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Abstract 

The frequency-shift (FRESH) filter is a structure which exploits the spectral correlation of cy­

clostationary signals for removing interference and noise from a wanted signal. As most digital 

communication signals are cyclostationary, FRESH filtering offers certain advantages for interfer­

ence rejection in a communications receiver. 

This thesis explores the operation and application of FRESH filters in practical interference sce­

narios. The theoretical background to cyclostationarity is clarified with graphical interpretations 

of what cyclostationarity is, and how a FRESH filter exploits it to remove interference. The effects 

of implementation in a sampled system are investigated, in filters which use baud rate related cy­

clostationarity, leading to efficiency improvements. The effects of varying the wanted signal pulse 

shape to enhance the cyclostationarity available to the FRESH filter are also investigated. 

A consistent approach to the interpretation of the FRESH filter's operation is used throughout, 

while evaluating the performance in a wide range of realistic channel conditions. 

VLF radio communication is proposed as one area where interference conditions are particularly 

suitable for the use of FRESH filtering. In cases of severe adjacent channel interference it is found 

that a FRESH filter can almost completely remove the interferer. The effects of its use with an 

impulse rejection technique are also investigated. 

Finally, blind adaptation of FRESH filters through exploitation of carrier related cyclostationarity 

is investigated. It is found that one existing method loses the advantage of FRESH filtering over 

time invariant linear filtering. An improvement is proposed to the latter which restores its perfor­

mance to that of a trained FRESH filter, and also reveals that carrier related cyclostationarity can 

be exploited, in some cases, by a simpler method. 
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Chapter 1 

Introduction 

Contents 

1.1 Background ........ . 

1.2 Scope of the Thesis. . . . . . 

1.3 Interference Rejection Context . . . . ........ . 

1.3.1 Spatial filtering . . . . . . . . . . . . . . . . . . 

1.3.2 Interference rejection with spread spectrum signals 

1.3.3 Interference rejection with narrow band signals 

1.3.4 Other uses of cyclostationarity . 

1.3.5 Current Work .. 

1.4 Structure of the Thesis 

1 

2 

3 

3 

4 

4 

7 

8 

8 

1.5 Simulation Tools and Methods . . . . . . . . . . . . . . . . . . . . . . . .. 9 

1.1 Background 

This thesis examines a particular range of techniques which can be used in digital communication 

systems for interference rejection. In the last three decades there has been a dramatic growth 

in the use of digital communications. Initially this growth was centred in wire based systems, 

as public telephone networks began to carry digital data. Although there is still rapid growth in 

wired communications, the majority of technical challenges lies in developing wireless, or radio, 

systems, be they mobile or fixed, which can carry the ever-increasing load of data traffic. 

Interference is ''the intrusion of electrical disturbances which interfere with reception" [5] and 

"interference rejection" is the process of removing, or reducing, the effect of such disturbances to 

allow reliable reception of the wanted signal, or signal of interest (SOl). In this work, the source of 

the "electrical disturbances" is assumed to be man-made, and is usually another communications 

signal. 

As radio bandwidths become more heavily used, interference becomes a more significant problem. 

As use of the radio spectrum is now very expensive for network operators (3rd generation mobile 

spectrum licenses have been sold recently in the UK for a total of £22 billion), so they understand­

ably attempt to maximise the capa~ity of any network. By doing so, they may reduce the margins 
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CHAPTER 1. INTRODUCTION 2 

of immunity to interference. In fact, the 3rd generation UMTS systems will use code-division 

multiple access (CDMA), which has a capacity limited by the interference by users ofthe systems 

to each other. 

Similarly, as more communications satellites are put into service, the separation between them 

apparent to an earth station is reduced; thus narrower beamwidth antennas have to be used, or the 

interference of one satellite signal to its neighbours will increase. 

Wired systems are not immune to this problem. Crosstalk is the term given to interference between 

signals carried on cables which are bundled together [6]. Crosstalk becomes more of a problem 

as higher data rates are sent through electrical cables. It is a significant factor limiting capacity 

in modern Digital Subscribed Line (DSL) systems where high speed data are sent over cables 

initially only intended to carry a 4 kHz bandwidth [7]. 

Jamming, or deliberate interference transmitted to prevent the reception of the jammed signal by 

its intended recipient, is a closely related problem in military radio communications. Some of the 

interference scenarios described in this thesis could also be interpreted as jamming scenarios, and 

anti-jamming techniques are usually very similar to interference rejection techniques. 

Clearly, interference is a common and significant problem in modern communications systems. 

One can also say that the great majority of modern communications signals carry digitally mod­

ulated data; this means that they have statistics which are cyclostationary. This description, ex­

plained in greater detail later on in this thesis, is equivalent to saying that the signals have spectral 

correlation, which means that they possess an inherent form of frequency diversity. In other words, 

the information carried by the signals is repeated in the spectral domain in some way. 

This property is what is exploited by the techniques investigated in this thesis. There are many 

different approaches to interference rejection, or mitigation. Methods are available of exploiting 

any differences between the signals, be they temporal, spectral, spatial or statistical in nature. The 

property exploited in the current work could be described as spectral or statistical. A review of the 

range of techniques available follows in section 1.3. 

1.2 Scope of the Thesis 

This work folloJVs on from a series of papers, published mainly by one group at the University 

of California (Davis), on exploiting cyclostationarity (for example, [8, 9, 10, 11, 12, l3]). In 

these papers, and others cited later, the concept and application of cyclostationarity is presented, 

and in particular, the structure known as thefrequency-shiftfilter (FRESH filter) is proposed for 

interference rejection. 

The purpose of this thesis is to examine in more detail, and from a more practical point of view, 

the use of the FRESH filter for interference rejectiQn in digital communications. It should be 

made clear at this point, that this is a single antenna technique - it does not use multiple sensors 

to exploit the spatial properties of signals. Here it is considered in the context of narrow band 

signals, although it can also be applied to spread spectrum (SS) signals. 

In the literature, FRESH filtering appears to be a highly promising technique, offering significant 

improvement in performance over: the simpler Wiener filtering. It is particularly attractive because 
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CHAPTER 1. INTRODUCTION 3 

it uses the diversity often already present in the signal for other reasons. This means that it can 

often be used as an "add-on" to an existing system: it could improve performance to an existing 

communications system without requiring a redesign of the whole system. However, the existing 

work has often used unrealistic SOl and interference scenarios, and has focussed on the technique 

as a generalisation of Wiener filtering, and so measured performance in terms of mean squared 

error (MSE), rather than the ultimately more important bit error rate. Here, the aim is to use more 

likely signal scenarios, and to explore possible practical applications of the technique. 

Also, the existing descriptions of the concepts and techniques are often complex and unnecessarily 

abstract. One aim of this thesis is to explain what are rather simple concepts and techniques in a 

way which is straightforward and more intuitive. 

It will be seen later that explicit use of spectral correlation achieved by the FRESH filter is also 

done implicitly in some cases by a standard matched filter. This is highlighted to help explain how 

FRESH filtering relates to, and compares with, standard filtering techniques. 

1.3 Interference Rejection Context 

There are many different approaches to the general problem of interference rejection in digital 

communications. These are described in an excellent review of the subject by Laster and Reed 

[14]. The main points from this review are summarised in this section, and some additional work 

particularly related to FRESH filtering and other uses of cyclostationarity, is also described. 

Broadly speaking, one can divide interference rejection techniques into three areas: 

• methods which use antenna arrays to exploit different angles of arrival of the signals; 

• spread spectrum (SS) techniques; 

• narrow band techniques. 

Of course, techniques in the second and third categories can also be applied to the outputs of 

antenna arrays, and there are many similarities between wide and narrow band single antenna 

techniques. 

1.3.1 Spatial filtering 

The main area of interest in using antenna arrays is in finding methods of training the array to 

have high gain towards the SOl and low gain in the direction of any interferers. This may be 

done "blindly" [15, 16] or with a training signal [17]. There are many different algorithms for this 

(reviewed in [18] and [19]) but those of relevance to t~e current work are the algorithms based on 

the cyclostationarity of the signals [12, 20], where the array is adapted to maximise the correlation 

of the filtered signal with a frequency shifted version of the received signal, and [21] where a non­

linearity generates spectral lines representing the cyclostationarity of the input, and the strength 

of these are maximised. The spatial filtering is combined with additional temporal filtering using 

cyclostationary properties in [22, 23] for beamforming, and in [24] the combination of the spatial 

and temporal approach is used for direction finding of cyclostationary signals. 
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No more is said about the spatial approach to interference rejection in this thesis, other than to 

point out that the approach used in [12] was used for blind adaptation of FRESH filters (for a 

single antenna 1 receiver) in [25]. There, frequency shifted versions of the input signal are filtered 

in such a way as to maximise their correlation. However it is shown in chapter 7 of this thesis that 

this method is flawed. 

1.3.2 Interference rejection with spread spectrum signals 

There has been a large amount of work done on interference rejection in SS systems. This work 

is surveyed in [14]. Here, again, some major points are noted, and work which exploits cyclo­

stationarity is highlighted as particularly relevant to this thesis. Interference to a SS signal can 

be categorised into two areas: narrow band interference (relative to the SS SOl) assumed to be 

external to the system, and wideband, or multiple access, interference, assumed to be from other 

users of the system. 

SS signals are inherently resistant to narrow band interference, essentially reducing the spectral 

density of the interferer by the spreading factor after de-spreading. However, there is a range of 

additional techniques for use when this de-spreading is not sufficient on its own. The only one of 

particular interest here is [26], in which the spectral redundancy of a Binary Phase Shift Keyed 

signal (BPSK) is used to reduce the corruption to the SOl caused by notch filtering against an 

interferer. This process, although it is not described as such, is equivalent to linear-con jugate­

linear (LCL) filtering described by [27], which is the baseband equivalent of Gardner's FRESH 

filtering for carrier related cyc1ostationarity as described in chapter 3 and further discussed in 

chapter 7. 

Wideband interference in direct sequence SS usually means interference from other users of the 

system, so it will be occupying the same bandwidth as the SOl, and have the same baud rate and 

chip rate. There are again many different approaches to mitigating its effect; these are either single 

user methods, where it is assumed only one user's spreading sequence is known at the receiver, or 

multi-user methods, where all users' sequences are known. Multi-user methods (see for example, 

[28]) attempt to detect each user and remove its effect from the remaining users, thus reducing 

the interference. Single user methods use more general properties of the signals, and so are closer 

to the narrow band scenarios considered in this thesis. An important factor in limiting multiple 

access interference is coping with the near-far problem, where nearby users may cause a higher 

power than others at the receiver, and so cause worse interference. Agee [29] has apparently used 

spectral correlation to aid in the management of this problem. [30] and [31] also exploit spectral 

correlation in direct sequence SS. In [32], Reed uses the spectral correlation of the interference to 

improve reception of frequency hopping spread spectrum. 

1.3.3 Interference rejection with narrow band signals 

Again, [14] reviews this area thoroughly. This is the category into which the current work falls. 

The use of spectral correlation for interference rejection can be thought of as an extension to the 

linear equalisation immediately below. Other techniques are then summarised before returning to 

specific papers on the use of spectral correlation. 
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Linear equalisation 

A basic way of removing interference is to use linear equalisation, which can be either symbol­

spaced orfractionally-spaced [33] depending on whether the delay between filter coefficients (in a 

transversal implementation) is equal to, or less than, one symbol period. The term "equalisation" 

reveals that the main motivation for such a process is to equalise a channel which introduces 

intersymbol interference (lSI). However, it also has a beneficial effect against additive interference. 

Qureshi gives a thorough description of adaptive equalisation in general in [34], and at a simpler 

level in [35]. The performance of linear equalisation against interference is examined in [36] and 

in [37] where, although cyclostationarity is not mentioned, the interferer has the same baud rate 

as the SOl, so baud rate sampling in the system exploits spectral correlation of both the interferer 

and SOl (see section 3.6.4). Linear equalisation of adjacent channel interference (ACI) is the 

subject of [38], where both the signal of interest (SOl) and the interferer are Gaussian filtered 

BPSK. The approach then taken is to look at the equaliser parameters (such as the number of taps) 

required to receive various signal and interference scenarios most efficiently. In particular, [38] is 

interested in the effect of varying the timelbandwidth product of the transmit filters for the SOl and 

interferer. Again, the cyclostationarity of the SOl and interferer is implicitly exploited by the baud 

rate sampling in the receiver structure. In the work that follows, the fractionally-spaced equaliser 

(FSE) performance is often used as a benchmark against which to measure the FRESH filter. 

Decision feedback equalisation 

The decision feedback equaliser (DFE) is a non-linear structure which can offer significant im­

provements over linear equalisers in certain channel conditions [39]. The reception of Quadrature 

Phase Shift Keying (QPSK) with a DFE in continuous wave (CW) (i.e. sinusoidal) interference 

is addressed in [40]. This paper includes analytical calculation of the ideal tap weights for a 

known interferer, an analysis of the effects of using the Least Mean Squares (LMS) adaptation 

algorithm, and an investigation of the effects of error propagation in the decision-feedback loop of 

the equaliser. The feed-forward part of the equaliser uses symbol spaced taps. 

In [41] the DFE is compared with the FSE and the symbol-spaced equaliser (SSE) in channels with 

fading and interference (either in-band CW, or adjacent channel modulated interference). The DFE 

is shown to perform significantly better than the FSE, which in turn is better than the SSE. Other 

work examining the performance of DFE structures in the presence of interference is reported in 

[42], where ACI and co-channel interference (CCI) are added to a signal in a static frequency 

selective channel. The authors of [42] point out that using shorter pulses to widen bandwidth (and 

enhance cyclostationarity) reduces the span of the equaliser required for a given channel, while 

increasing the adjacent channel interference problem in the system overall. 

Similar problems are addressed in [43], but with an e~ploration of the effect of exploiting differ­

ent signal bandwidths. The authors of [44] look at crosstalk interference in a cable system, and 

examine the situation where there is either one dominant interferer (or equivalently several sym­

bol synchronous interferers) or several asynchronous interferers. Effectively this is a comparison 

of cyclostationary and stationary interference. They demonstrate that cyclostationary interference 

can be more effectively removed than stationary interference when using a DFE. Again, the inter­

ference here has the same baud rate as the SOl. As the DFE contains symbol rate sampling, this 
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is showing how the baud rate cyclostationarity is exploited by the filter. Also of interest is [45], 

where the DFE is used to remove interference which, with other parameters constant, has varying 

degrees of cyclostationarity. 

Non-linear methods 

Other than the DFE, which is a non-linear method, there is a wide range of techniques which 

fall into this category, most of which can be categorised as using neural networks. These are 

reviewed in [46]. The main advantages over other classes oftechniques include better performance 

in non-Gaussian interference (which can apply to impulsive noise, as in chapter 6, or to digital 

interference), better performance against non-linear distortion (which can be introduced by system 

hardware) and the potential use of new, perhaps superior, types of adaptive algorithm. 

Blind adaptation against interference 

A number of papers describing the use of the constant modulus algorithm (CMA) for interference 

rejection is described in [14], but these papers describe the use of the CMA in (blindly) adapting 

a filter (usually a linear equaliser) in an interference environment; the CMA is not an interference 

rejection algorithm as such. In this work, the focus is on the static performance of different filter 

structures, not the rates or methods of adaptations, with the exception of chapter 7. The only 

published works specifically examining the blind adaptation of FRESH filters are [11, 25, 47, 48, 

49]. [25] proposes a blind algorithm for FRESH filters; this is combined with a blind equalisation 

algorithm in [47] to operate in a fading and interference environment. Chapter 7 demonstrates, 

however, that the algorithm of [25] does not work successfully. [48] is a modification of [25] which 

works, but with severe limitations. Again, this is discussed in chapter 7. [48] is essentially the 

same approach described as the spectral correlation discriminator in [11]. A completely different 

approach is shown in [49], where the CMA is applied to FRESH filters, and similarly in [50], 

where the stop-and-go Bussgang algorithm is used for the same purpose. 

Cyclostationarity based methods 

The majority oft~e work on cyclostationary, or spectral correlation, based techniques for interfer­

ence rejection has been carried out by W. A. Gardner and his co-workers. 

Gardner has generally concentrated more on the theoretical background to cyclostationarity, and 

its representation and exploitation, starting with his PhD thesis, [51] and [8]. The work on repre­

sentation continued with [52] and [53]. The spectral correlation interpretation of cyclostationarity 

was presented in [9], although most of this material also appears in Gardner's book [54], along 

with many of the results concentrating on analogue and digitally modulated communications sig­

nals from [55] and [56]. For the QAM signals, rectangular pulse shaping is used. Here, in contrast, 

the properties of raised cosine filtered signals are shown. 

Other publications of Gardner and others take a more applied approach to filter structures which 

exploit cyclostationarity for various applications. For example, in [57] and [58], Reed looks at 

interference rejection in a range of scenarios with additive interference only, but using signals 
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with either rectangular pulses or pulses bandlimited with a Butterworth filter, neither of which 

are widely used in practice in narrowband communications. In [57], different modulation types 

of SOl and interference are considered, for signals with the same carrier frequency and different 

baud rates. [58] combines the demodulation into the (frequency domain) FRESH filter by adding 

the SOl carrier frequency to the filters' frequency shifts. The FRESH filter is compared with the 

matched filter in a simple BPSK scenario, and is found to be better, except when the interferer is 

very weak. Notice that Reed uses the term time-dependent adaptive filter instead of frequency-shift 

filter (or, more strictly, adaptive frequency shift filter). In [59,60], more theoretical development 

of FRESH filtering is given with some more examples of simulated performance, but in the for­

mer, the important equivalence is shown between the FRESH filter and the FSE when both are 

followed by baud rate sampling. The spectral shapes considered there include 20% and 100% 

excess bandwidth (EBW) raised cosine, and the performance is measured for filters containing 

different numbers of frequency shifts. 

Gardner summarises the previous work on FRESH filtering and its theoretical background in [13] 

and does the same at a simpler level in the magazine article [61]. There is little published work 

to date which examines performance variation with interferer carrier frequency, power or symbol 

timing, all of which are considered here. 

In later work, there are various attempts to combine FRESH filtering with other techniques, such 

as array processing [58] and the DFE [62]. 

1.3.4 Other uses of cyclostationarity 

In the subject of communications there are four areas, other than interference, where cyclostation­

arity can be a useful property. These are: 

• blind channel equalisation or identification 

• blind antenna array beam/null steering (see section 1.3.1) 

• signal identification and detection 

• synchronisation 

~ 

Blind channel equalisation is a large subject which cannot be described here, other than to say 

that cyclostationary based techniques [63, 64, 65, 66, 67, 68] offer an alternative to higher-order 

statistics (HOS) based methods. HOS methods tend to require very long training periods compared 

to cyclostationary techniques, but the latter suffer from not being able to identify some channels 

[69]. The original suggestion that second-order cyclostationary statistics could be used for blind 

identification of dispersive channels came from Gardner [70]. 

Signal identification or detection (i.e. determining whether or not a signal is present, as opposed to 

receiving its data) can use the spectral correlation properties of cyclostationary signals by treating 

their spectral correlation density functions or cyclic autocorrelation functions (see chapter 2) as 

signatures. For example, the appropriate function can be calculated for the received, noisy, signal, 

and a search for matching features from a set of signatures of expected signals can be made [71, 

72, 73]. 
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Various synchronisation processes could be improved by reducing the noise in a signal with a 

FRESH filter before attempting to synchronise, but there have been some efforts to use the cyclo­

stationarity of the received signal more directly [10, 74, 75]. 

1.3.5 Current Work 

The use of spectral correlation or cyclostationarity looks attractive because it can exploit structure 

in the spectra of both the SOl and interference. Many other techniques use less specific properties, 

and so are likely to be less effective. The structures required for exploiting cyclostationarity are 

relatively simple (amounting to little more than a bank ofFSEs) and make use of excess bandwidth 

which is likely to be present in the signals anyway. 

The existing work is lacking in its analysis of FRESH filtering in realistic communications sce­

narios. This thesis uses either raised cosine filtered QPSK or BPSK, or Gaussian Minimum Shift 

Keying (GMSK), and, specifically in chapter 6, uses a scenario which closely matches the con­

ditions encountered in a real communications system. This thesis also attempts to improve the 

current state of the literature on the subject, by highlighting the simplicity of the concepts and 

techniques involved. In particular, it is made clear that matched filtering exploits SOl baud rate 

spectral correlation, that BPSK carrier related correlation is equivalent to LCL filtering at base­

band, and that this can be achieved by discarding the imaginary part of the baseband noise. 

1.4 Structure of the Thesis 

In chapter 2 the fundamental ideas of stationarity and cyclostationarity, and the frequency domain 

manifestation of cyclostationarity, spectral correlation, are defined and explained. The cyclic au­

tocorrelation/unction and spectral correlation density function (SCD) are introduced, and several 

examples of SCD plots of digital communication signals are given. This chapter forms a back­

ground to the research and is based largely on pre-existing material (in particular [54, 13]) with 

the exceptions of the graphical representation of the two parameter autocorrelation function for 

a rectangular pulse sequence (section 2.1.5), and the interpretation of baud rate related spectral 

correlation as a result of the sampling theorem (section 2.2.2). 

Chapter 3, "Frequency Shift Filtering", introduces the frequency shift filter (FRESH filter) struc­

ture and describes how it may be used in a receiver to replace, for example, a FSE or matched filter. 

Its adaptive form is shown, as is the equivalent structure, the periodically time-varying filter. The 

effect of sampling before or after the filter is also investigated both for the purpose of improving 

the efficiency of implementation, and of highlighting the important equivalence of the FSE and 

FRESH filters when they are followed by baud rate sampling. How, then, the FSE and FRESH fil­

ter exploit spectral correlation, is also shown. The explQitation of the properties of cyclostationary 

interference is shown, and the chapter finishes by describing the links between FRESH filtering 

and linear-con jugate-linear (LCL) filtering, and the property of circularity. The original work in 

this chapter comprises the graphical representations of how the FRESH filter and FSE reject in­

terference (sections 3.5.1 and 3.6.7), and the analysis of the effect of sampling in FRESH filters 

(sections 3.6.3 to 3.6.6). The explanation of how the LCL filter is the baseband representation of 

the FRESH filter with a frequency shift of twice the carrier, is also novel, as is the link between 
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circularity and carrier related spectral correlation. 

The implementation of FRESH filtering for a QPSK SOl and interferer and where both the SOl 

and interferer are raised cosine filtered, but where the interferer has a much higher power than 

the SOl is shown in chapter 4. This difference in performance is shown between a filter which 

exploits only SOl properties, and one which also uses interferer cyclostationarity. To verify the 

correct operation of the simulations, the cyclic Wiener filter equations [13] are solved for some 

example scenarios and the filter responses compared with those from the simulations, which were 

obtained by using an adaptive algorithm to drive the filters to the minimum MSE solution. The 

resulting values ofthe MSE are also compared with the theory and found to give good agreement. 

This material is an implementation of previously published filter structures, and a specific solution 

of general known filter equations, but as such is all original. 

The next chapter (chapter 5) explores the possibility of improving FRESH filter performance by 

choosing a SOl pulse shape to enhance the signal's cyclostationarity. This also provides an op­

portunity to test FRESH filter performance in some other interference scenarios, including an 

interferer of equal power to the SOl, an interferer with equal or different baud rate to the SOl, and 

an interferer with different carrier frequencies. It is found that there is no obvious improvement to 

be gained from manipulating the pulse shape of the SOL 

Very Low Frequency (VLF) radio communications provide a potential application for FRESH 

filters and this is described in chapter 6. Interference scenarios where there is ACI up to 40 dB 

more powerful than the SOl provide an opportunity to test the most effective frequency shifts to 

use. The modulation scheme used is OMSK. As VLF communications routinely use techniques to 

mitigate impulsive noise, the possibility of operating FRESH filters in a system with one of these 

techniques (hole-punching) is investigated and some problems are identified. 

Finally the issue of blind adaptation of the FRESH filter is considered in chapter 7. The aim here 

is to look at methods for adaptation which arrive at the optimum filter solution, without being 

concerned about adaptation rate. Two published adaptation algorithms are implemented: one is 

found to be flawed in that it does not adapt to the correct solution; the other is shown to have severe 

limitations, and to result in a structure which does not have the interference rejection ability of the 

FRESH filter. A change to the filter is proposed which, although in practical terms is very simple, 

is sufficient to give performance as good as a trained FRESH filter. 

The conclusions of the work are then summarised in chapter 8. 

1.5 Simulation Tools and Methods 

The majority of the results shown in this thesis were obtained through Monte-Carlo simulation 

using commercial software called Signal Processing WOfksystem (SPW). 

This a simulation package which allows a Monte-Carlo simulation program to be built up graph­

ically from a large collection of standard library blocks. These blocks may represent functions 

such as random signal sources, arithmetic processes, general filtering, error counting and so on. 

lt also allows extra functionality to be included by writing new blocks in C. SPW converts the 

graphical representation of the systein to C code, which is then compiled and run. SPW can be 
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described as a "waveform" or "dataflow" simulator [76] meaning that the entire waveform is simu­

lated through discrete time samples, and the simulation runs processes on each sample as required 

by the program. 

It is important to be aware of the limitations of the simulation methods used. When representing 

a continuous quantity, a discrete time equivalent signal must be used, subject to the limitations 

of the sampling theorem (i.e. that the sampling frequency must be at least twice the bandwidth 

of the signal). The dataflow method of simulation has implicit synchronisation built in, in that 

every sample "transmitted" through a channel can be "received" as if with perfect time, phase and 

frequency synchronisation, unless specific efforts are made to simulate synchronisation errors. 

This implicit synchronisation can be useful when one is interested in other processes, or sources 

of error, but it must be recognised that such simulations do not represent the real world conditions 

a receiver will operate under. 

In this thesis the simulations are validated through comparison with theoretical methods where 

possible (as in chapter 4). In this chapter it was possible to compare values from analytic expres­

sions for the mean squared error (MSE) of the output of the systems, which were then compared 

with the simulated value. However most of the rest of the present work measures performance in 

terms of bit error rate (BER) this being a more useful performance indicator for communications 

systems. Analytic expressions for BER are only available for simple situations such as QPSK 

received in the presence of AWGN only. Wherever possible and appropriate, simulation systems 

were tested with such simple scenarios so that a comparison with accepted theory could be made. 

In general, other than the synchronisation implicit in the method, no information was used in the 

simulated receivers which would not be available to a real receiver, other than for the purposes 

of quantifying performance. For example, adaptive filters were used, trained with a standard 

algorithm, rather than using filter solutions based on ensemble averages. 

The channels modelled for this work were all fairly simple and well understood. All were purely 

additive: the corruption introduced was either white Gaussian noise, or impulsive noise (in chap­

ter 6) with an interfering signal also present. 

Counting bit errors in a system containing several random processes, such as signal and noise 

sources, leads to results which are also fundamentally random. However, one can be confident 

(in a quantifiable way) that the resulting BER is a good representation of the "true" result which 

one is aiming for. The theory underlying the reliability ofBER measurements is well described in 

[76]. For many practical measurements, the "rule of thumb" that counting 10 errors gives a BER 

within a factor of 2 with 95% confidence was used. Good computing resources were available for 

the simulations presented in this thesis, so all BER measurements were taken with at least 100 bit 

errors. This gives a BER within about 25% of the true value with a confidence of 95%. 

The confidence limits above assume independent error events, so they do not apply, for example, 

to situations where a single fade in a channel may cause multiple errors. In this thesis the only 

possibility for such slowly changing conditions leading to correlated errors is in the effect of beat 

frequencies, when, for example an interferer has a baud rate very close to that of the SOL In such 

situations, longer simulations were run, if required to ensure that BER vs. Eb/NO curves were 

smooth. This comparison of indepe~dent estimates of BER with different SNR is a recognised 

way of improving confidence in BER estimates, albeit one whose effect is hard to quantify. 
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MATLAB was also used in a limited way for producing the spectral correlation density plots. 

Here the desired random signal was produced and filtered, and spectral analysis was performed, 

using standard functions, on the result. The number of symbols in each signal was varied, until a 

reasonably smooth graph was obtained. These graphs are intended to illustrate the properties of 

the signals in a qualitative way only. 
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This section describes the property of cyclostationarity of signals, in comparison to stationarity, in 

both the time and frequency domains. This forms a background to the following chapters where 

filter structures which exploit cyclostationarity are investigated. Many digital communications 

signals are cyclostationary; the property is a result of the implicit periodicity of these signals, 

related to the baud rate, carrier frequency or any other periodic component. This modelling of 

signals as cyclostationary is a departure from the traditional stationary model, on which much of 

classical signal processing theory is built. 

Cyclostationary signals have periodically time-varying second order statistics (in particular, they 

have a periodic autocorrelation); stationary signals have second order statistics which are constant 

with time. As Wiener filtering theory is based on the second order statistics of the signal being pro­

cessed, the more specific cyclostationary model allows an improvement in filtering performance 

over classical Wiener filtering. This is described in chapter 3, but it is first necessary to describe 

the property of cyclostationarity and ~ow it compares with the stationary model. A time domain 

approach to this, which concentrates on the autocorrelation function, is presented in section 2.1, 
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CHAPTER 2. STATIONARITY, CYCLOSTATIONARITY AND SPECTRAL CORRELATION 13 

while in section 2.2 the frequency domain manifestation of cyclostationarity, spectral correlation, 

is described. The frequency domain approach allows a more intuitive understanding of how the 

filters work which exploit cyclostationary. 

The majority of the initial work on cyclostationarity related to communications was done by W. A. 

Gardner and his co-workers [8, 9, 53, 52, 54, 59, 60, 61, 77, 61, 13]. However to clarify what can 

be a difficult subject, a number of new interpretations and representations of cyclostationarity are 

presented in this chapter, in particular the 2D surface representing the two-parameter autocorrela­

tion function in section 2.1.5 and the link between spectral correlation and the sampling theorem 

described in section 2.2.2. Cyclostationarity based techniques are well known in the areas of an­

tenna array beam steering and blind channel estimation and equalisation, but the interest here is in 

the less well researched area of interference rejection in a single antenna receiver. 

2.1 Time Domain Representation of Cyciostationarity 

This section examines some details of the time domain manifestation of cyclostationarity, and in 

particular compares the two parameter cyclic autocorrelation with the more conventional autocor­

relation function. 

This examination of the two parameter autocorrelation function is illustrated by deriving the two­

parameter autocorrelation function surface for a random bipolar rectangular pulse sequence. The 

standard autocorrelation function of this waveform is well known and the fact that the signal only 

takes the values of -1 and I means it is relatively easy to calculate its time-varying autocorrelation 

values. 

The two parameter autocorrelation function is the starting point in the analysis of cyclostationary 

signals. Periodicity ofthis function with time results in spectral redundancy which can be exploited 

by advanced signal processing methods to give an enhanced immunity of a signal to interference. 

2.1.1 Autocorrelation and mean definitions 

Autocorrelation is a measure of how closely a signal, or sequence, is correlated with time shifted 

versions of itself. Two relatively time shifted versions of the signal are multiplied together and 

then some form of averaging is used to give a result which is a function of time or time shift. 

We have three types of autocorrelation to consider: 

• the autocorrelation of a specific finite signal or sequence, where the average is a time average 

over the whole signal; 

• the autocorrelation of a random signal (or stochastic process) which is a probabilistic con­

cept involving an average over an ensemble of different realisations of the random process; 

• the autocorrelation of a random signal, where the signal has infinite duration and a time 

average in the limit of infinite time replaces the ensemble average used for random signals. 

The first of these gives the real properties of a specific signal which will affect the performance 

of, for example, a filter used to process the signal. However it is a unique function for each signal. 
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The other two types of autocorrelation give the "average" properties of a group of signals - the 

group being defined by what signals make up the ensemble, or in what way the time averaging is 

done. 

Finite sequence definition 

For a signal x (t) of duration 2P there are three equivalent definitions of autocorrelation. The first 

is: 

1 l. t
+

P 

R~.(t, T) = - x(t')x*(t' - T)dt' 
2P t-P 

(2.1) 

or, shifting the origin of t: 

1 l.
t+P 

, T *, T , 
RAt, T) = - x(t + - )3: (t - - )dt 

2P t-P 2 2 
(2.2) 

Notice that unlike in standard treatments of this subject, the autocorrelation is written explicitly as 

a function of the time origin of the calculation, t. This is because peridocity of the autocorrelation 

with respect to t will be considered later. T represents the lag between the two instances of the 

signal. 

This can also be written in terms of tl and t2, where tl = t - T /2 and t2 = t + T /2: 

(2.3) 

so now the difference between t I and t2 is the relative time shift or lag, T, between the two versions 

of the signal. 

This is a time-average of the signal, multiplied by a time shifted version of itself, averaged over 

the duration of the signal. The exact value of this function will depend on the particular sequence 

used, but as this sequence becomes longer the finite autocorrelation will tend towards the function 

given by the probabilistic and infinite time-averaging definitions below. 

Probabilistic definition 

The autocorrelation Ra,(t, T) of a random process :1:(t) is the expected value of the product 

X(t)X*(T), that is, 

Ra·(t, T) = E[x(t)x*(t - T)] (2.4) 

or 

Ra,(t, T) = E[x(t + ~)x*(t - ~)] (2.5) 

As before we can express this in terms oftl and t2: 

(2.6) 
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Figure 2.1: Probabilistic andfinite autocorrelation/or rectangular pulse sequence 

where E[] indicates the expected value or expectation [78]. This means an average over an imagi­

nary infinite set of occurrences of x (t). This infinite set is the ensemble. 

Infinite time-averaging definition 

The time averaging definition of the autocorrelation of a signal x (t) is 

1 [t+P 
Rx(t,r) = lim - x(t')x*(t' - r)dt' 

2l'-+00 2P . t-l' 
(2.7) 

or 
1 1

t+P . , r *, r , 
R;t.(t, r) = Inn - :r(t + -)x (t - -2dt 

2l'-+00 2P t-l' 2 
(2.8) 

or 

1]+tO +p 

) . 1 J 2 ') *., )d ' R.7: (t t ,t2 = hm - x (t x (t - tt + t2 t 
2 P -+00 2 P !.l..±!:l. _ P 

2 

(2.9) 

Mean definition 

For completeness, the three definitions of the mean of.a signal, which correspond to the three 

autocorrelation definitions above, are given here: 

1 1t
+

P 

J1,;~(t) = 2P x(t')dt' 
t-P 

(2.10) 

Jt;r(t) = E[x(t)] (2.11) 
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1 I t
+

P 

{ta·(t) = lim - x(t')dt' 
2P-+oo 2P t- P 

(2.12) 

2.1.2 Autocorrelation of a random rectangular pulse sequence (stationary) 

To illustrate the difference between the various definitions of autocorrelation, and the difference 

between stationarity and cyc1ostationarity, the autocorrelation is shown of a signal composed of 

rectangular pulses carrying random data. In this section the standard (time-invariant) autocorre­

lation of such a signal is presented. In section 2.1.5 the surfaces representing the two parameter 

autocorrelation ofthe same signal are shown, using both the stationary and cyc1ostationary models. 

The first example, figure 2.la shows the finite sequence autocorrelation of a random rectangular 

pulse sequence of 100 symbols which can take the values of -lor + 1. The symbol period is T. 

Figure 2.1 b shows the graph of the probabilistic or infinite time-averaging definition. Both show 

the similar triangular shape, but whereas b is identically zero outside the range -T to T, the finite 

sequence definition is "noisy". This is a result of the sequence being of finite length. Averaging 

over an infinite time would give the "ideal" graph of 2.lb. 

For the probabilistic definition it is the averaging over an infinite set of possible realisations of 

the process that removes the noise shown in 2.la to give the noise free function of figure 2.lb. 

The sequence could be finite or infinite. Conversely, the structure of the noise in figure 2.la is 

determined by the particular data values in the finite data sequence analysed. 

However for practical signals, it is only possible to measure a finite sequence, so this function is 

what is used as an estimate of the probabilistic function. If a sufficiently long sequence can be 

used in the averaging, then good results can be obtained. 

The fact that the autocorrelation is plotted as a function of T only, means that stationarity has been 

assumed and any variation with t will not be seen. 

2.1.3 Definitions of stationarity and cyclostationarity 

Stationarity 

A wide sense statiDnary signal or process is one in which the mean value and autocorrelation are 

invariant in time. This is expressed mathematically as: 

E[x(t)] = constant (2.13) 

R:r (t, T) = constant (2.14) 

for all values of t. 

A common description of this property is that the second order statistics of the signal are constant 

with time (or more correctly the first order (mean) and second order (autocorrelation) are constant). 

There is a more restrictive stationarity definition, narrow-sense stationarity, which requires the 

signal to have a probability density function which is invariant with time. Effectively this means 
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that as well as constant second order statistics, the signal should have all higher statistical moments 

constant with time. In the context of Wiener filtering however, the higher order statistics are not 

used, so the wide-sense definition is sufficient, and is, of course, simpler to work with. This also 

applies later to the narrow and wide sense definitions of cyc1ostationarity. For the work presented 

in this thesis, the wide sense definitions are sufficient, so all further uses of the terms stationary 

and cyc1ostationary imply wide-sense. 

Figure 2.1 uses the conventional way of displaying an autocorrelation function; it is assumed that 

it is a function of T only, that is it is independent of t. This is equivalent to assuming that the signal 

is stationary. Alternatively we may say that if we are not interested in any variation with t, then 

the autocorrelation can be averaged over all time t to give a function of lag, T only. 

This style of display is therefore unsuitable for examining the autocorrelation of non-stationary 

signals. In the following sections, cyc1ostationary signals are defined and time-varying autocorre­

lation is plotted. 

Cyclostationarity 

A wide sense cyc1ostationary signal or process is one in which the mean value and autocorrelation 

are periodic. This applies to all the definitions of these quantities given in section 2.1.1. That is 

(using the probabilistic definitions): 

E[x(t)] = E[x(t + mTo)] (2.15) 

R;r(t, T) = E[x(t)x*(t - T)] = E[x(t + mTo)x*(t + mTo - T)] (2.16) 

where 'In is an integer. The subscript :r on R J, indicates that R is the autocorrelation of the signal 

:1:( t). RJ, (t, T) is the probabilistic autocorrelation function expressed as a function of two variables, 

T is "parametric time" - the lag between the two signals, and t is "real time" - the time origin of 

the autocorrelation calculation. Equation 2.16 describes an autocorrelation function periodic in 

t with period To. That is, the fundamental period is To, and RJ, is also periodic at harmonics 

of To. In a communications signal To will be related, for example, to a carrier, symbol or chip 

frequency. If Rx h~s more than one fundamental period and they are not harmonically related (as 

in a digitally keyed carrier where the keying and carrier frequencies are not harmonically related) 

then the signal is said to be polycyclostationary [54]. 

There is a corresponding narrow sense definition of cyclostationarity which requires that the prob­

ability density function of the signal is periodic in time. However for filtering applications the 

wide sense definition is sufficiently restrictive. 

Ensemble averaging and cyclostationarity 

The properties ofthe autocorrelation (and mean) based on the probabilistic definition are of course 

dependent on how the ensemble is defined. An ensemble is an imaginary set of an infinite number 

of instances of the process or signal under consideration, but it is important to be aware of the 

similarities and differences between these different instances. 
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If we take the example of the autocorrelation of a random rectangular pulse sequence with symbol 

period T, which can take the values -1 or 1, all members of the ensemble used in this case 

will also be random rectangular pulse sequences with period T, and amplitude -1 or 1, but with 

different random data sequences. Whether the sequences are synchronous or not (that is, whether 

symbol transitions occur at the same time in each ensemble member) determines if the process is 

stationary or cyclostationary. 

Consider figure 2.2: graph a illustrates a member of the ensemble representing a random rectan­

gular pulse sequence; graph c shows another member. Both have the same pulse shape and period, 

but carry different data. There is also an arbitrary shift in their symbol timing relative to each 

other. Over the whole ensemble the symbol timing shifts would be uniformly distributed from 0 

toT. 

Graph b shows the same waveform as in a but delayed by 'T. In the calculation of the autocorrela­

tion, a is multiplied by b (for every value of'T), c is multiplied by d, and so on for every member of 

the infinite ensemble. This describes the conventional calculation of probabilistic autocorrelation 

In contrast, figure 2.3 shows how the autocorrelation is calculated to reveal the cyclostationarity 

of the rectangular pulse sequence. In this case, graph c shows a waveform with different data from 

that in graph a, but with synchronised transitions between the symbols. All the members of the 

ensemble are constrained to have their symbol transitions occurring together. It is this constraint 

which reveals the waveform to be cyclostationary with a fundamental period ofT, in contrast with 

the uniform distribution of symbol timings in the stationary case. 

Notice that applying a similar constraint to the averaging of a signal with no inherent periodicity 

(such as a white noise process) would not result in a periodic autocorrelation function. The period­

icity of the autocorrelation is not a result of the constraint, but it is necessary to apply the correct 

constraint to reveal a particular signal's cyclostationarity. 

Time averaging and cyclostationarity 

In the literature it is normal to use the probabilistic approach to autocorrelation and to assume 

that it applies to real random signals of long enough duration. As the duration of a finite signal 

increases, the finite deterministic autocorrelation function obviously tends towards the infinite 

deterministic autocorrelation. As time tends to infinity, the deterministic autocorrelation tends 

towards the probabilistic autocorrelation as long as the signal or process is ergodic I. In practice 

ergodicity requires only uncorrelated data ([ 17] page 99), which is a common and reasonable 

assumption for communications signals. For signals where this is not the case, the data can be 

encoded to ensure it is uncorrelated (see, for example, [79] chapter 3). However, much of the 

theoretical work on cyclostationarity has been done by W.A. Gardner, who prefers to use the non­

probabilistic, time averaging theory [54], so this approa~h is also described. 

We have seen that an ensemble with symbol synchronous waveforms gives a periodic autocor­

relation which shows the waveform is cyclostationary; and that an ensemble with asynchronous 

symbol transitions gives a stationary waveform. The analogy using time-averaging is that to re­

veal the cyclostationarity of a waveform, the time-averaging must by synchronised, that is, the 

IThis is in fact the definition of ergodidty. See [78] page 427. 
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wavefonn is averaged with versions of itself, shifted in time by its cyclic period. To make such 

a wavefonn stationary, there must be random changes in the symbol clock phase. As the time 

averaging is taken over a period tending to infinity, there will be enough random phase jumps to 

remove the innate periodicity of the whole signal (see also section 2.1.5). 

Gardner uses the following definition (the limit periodic autocorrelation) for analysing cyclosta­

tionary signals: 

(2.17) 

where 11, is an integer, To is the cyclic period, which in the current example is T, the symbol period. 

This is synchronised averaging - instead of a symbol synchronous ensemble average, the averag­

ing is done over the same signal shifted by an integer number of symbols. This shifting is done 

an infinite number of times. Effectively we are then averaging over all symbols in the signal. As 

long as the data are uncorrelated, this is equivalent to an infinite number of different realisations 

of the signal; that is, a conventional ensemble average. This definition is used by Gardner in [54], 

because he believes that it avoids conceptual difficulties associated with the abstract idea of a sta­

tistical ensemble. However the statistical ensemble is a well understood tool in signal processing 

and the current author believes that the time-averaging approach is cumbersome and obscures the 

otherwise interesting content of [54]. The statistical approach is used henceforth in this work. It 

is interesting to note that a review [80] of [54] led to strongly worded correspondence attacking 

and defending Gardner's approach [81, 82, 83, 84, 85, 86]. This correspondence developed into 

an argument ofthe usefulness of the concept of circularity [85,87,88,89,90] which is addressed 

in section 3.8. 

The equivalent process of synchronised averaging applied to the time averaging definition of cyc1o­

stationarity is described in [54] chapter 10, which is based on old techniques, apparently published 

as early as 1847 [91,92]. 

The equivalent non-probabilistic situation is a signal carrying data in the fonn of rectangular 

pulses, where there is no change in the symbol clock phase. In that case a time translation of 

an integer number of symbols will always result in a signal which is symbol synchronised with the 

original. 

2.1.4 Cyclic autocorrelation 

Cyclic autocorrelation function 

Definitions and descriptions now follow of a function which is useful in quantifying and illustrat­

ing the cyclostationary properties of a signal: the cyctic autocorrelation function [13, 54]. The 

related spectral correlation density function is described in section 2.2.4. 

As Rx(t, T) (equation 2.16) is periodic in t, we can write it in the fonn of a Fourier series expan­

sion: 
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Figure 2.2: Two members (a and c) of an ensemble for the calculation of the stationary autocor­

relation of a rectangular pulse sequence, and their delayed versions (b and d) 
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Figure 2.3: Two members (a and c) of an ensemble for the calculation of the cyclostationary 

autocorrelation of a rectangular pulse sequence, and their delayed versions (b and d) 
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R ) - ~ RO' ( ) j2rrO't ';I.(t, T - ~ .~. T e (2.18) 

Here the summation can be over all values of n although the coefficient R~ will be zero unless n 

is equal to a period of the autocorrelation function. For example if the baud rate l/T is a cyclic 

frequency, then n will take values 0, l/T, 2/T, ... because the baud rate harmonics are also cyclic 

frequencies. 

If Rx (t, T) is not periodic, then all coefficients of the summation will be zero except for R~. If 

there is periodicity present then at least one other R~ will be non-zero. The quantities ~ are 

therefore useful as a fundamental parameter of cyclostationarity. This parameter is called the 

cyclic autocorrelation/unction [54], and is defined as any other Fourier coefficient: 

R~(T) = E[Rx (t,T)e- j2rrO't] 

= E[x(t + ~ )x*(t - ~ )e- j2rrO't] 
2 2 

(2.19) 

(2.20) 

However, we can interpret this equation in a slightly different way, by recognising that x (t -

T /2 )ej2rrat is simply the signal :1: (t - T /2) shifted in frequency by n. This means that if a signal 

:1: is cyclostationary with a cyclic frequency n, then there is non-zero correlation between x and 

x shifted in frequency by n. This phenomenon is known as spectral correlation and is simply the 

frequency domain manifestation of cyclostationarity. This is discussed further in section 2.2. 

In digitally modulated signals, the cyclic frequencies are usually related to the baud rate and 

the carrier frequency. Spread spectrum signals may have additional cyclic frequencies present 

such as a chip rate in direct sequence spread spectrum, or the hopping frequency in frequency 

hopping spread spectrum. As an example, a rectangular pulse BPSK signal with baud rate l/T and 

carrier frequency fe has cyclic frequencies ±2fe, ±l/T, ±2/T, ±3/T, ... , ±2fe ± l/T, ±2fe ± 
2/T, ±2fe ± 3/T, ... [54, 13]. 

Conjugate cyclic autocorrelation function 

Another function which can describe the cyclostationarity of some signals is the conjugate cyclic 

autocorrelation/unction [54] which is defined as: 

R O' [T T) -j2rrO't] n.(T)=Ex(t+2')x(t-2' e (2.21) 

This function represents the correlation between the signal and its complex conjugate frequency 

shifted by n. A simple example of the conjugate cyclic ACF is for purely real signals, such as 

baseband BPSK or any real modulated carrier. As the gjgnal is purely real, then x = x* and clearly 

R~ = R~x' for all n. For many complex signals, such as baseband QPSK, the conjugate cyclic 

ACF will be zero for all values of n while for some, baseband MSK, for example, the function 

is more interesting. However it is easier to understand the differences between cyclic correlation 

and conjugate cyclic correlation by examining signals' properties in the frequency domain. This 

is done in section 2.2. 
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2.1.5 Autocorrelation surfaces for stationary and cyclostationary signals 

The sections above contain definitions of autocorrelation, and stationary and cyclostationary pro­

cesses with reference to a random rectangular pulse sequence. In this section, three dimensional 

graphical representations are shown of the two parameter autocorrelation function for these two 

types of rectangular pulse sequence. 

The autocorrelation of a signal is normally shown as a function of one variable: the lag, T, in 

equation 2.4. In a stationary signal there is no dependency on t, the value of the time origin, so it 

is not plotted. We display the autocorrelation here as a function of t and T, or equivalently t) and 

t2, to illustrate the difference between stationary and cyclostationary signals. For cyclostationary 

signals the autocorrelation function varies with both t and T. 

Stationary signal 

The autocorrelation of a random rectangular pulse sequence has the well known triangular shape 

seen in figure 2.1 b when the stationary model of the process is used. The horizontal axis in 

this graph is T where T is as in equation 2.4. That is, the autocorrelation depends only on the lag 

between the signal and its time shifted representation, not on the value t, the absolute time variable. 

It is instructive, however, to plot it as a function oft) and t2: figure 2.4 represents equation 2.6 for 

a random rectangular pulse sequence with a limited set of values of t I and t2. In figures 2.4 to 2.8 

the symbol period is To. 

The values ofthe function are represented by four lines on the graph, which are shown as the edges 

of two planes to make the diagram clearer. In the limited range shown, the autocorrelation values 

are obvious by extension from the traditional autocorrelation plot in figure 2.1 b. The triangular 

shape of that figure is now seen twice, on the edges of the two planes. The symmetry of equation 

2.6 results in the symmetrical graph. 

Figure 2.6 only shows values for t) or t2 equal to O. We can extend this further to the full surface 

representing the two variable autocorrelation: this is shown in figure 2.S. The four lines shown 

in figure 2.4 lie on the surface of a "tent" shape. It can be seen that this is the correct shape 

by remembering that the autocorrelation must be 1 for all tJ = t2, and that the value of the 

autocorrelation d~pends only on the difference between tJ and t2, not on their absolute values. 

The function extends to infinity in both t) and t2. We can also plot this as a function of t and T as 

in figure 2.6. 

Cyclostationary signal 

The cyclostationary case is different as a direct result of the symbol alignment of members of the 

ensemble. The value of the autocorrelation is either 0 or I; there is no gradual change from 0 to 1 

as in the stationary case. 

Consider just one pulse of the pulse sequence (see figure 2.7), for convenience centred around 

t = 0 (using the equation 2.S definition of autocorrelation). When t = 0 and ~ ~ 4f, x(t + T /2) 

and :1: (t - T /2) always have the same value, as they lie within the same pulse. Therefore for these 

values oft, T and To we have R,r(t, T) = 1. When t = 0 and ~ > 4f' X(t+T /2) and X(t-T /2) no 
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Figure 2. 7: Calculation of autocorrelation 
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Figure 2.8: Autocorrelation of cyc/ostationary rectangular pulse sequence 

longer lie in the same pulse as x (t). As different data are carried by each member ofthe ensemble, 

averaging over the ensemble gives a value of Rr (t, T) = O. 

More generally, if t i= 0 then the autocorrelation value will be 1 as long as t, T and To have values 

such that x (t + T /2) and x (t - T /2) lie within the same pulse. The autocorrelation will be 0 

otherwise. That is: 

{
IT < To - 21 t 1 

R~.(t, T) = . o otherwIse 
(2.22) 

The same argument can be applied to other pulses, that is for values oft = t + nTo, which results 

in R~.(t, T) = Rx(t + nTo, T). The resulting autocorrelation RJ." which is periodic in t for fixed T, 

o < T < To is shown in figure 2.8. It is interesting to see how this graph is related to the equivalent 

graph for the stationary case (figure 2.1). For a fixed value of T in figure 2.lb, averaging over all 

t will give a value of 1 at T = 0, 0 for T ~ To, and due to the repeating rhombus shape of the 

surface, a linear variation between T = 0 and T = To. That is, averaging over all time (or as it is a 

periodic function, over one period) recovers the stationary autocorrelation function of 2.1b. 

To create the cyclostationary autocorrelation surface of figure 2.8, ensemble averaging was used 

where the ensemble members had simultaneous symbol transitions. The stationary autocorrelation 

function results from an ensemble: where each member's symbol transition times are not linked. 

This has a physical significance: if we add together a large number of cyclostationary waveforms, 
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which have the same cyclic frequencies, and in addition have simultaneous symbol transitions, 

then the sum is also cyclostationary, with the same cyclic frequencies; however adding many 

cyclostationary waveforms which have the same cyclic frequencies, but have uniformly distributed 

symbol transition times, results in a stationary waveform. 

This is the effect described in [45, 93, 44] for the case of cross-talk in telephony, where linking the 

symbol clock phases of the transmitter in the telephone exchange causes the the cross-talk to be 

cyclostationary. The same phenomenon is described from a statistical point of view in [78] page 

374, Theorem 2. 

2.1.6 Summary 

The time domain description of cyclostationarity and its representation through the cyclic autocor­

relation function and two-parameter autocorrelation function have been described, with reference 

to the example of a signal carrying random data with a rectangular pulse shape. 

It has been shown that the two parameter autocorrelation surface for a random rectangular pulse 

sequence is as shown in figure 2.8. The important feature of this graph is that Ra· (t, T) is periodic in 

t for any fixed T. This periodicity means that the signal exhibits spectral correlation, as described 

in section 2.2. The exploitation of this spectral correlation, which is demonstrated in chapters 4 

and 6, can improve interference immunity considerably. The two parameter correlation function 

was demonstrated with a sequence of random rectangular pulses as a simple example. Obviously 

such plots could be generated for any cyclostationary signal, but more useful representations of 

cyclostationarity are given by the cyclic autocorrelation and spectral correlation density functions 

described below. 

2.2 Frequency Domain Representation of Cyciostationarity 

To fully appreciate the significance of the periodicity of the autocorrelation of a cyclostationary 

signal, it is useful to interpret this phenomenon in the frequency domain. The frequency domain 

manifestation of the periodically time varying statistics of a cyclostationary signal is spectral cor­

relation, that is, the different frequency components of the signal are correlated with each other, 

or, put another way, the signal is correlated with itself shifted in frequency by certain particular 

values. 

2.2.1 Spectral correlation 

There are two fundamentally different types of spectral correlation which are commonly encoun­

tered, which can be loosely described as carrier frequency related and baud rate related. In this 

context, chip rate related cyclostationarity in direct sequence spread spectrum signals is similar 

to baud rate related cyclostationarity. These types of correlation are described in this section. 

Their existence is explained as a result of the properties of the Fourier transform (carrier related 

correlation) and the spectral properties of sampled signals (baud rate related correlation). 
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Figure 2.9: Continuous time and sampling signals; frequency and time domain 

2.2.2 Baud rate related correlation and the sampling theorem 

From [54] we know that QAM signals exhibit cyclostationarity related to the baud rate. Cyclic 

frequencies associated with the carrier frequency are ignored for the moment. A description fol­

lows of how the baud rate related correlation can be seen to be a direct result of the properties of 

sampled signals [94]. 

Let xc(t) be a continuous time signal which changes instantaneously, at random times, between 

the values (+ 1, -1). It has equal probability of taking each these two values. The signal changes 

in such that at every instant, it is uncorrelated with every other instant. This, purely real, signal is 

chosen because it is simple to represent graphically. The argument which follows is equally valid 

for any complex or real constellation. 

With no minimum time between changes in value, this signal has a (standard, single parameter) 

autocorrelation which is an impulse, and therefore a white spectrum, as shown in figure 2.9. Note 

that the time domain representation of this signal is not actually possible to draw, but the signal 

sketched has similar properties. 

A sequence of impulses x s (t) carrying data values of ( + 1, -1) can be constructed by mUltiplying 

xc(t) by a sampling function s(t) which is a sequence of impulses: 

00 

s(t) = L a(t - nT) (2.23) 
'/1=-00 

so 
00 

xs(t) = L xc(t)8(t - nT) (2.24) 
11.=-00 

s(t) is shown in figure 2.9, and :J:s(t) in figure 2.10. Let Xs(f), Xc(f) and S(f) be the Fourier 

transforms of xs(t), xc(t) and s(t) respectively. Xs(f) is therefore given by the convolution of 

Xc (f) and S (f). It is well known that the F ourier trans~orm of an infinite sequence of time domain 

impulses is an infinite sequence of frequency domain impulses, that is: 

21f 00 k 
S(f) = - '" 8(f - -) T L- T 

k=-oo 

(2.25) 
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Figure 2.10: Impulses and rectangular pulses; frequency and time domain 

so 

X s(f) = ~ f X c(f - ;) 
k=-oo 

(2.26) 

where k is an integer and T is the symbol period. 

Equation 2.26 shows that the spectrum X s(f) is invariant under frequency shifts of ~ and made 

up of alia sed copies of the spectrum X cU) . This is represented in figure 2.10 by the different 

shadings in the top spectrum. Each rectangle contains the same spectrum - it repeats at intervals 

of ~. These "images" are created by the sampling of the original continuous signal. 

So the spectrum X sU) exhibits spectral correlation as a direct result of its regular symbol period. 

An impulse sequence has a spectrum of infinite bandwidth. Figures 2.10 and 2.11 illustrate the 

effects on the spectral correlation of filtering an impulsive signal to provide a more practical wave­

form. Figure 2.10 illustrates filtering which gives a rectangular pulse shape and a sinc2 power 

spectrum which is also of infinite bandwidth. Figure 2.11 illustrates raised cosine filtering, which 

is commonly used in communications. The spectrum has a raised cosine shape, with the total 

bandwidth being controlled by the roll-off parameter. The diagram illustrates a roll-of of 1 which 

gives 100% excess bandwidth relative to the Nyquist bandwidth. It is clear that for the information 

within the Nyquist bandwidth ( - 2~ to 2~) to be repeated completely, a similar extra bandwidth 

is required. So 100% excess bandwidth is the minimum required to duplicate all the information 

in the signal. 

All three signals described above (the impulse sequence, rectangular pulse sequence and raised 

cosine filtered pulses) have spectral correlation and are therefore cyclostationary. If a signal's 

bandwidth is no greater than the Nyquist limit, then there is no spectral correlation, and therefore 

no cyclostationarity; such a signal is stationary. 

From this also follows the important point that if a signal is cyclostationary, to maintain its spectral 

correlation, a sufficiently high sampling frequency must be used. A signal sampled at one sample 

per symbol cannot exhibit baud rate related spectral c9rrelation so any processing which exploits 

cyclostationarity must be performed at a higher sampling rate. 

Another example of the spectral correlation of a QAM signal with rectangular pulses is shown in 

figure 2.12. A wider bandwidth is shown than in figure 2.10. The signal components in the region 

labelled A are correlated with those in B' after a frequency shift of 1 Hz, and with those in G' 

after a frequency shift of 2 Hz, and so on. This is exploited by the FRESH filtering described in 
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chapter 3. Any other signals present (including thermal noise) which are not cyc1ostationary with 

the same cyclic frequencies, will not be correlated under these frequency shifts. 

2.2.3 Carrier -frequency related correlation 

While a digitally modulated carrier is cyclostationary with cyclic frequencies related to twice the 

carrier frequency, we can, in general, model all the properties of a modulated signal at complex 

baseband, that is, at zero carrier frequency. It is shown here that the carrier related correlation 

is equivalent to reflective symmetry about the carrier frequency (or zero frequency at complex 

baseband). 

The Fourier transform of a purely real signal is symmetric about zero frequency while a complex 

signal shows no such symmetry. In figure 2.13 and figure 2.14 we see the power spectral density 

of BPSK (which can be expressed as a purely real signal) and QPSK (which is complex) pseudo 

random baseband data sequences, 250 symbols long. The pulse shape of both these signals is 

rectangular, so the shape of the spectrum envelope is sinc2 (x) which has a relatively high level of 

side lobes making the spectral correlation easier to see. Here we show the spectrum up to ±2/T 
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Figure 2. J 4: Power spectral density of baseband QPSK 

where T is the symbol period; the irregular detail imposed on top of the envelope is defined by the 

particular data sequence analysed, which was chosen to be fairly short to make this fine structure 

more obvious. We can see that in the QPSK signal the irregular pattern repeats every liT, that 

is, a translation of the spectrum of an integer multiple of liT would result in correlated signal 

components being overlaid. Effectively in the frequency range shown we have 4 copies of the data 

present. 

However there is even greater redundancy in the BPSK spectrum, as there is also reflective sym­

metry present about the zero frequency axis. This coupled with the baud rate spectral correlation 

means that there are 8 copies of the data present in the frequency range shown (for example: in 

frequencies 0 to 0.5, 0.5 to 1.0, 1.0 to 1.5, 1.5 to 2.0, and the negative images of these 4 ranges). 

In practical situations a more bandwidth efficient spectrum is normally used, so figure 2.15 shows 

a schematic representation of the correlation in a 100% excess bandwidth raised cosine filtered 

BPSK signal. Here we have labelled 4 regions A, B, C and D. A is correlated with C under 

a frequency shift of liT, as is B with D. Band C have reflective symmetry about the zero 

frequency axis, as do A and D. So we have the same information appearing 4 times in this 

restricted frequency range. 

If this were a QPSK spectrum the symmetry in the fine structure would disappear, leaving corre­

lation only between A and C, and- between Band D. 

In chapter 3 a filter structure is described which includes frequency shifts to exploit the baud rate 
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spectral correlation. Two or more versions of the signal are shifted in frequency so that correlated 

frequency components are overlaid. 

However exploiting the symmetry of the spectrum of baseband BPSK cannot be done by frequency 

shifting, as there is no one frequency spacing between correlated components. It can be done, 

however, by taking the complex conjugate of the signal, which has the effect of reflecting its 

spectrum in the zero frequency axis. To exploit the symmetry by frequency shifting, the signal 

must be moved up to a carrier frequency and then a frequency shift can be applied to overlay the 

correlated components. Figure 2.16 shows the spectrum of a 100% excess bandwidth raised cosine 

filtered BPSK signal with a carrier frequency of twice the baud rate. The low carrier frequency 

was chosen to allow display of both positive and negative frequencies of the signal together. It is 

clear now that a frequency shift of twice the carrier frequency will move the correlated frequency 

components together, by moving the negative and positive frequency bands together. 

As before, a schematic version of a BPSK bandpass spectrum is given in figure 2.17. The sym­

metry of the spectrum about the carrier frequency means that AB is correlated with G D under 

reflection about fe. The symmetry of the whole spectrum (which follows because the bandpass 

signal is purely real) means that all of ABGD is correlated under reflection with A' B'G' D'. 

Therefore shifting by 2.fe overlays D'G' and AB; and A' B' and GD. 

This has overlaid the correlated components arising due to the symmetry of the equivalent base­

band spectrum. This could not be done with a non-symmetric spectrum such as QPSK. There is 

also correlation under additional shifts of±l/T. 

If there is stationary noise added to the signal then it will be symmetric about the y-axis, but will 

not be correlated under the 2.fe frequency shift, except at the carrier frequency itself. 
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2.2.4 Spectral correlation density function 

A useful way of displaying the cyclostationary properties of a signal is to plot the spectral correla­

tion density (SCD). This function is defined as the Fourier transform of the cyclic autocorrelation 

function, as follows: 

(2.27) 

The conjugate SCD is similarly defined: 

s~;!"+ en = {'Xi R:a'+ (T )c j2rr IT dT 
1-00 

(2.28) 

The cyclic autocorrelation function and spectral correlation density Fourier transform pair for 

cyclostationary signals are analogous to the autocorrelation function and power spectral density 

pair for stationary signals. 

Wften a = 0 the SCD is equal to the power spectral density of the signal. At other values of a the 

SCD is the cross-spectral density of the signal, and the signal shifted in frequency by a. 

An important feature of second order cyclostationary statistics is that they contain phase infor­

mation about the signal. This is particularly useful for methods of blind channel identification or 

equalisation [70, 64, 63, 65]. In contrast, second order stationary statistics contain no phase in­

formation. The phase information is contained in the mathematical representations of the second 

order cyclostationary statistics, the cyclic autocorrelation function, conjugate cyclic autocorrela­

tion function, the SCD and the conjugate SCD. However for simplicity in what follows we plot 

only the magnitUde of the complex SCD and conjugate SCD functions, as this is sufficient to 

illustrate the form of the correlation exploited in the filters of the next chapter. 

Cyclostationarity, cyclic frequencies and the subsequent spectral correlation are likely to arise 

from any periodic process contributing to the signal generation or distortion. The most common 

periodicities are related to the carrier frequency, the baud rate, the chip or hopping rate (for spread 

spectrum signals). Here we are concerned with carrier frequency and baud rate related effects. 

The graphs in thi.s section represent the correlation of signals calculated by computer simulation. 

This was done in MATLAB, by generating a signal of the appropriate modulation type and pulse 

shape, with random data, and performing a cross-correlation of this with frequency-shifted ver­

sions of itself. Using finite simulated signals in this way, as opposed to an analytical ensemble 

average approach, means that noise is apparent in the plots as well as the main cyclostationary 

features. The length of the signal used was chosen in each case to be sufficient to reduce this noise 

to a level where it is visible, but does not obscure the features of interest. Mathematical derivation 

of these functions is given in [54]. 

Sine wave 

As a simple example, the spectra~ correlation density of a sine wave with frequency f = 3.5 is 

shown in figure 2.18. The spectral correlation density is displayed for a range of different values 
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of the frequency shift a. At a frequency shift of 0 we have the normal power spectral density of a 

sine wave which consists of two impulses, one at f and the other at - f. 

The other two peaks correspond to cross correlations after frequency shifting the s-i n( 211" f t) signal 

so that impulses originally at ±f are at the same frequency. To generate one, the original signal is 

shifted by - f and f (so the relative frequency shift is 2f), and cross-correlated. The other peak's 

existence is obvious from symmetry arguments. This correlation is a trivial example of the carrier 

frequency related correlation which also applies to some modulated carrier signals. 

BPSK 

Another example of a spectral correlation density plot is shown in figure 2.19. The signal used for 

this was rectangular pulse BPSK, carrying independent, identically distributed (lID) data, with a 

baud rate of 1 and a carrier frequency of 3.5. 

As before, with z~ro frequency shift, this spectral correlation density is equivalent to the standard 

power spectral density function. In figure 2.19 the a = 0 line shows the s-inc2 (x) shape that is 

expected from data with a rectangular pulse shape. For a 1= 0 the graph function represents the 

cross spectral density of the signal with itself shifted in frequency by a. It is clear that correlation 

exists at frequency shifts of ±1, ±2, ±3 ... (i.e. integer multiples of the baud rate) and that a 

greater correlation exists at ±7 (twice the carrier frequency), and that similar correlation to that 

at ±1, ±2, ±3 ... is present at ±7 ± 1, ±7 ± 2, ±7 ± 3 .... For each value of the frequency shift 

parameter a the line in figure 2.19 is the cross correlation between the original BPSK signal, and 

that signal shifted in frequency by a. 

The conjugate SeD for this, and all other purely real signals, is identical to the SeD, as a real 

signal is equal to its complex conjugate. 

The SeD plot for the equivalent :baseband BPSK signal is as shown in figure 2.20. It is clear 

that the structure of 2.19 is a combination of that in figures 2.18 (representing the carrier related 

J. F. Adlard, D.Phii. Thesis, University of York September 2000 



CHAPTER 2. STATIONARITY, CYCLOSTATIONARITY AND SPECTRAL CORRELATION 

20 

15 

5 

o 
10 

frequency shift -10 -10 

carrier = 3.5 :.,yClsymboi 
·16 sampJesli;ymboi . 

Figure 2.19: SeD of a BPSK modulated carrier 

10 

35 

correlation) and 2.20 (representing baud rate related correlation). Again the conjugate seD of 

baseband BPSK is identical to the SeD as the signal is purely real. 

Notice that correlation occurs at frequency shifts of specific, discrete values; the seD is not a 

continuous function. 

AM 

The SeD of an amplitude modulated (AM) carrier (figure 2.21) is similar to that of the sine wave 

but the impulses are replaced by the spectral shape of the modulating signal. Again, the carrier 

frequency is / = 3.5 and correlation exists under frequency shifts of 2/, or ±7. Obviously the 

only correlation present in the AM signal or the sine wave is carrier frequency related; there is no 

keying frequency in AM as in the digital signals which follow. 

QPSK 

It is interesting to compare the SeD of BPSK (figure 2.19) with that of QPSK (figure 2.22). This 

graph represents the SeD of QPSK with a rectangular pulse shape, lID data, a baud rate of 1 and a 

carrier frequency of 3.5. It is clear that there is no correlation associated with the carrier frequency 

in QPSK, whereas the baud rate related correlation is similar to that ofBPSK. 

Baud rate related correlation is dependent on the excess bandwidth of the signal relative to the 

Nyquist limit. As an example of this, figure 2.23 shows the SeD of QPSK with a raised cosine 

spectrum. Note that this graph has a different scale on the "frequency shift" axis from figure 2.22. 

The excess bandwidth of the signal was 100%, which limits any spectral correlation to a frequency 

shift of I times the baud rate. Any larger frequency shifts result in the two correlated signals having 

no overlap in the frequency domajn. Whereas a rectangular pulse shape (as used in figure 2.22) 

results in a sinc2 (x), infinite bandwidth spectrum. 
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Figure 2.23: SCD of raised cosine filtered 100% excess bandwidth QPSK modulated carrier 
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The baseband QPSK signal (figure 2.24) has similar structure to the BPSK example, as this is 

dependent on the pulse shape, which was again chosen to be rectangular. However in this case 

the conjugate seD is different, and is identically zero for all values of.f and n. This is plotted 

in figure 2.25. The small non-zero values in the centre of the graph can be attributed to the finite 

signal length used in the simulation. This graph shows that a QPSK signal is not correlated with 

its complex conjugate under any frequency shift, or equivalently that a passband QPSK signal will 

have no carrier related correlation. 

MSK 

Minimum Shift Keying (MSK) results in a signal with different spectral correlation proper­

ties again (see figure 2.26). Here there is correlation related to the baud rate, but it occurs at 

±2/T, ±4/T ... , whereas the carrier and baud rate related correlation is at 2.fc± liT, 2.fc±3/T, ... 

There is no correlation at 2.fc. 

The baseband MSK SeD and conjugate seD are shown in figures 2.27 and 2.28. In this case we 

cannot identify the seD of the baseband signal with baud rate related correlation and the conjugate 

SeD with carrier related correlation, as before, because the conjugate correlation depends on both 

the carrier frequency and the baud rate. 

Other signals 

The SeD functions of a number of other signals are given in [54]. In general one can say that 

other QAM or PSK signals (for example, 16-QAM or 8-PSK) have a similar SeD structure to that 

of QPSK with the same pulse shape. 

These different patterns of spectral--correlation are important when designing filters which can ex­

ploit such correlation for interference removal. They indicate at what frequency shifts correlation 
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occurs, and the frequency ranges of this correlation. This determines the frequency shifts which 

are useful in the FRESH filter, and the bandwidth required in the filter following each frequency 

shift. 

In particular, chapter 3 is concerned with removing QPSK interference from a QPSK wanted 

signal by exploiting the spectral correlation shown above. The effect of shaping the spectrum in 

enhancing the correlation is examined in chapter 5 and in chapter 6, a realistic VLF interference 

scenario is improved by exploiting the correlation inherent in MSK modulation. In chapter 7, there 

is an examination of the correlation in BPSK signals in the context of blindly adapting interference 

rejection filters. 

It is also clear from the SeD plots shown above that they can form a useful "signature" of modu­

lation types and pulse shapes which can be used for signal identification [71, 72, 73]. 
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Frequency shift filtering, or FRESH filtering is a technique which uses the spectral correlation 

of cyc1ostationary signals to reduce the effect of noise and interference on the signal of interest. 

The filter structure which achieves this, and its role in a communications receiver, is described in 

this chapter. Initially only the exploitation of the signal of interest (SOl) correlation is considered 

(section 3.5) but in section 3.7 we extend this to making use ofthe correlation of a cyclostationary 

interferer. 
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However, first some background material is presented to put FRESH filtering into a communi­

cations context. Section 3.3 describes the optimum filter for extracting a stationary signal from 

stationary noise: the Wiener filter as a background to the filters used in communication receivers. 

Some basic techniques in receiver filtering are first described to show what role a FRESH filter 

can take in a communications receiver. 

Generally, as the FRESH filter exploits the cyclic frequencies of the SOl and/or interference, 

the more different cyclic frequencies the signals have, the more effective the filter will be. This 

suggests good performance is possible when the signals have different baud rates, different carrier 

frequencies, and different modulation schemes. 

3.1 The Wiener Filter and Matched Filtering 

In a digital communications receiver, the aim is to decode the data sequence as accurately as 

possible, which requires detecting, or making a decision on each transmitted symbol. Usually 

some form of matched filter [79] is used to help this process - this is a filter (described below) 

which maximises the signal to noise ratio at the ideal symbol sampling points, with the expectation 

that symbol rate sampling will occur afterwards. 

This is a different process from Wiener filtering, in which the aim is to extract the entire waveform 

from noise. In a sampled system, this means minimising the MSE of all the samples, not just 

symbol spaced samples. 

In what follows, it is shown how a Wiener filter, or the cyclic Wiener filter can be incorporated 

into a communications system, where the aim is to determine the symbol values. 

For simplicity in analysis and implementation, particularly with adaptive systems, a finite impulse 

response (FIR) filter structure will often be used ([94], section 6.5). 

3.2 Processing in a Receiver 

The reception of a digitally modulated signal requires suitable processing to allow, ultimately, 

sampling of the SIgnal at the symbol rate. These symbol rate samples can then be decoded to 

recover the transmitted data. There are a number of problems to be overcome to allow this process 

to work effectively. The three most significant of these can be summarised as the effects of noise 

and interference, intersymbol interference (lSI) and synchronisation errors. In this thesis the pri­

mary interest is in interference rejection, but the subject of equalisation (removing lSI) is closely 

related. 

Synchronisation 

"Synchronisation" describes a range of techniques for determining the exact frequency, and per­

haps phase, of the carrier frequency oscillator in the receiver, and of the correct sample times for 

the symbol rate sampling. It can also cover code synchronisation, or determining which data sym­

bols correspond to separate code words, in a system which includes some form of error correction 
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or detection coding. In this thesis the issue of synchronisation is not considered further. In all 

simulations of communication systems presented here, perfect carrier frequency and phase, and 

perfect symbol timing recovery is assumed. It is however worth noting that all techniques for 

synchronisation are degraded by the effects of noise and lSI, and so filtering which can mitigate 

these effects can be useful from a synchronisation point of view. Some work has also been done 

on the more direct application of cyclostationarity to synchronisation [10, 74]. 

The signal values at these sampling points are then used in a decision device to identify the received 

symbols. 

Additive noise and the matched filter 

The term "noise" usually includes the effects of all corrupting signals which combine additively 

with the wanted signal. The principal sources are atmospheric noise from the channel, interference 

from other man made signals and noise from the circuitry in the receiver. The optimum filter for 

detecting data symbols in white noise is the MF. There can be confusion as to whether this term 

applies to the optimum filter for detecting symbols in non-white noise. In this thesis, the MF is 

the filter matched in white noise. The effects of non-white additive noise are be minimised by the 

noise whitening matched filter (NWMF) whose response depends on the transmitted waveform 

and the spectrum of the noise present. The NWMF is defined to be the filter which minimises the 

SNR at the output of the filter at the ideal symbol spaced sampling instants; it is assumed that such 

a filter is followed by symbol rate sampling. 

The position of the NWMF in a typical communication system structure is shown in figure 3.1 

(this figure does not show synchronisation operations). The NWMF could be implemented as a 

continuous time or a sampled data filter. Should a sampled data implementation be used it would 

be preceded by a (continuous time) anti-aliasing filter, and sampling at a rate sufficiently high to 

support the bandwidth of the wanted signal. In figure 3.1 it is implicit that a continuous time filter 

is used. 

The term "noise whitening" describes the best that can be done by a linear time invariant filter 

against additive interference. The filter is a cascade of two processes: a noise whitening filter 

which has an output made up of a a distorted version of the SOl added to white noise, and then 

a MF for the waveform created by the action of the noise whitening filter on the transmitted 

waveform ([95] section 7.2). 

In most communications systems the noise and interference will not be precisely known, or it will 

be variable in time. This means that the best receive filter to use may be adaptive. The adaptive 

filter would adapt towards a NWMF. 
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lSI occurs when the channel is bandlimited or when there are mUltiple propagation paths through 

the channel with different delays. 

A common assumption made in modelling communications channels is that they introduce lSI 

and AWGN, but no non-white noise from other communications signals. In this case the optimum 

receiver is a MF followed by baud rate sampling and then a symbol spaced equaliser (SSE). The 

SSE is a transversal linear filter operating at a sampling rate equal to the symbol, or baud, rate 

with a response which is approximately the inverse of the channel response. Theoretically this 

will often require an infinite impulse response but for most channels a good approximation can be 

achieved with a reasonable number of filter taps. 

This filter combination could be implemented as an analogue MF with the sampling combined with 

analogue to digital conversion, and then a sampled, digital SSE, or the MF could also be a sampled 

digital filter having been preceded by an anti-aliasing filter and sampling above the Nyquist rate 

for the SOl bandwidth. Should the channel add noise which is not white (e.g. interference) then 

one simply replaces the MF with a NWMF in the structure above. 

Referring to figure 3.1, the equaliser removes lSI from the symbol rate samples after the received 

signal has been filtered with a NWMF. Usually an adaptive equaliser is used, if the channel is 

time-varying, as this allows the receiver to automatically compensate for changes in the channel 

multipath characteristics. 

This receiver structure is useful in a system where the matched filtering would be carried out on 

the analogue received signal, or where it must be, for some other reason, a separate entity from the 

adaptive digital filter which is the adaptive equaliser. Otherwise a FSE (section 3.2.1) is usually 

preferred, due to its ability to correct symbol timing errors [34]. 

The equaliser is constrained in that it can only produce symbol rate samples which are weighted 

sums of other symbol rate samples. Equivalently the bandwidth of the equaliser is ± 2~' It is not 

hard to believe that in a system receiving a signal with bandwidth ± ~ an adaptive filter with band­

width ± ~ would perform better than a fixed filter with bandwidth ± ~ followed by an adaptive 

filter of bandwidth ±2~' This improvement over the matched fi1ter/equaliser combination can be 

realised as an FSE, described in section 3.2.1. 

3.2.1 Adaptive fractionally spaced equaliser 

If all the receive filtering is being done in the sampled domain, then it is possible to combine the 

adaptive equaliser and MF or NWMF into one digital adaptive filter. 
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If the channel conditions are known and fixed then this will not improve performance over the 

separate MF and equaliser combination. If, however, the channel is varying then it is important 

to be able to vary the filtering appropriately and this is much easier with digital than analogue 

filters. If the lSI varies but the additive noise is constant, then a fixed MF or NWMF followed by 

an adaptive SSE is sufficient. If however the noise also varies then optimum performance would 

require the NWMF to also be adaptive. In this case it is more efficient to combine the NWMF and 

SSE into one adaptive filter. The NWMF must have a bandwidth at least as wide as the SOl so it 

must be operating at higher sampling frequency than the SSE, or equivalently, it has a tap spacing 

which is a fraction of a symbol period, hence the term fractionally spaced equaliser. 

The adaptive symbol spaced equaliser cannot act as an adaptive matched filter on its own because 

it has a bandwidth of ± 2~' where T is the symbol duration. This bandwidth is too narrow to 

accurately manipulate all realisable signals keyed at the ~ rate. What is required is an adaptive 

filter with a bandwidth at least as wide as the received signal. 

This filter would adapt towards the NWMF for the channel (with symbol rate updates). In per­

forming this filtering (assuming perfect adaption) the filter also removes any lSI. Such a filter can 

be implemented as afractionally spaced equaliser (FSE). 

The term FSE can be used to describe any digital filter which has more than one tap per symbol. 

The use of the word "equaliser" however suggests its best known use which is to correct, or 

"equalise" the effe~ts of some transmission channel. The term FSE distinguishes it from a symbol 

spaced equaliser which has only one tap per symbol. The fractional spacing of the taps causes the 

fractionally spaced equaliser to have a wider bandwidth. 

Fixed and adaptive equalisers in general, including those with fractional spacing and their advan­

tages over symbol spaced equalisers, are described in detail in [34] or at a simpler level in [35]. 

3.2.2 Adaptation of filters 

Although it may be possible to calculate a statistical representation of a channel, the effects of 

time-varying channels can be better mitigated by using a time-varying filter. This is especially 

useful when the channel properties vary rapidly in time (as they do for example in the land mobile, 

or HF radio channels). Often this will be achieved by sending a known ''training signal" through 

the channel. The received (and corrupted) version of this signal is compared in the receiver to 

the receiver's copy and any differences are used to adapt the filter weights to undo the channel 
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corruption. The general structure of a trained adaptive filter is shown in (figure 3.3). The adaptive 

filter will, in suitable conditions, converge to the Wiener filter. In time-varying conditions, if 

the variation is slow enough to be tracked by the adaption algorithm, the filter will stay close 

to the (time-varying) optimum filter [17]. In terms of implementation, this is likely to be a FIR 

transversal digital filter, with tap weights adjusted using an algorithm such as LMS or recursive 

least squares (RLS). 

Normally adaptive filters are digital, operating on sampled data. The structure described above, 

of an analogue MF followed by a SSE was common because often the lSI in a channel is time 

varying but the interference is not. When digital technology was slow and expensive it was sensible 

to minimise the complexity of any adaptive digital part of the receiver. Now however the FSE 

(section 3.2.1) is often preferred. 

Any digital filter can be made adaptive and the theory and practice of linear transversal (FIR) 

adaptive filters is a well developed one, particularly for systems where a training sequence is 

available. In this thesis, apart from in chapter 7, the interest is in trained filters. With a fixed filter 

one can calculate the response from knowledge of the noise spectrum, and the transmitted pulse 

shape (for a MF or NWMF) or from knowledge of the transmitted, desired and received signal 

statistics (for a Wiener filter, see section 3.3). In a trained adaptive filter, the final filter response 

is determined by the statistics of the received and training signals, and by the timing of the filter 

updates. For example, if the filter taps are updated every sample, then the MSE will be minimised 

for every sample, and the filter will adapt to be the Wiener filter for the signals concerned. If the 

taps are only updated once every symbol, then the filter will minimise the MSE once per symbol, 

and the filter will adapt to the MF. 

The structure shown in figure 3.1 is optimum if the interference conditions do not vary, but the 

channel lSI does, and is tracked effectively by the equaliser. 

3.2.3 Decision feedback equaliser 

The symbol spaced equaliser and FSE are both linear structures; their outputs are linear combi­

nations of their input data. A significant improvement in the equalisation of lSI channels can be 

achieved by the us~d of a non-linear structure known as the decision feedback equaliser (DFE). 

This exploits the knowledge of data symbols which have already been detected. Ifpost-cursor lSI 

is created by the channel then more accurate removal of this lSI requires manipulating the data 

from the decision device (which is noise free) instead of manipulating the unprocessed received 

signal, as the linear filters do. An adaptive structure which does this is shown in figure 3.4. 

This filter can take the place in a receiver of a symbol spaced equaliser or a FSE depending on 

whether the feedforward filter is symbol spaced or fracti!lnally spaced. 

It can also be enhanced by using a FRESH filter as the feedforward filter [62]. This structure then 

has good performance in channels with interference and lSI. 

There are many other techniques for equalisation which are not described here. The FSE is how­

ever of interest as a baseline for comparison with the FRESH filter. 
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3.2.4 The role of the filters 

It is important to distinguish between the roles of the different filters that have been introduced so 

far. In this discussion the term Wiener filter will be used loosely to mean either the true ideal filter, 

or an implementable filter which is the best practical approximation to the true Wiener filter. 

The Wiener filter theory is based on the extraction of a signal from noise where the statistics of 

the signal and noise are known. So the output of a Wiener filter is the closest (in the mean square 

sense) estimate possible of the corrupted signal, using a linear time-invariant filter. It attempts to 

extract the entire waveform - there is no mention in Wiener filtering theory of digital data or a 

symbol rate. 

The Wiener filter performs a different job from the matched filter. The matched filter maximises 

the SNR at symbol spaced sampling instants. The filter output between these instants is not con­

sidered because it is assumed that symbol rate sampling is performed on the output. Notice that the 

definition of the matched filter does not require stationarity, or any other statistical assumptions, 

about the signals. 

Another way of distinguishing between the two filters is to say that the Wiener filter is used for 

estimation - it provides an estimate of the noise corrupted signal. A matched filter is for detection 

- it produces an output on which a decision can be based as to whether a particular waveform (or 

anyone of a set of waveforms) is present or not. 

In terms of a prac!ical implementation using a FSE, the distinction between the two filters comes 

down to timing the updates of the adaptive algorithm. If new tap values are calculated for each 

output sample, then the algorithm will attempt to minimise the cost function (for example, the 

mean squared error) at every sample, and will so minimise the MSE over the whole waveform. 

This is an approximation to a Wiener filter. Ifhowever new tap values are calculated only once per 

symbol, then the cost function is minimised at one sample in every symbol. If the cost function is 

MSE then this is the NWMF. 

The FRESH filter, described below, is primarily intended as an interference rejection filter, and (for 

a filter exploiting baud rate related cyclostationarity) exploits excess bandwidth over the Nyquist 

minimum. This allows two different ways of implementing it in a receiver: it may perform an 

interference rejection role (as an improved version of a noise whitening filter) followed by an 

appropriate MF, or it may replace the NWMF, and incorporate the MF role. In terms of implemen­

tation, in the first case a FSE or FRESH filter would precede a MF, with an equaliser after that; in 

the second a single FSE or FRESH filter carries out all the filtering in the receiver. 
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For an adaptive implementation, the first case would require the filter (FSE or FRESH) to be 

trained with a training signal identical to the transmitted signal. That is, if the transmitted signal 

were square root raised cosine filtered, the training signal would also be square root raised cosine 

filtered, and would be followed by a fixed square root raised cosine filter (the MF). 

The second case would require a transmitted signal to make the filter adapt to the NWMF. In 

the example of a square root raised cosine transmitted signal, the training signal would be raised 

cosine, and the filter could then be followed immediately by baud rate sampling and a decision 

device. 

In this thesis, the first example is used (with GMSK signals) in chapter 6. The second implemen­

tation, with square root raised cosine QPSK, is used everywhere else. 

The frequency shift filter described below is based on a generalisation of the Wiener filter and as 

such is used for estimation, not detection. 

3.3 Wiener-Hopf Filter Equations 

The FRESH filter is a structure which can implement the cyclic Wiener filter. This filter is a 

generalisation of the standard Wiener filter, which is described very briefly for comparison. 

A fractionally spaced equaliser operating adaptively using the LMS algorithm, will adapt towards 

the minimum mean square error solution for a time-invariant filter. This corresponds to a Wiener 

filter solution, except for the "adaptation noise" caused by the taps jumping around close to the 

ideal solution. The Wiener filter is defined by the Wiener-Hopf equations, the normal presentation 

of which is in a time domain form: 

Rxxwo = P (3.1) 

where Rxx is the correlation matrix of the input signal x, wo, is the optimum tap weight vector 

and p is the cross correlation vector between the desired response d, and the input signal, x, ([96] 

chapter 5). So the optimum tap weight vector is given by 

R -1 Wo = xx P (3.2) 

This vector describes the optimum filter for detection of a stationary signal in stationary noise. An 

equivalent representation can be given in the frequency domain: 

(3.3) 

where SJn is the power spectral density of the input signal (the Fourier transform of one row 

of R xx), Wen is the frequency response of the optimum filter (the Fourier transform ofwo) and 

Sdx (f) is the cross-spectral density of the desired response and input signal. This representation 

and notation is compatible with Gardner's development of the cyclic Wiener filter equations (or 

FRESH filter equations) [13]. 
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3.4 Cyclic Wiener Filter Equations 

The cyclic Wiener filter, as described by Gardner [13] is a generalisation of the Wiener filter so 

that, as well as Rxx (the autocorrelation of the input), the cross-correlations of the input with 

the frequency shifted inputs are also used. Similarly, as well as p (the cross-correlation of the 

desired and input signals) the cross-correlations of the desired and frequency shifted input signals 

are used. 

First define the vector concatenations 

h(t) = [adt), ... ,aM(t), b1 (t), ... , bN(t)l' 

z(t) = [x(Q(t), ... ,xaM (t),X:',gl(t), ... ,X:',gN(t)], 

(3.4) 

(3.5) 

where xaj is the input signal shifted in frequency by ai and X:'j3i is the complex conjugate of 

the input shifted in frequency by - /1i. The set of frequency shifts al , ... , aM and (31 , ... , (3 N 

are the cyclic frequencies and conjugate cyclic frequencies of the input. a I ( t), ... , aM (t) and 

bl (t), . .. , bN(t) are the impulses responses of filters used to filter each frequency shifted version 

of the input, such that the estimate d(t) of the desired signal d(t) is 

M N 

d(t) = L am(t) * Xa ", (t) + L bn(t) * x:',g,. (t) (3.6) 
m=1 n=1 

or 

d(t) = h/(t) * z(t) (3.7) 

A filter structure which produces this estimate is shown in figure 3.6. If we define the cyclic 

cross-correlation matrices: 

RZZ(T) = E[z(t + T/2)zH (t - T/2)] 

Rdz(T) = E[d(t + T /2)z*(t - T /2)] 

then the filter solution can be written as 

(3.8) 

(3.9) 

(3.10) 

where Szz, Sdz and H(f) are the Fourier transforms of RzAT), Rdz(T) and h(t). Writing equa­

tion 3.1 0 in terms of x (t) using equations 3.8 and 3.9 the result is 

t S~k-am (I - Ok ~ om) Am(f) + t S~;.-ak (I -Ok; (1n) • Bn(f) = S;;, 
m=l n=l 

k = 1,2, ... Af 

M N 

~ S~;:am (I - 13k ~ Om ) A",(f) + ~ S~k -~n (-I + 13k ~ f3n ) Bn(f) = S;;., k = 1,2, ... N 

(3.11) 
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3 

which specifies the optimum filter for cyclostationary signals. Examples of how these equations 

can be applied to specific signals are given in chapter 4. 

These filter equations describe the minimum MSE solution for a given input signal, so an LMS 

adaptive FRESH filter will adapt towards this solution. 

3.5 Frequency Shift Filtering 

It has been shown in section 2.2 that cyclostationary signals exhibit spectral correlation in regularly 

spaced frequency bands. This is illustrated in the case of a rectangular pulse shaped signal with 

a symbol rate + of 1 Hz (figure 3.5). The spectral components in the frequency ranges B and B' 
are correlated with those in A, (as are those in C, C' etc.). The region A which is known as the 

Nyquist bandwidth, is all that is required to recover all the samples with zero mean square error 

(ifthere is no noise or interference) ([79], section 6.2.1), but if some excess bandwidth is received 

(i.e. outside the Nyquist zone) then there is redundancy in the received signal which can be used 

for mitigating the effects of interference. 

Region A contains all the information required to decode the data in the signal. The other bands 

are scaled, frequency shifted, replicas of the signal in band A (see section 2.2.2), so each individual 

band contains all the information needed to decode the signal. 

Note that the boundaries between the regions in figute 3.5 have been drawn with an arbitrary 

origin. The signal could be detected lSI free from any + bandwidth in the spectrum. 

To exploit this correlation a filter must shift the correlated frequencies to the same frequency and 

add the reSUlting signals together. Provided that any noise present is not also correlated under 

the same frequency shift, this will increase the signal to noise ratio. The greater the number of 

correlated components that can be combined in this way, the greater the SNR increase will be. 

The frequency shifts between correlated components are related to properties of the signal, such as 
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Figure 3.6: Frequency shiftfilter 

the baud rate and carrier frequency. Therefore in general, other signals present, including thermal 

noise, will not be correlated under the same frequency shifts. A filter structure which combines 

correlated compolJents after frequency shifting is shown in figure 3.6. This is known as afrequency 

shiftfilter (FRESHfilter) [59,60], or a periodically time varyingfilter [97,98] or a time-dependent 

filter [57,58]. It is also an approximation to, and can be equivalent to, the cyclic Wiener filter [13]. 

This name suggests a relationship with the better known Wiener filter, which is described below. 

This filter is also known as the Optimal Time Dependent Filter [57]. 

3.5.1 Exploiting the correlation of the SOl 

Figure 3.6 shows a filter which can be used for extracting from noise a SOl with cyclic frequen­

cies of 0, ±oq, ±a2 (note that 0 is a trivial cyclic frequency of all signals), and conjugate cyclic 

frequencies ofO, ±.BI, ±.B2. No assumptions are made about the noise other than than it does not 

have cyclic frequencies of ±al, ±a2, ±j11, ±.B2. The ha and hf3 are time-invariant filters which 

have bandwidth at least as great as the input signal. They are therefore implemented as individual 

FSEs. They are referred to here as sub filters. 
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When filtering a signal such as QPSK, which has no conjugate spectral correlation, the bottom 

half of the filter can be omitted. 

The signal input is shifted in frequency in each of the filter branches and then passed through an 

optimum time-invariant filter. This is equivalent to shifting every band in figure 3.5 to the zero 

frequency position (the band A position), filtering it, then summing all the branches together. 

For best performance the number of branches is infinite, if there are an infinite number of cyclic 

frequencies. This would require an infinite bandwidth signal such as baseband BPSK with rect­

angular pulse shaping, which has cyclic, and conjugate cyclic, frequencies of ± If for any integer 

n (see section 2.2.4, and figure 2.20). We would expect that the greater the number of frequency 

shifting branches, the greater the increase in SNR relative to a FSE, but clearly even for a spec­

trally inefficient spectrum such as the .r;inc2 (w) ofthe rectangular pulse shape, there is little signal 

energy shifted on top of the main lobe with the higher cyclic frequency shifts. 

Exploiting non-conjugate spectral correlation 

As another example, figure 3.7 shows a FRESH filter suitable for exploiting all the spectral corre­

lation in a 100% excess bandwidth QPSK signal. Correlation in this signal exists under frequency 

shifts which are multiples of the symbol rate, but for shifts of more than + or - + there is no 

overlap in the spectrum, so a three shift filter overlays.all the correlated components present (see 

figure 2.23). 

Figure 3.8 illustrates schematically how this filter reduces the effect of a narrow band interferer. 

The first graph shows the spectra of the SOl and the noise; the second shows the response of the 

central subfilter in figure 3.7. This filter removes the interference but corrupts the SOL The third 

graph shows the response of the subfilter in the - + shifted branch. Here the SOl energy which 

is correlated with the notched region is amplified so it can replace the SOl energy removed by the 
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central branch. 

Exploiting conjugate spectral correlation 

As a further example, figure 3.9 shows a filter suitable for exploiting all the spectral correlation 

present in a 100% excess bandwidth baseband BPSK signal. The additional three frequency shifts 

and subfilters are required to exploit the conjugate correlation resulting from the symmetry of the 

BPSK spectrum. 

The idea of a frequency shift filter which exploits the carrier frequency related cyc1ostationarity 

of a signal such as BPSK is described in [13], however an earlier work describes essentially the 

same process for the equivalent baseband signals [27] using linear-con jugate-linear filtering. This 

is also discussed further in sections 3.8 and 7.5. 

It is well known that the Fourier transform of a baseband signal which can be expressed as purely 

real, is symmetric about the zero frequency axis, which is a manifestation of the fact that with­

out introducing complex signals, the concept of negative frequency is meaningless. In fact the 

spectrum of a purely real signal is often plotted from zero frequency upwards only. 

If such a signal is corrupted by additive noise which is also purely real, then the noise spectrum 

will also be symmetrical about zero frequency. We then have two identical copies of the SOl and 

noise at positive and negative frequencies. As the correlated SOl components are combined with 

correlated noise components, there is no way of exploiting the SOl symmetry. 

If however we have a real baseband signal shifted up to some carrier frequency .f c as in figure 3.11, 

corrupted by real noise, there is now a difference in the structure of the symmetry in the SOl and 

the noise. The spectra of the SOl and the noise are both symmetrical about zero frequency, but 

there is also symmetry within each side band of the SOl about the carrier frequency. The noise will 

not be symmetric about the carrier frequency. Ifwe shift one side band on top of the other, and add 

the signals, then we are adding correlated SOl components and uncorrelated noise components. 

This does not however result in an improvement over processing the signal only at baseband. We 

have added complex white noise to a fundamentally real signal, and then used the symmetry of 

the SOl to remov~e the imaginary noise components. Moving the passband signal to baseband and 

setting the imaginary part to zero, which is possible with coherent reception, has the same effect. 

However when the noise is not white, there is an advantage to be gained from exploiting the 

symmetry of the SOl spectrum. If we filter the two side bands of the SOl before shifting and 

adding them, (see figure 3.12) then the power of the interferer can be reduced, and the power of 

the SOl at frequencies correlated with the corrupted frequencies can be increased. 

It is of course possible to model this process at baseband as well. In this case (as shown in 

figure 3.13) the SOl spectrum would be filtered, attenuating the interference affected frequencies 

and adding gain to the correlated SOl components, and then the signal would be added to its 

conjugate to combine the correlated components. 

So we can see that there is a benefit in exploiting the spectral symmetry of a purely real signal such 

as BPSK. If the noise is complex and white, then this is equivalent to discarding the imaginary part 

of the noise, but if the noise is complex and non-white, then the filtering can remove interference 
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error signal 

Figure 3.14: Adaptive FRESH filter 

and replace the corrupted SOl components with correlated components from the other side band. 

This effect can be exploited by using passband processing and 2.fc frequency shifts, or by treating 

the signal as complex and using conjugate filtering. 

It is also clear that the symmetry exploited at baseband by reflection (or by the LCL filter of 

[27]) is the same symmetry exploited at passband by a 2fc frequency shift. Therefore one can 

describe the LCI; filter as the baseband equivalent of the carrier frequency exploiting FRESH 

filter. In section 7.5 it is shown that such a filter can also use the SOl spectral symmetry for blind 

adaptation. 

3.5.2 Adaptive FRESH filter 

This (as described in [57]) is the adaptive filter implementation of the cyclic Wiener filter (see 

figure 3.14). It allows exploitation of spectral correlation in the signal or noise, while adjusting 

to varying channel conditions. The adaptive filters in each shifted branch, use standard adaptation 

algorithms, and all use the same error signal. Such an adaptive filter would converge towards the 

cyclic Wiener filter solution of equation 3.11. 
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3.5.3 Role of the FRESH filter in a receiver 

It has been stated that the FRESH filter is an implementation of the cyclic Wiener filter, which is 

designed for extracting the whole SOl waveform from noise. 

This means that a FRESH filter should incorporate a MF or be followed by a MF when symbol 

rate samples are required. In fact should the FRESH filter, with SOl symbol rate frequency shifts 

only, be followed by symbol rate sampling then the combined effect is identical to that of a FSE 

followed by symbol rate sampling. This is discussed in section 3.6.4. 

A FRESH filter using only carrier frequency related shifts (or equivalently using a complex con­

jugate at baseband) gives no better performance than a system which identifies the SOl as purely 

real and discards the imaginary component of the received signal, as long as the filtering is first 

done with the complex signals. Simulation results to support this statement are shown in chapter 7. 

The simplest structure to do this is given in section 7.5 

So it may appear that a FRESH filter has little use in a communications receiver but this is not 

the case. Firstly, up to now exploitation of SOl correlation only has been considered. It is also 

possible to exploit the spectral correlation properties of cyclostationary interference (see chapters 4 

and 6). Secondly, the ability of a FRESH filter to remove the imaginary part of noise from a real 

signal may be preferred to other methods (for example, coherent detection). Thirdly, it may be 

useful to extract the whole waveform from the received signal with minimum distortion for use in 

operations such as synchronisation, although for such applications it may be preferable to exploit 

cyclostationarity more directly in the estimation algorithm [10, 74, 75]. 

A FRESH filter can be viewed as a development of the FSE which gives it a greatly improved 

interference rejection ability. The filter's role in a receiver is then the same as that of the FSE - it 

replaces a white noise matched filter and symbol spaced equaliser combination. It can also take 

the place of the feedforward filter in a DFE. 

3.6 Variations and Simplifications of FRESH Filters 

3.6.1 Periodieally time-varying filters 

There are two intuitively different (but mathematically equivalent) ways of considering the cyclo­

stationary property of excess bandwidth digitally modulated signals. They are the time domain 

approach and the frequency domain, or spectral correlation, approach [97] (see chapter 2). There 

are two distinct but equivalent filter structures which exploit the cyclostationarity of the digital 

signal, corresponding to these two different manifestations of cyclostationarity. 

It will be assumed here, for the sake of simplicity that the filters considered here are onlyattempt­

ing to exploit the correlation due to the symbol rate. This removes the need for any conjugate 

filtering [13]. 

The first filter has an explicitly time-varying structure as shown in figure 3.15. It is assumed that 

the input is a sampled signal, so the number of subfilters is equal to the number of samples in one 

symbol interval. The commutator at the output means that the output is taken from each subfilter 

in turn, so making the overall filter time varying. Each filter would have the optimum transfer 
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Figure 3.15: Explicitly time-varyingfilter 
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Figure 3.16: FRESH filter 

function for the signal statistics at that point in the cycle. The frequency shift filter in figure 3.16 is 

more explicitly e~ploiting spectral correlation, by shifting the correlated components to the same 

frequency, filtering them independently and then adding them. There now follows a proof, taken 

from [97], that the two structures are equivalent. 

The commutator which switches position with each sample, effectively decimates the signal in 

each branch with a staggered delay in the relative downsampling times of each branch. This is 

equivalent mathematically to mUltiplying the signal in each branch by 8m (n) where: 

r {I if n = m, m ± M, m ± 2M ... 
um{n) = o otherwise 

where there are M samples per symbol and 1n is an arbitrary integer. 

This can also be written in a Fourier series representation: 

M-J 
1 ~ j271'i(n-m) 

8m {n) = M .L..J e M 

t=O 

(3.12) 
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To demonstrate that the filters in figures 3.15 and 3.16 are equivalent, we use equation 3.12 to 

write 
!l1-1 JIf-1 
'"""" 1 '"""" j2,,;(n-11I) 

y(n) = L...J {x(n) * hm(n)} M L...J e M 

m=O ';=0 

(3.13) 

where 11 (n) is the output sequence from the filter, x ( n) is the input sequence and the hm ('n) are 

the subfilter impulse responses as indicated in figure 3.15. * indicates discrete convolution. 

If we write Y(z) for the z-transform of 11(n) (and likewise X(z) and Hm(z) ), then, taking the 

z-transform of both sides of equation 3.13 gives 

1 M-I M-J .. 00 

Y(z) = - L L eJ2~;m L {x(n) * hm{n)}ej2;lin z-n 
M ;=0 m=O n=-oo 

M-IM-I 
1 '"""" '"""" j 2" i m l.l!!i . l.l!!i = M L...J L...J e M X{ze M )Hm{ze At ) 

';=0 m=O 

M-I M-I 
'"""" l.l!!i 1 '"""" l.l!!i j2" i m = L...J X(ze M )- L...J Hm{ze AI )e M 

. M 0 1=0 171= 

Taking the inverse z-transform of both sides of the equation above gives 

j27fin 1 j27fi(n-m) M-I { 111-1 } 

11(n) = t; {:dn)e At } * M 1~ hm(n)e M (3.14) 

We can now define a new set of filter impulse responses by 

(3.15) 

so equation 3.14 becomes 

M-I 

11(n) = L {x(n)e
i2;;n} * 111; (n). (3.16) 

';=0 

The Wi (n) are the filter coefficients shown in figure 3.16. Equation 3.16 therefore shows that the 

output of the explicitly time varying filter is equivalent to a sum of frequency shifted versions of 

the input (x(n)ej2rrin/M) filtered by the w;(n) subfilters. The two filter structures in figures 3.15 

and 3.16 are therefore equivalent. 

Note that the number of subfilters in each filter representation is the same. If a critically sampled 

100% excess bandwidth signal was being processed then M = 2. That is, the sampling rate is 

twice the symbol rate, and each filter contains two subfilter branches. This shows that only one 

frequency shift is required in the frequency shift implementation. This shift could be either ++ or 
1 

-T' 

If the signal is oversampled, it might appear that the corresponding increase in the number of 

branches in the time-varying implementation would have to be matched with extra frequency shifts 

that are not cyclic frequencies. However the extra samples which result from oversampling would 
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be correlated, and the extra filters in the time varying implementation would therefore be linearly 

dependent on those which appear in a critically sampled implementation. 

3.6.2 The FRESH filter with sampling 

There are two ways in which the sampling of a system can affect the best implementation of the 
4!t 

FRESH filter. Both of these rely on the frequency-shifting property of sampling. 

If the input to the FRESH filter is sampled at twice the highest magnitude cyclic frequency present 

then the filter requires only one shift for each magnitude of cyclic frequency present in the signal. 

For example, in a system with excess bandwidth of greater than 0% but less than or equal to 100%, 

the highest cyclic frequency present is ~. A system sampled at ~ (which is a practically sensible 

rate) requires only the +~ or the -~ frequency shift in the FRESH filter. 

If the signal is sampled at the symbol rate immediately after FRESH filtering and the frequency 

shifts used are only integer mUltiples of the SOl baud rate, then the FRESH filter is exactly equiv­

alent to a fractionally spaced equaliser (see section 3.6.4). This is the same as removing all the 

frequency shifted branches from the filter. 

3.6.3 Effect of Nyquist-rate sampling 

We consider the FRESH filter suitable for filtering a signal with 100% excess bandwidth, shown in 

figure 3.7. The entire input signal is processed by each branch so the bandwidth of each subfilter 

must be ±~. This means that each subfilter is equivalent to a fractionally-spaced equaliser. 

If the filter is in an analogue implementation then the two explicit frequency shifts are necessary 

to cause the correlated spectral components to overlap. However, if the filter is in a Nyquist-rate 

sampled system, then only one of the frequency shifts is necessary to cause the same overlap, 

because the spectrum of the shifted signal will wrap around half the sampling frequency - no 

benefit is gained by using all the theoretical cyclic frequencies. 

This is apparent from consideration of the spectrum of the shifted signals. As we are dealing 

with a sampled .tlystem, frequency shifting will wrap the spectrum from 2.f8 to -2f8' where 2f8 

is the sampling frequency. A positive frequency shift of 2f8 - m will give the same result as a 

negative shift of m. A good description of this wrapping of the spectrum in a sampled systems, 

with reference to filtering, is given in [34]. 

For the sake of simplicity this is shown only for the case of a 100% excess bandwidth signal. The 

Nyquist sampling rate for this signal is is where T8 is the symbol period. In this case the effect of 

the sampling is to make the is and - i. frequency sh.ifts equivalent. 

This can be shown mathematically as follows: 

Let x ( t) be the received signal, and Xl (t) and x _I (t) the versions of x (t) shifted in frequency by 

i. and - is respectively. i. is the symbol frequency. Sampling these signals at the rate 2f8 = i. 
is equivalent to multiplying them by 

8
8 

= f 8(t _ n~8) (3.17) 
11.=-00 
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Let the sampled versions of XI (t) and X_I (t) be Xls(t) and X-Is(t) respectively. Then: 

XIs = XI (t).8s{t) 

If XIsU) and X-IsU) are the Fourier transforms of XIs(t) and X-Is(t) respectively, then, as 

multiplication in time domain is equivalent to convolution in the frequency domain: 

where * indicates convolution and F[y] indicates the Fourier transform of y. 

So: 
00 nTs 

XIs = XI * F[ L 8(t - -2-)] 
n=-oo 

00 

XIs = XI * Us L 8U - 2nfs» 
n=-oo 

00 

XIs = fs L XI (f - 2nfs) 
11=-00 

Similarly 
00 

X-Is = fs LX-I (f - 2mfs) 
111=-00 

(3.18) 

(3.19) 

(3.20) 

But X I (f) = X-I ( f + 2 fs) because they are frequency shifted versions of each other, so replacing 

11, in equation 3.19 with m - 1 : 

00 

XIs = fs L XI (f - 2mfs + 2fs) 
m=-oo 

00 

XIs =.fs LX-I U - m.fs) (3.21) 
m=-oo 

Therefore: 

(3.22) 

As their Fourier transforms are equal, so XIs and X-Is are equal, which shows that for a 100% 

excess bandwidth signal, sampled at f. ' frequency shifts of A and - f. give the same signal. 

It is helpful also to consider the effect of Nyquist-rate sampling when the filter is implemented in 

the explicitly time-varying form shown in figure 3.15. As we have 100% excess bandwidth the 

sampling rate is twice the symbol rate, but the commutator operates at the symbol rate. There can 

therefore only be two filters in this implementation, a'S in the FRESH implementation. 

3.6.4 Effect of symbol-rate sampling 

If the FRESH filter is followed by a symbol rate sampler, then the folding effect of the sampling 

on the spectrum means that no frequency shifts are necessary [59], and the filter simplifies to a 

fractionally-spaced equaliser. This applies whether the FRESH filter is in a sampled system or an 

analogue implementation. 
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Using the FRESH filter as a receive filter in a communications system will normally involve sam­

pling its output at the symbol rate, so this simplification is highly significant. It shows that the 

same exploitation of spectral correlation can be achieved with a much simpler structure. In addi­

tion it shows that in one filter we have the benefits of exploiting cyciostationarity, and the other 

known advantages of fractionally spaced equalisers. In a communications system the most signif­

icant of these is that the fractionally spaced equaliser can very successfully correct for any error in 

the sampling timing of the following symbol rate sampler [34]. 

Again for simplicity we prove the equivalence of the FRESH filter and the fractionally spaced 

equaliser for a 100% excess bandwidth signal. Effectively this means proving that all three 

branches of the filter in figure 3.7 are the same, which we do by showing that a frequency shift of 

+. or - A followed by sampling at is is the same as simply sampling the original signal at i .. 
We start by rewriting equations 3.19 and 3.20 for the lower sampling rate of is = +: 

00 

XIs = is L XIU - ni8) (3.23) 
n=-oo 

00 

X-Is = is L X-di - mis) (3.24) 
m=-oo 

and we have similarly: 

00 

Xs = is L X(i - pis) (3.25) 
p=-oo 

for the original signal. 

As above, 

So we replace n with p + 1 in 3.23 and '/11, with p - 1 in 3.24, then 

00 

XIs = is L XI U - pIs - Is) 
p=-oo 

00 

XIs = is L XU - pis) 
p=-oo 

and 
00 

X-Is =.fs L XI U - pis + is) 
p=-oo 

00 

X-Is =.fs L XU - pis) 
p=-oo 

That is 

This demonstrates that the two shifted, sampled signals are equivalent to the sampled version of 

the original signal, which in turn shows that if the filter is followed by symbol rate sampling, 
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the frequency shifts are redundant and the filter simplifies to the centre branch only, which is a 

fractionally spaced equaliser. 

This is illustrated in figure 3.18 which shows a 100% excess bandwidth raised cosine spectrum be­

fore and after baud rate sampling. We know (see, for example, [99] section 2.5) that the spectrum 

of a sampled signal contains an infinite number of images of the spectrum of the original signal. 

These images are spaced + apart where + is the sampling frequency. 

We can ignore all of the spectrum outside ± 2~ as it contains repeated versions that within ± *' 
so it gives us no additional information. The sampled signal spectrum has been aliased. This term 

normally implies that information has been lost but in this case the overlapping signal components 

are perfectly correlated, as described in [59]. 

This effect also means that a NWMF or a MF followed by symbol rate sampling also exploits 

spectral correlation related to the SOl symbol rate. To see why this is so, we consider the simple 

receiver shown in figure 3.17, receiving a signal with 100% excess bandwidth. 

The sampling which follows the matched filter creates symbol rate spaced images in the spectrum 

exactly as described above. The explicit frequency shifts used in the FRESH filter are carried out 

here by the sampling. With the symbol rate updates, we have a FSE which adapts to be the NWMF 

for the particular interference scenario. The sampling overlays the correlated components, and it is 

the job of the filter to adjust the phases so that these components add constructively, and to weight 

them according to each component's signal to noise ratio [59]. A matched filter is the optimum 

filter for detecting a particular waveform in noise - there are no assumptions about stationarity as 

in Wiener filter theory; we cannot improve on matched filter theory by refining the model, as we 

can refine the Wiener filter to the cyclic Wiener filter by removing the assumption of stationarity. 

3.6.5 Sampling after a periodically time-varying filter 

It is also useful to consider symbol rate sampling following the explicitly time-varying imple­

mentation of the filter (figure 3.15). The commutator operates at the symbol rate, so if the filter is 

followed by symbol rate sampling, then only one of the subfilters contributes to the output symbol­

rate samples. The other subfilters are therefore red~dant and can be removed, leaving one filter 

operating at the sampling rate. This remaining filter is the fractionally spaced equaliser. 

This simple argument combined with the equivalence of the filter structures in figures 3.15 and 

3.16 of section 3.6.1 amounts to a proof of the equivalence of a FRESH filter and a FSE when 

both are followed by symbol rate sampling. This was first shown in [59]. 
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Figure 3.18: Sampled raised cosine spectrum components 
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3.6.6 Removing unnecessary frequency shifts 
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This section describes a modification to the FRESH filter structure which results in a more efficient 

filter in terms of processing load, especially when using signals with up to 100% excess bandwidth. 

This is relevant to filters which exploit baud rate related spectral correlation. The reason for the 

modification is apparent from considering the spectra of the signals in each branch of the filter. 

Figure 3.19 shows the spectra of the signals entering the three subfilters of the FRESH filter shown 

in figure 3.7. It is assumed that the sampling rate for the system is high enough to support the total 

bandwidth of all the frequency shifted signals, that is at least 4 times the baud rate. The input 

signal in this case is raised cosine filtered with 100% excess bandwidth, although the discussion 

which follows is equally valid for any excess bandwidth up to 100%. 

To exploit the baud rate related spectral correlation, each subfilter is required to manipulate the 

components of its input which are correlated with the signals in other branches. This means that 

(using the labels from figure 3.7) h2 must operate on frequencies from -1 to 1 (using the frequency 

scale from figure 3.19), while hJ and 11,3 need only operate on frequencies from -1 to 0 and from 0 

to I respectively. That is, two of the filters only need half the bandwidth of the h2 filter. 

It is apparent then that having three filters operating at the same (4/T) bandwidth is inefficient. 

At first sight it may seem that a better approach is to downsample each filter input to 2/T. This 

means the h2 branch is critically (that is, efficiently) s'ampled while the two other input signals are 

aliased, but in such a way that both inputs are identical. In that case only one of the branches is 

necessary, and the inputs to the two remaining branches are as shown in figure 3.20. 

However it is not normally advisable to use critical sampling, as in many functions of the receiver 

it removes any margin for error, and can make filtering more difficult. But the FRESH filter 

complexity can still be reduced to containing only 2 subfilters by noticing that the spectra of the 

two shifted signals do not overlap. This means that they can be added together and filtered by one 
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Figure 3.20: Internal spectra for critically sampled 3 branch FRESH filter 
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Figure 3.21: Efficient FRESHfilter for 100% excess bandwidth 

filter with bandwidth from -21T to 21T. We can then use a sampling rate of 41T and a structure 

as shown in figure 3.21. The result is a filter which contains two subfilters instead of three, but 

exploits the spectral correlation at liT and -liT. The filter proposed by Gardner (figure 3.7) has 

two subfilters (It! and h3) with double the necessary bandwidth, and hence double the necessary 

processing load. This can be extended to wider signal bandwidths: for example a signal with 

excess bandwidth between 100 and 200% exhibits spectral correlation at -2IT, -liT, liT and 

21T. This correlation could be fully exploited by a filter containing four subfilters, one operating 

on the unshifted signal, one on the liT shifted signal-, one on the -liT signal (these two cannot be 

added as their spectra overlap) and one on the 21T and -2/T signals added together. For these 

examples Gardner states incorrectly that three and four subfilters are required respectively [13]. 

3.6.7 Exploitation of spectral correlation by an FSE 

We know that a FRESH filter with SOl baud rate frequency shifts exploits the spectral correlation 

at those frequencies by overlaying the correlated components and adding the signals. But we also 
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Figure 3.22: Frequency response of FSE with narrow band interference (symbol rate updates) 

know that a symbol rate updated FSE is equivalent to such a FRESH filter, if both are followed 

by baud rate sampling (section 3.6 and [59]. This means that the FSE must also be exploiting the 

spectral correlation associated with the SOl baud rate. 

For this equivalence to hold, the FSE response must be such as to minimise the mean squared error 

at symbol rate samples, not at every sample. In terms of implementation of an adaptive FSE, this 

means that the tap update process should be carried out once per symbol, and not every sample. 

The FSE which minimises MSE every symbol adapts to the matched filter for the SOl; but if it 

minimises the MSE for every sample it is trying to recover the entire waveform, and will adapt 

towards the Wiener filter for the SOl. 

This is illustrated in figure 3.22. Here a baseband SOl (100% excess bandwidth square root raised 

cosine filtered QPSK) with baud rate 1 Hz is corrupted with a low level of white noise and a QPSK 

interferer with similar properties except it has a baud rate rate of 0.1 Hz and a carrier frequency 

of 0.3 Hz. The figure shows the magnitude frequency response of a FSE which was adapted using 

the LMS algorithm updating every symbol. We see that a notch in the response at 0.3 Hz removes 

the interferer, but there is also a peak in the response at -0.7 Hz, where the correlated components 

are enhanced to replace the corrupted SOl energy at 0.3 Hz. The baud rate sampling causes the 

correlated components to be overlaid. 

Compare this with figure 3.23 which shows the response of the same FSE which has been allowed 

to update its taps every sample in exactly the same ·conditions as above. Here the filter cannot 

exploit spectral correlation, so it simply puts a notch around the interference. 

3.7 Exploiting the Correlation of the Interferer 

We have concentrated so far on the exploitation of the cyclostationarity of the SOl. A FRESH filter 

can shift correlated components to the same frequency, weight them appropriately according to the 
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Figure 3.23: Frequency response of FSE with narrow band interference (sample rate updates) 

SNR and add them together. Ifa cyclostationary interferer is present then knowledge of the cyclic 

frequencies of such an interferer allows a FRESH filter another degree of freedom in removing the 

interferer. In this case, frequency shifts are included which shift correlated interferer components 

to the same frequency. They can then be weighted and subtracted, so that the interferer effectively 

removes itself. 

The effectiveness with which this can be done depends mainly on the interferer to noise to ratio. 

This means that the application of FRESH filters is especially appropriate in situations where the 

interferer power is very high. High powered interference overlapping with the SOl will cause 

major corruption of the SOl, which cannot be easily undone by other methods. FRESH filtering, 

on the other hand, benefits from the high interferer to noise ratio - the theoretical perfonnance of 

the FRESH filter does not decrease with increasing interferer power. 

The exploitation of interferer properties is already implicitly included in the cyclic Wiener equa­

tions 3.11. The equations include tenns for every combination of cyclic frequencies present in the 

input signal, including those cyclic frequencies which are belong to the interferer. 

A practical implementation of an interferer exploiting FRESH filter is likely to be in an adaptive 

structure such as in figure 3.14. It is necessary to know the cyclic frequencies of the interferer, but 

this issue has not been addressed here. 

Results showing the perfonnance of interference exp.loiting FRESH filters in QPSK and GMSK 

communications are given in chapters 4 and 6. 

3.8 Circularity and Conjugate Filtering 

It is interesting to consider the work published by Picinbono on the subject of circularity in light 

of the discussion on spectral symmetry in section 2.2.3. In [87] [100] Picinbono shows that in 

general the estimation of complex data is widely linear rather than linear. That is, when estimating 
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a random variable y in terms of an observation vector x, where both are complex, he says the 

optimum solution is not in general of the form 

(3.26) 

as in the real case, but 

y = hHx+gHx* (3.27) 

That is, the optimum solution is a linear combination of x and x*, not just a linear combination 

ofx as given by Wiener filtering theory. This part ofPicinbono's work was published earlier by 

Brown [27]. However, equation 3.27 reduces to equation 3.26 when x and yare jointly circular. 

This condition is expressed mathematically as 

E[XXT] = 0 

E[yx] = 0 (3.28) 

Note that these equations are not saying that the autocorrelation of x and the cross-correlation of 

x and y are both zero, because the normal definition of correlation for complex variables involves 

the complex conjugate of one of the variables. So in equation 3.28 Picinbono is in fact saying that 

the cross-correlation of x and x* is zero, and that the cross-correlation of y and x* is zero. 

A random complex signal such as QPSK is not correlated with its complex conjugate and is there­

fore circular. Taking the scalar version of the first equation of 3.28: 

E[x.x] = E[a2 - b2 + 2jab] where x = a + jb 

= E[a2] - E[b2
] + 2jE[ab] 

= 0 

- because E[a2] E[b2
] = 

and E[ab] = 0 

The penultimate line of the above is a result ofthe symmetry of the QPSK spectrum, whereas the 

last line expresses the independence of the real and imaginary parts of the signal, which follows 

from the assumption of transmitting lID data. This establishes that QPSK is circular, but BPSK 

(or any purely real signal) is clearly not, as x = x* so' the condition E[ x 2] = 0 requires that x be 

o for circularity. 

This is a general statement of something which for most practical situations is almost trivially 

simple: if we are estimating a signal such as QPSK in complex noise, a linear filter is sufficient. 

If however we are estimating a purely real signal like BPSK from complex noise, then a linear­

conjugate-linear is significantly better because it allows the imaginary part of the noise to be 

discarded. When estimating BPSK which is not purely real (for example, using the constellation 

(1+j,-l-j» the noise orthogonal to the SOl can be removed completely by the LCL structure, 
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although equally it could be removed by phase rotating the signal until the SOl is purely real, 

and then discarding the imaginary noise. This is perhaps why Johnson [88] describes the term 

"circularity" as "unnecessary and overblown". 

From a practical point of view, one can say that most complex communication signals, such as 

QPSK, are circular, so the traditional equation 3.26 applies. Non-circular signals are those which 

have linear dependence between their real and imaginary part. For symmetric constellations this 

restricts us to signals which can, after a phase shift, be expressed as purely real. In this case the 

effect of equation 3.27 is to remove the imaginary part of the remaining noise, which of course 

could also be done by coherent detection. This topic is addressed again in section 7.5. As far as 

FRESH filters are concerned, one can say that non-circular signals have exploitable carrier related 

spectral correlation. 
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In this section we demonstrate the use of the FRESH filter in interference rejection, where the 

properties of the SOl only, or of both the SOl and the interferer can be used. QPSK signals are 

used as SOl and. interference, so there is no carrier related correlation present. It is shown that 

given the knowledge that a cyciostationary interferer is present, and given the symbol rate of that 

interferer, a filter can be constructed which can almost completely remove the interferer in low 

noise conditions. If the noise level is higher, the filter will give a significant improvement over a 

FSE (with symbol rate tap updates) which does not exploit the cyclostationary properties of the 

input. In the literature, most examples of FRESH filtering use signals with rectangular pulses. 

Here, raised cosine filtered signals are used as they are much more common in practical situations. 

4.1 FRESH Filter Using SOl Properties Only 

Considering a 100% excess bandwidth (EBW) QPSK signal, which contains enough correlation to 

be equivalent to a frequency diversity system of order 2, it is clear that a 3 branch FRESH filter is 

sufficient to exploit all the correlation present in that signal. Such a filter is shown in figure 4.1 (b). 
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This filter consists of three subfilters, each of which has bandwidth equal to that of the entire 

received signal. One subfilter (following "a shift" in figure 4.1(b» operates on a version of the 

signal which has been frequency shifted by +a where a is the symbol rate of the signal, one 

operates on the unshifted signal, and the third operates on a version which has been shifted in 

frequency by -a. This structure therefore causes each subfilter to act on versions of the signal 

of interest (SOl) which are correlated, but corrupted by noise and interference. The noise and 

interference are uncorrelated between each filter branch. 

It is known ([59] and section 3.6.4) that the structure shown in figure 4.1(b) is equivalent to a 

fractionally spaced equaliser (figure 4. 1 (a» when the filtering operation is followed immediately 

by symbol rate sampling and the filter is designed to minimise the MSE of those symbol rate sam­

ples. The effect of sampling is to create frequency shifted images of the original signal which are 

spaced in frequency by the sampling frequency. The symbol rate frequency shifts of the FRESH 

filter are made redundant by the imaging introduced by the symbol rate sampling downstream. 

This equivalence exists only when the filter is producing symbol rate samples. In some cases 

a higher sampling rate may be required after the filter, so the 3-branch FRESH filter and the 

fractionally spaced equaliser are no longer equivalent. A higher rate of sampling could be used, 

for example, to enable frequency tracking of the carrier. If a higher sampling rate is used, then 

the filter is no longer recreating only the symbol rate samples, but is producing some estimate of 

the transmitted waveform. As stated above, the filter in figure 4.1 can exploit all correlation in a 

100% EBW signal. More frequency shifts would be required if the signal had a wider bandwidth. 

For example a 200% EBW signal would need a filter with frequency shifts of + is, +2is, -is, 
and -2is, to exploit its spectral correlation fully. 

4.2 FRESH Filter for Exploiting the Interferer 

The filter described in section 4.1 exploits the correlation of the SOl by shifting the signal by the 

frequencies at which the correlation occurs. If a cyclostationary interferer is present with the same 

symbol rate as the signal of interest, then this filter can use the spectral correlation of the interferer 

to more effectively remove the effect of the interferer on the signal of interest. In this case no 

redesign of the filter is required, and it is still equivalent to a FSE. An example of a situation 

where a MSK SOl and interferer share cyclic frequencies is given in chapter 6. 

If, however, the cyclostationary interferer, has a symbol rate which is different from that of the 

signal of interest, then a FRESH filter with additional frequency shifts and associated subfilters will 

improve performance significantly. The frequency shifts must match the frequencies of spectral 

correlation of the interfering signal, so for QPSK they will be harmonics of the symbol rate (see 

chapter 2). 

The filter structure used in the simulations is shown in figure 4.1(c). This is the optimum filter for 

receiving a 100% EBW signal with symbol rate a in the presence of a 100% EBW interferer with 

symbol rate T' assuming both signals show no conjugate correlation. The two symbol rates need 

not be harmonically related, and the filter requires no knowledge of the carrier frequency of the 

interference. 

The number of additional frequency shifts required for optimum performance depends on the 
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(a) fractionally spaced equaliser 

-In--------------~.~~1 ___ F __ IR __ ~r-----------~o.~m 

(b) 3-branch FRESH filter 

r--___ ~ FIR 

in 
FIR 

out 

'------I.;;~ I ~ FIR 

(c) 5-branch FRESH filter 

'Y FIR 
shift 

~ FIR 

m 
FIR 

out 

~ shift FIR 

-'Y 
FIR shift 

Figure 4.1: Structure o/(a) FSE, (b) 3- and (c)5-branch FRESHfilters 
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crrorsi I 

d~sired signal 

Figure 4.2: System used/or simulation 

bandwidth of the interferer. In the simulation results presented below the interferer has 100% EBW 

so frequency shifts of +'y and -'Yare used. There is no advantage in using additional shifts unless 

the interferer has a wider bandwidth. 

4.3 Description of Simulation and Results 

Simulations were run to compare the performance of a FSE, a FRESH filter exploiting SOl prop­

erties, and a FRESH filter exploiting SOl and interferer properties. A block diagram of the system 

which was simulated is shown in figure 4.2. A QPSK signal is the SOl, and a separate QPSK 

signal forms the interference. AWGN is also added. The block labelled "adaptive FRESH filter" 

was implemented as either a fractionally spaced equaliser, a 3-branch FRESH filter or as-branch 

FRESH filter as shown in figure 4.1. The mean squared error of the output was measured for these 

three filters in the presence of different levels of white noise, and with different carrier offsets of 

the interferer. Noise was added to give an Eb/ No (for the SOl) of 0 dB to 15 dB. To make the 

advantage of using the 5-branch FRESH filter clearer, the interferer power was set to 10 times 

higher than the SOl power. 

The FSE here is updating every sample, not every symbol, so will not exploit symbol rate spectral 

correlation, and will not therefore give the optimum BER performance. However the 3-branch 

FRESH filter BER results are equivalent to those for a symbol rate adapted FSE (see section 3.6.4). 

The interferer carrier offset was used to model a difference in carrier frequency between the signal 

of interest and the interferer. As the simulation used the complex baseband, the carrier of the SOl 

was O. The symbol rates of the SOl and interferer were I and 0.94 respectively. Carrier offsets 

of 0, 0.3, 0.7, 1.1 and 2.0 were used (that is 0, 0.3 etc. times the SOl symbol rate). These figures 

can be scaled to values likely to be seen in practice. For example a SOl symbol rate of 1 kHz 

could be assumed, so the interferer symbol rate is 940.Hz. If the SOl carrier were 1 MHz then the 

interferer carrier frequencies used were 1, 1.0003, 1.0007, 1.0011 and 1.0020 MHz. These values 

were chosen to show the extremes of performance: a 0 offset means the two signals are almost 

completely overlapping ("almost" because the different symbol rates mean that the extreme edges 

of the signal of interest will be uncorrupted by the interferer); an offset of 2 puts the two signals 

far enough apart so they do not overlap at all. The relative spectra of the signal of interest and 

interferer are illustrated in figure 4.3. 
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Figure 4.3: Relative spectra of SOl and interferer used in simulations 

Figures 4.4 to 4.9 show the comparative perfonnance of the three filter structures described above. 

Each graph rel?resents one of the interferer scenarios illustrated in figure 4.3. With the interferer 

and SOl power and carrier frequency fixed, the noise level was varied to give Eb/NO (for the SOl) 

of 0 to 15 dB. In each case, the theoretical lowest BER for receiving QPSK in AWGN only is also 

plotted for comparison. 

These results show that the 5-branch FRESH filter gives a dramatic improvement in perfonnance 

over the 3-branch FRESH filter and single branch filter (fractionally spaced equaliser). This is 

particularly apparent for partially overlapping interference (figures 4.6, 4.7 and 4.8), where the 

improvement over the fractionally spaced equaliser is up to l3 dB, and over the 3-branch FRESH 

filter up to 10 dB at high SNR. 

This means that the 5-branch filter is effectively removing nearly all the interference effects in low 

noise. It perfonns better than the other structures for all cases except high noise and completely 

overlapping signal. 

As expected when the signals do not overlap at all (figure 4.9) there is little advantage in using 
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the 5-branch filter, as a simple fractionally spaced equaliser can eliminate the interferer without 

corrupting the signal of interest. 

It is interesting that at high noise the fractionally spaced equaliser sometimes performs better than 

the 3-branch FRESH filter. It is thought that this is due to the adaptive nature of the filters. As they 

are continually adapting, even in the steady state there is a small noise component generated by 

the changes in tap positions around the optimum at each iteration. This effect will be worse when 

there are 3 adaptive systems instead of just one, and so 3 times the number of filter taps in total. 

This effect will therefore depend on the value of the feedback coefficient used in the adaptation. 

The LMS algorithm was used here, with a feedback coefficient of 10-.5 and a signal power of 1. 

4.4 Effect of Number of Taps 

All the resultS" in the previous section used a filter of length equivalent to 4 symbols of the SOl. 

That is, using 16 samples per symbol and 1 tap per sample, the FSE and each subfilter of the 

FRESH filters had 65 taps. 

For one of the above filter scenarios (interference carrier frequency 0.7 Hz, 5-branch FRESH 

filter) the effect of varying the number of taps in the filter is shown in figure 4.10. The BER was 

calculated for a filter with 17, 33, 65 and 257 taps in each of the subfilters. Given that the SOl 

symbol rate was I Hz and the sampling frequency 16, it is clear that the filter "lengths" correspond 

to approximately 1, 2, 4 and 16 symbols. With 17 taps the filter does not have sufficient frequency 

resolution to manipulate the signal as required so the performance is poor. 33 and 65 taps give 

similar results to each other, and the optimum tap number is in this region. With 257 taps the 

effects of "adaptation noise" start to be seen. The filter was adapted using the LMS algorithm so 

the taps will be close to, but not exactly at the optimum values. 

Although the filter was fixed while the results were being taken, adaptation noise is present due to 
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the particular tap configuration which existed when the adaptation was frozen. This configuration 

will be slightly different from the optimum and the effect of the error increases with the number of 

taps, as the taps at the end of the filter tend to have (ideally) values close to zero, and the missing 

taps in a short filter may be closer to the exact solution than the adaptation noise value left on 

the taps of a long filter. This explains why the 257 x 5 tap filter performs worse than the 65 x 5 

tap filter. Note that the amount of adaptation noise is dependent on the value of the feedback 

coefficient in the LMS algorithm. Here a value of 10-5 was used. A larger coefficient, which 

gives faster adaptation, will also give a greater level of adaptation noise and so would optimally 

need a smaller number of taps in the subfilters. 

4.5 Comparison of Theoretical and Simulated Filter Performance 

To help confion the accuracy of the simulation results, another method of calculating the filter 

performance was used: that of solving the filter equations 4.1 numerically, and calculating the 

theoretical MSE performance for that filter. We refer to this here as the "theoretical" result. It was 

calculated by numerically solving the filter equations in MATLAB. 

The filter equations allow calculation of the MSE of the output, not the BER. The simulations 

described in section 4.3 were repeated to calculate values for MSE, and these are compared here 

with the theoretical values. These simulations wer~ done using SPW. 

The results shown here are for the case where a SOl which is 100% EBW square root raised cosine 

filtered QPSK is being detected in the presence of A WGN and a QPSK interferer, which is also 

100% EBW square root raised cosine filtered. The SOl has a baud rate of 1 and a carrier frequency 

of 0; the interferer has a baud rate of 0.9412 ... = l~, and a carrier frequency of 0.7. The power of 

the interferer was 10 times that ofthe SOl, and the AWGN was set to give a SOl Eb/ No of7.5 dB. 

The baud rate of the interferer was chosen to be 0.9412 because this is not harmonically related 
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to the SOl baud rate but can be represented by an integer number of samples per symbol. SPW 

cannot represent symbols with non-integer sample numbers. The sampling rates used here were 

16 samples per symbol for the SOl and 17 samples per symbol for the interferer. 

The reference (or desired) signal in each case was 100% EBW raised cosine filtered QPSK, so the 

FRESH filter is expected to perform the role of matched filtering as well as interference rejection. 

Some assumptions were made in solving the filter equations: the data carried by the SOl and by 

the interferer (if present) are both assumed to be perfectly white sequences. There is also assumed 

to be no correlation between the two data sequences. 

The solution of the filter equations for the fractionally spaced equaliser, the 3-branch FRESH filter 

(with frequency shifts matching the SOl baud rate) and the 5-branch FRESH filter (with frequency 

shifts matching the SOl and interferer baud rates) are described in sections 3.3, 4.7.1 and 4.7.2. 

4.6 Uniqueness of Filter Solutions 

An issue of relevance here, which has not yet been thoroughly investigated, is that there is not 

necessarily a unique solution to the fractionally spaced equaliser, or FRESH filter equations. This 

can cause problems in both the numeric solution and in the adaptive implementation of the filter. 

It is known that a FSE does not have a unique solution if the tap spacing is such that the filter 

bandwidth is greater than that of the signal being filtered (as it usually is) and if there is no noise 

present in the out of band section of the filter bandwidth [34]. The second condition means that in 

most practical applications there is a unique solution. An infinite set of solutions exists when these 

two conditions are met because the filter could arbitrarily amplify any of the out-of-band portion 

of its own bandwidth without affecting the output signal. 

With FRESH filters the situation is more complicated because several versions of the signal exist 
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in the filter. If there was no noise present, it would be possible to amplify a frequency component 

in one filter branch by any amount, and compensate by attenuating (or amplifying and reversing 

the phase) a correlated frequency in another branch. This shows that with no noise, the FRESH 

filter would also have an infinite number of solutions. 

However when noise is present, as it is in all practical situations, the filter will weight the correlated 

frequencies according to their SNR before adding them, which makes the solution unique. 

In the investigations carried out for this thesis, the adaptation of the filters was observed graphically 

in many different scenarios, and with differing initial conditions, and they were seen to always 

adapt to one solution depending only on the properties of the input signals, as long as there was 

some noise present. 

4.7 Solutions of Cyclic Wiener Filter Equations 

Here the cyclic Wiener equations described in section 3.4 are simplified and applied to specific 

FRESH filters to allow comparison with simulation results. 

4.7.1 3-branch FRESH filter 

Gardner's cyclic Wiener filter equations are: 

AI ( ) IV ( 'J )* L S~k-am f - ak ~ am Am(f) + L S~;.-nk f - nk ;! n Bn(f) = S~:, 
m=1 71=1 

1.:= 1,2, ... 111 

t S~;:nm (1 - IJk ~ am) Am(f) + t S~k-13" (-1 + rh ~ fin) Bn(f) = S~:., 
m=1 ~1 

k = 1,2, ... IV 

(4.1) 

where S;~ is the SCD of the input signal x with a frequency shift of n, S;~J.' is the conjugate SCD 

of x with a frequency shift of {J, Am and Bn are the subfilter frequency responses corresponding 

the the filters labelled ha and 11,/3 in figure 3.6. S'dx is the cross-spectral density of the reference 

signal d and the input x under a frequency shift of n. 

These can be simplified for the specific example under consideration here by noting that the signal 

of interest is QPSK which exhibits no conjugate spectral correlation. This means that N = 0 and 

the second equation of 4.1 disappears. It also means that Six' = 0 for any frequency shift 'Y, so 

the second term of the first equation disappears. We have a filter containing three frequency shifts 

(including the zero shift of the central branch) so M = 3 and the equation represents a system of 

three equations (due to the ~~ = 1,2, ... M condition), each with three terms on the left hand side 

(due to the summation E;~~= I). This filter is the middle one shown in figure 4.1. 

Equations 4.1 therefore simplify to 

S~I-<>I (f - aj ;Qj) Aj(f) + S~I-02 (f _ Qj ;(2) A2(f) + S~I-oa (f _ Qj; (3) A3(f) = s;; 

8':2-0'1 (f - a2 ; Qj ) AdJ) + 8':2-<>2 (f - a2 ; a2 ) A2 (f) + 8':2- 0 a (f _ a2 ; a3 ) A3 (f) = S;; 

.,0'3-0'1 (f _ Q3 + Qj) A (f) + .,<>3-<>2 (f - Q3 + (2) A (f) + s<>a-<>3 (f _ Q3 + (3) A (f) = S<>a 
, x 2 j , '" 2 2 x 2 3 dx 
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(4.2) 

The Qq, a2, a3 represent the frequency shifts of a, 0, -a where a is the baud rate of the signal of 

interest. Substituting these values into equation 4.2 gives 

S~(f + a)AI (f)+ 

a 
S~ (f + "2 )Aj{.f)+ 

s;a (f) AI (f)+ 

s;n(f + ~)A2(f)+ 

S~(f)A2(f)+ 

S~ (t - %) A2(f)+ 

s;2a(f)A3(f) = 

s;a(f - ~)A3(f) = 

S~(f - a)A3(f) = 

six
a (! +~) 

S~x(f) 

Sd.r (I - %) 
(4.3) 

As the signal of interest is 100% EBW we can say s;n == s;2a == 0, because .7: shifted by 

+2a or -2a has none of its spectrum overlapping x (unshifted). From symmetry we know that 

s<:; == s;n, so finally we have 

S~(f + a)Adf)+ S~(f + % )A2(f)+ 0= 

S~(f + ~)AI (f)+ S~(f)A2(f)+ S a a) x (f - "2 A3(f) = 

0+ S;~ (.r - ~) A2(f)+ S2(f - a)A3(f) = 

Six
a (I + %) 

S~x(f) 

Sdx (I - ~) 
(4.4) 

The subfilter frequency responses are therefore defined in 4.4 in terms of the cyclic spectral density 

of the input signal and the cross spectral density of the desired signal and the input signal, with 

various relative frequency shifts. These spectral densities are defined by Gardner as follows: 

and 

(4.5) 

for any two signals x, y, where (.) indicates averaging over all time T. The more general form, 

which does not require ergodic signals, is: 

S~(f) = E[Xr(t,.f +. % )Xf(t,.f - %)] 

and 

(4.6) 

The signals (e.g. X r) are the product of the pulse shape and the data spectrum. We are assuming 

that the data are a white noise sequence, so its Fourier transform has equal magnitude over the 

whole spectrum. The cyclic spectral density functions 4.6 then simplify to: 
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SCi ( f) = (f ~) * -~. x· g +2 g (.f 2) 

and 

(4.7) 

for values of a which are cyclic frequencies of x or joint cyclic frequencies of x and y, and 0 for 

all other a, where g and II, are the pulse shaping functions applied to x and y. 

The calculation of all the cyclic spectral density functions in the system of equations 4.4 involves 

multiplying frequency shifted versions of the Fourier transforms of the pulse shapes of the signals 

involved. It is assumed that all the data are a white noise sequence (on the SOl and the interferer) 

and that the SOl data have no correlation with the interferer data. This means that in many of the 

terms, the cross correlations are simplified because there is no correlation between most of the 

signals. For example, the desired signal is correlated with the signal of interest but not with the 

interferer or the white noise. This means that S~x is calculated by multiplying the spectra of the 

SOl and the desired signal. Under a relative frequency shift of a this correlation still stands, so the 

shifted spectra are mUltiplied. However under a relative frequency shift of'Y there is no correlation 

between these signals so SJx is zero. 

It can be seen from figures 4.11 and 4.12 that the MSE predicted from the two methods is very 

close. The simulation value is always slightly higher which is to be expected due to the slight 

tap misadjustment which is inevitable in an adaptive system. This error can be reduced by using 

a smaller value of the LMS feedback coefficient, although the filter then adapts more slowly. 

Figure 4.11 shows the predicted MSE in receiving the SOl waveform in the presence of white 

noise only. Figure 4.12 shows the same in the presence of an interferer with a carrier frequency of 

0.7. Figures 4.13 and 4.14 show the filter magnitude frequency responses for each subfilter of the 

FRESH filter corresponding to the 2 scenarios described. The SNR used for these filter solutions 

was Eb/NO = 7.5 dB. 

In each of figure 4.13 and 4.14 the top graph shows the responses of the top subfilter of the middle 

FRESH filter in figure 4.1. This subfilter is preceded by a frequency shift of a, the SOl baud rate). 

The next two graphs correspond to the other filter responses in the obvious way. 

From figure 4.13 one can see how the FRESH filter improves the MSE in white noise only. The 

energy from the outer half of the spectrum is shifted to correlated frequencies, and the 3 subfil­

ters weight the components according to their SNR. Adding the outputs of these filters results in 

correlated SOl energy and uncorrelated noise being added, so the SNR is increased. 

There is a small difference visible in the two solutio~].s, presumably due to the fact that the analytic 

solution was calculated purely in the frequency domain where zero gain (e.g. in the third subfilter 

for f < 0) is easy to achieve. The simulated solution is the Fourier transform of a finite length 

time domain filter so it is impossible to achieve such a sharp drop to zero gain. Using a longer 

filter (257 taps were used in this case) would result in a closer match between the two solutions. 

In figure 4.14 there is a high powered interferer at a carrier frequency of +0.7 Hz present. The 

third subfilter is amplifying energy from the lower frequency part of the SOl spectrum, which 

is unaffected by the interferer. The correlated SOl energy in the upper half of the spectrum is 
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Figure 4.11: Comparison of two methods of calculating 3-branch filter MSE in white noise only 

attenuated by the subfilter, along with the interferer. The top subfilter passes very little as it can 

only manipulate SOl energy which is severely corrupted by the interferer. 

Notice that the numerically calculated responses for the subfilters are all limited in bandwidth to 

1. This is due to the fact that the total signal bandwidth is 2 and the frequency shifts are 1. This is 

linked with the issues of efficiency of implementation raised in section 3.6. 

4.7.2 5-branch FRESH filter 

The FRESH filter in the previous section was able to exploit only the spectral correlation of the 

SOL In this section a 5-branch filter is considered which allows exploitation of both SOl and 

interferer spectral correlation 

Again we start from equation 4.1. We are assuming in this case that an interferer is present and that 

the filter contains branches with frequency shifts equal to 'Y (the baud rate of the interferer) and 

-'Y. The SOl and interferer are both QPSK which means that again the filter equations simplify 

as there is no conjugate correlation in the input signal. Here, M = 5 so the filter equations are 
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Figure 4.12: Comparison of two methods of calculating 3-branch filter MSE in interference and 

white noise 

8~(f + 1')Ar(f) +5';"+"(f+ ,;o,).42(f) +S-;' (f + 1 )A3 (f) 
2 

+5';'''-''(f + '; o,)A4(f) 

+8;,2" (f)As (f) = six" (f + ~ ) 

S';'-'+" (f + l' + a )Ar (f) 
2 

+8~(f + o,)A2(f) +8;'''(f + ~)A3(f) +8;,2" (f)A4 (f) 

+8;,n-" (f + a; l' )As (f) =5'-"(f+~) 
dx 2 

8;' (f + ~ )Ar (f) 
n 

+8':(f + "2)A2(f) +S~(f)A3(f) +8;"(f - ~)A4(f) 

+8;'''(f- ~)A5(f) = st·(f) 

S'o:+" (f + l' - o,)A (f) 
.1 2 r +8;" (f)A2(f) +8':(f - %)A3(f) +8~(f - o,)A4(f) 

+S':-"(f - a ;1')As(f) 
n =8;; (f--) 

x 2 

,s';" (f)Ar (f) +8;,+n(f + a; ')A2(f) +5';' (f - ~ )A3 (f) +5';,-"(f- ,;o,)A4(f) 

+8~(f -1')As(f) =8" (f_1) 
dx 2 

(4.8) 

Again we can make further simplifications by noticing that many of the cross correlation terms on 

the left hand side are zero. s;o, and S;2n are zero because under a frequency shift of 2a there is 

no correlation in the input signal due to the limited Bandwidth of the SOL Similarly S;' and S;21' 

are zero because of the limited bandwidth of the interferer. There is some overlap between the 

SOl and the interferer under these frequency shifts but these signals are not correlated. There is 

also no correlation in the SOl except at ±a or in the interferer at ±, so the cross correlations with 

frequency shifts of a + " (Y. - " -(Y + , and -(Y. - , are all zero. Also the cross correlation of 

the desired signal and the SOl is zero except under frequency shifts of 0 or ±a, so the terms SJx 
and Si} are also zero. Finally we can also say from symmetry that S':, = s;o, and S1 = S;'. 
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Figure 4.13: Magnitude frequency response of 3-branch FRESH filter with no interference 
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Frequency response - interferer carrier frequency 0.7 Hz 
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Figure 4.14: Magnitude frequency response of 3-branch FRESH filters with interferer carrier 0.7 
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Equations 4.8 then simplify to 

S~(f + ,,/)A1 (f) +0 

0 +S?,(f + a).42 (f) 

S}(f + ~)A1(f) +S~ (f + ~ ).42 (f) 

0 +0 

0 +0 

+S; (f + ~ )A3 (f) 

+S;(f + ~)A3(f) 

+S~ (f)A3 (f) 

+S; (f - ~ )A3 (f) 

+S} (f - ~ )A3 (f) 

+0 

+0 

+S;(f - ~)A4(f) 

+S~(f - a)A4(f) 

+0 

+0=0 

+0 = Sax"(f +~) 

+S;(f - ~)A5(f) 

= S~x(f) 
+0 = Sdx(f -~) 

+S~(f - ,,/)A5(f) = 0 

(4.9) 

These equations determine the five filter responses in terms of the cross spectral densities, with 

frequency shifts of the SOl with itself and SOl with the desired. 

The mean squared error which results from filtering the input x with such a filter can be calculated 

from 

MSE = 1: SeU)df (4.10) 

where Se (.f) is the power spectral density of the error signal. This is given by 

5 

SeU) = SdU) - L S~;:' (1 - ~l) AmU) 
m=l 

(4.11) 

As with the 3-branch filter, there is good agreement between theoretical and simulated MSE of 

the filter output, as shown in figure 4.15. The filter frequency responses in figure 4.16 show that 

the subfilters following the SOl related frequency shifts behave in a similar way to those in the 

3-branch filter (figure 4.14) but that there is an additional contribution from the filter following the 

interferer related shift (the top graph of figure 4.16). This shows that the interferer is correlated 

under this frequency shift with the unshifted signal in the central branch, and the two are being 

weighted so their magnitudes match as closely as possible. There will also be a 7l" radian phase 

shift between the two filter responses so that the interferer components are subtracted instead of 

added. 

4.8 Summary and Further Work 

It has been shown that by taking advantage of the spectral correlation in an interferer, a significant 

improvement is made in the performance of the FRESH filter. This filter can then effectively 

remove the effects of the interference. The only knowledge assumed in the construction of the 

filter is the symbol rates of the SOl and interferer. If this knowledge is available then this filter can 

offer extremely effective interference rejection performance. 

A number of issues arise from this work. In the simulations, exact knowledge of the interferer 

symbol rate was assumed. Before practical use of this technique is considered, it is necessary to 

examine how any errors in this information affect the filter performance. It is expected that this 

is related to the feedback coefficient of the filter adaptation algorithm which is in effect the rate 
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Figure 4.15: Comparison of two methods of calculating 5-branch filter MSE 

of adaptation of the filter. The assumption was also made that the interference lies completely 

within the bandwidth of the receiver. The rejection of the interference will be affected if all of its 

spectrum is not available to the filter. It would be useful to look into how partial reception of the 

interferer affects performance. Related to this is the problem of a high powered interferer, limiting 

the effective dynamic range of a receiver available to the signal of interest. An important area of 

study is how to extract the useful information from the interferer without saturating the receiver 

Numerical solutions to the cyclic Wiener filter equations have been demonstrated, and compared 

with solutions obtained by training the filter in simulations using the LMS algorithm. The result­

ing MSE values have also been compared. There is generally good agreement between these two 

methods of calculating the filter responses which confirms that the filters are operating in simula­

tion as intended by the theory. The subfilter responses shown are useful for visualising how the 

filters manipulate the signals to remove the interference. 
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Figure 4.16: Magnitude response of 5-branch FRESH filter with interferer carrier offset 0.7 Hz 
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5.1 Introduction 

It is clear from chapter 2 that the spectral correlation properties of a signal are strongly affected by 

the pulse shape, or equivalently, the shape of the spectrum. As the FRESH filter exploits spectral 

correlation, it is reasonable to assume that in a given interference scenario, the effectiveness of the 

FRESH filter, and hence the immunity of the system to interference, is dependent on the spectrum 

of the SOl. It will also, of course, be dependent on the spectrum of the interferer, but it is assumed 

here that the interference is from another communication system, and so its spectrum cannot be 

changed. ~ 

So an investigation was carried out on the possibility of improving the interference immunity of 

the SOl by enhancing its cyclostationary properties. It was hoped that, for example, by taking 

a signal with 100% excess bandwidth (EBW) and shaping the spectrum so that the energy was 

equally distributed over the whole bandwidth, a FRESH filter would be able to make better use of 

the spectral correlation, and so would be more effective against an interferer. However the results 

reported here suggest that this is not a useful t~chnique in general. 

5.2 Simulation Description 

Figure 5.1 shows three spectra which are idealised representations of the spectra of the SOl used 

in the simulations reported here. One is a signal with no excess bandwidth, which has a per­

fectly rectangular spectrum, another has a 100% EBW raised cosine spectrum and the third has 
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100% EBW with a perfectly rectangular spectrum. For convenience, these three spectral shapes 

are referred to as SO, S 1 and S2 respectively. With the powers shown in figure 5.1 these signals 

have the same energy per bit transmitted. 

The corresponding pulse shapes for the three spectra are shown in figure 5.2. It can be seen that 

the shapes of SO and S2 are similar, but with S2 (100% EBW) oscillating at twice the frequency 

of the SO pulse. All the pulses have zeros at, at least, symbol spaced intervals, and so are free 

of intersymbol interference. It was hoped that using the rectangular signal spectrum S2 would 

allow the equaliser to reject the interference more effectively. Because the energy in the signal is 

spread evenly across the band, there is more available in the edges of the spectrum to replace any 

corrupted signal energy in the centre of the band. 

To produce a perfectly rectangular spectrum as in SO and S2 is impossible as it requires an in­

finitely long pulse in the time domain. Strictly speaking the raised cosine pulse is also not exactly 

obtainable with a finite pulse, but a practical realisation of a very close approximation is possible, 

as the magnitude of the pulse falls off rapidly with time. 

It is clear from figure 5.2 that truncated realisations of the three pulse shapes will be less accurate 

for SO and S2 than S 1 because the impulse response of S2 tends to be closer to 0 for times away 

from the centre of the pulse. The actual pulse shapes used were such truncations; no smoothing 

window was used. The time span shown in figure 5.2 corresponds to a 65 tap filter at 16 samples 

per symbol. In all the simulations described this was the sampling frequency used, and the number 

of taps in the transmit, or pulse shaping, filters of the SOl and interferer. The number of taps in 

each branch of the FRESH filter was varied, but was one of 33, 65 and 257. 

To illustrate that SO does not contain spectral correlation but that S 1 and S2 both do, the SCDs and 

conjugate SCDs of the signals are shown here. In each of these graphs (figures 5.3 to 5.8) there is 

some low level noise visible. This is a result of producing these graphs by simulation with a finite 

amount of data. The noise can be reduced to an arbitrarily small level by increasing the length 

of the simulation. Figure 5.3 shows that there is no correlation at any frequency shift from 0 to 2 

times the baud rate with SO. This is as expected as the Nyquist bandwidth is the minimum required 

to transmit the data so there can be no redundancy in the signal. S I contains a small amount of 

correlation at a frequency shift of 1 (figure 5.5). The magnitude of the graphs are related to the 

product of the two frequency shifted components used for each line on the frequency shift axis, so 

it gives an indication of proportion of the signal power used in providing diversity. The S2 graph 

shows the highest correlation level of the three signals. As there is no correlation between the real 

and imaginary parts of a QPSK signal, the conjugate SCDs are all zero for all frequency shifts. 

The interference considered here is square root raised cosine filtered QPSK with 100% EBW. It 

has power equal to that of the SOL A range of scenarios were tested when the interferer baud 

rate is either the same or slightly different to that of the SOL The interferer carrier frequency was 

varied from 0 to 2 times the SOl baud rate although in most cases 0.7 was used. This means that 

the signals' spectra are largely overlapping as shown in figures 5.9, 5.10 and 5.11. The powers of 

the SOl and the interferer were equal. 

The filter used to remove the interference was a 3-branch FRESH filter (as in figure 3.7) with 

frequency shifts equal to ±1 (the symbol rate of the SOl was 1). This filter is therefore only 

capable of exploiting SOl spectral correlation unless the interferer symbol rate is also 1. 
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A simplified block diagram of the simulation system is shown in figure 5.12. The transmit fil ters 

for both the SOl and interferer had 65 taps. The sampling frequency was 16 samples per symbol 

and the FRESH filter was trained using the LMS algorithm. 

The training signal used in the FRESH filter carried the same data as the SOl, but was 100% 

EBW raised cosine filtered (as opposed to square root raised cosine). This means that the FRESH 

filter should adapt towards the cyclic Wiener filter for the transmitted signal in the presence of the 

interference and also perform the role of the matched filter. In a real system the adaptation is likely 

to use a training signal and thereafter possibly a decision-directed process. 

The simulation was used to calculate the bit error rate when receiving SO, S 1 and S2 in the presence 

of various levels of Gaussian white noise and with and without an interferer present. The signal 

to noise ratio was specified in terms of Eb/No, and took values from 0 to 8 dB. The BER results 

were the average of 10 runs of each scenario, where 300 errors were counted in each tun. 

5.3 Results and Discussion 

Before considering the effect of interference, the simulation was tested with the SOl corrupted by 

AWGN only. From matched filter theory it is expected that in this case, the BER depends only on 

Eb/ No, and that the pulse shape has no effect [79]. 

This is shown in figure 5.13: each line represents the BER performance for one of the chosen SOl 

pulse shapes. It is clear that the three spectra do not give identical performance as required by 

the theory. It was assumed that this was due to the truncation of the ideal inlpulse response in the 

transmit and FRESH filters. The filter had 65 taps per branch, the transmit filters had 65 taps. 

This assumption was confirmed by repeating the simulation with 257 taps in each FRESH filter 

branch (figure 5.14). Here the difference between the three spectra is reduced. Note however that 
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Figure 5.5: SCD of 100% excess bandwidth raised cosine filtered baseband QPSK 
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Figure 5.6: Conjugate SCD of 1 00% excess bandwidth raised cosine filtered baseband QPSK 
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one cannot simply increase the length of the filter and expect the performance to improve because 

the filters were trained using and adaptive algorithm (LMS) which will always result in errors due 

to the slight misadjustment of the taps. The more taps there are, the worse this effect becomes 

[ 17]. 

The effect of FRESH filter length is further illustrated by figures 5.15,5.16 and 5.17 where each 

graph represents one SOl spectrum (SO, S 1 and S2, respectively) and each line within the graph 

shows the performance with a different number of taps in each branch of the filter. For SO (5.15) 

there is a small difference between the BER for 65 and 257 taps, but with 33 taps the BER is 

significantly worse. With S 1 (5.16) the 3 filter lengths are almost indistinguishable and with S2 

there is a small degradation with 33 taps but the results with 65 and 257 taps are almost identical. 

One would expect S2 to be less sensitive than SO to filter length as it has a faster decrease in 

amplitude with time (see figure 5.2). 

From these results it was decided that 65 taps could be used in further simulations, bearing in mind 

that the SO performance wil be slightly less than optimum. 

The graphs above represent extracting the SOl from AWGN only. However it was expected that 

in the presence of interference S2 would allow better performance than S 1 which in turn would 

be better than SO. It is clear from figure 5.18 that this is not the case - SO and S2 give similar 

performance but S I is significantly better than both. Here the interferer has a carrier frequency of 

0.7 and a baud rate of 1 (equal to the SOl baud rate). The symbol timing clocks of the SOl and 

interferer are in phase. 

Figure 5.19 shows the effect of having symbol timing clocks which are synchronised but not in 

phase. That is, the SOl and interferer have the same symbol rate, but symbol transitions in one 

are delayed by half a symbol period relative to symbol transitions in the other. In this case the S2 

result is almost as good as the S 1. 

In figure 5.20 the symbol rate of the interferer is different from that of the SOl (16/17 instead of 
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1). In this case only the spectral correlation of the SOl is used, as the filter has frequency shifts 

of ±l. SO is significantly worse here than in figures 5.18 and 5.19 because there is no spectral 

correlation in the SO spectrum. S I and S2 are also worse as the filter can only exploit the SOl 

correlation instead of both SOl and interferer in the earlier graphs. 

For a scenario with identical symbol rates, with the clocks in phase (as in figure 5.18) but a dif­

ferent interferer carrier frequency of 1.3, the results are shown in 5.21. The interferer overlaps the 

SOl less, so all BERs are lower than in figure 5.18, but again Sl is better than S2. In fact S2 and 

SO have similar performance which suggests that the FRESH filter is failing to exploit any of the 

spectral correlation in S2. 

The effects of symbol timing phase and interferer carrier frequency are shown in more detail 

in figures 5.22 and 5.23. In figure 5.22 for a fixed Eb/NO of 8 dB the delay between symbol 

transitions was varied by one symbol period in steps of 1/16 of the period. This shows the curious 

effect that the S2 performance varies from being close to SO (zero delay) to close to S I (half 

symbol delay). This behaviour remains unexplained. 

Figures 5.23 and 5.24 show the only cases where S2 is significantly better than Sl, which is for 

identical symbol rates and an interferer carrier frequency of less than 0.2, or different baud rates 

and a carrier frequency of less than 0.8. This can be explained as a result of the S 1 SOl having an 

identical spectrum to the interferer. As the carrier frequencies become closer, the spectra of the sig­

nals become harder to distinguish. The FRESH filter process of shifting and adding becomes less 

effective as the correlated SOl and interferer components get closer relative amplitudes. Equiva­

lently the filter equations 4.2 move closer towards linear dependence. With a different spectrum 

such as S2 the signals never have equal amplitudes at all correlated components, and the FRESH 

filter can weight each component in a way which maximises the SOl without also maximising the 

interferer. 

But it is clear that using S2 does not, in general, give an improvement in performance over S 1. 
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Figure 5.22: Effect of varying SOl and interferer symbol relative delay 
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There are particular interference scenarios where each is preferable, but the improvements in BER 

are not dramatic. If a receiver is operating in a predictable interference scenario it may be worth 

considering designing the SOl spectrum accordingly. A simple example of this is, of course, to 

avoid using the part of the spectrum where the interference is powerful. If nothing is known about 

the potential interference then changing the SOl spectrum will not help immunity; after all, the 

ensemble average of all possible interferers is white noise. 

The improvement in performance at small or zero carrier frequency differences introduces an 

interesting link between this work and the area of direct sequence spread spectrum signals. Even 

without considering the effects of spectral correlation, one would expect better performance in 

receiving and SOl from an interferer with a different spectrum. If the interferer has the spectrum 

of the SOl then the SOl matched filter is also matched to the interferer, and its effect is maximised. 

With different spectra and cyclic frequencies the FRESH filter can give increased benefit, but it 

requires a spectrum with excess bandwidth over the Nyquist limit. In the scenarios tested in this 

chapter, double the minimum bandwidth was used. A direct sequence spread spectrum waveform 

uses many times the minimum bandwidth and so many uncorrelated waveforms can be transmitted 

over the same bandwidth with minimal interference to each other. 

The signals S I and S2 could be thought of as crude spread spectrum signals with spreading factor 

of2 (as they are double the Nyquist bandwidth). The use of FRESH filtering with spread spectrum 

signals is described in [30]. From this perspective, linear multi-user detection of direct sequence 

spread spectrum signals is a related process to interference rejection using spectral differences in 

the signals, although in direct sequence spread spectrum it is differences in the code domain which 

are used, instead of the frequency domain in frequency shift filtering. 

One situation where interference is at the same carrier frequency and baud rate, and with the same 

spectrum as the SOl, is in cellular mobile communications. Such interference comes from the 

nearest cells which are using the same frequency channels. One might consider using different 

pulse shapes in nearby cells to reduce the effects of the interference, although there are many 

reasons why this does not seem attractive. For example, mobile systems do not normally use 

as much excess bandwidth as 100%, so the improvements available are even less than shown 

here, and the disadvantages of complexity and using a non-optimum pulse shape for a particular 

situation are considerable. 

5.4 Summary 

An investigation was carried out into the effects of varying the shape of the SOl spectrum on the 

interference rejection performance of a FRESH filter. Despite initial hopes that some spectra with 

enhanced spectral correlation might allow better performance, while maintaining the same overall 

bandwidth, it has been demonstrated that in general this is not the case, and there is little advantage 

in manipulating the SOl for this purpose. 
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It was shown in chapter 3 that FRESH filters are parti.cularly effective in removing interference 

when they can exploit interferer cyclostationarity. The advantage over a FSE becomes more ob­

vious as the signal to interference ratio decreases. A practical application to which FRESH filters 

may be suited is that of Very Low Frequency (VLF) radio communication. 

VLF radio, which covers the frequency range 3 to 30 kHz, provides a useful means of communi­

cation with submarines because it has stable and predictable propagation and can penetrate some 

distance through seawater. However there are a number of factors which can seriously degrade its 

effectiveness, such as impulsive noise from lightning strikes, and interference from other users of 

the frequency band. VLF communication often uses Gaussian Minimum Shift Keying (GMSK) 

to modulate the carrier, as transmit antenna bandwidths are limited, and because it is a constant 

amplitude waveform. 

As VLF is used for long range communications, land based transmitters may use very high powers. 

The adjacent channel interference (Ael) problem arises from the fact that reception may take place 

on a vessel which is operating far from the SOl transmitter, but close to an interfering transmitter. 

Despite the use of GMSK modulation which limits the energy in the signal's side lobes, if another 

signal is on an adjacent channel and at a much higher power, then these side lobes can still present 

a major problem. 

J. F. Adlard. D.Phil. Thesis. University of York September 2000 

109 



CHAPTER 6. APPLICATION OF FRESH FILTERS TO VLF COMMUNICATIONS 

7 

6 

5 

4 

3 

2 

o 
o 

200 400 frequency (Hz) 
frequency shift (Hz) 

Figure 6.1,' Spectral correlation density of GMSK 

110 

-400 

It is not expected that FRESH filtering can provide any protection from high powered impulsive 

noise, but we are interested in whether the presence of impulses, or the presence of the effects 

of imperfectly removed impulses causes significant degradation to the FRESH filter 's interference 

rejection function. 

The work presented in this chapter has been published in three conference papers [2, 3,4]. 

The spectral correlation of Minimum Shift Keying (MSK) and GMSK is first described for the 

purpose of choosing the appropriate FRESH filter structure for this application. The number of 

filter branches required is tested and it is found that for high powered interferers one is sufficient 

with a frequency shift related to the interferer carrier and baud rate. The BER performance is first 

tested in AWGN, and then in impulsive noise, with arid without the use of an impulse rejection 

technique. 

6.1 Spectral Correlation of GMSK 

The spectral correlation exhibited by MSK is of a more complicated form than that of QPSK or 

BPSK. GMSK signals are generated from Gaussian pre-filtering of the data in a MSK modulator, 

so one cannot assume that the structure of the seD is identical for the two signals in general. How­

ever, in this case examined here the bandwidth of the Gaussian filter is relatively wide, resulting 

in a signal which differs little from MSK. It is shown in [54] that for MSK conjugate correlation 

exists under frequency shifts of a = ±2Ie ± A for odd values of k and non-conjugate correlation 

for a = ± A for even k, where k are integers, Ie is the carrier frequency, and To is the baud 

period. When the signal is modelled at complex baseband, the useful correlation occurs at a = A 
with k odd for conjugate correlation and k even for non-conjugate correlation. In figures 6.1 and 

6.2 the spectral correlation of GMSK is shown - the corresponding graph for MSK is similar but 

with slightly different shapes of the peaks. 
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Figure 6.3: Sp ectral correlation (conjugate and non-conjugate) ofGMSK 

Figure 6.3 illustrates the structure ofthe spectral correlation in a different way. Here the spectrum 

of GMSK is shown from -350 Hz to 350 Hz and the baud rate is 100 Hz. the power spectral density 

of GMSK is shown with the correlated frequency bands indicated by the vertical dashed lines. 

Conjugate correlation is indicated by arrows in opposite directions; non-conjugate correlation 

exists in the bands with arrows in the same direction. For example the central region (-50 to 50 Hz) 

is correlated with the regions at frequency shifts of -200 Hz and at 200 Hz (that is, frequency shifts 

of -2 and 2 times the baud rate). However correlation of the centre with the region from 50 to 

150 Hz occurs only after reflection about the y-axis and then shifting by 100 Hz, in other words, 

this is conjugate correlation under a baud rate frequency shift. 

This can be clarified with the example that the signal component at 49 Hz exhibits correlation with 

the components at -151 and 249 Hz, and conjugate correlation with the components at -349, -149, 

51 and 251 Hz (ignoring larger shifts for simplicity). If the carrier frequency is not zero then an 

extra 2fc must be added to the shifts exploiting conjugate correlation. 

Practically, this means that the most useful frequency shifts appear to be at ± 2f c ± io and ±2/To. 

At larger shifts than this, the energy in the relevant side lobes ofthe signal is very low. As GMSK 

is often used in situations where spectral efficiency is important it may seem strange that there is 

significant redundancy. But in fact the width of the main lobe of GMSK is greater than that of 
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100% EBW QPSK. Although the proportion in the side bands is very low, we are considering here 

scenarios where the ACI may be of a much higher power than the SOl, and so the side lobe powers 

are significant. In fact the main reason for using GMSK rather than QPSK is that GMSK has a 

constant amplitude and so can be used with highly efficient transmitters. 

6.2 VLF Interference Scenarios 

Two interference scenarios were explored here. The first has a SOl transmitting at a baud rate of 

100 Hz (200 bits per second) and an interferer with a baud rate of 114.29 Hz at a carrier frequency 

210 Hz higher than that of the SOL In the simulations, the SOl was modelled at baseband, as the 

filter performance is independent of the carrier frequency. The second scenario uses a baud rate 

of 100 Hz for both signals, with a carrier frequency separation of 200 Hz. The first scenario was 

chosen to have similar interference to the second in terms of PSD, but in the first case the cyclic 

frequencies of the two signals are all distinct. This allows a close examination of how the FRESH 

filter exploits frequency shifts related to the properties of the SOl and interferer. In the second 

case, which is more likely to occur in practice, some cyclic frequencies are common to both the 

SOl and the interference. It is assumed that the interference baud rate and carrier frequency can 

be determined, or are known, at the receiver. 

GMSK modulation was used for both signals, which were carrying independent identically dis­

tributed data; the data carried on each signal were not mutually correlated. Both signals used 

identical Gaussian shaping filters, which had a bandwidth-time (BT) product of 2.5. This filter 

introduces only a small amount of intersymbol interference; notice that this BT product is signifi­

cantly larger than the 0.3 used in the GMSK modulation for GSM mobile communications [101]. 

Normally an equaliser would be used to remove this, however the lSI introduced by the Gaus­

sian filter is insignificant compared to the ACI so no equalisation was performed here. In fact the 

spectrum of GMSK with such a large Gaussian filter bandwidth is close to that of MSK. 

Interferer powers from 0 to 40 dB relative to the SOl were used. The spectra of the signals with 

the interferer at 30 dB are shown in figure 6.4. The general structure of the simulation is shown 

in figure 6.5. Note that here, unlike in the QPSK systems presented earlier, the FRESH filter does 

not incorporate the matched filter; the signal used to train the FRESH filter was the same as the 

transmitted SOl, and the FRESH filter was followed by a matched filter. 

Two different white noise scenarios were tested. First the simple AWGN case (section 6.3) and 

then an impulsive noise model was used, to give a more realistic representation of atmospheric 

noise in the VLF band (section 6.4). 

The filters were implemented as trained adaptive filters. The LMS algorithm was used to adapt the 

filters to a steady state then adaptation was stopped while bit errors were counted. The SOl power 

was 1 and the LMS feedback coefficient, J.l, was 0.001. It was found that lower values of J.l than 

this made practically no difference to the final BERs calculated. 
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Figure 6.4: Spectrum of interference scenario (example) 

Figure 6.5: Structure of simulation 

Related to which signal Frequency shift (Hz) Relation to signal properties 

Interferer 305.71 2fi - bi 

-228.57 -2bi 

534.28 2fi + bi 

228.57 2bi 

77.14 2fi - 3bi 

SOl 200.00 2bs 

-200.00 -2bs 

100.00 bs 

-100.00 -bs 

-300.00 -3bs 

Table 6.1: Frequency shifts tested with different baud rates (bi=baud rate of interferer, bs=baud 

rate of SOl, fi =interferer carrier) 
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Related to which signal Frequency shift (Hz) Relation to signal properties 

Interferer 300 21; - b 

-200 -2b 

500 21; + b 

200 2b 

100 2fi - 3b 

SOl 200 2b 

-200 -2b 

100 b 

-100 -b 

-300 -3b 

Table 6.2: Frequency shifts tested with equal baud rates (b=baud rate of interferer and SOL 

1;=interferer carrier) 

6.3 Interferer and Gaussian Noise 

6.3.1 Selection of frequency shifts 

First scenario - different baud rates 

An important practical decision to be made in implementing a FRESH filter is the number of 

branches and which frequency shifts to use. The relative effectiveness of particular frequency 

shifts depends on many factors, for example, the cyclic frequencies of the SOl and interferer, the 

relative powers of the signals and the separation of the SOl and interferer carrier frequencies. The 

best choice of filter design is therefore highly scenario dependent. 

For the chosen scenario detailed in section 6.2 a study ~as carried out on which frequency shift is 

the most effective in a single shift FRESH filter, and of what benefit there is in having a greater 

number of frequency shifts. 

Table 6.1 shows the frequency shifts used in the first scenario (SOl and interferer with different 

baud rates), and how they are derived from the signals' properties. These 10 shifts (5 SOl related 

and 5 interferer related) were chosen as the most likely to be effective by inspection of figure 6.4. 

The equivalent frequency shifts for the second scenario (SOl and interferer with the same baud 

rate, and channel spacing equal to twice the baud rate) are shown in table 6.2. 

Simulations of the VLF system were designed to identify the most effective number and value 

of frequency shifts. Initially, a system using a single shift was constructed, and the BER was 

measured for different values of that single shift. This was repeated for interferer powers from 

o dB to 40 dB relative to the SOL Figure 6.6 shows the ranking of the best three frequency shifts 

for each interferer power; the highest column indicates the most effective shift in reducing BER. 

This graph shows that with higher powered interferers more of the best frequency shifts are related 

to the interferer properties. At lower interferer powers the best frequency shifts are SOl related. 

Figure 6.7 shows the actual improved error rates that result from the use offour of these frequency 

shifts. The best two SOl related and interferer related shifts were used, and the resulting BERs 
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Figure 6.6: Ranking of frequency shifts for effect on BER (different baud rates) 

plotted against white noise power for each interferer power. The interferer related shifts are more 

useful for all interferer powers greater than that of the SOL Of course the actual error rate is higher 

when the interferer power is higher, but the benefit in using a FRESH filter also increases, as is 

shown below. 

The previous two graphs were based on a FRESH filter with two branches and one frequency 

shift. The effect of combining several different frequency shifts in a multi-branch filter were also 

measured. Figure 6.8 shows the performance of filters with between zero and four frequency 

shifts. Zero shifts is equivalent to a fractionally spaced equaliser; four shifts require a structure 

with 5 branches and subfilters. The frequency shifts were added in order of their effectiveness in 

a single shift filter, that is 305.7, -228.6, 77.1, 534.3 Hz. It is clear from figure 6.8 that there is 

almost no advantage in using more than one frequency shift. 

This shows that only a moderate increase in complexity is required: a filter with one frequency 

shift has two branches, and two subfilters, so the filtering computational load is double that of the 

corresponding FSE. 

Second scenario - equal baud rates 

The comparison of the effectiveness of individual frequency shifts was repeated for the second 

interference scenario where the SOl and interference have the same baud rate and have carrier 

frequencies separated by twice the baud rate. In this case the cyclic frequencies are as shown in 

table 6.2. 
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Figure 6.9: Ranking off requency shifts for effect on BER (same baud rates) 

Clearly, some of these cyclic frequencies can be interpreted as either SOl or interferer related. 

The ranking of the effect of these frequency shifts is shown in figure 6'.9. For comparison with 

figure 6.6, the frequency shifts with two interpretations are plotted twice. We see that there is no 

significant change in the rankings from figure 6.6: shifts related to both the SOl and the interferer 

do not become significantly more effective. 

6.3.2 BER performance 

First scenario - different baud rates 

Having confirmed that overall the most effective and efficient FRESH filter for high interference 

powers is one using a single frequency shift of 305.7 Hz (for this interference scenario), it was 

tested against a FSE with various interferer powers and A WGN levels. These results are shown in 

figures 6.10 to 6.14. One can see that even with very high powered interferers, which give unusably 

high error rates with a FSE, a major improvement is possible by using a single shift FRESH filter. 

The performance is dependent on the white noise level: with a high signal to noise level, the bit 

error rate approaches that with no interferer present. This means that in some circumstances the 

FRESH fi lter comes close to perfect removal of the interferer. 

Second scenario - equal baud rates 

The actual BERs achieved with this scenario, using a single shift of 300 Hz and an interference 

power of 30 dB, are shown in figure 6.15 along with the data from figure 6.13. This shows the 
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change in interference scenario has little effect on the BER. This was also the case for other 

interferer powers, so figures 6.10 to 6.14 also illustrate performance under the second interference 

scenario. 

6.4 Interferer and Impulsive noise 

The results presented previously in this chapter were based on the reception of GMSK in the pres­

ence of interference and AWGN. However VLF communication channels are affected by noise 

from lightning strikes which is highly non-Gaussian. -It is important that any signal processing 

techniques applied in VLF receivers are able to function effectively in this sort of noise environ­

ment. 

A model of VLF impulsive noise was developed to allow testing of the performance of FRESH 

filters in removing interference in more realistic channel conditions. This noise model is described 

in the next section. The simulation results, which show that interference rejection is still performed 

effectively in impulsive noise, are presented in section 6.4.3. 

6.4.1 Modelling ofVLF noise statistics 

VLF noise statistics are complicated and highly variable in time and geographical location. The 

main contribution to the noise is from lightning strikes, and due to the long range propagation of 

VLF signals lightning can be heard from all around the globe. 

The purpose of this study was to investigate general the effects of impUlsive noise, and its rejec­

tion, on FRESH filtering, so a detailed time-varying noise model is not required. A model was 

, developed which was based on a graph supplied by DERA Portsdown (figure 6.16). This graph 

displays the cumulative distribution function (CDF) of the amplitude of VLF signals received un-
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Figure 6.15: Comparison of filter performance with interferer at same and different baud rates 

der some "typical" conditions. In fact the graph represents the output of a VLF atmospheric noise 

simulator, but the mathematical model used by this simulator was not available. 

The points on the graph are reasonably described by two straight lines. The steeper of these two 

represents the Gaussian noise floor; the flatter line is the impulsive, or "super-Gaussian" com­

ponent. Complex Gaussian noise (that is, noise which has two independent real and imaginary 

Gaussian components) has an amplitude distribution which is described by the Rayleigh distribu­

tion function [76] as shown: 

(6.1) 

The corresponding cumulative distribution function is: 

(6.2) 

We wish to relate this to the Gaussian line in figure 6.16, using the left hand y-axis of figure 

6.16, "Percentage of time amplitudes exceed abscissa". The x-axis of figure 6.16 is signal level in 

terms of "bin number" which is a logarithmic scale. Bin 32 corresponds to a signal level of 2 V 

peak-to-peak, with each bin corresponding to an amplitude threshold of 1.5 dBY. Bin 0 therefore 

represents an amplitude of 30.5 fL V. 

The standard CDF is defined in terms of time, or proportion, below a certain value, so figure 

6.16 is in fact a plot of 100(1-CDF). This means that the Gaussian line can be represented by 

100c- x 2 
/2u

2
• It was found that a good agreement was achieved by setting (J to be 5.81 x 10-4, 

which is equivalent to bin 8.5 on the x-axis of figure 6.16 . 

. The equations of the two straight lines were calculated, and using equation 6.2, it was found that 

the super-Gaussian component could be represented by the CDF shown in equation 6.3: 
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I 

Figure 6.16: VLF atmospheric noise amplitude cumulative distribution 

F(x) = lOOe-19.64xO.428 (6.3) 

This gives reasonable agreement up the 99% level. A block was written for SPW which produces 

noise with a distribution which is a combination of the Gaussian and super-Gaussian components 

as required, and this was used in the simulations described below. It was found that the total noise 

power was about 20 dB higher than the Gaussian component only. The noise signal given by this 

model is spectrally white, and so its power can still be described in terms of noise power spectral 

density, which is labelled N; to distinguish it from the AWGN noise level No used previously. 

6.4.2 Impulse removal by hole punching 

It was not expected that FRESH filters would be particularly effective in removing the impulses 

in the simulated VLF noise, but it is important that they are able to perform their interference 

removal function alongside other techniques which would be applied to moderate the effects of 

the impulsive noise. 

A useful and simple technique for impulse removal is "hole-punching" where it is assumed that 

whenever the signal magnitude goes over a certain threshold, it is as a result of a noise impulse, 

and this impulse is removed by setting the signal magnitude to zero. A block was written for SPW 

which performs this function. It was incorporated into the simulation as shown in figure 6.17. 

The use of hole-punching before FRESH filtering raises some interesting questions. With a high 

powered interferer, the hole-punching threshold must be set high, so that the normal level of the 

interferer does not cause a complete loss of the received signal. This means that the hole-punching 
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Figure 6. J 7: Structure of simulation with hole-punching 

will have a reduced effect against the impulsive noise. If the interference could be removed before 

the impulses, then the hole-punching could work with a lower threshold, but this would require 

additional techniques to prevent an adaptive FRESH filter being unduly affected by large impulses. 

The removal of the impulses by hole-punching is equivalent to modulating the received signal with 

a random signal which takes the values 0 or 1. This modulation will, in turn, cause an unpredictable 

spreading of the received spectrum which will corrupt its spectral correlation. For this reason we 

expect that the use of FRESH filtering with hole-punching may be problematic. 

6.4.3 BER performance 

There is no reason to expect the impulsive noise statistics to affect the spectral correlation of the 

signal, so the same FRESH filters were used here as with AWGN, that is, a single shift (two 

branch) FRESH filter with a frequency shift of 305.71 Hz for the first interference scenario and 

300 Hz for the second. 

As in section 6.3 it was found that there was very little difference in the results obtained from the 

two interference scenarios. For the sake of brevity, only the second, equal baud rate, results are 

included here. The corresponding graphs for the first scenario are in [3]. 

In the simulations the interferer power was varied between 10 dB and 30 dB above the SOl level. 

This causes the first side lobe of the interferer to vary from -10 dB to + 1 0 dB relative to the SOl 

main lobe, which it overlays. The impulsive noise level was varied to give Eb/ Ni values for the 

SOl from 0 to 20 dB. The hole-punching threshold used was dependent on the interferer power 

used. 

In one case (figure 6.21) the FRESH filter performance was also compared to that of a FSE. When 

the FSE was used it replaced the FRESH filter in the structure shown in figure 6.5. 

Before examining interference rejection performance, we first show how the choice of hole­

punching threshold affects the BER in impulsive noise only with no interference present. Fig­

ure 6.18 shows the BER for thresholds of 5, 10 and 30 and for no hole-punching. These thresholds 

were used with the interference, and are chosen by inspection to be greater than, but close to the 

magnitudes of the SOl (power= 1), interferer and non-impulsive noise component. The threshold 

of 5 was used with the 10 dB interferer, 10 with the 20 dB interferer and 30 with the 30 dB inter­

ferer. It is clear that the lower hole-punching thresholds cause a major reduction in BER, with no 

interference present. A threshold of 30, however, which is necessary for an interference of 30 dB, 

has almost no effect on the impulsive noise. 

Figure 6.19 shows the performance of the FRESH filter in removing interference, with and without 
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hole-punching being performed too. The BER is roughly 2 orders of magnitude lower when using 

hole-punching than when all impulses are allowed to pass to the FRESH filter. The performance 

with no interference, but with hole-punching, is plotted as an indicator of "ideal" interference 

rejection. The results do not extend to BERs of less than 10-6. 

However, figure 6.20, which is for an interference power of 20 dB above the SOl, shows that with 

higher powered interference, hole-punching increases the BER. That is, it degrades the perfor­

mance of the FRESH filter in removing the interference. 

With a still higher interferer power (30 dB) and a hole-punching threshold of 30 (figure 6.21) the 

results are more extreme - here the hole-punching can degrade the FRESH performance by more 

than 2 orders of magnitude (in terms of BER). Notice that (from figure 6.18 this hole-punching 

is actually having very little beneficial effect on the impulsive noise. This graph also shows the 

performance of a FSE, which is very poor, as it can do little to mitigate the effects of the interferer. 

See [2] for a more detailed comparison of FSE and FRESH performance. 

The FRESH filter tested here is using the spectral correlation of the interference to remove that 

interference from the received signal. This explains why the hole-punching has a more serious 

effect at high interferer powers. The process of hole-punching is equivalent to modulating the 

received signal with signal which has the value I most of the time, but at random times switches 

to zero for a short interval. The correlation of the OMSK signal shown in figures 6.2 and 6.3 

is seriously affected by this non-linear process. With higher interference to SOl ratios, to main­

tain accurate reception of the SOl, the filter requires a more accurate "match" of the correlated 

interferer components. The random modulation corrupts this correlation. 

In general we can say that at higher interferer powers the FRESH filter is seriously degraded by 

the hole-punching process, but at lower powers both can be used together successfully. 

The hole-punching was placed before the FRESH filter, as this would allow easier integration with 

existing technology. If the order were reversed, the degradation of the FRESH performance would 

not occur, but it would be necessary to have a receiver and FRESH filter with a very high dynamic 

range to allow the accurate processing of the impulsive signal. 

There are many other approaches to impUlsive noise rejection which may have a less serious effect 

on the interference spectral correlation. For example instead of setting the signal to zero when 

it exceeds a threshold, it could be replaced with interpolated values. This is of course a more 

complicated process, but feasible, especially if the interpolation is mainly to replace the interferer 

and the interference to noise ratio is high. A more sophisticated order statistics approach might 

also improve matters [102, 103] as could a wavelet based impulse rejection technique [104]. The 

main disadvantage of such techniques is that they would require a major redesign of existing VLF 

receivers. Currently hole-punching can be done on the analogue signal, before sampling. 

6.5 Conclusions and Further Work 

In section 6.3 it has been shown that in the high interference scenarios tested, FRESH filtering is 

highly effective in removing adjacent channel interference. This could be done effectively with 

only one frequency shift in the filter, this shift being matched to the cyclic frequencies of the 
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Figure 6.19: FRESH interference removal performance with interference at 10 dB above SOl 

interferer. 

FRESH filters cannot mitigate the effects of impulsive noise, but they are highly effective at inter­

ference removal. We have shown that impulsive noise in itself does not prevent the FRESH filters 

from removing interference, but the simple hole-punching technique does not work well in the 

presence of interference, as a threshold must be set above the interference magnitude, which can 

allow the majority of impulsive noise to pass. Also, the use of hole-punching degrades the FRESH 

filter performance by corrupting the spectrum of the received signal. It would be interesting and 

useful to investigate if other impulse removal techniques would allow the FRESH filter to oper­

ate more effectively. A technique which identifies an impulse in a more sophisticated way than 
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Figure 6.20: FRESH interference removal performance with interference at 20 dB above SO! 
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Figure 6.21: FRESH interference removal performance with interference at 30 dB above SO! 

a simple magnitude threshold may help, as maya method of repairing the effects of the impulse 

excision, such as linear interpolation of the remaining waveform. 

The conclusions drawn from the results in section 6.4 can be summarised as follows: 

• in the absence of interference, hole-punching is very effective against impulsive noise (fig­

ure 6.18); 

• when the interferer power is low, impulsive noise effects dominate and FRESH filtering can 

be used successfully with hole-punching (figure 6.19); 

• when the interferer power is high, interference dominates; the performance of the FRESH 
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filter can be seriously degraded by hole-punching (figures 6.20 and 6.21). 
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In many communications scenarios, the channel conditions (that is the dispersion and interference) 

change in an unpredictable way. Traditional techniques to overcome the corruption introduced 

by the channel usually rely on some form of adaptive filtering which is ''trained'' by initially or 
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periodically sending a signal which is known a priori at the receiver. Comparison of the received 

signal with the known signal allows adaptation of the filter to remove the channel distortion and 

interference. 

Blind adaptation techniques do not require any training sequence; they instead use other properties 

of the signal which are known in advance, for example, its finite alphabet nature or its statistical 

properties. This can mean using third or higher order statistics or using cyclostationary statistics. 

Digital communication requires channel magnitude and phase distortion to be equalised. The sec­

ond order cyclostationary statistics of a received signal contain magnitude and phase information 

for the distorting channel [54, 70] while stationary second order statistics contain only magnitude 

information. For this reason, cyclostationary statistics are used in a number of blind adaptation 

techniques [64, 63, 65, 105]. The interest in equalisation is largely because dispersive channels 

are a severe problem in mobile communications. However, the strength of FRESH filtering is its 

ability to mitigate the effect of additive interference. As the structure contains a number of linear 

transversal filters, it can also cope with the equalisation problem, at least as well as a simple linear 

equaliser, but we do not address this problem here, except in a limited way in section 7.2. 

It is shown in section 7.1 that in a channel with a fiat frequency response, but unknown interfer­

ence, the cyclic Wiener filter equations can be solved by estimation and inversion of the input 

signal statistics. No training signal is required. However, this direct approach was not successful 

in practice due to the numerical problems of inverting a poorly conditioned matrix. So in section 

7.2 a new technique is described for blind interference rejection (this does not attempt to correct 

multipath distortion) which can be applied to FSEs or FRESH filters, for use in situations where 

the interference can be detected separately from the SOl. In the current work, the concern is not 

blind adaptation of filters in general, but the blind adaptation of FRESH filters. In sections 7.3 

and 7.4 two published algorithms for blindly adapting FRESH filters are found, in the case of the 

former [25], to be faulty, and in the case of the latter [48], to be severely limited in the possible 

areas of application, and in fact only equivalent in performance to blind adaptation of a FSE. An 

improved version of the algorithm described in section 7.4 is proposed in section 7.5. 

7.1 Blind Interference Rejection 

A particular strength of FRESH filters is their ability to exploit the spectral correlation of a cyclo­

stationary interfering signal. Up to this point when implementing a filter which includes interferer 

related frequency shifts, we have always adapted all the sub-filters by attempting to drive the 

output of the whole filter to be, by some criterion, close to a desired signal. 

If the situation is such that the channel frequency response is fiat, or known, (or equivalently, 

if there is no, or known, intersymbol interference) then a simpler approach to blindly adapting 

the receiver filter can be employed. This is based on the replacement of one of the terms in the 

Wiener filter equation with an equivalent term calculated a priori for the particular intersymbol 

interference environment expected. 

In this section we describe this algorithm and its relation to the equivalent idea applied to a frac­

tionally spaced equaliser. This involves developing a time-domain form of the cyclic Wiener filter 

equations and a consideration of practical methods of solving these equations. This is shown to be 
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directly related to standard linear least squares theory, so although we have encountered numerical 

stability problems, it is expected that these could be overcome by modifying standard techniques. 

A simple LMS based algorithm has also been developed which allows blind removal of interfer­

ence in a system where the channel and interference can be monitored before SOl transmission 

has started. This is described in section 7.2. 

7.1.1 Fractionally spaced equaliser in a fiat channel 

We first describe a blind adaptation method for a fractionally spaced equaliser in a flat channel. It 

is well known (see, for example [11]) that the optimum filter for estimating a stationary signal in 

stationary noise is given by the Wiener filter equation. This has already been stated as equation 3.1 

but is given here using a different notation: 

(7.1) 

where w is the impulse response of the filter, Rxx is the autocorrelation matrix of the input signal 

vector x, and Rdx is the cross-correlation vector of x and the desired signal d. x(n) here is the 

vector of signal samples contributing to the filter output at time n, and is given by 

x(n) = [x(n), x(n - 1), ... , x(n - N + l)f (7.2) 

where N is the number of filter taps. d( n) is the (scalar) desired signal value at time n. The other 

terms are defined as follows: 

Rxx = E[x(n)xH(n)] 

Rdx = E[x(n)d*(n)] 

(7.3) 

(7.4) 

A training algorithm such as LMS or RLS will drive a linear filter towards this solution, by directly 

comparing the filter output with the desired signal. We are interested in the situation where there 

is no desired signal available in the receiver, so a training algorithm cannot operate in the normal 

way, and the terms in equation 7.1 cannot be directly calculated. 

The approach is to notice that Rdx is not dependent on any additive noise or interference. In 

equation 7.4 we can write x(n) = t(n) + a(n) where t is the component of the signal which is 

correlated with transmitted signal, (which is of course correlated with the desired signal) and a is 

the additive noise (which is not). If there is no intersymbol interference (lSI) then t is equal to the 

transmitted signal; if there is known lSI then t is the convolution of the transmitted pulse shape 

and the channel impulse response. 

Rdx = E[d(n)(t(n) + a(n))] 

Rdx = E[d(n)t(n)] + E[d(n)a(n)] 

Rdx = Rdt 
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If one assumes that the transmitted data are lID (that is, a white noise sequence) then Rdt is given 

by the convolution of the pulses for d and t. Equation 7.1 then becomes 

(7.8) 

and only Rxx is not known a priori. An estimate of this term is easily calculable by time averaging 

the outer product of the input vector x. This allows an iterative version of equation 7.8 to be used 

to update the filter taps w. 

This filter is then a blindly adaptable version of the Wiener filter. The "adaptable" part is the noise 

whitening term R xx, so any changes to the additive noise can be coped with during reception. The 

filtering performance of such a filter will be no better than a standard Wiener filter; the advantage 

is the fact that no training sequence is required to solve the equations. Section 7.1.4 describes the 

application of this idea to cyclic Wiener filters, or FRESH filters, which can deal more effectively 

with interference than the fractionally spaced equaliser. 

7.1.2 Time domain cyclic Wiener filter equations 

A time domain expression of the filtering equations is appropriate for an adaptive version of the 

cyclic Wiener filter, although an adaptive frequency domain implementation would be possible, 

if inefficient. Gardner [13] uses a frequency domain form; we present here the time domain 

equivalent, although for the sake of clarity in presentation, this is done for a two branch FRESH 

filter only. It is possible to write down the equations for a general M branch filter, but they are 

cumbersome and do not make the techniques involved any clearer. 

The simplest FRESH filter is one consisting of two branches and sub-filters, and one frequency 

shift (figure 7.1). This frequency shift which is labelled a here, could be at twice the carrier 

frequency for a purely real signal, or an integer multiple of the baud rate for any bauded signal. 

Simplifying equations 4.1 gives the frequency domain cyclic Wiener equations for such a filter: 

Sl·(f + a)hl + S~(f)h2 = Sdx(f + %) 
S;~(f + % )/lt + Sx (f)h2 = Sdx (f) 

which in the time domain are 
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where u(n) is x(n) shifted in frequency by a, 

n(n) = :J:(n)cj27rcm 

and 

u(n) = [11,(17,), u(n - 1), ... , 11,(n - N + l)]T 

The new correlation matrices are defined in the usual way: 

and 

Ruu = E[u(n)uH(n)] 

Rxu = E[x(n)uH (11,)] 

Rxx = E[x(n)xH (11,)] 

as before. This system of equations can be written as a single matrix equation 

7.1.3 Practical issues in solving cyclic Wiener filter equations 
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(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

The terms hI and h2 represent the impulse responses of the two sub-filters of the two branch 

FRESH filter. They are therefore both N x 1 vectors, where N is the number of taps in each filter. 

For the matrix multiplications to be defined, the Rxx matrices must therefore be of dimension 

N x N. The Rdx terms are similarly constrained to be N x 1 vectors. The large R matrix on 

the left hand side of equation 7.18 is therefore of dimension 2N x 2N and other two terms in this 

equation are 2N x 1 vectors. 

Writing out the solution of equation 7.18 explicitly 

(7.19) 

it is clear that the inverse of this 2N x 2N cyclic correlation matrix is required. In the adaptive 

filter application it is useful to be able to solve this equation iteratively, by updating and improving 

the filter solution and the terms contributing to it with the arrival of each new signal sample. 

It is necessary to use a time-averaged approximation to the statistically defined correlation matrices 

and vectors. For example 
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M. 

Rxx = L(x(i)xH(i)) (7.20) 
i=N 

However to allow the filter to adapt to changing channel conditions, a definition is used which 

allows the older data's influence on the result to decrease with time. This uses an exponential 

weighting factor A Af - i so that the autocorrelation matrix is defined as 

M 

Rxx = L AM-i(x(i)xH(i) (7.21) 
i=N 

which can be written in the following iterative form 

(7.22) 

Equation 7.22 gives a straightforward method for calculating all the correlation terms in equa­

tion 7.19. The factor (A is a parameter to be adjusted to best suit the rate of change of channel 

conditions. An obvious way of approaching the solution of equation 7.19 would be as each sample 

is received, calculate the auto- and cross-correlation matrices, and then invert the cyclic correlation 

matrix. Note that although this matrix is a 2 x 2 matrix of N x N matrices, it can be inverted by 

treating it as a normal 2N x 2N matrix of scalar elements. 

Matrix inversion lemma 

The inversion oflarge matrices requires considerable processing time, so for a real time application 

recalculating a correlation matrix and inverting it with every new sample would not normally be 

suitable. The inversion of a normal autocorrelation matrix is part of the recursive least squares 

algorithm (RLS) and there the approach is to update the inverse of the matrix directly, using the 

matrix inversion lemma, which reduces the amount of computation required considerably. This 

lemma is described below, firstly as applied to a standard autocorrelation matrix, and then to a 

cyclic correlation matrix. This description is taken from [17]. 

Let A and B be two positive-definite M x M matrices related by 

(7.23) 

where D is a positive-definite N x N matrix, and C is an M x N matrix. The matrix lemma 

states that the inverse of the matrix A may be expressed as 

(7.24) 

The lemma is applied to a correlation matrix by defining the four matrices as follows 
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A = ~(n) 

B-1 = A~(n - 1) 

C = x(n) 

D 1 

to give this recursive equation for the inverse of the correlation matrix 
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(7.25) 

This equation gives the current value of the correlation matrix from the previous value and the 

current value of the input tap vector. 

This lemma can be applied to the cyclic autocorrelation matrix as well. First of all to simplify the 

notation ~ is assigned to be the cyclic autocorrelation matrix. That is 

~ = (Ruu RXu) 
Rxu Rxx 

(7.26) 

NotIce that by definmg z ( n) = , ~ can be wntten as . . [ u(n) 1 . 
x(n) 

( 
Ruu RXu) H H H = E[z(n)z (n)] = E[u(n)x(n)x (n)u (n)] 
Rxu Rxx 

(7.27) 

and to apply the matrix inversion lemma the following identifications are also made: 

A = ~(n) 

B-1 = A~(n - 1) 

C [ u(n} 1 = z(n) = 
x(n) 

D = 1 

The recursive relationship for calculation of the inverse of the correlation matrix is therefore 

(7.28) 

What we have shown here is effectively the first stage of applying the recursive least squares (RLS) 

algorithm to a FRESH filter. This adaptation method is much faster than LMS but also requires a 

training signal. This could be a future line of enquiry: is this approach more efficient than running 

a separate version of the algorithm for each filter branch? However the purpose of presenting this 

method of calculating the inverse of the cyclic autocorrelation matrix is to indicate how it may be 

used in a blind adaptation scheme. 
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7.1.4 Noise whitening FRESH filter 

A solution of the FRESH filter equations can be found without a training signal when the channel 

is fiat, or of other known frequency response. The arguments behind this are the same as those 

applied in section 7.1.1 to solve the Wiener filter equation without the use of a training signal. 

It is clear that the cross-correlation terms Rdu and Rdx in the cyclic Wiener filter equations 7.19 

are unaffected by any additive noise corrupting the received signal x. We define a signal t to be 

the result of transmitting the data over the channel without any additive noise. s is defined to be t 

shifted in frequency by the cyclic frequency a. If there is no lSI introduced by the channel, then 

t is the transmitted signal; otherwise t is the convolution of the transmitted signal and the channel 

impulse response. Rdu and Rdx can then be replaced with Rds and Rdt where Rdt is the cross­

correlation matrix of the desired signal with the signal t, and Rds is the cross-correlation matrix 

of the desired signal with 8. 

These matrices can be worked out a priori, and, providing the data transmitted are independent 

and identically distributed, they are given by the cross-correlation of the pulse shapes of d and t, 
and of d and 8. 

So to blindly adapt the FRESH filter it is necessary to solve the following filter equation: 

(
hI ) = (Ruu RXU) -1 ( Rds ) 

h2 Rxu Rxx Rdt 
(7.29) 

that is, 

( ~: ) ~. -I ( :: ) (7.30) 

The inverse autocorrelation matrix (l) -1 can be calculated efficiently as described in section 7.1.3. 

MATLAB and SPW implementations 

Unexpected results were obtained when implementing this algorithm in MATLAB and SPW. It 

appears that these are due to numerical instabilities inherent in inverting the cyclic autocorrelation 

matrix. 

This matrix inverse was calculated in two different ways, to explore the numerical errors. One was 

a straightforward inverse using the MATLAB invO function. The other was to treat the 2N x 2N 

matrix as a 2 x 2 matrix of matrices. That is the inverse was calculated as: 

(7.31) 

Mathematically this is equivalent to the normal inverse but in practice it gives much poorer re­

sults. It shows however that the inverse cyclic correlation matrix should exhibit the same sort of 

symmetry as the cyclic correlation matrix; for example the upper right quadrant should be equal 

to the lower left one. This is not the case for either form of inverse. At the edges of each quadrant, 

anomalous values appear, presumably as a result of the discontinuity in values between the three 

different correlation functions contributing to the matrix. The situation is further complicated by 
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the fact that at low white noise levels, the condition number of the whole matrix is high - indicating 

that any solution to equation 7.30 will be highly susceptible to inaccuracies in the cyclic autocor­

relation. As this quantity is a time-averaged approximation to a statistical mean, such inaccuracies 

will be invariably present. As an example, figure 7.2 shows the result of multiplying the cyclic 

autocorrelation matrix by its inverse. The result should be the identity matrix. In this plot the x, y 

values indicate the position within the matrix, and the z-axis indicates the value at that position. 

Ideally this would be 1 on the main diagonal and zero everywhere else. 

For these reasons a successful in1plementation of direct solution of the time domain equations 

could not be achieved. There are however a number of ways in which this work could be continued. 

The poor conditioning of the standard autocorrelation matrix is a well recognised one in the field 

of adaptive signal processing [17] . One approach in minimising the problems is to operate on the 

data matrix, A = [x (n) , x(n - l) .. . x(n - m)] where x(n) is a vector of input values to the filter 

at time n . The autocorrelation matrix can be expressed as AHA which allows a reformulation of 

the Wiener filter equations in terms of A rather than ti' . The condition number of A is the square 

root of that of ti', so the numerical problems can be reduced by this approach. 

Other ideas 

It can be shown that the autocorrelation matrix is Toeplitz if the signal concerned is stationary. If 

we can assume we are dealing with a signal which is stationary except for the cyclostationarity 

we are interested in, then we can see that the cyclic autocorrelation matrix has a block Toeplitz 

structure. Each quadrant of the matrix is individually Toeplitz. It is in fact inefficient to represent 

the cyclic autocorrelation in this matrix form in this case, because each line of each sub-matrix is 

a time shifted version of the other lines in the submatrix. The full matrix representation allows 

non-cyclic time variations to be accounted for. It appeared to be the case that the errors described 

in section 7.1.4 were due to anomalies towards the edge of each submatrix of the inverse cyclic 

autocorrelation matrix. Knowing however that these submatrices should exhibit certain symme-
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tries could allow correction of these anomalies. This could practically take the form, for example, 

of taking the centre line of each submatrix and reforming the submatrix by shifting this line. 

The blind filter adaptation idea could also be developed by making the calculations simpler. It 

would also be possible to simplify the adaptation by noting that if the interference has no cyclic 

frequencies equal to that of the SOl, then the value of Rxu can be calculated a priori. Given this, 

and the fact that Ruu is directly derivable from Rxx it should be possible to reduce the complexity 

of the matrix equations. The direct approach used above means operating on 2N x 2N matrices, 

whereas only N x N elements are independent. 

This work raised some interesting questions about the mathematical behaviour of FRESH filters 

and gave some theoretical background to the approach followed in the next section, in that it 

has highlighted that FRESH filter adaptation in a flat channel requires calculation of the cyclo­

stationary statistics of the received signal; all other parameters are known a priori. A simpler 

alternative approach to was found using dummy training signals. This is the technique described 

in section 7.2. 

7.2 Blind Interference Rejection with a Dummy Training Signal 

This novel technique is suitable for use in cases where a channel can be observed for some time 

before SOl transmission starts. If interference is present during that period, and remains present 

with the same second order statistical parameters during SOl transmission, then a FRESH filter can 

be adapted to minimise the effect of the interferer before SOl transmission starts. The constraints 

referred to above are such that no extra distortion is introduced into the SOl when it is received. 

This is achieved by adding a dummy training signal at the receiver, which has the same second 

order statistics as the SOl, and generating a dummy desired signal carrying the same data as the 

dummy training signal. The LMS algorithm can then be used to adapt the filter output to the 

dummy desired signal. 

The result is that ifthe SOl is received in the presence of white noise and interference only (that is, 

with no channel dispersion) then the FRESH filter can be adapted to its optimum solution without 

any training signal being transmitted. If the channel introduces dispersion, then further trained 

adaptation will be required, but a shorter training time is required, and the initial MSE in reception 

is much lower than without pre-adaptation. The latter property means that initial detection of the 

SOl (for synchronisation) is much more reliable. This technique has been published as [1]. 

Starting again from the FSEIWiener filter case, we first note that the Wiener filter equation 3.1 

simplifies to equation 7.8 when the only corruption to the transmitted signal is from additive noise 

or interference (which is equivalent to saying that the training signal gives no information about 

the interference). The solution w to equation 7.8 is unchanged if t is replaced by t', a dummy 

training signal, and d with d', a dummy desired signal, as long as Rt't' = R tt and Rd't' = Rdt 

(because Rxx = R tt + Raa). 

To make these two conditions hold, we make the common assumption that the data carried by t, 

t', d and d' are independent and identically distributed. It is then only necessary to make the pulse 

shapes of t and t', and of d and d' the same. If there is no channel dispersion then choosing the 

pulse shape of t' to be the same as the transmitted shape will give the optimum filter response. 
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If there is dispersion, then further trained adaptation is required for optimum response. Note that 

symbol transitions need not be synchronised in t and t' as Rtt' is time invariant. 

7.2.1 Pre-adaptation of a FRESH filter 

The technique described above can be applied to a receiver where a FRESH filter replaces the FSE 

above. In this case equation 3.1 becomes 

W = Rzz-1Rzd (7.32) 

where W is now a concatenation of the impulse response vectors of all the sub-filters 

of the FRESH filter. z = [Xa l,Xa 2, ... ,Xa M,X-,81,X-,82, ... ,X-,8Nf is a concatena­

tion of the input vectors to each sub-filter which are frequency shifted by the values 

aI, a2, ... aM,-(3I, -{)2, ... , -(3N, which are some or all of the cyclic frequencies present in 

the input signal. d is defined as before. This equation gives the optimum filter for extracting the 

desired signal when the input is cyclostationary [2]. 

Again it is possible in the absence of the SOl to add a dummy training signal to the filter input. 

We write z = U + v, where u represents the SOl component of the received signal concatenated 

with frequency shifted versions of itself and v represents a similar structure for the noise and 

interference components. So equation 7.32 becomes 

(7.33) 

W is optimum if a dummy training signal u' is added such that RU/UI = Ruu and Ru/d = 
Rud. This requires that the dummy training signal has the same cyclic autocorrelation as the real 

one. However, unlike its stationary equivalent, this quantity is time variant so ideally the dummy 

training signal should be synchronised with the real one. However a frequency shift filter works 

both by adding correlated components of the SOl, and by subtracting correlated components of 

the cyclostationary interferer from each other. Its performance based on the latter technique is not 

affected by the dummy signal timing. So, for example, when the interference power is high, this 

technique is particularly useful. 

7.2.2 Simulation of the algorithm 

The ideas described above were verified by a simulation structured as in figure 7.3. 

The SOl and interferer were both QPSK, with transmit filters which gave a root raised cosine 

spectrum with 100% excess bandwidth. lID data was used for both and for the dummy training 

signal and dummy desired signal. The desired signal and dummy desired signal had 100% excess 

bandwidth raised cosine spectra. 

Figures 7.4 to 7.6 show the mean squared error of the filter output varying with time as the filter 

adapts. The curves showing the performance of pre-adaptation against the interference start at 

t = O. The noise, interference, dummy training signal and dummy desired signal all start at t = O. 

From t = 0 to t = 3 the MSE represents the error in extracting the dummy desired signal from the 
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filter input. At t = 3 the real SOl starts, as does the real desired signal. The two dummy signals 

are turned off at this point. From t = 3 the MSE represents the error in extracting the real desired 

signal from the filter input. There are two pre- adaptation curves: one where the dummy signals 

are symbol synchronous with the real signals they replace (solid line), and one when they are half 

a symbol delayed (dot-dash line). These two situations are the best and worse cases respectively 

for pre-adaptation performance. 

Each graph also has a curve representing the normal method of adaptation, relying on the real 

training signal for all adaptation. This starts at t = 3 to allow comparison of the length of real 

training sequence required in each case. 

The symbol rate of the SOl and the interferer was 1200 Hz. The interferer carrier frequency was 

840 Hz, while the SOl was at baseband; the signals therefore overlap more than half of each other's 

spectrum. The white noise level was set to give Eb/ Nd of 20 dB relative to the SOL 

The filter consisted of two sub-filters. The input to one was the received signal with no frequency 

shift applied. The input to the second was the received signal shifted by 1200 Hz added to the 

shifted signal shifted by -1200 Hz. This filter exploits all the cyclostationarity of the SOl and 

interferer used here. Each sub-filter had 33 taps, spaced at 8 taps per symbol. The LMS algorithm 

was used to adapt the filter [17]. The sub-filters' initial impulse responses were set to the solutions 

of the cyclic Wiener filter equations for the case of no interference or multipath, and Eb/ No of 

20 dB. 

The multipath channel applied in figure 7.4 and 7.5, consisted of2 paths, one delayed by 2 ms and 

with a gain of 0.5 times that of the main path. 

Figure 7.4 shows the performance with multipath and an interferer of power twice that of the SOL 

Figure 7.5 shows the result of the same scenario except the interferer power is 4 times that of 

the SOL Figure 7.6 shows the effect of an interferer of 4 times the power of the SOl but with no 

multipath propagation present. 

The horizontal line in each graph is at a value of 15% above the final MSE. This can be used as an 

indicator of when adaptation is effectively complete. 
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7.2.3 Summary 

The technique described here offers two benefits: one is the increased likelihood of the real train­

ing sequence being detected when its transmission starts; the second is a reduced real training 

sequence length required to adapt to the multipath channel. The first of these is indicated by the 

value of each curve at t = 3. This shows the error at the start of the real training sequence. It is 

clear that pre- adaptation significantly reduces this error in all cases, but especially with the higher 

interferer power (figures 7.5 and 7.6). 

The reduced conventional training time is shown by the times from t = 3 to where each curve 

crosses the horizontal line, which indicates completed adaptation. When the interferer power is 

high there is an advantage whether the dummy signal is in phase with the real signal or not. If the 

interferer power is lower then any advantage depends on correct dummy signal timing. 

In the latter case, it would be possible have more than one filter adapted by dummy signals delayed 

by varying amounts. When the real transmission starts, the filter with the best output can be 

selected for further training against multipath. 

In the case where there is no mUltipath (figure 7.6) then there is an advantage in pre-adaptation 

with the dummy signal out of phase with the real one, and when they are in phase, then perfect 

blind adaptation occurs. 

It should be noted that the conventional training curves represent a best case scenario, where the 

real signal is synchronised with the initial filter response. The optimum response of a FRESH 

filter is dependent on the relative phase of the data symbols and the frequency shifting phasors 

in the filter. In the simulations presented here, the real training signal and phasors had the same 

relative timing as was used for calculating the initial filter tap settings. We have therefore shown 

the quickest conventional training curve of the FRESH filter. 

The principle being used here, that a priori information about the interference can be used to 

initialise a filter is also used, in a different way, in.[ 106] to prevent the CMA locking on to an 

interferer instead of the SOL 

7.3 Blind Adaptation by Maximising of Correlation 

This section describes the implementation of an algorithm proposed by Zhang [25] and also used in 

[47] to adapt a FRESH filter without the use of a training sequence. However, it is shown that there 

are flaws in this algorithm. We explain here what the problems are and suggest a reason for the 

authors' error. A second closely related algorithm is described in section 7.4. There are limitations 

in the usefulness of this algorithm but a novel modification to it, using the same fundamental idea 

of maximising correlation, is proposed in section 7.5. 

The algorithm in [25] uses the fact that if a signal x(n) contains a cyclostationary signal with 

cyclic frequency a, then x(n) and x(n)ej2rran are correlated. Any noise components of x(n), 

provided they have different or no cyclic frequencies will not be correlated with x (n )ej2rran. A 

structure such as that shown in figure 7.7 is proposed for blind adaptation. If the two FRESH 

filters are adapted so as to maximise the correlation of their outputs then the idea is that this will 

maximise the output of the SOl and minimise the output of any other signals, so maximising the 
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There are two problems with this approach. One is with the filter structure shown in figure 7.7, the 

other concerns the effect of maximising correlation. 

7.3.1 Filter structure 

The problem with the filter structure is made clearer by drawing out the FRESH filters shown in 

figure 7.7 in full (figure 7.8). For simplicity, we assume that a two branch filter is being used (for 

example, assuming that a is twice the carrier frequency, and we are exploiting the carrier related 

correlation of a BPSK signal). We see now that the sub-filters h] 1 and h22 are both operating on 

the same signal, x (n) ej21ran, while 11,1 2 operates on x (n) and h21 operates on x (n) ej4mn. 

We use the notation R2~a for the correlation between x (n) and x (n) ej21ran as defined in section 
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Figure 7.8: Zhang's proposed blind adaptive filter structure expanded 

2.1.4. R~';a and R~lr2a have analogous definitions. R~';a is identically zero, because 2a is not a 

cyclic frequency of x. From equation 2.19 it is clear that R~l~a is equal to R~~ and so provides no 

additional information. It is also clear that there is no point in adapting lq I and h22 to maximise 

the correlation of their outputs as they both have the same input signal. So any non-zero value of 

h 12 = hn will give a maximum output correlation of I, without necessarily passing any of the 

signal of interest. 

From these arguments it is apparent that a more sensible structure would be that shown in figure 

7.9. Here we adapt the two sub-filters of just one FRESH filter (using the same signal assumptions 

as in figure 7.8) to maximise the correlation between the branches' output. This is the structure 

adopted by Wong [47). However, with this structure we no longer have a FRESH filter - the output 

is simply the output of one of the FIR sub-filters. So even if the adaptation is successful, the final 

output performance will be no better than that of a FSE. 

7.3.2 Failure of maximising correlation 

The second problem with the technique of maximising correlation is more serious. Although the 

optimum filter solutions given in [13] result in a high level of correlation between the two filter 

branches' outputs, this is not the maximum correlation achievable with the filter shown in figure 

7.9. For this reason, maximising the correlation of the sub-filters' outputs is fundamentally flawed 

as a method of blindly adapting the FRESH filter. 

The algorithm relies maximising a cost function J where: 

(7.34) 

Here h is the vector which is the concatenation of the subfilter impulse responses, y is the output 

of subfilter hI and r is the output of subfilter h2. 

This filter is able to adapt both branches to pass just a narrow frequency range. We have seen that in 

the absence of noise there is perfect correlation between the frequency shifted signals where their 

spectra overlap, although there is, of course, a variation in the absolute value of the correlation 

function according to the amplitudes of the signals. In the presence of noise the correlation is no 
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Figure 7.9: Wong's proposed blind adaptive filter structure 

longer perfect, and its value will depend on the SNR of the two signals. If the noise is white then it 

is clear that the maximum correlation occurs at the maximum value of the cross-spectral density of 

the two signals. The filter can then achieve the maximum correlation of the two branches' outputs 

by passing only the frequency at which the cross-spectral density is maximum. Passing any other 

frequencies in addition to this will involve adding signals with lower correlation and will so reduce 

the overall correlation of the sub-filters' outputs. 

For this reason the algorithm in [25] results in the filters passing a very narrow frequency band at 

the frequency with maximum cross-spectral density. This is illustrated by the simulation results in 

the next section. 

7.3.3 Simulation of correlation maximisation algorithm 

The unsuitability of maximising correlation as a method for blind adaptation was demonstrated 

by implementing the algorithm from [25] in MATLAB, but using the filter structure of [47] and 

figure 7.9. A BPSK SOl was corrupted with AWGN only - no modulated interferer was added. 

The output was as shown in figure 7.10 with Eb/NO of 12 dB, a baud rate of 0.05 Hz, a carrier 

frequency Ie of 0.1 Hz, a frequency shift of 2Ie with 200 taps in each sub-filter, and a sampling 

frequency of 1 Hz. The graph shows the spectrum of the unshifted input x(n) (rectangular pulse 

shaped BPSK) and the resulting magnitude frequency response of the filter hi. It is clear that 

the filter is passing only a narrow frequency range around the carrier frequency, where the cross­

correlation with the frequency shifted input is maximum. 

The experiment was repeated with a QPSK signal of interest and the frequency shift a equal to 

the SOl baud rate. All other parameters were as in the BPSK example above. The results in figure 

7.11 show that the filters select the frequency at which the two frequency responses cross. This is 

because the maximum cross-spectral density of x( n) and x(n)c j2
11'an is at this frequency. 

This algorithm was taken from the field of antenna array processing where it is known as SCORE 

(spectral self-coherence restoral) [12]. This link provides another interpretation of why the filter 

algorithm is not suitable for adapting FRESH filters. SCORE is used to blindly steer an antenna 

array towards a cyclostationary signal. 
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Figure 7.10: Zhang'sfilter: input spectrum andfrequency responsefor BPSK (200 taps) 

A plane wave arriving at a linear array at an angle B will have a path difference to neighbouring 

array elements of dsinB. Weighting the signal from each antenna element steers the beam to the 

desired direction. So the antenna steering operation is weighting and summing several delayed 

versions of the signal. This is a spatial version of a standard (temporal) linear transversal filter. 

The delay elements of the temporal filter correspond to the physical separation of the elements in 

the spatial filter. Applying SCORE to two spatial filters (one with cyclic frequency shifted input) 

will cause the filters to steer the beam to the direction which maximises correlation. The "single 

frequency" output problem in temporal filtering is equivalent to a "single direction" in antenna 

array processing, which is exactly what is desired for beam steering. 

The current author has been in correspondence with the authors of [47] and it seems that they only 

achieved successful adaptation when the interferer and SOl were well separated in frequency. It 

may be that they were using a filter with an insufficient number of taps to give a true picture of 

what was happening. Fewer filter taps means poorer frequency resolution, and a narrow frequency 

response could be spread out to one which looks like the response required to extract the SOl, if 

there were few enough taps. Figure 7.12 shows the result of repeating the simulation of figure 7.10 

but with only 20 taps in each sub-filter. 

Related algorithms are described in sections 7.4 and 7.S which overcome this notch filtering prob­

lem, effectively by maximising correlation across the whole bandwidth of the SOl. 
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7.4 Blind Adaptation by Training with a Frequency Shifted Input 

7.4.1 Principles 

Ideally an adaptive filter will be trained using a locally generated reference signal which is an exact 

replica of the actual desired signal (the desired signal, in a communications context is normally 

of course the same as the transmitted signal). However if such a signal is not available we might 

assume that a noisy version of the desired signals could be used instead. The correlation between 

frequency shifted versions of a cyclostationary signal suggest that we might use a frequency shifted 

version of the received, noisy signal as a training signal 

Consider a purely real BPSK signal; its spectrum is symmetric about fe, so the positive and neg­

ative halves of the spectrum contain the same signal information, whereas any noise present will 

not, in general, possess such symmetry. A more general complex BPSK signal contains the same 

diversity, which can be transformed to symmetry by a phase shift. Adding the shifted and unshifted 

signals therefore gives an increase in SNR. 

The blind adaptation of a FSE is first considered, rather than a FRESH filter. A FSE which is not 

adapting is a time invariant structure; it does not possess the implicit periodic time variation of a 

FRESH filter. It can therefore only exploit the stationary statistics of the input signal and so its 

optimum solution can be described by the Wiener filter equations. 

Notice that it is not sufficient to have a reference signal which is merely "correlated" with the 

actual desired signal (the transmitted signal). Nor is it essential for the reference signal to be equal 

to the transmitted signal. We see below that the optimum performance is achieved if the cross­

spectral density of the reference signal and the transmitted signal is the same as the power spectral 

density of the transmitted signal. 

We can see this by considering the frequency domain form of the Wiener filter equations (see, for 

example, [107]). Let Wen be the optimum ("Wie~er") filter frequency response for extracting 

the reference signal d(t) from the filter input x(t). x(t) is assumed to contain the transmitted SOl, 

s{t) with additive noise, so x(t) = s(t) + n(t). We define n(t) = x(t)ej2
1t"Qt to be a frequency 

shifted version of x{t), where the frequency shift n, is a cyclic frequency of s( t). The filter output 

is y{t). We use corresponding letters (e.g. Y(f» to represent the Fourier transforms of these 

quantities. The Wiener solution [107] is: 

(7.35) 

where the cross spectral density of x and d is 

SxdU) = E[XU)D*(f)] (7.36) 

and the power spectral density of x is 

SxxU) = E[X(f)X*(f)] (7.37) 

But if we are using a reference signal which is not exactly the wanted signal then we need to 

consider the filter output in more detail. The output is given by 
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Y(f) = W(f)X(f) (7.38) 

so the PSD of the output is 

(7.39) 

(7.40) 

(7.41) 

If d(t) = set) then this is the best estimate possible of s from the signal x, with a linear, time­

invariant filter. If d i= s then this is the best estimate using d as a reference signal. 

How close this estimate is to s depends of course on the relationship between d and s. The con­

dition on the reference signal is Sxd = Sxs for the performance to be optimum (that is, equivalent 

to using s as the reference signal) even if d i= s. It is normal to assume that the noise n is not 

correlated with either s or d, so then Sxs = Sss and Sxd = Ssd. 

So the requirement for optimum performance is 

(7.42) 

that is, the cross-spectral density of transmitted and reference signals, is the same as the power 

spectral density of the transmitted signal. In this case, 11, is used as the reference signal, so the 

optimum performance is achieved if Ssu = Sss. But 11, is x shifted in frequency by a, so Ssu = 

SSSI where s'(t) = s(t)cj27rCYt, that is s shifted by the same frequency. This last step relies on the 

noise being stationary, or, more accurately, not having a as a cyclic frequency. 

It is clear from consideration of the spectrum of a purely real signal such as BPSK, that if 11, is 

taken as the sum of two shifted versions of x, using shifts of +2fc and -2fc, then the require­

ment of equation 7.42 is met. In general, with other cyclic frequencies, such as baud rate related 

frequencies, this is not the case. 

With a BPSK signal we have two parts to the spectrum, in the negative and positive frequency 

halves of the spectrum, whose cross-spectral density is the same as the original signal PSD if 

frequency shifts of ±2.fc are used. So if the SOl is BPSK a training signal of the correct spec­

tral shape can be generated by adding signals shifted by +2.fc and -2.fc. This is the approach 

described in section 7.4.2. 

The discussion above concerns the Wiener filter, but an LMS adaptive filter will adapt towards the 

Wiener filter solution, so we can maximise the correlation between two signals, with constraints, 

by using the LMS algorithm. 

This is achieved by the structures shown in figures 7.14 and 7.15. The first of these is a filter 

using the received signal, frequency shifted, as the input to the filter, and the unshifted signal as 

the desired signal for the filter adaptation. The second swaps the roles of these two signals: the 

unshifted signal is the filter input, and the shifted signal is the desired signal. The labels x and 'It 

refer to the unshifted and shifted signals respectively. 
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The output of each of these filters will represent a maximisation of correlation between x ( n) and 

u(n) at all frequencies where the spectra of x(n) and u(n) overlap. The filter in figure 7.14 will 

give an output which is the components of '/.l(n) which are correlated with x(n). The filter in figure 

7.15 will give an output which is the components of x( 11,) which are correlated with 11,( 11,). These 

two signals are the same, as far as SOl components are concerned, but they will contain different 

noise signals. The constraints which were missing in [25] are present here because the desired 

signal is not adaptively filtered, so the filter output spectrum will be constrained by the reference 

signal spectrum. 

7.4.2 BA-FRESH filtering 

The technique described above is used in [48] for blind adaptation of a FRESH filter (the BA­

FRESH filter). The example used is of two BPSK signals with overlapping spectra; one is treated 

as a wanted signal, the other as interference. The letter concentrates on the rate of adaptation 

towards the "optimum" filter solution. Unfortunately this solution is not optimum in the way that 

the standard FRESH filter would be. In fact the use of the cyc1ostationarity to train the filter leads, 

in this case, to a filter equivalent to a fractionally spaced equaliser, or a simple FIR with more than 
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x n) reference d(n) = urn) 

X 

exp(j21t<xn) 

Figure 7.15: Maximising correlation of x relative to u 
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one sample per symbol. 

There are also fairly severe limitations on the applicability of this algorithm - it can be used only 

for signals in which the frequency shifted components have a cross-spectral density the same as 

the transmitted signal's power spectral density. Much of [48] is concerned with adaptation rates of 

various algorithms; this aspect of the letter is not considered here, but the assumptions about the 

final filter solutions are. 

In this section the limitations ofthe approach proposed in [48] are demonstrated, and in section 7.5 

a modification is proposed which results in a method of blind adaptation which still gives some of 

the interference rejection benefit of FRESH filtering. 

A BPSK signal has baud rate related cyclic frequencies of ~~ , where n is the symbol duration and 

n is an integer sufficiently small such that the original and shifted signals still have some part of 

their spectra overlapping. It also has cyclic frequencies of ±2fe where fe is the carrier frequency. 

These carrier dependent cyclic frequencies are a direct consequence of the perfect symmetry of a 

BPSK signal spectrum about the carrier frequency. In this section, as in [48], we only consider 

this carrier related cyclostationarity. 

7.4.3 Passband filtering 

A description follows of the specific examples of the trained and blind FRESH filters Zhang [48] 

used in simulations. More general comments are made later. In [48] the filters shown in figures 

7.16 and 7.17 are compared. The first is a trained FRESH filter as proposed by Gardner [13]; the 

second is Zhang's proposed blind adaptive FRESH filter (BA-FRESH) structure 

There are a number of comments to be made on these systems The top two branches of both filters 

(shifted by +2fe and -2fe) are shifted so they contain SOl components overlapping with the 

unshifted branch, but they do not overlap with each other. 

The advantage of the FRESH filter comes from adding together SOl components at different fre­

quencies, while the noise at the same frequencies is uncorrelated. 

The ±2fe frequency shifts cause correlated SOl components to be at the same frequencies because 

of the symmetry of the BPSK spectrum: referring to figure 7.18.1, there is the symmetry of the 

positive frequency half of the spectrum under reflection about fe (and of the negative frequency 

halfabout -fe). This symmetry is due to the baseband equivalent BPSK signal being purely real. 

There is also symmetry of the whole spectrum under reflection about zero frequency, due to the 

fact that the modulated signal is purely real (see, for example, [108], chapter 3. A +2/e shift 

causes the negative frequency part labelled A to coincide with the positive frequency part labelled 

B in the unshifted signal. Similarly the negative frequency part B overlays the unshifted positive 

part A. 

A - 2 f e shift causes A and B of the positive part to overlay B and A of the negative frequency part. 

Under both these shifts the noise is uncorrelated because it will not have, in general, symmetry 

around Ie (or -fe). But although there is correlation between x and xe- j4rr!ct, and there is 

correlation between x and xc+j4rr!ct, there is no correlation between xe- j4rr!ct and xe+j4rr/ct 

because these signals have no parts of their spectra overlapping. 
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However, due to the symmetry about zero frequency, the two frequency shifts produce correlation 

functions which are complex conjugates of each other. Let 1/,+2/0 = xe+i47r /ct and 1/,-2/c = 

xe- j47r /ct and let RC> be the cyclic cross correlation of x under a frequency shift of <Y. The cross 

correlation of x and 1/,+2fo is 

RC> = E[x.1/,+2fc] 

= E[(:1:*.u-2fc )*] because 1/,-2f< = (1./,2fc) * 

= E[(x.u-2fc )*] because x = x* 

= R-C> 

(7.43) 

It is clear from section 7.4.1 that using both the frequency shifts is necessary to make Ssd = Sss, 

but as the signals in the two branches carry the same information (one is the complex conjugate of 

the other) then the structure is clearly inefficient. 

In fact figure 7.17, can be thought of as a blind adaptive FSE, or a trained FSE which is using a 

noisy training signal, but in either case, the positive and negative frequency halves of the filtered 

spectrum are swapped by the frequency shifting. The symmetry of each part around 2fc and -2fc 

means that this swap does not impair performance. 
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7.4.4 Complex baseband filtering 

This discussion becomes simpler if it is based on the equivalent complex baseband signals instead 

of the original passband ones. The equivalent situation at the complex baseband is as shown in 

figure 7.18.2. The SOl spectrum is symmetric about zero frequency, but the noise is not, in general. 

To overlay the correlated parts of the signal one takes the complex conjugate, which is equivalent 

to reflection about the zero frequency axis. 

The trained FRESH filter at baseband, analogous to the passband filter in figure 7.16, is therefore 

the structure shown in figure 7.19, while the baseband version of Zhang's filter (figure 7.17) is as 

shown in figure 7.20. In this structure we are using the positive frequency half of the spectrum 

of the signal to train the filter to pass the negative frequency half, and simultaneously using the 

negative half to train the filter to pass the positive half. As the SOl is symmetric about zero 

frequency, this is equivalent to a trained FSE, except that the training signal contains noise. 

It is interesting to note that the filter structure in figure 7.19 was proposed as early as 1969 by 

Brown [27] and the underlying theory further discus.sed in [100]. [27] contains a thorough theo­

retical justification for the use of "conjugate linear filtering", but an intuitive explanation for its 

use is as follows: A signal such as BPSK can be represented at baseband (following, in general, 

a phase shift) as purely real. A realistic baseband representation of noise will be complex, so in 

filtering to recover the signal from the noise an obvious (non-linear) improvement is to discard the 

imaginary part of the noise. The sum of a linearly filtered and a conjugate linearly filtered version 

of the signal allows the removal of the imaginary part of the noise. At passband, this corresponds 

to perfect coherent reception, where the in phase component is selected and the quadrature com­

ponent discarded. 

It is shown in [27] that conjugate linear filtering is advantageous when E[x(t + T)X(t)] =1= 0 

(the left hand side differs from autocorrelation in a missing conjugate operation on the second 

x(t)). Such signals were described in [87] as "circular" (see section 3.8). The maximum benefit is 

when the real and imaginary parts of x (t) are linearly dependent, which, for most practical signal 

constellations, is another way of saying that the signal can be transformed to a purely real one by 

a phase shift. 
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Figure 7.19: FRESH filter exploiting carrier related cyclostationarity (complex baseband) 
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Figure 7.20: BA-FRESHfilter exploiting carrier related cyclostationarity (complex baseband) 

7.4.5 Simulation results 

The trained FRESH filter (as shown in figure 7.19), the BA-FRESH filter (figure 7.20), and trained 

FSE were compared by simulation using scenarios similar to those used in [48]. That is, the SOl 

and interferer were of equal power and symbol rate. AWGN was added with power to give an 

SOl Eb/NO of9 dB and 18 dB. In each case, the filters were trained using the LMS algorithm; 

adaptation times and step sizes were chosen to minimise the effect of tap misadjustment on the 

results. In realistic scenarios we can expect that the interferer and SOl have incoherent carrier 

phases; this was simulated by averaging MSE results over a range of relative phases, although in 

practice this only makes a difference at carrier frequency differences of 0 and the baud rate. 

We expect that, in view of the discussion above, that the BA-FRESH filter output MSE should 

be exactly the same as that of the trained FSE, and that the trained FRESH filter should be sig­

nificantly better. This is confirmed by the simulation results shown in figures 7.21 and 7.22: the 

FSE and BA-FRESH lines are almost indistinguishable, while the trained FRESH clearly has an 

improved MSE. 

The departures from the smooth curves at carrier frequency differences of 0 and I Hz are addressed 

in section 7.5.1. 

7.4.6 Conclusion 

It is clear from the above that Zhang's filter (figures 7.17 and 7.20) cannot give an improvement 

in interference rejection over a FSE. At first it may appear from figure 7.17 that only one of three 

possible filter branches is being used for training so the remaining two branches can provide some 

FRESH filtering advantage. This is not the case, however, because the two remaining branches 

have no overlapping SOl components. It is immediately obvious from the equivalent baseband 
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Figure 7.23: Improved BA-FRESH filter exploiting carrier related cyc/ostationarity (complex 

baseband) 

version (figure 7.20) that no addition of correlated components is possible with such a structure. 

The filter is therefore equivalent to a blind adaptive FSE. 

7.5 Improved Blind Adaptive FRESH Filtering 

From the previous section it is apparent that a passband FRESH filter with carrier related frequency 

shifts is equivalent to a conjugate linear filter at complex baseband. The advantage of such a filter 

in extracting a purely real signal from complex noise is equivalent to that from discarding the 

imaginary part of the noise. So it is simple to construct a blind adaptive filter which has the same 

performance as a conjugate linear filter: such a filter is shown in figure 7.23. The positive and 

negative halves of the symmetric SOl spectrum are used to train each other as before, but the 

addition of the output to its complex conjugate removes the imaginary part of the noise without 

affecting the SOl. 

Again simulation was used to test this filter structure in comparison to Zhang's BA-FRESH filter 

and a trained FRESH filter. the results are shown in figures 7.24 and 7.25. It is clear that the new 

filter structure has output MSE performance almost exactly equivalent to the trained FRESH filter. 

The obvious differences at carrier frequency separations of zero and 1 Hz (twice the baud rate) are 

discussed in section 7.5.1. 

7.5.1 Effect of relative phase of interferer and SOl carriers 

Figures 7.21, 7.22, 7.24 and 7.25 show that as well as the general trend that MSE decreases as car­

rier separation increases (as expected) and the differences between the four filter types discussed 

above, there are some interesting features apparent at carrier separations of 0 and 1 kHz. Some 

suggestions are made here for the causes of these curious results. 

The fundamental issue involved here is the relative phase of the SOl carrier and the interferer car­

rier. In a realistic communications scenario one would expect that an interferer would be coming 

from a source independent from the SOl source and would therefore be incoherent with the SOl. 

That is, there would be no fixed phase difference between the two carriers. In simulation, it is 

necessary to explicitly force such incoherence onto the signals, and this was done for the results 

presented in figures 7.21, 7.22, 7.24 and 7.25 by repeating each simulation for a different initial 

phase difference, and averaging the resulting MSE values. Initial phases of 0 to 900 in steps of 10° 

were used. 
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Figure 7.24: Improved BA-FRESH: variation of MSE with carrier frequency, Eb/ No = 9 dB 
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When the carriers have the same frequency the initial phase difference remains the phase difference 

throughout the simulation. In this case there is a major difference between an interferer with 

identical frequency and phase and one which is 90° out of phase with the SOL The former is 

difficult to separate from the SOl (especially in the scenarios tested here where the two signals 

have identical power and both carry lID data). The latter, however, can be perfectly separated 

from the SOl by taking the real or imaginary part of the signal as required. 

When the carriers are separated by half the baud rate (as is the case at 1 kHz separation in the 

simulations) then in one symbol period, the phase difference caused by the frequency separation 

is 180°. This maps one BPSK constellation point onto the other available point, so the interfering 

signal appears similar to a BPSK signal with a fixed relative phase difference to the SOl, and 

similar effects in the MSE are observed. 

The FSE is a linear filter and cannot therefore operate any differently on the real or imaginary 

parts of the signal. The effects described above are therefore irrelevant and the filter performance 

has no dependence on the relative phase of the two signals. This is shown in figure 7.26 for two 

sample initial phase differences of 0° and 90°. There is no difference in the output MSE for these 

two cases. 

The trained FRESH filter (figure 7.27) has much better performance when the phase difference 

remains constant (zero, and half baud rate carrier frequency difference) and that phase difference 

is 90°, as the signals are perfectly separable, and the FRESH filter is capable of operating inde­

pendently on the real and imaginary inputs. In both figures 7.26 and 7.27 the Eb/NO is 18 dB. 

The BA-FRESH structure is equivalent to a blindly adapted FSE, so it cannot perform any better 

than the FSE. However the reference signal used to train the filter contains the interfering signal. 

Normally the filter training relies on the lack of correlation between any interference components 

in the reference signal and the filter input. However with equal carrier frequencies and 90° phase 

difference, the interference in the input and reference signals are perfectly correlated (except for 

the effects of the AWGN) so the performance is worse than that of the FSE (as shown in figure 

7.28). 

The improved BA-FRESH (figure 7.29) filter has similar performance to the trained FRESH except 

that at equal carrier frequencies, and a 90° phase difference, the performance is significantly worse. 

This can again be attributed to the fact that the interferer in the reference signal is correlated with 

the interferer in the input to the filter, so the filter will be adapted to enhance the interferer as much 

as possible. 

Figures 7.30, 7.31 and 7.32 show the variation of MSE with initial carrier phase difference for 

frequencies of 0, 0.5 and 1 kHz and EB/No of 18 dB. These results justify the technique of 

averaging MSE over 10° steps in phase value, as the variation is smooth. One exception to that is 

the jump from 0 to 10° in the improved BA-FRESH curve in figure 7.30. This suggests that the 0 

carrier difference values for this filter in figures 7.24 and 7.25 are too low, but this will be a small 

effect. 

In general we can see that the FSE is independent of the initial phase while the trained FRESH 

filter has a fairly strong phase dependence. The BA-FRESH filter has a weaker phase dependence, 

and the improved BA-FRESH phase dependence is complicated and unexplained. Figure 7.31 

illustrates the lack of phase dependence when the carrier difference is any value other than zero or 
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7.5.2 Other frequency shifts 
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In [48] the theory for the BA-FRESH algorithm is presented in a general way, and the BPSK 

example considered above is used as an example. We have seen that in this is example we have 

no advantage in using BA-FRESH over a FSE, but the question remains as to whether the general 

technique is still valid. The answer is that if additional cyclic frequencies are exploited then it 

should be possible to achieve blind adaptation with simultaneous FRESH filtering advantage over 

interference, but further filtering will be required to correct the spectrum of the output signal. 

Blind adaptation using the positive frequency half of the spectrum to train the negative frequency 

half is successful (in that it gives the correct output signal) because correlated halves of the spec­

trum have the same shape under the conjugate transformation. If, however, baud rate related 

frequency shifts are used, the situation is not so simple. Consider the simple case of figure 7.20 

where the complex conjugate operation is replaced with a frequency shift equal to the baud rate. 

The output of the filter will be the filtered version of the input signal that has maximum correlation 

with the training signal. This will have a power spectral density equal to the cross spectral density 

of the unshifted training signal and the input shifted signal, which in general is not equal to the 

SOl power spectral density. 

Note that frequency shifts equal to the cyclic frequencies of the interferer (if they are known) can 

also be used successfully [13, 2]. 

7.5.3 Conclusion 

The BA-FRESH technique as presented in [48] is of limited use as it has none of the interference 

rejection advantages of FRESH filters in the examples given in [48]. It is in those cases equivalent 
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to a method for blindly adapting a FSE. 

The same performance as a trained FRESH filter can be achieved however by taking the real part 

of the filter output. This is an illustration of the fact that exploiting the carrier related correlation 

of BPSK, which is the same as exploiting the symmetry of the BPSK spectrum, is equivalent to 

discarding the imaginary part of the complex noise. 

7.6 Summary 

The chapter has examined the problem of blind adaptation of FRESH filters, particularly in a 

channel with a white frequency response. For general cyclostationary signals, the mathematics 

describing the problem was presented in section 7.1 but did not give a practical algorithm for 

blind adaptation. A simple method for doing this using a dummy training signal was presented in 

section 7.2. This algorithm is proposed for use in systems where the channel can be monitored 

without the SOl present, such as those using some form of time division multiple access (TDMA). 

Simulation results confirm the effectiveness of this algorithm. 

Another author has proposed two algorithms for blind adaptation of FRESH filters. One minimises 

the correlation between a shifted and unshifted version of the SOl. Section 7.3 shows that this 

method does not work. The second algorithm uses a frequency shifted version of the received 

signal as a training signal for the filter. In section 7.4 it was shown that this only has performance 

equivalent to a FSE and that it is limited to signals such as BPSK with symmetric spectra. 

A simple change to this algorithm (which is to discard the imaginary part of the filter's output) 

improves the performance to the level of a trained FRESH filter. This is described in section 7.5. 

Put another way, sections 7.4 and 7.5 have demonstrated that FRESH filtering of BPSK using 

±2.fc frequency shifts only is equivalent to linear, conjugate-linear (LCL) filtering at baseband, 

which is equivalent to discarding the imaginary part of the output of a FSE. 

It has been shown that two algorithms proposed in the literature for blindly adapting FRESH filters 

against interference do not perform successfully as claimed by the original authors. 

The reasons for the failure of these algorithm have been explained. For the second algorithm the 

performance has been shown to be equivalent to that of a FSE, but a change to the filter structure 

has been proposed which gives performance as good as a trained FRESH filter. The fact that these 

filter structures are limited to exploiting the spectral symmetry of purely real signals has also been 

highlighted. 
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Chapter 8 

Conclusion 

In this thesis the use of FRESH filters for the excision of interference has been considered. A vari­

ety of interference scenarios have been tested, each with one digitally modulated signal interfering 

with a digitally modulated SOl. The emphasis throughout the thesis has been on using realistic 

scenarios, so band limited signals, such as raised cosine filtered QPSK or GMSK have been used 

in simulations to test the FRESH filters. The performance of FRESH filters has been shown to 

vary according to the carrier separation between SOl and interferer, their relative baud rates, their 

relative powers and their pulse shapes. 

Specific points have been made, or results shown, in individual chapters as listed below. 

Chapter 1 contains a literature review which covers the major categories oftechniques for interfer­

ence rejection to put FRESH filtering into context. It is shown that although there has been fairly 

thorough coverage of the theoretical background to FRESH filtering, there has been little work 

published on applying the techniques to practical situations. The impression gained from reading 

the existing publications on the subject is that FRESH filtering appears to be a very promising tech­

nique, but that it is not clear when or if it can be used successfully in practice. The work presented 

in the rest of the thesis has gone some way to suggest that in selected applications (particularly 

where there is reasonable predictable high powered interference) it can be a useful technique, but 

that the exploitation of spectral correlation is often accomplished by standard techniques such as 

matched filtering. 

Chapter 2 reviews the theory of the cyclostationary model of digitally modulated signals, and the 

resulting spectral correlation. Also a comparison is made between Gardner's non-probabilistic 

approach to spectral analysis and the more accepted methods based on ensemble averaging. The 

previously published work in this subject tends to be presented in rather an abstract way, so this 

chapter concentrates on presenting the ideas as simply as possible, with graphical interpretations of 

the two-parameter autocorrelation function and of baud rate and carrier frequency related spectral 

correlation. 

The exploitation of the properties described in chapter 2 is described in chapter 3. The FRESH fil­

ter is introduced, and its role in a communications receiver described with reference to the matched 

filter, and linear equalisers. The FRESH filter can be used as a replacement for the matched fil­

ter/equaliser combination, which may have improved performance against interference, or may 

be used as a stand-alone interference rejection filter placed before the matched filter. Following 
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on from the discussion of the relationship between baud rate related correlation and the sampling 

theorem, it is shown that there is a close relationship between the frequency shifting and sampling 

within the FRESH filter, and this can lead to improvements in the efficiency of implementing the 

filter. The important equivalence of the FSE and baud rate shift FRESH filter if both are followed 

by baud rate sampling is highlighted here (it is first shown in [59]), and this leads on to a demon­

stration of how the FSE exploits spectral correlation in such a situation. At this point it is clear that 

systems which include baud rate sampling (such as the matched filter followed by sampling, or 

the DFE) are implicitly using the baud rate related spectral correlation of the SOL A distinction is 

drawn here between Wiener filtering which extracts the entire waveform from noise, and matched 

filtering in which baud rate samples are detected in the optimum way. The Wiener filter assumes 

that all signals present are stationary, so a more accurate cyclostationary model leads to the im­

proved Wiener filter. However, the matched filter assumes nothing about the statistics of the SOl; 

it is defined according to the noise spectrum and the SOl pulse shape, so the SOl cyclostationary 

model does not lead to any improvement in the MF performance. 

But using the spectral correlation of the interferer does lead to an improvement over the MF which 

only operates in the context of baud rate sampling. This is demonstrated through the simulation 

results in chapter 4. Here the implementation of the FRESH filter is described for removing 

a QPSK SOl from QPSK interference. The filter responses resulting from training the filters 

with the LMS adaptive algorithm are compared to the results of solving Gardner's cyclic Wiener 

filtering equations and found to be in good agreement. It is also shown how the choice of the 

number of filter taps can affect performance: a large number increases the degrading effect of tap 

misadjustment in an adaptive implementation, whereas too small a number does not give the filter 

sufficient frequency resolution to accurately manipUlate the signals. The point is made here that in 

the presence of high powered interference it is important to exploit the interferer correlation, not 

just that of the SOL 

At first sight it might appear that as cyclostationarity in the SOl is beneficial for rejecting in­

terference, then enhancing this cyclostationarity in some way should lead to an improvement in 

interference immunity if FRESH filtering is used. It is shown in chapter 5 that this is not the 

case in general. Given a fixed transmitter power, one can distribute the SOl energy over different 

bandwidths with different spectra, but spreading the energy further means overall a lower spectral 

density, which then means lower immunity at specific frequencies. So without having any knowl­

edge of what a likely interference scenario is, it is not possible to design a particular signal which 

is robust - there is no signal which is robust in general. This chapter also examines more QPSK 

interference scenarios, with equal SOl and interferer power. 

The application of FRESH filters to VLF communication is explored in chapter 6. This is a real 

application with the parameters chosen to represent real world problems as closely as possible. The 

problem addressed here is that of extremely high powered adjacent channel interference, which 

can be so powerful that the normally insignificant side lobes of the (G)MSK adjacent channel 

signal are of similar power to the main lobe of the SOL By using a FRESH filter with a single 

frequency shift matched to the spectral correlation of the interferer, a large improvement in BER 

performance is possible. This was first modelled in AWGN, but then a more realistic impulsive 

atmospheric noise model was developed and used. Impulsive noise is the most serious problem in 

VLF communications, so any interference rejection technique must be able to operate alongside 
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an impulse rejection system. A simple but effective method of removing impulses known as hole­

punching is used before the FRESH filter, and it is seen that depending on the relative powers 

of the SOl, interferer and impulsive noise, it can be better to use either the FRESH filter, or the 

hole-punching, or both, but that the hole-punching does degrade the performance of the FRESH 

filter. 

The last chapter 7 looks at some methods of adapting the FRESH filter without a training signal 

(blind adaptation). There are many blind adaptation methods available, usually concerned with 

the more difficult problem of adapting a filter to equalise a dispersive channel response. Here the 

focus is on two methods which directly use the spectral correlation of the input signals to drive 

the adaptation. It is shown that one is faulty, in that the FRESH filter does not adapt to the desired 

solution, and the other is limited in its application to purely real signals, and results in a filter 

structure which is equivalent to a FSE. A modification to this filter is proposed which makes its 

performance equivalent to the trained FRESH filter. It is clear from this work that the FRESH 

filter which exploits only the carrier related correlation of a purely real signal such as BPSK, is 

equivalent at complex baseband to a linear-con jugate-linear filter, which in turn is equivalent to 

linear filtering followed by discarding of the imaginary part of the noise. 

The last comment shows that one of the problems with the existing literature on FRESH filtering is 

that it appears to be a complicated topic, so the simple interpretations of what the filters are doing 

are often overlooked. It is hoped that this work has shown that the idea of spectral correlation or 

cyclostationarity, and its exploitation through the FRESH filter, are in fact rather simple. 

It is believed that the current work has shown that, with some reservations, FRESH filtering can 

be used for solving real interference problems. As standard techniques such as the MF or the DFE 

implicitly exploit the baud rate correlation of a SOl, then there is no advantage in using a FRESH 

filter for this. Similarly, the carrier related correlation of BPSK could equally be exploited by 

coherent reception and taking the real part of the output. This can either be seen as an advantage 

of BPSK, or as an example of its spectral inefficienc~ which creates the redundancy. The more 

promising areas for FRESH filter application are those where, as in chapter 6, interferers may have 

high power, and there are cyclic frequencies of the interferer which do not correspond to baud rate 

multiples of the SOL 

As well as making these points, the fundamental concepts underlying FRESH filtering have been 

clarified, and various issues related to their implementation have been explored, including a more 

comprehensive examination of their performance under differing interference scenarios, with the 

selected modulation schemes, than is available in the literature to date. 

8.1 Original Work 

A number of original pieces of work have been presented in this thesis, and are indicated in chap­

ter 1. They are summarised here for convenience: 

• the graphical representation of the two parameter autocorrelation function for a rectangular 

pulse sequence (section 2.1.5) and the interpretation of baud rate related spectral correlation 

as a result of the sampling theorem (section 2.2.2); 
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• the graphical representations of how the FRESH filter and FSE reject interference (sec­

tions 3.5.1 and 3.6.7); 

• the analysis of the effect of sampling in FRESH filters (sections 3.6.3 to 3.6.6); 

• the explanation of how the LCL filter is the baseband representation of the FRESH filter 

with a frequency shift of twice the carrier; 

• the link between circularity and carrier related spectral correlation; 

• the comparison between the direct solution and the LMS adaptive solution of the FRESH 

filter equations (chapter 4); 

• the use of FRESH filters for the specific interference scenarios tested in chapters 4,5 and 6; 

• the attempt to improve FRESH filter performance by manipulating the SOl pulse shape, 

while keeping the SOl bandwidth the same; 

• the investigation of FRESH filter performance with impulsive noise and hole-punching 

(chapter 6); 

• the analysis and criticism of the two algorithms for blind adaptation of FRESH filters [25, 

48] (sections 7.3 and 7.4); 

• the interpretation of the gain due to carrier related correlation with real signals as equivalent 

to selection of the real part of the filter output, and the corresponding improvement to the 

blind adaptive FRESH filter (section 7.5). 

8.2 Further Work 

Before using FRESH filters in a communications system there is obviously a great deal of inves­

tigation which needs to be done. Much of this would be scenario dependent, but there are some 

general issues which have not been considered here. 

Synchronisation, be it symbol timing recovery, or carrier phase and frequency is a crucial process 

in any communications receiver. Here, perfect synchronisation has been assumed in all analysis 

and simulations. FRESH filters are bound to have the advantages of FSEs in correcting symbol 

timing errors [34], but a drift in symbol timing could cause problems, as it can be seen from chapter 

7 that the filter performance (and of course ideal response) is dependent on the timing phase of the 

signals. 

Accurate carrier phase recovery is also important in coherent receivers, although one could turn 

round the comment made above about discarding the imaginary part of the noise when receiving 

BPSK, and say that LCL filtering may provide an alternative way of (implicitly) recovering the 

carrier phase with a purely real signal. 

Generally it would be expected that any jitter in the parameters which affect the cyclic frequencies 

of a signal (in the current examples, carrier frequency and baud rate, which could be caused by 

hardware imperfection or channel conditions such as Doppler shift) would affect the performance 
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of a FRESH filter. The sensitivity of the filter to errors in the frequency shifts relative to the cyclic 

frequencies of the input signal has not been analysed. 

Also, from the most general point of view, the work on the co-existence of FRESH filtering with 

hole-punching needs to be extended to the co-existence with all other processes operating in the 

receiver. For example, VLF communications also routinely use a 2 element antenna array to 

remove interference by spatial discrimination [109], but this can only cope with one interfering 

signal. If a second interferer were present, then questions arise as to how to determine in which 

order to do the FRESH filtering and antenna null steering, and how to select which signal is most 

appropriate to be tackled by each method. Similarly, there is a range of alternative techniques to 

hole-punching which may be less disruptive to FRESH filtering, and work is required to determine 

which they are, and what, if any, effect they have on FRESH filtering, or what effect FRESH 

filtering has on them. 
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