01 µg L ⁻¹	NSA	Ferrer et al. 1997
				1-1-1-100	ebeae	Muir and Baker 1976
	deethylatrazine	atrazine	0.36 - /./1 μg L	0.01 µg L	Canada	Muir and Baker 1976
-	deisopropylatrazine	arazine	0.01 - 0.70 Pg t		Canada	Muir and Baker 1976
	cyanazine amide	cyanazine		0.01 1.01	Canada	Muir and Baker 1976
	deisopropylatrazine	cyanazine			Canada	Muir and Baker 1976
~	deethylatrazine	cyprazine	1 6 7 9 7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0.01 µg L		Dhilline at al 1999
	metolachlor ethane sulfonic acid	metolachlor	1 6rl nz <- 9	0.2 µg L		Division of all 2003
	metolechlor oxanilic acid	metolachior	1 - 10 µg L	0.7 <b>bd</b> L	VSD	
ditch				•		
	2.4-D methyl ester	2,4-D	QN	<0.19 µg L ¹	NSA	Battaglin et al. 2009
	2 increased & mathematical and mechanical re-	diazinon	QN	1 µg L'	Canada	Li et al. 2002
			Ç	0.03 ug L'	Canada	Li et al. 2002
					<b>V</b> SI I	Battacijn et al. 2009
	deisopropylatrazine	atrazine, cyanazine and	0.17 µg c		500	
		simazine atrazine	0.682 ua L'		NSA	Battaglin et al. 2009
	lijurok jarozhontristina dinarin rothontristina	atrazina	0.062 ua L'	0.04 µg L ¹	NSA	Battaglin et al. 2009
	aminomathyhhoannonic acid	alvohosate	2.9 µg L ¹	0.02 µg L ¹	NSA	Battaglin et al. 2009
	acatechter athana suttionic acid	acetochior	< 0.2 - 1.6 µg L ⁻¹	0.2 µg L ⁻¹	NSA	Kaikhoff et al. 2003
		acetrichicr	< 0.02 - 1.4 ug L ¹	0.2 µg L'	NSA	Kalkhoff et al. 2003
	or distribution used and	alachir	QN	0.01 µg L ¹	NSA	Hoffman et al. 2000
	2,0-Creativeriaera		< 0.2 - 3.5 ua L ¹	0.2 ua L ⁻¹	NSA	Kalkhoff et al. 2003
			08-50 -00	01 un L ¹	USA	Kolpin et al. 1996a
	alaction emane suitonic actu		5.2 - 27.8 ug L ^{-1b}	0.1 µg L ¹	NSA	Kolpin et al. 1996a
	bios allocate active to the	alachine	< 0.2 - 0.54 uo L ¹	0,2 µg L ¹	NSA	Kalkhoff et al. 2003
		aldinards	QN	0.05 µa L ⁻¹	NSA	Hoffman et al. 2000
	angrear is surrorre	altimati	QN	0.05 µg L ¹	NSA	Hoffman et al. 2000
		atraine and remazine	< 0.05 - 0.39 up L ⁻¹	0.05 ua L'	NSA	Kalkhoff et al. 2003
	000 million and a second			0.01 µg L ¹	NSA	Hoffman et al. 2000
			23 ua L ^{1b}	0.05 µg L ⁻¹	NSA	Lerch et al. 1995
			0 04 up 1 -1	0.03 µa L'	NSA	Battaglin et al. 2009
	deisonoovlatrazine	atrazine, cyanazine and	< 0.05 - 0.36 µg L	0.05 µg L ⁻¹	NSA	Kalkhoff et al. 2003

Environmental compartment	Transformation product	Parent pesticide "	Concentration	Limit of detection	Country	Reference
stream continued			QN	0.08 µg L ¹	NSA	Battaglin et al. 2009
	hydroxyatrazine	atrazine	< 0.2 - 8.8 µg L ⁻¹	0.2 µg L ⁻¹	NSA	Kalkhoff et al. 2003
			0.18 - 5.7 µg L ⁻¹	0.04 µg L ⁻¹	NSA	Lerch et al. 1995
			â	0.032 µg L ⁻¹	NSA	Battaglin et al. 2009
	deethy! hydroxyatrazine	atrazine	<0.12 - 1.9 µg L ¹	0.12 µg L ⁻¹	NSA	Lerch et al. 1995
	deisopropyl hydroxyatrazine	atrazine	<0.12 - 0.72 µg L ¹	0.12 µg L ⁻¹	NSA	Lerch et al. 1995
	diaminochlorotriazine	atrazine	Q	0.04 µg L ⁻¹	NSA	Battaglin et al. 2009
	cyanazine amide	cyanazine	< 0.05 - 1.2 µg L ⁻¹	0.05 µg L ⁻¹	NSA	Kalkhoff et al. 2003
	3-hydroxycarbofuran	carbofuran	QN	0.05 µg L ⁻¹	NSA	Hoffman et al. 2000
	2,4-D methyl ester	2,4-D	Q	<0.016 µg L ¹	NSA	Battaglin et al. 2009
	9,4,4,00E	DOT	Q	0.01µg L ⁻¹	NSA	Hoffman et al. 2000
	alpha-HCH	gamma-HCH	Q	0.01 µg L ⁻¹	NSA	Hoffman et al. 2000
	aminomethylphosphonic acid	glyphosate	0.21 µg L ⁻¹	0.02 µg L ⁻¹	NSA	Battaglin et al. 2009
	metolachior ethane sultonic acid	metolachior	< 0.2 - 6.7 µg L ⁻¹	0.2 µg L ⁻¹	NSA	Kaikhoff et al. 2003
			< 0.2 - 0.57 μg ل ¹	0.2 µg L ¹	NSA	Phillips et al. 1999
	metolachlor oxanilic acid	metolachlor	< 0.2 - 1.3 µg L ⁻¹	0.2 µg L ⁻¹	NSA	Kalkhoff et al. 2003
			< 0.2 • > 0.5 μg ل ⁻¹	0.2 µg L ⁻¹	NSA	Phillips et al. 1999
	trifluoromethylphenyl urea	fluometuron	Q	0.05 µg L ⁻¹	NSA	Coupe et al. 1998
	deisopropytprometryn	prometryn	Q	0.05 µg L ¹	NSA	Coupe et al. 1998
	3,4-dichtoroan#ine	propanil	0.9 µg L ¹	0.05 µg L ⁻¹	NSA	Coupe et al. 1998
	methomy	thiodicarb	0.09 ppb	0.04 ppb	VSN	EPA 1998k
	triclopyr 3,5,6-trichloro-2-pyridinol	triclopyr triethylamine salt triclopyr triethylamine salt	0.64 ppm (sediment) 0.06 - 0.18 ppm	post-treatment 1 - 8 hours	ASU USA	EPA 1998I EPA 1998I
	2,4-dichlorophenol	2,4-D	Q	75 ng L' ¹	Italy	Lagana et al. 2002
	2,4-D methyl ester	2,4-D	Q	<0.19 µg L ⁻¹	NSA	Battaglin et al. 2009
	acetochlor oxanilic acid	acetochlor	ND - 0.15 µg L ⁻¹	0.01 µg L ⁻¹	NSA	Ferrer et al. 1997
	alachlor ethane sulfonic acid	alachior	1.55 - 4.75 µg L ¹ °	0.1 µg L ⁻¹	NSA	Battaglin and Cooleby 1000
			2.1 µg L ⁻¹	0.05 µg L ⁻¹	NSA	Verstraeten et al.
	atachlor oxanilic acid	alachior	ND - 0.21 µg L ¹	0.01 µg L ⁻¹	NSA	Ferreir et al. 1997

Environmental compartment Transformation product	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
river continued	2,6-diethytaniline	alachlor	ND - 0.924 µg L ¹	5 ng L ⁻¹	NSA	Pereira and Rostad
	2thtom2' 6'diathulacetanilida	siachter		5		1990
	SUMMER DORATION OF 3-0000-3		אם - נייט אפן ב	Jong	NSA	Pereira and Rostad
	2-hydroxy-2',6'-diethylacetanilide	alachlor	ND - 0.9 µg L ⁻¹	5 ng L ⁻¹	NSA	Pereira and Rostad
	8-hydroxy-bentazone	bentazone	ND - 27 ug L ⁻¹	2 nu l -1	Halv	1990 1 accma of of 2002
	cyanazine amide	cyanazine	0.47 - 0.57 µg L ^{1 c}	0.05 ua L ⁻¹	NSA USA	Rattanlin and
			0.06 µa L ⁻¹ °	0.02 µg L ⁻¹	VISI	Goolsby 1999 Lerch and Rianchand
			ND - 222 no l -1	26 mg -1		2003
		-			400	Hostettler 1993
	deemykcyanazme	cyanazine	< 0.05 µg L''	0.05 µg L ⁻¹	NSA	Battaglin and
			QN	0.05 µg L ⁻¹	NSA	Verstraeten et al.
	deethylcyanazine amide	cyanazine	< 0.05 µg L ⁻¹ °	0.5 µg L1	NSA	1999 Battaglin and
	deethylatrazine	atrazine and propazine	0.42 - 0.47 µg L ^{1 c}	0.05 µg L ⁻¹	NSA	Goolsby 1999 Battaqlin and
			0.39 - 4.4 µg L ^{-1b}	0.05 µg L ⁻¹	NSA	Goolsby 1999 Thurman et al. 1992
			ND - 0.407 µg L ¹	0.005 µg L'	Grece	Albanis et al. 1998
			ND - 0.215 µg L ⁻¹	0.01 µg L ⁻¹	Greece	Albanis and Hela
			0.025 - 0.08 un l	03 nn 1 ⁻¹	11SA	1998 Sabib at al 2002
			7 . 82 m1	5 an l - l	V 91	
				0 mg L	A SO	Pereira and Kostad 1990
			5 - 855 ng L ¹	5 ng L ⁻¹	NSA	Pereira and
			150 ng ^{L-1 b}	1 ng L°	NSA	Hostettler 1993 Liu et al. 2002
			12 - 28 µg L ¹ °	•	NSA	Solomon et al. 1996
			QN	0.028 µg L'	NSA	Battaolin et al. 2009
			1.7 μg L ⁻¹ 8	0.05 µg L	Canada	Struger and Fletcher
	deisopropylatrazine	atrazine, cyanazine and simazine	0.43 - 0.87 µg L ^{1 c}	0.05 µg L ⁻¹	NSA	2007 Battaglin and
			< 0.05 - 3.2 µg L ^{-1b}	0.05 µg L ⁻¹	NSA	Goolsby 1999 Thurman et al. 1992
			0.007 - 0.038 µg L ¹	0.3 ng L ¹	NSA	Sahik et al. 2003

Environmental compartment Transformation product	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
river continued			8 - 45 ng L ⁻¹	5 ng L ⁻¹		Pereira and Rostad
			ND - 335 ng L ⁻¹	10 na L ⁻¹	NSA	1990 Pereira and
				l n		Hostettler 1993
			64 ng L ^{-1b}	1.8 ng L ⁻¹	NSA	Liu et al. 2002
			4.9 - 15 µg L ⁻¹ °		NSA	Solomon et al. 1996
			QN	0.08 µg L ¹	NSA	Battaglin et al. 2009
	hydroxyatrazine	atrazine	Q	0.032 µg L ⁻¹	NSA	Battaglin et al. 2009
	diaminochlorotriazine	atrazine	QN	0.04 µg L ¹	NSA	Battaglin et al. 2009
	p,p.*DDE	DDT	4 ng L ^{-1 b}	0.3 ng L'	NSA	Liu et al. 2002
	dimethenamid ethane sulfonic acid	dimethenamid	0.05 µg L ⁻¹ °	0.03 µg L ⁻¹	NSA	Zimmerman et al.
	dimethenamid oxanilic acid	dimethenamid	0.05 µg L ⁻¹ ¢	0.02 µg L ⁻¹	NSA	Zimmerman et al.
	endosuftan suiphate	endosultan	6 ng L ⁻¹	0.3 ng L ⁻¹	NSA	zuuz Liu et al. 2002
	furfenacet ethane sulfonic acid	flufenacet	0.06 µg L ⁻¹ c	0.01 µg L ¹	NSA	Zimmerman et al.
	fufenacet oxanilic acid	Aufenacet	0.05 µg L ^{1 c}	0.07 µg L ¹	NSA	2002 Zimmerman et al.
	aminomethylinhosohonic acid	rikmhosate	QN	0.02 ua L ⁻¹	NSA	2002 Battaolin et al 2009
	4-chloro-2-methylphenol	MCPA	Q	50 ng L ¹	Italy	Lagana et al. 2002
	metolachlor oxanilic acid	metolachlor	ND - 0.29 µg L ⁻¹	0.01 µg L'	NSA	Ferrer et al. 1997
	metolachlor ethane sulfonic acid	metolachlor	0.33 - 1.82 µg L ⁻¹	0.01 µg L ⁻¹	NSA	Ferrer et al. 1997
	3,4-dichloroaniline	propani	ND - 26 ppb	0.05 ppb	NSA	PSD 1988a
canal	deethytatrazin e	atrazine	ND - 0.526	0.01 µg L ¹	Greece	Albanis and Hela 1998
	deisopropytatrazine	atrazine, cyanazine and	0.03 µg L ⁻¹ ND	0.08 µg L ¹	NSA USA	Battaglin et al. 2009 Battaglin et al. 2009
	2.4-D methyl ester	simazine 2.4-D	QN	0.016 µg L ¹	NSA	Battadin et al. 2009
	aminomethyphosphonic acid	glyphosate	QN	0.02 µg L'	NSA	Battaglin et al. 2009
	diaminochlorotriazine	atrazine	QN	0.04 µg L ⁻¹	NSA	Battaglin et al. 2009
bond	2.4-D methyl ester	2,4-D	Q	0.19 µg L ¹	NSA	Battaqlin et al. 2009

Environmental compartment	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
pond continued	deethylatrazine	atrazine	0.022 µg L ⁻¹		NSA	Battaglin et al. 2009
	deisopropylatrazine	atrazine, cyanazine and	QN	0.08 µg L ⁻¹	NSA	Battaglin et al. 2009
	hydroxyatrazine	atrazine	0.263 µg L ⁻¹	0.032 µg L ¹	NSA	Battaglin et al. 2009
	diaminochlorotriazine	atrazine	Q	0.04 µg L ⁻¹	NSA	Battaglin et al. 2009
	aminomethy/phosphonic acid	glyphosate	QN	0.02 µg L ⁻¹	NSA	Battaglin et al. 2009
lake						
	deethylatrazine	atrazine	1.57 µg L ^{1 b}	0.05 µg L ¹	NSA	Spalding et al. 1994
			92 ng L ⁻¹ °	2 - 6 ng L ⁻¹	Switzerland	Bucheli et al. 1997
			0.36 µg L ⁻¹ °	0.05 µg L ⁻¹	NSA	Thurman et al. 2000
			0.18 - 1.57 µg L ^{-1b} 0 1 - 0 54 m 1 -1c	0.05 µg L ⁻¹	NSA	Spalding et al. 1994
	deisopropylatrazine	atrazine	1.06 µg L ⁻¹⁸	0.09 µg L ⁻¹	NSA	Spalding et al. 1994
			26 ng L ⁻¹ °	2-6 ng L ⁻¹	Switzerland	Bucheli et al. 1997
			ND - 1.06 µg L ⁻¹⁶ ND - 0.02 µg 1 ⁻¹⁶	0.09 µg L ⁻¹	NSA	Spakding et al. 1994
	hydroxyatrazine	atrazine	0.56 µg L ¹	0.05 µg L ¹	NSA	Thurman et al. 2000
	dichlorophenylurea	diuron	0.2 µg L ⁻¹ °	0.2 µg L ⁻¹	NSA	Thurman et al. 2000
	dichloromethy/pheny/urea	diuron	0.45 µg L ⁻¹ °	0.2 µg L ⁻¹	NSA	Thurman et al. 2000
	3,4-dichloroaniline	diuron	0.31 µg L ¹ "	0.05 µg L ⁻¹	NSA	Thurman et al. 2000
	metolachlor ethane sulfonic acid	metolachior	0.1 µg L ⁻¹ °	0.2 µg L ⁻¹	NSA	Thurman et al. 2000
	metolachlor oxanilic acid	metolachior	0.19 µg L ⁻¹ ¢	0.2 µg L ¹	NSA	Thurman et al. 2000
	demethyinorflurazon	northurazon	0.17 µg L ⁻¹ °	0.05 µg L ⁻¹	NSA	Thurman et al. 2000
Groundwater						
	3-chloroalityl alcohol	1,3-dichloropropene	trace - 13.5 ppb	0.05 ppb	NSA	EPA 1998a
	3-chloroacrylic acid	1,3-dichloropropene	trace - 8.79 ppb	0.05 ppb	NSA	EPA 1998a
	2,4-dichlorophenol	2,4-D	4 µg L ⁻¹ b	•	Denmark	Helweg et al. 2002
	acetochlor ethane sulfonic acid	acetochior	0.77 µg L ⁻¹ b	0.2 µg L ¹	NSA	Kolpin et al. 2000
			ND - 3.32 µg L ⁻¹	0.2 µg L ⁻¹	NSA	Boyd 2000
	acetochlor ethane sulfonic acid	acetochlor	0.28 µg L ⁻¹ °	0.1 µg L ¹	NSA	Kolpin et al. 1996a

	T	Parent pesticide	Concentration	Limit of detection	Country	Reference
Environmental comparament			8.6 Intl ^{-1b}	0.1 uo L ⁻¹	NSA	Kolpin et al. 1996a
Groundwater continued	:	anthore	115 unl ⁻¹⁶	0.2 µg L ¹	NSA	Kolpin et al. 2000
	acetochlor oxanitic acid		ND - 1.75 ug L ¹	0.2 µg L ¹	NSA	Boyd 2000
			ND - 0.17 ug L ¹	0.01 µg L ⁻¹	NSA	Ferrer et al. 1997
	2. N. 1721-8-14 International Contraction	alachtor	< 2 - 480 ng L ⁻¹	•	NSA	Potter and Carpenter
		a haddor	< 2 - 310 ng L ⁻¹		NSA	Potter and Carpenter
	2-chloro-2"-othyt-6"-ethyt-N-					1995
	(merroxymerry) aceranimoe 2'-acetyl-6'-ethylacetaniikde	alachior	28 - 120 ng L ¹	•	NSN	Potter and Carpenier 1995
	2-acetv-6'-ethvt-N-	alachlor	68 - 240 ng L ¹		NSA	Potter and Carpenter
	methoxymethy)acetaniide 2-hwtmxv-2" 6-diethyLN-	alachlor	< 2 - 130 ng L ⁻¹		NSA	Potter and Carpenter
	methyljacetaniide	atachlor	< 2 - 100 ng L ¹		NSA	Potter and Carpenter
	z-nyuroxy-z, o-unoury-z- methoxymethyl)acetanilide		d 1-1 300 0	0 003 10 L ⁻¹	ASU	1990 Kolpin et al. 1998
	2,6-diethylaniline	alachlor	v.voopg.c. < 2 - 16 na L ⁻¹		NSA	Potter and Carpenter
				-1	V 311	1995 Kolnin et al 1996h
			0.02 µg L	0.02 µg L	400	Dottor and Camente
	2".6"-diethylacetanilide	alachlor	< 2 - 130 ng L ⁻¹	•	VSU	1995
	or stathethermonthele	atachtor	< 2 - 87 ng L ⁻¹		NSA	Potter and Carpenter
		:		·	NSA	Potter and Carpenter
	7-ethylindoline	alachior	- 1 Bu qc - Z >		5	1995
	alachtor ethane sulfonic acid	alachlor	1.2 µg L ⁻¹ °	0.05 µg L ⁻¹	NSA	Verstraeten et al. 1999
			8.63 ug L ^{1b}	0.1 µg L ⁻¹	NSA	Kolpin et al. 1996b
			8 5 up L ^{-1b}	0.2 µg L ¹	NSA	Kolpin et al. 2000
			ND - 2.5 ua L ¹	0.2 µg L ¹	VSN	Boyd 2000
			0.06 - 9.37 ua L ¹	0.05 µg L	NSA	Aga et al. 1994
			0.21 - 6.91 ua L ¹		NSA	EPA 1998b
		alachin	33.4 uo L ¹⁶	0.2 µg L ⁻¹	NSA	Kolpin et al. 2000
	alachor oxaninc aciu		ND - 0.31 µg L ¹	0.2 µg L ⁻¹	NSA	Boyd 2000
				1	100	Former of al 1997

	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
			1.1		<b>A</b> SI1	Potter and Carpenter
Groundwater continued	N-(2,6-diethylphenyl) methylene	alachlor	- 2 - 10 ng L		5	1995
	N C 8-distribution	alachlor	100 - 550 ng L ⁻¹	•	NSA	Potter and Carpenter
	(methoxymethy)acetamide		41: · · · · ·		Gmana	1995 ∆lhanis et al 1998
	deethvlatrazine	atrazine	0.205 µg L	- 1 Bu c - 1	OLEGOC	
			0.4 µg L ⁻¹ °	0.04 µg L ¹	NSA	Steinheimer and Scoodin 2001
			2.32 ua L ⁻¹⁶	0.05 µg L ⁻¹	NSA	Burkart and Kolpin
				1		1993
			7 ng L ⁻¹		Switzerland	Bucheli et al. 1997
			2.6 ua L ^{-1 b}	0.002 µg L ⁻¹	NSA	Kolpin et al. 1998
			5 µg L ⁻¹	0.02 µg L ¹	NSA	Adams and Thurman
			1	1-1-1-0-0	4011	1991 Kolnin at al 1006h
			2.2 µg L ⁻¹	T Bri co.u	¥en	
			0.59 µg L ^{1 b}	0.05 µg L ⁻¹	NSA	Kolpin et al. 2000
			ND - 0.44 µg L ¹	0.05 µg L ⁻¹	NSA	Boyd 2000
			0.05 - 0.13 µg L ^{1b}	0.02 µg L ⁻¹	NSA	Blanchard and
					Australia	Donald 1997 APVMA 1997a
			0.42 µg L	•		
			1.86 µg L ⁻¹	0.05 µg L ¹	France	Baran et al. 2008
			1.16 µg L ¹ ^b	0.05 µg L ⁻¹	France	Baran et al. 2007
			1.03 µg L ¹	•	NSA	Steele et al. 2008
	de la comparta de la compart	atrazine. cvanazine.	0.6 µg L ¹ °	0.04 µg L ⁻¹	NSA	Steinheimer and
		simazine			Australia	Scoggin 2001 APVMA 1997a
			U. 10 µg L			
			1.17 µg L ¹	0.05 µg L ⁷	ASU	Kolpin et al. 1990
			14 ng L ¹		Switzertand	Bucheli et al. 1997
			< 0.02 µg L ¹	0.02 µg L ⁻¹	NSA	Adams and Thurman
			1,1 va L ^{4b}	0.05 µg L ⁻¹	NSA	Kolpin et al. 2000
			ND - 0.26 ug L ¹	0.05 µg L ⁻¹	NSA	Boyd 2000
			0.36 µg L ¹ b		Spain	Hemandez et al.
	deisonoovihvdroxvatrazine	atrazine, cyanazine,	0.04 µg L ^{-1 c}	0.04 µg L ¹	NSA	Steinheimer and
		simazine		-		

Environmental compartment	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
			ND - 0.22 ид L ⁻¹	0.2 µg L ⁻¹	NSA	Boyd 2000
Groundwater continued	2-aminobenzimidazole	carbendazim *	0.03 µg L ⁻¹ b	•	Spain	Hernandez et al. 2008
	3-hydroxy carbofuran	carbofuran	QN		Spain	Hernandez et al. 2008
	carbofuran-7-PhOH-3CO	carbofuran	0.06		Spain	Hernandez et al.
	3-carbamyl-1,2,4,5-trichlorobenzoic acid, 3-cyano-6-hydroxy-2,4,5- trichtorobenzamide, 4-hydroxy-2,5,6- trichtoric activities and 3-crano-	chorothalonil	16 µg L ⁻¹	1.5 µg L ⁻¹	NSA	EPA 1999b
	2,4,5,6-tetrachorometeramide combined	through should	trace - 10.1 uo L ⁻¹	1.5 µg L ¹	NSA	EPA 1999b
	S-Carbamy-2,4,0-akaika akai		2 - 12.6 ua L ¹	2 µg L ⁻¹	NSA	EPA 1999b
			<0.1 - 10.1 µg L ¹		NSA	EPA 1999b
			1.8 - 10.1 µa L ⁻¹		NSA	EU 2005b
	3-cvano-6-hydroxy-2,4,5-	chlorothalonil	0.2 µg L ¹	1.5 µg L ⁻¹	NSA	EPA 1999b
	trichtorobenzamide		2 - 5 אמ רי	2 µg L ⁻¹	NSA	EPA 1999b
			<0.2 - 0.2 µg L ¹	•		EPA 1999b
	o	chiomthaionil	Q	1.5 µg L ⁻¹	NSA	EPA 1999b
	3-Cyano-2,0,0-4 Kano Luon Kannoo 4 Euro-20 E B Hicklomisconkthatonittila		3.6 µg L ¹	2 µg L ⁻¹	NSA	EPA 1999b
	4-Hydroxy-2,0,0-u datooloopha lanomu		2.8 µg L ⁻¹	2 µg L ⁻¹	NSA	EPA 1999b
	3.4-dichloroaniline	chlorpyrifos, diuron, linuron,			Spain	Hemandez et al.
		propanil	0.55 va L ^{1b}	0.55 µg L' ¹	NSA	Kolpin et al. 1996b
	cyanazine amide		0.64 uo L ^{1b}	0.05 µg L ⁻¹	NSA	Kolpin et al. 2000
			ND - 0.31 µg L ¹	0.05 µg L ⁻¹	NSA	Boyd 2000
	deethykcyanazine	cyanazine	QN	0.05 µg L ⁻¹	NSA	Verstraeten et al.
			ũ	0.05 µg L ⁻¹	NSA	Kolpin et al. 1996b
	abine animenatur t	conazine	Q	0.05 µg L'	NSA	Kolpin et al. 1996b
	o E e motion	chomoritos	QN	50 µg L'	NSA	EPA 1999d
	o,o,o-u ciau o-c-pyramo o 2 6 6 frichboomridine	chimorifies	Q	10 µg L ¹	NSA	EPA 1999d
	chlorthal-dimethyl mono-acid and di-	chlorthal-dimethyl	ND - 158.2 µg L ⁻¹ •	0.05 µg L ⁻¹	NSA	Monohan et al. 1995

Environmental compartment	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
	1	chicathal dimethy	2.22 va L ^{-1 b}	0.01 µg L ⁻¹	NSA	Kolpin et al. 1996b
Groundwater continued		DOT	0.006 ug L ^{-1 b}	0.006 µg L'	NSA	Kolpin et al. 1998
			0.03 µg L ^{1b}	0.03 µg L ⁻¹	,	Kolpin et al. 1996b
		dichani	180 ppb	•	Netherlands	EPA 1998e
	2,0-0K71000enzamue 4.chtomaniline	diffubenzuron	QN	•	Spain	Hernandez et al.
			dar 1 1 UN	0.005.00b	USA	2008 EPA 2002c
	endosultan sulphate	encosurran			Denmark	Helweg et al. 2002
	AMPA	giypnosate			<b>A</b> SI I	Kolpin et al. 1998
	a-HCH	gamma-HCH			Empre	Baran et al 2008
	monodesmethyl isoproturon	isoproturon	~0.05 µg L	T Bri co.o s	LIANCE	
	dideemethylisoproturon	isoproturon	QN	s 0.05 µg L ⁷	France	Baran et al. 2008
	metachlar athana sulfanic acid	metolachlor	8.6 µg L ^{1 b}	0.2 µg L ⁻¹	NSA	Kolpin et al. 2000
			ND - 6.84 µg L ¹	0.2 µg L ⁻¹	NSA	Boyd 2000
			0.1 - 1.83 uo L'	0.01 µg L ⁻¹	NSA	Ferrer et al. 1997
			15.2 uo L ¹	•	NSA	Steele et al. 2008
	tin and the second of the second	metriachior	15.3 µg L ^{1b}	0.2 µg L ⁻¹	NSA	Kolpin et al. 2000
			ND - 4.25 ug L ⁻¹	0.2 µg L ¹	NSA	Boyd 2000
			0.03 - 0.91 µg L ¹	0.01 µg L ⁻¹	NSA	Ferrer et al. 1997
	2.4-bis(isopropylamino)-	prometryn	0.61 ppb		NSA	EPA 1996g
	6-hydroxy-s-triazine		0 	l- 1 10 0	11CA	Steinheimer and
	hydroxysimazine	simazine	0.15 µg L''	0.04 hg L	¥ SO	Scoggin 2001
	desethyl-2-hydroxyterbuthylazine	terbuthylazine	0.21 µg L ^{-1 b}		Spain	Hemandez et al.
	desethylterbuthylazine	terbuthylazine	1.42 µg L ^{-i b}		Spain	Hernandez et al.
	hvdroxyterbuthylazine	terbuthytazine	0.15 µg L ^{-1 b}		Spain	Hemandez et al.
	desethviterburneton	terburneton	1.62 µg L ^{1 b}		Spain	Hemandez et al.
	methomy	thiodicarb	0.1 -0.4 ppb	•	NSA	2000 EPA 1998k
Raw source water	:	and the second	108 m l -1 b	0.2 ng L ¹	NSA	Hladik et al. 2006

Environmental compartment	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
Dev solitre water	deschloroacetochlor	acetochlor	35 ng L ^{-1b}	0.07 ng L ⁻¹	NSA	Hladik et al. 2006
continued		anatochilor	1170 na L ^{-1b}	7 ng L ⁻¹	NSA	Hladik et al. 2006
	acetochior oxannic actu			100 ng 1 -1	NSA	Hladik et al. 2006
	acetochlor ethane surronic acid	alcelocino	d ¹ -1 no 731	1- Dor C U	NSA	Hladik et al. 2006
	2-chloro-2'-ethyt-6'-methytacetaniiloe	BOBIOGINO	106 not 1-1 b	¹ - 1	USA	Htadik et al. 2006
	2-hydroxy-2'-ethyl-6'-methylacetaniilde	acetochior	/25 ml ^{-1b}	- 1 04 C 0	ASU	Hladik et al. 2006
	2-ethyl-6-methylaniline	acetochior			ASI	Hladik et al. 2006
	2'-ethyl-6'-methylacetaniide		3/ 11g L 43 mg L ^{-1b}	3 not -1	NSA	Hladik et al. 2006
	hydroxyalachlor	alachior	43 INJ L 14 INTI ^{-1b}	0.2 not 1-1	ASU	Hladik et al. 2006
	deschloroalachior	diactico - fri - fria			NSA	Hladik et al. 2006
	2-chloro-2'-6'-diethylacetantiide	alachior	10.1 m 1 - 1 b	0.7 no L ¹	NSA	Hladik et al. 2006
	2-hydroxy-2'-6'-diethylacetaniitoe		4 J mol 1 1b	4 nu l -1	NSA	Hladik et al. 2006
	2-hydroxy-2'-6'-diethyl-N-	alachior	1.7 IIG C			
	meunytacetaniikke 2'-6'-diathvlacetaniikke	alachlor	43 ng L ^{1b}	0.2 ng L ⁻¹	NSA	Hladik et al. 2006
	o g. diatty dentine	alachlor	<11 ng L ^{1b}	10 ng L ⁻¹	NSA	Hladik et al. 2006
	2,0-utourgrammero	alachior	216 ng L ^{1b}	7 ng L'	NSA	Hladik et al. 2006
	decine commence	alachlor	945 ng L ^{-1b}	100 ng L ⁻¹	NSA	Hladik et al. 2006
		atrazine	0.14 - 0.24 µg L ¹ °	,	NSA	Solomon et al. 1996
			0.38 µg L ¹ °		NSA	Solomon et al. 1996
			0.682 µg L ^{1 b}		NSA	Coupe and Blomquist
	•		604 mul ^{-1b}	0.3 no 1.1	ASU	zuu4 Hladik et al. 2006
	deethytatrazine contriued		0.08 - 0.14 - 10 - ¹ 6		VSN	Solomon et al. 1996
	deisopropytauazine		0.1 ug L ¹ °		NSA	Solomon et al. 1996
			199 no L ^{1b}	0.2 ng L ⁻¹	NSA	Hladik et al. 2006
		atra 7 ine	0.8 µg L ¹ °		NSA	Solomon et al. 1996
	ryuruxyauazara inchae methukaran	azinohos-methvl	0.263 µg L ^{1 c}	0.031 µg L'	NSA	Nguyen et al. 2004
	o-p'-DDA	DDT	0.28 µg L ⁻¹		Germany	Heberer and Dünnbier 1999
	P-p-DA	DDT	1.7 µg L ¹		Germany	Heberer and Dünnbier 1999
	:		41-1 44	0.1 no L ⁻¹	NSA	Hadik et al. 2006

watter	Transformation product	Parent pesticide	Concentration	Limit of detection	country	
		disultaton	0.013 µ g L ¹ °	0.005 µg L'	NSA	Nguyen et al. 2004
			al-1-1 an o	0.016.001 ⁻¹	NSA	Nouven et al. 2004
fer Tra	disuttoton suffoxide	disuffoton				
	feneminhos sulfone	fenamiphos	0.005 µg L ¹ °	0.008 µg L'	NSA	Nguyen et al. 2004
		fenaminhos	0.021 µg L ¹ 6	0.008 µg L ⁻¹	ASU	Nguyen et al. 2004
Ě	envolue soudius	malathion		0.005 µg L ⁻¹	NSA	Nguyen et al. 2004
	malaoxon	metalachicr	217 nr. 1 -1 b		NSA	Hladik et al. 2006
Ą	hydroxymetolachlor		a 1-1 - 00	- 1 - C C C	<b>NISA</b>	Hladik et al. 2006
÷	deschlorometolachlor	metolachior	32 ng L		V00	Hladik at al 2006
Ē	metolachlor morpholinone	metolachlor	63 ng L .	0.2 ng L	400	Lindik at al 2006
E	metrolachior propanol	metolachior	208 ng L ⁻¹ "	0.2 ng L	ASU	LIAUR EL AI. 2000
		metolachlor	39 ng L ¹ b	0.1 ng L ⁻¹	NSA	Hladik et al. 2006
5 -	uesci ilus oscarya iroaxa inc. 4	metriachior	17 ng L ^{-1 b}	0.8 ng L ¹	NSA	Hladik et al. 2006
5		matelachlor	687 no L ^{-1 b}	7 ng L ⁻¹	NSA	Hladik et al. 2006
E	metachior oxaniiic aciu		4500 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	90 mul -1	NSA	Hladik et al. 2006
E	metachlor ethane sulfonic acid	metolacmor		1 R: 00		
Finished drinking water				c c	11CA	Hladik et al 2006
Ē	hydroxyacetochlor	acetochlor				
Ē	deschiomacetochior	acetochior	31 ng L ¹⁶	0.07 ng L ⁻¹	ASU	Miadik et al. 2000
, ,	active evenilie acid	acetochior	551 ng L ^{-1b}	7 ng L' ¹	NSA	Hladik et al. 2006
8	country community and	anaturhinr	845 ng L ^{-1b}	100 ng L ⁻¹	NSA	Hladik et al. 2006
6	acetochior ethanie suitorik: actu	acetochice	163 mt 1 ^{-1 b}	0.2 ng L ¹	NSA	Hladik et al. 2006
2		acetochics	67 mrl ⁻¹⁶	0.2 ng L ¹	NSA	Hladik et al. 2006
2	2-hydroxy-2 -ethyt-0 -meunyacauaninue		d1-1 2022	0.2 nd L ⁻¹	NSA	Hladik et al. 2006
2			al-1 m2 73	B no L'	NSA	Hladik et al. 2006
2	2'-ethyl-6'-methylacetan#ide		24 mm 1 ^{-1 b}	3 no L ¹	NSA	Hladik et al. 2006
£	hydroxyalachlor			1 D	NSA	Hladik et al. 2006
0	deschloroalachlor	alaction		0.1 mm 1 -1	NSA	Hladik et al. 2006
2	<b>2-chloro-2'-6'-diethylacetanilide</b>	alachior		- 1	NSN	Hladik et al. 2006
7	2-hydroxy-2'-6'-diethyfacetanilide	alachior	80 mg L		NSD	Hladik et al. 2006
CI I	2-hydroxy-2"-6"-diethyl-N-	elachior -	1.7 ng L	4 ng L	500	
	methylacetaniiide 2. s. diathdacetaniide	alachior	38 ng L ^{1b}	0.2 ng L ⁻¹	NSA	Hladik et al. 2006
• •		alachior	<11 ng L ^{1b}	10 ng L ¹	USA	Hladik et al. 2006

Environmental combartment	Transformation product	Parent pesticide	Concentration	Limit of detection	Country	Reference
Finished drinking water	alachtor oxanilic acid	alachior	136 ng L ^{-i b}	7 ng L ⁻¹	NSA	Hladik et al. 2006
continued	tothe other cutonic acid	alachior	743 ng L ^{-1 b}	100 ng L ⁻¹	NSA	Hladik et al. 2006
		atrazine	318 ng L ¹ b	0.3 ng L'	NSA	Hladik et al. 2006
	aivze neklinaen		0.352 µg L ^{1 b}	•	NSA	Coupe and Blomquist
	anis and show and sh	atrazine	75 nd L ^{-1b}	0.2 ng L ⁻¹	NSA	Hladik et al. 2006
		azinnhos-methyl	0.026 ua L ⁻¹ °	0.031 µg L ¹	NSA	Nguyen et al. 2004
	aziripilos industrantan id	dimethenamid	25 ng L ^{-1b}	0.1 ng L ¹	NSA	Hladik et al. 2006
		disultation	QN	0.005 µg L [*]	NSA	Nguyen et al. 2004
		disultation	QN	0.016 µg L ¹	NSA	Nguyen et al. 2004
		fanaminhos	0.011 ug L ¹ °	0.008 µg L ⁻¹	NSA	Nguyen et al. 2004
		fanaminhos	0.022 ug L ¹ °	0.008 µg L ¹	NSA	Nguyen et al. 2004
		malathion	0.106 µa L ¹ °	0.005 µg L'	NSA	Nguyen et al. 2004
		matriachlar	61 ng L ^{-1 b}	1 ng L ⁻¹	NSA	Hladik et al. 2006
		metalachicr	30 ng L'h	0.2 ng L ¹	NSA	Hladik et al. 2006
		metalachiar	37 no L ¹⁶	0.2 ng L'	NSA	Hladik et al. 2006
		maintachinr	73 ng L ^{1 b}	0.2 ng L ¹	NSA	Hladik et al. 2006
		matalachiar	35 no L ^{°16}	0.1 ng L ¹	NSA	Hladik et al. 2006
		motolschine	22 ng L ^{1b}	0.8 ng L'	NSA	Hladik et al. 2006
	descriptional any meracinal propartion	metodachior	215 ng L ^{1b}	7 ng L'	NSA	Hladik et al. 2006
	integaciant ovannic accu	matolachilor	1530 nd L ^{1b}	90 ng L'	NSA	Hladik et al. 2006

 $\mathbf{a}$  - pesticide identified in the reference as the source of the transformation product

b - peak concentration during study

c - median or mean concentration

d - calculated average concentration
 e - combined transformation product concentration

## Appendix A Reference List

- Adams, C. D. and Thurman, E. M. (1991) Formation and transport of deethylatrazine in the soil and vadose zone, Journal of Environmental Quality, 20:540-547.
- Aga, D. S. and Thurman, E. M. (2001) Formation and transport of the sulfonic acid metabolites on alachlor and metolachlor in soil, *Environmental Science and Technology*, 35:2455-2460.
- Aga, D. S., Thurman, E. M. and Pomes, M. L. (1994) Determination of alachlor and its sulfonic acid metabolite in water by solid-phase extraction and enzyme-linked immunosorbent assay, *Analytical Chemistry*, 66:1495-1499.
- Albanis, T. A., Hela, D. G., Sakellarides, T. M. and Konstantinou, I. K. (1998) Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography, *Journal of Chromatography A*, 823:59-71.
- Albanis, T. A. and Hela, D. G. (1998) Pesticide concentrations in Louros River and their fluxes in the marine environment, International Journal of Environmental Analytical Chemistry, 70:105-120.
- APVMA (1997a) The NRA Review of Atrazine, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- APVMA (1997b) The NRA Special Review of Metham-sodium, Dazomet and Methylisothiocyanate, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- APVMA (1999) The NRA Review of Fenitrothion, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- APVMA (2000a) The NRA Interim Review of Chlorfenvinphos, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- APVMA (2000b) The NRA Review of Chlorpyrifos, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- APVMA (2001) The NRA Review of Aldicarb, National Registration Authority for Agricultural and Veterinary Chemicals, Canberra, Australia.
- Assaf, N. A. and Turco, R. F. (1994) Influence of carbon and nitrogen on the mineralization of atrazine and its metabolites in soil, *Pesticide Science*, 41:41-47.
- Baran, N., Lepiller, M. and Mouvet, C. (2008) Agricultural diffuse pollution in a chalk aquifer (Trois Fontaines, France): Influence of pesticide properties and hydrodynamic constraints, *Journal of Hydrology*, **358**:56-69.
- Baran, N., Mouvet, C. and Negrel, Ph. (2007) Hydrodynamic and geochemical constraints on pesticide concentrations in the groundwaters of an agricultural catchment (Brevilles, France), Environmental Pollution, 148:729-738.
- Baskaran, S., Kookana, R. S. and Naidu, R. (2003) Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyridinol), with depth in soil profiles, Australian Journal of Soil Research, 41:749-760.
- Baskaran, S., Kookana, R. S. and Naidu, R. (1999) Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates, *Pesticide Science*, 55:1222-1228.
- Battaglin, W. A., Rice, K. C., Focazio, M. J., Salmons, S. and Barry, R. X. (2009) The occurrence of glyphosate, atrazine, and other pesticides in vernal pools and adjacent streams in Washington DC, Maryland, Iowa, and Wyoming, 2005-2006, Environmental Monitroing Assessment, 155:281-307.
- Battaglin, W. A. and Goolsby, D. A. (1999) Are shifts in herbicide use reflected in concentration changes in Midwestern rivers?, Environmental Science and Technology, 33:2917-2925.
- Belfroid, A. C., van Drunen, M., van Gestel, C. A. M. and van Hattum, B. (1996) Relative Risks of Transformation Products of Pesticides for Aquatic Ecosystems, Institute for Environmental Studies and Institute for Inland Water Management and Waste Water Treatment, Amsterdam, Netherlands.
- Beynon, K. I., Bosio, P. and Elgar, K. E. (1972a) The analysis of crops and soils for the triazine herbivide cyanazine and some of its degradation products II. Results, *Pesticide Science*, 3:401-408.
- Beynon, K. I., Stoydin, G. and Wright, A. N. (1972b) The breakdown of the triazine herbicide cyanazine in soils and maize, Pesticide Science, 3:293-305.
- Blanchard, P. E. and Donald, W. W. (1997) Herbicide contamination in groundwater beneath claypan soils in North-Central Missouri, Journal of Environmental Quality, 26:1612-1621.
- Blumhorst, M. R. and Weber, J. B. (1992) Cyanazine dissipation as influenced by soil properties, Journal of Agricultural and Food Chemistry, 40:894-897.
- Boyd, R. A. (2000) Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa, *The Science of the Total Environment*, **248**:241-253.
- Bromilow, R. H., Evans, A. A. and Nicholls, P. H. (1999) Factors affecting degradation rates of five triazole fungicides in two soil types: 1. Laboratory incubations, *Pesticide Science*, 55:1129-1134.
- Brouwer, W. W. M., Boesten, J. J. T. I. and Siegers, W. G. (1990) Adsorption of transformation products of atrazine by soil, Weed Research, 30:123-128.

- Bucheli, T. D., Grüebler, F. C., Müller, S. R. and Schwarzenbach, R. (1997) Simultaneous determinations of neutral and acidic pesticides in natural waters at the low nanogram per liter level, *Analytical Chemistry*, 69:1569-1576.
- Burkart, M. R. and Kolpin, D. W. (1993) Hydrologic and land-use factors associated with herbicides and nitrate in nearsurface aquifers, *Journal of Environmental Quality*, 22:646-656.
- Calumpang, S. M. F., Medina, M. J. B., Roxas, N. P. and Magallonas, E. D. (1993) Movement and degradation of mancozeb fungicide and its metabolites, ethylenethiourea and ethyleneurea in silty clay loam soil, *International Journal of Pest Management*, 39:161-166.
- Cantier, J. M., Bastide, J., Yan, Z. and Coste, C. (1988) degradation of carbetamide and its cheif metabolites in alkaline soil, Pesticide Science, 23:327-335.
- Class, T. J. (1992) Environmental analysis of cypermethrin and its degradation products after forestry applications, International Journal of Environmental Analytical Chemistry, 49:189-205.
- Coupe, R. H. and Blomquist, J. D. (2004) Water-soluble pesticides in finished water of community water supplies, Journal of the American Water Works Association, 96:56-68.
- Coupe, R. H., Thurman, E. M. and Zimmerman, L. R. (1998) Relation of usage to the occurrence of cotton and rice herbicides in three streams of the Mississippi Delta, *Environmental Science and Technology*, 32:3673-3680.
- Cox, L., Koskinen, W. C. and Yen, P. Y. (1997) Sorption-desorption of imidacloprid and its metabolites in soils, Journal of Agricultural and Food Chemistry, 45:1468-1472.
- Crespin, M. A., Gallego, M., Valcárcel, M. and González, J. L. (2001) Study of the degradation of the herbicides 2,4-D and MCPA at different depths in contaminated agricultrual soil, *Environmental Science and Technology*, 35:4265-4270.
- Dijk, H. v. (1974) Degradation of 1,3-dichloropropenes in the soil, Agro-Ecosystems, 1:193-204.
- EFSA (2004) Conclusion regarding the peer review of the pesticide risk assessment of the active substance tribenuron, EFSA Scientific Report, 15:1-52.
- EFSA (2005a) Conclusion regarding the peer review of the pesticide risk assessment of the active substance clodinafop, EFSA Scientific Report, 34:1-78.
- EFSA (2005b) Conclusion regarding the peer review of the pesticide risk assessment of the active substance cyprodinil, EFSA Scientific Report, 51:1-78.
- EFSA (2005c) Conclusion regarding the peer review of the pesticide risk assessment of the active substance dimethenamid, EFSA Scientific Report, 53:1-73.
- EFSA (2005d) Conclusion regarding the peer review of the pesticide risk assessment of the active substance dimoxystrobin, EFSA Scientific Report, 46:1-82.
- EFSA (2005e) Conclusion regarding the peer review of the pesticide risk assessment of the active substance diuron, EFSA Scientific Report, 25:1-58.
- EFSA (2005f) Conclusion regarding the peer review of the pesticide risk assessment of the active substance fluoxastrobin, EFSA Scientific Report, 47:1-81.
- EFSA (2005g) Conclusion regarding the peer review of the pesticide risk assessment of the active substance glufosinate, EFSA Scientific Report, 27:1-81.
- EFSA (2005h) Conclusion regarding the peer review of the pesticide risk assessment of the active substance oxamyl, EFSA Scientific Report, 26:1-78.
- EFSA (2005i) Conclusion regarding the peer review of the pesticide risk assessment of the active substance pirimicarb, EFSA Scientific Report, 43:1-76.
- EFSA (2005j) Conclusion regarding the peer review of the pesticide risk assessment of the active substance rimsulfuron, EFSA Scientific Report, 45:1-61.
- EFSA (2005k) Conclusion regarding the peer review of the pesticide risk assessment of the active substance thiodicarb, EFSA Scientific Report, 55:1-76.
- EFSA (20051) Conclusion regarding the peer review of the pesticide risk assessment of the active substance tolclofosmethyl, EFSA Scientific Report, 32:1-65.
- EFSA (2005m) Conclusion regarding the peer review of the pesticide risk assessment of the active substance tolyfluanid, EFSA Scientific Report, 29:1-76.
- EFSA (2005n) Conclusion regarding the peer review of the pesticide risk assessment of the active substance triclopyr, EFSA Scientific Report, 56:1-103.
- EFSA (2005o) Conclusion regarding the peer review of the pesticide risk assessment of the active substance trinexapac, EFSA Scientific Report, 57:1-70.
- EFSA (2005p) Conclusion regarding the peer review of the pesticide risk assessment of the active substance triticonazole, EFSA Scientific Report, 33:1-69.
- EFSA (2006a) Conclusion regarding the peer review of the pesticide risk assessment of the active substance 1,3-

dichloropropene, EFSA Scientific Report, 72:1-99.

- EFSA (2006b) Conclusion regarding the peer review of the pesticide risk assessment of the active substance benfuracarb, EFSA Scientific Report, 89:1-81.
- EFSA (2006c) Conclusion regarding the peer review of the pesticide risk assessment of the active substance captan, EFSA Scientific Report, 71:1-89.
- EFSA (2006d) Conclusion regarding the peer review of the pesticide risk assessment of the active substance carbaryl, EFSA Scientific Report, 80:1-71.
- EFSA (2006e) Conclusion regarding the peer review of the pesticide risk assessment of the active substance diazinon, EFSA Scientific Report, 85:1-73.
- EFSA (2006f) Conclusion regarding the peer review of the pesticide risk assessment of the active substance dimethoate, EFSA Scientific Report, 84:1-102.
- EFSA (2006g) Conclusion regarding the peer review of the pesticide risk assessment of the active substance ethephon, EFSA Scientific Report, 67:1-61.
- EFSA (2006h) Conclusion regarding the peer review of the pesticide risk assessment of the active substance fenamiphos, EFSA Scientific Report, 62:1-81.
- EFSA (2006i) Conclusion regarding the peer review of the pesticide risk assessment of the active substance fenitrothion, EFSA Scientific Report, **59**:1-80.
- EFSA (2006j) Conclusion regarding the peer review of the pesticide risk assessment of the active substance fipronil, EFSA Scientific Report, 65:1-110.
- EFSA (2006k) Conclusion regarding the peer review of the pesticide risk assessment of the active substance folpet, EFSA Scientific Report, 70:1-78.
- EFSA (20061) Conclusion regarding the peer review of the pesticide risk assessment of the active substance formetanate, EFSA Scientific Report, 69:1-78.
- EFSA (2006m) Conclusion regarding the peer review of the pesticide risk assessment of the active substance haloxyfop-P, EFSA Scientific Report, 87:1-96.
- EFSA (2006n) Conclusion regarding the peer review of the pesticide risk assessment of the active substance methiocarb, EFSA Scientific Report, 79:1-82.
- EFSA (2006o) Conclusion regarding the peer review of the pesticide risk assessment of the active substance methomyl, EFSA Scientific Report, 83:1-73.
- EFSA (2006p) Conclusion regarding the peer review of the pesticide risk assessment of the active substance metrafenone, EFSA Scientific Report, \$8:1-72.
- EFSA (2006q) Conclusion regarding the peer review of the pesticide risk assessment of the active substance metribuzin, EFSA Scientific Report, 88:1-74.
- EFSA (2006r) Conclusion regarding the peer review of the pesticide risk assessment of the active substance pyrimethanil, EFSA Scientific Report, 61:1-70.
- EFSA (2007a) Conclusion regarding the peer review of the pesticide risk assessment of the active substance amidosulfuron, EFSA Scientific Report, 116:1-86.
- EFSA (2007b) Conclusion regarding the peer review of the pesticide risk assessment of the active substance benthiavalicarb, EFSA Scientific Report, 107:1-81.
- EFSA (2007c) Conclusion regarding the peer review of the pesticide risk assessment of the active substance chloridazon, EFSA Scientific Report, 108:1-82.
- EFSA (2007d) Conclusion regarding the peer review of the pesticide risk assessment of the active substance fenoxaprop-P, EFSA Scientific Report, 121:1-76.
- EFSA (2007e) Conclusion regarding the peer review of the pesticide risk assessment of the active substance fludioxonil, EFSA Scientific Report, 110:1-85.
- EFSA (2007f) Conclusion regarding the peer review of the pesticide risk assessment of the active substance fuberidazole, EFSA Scientific Report, 118:1-65.
- EFSA (2007g) Conclusion regarding the peer review of the pesticide risk assessment of the active substance prosulfocarb, EFSA Scientific Report, 111:1-81.
- EFSA (2007h) Conclusion regarding the peer review of the pesticide risk assessment of the active substance prothioconazole, EFSA Scientific Report, 106:1-98.
- EFSA (2007i) Conclusion regarding the peer review of the pesticide risk assessment of the active substance spirodiclofen, EFSA Scientific Report, 104:1-85.
- EFSA (2007j) Conclusion regarding the peer review of the pesticide risk assessment of the active substance spiromesifen, EFSA Scientific Report, 105:1-69.
- EPA (1993a) Reregistration Eligibility Decision for Daminozide, Environmental Protection Agency, Washington, USA.

- EPA (1993b) Reregistration Eligibility Decision for Glyphosate, EPA 738-R-98-016, Environmental Protection Agency, Washington, USA.
- EPA (1994a) Reregistration Eligibility Decision for Hexazinone, EPA 738-R-94-022, Environmental Protection Agency, Washington, USA.
- EPA (1994b) Reregistration Eligibility Decision for Maleic Hydrazide, EPA 738-R-94-010, Environmental Protection Agency, Washington, USA.
- EPA (1994c) Reregistration Eligibility Decision for Metalaxyl, EPA 738-R-94-017, Environmental Protection Agency, Washington, USA.
- EPA (1994d) Reregistration Eligibility Decision for Oryazlin, EPA 738-R-94-016, Environmental Protection Agency, Washington, USA.
- EPA (1994e) Reregistration Eligibility Decision for Piperalin, EPA 738-R-94-033, Environmental Protection Agency, Washington, USA.
- EPA (1994f) Reregistration Eligibility Decision for Pronamide, Environmental Protection Agency, Washington, USA.
- EPA (1994g) Reregistration Eligibility Decision for Tebuthiuron, Environmental Protection Agency, Washington, USA.
- EPA (1995a) Reregistration Eligibility Decision for Asulam, EPA 738-R-95-024, Environmental Protection Agency, Washington, USA.
- EPA (1995b) Reregistration Eligibility Decision for Ethephon, EPA 738-R-95-003, Environmental Protection Agency, Washington, USA.
- EPA (1995c) Reregistration Eligibility Decision for Fenitrothion, EPA 738-R-95-018, Environmental Protection Agency, Washington, USA.
- EPA (1995d) Reregistration Eligibility Decision for Foseamine-ammonium, EPA 738-R-95-004, Environmental Protection Agency, Washington, USA.
- EPA (1995e) Reregistration Eligibility Decision for Linuron, EPA 738-R-95-003, Environmental Protection Agency, Washington, USA.
- EPA (1995f) Reregistration Eligibility Decision for Metolachlor, EPA 738-R-95-006, Environmental Protection Agency, Washington, USA.
- EPA (1996a) Reregistration Eligibility Decision for Amitraz, Environmental Protection Agency, Washington, USA.
- EPA (1996b) Reregistration Eligibility Decision for Amitrole, Environmental Protection Agency, Washington, USA.
- EPA (1996c) Reregistration Eligibility Decision for Bromacil, EPA 738-R-96-013, Environmental Protection Agency, Washington, USA.
- EPA (1996d) Reregistration Eligibility Decision for Coumaphos, EPA 738-R-96-01, Environmental Protection Agency, Washington, USA.
- EPA (1996e) Reregistration Eligibility Decision for Desmedipham, EPA 738-R-96-006, Environmental Protection Agency, Washington, USA.
- EPA (1996f) Reregistration Eligibility Decision for Norflurazon, Case 0229, Environmental Protection Agency, Washington, USA.
- EPA (1996g) Reregistration Eligibility Decision for Prometryn, EPA 738-R-95-033, Environmental Protection Agency, Washington, USA.
- EPA (1996h) Reregistration Eligibility Decision for Trifluralin, EPA 738-R-95-040, Environmental Protection Agency, Washington, USA.
- EPA (1997a) Reregistration Eligibility Decision for Diflubenzuron, EPA 738-R-97-008, Environmental Protection Agency, Washington, USA.
- EPA (1997b) Reregistration Eligibility Decision for Mepiquat Chloride, EPA 738-R-96-019, Environmental Protection Agency, Washington, USA.
- EPA (1997c) Reregistration Eligibility Decision for Paraquat Dichloride, EPA-738-F-96-018, Environmental Protection Agency, Washington, USA.
- EPA (1997d) Reregistration Eligibility Decision for Pendimethalin, EPA 738-F-97-007, Environmental Protection Agency, Washington, USA.
- EPA (1997e) Reregistration Eligibility Decision for Thiobencarb, EPA 738-F-97-013, Environmental Protection Agency, Washington, USA.
- EPA (1998a) Reregistration Eligibility Decision for 1,3-Dichloropropene, EPA 738-R-93-014, Environmental Protection Agency, Washington, USA.
- EPA (1998b) Reregistration Eligibility Decision for Alachlor, EPA 738-R-98-020, Environmental Protection Agency, Washington, USA.
- EPA (1998c) Reregistration Eligibility Decision for Bromoxynil, EPA 738-R-98-013, Environmental Protection Agency,

Washington, USA.

- EPA (1998d) Reregistration Eligibility Decision for DCPA, EPA 738-R-98-005, Environmental Protection Agency, Washington, USA.
- EPA (1998e) Reregistration Eligibility Decision for Diclobenil, EPA-738-R-98-003, Environmental Protection Agency, Washington, USA.
- EPA (1998f) Reregistration Eligibility Decision for Dicofol, EPA 738-R-98-018, Environmental Protection Agency, Washington, USA.
- EPA (1998g) Reregistration Eligibility Decision for Iprodione, EPA 738-R-98-019, Environmental Protection Agency, Washington, USA.
- EPA (1998h) Reregistration Eligibility Decision for Methomyl, EPA 738-R-93-021, Environmental Protection Agency, Washington, USA.
- EPA (1998i) Reregistration Eligibility Decision for Metribuzin, EPA 738-R-97-006, Environmental Protection Agency, Washington, USA.
- EPA (1998j) Reregistration Eligibility Decision for Propachlor, EPA 738-R-015, Environmental Protection Agency, Washington, USA.
- EPA (1998k) Reregistration Eligibility Decision for Thiodicarb, EPA 738-R-98-022, Environmental Protection Agency, Washington, USA.
- EPA (19981) Reregistration Eligibility Decision for Triclopyr, EPA 738-R-98-011, Environmental Protection Agency, Washington, USA.
- EPA (1999a) Reregistration Eligibility Decision for Captan, EPA 738-R-99-015, Environmental Protection Agency, Washington, USA.
- EPA (1999b) Reregistration Eligibility Decision for Chlorothalonil, EPA 738-R-99-004, Environmental Protection Agency, Washington, USA.
- EPA (1999c) Reregistration Eligibility Decision for EPTC, EPA 738-R-99-006, Environmental Protection Agency, Washington, USA.
- EPA (1999d) Reregistration Eligibility Science Chapter for Chlorpyrifos: Fate and Environmental Risk Assessment, Environmental Protection Agency, Washington, USA.
- EPA (1999e) Revised Chapter for the Dimethoate RED, Environmental Protection Agency, Washington, USA.
- EPA (2000a) Interim Reregistration Eligibility Decision for Oxamyl, EPA 738-R-00-015, Environmental Protection Agency, Washington, USA.
- EPA (2000b) Reregistration Eligibility Decision for Diclofop-methyl, EPA 738-R-00-009, Environmental Protection Agency, Washington, USA.
- EPA (2001a) Reregistration Eligibility Decision for Acephate, EPA 738-R-01-013, Environmental Protection Agency, Washington, USA.
- EPA (2001b) Reregistration Eligibility Decision for Triallate, EPA 738-R-00-021, Environmental Protection Agency, Washington, USA.
- EPA (2001c) Revised EFED's RED Document for Thiophanate-methyl and its Major Degradate, MBC (methyl 2benzimidazolycarbamate), Environmental Protection Agency, Washington, USA.
- EPA (2002a) Interim Reregistration Eligibility Decision for Disulfoton, Environmental Protection Agency, Washington, USA.
- EPA (2002b) Reregistration Eligibility Decision for Dicrotophos, Environmental Protection Agency, Washington, USA.
- EPA (2002c) Reregistration Eligibility Decision for Endosulfan, EPA 738-R-02-013, Environmental Protection Agency, Washington, USA.
- EPA (2003a) Interim Reregistration Eligibility Decision for Atrazine, Environmental Protection Agency, Washington, USA.
- EPA (2003b) Reregistration Eligibility Decision for Diuron, Environmental Protection Agency, Washington, USA.
- EPA (2004a) Reregistration Eligibility Decision for Benfluralin, EPA 738-R-04-012, Environmental Protection Agency, Washington, USA.
- EPA (2004b) Reregistration Eligibility Decision for Carbaryl, Environmental Protection Agency, Washington, USA.
- EPA (2004c) Reregistration Eligibility Decision for Thiophanate-methyl, Environmental Protection Agency, Washington, USA.
- EU (1998) Review Report for the Active Substance Kresoxim-methyl, 7583/VU/97-Final, European Commission, Brussels, Belgium.
- EU (1999) Review Report for the Active Substance Fluoxypyr, 6848/VU/98-final, European Commission, Brussels, Belgium.

- EU (2000a) Review Report for the Active Substance Bentazone, 7585/VI/97-final, European Commission, Brussels, Belgium.
- EU (2000b) Review Report for the Active Substance Esfenvalerate, 6846/VI/97-final, European Commission, Brussels, Belgium.
- EU (2000c) Review Report for the Active Substance Metsulfuron-methyl, 7593/VU/97-final, European Commission, Brussels, Belgium.
- EU (2000d) Review Report for the Active Substance Triasulfuron, 7589/VI/97-final, European Commission, Brussels, Belgium.
- EU (2001a) Review Report for the Active Substance 2,4-D, 7599/VI/97-final, European Commission, Brussels, Belgium.
- EU (2001b) Review Report for the Active Substance Cyclanilide, 7463/VV/98-final, European Commission, Brussels, Belgium.
- EU (2001c) Review Report for the Active Substance Flupyrsulfuron-methyl, 5050/VI/97-final, European Commission, Brussels, Belgium.
- EU (2001d) Review Report for the Active Substance Lambda-Cyhalothrin, 7572/VI/97-final, European Commission, Brussels, Belgium.
- EU (2001c) Review Report for the Active Substance Pyridate, 7576/VI/97-final, European Commission, Brussels, Belgium.
- EU (2001f) Review Report for the Active Substance Thiabendazole, 7603/VU/97-final, European Commission, Brussels, Belgium.
- EU (2001g) Review Report for the Active Substance Thifensulfuron-methyl, SANCO/7577/VV97-final, European Commission, Brussels, Belgium.
- EU (2002a) Review Report for the Active Substance 2,4-DB, 7601/VI/97-final, European Commission, Brussels, Belgium.
- EU (2002b) Review Report for the Active Substance Acibenzolar-s-methyl, 6506/VI/99-final, European Commission, Brussels, Belgium.
- EU (2002c) Review Report for the Active Substance Beta-Cyfluthrin, 6841/VI/97-final, European Commission, Brussels, Belgium.
- EU (2002d) Review Report for the Active Substance Cinidon-ethyl, 6498/VI/99-final, European Commission, Brussels, Belgium.
- EU (2002e) Review Report for the Active Substance Cyazofamid, SANCO/10379/2002-final, European Commission, Brussels, Belgium.
- EU (2002f) Review Report for the Active Substance Cyhalofop-butyl, 6500/VI/99-Final, European Commission, Brussels, Belgium.
- EU (2002g) Review Report for the Active Substance Deltamethrin, 6504/VI/99-final, European Commission, Brussels, Belgium.
- EU (2002h) Review Report for the Active Substance Ethoxysulfuron, 7461/VI/98-final, European Commission, Brussels, Belgium.
- EU (2002i) Review Report for the Active Substance Famoxadone, 6505/VI/99-final, European Commission, Brussels, Belgium.
- EU (2002j) Review Report for the Active Substance Florasulam, SANCO/1406/2001 final, European Commission, Brussels, Belgium.
- EU (2002k) Review Report for the Active Substance Foramsulfuron, SANCO/10324/2002-Final, European Commission, Brussels, Belgium.
- EU (20021) Review Report for the Active Substance Glyphosate, 6511/VU/99-final, European Commission, Brussels, Belgium.
- EU (2002m) Review Report for the Active Substance Imazamox, SANCO/4325/2000 -Final, European Commission, Brussels, Belgium.
- EU (2002n) Review Report for the Active Substance Iprodione, 5036/VI/98-final, European Commission, Brussels, Belgium.
- EU (2002o) Review Report for the Active Substance Iprovalicarb, SANCO/2034/2000-FINAL, European Commission, Brussels, Belgium.
- EU (2002p) Review Report for the Active Substance Isoproturon, SANCO/3045/VI/99-final, European Commission, Brussels, Belgium.
- EU (2002q) Review Report for the Active Substance Linuron, 7595/VI/97-final, European Commission, Brussels, Belgium.
- EU (2002r) Review Report for the Active Substance Metalaxyl-M, SANCO/3037/99-final, European Commission,

Brussels, Belgium.

- EU (2002s) Review Report for the Active Substance Oxadiargyl, SANCO/3053/99-final, European Commission, Brussels, Belgium.
- EU (20021) Review Report for the Active Substance Oxasulfuron, SANCO/4323/2000-final, European Commission, Brussels, Belgium.
- EU (2002u) Review Report for the Active Substance Picolinafen, SANCO/1418/2001-final, European Commission, Brussels, Belgium.
- EU (2002v) Review Report for the Active Substance Prosulfuron, SANCO/3055/99-FINAL, European Commission, Brussels, Belgium.
- EU (2002w) Review Report for the Active Substance Pyraflufen-ethyl, SANCO/3039/99-FINAL, European Commission, Brussels, Belgium.
- EU (2002x) Review Report for the Active Substance Sulfosulfuron, 7459/VI/98-FINAL, European Commission, Brussels, Belgium.
- EU (2003a) Review Report for the Active Substance Carfentrazone-ethyl, 7473/VU/99-Final, European Commission, Brussels, Belgium.
- EU (2003b) Review Report for the Active Substance Chlorpropham, SANCO/3041/99-final, European Commission, Brussels, Belgium.
- EU (2003c) Review Report for the Active Substance Dimethenamid-P, SANCO/1402/2001-Final, European Commission, Brussels, Belgium.
- EU (2003d) Review Report for the Active Substance Fenamidone, SANCO/1404/2001-Final, European Commission, Brussels, Belgium.
- EU (2003e) Review Report for the Active Substance Flufenacet, 7469/VI/98-Final, European Commission, Brussels, Belgium.
- EU (2003f) Review Report for the Active Substance Flurtamone, Sanco/10162/2003-Final, European Commission, Brussels, Belgium.
- EU (2003g) Review Report for the Active Substance Fosthiazate, SANCO/10199/2003-Final, European Commission, Brussels, Belgium.
- EU (2003h) Review Report for the Active Substance Iodosulfuron, SANCO/10166/2003-Final, European Commission, Brussels, Belgium.
- EU (2003i) Review Report for the Active Substance Isoxaflutole, Sanco/3136/99-Final, European Commission, Brussels, Belgium.
- EU (2003j) Review Report for the Active Substance Mecoprop, SANCO/3063/99-final, European Commission, Brussels, Belgium.
- EU (2003k) Review Report for the Active Substance Mecoprop-P, SANCO/3065/99-final, European Commission, Brussels, Belgium.
- EU (20031) Review Report for the Active Substance Mesotrione, SANCO/1416/2001 -Final, European Commission, Brussels, Belgium.
- EU (2003m) Review Report for the Active Substance Molinate, SANCO/3047/99-final, European Commission, Brussels, Belgium.
- EU (2003n) Review Report for the Active Substance Propiconazole, SANCO/3049/99-final, European Commission, Brussels, Belgium.
- EU (2003o) Review Report for the Active Substance Propineb, SANCO/7574/97-final, European Commission, Brussels, Belgium.
- EU (2003p) Review Report for the Active Substance Propoxycarbozone, SANCO/4067/2001-Final, European Commission, Brussels, Belgium.
- EU (2003q) Review Report for the Active Substance Propyzamide, 6502/VI/99-final, European Commission, Brussels, Belgium.
- EU (2003r) Review Report for the Active Substance Silthiofam, SANCO/1424/2001-Final, European Commission, Brussels, Belgium.
- EU (2003s) Review Report for the Active Substance Trifloxystrobin, SANCO/4339/2000-Final, European Commission, Brussels, Belgium.
- EU (2004a) Review Report for the Active Substance Acetamiprid, SANCO/1392/2001 Final, European Commission, Brussels, Belgium.
- EU (2004b) Review Report for the Active Substance Alpha-cypermethrin, SANCO/4335/2000 final, European Commission, Brussels, Belgium.
- EU (2004c) Review Report for the Active Substance Benalaxyl, SANCO/4351/2000 final, European Commission,

Brussels, Belgium.

- EU (2004d) Review Report for the Active Substance Bromoxynil, SANCO/4347/2000-final, European Commission, Brussels, Belgium.
- EU (2004e) Review Report for the Active Substance Desmedipham, SANCO/4061/2001-final, European Commission, Brussels, Belgium.
- EU (2004f) Review Report for the Active Substance Etoxazole, SANCO/4054/2001 rev. 3, European Commission, Brussels, Belgium.
- EU (2004g) Review Report for the Active Substance Ioxynil, SANCO/4349/2000-final, European Commission, Brussels, Belgium.
- EU (2004h) Review Report for the Active Substance Mesosulfuron, SANCO/10298/2003-Final, European Commission, Brussels, Belgium.
- EU (2004i) Review Report for the Active Substance Phenmedipham, SANCO/4060/2001-final, European Commission, Brussels, Belgium.
- EU (2004j) Review Report for the Active Substance Pyraclostrobin, SANCO/1420/2001-Final, European Commission, Brussels, Belgium.
- EU (2004k) Review Report for the Active Substance S-Metolachlor, SANCO/1426/2001 rev. 3, European Commission, Brussels, Belgium.
- EU (2004) Review Report for the Active Substance Tepraloxydim, SANCO/10388/2002 rev. 4, European Commission, Brussels, Belgium.
- EU (2004m) Review Report for the Active Substance Thiacloprid, SANCO/4347/2000 Final, European Commission, Brussels, Belgium.
- EU (2004n) Review Report for the Active Substance Zoxamide, SANCO/10297/2003-Final, European Commission, Brussels, Belgium.
- EU (2005a) Review Report for the Active Substance Bifenazate, SANCO/10158/2005 rev. 3, European Commission, Brussels, Belgium.
- EU (2005b) Review Report for the Active Substance Chlorothalonil, SANCO/4343/2000 final, European Commission, Brussels, Belgium.
- EU (2005c) Review Report for the Active Substance Chlorotoluron, SANCO/4329/2000 final, European Commission, Brussels, Belgium.
- EU (2005d) Review Report for the Active Substance Chlorpyrifas, SANCO/3059/99 rev. 1.5, European Commission, Brussels, Belgium.
- EU (2005e) Review Report for the Active Substance Chlorpyrifos-methyl, SANCO/3601/99-rev.1.6, European Commission, Brussels, Belgium.
- EU (2005f) Review Report for the Active Substance Clothianidin, SANCO/10533/05 Final, European Commission, Brussels, Belgium.
- EU (2005g) Review Report for the Active Substance Daminozide, SANCO/3043/99 final, European Commission, Brussels, Belgium.
- EU (2005h) Review Report for the Active Substance Mancozeb, SANCO/4058/2001 rev. 4.3, European Commission, Brussels, Belgium.
- EU (2005i) Review Report for the Active Substance Maneb, SANCO/4057/2001-rev.3.3, European Commission, Brussels, Belgium.
- EU (2005j) Review Report for the Active Substance MCPA, SANCO/4062/2001-final, European Commission, Brussels, Belgium.
- EU (2005k) Review Report for the Active Substance MCPB, SANCO/4063/2001-final, European Commission, Brussels, Belgium.
- EU (20051) Review Report for the Active Substance Metiram, SANCO/4059/2001-rev.3.3, European Commission, Brussels, Belgium.
- EU (2005m) Review Report for the Active Substance Thiophanate-methyl, 5030/VI/98 final, European Commission, Brussels, Belgium.
- EU (2006a) Review Report for the Active Substance Pethoxamid, SANCO/10396/2002 -Final, European Commission, Brussels, Belgium.
- EU (2006b) Review Report for the Active Substance Thiamethoxam, SANCO/10390/2002 rev. final, European Commission, Brussels, Belgium.
- EU (2007a) Review Report for the Active Substance Dinocap, SANCO/4345/2000 final, European Commission, Brussels, Belgium.
- EU (2007b) Review Report for the Active Substance Flusilazole, 6850/VU/97 final, European Commission, Brussels,

Belgium.

- Fava, L., Bottoni, P., Crobe, A. and Funari, E. (2000) Leaching properties of some degradation products of alachlor and metolachlor, *Chemosphere*, 41:1503-1508.
- Fava, L., Orrù, A., Crobe, A., Caracciolo, A. B., Bottonic, P. and Funari, E. (2005) Pesticide metabolites as contaminants of groundwater resources: Assessment of the leaching potential of endosulfan sulfate, 2,6-dichlorobenzoic acid, 3,4-dichloroaniline, 2,4-dichlorophenol and 4-chloro-2-methylphenol, *Microchemical Journal*, 79:207-211.
- Fermanich, K. J., Bland, W. L., Lowery, B. and McSweeney, K. (1996) Irrigation and tillage effects on atrazine and metabolite leaching from a sandy soil, *Journal of Environmental Quality*, 25:1291-1299.
- Ferrer, I., Thurman, E. M. and Barceló, D. (1997) Identification of ionic chloroacetanilide-herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray, *Analytical Chemistry*, 69:4547-4553.
- Gaston, L. A., Locke, M. A., Wagner, S. C., Zablotowicz, R. M. and Reddy, K. N. (1996) Sorption of bentazon and degradation products in two Mississippi soils, *Weed Science*, 44:678-682.
- Haberhauer, G., Temmel, B. and Gerzabek, M. H. (1999) Effects of elevated ozone concentration on the degradation of dichlorprop in soil, *Chemosphere*, 39:1459-1466.
- Haberhauer, G., Pfeiffer, L. and Gerzabek, M. H. (2000) Influence of molecular structure on sorption of phenoxyalkanoic herbicides on soil and its particle size fractions, *Journal of Agricultural and Food Chemistry*, 48:3722-3727.
- Heberer, T. and Dünnbier, U. (1999) DDT metabolite bis(chlorophenyl)acetic acid: The neglected environmental contaminant, *Environmental Science and Technology*, 33:2346-2351.
- Helweg, A., Bay, H., Hansen, H. P. B., Rabolle, M., Sonnenborg, A. and Stenvang, L. (2002) Pollution at and below sites used for mixing and loading of pesticides, *International Journal of Environmental Analytical Chemistry*, 82:583-590.
- Hernandez, F., Marin, J. M., Pozo, O. J., Sancho, J. V., Lopez, F. J. and Morell, I. (2008) Pesticide residues and transformation products in groundwater from a Spanish agricultural region on the Mediterranean Coast, International Journal of Environmental Analytical Chemistry, 88:409-424.
- Heyer, R. and Stan, H.-J. (1995) Comparison of the leaching behaviour of alachlor and its metabolites under field and laboratory conditions, International Journal of Environmental Analytical Chemistry, 58:173-183.
- Hladik, M. L., Roberts, A. L. and Bouwer, E. J. (2006) Chloroacetamide Herbicides and Their Transformation Products in Drinking Water, Report No. 91123, Awwa Research Foundation, Denver, US.
- Hoffman, R. S., Capel, P. D. and Larson, S. J. (2000) Comparison of pesticides in eight U.S. urban streams, Environmental Toxicology and Chemistry, 19:2249-2258.
- HSE (1993) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Kathon 886 Use in Wood Preservation, No. 90, The Health and Safety Executive, Bootle, UK.
- HSE (1994) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on IPBC (2), No. 115, The Health and Safety Executive, Bootle, UK.
- HSE (1995) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Flufenoxuron Use as a Public Hygiene Insecticide, No. 143, The Health and Safety Executive, Bootle, UK.
- HSE (1997) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Transfluthrin Use as a Public Hygiene Insecticide, No. 165, The Health and Safety Executive, Bootle, UK.
- HSE (1999) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fipronil Use as a Public Hygiene Insecticide, No. 187, The Health and Safety Executive, Bootle, UK.
- HSE (2002) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Environmental Risk Assessment of Booster Biocide Antifouling Products, No. 205, The Health and Safety Executive, Bootle, UK.
- HSE (2003a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Booster Biocides in Antifouling Products, Full Reveiw of Dichlofluanid, No. 206, The Health and Safety Executive, Bootle, UK.
- HSE (2003b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Zinc Pyrithione Use as a Booster Biocide in Antifouling Products, No. 203, The Health and Safety Executive, Bootle, UK.
- HSE (2004) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on RH-287 (4,5-dichloro-2n-octyl-3(2H)-isothiazolone) Use as a Booster Biocide in Antifouling Products, No. 209, The Health and Safety Executive, Bootle, UK.
- Höllrigl-Rosta, A., Kreuzig, R. and Bahadir, M. (1999) Investigations on the metabolic fate of prochloraz in soil under field and laboratory conditions, *Pesticide Science*, 55:531-538.
- Kalkhoff, S. J., Lee, K. E., Porter, S. D., Terrio, P. J. and Thurman, E. M. (2003) Herbicides and herbicide degradation products in upper midwest agricultrual streams during August base-flow conditions, *Journal of Environmental* Quality, 32:1025-1035.
- Khan, S. U. and Saidak, W. J. (1981) Residues of atrazine and its metabolites after prolonged usage, Weed Research, 21:9-12.

- Kolpin, D. W., Thurman, E. M. and Linhart, S. M. (2000) Finding minimal herbicide concentrations in ground water? Try looking for their degradates, *The Science of the Total Environment*, 248:115-122.
- Kolpin, D. W., Barbash, J. E. and Gilliom, R. J. (1998) Occurrence of pesticides in shallow groundwater of the United States: Initial results from the National Water-Quality Assessment Program, Environmental Science and Technology, 32:558-566.
- Kolpin, D. W., Nations, B. K., Goolsby, D. A. and Thurman, E. M. (1996a) Acetochlor in the hydrologic system in the Midwestern United States, 1994, Environmental Science and Technology, 30:1459-1464.
- Kolpin, D. W., Thurman E. Michael and Goolsby, D. A. (1996b) Occurrence of selected pesticides and their metabolites in near-surface aquifers of the Midwestern United States, *Environmental Science and Technology*, 30:335-340.
- Koskinen, W. C., Calderón, M. J., Rice, P. J. and Cornejo, J. (2006) Sorption-desorption of flucarbazone and propoxycarbazone and their benzenesulfonamide and triazolinone metabolites in two soils, *Pest Management Science*, 62:598-602.
- Krueger, J. P., Butz, R. G. and Cork, D. J. (1991) Aerobic and anaerobic soil metabolism of dicamba, Journal of Agricultural and Food Chemistry, 39:995-999.
- Lacorte, S., Lartiges, S. B., Philippe Carrigues and Barceló, D. (1995) Degradation of organophosphorus pesticides and their transformation products in estuarine waters, *Environmental Science and Technology*, 29:431-438.
- Lagana, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G. and Marino, A. (2002) Occurrence and determination of herbicides and their major transformation products in environmental waters, *Analytica Chimica Acta*, 462:187-198.
- Leistra, M., Groen, A. E., Crum, S. J. H. and van der Pas, L. J. T. (1991) Transformation rate of 1,3-dichloropropene and 3-chloroallyl alcohol in topsoil and subsoil material of flower-bulb fields, *Pesticide Science*, 31:197-207.
- Lerch, R. N. and Blanchard, P. E. (2003) Watershed vulnerability to herbicide transport in Northern Missouri and Southern Iowa streams, Environmental Science and Technology, 37:5518-5527.
- Lerch, R. N., Donald, W. W., Li, Y.-X. and Alberts, E. E. (1995) Hydroxylated atrazine degradation products in a small Missouri stream, Environmental Science and Technology, 29:2759-2768.
- Li, P. C. H., Swanson, E. J. and Gobas, F. A. P. C. (2002) Diazinon and its degradation products in agricultural water courses in British Columbia, Canada, Bulletin of Environmental Contamination and Toxicology, 69:59-65.
- Liu, B., McConnell, L. L. and Torrents, A. (2002) Herbicide and insecticide loadings from the Susquehanna River to the Northern Chesapeake Bay, Journal of Agricultural and Food Chemistry, 50:4385-4392.
- Menon, P. and Gopal, M. (2003) Dissipation of ¹⁴C carbaryl and quinalphos in soil under a groundnut crop (Arachis hypogaea L.) in semi-arid India, Chemosphere, 53:1023-1031.
- Mills, M. S. and Thurman, E. M. (1994) Reduction of nonpoint source contamination of surface water and groundwater by starch encapsulation of herbicides, *Environmental Science and Technology*, 28:73-79.
- Monohan, K., Tinsley, I. J., Shepherd, S. F. and Field, J. A. (1995) Quantitative determination of the acidic metabolites of dacthal in ground water by strong anion exchange solid-phase extraction, Journal of Agricultural and Food Chemistry, 43:2418-2423.
- Muir, D. C. and Baker, B. E. (1976) Detection of triazine herbicides and their degradation products in tile-drain water from fields under intensive corn (maize) production, Journal of Agricultural and Food Chemistry, 24:122-125.
- Murthy, N. B. K. and Raghu, K. (1989) Metabolism of 14C-carbaryl and 14C-1-napthol in moist and flooded soil, Journal of Environmental Science and Health Part B - Pesticides, Food Contaminants and Agricultural Wastes, 24:479-491.
- Nguyen, M.-T. L., Abel, S. W., Al-Mudallal, A., Hetrick, J. A. and Ellis, J. L. (2004) Incorporation of water treatment effects on pesticide removal and transformations in drinking water assessments - USEPA/OPP's interim science policy and progress report, International Symposium on Pesticides, Their Degradates and Adjuvants, 4 June, Prague, Czech Republic.
- Niemczyk, H. D. and Krause, A. A. (1994) Behaviour and mobility of preemergent herbicides in turfgrass: A field study, Journal of Environmental Science and Health Part B - Pesticides, Food Contaminants and Agricultural Wastes, 29:507-539.
- Obreza, T. A. and Ontermaa, E. O. (1991) Small-scale ground watermonitoring for 1,3-dichloropropene in southwest Florida, Soil and Crop Science Society of Florida Proceedings, 50:94-98.
- Oliver, D. P., Baldock, J. A., Kookana, R. S. and Grocke, S. (2005) The effect of landuse on soil organic chemistry and sorption of pesticides and metabolites, *Chemosphere*, 60:531-541.
- Pashin, S. Y., Carter, D. S. and Bayless, E. R. (2000) Analysis of atrazine and four degradation products in the pore water of the vadose zone, Central Indiana, *Environmental Science and Technology*, 34:2131-2137.
- Patty, L., Réal, B. and Gril, J. J. (1997) The use of grassed buffer strips to remove pesticides, nitrate and soluble phoshorus compounds from runoff water, *Pesticide Science*, 49:243-251.
- Pearson, R. J., Inskeep, W. P., Wraith, J. M., Gaber, H. M. and Comfort, S. D. (1996) Observed and simulated solute

transport under varying water regimes: II 2,6-difluorobenzoic acid and dicamba, Journal of Environmental Quality, 25:654-661.

- Pereira, W. E. and Hostettler, F. D. (1993) Nonpoint source contamination of the Mississippi River and its tributaries by herbicides, *Environmental Science and Technology*, 27:1542-1552.
- Pereira, W. E. and Rostad, C. E. (1990) Occurrence, distributions, and transport of herbicides and their degradation products in the Lower Mississippi river and its tributaries, *Environmental Science and Technology*, 24:1400-1406.
- Phillips, P. J., Wall, G. R., Thurman, E. M., Eckhardt, D. A. and Vanhoesen, J. (1999) Metolachlor and its metabolites in tile drain and stream runoff in the Canajoharie Creek watershed, *Environmental Science and Technology*, 33:3531-3537.
- Phillips, P. J., Eckhardt, D. A., Freehafer, D. A., Wall, G. R. and Ingleston, H. H. (2002) Regional patterns of pesticide concentrations in surface waters of New York in 1997, *Journal of the American Water Resources Association*, 38:731-745.
- PMRA (1988) Discussion Document on Fluzifop-butyl, E88-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1991a) Decision Document on Pyridate, E91-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1991b) Decision Document on Triclopyr, E91-02, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1991c) Discussion Document on Glyphosate, D91-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1992) Decision Document on Ethametsulfuron-methyl, E92-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1993a) Discussion Document on Fenitrothion, D93-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1993b) Discussion Document on Myclobutanil, E93-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1995) Proposed Regulatory Decision Document on Hexaconzole Wood Preservative, PRDD95-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1996a) Discussion Document on Nicosulfuron, E96-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1996b) Proposed Regulatory Decision Document on Tebufenozide, PRDD96-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1998) Proposed Regulatory Decision on Sulfosulfuron, PRDD98-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1999a) Proposed Regulatory Decision Document on Hexaconazole, PRDD99-05, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1999b) Regulatory Note on Diflufenzopyr, REG99-02, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (1999c) Regulatory Note on Triflusulfuron-methyl, REG99-03, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2000a) Regulatory Note on Azoxystrobin, REG2000-15, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2000b) Regulatory Note on Cymoxanil, REG2000-05, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2000c) Regulatory Note on Flucarbazone-sodium, REG2000-09, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2000d) Regulatory Note on Flufenacet, REG2000-11, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2000e) Regulatory Note on Isoxaflutole, REG2000-16, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2000f) Regulatory Note on Triticonazole, REG2000-08, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2001a) Proposed Regulatory Decision Document on Primisulfuron-methyl, PRDD2001-02, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2001b) Proposed Regulatory Decision Document on Trinexapac-ethyl, PRDD2001-05, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2001c) Regulatory Note on Florasulam, REG2001-12, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2001d) Regulatory Note on Zoxamide, REG2001-09, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2002) Re-evaluation of Pymetrozine, PRDD2002-03, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003a) Proposed Acceptability for Continuing Registration: Re-evaluation of Phorate, PACR2003-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003b) Proposed Regulatory Decision Document on Fenhexamid, PRDD2003-04, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003c) Proposed Regulatory Decision Document on Kresoxim-methyl, PRDD2003-05, Pest Management Regulatory Agency, Ottawa, Canada.

- PMRA (2003d) Proposed Regulatory Decision Document on Lambda-cyhalothrin, PRDD2003-03, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003e) Re-evaluation of Bensulide, PACR2003-06, Pest Management Regulatory Agency, Ottawa, Canada.

PMRA (2003f) Re-Evaluation of Coumaphos, PACR2003-04, Pest Management Regulatory Agency, Ottawa, Canada.

PMRA (2003g) Re-evaluation of Fenitrothion, PACR2003-08, Pest Management Regulatory Agency, Ottawa, Canada.

PMRA (2003h) Regulatory Note on Famoxadone, REG2003-10, Pest Management Regulatory Agency, Ottawa, Canada.

- PMRA (2003i) Regulatory Note on Fenbuconazole, REG2003-03, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003j) Regulatory Note on Fluazinam, REG2003-12, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003k) Regulatory Note on Formasulfuron, REG2003-08, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (20031) Regulatory Note on Imiprothrin, REG2003-05, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003m) Regulatory Note on Picolinafen, REG2003-02, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2003n) Regulatory Note on Pyraclostrobin, REG2003-06, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004a) Proposed Regulatory Decision Document on Florasulam, PRDD2004-04, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004b) Proposed Regulatory Decision Document on Tepraloxydim, PRDD2004-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004c) Proposed Regulatory Decision Document on Triticonazole, REG2004-06, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004d) Re-evamination of Phosmet, PACR2004-38, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004e) Regulatory Note on Boscalid/BAS 510, REG2004-2, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004f) Regulatory Note on Iodosulfuron-methyl-sodium, REG2004-04, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004g) Regulatory Note on Methoxyfenozide, REG2004-08, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2004h) Regulatory Note on Trifloxystrobin, REG2004-03, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2006a) Regulatory Note on Cyazofamid, REG2006-05, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2006b) Regulatory Note on Pinoxaden, REG2006-14, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2006c) Regulatory Note on Spirodiclofen, REG2006-06, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2006d) Regulatory Note on Topramezone, REG2006-09, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2006e) Regulatory Note on Tebuconazole, REG2006-11, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007a) Evaluation Report on Acequinocyl, ERC2007-10, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007b) Evaluation Report on Pyrasulfotole, ERC2007-11, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007c) Evaluation Report on Spiromesifen, ERC2007-08, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007d) Evaluation Report on Thiamethoxam, ERC2007-01, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007e) Proposed Registration Decision on Fenamidone, PRD2007-07, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007f) Regulatory Note on Azoxystrobin and Dynasty 100FS Fungicide, REG2007-02, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2007g) Regulatory Note on Prothioconazole, REG2007-03, Pest Management Regulatory Agency, Ottawa, Canada.
- PMRA (2008) Proposed Re-evaluation Decision on Nicosulfuron, PRVD2008-01, Pest Management Regulatory Agency, Ottawa, Canada.
- Potter, T. L. and Carpenter, T. L. (1995) Occurrence of alachlor environmental degradation products in groundwater, Environmental Science and Technology, 29:1557-1563.

- PSD (1987) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Quizlofop-methyl, No. 2, Pesticide Safety Directorate, York, UK.
- PSD (1988a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Cyfluthrin, No. 3, Pesticide Safety Directorate, York, UK.
- PSD (1988b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Cyhalothrin, No. 21, Pesticide Safety Directorate, York, UK.
- PSD (1988c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on DPX M6316, No. 7, Pesticide Safety Directorate, York, UK.
- PSD (1988d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fluazifop-P-butyl, No. 10, Pesticide Safety Directorate, York, UK.
- PSD (1989a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fenpropathrin, No. 23, Pesticide Safety Directorate, York, UK.
- PSD (1989b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Flusilazole, No. 11, Pesticide Safety Directorate, York, UK.
- PSD (1990a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Alachlor (1), No. 22, Pesticide Safety Directorate, York, UK.
- PSD (1990b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Cycloxydim, No. 31, Pesticide Safety Directorate, York, UK.
- PSD (1990c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fenoxaprop-ethyl, No. 18, Pesticide Safety Directorate, York, UK.
- PSD (1990d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fenoxaprop-P-ethyl, No. 17, Pesticide Safety Directorate, York, UK.
- PSD (1990e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on HOE 070542 Triazole Coformulant, No. 19, Pesticide Safety Directorate, York, UK.
- PSD (1990f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on HOE 39866 (Glufosinate-ammonium), No. 33, Pesticide Safety Directorate, York, UK.
- PSD (1991a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Chlorsulfuron, No. 37, Pesticide Safety Directorate, York, UK.
- PSD (1991b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Diazinon (1), No. 35, Pesticide Safety Directorate, York, UK.
- PSD (1991c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Diclofop-methyl, No. 46, Pesticide Safety Directorate, York, UK.
- PSD (1991d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Dinocap, No. 32, Pesticide Safety Directorate, York, UK.
- PSD (1991e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Metsulfuron-methyl, No. 38, Pesticide Safety Directorate, York, UK.
- PSD (1991f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on SAN 619F (Cyproconazole), No. 45, Pesticide Safety Directorate, York, UK.
- PSD (1991g) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Teflubenzuron, No. 40, Pesticide Safety Directorate, York, UK.
- PSD (1991h) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tefluthrin, No. 42, Pesticide Safety Directorate, York, UK.
- PSD (1991i) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Thifensulfuron-methyl, No. 39, Pesticide Safety Directorate, York, UK.
- PSD (1992a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Atrazine, No. 51, Pesticide Safety Directorate, York, UK.
- PSD (1992b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Atrazine (1), No. 51, Pesticide Safety Directorate, York, UK.
- PSD (1992c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Esfenvalerate, No. 55, Pesticide Safety Directorate, York, UK.
- PSD (1992d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fluoroghycofen-ethyl, No. 50, Pesticide Safety Directorate, York, UK.
- PSD (1992e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Simazine (1), No. 52, Pesticide Safety Directorate, York, UK.
- PSD (1992f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Thiodicarb, No. 49, Pesticide Safety Directorate, York, UK.

- PSD (1992g) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Triasulfuron, No. 48, Pesticide Safety Directorate, York, UK.
- PSD (1992h) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tribenuron-methyl, No. 61, Pesticide Safety Directorate, York, UK.
- PSD (1993a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on 2,4-Dichlorophenoxy Acetic Acid and its Salts and Esters, No. 68, Pesticide Safety Directorate, York, UK.
- PSD (1993b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Buprofezin, No. 81, Pesticide Safety Directorate, York, UK.
- PSD (1993c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Cyromazine, No. 89, Pesticide Safety Directorate, York, UK.
- PSD (1993d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Desmedipham, No. 75, Pesticide Safety Directorate, York, UK.
- PSD (1993e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Dimefuron, No. 79, Pesticide Safety Directorate, York, UK.
- PSD (1993f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Dimethoate, No. 86, Pesticide Safety Directorate, York, UK.
- PSD (1993g) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fenpropidin, No. 67, Pesticide Safety Directorate, York, UK.
- PSD (1993h) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Imazaquin, No. 66, Pesticide Safety Directorate, York, UK.
- PSD (1993i) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Imidacloprid, No. 73, Pesticide Safety Directorate, York, UK.
- PSD (1993j) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Omethoate, No. 83, Pesticide Safety Directorate, York, UK.
- PSD (1993k) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tebuconazole (1), No. 65, Pesticide Safety Directorate, York, UK.
- PSD (19931) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tolclofos-methyl, No. 69, Pesticide Safety Directorate, York, UK.
- PSD (1993m) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tralkoxydim (PP604), No. 70, Pesticide Safety Directorate, York, UK.
- PSD (1993n) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Triazoxide, No. 97, Pesticide Safety Directorate, York, UK.
- PSD (1994a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Amidosulfuron, No. 91, Pesticide Safety Directorate, York, UK.
- PSD (1994b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Anilazine, No. 93, Pesticide Safety Directorate, York, UK.
- PSD (1994c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Bitertanol, No. 92, Pesticide Safety Directorate, York, UK.
- PSD (1994d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Chlorfenvinphos, No. 107, Pesticide Safety Directorate, York, UK.
- PSD (1994c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Chlorfenvinphos, No. 107, Pesticide Safety Directorate, York, UK.
- PSD (1994f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Difenoconazole in Plover 250 EC, No. 106, Pesticide Safety Directorate, York, UK.
- PSD (1994g) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Dimethomorph, No. 99, Pesticide Safety Directorate, York, UK.
- PSD (1994h) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Epoxiconazole, No. 108, Pesticide Safety Directorate, York, UK.
- PSD (1994i) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fluazinam, No. 100, Pesticide Safety Directorate, York, UK.
- PSD (1994j) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Hydramthylon Use in Public Hygiene, No. 102, Pesticide Safety Directorate, York, UK.
- PSD (1994k) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Mecoprop, No. 95, Pesticide Safety Directorate, York, UK.
- PSD (19941) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Mecoprop-P, No. 96, Pesticide Safety Directorate, York, UK.

- PSD (1994m) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Pirimicarb, No. 134, Pesticide Safety Directorate, York, UK.
- PSD (1994n) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Propaquizafop, No. 94, Pesticide Safety Directorate, York, UK.
- PSD (1995a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Clodinafop-propargyl and Cloquintocet-mexyl, No. 121, Pesticide Safety Directorate, York, UK.
- PSD (1995b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Diclofop-methyl (2), No. 117, Pesticide Safety Directorate, York, UK.
- PSD (1995c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fenbuconazole, No. 128, Pesticide Safety Directorate, York, UK.
- PSD (1995d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fenpyroximate, No. 130, Pesticide Safety Directorate, York, UK.
- PSD (1995e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fludioxonil, No. 126, Pesticide Safety Directorate, York, UK.
- PSD (1995f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fomesafen, No. 118, Pesticide Safety Directorate, York, UK.
- PSD (1995g) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Isoproturon, No. 140, Pesticide Safety Directorate, York, UK.
- PSD (1995h) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Linuron, No. 132, Pesticide Safety Directorate, York, UK.
- PSD (1995i) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Malathion, No. 135, Pesticide Safety Directorate, York, UK.
- PSD (1995j) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Paclobutrazol, No. 142, Pesticide Safety Directorate, York, UK.
- PSD (1995k) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Pyrimethanil, No. 138, Pesticide Safety Directorate, York, UK.
- PSD (19951) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Review of the Agricultural and Horticultural Uses of Bromoxynil, No. 124, Pesticide Safety Directorate, York, UK.
- PSD (1995m) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Review of the Agricultural and Horticltural Uses of Ioxynil, No. 123, Pesticide Safety Directorate, York, UK.
- PSD (1995n) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Review of the Environmental Persistence of Metsulfuron-methyl, No. 119, Pesticide Safety Directorate, York, UK.
- PSD (19950) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tebufenpyrad, No. 122, Pesticide Safety Directorate, York, UK.
- PSD (1995p) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tecnazene, No. 127, Pesticide Safety Directorate, York, UK.
- PSD (1995q) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tolyfluanid, No. 136, Pesticide Safety Directorate, York, UK.
- PSD (1995r) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Triflusulfuron-methyl, No. 139, Pesticide Safety Directorate, York, UK.
- PSD (1995s) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Trinexapac-ethyl, No. 141, Pesticide Safety Directorate, York, UK.
- PSD (1996a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Bromuconazole, No. 160, Pesticide Safety Directorate, York, UK.
- PSD (1996b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Metaldehyde, No. 153, Pesticide Safety Directorate, York, UK.
- PSD (1996c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Metosulam, No. 148, Pesticide Safety Directorate, York, UK.
- PSD (1996d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Pyriproxyfen Use as a Public Hygiene Insecticide, No. 147, Pesticide Safety Directorate, York, UK.
- PSD (1996e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Review of Lindane (Gamma-HCH), No. 151, Pesticide Safety Directorate, York, UK.
- PSD (1996f) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Rimsulfuron, No. 146, Pesticide Safety Directorate, York, UK.
- PSD (1997a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Cyprodinil, No. 169, Pesticide Safety Directorate, York, UK.

- PSD (1997b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fenoxycarb, No. 161, Pesticide Safety Directorate, York, UK.
- PSD (1997c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Kresoxim-methyl, No. 163, Pesticide Safety Directorate, York, UK.
- PSD (1997d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Pirimiphos-methyl, No. 167, Pesticide Safety Directorate, York, UK.
- PSD (1997e) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tau-fluvalinate, No. 162, Pesticide Safety Directorate, York, UK.
- PSD (1998a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Benfuracarb, No. 5, Pesticide Safety Directorate, York, UK.
- PSD (1998b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Methiocarb, No. 179, Pesticide Safety Directorate, York, UK.
- PSD (1998c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Quinmerac, No. 177, Pesticide Safety Directorate, York, UK.
- PSD (1998d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Review of Triazamate for Use as an Agricultural Insecticide, No. 172, Pesticide Safety Directorate, York, UK.
- PSD (1999a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on AEF 107892, No. 186, Pesticide Safety Directorate, York, UK.
- PSD (1999b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fluquinconazole, No. 184, Pesticide Safety Directorate, York, UK.
- PSD (1999c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Tetraconazole, No. 185, Pesticide Safety Directorate, York, UK.
- PSD (2000a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Flurtamone, No. 196, Pesticide Safety Directorate, York, UK.
- PSD (2000b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Metconazole, No. 193, Pesticide Safety Directorate, York, UK.
- PSD (2000c) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Nicosulfuron, No. 198, Pesticide Safety Directorate, York, UK.
- PSD (2000d) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Triticonazole, No. 199, Pesticide Safety Directorate, York, UK.
- PSD (2002) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Chlorotalonil: Use as a Booster Biocide in Antifouling Products, No. 204, Pesticide Safety Directorate, York, UK.
- PSD (2004a) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Fipronil (horticultural uses), No. 212, Pesticide Safety Directorate, York, UK.
- PSD (2004b) Advisory Committee on Pesticides Published Evaluation Documents: Evaluation on Zineb: Use as a Booster Biocide in Antifouling Products, No. 210, Pesticide Safety Directorate, York, UK.
- Raju, G. S., Millette, J. A. and Khan, S. U. (1993) Pollution potential of selected pesticides in soils, *Chemosphere*, 26:1429-1442.
- Reddy, K. N., Locke, M. A. and Zablotowicz, R. M. (1997) Soil type and tillage effects on sorption of cyanazine and degradation products, Weed Science, 45:727-732.
- Regitano, J. B., Tornisielo, V. L., Lavorenti, A. and Pacovsky, R. S. (2001) Transformation pathways of ¹⁴Cchlorothalonil in tropical soils, Archives of Environmental Contaminantion Toxicology, 40:295-302.
- Rice, P. J., Anderson, T. A. and Coats, J. R. (2002) Degradation and persistence of metolachlor in soil: Effects on concentration, soil moisture, soil depth, and sterilization, *Environmental Toxicology and Chemistry*, 21:2640-2648.
- Roberts, T. (1998) Metabolic Pathways of Agrochemicals, Part One: Herbicides and Plant Growth Regulators, The Royal Society of Chemistry, Cambridge, UK.
- Roberts, T. and Hutson, D. (1999) Metabolic Pathways of Agrochemicals, Part Two: Insecticides and Fungicides, The Royal Society of Chemistry, Cambridge, UK.
- Rouchaud, J., Gustin, F., Van Himme, M., Bulcke, R., Benoit, F. and Maddens, K. (1991) Metabolism of the herbicide diflufenican in the soil of field wheat crops, Journal of Agricultural and Food Chemistry, 39:968-976.
- Sabik, H., Rondeau, B., Gagnon, P., Jeannot, R. and Dohrendorf, K. (2003) Simultaneous filtration and solid-phase extraction combined with large-volume injection in GC/MS for ultra-trace analysis of polar pesticides in surface water, *International Journal of Environmental Analytical Chemistry*, 83:457-468.
- Saffih-Hdadi, K., Bruckler, L. and Barriuso, E. (2003) Modelling of sorption and biodegradation of parathion and its metabolite paraoxon in soil, *Journal of Environmental Quality*, 32:2207-2215.

- Singh, N. (2005) Factors affecting triadimeton degradation in soils, Journal of Agricultural and Food Chemistry, 53:70-75.
- Smith, A. E. (1973) Transformation of dicamba in regina heavy clay, Journal of Agricultural and Food Chemistry, 21:708-710.
- Smith, A. E. (1974) Breakdown of the herbicide dicamba and its degradation product 3,6-dichlorosalicylic acid in prairie soils, Journal of Agricultural and Food Chemistry, 22:601-605.
- Smith, A. E. and Aubin, A. J. (1991) Metabolites of (¹⁴C)-2,4-dichlorophenoxyacetic acid in Saskatchewan soils, Journal of Agricultural and Food Chemistry, 39:2019-2021.
- Solomon, K. R., Baker, D. B., Richards, R. P., Dixon, K. R., Klaine, S. J., La Point, T. W., Kendall, R. J., Weisskopf, C. P., Giddings, J. M., Geisy, J. P., Hall Jr., L. W. and Williams, W. M. (1996) Ecological risk assessment of atrazine in North American surface waters, *Environmental Toxicology and Chemistry*, 15 :31-76.
- Sorenson, B. A., Wyse, D. L., Koskinen, W. C., Buhler, D. D., Lueschen, W. E. and Jorgenson, M. D. (1993) Formation and movement of ¹⁴C-atrazine degradation products in a sandy loam soil under field conditions, Weed Science, 41:239-245.
- Spalding, R. F., Snow, D. D., Cassada, D. A. and Burbach, M. E. (1994) Study of pesticide occurrence in two closely spaced lakes in Northeastern Nebraska, Journal of Environmental Quality, 23:571-578.
- Steele, G. V., Johnson, H. M., Sandstrom, M. W., Capel, P. D. and Barbash, J. E. (2008) Occurence and fate of pesticides in four contrasting agricultural settings in the United States, *Journal of Environmental Quality*, 37:1116-1132.
- Steinheimer, T. R. and Scoggin, K. D. (2001) Fate and movement of atrazine, cyanazine, metolachlor and selected degradation products in water resources of the deep Loess Hills of Southwesteren Iowa, USA, Journal of Environmental Monitoring, 3:126-132.
- Strek, H. J., Barefoot, A. C., Mackay, N., and Huber, A. (2007) Perspective on sorption and degradation of pesticides in soil, In Environmental Fate and Ecological Effects of Pesticides, Del Re, A. A. M., Capri, E., Fragoulis, G. and Trevisan, M. Eds., La Goliardica Pavese, Milan, Italy, pp 2-9.
- Struger, J. and Fletcher, T. (2007) Occurrence of lawn care and agricultural pesticides in the Don river and Humber river watersheds (1998-2002), Journal of Great Lakes Research, 33:887-905.
- Sundaram, K. M. S. (1993) Partitioning and fate of acephate and its metabolite, methamidophos, from white spruce cones into soil and water, Journal of Environmental Science and Health Part B - Pesticides, Food Contaminants and Agricultural Wastes, 28:29-66.
- Suzuki, T., Kondo, H., Yaguchi, K., Maki, T. and Suga, T. (1998) Estimation of leachability and persistence of pesticides at golf courses from point-source monitoring and model to predict pesticide leaching to groundwater, Environmental Science and Technology, 32:920-929.
- Suzuki, T., Yaguchi, K., Suzuki, S. and Suga, T. (2001) In vitro pesticide degradation in turfgrass soil incubated under open and sealed conditions, Journal of Environmental Quality, 30:18-23.
- Thurman, E. M., Bastian, K. C. and Mollhagen, T. (2000) Occurence of cotton herbicides and insecticides in playa lakes of the High Plains of West Texas, The Science of the Total Environment, 248:189-200.
- Thurman, E. M., Meyer, M. T., Mills, M. S., Zimmerman, L. R. and Perry, C. A. (1994) Formation and transport of deethylatrazine and deisopropylatrazine in surface water, *Environmental Science and Technology*, 28:2267-2277.
- Thurman, E. M., Goolsby, D. A., Meyer, M. T., Mills, M. S., Pomes, M. L. and Kolpin, D. W. (1992) A reconnaissance study of herbicides and their metabolites in surface water of the Midwestern United States using immunoassay and gas chromatography/mass spectrometry, *Environmental Science and Technology*, 26:2440-2447.
- Tomlin, C. D. S. (2000) The Pesticide Manual, 12th Edition, British Crop Protection Council, Farnham, UK.
- Van Zweiten, L., Admad, N., Marolt, R. S., Ayres, M. and Morris, S. (2001) Determination of DDT and its metabolites in cattle dip soil available in aqueous phase after remediation, *Journal of Environmental Science and Health Part* B - Pesticides, Food Contaminants and Agricultural Wastes, 36:501-516.
- Verstraeten, I. M., Carr, J. D., Steele, G. V., Thurman, E. M., Bastian, K. C. and Dormedy, D. F. (1999) Surface waterground water interaction: Herbicide transport into municipal collector wells, *Journal of Environmental Quality*, 28:1396-1405.
- Wagner, S. C., Zablotowicz, R. M., Gaston, L. A., Locke, M. A. and Kinsella, J. (1996) Bentazon degradation in soil: Influence of tillage and history of bentazon application, *Journal of Agricultural and Food Chemistry*, 44:1593-1598.
- Weerasinghe, C. A., Mathews, J. M., Wright, R. S. and Wang, R. Y. (1992) Aquatic photodegradation of albendazole and its major metabolites. 2. Reaction quantum yield, photolysis rate, and half-life in the environment, Journal of Agricultural and Food Chemistry, 40:1419-1421.
- Wettasinghe, A. and Tinsley, I. J. (1993) Degradation of dacthal and its metabolites in soil, Bulletin of Environmental Contamination and Toxicology, 50:226-231.
- Winkelmann, D. A. and Klaine, S. J. (1991) Degradation and bound residue formation of atrazine in a Western Tennessee soil, Environmental Toxicology and Chemistry, 10:335-345.

- Zhang, M., Smyser, B. P., Shalaby, L. M., Boucher, C. R. and Berg, D. S. (1999) Lencil degradation in the environment and its metabolism in the sugar beets, *Journal of Agricultural and Food Chemistry*, 47:3843-3849.
- Zimmerman, L. R., Schneider, R. J. and Thurman, E. M. (2002) Analysis and detection of the herbicides dimethenamid and flufenacet and their sulfonic and oxanilic acid degradates in natural water, *Journal of Agricultural and Food Chemistry*, **50**:1045-1052.

Appendix B



Figure B1. The predictive ability of six techniques for providing K_{ow} for transformation products (all compounds)

Appendix B

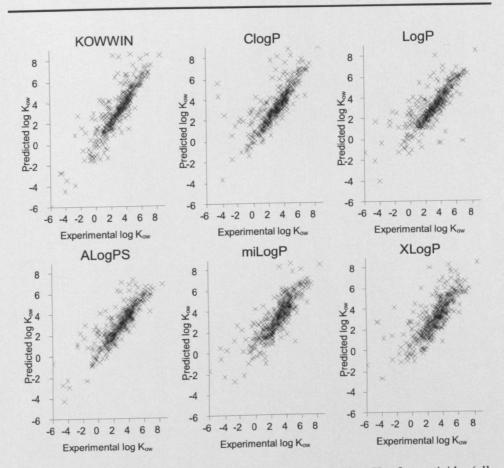



Figure B2. The predictive ability of six techniques for providing K_{ow} for pesticides (all compounds)



Figure B3. The predictive ability of four techniques for providing water solubility for transformation products (all compounds)

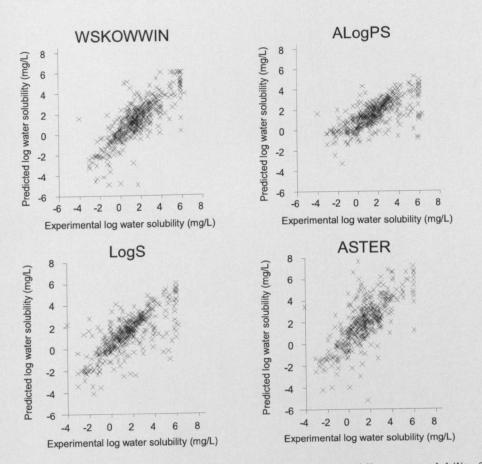



Figure B4. The predictive ability of four techniques for providing water solubility for pesticides (all compounds)

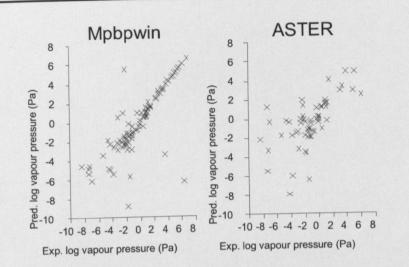



Figure B5. The predictive ability of two techniques for providing vapour pressure data for transformation products (all compounds)

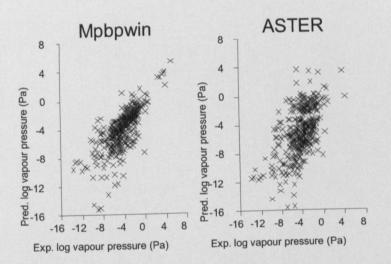



Figure B6. The predictive ability of two techniques for providing vapour pressure data for transformation products (all compounds)

Appendix B

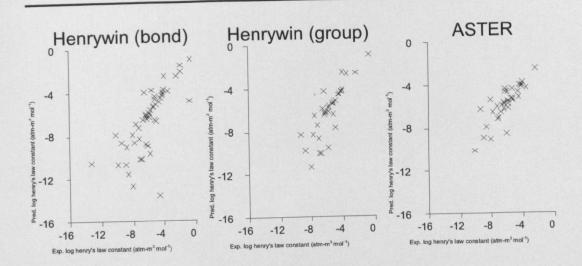



Figure B7. The predictive ability of three techniques for providing henry's law constant data for transformation products (all compounds)

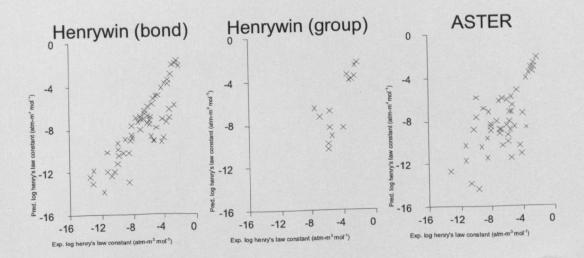



Figure B8. The predictive ability of three techniques for providing henry's law constant data for pesticides (all compounds)

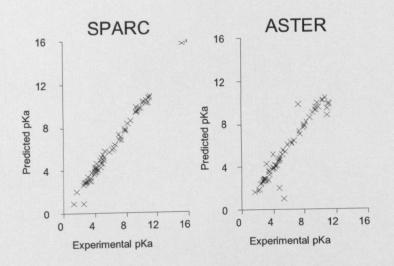



Figure B9. The predictive ability of two techniques for providing dissociation (pKa) data for transformation products (all compounds)

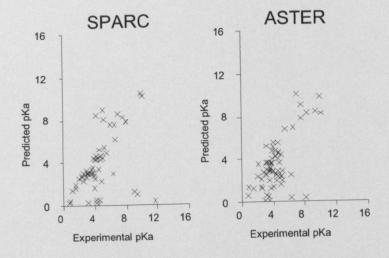



Figure B10. The predictive ability of two techniques for providing dissociation (pKa) data for pesticides (all compounds)

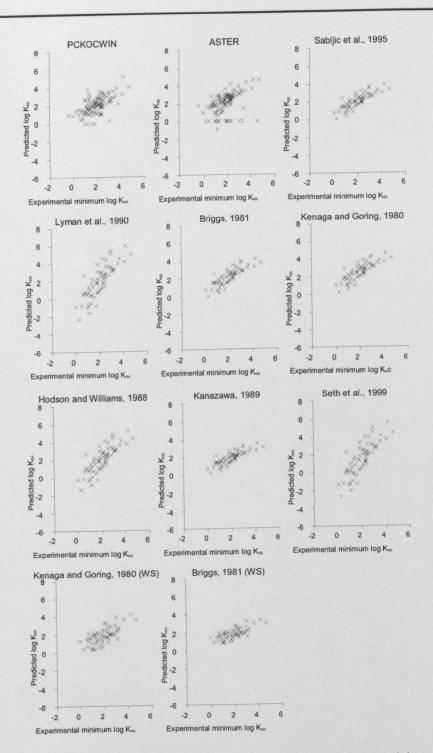



Figure B11. The predictive ability of eleven techniques for providing minimum soil sorption coefficient data for transformation products (all compounds)

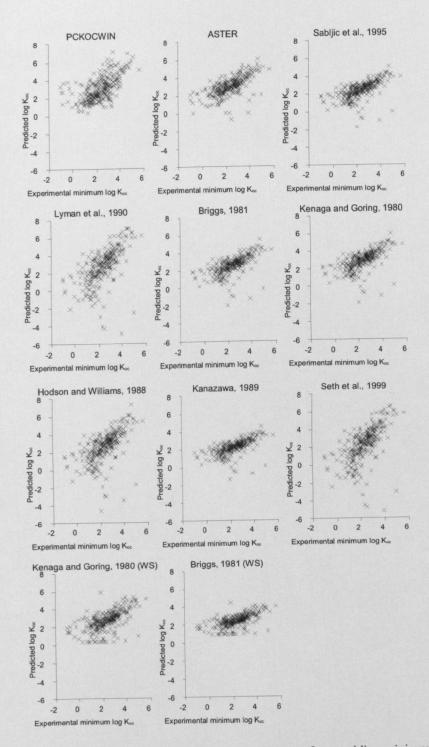



Figure B12. The predictive ability of eleven techniques for providing minimum soil sorption coefficient data for pesticides (all compounds)

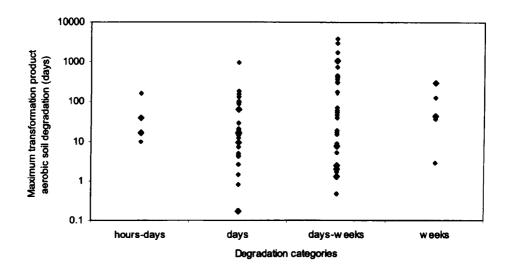



Figure B13. The predictive ability of the BIOWIN primary degradation survey model evaluated against experimental transformation product aerobic soil degradation rates

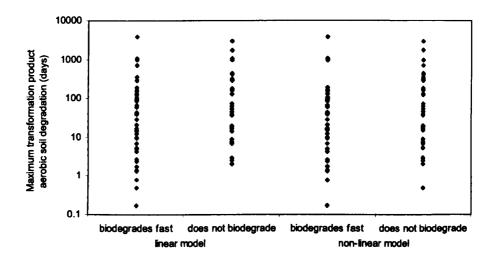



Figure B14. The predictive ability of the BIOWIN linear and non-linear models evaluated against experimental transformation product aerobic soil degradation rates

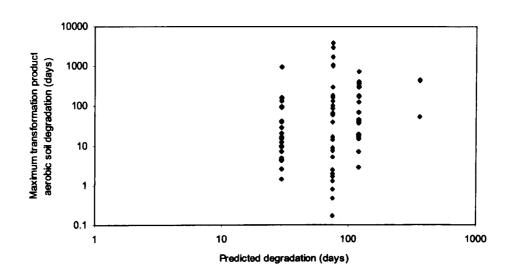



Figure B15. The predictive ability of the PBT Profiler evaluated against experimental transformation product aerobic soil degradation rates

	Ontimum	KOWWIN	CLOGP	Logr	ALOGES	I-IIICORI	Board
Summary statistics							
ator andre andre set						097	150
	160	160	157	160	<b>FCI</b>	8	2
number of compounds	3	7.5	0.3	1.9	3.5	Ŷ	н. Г
% of positive deviations	5 (		0.230	0.351	0.3	0.516	0.433
mean absolute deviation (log units)	5	707.0	00.0	3.67	2.9	2.52	2.98
maximum absolute deviation (log units)	0	2.66	87.S	7.0	25	c	0
initiation about the deviation (for units)	0	0	0			0 640	0.42
Intuit ausonute deviation (for the fa	0	0.211	0.28	0.362	97.0	210.0	1.0
mean square apsonue deviauon (volume)		3 13	4.46	5 C	3.14	13.13	00°.
% of compounds > 1 orders of magnitude	-	2.0	2 55	1.88	2.52	3.13	2.52
% of compounds > 2 orders of magnitude	-	3.	10.4	0.63	0	0	0
w of commoninds > 3 orders of magnitude	0	0	171	000	A OFR	0.916	0.927
	*	0.965	5CR.0	0.330	0.00	0 0 0	0.857
	**	0.931	0.954	0.877	0.953	0.040	
slope	. c	0.126	0.103	0.254	0.119	0.460	0.243
intercept		0.44	0.49	0.45	0.42	0.76	0.74
mean rank	5		•				
Common transformation products		ç	156	156	156	156	156
mimber of compositives	•	126	<u>6</u>	33		45	80 90 90
	0	7.1	0.6	0.7	7.0	0.546	0.425
	c	0.278	0.24	0.335	0.3	010.0	0.44.0
mean absolute deviation (log units)		2 86	3.29	2.95	2.9	2.52	2.98
maximum absolute deviation (log units)		8	-	0	0.01	0	0
minimum absolute deviation (log units)	0	;	100 0	0 287	0.252	0.506	0.401
mean source absolute deviation (log units)	0	70	107.0	4 40	3.24	12.8	7.05
w	0	2.56	4.43	D () .		čc	1 00
	0	1.28	2.56	1.28	00.7	17:0	70.1
		0	1.28	0	0	Ð	
% of compounds > 3 orders of maginature	•	0.006	0.953	0.951	0.958	0.917	0.931
pearson correlation coefficient		2000	0 954	0.899	0.956	0.848	0.863
slope	1	5.0	0.405	0 191	0.119	0.441	0.245
intercept	0		200	0.49	0.44	0.91	0.8
mean rank	0	0.48	ŧ.	01-0			

Appendix B

318

	Optimum	KOWWIN	CLogP	LogP	ALogPS	miLogP	XLOGP
Summary statistics							
All nesticides			001	445	444	445	444
minher of compounds"	445	444	454 44.		[ <del>-</del>	-16.3	-3.4
	0		-11-	Z. I		2:01-	ACO 0
		0.62	0.647	0.686	0.603	0.81	
mean absolute deviation (log units)		6.9	10 19	6.98	5.34	6.87	7.31
maximum absolute deviation (log units)	5 (	20		C	0	0	0
minimum absolute deviation (log units)	0	0		1 443	0.962	1.42	1.632
mean erritants absorbing deviation (log units) ^a	o	1.082	110.1		16.90	24 72	27.02
III square account compared in the second state of month when	0	17.79	16.44	18.65	R0.01	71.47	- 12
% of compounds > 1 orders of may invest		6 08	7.31	8.76	5.63	1.19	2 <del>4</del> .
% of compounds > 2 orders of magnitude			A 11	4 27	2.93	3.37	3.6
% of compounds > 3 orders of magnitude	o	04.7		9	0.8716	0.837	0.783
someon correlation coefficient"	•	0.879	0.900	0.0	0.10.0	0 702	0.72
	•	0.935	0.777	0.685	0.702	0.135	1000
slope	· c	0 449	1.009	1.1	0.878	1.073	700.1
intercept		0.53	0.81	0.57	0.46	0.75	0./3
mean rank	2	2					
							ļ
Common pesticides		137	437	437	437	437	43/
number of compounds		5	10 0	2.9	1.3	-16.6	-3.3
% of positive deviations [*]	5	7.1-	0.01-	0.667	0.596	0.805	0.818
mean absolute deviation (log units)	0	0.626		00.00 A DB	4.55	6.87	7.31
maximum absolute deviation (log units)	0	6.2	10.19	0.90		c	C
mission are a deviation (ha units)	0	0	0			1 207	1 547
	c	1.098	1.508	1.356	0.3000	700.1	
mean square absolute deviation (will be a square absolute deviation)	• •	18.07	16.25	18.07	16.7	24./1	2.02
% of compounds > 1 orders of magnimuce		2 F	7 32	8.24	5.49	7.09	2.09
% of compounds > 2 orders of magnitude	· د	5.0	1 C T	2 80	2.75	3.2	3.2
% of compounds > 3 orders of magnitude	0	7077	4.12	0.00	0.873	0.834	0.7858
rearen mudation mefficient	•	0.872	0.000	0.000	0.775	0 708	0 735
		0.929	0.779	0.698	c//0		101.0
edos		0.476	1.004	1.050	0.837	ACO'L	110.1
intercept		0.64	0.79	0.69	0.52	0.92	0.84
•							

mean rank derived from these statistics
 - positive deviation from 50% identified as significant (95% confidence limits)

Appendix B

Summery stations         Openant         A         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th="">         C         C         C</thc<>	ation products nds tions" istion (log units)" r deviation (log units) tute deviation (log units) tute deviation (log units) 2 orders of magnitude	7.1 7.1 7.1 2.56 0.2 0.2 0.966 0.966 0.94 0.94	1		-	1 38 38										,
Image         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15	Common transformation products number of compounds % of positive deviations mean absolute deviation (log units) maximum absolute deviation (log units) minimum absolute deviation (log units) mean square absolute deviation (log units) % of compounds > 1 orders of magnitude % of compounds > 2 orders of magnitude	156 7.1 2.66 0.2 1.28 0.2 0.96 0.966 0.966 0.966			-	156 3.8				İ						
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Common transformation products number of compounds % of positive deviations mean absolute deviation (log units) maximum absolute deviation (log units) minimum absolute deviation (log units) w of compounds > 1 orders of magnitude % of compounds > 2 orders of magnitude % of compounds > 2 orders of magnitude	156 7.1 2.66 0.2 1.28 0.2 0.2 0.966 0.966 0.966			-	156 3.8										
mode         71         0.6         7.6         3.2         3.6         7.1         7.1         3.2         4.5         3.8         7.1         7.1         3.2         4.5         3.8         7.1         7.1         3.2         4.5         3.8         7.1         7.1         3.2         4.5         3.8         7.1         7.1         3.2         4.5         3.8         7.1         7.1         3.2         4.5         3.8         7.1         7.1         3.2         4.5         3.8         7.1         7.1         3.2         4.5         3.8         7.1         7.1         3.2         4.5         3.8         7.1         7.1         3.2         3.2         3.3         7.1         7.1         3.2         3.5         7.6         3.2         3.5         7.6         3.2         3.5         7.6         3.6         3.2         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5 <th>number of compounds % of positive deviations" mean absolute deviation (log units)" maximum absolute deviation (log units) mean square absolute deviation (log units) % of compounds &gt; 1 orders of magnitude" % of compounds &gt; 2 orders of magnitude % of compounds &gt; 2 orders of magnitude</th> <td>1.50 7.1 7.1 7.1 2.56 0.2 0.2 0.3 0.966 0.966 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3</td> <td></td> <td></td> <td>-</td> <td>88</td> <td>156</td>	number of compounds % of positive deviations" mean absolute deviation (log units)" maximum absolute deviation (log units) mean square absolute deviation (log units) % of compounds > 1 orders of magnitude" % of compounds > 2 orders of magnitude % of compounds > 2 orders of magnitude	1.50 7.1 7.1 7.1 2.56 0.2 0.2 0.3 0.966 0.966 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3			-	88	156	156	156	156	156	156	156	156	156	156
mbl         0         77         0.8         7.8         0.3         7.9         0.7         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2 <th0.2< th=""> <th0.2< th=""> <th0.2< th=""></th0.2<></th0.2<></th0.2<>	% of positive deviations ⁴ 0 mean absolute deviation (log units) ⁴ 0 maximum absolute deviation (log units) 0 mean square absolute deviation (log units) 0 % of compounds > 1 orders of magnitude ⁴ 0 % of compounds > 2 orders of magnitude 0	7.1 0.278 2.66 0 1.286 1.28 0.2 0.2 0.2 0.2 0.366 0.366 0.34			-	0	) + +	11	33	4.5	1.3	4.5	3.8	5.1	1.3	3.8
mile         0         0.278         0.24         0.335         0.3         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0	mean absolute deviation (log units) ¹ 0 maximum absolute deviation (log units) 0 minimum absolute deviation (log units) 0 mean square absolute deviation (log units) % of compounds > 1 orders of magnitude ¹ 0 % of compounds > 2 orders of magnitude 0	0.278 2.66 0 0.2 0.2 0.2 0.2 0.2 0.2 0.34				) ; ;			1200	0.200	0.284	0 229	0 215	0.244	0.233	0.221
multiply         0         266         3.28         2.96         2.78         3.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01 <th< td=""><th>maximum absolute deviation (log units) 0 minimum absolute deviation (log units) 0 mean square absolute deviation (log units) 0 % of compounds &gt; 1 orders of magnitude 0 % of compounds &gt; 2 orders of magnitude 0</th><td>2.66 0 2.56 1.28 0.966 0.9460 0.9460</td><td></td><td></td><td></td><td>0.229</td><td>0.70</td><td>0.244</td><td>107.0</td><td>677.0</td><td></td><td></td><td>2 05</td><td>2.7G</td><td>79.0</td><td>2.89</td></th<>	maximum absolute deviation (log units) 0 minimum absolute deviation (log units) 0 mean square absolute deviation (log units) 0 % of compounds > 1 orders of magnitude 0 % of compounds > 2 orders of magnitude 0	2.66 0 2.56 1.28 0.966 0.9460 0.9460				0.229	0.70	0.244	107.0	677.0			2 05	2.7G	79.0	2.89
mer         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	maximum associate domatical (value) minimum absolute deviation (log units) mean square absolute deviation (log units) % of compounds > 1 orders of magnitude % of compounds > 2 orders of magnitude 0	0 0.2 1.28 0.966 0.1 0.1				2.98	2.69	2.78	3.01	3.1	107	20.7	8			1002
mb/ mb/ mb/ mb/ mb/ mb/ mb/ mb/ mb/ mb/	minimum absolute deviation (bg units) mean square absolute deviation (bg units) ⁶ 0 % of compounds > 1 orders of magnitude ⁸ 0 % of compounds > 2 orders of magnitude 0	0.2 1.28 0.966 0.94				0	0	0	<u>&lt;0.01</u>	0	<0.01	<0.01	10.0¥	5	2	
compounds - 1 orders of magnitude         0         2.56         4.49         3.51         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.56         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21         2.55         3.21	mean square absolute deviation (eg unes) v % of compounds > 1 orders of magnitude" 0 % of compounds > 2 orders of magnitude 0	2.56 1.28 0.966 0.94				0.205	0.174	0.169	0.217	0.195	0.217	0.179	0.172	0.167	0.188	20.0
ompounds         1 of anomation memories         1 state         1 stat	% of compounds > 1 orders of magnitude 0 % of compounds > 2 orders of magnitude 0	0.1 0.966 0.94 0.1				2.56	3.21	1.92	3.85	2.56	4.49	3.85	1.92	2.56	3.21	3.21
compounds - 2 orden of magnitude         0         128         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         127         126         127         126         127         126         127         126         127         126         127         126         127         126         127         126         127         126         127         126         127         126         127         1	% of compounds > 2 orders of magnitude	1.28 0.966 0.94 0.1				900	0.64	1 28	1 97	1.92	0.64	1.28	1.28	0.64	1.92	1.28
amounds > 3 orden of megnitude         0         1         0         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th="">         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <th0< th=""><th></th><th>0 0.966 0.94 0.1</th><th></th><th></th><th></th><th>07-1</th><th>5</th><th>2</th><th>190</th><th>120</th><th>c</th><th>c</th><th>c</th><th>0</th><th>0</th><th>0</th></th0<></th0<>		0 0.966 0.94 0.1				07-1	5	2	190	120	c	c	c	0	0	0
Image: consistent of the combination of the com	W. of communities > 3 millions of macinitude	0.966 0.94 0.1				0	0	5	10.0	<b>t</b>	2000	200		0.070	0.068	0 072
on commentant         1         0.94         0.954         0.84         0.955         0.957         0.935         0.927         0.935         0.932         0.935         0.932         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         0.935         <		0.94				0.965	0.971	0.972	0.963	0.967	0.963	18.0	1.2.0	218.0	0.00	1000
eff         0         0.1         0.16         0.19         0.10         0.14         0.112         0.15         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.1	pearson correlation coemicerit	0.1				0.947	0.92	0.948	0.926	0.955	0.927	0.931	0.95	0.932	0.936	0.93/
Image: Section from these statistics       0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0	- de la consecuencia - de	0.76 0.76				0.103	0.146	0.109	0.148	0.112	0.155	0.132	0.108	0.137	0.138	0.129
an rank derived from these statistics to the combinations of predictive techniques examined: cowwin cowwin difference cowwin & 1- CLogP & ALogPS CLogP & ALogPS CLogP & ALogPS ALogPS KOWWIN & CLogP & ALogPS KOWWIN & LogP KOWWIN & LogP KOWWIN & LogP CLogP & LogP CLogP & LogP CLogP & ALogPS KOWWIN & LogP KOWWIN & LogP KOWWIN & LogP CLogP & ALogPS KOWWIN & LogP KOWWIN & ALogPS KOWWIN & LogP KOWWIN & LOGP KOMWIN & LOGP KOMWIN & LOGP KOWWIN & LOGP KOMWIN & LOGP KOMWIN & LOGP KOP KOP KOWWIN & LOGP	intercept	80				0.64	0.74	0.67	0.71	0.65	0.71	0.68	0.56	0.64	0.58	0.61
ved from these statistics mbinations of predictive te J - S N & CLogP IN & ALogP & LogP & LogP & LogP	mean rank 0	2			2.0	5		5								
ombinations of predictive te	^a - mean rank derived from these statistics															
M Inditations of predictive te J J N & CLogP M IN & LogP N & LogP & M & LogP & M																
A N & CLOGP N & CLOGP N & ALOGP & LOGP & LOGP & LOGP & LOGP	Key to the combinations of predictiv		(a saupiu	xamine	÷											
S N & CLogP N & LogP N & ALogP & LogP & LogP & LogP		<u>-</u>	A & A	LooPS												
S S S S S S S S S S S S S S S S S S S	A - KOWWIN	 			_											
S IN & CLogP IN & LogP IN & ALogPS & LogP & LogP	B - CLogP	ר ר בי	ygr & A	2 Doj		(										
S LogP N N & CLogP M N & CLogP M N & LogP N N & LogP & N & A LogPS & O & A LogP & A	C - LodP	X Z	'NIMO	CLogI	č N N N	٦ D										
ν	D - Al MPS	ľ ľ	AIMMO	V, CLO	gP & ≜	ALogP	S									
s S		N - K	(OWWII	N. Log	P & Al	LogPS										
s O S					2	, Č										
S	F - KOWWIN & LOGP		, Logr, I		זיין ליי			ç								
	G - KOWWIN & ALOGPS	× 0		N, CLC	gr, r	a Joo	ALogi	S								
	H - CLOOP & LOOP															

Summery statistics	Optimum	WSKOWWIN	ALogPS	LogS	ASTER
All transformation products		007	137	137	113
ahar of compounds"	139	130	101	5	
f antitud daviations ^a	0	11.9	6.2	1.1	ה. ביי
		0.719	0.828	0.765	1.011
mean absolute deviation (log units)	<b>,</b>	2.14	4 51	4.76	4.74
maximum absolute deviation (log units)	5	H.O.	2	Ċ	60.0
minimum abenduite deviation (log units)	0	0	0	5	200.
"Initial discourse deviation (not units)"	c	0.975	1.408	1.363	1.898
Ξ.	• c	2158	27.74	24.09	38.94
		5 76	10.05	11 68	14.16
% of compounds > 2 orders of magnitude	5	0	0.55	3 66	4 42
w. of communities 3 orders of magnitude	0	1.44	3.03	2.02	
	-	0.829	0.755	0.78	0.722
on correlation	• •	0.814	0.712	0.786	0.873
slope	- c	0.632	0.779	0.480	0.296
intercept	<b>.</b>		0.65	0.62	•
mean rank	5	80.0	2		
Common transionnauori prouuus	1	113	113	113	113
	c	12.8	5.8	8.4	11.9
% of positive deviations		N 724	0,889	0.796	1.011
mean absolute deviation (log units)		121.0	4 54	4 76	4.74
maximum absolute deviation (log units)		ţ		2	000
minimum absolute deviation (log units)	o			474	1 808
mean enuare absolute deviation (log units) ^a	0	0.973	/10/L	+/+'I	1.030
	0	21.24	30.97	25.66	5.25
		5.31	13.27	12.39	14.16
		171	4.42	4.42	4.42
	•	0.81	0.693	0.744	0.722
pearson correlation coemicient	- •	0.783	0.664	0.759	0.873
siope		0.667	0.885	0.512	0.296
intercept	>		0.0	25.0	100

* - mean rank derived from these statistics

Summary statistics	Optimum	WSKOWWIN	ALogPS	LogS	ASTER
All pesticides	163	AGR	460	460	424
number of compounds	ç Ç		39	- 0-	-19.6 ^b
% of positive deviations ¹	5	0.0	320 0		1 106
mean absolute deviation (log units) ^a	0	CC8.0	0.9/3		7.42
movimum absolute deviation (log units)	0	11.47	6.64	0.41	<b>?</b>
(atime test to deviation (for units)	0	0	0	60.01	<0.01
	. c	7 76	2.036	1.831	2.452
mean square absolute deviation (rog units)	• c	31.32	34.35	25.22	39.62
	<b>,</b>	6 01	12 83	11.96	13.68
% of compounds > 2 orders of magnitude	- C	NC C	5 20	5.65	6.37
% of compounds > 3 orders of magnitude		0 702	0.683	0.736	0.74
pearson correlation coefficient			0.455	0.639	0.863
slope	- c	0.012	0.887	0.426	0.749
intercept	<b>-</b> (	0.57	0.69	0.52	0.97
mean rank	5	10.0	2.2		
and					
	•	423	423	423	423
number of corribourids	C	90.80 90.90	<b>-</b> 8.2	-3.2	-19.5°
% of positive deviations	• =	0.793	0.879	0.762	1.108
mean absolute deviauon (vog unus)	o c	66	5.7	6.18	7.43
maximum absolute deviation (log units)	- c	; c	0	<0.01	<0.01
minimum absolute deviation (log units)	o c	1.359	1.547	1.388	2.457
		29.31	31.44	23.4	39.72
% of compounds > 1 orders of magnitude	<b>,</b> c	5.44	10.64	<b>69</b> .69	13.71
% of compounds > 2 orders of meanitude		2.6	3.31	3.55	6.38
% of compounds > 3 orders of magnitude	> <del>-</del>	0.807	0.743	0.778	0.74
pearson correlation coenicient		0.806	0.521	0.703	0.863
stope	- c	0.045	0.846	0.408	0.75
intercept	•			0.67	•

 1  - mean rank derived from these statistics  1  - mean rank derived from 50% identified as significant (95% confidence limits)  2  - positive deviation from 50% identified as significant

Appendix B

	Ortimum	Mahawin	ASTER	Optimum	Henrywin-bond	Henrywin-group	ASIEK
Summary statistics							
All transformation products					:	č	96
	8	63	59	50	50	<u>4</u>	5
number of compounds	3 <	30	_17 R ^b	0	9	8.8	-22.2
% of positive deviations	Þ	0.0	0.4		1 241	D RGG	0.677
meen abenlinte deviation (for units) ^a	0	1.716	1./00	5	147.1	000.0	
	c	20.02	8.59	0	<b>60</b> .6	3.73	3.17
maximum absolute deviation (log units)			200	C	<0.01	<0.01	<0.01
minimum absolute deviation (log units)	Þ			. c	1 360	•	1.104
mean source absorbute deviation (log units) ²	0	21.612	6.41	· د		20.25	22.22
administration of mannihild	C	26.88	50.85	0	8	32.35	77.77
		16.13	32.2	0	24	17.65	8.33
% of compounds > 2 orders of magnitude	-	2.01			12	11.76	2.78
% of compounds > 3 orders of magnitude	0	11.63	5.07	<b>.</b> .		3000	0 906
and the second second	-	0.362	0.638	-	0.121	0.040	0.040
bearson correlation weinden	• •	0.485	0.535	~	0.885	1.133	0.796
slope	- (		170.0	c	-1310	0.386	-0.873
internent	0	-1/9/0-	1.12.0				0 72
mean rank	0	0.59	0.81	0	17.0	67.0	0.0
Common transformation products		;	8		76	72	27
an stamportude	•	59	R	•	Ĩ	1	i 2
	c	-0.8	-17.8 ^b	0	-1.9	5.6	-24.1
% of positive deviations	• <b>c</b>	200	1.766	0	0.663	0.816	0.727
mean absolute deviation (log units)		200	0 ED	C	3.84	3.73	3.17
maximum absolute deviation (log units)	0	70.02	50.0		1007	<0.01	<0.01
minimum absolute deviation (log units)	0	0	0.04		10.04	1 201	1 10
	0	29.363	6.41	0	60C.T	- <b>2</b> 2	0.1
(mum Roy) Increases annosare alembs upout	. c	35.50	50.85	0	18.52	29.63	25.93
% of compounds > 1 orders of magninum		18.64	32.2	0	11.11	14.81	7.41
% of compounds > 2 orders or magnimum		90.51	20.24	c	11,11	14.81	3.7
% of compounds > 3 orders of magnitude	c	00.11		•	0 822	0.833	0 700
pearson comelation coefficient	-	0.029	0.638		770.0	20.0	
	-	0.044	0.535	•	<b>601.1</b>	17.1	00.0
		-1916	0.271	0	0.145	1.113	-1.956
intercept		0.75	0,60	c	0.64	0.81	0.89
mean rank	Ð	e/.n	0.09	•			

Appendix B

323

	Ontimum	Mahawin	ASTER	Optimum	Henrywin-bond	Henrywn-group	ASIEK
Summary statistics	Countrie						
All nesticides				¥.	en	14	47
wimber of composinds"	410	408	390	6	3	36.7	26.6
	c	-11.8°	11	0	7.11	20.0	
% of positive deviations		1 120	2 343	0	1.461	1.699	1.972
mean absolute deviation (log units)			0.50		12.96	4.46	6.91
maximum absolute deviation (log units)	0	c0.11	9.03 9.03	<b>,</b>	500	0.04	<0.01
minim shedute deviation (log units)	0	<u>60.01</u>	0.04	· د	10.02		E 07
	c	4.06	8.224	0	6.069	10.0	10.0
mean square absolute deviation (unit)		FO 7	77 95	0	46.67	50	61.7
% of compounds > 1 orders of magnitude	2	1.30	50 JE	c	23.33	35.71	42.55
% of compounds > 2 orders of magnitude	0	24.02	07.00	• c	16.67	28.57	27.66
w. of normalinde > 3 orders of magnitude	0	11.03	29.74	۰ <b>د</b>	0.01	0.760	0,668
	-	0.736	0.582	-	0.736	0.709	
pearson correlation coefficient		0.781	0.784	-	0.83	1.212	cz/0
slope	- (	1010	1 665	C	-2.241	-0.556	-3.19
intercent	0	-0.03/		• c		0.86	0.84
mean rank	0	0.59	0.99	2	200		
Common pesticides		000	388	•	12	12	12
number of compounds	• •	200 1 5 1		c	0	41.7	33.3
% of positive deviations	0	-13.1			1.24	1.545	1.289
mean absolute deviation (log units) [*]	0	195.1			3.66	4.46	4.03
maximum absolute deviation (log units)	0	c0.11	80'R	<b>.</b> .	0.06	0.04	<0.01
minimum absolute deviation (log units)	0	-0.0	0.04	• •	2.637	4,885	3.422
mean square absolute deviation (log units)*	0	3.091	007-0	• •	5.6.33	41.67	41.67
% of compounds > 1 orders of magnitude	0	52.32	70.05 To 00	<b>,</b>	16.67	33.33	25
% of compounds > 2 orders of magnitude	0	22.94	07.00		16.67	25	16.67
% of compounds > 3 orders of magnitude	0	9.79	40.87	<b>·</b>	0.043	0.891	0.882
pearson correlation coefficient	-	0.716	79C'N		1.668	1.568	1.442
slooe	-	97.70		- c	2 182	0.95	0.772
internent	0	C18.0-	/00/1-	<b>.</b>		000	0.84

Appendix B

^a - mean rank derived from these statistics ^b - positive deviation from 50% identified as significant (95% confidence limits)

Table B8. The summary statistics for techniques predicting dissociation (pKa) for transformation products

All transformation products			:
number of compounds	8	8	68
of meitive deviations ^a	0	e	13.2
a of positive deviations	0	0.245	0.35
	c	1.67	4.39
Taximum ausonule deviation		<0.01	0
minimum absolute deviation	<b>-</b>	0.117	0.693
mean square absolute deviation	5		44 76
% of compounds > 1 pH unit"	0	1.52	11./0
0/ of compounds > 2 nH units	0	0	4.41
	G	0	1.47
		0.994	0.954
pearson correlation cuellider it		0.998	0.952
slope	- (		0 1 2 8
mercept	5	CZU.0-	0.120
mean rank	0	0.39	66.0
Common transformation products			
continuer a composition processo		ß	23
utilizer of continuou too	0	9	ø
		0.203	0.327
mean adsolute deviauon	) <b>(</b>	r d	14 0
maximum absolute deviation	5		
minimum absolute deviation	0	0.012	0
mone courses about the deviation	0	0.063	0.517
rati square ausonic contacti 2. s comortindo > 4 old tinit ^a	C	0	12
		0	4
			0
% of compounds > 3 pH units	•	9000	U OGG
pearson correlation coefficient		0.550	
sloce	-	C/R.0	0.939
nterrent	o	0.116	0.301
mean rank	0	0.32	-

All pesicious aumber of compositude	163	63	72
1411104 of corresponded 94. of positive deviations ⁴	0	7.1	15.3
mon phone deviation	0	1.389	1.293
modification deviation	0	11.28	7.75
minimum absorate deviation	0	<0.01	0
inimum ausoium ucviauon		6.489	3.589
mean square absorue veviation		30.16	45.83
% OI COMPOUNDS > 1 Pri units	. 0	22.22	25
% ULCOMPOUNDS > 2 Primes	. 0	17.46	9.72
o o compounds > 3 pri unus 		0.493	0.679
		0.565	0.836
skupte	0	1.301	-0.034
intercept meen rank	0	0.85	0.84
	•	æ	38
number of compounds of af analytics devirations ^a	0	5.3	10.5
o di pusiave ucviauciis acce abealite deviation ^a	0	0.597	0.838
mean absonue deviauxi	. 0	3.31	3.76
maximum ausonue ceviauon	. 0	<0.01	0
minimum ausonue ucviauori	. 0	0.891	1.589
rredit square absorue dovracor of of componing > 1 obt init ²	c	15.79	31.58
26 Of CUTIPOULIUS > 1 Prime 24 of compounds > 2 pH units	. 0	7.89	13.16
% UI CUTIPOULIUS > 2 PLI CUINC 8/ of composition > 2 pH innite		2.63	5.26
o ol contipoutios > 3 pt turno 		0.915	0.853
	• •	1.071	1.035
siope	· c	-0.477	-0.399
intercept.	<b>,</b>	0.67	-
mean rank	5	10.0	-

Table B9. The summary statistics for techniques predicting dissociation (pKa) for pesticides

	Optimum	PCKOCWIN	ASTER	Sabilic et al. 1995	Lyman et al. 1990	Briggs 1981	Kenaga and Goring 1960	Hodson and Wilkams	Kanazawa 1989	Seth et al. 1999	Kenaga and Goring 1980	Briggs 1981
All transformation products				ł	2	13	y	64	54	2	61	61
and an and and and and and and and and a	•	110	110	5	8	g d	5		. 4	21 G	7.4	7.4
	0	ę	-16.4°	-3.1	-6.3	-9.4	-39.1	0,1-	0.1	6.12 100 0	0000	0.674
% of positive deviations	• c	0.674	0.823	0.459	0.831	0.478	0.588	0.628	0.462	0.925	0.609	1.0.0
mean absolute deviation (log units)"			4 5.B	171	5.7	1.88	2.21	1.95	1.58	3.13	1.63	20. L
maximum absolute deviation (log units)	0	2.70	90°+		; <	10.0	0	0.01	0.01	0.01	0	0.01
minimum absolute deviation (log units)	0	0.01	10.0	10.0		0.0	0 50	0.697	0.322	1.456	0.512	0.463
mean summe absolute deviation (log units) [*]	0	0.733	1.264	0.308	167.1	0.5.0	80°0	21.88	4 69	39.06	13.11	8.20
w	•	8	29.09	6.25	31.25	80. d	<b>F</b> 9	2		10.94	0	0
A second second second second magnification	0	1.82	8.18	0	10.94		00:1		<b>,</b> ,	4 56	. c	0
epiducer of control of a contro	0	0	1.82	0	0	0	0			DC-1	2010	0 701
% of compounds > 3 orders of magnimum	• -	0.585	0.44	0.826	0.826	0.826	0.826	0.826	0.826	0.820	0.701	101.0
pearson correlation coefficient	- •	0.00	0.556	0 689	1.509	0.763	0.798	1.213	0.59	1.51	0.667	0.432
slope	- 0	0.000 2000	1.03	0.699	-1.037	0.687	0.924	-0.395	0.736	-1.467	0.559	1.015
intercent	5	0.000	3	2000	0.61	92.0	0.59	0.41	0.24	0.77	0.41	0.37
mean rank	0	¢¢.0	0.0	67.0								
Common transformation products			}	ł	ų	Y	yy Y	55	22	55	55	55
number of communds ^a	•	55	55	8	6 G	3	۴. 2 5	9 0	60	19.1	8.2	8.2
autoria a compositione ⁿ	0	-13.6	-19.1	-2.7	6.0-	9 F	1.24	0.0	0.455	0.966	0.594	0.572
a u positre constanto 	0	0.676	0.704	0.455	0.863	0.473	0.303			3.13	163	1.63
	0	1.96	e	1.71	2.7	992 L	177	<b>R</b> -	- -		1007	500
	c	0.01	0.01	0.02	6.01	0.03	€0.01	0.04	10.0	10:0	10.07	0.0
minimum absolute deviation (log units)	• c	0 646	0.927	0.296	1.278	0.35	0.596	0.694	0.302	1.493	0.492	0.4/3
mean square absolute deviation (log units)	<b>,</b>	40.40	23.64	3.64	32.73	3.64	25.42	21.82	3.64	41.82	10.91	60.6
% of compounds > 1 orders of megnitude		2.0	24.2	į	10.91	0	1.82	0	•	10.91	0	0
% of compounds > 2 orders of magnitude	0	<b>.</b> .	<u>n</u> c				0	0	0	1.82	•	•
% of compounds > 3 orders of magnitude	•	0	0.00		0.90	0.830	0.839	0.839	0.839	0.839	0.732	0.732
pearson correlation coefficient	-	0.717	699.0	0.038	0.000	0.785	0.821	1.249	0.607	1.555	0.677	0.438
stope	-	G/J/0	0.000		1 100	0.651	0.886	-0.453	0.708	-1.539	0.537	1.002
intercept	0	0.662	0.630	0.000.0			0.67	0.43	0.25	0.79	0.44	0.43
	0	0.55	0.67	970	0.0	2.2	10.0					

Appendix B

mean rank derived from these statistics
 positive deviation from 50% identified as significant (95% confidence limits)

Summary statistics	Optimum	PCKOCWIN	ASTER	Sablijk: et al. 1995	Lymmen et al. 1990	Briggs 1981	Kenaga and Goring 1980	Hodson and Williams 1988	Kanazawa 1989	Seth et al. 1999	Kenaga and Goring 1980	Briggs 198
All pesticides												
number of compounds*	•	299	279	290	290	290	290	290	290	200	208	900
% of positive deviations*	•	-24.6 ^b	-33.9 ^b	₹ 12	-18.3 ^b	-16.9 ^b	-29 ^b	-16.2 ^b	; -	15	-10 P	500
mean absolute deviation (log units) [*]	0	0.976	0.881	0.628	1.192	0.68	0.844	0.93	0 645	1 004	0.732	0.00
maximum absolute deviation (log units)	0	6.9	3.92	5.01	8.73	5.14	ŝ	7.35	4 87	0 17	20170	3 73
minimum absolute deviation (log units)	0	0	<0.01	<0.01	<0.01	<0.0<	<0.01	20.02	1002	1007	5.4	0.0
mean square absolute deviation (log units) ^a	0	1.785	1.271	0.891	2.842	0.994	1.263	1.839	0.866	177.5	1.0.0	10.02
% of compounds > 1 orders of magnitude"	0	34.45	34.05	18.62	45.86	19.31	28.62	32.41	18.62	30.31	28.10	
% of compounds > 2 orders of magnitude	0	11.71	7.89	4.48	15.86	4.83	6.9	7.93	4.83	15.52	6.18 6.38	13.0
% of compounds > 3 orders of magnitude	0	3.68	1.43	1.72	4.83	1.72	2.41	2.76	1.38	4 48	134	10.0
pearson correlation coefficient	-	0.584	0.644	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.604	0 EOA
stope	-	0.715	0.591	0.494	1.083	0.547	0.572	0.87	0.423	1.084	0.557	0.36
intercept	•	1.321	1.594	1.222	0.109	1.266	1.53	0.525	1.184	-0.321	1 395	1 557
mean rank	0	0.78	0.76	0.47	0.91	0.57	0.72	0.72	0.51	0.77	0.63	0.45
Common pesticides												
number of compounds [*]		274	274	274	274	274	274	274	114	N7.C	MLC	110
% of positive deviations*	0	-26.3 ^b	-33.6°	-6.2	-20.4 ^b	-18.6	-30.3	-18.2	1 2 2	44	4 4 7 7 4	4 F C
mean absolute deviation (log units) ^a	0	606.0	0.875	0.623	1.164	0.678	0.85	606.0	0.641	1051	7 0	1.0
maximum absolute deviation (log units)	0	4.14	3.92	5.01	8.73	5.14	5	7.35	4.87	9.17	4.05	1 72
minimum absolute deviation (log units)	•	0.02	<0.01	<0.01	<0.01	≤0.01	<0.01	<0.01	<0.01	<0.01	20.05	2.5
mean square absolute deviation (log units)*	•	1.465	1.249	0.888	2.785	0.997	1.288	1.804	0.858	2.657	0.984	0.762
% of compounds > 1 orders of magnitude	•	32.12	33.94	18.25	44.16	18.98	28.47	31.39	18.25	37.23	25.91	18.61
% of compounds > 2 orders of magnitude	•	9.49	7.66	4.38	14.6	4.74	7.3	7.66	4.74	13.87	5.47	474
% of compounds > 3 orders of magnitude	•	2.55	1.09	1.82	4.38	1.82	2.55	2.55	1.46	4.01	1.46	0.36
pearson correlation coefficient	-	0.651	0.641	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.643	0.643
stope	-	0.741	0.595	0.491	1.074	0.543	0.568	0.864	0.42	1.076	0.582	0.377
intercept	•	1.257	1.577	1.261	0.194	1.309	1.575	0.594	1.217	-0.236	1.362	1.535
mean rank	0	0.74	0.77	0.49	0.92	0.58	0.75	0.74	0.52	0.77	0.61	0.43
*- mean rank derived from these statistics												
	ب											

Appendix B

Summary statistics	Optimum	4	8	o	٥	ш	ш	σ
Common transformation products								
number of compounds	•	53	53	53	53	53	53	53
% of positive deviations	0	-2.8	-8.5 -	0.9	-2.8	2.8	-2.8	-2.8
mean absolute deviation (log units) [*]	0	0.417	0.438	0.414	0.425	0.413	0.415	0.416
maximum absolute deviation (log units)	0	0.96	1.22	0.81	1.09	0.80	0.93	0.94
minimum absolute deviation (log units)	0	0.02	0.03	0.01	0	0	0.01	0.02
mean square absolute deviation (log units) [*]	0	0.224	0.279	0.223	0.246	0.214	0.221	0.222
% of compounds > 1 orders of magnitude	0	0	1.89	0	1.89	0	0	0
% of compounds > 2 orders of magnitude	0	0	0	0	0	0	0	0
% of compounds > 3 orders of magnitude	0	0	0	0	0	0	0	0
pearson correlation coefficient	*	0.862	0.862	0.862	0.862	0.862	0.862	0.862
sione	-	0.777	0.860	0.665	0.819	0.721	0.763	0.767
intercept	0	0.523	0.493	0.586	0.508	0.555	0.539	0.534
mean rank	0	0.62	-	0.57	0.84	0.61	0.61	0.62

11 1 -4 . . 4 . ł . : Table B12.

* - mean rank derived from these statistics

Key to the combinations of predictive techniques used:

A - Sabijić et al. 1995 B - Briggs et al. 1981 C - Kanazawa 1989 D - Sabijić et al. 1995 & Briggs et al. 1981 E - Sabijić et al. 1995 & Kanazawa 1989 F - Briggs et al. 1985, Briggs et al. 1981 & Kanazawa 1989

Pesticide	Transformation product	log K _{ow}	pKa		Fish 96h LC ₅₀ (mg/L)	C ₅₀ (mg/L)		0	aphnid 48t	Daphnid 48h ECso (mg/L)		βR	ae 72-96h t	Algae 72-96h EC/IC ₅₀ (mg/L)	5
				Median	Max	Min	٢	Median	Max	Min	-	Median	Max	Min	-
2 3 6-TRA		4.34	1.5	0.00			-			•			•		•
	2,4,5-trichlorophenol	3.72	7.4	0.902	3.06	0.0012	=	ı	•		•	•,	•	•	•
2.4-D		2.81	2.73	27.7	2779	1.4	28	25	135	1.3	6	41.77	•	•	F
1	2.4-dichlorothenol	3.06	7.89	6.7	11.6	2	Ħ	2.6	5.1	0.0026	7	11.6	14	9.2	v
	4-chiorocatechol		8.67	1.58		•	-	•	•	•	•	·	•	•	•
	4-chlorophenol	2.39	9.41	5.3	6	1.91	16	4.82	8.9	2.5	ი	,	•	•	•
	succinic acid	-0.59	4.21	•	•	•	•	374.2	•	•	-	•	•	•	·
acenhate		-0.85	none	180	2050	1.34	13	49.35	71.78	1.3	4	•	ı	•	•
	methamidophos	-0.66	none	45.5	<u>10</u>	1.28	9	0.039	0.27	0.026	4	ı	•	•	•
sklinach		1.13	11.7	0.861	10.06	0.05	15	0.497	0.74	0.075	4	•	·		•
	aldicarb suffone	-0.57		47.5	55	40	4	0.28	•		-	•	•	•	
atrazine		2.61	1.7	,	,		•	46.5	115	6.9	7	•		•	
	deisopropyldeethyl atrazine	1.15		•	•	•	•	19.8	٠	•	-	·	•	•	
azocyclotin		5.3	5.36	0.004	•	•	-	0.04	•		۲	0.16	ı	,	•
	1,2,4-triazole	-0.58		•	•	•		•	•	•	•	22.5	•		•
	cyhexatin	5.39		0.003	0.0067	0.0013	9	0.0064	0.013	0.0002	2	•	•		
benomv		2.12		0.41	2.4	0.12	35	0.318	0.64	0.068	9	•	•		
	carbendazim	1.52	4.2	0.625	4.5	0.024	8	0.405	0.64	0.11	4	,		•	
	n-butylemine	0.97	10.8	268	268	32	ę	•	•	•	•		•		
bromoxyni		2.80	3.86	13.8	33	2.09	7	0.121	74	0.041	31		•		
•	4-hydroxybenzonitrile	1.6	7.97	22.6	•	•	-	15	•	•	-	•	•	•	

Pesticide	Transformation product	kog K	БҚа		Fish 96h LCse (mg/L)	C ₅₀ (mg/L)		۵	aphnid 48h	Daphnid 48h EC ₅₀ (mg/L)		Alga	e 72-96h E	Algae 72-96h EC/IC 50 (mg/L)	_
				Median	Max	Min	E	Median	Max	Min	=	Median	Max	Min	-
butMate		4.15	none					85.3	158.6	11.9	7	,	•		•
	disobut Marmine		10.9	•				35	•	,	-	•			·
	ethyl mercaptan		10.6	•	·	•	•	45.1	6	0.17	7	•		١	•
carbarv		2.36	none	4.6	290	0.76	68	0.0072	16.8	0.0003	20		•	•	
	1.2-dihvdroxvbenzene	0.88	9.45	90.6	9.22	3.5	4	1.66		·	-	•			
	1.3-dihvdroxvbenzene	0.80	9.32	54.95	100	40	9	1.28	•		-			•	
	1.4-dihvdroxvbenzene	0.59	10.9	0.14	0.638	0.044	80	0.21	0.29	0.13	2	•		•	
	1-naphthol	2.85	9.34	4.18	4.63	3.57	4	•	•	•	,	•	,	ı	
	5-hydroxy-1,4- napthoquinonee	1.92		0.0432	0.088	0.034	13	•			•	•			
chlomitrofien		5.09	none	•	•		•	٠	ı	·	•	0.0098	•		
	4-nitrophenol	1.91	7.15	•	•	•	•	•	•		•	32	•	•	
chlomoritine		4.99	none	0.041	7	0.0013	ŝ	0.0006	0.0017	0.0001	5		•	•	
	3.5.6-trichloro-2-pyridinol	3.21		1.5	•	•	-		•	•	•	ı	•	ı	
	diethyl phosphorothioate		none	100	•	•	2	<u>6</u>	•	•	-	,	•	•	
	oxalic acid		1.25	•		•	ı	137	•	•	•	ł	•	•	
dazomet		4.1	none	1.35	16.2	0.16	Q	6.11	11.9	0.31	8	-	ı	,	
	formaldehvde	0.35	13.3	41.4	149	1.41	33	10.2	29	0.2	4	•		•	
	hvdrogen sulphide		7.04	0.035	0.776	0.007	48	•	•	•		•	٠	•	
	methyl isothiocyanate	0.94	12.3	0.118	0.142	0.094	4	0.168	0.28	0.055	8	0.25	•	,	
	methylamine	-0.57	10.6	711.27	•	•	-	433	702	163	8	•	•	•	
	N,N'-dimethythiourea	-0.24		ı	1	ı	•	16.5	•	•	-	•	•	•	
DOT		6.91	none	0.0088	<u>6</u>	0.0012	83	0.002	125	0.0004	59	•	,		
	000	6.02	none	•	•	•	•	0.0032	•	•	7	•	•	•	
	DDE	6.51	none	0.07	4.4	0.042	e	0.035	•	•	-	•		•	
	dicofo	5.02		0.51	2.9	0.124	80	ı	•	•	•	,	•	•	

diazimon         Median         Max         Min           diazimon         diethyl phosphorothioate         3.81         none         0.53         10.3         0.02         -           pyrimidinol         3.99         none         0.53         10.3         0.02         -           sufforep         3.99         none         0.178         1         0.0016           sufforep         3.99         none         0.178         1         0.0016           sufforep         2.6 dichlorobenzamide         0.77         275         469         235           dicolop-methyl         dicolop         4.52         none         0.335         21.9         0.15           dicolop         3.4 dichlorobenzoic acid         2.23         1.59         3.43         21.9         0.15           duron         3.4 dichloroantiine         2.63         0.136         -         -         -           duron         3.4 dichloroantiine         2.69         3.43         2.1.9         0.155           duquinconazole         3.4 dichloroantiine         2.67         8.06         13         1.94           duquinconazole         1.24 driazole         -         -         -         -	- 23 2 - 2 2 2 2 4 9 7 4 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Median Max 0.001 0.002 100 - 0.0014 0.0025	, Kin		ŝ	12-900 E	Algae 72-96h EC/IC so (mg/L)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	Median	Max	Min	-
			0.0005	20	,			•
pyrimidinal sulfation sulfation sulfation         1200         -           autivation sulfation 2.6-dichlorrobenzamide         3.99         none         10.5         18           2.6-dichlorrobenzamide         0.77         2.75         4.69         130         140           2.9-dichlorrobenzoic acid         2.23         1.59         130         140           Amethyl         4.62         none         0.335         21.9         -           Amethyl         4.62         none         8.55         300         -           3.4-dichlorroantiline         2.69         2.97         8.06         13           3.4-dichlorroantiline         2.69         2.97         8.06         13           Amethyl         0.58         none         8.55         300         -           3.4-dichlorroantiline         2.69         2.97         8.06         13         -           12.4-triazole         -0.58         none         -         -         -         -           13.24         none         -         -         -         -         -         -           13.24         none         -         -         -         -         -         -				-			•	·
autrobep         3.99         none         0.178         1           nil         2,6-dichlorobenzamide         0.77         275         469           2,6-dichlorobenzamide         0.77         275         469           2,6-dichlorobenzoic acid         2.23         1.59         130         140           2,6-dichlorobenzoic acid         2.23         1.59         130         140           cholop         4.62         none         0.335         21.9         -           cholop         4.58         3.43         21.9         -         -           3,4-dichloroantline         2.69         2.97         8.06         13         -           3,4-dichloroantline         2.69         2.97         8.06         13         -           aconazole         1,2.4-triazole         -         -         -         -         -           12,4-triazole         0.58         1.00         -         -         -         -         -           13,24         100         -         -         0.58         -         -         -         -         -           12,4-triazole         -         0.58         -         -         -         - <td></td> <td></td> <td>•</td> <td></td> <td>·</td> <td>•</td> <td></td> <td></td>			•		·	•		
nil         2.74         none         10.5         18           2,6-dichlorobenzamide         0.77         275         469         2           2,6-dichlorobenzamide         0.77         275         469         2           p-methyl         2,5-dichlorobenzoic acid         2.23         1.59         130         140         2           p-methyl         4.62         nonee         0.335         21.9         -         140         2           p-methyl         4.58         3.43         21.9         -         -         140         -           alicolop         4.58         3.43         21.9         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td>-</td><td></td><td>25 0.0002</td><td>7</td><td>•</td><td>•</td><td>•</td><td></td></t<>	-		25 0.0002	7	•	•	•	
2.6-dichlorobenzamide         0.77         275         469         2           2.6-dichlorobenzoic acid         2.23         1.59         130         140           Pmethyl         4.62         nonee         0.335         21.9         0           diclofop         4.58         3.43         21.9         -         0           3.4-dichloroantiine         2.69         2.97         8.06         13           2.4-dichloroantiine         2.69         2.97         8.06         13           2.4-dichloroantiine         2.69         2.97         8.06         13           2.69         2.69         2.97         8.06         13           3.4-dichloroantiine         2.69         2.97         8.06         13           2.69         2.69         2.97         8.06         13           7.4-driazole         -0.58         -0.65         -         -           12.4-driazole         -0.58         -         -         -         -	~	3.7 10	3.7	S	•	•		
2,6-dichlorobenzoic acid         2.23         1.59         130         140           >methyl         4.62         nonee         0.335         21.9         -           dictofop         4.58         3.43         21.9         -         -           dictofop         4.58         3.43         21.9         -         -           3,4-dichloroantiine         2.69         2.97         8.06         13           20azole         1,2,4-triazole         -0.58         -         -         -           12,4-triazole         -0.58         none         -         -         -         -           72,59         10         0.66         13         -         -         -         -		856 -	•	-	•	•		
Amethyl         4.62         nonee         0.335         21.9         0           diclotop         4.58         3.43         21.9         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	- 16	•		•	•	•	•	
dictofop 4.58 3.43 21.9 - 2.68 none 8.55 300 3.4-dichlorcaniline 2.69 2.97 8.06 13 12.4-thazole -0.58 none - FBC 96912 none -	•	•	•		٠		٠	
2.68 none 8.55 300 3,4-dichloroantiine 2.69 2.97 8.06 13 3.24 none 1,2,4-triazole -0.58		•	·		•	•	•	
3,4-dichloroantiine         2.69         2.97         8.06         13           conazole         3.24         none         -         -         -           1,2,4-triazole         -0.58         -         -         -         -           FBC 96912         none         -         -         -         -         -		1.4 12	1.4	5	0.0024			
3.24 none 1,2,4-triazole -0.58 FBC 96912 none	18 0	0.79 13	0.1	19	3.7	4.8	2.2	
1,2,4-triazole -0.58 FBC 96912 none		•		•	0.046	•	ı	
none	,	•	•	•	72.5		,	
	•	•	•	•	0.24	•		
Muometuron 2.23 none 37.25 96 2.96	12	- 6.9	•	-			•	
3-trifluoromethyl 2.29 3.49 35	-	2.7 -	•	-	•		ı	
	19	•		•	•	,		
benzaldehyde 1.48	7	•	•	•	•	•	•	
m-(terifluoromethyf) 2.47 none 0.92 1.13 0.76 berzałdehyde	3	•	•	•	•	٠	•	

Destinide	Transformation product	bol K.	pKa		Fish 96h LC ₅₀ (mg/L)	C ₈₀ (mg/L)		á	Splitter 4011	Daphnid 48h EC ₅₀ (mg/L)		Aga	Agae 72-96h EC/IC 50 (mg/L)	<b>12:12:2</b>	<u>ר</u>
000000				Median	Max	Min	c	Median	Max	nin	c	Median	Max	Min	-
camma-HCH		3.72	none	0.068	51	0.016	62	1.19	62	0.25	25	3.2			-
	1 2 3 4-tetrachlombenzene	4.6	none	1.3	1.5	1	2				•	•	•	•	'
	1 2 3.5-tetrachlorobenzene	4.56	none	1.6		•	-	0.86	9.7	0.86	ŝ	17.7	•		-
	1 2 4-trichlorohenzene	4.02	none	2.9	4.8	1.27	14	2.745	20	0.76	9	25.1	,	,	-
	1 2-dictionstantenzene	3.43	BUOU	5.4	57	1.52	16	2.35	2.4	0.74	5	76.1	•	•	-
	1 4-dichlorobenzene	3.44	none	4	34.5	0.86	19	10.5	13.5	0.0007	7	•		•	•
	aloha-HCH	3.8	none	1.21	æ	0.32	80	0.9	-	0.8	2	,	•		•
	beta-HCH	3.78	none	1.59	1.66	1.52	2	ı	•	•	•		•	•	•
	deita-HCH	4.14	none	2.21	2.83	1.58	7		ı	•	٠	·	•		·
citor hore also		4	0.8	125	7815.7	5	26	457	930	22	9		•	•	•
	thrmat/dehvde	0.35	none	41.4	149	1.41	33	10.2	<b>5</b> 3	0.2	4	•	•		•
	methylamine	-0.57	none	711.27	•	•	-	433	702	163	2	•	•	ı	•
matathion		2.36	none	0.242	25	0.002	8	0.0018	0.033	0.001	13	•	•		
	diathvi fumarate		none	4.5	•	•	-	•	•	•	•	•		•	
	diethv/ maleate		none	18	•	•	-	,	•			•	•	•	
	dimethyl phosphate			18	•	•	-	•	•	•	•	•	•		·
	fumaric acid	0.46		•	•	•	•	208	212	204	7			•	
nanmamida		3.36	none	12.7	8	9.4	9	•	•	•	•	ı			
	1-naphthol	2.85		4.18	4.63	3.57	4	•	·	•	•	•		•	
narathion		3.83	none	0.75	9	0.018	41	0.0013	0.0072	0.0006	23	,	•		
	4-aminochenot	0.04	10.5	12.6	24	1.2	7	1.1	•	•	-	,	•	,	
	4-nitrophenol	1.91	7.15	26.2	78.9	3.8	21	8.4	8	4.7	8	•	•	•	
	paraoxon	1.98	none	0.29	0.33	0.25	~	0.0002	•	•	-	•	,	•	
phenmedipham		3.59	none	ę	3.96	1.41	3	۱	ı	•	١		•	•	
•	3-totuidine	1.4	0.1	168	•	•	-	•	•		•	•	•	•	

				1-1-1-11
3.07       none       8.6       14       2.3       7       5.75       1         -1.11       3.96       -       -       -       15       51       4       3.64         -1.11       3.96       -       -       -       -       5.75       1       5.75       1         -1.11       3.96       -       -       -       -       -       -       5.75       1         -1.11       3.96       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	MIN	n Median	Max Min	c
propionic acid         0.33         4.88         76.2         115         51         4         36.4           BH-516-5         -1.11         3.96         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th></th> <th>4</th> <th>•</th> <th>•</th>		4	•	•
-1.11       3.96       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       1       1       -       -       -       1       1       -       -       1       1       -       -       1       1       -       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<	0 22.7	2 .	•	
BH-518-2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       111       -       -       -       111       -       -       -       111       -       -       -       111       -       -       -       111       -       -       -       111       -       -       -       111       -       -       -       111       -       - </td <td></td> <td>- 149.25</td> <td>250 48.5</td> <td></td>		- 149.25	250 48.5	
BH-518-5       4.64       none       0.435       1.6       0.1       8       0.77         2,3,4,5-terrachlonophenol       3.84       5.35       0.41       0.441       0.205       3       0.77         2,3,4,5-terrachlonophenol       3.88       6.35       0.41       0.441       0.205       3       0.18       2         2,3,4,5-terrachlonophenol       3.88       5.14       0.17       -       -       1.1       0.14       6       0.18       2         2,3,5,4:tchlonophenol       3.88       5.14       0.17       -       -       1.1       0.14       6       0.18       2         2,3,5,5-terrachlonophenol       3.88       5.14       0.17       -       -       1.1       0.04       6       0.18       2         2,3,5,5-terrachlonophenol       3.72       7,4       0.902       3.06       0.0012       11       1.8       2.1       2.2         2,3,5,5-trichlonophenol       3.77       7,4       0.902       3.06       0.0012       11       1.8       3.7         2,3,5,5-trichlonophenol       3.61       7.84       -       -       -       1.1       2.3         3,5-dichlonophenol       3.65	•	- 700	•	·
4.64       none       0.435       1.6       0.1       8       0.77         2.3,4,5-tetrachlorophenol       3.88       6.35       0.41       0.441       0.205       3       -       -         2,3,4,6-tetrachlorophenol       3.88       6.35       0.41       0.441       0.205       3       -       -       -       11       0.18       2       -       -       -       11       0.18       2       -       -       -       11       0.18       2       -       -       -       -       11       0.18       2       -       -       -       11       0.16       -       -       11       0.18       2       -       -       11       0.18       -       -       11       0.18       2       -       -       11       0.16       -       -       11       0.06       -       -       11       11       118       -       -       11       1       1       0.16       -       3.77       5.8       -       -       1       1       1       1       1       1       1       1       1       1       1       1       1       3.77       5.8       9.7 <td< td=""><td>•</td><td>- 150</td><td>•</td><td></td></td<>	•	- 150	•	
2.3.4.5-tetrachlorophenol       3.8       6.35       0.41       0.441       0.205       3       -         2.3.4.5-tetrachlorophenol       3.8       5.32       0.682       1.1       0.14       6       0.18       2         2.3.5.4 tetrachlorophenol       3.8       5.14       0.17       -       -       1.1       0.18       2         2.3.5.4 tetrachlorophenol       3.8       5.14       0.17       -       -       1.1       0.86         2.3.5.4 tetrachlorophenol       3.83       5.14       0.17       -       -       1.1       0.86         2.3.5.4 tetralorophenol       3.84       5.8       -       -       -       1.1       0.86         2.3.5.4 tetralorophenol       3.77       5.8       -       -       -       1.1       0.86         2.4.5.4 tetralorophenol       3.77       5.8       -       -       -       1.1       1.8         2.4.5.4 tetralorophenol       3.77       5.8       6.902       3.06       0.0012       1.1       1.8         2.4.5.4 tetralorophenol       3.65       0.818       -       -       -       1.1       2.2         2.4.5.4 tetralorophenol       3.66       8.18 <td>•</td> <td>-</td> <td>•</td> <td>•</td>	•	-	•	•
2,3,4,6-etrachlorrophenol       4,45       5,22       0.682       1,1       0,14       6       0,18       2         2,3,4,6-etrachlorrophenol       3,8       5,14       0,17       -       -       1,1       0,86       -       1,1       2,3,5,444040466601       3,88       5,14       0,17       -       -       1,1       0,86       -       1,1       0,86       -       -       1,1       0,86       -       -       1,1       0,86       -       -       1,1       0,86       -       -       1,1       0,86       -       -       1,1       0,86       -       -       1,1       1,8       -       -       -       1,1       0,86       -       3,7       2,4,5+4740407466400       3,7       7,4       0,902       3,06       0,0012       1,1       1,8       -       -       -       1,1       1,8       3,7       3,7       3,7       2,3       2,8       3,7       3,7       2,8       3,7       2,8       3,7       2,3       3,7       3,7       2,8       3,7       3,7       3,7       2,8       3,7       3,7       2,3       3,7       3,7       2,3       3,7       3,7       2,3       3,8	•	•	•	•
2,3,4-inchlorophenol       3.8       5,14       0.17       -       -       1.1         2,3,5,4-inchlorophenol       3.88       5,14       0.17       -       -       1       0.86         2,3,5,4-inchlorophenol       3.88       5,14       0.17       -       -       1       0.86         2,3,5,4-inchlorophenol       3.84       5.8       -       -       -       1.1         2,3,5,4-inchlorophenol       3.77       5.8       -       -       -       1.1         2,3,5,4-inchlorophenol       3.77       5.8       -       -       -       1.1         2,4,5-trichlorophenol       3.77       5.8       -       -       -       3.7         2,4,6-trichlorophenol       3.77       5.8       -       -       -       3.7         2,4,6-trichlorophenol       3.78       7.4       0.902       3.06       0.0012       11       1.8         3,5-dichlorophenol       3.62       4.7       0.65       -       -       1       2.2         3,5-dichlorophenol       5.12       4.7       0.65       -       -       1       2.057       0         3,5-dichlorophenol       5.12       4.7	60.0 99	5	•	
2,3,5,6-tetrachlorrophenol       3.8       5.14       0.17       -       -       1       0.86         2,3,5-trichlorrophenol       3.84       5.8       -       -       -       1.1         2,3,5-trichlorrophenol       3.84       5.8       -       -       -       1.1         2,3,5-trichlorrophenol       3.77       5.8       -       -       -       1.1         2,3,5-trichlorrophenol       3.77       5.8       -       -       -       3.7         2,4,5-trichlorrophenol       3.72       7.4       0.902       3.06       0.0012       11       1.8         2,4,5-trichlorrophenol       3.65       6.23       2.8       9.7       0.32       17       2.2         3,5-dichlorrophenol       3.65       6.23       2.8       9.7       0.32       17       2.2         3,5-dichlorrophenol       3.62       8.18       -       -       -       1       2.5         3,5-dichlorrophenol       3.62       4.7       0.65       -       -       1       2.2         3,5-dichlorrophenol       5.12       4.7       0.65       -       -       1       0.07         3,5-dichlorrophenol		•	•	
2,3,5-trichlorophenol       3.84       5.8       -       -       -       1.1         2,3,5-trichlorophenol       3.77       5.8       -       -       -       3.7         2,4,5-trichlorophenol       3.77       5.8       -       -       -       3.7         2,4,5-trichlorophenol       3.77       5.8       -       -       -       3.7         2,4,5-trichlorophenol       3.72       7.4       0.902       3.06       0.0012       11       1.8         2,4,5-trichlorophenol       3.68       6.23       2.8       9.7       0.32       17       2.2         3,5-dichlorophenol       3.61       7.84       -       -       -       -       0.57         3,5-dichlorophenol       3.62       8.18       -       -       -       1       2.2         3,5-dichlorophenol       5.45       4.7       0.65       -       -       1       1       0.077         3,5-dichlorophenol       5.12       4.7       0.65       -       -       1       0.077         9,5-dichlorophenol       5.12       4.7       0.65       -       -       1       -       0.77         9,6-dichlorophenol	.15 0.57	2	•	
2,3,6-trichlorophenol       3.77       5.8       -       -       -       3.7         2,4,5-trichlorophenol       3.72       7.4       0.902       3.06       0.0012       11       1.8         2,4,5-trichlorophenol       3.68       6.23       2.8       9.7       0.32       17       2.2         3,4,5-trichlorophenol       3.61       7.84       -       -       -       0.57       17       2.2         3,5-dichlorophenol       4.01       7.84       -       -       -       0.57       0.57         3,5-dichlorophenol       4.01       7.84       -       -       -       -       0.57         3,5-dichlorophenol       5,45       4.7       0.65       -       -       1       2.2         3,5-dichlorophenol       5,12       4.7       0.65       -       -       1       0.077         pentachlorophenol       5,12       4.7       0.65       -       -       1       0.027         pentachlorocatechol       4.29       1.27       -       -       1       -       1       -         pentachlorocatechol       4.00       -       -       -       -       -       1		•	•	
2,4,5-trichtorophenol       3.72       7.4       0.902       3.06       0.0012       11       1.8         2,4,6-trichtorophenol       3.68       6.23       2.8       9.7       0.32       17       2.2         3,4,5-trichtorophenol       4.01       7.84       -       -       -       0.57       0.57         3,5-dichtorophenol       4.01       7.84       -       -       -       0.57       0.57         3,5-dichtorophenol       3,62       8,18       -       -       -       0.57       0         3,5-dichtorophenol       3,62       8,18       -       -       -       1       2.2         3,5-dichtorophenol       5,45       4,7       0.65       -       -       1       0.071         pentachtorophenol       5,12       4,7       0.65       -       -       1       0.027         pentachtorocatechol       4.29       1.27       -       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1		•	•	
2,4,6-trichlorophenol       3.68       6.23       2.8       9.7       0.32       17       2.2         3,4,5-trichlorophenol       4.01       7.84       -       -       -       0.57       0.57         3,5-dichlorophenol       4.01       7.84       -       -       -       0.57       0.57         3,5-dichlorophenol       3.62       8.18       -       -       -       0.57       0         pentachlorophenol       3.62       8.18       -       -       -       1       0.057       0         pentachlorophenol       5.12       4.7       0.65       -       -       1       0.027         pentachlorocatechol       5.12       4.7       0.233       3       0.018       92       0.88         tetrachlorocatechol       4.29       1.27       -       -       1       -       -       -       1       -       -       1       -       1.83       -       -       1       -       0.027         pentachlorocatechol       4.29       1.27       -       0.233       3       0.018       92       0.88       -       -       1       -       -       -       -       - </td <td>2.7 0.9</td> <td>2</td> <td>•</td> <td></td>	2.7 0.9	2	•	
3,4,5-trichlorophenol       4,01       7.84       -       -       -       0.57       0         3,5-dichlorophenol       3.62       8.18       -       -       -       1       0.57       1         3,5-dichlorophenol       3.62       8.18       -       -       -       1       0.57       1         pentachlorophenol       5.45       4.7       0.65       -       -       1       0.027         pentachlorophenol       5.12       4.7       0.65       -       -       1       0.027         pentachlorocatechol       4.29       1.27       -       -       1       -       1       -         tetrachlorocatechol       4.29       1.27       -       -       1       -       1       -         IN-70542       -       -       -       -       -       -       137       -       -       137		2	•	
3,5-dichlorophenol       3,62       8,18       -       -       1       1         pentachlorophenol       5,45       4,7       0,65       -       -       1       0,027         pentachlorophenol       5,12       4,7       0,65       -       -       1       0,027         pentachlorophenol       5,12       4,7       0,233       3       0,018       92       0.88       -         tetrachlorocatechol       4,29       1,27       -       -       1       -       -       1       -         M.770942       -1,47       4,00       -       -       -       137       -       137	.68 0.45	2 .	•	•
pentachtoroanisole         5.45         4.7         0.65         -         -         1         0.027           pentachtorophenol         5.12         4.7         0.533         3         0.018         92         0.88           tetrachtorophenol         5.12         4.7         0.233         3         0.018         92         0.88           tetrachtorocatechol         4.29         1.27         -         -         1         -           .147         4.00         -         -         1         -         1000         -           .137         -         -         -         -         -         137         -         -         137	•	•	•	
pentachlorophenol 5.12 4.7 0.233 3 0.018 92 0.88 et tetrachlorocatechol 4.29 1.27 1 1 1.27 1.1 1.47 4.00 1.000 1.37		•	•	•
tetrachlorocatechol 4.29 1.27 1 100	.59 0.038	48 .	•	
1000	•	•	•	
IN-70942 - 137	000 184	ۍ ۲	•	
	78 95	2 .	•	
lecrazene 4.38 none 0.37 1	•	, ,		
2,3,5,6-tetrachtoroanline 4.1 none	•	•		
ble none 0.21 -	•	•	•	

Dactivida	Transformation product	ha K	oKa		Fish 96h LCen (ma/L)	Cen (ma/L)			aphnid 48h	Daphnid 48h ECen (mo/L)		Alda	e 72-96h E	Alase 72-96h EC/IC & (ma/L)	2
		5		Median	Max	Min	-	Median	Max	Min	-	Median	Max	Min	с
thiodicarb		1.7	none	2.01	2.65	1.21	4	0.049	0.053	0.027	ŝ		,		,
	acetonitrile	-0.34	4.3	1020	1850	100	7	3600		•	-		•	•	
	methomyl	0.6	none	1.45	32	0.48	4	0.0089	3.2	0.0076	9	•	1	•	·
triazamate		2.69	none	0.88	4.4	0.43	6	0.048	1.7	0.0035	Ø	2.2	240	0.3	5
	metabolite II	1.62		9	•	٠	-	0.35	·	ı	-	120	·	•	-
trickopyr		-0.45	3.97	7.5	148	1.1	5				•				
2	3,5,6-trichloro-2-pyridinol	3.21		1.5	•		-	•	•	·	•				
trisultusulturon-		96:0	4.4	730	760	7	ę	669.5	1200	139	7	0.2785	0.62	0.037	4
ul inperi	IN-D8526-2		2.65	139	•	•	-	324	•	٠	2	177.5			-
zineb			non	93.6	180	7.2	2	20.5	40	0.97	2	18	•	•	۴-
	ethylenethiourea	-0.66		180	7500	7.2	3	26	4	0.97	•	1.8	•	•	-
	ethyleneurea			13000	ı	•	-	5600	•		-	16		•	-

Reason for prioritisation omission	Pesticides
Inorganic	bordeaux mixture, copper oxychloride, sodium chloride, sulphur, sulphuric acid
Undefined chemistry	anthracene oil, fatty acids, guazatine, natural plant extracts, tar oil, tridemorph
No significant environmental transformation products	amitrole, chlorpropham, clopyralid, cymoxanil, cyproconazole, difenoconazole, difenzoquat, dimethomorph, diquat, ethofumesate, henhexamid, fludioxonil, flutriafol, metconazole, paraquat, propamocarb hydrochloride
No quantifiable transformation product formation data	bentazone, bifenox, carbendazim, carboxin, chlorotoluron, chlorthal-dimethyl, cyanazine, dichlorprop, etridiazole, fentin acetate, fentin hydroxide, fosetyl- aluminium, maneb, MCPA, metazachlor, methyl bromide, metoxuron, monolinuron, napropamide, pentanochlor, thiabendazole, thiram, zineb
No environmental transformation products identified within the literature	2-chloroethylphosphonic acid, benazolin, bupirimate, carbetamide, carfentrazone-ethyl, chlormequat, chlormequat chloride, chloropicrin, choline chloride, clomazone, cyazofamid, dichlorophen, dichlorprop-P, diflufenican, dithianon, dodemorph, dodine, epoxiconazole, ethoprophos, fenpropimorph, fenuron, flamprop-M-isopropyl, formaldehyde, fosthiazate, fuberidazole, gamma-HCH, hymexazol, imazamethabenz-methyl, lenacil, mancozeb (zineb and maneb), MCPB, mepiquat, metalaxyl-M, metamitron, nicotine, ofurace, oxadiazon, oxadixyl, penconazole, peroxyacetic acid, picoxystrobin, prochloraz, propoxycarbazone-sodium, pyrazophos, pyrifenox, quinoxyfen, quizalofop-P-ethyl, sethoxydim, silthiofam, sodium monochloroacetate, spiroxamine, tebutam, thiacloprid, triadimenol, urea, zoxamide

## Table D1. Pesticides omitted from the prioritisation of transformation products used in agriculture in Great Britain and the reasons for their omission

#### Table D2. Pesticides omitted from the prioritisation of transformation products used in agriculture and amenity in California and the reasons for their omission

Reason for prioritisation omission	Pesticides
Inorganic	aluminium phosphide, ammonium sulphate, arsenic pentoxide, calcium carbonate, calcium hydroxide, calcium hypochlorite, carbon dioxide, chlorine, chromic acid, copper hydroxide, copper oxide (ous), copper oxychloride sulphate, copper sulphate (basic), copper sulphate (pentahydrate), cryolite, disodium octaborate tetrahydrate, kaolin, lime- sulphur, nitrogen (liquified), potassium biocarbonate, sodium chlorate, sodium hypochlorite, sulphur, sulphur fluoride, sulphuryi fluoride
Undefined chemistry	cottonseed oil, hydrotreated paraffinic solvent, mineral oil, modified phthalic glycerol alkd resin, molassess, orchex 796 oil, petroleum distillates, petroleum distillates (refined), petroleum oil (parafin based), petroleum oil (unclassified), vegetable oil
Adjuvant	alpha-(para-nonylphenol)-omega-hydroxypoly(oxyethyelene), alpha- alkylaryl-omega-hydroxypoly(oxyethyelene), alpha-octylphenyl-omega- hydroxypoly(oxyethyelene), oleic acid (methyl ester), poly-1-para-menthene
No environmental transformation products identified within the literature	acrolein, azinphos-methyl, chloropicrin, chlorthal-dimethyl, cyanamide, fosetyl-aluminium, isopropyl alcohol, mancozeb, maneb, MCPA (dimethylamine salt), methyl bromide, naled, oxyfluorfen, paraquat dichloride, permethrin, phosmet, potassium n-methyldithio carbamate, propanil, propargite, s-metolachlor, sodium tetrathiocarbonate, tribufos, urea dihydrogen sulphate, ziram

Table D3. Transformation products considered during the prioritisation for Great	
Britain, compounds grouped by their data availability class and then ranked according	
to their risk index (Chapter 5)	
Data availability	

ransformation product	Parent pasticide(s)	Data availability classification	Risk inde
1,5,6-trichloro-2-pyridinol	chiorpyrifes / triclopyr	A	0.68984
hifensulfuron acid	thifensulfuron-methyl	A	0.06557
resoxim-methyl acid	kresoxim-methyl	A	0.0187
D-desmethyl-thifensulfuron-methyl	thilensulfuron-methyl	A	0.00219
i-chloro-3-phenyl-pyridazin-4-ol	pyridate	A	0.00081
N-A4098	metsulfuron-methyl		0.00069
)P-1	tepraloxydim	A	0.00005
)P-2	tepraloxydim	A	0.00004
	aldicarb	A	0.00001
Idicarb sulfoxide	aldicarb	Â	<0.00001
Idicarb sulfone	thiodicarb	Â	<0.00001
nethornyl	THOUCARD	Ŷ	<0.00001
CGA-321113	trificxystrobin	Bf	0.09058
arbendazim	thiophanate-methyl / benomyl	Bf	0.066
,2,4-triazole	fluquinconazole / tebuconazole / tetraconazole / propiconazole /	Bf	0.04381
	myclobutanil nicolinaton	Bf	0.00117
CL 153815	picolinafen	51	0.00113
iclofop acid	diciofop-methyl	Bm	2.65305
thyl-m-hydroxyphenyl carbamate	desmedipham	Bm	0.00843
iazine amine A	tribenuron-methyl	Bm	0.00374
TS 27919	amitraz	Bm	0.00353
MST	tolylfluenid	Bm	0.00013
TS 27271	amitraz	Bm	0.00009
BC 96912	fluquinconazoie	Bm	<0.00001
	isoproturon	Ba	0.61546
esmethylisoptoturon	- <b>-</b>	8p Ba	0.2768
eeth ylatrazine	strazine	Bp	
eisopropylatrazine	simezine / atrazine	Вр	0.20056
niophene sulfonimide	thifensulfuron-methy!	Вр	0.10602
ydroxyatrazine	atrazine	Bp	0.10324
iaminochioroatrazine	atrazine	Вр	0.0838
,4-D	2.4-DB	Вр	0.04434
strahydrophthalamide	captan	Вр	0.03893
IOE 35950	glufosinate-ammonium	Вр	0.01805
-(1, 1-dimethylacetonyl)-3,5-dichlorobenzamide	propyzamide	Вр	0.01781
H518-2	quinmensc	Вр	0.01061
H518-5	quinmerac	Вр	0.00769
minomethylphosphonic acid	glyphosate	Вр	0.00544
-(3,5-dichlorophenyi)-4,4-dimethyl-5-methyleneoxazoline	propyzamide	Bp	0.00333
accharin	metsulfuron-methyl	Bp	0.00298
enalexy/ M2	benalatvi	Bo	0.00106
PA 406341	triticonazole	Bp	0.00094
	bromoxynii	Bo	0.00048
,5-dibromo-4-hydroxybenzamide ,5-di-iodo-4-hydroxybenzamide	ioxynll	Вр	0.00041
		-	
,6-dichiorosalicylic sold	dicamba bandawd	8p Bo	0.00039
enalaxyi M1	benalaxyl	8p	
P 30228	iprodione	Bp	0.00018
-phenoxybenzoic acid	cypermethrin	Вр	<0.00001
,5-di-iodo-4-hydroxybenzoic acid	ioxynii	Вр	<0.0000
-phenoxybenzoic acid	tau-fluvalinata	Вр	<0.00001
RPA 407922	triticonazole	Вр	<0.00001
GA 118 245	propiconazole	Bp	< 0.00001

Table D3. Transformation products considered during the prioritisation for Great
Britain, compounds grouped by their data availability class and then ranked according
to their risk index (Chapter 5)

Transformation product	Parent pesticide(s)	Data availability	<b>Risk inde</b> x
		classification	
propachlor oxanilic acid	propachior	с	1.53945
propachior oxanilic aciu propachior ethane sulfonic acid	propachior	c	0.88299
-hydroxy-2,5,6-trichloroisophthalonitrile	chlorothalonii	c	0.72227
riazamate metabolite II	triazamete	c	0.36716
3.5.6-trichloro-2-methoxypyridine	chlorpyrifos / triclopyr	c	0.26540
1-(2,4-dichlorophenoxy)phenol	diclofop-methyl	c	0.25135
riazamata metabolite IV	triazamate	c	0.17616
prethoate	dimethoate	c	0.1087
riszamate metabolite III	triazamete	c	0.10578
luzaifoo acid	fluezifoo-p-butvl	c	0.09033
liaminochlorotriazine	simazine	с	0.08733
nethyl saccahrin	triflusulfuron-methyl	С	0.04872
)-methyl phosphinico-proprionic acid	glufosinate-ammonium	с	0.0394
vdroxysimezine	simazine	С	0.03532
v/-(3,4-dichlorophenyl)-N-methylurea	diuron	с	0.03002
Ro 17-3102	propaquizafop	C	0.02539
compound XII	fluazinam	C	0.00851
I-demethyl triazine amine B	triflusulfuron-methyl	c	0.0062
riazine amine 8	trifusulfuron-methyl	c	0.0057
nazino amme o -amino-3,5-dichloro-6-fluoromethoxypyridine	fluroxypyr	c	0.00396
-anno-3,5-aichoro-a-lidoronanioxypynone I,N-bis demethyl triazine amine B	trifusulfuron-methyl	С	0.00359
nyt-ors cemenny mazine anime o nethylisothiocysnate	metam-sodium	c	0.00262
HOE 101630	amidosulfuron	C	0.00248
	2.4-D	C	0.00212
4-dichlorophenol	prometryn	C	0.00183
,4-bis(isopropylamino)-6-hydroxy-e-triazine	melethion	c	0.00164
nalathion dicarboxylic acid -amino-3,5-dichloro-6-fluoro-2-pyridinol	fluroxypyr	C	0.00162
	amidosulfuron	C	0.00068
-amino-4,6-dihydroxypyrimidine	thisesulfuron-methyl	c	0.00057
-ester-3-sulfonamide	imidecloprid	C	0.00044
(6-chloro-pyridine-3-ylmethyl)-N-nitro guanidine N-D5803	metsulfuron-methyl	c	0.00025
ecamethrinic acid	deltamethrin	c	0.00024
SF 500-3	pyraciostrobin	с	0.00024
	tau-fluvalinate	c	0.00011
nilino acid	prometryn	c	0.00008
t-amino-4-isopropylamino-6-methylthio-s-triazine naiathion monocarboxylic acids	melathion	c	0.00007
CGA 180777	pymetrozine	c	0.00003
	pymetrozine	c	<0.00001
3523199 CGA 249257	pymetrozine	c	<0.00001
	aipha-cypermethrin	c	<0.00001
I-phenoxybenzoic acid CGA 359009	pymetrozine	c	<0.00001
JGA 339009 J-phenoxybenzoic acid	zeta-cypermethrin	c	<0.00001
-methyl-3-(4-lsopropyl phenyl)-urss	isoproturon	D	3.45795
CPSA	tri-allato	D	1.91577
-carbamyl-2,4,5-trichlorobenzoic acid	chiorothalonii	D	0.98035
nethiocarb sulfoxide	methiocarb	D	0.85099
is (4-fluorophenyl)methyl silanol	flusilazole	D	0.59419
ethyllerbuthylazine	terbuthylazine	D	0.58532
itertanol benzoic acid	bitertanol	D	0.56804
nethiocarb sulfoxide phenol	methiocarb	D	0.5106
-[4-(2'-hydroxy-2'-propyl)-phenyl]-methyl ursa	isoproluron	D	0.44333
-cyano-2,4,5,6-tetrachiorobenzamide	chiorothaionli	D	0.40783
	atrazine	D	0.37691
eeminated diketo metribuzin	metribuzin	D	0.35128
Jiketo metribuzin	metribuzin	D	0.32648

Table D3. Transformation products considered during the prioritisation for Great
Britain, compounds grouped by their data availability class and then ranked according
to their risk index (Chapter 5)

Fransformation product	Parent pesticide(s)	Data availability classification	Risk inde:
-OE sulfonic acid	flutenacet	D	0.31247
lemethyl linuron	linuron	D	0.3071
I-chloro-2-methyl phenol	mecoprop-p / mecoprop	D	0.27057
DHA	atrazine	D	0.26727
nethiocarb sulfone phenol	methiocarb	D	0.2553
	phenmedipham	D	0.23087
AS 9256	triazoxide	D	0.23068
nethiocarb sulfone quinone	methiocarb	D	0.22693
	flufenacet	D	0.21737
.a.a-trifluoro-2,6-dinitro-N-propyl-p-toluidine	trifluralin	D	0.20207
iazamate metabolite IX	triazamete	D	0.19512
	dazomet	D	0.19231
rethylisothiocyanate	dimethoate	D	0.1772
-desmethyldimethoate	chlorothalonil	- D	0.16862
-carbamyl-1,2,4,5-tetrachlorobezoic acid	tralkoxydim	D	0.1604
alkoxydim metabolite 8	tralkoxydim	D	0.1536
ralkoxydim metabolite 10	propachior	D	0.15177
ropachlor sulfinylacetic acid	chlorothalonil	D	0.14901
-cyano-8-hydroxy-2,4,5-trichlorobenzamide	tetraconazole	D	0.14433
straconazole acid	famoxadone	D	0.14435
NKZ007		D	0.13592
ydroxypropachlor	propachior	-	0.13178
,2'-azoxybis (α,α,α-trifluoro-6-nitro-N-propyl-p-toluidine	trifluralin	D	
-cyano-2,5,6-trichlorobenzamide	chlorothalonil	D	0.12548
,6-dimethyl-2-dimethylamino-pyrlmidin-4-ol	pirimicarb	D	
,a,a-trifluoro-2,6-dinitro-p-cresol	trifluralin	D	0.11861
-ethyl-7-nitro-5-(trifluoromethyl) benzimidazole	triffuralin	D	0.11421
-chloro-3-fluoro-2-hydroxy-pyridine	clodinafop-propargyl	D	0.11413
CVA	beta-cyfluthrin	D	0.10917
cetaldehyde	metaldehyde	D	0.10587
eference compound 2	azoxystrobin	D	0.10579
eisopropyi hydroxystrazine	simazine	D	0.1048
,6-dimethyl-2-methylamino-4-pyrimidin-4-ol	pirimicarb	D	0.10221
,6-dimethyl-2-methylamino-pyrimidin-4-yl-dimethylcarbamate	pirimicarb	D	0.10221
.a.a-trifluoro-5-nitro-4-propyl-toluene-3,4-diamine	trifiuralin	D	0.09225
GA 249287	cyprodinil	D	0.08728
),O-dimethylphosphorothiolc acid	dimethoate	D	0.08438
to 40-2724	propaquizatop	D	0.0788
AS 9709	triazoxide	D	0.07689
2,6-dinitro-4-(trifluoromethyl)phenyl]propylamine	triffuralin	D	0.07468
ropachlor methyl sulfone	propachior	D	0.07249
alkoxydim metabolite 9	tralkoxydim	D	0.06932
F 500-6	pyraciostrobin	D	0.0607
orinyron	linuron	D	0.06032
iszamste metabolite VIII	triazamete	D	0.06004
itertanol ketone	bitertanol	D	0.05979
retriocarb phenol	methiocarb	D	0.05673
•	azorystrobin	D	0.05036
zoxystrobin acid	chloridazon	D	0.04935
-amino-4-chloro-3-(2H)-pyridazinone	trifluralin	0	0.04393
-ethyl-7-nitro-1-propyl-5-(trifluoromethyl) benzimidazole		0	0.03804
P 36221	iprodione formalitie		0.03455
0 12-7124	fenpropidin	D	0.03455
R0 18-5445	fenpropidin	D	
-fuoro-3-phenoxybenzoic acid	beta-cyfluthrin	D	0.03181
SN 320-1	tebuconazole	D	0.03108
5N 3678-7/A	tebuconazole	D	0.03108
N 3678-7/B	tebuconazole	D	0.03108

Fransformation product	Parent pesticide(s)	Data availability classification	Risk inde
nethiocarb metabolite A	methiocarb	D	0.02837
nethiocarb sulfone	methiocarb	D	0.02837
orchioropropachior	propachlor	D	0.02718
ompound VII	fluazinam	D	0.02481
omesafen amine	fomesafen	D	0.02355
to 16-1976	propaquizafop	D	0.023
250	cycloxydim	D	0.02199
OE 64619	glufosinate-ammonium	D	0.02125
P 25040	iprodione	D	0.02119
ompound VIII	fluazinam	D	0.01985
250	cycloxydim	D	0.01787
.4-dichloroanisole	2,4-D	D	0.0174
PMP	phenmedipham	D	0.0171
6-dichlorobenzamide	dichlobenil	D	0.01599
pmpound XV	lambda-cyhaiothrin	D	0.01492
ONH2-fen	esferivalerate	D	0.01409
X-105	thiophanate-methyl	D	0.0137
H-432	thiophanate-methyl	D	0.0137
	trifloxystrobin	D	0.01334
GA-373466	trifluralin	D	
ethyl-7-nitro-1-propyl-5-(trifluoromethyl) benzimidazole-3-oxide		D	0.01318
ference compound 30	azoxystrobin	-	
mesafan amino acid	fomesaten	D	0.01172
E 54488	fluttamone	D	0.00989
traconazole alcohol	tetraconazole	D	0.00902
fluoroethanoic acid	flurtamone	D	0.00897
6-dinitro-4-(trifluoromethylphenyl)amine	trifiuralin	D	0.00879
mpound 1a	lambda-cyhaiothrin	D	0.0087
araidehyde	metaldehyde	D	0.00847
(2,4-dichlorohenyl) ethan-1-ol	chlorfenvinphos	D	0.0084
4-dichloroacetophenone	chlorfenvinphos	D	0.0084
4-dichlorophenyl chloride	chlorfenvinphos	D	0.0084
4-dichlorophenyl)-ethan-1,2-diol	chlorfenvinphos	D	0.0084
4-dichlorophenyloxrane	chlorfenvinphos	D	0.0084
ssethyl chlorfenvinphos	chiorfenvinphos	D	0.0084
alts or conjugates desethyl chlorfenvinphos	chiorfenvinphos	D	0.0084
4-dichloro-1-(1-hydroxysthyl) benzene	chlorfenvinphos	D	0.00804
(6-chloro-pyridine-3-yimethyl)-2-imino-imidazolidine	imidacloprid	D	0.00646
azolylacetic acid	tetraconazole	D	0.0064
eth viaminosulfanilide	dichlofluanid	D	0.00623
GA-62826	metalaxyl	D	0.0058
3,5,6-tetrafluoro-4-methylbenzoic acid	telluthrin	D	0.00561
koaniline	tau-fluvalinate	0	0.00561
(6-chioro-2-benzoxazolyloxy)phenol	fenoxaprop-p-ethyl	D	0.0056
	metalaxyl	D	0.00541
N-(2,6-dimethylphenyl)-2-methoxyacetylamino propanoic acid	amitraz	D	0.00491
rs 24868		D	0.00458
	cycloxydim		
chloro-nicolinic acid	imidacloprid	D	0.00451
(6-chloro-pyridine-3-yimethyl)-N-nitro-2-imino-imidazoilidine-5-ol	Imidactoprid	D	0.00451
(6-chloro-pyridine-3-yimethyl)-N-nitroso-2-imino-imidazolidine	imidacloprid	D	0.00451
ference compound 28	azoxystrobin	D	0.00434
P890	teñuthrin	D	0.00393
502	cycloxydim	D	0.00321
ephenyl-fenvalerate	estenvalorate	D	0.00282
1518-1	quinmenac	D	0.00271
1518-4	quinmerac	D	0.00271
sieic acid	maleic hydrazide	D	0.00261

Transformation product	Parent pesticide(s)	Data availability classification	Risk inde
naleimide	maleic hydrazide	D	0.00261
3-phenoxybenzaldehyde	cypermethrin / tau-fluvalinate	D	0.00254
3,5-dichlorophenyl)-N-(2,3-dihydroxy-1,1-dimethylpropyl)carboxamide	propyzamide	D	0.00231
3,5-dichlorophenyl)-N-(3-hydroxy-1,1-dimethyl-2-oxopropyl)carboxamide	propyzamide	D	0.00231
3,5-dichlorophenyl)-N-(3-hydroxy-1,1-dimethylpropyl)carboxamide	propyzamide	D	0.00231
2-(3,5-dichlorophenyl)-4,4-dimethyl-1,3-oxazolin-5-ylidene]methan-1-ol	propyzamide	D	0.00231
-{(3,5-dichlorophenyl)carbonylamino}-2-methylpropanoic acid	propyzamide	D	0.00231
-{(3,5-dichlorophenyl)carbonylamino}-3-methyl-2-oxobutanoic acid	propyzamide	D	0.00231
-{(3,5-dichlorophenyl)carbonylamino}-3-methylbutanoic acid	propyzamide	D	0.00231
onic form of asulam	asulam	D	0.0021
CA	cypermethrin	D	0.00198
intro octyl phenol	dinocap	D	0.00185
inexapac acid	trinexapac-ethyl	D	0.00184
2502	cyclaxydim	D	0.00183
-OH-fen	estenvalerate	D	0.00176
I-Vacid	esferivalerate	D	0.00176
D 50365	esferivalerate	D	0.00176
PA 406780	triticonazole	D	0.00169
K 512723	pyrimethanil	D	0.00169
	tau-fluvalinate	D	0.00168
	pyraclostrobin	D	0.00162
BOMO	kresoxim-methyl	D	0.00154
	paciobutrazol	D	0.0015
	toiclofos-methyl	D	0.00147
	chioridazon	D	0.00138
	cycloxydim	D	0.00137
-	cyclaxydim	D	0.00137
	tepraloxydim	D	0.0013
	triticonazole	D	0.00126
	trifloxystrobin	-	
	•	D	0.00124
	kresoxim-methyl	D	0.00115
	formesafen	D	0.00115
	metsulfuron-methyl	D	0.001
	benalaxyl	D	0.00099
	triticonazole	D	0.00089
	thiodicarb	D	0.00082
·····	tefluthrin	D	0.00073
	tebulenpyrad	D	0.00063
	esfenvalerate	D	0.00082
	metsulfuron-methyl	D	0.00059
····	asulam	D	0.00057
	toiciofos-methyl	D	0.00057
Ruthrin compound V 1	tefluthrin	D	0.00056
-D5119	metsulfuron-methyl	D	0.00055
-NC148	metsulfuron-methyl	D	0.00055
PA 406203	triticonazole	D	0.00053
thyl-2-(aminosulfonyl)benzoste	metsulfuron-methyl	D	0.00048
A-TMO I	toiciolos-methyl	D	0.00047
3-dimethoxybenzoic acid	isokaben	D	0.00047
IH 0166 1	tolyffuanid	D	0.00042
NH 0189 1	tolyffluenid	D	0.00042
	tolyfluanid	D	0.00042
	isoxaben	Ď	0.0004
	isaxaben	D	0.0004
	tribenuron-methyl	D	0.00039
	and a second s		

Transformation product	Parent posticido(s)	Data availability classification	Risk inde
lemethyl isoxaben	isox <b>s</b> ben	D	0.00037
uphanilamide	asulam	D	0.00033
D-demethyl triazine amine A	tribenuron-methyl	D	0.00027
ihydroxy tritconazole	triticonazole	D	0.00026
iticonazole metabolite 8	triticonazole	D	0.00026
1510F49	boscalid	D	0.00022
lo 1-1374	fenoxycarb	D	0.00021
to 16-8797	fenoxycarb	D	0.00021
to 17-3192	fenoxycarb	D	0.00021
MO	tolclofos-methyl	D	0.00017
-methylpiperidine	mepiquat chloride	D	0.00013
iperidine	mepiquat chloride	D	0.00013
-hydroxy-6-methoxybenzemide	isoxaben	D	0.0001
S 860976	bromuconazole	D	0.00008
GA-357276	trifloxystrobin	D	0.00007
M-COOH	tolclofos-methyl	D	0.00007
h-CH2OH	toiciofos-methyl	D	0.00006
h-COOH	toiciofos-methyl	D	0.00006
M-CH2OH	toiclofos-methyl	D	0.00006
MO-CH2OH	toiclofos-methyl	D	0.00004
MO-COOH	toiclofos-methyl	D	0.00004
	malathion	D	0.00004
S 860551	bromuconazole	D	0.00003
1	imezeguin	D	0.00002
PA 401527	bromuconazole	D	0.00002
FA 401527 GA 294849	pymetrozine	D	<0.00001
ymetrozine metabolite IV	pymetrozine	D	<0.00001
GA 215625	pymetrozine	Ð	<0.00001
	pymetrozine	D	<0.00001
GA 319251	1,3-dichioropropene	D	<0.00001
is-3-chloroallyl alcohol	famoxadone	D	<0.00001
4-JS940 ana-3-chioroallyl alcohol	1,3-dichloropropene	D	<0.00001
methyloxamic acid	oxamyl	E	2.28703
carryl oxime	oxamyl	E	2.28703
s-3-chloroprop-2-enoic acid	1,3-dichioropropene	E	1.13026
ans-3-chioroprop-2-enoic acid	1,3-dichloropropene	E	1.13026
hydroxy terbutryn	terbutryn	ε	1.07941
Nomethylol terbutryn	terbutryn	E	1.07941
5-dichloroeniline	vinclozofin/liprodione	E	0.81735
-chlorobenzylemine	pencycuron	E	0.28594
-chlorobenzylformemide	pencycuron	E	0.28594
- MN467	famoxadone	E	0.19126
OE methyl sulfone	flufenacet	E	0.13585
OE thioglycolate autoxide	fiufenacet	E	0.13586
	flufenacet	E	0.13586
6-dinkro-3,4-xylidine	pendimethalin	E	0.13093
	pendimethelin	Ē	0.13093
{(1-striyipropy)amino}-2-metryi-3,5-cinitro benzyi alconol {(1-striyipropy)amino}-3,5-cinitro-o-tolulo acid	pendimethalin	E	0.13093
	fluezifop-p-butyl	E	0.10876
diffuoromethyl-pryld-2-one		E	0.10794
ydroxy-N-deethylatad terbutryn	terbutryn tarbutryn	E	0.10794
iomethyloi deethylated terbutryn	terbutryn districtivestal	E	0.07592
imethylaminosullanilide E son 7	dichiofluanid		0.07562
F 500-7	pyraciostrobin	E	
hydroxy cypermethrin	aipha-cypermethrin / 2sta- cypermethrin	E	0.0315

Transformation product	Parent pesticide(s)	Data availability classification	Risk index
yeno(3-hydroxyphenyl)methyl 3-(2,2-dichlorovinyl)-2,2-	alpha-cypermethrin / zeta-	E	0.0315
limethylcyclopropanecarboxylate CGA-331409	cypermethrin triflere attrable	-	
CGA357262	trifloxystrobin	E	0.02942
	trifloxystrobin	E	0.02942
	trifioxystrobin	E	0.02942
-methyl-deaminated diketo metribuzin	metribuzin	E	0.02775
l-amino-deaminated metribuzin	metribuzin	E	0.02775
-methyl-deaminated diketo metribuzin	metribuzin	E	0.02775
learninated metribuzin	metribuzin	E	0.02775
-(4,6-dimethoxypyrimidin-2-yl)-7-(trifluoromethyl)-1,3-dihydropyridino[2,3- ]pyrimidine-2,4-dione	flupyrsulfuron-methyl	E	0.02713
-sulfamoyl-6-(trifluoromethyl)pyridine-3-carboxylic acid	flupyrsulfuron-methyl	E	0.02713
eferance compound 10	azoxystrobin	E	0.02518
eference compound 20	azoxystrobin	E	0.02518
aference compound 3	azoxystrobin	E	0.02518
-(2,4-dichlorophenyl)-2-imidazolylethan-1-ol	imazalli	E	0.02295
,4-dichlorophenylurea	diuron	E	0.01236
eethyl ethirimol	ethirimoi	E	0.00730
ydroxybutyl ethirimol	ethirimol	E	0.00730
-fluoroaniline	carbosulfan	E	0.00447
cstonitrile	thiodicarb	E	0.00388
nethornyl oxime sulfone	thiodicarb	E	0.00388
nethomyl oxime sulfoxide	thiodicarb	E	0.00388
nethomyt sulfone	thiodicarb	E	0.00388
ethomyl suttoxide	thiodicarb	E	0.00388
ethyl 2-{(4-hydroxy-8-methoxypyrimidin-2-yl)amino]-8- rifluoromethyl)pyridine-3-carboxylate	flupyrsulfuron-methyl	E	0.00271
mino-N-benzothiazol-2-yl-N-methylamide	methabenzthiazuron	E	0.00247
onjugated acetyl asulam	esulam	E	0.00092
onjugated acetyl sulphanilamide	asulam	E	0.00092
ethylbenzenesulfonyl carbemate	asulam	E	0.00092
anzimidazole-2-ylamine	benomyl	E	0.00045
-benzothiazol-2-yl(methylamino)carboxamide	methabenzthiazuron	E	0.00025
maldehyde	deminozide	E	0.00001

Transformation product	Parent pesticide(s)	Data availability classification	Risk index
arbendazim	thiophanate-methyl	A	0.08
aldicarb sulfoxide	aldicarb	Α	0.00001
RP 30228	iprodione	Α	<0.00001
Idicarb suffone	aldicarb	A	<0.00001
3,5,6-trichloro-2-pyridinol	chlorpyrifos	Вр	3.54859
etrahydrophthalamide	captan	Вр	0.04328
minomethylphosphonic acid	glyphosate	Вр	0.00748
I-phenoxybenzoic acid	cypermethrin	Вр	<0.00001
neth ylisothiocyanate	metam-sodium	с	2.67106
l'-(3,4-dichiorophenyl)-N-methylurea	diuron	c	1.63465
eisopropylatrazine	simazine	с	0.55712
nalathion dicarboxylic acid	malathion	С	0.28916
-hydroxy-2,5,6-trichloroisophthalonitrile	chlorothalonil	С	0.25575
methoate	dimethoate	с	0.16653
liaminochlorotriazine	simazine	c	0.08146
ydroxysimazine	simazine	С	0.0586
nethamidophos	acephate	С	0.0497
,4-bis(isopropylamino)-6-hydroxy-s-triazine	prometryn	С	0.03064
nolinate sulfoxide	molinate	c	0.02165
alathion monocarboxylic acids	malathion	C	0.01213
4-dichlorophenol	2,4-D	С	0.00719
examethyleneimine	molinate	c	0.00422
-amino-4-isopropylamino-6-methylthic-s-triazine	prometryn	c	0.00131
esmethyl norflurazon	norflurazon	c	0.00098
PTC sulfoxide	EPTC	C	0.00084
-(6-chloro-pyridine-3-yimathyl)-N-nitro guanidine	imidacloprid	с	0.00077
yrimidinol	diazinon	D	6.69476
,5,6-trichloro-2-methoxypyridine	chlorpyrifos	D	1.4461
-hydroxy ethyl phosphonic acid	ethephon	D	0.71052
-napihol	carbaryl	D	0.4105
-carbamyl-2,4,5-trichlorobenzoic acid	chlorothaionit	D	0.34713
desmethyldimethoate	dimethoate	D	0.27147
thylene	ethephon	D	0.16784
-cyano-2,4,5,6-tetrachiorobenzamide	chlorothalonii	D	0.14441
ydroxyl-pyrimidinol	diazinon	D	0.13775
,O-dimethylphosphorothiolc acid	dimethoate	D	0.12927
eisopropyl hydroxyatrazine	simazine	D	0.11347
-chlorobezoic acid	thiobencarb	D	0.10296
P 36221	iprodione	D	0.08573
,a,a-trifluoro-2,6-dinitro-N-propyl-p-toluidine	triffuralin	D	0.07142
carbamyl-1,2,4,5-tetrachlorobezoic acid	chlorothaionil	D	0.05971
cyano-6-hydroxy-2,4,5-trichlorobenzamide	chiorothalonii	D	0.05276
P 25040	iprodione	D	0.04776
2'-azoxybis (a,a,a-trifluoro-6-nitro-N-propyl-p-tokuidine	triffuralin	D	0.04658
,5-dichioroaniline	iprodione	D	0.04549
-cyano-2,5,6-trichlorobenzamide	chlorothalonil	D	0.04443
,a,a-trifluoro-2,6-dinitro-p-cresol	trifluralin	D	0.04192
-ethyl-7-nitro-5-(trifluoromethyl) benzimidazole	trifluralin	D	0.04037
4-dichloroanisole	2,4-D	D	0.03956

Table D4. Transformation products considered during the prioritisation for California, compounds grouped by their data availability class and then ranked according to their	
risk index (Chapter 5)	1011

Transformation product	Parent pesticide(s)	Deta availability classification	Risk index
		Classification	
1,q,q-trifluoro-5-nitro-4-propyl-toluene-3,4-diamine	trifiuralin	D	0.0326
pensulide oxon	bensulide	D	0.02771
2,6-dinitro-4-(trifluoromethyl)phenyl]propylamine	trifluralin	D	0.02639
S-methyl-N-hydroxythioacetimidate	methomyl	D	0.02558
DX-105	thiophanate-methyl	D	0.02208
FH-432	thiophanate-methyl	D	0.02208
CGA 249287	cyprodinil	D	0.01702
-ethyl-7-nitro-1-propyl-5-(trifluoromethyl) benzimidazole	trifluralin	D	0.01553
is-3-chloroallyl alcohol	1,3-dichloropropene	D	0.01465
-(6-chloro-pyridine-3-ylmethyl)-2-imino-imidazolidine	imidacioprid	D	0.00747
nalaoxon	malathion	D	0.00642
-hydroxy-3,5-dinitro-benzenesulfonamide	oryzalin	D	0.00590
-chloro-nicotinic acid	Imidacloprid	D	0.00521
-(6-chloro-pyridine-3-ylmethyl)-N-nitro-2-imino-imidazollidine-5-ol	imidacloprid	D	0.00521
-(6-chloro-pyridine-3-ylmethyl)-N-nitroso-2-imino-imidazolidine	imidacloprid	D	0.00521
-ethyl-7-nitro-1-propyl-5-(trifluoromethyl) benzimidazole-3-oxide	trifluralin	D	0.00466
,6-dinitro-4-(trifluoromethylphenyl)amine	trifturalin	D	0.00311
-ethyl-7-nitro-1-propyl-1H-benzimidazole-5-sulfonamide-3-oxide	oryzalin	D	0.00263
,3'-azoxybis[4-(propylamino)-5-nitro] benzenesutionamide	oryzalin	D	0.00176
-phenoxybenzaldehyde	cypermethrin	D	0.00174
CA	cypermethrin	D	0.00174
,5-dinitro-4-(propylamino) benzenesulfonamide	oryzalin	D	0.00151
ans-3-chloroallyl alcohol	1,3-dichloropropene	D	<0.00001
s-3-chloroprop-2-enoic acid	1,3-dichloropropene	E	9.83109
ans-3-chioroprop-2-enoic acid	1,3-dichloropropene	E	9.83109
p'-dichlorobenzophenone	dicofoi	E	5.43847
chlorobenzoic acid	dicofol	E	5.43847
hydroxy-2,4-dichlorobenzophenone	dicofol	E	5.43847
4'-dichlorobenzhydrol	dicofol	E	5.43847
1-(p-chlorophenyl)-2,2-dichloroethanol	dicofoi	E	5.43847
p'-dichlorobenzophenone	dicofoi	E	5.43847
hydroxy-4,4'-dichlorobenzophenone	dicofol	E	5.43847
ndosulfan sulphale	endosulfan	E	0.7836
4-dichlorophenylures	diuron	E	0.67306
8-dinitro-3,4-xylidine	pendimethalin	E	0.00877
{(1-ethylpropyl)amino]-2-methyl-3,5-dinitro benzyl alcohol	pendimethalin	E	0.00877
{(1-ethylpropyl)amino}-3.5-dinitro-o-toluic acid	pendimethalin	E	0.00877

Transformation product	Parent pesticide(s)	A	F	P	E	RI
Great Britain						
3,5,6-trichloro-2-pyridinol *	chlorpyrifos/ triclopyr	-	-	-	•	6.90E-01
thifensulfuron acid	thifensulfuron-methyl	1.86E-03	4.91E-01	7.19E-01	6.60E-04	6.56E-02
kresoxim-methyl acid	kresoxim-methyl	3.53E-02	2.82E-01	7.53E-01	7.48E-03	1.87E-02
IN-A4098	metsulfuron-methyl	1.41E-03	1.64E-01	9.48E-02	2.00E-05	2.19E-03
California						
carbendazim	thiophanate-methyl	6.46E-03	4.26E-01	5.82E-01	1.60E-03	8.00E-02
aldicarb sulfoxide	aldicarb	1.63E-02	6.62E-01	3.45E-06	3.72E-08	1.24E-05
RP 30228	iprodione	6.02E-03	2.52E-03	1.87E-07	2.84E-12	1.42E-10
aldicarb sulfone	aldicarb	1.42E-02	7.87E-01	3.49E-14	3.89E-16	1.30E-13

Table D5. Calculated indices for the top four transformation products with data availability classification A for Great Britain and California, data values used for the calculations were from Table 17 and 18 in Chapter 5

^a - multiple values of the A, F, P and E indices not provided