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ABSTRACT 

The evolution of interacting species is investigated using mathematical 

models and computer simulation. Lotka-Volterra food web models are adapted 

to include genetic variation, and then used to model the coevolution of 

interspecific interactions. Due to the complexity of the population dynamics 

exhibited by multi-species community models, I concentrate upon the evolution 

of predator-prey interactions. The models so constructed can be solved either 
". 

analytically, or numerically, to evaluate the evolutionary dynamics of 

phenotypes in predator and prey. The phenotypes that are considered have an 

effect on the interspecific interaction, and could represent predator and prey 

body size. These models show that a range of evolutionary dynamics can arise 

in simple predator-prey systems, including evolutionarily stable states, and 

continuous coevolutionary change, or Red Queen coevolution. They also show 

that the coexistence of predator and prey can be maintained under selection. 

Simulation models are developed in a similar fashion. where the population 

dynamics of genotypes are evaluated by numerical integration. One simulation 

model incorporates the evolution of body sizes. while in the other evolution 

acts directly upon the interspecific interaction coefficients. These models are 

used to investigate the build-up of invasion resistance to mutant invasion. the 

maintenance of polymorphism in predator-prey interactions. and the population 

dynamical consequences of predator-prey coevolution. It is unclear whether 

predator-prey interactions can maintain polymorphism, but evidence is obtained 

of the build-up of resistance to mutant invasions. implying approach to 

evolutionarily stable states. Evolution of predators and prey is seen to result in 

a range of dynamical behaviours: natural selection may lead to stable dynamics. 

but alternatively to cyclic behaviour or chaos. 
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Chapter 1. INTRODUCTION: MODELLING ECOLOGY AND 

EVOLUTION IN FOOD WEBS 

Nothing in biology makes sense except in the light of evolution. 

Theodosius Dobzhansky 

1.1 SUMMARY 

The topics investigated in this thesis are introduced. The basis for an 

investigation of the evolution of interacting species is presented. The 

observations of empirical regularities in food web structure has resulted in a 

great deal of theoretical attention, but the models that have resulted do not take 

into account the interaction of evolution and ecology in natural systems. 

Community assembly models have been used to understand trends in 

community structure, and these suggest some ways in which models of 

evolving interacting species might be constructed. Theoretical work on the 

evolution of interacting species has generated a wide range of predictions about 

the outcome of such evolution; will communities evolve to coevolutionarily 

stable states, or continue evolving in Red Queen coevolution? It is intended to 

investigate these problems by using mathematical and computational models of 

evolution in trophic webs. The aims of the research are presented; it is argued 

that a focus on predator-prey coevolution, rather than community coevolution in 

general, is necessary for a full understanding of the system being considered. 

Finally, the layout of succeeding chapters of the thesis is presented. 
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INTRODUCI10N 

1.2 FOOD WEBS 

Many advances have been made in recent years in classifying and explaining 

the patterns of ecological interactions in nature. One particular area of activity 

has been that of trophic interactions between predators and prey. Predators and 

prey interact in complicated ways in food webs. Food web theory is a 

flourishing area of theoretical ecology (Lawton & Warren 1988; Lawton 1989; 

Cohen et al. 1990a; Pimm et al. 1991), but studies of models of food webs 

have rarely considered any evolutionary component to ecological interactions. 

In order to examine this, one must ftrst consider its ecological basis. 

It was for a long time assumed that more complex communities would be 

more mature, more stable - and this seemed reasonable when one looked at the 

characteristics of a successional community from early succession until climax. 

However May (1972, 1973) showed that this was not necessarily the case: 

indeed with many models you would expect stability to decline with 

complexity. It was also shown (Gardner & Ashby 1970) that connectance, a 

measure of linkage within a food web, and thus complexity in a sense, declines 

with increased stability. But this was for a more general case of dynamical 

systems. When DeAngelis (1975) introduced some biologically reasonable 

assumptions into a randomly connected model he found the opposite: 

connectance was proportional to stability. Winemiller (1990a) looked at 

tropical freshwater communities and found connectance increases with species 

richness, thus implying connectance increases with stability. 

These contradictory results highlight the difficulties of using such a general 

measure as connectance as a indicator of food web structure (see also Pimm 

1984). In food web studies, as a consequence, the emphasis has shifted 

somewhat to detailed analyses of food web statistics across many real webs. 

These have been derived from a collection of food web matrices collated from 

many different sources (presented in Cohen 1977, 1978; Briand & Cohen 1987; 

Cohen et al. 1990a). Out of this mass of data a number of common patterns 
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INTRODUCflON 

emerge (fable 1.1). A number of explanations have been put forward to 

account for this pattern: these must be taken into account in constructing an 

evolutionary model for food webs. 

Patterns in food webs have been explained as being due to purely random 

assembly effects, selection for feeding at lower trophic levels (Hutchinson 

1959), donor-controlled dynamics (DeAngelis 1975; Pimm 1982), and 

constraints imposed by inefficient energy flow through ecosystems (Hutchinson 

1959; DeAngelis 1980; Yodzis 1981, 1984a, b). All these explanations have 

only limited validity either in terms of explicatory power, or in terms of the 

food webs to which they apply. Counter-examples to them can often be found. 

More successful approaches to understanding patterns in food webs have 

taken one of two theoretical paths. Firstly, there are the static models, based 

upon the theory of random graphs, which seek to explain food webs purely in 

terms of structure. Secondly, dynamical models examine populations 

interacting in a food web and look for stable configurations as analogues of 

persistent structures in food webs. 

The static models of Cohen and co-workers (Cohen & Newman 1985; Cohen 

et al. 1985, 1986; Newman & Cohen 1986; Cohen 1989, 1990; Cohen & Palka 

1990; Cohen & Newman 1991; Cohen & Luczak 1992; see also Cohen et al. 

1990a) are based on the assumption that there exists a trophic hierarchy, such 

that any species can only feed on species below it in the hierarchy, and will 

only be preyed upon by species above it in the hierarchy. Such a hierarchy 

may seem unrealistically restrictive, but Warren and Lawton (1987) have 

suggested that it may be provided by the implicit constraints on body size in 

predators and prey (excluding parasites). This argument was put forward by 

Elton (1927) originally, and also mentioned by Hutchinson (1959). 

Cohen and co-workers have shown that their cascade model explains a 

number of the patterns observed in real food webs. For example, constant 

proportions of species in different classes and links between these classes 

(Cohen et al. 1985), short food chains (Cohen et al. 1986; Newman & Cohen 

17 



INTRODUCTION 

l.Feeding loops are absent; this assumes such phenomena as cannibalism of juveniles 
are ignored.(pimm 1982) 

2.Trophic links between species are constant, i.e. there is a constant ratio of predators 
and prey. This also implies that connectance (Gardner & Ashby 1970) declines as the 
number of species in the web increases. (Macdonald 1979; Cohen & Briand 1984; 
Jeffries & Lawton 1984a,b). 

3.Grouping species into top species, those at the highest trophic level, basal, those at 
the lowest trophic level, and intermediate those at all trophic levels in between, the 
proportion of species in top, intermediate and basal classes is constant. (Briand & 
Cohen 1984). 

4.The proportion of links between any two of the above classes is also found to be 
constant. (Briand & Cohen 1984) 

S.Omnivory (feeding at more than one trophic level) is rare. Exceptions are parasite 
and/or insect food webs. (pimm & Lawton 1978). 

6.Food webs in fluctuating and constant envirorunents differ. (Briand & Cohen 1984; 
Cohen & Briand 1984; Cohen, Newman & Briand 1985). 

7.Food chains are short: typically three trophic levels, rarely five or more. (Hutchinson 
1959; Pimm & Lawton 1977; Pimm 1982; Briand 1983; Lawton 1989). 

8.Food chains are shorter in two-dimensional as opposed to three-dimensional habitats. 
Just what defines a two- or three-dimensional habitat is more difficult to elucidate. 
(Briand & Cohen 1987; Briand & Cohen 1989 - but see Moore, Walter & Hunt 1989). 

9. Webs are reticulate, rather than compartmentalised, within habitats, but 
compartmentalised between habitats. (Pimm & Lawton 1980; Pimm 1982). 

to.Food webs are interval (i.e. the niche overlaps of predators at the same trophic level 
in terms of prey utilisation can be expressed in a one-dimensional classification). 
(Cohen 1978). 

1 1. Certain properties of the predator and prey overlap graphs are common to many 
webs (pimm et a/. 1991; see Cohen 1978; Sugihara 1984). 

(After Pimm 1982; Lawton & Warren 1988; Lawton 1989; Pimm el al. 1991; Polis 
1991.) 

Table 1.1. Observed patterns in food webs. 
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1986; Cohen & Luczak 1992), and interval food webs (the latter unreliably 

however) are all produced. However these are at the cost of ignoring well­

documented population processes occurring in ecological communities. and 

these are taken into account in dynamical models. 

In order for us to observe them, food webs in the natural world must persist 

for some time, that is they must be ecologically stable. This in turn requires 

that their constituent populations should not fluctuate too widely about 

equilibrium values, for this would create the risk of either stochastic extinction 

of a small population, or extinction of the prey species by a large predator 

population. which would destabilise the web. 

According to this view, ecological stability is somewhat akin to mathematical 

stability. Any food web that we see in nature must be stable otherwise we 

would not see it. This is the dynamical stability hypothesis (e.g. Pimm 1982; 

Lawton & Warren 1988). It explains most of the trends in Table 1.1, with the 

exception of differences in constant and fluctuating habitats, and shorter food 

chains in two-dimensional habitats (which may both be problems of definition), 

and also intervality and constant link-species scaling. The state of food web 

data is such (paine 1988) that it is difficult to eliminate the possibility that the 

latter two patterns might be artifacts. In any case, the dynamical stability 

hypothesis looks promising- the main problems surrounding it concern the 

definition of stability. It is possible to model food webs through systems of 

Lotka-Volterra type differential equations (after Hofbauer et al. 1987); 

(1.1) 

These equations are non-linear, but it is possible to linearize to an 

approximate solution, and look at stability around the equilibrium point, that is, 
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local asymptotic stability. It is widely accepted that the equations are 

biologically unrealistic (e.g. May 1981a; Murray 1989), but they do show some 

fundamental characteristics of what are, in nature, much more complex systems. 

Also they are not entirely intractable! 

The dynamical stability hypothesis and static models such as the cascade 

model might seem like opposite extremes in the study of food webs. In fact, a 

recent paper (Cohen et al. 1990b) presents a model which combines the two 

approaches- and one would suspect that such combinations of the techniques 

will become more important in the future. 

It is possible that the emphasis on stability in the study of Lotka-Volterra 

models of food webs is misleading; after all, in the real world one might expect 

most species in most communities to spend a lot of their time away from 

equilibrium due to purely random environmental effects. Analysis about the 

eqUilibrium point may be discarding a lot of useful information about the non­

eqUilibrium dynamics. Measures such as permanence (Hutson & Law 1985; 

Hofbauer et al. 1987; Hofbauer & Sigmund 1988, 1989), also referred to as 

ecological persistence (Maynard Smith 1969; Freeman & Waltman 1977) may 

bt? more illuminating. Permanence refers to the condition that the trajectory of 

n interacting species in an n-dimensional phase space does not pass on to an n-

1 dimensional boundary of that space. This means that no species can go 

extinct. Ideal as though this might seem for community ecology, there are 

difficulties in applying the conditions for more than three species (Jansen 1987; 

Law & Blackford 1992). Since the community assembly models I shall 

construct have in effect much higher dimensions than three I shall not utilise 

such a measure. 

The food web statistics approach to the analysis of trophic structure has 

additional problems. An increasing body of evidence from natural conununities 

suggests that many trophic interactions are in fact very weak. or only occur 

rarely (paine 1980, 1992; Rafaelli & Milne 1987; Warren 1988; Hall et al. 

1990a, b; Juliano & Lawton 1990; Hall & Raffaelli 1991). This has 
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implications for the theoretical representation of food web interactions by 

Lotka-Volterra equations; perhaps the <Iij , the interaction terms in the Lokta­

Volterra equation should be given very low values most of the time. In 

addition, the presence of many weak interactions implies that many studies of 

natural food webs will have failed to identify these interactions. So real food 

webs may be even more complicated than previously thought. 

More problems for this type of food web analysis may be posed by the large 

amount of spatial and temporal variation that can occur in a food web. 

Standard food web matrices are static and cumulative (Schoenly & Cohen 

1991). They depict information gathered on many occasions. Cumulative webs 

will show many differences from time-dependent ones, such as predators 

switching their prey over the seasons, according to availability, or the change in 

prey niche of a predator as it ages (Werner & Gilliam 1984). Temporary 

components of food webs, 'opportunist' predators and 'tourist' (Moran & 

Southwood 1982) prey will not be distinguishable from more important 

components of the community. 

A number of studies have shown considerable variation in space and time for 

food webs in particular habitats (Beaver 1985; Kitching 1987; Warren 1989). 

Several very detailed studies (Winemiller 1990b; Hall & Raffaelli 1991; Polis 

1991) show departures from the expected patterns which have been found in 

broader comparisons. It is clear that generalizations about food web structure 

must be used with extreme care. 

From the modelling point of view, observations and explanations of food 

web structure tell us that an adequate model of a food web must be very 

complicated, involving many species each with many interactions. Even if we 

disregard the evidence for weak interactions in food webs we are still left with 

systems of many species. It is difficult to justify a food web model of 

intermediate complexity. Since it is quite possible that a realistic food web 

model might exhaust any computational or analytical facilities available, 

perhaps a better approach would be to concentrate on pair-wise interactions 
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between predators and prey within a food web. 

The dynamical stability model has a good intuitive basis and excellent 

explanatory power: this does suggest that some element of dynamics should be 

incorporated in an evolutionary and ecological model. This would have the 

advantage that any results obtained could be linked to the large body of work 

on popUlation ecology, specifically population dynamics, that already exists. 

That populations in the model should be dynamically stable in some sense is 

reasonable; what is not clear is in what sense stability is used. 

By deciding to include some elements of population dynamics in the model, 

it becomes difficult to include the cascade model in an explicit sense, despite 

its obvious utility in explaining food web patterns. One crucial assumption the 

cascade model makes is that of a trophic hierarchy. Warren and Lawton (1987) 

have suggested that this could be caused by the effects of body size in 

structuring predator-prey interactions. This element of the static type of 

explanation will be reconsidered, noting the role of body size generally in 

ecological interactions (Calder 1983; Peters 1984), in connection with 

constraints on predator-prey coevolution. 

The inclusion of population dynamics implies a dimension of ecological time 

in any model. Beyond ecological time, on a longer timescale, lies evolutionary 

time. This is not usually considered in any detail in food web models. If 

evolutionary processes are to be considered, some way of altering the 

characteristics of a model must be built in to it One way to do this is via 

community assembly. 
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1.3 COMMUNITY ASSEMBLY 

In order to look at the dynamics of food webs (especially in relation to 

changes leading to a stable state), a number of workers have simulated the 

process of invasion of an existing food web by new species, or successive 

invasion of species to create a food web (reviewed in Roughgarden 1989; 

Drake 1990a; Nee 1990; Pimm 1991). 

A considerable amount of theoretical work in this area derives from the 

observations of Gardener and Ashby (1970) that randomly-constructed networks 

did not necessarily become more stable as their connectance increased, applied 

by May (1972, 1974) to overturn the then prevailing orthodoxy in community 

ecology that more complex communities would be more stable. Roberts and 

Tregonning (Roberts 1974; Roberts & Tregonning 1980; Tregonning & Roberts 

1979) developed simple models of community assembly: they showed that, 

while randomly-assembled communities might exhibit the properties described 

by May, if selective elimination of popUlations without feasible equilibria was 

carried out, complex communities were more likely to be stable (but see Gilpin 

1975a). 

The selective criteria assumed by Tregonning and Roberts implied that 

populations had locally asymptotically stable equilibria. This arises 

automatically from the condition of the existence of feasible equilibria for 

certain types of simple community model, but does not necessarily occur in 

more complex systems. Nevertheless, this was followed by many other 

workers in related models of trophic or competitive communities (Gilpin & 

Case 1976; Lawlor 1978, 1980; Robinson & Valentine 1979; Drake 1983, 1985, 

1990b; Post & Pimm 1983; Mithen & Lawton 1986; Shigeshada et al. 1988, 

1989; Case 1990, 1991). Yodzis (1981, 1984b) took an alternative approach 

based on energy utilisation. 

Post and Pimm (1983) modelled community assembly through a system of 

predator-prey Lotka-Volterra equations; they started with only autotrophic 
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species then allowed heterotrophs successively to invade. The new community 

was then tested for equilibrium: invasions that did not result in equilibrium 

were rejected- as were invaders which completed trophic loops (a biologically 

implausible case). The invasion of a species could correspond to a new 

equilibrium with some negative populations: such populations were then deleted 

corresponding to extinction due to invasion. Post and Pimm showed with this 

model that turnover of species declines as does local stability as food web 

assembly proceeds. However the community never reached a stable state (i.e. 

one which was resistant to all further invasion). Although local stability 

declined, stability in terms of species turnover increased. so the conclusion we 

can draw from this model are not clear cut. One problem is that equilibrium 

was assumed for every step of the model- this may be a rather unrealistic 

assumption. 

Nevertheless it was also assumed by Drake (1983, 1985, 1990b) in his 

Lotka-Volterra equation assembly models. Drake started with a three-species 

food web, and then invaded species, letting the system go to a feasible (all 

species popUlations non-negative) equilibrium after each invasion. Once again 

all non-equilibrium food webs were discarded. Drake found a decline in 

stability with increasing complexity (measured as numbers of species), but the 

usefulness of his model is once again limited by the assumption of equilibrium. 

Thus we have some implicit support for shorter food chains (more species 

implies less stable food webs; as more species are added, it is more difficult for 

others to invade). 

The models of Nunney (1980) and Taylor (1985, 1988) are distinct from 

most previous assembly models of community construction in that they do not 

assume local asymptotic stability as a condition for inclusion of a new sub­

system- the system is merely iterated until it reaches an equilibrium state or 

not. Such a "developmental" approach to community modelling (Taylor 1989) 

is an important way of approaching the development and evolution of 

ecological systems. It avoids the problems with defining stability engendered 
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by the dynamical stability hypothesis. 

In parallel with the construction of computer simulations, a large number of 

experimental studies of community assembly have been carried out, using 

mainly microbial communities (Dickinson & Robinson 1984, 1985, 1986; 

Robinson & Dickerson 1984, 1987; Robinson & Edgemon 1988; Drake 1985, 

1991) but also water-filled tree holes (pimm & Kitching 1987; Ienkins & 

Kitching 1990) and marine fouling communities (Sutherland 1974; Sutherland 

& Karlson 1977). 

In addition a considerable number of studies of naturally occurring 

communities have detected phenomena consistent with community assembly 

processes occurring in diverse taxa; tropical (Connell 1978) and temperate 

(McCune & Allen 1985) forests, birds (Lack 1973), coral reefs (Connell 1978; 

Talbot et al. 1978; Buss & Iackson 1979), other marine communities (Osman 

1977; Barkai & McQuaid 1988), old-field vegetation (McBrien et al. 1983), 

Diptera (Kneidel 1983), Hymenoptera (Cole 1983) and Odonata (Morin 1984). 

What general conclusions can be extracted from this mass of work? 

Biological communities are complicated entities, and even the simple analogues 

of natural communities to which theoreticians and experimenters must resort 

exhibit complex properties. But a number of general features have been 

observed in empirical studies (Table 1.2), and equivalent behaviour has been 

observed in theoretical studies. The features I wish to concentrate on are 

informed by the inclusion of evolution in the community assembly model. 

Alternative stable states In ecological models have a parallel in evolutionarily 

stable strategies in evolutionary models. Historical effects can be significant in 

genetic models as well as ecological ones (Spencer & Marks 1988). Resistance 

to invasion can arise for genetic mutants as well as ecological species. 

The developmental approach can be used to model these features of 

evolutionary systems, but any model which is used must draw upon the theory 

of the evolution of interacting species, which I shall now discuss. 
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1. Multiple or alternative stable states (Sutherland 1974; Connell 1978; Buss & 
Jackson 1979; Cole 1983; McCune & Allen 1985; Gilpin et al. 1986; Robinson 
& Dickerson 1987; Barkai & McQuaid 1988. Robinson & Edgemon 1988; 
Drake 1990b). 

2. Alternative pathways for assembly (Connell 1978; McCune & Allen 1985). 

3. Historical effects (Kneidel 1983. McBrien et al. 1983). 

4. Build-up of invasion resistance (Sutherland 1974; Barkai & McQuaid 1988). 

(Rearranged, after Drake 1990a, Table 1. and Pimm 1991, especially Table 
11.1.) 

Table 1.2. Some features of community assembly observed in empirical 

studies. 

26 



INTRODUCTION 

1.4 EVOLUTION OF INTERACTING SPECIES 

One problem with ecological assembly models is that they do not include 

evolutionary change. Although the study of food webs in the field takes place 

over a much shorter time-scale than the evolutionary one, it seems reasonable 

to assume that successful invasions of species would occur fairly rarely in most 

communities, over such a long time-scale that some significant evolutionary 

effects might occur. Thus evolutionary changes in food webs need to be 

considered. 

It ought to be made clear at this point that evolution of food webs does not 

imply that the whole food web is evolving as a unit. This would imply group 

selection, which, although it may occur under certain restrictive conditions 

(Wilson 1983), is not thought to be a major component of selection in nature 

(Dawkins 1982; Mayr 1988). Instead we are referring to evolution at the 

individual level within species in food webs. Stenseth (1985) has suggested 

that the dynamical stability hypothesis (e.g. Pimm 1982) implies group 

selection for locally stable food web configurations: I will not deal in detail 

with this assertion, but merely refer to assembly models which show 

(individual) selective processes can lead to stable states (Spencer & Marks 

1988). 

Evolution of species in food webs may be coevolution, by the definition of 

Futuyma & Slatkin (1983a), 

..... a trait of one species [which] has evolved in response to a trait of another 

species, which trait itself has evolved in response to the trait in the first. .... , 

since the only reason the species are in a food web is by virtue of their 

interactions. The essential features of this definition are reciprocity and 

specificity- are they satisfied in the wide range of circumstances which could 

be called coevolution in food webs? (See Futuyma & Slatkin 1983b; Nitecki 

1983). 

In the case of predator-prey interactions (Rosenzweig 1973; Rosenzweig & 
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Schaffer 1978; Schaffer & Rosenzweig 1978) this seems possible. This would 

account for some interactions in a food web; but others may be more diffuse 

(after Ianzen 1980; Fox 1981) such as insect-plant interactions (Futuyma 1983; 

Levin et al. 1990). Here each insect species on a plant may have a very minor 

effect on the host- and it is disputed as to whether coevolution actually affects 

insect-plant interactions to any degree (Strong et al. 1984). 

In the evolution of a predator-prey interaction it has been suggested that the 

negative effect may lead to arms race coevolution (Dawkins & Krebs 1979); 

but see Abrams (1986a, b) and Thompson (1986). Analysis of the effects of 

predation has provided some evidence for arms race coevolution (Vermeij 

1982; Vermeij & Covitch 1978). The term "arms race coevolution" indicates a 

feedback operating within the coevolutionary interaction. This could 

encompass positive feedback leading to extreme values of traits in each species, 

in which case one might expect coevolution to be halted by counter-selection 

eventually. So arms race coevolution could lead to a stable state. Alternatively 

each species might cycle between alternative traits, in response to changes in 

the other species, in which no stable state might be reached. 

These two alternatives are thought to be two possible long-term outcomes of 

coevolution. A third, extinction, can be ignored. It would be useful to 

distinguish between the two effects. Will it lead to a stable state, what exactly 

will this be? Different theorists have developed a number of different 

definitions. Will a community evolve to; a coevolutionary steady state or CSS 

(Rosenzweig & Schaffer 1978; Schaffer & Rosenzweig 1978), a coevolutionary 

ecological system or CES (Vasco et al. 1987), an ecologically and 

evolutionarily stable community (Stenseth 1983), or a coevolutionarily stable 

community or esc (Matsuda & Namba 1991, and in a different context, Brown 

& Vincent 1987a)? Distinct approaches to the problem have generated a 

number of, not necessarily compatible, solutions. 

A number of theoretical studies have provided tests for Red Queen 

coevolution. Models of community (Levins 1975; Lawlor & Maynard Smith 
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1976; Rummell & Roughgarden 1983, 1985; Stenseth 1983, 1986; Rosenzweig 

et al. 1987; Vasco et al. 1987; Ginzburg et al. 1988; Ak~akaya & Ginzburg 

1989; Szathmary et al. 1990; Vida et al. 1990) and predator-prey (Rosenzweig 

1973; Rosenzweig & Schaffer 1978; Schaffer & Rosenzweig 1978; DeAngelis 

et al. 1984, 1985; Brown & Vincent 1987a, b) evolution have generated 

varying results. 

Rosenzweig (1973) and Rosenzweig and Taylor (1980) present models and 

fossil evidence for a kind of unstable coevolution akin to Red Queen 

coevolution. However Schaffer and Rosenzweig (1978; Rosenzweig & Schaffer 

1978) interpret Red Queen coevolution as leading to a coevolutionarily stable 

state (their tenn), and Rosenzweig and colleagues (1987) suggest that Red 

Queen coevolution cannot evolve for any realistic parameter values. Perhaps 

Red Queen coevolution is itself unstable, and will decay to stasis, an-ESS-like 

state, over time (as implied in Rosenzweig 1973). 

Models of the evolution of communities, although providing many useful 

insights, have not delineated clearly between the two alternatives. Rummel and 

Roughgarden (1983; 1985) modelled invasions by new species related to 

preexisting species by a generating function. Thus, these invaders had some of 

the characteristics of resident species and were akin to invading mutants. They 

compared competition communities assembled under conventional ecological 

assumptions with those in which evolution had been allowed to occur. They 

found that the inclusion of evolution made species more stable, and yet more 

vulnerable to invasion, so cycling of the species in the community could occur. 

It appeared that evolution could produce communities structured differently 

from those in which only ecological assembly processes operated. This 

conclusion depended however, upon an analysis of evolutionary stability which 

has been regarded as inappropriate by other workers (Brown & Vincent 1987a). 

The implications of other definitions of evolutionary stability have been 

explored with reference to ecological stability by Stenseth (1983, 1986; Reed & 

Stenseth 1984) and Vasco et al. (1987). Their work has not generated any 
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clear-cut conclusions about the existence of Red Queen coevolution or 

evolutionary stasis. 

Ginzburg and co-workers (Ginzburg et al. 1988; Ak~akaya & Ginzburg 1989, 

1991) pioneered a novel approach to modelling community evolution, where 

new species invading an ecological system were chosen as "ecologically 

continuous" mutants of their progenitors. That is to say, mutant characters 

were sampled upon a distribution related to, or centred upon, ancestral values 

of those characters. This approach seems reasonable in view of the known 

affects of mutation upon ancestral phenotypes. Their models of competition 

communities showed that evolution could result in ecologically stable 

configurations; resistance to invasions did not arise during the simulation 

implying that continuous evolutionary change (Red Queen coevolution) could 

occur. 

Vida and others (Vida et al. 1990; Szathmary et al. 1990) developed a 

model of conununity evolution by combining a modified Lotka-Volterra . 

population model with resource dynamics and speciation built in. Their models 

showed many features of community change over evolutionary time, and 

appeared to support the Red Queen hypothesis in certain versions of the 

assumptions used. (Szathmary et al. 1990). The amount of computer time used 

for simulation restricted the conclusions which could be drawn, as might be 

expected with a model of such a complex system. Considering models of 

community evolution in general, a substantial amount of theoretical work has 

considered evolutionary stability conditions; rather less work has consider 

dynamical change and assembly processes which mayor may not lead to 

evolutionarily stable states. That which has been performed has not produced 

consistent results. 

Empirical studies of extinction in the fossil record can also be used to test 

for Red Queen coevolution (Hoffman 1991). Hoffman and Kitchell (1984) 

examined the fossil record for pelagic plankton, and concluded that the 

observed record fitted more closely the predictions of the Red Queen 
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hypothesis than the opposing Stationary hypothesis (Stenseth & Maynard Smith 

1984); the evidence was however ambiguous. due to the inconstancy of the 

abiotic environment. Kitchell. DeAngelis, and co-workers (Kitchell et al. 1981; 

DeAngelis et al. 1984, 1985) compared data on prey selection by naticid 

gastropods from the fossil record and from experiments with the predictions of 

a model of predator-prey coevolution. They were primarily concerned with 

phyletic trends in size of predators and prey, but their models suggest that 

optima for predator and prey fitness may occur, leading to a stable evolutionary 

state. However, the models they examined, although based on empirical 

evidence from the fossil record (Kitchell et al. 1981), still fall short of the 

complexity of real predator-prey interactions. The Red Queen hypothesis is by 

no means disproved. 

Indeed it may be almost impossible to prove with experimental or fossil 

evidence, since the abiotic environment is never constant (Hoffman 1991). 

Models provide the only way for controlling for abiotic environmental change. 

but even so, as described above, do not often produce clear results. The 

models I shall develop in this thesis will be used for such a purpose. 

Kitchell and co-workers (Kitchell et al. 1981; DeAngelis et al. 1984, 1985) 

studied a predator-prey interaction in which predator and prey sizes acted as 

important constraints. The ecological effects of size are important and wide­

ranging (Hespenheide 1973; Peters 1983; Calder 1984; Ebenman & Persson 

1988), thus it is not surprising that size should affect predator-prey coevolution. 

In developing models of the evolution of interacting species, it will be 

necessary to impose constraints in order to prevent the evolution of unrealistic 

situations; such as a prey species evolving complete independence from a 

predator while that same predator is entirely dependent upon it This could be 

done by incorporating body size as a constraint; this is an approach I shall 

investigate. 
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1.5 AIMS OF THE PROJECT 

The general aim of the project is to investigate and describe the evolution of 

interacting populations, when population dynamics of both species are taken 

into account, and without adopting such restrictive conditions on the dynamical 

behaviour of populations as local asymptotic stability. But such an analysis 

must start with a simple case before moving on to more complex ones; and 

such is the justification for focusing on predator-prey systems in this thesis, as 

time was not sufficient to explore larger multi-species systems in any detail. 

1.5.1 The dynamics of predator-prey coevolution 

Much theoretical effort has been concentrated upon the outcome of predator­

prey coevolution (Rosenzweig & MacArthur 1963; Rosenzweig 1973; Schaffer 

& Rosenzweig 1978). In general. the suggested outcomes can be divided into 

two (Stenseth & Maynard Smith 1984); stasis. where predator and prey reach 

evolutionarily stable states, or Red Queen coevolution, where continuous 

coevolution occurs in each species, caused by change in the other. Both these 

outcomes are statements about the dynamics of evolutionary change; 

fundamentally the dynamics of gene frequency change, or at a higher level of 

observation the dynamics of phenotype change. So questions about the 

outcome of predator-prey coevolution are questions about evolutionary 

dynamics: and to find general conclusions about the evolutionary dynamics of 

predator-prey systems is the first aim of the project. Due to the complexity of 

combined genetical and ecological models. this will frequently be considered at 

a phenotypic level. 
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1.5.2 The coexistence of predator and prey under selection 

Studies of the population dynamics of predator and prey have frequently 

exposed the paradoxical situation of the predator effect on prey driving the 

prey, and then the predator, to extinction. This is paradoxical because we do 

not observe this in nature. One reason could be that it is difficult to find 

evidence for species extinction after the fact; but the ease of producing this 

situation in a model contrasts with the many predator-prey interactions that are 

known to have a considerable evolutionary history. 

Given that it should be a selective advantage for a predator to become more 

efficient. for a long time arguments about the coexistence of predator-prey over 

evolutionary time depended upon such poorly defined notions as "prudent 

predation" (Slobodkin 1961), in the absence of better reasoning to show that a 

predator would not evolve to eat its prey to extinction. 

Theoretical arguments for the coexistence of evolving predator and prey have 

advanced since then (e.g. Slobodkin 1974; Schaffer & Rosenzweig 1978) but it 

is still of interest to investigate the coexistence of predator and prey when both 

are evolving, as no general argument for the coexistence of predator and prey 

has been developed to cover the wide variety of natural situations. The case 

when only one species evolves is also of interest; this could correspond to lack 

of genetic variance for predatory or anti-predatory traits. To investigate this in 

systems involving both ecological and evolutionary dynamics. is the second aim 

of the project. This will involve both mathematical and simulation models. 

1.5.3 The maintenance of allele polymorphism 

Spencer and Marks (1988. 1992; Marks & Spencer 1991) investigated the 

question of the stability of allele polymorphisms using models with two 

different types of assembly rule. In the first model, alleles were generated at 

random (with random fitness effects). and combined to form a random single-
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locus polymorphism. It was found that the chances of fonning a stable 

polymorphism declined very rapidly with the number of alleles included, and 

indeed were very small for not very high numbers of alleles, such as six or 

seven. 

The second model produced very different results: here alleles were 

generated and invaded at random, but then subjected to viability selection, that 

is their frequency in succeeding populations after iteration depended upon their 

contribution to the stability of the polymorphism. These randomly generated 

polymorph isms were thus subject to a process akin to natural selection. 

Spencer and Marks found that this model, in contrast with their fIrst, produced 

stable polymorph isms for allele numbers as high as five and six. A similar 

result was derived by Kingman (1988), using analytical methods. This model 

is surely a more realistic representation of the natural selection of allele 

polymorphisms, although it still fails to generate allele polymorphisms of the 

magnitude of those found naturally (although some of these may arise by 

processes other than viability selection). 

In later work (Spencer & Marks 1992) the fitnesses of mutant alleles were 

derived as a function of the fitnesses already in the population (compare 

Ginzburg e/ al. 1988, for interspecific interactions). This resulted in values for 

allele numbers comparable with the larger polymorphisms found in nature. 

These models are interesting because they provide an insight into the way to 

model evolution in interacting species. It is possible to allow new mutants to 

invade, sequentially, in a form of "mutant bombardment". If we assume that 

selection is density-dependent, so that population density is a true reflection of 

the fitness of the population, then in a haploid model population dynamics and 

fitness can be represented by the same dynamical system. This avoids 

unrealistic limitations on the configurations of mUlti-species communities that 

can evolve imposed by lIsing local (asymptotic) stability as a criterion of 

establishment. 

The models of Spencer and Marks are also interesting in that they show how 
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allele polymorph isms at single loci may be maintained purely by a process of 

sequential invasion. They acknowledge the similarity between ecological 

community assembly models and their genetic assembly model. This leads to 

the question: will allele polymorphisms be maintained by assembly processes in 

interacting species? The haploid two-species case is equivalent to the single­

species diploid case for the purposes of investigation of this problem (C. 

Cannings, pers. comm.). I aim to investigate it using simulation models of 

interacting species. 

1.5.4 Invasions and the Red Queen 

The Red Queen hypothesis makes assumptions about rates of evolution in 

interacting species. If it is correct, then continual coevolutionary change should 

be expected. This implies that the rate of evolution in each species remains 

constant, or at least does not fall to zero. In order to maintain evolutionary 

change, variation must be produced and new mutants must establish themselves 

frequently. If resistance to mutant invasion has built up, then they will not be 

able to establish and evolutionary change will stop. 

It therefore follows that if it was possible to look at the success rate of 

mutant establishment over time, a persistent decline in success would indicate 

the build-up of invasion resistance, and if the success rate fell to a very low 

level, would imply an approach to an evolutionary stable state. If the Red 

Queen hypothesis is correct, one would not expect this to happen, but would 

expect invasion success to remain relatively constant over time. 

The construction of community assembly models incorporating evolutionary 

change provides a way of examining the success rates of mutant invasions, and 

thus of testing the Red Queen hypothesis, and detecting any evolutionary or 

coevolutionary stable states that may be proposed by alternative hypotheses. 

To investigate this aspect of coevolutionary theory is the fourth aim of this 

project. 
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1.5.5 The dynamical consequences of evolution 

It is well known that simple ecological models can exhibit complex cyclic 

and chaotic dynamics (May 1974; May & Oster 1976). The evidence of 

biological field data is less clear (Hassell et al. 1976; Schaffer 1984, 1985; 

Schaffer & Kot 1985; Berryman & Millstein 1989; Godfray & Blythe 1990), 

but it seems at least quite likely that chaotic dynamics occur in some natural 

systems. 

For the Lotka-Volterra equations, as used in predator-prey or food web 

models, more than two species must be present for chaotic dynamics to be 

possible (the dimension of the system must be greater than two). Chaotic 

behaviour therefore seems not unlikely for food webs, with a dimensionality 

somewhat difficult to assess in real systems, but certainly higher than two. 

This is for purely ecological systems; what affect will the inclusion of 

evolution in ecological models have on their dynamical properties? The answer 

depends upon the relationship of evolutionary to ecological change (Godfray & 

Blythe 1990). I propose to examine models in which evolutionary and 

ecological dynamics takes place on similar timescales, so one might expect 

evolution to affect the demographic parameters of the ecological population 

models. 

Metz, Godfray, and co-workers (God fray et al. 1992; Metz 1992; Metz & 

Godfray 1992; Metz et al. 1992), have examined the evolution of demographic 

parameters in single-species population models using the technique of 

Lyapunov exponents. Their results suggest that natural selection may operate 

to move demographic parameters into zones of stable dynamics, under certain 

conditions. Under different conditions, or using slightly different models, 

cyclic or chaotic dynamics may be selected for. 

It is not yet possible to use these techniques on multi-species systems, and so 

simulation must be used. The simulation models of evolution in interacting 
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species to be described in this work incorporate popUlation dynamics; and so 

observation of the time series of population dynamics generated by the 

simulation should provide insights into the dynamical consequences of 

evolution in interacting species. Exploration of this area is the final aim of this 

project 

1.6 LAYOUT OF THE THESIS 

The layout of the thesis is intended to reflect both the order in which the 

work was done, and an underlying theme of analysis of similar systems at 

different levels of complexity and organisation. The research work presented in 

this thesis covers both complex output from simulations, and the slightly 

simpler conclusions extracted from analysis of mathematical models. Models 

of the evolution of interacting species are examined both at the level of 

population genetics, and that of population dynamics, as well as in a 

combination of the two. 

Early experimentation with the simulation models, and published work on 

other, similar models (described earlier in this chapter) suggested that the 

results they produced would be complex, and would require considerable 

amounts of computer time. In an effort to circumvent this problem, a 

theoretical approach to examining evolution in predator-prey systems related to 

the simulation models, was developed. Results of the analysis are described in 

Chapter 2, with relevance to both evolutionary and ecological stability. 

A theoretical approach is also presented in Chapter 3, but in this chapter a 

numerical method is used to examine the invasion of mutants into a predator­

prey system similar to that of the previous chapter. This allows the 

evolutionary dynamics of the system to be evaluated more thoroughly that in 

Chapter 2. The long-term outcome of predator-prey coevolution, evolutionarily 

stable states or Red Queen coevolution, is investigated in this chapter. 

Chapter 4 describes the simulation models which were constructed to model 

37 



INTRODUCTION 

evolution in interacting species. This chapter provides a basis for the results of 

the simulations, collected together in Chapter 5. 

Three main areas of investigation were considered using the simulation 

models; invasions of alleles into interacting species, the maintenance of allele 

polymorphism, and the population dynamical consequences of the evolution of 

predators and prey. Issues that arise from the use of the simulation models to 

study these questions are also discussed. 

In Chapter 6 the results presented in the previous chapters are discussed. 

The limitations of the both the approach taken, and the results obtained are 

contrasted with other, similar, studies. It is argued that this study provides a 

number of novel insights on which to base further work. The relevance of 

work on evolution in predator-prey systems to related areas of research is 

considered. Qu'estions for future investigation are outlined. 

Finally, in Chapter 7, the conclusions are presented. The importance of 

integrating evolutionary and ecological aspects of theory is emphasized. 
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Chapter 2. EVOLUTIONARY INSTABILITY IN PREDATOR. 

PREY SYSTEMS 

2.1 SUMMARY 

The dynamical stability properties of Lotka-Volterra equations have been 

used frequently to predict the persistence of predator-prey assemblages and 
. 

trophic webs, yet they do not take into account evolutionary change. The 

incorporation of genetic variation into a stable food web will make it less stable 

in many cases. Since populations containing genetic variation do persist in 

nature, such theoretical results appear paradoxical. In order to attempt to 

resolve this paradox, we develop a model based on phenotypic change in 

investment in predatory or anti-predator traits, in coevolving species. The 

model is akin to previous models of arms-race coevolution using evolutionarily 

stable strategy theory, but we seek to understand the evolutionary dynamics in 

phenotype space, as well as to identify any evolutionarily stable states that may 

occur. The relationship between investment and the Lotka-Volterra interaction 

terms is defined in a very general form, so as to cover a wide range of cases in 

nature. From the general case and more specific examples based on hypotheses 

about the factors affecting predator-prey interactions. we derive conditions for 

the occurrence of coevolutionarily stable states. where both species are playing 

evolutionarily stable strategies with respect to their interaction with the other 

species. Coevolutionarily stable states are found to be unusual outcomes of 

predator-prey coevolution. However, lack of evolutionary stability is not seen 

to imply ecological impermanence, as natural selection is found to prevent 

mutual extinction of predator and prey under certain conditions. 
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2.2 INTRODUCTION 

Lotka-Volterra systems have been widely used for modelling the population 

dynamics of interacting species (Maynard Smith 1968; May 1981b). In the 

fonn of the dynamical stability hypothesis (for example. Pimm 1982). the 

stability properties of Lotka-Volterra equations have been used. with 

considerable success (Lawton 1989) to explain the patterns of present-day food 

webs and biological communities. The dynamical stability hypothesis states 

that trophic webs are the way they are today. because their constituent 

popUlations must be dynamically stable to persist over biologically significant 

time periods. Dynamical stability is usually taken to mean local asymptotic 

stability (local stability: May 1973) in this context. Local asymptotic stability 

is a population measure. and states that the set of interacting populations at 

equilibrium are resistant to small perturbations away from their interior 

equilibrium point. That is. given some time. the populations will return to that 

equilibrium if moved by some small amount away from it. 

This interpretation of the dynamical stability hypothesis does not take into 

account any evolutionary change, despite being applied, at least implicity, to 

periods of time consistent with evolutionary change, and being used explicitly 

to model community construction and succession (Post & Pimm 1983; Drake 

1990a; but see Taylor 1988). Although much ecological theory has been based 

on the assumption that evolutionary change takes place on a very different 

timescale to that of population dynamics. it is clear that this assumption is, at 

best, unreliable, in the case of the dynamic stability hypothesis which refers to 

persistence over long periods of time. However, popUlation dynamic change 

certainly can occur at a different rate to changes in gene frequency. and this is 

assumed in this paper. This assumption by no means implies that the two 

processes are disconnected. 

Evolutionary biologists have considered the interaction of evolution and 

population dynamics through models mixing population dynamics and simple 
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genetics (e.g., Roughgarden 1976, 1979, 1983; Levin 1978; May & Anderson 

1983a; 1 ayakar & Zonta 1990). Other theorists have used evolutionarily stable 

strategy (ESS) theory to predict the results of evolution while including the 

effects of population size (Lawlor & Maynard Smith 1976; Knowlton & Parker 

1979; Parker & Knowlton 1980; Parker 1983, 1985; Reed & Stenseth 1984; 

Brown & Vincent 1987a). The complicated equations that arise when genetics 

and population dynamics are combined means that many simplifications have to 

be adopted. The use of ESS models has avoided some of the problems of 

population genetic models, but inevitably has concentrated upon the 

evolutionarily stable points which evolution is expected to reach, at the expense 

of dynamics away from any stable points. Evolutionary dynamics away from 

evolutionarily stable states have rarely been investigated (but see; Maynard 

Smith & Brown 1986; Takada & Kigami 1991; Godfray et al. 1992): we 

present a general theory which examines such dynamics in this paper. We 

account for the effects of population dynamic change by deriving the fitness 

function of predator and prey from the Lotka-Volterra equations for population 

dynamics, taking genetic variation into account 

It seems reasonable to assume that distinct genotypes would correspond to 

different state variables for genotype density in Lotka-Volterra equations. 

However, if different genotypes were represented as different populations in a 

Lotka-Volterra system, then this would inunediatel y affect the stability 

properties of the system. Harrison (1979) has shown that a simple food chain 

described in continuous time, with n species and n minus one trophic links 

between the species, and self-limitation in the basal species, will be globally 

asymptotically stable if it has a feasible (all densities positive) interior 

equilibrium point. That is, the system will return to the interior equilibrium 

after any perturbation, even a large one, away from it Such a stability 

condition is justified due to the structural instability (Lewontin 1969) of the 

system, when taking evolution into account. 

And yet this result is entirely dependent upon the trophic structure being that 
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of a simple food chain, with one less link between species than number of state 

variables (number of species). If we introduce a different genotype at any 

trophic level, represented by a genotype density, the number of links will 

increase to at least the same number as there are state variables. Then the 

global stability condition will no longer necessarily be satisfied. Even if the 

interior equilibrium point is still asymptotically stable, this is only a local 

result, and some large deviation from the equilibrium could send one or more 

populations to extinction. This means that we have no guarantee of the 

persistence of the trophic web over evolutionary time. Despite this, some of 

the predator-prey interactions that we see in nature today have persisted over 

evolutionary time, and they do contain genetic variation, some of which affects 

the interaction between predator and prey, and indirectly, other interactions in 

the food web to which the predator and prey belong. 

Perhaps the representation of a genetic variant is at fault. An obvious 

approach to modelling genetic variation within trophically interacting 

populations would be to add extra equations to the system of population 

dynamical equations, one for each genetical variant. Since this leads to a 

decrease in the stability of the interior equilibrium, as described, we do not 

follow that approach here, but instead consider genetical variation within a 

population in the aggregate, and look at the resultant overall trait for the entire 

trophic species. 

One can then predict the action of natural selection upon this variation. 

Although evolution has a stochastic component, namely the generation of 

variation. the action of natural selection is clearly not random, depending as it 

does on the selectedness of individual organisms. a property of the interaction 

of their phenotypes and the environment. The organisms considered here are in 

Lotka-Volterra populations, and their phenotypes are investment in predatory 

and anti-predator traits. 
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2.3 ANALYSIS 

Consider a Lotka-Volterra simple food chain, represented by 

(2.1) 

(where XI is population density of species i, rl is intrinsic growth rate, and alj is 

the interaction coefficient defining species j's effect on species I). Note that in 

this general fonn a jj are assumed to be positive or negative constants. Let this 

have one less trophic link between the species than different species. It may be 

as small as a predator-prey system, or a larger simple food chain. (In this 

paper, predator-prey systems only are considered). Having such a structure we 

know (Harrison 1979) that any interior equilibrium that exists will be globally 

asymptotically stable. Since we wish to consider the effects of natural 

selection, we further assume that the time required for convergence to the 

interior equilibrium is small with respect to the timescale we are studying, and 

thus we can assume that the populations are at their equilibrium densities. 

Since we are concerned with modelling biological popUlations, we shall only be 

concerned with positive equilibrium densities, that is, feasible equilibria. 

The genotypes of the popUlations determine their level of investment in 

predatory or anti-predator adaptations (we assume environmental effects are 

constant in this model), as appropriate, and these levels of investment may vary 

from zero to some maximum, according to the quantity Si' for each species i. 

The value of Si determines the phenotype of each species, in terms of its 

interaction coefficient with each other species.' So we can define aij aShj(Sj,Sj)' 

for all and U:z1 in a predator-prey system. Since the phenotype directly affects 

the popUlation dynamics. we can assume density-dependent fitnesses. So the 

fitness function of species i, Wi becomes identical to the per capita growth rate 

of each species 
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and at ecological equilibrium 

WI =r1-a llxl -a1zX2' 

W2 = -r2 + "21Xl' 
(2.2) 

(2.3) 

Mutants conveying different levels of investment will arise over time in both 

populations. If they convey a fitness advantage they will increase in density. 

In this two-species case, it can be shown that a selectively favourable mutant 

will go to fixation if all is held constant. 

This follows from consideration of the zero isoclines for the population 

dynamics of predator, prey, and invading mutant. If the mutant is in the prey 

species, the zero isoclines for the prey and prey mutant will be the same for 

predator density zero, and in the absence of an intersection of the isoclines, 

there can be no interior equilibrium with both prey and mutant prey present. 

Hence we expect invading mutants in the prey, which can establish themselves 

when initially rare, to go to fixation. A similar argument can be used in the 

case of a mutant of the predator species, since the isoclines for different 

genotypes of the predator will be parallel, and thus no interior equilibria can 

occur. As selectively advantageous mutants go to fixation, our task of analysis 

of the evolutionary genetic dynamics is simplified considerably. 

Considering the fitness at an equilibrium density held constant, we can 

predict the direction of the change in investment over time (although not the 

rate of change, since we know nothing about the sources of variation). This is 

done by differentiating the fitness function with respect to investment while 

holding Xi constant. If aw /dS j is positive then this shows that mutants of larger 
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Sj can invade, if it is negative the reverse is true. 

Defining /.j is clearly very important. In a predator-prey system this is not 

easy due to the wide range of phenotypic characters affecting the interaction. 

Here we attempt to minimise problems of definition by adopting functions of 

very general form, that could cover a wide range of ecological situations. If 

we assume that the strength of each interaction has a unique maximum and 

declines both sides of this maximum, and further that the second derivative of 

the function does not change sign (there are no points of inflection), then we 

can define /.j as a concave function. (A concave function is one which (Jeffrey 

1989) has the property that a chord joining two points on its surface always lies 

below the graph of the function between these two points). 

The assumption of concavity would be satisfied by many functions found in 

biological situations. Whether the interaction function will have a unique 

maximum, as required by our assumption of log concavity, is more difficult to 

establish. However the existence of local maxima would make the function 

very difficult to generalise analytically, and it is certainly possible to envisage 

cases where there could be a unique maximum (for example, where investment 

is correlated with size, and both predator and prey with extreme sizes suffer 

reduced fitness). 

In addition we assume that the function is log concave, that is the log of the 

function is a concave function. This seems reasonable in the light of the large 

number of biological relationships that are related by a power function (Harvey 

& Pagel 1991; chapter 6). Logging the equation of a power function produces 

a linear equation, and clearly dealing with linear relationships is more 

convenient. Using such techniques, body size has been shown to vary linearly 

with a wide range of ecological, physiological and physical variables (Peters 

1983; Calder 1984). It is certainly possible that size, and variables correlated 

with size are related to intensity of predator-prey interactions in both predator 

and prey (Vezina 1985; Warren & Lawton 1987). 

In order to allow J;j as general a form as possible, we can let 
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(2.4) 

where p is some function of Sj and sJ subject to the constraints that ap/as, and 

aptasJ are never zero. We apply these constraints in order to be able to 

determine the direction of the dynamics of fitness without loss of generality in 

specifying lij • We define the maximum for each lij as 8ij where ~j = I:j for i, j = 

1, 2. So if a l2 = 1.2 then 1.2 has a maximum at 812, which represents a 

particular value of p. This will allow a wide range of assumptions to be made 

about the way that investment in the two species interacts to produce the effect 

of the interaction on each of the species population dynamics. To show why 

these conditions are justified we must examine the consequences, in general, of 

differentiating the fitness functions. 

2.4 EVOLUTIONARY DYNAMICS IN GENERAL 

From equation (2.4) substituted into equations (2.3), the fitness functions for 

two species, at ecological equilibrium, are; 

WI ='1- CX UxIi2(P)X2=0 

W2 = -'2 + III (p ).£1 =0, 

where 112 and 121 are subject to the constraints above. Differentiating with 

respect to investment while holding the system at 11, x2 produces 
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(2.6) 

In order to examine the evolutionary dynamics of investment, we need to 

build up a global picture of the directions in which selection will be expected 

to drive Sj. Consider the two-dimensional space defined by Sl and Sl; this 

represents the space of possible phenotypes that we are considering. If we 

could find where each derivative in equations (2.6) was zero then we could 

obtain a qualitative understanding of the evolutionary dynamics on the 

phenotype space. But we already have placed the constraint that iJp/iJsj is not 

equal to zero for i=1.2, and since Xl and Xl must be greater than zero (we are 

only dealing with feasible equilibria), then if iJf.ldp or iJJ;liJp are equal to 

zero, then the derivatives of fitness must also be zero. This will occur at a 

maximum or minimum of J:j , so there will be a unique solution at a maximum 

for the absolute value of J:/p). 
Ideally we would like to find evolutionarily stable strategies (Maynard Smith 

& Price 1973; Maynard Smith 1982) for each of the investment variables. 

Evolutionarily stable strategies for the combined evolution of two interacting 

species have been defined (and described) in a number of different ways 

(Schaffer & Rosenzweig 1978; Stenseth 1983, 1986; Brown & Vincent 1987a, 

b, for example). Our definition for an evolutionarily stable strategy (ESS) for 

two interacting species follows that of Brown and Vincent (1987a, b) in 

considering both density-dependence and frequency-dependence. We use 

similar techniques to locate ESSs, but we also wish to examine the evolutionary 

dynamics away from any ESS that may occur. 

When we consider the existence or otherwise of evolutionarily stable states, 

it is clear that the fitness function for each species (Wi) must be at an 
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equilibrium. So oW /dSj will be equal to zero, subject to the constraint that 

02W /ds;l is less than zero. Here instead of locating any evolutionarily stable 

states that may occur directly, we derive the trajectories of the evolutionarily 

dynamics, from which ESSs may be predicted. The method of investigating 

evolutionary dynamics used here is virtually identical to the method of finding 

evolutionarily stable strategies by differentiating fitness functions (Parker & 

Maynard Smith 1990). For a coevolutionarily stable state then all oW/dSj must 

be zero simultaneously. We might say that the lines in the phenotype space on 

which oW losj = 0 must intersect for an ESS to exist. If these lines do not 

intersect, then a ESS cannot occur. 

Generally the dynamics of s, and S2 will be determined by the signs of op/Os, 
and optos2. There are four possible cases. The conditions on optos, tell us that 

there will be no stationary points, so optos, and OP/OS2 can each be either 

negative or positive. What evolutionary dynamics do occur will depend upon 

the form of the lines where oW los, = O. These cannot be determined in 

general. However. if we let the lines intersect at one point in the phenotype 

space, then the dynamics can be analysed graphically. Where this is allowed 

(implying the possibility, although not certainty, of a ESS), then in some cases 

the equilibrium can be asymptotically stable, but these do depend on specific 

forms of the lines oW las j • If no intersections are allowed, and there may be 

reasons to support this viewpoint. then of course no ESSs can occur, since the 

conditions for an ESS are not satisfied. 

In general. ESSs may be unlikely. But the lack of evolutionary stability need 

not imply ecological instability. This follows from consideration of the 

dynamics of investment at the edge of the zone of feasible equilibria. We 

consider the evolution of investment as ecological (population dynamical) 

equilibria • .2, and X2• are held constant. By rearrangement of the fitness 
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functions 11 and Xl may be expressed in terms of !tj, that is to say 

(2.7) 

and 

(2.8) 

We have definedhj as log concave, so hj can never be zero, and as a result XI 

will always be greater than zero. However 11 will be zero when '1 = (au'JIh.I' 

and this will be the limit of the zone of feasible equilibria within which we 

consider the evolutionary dynamics. Since hj are defined as log concave this 

will occur for two values of p. 

If we consider the evolutionary dynamics at this boundary, aW.lasl will be 

zero since !1 is zero, so only the evolution of the predator fitness function is of 

interest We have already established that the rate of change of fitness with 

respect to investment in the prey will be zero at the' stationary point of the 

respective lij' Since hj are log concave, we know that such values will occur 

between the boundaries of the zone of feasible equilibria for all possible!tj and 

p. 

Let us denote the values of p at which 11 = 0 as 11 and 12' and make 11> 11' 

From equations (2.6) above, at p = 12' aw"aSI is negative always, and at p = 

11' aW.lasl is positive always. Since the zone of feasible equilibria lies at 

intermediate values of p, it is clear that natural selection upon the investment 

traits will always act to maintain populations within the zone of feasible 

equilibria. This is not a form of group selection, since it arises purely from 

pair-wise interactions between individuals in the predator and prey species. 
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Thus the lack of evolutionary stability is no hindrance to ecological stability. 

In the next two sections some special cases of the p function will be 

considered. where the dynamics of fitness can be elucidated explicitly. In these 

cases the existence or otherwise of ESSs will be shown, and the effect of 

natural selection in promoting the coexistence of species will be demonstrated 

graphically. 

2.5 EVOLUTIONARY DYNAMICS WITH P = sis. 

Consider the significant role that body size plays in determining the 

ecological characteristics of species and their interactions (Peters 1983; Calder 

1984). The size of individuals is clearly important in structuring predator-prey 

interactions. In general predators attack prey smaller than they are 

(Hespenheide 1973; Vezina 1985). and parasites attack prey larger than they 

are. If size is an important determinant of predator-prey interactions. then the 

interaction terms of the Lotka-Volterra equation may be considered as functions 

of the ratio of sizes of the predator and prey. In this case we assume that Sl 

and S2 are proportional to the sizes of individual prey and predators 

respectively. Then p = (S/Sl)' Following the techniques described in preceding 

sections. the dynamics of fitness with respect to investment are described by 

(2.9) 

In an earlier section the minimum of 1.2 was defined as el2 and the maximum 

of III as e21 • Equating i)W/i)Sj to zero, we find that p = el2 for species 1, and p 

= e2l for species 2. If we put el2 = e21 , so that what is best for the predator is 

worst for the prey, then the phenotype space is as shown in Figure 2.1. i)W/i)Sj 
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Figure 2.1. Dynamical system for investment in predator (S2) and anti­

predator (SI) traits when p = (S/SI) and 812 = 821 = 8. Hatched areas indicate 

zones of non-feasible interior equilibria. Arrows indicate direction of the 

evolutionary dynamics. 
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= 0 along straight lines from the origin; none of them intersect except at the 

origin, but in this special case 812 and 821 coincide and thus there is a line of 

equilibria along p = 812 = 821 • But these equilibria may not be stable, since 

selection causes SI and S2 to tend to zero when p > 812, and to infinity when p 

< 821 0 

The line satisfies one of the conditions for a ESS; namely that the first 

derivatives of fitness with respect to investment are ,zero. But the prey species 

fitness is at a minimum, since a l2 is at a maximum for its absolute value. So 

the prey species is vulnerable to invasion by mutants with higher fitness, and 

the stability condition of a ESS is not satisfied. 

As described above, the boundary of the zone of feasible interior equilibria is 

given by the values of p when x2 equals zero. The boundary of the feasible 

region of population dynamics is shown in the diagram, and it is only the 

interior of this region that we need to consider. 

We can denote p when x2 is zero as 11 and 12' with 12 > 11. We find dWJdS2 

is negative at 12 and positive at 11. Thus natural selection on traits in 

populations close to the boundary on the phenotype plane should drive 

phenotype values into, rather than out of, the zone of feasible equilibria. This 

is despite any other dynamics in the interior of the zone of feasible equilibria 

which may produce trajectories directed towards the edge of that zone. 

We might not expect such a perfect symmetry between the interaction effect 

on the predator, and the interaction effect on the prey, although they will, 

clearly, be related. Once we allow 812 to differ from 821 , then the two lines 

where dW/dS j = 0 will not coincide. There are four possible results in this 

case, depending on the value of p when dWJdS2 is zero. The lines where 

awltasl = 0 must always occur in the order shown, due to 112 being log 

concave, but the line where aw JdS2 = 0 can occur in anyone of four possible 
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positions with respect to them. One such result is shown in Figure 2.2. There 

will be no ESSs. The dynamics considered far from the boundary of the zone 

of feasible equilibria suggest trajectories which lead out of that region, 

implying extinction of the predator species. However we have shown above 

that all trajectories lead away from the boundary of the zone when populations 

have evolved sufficiently close, so predator extinction should not occur. 

2.6 EVOLUTIONARY DYNAMICS WITH P = Sz • Sl 

If the investment in predation traits in the predator and anti-predator traits in 

the prey interact additively, then we could put p = Sz - sl' A possible example 

of this would be where predators pursue their prey, and predator and prey 

attempt to run faster in order to catch, or escape, respectively. In this situation 

we might imagine that increased investment in prey-catching traits in the 

predator would lead to a proportional increase in speed of running, and 

corresponding adaptations would have the same result in the prey. Although 

the Lotka-Volterra interaction term, aij' depends upon properties of individuals, 

over a large population we can assume that an adaptation which goes to 

fixation in a large population will affect the overall per-capita interaction. We 

assume that, although capture or escape of prey in an individual predator-prey 

encounter is still to a large extent dependent on chance factors such as terrain, 

condition of the animals, and weather, these factors have a constant overall 

effect. 

So in this case, Sj is assumed to be proportional to average speed of running 

in pursuit of prey, or escaping from predators. Then the dynamics of fitness 
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Figure 2.2. Dynamical system for inves tment in anti-predator and 

predatory traits when p = (S/SI) and 812 not equal to 821. In this case 821 > 

8 12• Arrows in the interi or of the zone of feasible eq uili bri a indicate the 

direc tion of the evo luti on of traits on the in ves tment plane. The ac ti on of 

natural selec tion in prornoting coex istence of preda tor and prey is shown by tJle 

arrows along the margin of the zone of feas ible equili bri a. The hatched zone 

denotes the non-existence of feasible eq uili bria. 
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with respect to investment are given by 

(2.10) 

. 
If 612 = 621 in this case (Figure 2.3), then awltasl and aW:fc)s2 will be zero 

when Sl = S2' This is a line of equilibria, but it will not be a line of ESSs, 

since the prey fitness is at a minimum and as a result the prey equilibrium for 

fitness is unstable. Below the line, S I and S2 increase, while above the opposite 

occurs. As in the previous example, if we write down ~2 explicitly in terms of 

1.2 andhl' then we find there are two values of p where awltasl is zero due to 

x2 being equal to zero. These represent the boundaries of the zone of interior 

equilibria, and natural selection will act to keep evolutionary trajectories within 

this zone. Once again, if symmetry in predator and prey interactions is 

removed, then the two lines where aw lasi = 0 do not coincide and no ESSs are 

possible. The coexistence of predator and prey will still be maintained by 

selection in this case. 

2.7 DISCUSSION 

We have shown that coevolutionarily stable states are rare in predator-prey 

systems. In this system with density-dependent fitnesses, one might have 

expected that lack of evolutionary stability would imply ecological instability, 

since only cenain regions of ecological parameter space will permit a 

population dynamical interior equilibrium, and there is no reason for natural 

selection to cause a population to remain at an interior equilibrium even if it 

exists. However, we have found that at the boundaries of the zone of feasible 
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.51 =0 

Figure 2.3. Dynamical system for investment in predatory and a nti­

predator traits when p = S2 - S I ' 8 12 = 821' and hatched areas are zones where 

only boundary equilibria for investment occ ur. The dyn amics are indicated by 

arrows on the investment pl ane. 
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equilibria in trait space. the direction of evolution of investment in predator and 

prey is such as to move the trait variables values away from that boundary. It 

appears that natural selection acts to promote the coexistence of predator and 

prey. even in the absence of evolutionary stability. 

These results are intriguing. firstly since it is so often assumed that 

persistence over ecological time will require ecological stability (for example. 

Lawton 1989), and where natural selection is introduced. ecological stability 

will- depend upon evolutionary stability. The second result is of interest since 

we have no a priori reason to expect this, apart from the evidence of 

observation and the fossil record in documenting the coexistence of particular 

predator and prey pairs over periods of time consistent with evolutionary 

change. 

Many different definitions (and tenns) for evolutionarily stable states 

(Maynard Smith 1982) in interacting species and/or biological communities 

have been used (coevolutionary steady state. Schaffer & Rosenzweig 1978; 

coevolutionarily stable community, Roughgarden 1979; ecologically and 

evolutionarily stable community, Stenseth 1983; coevolutionary ecological 

system, Vasco et al. 1987; coevolutionarily stable community, Matsuda & 

Namba 1991; see also Lawlor & Maynard Smith 1976; Reed & Stenseth 1984; 

Stenseth & Maynard Smith 1984). We have attempted to consider explicitly 

selective features of the predator-prey interaction, while retaining the 

conventional Lotka-Volterra dynamics for predator and prey. We suggest that 

the rarity of ESSs in our model may be due to our attempt to link directly the· 

consideration of the interaction of ecological and evolutionary change to the 

Lotka-Volterra population models, and to consider explicitly the conflict of 

interests between predator and prey (Dawkins & Krebs 1979). 

The lack of evolutionarily stable states may depend partly upon our choice of 

global and local asymptotic stability. Global asymptotic stability is an extreme 

case, the strongest stability condition one could obtain, so it is perhaps 

unsurprising that conditions for its occurrence are violated so easily, in systems 
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more general than the ones considered here. We may expect that global 

asymptotic stability will occur only rarely. The same cannot be said for local 

asymptotic stability however, which refers only to a very small region of the 

phase space. The lack of locally asymptotically stable critical points in the 

predator-prey investment space under natural selection may be a better indicator 

of instability resulting from evolution. But the relationship between local and 

global stability is unclear, indeed undefined and unknown, so lack of local 

asymptotic stability does not preclude stability in some global sense. 

In the analysis above differential equations framed in continuous time have 

been used, since they are more tractable in this form than the corresponding 

difference equations. But population dynamics, dealing with discrete 

individuals, suggests modelling by a discrete process. We have used the Lotka­

Volterra equations for population dynamics due to their known tractability and 

proven record of application to biological problems (see for example, Hofbauer 

& Sigmund 1988). The Lotka-Volterra equations in discrete time are less "well 

behaved" than the continuous time forms, and less is known about their 

properties. It is clear that in an ideal world, where any required mathematical 

system could be solved explicitly, some sort of more complicated difference 

equation would be used to model population dynamics of interacting 

populations, including all the factors that are so conveniently ignored in much 

of mathematical biology. In the real world such equations which could be 

written down are completely intractable, and thus defeat the object of our 

analysis. Despite their well-known simplification, Lotka-Volterra equations for 

population dynamics have been used to generate testable hypotheses about real 

populations in nature, thus it is reasonable that their properties under natural 

selection should be analysed as preliminary steps to understanding the effects 

of selection on the dynamics of natural populations. 

It may be that models of predator-prey coevolution are in fact over­

simplified. The non-existence of many potential predator-prey interactions can 

be seen to arise from other constraints on adaptation (such as potential predator 
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and prey occupying different habitats}. It could be that predator-prey 

coevolution does not occur very often, and thus has little effect on population 

dynamics and trophic structure (Venneij 1982). A very detailed study of the 

coevolution of ungulates and their vertebrate predators (Bakker 1983) showed 

that coevolutionary change was in fact very irregular, with long periods of 

stasis and some periods when the predators were becoming less, rather than 

more, adapted to pursuing their prey. Nevertheless experimental evidence does 

exist for the coevolution of predators and prey (Taylor 1984: chapter 11). 

An alternative explanation consistent with the models used here is that 

ecological instability is not a consequence of evolutionary instability. A wide 

range of models have been put forward to explain why predator-prey 

coevolution should lead to stability rather than mutual extinction (Pimentel 

1961; Rosenzweig 1973; Slobodkin 1974; Gilpin 1975b; Schaffer & 

Rosenzweig 1978; Roughgarden 1983). Others have suggested that continual 

change in the fonn of an 'arms race' (Dawkins & Krebs 1979) is more likely, 

although the arms race analogy is thought by some to be too simplistic 

(Abrams 1986a, b, 1990). 

It may be that tightly coupled predator-prey interactions are in fact much less 

important in nature than their utility in theoretical models would lead us to 

believe. Detailed studies of food web interactions have shown that some 

predators which utilize particular prey species as a large proportion of their diet 

may have little if any effect on the prey's population dynamics (Hall et 01. 

1990a, b). On the other hand this conclusion is not general for all predator­

prey interactions; it is easy to find examples where the reverse is true (Taylor 

1984). Paine (1980) has suggested that most interactions in food webs may be 

very weak, with only a few strong ones. Even if this is so, the existence of an 

optimal level of investment for the predator at which the interaction is more 

intense (in terms of effects on population dynamics) than at any other level, 

even if very weak, will still satisfy the assumptions of our models based on log 

concave functions. It is certainly true that many predators take more than one 

59 



PREDATOR-PREY COEVOLUTION 

species of prey, but this does not prevent them having significant effects on the 

population dynamics of each prey species. Much of population ecological 

theory is built upon two-species models, despite the existence of many n­

species interactions in nature. These models have generated a large number of 

testable hypotheses and insights about nature which vindicates their use, despite 

their simplicity. 

There is also the possibility that population dynamics may be less important 

in structuring interspecific interactions than other features of the interacting 

species, such as their body size. The static, cascade, model of Cohen and 

co-workers (Cohen e/ al. 1990a) can explain a number of corrunon features of 

trophic webs by reference to a trophic hierarchy, such that species in the 

hierarchy are only fed upon by those above them in the hierarchy, and are only 

predators of those below them in the hierarchy. Warren and Lawton (1987) 

have suggested that differences in body size may provide the trophic hierarchy. 

In addition Cohen and Newman (1988) propose that communities at the frontier 

of stability will show characteristics similar to those found in nature. There is 

little observational support for this model apart from its explanation of 

regularities in food webs, but if it were found to be of prime importance in the 

regulation of predator-prey interactions in food webs, then we might not require 

an explanation of why evolution of Lotka-Volterra parameters leads to 

instability. Despite the advances that have been made in recent years in 

documenting regularities in food web features (Lawton & Warren 1988), with 

empirical data from food webs in its current state (Cohen e/ al. 1990a chapter 

IV), a role for popUlation dynamics in structuring interactions in food webs, 

probably in some pluralistic explanation (Cohen e/ al. 1990b attempt this), must 

be considered. 

We have shown that instability as referred to in the title does not refer to 

both evolutionary and ecological stability. Evolutionary stability is seen to be 

precluded in many cases by the conflicting interests of predator and prey, 

perhaps in some form of continual "arms-race" or Red Queen (Van Valen 
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1973) coevolution. Due to the greater complexity of multiple species systems 

with greater than two species, we have no reason to suspect that evolutionarily 

stability will be any more likely in more realistic models of trophic interactions. 

Fortunately our second conclusion implies the decoupling of ecological 

stability from evolutionary stability. Our use of Harrison's (1979) result on the 

stability of simple food chains, means that we can infer stability merely from 

the existence of an interior eqUilibrium, and we have shown that such an 

equilibrium will be selected for under natural selection. This result is 

consistent with observations of genetic variation and genetic change in natural 

populations. Evolutionary effects can no longer be isolated from population 

dynamics, and the models described here are a contribution towards the 

development of a theory of evolutionary ecology which promises to generate 

more realistic predictions about the dynamics of natural populations under 

selection. In this paper, we have only considered populations at ecological 

equilibrium; future models will require the consideration of cyclic and chaotic 

dynamics. Techniques recently developed may enable this (Ellner et al. 1991; 

Godfray et al. 1992). 
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Chapter 3. COEVOLUTIONARY DYNAMICS OF 

PREDATOR-PREY INTERACTIONS 

"Well, in our country," said Alice, stiD panting a little, "you'd generally get to 
somewhere else- if you ran very fast for a long time, as we've been doing." 

"A slow sort of countryl" said the Queen. "Now, here, you see, it takes aU the 
running you can do, to keep in the same place. If you want to get somewhere 
else, you must run at least twice as fast as that" 

Lewis Carroll, Alice through the looking-glass 

I 

3.1 SUMMARY \ 
'''. 

I examine predator-prey coevolution under density-dependent selection 

through a model derived from the Lotka-Volterra equations for predator and 

prey, where I introduce a haploid genetic system. The traits under selection are 

the body sizes of predator and prey, and I present a numerical method for 

examining the dynamics of coevolution across the phenotype space generated 

by the combination of predator and prey traits. I identify several qualitatively 

different types of coevolutionary dynamics that occur, including evolutionarily 

stable states (ESSs) and Red Queen coevolution. The results of this model 

show that the loser at the ecological level (the prey) is often the primary 

determinant of the coevolutionary process. They also show that the view of 

evolution as climbing the peaks of an adaptive landscape is misleading as we 

model an adaptive hill-climbing process on a flat adaptive landscape. 

Coevolutionary maximisation of population density is also not supported by this 

model. 
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3.2 INTRODUCTION 

The integration of population dynamics and population genetics is a 

fundamental goal of evolutionary theory. Evolution, considered purely as 

change in gene frequencies can be considered solely by the use of population 

genetics theory, but this ignores the rich variety of phenomena that can arise 

when change in gene frequency is dependent in some way upon population 

density (e.g. Roughgarden 1979). 

A number of studies have addressed this problem by using simple population 

genetical models, combined with simple population ecological or 

epidemiological models of population dynamics (Levin 1978; Roughgarden 

1979; May & Anderson 1983a; Jayakar 1984, for example). However such 

models become intractable when extensions to more complex genetics or 

population dynamics are considered. Alternatively, the complexities that arise 

in manipUlating population genetical equations have been avoided by using 

phenotype-based evolutionarily stable strategy models (ESSs; Maynard Smith & 

Price 1973; Maynard Smith 1982) taking into account population size 

(Knowlton & Parker 1979; Parker & Knowlton 1980; Parker 1983, 1985; 

Brown & Vincent 1987a, b). The use of ESS techniques, although very 

effective in many contexts, does not give any information about the dynamics 

of evolutionary change away from evolutionary equilibrium. Especially in the 

context of interspecific interactions, where one might expect complex 

coevolutionary change, it would be desirable to have this information. 

In a previous paper (Marrow & Cannings 1992; Chapter 2, this thesis), I 

developed a model which incorporated a simple haploid genetic system into a 

Lotka-Volterra predator-prey system. I assumed that natural selection would 

act upon predatory and anti-predator traits in each species in an 'arms race' 

(Dawkins & Krebs 1979) interaction. By specifying the relationship between 

the genotype of each species and the Lotka-Volterra interaction terms in a 

general way, it was possible to describe the coevolutionary dynamics of 
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evolution in the predator-prey phenotype space. I used a technique of 

differentiating fitness functions with respect to predator or prey phenotypes. 

This method, while working well with general functions, could not always be 

used to generate explicit solutions with more specific forms of the relationship 

between Lotka-Volterra interaction term and phenotype. Ideally, to better 

understand the coevolutionary dynamics of interspecific relationships, it would 

be appropriate to use a technique which was applicable to a wide range of more 

specific functions. 

In this study, I introduce a technique, following on from previous work 

(Chapter 2; Marrow & Cannings 1992) and the work of Brown and Vincent 

(1987a, b), which, through a simple numerical method, can be used to 

characterise the coevolutionary dynamics of a predator- prey interaction. I 

examine the results of this method for a range of functions relating genotype to 

Lotka-Volterra interaction. I identify several kinds of qualitatively different 

evolutionary dynamics that are found in the system. Approaches to a more 

general understanding of the coevolutionary dynamics of the system are 

outlined. 

3.3 METHOD 

The evolutionary model that I use includes population dynamics of 

Lotka-Volterra form, 

(3.1) 

(where Xj is the population density of species i, 'j is the intrinsic growth rate 

and (Xij is the interaction coefficient defining species j's effect on species 0. I 

consider only predator prey systems so i and j can only take the values 1 or 2. 

When genetic variation is present the per capita rate of increase will give a 
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measure of the fitness of a genotype. In recognition of this, I will write the per 

capita rate of increase as WI and the equations for population dynamics as 

dx, 
-=XW: 
dt i i 

(3.2) 

so the fitness functions of predator and prey, where Wi is the mean individual 

fitness of species i, become 

WI =rI +UnXl +U 1zX2' 

W2=r2+u21xP 
(3.3) 

where all and a lz are negative variables, <lzl is a positive variable, and '1 is a 

positive and 'z a negative constant. 

Utilising a result of Harrison (1979). we know that any feasible interior 

equilibrium for population dynamics in the predator-prey system must be 

. globally asymptotically stable. Assuming that such a feasible eqUilibrium 

occurs, we can then consider the evolution of the system at an ecological 

equilibrium, as all trajectories starting with both species present in the 

popUlation dynamical phase space will converge to it. At the eqUilibrium WI = 
O. 

In order to examine the consequences of evolution in predator and prey I 

introduce a phenotypic variable Si' which represents body size. The evolution 

of body sizes has been investigated previously by Maynard Smith and Brown 

(1986). and Mirmirani and Oster (1978). in different contexts. Body size is 

likely to have a significant effect on predator-prey interactions (Hespenheide 

1973; Vezina 1985; Warren & Lawton 1987). so we can make the interaction 

terms in the Lotka-Volterra equations functions of the body sizes SI' SZ. of the 

interacting individuals. i.e. 
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(3.4) 

What form Fij will take is very important. To make Fij reasonably general. I 

assume that the predator effect on prey (<l12) and prey effect on predator (~I) 

are defined by bell-shaped functions of SI and S2' SO we have 

F1Z = -P1exp( -[ a ~ -2P2a 1 a2 +a;], (3.5) 

where 

at =(SI-P3)/P4' az =(SZ -P~/P6' 

and 

FZl =P7exp( -[ ai -2Paa3a4 + a!]), (3.6) 

where 

a4 =(SZ -Pr)/P1o' a3 =(SI-PU)/P1z· 

PI to PI2 are constants. Pl' PSt P9. and PH affect ~e positions of the peaks of 

the bell-shaped distributions. while Pl.' P6. PIO and PI2 modify the degree of 

spread of the functions. P2 and Ps define a cross-product term similar to the 

correlation between predator and prey effects. PI and P7 modify the height of 

the ~I' or the trough of the <lll function respectively: these parameters control 

the height of the peaks of the bell-shaped functions. Contrast them with Pl' P,. 

P9' and PUt which control the location of the peaks of these functions in the 

phenotype space. Note that although the functions defining <lll and ~I the two 

reciprocal interaction terms for the predator-prey interaction. are parameterised 

in a similar fashion. this does not restrict them to be exact mirror images. 
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The coefficient of density-dependence or self-limitation in the prey, all' is 

defined in a simpler fashion, intending to reflect its dependence on body size in 

the prey only. I define it as 

(3.7) 

PI3' PI4 and Pu may take any values such that Fu < O. 

I ~ish to describe the evolution of the body size of predator and prey. To 

do this I shall introduce the concept of the phenotype space. This is a space 

defined by the body size value of the prey (s 1) and the body size value of the 

predator (sz). Evolution will result in changes in these values, and so 

evolutionary change can be thought of as movement in the phenotype space. If 

no evolutionary change occurs, for example at an ESS (evolutionarily stable 

strategy), the results of evolution will be represented by a point I look at 

evolution in this way in attempt to describe the evolutionary dynamics away 

from evolutionarily stable points, rather than just locate those ESSs that mayor 

may not occur. 

Note that the phenotype space is not a phase space, as it is not defined by 

the state variables of a continuous dynamical system. I have already introduced 

a phase space for the dynamical system representing the population dynamics 

of predator and prey. Movement in the phenotype space occurs in small, but 

discrete steps, through mutation and fixation of mutants of different body sizes. 

Although I shall refer to paths or trajectories on the phenotype space, these are 

not continuous paths as in a dynamical system, but are made of many small 

discrete changes in the combined phenotypes of predator and prey. 

In order to determine the direction of the evolutionary dynamics, we consider 

the consequences of the invasions of mutants of small effects on the body sizes 

of predator and prey. Before mutation, suppose that the body size of the prey 

is SI and of the predator S2' Mutants will have different body sizes, SI + e2, S2 

+ e2, where e j is small, from the original populations, and these will result in 
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altered interaction tenns. 

(3.8) 

T.he mutant individuals are assumed to arise in a population at equilibrium 

for the current body sizes SI' S2' (XI' x2), and so the mutation event can be 

considered to take place at these equilibrium densities. So the equations for 

fitness of the mutants, W/, W/. can be written as 

wi=rl + Fn(Sl+£I)X1 + FI2(Sl+£l'S2)X2, 

~=r2 + F2 l(Sl' S2 +£2)Xl' 

(3.9) 

and these will be unlikely to be equal to zero, for most values of Si' In the 

early stages following mutation I am assuming that a mutant is much less likely 

to interact with another mutant than with one of the original types. By 

definition. the fitnesses of the original types are WI = 0, W2 = 0 at XI' ~2' I 

assume that the effect of each mutant on body size, c i ' is sufficiently small that 

the effect on fitness is linear. If W/ is greater than zero, then this implies that 

a larger mutant will be able to invade, while if W/ is less than zero, then the 

opposite will be true, and a smaller mutant will be able to invade. The 

direction of selection at any point will be the direction in which selection is 

expected to alter body size with respect to predator and prey simultaneously. 

This is equivalent to evaluating the partial derivative of Wi with respect to Si at 

a point in the phenotype space. If the evaluation of fitness functions is 

repeated for a grid of points over all of the phenotype space, then a picture of 

the dynamics globally can be built up, even though information is only 

available about local consequences of selection. 
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In order to predict the direction of evolution, we must be sure that any 

invading mutant will go to fixation, rather than fonning a polymorphism with 

the ancestral population. In order to detennine whether this is so, we must 

examine the four-dimensional system created by mutants invading in predator 

and prey. 

A sufficient condition for mutants to go to fixation is given by the following 

(R. Law, pers. comm.). 

(1) -No equilibria occur at which more than one type of prey or more than one 

type of predator have non-zero densities. 

(2) The only strictly saturated equilibrium (Hofbauer 1988) is the one in which 

only the two mutant types are present. That is, the per capita rates of increase 

of the missing types (in this case the original types of predator and prey) are 

negative. This corresponds to the eqUilibrium being non-invadable. 

To visualise the coevolutionary dynamics in terms of motion on the 

phenotype space, we developed programs which calculated the fitnesses under 

mutant invasion for a grid of points over the space, and then plotted out the 

resulting direction of selection at each point, which could be predicted from the 

fitness values. The programs were written independently in C (by Richard 

Law) on a Sun SparcStation, and in Pascal (by Paul Marrow) on a VAX 

8650/8550 Cluster. We took the similar results from the two programs as one 

verification of the techniques we used, and which I present here. 

Numerical evaluation of the popUlation dynamics was also used to check on 

the results of the program. We (R.L. and P.M.) used numerical integration 

routines from the NAG library (NAG Ltd .• 1990) to evaluate the dynamics of 

the mutant, invading at a low density, when both the original populations of 

predator and prey were set to their equilibrium densities. The interaction terms 

for the original populations were calculated using a particular pair of sizes, Sit 

chosen to occur within one of the five possible regions of dynamics possible on 

the phenotype space. We then introduced mutants with slightly different Si at 

low densities. and observed if they increased or decreased in accordance with 
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the predictions of the technique described above. That this did in fact occur 

supported the use of the numerical method. 

3.4 EVOLUTIONARY DYNAMICS IN THE PHENOTYPE SPACE 

Consider first a predator-prey system in which the prey self-limitation, <XII' is 

set to a constant. So PI3 is a positive constant and PI4 and p., are zero. In this 

system we define the predator effect on prey and prey effect on predator to be 

related to predator and prey body size by two bell-shaped functions, inverted in 

the case of the predator effect on prey. For simplicity we assume that what is 

best for the predator is worst for the prey, and vice versa. This means that the 

maximum value of <X21 , the prey effect on predator, corresponds to the 

minimum value of <X12, the predator effect on prey. In this case we also make 

the degree of spread of the two functions defining the predator-prey interactions 

the same. We keep the parameters affecting the cross product term between 

predator and prey interactions positive. Figure 3.1 shows a specific case of 

this. 

We can divide up the phenotype space into regions where the predator and 

prey body sizes will evolve in different directions by identifying the lines 

where dW/dS j = O. On these lines selection on one of the species' body size 

will be zero, hence I shall term them "lines of zero selection", I use this term 

in order to distinguish them from zero isoclines in a phase space. 

In the outer region the equilibrium value of the predator density would be 

negative. So we say that the predator equilibrium is not feasible and the 

predator cannot coexist with the prey in this region of the phenotype space. In 

the central region, the predator and prey coexist. Since we wish to consider the 

consequences of predator-prey coevolution, it is this central portion that we 

must concentrate upon. Inside this region evolution moves the body sizes 
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Figure 3.1. A phenotype space for body sizes SI and Sz of prey and predator 

respectively, when prey self-limitation is constant. Inside the elliptical 

region the predator can coexist with the prey; outside it cannot. Lines on the 

phenotype space represent lines of zero evolution in predator or prey. Arrows 

represent the expected direction of evolution of phenotypes under selection. In 

this case only one unstable evolutionary equilibrium occurs. Parameters are as 

follows; '1 = 0.5, '2 = -0.05, PI = 1.0, Pl = 0.6, P3 = 0.5, P4 = 0.22, Ps = 0.5, P6 

= 0.25, P7 = 1.0, Pa = 0.6, P9 = 0.5, PIO = 0.22, PlI = 0.5, PI2 = 0.25, PI3 = 3.0, 

PI4 = 0.0, PIS = 0.0, e l = 0.001, e2 = 0.001. 
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towards two extremes. at which the predator is on the edge of extinction. 

Outside the region. mutants in the prey are selectively neutral. and no evolution 

occurs. This system is similar to the one discussed in the previous chapter 

(Marrow & Cannings 1992). in which the self-limitation term was held 

constant. while all and ~l were allowed to evolve. However. in that case. 

selection acted to move the coevolving traits away from the zone of predator 

extinction. while here evolution moves body size values to the edge of that 

zone. The difference between the two systems is a consequence of the more 

complicated functions used to define ~l and all in the latter model. This 

implies that the maintenance of coexisting predator and prey populations 

through selection on body sizes is not very robust to change of model 

parameters; but the example discussed above represents only one class of 

qualitative dynamics observed in this system. and it will become clear that 

evolutionarily stable points can arise at other points in the region of 

coexistence. 

The biological consequences of this example are perhaps a little unexpected; 

it suggests that coevolution of predator and prey should lead nearly to predator 

extinction in all cases, and if such extinction occurs then selection should halt. 

How robust is this result? Could it not be the case that the intensity of the 

predator-prey interaction decreases much more slowly moving away from the 

maximum (or minimum for prey) for each interaction term? This would mean 

that the parameters controlling the degree of spread of the bell-shaped functions 

would be much larger, and result in the zone of predator-prey coexistence being 

larger. This is conceivable, but what is also likely is that there are 

combinations of predator and prey traits where the predator and prey are so 

different that they are almost or entirely unable to interact. This would result 

in very low values for aij, the interaction terms. This is what is represented in 

the region around the edges of the phenotype space in Figure 3.1. 

Whether or not the predator and prey coexist over all the phenotype space, 

our conclusions about the evolutionary dynamics inside the zone of 
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predator-prey coexistence are the same. There are two points to which 

evolutionary pathways from within the zone of coexistence tend to, on the 

edges of the zone of coexistence. However as phenotypic values approach 

these points, we expect evolutionary change to slow, as successive mutants 

have less effect on the per capita rate of increase of each species. In the limit, 

infinitesimally close to either point, evolutionary change should proceed 

infinitesimally slowly. So these are not evolutionary attractors. The only 

equilibrium point inside the zone is an unstable evolutionary saddle point That 

is to say, evolutionary paths in one species approach it, while in the other 

species they move away from it (by analogy with the saddle point of dynamical 

systems). No evolutionarily stable points occur. This type of evolutionary 

dynamics is qualitatively very robust, but are there cases when evolutionarily 

stable attractors can occur, leading to the possibility of evolutionarily stable 

states? 

The symmetrical diagram on the phenotype space given in Figure 3.1 is in 

part a consequence of the constant prey self-limitation. Making all defined by 

a quadratic function with a peak at a value of s, outside the zone of coexistence 

(so it is monotonic over the zone of coexistence), enforces an asymmetry 

between the predator and prey. In Figure 3.2 the results of this are shown. 

The parameters defining the interaction between predator and prey are identical. 

Yet the evolutionary dynamics on the region where predator and prey coexist is 

very different. 

Within this region the line where selection on prey size is zero is no longer 

straight, but has looped in on itself to form a region within the larger zone 

defining the coexistence of the two species. Selection on predator size is not 

affected by the modified self-limitation term, and so the direction of predator 

coevolution within the ellipse is still given by a straight line. The intersection 

of the line and the ellipse means that another evolutionary equilibrium point 

arises in the system. This is not a saddle point but an attractor. The 

successive replacement of predator and prey mutants with combinations of body 
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Figure 3.2. A phenotype space for the body sizes of predator and prey (Sl 

and s" respectively), with prey self-limitation linear monotonic in the region 

of predator-prey coexistence. The lines on the phenotype space divide up 

regions where different combinations of large or small mutants in predator and 

prey are expected to invade. The arrows denote the expected direction of 

evolution of predator and prey size within each region. The predator has a 

negative equilibrium density outside the larger elliptical region and is thus 

assumed to have gone extinct in this region. In this example all the prey 

self-limitation is monotonic across the zone of predator-prey coexistence. and 

one evolutionary attractor occurs. The parameter set for this example is; 'I = 
0.5, '1 = -0.05, PI = 1.0, P2 = 0.6, Pl = 0.5, P4 = 0.22, Ps = 0.5, P6 = 0.25, P7 = 

1.0, P8 = 0.6, P9 = 0.5, Pill = 0.22, Pll = 0.5. PI2 = 0.25, PI) = 1.0, PI4 = -1.0, PIS 

= 10.0, C I = 0.001, c2 = 0.001. 
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sizes near to this equilibrium will tend to approach it. Once at the attractor, if 

either predator or prey body size is perturbed from it, selection will return the 

body size to it. This attractor thus appears to satisfy the two conditions for an 

ESS (Hofbauer & Sigmund 1988:121). 

In the phenotype space overall, there appear to be two possible outcomes of 

coevolution. Within part of the elliptical region of coexistence of predator and 

prey, body sizes are attracted towards an evolutionarily stable point. Elsewhere 

selection attracts predator body size to a point on the margin of the zone of 

coexistence where the predator becomes extinct; selection then drives the prey 

body size over the boundary of the region, so that the predator becomes extinct. 

The existence of an ESS lends support to the empirical observation that 

predator and prey manage to coexist and coevolve for long periods of time. 

However this does depend on the self-limitation in the prey which results in 

somewhat artificial consequences when the predator is absent: the prey is 

selected to shrink down to very small size. A more realistic assumption would 

be that the prey body size is selected to some intennediate value. and this 

motivates the third example. shown in Figure 3.3. all here is dependent upon 

SI' the prey body size. through a quadratic function with a peak at an 

intennediate value of s l' In the absence of the predator, selection moves prey 

size to this maximum. 

This has unexpected consequences for the evolutionary dynamics when 

predator and prey are both present. The more complicated self-limitation 

function means that the line separating the different directions of selection in 

the prey loops back on itself and intersects the line of zero evolution in the 

predator three times. One evolutionary equilibrium is the saddle point 

previously observed. and the other two are both evolutionary attractors. Within 

the zone of predator-prey coexistence most evolutionary trajectories lead to an 

evolutionarily stable state. In portions of the zone of coexistence 
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1~--------~----------~ 

s, 1 

Figure 3.3. A phenotype space for predator and prey body size (Sl and Sl 

respectively), showing the occurrence of multiple ESSs. The lines on the 

phenotype space divide it lip into regions where different coevolutionary 

dynamics are expected: the arrows within each region denote these dynamics. 

Three evolutionary equilibria are found within the zone of predator-prey 

coexistence; the central one is a saddle and the other two are evolutionary 

attractors. In this case the prey self-limitation term (all) is a quadratic function 

with a peak at .\'. = 0.5. The parameters of this example are; '. = 0.5. '2 = 
-0.05. PI = 1.0. Pl = 0.6. P3 = 0.5. P4 = 0.22. P~ = 0.5. PI> = 0.25. P7 = 1.0, Ps = 

0.6. P9 = 0.5. Pili = 0.22. P •• = 0.5. PIl = 0.25. PIl = 3.0, P.4 = -10.0, PIS = 10.0. 

c. = 0.001. c2 = 0.00). 
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near the maximum or minimum for S2 prey mutants can invade that will take 

the combination of predator and prey sizes over the boundary of the zone. In 

the absence of the predator. the prey is selected to an intermediate body size. 

The results presented so far support the prediction of evolutionary stasis in 

coevolving interacting populations (Stenseth & Maynard Smith 1984; 

Rosenzweig et al. 1987). However Red Queen coevolution (after Van Valen 

1973). that is continual coevolutionary change. does not seem to occur. We 

obtain either evolutionarily stable states where predator and prey coexist. or the 

prey goes to an evolutionarily stable body size in the absence of the predator. 

Although this latter case could be called an ESS. it is of little interest since 

coevolution does not occur in the absence of the predator. The three types of 

coevolutionary dynamics presented so far are specimens of three broad classes 

of qualitatively different results that the ensemble of model systems exhibits. 

and are relatively robust to perturbation of parameters. Is there any opportunity 

in this model for Red Queen coevolution to arise? 

For Red Queen coevolution to occur we require that there are no 

evolutionary attractors within the elliptical space of coexistence of predator and 

prey. and that there be no escape from the region of coexistence. If we allow 

the weaker case where continual evolutionary change occurs only for a limited 

time. then we can omit the latter condition. The evolutionary attractors shown 

in Figures 3.2 and 3.3 arise from the intersection of the curved line of no 

selection in the prey with the straight line of no selection in the predator. If 

the line of zero selection in the prey only intersected the zero selection line for 

the predator at one point. then it is possible that cyclic dynamics might occur. 

If we assume that the magnitude of the benefit to the predator is restricted. 

so that the value of the maximum of the ~I function is reduced. but its shape 

is not otherwise changed, then we obtain the situation shown in Figure 3.4. 

The line on which selection on prey size is zero has been rotated. so that it 

now only intersects with the line of no selection in the predator at one point, an 

evolutionary saddle point. The coevolutionary dynamics within the ellipse of 
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1~--------~~----------

1 

Figure 3.4. A phenotype space for the coevolution of predator (S1) and 

prey (SI) body size, showing the occurrence of Red Queen coevolution. The 

phenotype space is divided up into regions where different mutants of the 

predator and prey are expected to invade. The arrows denote the direction of 

evolution within each region. In this case only one evolutionary equilibrium 

occurs within the zone of predator-prey coexistence. and continuous 

coevolutionary change (Red Queen coevolution) occurs around it. TIle 

parameter set for this example is; 'I = 0.5. 1"2 = -0.05. PI = 1.0. P2 = 0.6, P3 = 

0.5. P4 = 0.22, Ps = 0.5, P6 = 0.25, P7 = 0.11. Ps = 0.6, P9 = 0.5, PIO = 0.22. PII 

= 0.5. P12 = 0.25, P13 = 3.0, PI4 = -10.0, PIS = 10.0, £1 = 0.001, £2 = 0.001. 
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coexistence cycle around the saddle point, with most trajectories remaining 

within the region of coexistence and thus satisfying the conditions for Red 

Queen coevolution. 

A few combinations of sizes can result in trajectories which leave the ellipse 

near the maximum or minimum for predator size, and thus cause predator 

extinction and the prey to move to an evolutionarily stable intermediate size. 

However the observation that Red Queen coevolution can occur in part of the 

phenotype space is stronger support for the idea than some other theoretical 

approaches have given (Stenseth & Maynard Smith 1984; Rosenzweig et al. 

1987). 

3.5 DISCUSSION 

The antagonistic interaction between predator and prey has often been 

characterised in terms of an evolutionary "arms race" (Dawkins & Krebs 1979). 

This implies that an evolutionary (positive) feedback operates, such that 

increase in one trait in the predator affecting predation ability is balanced by a 

corresponding increase in a trait affecting anti-predator defence in the prey. 

Despite conflicting opinions (Abrams 1986a, b; Thompson 1986) this analogy 

seems to have a good intuitive basis, although only limited experimental 

support (Vermeij & Covitch 1978; Vermeij 1982, 1983; Bakker 1983; Stanley 

et ale 1983; West et al. 1991). 

The model I have presented here could be regarded as an arms race model­

although I do not suggest that a direct positive feedback may be operating all 

the time, merely that there is some feedback (Positive or negative), such that 

change in size of one species will have coevolutionary consequences resulting 

in a change in size in the other. If it is considered as an arms race model, 

there can be no clear prediction about what result we should expect 

One might expect arms race coevolution to result in continual evolutionary 

change in each species, as each evolved a more effective adaptation which was 
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then countered by the other species; this might correspond to Red Queen 

coevolution (Stenseth & Maynard Smith 1984; after Van Valen 1973). But 

such an outcome might be considered unrealistic as no organisms are likely to 

possess unlimited genetic variation for characters affecting predator-prey 

interactions, and in any case, a cost to adaptation might occur, resulting in 

reduced adaptiveness with respect to some other characters. So the outcome 

might be evolutionary stasis, or an evolutionarily stable state, as coevolution 

was -halted by counter-selection. 

The dichotomy between continuous evolutionary change and evolutionary 

stasis has been the motivation behind a number of theoretical studies (Stenseth 

& Maynard Smith 1984; Rosenzweig et al. 1987) of coevolution in interacting 

species, often competition communities, which have failed to resolve the 

question of which type of evolutionary outcome should result. The results 

presented here seem to suggest that both outcomes are possible. 

Evolutionarily stable states occur robustly when predator and prey coevolve, 

and they attract most combinations of predator and prey size that are 

compatible with coexistence. A small number of combinations of predator and 

prey sizes may lead to predator extinction and evolution of the prey alone, but 

these do not affect the conclusions greatly: that all combinations of predator 

and prey are not compatible is clear from experimental and field observations. 

Red Queen coevolution occurs under rather more restricted conditions: we 

have to limit the magnitude of the benefit the predator obtains from predation, 

not in itself too ecologically unreasonable, when inefficient conversion of 

energy and metabolism is taken into account. In addition we cannot make the 

maximum of ~l too small, since this would result in the predator being unable 

to live on the prey. 

The lack of robustness of Red Queen coevolution with regard to model 

parameters in comparison to evolutionarily stable states is not surprising: for 

Red Queen coevolution the former must not occur, and yet there must be a 

special sort of dynamics in the zone of coexistence which prevents evolutionary 
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trajectories leading to predator extinction. 

The status of Red Queen coevolution has been in doubt since the discovery 

that it might only occur for unbounded phenotypic traits able to evolve to ever 

more extreme values (Rosenzweig et at. 1987). But the traits here are bounded 

in the sense that they only allow coexistence of the predator and prey within a 

limited region of the phenotype space. That we should find a Red Queen 

dynamic in so simple a model (arguably one of the simplest possible 

coevolutionary systems) suggests that such behaviour could occur readily in the 

more complex systems of the real world. It would seem that it is not necessary 

to invoke changes in the abiotic environment to provide a continuing drivin~ 

force for evolution; interactions between the organisms are in themselves 

sufficient. This is not to deny the role of abiotic causes of evolution -- just to 

point out that they may not be essential. More complex multi-species models 

of coevolution may be required to further distinguish the two outcomes, 

particularly as experimental or data-based approaches to the problem may be 

unable to prove or disprove the existence of Red Queen coevolution as it is not 

possible to obtain accurate data on the intensity of selection (Hoffman 1991). 

An additional curious feature of coevolution of predator and prey is that the 

loser at the ecological level (i.e. the prey) is often the primary determinant of 

evolution of the system. It might be said that the most advantageous position 

in phenotype space from the point of view of the predator would be at the 

maximum of the bell-shaped function defining ~I since it is here that the 

individual predator gains most from its prey. But this is also the worst position 

for the individual prey, and there is no way that evolution can tend to this point 

because any prey mutant with a different body size will invade and replace it. 

As the system evolves. the body sizes move away from the maximum of ~I' to 

a region where the interaction between predator and prey is at most weak. 

Such a property has been observed in the evolution of life histories under 

predation; evolution in the prey brings about a lower reproductive value at life 

stages of high mortality (Slobodkin 1974; Michod 1979; Edley & Law 1988), 
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thereby reducing the effect of the predator on prey dynamics. We might term 

this property the 'loser wins' principle. There is no mechanism in the predator 

population that can counter this; evolution continues until mutants in both 

species are unable to invade. 

Particularly in the context of host-parasite interactions, it has been suggested 

previously that evolution might lead to a weakening of positive/negative links 

where one species and the other gains at the ecological level: 

. " ... Nature prefers that neither host nor parasite should be too hard on one 

another" (Burnet & White 1972:82). 

Their argument appealed specifically to group selection: 

"For Nature, survival of the species is all that counts ... " 

It is therefore of some interest to find that there is a counterpart to this that 

stems from selection at the individual level. 

The 'loser-wins' principle is only one of a number of phenomena which 

suggest there may be an asymmetry in the evolution of predators and prey 

(Endler 1991). The life-dinner principle (Dawkins & Krebs 1979) -- a predator 

failing in a predation attempt looses only a meal, while a prey organism failing 

to escape its predator looses its life -- suggests the existence of unequal 

selection pressures. Prey may have shorter generation times than predators 

leading to more rapid evolutionary responses than in predators (ibid.). Prey 

may be able to evolve specialised defences more easily than predators can 

evolve to specialise on one type of prey; this may be a consequence of it being 

easier to select for one trait than for many, as shown by studies of the 

evolution of pesticide resistance, for example (Endler 1986), or of aposematic 

effects where rare prey types have an advantage. Thus it is not surprising that 

the model presented here shows an evolutionary advantage to the prey that 

cannot be counteracted by the predator. 

Such asymmetry and consequent lack of specialisation on the part of the 

predator, has led some workers to suggest that the evolution of interacting 

predator and prey is not coevolution, but should be referred to as 'diffuse 
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coevolution' (Janzen 1980), an 'amls-race' (Dawkins & Krebs 1979), or 

'escalation' (Vermeij 1987). The model discussed here is a coevolutionary one, 

and I refer to the evolution of interacting predator and prey as coevolution, 

since I only consider one species of each type. The widespread occurrence of 

polyphagy means that this model, like many others of predator-prey interactions 

is difficult to apply to more complex natural situations directly. But the kinds 

of evolutionary phenomena it produces can be used as indicators of the 

outcomes we should expect in evolving natural systems. As always in 

modelling there has to be a trade-off between mathematical tractability and 

biological realism, and this two-species model provides a basis for 

understanding natural systems which are actually more· complicated (bu~ see 

Levin et at. 1990, for a more complex model of coevolution). 

Whether or not predator-prey coevolution leads to a optimal solution from 

the point of view of either predator or prey, it would be interesting to know 

whether, as the predator and prey populations evolve across the phenotype 

space, they can be envisaged as improving in some biologically interpretable 

sense. The intuitive measure of fitness would be the per capita rate of increase, 

the term in brackets in the Lotka-Volterra equations (Equation 3.1). This arises 

because the condition for the invasion of a mutant at some point in the 

phenotype space is that its WI be greater than zero at the current equilibrium. 

Indeed if one were to stand at this point in the phenotype space and look 

around at the two surfaces (for predator and prey) generated by the Wls one 

would appear to be at a height of zero in two gradient-like landscapes. The 

mutants which succeed in invading are those that take us a step up these 

surfaces. Unfortunately this hill-climbing is of no avail because, once the 

successful mutants have reached fixation, the ecological dynamics have taken 

us back to equilibrium densities at which the mutant Wt's are now zero; we are 

in effect back ata height of zero. This illustrates the point made by Fisher 

(1958:46) that the changes brought about by natural selection must be offset 

against the deterioration of the environment (see discussion by Frank & Slatkin 
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1992). What does happen as we 'strenuously' climb these horizontal surfaces 

is that the gradients underfoot gradually change, and we may reach a point at 

which further steps appear to be downhill on both surfaces. We are then at an 

evolutionary attractor. By analogy with Red Queen coevolution, where: 

Itlt takes all the running you can do merely to stay in the same place. It (Carroll 

1974:149), on the adaptive landscape it takes all the climbing one can do just 

to attain the same height! 

An alternative measure of fitness would be the equilibrium population 

density. As pointed out by Roughgarden (1979:483), there is one sense in 

which equilibrium density is maximised. Suppose for instance that we fix the 

predator body size at some constant value and also hold its population density 

constant. The prey body size that maximises the equilibrium density of the 

prey popUlation under these conditions then has the greatest fitness; in effect 

the prey is evolving in a constant environment. This is however a very 

restricted sense. Even if there is no evolution in the predator, its equilibrium 

density will change as the prey evolves and the prey population density is then 

not necessarily at a maximum at the evolutionary attractor. If in addition 

predator body size can evolve, the eqUilibrium density of the prey can be 

pushed still further from a maximum. 

It may be rather misleading to envisage such coevolution as climbing up a 

landscape of equilibrium population density. Figure 3.5 gives the equilibrium 

population densities associated with SI' Sl pairs across the phenotype space. It 

is clear that there are substantial regions near the middle of the region of 

coexistence in which the successful predator mutants come to equilibrium at a 

density lower than those they replace. This is because of the severity of their 

effects on the eqUilibrium popUlation density of the prey. Moreover it is 

evident that. in the region of the evolutionary attractors, the prey density is not 

at a local maximum for constant predator body size. A declining equilibrium 

population density is evidently quite compatible with the evolution in this 
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(a) 

Figure 3.5. The effect of coevolution of predator and prey body size on 

equilibrium density of predator and prey populations. (a) prey; (b) predator. 

The vertical axis represents equilibrium population density in each case. The 

parameters used are the same as in Figure 3.3. 
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system. 

The results presented in this paper have been the consequences of changes in 

the all function. and of the degree of benefit to the predator in relation to prey 

size. A more global analysis of the model dynamics with respect to changes in 

all interaction terms was not performed for two reasons. Firstly, we performed 

extensive perturbation tests where we altered one parameter and observed the 

effect of its change on the dynamics in the phenotype space. It was observed 

that in many cases the results obtained were extremely robust to changes in 

parameters of the a l2 and <Xz1 interactions. Secondly. we explained tlJe 

dynamics in terms of the two body size parameters s I and S2' rather than the 

three interaction terms all' a 12• and <Xz1' since a two-dimensional phenotype 

space is heuristically more useful than a three- or higher-dimensional space, 

which becomes more difficult to visualise. In this work it was intended to 

present certain biologically interesting examples of the results; work is now in 

progress upon a more comprehensive explanation of the system. 

One method that could be used to further understanding of the system would 

be to consider it in the context of an evolutionary random walk (C. Cannings. 

pers. comm.). Since we have a condition for mutants going to fixation. if this 

is satisfied then evolution can be thought of a series of steps either in the SI or 

the S2 direction. Evolutionary change can then be modelled as a stochastic 

process on the phenotype space. This would enable values to be assigned to 

the probability of proceeding along any particular pathway: and so the relative 

changes of ESSs or Red Queen coevolution in a system where they both 

occurred could be assessed. Limitations of time have pre~ented the use of this 

method in the current study, but it remains a potential approach for future work 

using similar models to those presented here. 

The accuracy of the observation of evolutionarily stable states and continuous 

coevolutionary change (Red Queen coevolution) depends upon us being able to 

detennine the directions of evolutionary change. This in turn depends upon 

mutants which invade going to fixation. As already described. we have a 
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sufficient condition for this to occur. To test for mutants going to fixation we 

apply this condition over a large grid of points allover the phenotype space. 

Outside the zone of coexistence of predator and prey the result is of no 

consequence; we know that for the mutants we have chosen, interior equilibria 

cannot occur with the ancestral prey types. Over most of the elliptical space in 

which predator and prey both occur, only one equilibrium is found, and this is 

the one in which the mutants replace the ancestral populations, as we expect. 

So in most of this region, the mutants do go to fixation. However. current 

work suggests that over part of the phenotype space alternative states may 

occur where mutants coexist with the original types. 

If these results occur in regions surrounding the evolutionarily stable points, 

we cannot tell whether all trajectories within the region will approach such 

points, or they do approach, whether the system will remain at those points. So 

they are not. strictly speaking evolutionarily stable states. However if the size 

of the known region is small in comparison to the phenotype space which we 

are investigating. then we will still have a very good idea of the overall 

dynamics. and it seems likely that predator and prey with size combinations 

close to the evolutionary attractors. would remain close to those attractors for a 

long period. 

It may be possible to define the bounds of the regions near the evolutionary 

attractors where coevolutionary trajectories must remain even under conditions 

of polymorphism (C. Cannings. pers. comm.). If these bounds become smaller 

as one mutant replaces another then the conditions for the occurrence of an 

ESS may be satisfied in full. If they do not, we may still have an evolutionary 

attracting point with significant effects on the coevolutionary dynamics. These 

problems are currently under investigation. 

The model depends upon the widely used Lotka-Volterra formulation for the 

population dynamics of interacting species (Equations 3.1). These equations 

have been severely criticised for having parameters which are very difficult to 

measure in natural systems and for being unrealistic (but see Peschel & Mende 
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1986), however they do have the advantages of being mathematically tractable 

and being related to a large body of theoretical work (Hofbauer & Sigmund 

1988). The models used here did not include such features of some other 

predator-prey models such as functional response (e.g. Abrams 1990) but this 

simplicity enables the models to remain very general, such that broad 

evolutionary conclusions that can be drawn from them. 

The observation of interesting coevolutionary phenomena in these models, 

some of the simplest that could be formulated to address this problem, suggests 

that a wealth of novel coevolutionary results could be awaiting discovery in the 

more complicated systems in nature. Further work will be required to evaluate 

this; for example, in this work populations with dynamics other than stable 

equilibria were not considered. However, for Lotka-Volterra systems which 

possess an interior equilibrium and remain at non-zero densities, it is known 

(Hofbauer & Sigmund 1988:62; Hofbauer et 01. 1987) that the long-term 

average per capita growth rate of an invading mutant can be given by the per 

capita growth rate of that mutant evaluated at the equilibrium point. Thus we 

may be able to use systems similar to the ones described here to investigate 

interacting popUlations with chaotic or cyclic dynamics. 
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Chapter 4. A SIMULATION MODEL OF EVOLUTION IN 

PREDATOR-PREY SYSTEMS 

Nothing amuses more harmlessly than computation, and nothing is often more 
applicable to real business or speculative enquiries. A thousand stories which the 
ignorant tell, and believe, die away at once, when the computist takes them in his 
gripe. 

Dr Samuel Johnson 

4.1 SUMMARY 

A simulation model of the evolution of predators and prey is described. The 

model is based upon the Lotka-Volterra equations for population dynamics, 

modified to include genetic variation with respect to the interspecific interaction 

coefficients. Two versions of the model are considered; in the first selection 

acts directly upon the interaction coefficients, which are allowed to evolve 

independently of each other. In the second, the interspecific interactions are 

made dependent upon other traits, representing investment in predatory or anti­

predator traits. These traits could be equivalent to predator and prey body size. 

The incorporation of the traits imposes constraints on the coevolution of 

reciprocal interaction effects. 

To make the model an evolutionary one, mutants varying in interaction 

intensities or body sizes are allowed to invade predator and prey populations, 

and under the assumption of density-dependent selection the population 

dynamics of predator and prey represent the results of selection. Population 

dynamics can be evaluated in either discrete or continuous time in this model. 

The organisation of the program which was used to solve the model is 

described, and the initial conditions and output of the simulation is described. 

Finally the method of implementation of the program to generate the results 

presented in the next chapter is given. 
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4.2 INTRODUCTION 

In this chapter will be described a simulation model of the evolution of 

predator and prey. The model is intended to examine the evolution of 

ecologically interacting species, while including population dynamics. It is 

often assumed that evolutionary change occurs on a much longer time scale 

than ecological change, and thus that ecological dynamics always tends to 

equilibrium before evolutionary events (e.g. Post & Pimm 1983; but also 

models presented in this thesis; see Chapters 2 and 3). In this chapter I relax 

this assumption and model ecological dynamics explicitly in between mutation 

events. The model is related to those presented in the previous chapters 

(Chapter 2, Marrow & Cannings 1992; Chapter 3, Marrow et al. 1992), and is 

inspired by the simulation models of Spencer and Marks (1988, 1992; Marks & 

Spencer 1991) on the maintenance of allele polymorphism. 

In this chapter I will describe the nature of the model represented by the 

simulation, and how the program to implement the model is constructed. 

Technical details of the program, where possible, have been left to an appendix 

(Appendix A). The source code is given in Appendix B. The results that the 

program produces, and their implications, have been left until the next chapter 

(Chapter 5). 

Here I shall describe first the mathematical model which underlies the 

simulation, and which the program is intended to solve numerically. Then I 

shall go on to describe the way in which the mathematical model is 

incorporated into a computer program, and how that program works. The user­

defined initial conditions of the simulation will then be detailed. Finally the 

way in which the program was implemented in the specific computing 

environment used to generate the results of the next chapter will be mentioned. 
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4.3 MODEL FORMULATION 

This section describes the mathematical models which underlie the 

simulation, and the assumptions which underlie them. 

4.3.1 Population dynamics 

The models I present here assume a haploid genetic system, and are based 

upon genotype densities rather than gene frequencies. The models are derived 

from the Lotka-Volterra community model, 

(4.1) 

(where n denotes any number of species), but I wish to consider in the main 

the case when i and j can take the values one or two: this is a predator-prey 

system. I shall adopt the convention that a subscript of i, j = 1 denotes a prey 

characteristic, while i, j = 2 denotes a predator. The simulation model of which 

this system is the basis is designed in such a way that any number of species 

could be included. but constraints on time and computing resources meant that 

predator-prey systems were the only ones studied in detail. 

For an evolutionary model I consider each population density XI to be made 

up of a number of different genotypes m of densities xim• The genotypes vary 

in their interactions with other genotypes in the same and other species. The 

intrinsic growth rate term, 'i' is also split up in the same way, and becomes a 

vector of genotypic growth rates. 'illl for each genotype m. However, to 

distinguish between different genotypes and different species, I assume that the 

intrinsic growth rates of one species do not vary, and that all new mutants 

invading that species take the ancestral value. The distinction between mutants 

within species and new species might be said to depend upon how closely 
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related the new types are to those already present. An alternative assumption 

might be to allow new mutants to have intrinsic growth rates rim near to, but 

different from, ancestral populations; but this was not explored in the 

simulations considered here. 

The most significant features of the population dynamic model are the 

interspecific interaction coefficients, (Iij' Departing from normal practice in the 

use of this type of model, I shall allow the ~j to vary within each species. So 

each interspecific interaction coefficient will be represented by a number of 

intergenotypic interaction coefficients, ~jJlln' where the SUbscript denotes the 

effect of the nth mutant, or genotype, of species j on the mth genotype of 

species i. In the following sections where I refer to ~J for notational 

convenience, the statement can be taken to apply to intergenotypic interaction 

coefficients also. The varying interaction terms can be thought of as 

introducing genetic variation into the population dynamical model. This is a 

haploid genetic system, and as a result I shall use the terms genotype. mutant, 

and allele almost synonymously. an action which is only appropriate in this 

type of genetic system. 

4.3.2 The relationship between ecology and genetics 

For the purposes of using the population model to study evolution, further 

assumptions have to be made about the relationship between different 

interspecific interactions. This arises out of the use of two parameters to 

describe different aspects of the same interspecific interaction in the Lotka­

Volterra equations. Where species 2 is a predator. and species 1 its prey, then 

a l2 and ~l describe the same interaction but are often assumed to be 

completely independent of each other. Conventionally, these parameters are 

fixed, and their independence does not matter. By introducing natural selection 

we have allowed them to vary. For this reason our assumptions about the 

relationship between them have to be made explicit. 
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Two sets of assumptions are considered in the simulation models. The flI'St 

(hereafter described as Model 1) includes only the assumption that the different 

aij evolve independently of each other. The traits under evolution in this 

system are the interaction coefficients directly. 

The second set (Model 2) introduces intermediate variables, $i' such that 

I~J I = Fij(sj,Sj) where Fjj is some function. Sj represent investment in predatory 

or anti-predator traits. This could be accounted for by the size of predator and 

of prey (Hespenheide 1973; Thompson 1975; Peters 1983; Calder 1984; Vezina 

1985; Warren & Lawton 19~7). and I shall sometimes refer to Si as "body size", 

following the usage of Chapters 2 and 3 (and Marrow & Cannings 1992; 

Marrow et al. 1992). In this system selection acts indirectly upon the 

interaction terms, through the $j. The Sj define the relationship between 

parameters representing reciprocal effects in the same interaction. 

In order to define the nature of this relationship, I make two assumptions. 

Firstly. that what is best for the predator is worst for the prey, and vice versa. 

I let alZ = -<XzI' Such perfect symmetry may be unlikely in nature, but serves 

as a useful first approximation to the real nature of the antagonistic interaction. 

Secondly, in order to define the shape of the F1j• I assume that for the 

predator, optimal investment in predation traits will occur at intermediate levels 

of sz, and that predators that invest more or less will obtain less benefit Thus 

the relationship between Sl and <XzI could be of Gaussian (normal) form. But 

we also have to consider the effect of $1 on <Xz.. Prey investment will affect 

suitability of the prey for the predator; I suggest that this may also be 

represented by considering an intermediate level of $. as most suitable for the 

predator. So we can assume also that SI is also related to <Xz. in a Gaussian 

relationship, and the overall fonn of the a 21 function with respect to the two 

investment variables is that of a bivariate nonnal function. So 
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-c 2 
(4.2) 

where k,• k2• k3• and k. are constants. In the runs described in the next 

chapter they are set to 1.0. c1 and c2 are constants of transfonnation. used to 

transfonn interaction intensities to a scale of 0 to 1. They are defined in the 

runs described in the next chapter as follows: 

(4.3a) 

(4.3b) 

By our previous assumption, of the symmetry of the reciprocal interactions, 

the a l2 function is represented by an inverted bivariate normal function, with a 

trough instead of a peak, and Fll = F21 since we are dealing with absolute 

values of interactions. 

The relationship of all to SI and Sl is a special case, since we are not strictly 

speaking. dealing with an interspecific interaction. This is incorporated into the 

general body of assumptions of Model 2 by considering what SI could represent. 

If SI represents body size, as suggested previously, then all' the dependence of 

a prey or basal species on its own density, will become more intense with 

increasing size. So all will increase in absolute value with investment. We 

write Fu as a simple linear function of SI' 

in reflection of this, since it depends only on interactions within the prey 

species. 
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4.3.3 Density-dependent fitness 

I have already defined implicity a density-dependent genetic system by 

describing the population dynamical system in tenns of genotype densities. So 

we can consider the per capita growth rates of the two species as given in the 

Lotka-Volterra equations as equivalent to fitness functions for those species. 

So, if W 1m is the fitness function for the mth genotype in the ith species, and 

there are a maximum of ten genotypes in each species, we have 

10 10 

Wlm = rim + L ex llmnXIIi + L ex 12m1lX2II' 
II-I II-I 

10 

Wim =r 2m + L ex2Im,.xI,,· 
,,-I 

4.4 PROGRAM DESIGN 

(4.5) 

This section outlines the way in which the mathematical models presented 

above were incorporated into computer programs. Some of the computing 

techniques which were used, and which are most important to the 

understanding of the simulation model are given, but this section is not 

intended to document fully the programs. 

4.4.1 Overall structure 

Two simulation programs were written, one for Model 1 and one for Model 

2. They shared a large number of routines, differing mainly in the way new 

mutants were generated and in the output which was presented. Both programs 

had the same overall layout, which is represented in Table 4.1. Both programs 

incorporated routines for evaluating dynamics in discrete or continuous time. 

They were designed in such a way that the type of dynamics could be chosen 
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1. Input used-defined parameters. 
2. Generate parameters defined by the program. 
3. Start time counting. 
4. Choose {discrete time} OR {continuous time} 

{discrete time} 
5. Calculate new genotype densities 
6. Generate, and allow to invade, new mutants. 
7. Record data for output 
8. Add to time count 
(Repeat 5·8 until end of simulation) 

{continuous time} 
5. Solve numerical integration for genotype densities over a range. 
Initial conditions are previous final densities. 
6. Generate and invade new mutants. 
7. Record data for output. 
8. Add to time count 
(Repeat 5·8 until end of simulation) 

{at end of simulation} 
9. Output graphical results, and/or files with numerical results. 

Table 4.1. Overall structure of the simulation programs. The numbered 

lines (1-9) represent states in the execution of the program. Many minor 

functions of the program have been omitted in this very simplified outline. The 

list represents features which are common to both Model 1 and Model 2. 
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by the user, and did not otherwise affect the program's function. 

4.4.2 Random number generation 

Models of evolution depend upon a source of random variation: in these 

models this was provided by a group of NAG pseudo-random number 

generating routines, G05DDF (normal distribution). G05DBF (negative 

exponential distribution), and G05CAF (unifonn distribution). These are all 

based on the multiplicative congruential method (Numerical Algorithms Group 

1990). The number of calls to these routines in the simulations did not exceed 

the square root of the period of the pseudo-random series, approximately 228
.'. 

or about 380 * 106
, and so I concluded that the statistical properties of the 

random numbers generated did not generate bias in the results. 

4.4.3 Initialization 

The programs were designed so that the parameters required to define the 

evolutionary model could be input by the user from a terminal at the start of 

the simulation. Due to the large amount of computer time required to run the 

simulation, especially in continuous time (see Appendix A), the program was 

most frequently run non-interactively, as a batch process. In this case the 

parameters which were otherwise input by the user could be input from a text 

file. 

Parameters input by the user enable a choice to be made between having the 

initial parameters of the Lotka-Volterra system defined by the user, or 

randomly generated by the program. This allows both the effects of specific 

parameter combinations to be explored, and parameter space to be explored at 

random. 
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4.4.4 Evaluating population dynamics 

4.4.4.1 Discrete time 

The discrete time exponential analogues of equations (4.1) above (see 

Hofbauer et aJ. 1987), 

( 

2 10 ) 
r .. + E E tl.IJtNi'Ja 

X' =x e J-l .. -l 
lm ina ' 

(4.6) 

where variation among genotypes is taken into account, were solved directly 

once per iteration for the discrete time model. No special routines were 

required. 

4.4.4.2 Continuous time 

The population dynamics equations. 

(4.7) 

were evaluated in continuous time via numerical integration. This was 

perfonned using the D02EAF routine of the NAG library (Numerical 

Algorithms Group 1990). This is a routine for evaluating systems of 'stiff' 

ordinary differential equations over a range. given initial conditions. The 

Lotka-Volterra equations are stiff in that they have very persistent transients. 

which render many techniques for numerical integration inappropriate. A 

variable-order. variable-step method based on the Backward Differentiation 

Fonnulae (Gear 1971) is used. Error checking was defined by the tol 

parameter, set here to 10-8
, implying an accuracy of about seven decimal places. 
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that is to say, greater than the threshold at which extinction occurred (10-6). 

Because the invasion of mutants could potentially introduce discontinuities in 

the population dynamics (as an invading population goes suddenly from 0 to 

1006
), numerical integration was performed step-wise over a range between the 

mutant invasions. Each stage of mutant invasions and population dynamics 

will be referred to as an iteration, although this does not imply discrete 

dynamics. So the numerical integration was performed once per iteration. The 

range over which integration was performed effectively defined the amount of 

ecological dynamics taking place in between evolutionary events. As the 

number of iterations was decreased to save computer time, the amount of 

dynamics was increased. After a mutant had invaded the initial conditions 

were reset to the final conditions of the previous iteration and the integration 

was repeated. 

4.4.5 The mutation process 

4.4.5.1 Invasions of new mutants 

The core of any simulation which represents evolution must be the way in 

which mutants are generated. The program allows a fixed maximum number of 

genotypes to be present in each species at any particular time. If this 

maximum number is present, a new mutant will not be generated; but this did 

not occur very frequently in the simulations considered here. 

Mutant generation is density-dependent. so the probability of a mutation 

occurring is proponional to the total density of the species at that time. The 

mutation rate is set by a parameter, which represents the probability of 

mutation when the species' population density is 1.0. A random value is 

generated to test whether the mutation actually ~ccurs or not. 

If it does, then the genotype density of an empty element in the array for that 

species' density is set to 1006
, and the growth rate of the mutant is set to the 
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ancestral value (since we do not allow growth rates to vary in these models). 

The generation of interactions then follows. 

4.4.5.2 Interaction evolution 

The processes used to generate mutant characteristics in Model 1 and Model 

2 are similar, except that in Model 2, the investment values SI are generated 

fIrSt, and the interaction terms derived from these. The generation of mutant 

characteristics is intended to reflect the ecological closeness of mutants to their 

ancestral stock. In Modell, each interaction is generated on a normal 

distribution with mean the weighted mean of absolute values for interactions 

already present. The interaction coefficients for genotypes already present in 

the system are weighted by the probability of occurrence of each particular 

intergenotypic interaction, in the following way: 

10 10 

L L alJmllXtmxJII 
1 = m-I ,.-1 

IJ 10 10 

L E x""xJ" 
m-l ,,-I 

, (4.8) 

where /Ij is the weighted mean of interaction intensities for the interaction 

where species j has an effect on species i. The standard deviation is expressed 

as a fraction of the mean. We find that this restricted sampling of mutant 

characters is more appropriate than sampling from a uniform distribution, which 

produces very abrupt, unrealistic changes in parameter values, often leading to 

unstable parameter values and to extinction. The generation of investment 

values in Model 2 proceeds by a similar method. 

The generation of interactions in this way is a conservative method, in the 

sense that new genotypes tend to have characters close to the ancestral ones. 

This may retard the progress of evolutionary change to Some extend. One 
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alternative approach to the generation of mutant characters (C. Cannings, pers. 

comm.) could be to choose some particular intergenotypic interaction and centre 

the distribution for character generation upon that. Since this would not make 

use of a mean of characters, this would have the advantage that evolutionary 

change might be more rapid. However it is difficult to find biological 

justifications for choosing any particular value; and the approach I use does 

have the advantage that it reflects the rarity of large mutational changes. 

Once the interactions have been generated in Modell. they are checked to 

ensure that they are greater than zero, if this is not the case then the process is 

repeated. Then each interaction is multiplied by a constraint parameter. which 

merely represents the sign of the interaction. as required by our model. We are 

representing a predator-prey interaction where species 1 is the predator and 

species 2 the prey. so all and all' constrained negative. are multiplied by -I. 

while ~1 is positive and thus multiplied by 1. and Clzl is zero and is multiplied 

by O. Finally the all values are checked to ensure that their absolute values lie 

above the minimum self-limitation. This minimum is set to prevent the prey 

popUlation exploding out of control as it escapes from restriction by crowding. 

and thus causing the program to crash. Such a restriction does not appear very 

unrealistic, since species are usually restricted in some way in the densities 

which they can survive. 

In Model 2 the investment values for predator and prey are generated in a 

similar way to the basic values for the interaction terms for Modell. The 

interaction terms are then derived from these according to the relationships 

described above. The same restrictions apply on the interactions in Model 2 

(absolute value greater than zero, all greater than minimum self-limitation 

value) as do in Modell. 
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4.4.5.3 Preventing identical genotypes 

Since new mutants are generated at random, on a restricted normal 

distribution, it is possible in our model to generate a mutant with some 

characters very close to those of pre-existing alleles. In such a simplified set of 

phenotypes that I simulate, this is clearly unrealistic, and so I have incorporated 

routines to check whether a mutant identical to a previous genotype has been 

generated, and if it has, to remove it. If this is done, then another mutant is 

generated to replace it. 

Since interaction terms or investment values as generated are Pascal double 

precision numbers (equivalent to real numbers with sixteen decimal places), it 

is perhaps unlikely that they will ever be exactly identical. Instead, we regard 

a genotype as possessing an interaction identical to another genotype if those 

two genotypes are in the same species, interacting with the same mutant of the 

same or a different species. and the two interactions are identical to three or 

more decimal places. Thus we allow scope for mutants of very nearly similar 

effects. In Model 2, since the investment values are generated first, we merely 

compare the investment values of two genotypes, and subject them to a similar 

condition. 

These additions to the basic model, although having no specific biological 

equivalent. do prevent a number of identical genotypes accumulating at a peak 

of fitness, and thus prevent the observation of a polymorphism under conditions 

when it should not occur. 

4.4.6 Generating output 

Output from the simulation was generated in two forms. Graphical output 

was generated on a pen plotter using the Simpleplot graphics package (BUSS 

Ltd. 1985). The results that were output are shown in Table 4.2. Where pen 

plotter output was not appropriate, or it was desired to pass results to statistical 
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For both Modell and Model 2. 

1. Population dynamics (total density of all genotypes present) of prey and 
predator through time. 
2. Number of different genotypes in prey and predator over time. 
3. Weighted mean of absolute value of all over time. 
4. As (3.) for all' 
5. As (3.) for ~I" 

. 
For Model 2 only. 

6. Arithmetic mean of body size (Sj) for predator and prey over time. 

Table 4.2. Graphical output from the simulation program. The weighted 

mean used to calculate the interaction intensity is the same that used to 

generate new mutants; see Equation (4.8). This output was produced by the 

Simpleplot graphics package on a pen plotter. In many cases the output did not 

reproduce well and has therefore not been included in this thesis; the examples 

of output from the simulation shown in the next chapter (Chapter 5), are mainly 

generated from the numerical data output by the programs. However. the same 

data set is used in both cases. 
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packages for analysis, the results could also be output as a text file of 

numerical data. The file could then be used as input to a graphical or statistical 

package. 

4.5 INITIAL CONDITIONS 

This section details the parameters which control the model explored in the 

simulation, and how they can be varied. The simulation was designed so that a 

large number of initial conditions could be varied according to the requirements 

of the numerical experimentation anticipated. 

At the start of the simulation the user can input a number of different 

parameter values controlling the initial state of the system. Table 4.3 shows 

the main parameters of the simulation; others have been omitted, of technical 

interest only. 

4.5.1 Densities of predator and prey 

The initial density of predator an~ prey can ~ controlled, so that the 

simulation starts in a particular region of phase space. At the start of the 

simulation there is only one genotype present in each of predator and prey, and 

it is the density of this. that "initial density" refers to. In most of the 

simulation results recorded in this thesis the initial density was kept at 1.0 for 

each species, as there was insufficient time to explore the effects of varying it. 

In many runs, the initial density did not seem to matter since the populations 

converged to an eqUilibrium which was then altered by equilibrium (see section 

5.5). 
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Description Value 

Number of species 2 

Maximum genotypes per species 10 

Prey initial density 1.0 

Predator initial density 1.0 

Density of invader 1006 

Threshold of extinction 1006 

Minimum self-limitation 1003 

Mutation rate 0.5 

Standard deviation of mutant sampling 1 
distribution 

Type of initialisation random 

Mean of negative exponential distribution 0.25 

Numerical system continuous 

Range of numerical integration 100 

Tolerance for numerical integration 1001 

Constraint on all -1.0 

Constraint on au -1.0 

Constraint on ~I 1.0 

Constraint on all 0 

Table 4.3. Main simulation parameters, and typical values. Not all the 

parameters shown here are user-definable; some are defined within the 

program. but all are alterable without difficulty. 
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4.5.2 Invasion and extinction thresholds 

The density at which new mutant genotypes invaded could also be altered. It 

was reasonable to keep this at a low value to reflect the rarity of mutation 

events. The density at which extinction occurred could also be altered by the 

user, and was kept low in order to allow population dynamics to take place 

over a wide range of densities. Making the extinction threshold the same as 

the invasion density (Table 4.3) enabled the criterion for invasion of a new 

allele to be equivalent to the conventional criterion of population genetics 

(Roughgarden 1979:108) for the increase of a new allele when rare. 

4.5.3 Minimum prey self·limitation 

It was also necessary to place a lower bound upon the self-limitation term in 

the prey (all)' since test runs of the simulation had shown that the prey self­

limitation could be selected to zero, causing the prey population to explode out 

of control and the simulation program to crash. Such behaviour has been 

observed in models of the evolution of community structure before (Taylor 

1988), but popUlations growing unregulated by density do seem ecologically 

unreasonable. 

4.5.4 Mutation rate 

The rate at which evolution takes place in the simulation model can be 

controlled by varying the mutation rate parameter. Each iteration during the 

simulation, a random number is generated to test whether a mutant is generated 

or not. The random number generated depends on the density, so mutation is 

density-dependent. The mutation rate parameter controls how likely mutation is 

to occur: it corresponds to the probability of mutation when total density of the 

species is 1.0. There is a upper limit of one mutation per iteration in the 
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model. During the simulations the mutation rate was usually kept high in order 

that a large amount of evolutionary behaviour could be observed for the 

minimum amount of computer time. This was especially significant in the 

continuous time case. 

4.5.5 Degree of divergence of mutants from ancestors 

Mutants were generated in the simulation model to be similar to their 

ancestral populations (compare Ak~akaya & Ginzburg 1989). and the degree of 

similarity was controlled by a parameter which regulated the standard deviation 

of the normal distribution from which new mutant characters were sampled. \ 

This was kept large in the simulations presented here to produce rapid 

evolutionary change. 

4.5.6 Initial growth rates and interaction terms 

The initial parameters of the Lotka-Volterra system representing the initial 

genotype of predator and prey could be defined either by the user or by the 

program. If they were defined by the program the values (of 'u' '21' aUII> 

a12l1> and ~1lI) were generated on a negative exponential distribution. the mean 

of which can be defmed by the user. Otherwise the user could input each 

parameter. as an absolute value. individually. 

4.5.7 Invasion counting and time type 

The user is also able to control the number of iterations over which the 

number of invasions are counted (results from this aspect of the simulation are 

presented in section 5.3). and the type of numerical evaluation of the population 

dynamics that is carried out. The use of continuous or discrete time was 

intended to make as little difference to the operation of the simulation as 
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possible, so the format of output is identical and the equations used are 

equivalent in a number of ways (Hofbauer et al. 1987). However the use of 

the continuous time alternative does require considerably more computer time 

(see Appendix A). 

4.5.8 Numerical integration parameters 

The range over which numerical integration is carried out over each iteration 

can be controlled; this effectively sets the amount of ecological dynamics that 

takes place in between evolutionary change. This parameter can also be 

thought of as affecting the rate of evolution, if such a rate is measured by 

comparison to ecological change. The degree of accuracy of the numerical 

integration can also be controlled, and was set throughout the simulations 

presented to here to a value of 10'8, corresponding approximately to seven 

decimal place accuracy (lower than the extinctionlinvasion threshold). 

4.5.9 Sign constraints on Lotka-Volterra interactions 

Finally, constraints have to be placed upon the signs of the Lotka-Volterra 

interaction terms, to ensure that a predator-prey interaction is modelled. These 

can be input by the user. By changing the values of these constraints, a 

different type of interaction such as a competitive interaction could be 

modelled. In view of the theoretical work in previous chapters, the simulation 

results presented in the next chapter will deal only with predator-prey systems. 

4.6 IMPLEMENTATION 

The programs to implement Modell and Model 2 were written in Pascal, 

and ran on the VAX 8650/8550 cluster of the University of York Computing 

Service. External numerical integration routines (in Fortran) from the NAG 
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library were used to evaluate population dynamics in continuous time. External 

routines (also in Fortran) from the Simpleplot graphics library were used to 

generate graphical output. Additional details of the programs. and their 

implementation. are given in Appendix A. The source code of the programs is 

given in Appendix B. 
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Chapter 5. ECOLOGICAL AND GENETIC FEATURES OF 

EVOLUTION IN PREDATOR-PREY POPULATIONS: 

RESULTS FROM A SIMULATION MODEL 

5.1 SUMMARY 

A simulation model is used to analyse the genetic and ecological 

consequences of predator-prey coevolution. The model is based upon the 

Lotka-Volterra equations for population dynamics, modified to include haploid 

genetic variation in interspecific interaction terms, or in body size, which is 

likely to have an effect upon interspecific interactions. In the latter model the 

body sizes of predator and prey can be thought of as acting as evolutionary 

constraints. 

Three features of predator-prey coevolution are examined; the build-up or 

otherwise of resistance to the invasion of new mutants, the ability of the system 

to maintain distinct alleles at a 'polymorphism, and the consequences of 

coevolution for the dynamical behaviour of the predator-prey populations. 

Results from the simulation are used to test hypotheses about these features of 

the predator-prey interaction. 

Problems that arise from the use of the simulation model in this way are 

discussed, and ways in which the simulation method could be improved are 

suggested. The implications of the use of simulation models for the study of 

complicated biological scenarios are discussed. 
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5.2 INTRODUCTION 

Simulation models have proved a useful tool in the study of the development 

of community structure (Post & Pimm 1983; Drake 1990b; Vida et al. 1990). 

Such change may involve both genetics and ecology (Rummell & Roughgarden 

1983; Szathmary el al. 1990). In order to understand this, it may be necessary 

to look at processes which make up part of that change. 

In this chapter I wish to investigate some genetical and ecological processes 

occurring in predator and prey evolving through their ecological interaction. I 

shall use the simulation model described in the previous chapter, based upon 

the Lotka-Volterra food web model (e.g. Law & Blackford 1992) for predator 

and prey only. The two equations representing the two species become systems 

of equations as genetic variants are introduced into the system. 

The evolution of interacting species can be examined theoretically in a 

number of ways. First, one may ask what sort of evolutionary outcome will 

evolution of the predator-prey system result in? This is a question amenable to 

a purely genetical approach, but attention in the area of predator-prey 

coevolution has often focused upon lag-load models (Maynard Smith 1976b; 

Stenseth & Maynard Smith 1984) which incorporate extremely simplified 

assumptions about genetics. and in which ecological dynamics are absent. I use 

a model which records genotype densities rather than gene frequencies, and 

thus combines aspects of genetics and ecology. To distinguish between 

alternative outcomes of coevolutionary change I shall examine the rate of new 

genotypes successfully invading predator and prey over time, to determine 

whether invasion resistance arises, which could indicate the occurrence of an 

evolutionarily stable state. If it does not do so we have some evidence for 

continuous coevolutionary change, the so called Red Queen coevolution 

(Maynard Smith 1976a). 

Secondly. there is th~ level of population genetics. where attention focuses 
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on the change in gene frequencies or number of alleles arising from the 

interspecific interaction. I wish to concentrate upon the latter problem: how 

many alleles can be maintained at a polymorphism in predator or prey? In a 

single species with a haploid genetic system under density-dependent selection 

one would expect only one allele to persist; but can the interspecific interaction 

change this and maintain polymorphism? I will present results from the 

simulation model which address this problem. 

Finally, one could investigate the consequences of the evolution of predator 

and prey directly at the level of ecological population dynamics. and 

incorporate only the most basic assumptions about genetics. The popUlation 

dynamical consequences of evolutionary change have become of particular 

interest recently. in the debate over the type of ecological dynamics in natural 

systems. A large body of theoretical work based upon the assumption that 

ecological populations spend most of their time. at. or near, equilibrium 

densities, has been brought into question by the observation of chaos in simple 

popUlation models (May 1976; Gilpin 1979; Hastings & Powell 1992). This 

implies that chaotic and other non-equilibrium population dynamics may be 

easily attainable in natural populations. although the evidence for such 

occurrence is mixed (Berryman & Millstein 1989; Godfray & Blythe 1990). 

With regard to evolutionary change. it would be of interest to know whether 

natural selection could move populations towards. or away from chaos. In the 

third part of the results from the simulation model presented in this chapter I 

shall present time series for population dynamics for the two species. and try to 

account for the dynamical behaviour that is observed. 

Results acquired by numerical simulation differ somewhat from results of 

analytical theory in that the complexity of the underlying simulation program 

means that we cannot understand the system being investigated as fully when 

mathematical techniques are applied directly. This is especially the case when 

the simulation model is intended to be complex in order to mimic the 
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complexity of a natural system. In the final section of the chapter I shall 

discuss these problems, in the light of the results given in the chapter. 

5.3 MUTANT INVASIONS INTO INTERACTING SPECIES: A TEST 

FOR RED QUEEN COEVOLUTION 

5.3 •• Background 

The concept of the evolutionarily stable strategy (ESS; Maynard Smith & 

Price 1973) has proved particularly useful in the study of the evolution of 

individual species (Maynard Smith 1982; Cannings 1990). When the evolution 

of a number of species in a community is considered, no clear theoretical 

treatment was available until Maynard Smith (1976a) developed the concept of 

the lag load. Using this concept Stenseth and Maynard Smith (1984) were able 

to make a general analysis of coevolution in multi-species ecosystems; dividing 

the consequences of coevolution into two categories. The first, evolutionary 

stasis, was the equivalent of an evolutionarily stable strategy for all individuals 

in all the species simultaneously., The second category represented continual 

evolutionary change. This was tenned Red Queen coevolution (Maynard Smith 

1976b) after Van Valen's (1973) palaeontological hypothesis. 

Stenseth and Maynard Smith proposed a theory which made only the most 

general, minimal assumptions. To test it would require examining more 

detailed and most realistic systems. Since in general the time scale over which 

community evolution operates is beyond the scope of most research, testing 

theories of community evolution has tended to follow one of two pathways 

(Hoffman 1991). The first is analysis of data from the fossil record, in order to 

determine whether one of the predicted alternatives was in fact followed in 

specific groups of organisms. This approach has not produced unequivocal 

support for one of the alternatives (Bakker 1983; Hoffman & Kitchell 1984; 
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West et ale 1991). This is part due to the impossibility of controlling for 

abiotic environmental variation, which will confound the biotic variation upon 

which Red Queen coevolution depends. 

The only way to control for environment variation is to use mathematical 

modelling. This is naturally far more assumption dependent than tests using 

palaeontological data, but it is the only way to approach some questions which 

depend on data inaccessible in nature. One such approach is to observe the 

evolution of species in a community, and detect the build-up of invasion 

resistance, and the consequent decline in the rate of evolution, as an indicator 

of the approach of evolutionary stasis. Such invasion resistance has been 

observed to arise in models of community evolution (Case 1990, 1991). If the 

rate of evolution remained relatively constant over time them one might 

hypothesize the occurrence of Red Queen coevolution. Red Queen coevolution 

has been detected in models of predator-prey coevolution (Stenseth & Maynard 

Smith 1984; Marrow et ale 1992; but see Rosenzweig et ale 1987). Observing 

such phenomena in nature would require examining the gene pools of several 

species over a long period of time, a colossal undertaking. Using a model one 

can do this easily, and this is what I propose to do in this section. 

The models I shall present are based on the familiar Lotka-Volterra food web 

equations. Here only two species will be considered, so I will be in fact 

modelling a predator-prey interaction. 

5.3.2 Method 

All simulations were started with a single genotype in each of the predator 

and prey species, set to an initial density of 1.0. The growth rates and 

interaction terms of the initial genotypes were generated on a negative 

exponential distribution of mean 0.25. The growth rates and interaction tenns 

so generated were constrained to be greater than zero and less than 1.0. In 
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addition the absolute value of prey self-limitation was constrained to be greater 

than 0.2, to prevent population explosion in the prey, which could overload the 

simulation. Constraints were applied to the interaction terms to ensure a 

predator-prey interaction was modelled. 

Three distinct types of mutational regime were used. In the fIrst, mutations 

were allowed to invade both predator and prey. In the second, mutations took 

place in the prey species alone; in the third. they occurred in the predator 

alone. 

After the initial populations were established. the simulation went through a 

series of iterations in the way described in Chapter 4. In discrete time, each 

run consisted of twenty thousand iterations, while in continuous time each run 

consisted of fIve thousand iterations. The difference in the length of simulation 

in discrete and continuous time was solely due to the much greater amount of 

computer time required to solve numerically the continuous time system (see 

Appendix A). The maximum amount of time for each run was restricted by the 

limit of one hour on the amount of CPU (central processing unit) time a batch 

job could use on the computer system used. 

In the species in which mutations occurred, the mutation rate was set to 0.2 

per iteration. This rate was chosen so as to produce relatively rapid 

evolutionary change during the time-span of the simulation. and yet make 

mutations still relatively rare. Every time a mutant invaded a species it was 

counted. as an attempt. If the mutant persisted into the next iteration, this was 

counted as a success. This meant that the requirement for an invading mutant 

to persist was that it should increase in density in the first iteration. This was 

equivalent to the condition in population genetics for the establishment of a 

rare allele (Roughgarden 1979: 108). 

After 100 iterations the total number of attempts and successes was recorded 

and the count reset to zero. The success rate for a particular period of 100 

iterations was recorded as number of successes over number of attempts. At 
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the end of the simulation the state of the total predator and prey populations 

was recorded, in terms of the extinction or persistence of each population. The 

mean density over each time period of 100.iterations was also recorded. This 

enabled the coexistence of predator and prey, or the extinction of one or both 

species to be detected. 

The numerical experiments were performed both in discrete and continuous 

time:. The number of replicate runs performed under each mutational regime 

differed in continuous and discrete time since the results of certain runs were 

lost as they exceeded the maximum time limit for batch processes. 

5.3.3 Results 

5.3.3.1 Continuous time 

One-way analysis of variance and Model I linear regression were performed 

on the predator and prey success rate data sets over time, for each mutational 

regime (fable 5.1). 

The success rate of prey showed significant variation with time in two cases, 

in the prey when both predator and prey were evolving, and in the prey when 

evolution was taking place in the prey alone. The linear regression produced a 

significant negative relationship in each case (Figure 5.la, b). The data was 

very scattered however, producing very low values of ,J (Table 5.1). 

In view of this considerable scatter, it might be questioned whether the 

relationships predicted by the regression had any validity. Plots of the change 

in success rate in individual runs of the simulation (Figure 5.2) suggest that 

they do: resistance to invasion appears to build up in the prey over time. 

The data sets which had produced significant results were reanalysed after 

transformation by the arcsi~e transformation (Sokal & Rohlf 1981 :427); this did 
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Time Type Continuous 

Mutation Predator and Prey Prey Predator 
Regime ----+ Only Only 

Statistic J.. Prey Predator 

n 229 266 336 287 

Number of 40 40 41 44 
Replicates 

lOne-way Analysis of Variance 

F 14.30 0.710 7.80 1.16 

p 0.000 0.712 0.000 0.320 

significance *** n.s. *** n.s. 

Linear Regression 

b -0.0403 -0.0087 -0.0317 -0.00424 

a 0.442 0.441 0.380 0.392 

r 0.211 0.006 0.122 0.000 

Table 5.1. Success rate of invasions into predator and prey: continuous 

time. n refers to the number of observations of success rates over time which , 
were measurable, as the number of successes were non-zero. (When the 

number of successes was zero, a missing value was entered, due to division by 

zero). 

In the linear regression, b is the slope, a is the intercept The adjusted r is 

used, as output by the Minitab statistical package (Minitab, Inc. 1989). noS. 

denotes "not significant", p > 0.05, *** refers to a highly significant result, p < 

0.001. 
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Figure 5.1. Success rate of invasions into predators and prey under 

different evolutionary scenarios in continuous time. (a) predator and prey 

evolving; (b) prey only evolves. The success rare for each time interval for 

each run was calcul ated as the ratio successes/o((emprs. The arithmeti c mean 

success rate for each time interval is marked on the graph: error bars are the 

95% confidence intervals. 
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not alter the conclusions (Table 5.2). No significant relationship was found 

with respect to invasions into the predator, under any mutation regime. 

Although linear regression if calculated did give negative slopes, these were not 

significant, and the values of i" produced were very low. 

The observation of a decreasing success rate of invasions over time could be 

due to a lack of elements in the genotype array for new mutants to invade into. 

If tlds was the case then one might expect the number of attempted invasions 

into each species to decline with respect to density, since the mutant generation 

algorithm does not operate unless there is space for the mutant characters to be 

stored. The possibility of the genotype array filling up was tested by regression 

of attempts per unit density versus time (Table 5.3). Where mutant invasion 

took place into the prey, a significant positive slope was observed, suggesting 

that elements were not filling up over time. The opposite was observed where 

invasions took place into the predator. 

The recording of average density over time enabled the extinction of one or 

other species to be observed. The results are given in Table 5.4. The results 

suggest that predator-prey coevolution does not often prevent predator-prey 

coexistence. Prey extinction was never observed, and predator extinction was 

infrequent. There was no significant difference between different mutation 

regimes in respect to the outcome of the coevolution (:x2 = 0.122, two degrees 

of freedom, p > 0.900). 

5.3.3.2 Discrete time 

One way analysis of variance and Model I linear regression was also 

performed on the discrete time success rate data set (Table 5.5). In this case 

only one significant result was found. in the case of the success rate of 

invasions into the prey under evolution in the prey alone (Table 5.5; Figure 

5.3). The data set was transformed with the arcsine transformation. which did 
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~T' 'J~ Continuous 

Mutation Predator and Prey Prey Predator 
Regime -+ Only Only 

Statistic J, Prey Predator 

n 299 266 336 287 

Number of 40 40 41 44 
Replicates 

One-way Analysis of Variance 

F 12.06 0.680 6.58 1.02 

P 0.000 0.727 0.000 0.424 

significance *** n.s. *** n.s. 

Linear Regression 

b -0.0584 -0.0089 -0.0459 -0.0006 

a 0.738 0.723 0.642 0.417 

r 0.210 0.002 0.114 0.000 

Table 5.2. Success rate of invasions into predator and prey: continuous 

time, transformed data set. Symbols and conventions used in this table are as 

in Table 5.1. The data set has been transformed with the arcsine transformation 

before analysis was perfonned. 
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Time Type Continuous 

Mutation Predator and Prey Prey Predator 
Regime ~ Only Only 

Statistic J.. Prey Predator 

n 400 336 410 360 

Number of 40 40 41 44 
Rtplicates 

(), 
-J .A.nalysis of Variance - ,-
F 14.65 8.68 16.23 14.88 

p 0.000 0.003 0.000 0.000 

significance ••• •• ••• ••• 
Linear Regression 

b 1.33 -0.999 1.50 -2.05 

a 12.9 25.0 13.8 33.0 

r 0.033 0.022 0.036 0.037 

Table 5.3. Attempted invasions into predator and prey per unit density; 

continuous time. The number of attempted invasions was divided by the 

average density over the time interval for measurement. calculated as a running 

average of the total density of all genotypes in that species per iteration. • •• 

indicates a highly significant result. p < 0.00 1; •• indicates a significant result, 

0.001 ~ P < 0.01. 
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Time Type Continuous 

Outcome -+ 
Coexist Predator Both species Total 

Mutation extinction extinct 

Regime J, 

Predator and 33 7 0 40 
Prey 

Prey only 33 8 0 41 

Predator only 35 9 0 44 

Total 101 24 0 125 

Table 5.4. Coexistence or extinction in predator and prey: effects of 

different mutation regimes, continuous time. This table summarises the time 

series of average density which were recorded for all simulations performed to 

investigate invasion success. Units are number of runs in which that outcome 

was recorded. A species was deemed to have gone extinct when its average 

density dropped to zero; this corresponded to a minimum real density at a 

particular iteration of 10-6
, the extinction threshold. 
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Time Type Discrete 

Mutation Predator and Prey Prey Predator 
Regime ~ Only Only 

Statistic J.. Prey Predator 

n 444 347 338 231 

Number of 54 54 45 44 
Replicates 

One-way Analysis of Variance 

F 0.67 0.67 2.27 0.58 

p 0.740 0.732 0.018 0.809 

significance n.s. n.s. * n.s. 

Linear Regression 

b -0.0058 -0.0001 -0.0174 0.0035 

a 0.343 0.0266 0.428 0.280 

r 0.005 0.000 0.041 0.000 

Table 5.5. Success rate of invasions into predator and prey: discrete time. 

Symbols used are as in Table 5.1. 
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not appear to identify a more significant relationship (Table 5.6). In contrast to 

the continuous time results, no significant results were obtained when both 

predator and prey were evolving. Once again no significant results were 

obtained for invasion resistance in the predator (Table 5.5). 

The possibility of elements of the genotype array filling up was tested in the 

same way as the continuous time data set (Table 5.7). No data was available 

for when the predator and prey both evolved; however when the prey only 

evolved a positive slope was observed, and when the predator only evolved a 

negative slope was found. These results were similar to those of the 

continuous time data set (Table 5.3); however neither slope was significant. 

The coexistence or extinction of predator and prey was also recorded (Table 

5.8). Predator extinction, or extinction of both species, was observed much 

more frequently than in continuous time (the difference is significant, X2 for 

heterogeneity, 18.910, two degrees of freedom, p < 0.001). As in continuous 

time, there was no significant difference between the proportion of outcomes 

under different mutation regimes <x2 = 4.698, four degrees of freedom, p > 

0.10). 

5.3.4 Discussion 

5.3.4.1 Red Queen or stasis? 

In order to distinguish between Red Queen coevolution and evolutionary 

stasis, we first need to consider the evidence for ESSs. If it could be shown 

that the predator-prey system evolved to an ESS in most cases, this would 

negate the possibility of Red Queen coevolution. 

Unfortunately, the evidence for ESSs is not clear cut: only three out of eight 

possible cases show trends in invasion resistance implying ESSs, the results are 

not consistent between discrete and continuous time, and in no case does an 
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~TYPe Discrete 

Mutation Prey Only Predator 
Regime -+ Only 

Statistic J. 

n 338 231 

Number of 45 44 
Replicates 

n, 
''''J Analysis of Variance ....... -
F 1.74 0.71 

p 0.078 0.701 

significance n.s. n.s. 

Linear Regression 

b -0.0227 0.0042 

a 0.685 0.292 

r 0.031 0.000 

Table 5.6. Success rate of invasions into predator and prey: discrete time, 

transformed data. The same data set was used to generate the results of this 

table as was used in Table 5.5, except that the values have been transfonned 

with the arcsine transfonnation before analysis was perfonned. Data was not 

available for the case when both predator and prey evolved. Symbols in the 

table follow the conventions of Table 5.1. 
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Time Type Discrete 

Mutation Prey Predator 
Regime ~ Only Only 

Statistic ,J.. 

n 436 264 

Number of 45 44 
Replicates 

One-way Analysis of Variance 

F 0.04 1.80 

P 0.849 0.180 

significance n.s. n.s. 

Linear Regression 

b 0.076 -1.02 

a 18.0 45.8 

r 0.000 0.003 

Table 5.7. Attempted invasions into predator and prey per unit density 

over time; discrete time. The number of attempted invasions was divided by 

the average density over the time interval for measurement. calculated as a 

running average of the total density of all genotypes in that species per 

iteration. Data was not available for the case when both predator and prey 

evolved. Symbols in the table follow the conventions of Table 5.1. 
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Time Type Discrete 

Outcome ~ 
Coexist Predator Both species Total 

Mutation extinction extinct 

Regime! 

Predator and 34 13 7 54 
Prey 

. 
Prey only 32 11 2 45 

Predator only 24 12 8 44 

Total 90 36 17 143 

Table 5.8. Coexistence or extinction in predator and prey: effects of 

different mutation regimes, discrete time. This table summarises the time 

series of average density which were recorded for all simulations performed to 

investigate invasion success. Units are number of runs in which 'that outcome 

was recorded. A species was deemed to have gone extinct when its average 

density dropped to zero; this corresponded to a minimum real density at a 

particular iteration of 10.6, the extinction threshold. 
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ESS occur consistently in one system. That is, we do not see the number of 

successful invasions declining to zero in all replicates of that system. 

The much simplified predator-prey coevolution systems of Chapter 3 (and 

Marrow et al. 1992) suggested that mutants spiralled in the phenotype space 

towards ESSs. This implies slow convergence to equilibrium, and it could be 

that the simulations investigated here were not run for long enough to observe 

this~ However, the length of each simulation run was severely restricted both 

because of the large amount of computer time needed to run the simulation, 

and also because of the need to build up a large number of replicate runs. If 

such spiralling in to evolutionary equilibrium did occur, it would be possible to 

detect this by observing the consequent oscillations in body sizes of predator 

and prey. No clear evidence of such oscillations was detected (see section 5.5), 

but time did not permit the examination of the dynamics of size evolution in 

any detail in these simulations. 

It is not possible to exclude the possibility that the results observed, in terms 

of invasion resistance. may arise as a result of the simple genetic system and 

the constant abiotic environment. We may see invasion resistance building up 

because no more alleles can be generated which have a positive rate of increase 

on invasion, as a consequence of the assumptions of the model. But 

observation of individual trajectories (Figure S.2) suggests that build-up of 

invasion resistance does occur in particular cases even if there is no clear 

overall trend towards 'it. So invasion resistance may be dependent on the 

underlying popUlation dynamics of the different genotypes in the predator-prey 

system. 

What evidence is there for Red Queen coevolution? The lack of any trend in 

success rate of invasions may not be sufficient evidence; this is observed in 

five out of the eight cases I considered. but lack of overall trend in each case 

conceals a considerable amount of variation in and between individual runs of 

each system. Ideally for Red Queen evolution we would require that the 
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success rate of invasions remains nearly constant, but this does not seem to be 

the case. It is possible that predator-prey systems may not be able to show Red 

Queen dynamics (Rosenzweig et al. 1987), but models comparable to the ones 

used here (Marrow et aJ. 1992; Chapter 3, this thesis) can exhibit Red Queen 

dynamics rather easily. The lack of conclusive evidence for Red Queen 

behaviour may be due to the underlying genotype dynamics being too variable. 

There is also the possibility of transient dynamics obscuring the long-term 

behaviour of the population dynamical system, but the methods used in this 

section did not enable these features of the model to be investigated. 

5.3.4.2 Asymmetries in predator-prey coevolution 

It is interesting that we observe different results in predator and prey. 

Significant trends in the build-up of invasion resistance were only found in prey 

species, in both discrete and continuous time, and evidence for the 

accumulation of mutants preventing further mutation was only found in 

predator species. This suggests that an asymmetry exists in this coevolutionary 

system. 

It may be that the predator and prey converge towards evolutionary equilibria 

at different rates; this conclusion is supported by the results of the (albeit 

simpler) model considered in Chapter 3 (Marrow et al. 1992). While the 

distance from an evolutionary equilibrium in phenotype space remains large, 

mutants of each species will be, at a particular time, different distances, from it, 

and new mutants will be sampled from distributions of different variance, so 

we should expect the rate of evolution in each species to be different 

This deduction is in agreement with a wide range of evidence on the 

evolution of predator and prey (Endler 1991), and is consistent with the life­

dinner principle (Dawkins & Krebs 1979) which suggests different intensities of 

selection in predator and prey. 

132 



SIMULATION RESULTS 

5.3.4.3 Differences between discrete and continuous time 

It is well-known that the discrete time version of the Lotka-Volterra 

equations for interacting species (e.g., Hofbauer et al. 1987) exhibits less "well­

behaved" dynamical behaviour than the continuous time form. Both forms 

were used in the implementation of the simulation model used here, in order to 

see whether the form of the Lotka-Volterra model used would affect the results. 

Two differences were detected; firstly, there were less significant trends in 

invasion resistance in discrete time than in continuous time. and secondly, the 

predator and prey coexisted less frequently in discrete time. 

The first difference could result from a difference in the nature of the build­

up of invasion resistance in the discrete time system, but the very great 

variation between individual runs in both discrete and continuous time makes 

this unlikely. The two time types do differ in number of iterations per run. due 

to the difference in amount of computer time required. However, one would 

expect this to work in the opposite fashion to that observed. with the 

continuous time model being run over less iterations, resulting in less build-up 

of invasion resistance. This implies that the difference in results cannot be 

accounted for by failure to run the simulation for long enough. 

The second difference observed in the discrete time version. that coexistence 

of predator and prey occurs less frequently, could be accounted for by the 

genotype dynamics in that system leading more frequently to extinction of 

alleles and whole species. At low dimensions. when few mutants are present, 

one might expect this to be important since a well-known result on two­

dimensional differential equations shows that chaotic dynamics cannot occur 

(Simmons 1974:341). The same is not true of the discrete time equivalent. At 

higher dimensions. when many mutants are present, one would expect that 

chaotic or other unstable dynamics could arise both in discrete or continuous 

time. It may be that higher dimensional systems do not occur very frequently--
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as some of the results on the maintenance of polymorphism in this system seem 

to imply (section 5.4). The understanding of the difference between the two 

time systems does seem to depend upon the nature of the underlying population 

dynamics, as does the detection of Red Queen coevolution as opposed to stasis 

(section 5.3.4.1 above). 

5.3.4.4 The coexistence of predator and prey under different evolutionary 

scenarios 

Evolution depends on the availability of sufficient genetic variation, and this 

will not always be present in the species or system under investigation. For 

this reason, it is of interest to find out what the consequences of coevolution 

are where one species does not bear genetic variation in characters adaptive for 

the interspecific interaction. In the simulation model used here this was done 

by preventing the mutation process in one or other species. One might expect, 

that a predator allowed to evolve in combination with an evolutionarily fixed 

prey, would always or frequently cause the extinction of that prey species. 

Alternatively, one might expect a prey evolving with a fixed predator always to 

be able to escape from predation and thus attain a very high population density. 

So it appears that there should be consequences for the coevolution of predator 

and prey, when the mutation regime, or ev<,1utionary scenruio, under which 

they evolve, is changed (e.g. Rosenzweig & MacArthur 1963). 

However the results of the simulation presented here do not support this 

view. In both discrete and continuous time, there is no significant difference 

between the different mutation regimes in tenns of their effects on the 

coexistence of the two species. One reason for this could be inadequate sample 

size. If the sample size was increased we might get statistical confinnation of 

these observations. but sllch an increase would require more computer time, for 

a simulation which is already very time-intensive (see Appendix A). 
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A second reason for the lack of distinction between the different mutation 

regimes could be that the underlying genotype dynamics of the system are so 

complex as to detennine the persistence of the system independently of the 

type of evolutionary scenario. This is not possible to test with the current 

results which were derived with the intention of finding a measure of system 

behaviour independent of population dynamics. 

1\n additional reason is suggested by consideration of the related. but 

simpler, system analysed in Chapter 3 (and Marrow e/ al. 1992). In many 

cases in that system, if one species is fixed evolutionarily, the other is expected 

to evolve to an evolutionarily stable state in any case. It may be that this 

occurred in many of the cases considered here where extinction of one or both 

of the species was expected. There are, however. a number of types of 

evolutionary dynamics observed in the Chapter 3 system which could result in 

extinction of the predator; although not of the prey. 

Finally it might be the case that the effect of the different mutation regime 

was very much less important than expected. In the constrained system. Model 

2, which was used in the simulation, the coevolution of (lll and nzl' the two 

reciprocal interaction tenns, is limited by making them both dependent on Si' 

the body size of each species. This prevents biologically unrealistic values of 

the interaction tenns, but it may also prevent the evolution of parameters in a 

species evolving while the other is fixed. to a level corresponding to a non­

feasible equilibrium. In order to know whether this was the case, it would be 

necessary to have much more infonnation about the evolution of parameters 

over time during the simulation. This information was not gathered in the 

current set of investigations. but is a suitable topic for further work (but see 

section 5.5 for the evolution of parameters when both species evolve). 
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5.3.4.5 Statistical tests of simulation results 

In using regression analysis to test the results of a computer simulation, we 

are violating one of the basic assumptions of that statistical test, that 

observations are independent. Because the state of a computer simulation at 

any time depends on its previous states, the data used in the regression are 

corr~lated. Hence, in using this test I am not seeking to establish a formal 

linear relationship, but to give an approximate indication of trends in the 

system. It is, in any case, possible that since I am using pooled data from a 

number of simulation runs in each regression analysis, the serial correlation 

between points in this pooled data set should be very low, even if high within 

individual series. For these reasons I argue that the use of the technique is 

appropriate, even if unconventional. 

5.3.4.6 Problems, and conclusions 

The analysis of the results from the simulation experiments has exposed a 

number of problems with the method used. Among these are; the haploid 

genetic system, the assumption of constant fitnesses, the lack of information 

about the underlying population dynamics, the lack of knowledge about the 

related dynamics of interactions and sizes, and the limited number of replicate 

runs. 

Modifications that could overcome these problems include the following. 

Firstly, the incorporation of diploid genetics would greatly increase the utility 

of the model, making it directly comparable to many population genetical 

models, such as those of Spencer and Marks (1988, 1992; Marks & Spencer 

1991). It would also prevent artifacts that might arise from the use of haploid 

genetics. But the modification does have the disadvantage that it would make 

the simulation model even more complex, and would result in even larger 
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amounts of computer time being required to run it. Many other models in 

evolutionary theory have been derived without the use of diploid genetics, 

partly for this reason. 

Secondly, the incorporation of a varying external environment, specifically 

one in which fitnesses were continually rescaled as the environment 

deteriorated. would add realism to the model and prevent the accumulation of 

alle!es at, or near, the maximum fitness. As in the case of diploid genetics, this 

would involve a loss of computational efficiency, which precluded its 

incorporation in the current model. 

Thirdly, the use of more simulation runs could enable clearer results to be 

obtained. The only limitations on this being implemented are temporal, 

specifically the amount of time required to compute each run, which is 

considerable, up to fifteen minutes computer time in the case of the continuous 

time version. and the amount of time required to process the results. In this set 

of numerical experiments, considerably more runs were performed than are 

actually recorded in the results. Those that were omitted were excluded 

because they exceeded the time limits for simulations run as batch jobs, and 

thus did not output their results. The amount of time taken for each run was 

very dependent on the popUlation dynamics, and more complex dynamics could 

result in much longer times taken to compute the results, as more calls to 

numerical integration routines were required. 

Fourthly, the gathering of more information about the evolution of sizes, and 

consequently the evolution of interactions, would enable the coevolutionary 

process to be understood more fully. This is a problem of the amount of 

information produced by each run however; as two coevolving species implies 

two time series of size evolution. and three time series of interaction for each 

run. 

Since the evolution of these parameters has a direct effect upon the 

population dynamics, it would be reasonable to include them also in the output, 
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and this would remedy the final problem, that of possible dependence of the 

system upon the population dynamics, and lack of information about them. In 

the current analysis the population dynamics was excluded as it was intended to 

draw conclusions that were independent of the population dynamical behaviour 

of the system. However if the success rate of invaders is affected by the type 

of dynamics of the genotypes already in the system, then there is no reason not 

to i~clude such dynamics. In the final section of this chapter I shall examine 

the population dynamics of the predator-prey system as evolution occurs. The 

understanding of the general consequences of this will be a useful preliminary 

to examining the population dynamics and invasions into those species together. 

In conclusion, there is no clear evidence for the system being considered 

evolving either to an ESS or continually changing in Red Queen coevolution. 

In some runs the approach to an ESS did appear to occur, but this was not 

consistent within one type of mutation regime and time type, quite apart from 

across different cases. The mutation regime, or evolutionary scenario imposed 

on the system also did not seem to have any clear effect. Only the time type 

(continuous or discrete) seemed to have a consistent effect on the persistence of 

predator and prey popUlations, a feature which could probably be observed in 

simpler models not incorporating evolution. The failure to obtain clear-cut 

results on the main hypothesis being tested did however point to some 

improvements of the simulation method which could be use in future 

investigations of this type. 
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5.4 THE MAINTENANCE OF ALLELE POLYMORPHISM 

5.4.1 Background 

The problem of the maintenance of genetic variation in natural populations 

has been present ever since electrophoretic and other studies showed the great 

alle~ic diversity to be found in nature (e.g. Keith 1983; Lewontin 1974). 

Numerical and analytical work suggests that randomly constructed 

polymorphisms are almost vanishingly unlikely to be stable (Bodmer & Cavilli­

Sforza 1971; Eshel 1971; Guess 1974; Gillespie 1977; Lewontin et al. 1978; 

Karlin 1981; Karlin & Feldman 1981). How are 'the large polymorphisms 

found naturally maintained under selection? 

Karlin (1981) showed that the probability of obtaining a stable polymorphism 

was increased by incorporating fitness structure in the models, and Karlin and 

Feldman (1981) demonstrated that such models could maintain a relatively 

large number of alleles at equilibrium under certain conditions. Heterosis has 

been suggested as a possible causal factor, but the work of Gillespie (1977) and 

Lewontin et al. (1978) suggests that this is not sufficient. It has also been 

argued that heterosis evolves as a result of selection rather than preceding it 

(Ginzburg 1979), so that models where viabilities as well as allele frequencies 

evolve should be considered (Turelli & Ginzburg 1983). 

The work of Spencer and Marks (Spencer & Marks 1988, 1992; Marks & 

Spencer 1991) suggests a solution to the problem. They generated alleles with 

random fitnesses, and allowed them to invade a population sequentially, but in 

some cases did not wait for the system to reach equilibrium between invasions 

of mutants. They found (Spencer & Marks 1988) that such "mutant 

bombardment" could maintain a reasonable degree of polymorphism over 

evolutionary time. Later modifications of their original model were able to 

maintain polymorph isms of similar size to those in natural popUlations, 
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including about thirty alleles (Spencer & Marks 1992). 

The maintenance of allele polymorphism as a problem of theoretical 

population genetics is akin to the ecological problem of the assembly of stable 

communities (Spencer & Marks 1988). Yet, interactions between species in a 

community are rarely taken into account in population genetical models. which 

are often based on single species. The maintenance of genetic variation under 

sel~tion has attracted a considerable amount of interest in the ecological 

literature. in connection with the coadaptation of hosts and parasites (Anderson 

& May 1982; Hamilton 1982). It thus seems reasonable to consider what effect 

the ecological interactions between populations might have on the maintenance 

of polymorphism. 

Here I shall use the simulation model presented in the preceding chapter to 

investigate whether many alleles can be maintained at a single locus, even in 

the absence of diploid genetics, by predator-prey interactions. 

5.4.2 Method 

The simulation models described in Chapter 4 were used throughout the 

investigation.· Thirty-two runs were performed of each of the unconstrained 

model (Modell) and the constrained model (Model 2). Continuous time 

models were solved using numerical methods in all cases. The initial 

conditions of the runs were standardised as far as possible, in order to make 

them replicates. All runs were started at fixed initial densities, for one type 

only in each species. of 1.0. The initial parameters for each species; that is, rw 

0.1111 ' and 0.1211 for the prey, and '21 and ~11l for the predator, were generated 

by random sampling on a negative exponential distribution. The mean of the 

distribution was set to 0.25, in order to reflect the distribution of interaction 

intensities observed in real food webs, where many weak and few strong 

interactions have been found (Half & Raffaelli 1991; Paine 1992). 
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Evolution was simulated by allowing populations with different interactions 

to invade at low densities, as described in Chapter 4 (section 4.4.5). 

Parameters for the invading types were produced by simulating mutation at a 

constant rate of 0.5. The pseudo-random number generating routine used in 

creating new mutants was initialised differently for each run so as to create a 

different sequence of random numbers. This corresponded to a different 

evo!uti~nary history in respect of the origin of new mutations. The simulation 

was run for one hundred iterations of mutation and population dynamics. The 

popUlation dynamics of the predator and prey genotype densities were solved 

over a range of 100 and with an accuracy of approximately seven decimal 

places (precise assignment of accuracy is not easily possible when numerical 

integration algorithms of the type used here are considered; for more 

information see Chapter 4 and Numerical Algorithms Group, 1990). 

The total population density of all genotypes in each species was recorded at 

each iteration, along with the number of mutant types present at that time. The 

output was in the form described in Chapter 4. The persistence of a large 

number of genotypes over a period of time was taken as indicative of the 

maintenance of polymorphism under selection. The population densities of the 

types present were also recorded in order to distinguish when species had gone 

extinct. 

5.4.3 Results 

The results of the simulation runs are summarized in Table 5.9. Statistical 

analysis was performed using the Minitab sta~istical package (Minitab, Inc. 

1989). The types of behaviour observed in Model I and Model 2 were 

significantly different (X2 for heterogeneity, 26.2, 5 degrees of freedom, p < 

0.001)." 

Simulations run under the assumptions of Model 1 most commonly exhibited 
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Number of alleles Modell Model 2 

Many 0 9 

One/Many 4 11 

Many/One 0 3 

One 10 3 
~--------------------------- ----------------------- ------------------------

Total Coexisting 14 26 

Predator Extinct 14 6 

Both Species Extinct 4 0 

TOTAL 32 32 

Table 5.9. Results of simulations on the maintenance of allele 

polymorphism. The state given is the one which the system reached. and 

maintained over a large number of iterations. towards the end of the run. Many 

indicates that more than one genotype was maintained in each species. 

One/Many indicates that only one genotype was maintained in the prey. with 

several maintained in the predator. Mally/One indicates the reverse. One 

implies that only one genotype was found in each species. Coexisting species 

were those that did not go extinct throughout the simulation run. All values 

given in the table are numbers of simulation runs. All simulations were 

performed in continuous time. 

142 



SIMULATION RESULTS 

only one genotype in each species. In a number of cases a number of different 

genotypes were maintained in the predator in combination with just one 

genotype in the prey. 

It is difficult to detennine whether the results of evolution in Model 1 are 

representative of behaviour of the system, since species went extinct so 

frequently in this class of simulations. The number of runs in which both 

sp~ies coexisted throughout the simulation (Table 5.9) is significantly different 

between the models (G-test for independence with Williams' correction, 9.68, 1 

degree of freedom, p < 0.01). I suggest that this arises from the lack of 

evolutionary constraints on Model 1 (see Chapter 4 and section 5.5 below). 

The results of evolution in Model 2 are more interesting with regard to 

hypotheses about the maintenance of allele polymorphism. Several alleles were 

maintained in both species simultaneously in a number of runs; but the 

presence of only one type in the prey, and several in the predator was also 

common, and a number of other behaviours were observed. 

5.4.4 Discussion 

5.4.4.1 The maintenance of allele polymorphism by predator-prey 

interactions? 

In the case of the system without constraints on the evolution of 

interactions,Model 1, there is little support for the maintenance of allele 

polymorphism by predator-prey interactions. In no cases were a number of 

different genotypes maintained in both species at the same, implying the 

persistence of allele polymorphisms under selection. In a few examples a 

polymorphism persisted in the predator only, but there are two difficulties in 

using these cases as support for the maintenance of polymorphism. 

If only one prey type occurs in the Model 1 system, then irrespective of how 
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many predator types are found, they all have to adapt to consume only one 

prey. Thus the trait in any predator individual of a particular genotype relating 

to interaction with the prey are entirely defined by one parameter, a:zl_ where 

the mth genotype of the predator is interacting with the nth genotype of the 

prey, the only one currently present. This can result in the accumulation of 

predator types all with identical, optimal values for their interaction with the 

prey type. Since we hold the predator intrinsic growth rate tenn r" constant, 

and there is assumed to be no self-limitation in the predator, this will be the 

only trait under selection. Thus we may observe the build up of apparently 

distinct genotypes which are in fact identical with respect to natural selection. 

A second problem which obscures any conclusions we can draw from the 

Model 1 system is the possibility that the presence of several alleles in one or 

other of the species over time is not a result of the long-tenn dynamics of the 

genotypes, but rather a consequence of transient dynamics resulting from the 

continual invasion and extinction of many alleles. The hypothesis of the 

maintenance of allele polymorphism implies that the same alleles are present at 

a locus over long periods of time. 

The system of Model 2, with evolutionary constraints on the evolution of 

interactions introduced via the intennediate variables Si' or body size, offers 

slightly better support for the hypothesis of the maintenance of allele 

polymorphism. The presence of different alleles over a period of time in both 

species is what we should expect, but there are also a wide range of other 

behaviours exhibited by this system (Table 5.9). The proportions of the 

different behaviours observed when predator and prey coexist are not 

significantly different from random expectation (:X" for heterogeneity, 7.33, 3 

degrees of freedom, p > 0.05). 

Nevertheless. the problems raised in connection with Model 1 may also be 

relevant to Model 2. If we look at the time series of number of alleles present 

in each species over time (Figure 5.4). we find both in species where only one 
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Figure 5.4. Numbers of alleles present in predat.or and prey over time. (a) 

Model 1, prey; (b) Model 1, predator; (c) Model 2, prey; (d) Model 2, predator. 

The number of alleles present was the number of genotypes at a density greater 

than or equal to the extinction threshold (10.6) . The max imum number of 

genotypes in each species was ten . The two mns shown are typical of the 

simulations. 
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allele persists (Figure 5.4 (a», and ones in which an apparent polymorphism 

occurs (Figure 5.4 (b), (c) or (d», the number of alleles present fluctuate quite 

considerably over time, implying transient behaviour. It is also possible that 

identical predator types may accumulate, in a similar manner to Model 1. 

However there do appear to be some ways in which the simulation method 

could be improved. 

5.4.4.2 Distinguishing transient dynamics· 

Displaying the genotype dynamics of each genotype within a species would 

allow transient turnover and long-term maintenance of alleles to be 

distinguished. This would lead to a considerable increase in the amount of 

infonnation output by the simulation, but would assist in further understanding 

of the results. 

When the genotype dynamics are modelled explicitly, it might be possible to 

show that the system had approached an attractor, although there would be 

some difficulty with this approach due to the high dimensionality of the system. 

(The predator-prey system modelled here has a maximum dimensionality of 

twenty). 

It might also be effective to reduce the mutation rate in order that the system 

was not returned to transient dynamics by too frequent invasions of new alleles. 

But here arises the trade-off between rapid, but unrealistic evolution, and 

evolution on a more realistic timescale with the resulting problem that the 

simulation has to be run for a very long time before any biologically interesting 

consequences happen. The simulation model used here was already very time­

intensive (see Appendix A), even after the number of iterations had been 

reduced by increasing the amount of ecological dynamics between each one. 
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5.4.4.3 Preventing the build-up 0/ similar genotypes 

Having removed the problem of transient dynamics, there still remains the 

one of the build-up of identical or near-identical alleles at a peak of fitness. 

This problem arises from two features of the simulation model; the constant 

environment, and the fact that only one variable represents the interaction of 

one . genotype with another particular genotype. 

The constant environment external to the predator and prey themselves 

means that fitnesses always have the same values for the same combinations of 

genotypes. Hence there can be values of traits which will always give the 

maximum fitness in the system. So it is possible for alleles to accumulate with 

nearly identical characters near the peak of fitness. I have tried to prevent the 

accumulation of precisely identical alleles by restricting the number of 

combinations of values of interactions that can occur, that is, the genotypes are 

sampled from a limited pool of characters. It might be of more interest to 

make the traits under selection (the Lotka-Volterra interaction terms) vary 

continuously, as many characters do vary in this way in nature. 

5.4.4.4 Altering the mutation process 

We have assumed that mutants are generated at random on a range of 

character states. This is intended to reflect the fact that mutations do not arise 

de novo, but are ecologically close to their progenitors (Ak~akaya & Ginzburg 

1989). Turelli (1984) has distinguished between "house of cards" and 

"continuum of alleles" models of genetic systems under mutation-selection 

balance. The former derive alleles at random, while the latter derive new 

alleles by some process from ancestral ones. We argue that in considering the 

interaction of ecology and genetics. the latter approach is more appropriate. 

As a result we have to deal with a large number of possible combinations of 
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characters leading to fitnesses. An alternative approach to the study of 

evolution in connection with interacting species has been taken by Kauffman 

and colleagues (Kauffman & Johnsen 1991). By restricting the amount of 

mutational states to two, they are able to construct and study the properties of 

rugged fitness landscapes, where the fitness of every possible genetic 

combination can be explicitly stated. Their approach offers some revealing 

insights into the self-ordered states which interacting evolving species can reach 

under selection from apparent chaos (Kauffman 1991), but it is not possible to 

replicate such an approach in a study of this kind due to the assumption of a 

very large number of mutational states .. 

5.4.4.5 Constraints on the evolution of polymorphisms 

In popUlation genetical representations of models of the maintenance of 

polymorphism (e.g. Spencer & Marks 1988), constraints on interactions are not 

required, since demographic parameters are not under selection. Constraints on 

evolutionary parameters may be required however. In their earlier models 

Spencer and Marks (Spencer & Marks 1988; Marks & Spencer 1991) observed 

that although polymorph isms of reasonable size could be maintained under 

selection, much larger polymorph isms (say thirty alleles) could be observed in 

nature. How were these maintained? In later work (Spencer & Marks 1992) 

they tried imposing correlations between fitnesses of the same allele as part of 

different diploid pairs, and found that much larger polymorphisms could be 

maintained. This is perhaps not surprising, because it indicates that alleles 

which have a relatively high fitness in combination with some other allele, are 

more likely to have a high fitness, and thus persist under selection, in 

combination with any other allele in the gene pool. Their assumption seems 

reasonable, in view of the occurrence of pleiotropic effects and incomplete 

dominance in nature. I did not include any such restrictions in the model 
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presented here. in an effort to limit its complexity. It is possible that a 

modification of this kind could result in the maintenance of polymorphisms 

approximating better to the size and complexity of natural ones. 

5.4.4.6 Conclusions 

I~ comparison with the natural environment. it is perhaps surprising that any 

apparent polymorphism has been maintained at all in our system. I have 

postulated constant fitnesses as a result of a constant environment (except for 

the other species). I have assumed that the environment is uniform and thus 

that individuals of each species interact at random. All these assumptions are 

not satisfied in nature. where a great deal of genetic variation is maintained. 

What is more. polymorph isms should not be maintained in a single-species 

genetic model under these conditions. 

In addition. I have assumed density-dependent selection. which would result 

in a fitness of zero at an ecological equilibrium. Analysis of the evolution of 

predator and prey at ecological equilibrium (Chapter 3) suggests that 

polymorphisms are unlikely to occur in such a system (R. Law. pers. comm.). 

On ,a more realistic fitness landscape, it would be reasonable to expect many 

local peaks of fitness. and hence allele polymorphisms might occur more 

frequently. 

It appears that the limited evidence for polymorph isms occurring in this 

system is confounded with the effect of transient genetic dynamics. and the 

effect of the accumulation of similar alleles cannot be ruled out. However the 

use of the simulation does suggest some methodological improvements which 

could assist research on the topic in the future. 
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5.5 THE POPULATION DYNAMICAL CONSEQUENCES OF 

PREDATOR·PREY COEVOLUTION 

5.5.1 Background 

The population dynamics of predator-prey interactions have often been 

modelled through Lotka-Volterra equations (e.g. Svirezhev & Logofet 1983; 

Hofbauer & Sigmund 1988:40; Murray 1989:63). These equations have the 

disadvantage that they are non-linear, and thus when formulated in continuous 

time, are not soluble by the conventional techniques of calculus, for systems of 

linear equations (Simmons 1974). Instead analysis of the stability properties of 

the equilibria of such systems is often used (Simmons 1974:296). The 

corresponding difference equations (Hofbauer et al. 1987) are even less well 

understood analytically. 

Local asymptotic stability (often called "local stability", after May 1973) 

analysis is often used in understanding ecological population models, but can 

be misleading, in that it only gives information about the small region near an 

equilibrium point for which a linear approximation to the nonlinear equations is 

appropriate (Wang & Guiterez 1980; Anderson et al. 1992; Law & Blackford 

1992). Global measures of the stability of equilibria, such as permanence (also 

termed cooperativeness, pennanent coexistence, uniform persistence or 

ecological stability; see Hofbauer et al. 1987) may be more appropriate (Hutson 

& Law 1985; Hofbauer et al. 1987; Hofbauer & Sigmund 1988; Anderson et 

al. 1992; Law & Blackford 1992; Law & Morton 1992). However there are 

problems in applying pennanence to ecological systems of more than three 

species (Law & Blackford 1992; R. Law, pers. comm.). 

The introduction of genotype densities into the population models described 

in previous chapters of this thesis effectively increases the dimensionality of the 

system and renders the technique of permanence ineffective. For this reason 
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numerical simulation may be one of the few approaches that can be used to 

investigate the population dynamical consequences of predator-prey evolution 

away from the linear regions near equilibria. 

What dynamics should be expected in evolving interacting populations is not 

clear. It is well-known that in continuous time, a system with a dimension of 

at least three is required for chaotic dynamics to occur, and for lower 

dim.ensions only limit cycles or point equilibria are found. In discrete time 

systems, no such result is known. 

If we refer to the evidence from natural populations. it is easily to find 

evidence for populations spending most of the time away from equilibria 

(Wiens 1984). despite much of biological theory being based on the assumption 

that populations are at equilibrium. The simple discrete-time single-species 

models examined by May and others (May 1974, 1976; May & Oster 1976) 

showed that very complex dynamics could arise in mathematically very simple 

systems. Gilpin (1979). and Hastings and Powell (1992) show chaos in simple 

three-species systems. 

The ease of observation of chaos in mathematical models led to a search for 

its occurrence in nature. Hassell el al. (1976) fitted parameters to insect 

populations but found only one located in the chaotic regime. Laboratory 

experiments (Thomas el al. 1980; Mueller et al. 1981; Stokes et al. 1988; 

Nisbet el al. 1989; but see Bellows & Hassell 1988) mostly seemed to suggest 

selection would act to produce stable parameter values. By contrast. attractor 

reconstruction has provided the best evidence for chaos in natural populations 

(Schaffer 1984. 1985: Schaffer & Kot 1985; Rand & Wilson 1991; Turchin & 

Taylor 1992). Whether chaos occurs in nature appears to be still an open 

question (against: Berrymann & Millstein 1989. see also Lomnicki 1989, Mani 

1989, Nisbet el al. 1989; for; Godfray & Blythe 1990; Rand & Wilson 1991) . 

. When evolution as well as population dynamics has to be considered. the 

situation becomes more complex. Evolution can result in changes in the 

152 



SIMULA nON RESULTS 

dynamical properties of populations. which may affect the dynamical behaviour 

of the system (Nicholson 1957; Stokes et al. 1988). Thomas et al. (1980) 

argued that chaotic dynamics would be prevented by a kind of group selection. 

Nisbet et al. (1989), and Mani (1989), suggested evolution to stability could 

arise through conventional individual selection. 

Metz and others (Metz 1992; Godfray el al. 1992; Metz & Godfray 1992) 

have used Lyapunov exponents (Metz et al. 1992) to examine the evolution of 

parameters in populations with complex dynamics. Some of their results 

predict evolution to parameter values corresponding to stable equilibria (Metz 

1992; Metz & Godfray 1992) but such results are strongly affected by the 

constraints one places on such a model. and evolution from stable to chaotic 

dynamics, or to cyclic dynamics, or some other combination appears possible 

(ibid.; Godfray et al. 1992). 

The difficulty of studying evolution in laboratory populations. and then 

fitting a mathematical model to the data obtained in order to predict the 

dynamical consequences of evolution makes simulation most appropriate to 

investigate this topic. In the following pages I will present time series of 

predator and prey population dynamics for the model described in the previous 

chapter, and contrast the type of dynamics that occurs after evolution with that 

occurring earlier in the time series. This should provide an indication of the 

dynamical consequences of the evolution of the predator-prey interaction. 

The simulation programs described in Chapter 4 are used, both in continuous 

and discrete time implementations. Both the unconstrained (Modell) and the 

constrained (Model 2) versions are used. 

5.5.2 Results 

What are the consequences of predator-prey coevolution for population 

dynamics? In order to answer this question I present a series of examples, 
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intended to be representative of the behaviour of the system. The complexity 

,!f a simulation model sufficient to study this task means that not every 

combination of possible parameters could be examined. 

Considering first the unconstrained system (Modell), in discrete time, we 

might expect evolution to result in unstable non-equilibrium dynamics. 

However in many cases this does not occur, and the predator and prey 

converge to an equilibrium. Figure 5.5 shows an example. The position of the 

population dynamical equilibrium is continually changing, under selection, but 

the predator and prey manage to reach the new equilibrium each time. 

Selection acts to increase the equilibrium population density of the predator, 

and decrease that of the prey. We can account for this behaviour by 

considering the effect of selection on the ecological interaction terms (Figure 

5.6). Selection acts on all to reduce it to near its minimum value, consistent 

with evolution of lack of self-limitation in the prey. 0.12 meanwhile evolves to 

a minimum absolute value while Cl:!1 evolves to a maximum. So the 

biologically paradoxical situation occurs of a predator evolving independence 

from predation, while the same predator evolved increased dependence on that 

species. This is a consequence of the independent evolution of all and ~I 

previously referred to. 

The evolution of interactions causes the zero isoclines for predator and prey 

to change position on the predator-prey phase plane (Rosenzweig & MacArthur 

1963; Rosenzweig 1973). The population dynamic equilibrium of the predator­

prey system is at the intersection of the two isoclines, and so the eqUilibrium 

moves on the phase plane; Figure 5.7 shows this effect. The predator-prey 

system first reaches an equilibrium at about (0.5, 0.1), but selection then moves 

the equilibrium position towards the upper left of the diagram, where the 

predator density is higher and the prey density is lower. This occurs a number 

of times, and each time the populations converge to the new equilibrium. 

Similar behaviour is found in the unconstrained continuous time system 
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Figure 5.5. Evolution of population dynamical equilibria in predator and 

prey: Model 1, discrete time. (a) prey; (b) predator. Predator and prey 

converge to an equilibrium. Natural selection on interaction strengths changes 

the location of the equilibrium, then both populations converge to new 

equilibria. Density is total density of all genotypes in that species. Time refers 

to number of iterations completed. 
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Figure 5.6. Evolution of interactions between predator and prey in the 

unconstrained model (Modell). (a) all ; (b) a l2; (c) ~l' The system 

corresponds to that of Figure 5.5 . Population dynamics were evaluated in 

discre te time. Inferac/ion denotes the weighted mean of the absolute value of 

the interaction intensity, weighted by the probability of occun'ence of particular 

intergenotypic interac tions, lij (calcu lated as in Equation 4.8). Time refers to 

the number of iterati ons comple ted. The simul ati on was run for ten th ousand 

iterations. 
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Figure 5.7. Phase plane of predator-prey population dynamics under Model 

1 evolution, discrete time. The system is the same as Figure 5.5. Evolution 

causes the position of the predator and prey zero isoclines (not marked) to 

change so that the predator-prey eq uilibrium point moves to the upper left, 

where prey density is low and predator density is high. Prey deJ/sity is the 

total density of all genotypes present in the prey spec ies at each iteration ; 

predator density is the con-esponding value for the predator. 
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(Figure 5.8). Note that in this case the prey appears to be approaching an 

equilibrium density which is higher than that of the predator, more in line with 

what biological intuition would suggest. If this version of the model were run 

for longer (difficult, because of the great demands on computer time), one 

might find that the system eventually evolves to the situation in Figure 5.5. 

This is not the only behaviour found in Modell, however. Selection on 

interaction intensities can lead the system into regions of parameter space 

where cyclic dynamics occur (Figure 5.9), and chaotic dynamics can be 

produced for many combinations of parameters. It is possible that chaos did 

not occur in the examples shown here often due to the limits imposed on the 

values of the interactions (0 < aij <= 1), and because the intrinsic growth rates 

'1 were not allowed to change. Higher intrinsic growth rates and stronger 

interactions are both likely to produce chaos. 

Cyclic dynamics can also be unstable (Figure 5.10). In this example 

selection leads to an increase in the benefit the predator obtains per prey (~I) 

and causes the predator and prey to cycle with ever-increasing amplitude, 

eventually forcing the prey to extinction ,and very soon afterwards, the 

predator. In many other cases extinction of the predator or both species occurs. 

The constraints imposed on the separate coevolution of all and all by the 

incorporation of body sizes (Sj) in Model 2 might be expected to result in a 

system with more "well-behaved" dynamics. If we examine a particular Model 

2 run (Figure 5.11), we' find that population dynamics are relatively stable. The 

constraints on the interactions affect their evolution. all evolves to a minimum 

as the course of the simulation proceeds (Figure 5.12 (a», as in Model 1. 0.12 

and Ct:zl by contrast (Figures 5.12 (b) and (c», attain intennediate values, 

reflecting the opposing selection pressures on them, and the restrictions on their 

covariation. 

Population dynamics often showed similar behaviour to Modell; 

convergence to stable equilibrium, reflecting similar overall constraints on 
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Figure 5.8. An example of the unconstrained (Modell) evolution of 

population dynamics in continuous time. (a) prey; (b) predator. A period of 

unstable change near the start of the simulation converges towards an 

equilibrium. Density refers to the total density of each species. Time refers to 

the number of iterations completed. The simulation was run for one hundred 

iterations, due to the amount of computer time required. 
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Figure 5.9. Evolution from equilibrium to limit cycles in predator and 

prey. The unconstrained (Modell), di screte time model is used. (a) prey; (b) 

predator. Evolution of parameters leads to a succession of stable equilibria, 

followed by the system entering a zone of cycl ic dynamics of gradually 

increas ing amplitude. At the end of the simulation, the prey popul ation 

dynamics appear to have attained a stable cycle, but it is not clear tha t thi s has 

occurred in the predator. Density refers to the tota l density of all genotypes in 

a particul ar spec ies . Time refers to the number of iterations com pleted. 
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Figure 5.10. Evolution of unstable cycles in predator and prey. (a) prey; 

(b) predator. The discrete time, unconstrained (Modell) model was used. 

Natural selection on interactions leads to an increase in the predator effect on 

prey (a.~n)' resulting in cyclical dynamics of increasing amplitude, eventually 

driving the prey to extinction, followed by the predator. Density refers to the 

total density of all genotypes in a particular species. Time refers to the number 

of iterations completed . 
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Figure 5.11. Evolution of population dynamics under constraint in predator 

and prey; Model 2, continuous time. (a) prey; (b) predator. Evolution leads 

to a different equilibrium for population density, at a greater density in both 

species than at the start of the simulation. Density refers to the total density of 

all genotypes in a particular species. Time refers to the number of iterations 

completed. 
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Figure 5.12. Evolution of interactions between predator and prey under 

constraint (Model 2), continuous time. (a) all; (b) an; (c) <X.:!I ' The system 

corresponds to that of Figure 5.11. Interaction Intensity refers to the arithmetic 

mean of the intergenotypic interactions, weighted by the probability of 

occurrence of each interaction (lij as Equation 4.8) . Time refers to the number 

of iterations completed . 
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parameter values. However, the lack of extreme values of predator effect on 

prey and vice versa in this model meant that extinction of the predator was 

observed only very rarely, and extinction of the prey leading to extinction of 

the whole system hardly ever. Unstable dynamics not resulting in convergence 

to an equilibrium was observed in this system, but frequently resulted in 

extinction of one or both species, and hence is not shown in the examples 

pre&ented here. 

In order to account fully for the behaviour of Model 2, we must examine 

also the values of Sj over time. Figures 5.13 (a) and (b) show the un weighted 

means for each species over time. We can see that Sl declines to a very low 

level. It is probable, that, given sufficient variation, it would decline still 

further. The mean of Sl reaches a value of about 0.5 at the same time. 

Looking at the values of interactions for each individual genotype (Table 5.10) 

shows considerable variation between genotypes, both in interaction values and 

densities, but such variation is to be expected in our model, reflecting 

evolutionary variation. 

5.5.3 Discussion 

The examples of population dynamics under evolutionary change shown here 

show that no single dynamical consequence can be attributed to predator-prey 

coevolution. Evolution can maintain populations within the stable equilibrium 

Zone of parameter space, but it can also convert stable equilibrium dynamics 

into stable limit cycle behaviour, or unstable cyclic dynamics leading to 

extinction. Stable dynamical behaviour seems to be quite robust to 

evolutionary change of parameters. The lack (Modell) or presence (Model 2) 

of evolutionary constraints via body size does not seem to seriously affect the 

conclusions. In addition, evolution from stability to chaos is plausible, 

although prevented in a number of cases considered here by assumptions about 
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Figure 5.13. Evolution of sizes of predator and prey under constraint 

(Model 2). (a) prey; (b) predator. The continuous time version of the 

simulation model was used. Size refers to the arithmetic mean of the sizes of 

the different genotypes within that species. Time refers to the number of 

iterations completed. 
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D Prey Predator 

Density Interactions Density Interactions 

CJ Xu = 1.0 a.llll = -0.1769 Xu = 1.0 ~111 = 0.6547 
0.1211 = -0.6547 

40 Xu = 1.5915 0.1112 = -0.0217 X21 = ~III = 0.4439 
a.llU = -0.0217 8.3E-5 ~112 = 0.4700 
0.1211 = -0.4439 
0.1212 = -0.4423 
0.1213 = -0.0141 

XI2 = 1.0E-6 0.1121 = -0.0216 X22 = ~121 = 0.4423 
0.1122 = -0.0216 1.7828 ~122 = 0.4683 
0.1221 = -0.4700 
0.1222 = -0.4683 

X23 = ~131 = 0.0141 
0.1223 = -0.0345 

1.0E-6 ~132 = 0.0345 

100 Xu = 1.5857 a.llll = -0.0217 X21 = ~III = 0.4439 
0.1112 = -0.0217 1.7702 ~112 = 0.5232 
0.1211 = -0.4439 
0.1212 = -0.4423 
0.1213 = -0.4441 
0.1214 = -0.1122 

XI2 = 1.0E-6 0.1121 = -0.0272 x22 = ~121 = 0.4423 
0.1122 = -0.0272 0.0065 ~122 = 0.5215 
0.1221 = -0.5232 

X23 = ~13I = 0.4441 0.1222 = -0.5215 
0.1223 = -0.5234 1.0E-6 ~132 = 0.5234 

0.1224 = -0.1782 X24 = ~141 = 0.1122 
1.0E-6· ~142 = 0.1782 

Table S.10. Evolution of interspecific interactions over time in Model 2. The table 

displays the values of population densities and interaction tenns at the start (time = 0), 

near the middle (time = 40), and at the end of a Model 2 run. The interaction terms 

are grouped on the same rows as the populations in which they have their effects. All 

non-zero interaction tenns are given. 
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strength of interactions and intrinsic growth rates. 

These results lend qualified support to theoretical (Heckel & Roughgarden 

1980; Turelli & Petry 1980) and experimental (fhomas et al. 1980; Mueller & 

Ayala 1981) results which suggest that selection can maintain life histories such 

that population dynamics are stable. The qualification arises beca~se the 

models I have investigated would not require much modification to produce 

chaotic dynamics for a wide range of parameters. In this they are similar to 

many relatively simple models of populations which can give rise to complex 

dynamics (May 1976; Godfray & Blythe 1990). 

There are also problems with the method I have used which merit further 

attention. The complexity of the simulation model used meant that it was not 

possible to map exhaustively the model parameter space. If one considers only 

the evolving interactions, all' a l2 and ~I' and allows one thousand possible 

different parameter values for each, then, taking all the possible intergenotypic 

interactions into account requires an impossible number of combinations of 

parameters (10900
), even when assuming all mutants are present and ignoring 

the initial state of the system, which is potentially variable. As a result it is 

difficult to assign quantitatively values to the relative importance of different 

types of dynamics that occur, and the analysis must remain descriptive. 

Systematic variation of parameters in resilience tests would be useful way of 

judging the robustness of results observed, but could only be performed for 

limited ranges of parameters, and would still be extremely time-consuming and 

require intensive use of computing resources. Limitations on time prevented 

the carrying out of such a thorough analysis in this work. 

Another problem concerns the lack of knowledge about the dynamics of 

individual genotypes these results give us. A very large amount of information 

would be required in order to be able to analyse this, but it would enable us to 

distinguish relatively stable population dynamics caused by the presence of one 
\ 

genotype at a high and relatively constant density, and many other genotypes at 

low but fluctuating densities, from a stable overall density made up of the 
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continual cyclic turnover of alleles. Such modifications could be incorporated 

in future versions of models of this kind. 

5.6 CONCLUSIONS: STUDYING COMPLEXITY BY SIMULATION 

From these studies of different aspects of the predator-prey coevolutionary 

interaction, it can be seen that simulation modelling can shed light on questions 

which are difficult to address by conventional mathematical or experimental 

approaches. The three questions investigated here, although superficially very 

different, do bear common features in that they are all based on the same 

numerical models, and investigate different levels of the coevolutionary 

interaction, from the genetical to the ecological. 

It will be seen that the studies presented in this chapter have not achieved all 

their objectives; where this is the case I have attempted to account for this and 

to suggest ways in which the methods used to could be improved to yield more 

reliable answers. Negative results, although they may not advance the study of 

the area of investigation very much, can be useful in showing paths for further 

research, as I have attempted to sketch here. 

The various different problems with the simulation found in the different 

studies may in a large part, I suggest, be traced back to a central problem of 

the use of simulations to study complex theoretical models. This is that in 

order to represent natural complexity, the simulation model must itself become 

sufficiently complex as to preclude exhaustive testing, and thus limit the degree 

of understanding of the behaviour of the model. Biology presents some 

extremely interesting complex systems, about which much less is known than 

Some other systems in other areas of the natural sciences. and computing power 

and accessability looks set to increase over the foreseeable future, but 

constructing more complex, more accurate models does not always imply 

greater understanding. 

Despite this pessimistic note, it is difficult to see how simulation modelling 
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can fail to become more significant in evolutionary biology, as the development 

of new computing equipment allows more and more questions to be 

investigated. 
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Chapter 6. GENERAL DISCUSSION 

6.1 SUMMARY 

The analytical, numerical and simulation models of evolution and dynamics 

in interacting populations, presented in preceding chapters, are discussed in two 

parts. The ftrst part concentrates on evolution in interacting populations. The 

original aim of the project is discussed, and the reasons behind a more 

restricted focus, on evolution in predator-prey systems, are given. The 

implications of the models for predator-prey coevolution are considered. There 

are many problems in the theoretical study of predator-prey coevolution; and 

the evidence for such coevolution is examined in the light of these problems. 

Related questions in the field of parasite-host coevolution are also examined. 

In the second part of the discussion the different types of dynamics that 

OCcur in predator-prey coevolution systems are examined. The word dynamics 

can be used to mean either evolutionary or ecological dynamics. I identify four 

distinct issues in connection with dynamics; evolutionary dynamics can be 

either genetic or phenotypic, while ecological dynamics presents the problems 

of avoiding the use of restrictive stability measures, and that of identifying the 

underlying dynamics of the predator-prey system. The success of the various 

teChniques I have used in addressing these issues is discussed, and suggestions 

for further work are presented. 
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6.2 INTRODUCTION 

At this point it seems appropriate to think back to the first page of this thesis; 

to the title of the project, The evolution and dynamics of interacting 

populations. The title can be split into two components. First, Evolution of . 

interacting populations, and second, Dynamics. These provide a basis for 

consideration of the work presented in this thesis in two parts, which I shall 

follow here. First I shall consider how the research I have presented in the 

preceding chapters has addressed the topic of the evolution of interacting 

popUlations, then I shall go on to look at the meaning(s) of dynamics in this 

context In the final section some of the many questions that arise out of this 

work, and inevitably, remain unanswered, will be considered. 

6.3 EVOLUTION OF INTERACTING POPULATIONS 

The phrase, Evolution of interacting populations, is more general than the 

topic I have actually considered in this project What, for example, is the 

nature of the interaction between populations? One could assume that it was an 

ecological interaction, since populations are the stuff of population ecology, but 

there are many different such interactions (e.g. Begon et al. 1986). Due to the 

original intention to investigate the relationship between dynamlcal stability of 

food webs and ESSs (see Chapter 1, and section 6.5 below), I have considered 

only trophic interactions. The study of the evolution of trophically interacting 

populations implies examination of the evolution of food webs; in fact the 

models presented here have concentrated upon predator-prey interactions. Is 

this justified? In section 6.3.1 I shall consider this change of emphasis. 

The study of predator-prey interactions and evolution means that one can 

address the topic of predator-prey coevolution. In section 6.3.2 I shall discuss 

the contribution the modelS I have studied have made to the understanding of 

predator-prey coevolution, and consider the relationship of the theory presented 
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here to theoretical, experimental, palaeontological and field research on the 

same topic. 

Predator-prey coevolution is a difficult phenomenon to define in nature 

however (Endler 1991), and it has been disputed whether or not it is actually 

coevolution sensu stricto (Janzen 1980). Mathematically closely related 

systems such as host-parasite (May & Anderson 1983b), or host-pathogen 

systems, may be more appropriate for the study of the evolution of interacting 

species. In section 6.3.3 I shall consider how the results of my research on 

predator-prey coevolution relate to studies in the related area of parasite-host 

coevolution, and whether some of the methods I have developed could be 

applied equally well to coevolutionary systems other than predator-prey ones. 

6.3.1 Food webs and predator-prey interactions 

In nature, every pair-wise trophic interaction is part of a web of multi-species 

interactions. Thus it would seem reasonable to study the evolution of 

interacting species at the level of the food web or the community rather than at 

the level of a pair-wise interaction between predator and prey. This has been 

the approach followed in a number of theoretical studies (e.g., Stenseth 1983; 

Stenseth & Maynard Smith 1984; Brown & Vincent 1987a). On the other hand 

this makes it difficult to take into account the interaction of population and 

evolutionary dynamics to any great extent. The models that I developed reflect 

the role of population dynamics in driving coevolutionary change more 

accurately, but they do so at the expense of greater difficulty in analysis and 

interpretation when many species are considered. For these reasons, it was 

necessary to focus my investigations on predator-prey interactions. 

Two arguments provide some justification for restricting attention to 

predator-prey systems. First, in order to understand the evolution and dynamics 

of a trophic web, it is first necessary to comprehend fully the evolution of 

predator-prey interactions. This path to the analysis of mUlti-species evolution 
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has been followed by a number of other workers (Rosenzweig & MacArthur 

1963; Rosenzweig 1973; Schaffer & Rosenzweig 1978; Roughgarden 1983; 

Abrams 1986a, 1990, 1991). Second, there is evidence that strong interactions 

are rare in nature (paine 1980, 1992; Hall & Raffaelli 1991). If many 

interactions have very little effect, the few that do have major ef(ec~ on each 

species population dynamics may be similar to isolated pair-wise interactions. 

6.3.2 Predator-prey coevolution 

6.3.2.1 The models 

In order to consider the implications of the results of previous chapters for 

predator-prey coevolution, I shall first examine the predictions of other 

theoretical models, and their implications for the styles of modelling I have 

used. Due to the observational difficulties involved in observing predator-prey 

coevolution (to which I shall return to later), much effort in this field has been 

concentrated upon theoretieal studies (Rosenzweig & MacArthur 1963; 

Rosenzweig 1973; Schaffer & Rosenzweig 1978; Slatkin & Maynard Smith 

1979; Roughgarden 1979, 1983; Abrams 1986a, 1990, 1991). 

Much of this work has adopted the "arms race" analogy. This was 

introduced by Dawkins and Krebs (1979)~ but antagonistic coevolution of 

predator and prey had previously been referred to as a "rat race" by 

Rosenzweig (1973), and as an "evolutionary race" by Slobodkin (1974). 

Parker (1983, 1985) discussed such a model in which the level of investment 

in predator and prey "armaments" was considered in an evolutionary game. 

Since I have defined the predator-prey interaction in terms of levels of 

investment in predatory and anti-predator traits (Marrow & Cannings 1992, 

Chapter 2; Marrow et al. 1992, Chapter 3; Chapter 4), the models I consider in 
, 

preceding chapters may be considered as arms race models. 

The arms race analogy has been used in several senses, for which the simple 
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verbal definitions of Dawkins and Krebs (1979) are not sufficient to 

distinguish. Abrams (1986b) has pointed out that the arms race analogy may 

refer either to an alteration in the selection pressure for the incorporation of 

predation-related mutants as a response to a change in one species. or to an 

increased optimal level of investment in a predation-related trait as a result of 

the change. If the first alternative is considered then an increase in a predation­

related trait in one species may not result in an increase in the other species of 

the level of a corresponding trait. This alternative is the sense in which the 

models I have considered are arms race models, since an increase in the 

investment. or body size. of one species. does not always produce an increase 

in the other. 

The arms race analogy has been criticised (Abrams 1986a. b) for not 

reflecting the wide range of evolutionary behaviour that predator-prey systems 

can produce (Abrams 1986a. 1990. 1991). Such criticisms seem in part 

justified in the light of the wide variety of behaviour shown by the simple 

predator-prey models I have analysed in Chapters 2 and 3; ESSs. cyclical 

evolutionary change (Red Queen coevolution), as well as predator extinction 

are all possible. Only in certain systems (Marrow & Cannings 1992, Chapter 

2; Marrow et al. 1992, Chapter 3) are directional coevolutionary change 

implied by the arms race analogy found. 

Dawkins and Krebs (1979) derived the life-dinner principle from their 

assumptions about a predator-prey arms race. This suggests that there should 

be greater selection pressure upon the prey for anti-predator adaptations, than 

on the predator for predatory ones. This is one of a suite of observations that 

have been made of asymmetries in adaptation in predator and prey (reviewed 

by Endler 1991). The observation (Chapter 3; the loser-wins principle, Marrow 

et al. 1992) that the prey, although the loser in the ecological sense actually 

wins in the evolutionary interaction, by evolving to a state where the level of 

interaction with the predator is very weak, gives additional support to the idea 

of an asymmetry in predator-prey coevolution. This, due to the problems in 
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applying the arms race analogy directly to predator-prey models (see above), 

may be its most important consequence for the evolution of predators and prey. 

The coexistence of predator and" prey is a biologically pleasing consequence 

of the models I have analysed, and occurs under a wide range of conditions. 

Such a conclusion agrees well with the intuitive notion that predato~-prey 

interactions must have existed in nature for some time in order that we could 

observe them, as well as with theoretical models that have predicted this 

outcome (Rosenzweig 1973; Slobodkin 1974; Schaffer & Rosenzweig 1978). 

Extinction of the predator, or predator overeating of the prey leading to the 

extinction of both species does occur with appreciable frequency: such results 

could be attributed to combinations of predators and prey that cannot occur in 

nature, but such an argument in the absence of a good empirical basis for the 

theory cannot be assessed adequately. It is very difficult to obtain data on the 

extinction of prey due to predator effects, due to the lack of evidence after the 

event. While it seems possible that predators could overeat their prey, in 

nature such a local extinction would probably occur in the context of a 

polyphagous predator, whiCh could then swit~h to alternative prey. 

The widespread occurrence of polyphagy is a fundamental problem for 

predator-prey models of two interacting species. Some attempts have been 

made to study the effects of other species on a predator-prey interaction 

(Abrams 1991), but even these models do not approach the complex food webs 

typical of natural trophic interactions (Cohen et al. 1990a). Although many 

trophic interactions may be so weak as not affect many species in the trophic 

web appreciably (Paine 1980, 1992; Hall & Raffaelli 1991; Hall et al. 1990a, 

b), there are many cases where strong interactions between more than two 

species can be found. In view of these difficulties with a theoretical approach, 

it is perhaps to the empirical evidence of predator-prey coevolution that we 

should look. 

There remain, howeve"r, other problems with the models I have considered 

here, in particular. In basing the models upon the Lotka-Volterra food web 
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equations, I have assumed linear functional responses (Holling 1961). In 

attempting to fit the models closer to reality, some form of non-linear 

functional response would be required (see, for example, Abrams 1986a, 1990, 

1991). Functional responses of this form were not included in the models I 

consider here since they would render them intractable, or at least yery 

resistant to analysis. 

It is well-known that body size of organisms varies with age. Age structure 

was not considered in the models that I used because of the difficulties in 

analysis of the models that would then arise. A large body of theory has been 

developed using age-structured models, especially in the analysis of life 

histories (Charlesworth 1980; Stearns 1992). The incorporation of age structure 

would' enable the evolutionary consequences of phenotypic evolution to be 

related more directly to life history traits which may be estimable in natural 

populations. 

The weaknesses and advantages of the Lotka-Volterra equations as models of 

interacting populations are well-known, and I have discussed them elsewhere 

(e.g. Chapters 2, 3), so I shall not consider them in any detail here. One 

generalisation that can be made about the Lotka-Volterra equations is that they 

represent a population-level model. Individuals are assumed to interact at 

random, and individuals are uniform within populations. When genetic 

variation is introduced, individuals do not vary within genotypes, which ignores 

the Occurrence of phenotypic plasticity (LesseUs 1991). Yet predator-prey 

interactions are, fundamentally, interactions between individual predators (or 

small groups) a~d particular prey. It would be appropriate for a model of 

predator-prey coevolution to be based upon interactions between individuals 

and reflect individual variation (Lomnicki 1988). In addition the inclusion of a 

more complex, possibly diploid, genetic system would be advisable. One 

Possible way that this could be done is via a Monte Carlo simulation model,' 

recording the fates of individuals. Such a simulation would be very time­

intensive, and as a result one might wish to look for natural evidence of 
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predator-prey coevolution as an alternative. 

6.3.2.2 The evidence 

In the case of predator-prey coevolution, the difficulty of modelling a 

realistic situation means that we must look for broad agreement with empirical 

data rather than specific fits between a model and data. DeAngelis et al. 

(1984, 1985) provide the exception to this: they developed a model of a 

specific predator-prey interaction which they tested with data from the fossil 

record, but the greater complexity of their model meant that their conclusions 

were not as general as some of the models discussed above. Due to the long 

time scale of most evolutionary change, most of the data on predator-prey 

coevolution has come from the fossil record (Venneij 1982, 1983, 1987; 

Venneij & Covitch 1978; Kitchell et al. 1981; Bakker 1983; Stanley et al. 

1983; West et al. 1991). 

The evidence for predator-prey coevolution in the fossil record is not 

unequivocal. Vermeij (1982, 1983, 1987; Vermeij & Covitch 1978) has studied 

the effects of predators on hard-shelled molluscs, and found limited evidence 

for the kind of reciprocal adaptations that a strict definition of coevolution 

(Futuyma & Slatkin 1983a) requires. He suggested that the evolutionary 

interaction between predator and prey might more appropriately be described as 

"escalation" (Venneij 1987). Bakker (1983) and Stanley et al. (1983) also 

consider the fossil record of the evolution of particular groups of predators and 

prey. Bakker (1983) found evolution of predator and prey occurred 

discontinuously, with lags in adaptation in one species in response to a change 

in others. Stanley et al. (1983) found established predator and prey species 

sufficiently stable to suggest that predator-prey coevolution only occurs very 

rapidly when the species first fonn. 

These results do not produce clear predictions for the outcomes of theoretical 

models. The observations of Stanley et al. (1983) of, "slow, stuttering 
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coevolution", could be taken as support for the occurrence of ESSs, but the 

predator-prey interaction occurs in a changing physical environment, and it may 

not be possible to define precisely an ESS in this context. The other prediction 

of continual coevolutionary change, or Red Queen coevolution (Marrow et al. 

1992; Chapter 3), is not supported by studies of the fossil record of predator­

prey interactions, but studies of larger communities and their evolution have 

given some support (Hoffman & Kitchell 1984; Hoffman 1991). The fossil 

record cannot give any details about intensity of selection, which would be 

useful in testing these hypotheses (Hoffman 1991). 

In the absence of clear-cut evidence from the fossil record, models of 

predator-prey coevolution must rely upon biological plausibility for their 

justification. This justification underlies all the models I have considered here. 

In an ideal world experimental or field data could be used to back up evidence 

from palaeontological studies of coevolution. Unfortunately, the long time 

scale required means that experimental or observational studies of evolution in 

predator and prey can only address the problem peripherally. A number of 

studies have shown evolutionary responses in prey in response to predation 

(e.g., Reznick & Endler 1982; Edley & Law 1988) in field or laboratory 

experiments, but it is difficult to show the reciprocal effects of prey on predator 

which a narrow definition of coevolution would require (Futuyma & Slatkin 

1983a). 

In tenns of their effect upon population densities, a predator-prey interaction 

is similar to a parasite-host or pathogen-host interaction, and indeed· the 

interactions between parasitoids and their hosts can be considered as either. In 

the next section I shall consider the relationships between these types of 

antagonistic interactions. 
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6.3.3 Evolution of coevolutionary cycling: parasite-host interactions and the 

Red Queen 

The observation of continuous evolutionary change. or Red Queen 

coevolution in simple predator-prey systems (Marrow et al. 1992. Chapter 3). is 

somewhat unexpected. and contrary to theoretical predictions (Rosenzweig et 

al. 1987) of the behaviour of coevolving communities. That Red Queen 

coevolution arises in such a simple system lends support to hypotheses of its 

Occurrence in other systems. of similar or greater degrees of complexity. A 

great deal of attention in evolutionary biology has been focused upon the 

hypothesis that parasite-host interactions can generate Red Queen coevolution. 

and that this may be responsible for the selective maintenance of sexual 

reproduction (Hamilton 1980; Hutson & Law 1981; Bell 1982; Nee 1989; 

Hamilton et al. 1990). Models of the evolution of sex through parasite-host 

interaction require more complex assumptions about genetics than my models 

of predator-prey interactions have included. They require multi-locus control of 

the traits under selection. as well as a selective advantage to recombination of 

the alleles at these loci. Nevertheless. the results of the (much simpler) 

predator-prey models studied here imply that such a mechanism may be 

widespread in more complex systems. 

Although at first sight. parasite-host or pathogen-host interactions are very 

different from predator-prey ones. they are similar in that they are all +/­

ecological interactions. and can be modelled in similar ways (Hassell & 

Anderson 1989). It would be of interest to model the coevolutionary dynamics 

of a parasite-host interaction in a similar way to the models of predator-prey 

interactions I have considered here (Marrow et al. 1992; Chapter 3). Measures 

of virulence or resistance could be substituted for body size in the model. Such 

modelling might enable a more thorough understanding of the dynamics of 

parasite-host interactions and the frequency of occurrence of cyclic dynamics 

than is currently available. 
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6.4 DYNAMICS 

The second major topic of this thesis can be denoted by the tenn dynamics. 

But the word dynamics can be interpreted in a number of different ways in the 

context of the evolution of interacting populations. These include; (1) the 

dynamics of genotypes within populations, (2) the dynamics of phenotypes, (3) 

population dynamics as considered by stability analysis, and (4) population 

dynamics resulting in non-equilibrium dynamical behaviour. I shall consider 

each of these alternatives in turn. 

The dynamics of genotypes and of phenotypes are closely related in the 

systems I have considered,. since they are based on a haploid genetic system. I 

. shall distinguish between them by considering properties of the number and 

duration of genotypes as genetic dynamics, without direct reference to the 

characters they code for. I will then use the term phenotype dynamics to refer 

to changes in the traits encoded by the genotypes over time. 

I consider population dynamics in the evolutionary models from two 

perspectives. The first is from the perspective of stability analysis, a widely­

used technique for the understanding of non-linear differential equations 

(Simmons 1974:290). In population biology such analysis has depended 

frequently upon the assumption that populations remain close to ecological 

equilibria; this is the basis of the dynamical stability hypothesis of food web 

structure in particular (Pimm 1982). Since it is not clear that this assumption is 

satisfied in natural populations, it was intended that this study should avoid the 

Use of local measures of stability about ecological eqUilibria, and if possible 

introduce global measures. This will be discussed in the first section on 

population dynamics. 

The possible non-equilibrium behaviour of biological problems leads to 

another, more general, question about biological population dynamics; what 

type of dynamical behav'lour arises in populations undergoing evolutionary 

change? Population dynamical systems could exhibit non-equilibrium 
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behaviour as a result of lack of convergence to a stable equilibrium, but it 

could be that no such stable equilibrium occurs, and the only attractor present 

is a cyclic or chaotic attractor. This will be considered in the second section. 

The existence of non-~quilibrium dynamics in population models is related to 

the fundamental question of the nature of dynamics found in natural 

popUlations. In the final section on ecological dynamics, I shall address this 

topic. 

6.4.1 Evolutionary Dynamics 

6.4.1.1 Genetic dynamics 

I have considered the dynamics of genotypes in two contexts. First, the 

number of different genotypes maintained in each species over time. Second, 

the success rate of invasions of new genotypes. These approaches allowed 

consideration of important questions in popUlation genetics, without some of 

the complexity of conventional population genetical models. The results of the 

two approaches are not unequivocal. 

The simulation of the invasions of new genotypes into predator and prey 

(Chapter 5) gave minimal support to the hypothesis that polymorphisms could 

be maintained by predator-prey interactions at a haploid locus, but it was not 

possible to distinguish true polymorphism from confounding effects. The 

occurrence of polymorphism would be consistent with the genetic models of 

Spencer and Marks (1988, 1992; Marks & Spencer 1991). Conventional 

population genetics theory suggests that only one genotype should persist under 

density-dependent selection at a haploid locus in a single species. 

If all the polymorphism observed is an artefact, then this may reflect the fact 

that a predator-prey interaction modelled in this way is not sufficient to 

maintain genetic variati~'n. Work in progress (Marrow et al. 1992; R. Law, 

pers. comm.) suggests that polymorphisms may occur very rarely in predator-
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prey systems, for a restricted range of parameter values. The results observed 

may be a consequence of this. Antagonistic interactions are thought to be a 

cause cjf the maintenance of genetic variation in natural populations (Hamilton 

1982; Cockburn 1991:50); it may be that the failure to detect their 

consequences in this model is a result of haploid genetics, and extension of the 

model in the incorporation of diploid genetics seems an appropriate' task for 

future work. 

The models of the invasions of mutants into predator and prey showed some 

evidence of decline in success rate of invaders through the progress of the 

simulation, but this was not clear-cut (Chapter 5; section 5.3). The build-up of 

resistance to invaders has been observed in the case of new species invading 

competition communities (Case 1990, 1991), or trophic webs (Drake 1990b). 

The method used in section 5.3 was not sufficient to isolate possible 

confounding factors, and the use of the haploid genetic system may prevent the 

occurrence of an effect which would be marked in a diploid system. 

In the models of section 5.3 persistence of invaders was measured only one 

iteration after invasion had taken place. A~kakaya and Ginzburg (1989) 

measured the longevity of species invading a competition community. They 

found an approximately negative exponential distribution of longevi,ty of 

invading species- with few species surviving for many invasion attempts 

(equivalent to iterations in my models), and a substantial number enduring for a 

few. It may be that a more accurate measure of the success of invading 

mutants in establishing themselves would be to look at the number remaining 

after some larger period of time. This was not measured in the simulations in 

chapter 5, and would be a topic for further work. 

6.4.1.2 Phenotype dynamics 

Phenotype-based modelling has been much used in evolutionary biology 

(e.g., Grafen 1991; Parker & Maynard Smith 1990), and the examination of the 
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dynamics of phenotypes under selection has been an important theme of the 

work discussed here. I have studied phenotypic dynamics in several ways; (1) 

analytically (Chapter 2; Marrow & Cannings 1992), (2) numerically, based on 

analytical models (Chapter 3; Marrow et at. 1992), and (3) via numerical 

simulation (Chapters 4 and 5). 

The methods of Chapters 2 and 3 have been very successful, generating a 

global description of the dynamics of phenotypes of predators and prey based 

upon the concept of the phenotype space. Notions similar to this concept have 

been used before; Lewontin (1974:13 ff.) characterized popUlation genetics in 

terms of genotype and phenotype spaces; the use of character spaces to 

determine optimal life histories is a conventional technique in the study of life 

history evolution (e.g. Metz & Godfray 1992). Mirmirani and Oster (1978) 

described the ESS dynamics of optimal reproductive strategies in competing 

plants using a "strategy space"; while Maynard Smith and Brown (1986) 

examined the dynamics of the evolution of body sizes of competitors on a 

parameter space related to the sizes of different asexual genotypes. The work 

of Takada and Kigami (1991) probably comes closest to that described here­

but their concern was primarily with the dyn~mics of evolutionary games, and 

they did not seek to include population dynamics. In that they include 

population dynamics, it appears that the models described in Chapters 2 and 3 

give a more complete, more global description of the evolutionary dynamics of 

ecologically interacting species than has previously been available. 

The results of the two models based upon the phenotype space present some 

interesting contrasts. The model of Chapter 2 (Marrow & Cannings 1992) does 

not produce ESSs except under exceptional conditions, but produces directional 

Continuous evolutionary change (perhaps an "arms race", in the sense of 

Abrams [1986b], or "escalation", in the sense of Vermeij [1987]), and 

maintains coexisting predator and prey under selection. The latter result is 

biologically pleasing, co~esponding both to biological intuition and the verbal 

(Slobodkin 1961) and theoretical (Slobodkin 1974) arguments predicting 
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prudent predation (Taylor 1984:126). Directional evolutionary change to 

extreme phenotypes is more difficult to justify; but it must be pointed out that 

in the model of Chapter 2 the prey self-limitation is held constant, and it is 

found in chapter 3 that this is a key determinant of the evolutionary dynamics 

of the system. The results of chapter 2 are· probably most significant in that 

they show that an ESS is by no means a certain outcome of predator-prey 

coevolution, which must call into question the considerable number of studies 

of the evolution of interacting species which are based upon deriving the 

conditions for an ESS, without determining whether it is attainable (e.g. 

Roughgarden 1979:464; Stenseth 1983; Reed & Stenseth 1984). 

The models of Chapter 3 generate ESSs where predator and prey coexist, a 

biologically reasonable result for the same reasons as described in connection 

with the Chapter 2 models above. Multiple ESSs can also occur, an interesting 

result in view of the simplicity of the models used. The coexistence of 

multiple ESSs is theoretically plausible (Cannings & Vickers 1988; Vickers & 

Cannings 1988) and their occurrence in this system suggests that very 

interesting evolutionary consequences could be found in models of more 

complex communities. Such results suggest a role for evolution in the 

structuring of biological communities, in view of the observation of alternative 

stable states in ecosystems (Table 1.2). 

The observation of Red Queen dynamics in this system is also of 

considerable interest, being unexpected both in the light of previous models 

(Rosenzweig et al. 1987), and in view of the simplicity of the model. That 

such a range of evolutionary dynamics can be isolated in this system suggests 

many potential directions in which this research could be developed. It would 

be possible to modify the numerical method of Chapter 3 to incorporate more 

interacting species, and there many be ways in which the reliance upon 

equilibrium popUlation dynamics may be relaxed (see section 6.4.2.2 below). 

Also of interest would be to examine the phenotype dynamics of the system 

using the ecological interaction coefficients as variables directly, rather than 
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looking at the body sizes.· This would give a more general view of the 

dependence of ecological interaction upon genetic trait, although the model 

would be less directly related to a biologically proximate character, such as 

body size. 

The simulations described in Chapters 4 and 5 were less directly successful 

in examining the dynamics of phenotypes. Constraints on computer time meant 

that only certain aspects of the computer models could be concentrated upon. 

It was possible to generalize about the evolution of interactions in Model 1 in 

terms of the movement of zero isoclines for population dynamics in this system 

(see Chapter 5; section 5.5.2). This conclusion is biologically unsatisfactory 

however, since it implies the paradoxical situation of a prey species evolving 

independence from predation while the predator simultaneously becomes more 

and more dependent upon it Model 1 can be thought of as a null model 

against which the results of other evolutionary models with constraints can be 

compared. 

Those aspects of phenotype dynamics that were observed were concerned 

with the evolution of interactions and body sizes over time; trends were 

observed in each, but it was not possible to incorporate these trends in a more 

general theory. Changes in average interaction intensity, or some related 

measure of interspecific interaction, have frequently been explored in models of 

community assembly and evolution (Ginzburg et al. 1988; Taylor 1988; 

Szathmary et al. 1990; Vida et al. 1990), but the general behaviour of such 

systems has often also been not fully accounted for. A task for future work 

would be to reconstruct the attractors for interaction and size dynamics within 

the Model 2 system. The results from the simulations under Model 2 

constraints show that ecological as well as evolutionary dynamics must be 

taken into account when the behaviour of models of evolving interacting 

species is considered. 
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6.4.2 Ecological dynamics 

The models I have examined in the preceding chapters are all based upon the 

Lotka-Volterra models for population dynamics. Lotka-Volterra models despite 

their wide use present many problems in application, as has been mentioned in 

previous chapters. Central to the use of Lotka-Volterra equations as models of 

population dynamics are the issues of stability analysis as a method for 

understanding ecological dynamics, and the nature of the dynamical attractors 

underlying models of interacting populations. 

6.4.2.1 A voiding local stability 

Local asymptotic stability (local stability; May 1973:13) analysis is a widely 

used technique in the study of ITlodels of biological populations. It enables an 

understanding of the behaviour of such models to be obtained despite their non­

linearity. However it only gives information about a small region of phase 

space near an eqUilibrium point in which a linear approximation to the 

nonlinear equations is appropriate, and thus was thought to be misleading in the 

context of the evolution of interacting species. In this case there was thought 

to be no reason why the combined effects of evolutionary and ecological 

change would not perturb the ecological dynamics away from equilibrium. 

The use of local asymptotic stability analysis was avoided in the simulation 

models (Chapters 4, 5) by evaluating the population dynamics directly, using 

numerical integration, and by allowing mutants to invade irrespective of 

whether popUlations had converged to equilibrium or not. 

This was in contrast to many models of community assembly (Robinson & 

Valentine 1979; Drake 1983, 1990b; Post & Pimm 1983; Mithen & Lawton 

1986; Case 1990, 1991), which assumed restrictive conditions about 

convergence to equilibrium at each stage. Thus the simulation models were 

"developmental" models in the sense of Taylor (1989), 
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The avoidance of local asymptotic stability analysis removed many of the 

problems associated with that technique, but introduced other problems 

preventing a general understanding of the behaviour of the simulation systems. 

In the absence of a complete exploration of the parameter space of the models, 

it was appropriate to use a global stability criterion to analyse the population 

dynamics of the evolving interacting populations. Permanence, as used by Law 

and Blackford (1992), in their models of food web assembly, seemed 

appropriate. Such a criterion is in a sense, more fundamental than one dealing 

with convergence to an equilibrium, since permanence addresses the question of 

the coexistence of populations through time, rather than the constancy of 

eqUilibrium densities (ibid.). There is no reason that convergence to a feasible 

(all densities positive) equilibrium should occur, in general. 

Ideal although such a criterion might seem, there are problems in applying it 

to systems of more than three species. In the si"mulation models of Chapters 4 

and 5, although I model only two species at a time, the introduction of genetic 

variation makes the model equivalent toa Lotka-Volterra system with up to 

twenty species. It is possible that permanence methods could be applied to the 

simulation models under conditions when only a few mutants were present, but 

there would always be the possibility of more mutants invading and causing the 

method to fail. Jansen (1987) has developed a criterion for permanence which 

can be applied to Lotka-Volterra systems of more than three species, but it is 

only a sufficient condition; i.e., it will identify permanent systems correctly but 

not all those systems which fail the criterion will not be permanent. Law and 

Blackford (1992) applied Janzen's criterion to certain Lotka-Volterra food web 

systems with greater than three species, and found no cases where the criterion 

failed to identify permanence correctly. However, their use of food web 

systems relied on Harrison's (1979) result (see below), and so cannot be 

regarded as a test of the use of the pennanence criterion for general 

configurations of Lotka-Volterra systems. 

For this reason, the analytical models of Chapters 2 and 3 are so constructed 
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as to be able to rely upon the result of Harrison (1979), which states that a 

Lotka-Volterra food chain system, if it possesses a feasible interior equilibrium, 

will have the property of global asymptotic stability of that equilibrium. This 

means that, given sufficient time, all paths (also called orbits or trajectories in 

the literature) of the population dynamics in phase space will converge to the 

interior equilibrium, regardless of their starting points, providing those are 

positive. Global asymptotic stability also implies permanence. In the 

evolutionary models I considered, I regard sufficient time for convergence to 

equilibrium as being available, since mutations are assumed to occur rarely, 

with large amounts of ecological time in between each. So, in the case of these 

models there is no need to apply pennanence criteria, or local asymptotic 

stability analysis, as global asymptotic stability, which is a more general 

condition than required by the latter method. applies. 

6.4.2.2 Non-equilibrium dynamical behaviour 

It would also be of interest to know of the evolutionary behaviour of the 

analytical models when population dynamics were not at equilibrium. Non­

equilibrium behaviour could be due to transient lack of convergence to an 

equilibrium point, or to an underlying attractor which was not an eqUilibrium 

point. Although in both of these cases trajectories could occur leading to 

extinction of one or more popUlations, and so it would not be possible to infer 

conclusions about the coexistence of species, the type of dynamical behaviour 

exhibited by the evolutionary ecological models discussed here is of interest, 

since it would enable the better evaluation of the roles of mathematical models 

in relation to natural population dynamics. It might also be possible to draw 

Conclusions about the type of dynamics present in natural popUlations. 

The analytical models of Chapter 2 (and Marrow & Cannings 1992) required 

equilibrium population dynamics in order that their results could be evaluated 

explicitly. It is possible that non-equilibrium dynamics could be considered if 
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the results were evaluated numerically across the phenotype space in the 

manner of Chapter 3 (Marrow et al. 1992); but it was not possible to 

investigate this in the time scale of the current project. 

The results presented in Chapter 3 require equilibrium dynamics in order that 

measures of the invasion of new mutants can be evaluated. One possible way 

of investigating the invasion of new mutants into the system of chapter 3 would 

be through the use of Lyapunov exponents (Baker & Gollub 1990; Metz et al. 

1992). Lyapunov exponents are frequently difficult to derive explicitly (ibid.), 

but, in the case of Lotka-Volterra systems, they can be obtained by making use 

of the property of the average density of the species to tend to the equilibrium 

density, given a sufficiently long time and as long as the densities are bounded 

away from zero and infinity (Hofbauer & Sigmund 1988:88). The Lyapunov 

exponent of a mutant is then its per capita growth rate at the eqUilibrium point 

(R. Law, pers. comm.). Thus it may be possible, in future work, to extend this 

method to populations with chaotic or cyclic population dynamics. 

Some idea of the range of dynamical behaviour generated by the simulation 

models was obtainable by direct observation of the time series generated by 

numerical integration (Chapter 5; section 5.5). Non-equilibrium popUlation 

dynamics was observed in this model. which made it more realistic in reflecting 

the possible dynamical behaviour of the system than many models of 

community assembly, which have tended to rely upon equilibrium behaviour 

(Robinson & Valentine 1979; Drake 1983, 1990b; Post & Pimm 1983; Mithen 

& Lawton 1986; Case 1990, 1991). However only limited understanding of the 

dynamical behaviour of the system was obtained from the number of simulation 

runs that it was possible to perfonn. The versatility of the simulation model so 

created, means that further exploration could be carried out without extra 

programming effort. 

The use of the simulation model did run into problems caused by the 
, 

complexity of the system 'under study. Complex evolving biological systems 

have attracted much attention from computer scientists, and others, interested in 
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artificial representation of life-like processes (see Langton 1989a; Langton et ale 

1991; and references therein). There seems to be, however, no clear consensus 

on what methods are most appropriate (Hogeweg 1989; Langton 1989b, 1991; 

Packard 1989; Taylor et al. 1989; Kauffman & Johnsen 1991; Lindgren 1991; 

Ray 1991). The complete description of the results of a computer simulation is 

a problem which different workers have adopted different approaches to, never 

being able to achieve the ideal (Drake 1985, 1990b; Taylor 1985, 1988; 

Szathmary et ale 1990; Vida et al. 1990). The results described in this thesis 

give some indication of the nature of the effect of evolution on the population 

dynamics of interacting species, and provide a starting point for further work. 

Many problems remain to be addressed in this area. 

6.4.2.3 Natural popUlation dynamics 

Questions about the underlying popUlation dynamics of evolving interacting 

population models must remain of limited generality when the debate over the 

dynamics of natural populations is not yet resolved (Berryman & Millstein 

1989; Godfray & Blythe 1990). What the models presented here do show, 

apart from new ways of understanding the evolutionary dynamics of interacting 

species, are that evolutionary and ecological dynamics are intertwined, and each 

has an effect on the other. A fuller understanding of the dynamics of natural 

populations will be possible when the effect of evolutionary change on 

ecological dynamics has been evaluated more completely. 

6.5 THE FUTURE 

In a work of this kind, it is inevitable that there remain a number of 

unanswered questions. In this section. I shall focus on some of the most 

important of those, in order to suggest some directions for future research. 
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6.5.1 Constraints on evolutionarily stable food webs 

The original aim of this project was to examine evolution in food webs. For 

a number of reasons this was not carried out. But it remains the case that 

interesting analogies can be drawn between the work on patterns in food webs 

(Pimm 1982, 1991; Lawton 1989; Pimm et al. 1991), which set exclusion rules 

about configurations of food webs which are not observed, and work on 

patterns of coexisting ESSs (Cannings & Vickers 1988, 1989; Vickers & 

Cannings 1988), which establish exclusion results for configurations of multiple 

ESSs. If food web structure is affected by selection, as the results on predator­

prey coevolution presented here imply, then could results on patterns of ESSs 

be used to place constraints on the structure of food webs that occurred under 

evolutionarily stable conditions? Combining the two areas of theory would 

enable the development of a theory of evolution in food webs more general 

than any yet developed. 

6.5.2 Asymmetries in predator-prey coevolution and temporal variation in 

trophic structure 

The models presented in Chapter 3 have provided evidence of asymmetries 

in predator-prey coevolution (the "loser wins" principle; Marrow et al. 1992) . 
which are consistent with observations by other workers (Dawkins & Krebs 

1979; Endler 1991). A great deal of attention has also been paid to spatial and 

temporal variation in food web stmcture (Kitching 1987; Warren 1989; 

Schoenly & Cohen 1991). It is tempting to regard some of the trends observed 

in temporal variation in food webs as due to selection acting on predator and 

prey, in the asymmetric fashion which many theoretical studies predict. Could 

food web structure, and variation in that structure, be accounted for in part by 

asymmetries in predator-p'rey coevolution? We are a long way from being able 

to answer this question at present; there is considerable disagreement about 
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generalities of food web structure (Winemiller 1990b; Polis 1991), let alone the 

role of evolution in shaping it. The study of the way in which trophic webs 

vary over different timescales is still very descriptive. This is an area in which 

there is much scope for furth~r work. 

6.5.3 The life-history consequences of predator-prey coevolution 

The problem of relating body sizes to ecological interactions has occurred in 

a number of contexts in the models considered here. Many organisms change 

size with age, and thus the incorporation of age structure into predator-prey 

evolution models would be a way to circumvent these problems. Including age 

Structure would also be of interest in that it would enable evolution of 

interactions in predator-prey systems to be related to changes in life-history 

traits, with which body size will be strongly correlated. Age-structured models 

would thus enable the life-history consequences of predator-prey coevolution to 

be addressed, an area which has received little theoretical attention (Stearns 

1992:210), but which may have signific.ant practical applications in connection 

with evolution under harvesting (Reznick & Endler 1982; Edley & Law 1988; 

Law 1991). 

6.5.4 Evolution in populations with complex dynamics 

The results described in preceding chapters have shown that population 

dynamics can have complicated consequences for evolutionary change, and vice 

versa. Yet it has not been possible to address the question of evolution in 

populations with complex, non-equilibrium, population dynamics to any degree. 

This is in part due to the difficulty of identifying a sufficiently general measure 

of fitness, so that the invasion or otherwise of new mutants can be assessed. 

The use of the dominant Lyapunov exponent as a measure of fitness (Metz et 

al. 1992) has already been alluded to in previous chapters. This, and related 
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techniques, may provide a way for theory about evolution and population 

dynamics to reflect the range of dynamical complexity that may occur in 

relatively simple population models. At the present time, results can mainly be 

obtained about single-species populations (Godfray et al. 1992; Metz & 

Godfray 1992; Metz et al. 1992). A suitable task for further research would be 

to extend this theory to interacting populations. 
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· Chapter 7. CONCLUSION 

The topic of evolution in interacting species was interpreted to focus upon 

predator-prey coevolution. This would enable a sound theoretical basis to be 

constructed for the analysis of evolution in larger systems, such as food webs. 

As a result all the systems explored in the project were predator-prey systems. 

The use of analytical, numerical, and simulation models to study predator­

prey coevolution has shown that there occur a variety of consequences for the 

ecological dynamics of evolving predator-prey systems. Evolutionary change 

can result in a wide range of dynamical behaviour, from stable equilibria to 

chaos. The consequences of natural selection need. not be stability, as some 

single-species models and experiments have suggested. However, ecological 

dynamic stability is not required for evolutionary persistence. 

The results obtained support arguments for the misleading nature of local 

asymptotic stability as a measure of the dynamics of ecological systems. 

However, it was not found possible to use pennanence as an alternative to local 

asymptotic stability, as had been the original intention. 

Results from the simulation models showed that convergence to ecological 

equilibrium was not necessarily to be expected in systems of evolving 

interacting species, in contrast to many models of community assembly and 

evolution. The size of the potential parameter space of the simulation models 

meant that not all the dynamical behaviour of these models could be explored 

in the time scale of the project. 

The analytical models I developed enabled an exploration of evolutionary 

and ecological dynamics more thoroughly than the simulation models, and 

compensated for the limited understanding of the simulation systems. A wide 

range of evolutionary dynamics, such as ESSs and Red Queen coevolution, 

were seen to be produced from very simple systems, implying that more 

complex systems, such a~ food webs, would have much more interesting 

evolutionary consequences. The use of "phenotype space" based techniques 

enabled a more global understanding of the evolutionary and ecological 
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dynamics of predator-prey interactions than had previously been possible. 

In general, the results supported the contentions that both ecological and 

evolutionary dynamics need to be taken into consideration when studying the 

evolution of interacting species; and that ecological interactions need to be 

considered in evolutionary models. The ~echniques I used to address these 

questions have potential applications in future research. 
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Appendix A. SIMULATION MODEL: TECHNICAL NOTES. 

In this appendix are presented some details of the implementation of the 

simulation models that were omitted from Chapter 4, due to their not being of 

central importance to the understanding of the model used. They are included 

here for purposes of record. 

A.I LANGUAGE REQUIREMENTS 

The programs used to implement the simulation models were written in V AX 

Pascal (Digital Equipment Corporation 1985). External routines in Fortran 

were also included to perfonn numerical integration and generate graphics. 

The programs therefore required a Pascal c'ompiler with the capability to link 

external Fortran code, and a Fortran compiler. 

A.2 ADDITIONAL SOFTWARE REQUIREMENTS 

The programs used the NAG library for numerical integration, and the 

Simpleplot library for graphics output. Execution of the programs required the 

presence of the NAG Fortran library (Numerical Algorithms Group 1990), and 

the Simpleplot graphics library (BUSS Ltd. 1985). The Uniras graphics 

applications package (Uniras Ltd. 1989) was used to generate most of the 

graphics output shown in this thesis. The Minitab statistical package (Minitab, 

Inc. 1989) was used in analysis of the numerical data generated on numbers of 

invasions into interacting species. 

A.3 STORAGE REQUIREMENTS 

The program required a large amount of memory both for execution of the 
" 

program and storage of the results. The amounts required varied according to 

the length of the simulation being run, the time type chosen, and the 
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complexity of the dynamics generated. Estimates of the amount of storage 

space required are given below in Table A.l. In addition the program required 

a considerable amount of working space, and execution would be severely 

hindered if only a small amount was available. 

A.4 PROCESSING TIME REQUIREMENTS 

The programs were very time intensive. The amount of CPU (central 

processing unit) time required was approximately proportional to the product of 

the number of species multiplied by the number of mutants in each species 

multiplied by the number of iterations. It was not possible to predict precisely 

the amount of time required by a particular run, but some typical values are as 

follows (taken from the series of numerical experiments in invasions into 

interacting species; section 5.3). 

A predator-prey system (two species), with ten mutants in each species, run 

for ten thousand iterations in discrete time required 120 CPU seconds. The 

same predator-prey system,- also with up to ten mutants in each species, and run 

for the same number of iterations in continuous time required 1500 CPU 

seconds, or 25 CPU minutes. So continuous time runs were about twelve times 

as slow as discrete time equivalents. The amount of time taken by a 

continuous time run was very dependent on the complexity of the numerical 

dynamics generated, and more complex dynamics could result in processes 

using rather more CPU time than their estimated values. The converse was 

also possible if rather simple dynamics were found. 

A.S HARDWARE REQUIREMENTS 

The programs were run on V AX 8650 and 8550 computers. Additional items 

of hardware that were required were a Calcomp pen plotter, to produce 

graphical output, and a Silicon Graphics Indigo work station running Uniras to 

199 



TECHNICAL NOTES 

Program files 

MODEL*.PAS (Source code) 

*.PAS (Included files) 

MODEL*.EXE (Executable image) 

*.COM (Batch process command file) 

Output files 

DA T A.PL T (Graphical output) 
INVSOUT.DAT (Invasion counting output) 

UNIGR.DAT (Numerical output) 

SIMPLE.LOG (Simpleplot log file) 

*.LOG (Batch process log file) 

TOTAL 

50 

300 
360 

10 

c.500-20oo 
c.5-20 

c. 1550 

5 
c. 10 

c. 2790-4300 

Table A.I. Memory requirements for Modell or 2. All requirements are 

given in V AXNMS blocks, approximately equivalent to 0.5 kilobytes. Values 

were derived mainly from the numerical experiments on the maintenance of 

allele polymorphism (section 5.4). A * indicates that the name of the me 

varies, or, in the case of the included files for the source code, that a number of 

different files are considered. The names of the included files holding parts of 

the Source code are given in Appendix B. Memory requirements for Modell 

and Model 2 were similar, but both could fluctuate considerably depending on 

the type of run anticipated. 
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generate the higher quality graphical output presented in this thesis, from the 

numerical output of the program. 

A.6 NON-STANDARD FEATURES 

The programs incorporated a number of non-standard features which were 

not part of Standard Pascal (Findlay & Watt 1985). Because the programs 

were so long (1500 lines), a large amount of the source code was not included 

in the main program file but in other files, which are referenced in the main 

program by the command % INCLUDE, which enforces compilation of included 

files. This is specific to V AX Pascal. 

The programs included Fortran external routines. V AX Pascal enables 

Fortran routines to be called in a Pascal program, providing the variables are 

passed correctly. The non-standard VAX Pascal directive %IMMED enables 

parameters to be passed from Fortran routines to a Pascal program and vice 

versa. This was used to incorporate the numerical integration routines into the 

program. Another non-standard VAX Pascal directive, %STDESCR, was used 

to pass strings to the routines generating graphical output. 

These were the main non-standard features of the program; there may be 

others depending on the type of system it is desired to implement the programs 

on. Limitations of time and space prevent an exhaustive description of the 

program here. 
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Appendix B. SIMULATION MODEL: SOURCE CODE 

B.1 MODEL 1 

Described in the source code as Model 7 for historical reasons. The lines of 

the program are shown in Courier typeface. Reformatting of the source code 

has caused some lines to run on, not a feature of the original program: The 

program is structured in the following way. At the start a series of comments 

record the modification of the program: they are not essential for program 

function. This is followed by declarations of the variables used by the 

program, and then by a series of % INCLUDE statements referring to files where 

the rest of the source code is stored. Finally, at BEGIN {Main Program} program 

execution begins. This listing was generated by the VAX Pascal compiler 

program. The comments to the left of each line are not part of the source code 

but indicate the line number (e.g. 00001), included code (I), or comments (C), 

and the level of procedural nesting (PL) and of statement nesting (SL). For 

more information see Digital Equipment Corporation (1985). 

-LINE-IOC-PL-SL-

00001 0 0 PROGRAM Model7 (input, output, control, invsout, unigr); 
00002 COO {This program models species interacting in a trophic 
web, under repeated 
00003 COO invasions of mutants.} 
00004 COO (version: definitive Discrete time/DOUBLE precision) 
00005 COO {reconstructed (9/11/90) from (27/7/90)} 
00006 COO {edited (30/4/91) to conform to specifications for 
interaction generation} 
00007 COO (2 species; 20000 generations; NORMINT(O.l) mutation} 
00008 COO {modification for continuous time from (1/5/91) onwards 
as MODEL7} 
00009 COO 
00010 COO 
(13/6/91) } 
00011 COO 
00012 0 0 
00013 COO 
00014 COO 
00015 COO 
00016 COO 
00017 0 0 

{user-defined parameters added (10/s/91)} 
(direct input/output and invasion counting added 

{user-defined fraction added (6/1/92)} 

{Author: Paul Marrow 
{ Department of Biology 
{ University of York 
( York YOl SOD UK 

00018 0 0 CONST (Global constants) 
00019 0 0 web=2; {number of species in food 
web} 
00020 0 0 variation=lO; {number of mutant niches 
per species) 
00021 0 0 terminus=SOOO; (Number of time steps) 
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SOURCE LISTING 

00022 0 0 
00023 0 0 TYPE (Definitions) 
00024 0 0 
00025 0 0 

initialtype=ARRAY [l •. web) OF double; 
strtype=VARYING [80) OF char; 

00026 0 0 
00027 0 0 

species=ARRAY [l •. web, 1 .. variation) OF double; 
matrix=ARRAY [l •• web, 1 •. web, 1 .• variation, 

1.. variation] OF double; 
00028 0 0 
00029 0 0 

array2=ARRAY [l .. web, 1 .. terminus) OF double; 
array3=ARRAY [l .. web, 1 •. web, 1 •. terminus] OF double; 

00030 0 0 
00031 0 0 
00032 0 0 
00033 0 0 
control} 
00034 
00035 
00036 
00037 
producer} 

o 
o 
o 
o 

o 
o 
o 
o 

00038 0 0 
00039 0 0 
00040 0 0 
initialisation} 
00041 0 0 
00042 0 0 
integration} 

VAR {Global variables) 
codestr:strtype; 
control:text; 

startpopn:initialtype; 
invadepop:double; 
extinct:double; 
minselflimit:double; 

mutation_rate:double; 
ia:integer; 
choice:double: 

t type: double: 
step:double: 

00043 0 0 tolerance:double; 
numerical integration) 
00044 0 0 replicates:double; 
with same parameters) 
00045 0 0 mean:double; 
exponential distribution} 
00046 0 0 fraction:double; 
normal distribution} 
00047 0 0 repl:integer; 
00048 0 0 a:matrix; 
00049 0 0 sign:matrix; 
interaction strengths) 
00050 0 0 b:sp~cies; 
00051 0 0 x:species; 
00052 0 0 xic:species; 
00053 0 0 count:integer; 
00054 0 0 constraints:species; 
characteristics} 
00055 0 0 
00056 0 0 

generation_time: integer: 
mean_interaction:array3; 

{experimnetal code} 
{text file for program 

{initial population size} 
{invading population size} 
(extinction threshold) 
{minimum self-limitation in 

(mutation rate (density~l)) 
(counter) 
{random/nonrandom 

{discrete/continuous time} 
{step length for numerical 

{error tolerance for 

{number of replicate runs 

(mean of negative 

(standard deviation of 

(replicate loop counter) 
{interaction strengths} 
{trophic constraints on 

(growth rates) 
(population sizes) 
{invasion counter marker} 
{time counter} 
{constraints on species 

(dummy time counter) 
(mean interaction 

storage} 
00057 
series} 
00058 
mutants} 
00059 
frequency} 
00060 
00061 
00062 
00063 
00064 

o o population_over_time:array2: {population time 

(number of coexisting 

{variance of allele 

c 

counter) 
00065 
invasion 
00066 
invasion 
00067 
invasions 
00068 
00069 
00070 I 
00071 I C 
a uniform 

o 

o 
o 
o 
o 
o 
o 

o 

o 

o 
o 
o 
o 
o 

o 0 
counting) 

o 0 
counting} 

o 0 
results} 
o 0 
o 0 
o 0 
o 0 

coexisting_mutants:array2: 

v:arraY2: 

i,j,m,n:integer: 
unigr:text: 
(Extra variables 
incs: integer: 
inct:integer: 

cstep:integer; 

stint:integer: 

invsout:text: 

for invasion 

%INCLUDE 'nagrandu.pas /LIST' 

{*debugging counters*} 
{results store} 
counting} 
(invasion counter) 
{successful invasion 

(number of steps in 

(step length in 

{output file for 

FUNCTION GOScaf (x:double):double: EXTERN: 
{This NAG routine produces pseudo-random numbers from 
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00072 I Coo 
by FORTRAN 
00073 I COO 
00074 0 0 

SOURCE LISTING 

distribution on (0,1). x is a dummy parameter required 

syntax. ) 

00075 0 0 %INCLUDE 'nagrandn.pas /LIST' 
00076 I 0 0 FUNCTION G05ddf (a, b:double) :double; EXTERN; 
00077 leo 0 {This function produces a random variate from a 
Normal distribution, mean a 
00078 leo 0 standard deviation b.} 
00079 0 0 
00080 0 0 
00081 I 0 0 
00082 I COO 
taken from a 
00083 I COO 
Library manual 
000&4 I COO 
00085 0 0 
00086 0 0 
00087 I 0 0 
00088 I coo 
an unrepeatable 
00089 I COO 
00090 I 0 0 
00091 0 0 
00092 0 0 
00093 I 1 0 
vinput:double); 
00094 I C 1 0 
line, and writes 

%INCLUDE 'nagrandx.pas /LIST' 
FUNCTION G05dbf (a:double):double; EXTERN; 

(This function generates a pseudo-random real number 

negative exponential distribution. 

for details.) 

%INCLUDE 'unrepeat.pas ILIST' 
PROCEDURE G05ccf; EXTERN; 

See NAG Fortran 

(This NAG routine sets the random number generator to 

initial state.) 

%INCLUDE 'inputcontrol.pas /LIST' 
PROCEDURE InputControl (lineno:integer; VAR 

(This procedure reads from CONTROL.DAT at a specified 

00095 I C 1 0 result to an integer control parameter which is then 
passed back to main 
00096 I C 1 0 program. If line number specified is out of range, an 
error message is 
00097 I C 1 0 
00098 I 1 0 
00099 I 1 0 
00100 I 1 0 
00101 I 1 0 
00102 I 1 0 
00103 I 1 1 
00104 I 1 1 
00105 I 1 1 
00106 I 1 2 
00107 I 1 2 
00108 I 1 3 
00109 I 1 3 
00110 I 1 3 
00111 I 1 3 
00112 I 1 1 
00113 I 1 1 
00114 I 1 2 
00115 I 1 2 

displayed. ) 

VAR 
i:integer; (counter) 

BEGIN { InputControl 

IF lineno > 1 THEN 
BEGIN 

FOR i:=l TO (lineno-1) DO 
BEGIN 

IF Eof (control)=false THEN 
Readln (control) 

END {i-loop} 
END; {IF loop} 

IF (Eof (control)=true) OR (lineno < 1) THEN 
BEGIN 

Writeln ('Error in reading from Control: line 
number out of range'); 
00116 I 1 2 
00117 I 1 2 
00118 I 1 1 
00119 I 1 1 
00120 I 1 1 
00121 I 1 1 
00122 I 0 0 
00123 0 0 
00124 0 0 
00125 I 1 0 
00126 I C 1 0 
from terminal 
00127 I C 1 o 

o 
o 
o 

00128 I 1 
00129 I 1 
00130 I 1 

vinput:=O 
END 

ELSE 
Readln (control, 

Reset (control) 

END; { InputControl 

vinput)i 

%INCLUDE 'initial_sign.pas /LIST' 
PROCEDURE Initial_Sign (VAR sign:matrix); 

(This procedure reads the values of the sign matrix 

into the program array.) 

VAR 
i,j,k,m,n:integer; (counters) 
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00131 I 1 
00132 I 1 
00133 I 1 
00134 I 1 
00135 I 1 
00136 I C 1 
00137 I 1 
00138 I 1 
00139 I 1 
00140 I 1 
00141 I 1 
00142 I 1 
00143 I 1 
00144 I 1 
00145 I 1 

o 
o 
o 
1 
1 
1 
1 
1 
1 
1 
2 
2 
3 
3 
3 

SOURCE LISTING 

signm:clouble; {sign constraint dummy variable} 

BEGIN { Initial_Sign } 

{Defining wild-types} 
k:=O; 
m:=l; 
n:=l: 
FOR i:=1 TO web DO 

BEGIN 
FOR j:=l TO web DO 

BEGIN 
k:=k + 1; 

',i,' effect on species 
00146 I 1 3 

Writeln ('Input sign constraint for species 
, ,j ) : 

Readln (signm); 
sign(i,j,m,n):=signm 

END {j-loop} 
00147 I 1 3 
00148 I 1 3 
00149 I 1 1 
00150 I 1 1 
00151 I ell' 
matrices} 
00152 I 1 1 
00153 I 1 2 
00154 I 1 2 
00155 I 1 3 
00156 I 1 3 
00157 I 1 3 
00158 I 1 2 
00159 I 1 1 
00160 I 1 1 
00161 I 1 1 
00162 I 1 2 
00163 I 1 2 
00164 I 1 3 
00165 I 1 3 
00166 I 1 3 
00167 I 1 2 
00168 I 1 1 
00169 I 1 1 
00170 I C 1 1 
00171 I 1 1 
00172 I 1 2 
00173 I 1 2 
00174 I 1 3 
00175 I 1 3 
00176 I 1 4 
00177 I 1 4 
00178 I 1 4 
00179 I 1 4 
00180 I 1 3 
00181 I 1 2 
00182 I 1 2 
00183 I 0 0 
00184 0 0 

END; {i-loop} 

{Defining outer rows and columns of mutant sign 

FOR n:=2 TO variation DO 
BEGIN 

FOR i:=l TO web DO 
BEGIN 

FOR j:=l TO web DO 
sign (1, j, m, n) : =sign (i, j ,1,1) : 

END; {i-loop} 
END: {n-Ioop} 

n: =1: 
FOR m:=2 TO variation DO 

BEGIN 
FOR i:=1 TO web DO 

BEGIN 
FOR j:=1 TO web DO 

sign(i,j,m,n):=sign(i,j,1,1); 
END; {i-loop} 

END; {m-Ioop} 

{Defining mutant sign matrices} 
FOR i:=1 TO web DO 

BEGIN 
FOR j:=l TO web DO 

BEGIN 
FOR m:=2 TO variation DO 

BEGIN 
FOR n:=2 TO variation DO 

sign [i, j , m, n) : =sign [i, j , 1, 1) : 
END {m-Ioop} 

END (j-Ioop) 
END {i-loop} 

END; 

00185 0 0 %INCLUDE 'initial-pop.pas ILIST' 
00186 I 1 0 PROCEDURE Initial_Pop (YAR popn:species); 
00187 I C 1 0 {Input is undefined population matrix from either R 
or NRInitial; for m=l 
00188 I C 1 0 population values are set to StartPopn (global 
variable), for m<>l population 
00189 I C 1 0 values are set to o. Defined population matrix is 
returned to appropriate 
00190 I C 1 0 initialisation procedure, and thus to main program.} 
00191 I 1 0 '\ 
00192 I 1 0 YAR 
00193 I 1 0 i.m:integer; 
00194 I 1 0 
00195 I 1 1 BEGIN 
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00196 I 1 1 
00197 I 1 1 
00198 I 1 1 
00199 I 1 1 
00200 I 1 2 
00201 I 1 2 
00202 I 1 2 
00203 I 1 2 
00204 I 0 0 
00205 I 0 0 
00206 0 0 
00207 0 0 
00208 I 1 0 

SOURCE LISTING 

m:=1 ; 
FOR i:=1 TO web DO 

popnli,m] :=StartPopnli]; 
FOR m:=2 TO variation DO 

BEGIN 
FOR i:=1 TO web DO 

popnli,m] :=0 
END {m-Ioop} 

END; {Initial_Pop} 

%INCLUDE 'initial_zero.pas /LIST' 
PROCEDURE Initial_Zero (VAR grwth:species; VAR> 

interact:matrix); 
00209 I C 1 0 {Inputs are partially defined growth rate and 
interaction matrices; 
00210 I C 1 0 for m>1 values are set to 0 and returned to 
initialisation procedures 
00211 I C 1 0 and thus to main program. This prepares the way for 
mutant invasion.} 
00212 I 1 0 
00213 I 1 0 
00214 I 1 0 
00215 I 1 0 
00216 I 1 0 
00217 I 1 1 
00218 I 1 1 
00219 I 1 1 
00220 I 1 2 
00221 I 1 2 
00222 I 1 3 
00223 I 1 3 
00224 I 1 3 
00225 I 1 4 
00226 I 1 4 
00227 I 1 4 
00228 I 1 4 
00229 I 1 4 
00230 I 1 4 
00231 I 1 3 
00232 I 1 2 
00233 I 1 2 
00234 I 0 0 
00235 0 0 

VAR 
i,j,m,n:integer; 

BEGIN 

FOR i:=1 TO web DO 
BEGIN 

FOR m:=2 TO variation DO 
BEGIN 

grwthli,m] :=0; 
FOR j:=1 TO web DO 

BEGIN 
FOR n:=2 TO variation DO 

interact[i,j,m,n] :=0; 
n:=1; 
interact[i,j,m,n] :=0; 

END {j-Ioop} 
END {m-Ioop} 

END {i-loop} 

END; 

00236 0 0 %INCLUDE 'nri.pas /LIST' 
00237 I 1 0 PROCEDURE NonRandom_Initial (VAR sgn:matrix; VAR 
population, growth:species; 
00238 I 1 0 VAR alpha:matrix)1 
00239 I C 1 0 {This procedure establishes initial values for 
parameters as input by user.} 
00240 I 1 0 
00241 I 1 0 
00242 I 1 0 
00243 I 1 0 
00244 I 2 0 
sign_m:matrix; 
00245 I 2 0 
00246 I C 2 0 
input by user.} 
00247 I 2 0 
00248 I 2 0 
00249 I 2 0 
00250 I 2 0 
00251 I 2 1 
00252 I 2 1 
00253 I 2 1 
00254 I 2 1 
00255 I C 2 1 
rates: not fully 
00256 I 2 1 

VAR 
1, j: integer; {Counting variables} 

PROCEDURE NRInitial_Growth (VAR growth_rate:speciesi 

no:integer); 
{This procedure establishes initial growth rates as 

CONST 
tIl=1; 

BEGIN { NRInitial_Growth } 

Writeln ('Input growth rate for species ',no)i 
Readln (growth_rate(no,m); 
{Temporary constraint to produce predator growth 

general 17/10/91} 
IF (no>1) THEN growth_rate(no,m):= 
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SOURCE LISTING 

growth_rate [no,m] • (-1); 
00257 I 2 1 
00258 I 1 0 
00259 I 1 0 
00260 I 2 0 
sign_m:matrix; 
00261 I 2 0 
00262 I C 2 0 
terms as input by 
00263 I 2 0 
00264 I 2 0 
00265 I 2 0 
00266 I 2 0 
00267 I 2 0 
00268 I 2 0 
00269 I 2 0 
00210 I 2 1 
00271 I 2 1 
00272 I 2 1 
00273 I 2 1 

END; NRInitial_Growth ) 

PROCEDURE NRInitial_Interaction (VAR alphaint:matrix; 

p, q :integer) ; 
{This procedure establishes the initial interaction 

the user.} 

CONST 
m=l; 

VAR 
n:integer; 

BEGIN { NRInitial_Interaction } 

n:=l; 

species ',q,' effect 
Writeln ('Input the initial interaction term for 

on species ',p); 
Readln (alphaint[p,q,m,n]); 
IF (p=q) AND (p=l) THEN 

BEGIN 

00274 I 2 1 
00275 I 2 1 
00276 I 2 2 
00277 I 2 2 
00278 I 2 2 
00279 I 2 2 
alphaint[p,q,m,n]; 
00280 I 2 2 
00281 I 2 2 
00282 I 2 2 
00283 I 2 1 
00284 I 2 1 
alphaint[p,q,m,n]i 
00285 I 2 1 
00286 I 1 0 
00287 I 1 0 
00288 I 1 1 
00289 I 1 1 
00290 I 1 1 
00291 I 1 1 
00292 I 1 1 
00293 I 1 1 
00294 I 1 1 
00295 I 1 2 
00296 I 1 2 
00297 I 1 2 
00298 I 1 1 
00299 I 1 1 
00300 III 
00301 I 0 0 
00302 0 0 

IF alphaint[p,q,m,n]<minselflimit THEN 
alphaint[p,q,m,n) :=minselflimit; 

alphaint[p,q,m,n]:= sign_m[p,q,m,n] • 

FOR n:=2 TO variation DO 
alphaint[p,q,m,n):= alphaint[p,q,m,l]; 

END 
ELSE 

alphaint[p,q,m,n]:=sign_m[p,q,m,n] • 

END; { NRInitial_Interaction 

BEGIN { NonRandom-Initial } 

Initial_Pop (population); 
Initial_Sign (sgn); 
FOR i:=1 TO web DO 

NRInitial_Growth (growth, 
FOR i:=1 TO web DO 

BEGIN 
FOR j:=l TO web DO 

NRInitial_Interaction 
END; {i-loop} 

Initial_Zero (growth, alpha) 

END; ( NonRandom_Initial ) 

sgn, i); 

(alpha, sgn, 1, j) 

00303 0 0 'INCLUDE 'ri.pas /LIST' 
00304 I 1 0 PROCEDURE RandomInitial (VAR sgn:matrix; VAR 
population, growth:species; 
00305 I 1 0 
00306 I C 1 0 
00307 I 1 0 
00308 I 1 0 
00309 I 1 0 
00310 I 1 0 
00311 I 2 0 
sign_m:matrixi 
00312 I 2 0 
00313 I 2 0 
00314 I 2 0 
00315 I 2 0 
00316 I 2 0 
00317 I 2 1 
00318 I 2 1 

VAR alpha:matrix); 
{Initialises parameters not entered directly} 

VAR 
i, j : integer; {counting variables} 

PROCEDURE RInitial_Growth (VAR growth_rate:species; 

CONST 
m=l; 

no:integer); 

BEGIN (Rlnitial_Growth) 
growth_rate[no,m]:= g05dbf (mean); 
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00319 I 2 1 
-growth_rate[no,m): 
00320 I 1 0 
00321 I 1 0 
00322 I 2 0 
sign_m:matrix; 
00323 I 2 0 
00324 I 2 0 
00325 I 2 0 
00326 I 2 0 
00327 I 2 0 
00328 I 2 0 
00329 I 2 0 
00330 I 2 0 
00331 I 2 1 
00332 I 2 1 
00333 I 2 1 
00334 I 2 2 
00335 I 2 2 
00336 I 2 2 
00337 I 2 2 
00338 I 2 2 
alphaint[p,q,m,n); 
00339 I 2 2 
00340 I 2 2 
00341 I 2 2 
00342 I 2 1 
00343 I 2 2 
00344 I 2 2 
00345 I 2 2 
alphaint[p,q,m,n); 
00346 I 2 1 
00347 I 1 0 
00348 I 1 0 
00349 I 1 1 
00350 I 1 1 
00351 III 
00352 I 1 1 
00353 I 1 1 
00354 I 1 1 
00355 I 1 1 
00356 I 1 2 
00357 I 1 2 
00358 I 1 2 
00359 I 1 1 
00360 I 1 1 
00361 I C 1 1 
00362 I 1 1 
00363 I 1 1 
00364 I 1 1 
00365 I 1 1 
00366 III 
00367 I 0 0 
00368 0 0 

SOURCE LISTING 

IF no>1 THEN growth_rate[no,m):= 

END; RInitial_Growth } 

PROCEDURE RInitial_Interaction (VAR alphaint:matrix; 

CONST 
m=1; 

VAR 
n:integer; 

BEGIN (RInitial_Interaction 
n:=1; 
IF (p=1) AND (q=1) THEN 

BEGIN 

p, q:integer); 

alphaint[p,q,m,n):= G05dbf(mean); 
IF alphaint[p,q,m,n)<minselflimit THEN 

alphaint[p,q,m,n) :=minselflimit; 
alphaint[p,q,m,n):= sign_m[p,q,m,n) * 

FOR n:=2 TO variation DO 
alphaint[p,q,m,n) :=alphaint[p,q,m,1); 

{alpha11 generation} END 
ELSE 

BEGIN 
alphaint[p,q,m,n):= G05dbf(mean}; 
alphaint[p,q,m,n):: sign_m[p,q,m,n) * 

END; {interaction generation} 
END; {RInitial_Interaction} 

BEGIN {RandomInitial} 
Initial_Pop (population); 
IF ia=1 THEN 

Initial_Sign (sgn); 
FOR i:=1 TO web DO 

RInitial_Growth (growth, sgn, i); 
FOR i:=1 TO web DO 

BEGIN 
FOR j:=1 TO web DO 

RInitial_Interaction (alpha, sgn, i, 
END; {i-loop} 

Initial_Zero (growth, alpha); 
{Printing out initialised graphics} 
Writeln ('Alpha11 = ',alpha[1,1,l,1)}; 
Writeln ('Alpha12 = ',alpha[1,2,1,1); 
Writeln ('Alpha21 = ',alpha[2,1,1,1); 
Writeln ('R1 = ',growth[1,1); 
Writeln ('R2 = ',growth[2,1)i 

END; {RandomInitial) 

j) ; 

00369 0 0 %INCLUDE 'invin.pas ILIST' 
00370 I 1 0 PROCEDURE InvIn (rep:integer; VAR popic:species; VAR 
inkt,inks,kstep:integer); 
00371 I C 1 0 {This procedure sets up the invasion counting 
routines} 
00372 I 
00373 I 
00374 I 
00375 I 
00376 I 
00377 I 
00378 I 
00379 I 
00380 I 
00381 I 
00382 I 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

o 
o 
o 
o 
o 
o 
o 
1 
1 
1 
1 

CONST 
m=1; 

VAR 
i: integer; {counter} 

BEGIN (InvIn) 
FOR i:=1 TO web DO 

popic[i,m) :=1; 
kstep:=O; 
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00383 III 
00384 I 1 1 
00385 III 
00386 I 1 1 
00387 I 1 1 
00388 I 1 1 
00389 I 0 0 
00390 0 0 

SOURCE LISTING 

inkt:=O: 
inks:=O; 
Writeln ('Replicate 
Write ('CSTEP '); 
Write (' INCT '); 
Writeln ('INCS '); 

END: {InvIn} 

, , rep) : 

00391 0 0 %INCLUDE 'invasion.pas /LIST' 
00392 I 1 0 PROCEDURE Invasion (VAR alpha:matrix: VAR growth, 
population:species: 

VAR constraint:species; 00393 I 1 0 
sign_m:matrix: mutationr:double: 

VAR fraction:double): 00394 I 1 0 
00395 I C 1 0 {This procedure causes a random attempted invasion of 

preexisting food web species. The defined interaction, 
a mutant into the 
00396 I C 1 0 
growth rate, and 
00397 I C 1 0 population matrices are read from main program, and 
passed to nested procedures 
00398 I C 1 0 which check that invasion is possible, and then 
generate an invader with 
00399 I C 1 0 random characteristics at a random location. The 
altered values for the 
00400 I C 1 0 interaction, growth rate, and population matrices are 
returned to the main 
00401 I C 1 0 program as output.) 
00402 I 1 0 
00403 I 1 0 
00404 I 1 0 
00405 I 1 0 
generator} 
00406 I 1 0 
00407 I 1 0 
00408 I 2 0 
00409 I C 2 0 
whole matrix of 

VAR 
site: integer: 
xx:double; {dummy for random number 

%INCLUDE 'emptyniches.pas ILIST' 
FUNCTION EmptyNiches (popn:species):Boolean: 

{This function is similar to CheckMutReg, but checks 

00410 I C 2 0 population values, and only returns false if all 
elements are non-zero.} 
00411 I 2 0 
00412 I 2 0 
00413 I 2 0 
00414 I 2 0 
00415 I 2 0 
00416 I 2 0 
00417 I 2 0 
00418 I 2 1 
00419 I 2 1 
00420 I 2 1 
00421 I 2 1 
00422 I 2 2 
00423 I 2 2 
00424 I 2 2 
00425 I 2 1 
00426 I 2 1 
00427 I 2 1 
00428 I 2 1 
00429 I 2 1 
00430 I 1 0 
00431 I 1 0 

VAR 
i,m:integer; 
z:integer: 
t:Boolean: 

(element counters) 
(empty niche counter) 
{dummy variable for function} 

BEGIN { EmptyNiches 

z:=O; 
FOR i:=l TO web DO 

BEGIN 
FOR m:=2 TO variation DO 

IF popn(i,m]=O THEN 
END; {i-loop} 

z:=z + 1 

IF z=O THEN t:=false 
ELSE t: =true; 

EmptyNiches:=t 

END: { EmptyNiches 

00432 I 1 0 %INCLUDE 'checkmutreg.pas ILIST' 
00433 I 2 0 FUNCTION CheckMutReg (popn:species: 
level:integer):Boolean: 
00434 I C 2 0 (This function accepts the current population matrix 
and a parameter 
00435 I C 2 0 representing the location of the intended invasion 
(i.e. trophic level) as 
00436 I C 2 0 input from Invasion, and checks that not all the 
elements of that species' 
00437 I C 2 0 sub-mat rix are occupied, returning , true' if this is 
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SOURCE LISTING 

so, and 'false' if it 
00438 I C 2 0 is not.} 
00439 I 2 0 
00440 I 2 0 
00441 I 2 0 
00442 I 2 0 
00443 I 2 0 
00444 I 2 0 
00445 I 2 0 
00446 I 2 1 
00447 I 2 1 
00448 I 2 1 
00449 I 2 1 
00450 I 2 1 
00451 I 2 1 
00452 I 2 1 
00453 I 2 1 
00454 I 2 1 
00455 I 2 1 
00456 I 1 0 
00457 I 1 0 

VAR 
m:integer; 
z:integer; 
y:Boolean; 

(element counter) 
(empty element detector) 
{dummy variable for result} 

BEGIN (CheckMutReg 

z·-O· 
FOR ~:=2 TO variation DO 

IF popn(level,m)=O THEN 
z:=z + 1; 

IF z=O THEN y:=false 
ELSE y:=true; 

CheckMutReg:=y 

END; { CheckMutReg 

00458 I 1 0 %INCLUDE 'invasionprob.pas /LIST' 
00459 I 2 0 FUNCTION InvasionProb (popul:species; level:integer; 
mutrate:double) :Boolean; 
00460 I C 2 0 (This function makes the mutation rate 
density-dependent. The total 
00461 I C 2 0 density of the species at the invasion level is counted 
and the 
00462 I C 2 0 
establishment) is 
00463 I C 2 0 
00464 I 2 0 
00465 I 2 0 
00466 I 2 0 
generator} 
00467 I 2 0 
mutation occurs) 
00468 I 2 0 
00469 I 2 0 
00470 I 2 0 
00471 I 2 1 
00472 I 2 1 
00473 I 2 1 
00474 I 2 1 
00475 I 2 1 
00476 I 2 1 
00477 I 2 1 
00478 I 2 1 
00479 I 2 1 
00480 I 2 1 
probability:=false 
00481 I 2 1 
00482 I 2 1 
00483 I 2 1 
00484 I 1 0 
00485 I 1 0 
00486 I 1 0 
00487 I 2 0 

probability of invasion occuring (but not successful 

=dens ity /50. ) 

VAR 
x:double; 

density:double; 

probability:Boolean; 
m: integer; 

BEGIN ( InvasionProb 

x:=O; 
density:=O; 
x:=G05caf (x); 

(dummy for random number 

(density of species at which 

(dummy for InvasionProb) 
(counter) 

FOR m:=l TO variation DO 
density:=density + popul(level,m); 

IF density=O THEN probability:=false 
ELSE 

IF x>=(density * mutrate) THEN 

ELSE probability:=true; 
InvasionProb:=probability; 

END; { InvasionProb } 

%INCLUDE 'population_size.pas /LIST' 
PROCEDURE population_Size (VAR popul:species; 

{This procedure writes the starting population of an 
of a 

level:integer); 
00488 I C 2 0 
invading mutant 
00489 I C 2 0 
is the population 
00490 I C 2 0 
The altered 
00491 I C 2 
00492 I 2 
00493 I 2 
00494 I 2 
00495 I 2 

o 
o 
o 
o 
o 

pre-existing species into the population matrix. Input 

matrix and the location of the invasion, from Invasion. 

popula;ion matrix is returned to invasion.} 

VAR 
m: integer; {element counter} 
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00496 I 2 0 
00497 I 2 1 
00498 I 2 1 
00499 I 2 1 
00500 I 2 2 
00501 I 2 2 
00502 I 2 1 
00503 I 2 1 
00504 I 2 1 
00505 I 1 0 
00506 I 1 0 
00507 I 1 0 
00508 I 1 0 
00509 I 2 0 
00510 I 2 0 

SOURCE LISTING 

BEGIN 

m:=O; 
REPEAT 

population_Size } 

m:=m + 1 
UNTIL popul[level,m)=O; 
popul[level,m):=invadepop 

END; { population_Size } 

\INCLUDE 'repet7.pas /LIST' 

FUNCTION Repetition_Check (interactions:matrix; 
locat:integer; 

j,msite,n:integer) :Boolean; 
00511 I C 2 0 (This function checks to see whether the new mutant 
has ·some character(s) 
00512 I C 2 0 the same as any other cospecific mutant; if that is 
so it returns a value 
00513 I C 2 0 of true, else; false.} 
00514 I 2 0 
00515 I 2 0 
00516 I 2 0 
00517 I 2 0 
00518 I 2 0 
00519 I 2 1 
00520 I 2 1 
00521 I 2 1 
00522 I 2 2 
00523 I 2 2 
00524 I 2 2 
1000) = 
00525 I 
1000) 

2 2 

00526 I 2 2 
00527 I 2 1 
00528 I 2 1 
00529 I 1 0 
00530 I 1 0 
00531 I 1 0 
00532 I 1 0 
00533 r" 2 0 
00534 I 2 0 

VAR 
m:integer; {counters} 
repet:Boolean; {dummy for function} 

BEGIN {Repetition_Check 
repet:=false; 

FOR m:=l TO variation DO 
BEGIN 

IF (msite<>m) THEN 
IF Trunc (interactions[locat,j,m,n) * 

Trunc (interactions[locat,j,msite,n) * 

THEN repet:=true; 
END; (m-loop) 

Repetition_Check:=repet; 
END;. ( Repetition_Check ) 

%INCLUDE 'delet7.pas /LIST' 
PROCEDURE Delete_Mutant (VAR interactions:matrix; 

locat,j,msite,n:integer); 
(If a repeated invasion has occured, this procedure 00535 I C 2 0 

deletes the invader.} 
00536 I 2 0 
00537 I 2 0 
00538 I 2 1 
00539 I C 2 1 
00540 I 2 1 
00541 I 1 0 
00542 I 1 0 
00543 I 1 0 
00544 I 2 0 
growth: species; 
00545 I 2 0 
signm:matrix; 

BEGIN (Delete_Mutant) 
{Delete interaction term} 
interactions[locat,j,msite,n):=O; 

END; (Delete_Mutant) 

\INCLUDE 'mutchargen3.pas /LIST' 
PROCEDURE MutCharGen (VAR inter:matrix; VAR 

location: integer; 
constraints, popul:species; 

VAR fraction:double); 
{This procedure generates the characteristics of the 

00546 I 2 0 
00547 I C 2 0 
invading mutants. 
00548 I C 2 0 population size has alrea(~ been set, and here the 
intrinsic growth rate of 
00549 I C 2 0 the mutant is set to the same as the species from which 
it is derived,' and 
00550 I C 2 0 the interaction terms of the mutant are derived 
randomly from a distribution 
00551 I C 2 0 with mean the interaction strength of the original 
species. The values of 
00552 I C 2 0 the interaction terms, and also the growth rates, may 
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be subject to 
00553 I C 2 0 
00554 I 2 0 
00555 I 3 0 
locat:integer); 
00556 I C 3 0 
mutant 
00557 I C 3 0 
dynamics, since 
00558 I C 3 0 
00559 I 3 0 
00560 I 3 0 
00561 I 3 0 
00562 I 3 0 
00563 I 3 0 
00564 I 3 1 
0056.5 I 3 1 
00566 I 3 1 
00567 I 3 2 
00568 I 3 2 
00569 I 3 2 
00570 I 3 2 
00571 I 3 2 
00572 I 2 0 
00573 I 2 0 
00574 I 2 0 
00575 I 2 0 

SOURCE LISTING 

constraints.} 

PROCEDURE Set_Constraints (VAR constr:species; 

{This procedure sets constraints upon the values of 

characteristics. No effect at present on overall 

all constraints are set to 1.} 

VAR 
i,m:integer; {counters} 

BEGIN ( set_Constraints 

FOR i:=1 TO web DO 
BEGIN 

FOR m:=l TO variation DO 
constr(i,m) :=1.0; 

END {i-loop} 

END; . Set_Constraints 

00576 I 3 0 PROCEDURE GrowthR_Gen (VAR g_rate:species; 
locat: integer) ; populn:species; 

00577 I C 3 0 
invading mutant to 
00578 I C 3 0 
subject to 
00579 I C 3 0 
factor) . 
00580 I C 3 0 
the invasion, 
00581 I C 3 0 
MutCharGen is the 
00582 I C 3 0 
00583 I 3 0 
00584 I 3 0 
00585 I 3 0 
00586 I 3 0 
00587 I 3 0 
00588 I 3 0 
00589 I 3 0 
00590 I 3 0 
00591 I 3 1 
00592 I 3 1 
00593 I 3 1 
00594 I 3 2 
00595 I 3 2 
00596 I 3 1 
global const.} 
00597 I 3 1 
00598 I 3 1 
00599 I 2 0 
00600 I 2 0 
00601 I 2 0 
00602 I 2 0 
00603 I 2 0 
00604 I 2 0 
00605 I 2 0 
00606 I 2 0 
00607 I 2 0 
00608 I 3 0 
constr, 
00609 I 3 0 
locat:integer; 

{This procedure sets the growth rate of the 

that is its parent species. (This may eventually be 

constraint, but at present is only altered by a scale 

Input is the growth rate matrix and the location of 

(i.e. trophic level) from MutCharGen. 

altered growth rate matrix.} 

CONST 
scale=l; {scaling factor} 

VAR 
i,m:integer; 

BEGIN 

m:=O; 
REPEAT 

m:=m + 1; 

{counters} 

UNTIL populn(locat,ml=invadepop; 

Output to 

(invadepop is a 

g_rate(locat,m):=g_rate(locat,l) * scale; 

END; { GrowthR_Gen } 

PROCEDURE Interaction_Gen (VAR interactions:matrix; 

populn:species; 
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SOURCE LISTING 

00610 I 3 0 signs:matrix; VAR 

{This procedure generates interaction terms for the 

Input are the interaction, constraints and population 

the location of the invasion, from MutCharGen. The 

the mutant element at which invasion takes place and 

fraction:double); 
00611 I C 3 0 
invading mutant. 
00612 I C 3 0 
matrices, and 
00613 I C 3 0 
procedure detects 
00614 I C 3 0 
then goes through 
00615 I C 3 0 all (j*n] interaction terms for this element, 
producing new values related 
00616 I C 3 0 to the parental values but multiplied by the· 
constraint matrix and by 
00617 I C 3 0 random factors. The interaction terms are then 
checked in order that 
00618 I C 3 0 conform to the constraints of the sign matrix, and 
passed back to 
00619 I C 3 0 
Global variables.) 
00620 I 3 0 
00621 I 3 0 
00622 I 3 0 
00623 I 3 0 
number generator) 
00624 I 3 0 
00625 I 3 0 

MutCharGen. Note: count and mean_interaction are 

VAR 
i,j,k,m,n:integer; (counters) 
a,b:double; {intermediates for random 

x:double; (random variate) 

00626 I 3 0 
00627 I 4 0 PROCEDURE Normean (VAR x:double; i:integer; 

fraction:double; 
j:integer; count: integer; 
00628 I 4 0 
interact:matrix); 

{This procedure generates mutant characters from 00629 I C 4 0 
a normal distribution, 
00630 I C 4 0 mean the initial interaction strength, standard 
deviation a fraction of 
00631 I C 4 0 this.} 
00632 I 4 0 
00633 I 4 0 
00634 I 4 0 
00635 I 4 0 
00636 I 4 1 
00637 I 4 1 
00638 I 4 1 
00639 I 4 1 
00640 I 4 2 
00641 I 4 3 
00642 I 4 3 
00643 I 4 2 
00644 I 4 1 
00645 I 3 0 
00646 I 3 0 

VAR 
a,b:double; 

BEGIN ( Normean ) 
a:=Abs (interact(i,j,l,l]); 
b:=Abs (interact[i,j,l,1]/10); 
IF (interact[i,j,1,1]<>0) THEN 

BEGIN (generator) 
REPEAT 

x:=G05ddf (a, b); 
UNTIL (x>O); 

END; {generator} 
END; {Normean} 

00647 I 3 0 
00648 I 4 0 PROCEDURE Normint (VAR x:double; i:integer; 
j:integer; count: integer; 
00649 I 4 0 fraction:double) ; 
00650 I C 4 0 {This procedure generates mutant characters from 
a normal distribution, 
00651 I C 4 0 mean the mean interaction term, standard deviation 
a fraction of this.) 
00652 I 4 0 
00653 I 4 0 
00654 I 4 0 
00655 I 4 0 
00656 I 4 1 

. 00657 I C 4 1 
00658 I 4 1 
00659 I 4 2 
00660 I 4 2 
00661 I 4 2 

VAR 
a,b:c1ouble; 

BEGIN ( Normint ) 
{Random number generator NORMINT} 

, IF "~an_interaction[i,j,count-ll<>O THEN 
BEGIN 

a:=Abs (mean_interaction[i,j,count-1]); 
b:=Abs 
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SOURCE LISTING 

(mean_interaction[i,j,count-l)/fraction); 
00662 I 4 3 REPEAT 
00663 I 4 3 x:=G05ddf (a,b); 
00664 I 4 2 UNTIL (x>O); 
00665 I 4 2 END {If .. Then} 
00666 I 4 1 ELSE 
00667 I 4 1 Normean (x, i, j, count, fraction, 
interactions) 
00668 I 3 
00669 I 3 
00670 I 3 
00671 I 3 
00672 I 3 
00673 I 3 
00674 I 3 
00675 I 3 
00676 I 3 
006'77 I 3 
00678 I 3 
00679 I 3 
00680 I 3 

END: { Normint 

BEGIN { Interaction_Gen 

x:=o; 
FOR m:=1 TO variation DO 

BEGIN 
IF populn[locat,m)=invadepop THEN 

BEGIN {generate new interaction 
FOR j:=1 TO web DO 

BEGIN 

terms} 

00681 I 3 

o 
o 
o 
1 
1 
1 
1 
2 
2 
3 
3 
4 
4 
5 

FOR n:=1 TO variation DO 
BEGIN {generate effects of self on 

others} 
00682 I 3 5 
00683 I 3 6 
00684 I 3 6 
00685 I 3 7 
00686 I 3 7 
00687 I 3 7 
00688 I 3 7 
count+l, fraction) 
00689 I 3 7 
00690 I 3 7 

IF (locat=l) AND (j=1l THEN 
BEGIN 

K:=O; 
REPEAT 

k:=k + 1; 
IF count=1 THEN 

Normint (x, locat, j, 

ELSE 
Normint (x, locat, j, 

count, fraction); 
00691 I 3 7 interactions[locat,j,m,n) := 
constr[locat,l] * 
00692 I 3 7 x 
* signs[10cat,j,I,1); 
00693 I 3 7 . IF Abs 
(interactions[locat,j,m,n) < minSelfLimit THEN 
00694 I 3 7 
interactions[locat,j,m,n) :=minSelfLimit * (-1); 
00695 I 3 7 IF n<>1 THE~ 
interactions[locat,j,m,n):= 
00696 I 3 7 
interactions[locat,j,m,1): 
00697 I 3 7 
00698 I 3 7 

IF Repetition Check 
(interactions, locat, j, 

m, n) = true THEN 
00699 I 3 7 
(interactions, locat, j, m, n); 
00700 I 3 7 
00701 I 3 7 
(interactions,locat,j,m,n) 
00702 I 3 6 
00703 I 3 6 
00704 I 3 5 
00705 I 3 5 
00706 I 3 6 
exists) 
00707 I 3 6 
00708 I 3 7 
00709 I 3 7 
00710 I 3 7 
00711 I 3 7 
count+l, fraction) 
00712 I 3 7 
00713 I 3 7 
count, fraction); 
00714 I 3 7 
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UNTIL 
(Repetition_Check 

= false) OR (k=50); 
END {generate alphal1} 

ELSE 
IF'populn(j,n]<>O THEN 

BEGIN{check population 

k:=O; 
REPEAT 

k:=k + 1; 
IF cOllnt=1 THEN 

Normint (x, locat, j, 

ELSE 
Normint (x, locat, j, 



SOURCE LISTING 

interactions[locat,j,m,n):= 
00715 I 3 7 
* signs[locat,j,1,1); 
00716 I 3 7 
(interactions,locat,j,m,n) 
00717 I 3 7 
00718 I 3 7 
(interactions,locat,j,m,n); 
00719 I 3 7 
(interactions,locat,j,m,n) 
00720 I 3 6 
00721 I 3 6 
00722 I 3 5 

constr[locat,1) * 

END 

IF Repetition_Check 

= true THEN 
Delete~utant 

UNTIL (Repetition_Check 

= false) OR (k=50); 
END (check existence) 
{generating effects of self 

END; {j-loop} 
FOR j:=l TO web DO 

x 

on others} 
00723 I 
00724 I 
00725 I 
self} 

3 
3 
3 

3 
3 
4 BEGIN {generating effects of others on 

00726 I 3 4 
00727 I 3 5 
00728 I 3 5 
00729 I 3 6 
00730 I 3 6 
00731 I 3 7 
00732 I 3 7 
00733 I 3 8 
00734 I 3 8 
00735 I 3 8 
00736 I 3 8 

FOR n:=1 TO variation DO 
BEGIN 

IF populn[j,nl<>O THEN 
BEGIN {check not extinct} 

IF (locat<>1) OR (j<>1) THEN 
BEGIN 

k:=O; 
REPEAT 

k:=k + 1; 
IF count=1 THEN 

Normint (x, locat, j, 
count+1, fraction) 

ELSE 00737 I 3 8 
00738 I 3 8 Normint (x, locat, j, 
count, fraction); 
00739 I 3 8 
interactions[j,locat,n,m) := constr[j,1) * 
00740 I 3 8 x * 
signs[j,locat,1,1); 

IF Repetition_Check 

= true THEN 
Delete_Mutant 

00741 I 3. 8 
(interactions,locat,j,m,n). 
00742 I 3 8 
00743 I 3 8 
(interactions,locat,j,m,n); 

UNTIL (Repetition_Check 

= false) OR (k=50); 
END {check not alpha1l} 

END {check not extinct} 

00744 I 3 8 
(interactions,locat,j,m,n) 
00745 I 3 7 
00746 I 3 7 
00747 I 3 6 
00748 I 3 5 
00749 I 3 4 
self} 
00750 I 
00751 I 
00752 I 
00753 I 
00754 I 
00755 I 
00756 I 
00757 I 
00758 I 
00759 I C 
00760 I 
00761 I 
00762 I C 
00763 I 
00764 I 
00765 I C 
00766 I 
location, 
00767 I 
00768 I 

3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
2 
2 
o 
o 
o 
o 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

signm, 
2 1 
1 0 

END; 

BEGIN 

END 

END {n-loop} 
END {generating effects of others on 

END {generate new interaction terms} 
{m-loop} 

Interaction_Gen ) 

{ MutCharGen } 

{Set constraints, where they exist.} 
Set_Constraints (constraints, location); 

{Set growth rate of mutant} 
GrowthR_Gen (growth, popul, location); 

{Set interaction terms for mutant} 
Interaction_Gen (inter, constraints, popul, 

fraction) ; 

END; MutCharGen } 
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00769 I 1 0 
00770 I 1 0 
00771 I 1 1 
00772 I 1 1 
00773 I 1 1 
00774 I 1 2 
00775 I 1 2 
00776 I 1 3 
00777 I 1 3 
00778 I 1 4 
00779 I 1 4 
00780 I 1 4 
00781 I 1 4 
count-l]<>O THEN 
00782 I 1 4 
mutationr)=true THEN 
00783 I 1 5 
extinct} 
00784 I CIS 

00785 I 
site) : 

1 5 

00786 I CIS 
characterisitics} 
00787 I 1 5 
site, 
00788 I 1 5 

SOURCE LISTING 

BEGIN {Invasion} 

IF EmptyNiches (population)=true THEN 
BEGIN {try each species independently} 

FOR site:=l TO web DO 
BEGIN 

IF CheckMutReg (population, site)=true THEN 
BEGIN {body of routine} 

IF (count>O) AND (count<>l) THEN 
IF population_over_time[site, 

IF InvasionProb (population, site, 

BEGIN {check species has not gone 

{Establish mutant population}' 

Population_Size (population, 

{Establish mutant 

MutCharGen (alpha, growth, 

constraint, 
population, sign_m, fraction) 

END: invading ) 00789 I 1 4 
00790 I 1 4 
00791 I 1 4 
00792 I 1 4 
mutationr)=true THEN 
00793 I 1 5 
00794 I 1 5 
site) : 
00795 I 1 5 
00796 I 1 5 

IF (count=O) OR (count=l) THEN 
IF InvasionProb (population, site, 

BEGIN 
Population_Size (population, 

MutCharGen (alpha, growth, site, 
constraint, 

population, sign_m, fraction) 
END; { invading at start } 00797 I 1 4 

00798 I 1 4 
00799 I 1 3 
00800 I C 1 3 
00801 I 1 3 
00802 I 1 2 
00803 III 
00804 I 0 0 
00805 0 0 

END; {body of routine} 
{Check that invasions are not repeated} 

END: (sites} 
END: 

END; {Invasion} 

00806 0 0 \INCLUDE 'invcount.pas ILIST' 
00807 I 1 0 PROCEDURE InvCount (popn:species: VAR popic:species: 
VAR inkt, inks, kstep:integer): 
00808 I C 1 0 {This procedure counts the number of invasions and 
successful invasions 
00809 I C 1 0 (ones which actually manage to establish themselves) 
over certain times.} 
00810 I 1 0 
00811 I 1 0 
00812 I 1 0 
00813 I 1 0 
00814 I 1 0 
00815 III 
00816 III 
00817 III 
00818 III 
00819 I 1 2 
00820 I 1 2 
00821 I 1 2 
00822 I 1 2 
00823 I 1 2 
00824 I 1 2 

VAR 
i,m:integer; 
dv:double: 

{counters} 
{dummy variable} 

BEGIN (InvCount) 
dv:=(count/stint} ; 
IF count > 0 THEN 

IF (dv - Trunc (dv)) < Abs (1.0D-8) THEN 
BEGIN {Resetting} 

kstep:=kstep + 1; 
IF kstep=l THEN 

inks:=inks - web; 
IF inks < 0 THEN 

inks:=O; 
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00825 I C 1 2 
00826 I 1 2 
00827 I 1 2 
00828 I 1 2 
00829 I C 1 2 
00830 I 1 2 
00831 I 1 2 
00832 III 
00833 III 
00834 I 1 2 
00835 I 1 2 
00836 I 1 3 
00837 I 1 3 
00838 I 1 4 
00839 I 1 4 
00840 I 1 4 
00841 I 1 3 
00842 I 1 3 
00843 I 1 3 
00844 I 1 3 
00845 I 1 3 
00846 I 1 3 
00847 I 1 2 
00848 III 
00849 I 0 0 
00850 0 0 

SOURCE LISTING 

{Write output} 
Write (kstep,' '); 
Wri te (inkt,' '); 
Writeln (inks); 
{Reset counters} 
inkt:=O; 
inks:=O; 

END; {Resetting} 
FOR i:=1 TO web DO 

BEGIN 
FOR m:=l TO variation DO 

BEGIN 
IF popn(i,m] = invadepop 

BEGIN 
inkt:=inkt + 1; 
popic[i,m]:=count; 

END; 
IF popn(i,m] = 0 THEN 

popic(i,m] :=0; 
IF popic[i,m) = count - 1 

IF popn[i,m) <> 0 THEN 
inks:=inks + 1; 

END; {m-loop} 
END; {i-loop} 

END; {InvCount} 

THEN 

THEN 

00851 0 0 %INCLUDE 'time_series.pas ILIST' 
00852 I 1 0 PROCEDURE Time_series (alpha:matrix; 
population:species; 
00853 I 1 0 t:integer; VAR meanint:array3; 
00854 I 1 0 VAR popnsum, nummut:array2); 
00855 I C 1 0 {This procedure calculates the mean interaction 
strengths for the different 
00856 I C 1 0 species at a particular time and stores the result 
for use in graphics.} 
00857 I 1 0 
00858 I I 0 
00859 I I 0 
double; 
00860 I 1 0 
00861 I 1 0 
00862 I I 0 
interaction strength 
00863 I 1 0 
00864 I I 0 
00865 I 1 0 
00866 I I I 
00867 I I I 
00868 I C 1 1 
00869 III 
00870 III 
00871 I 1 2 
00872 I 1 2 
00873 I 1 3 
00874 I 1 3 
00875 I 1 3 
00876 I 1 3 
00877 I 1 3 
00878 I 1 4 
00879 I 1 4 
00880 I 1 4 
00881 I 1 4 
00882 lIS 
00883 I I 5 
00884 I I 5 
(alpha(i,j,m,n) ., 
00885 I I 5 
population(j,n); 
00886 I 1 5 
00887 I 1 5 

TYPE 
arrayts=ARRAY [I .. web, 1 .. web, 1 .• variation) OF 

VAR 
alphasum:arrayts; 

calc.} 
i,j,m,n:integer; 

{intermediate in 

{counters} 

BEGIN 

{Calculate interaction intensities} 

FOR i:=1 TO web DO 
BEGIN 

FOR j:=l TO web DO 
BEGIN 

meanint[i,j,t):=O; 
popnsum(i,t) :=0; 
nummllt[i,t) :=0; 
FOR m:=l TO variation DO 

BEGIN 
alphasum(i,j,m) :=0; 
popnsum[j,t):=O; 
FOR n:=1 TO variation DO 

BEGIN 
alphasum[i,j,m):=alphasum(i,j,m) + 

(Abs 

popnslIm[j,t]:=popnsum[j,t) + 
population[j,n); 
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SOURCE LISTING 

00888 I 1 4 END; {n-loop} 
00889 I 1 4 IF popnsum(j,t)<>O THEN 
00890 I 1 4 
alphasum[i,j,m) :=alphasum[i,j,m]/popnsum[j,t) 
00891 I 1 4 ELSE 
00892 I 1 4 alphasum[i,j,m]:=O; 
00893 I 1 4 IF (population[i,m)<>O) THEN 
00894 I 1 4 nummut[i,t):=nummut[i,t) + 1; 
00895 I 1 4 IF (i<>j) THEN 
00896 I 1 4 popnsum[i,t):=popnsum[i,t) + 
population [i, m) ; 
00897 I 1 4 meanint{i,j,t):=meanint(i,j,t] + 
(alphasum[i,j,m) * 
00898 I 1 4 population(i,m]); 
00899 I 1 3 END; {m-loop} 
00900 I 1 3 IF popnsllm[i,t)<>O THEN 
00901 I 1 3 
meanint[i,j,t):=meanint[i,j,t)/popnsum[i,t) 
00902 I 1 3 ELSE 
00903 I 1 3 meanint[i,j,t):=O; 
00904 I 1 2 END; {j-Ioop} 
00905 III END; {i-loop} 
00906 III 
00907 I 0 0 END; { Time_series } 
00908 0 0 
00909 0 0 'INCLUDE 'allvar.pas ILIST' 
00910 I 1 0 PROCEDURE Allvar (t:integer; population:species; 
poptime, muttime:array2; VAR vari:array2); 
00911 I C 1 0 {This procedure calculates the variance of allele 
frequencies over time.} 
00912 I 1 0 
00913 I 1 0 
00914 I 1 0 
00915 I 1 0 
00916 I 1 0 
00917 I 1 0 
00918 I 1 1 
00919 I 1 1 
00920 I 1 2 
00921 I 1 2 
00922 I 1 2 
00923 I 1 3 
00924 I 1 3 
00925 I 1 3 
00926 I 1 3 

VAR 
1, m: integer; 
allfreq:species; 
sumsq:initialtype; 

{counters} 
{frequencies of alleles} 
{sum of squares for variance} 

BEGIN {Allvar} 
FOR i:=1 TO web DO 

BEGIN 
sumsq[i):=O; 
FOR m:=1 TO variation DO 

BEGIN 
allfreq[i,m):= 0; 
IF (poptime(i,t)<>O) 

allfreq(i,m) := 
THEN 

(population(i,m)/poptime[i,t]); 
00927 I 1 3 allfreq[i,m]:= Sqr (allfreq[i,m]); 
00928 I 1 2 END; {m-Ioop} 
00929 III END; {i-loop} 
00930 I 1 1 FOR i:=1 TO web DO 
00931 I 1 2 BEGIN 
00932 I 1 2 FOR m:=l TO variation DO 
00933 I 1 2 sumsq(i):= sumsq[i] + allfreq[i,m); 
00934 I 1 2 IF (muttime(i,t)<>O) THEN 
00935 I 1 2 vari[i,t):= sumsq(i) - (1/(muttime{i,t])); 
00936 I 1 2 IF (mllttime[i,t]>l) THEN 
00937 I 1 2 vari[iit):= (vari[i,t)/(muttime[i,t) - 1)) 
00938 I 1 2 ELSE 
00939 I 1 2 , vari[i,t):= 0; 
00940 I 1 1 END; {i-loop) 
00941 I 0 0 END; {All var } 
00942 I 0 0 
00943 I 0 0 
00944 I 0 0 
00945 0 0 
00946 0 0 
00947 I 1 0 

'INCLUDE 'iterate_discrete.pas ILIST' 
PROCEDURE Iterate_discrete (alphint:matrix; 

growth_r:species; 
00948 I 1 0 VAR popn:species; VAR 
gen:integer); 
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00949 I C 1 0 
defined growth rate 

SOURCE LISTING 

{Accepts old population values and times, as well as 

00950 I C 1 0 and interaction matrices from Iteration. Iterates 
difference equations, 
00951 I C 1 0 increments time by 1, and returns new population values 
to Iteration.} 
00952 I 1 0 
00953 I 1 0 
00954 I 1 0 
00955 I 1 0 
00956 I 1 0 
00957 I 1 0 
00958 I 1 0 
00959 I 1 0 
00960 I 1 0 
00961 I 1 0 
00962 I 1 0 
00963 I 1 1 
00964 III 
00965 I 1 1 
00966 I 1 1 
00967 I 1 1 
00968 I 1 2 
00969 I 1 2 
00970 I 1 3 
00971 I 1 3 
00972 I 1 4 
00973 I 1 4 
00974 I 1 5 
00975 I 1 5 
oldpopn[j,n); 
00976 I 1 4 
00977 I 1 3 
00978 I 1 3 
00979 I C 1 3 
00980 I 1 3 
expon:=critical; 
00981 I 1 3 
00982 I C 1 3 
00983 I 1 3 
00984 I C 1 3 
00985 I 1 3 
popn[i,m):=1.000D24; 
00986 I 1 3 
00987 I 1 3 
00988 I 1 2 
00989 I 1 2 
00990 I 0 0 
00991 0 0 

CONST 
critical=32; (to prevent overflow) 

VAR 
int:double; 
expon:double; 
i,j,m,n:integer; 
oldpopn:species; 

BEGIN ( Iterate_discrete 

int:=O; 
oldpopn:=popn; 
FOR i:=l TO web DO 

BEGIN 
FOR m:=l TO variation DO 

BEGIN 
FOR j:=l TO web DO 

BEGIN 
FOR n:=l TO variation DO 

BEGIN 
int:=int + (alphint[i,j,m,n) * 

END 

END; 

END; {n-loop} 
END; {j-loop} 

expon:=growth_r[i,m) + int; 
{Arithmetic overflow check} 
IF (growth_r[i,m) + int»critical THEN 

popn[i,m) :=oldpopn[i,m) * EXP(expon); 
(Extinction threshold) 
IF popn[i,m)<=extinct THEN popn[i,m):=O; 
{Maximum population density} 
IF popn[i,m»1.000D24 THEN 

int:=O; 
END {m-Ioop} 

(i-loop) 

Iterate_discrete 

00992 0 0 %INCLUDE 'i_c.pas ILIST' 
00993 I 1 0 PROCEDURE Iterate_continuous (alphaint:matrixj 
growth_r:species; 
00994 I 1 0 VAR popn:species; stepd, 
tol:double; gen:integer); 
00995 I C 1 0 (Accepts old population values and times, as well as 
defined growth rate 
00996 I C 1 0 and interaction matrices from Iteration. Solves 
numerically differential 
00997 I C 1 0 equation system using external NAG procedures for 
time=t+interval and 
00998 I C 1 0 returns solutions and time incremented by one unit to 
Iteration. Note that 
00999 I C 1 0 the e(~lations are stiff and thus must be solved by the 
backward 
01000 I C 1 0 differentiation formulae, rather than easier 
Runge-Kutta or Adams-predictor 
01001 I C 1 0 corrector methods.) 
01002 I 1 0 
01003 I 1 0 TYPE 
01004 I 1 0 workarray=ARRAY [l .. web*variation) OF double; 
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01005 I 1 0 
01006 I 1 0 
1 .• web*variation) 
01007 I 1 0 
01008 I 1 0 
01009 I 1 0 
01010 I 1 0 
01011 I 1 0 
01012 I 1 0 
01013 I 1 0 
01014 I 1 0 
01015 I 1 0 
01016 I 1 0 
01017 I 1 0 
01018 I 2 0 
y:workarray; VAR 
01019 I C 2 0 
specific t} 

SOURCE LISTING 

storearray=ARRAY [1 .. 1500) OF double; 
jacobarray=ARRAY [1 .. web*variation, 

OF double; 

VAR 
xx,xend:double; {time parameters for NAG} 
n, system: integer; {dimension parameters for NAG} 
i,m:integer; (counters) 
y:workarray; (results store) 
w:storearray; (working space) 
iw:integer; {dimension of working space} 
ifail:integer;{error report caller} 

[unbound) PROCEDURE Fcn (VAR t:double; VAR 
f:workarray) ; 

{NAG user-supplied procedure ... evaluates dx/dt for 

01020 I C 2 0 
Iterate_continuous} 

{Uses non-local variables defined in 

01021 I 2 0 
01022 I 2 0 
01023 I 2 0 
01024 I 2 0 
01025 I 2 0 
01026 I 2 0 
01027 I 2 0 
01028 I C 2 0 
01029 I 2 0 
01030 I 2 1 
01031 I 2 1 
01032 I 2 1 
01033 I 2 1 
01034 I C 2 1 
01035 I 2 1 
01036 I 2 1 
01037 I 2 1 
01038 I 2 2 
01039 I 2 2 
01040 I 2 3 
01041 I 2 3 
01042 I 2 3 
01043 I 2 3 
01044 I 2 1 
01045 I 2 1 
01046 I C 2 1 
01047 I 2 1 
01048 I 2 1 
01049 I 2 1 
01050 I 2 2 
01051 I 2 2 
01052 I 2 3 
01053 I 2 3 
01054 I 2 4 
01055 I 2 4 
01056 I 2 4 
oldpopn[j,q); 
01057 I 2 4 
01058 I 2 4 
01059 I 2 3 
01060 I 2 3 
01061 I 2 3 
01062 I 2 3 
01063 I 2 3 
sys:=l; 
01064 I 
01065 I 
01066 I 
01067 I 
01068 I 

2 3 
2 2 
1 0 
1 0 
2 0 

VAR 
i, j , m, q: integer; (counters) 
sys:integer; (output counter) 
int:double; (accumulator) 
acc:double; (accumulator) 
olc1popn: species; (temporary store) 
(Note a:matrix b:species Global variables) 

BEGIN {Fcn 
int:=O; 
acc:=O; 

(Initialise olc1popn) 

sys:=l; 
FOR i:=l TO web DO 

BEGIN 
FOR m:=1 TO variation DO 

BEGIN 
oldpopn[i,m!:=y[sys]; 
sys:=sys + 1; 

END em-loop) 
END; {i-loop} 

{Calculate derivative} 

sys:=I; 
FOR i:=1 TO web DO 

BEGIN 
FOR m:=l TO variation DO 

BEGIN 
FOR j:=l TO web DO 

BEGIN 
FOR q:=1 TO variation DO 

int:=int + (a[i,j,m,q] * 

acc:=acc + inti 
int:=O; 

END; (j-Ioop) 
f[sys!:=oldpopn(i,m) * (b(i,m] + acc); 
acc:=O; 
sys:=sys + 1; 
IF sys=(web * variation) + 1) THEN 

END (m-loop) 
END (i-loop) 

END; (Fcn) 

PROCEDURE d02eaf (VAR x:c1ouble; xend:double; 
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SOURCE LISTING 

VAR y:workarray; 
2 0 VAR tol:double; 

n:integer; 
01069 I 
01070 I 2 0 
t :double; 
01071 I 2 
Y :workarray; 
01072 I 2 

%IMMED [UNBOUND] PROCEDURE fcn (VAR 

f:workarray) ; 

o 

o 
VAR 

VAR 

01073 I 1 0 VAR w:storearray; iw:integer; VAR 
ifail:integer); EXTERN; 
01074 I 1 0 
01075 I C 1 0 
forced with %IMMED) 
01076 I C 1 0 
of first-order ODEs 
01077 I C 1 0 

{Note functions in procedural specification must be 

{NAG procedure which, " .. integrates a stiff system 

over a range with suitable initial conditions, using 

variable-step method implementing the Backward 
Formulae." } 

a variable-order, 
01078 I C 1 0 
Differentiation 
01079 I C 1 0 
01080 I 1 0 
01081 I 1 0 
01082 I 1 1 
01083 I 1 1 
01084 I 1 1 
01085 I 1 1 
01086 I 1 1 
01087 I 1 1 
01088 I C 1 1 
01089 I 1 1 
01090 I 1 1 
01091 I 1 2 
01092 I 1 2 
01093 I 1 3 
01094 I 1 3 
01095 I 1 3 
01096 I 1 3 
01097 I 1 1 
01098 I 1 1 
01099 I 1 1 
01100 I 1 1 
01101 I 1 2 
01102 I 1 2 
01103 I 1 3 
01104 I 1 3 
01105 I C 1 3 
01106 I 1 3 
01107 I C 1 3 
01108 I 1 3 
popn[i,m) :=1.000024; 
01109 I 1 3 
01110 I 1 3 
01111 I 1 2 
01112 I 0 0 
01113 0 0 

{(see NAG User Guide FORTRAN routine summary)} 

BEGIN {Iterate_continuous 
xX:=Dble (gen); 
xend:=xx + stepdi 
iw:=1500i 
ifail :=Oi 
n:=web * variation; 
{Initialise y} 
system:=l; 
FOR i:=l TO web DO 

BEGIN 
FOR m:=l TO variation DO 

BEGIN 
Y [system] : =popn [i, m) ; 
system:=system + 1; 

END {m-loop} 
ENDi (i-loop) 

d02eaf (xx, xend, n, y, tol, Fcn, w, iw, ifail); 
system:=l; 
FOR i:=l TO web DO 

BEGIN 
FOR m:=l TO variation DO 

END 
END; { 

BEGIN 
popn [1, m) : =y I system] ; 
{Extinction threshold} 
IF popnli,m]<=extinct THEN popn[i,m):=O; 
{Maximum population density} 
IF popn[i,m»1.000D24 THEN 

system:=system +1; 
END (m-Ioop) 

(i-loop) 
Iterate_continuous } 

01114 0 0 %INCLUDE 'graphics? .pas ILIST' 
01115 I 1 0 PROCEDURE Graphics7 (meanint:array3; popnsum, 
nummut:array2; v:array2; coden:strtype); 
01116 I C 1 0 {This procedure uses Simpleplot graphics library to 
produce graphical 
01117 I C 1 0 plots of the results of evolution of interacting 
species for long runs.} 
01118 I 1 0 
01119 I 1 0 
01120 I 1 0 
01121 I 1 a 
01122 I 1 a 
01123 I 1 a 
01124 I 1 a 
01125 I 1 a 

TYPE 
storage=ARRAY [1 .. terminus) OF reali 
lab=VARYING (80) OF chari 
axlab=VARYING [50) OF chari 
stringtype=PACKED ARRAY [1 .. 11) OF char; 
string2=PACKED ARRAY [1 .. 35) OF char; 
time_array=ARRAY [l •. web) OF storage; 
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01126 I 
01127 I 

1 
1 
1 01128 I 

strength over 
01129 I 1 
01130 I 1 
01131 I 1 
series} 

o 
o 
o 
time} 
o 
o 
o 

SOURCE LISTING 

VAR 
meanintstr:storage; 

timearray:storage; 
poptime:storage; 
muttime:storage; 

(mean interaction 

(time variable store) 
(population time series) 
{coexisting mutants time 

01132 I 1 0 vtime:storage; (variance of allele 
frequency time series} 
01133 I 1 0 timestr,datestr:stringtype; (strings to write 
current date and time) 
01134 I 1 0 strstr,codestr:lab; (intermediate for title 
writing} 
01135 I 1 0 
01136 I 1 0 
con,[ersion} 
01137 I 1 0 
01138 I 1 0 
01139 I C 1 0 
01140 I 1 0 
01141 I 1 0 
01142 I 1 0 
01143 I 1 0 
01144 I 1 0 
01145 I 1 0 
01146 I 1 0 
01147 I 1 0 
01148 I 1 0 
01149 I 1 0 
01150 I 1 0 
01151 I 1 0 
01152 I 1 0 

ymin, ymax:real; 
mi:double; 

i,j,m,n,t:integer; 

{limits of axes} 
{intermediate for type 

{counters} 

{Simpleplot procedures for graphics} 

PROCEDURE Devno (i:integer); FORTRAN; 

PROCEDURE Papinc (cms:real); FORTRAN; 

PROCEDURE Page (xcms, ycms:real); FORTRAN; 

PROCEDURE Boxpag (tof:Boolean); FORTRAN; 

PROCEDURE Group (nhoriz, nvert:integer); FORTRAN; 

PROCEDURE Picsiz (xlen, ylen:real); FORTRAN; 

01153 I 1 0 PROCEDURE Limexc (varr:storage; nv:integer; VAR 
vmin,vmax:real); FORTRAN; 
01154 I 1 0 
01155 I 2 0 
ymin, ymax: real; 
01156 I 1 0 
01157 I 1 0 
01158 I 1 0 
01159 I 1 0 
01160 I 1 0 
01161 I 1 0 
01162 I 1 0 
FORTRAN; 
01163 I 1 0 

PROCEDURE 

PROCEDURE 

PROCEDURE 

PROCEDURE 

Scales 

Axes? 

Cvtype 

Drawcv 

(xmin, xmax:real; xtype: integer; 

ytype: integer); FORTRAN; 

(Xtitle, Ytitle:axlab); FORTRAN; 

(ntype: integer) ; FORTRAN; 

(xarr, yarr:storage; npts:integer); 

01164 I 1 0 PROCEDURE Setpns (ipenl, ipen2, ipen3, 
ipen4:integer); FORTRAN; 
01165 I 1 0 
01166 I 1 0 
01167 I 1 0 
01168 I 1 0 
FORTRAN; 
01169 I 
01170 I 
01171 I 
01172 I 
01173 I 
01174 I 
01175 I C 
01176 I 
01177 I 
01178 I 
01179 I C 
01180 I 
01181 I 
01182 I 
01183 I 
01184 I 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

o 
o 
o 
o 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 

PROCEDURE Pen (ipen:integer); FORTRAN; 

PROCEDURE Title? (vert, horiz:char; title:lab); 

PROCEDURE Endplt; FORTRAN; 

BEGIN ( Graphics? ) 

(Choose output device) 

Devno (l); 

(Set up graph) 
" 

Papine (28.0 • web); 
FOR i:=1 TO web DO 

BEGIN 
Setpns (1,2.3.4); 
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01185 I 1 
01186 I 1 
01187 I 1 
01188 I 1 
01189 I 1 
01190 I 1 
01191 I C 1 
01192 I 1 
01193 I 1 
01194 I 1 
01195 I 1 
01196 I 1 
01197 I 1 
01198 I 1 
01199 I 1 
01200 I 1 
01201 I 1 
densi ty' ) ) ; 
01202 I 1 
01203 I 1 
01204 I 1 
01205 I 1 
01206 I 1 
01207 I 1 
01208 I 1 
01209 I 1 
01210 I 1 
01211 I 1 
Alleles' ) ) ; 
01212 I 1 2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
2 
2 
2 
2 

2 
2 
2 
2 
3 
3 
3 
2 
2 
2 

01213 I 1 2 
01214 I 1 2 
01215 I 1 2 
01216 I 1 3 
01217 I 1 3 
01218 I 1 3 
01219 I 1 2 
01220 I 1 2 
01221 I 1 2 
01222 I 1 2 
Allele Frequency'»; 
01223 I 1 2 
01224 I 1 2 
01225 I 1 2 
01226 I 1 2 
01227 I 1 3 
01228 I 1 3 
01229 I 1 4 
01230 I 1 4 
01231 I 1 4 
01232 I 1 3 
01233 I 1 3 
01234 I 1 3 

SOURCE LISTING 

Pen (1); 
Page (21.0, 29.7); 
Boxpag (true); 
Group (l,web + 3); 
Picsiz (20.0, 5.0); 

{Draw graph} 
j:=l; 
FOR t:=l TO terminus DO 

BEGIN 
timearray[t) :=t; 
mi:=popnsum[i,t); 
poptime[t):=Sngl (mi) 

END; (t-loop) 
Limexc (poptime, terminus, ymin, ymax); 
Scales (0.0, terminus, 1, 0.0, ymax, 1); 
Axes7 (%STDESCR('Time'), %STDESCR('Population 

Cvtype (3); 
Drawcv (timearray, poptime, terminus); 

FOR t:=l TO terminus DO 
BEGIN 

mi:=nummut[i,t); 
muttime[t):=Sngl (mi) 

END; {t-loop} 
Scales (0.0, terminus, 1, 0, 10, 1); 
Axes7 (%STDESCR('Time'), %STDESCR('Number of 

Cvtype (3); 
Drawcv (timearray, muttime, terminus); 

FOR t:=1 TO terminus DO 
BEGIN 

mi:=v[i,t); 
vtime[t) :=Sngl (mi) 

END; {t-loop} 
Limexc (vtime, terminus, ymin, ymax); 
Scales (0.0, terminus, 1, 0, ymax, 1); 
Axes7 (%STDESCR('Time'), %STDESCR('Variance of 

Cvtype (3); 
Drawcv (timearray, vtime, terminus); 

FOR j:=l TO web DO 
BEGIN 

FOR t:=l TO terminus DO 
BEGIN 

mi:=meanint(i,j,t); 
meanintstr[t) :=Sngl (mi) 

END; 
Scales (0.0, terminus,!, 0.0, 1.0, 2); 
Axes7 (%STDESCR('Time'), %STDESCR('Mean 

interaction intensity'»; 
01235 I 1 3 
01236 I 1 3 
01237 I 1 2 
0l.238 I 1 2 
01239 I C 1 2 
01240 I 1 2 
01241 I 1 2 
01242 I 1 2 
01243 I C 1 2 
01244 I C 1 2 
01245 I 1 2 
01246 I 1 2 
01247 I 1 2 
01248 I 1 2 
01249 I 1 2 
01250 I 1 2 

Cvtype (3); 
Drawcv (timearray, meanintstr, terminus) 

ENDi 

{Change pen colour} 

Pen (2); 

(Write current time) 
{ & experimental code} 

" Time (timestr); 
Date (datestr); 
strstr:=timestr + ' , + datestr; 
codestr:='Experiment ' + coden; 
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01251 I C 1 2 
01252 I 1 2 
01253 I 1 2 
tSTDESCR ( 'MODEL 7') ) ; 
01254 I 1 2 
tSTDESCR(strstr»; 
01255 I 1 2 
tSTDESCR(codestr»; 
01256 I 1 2 
01257 I 1 1 
01258 I 1 1 
01259 I C 1 1 
01260 I 1 1 
01261 I 1 1 
01262 I 1 1 
01263 I 0 0 
01264 0 0 

SOURCE LISTING 

(Add titles) 

Title7 (%STDESCR('H'),tSTDESCR('C'), 

Title7 (%STDESCR('H'),%STDESCR('C'), 

Title7 (%STDESCR('H'),%STDESCR('C'), 

END; (i-loop) 

(End graphics) 

Endplt 

END; ( Graphics7 

01265 0 0 tINCLUDE 'file_store7.pas ILIST' 
01266 I 1 0 PROCEDURE File_Store7 (meanint:array3; 
popnsum,nummut,v:array2); 
01267 I C 1 0 (This procedure writes results to files for input 
into interactive UNIRAS. 
01268 I C 1 0 This version for use with MODEL7.) 
01269 I 1 0 
01270 I 1 0 
01271 I 1 0 
01272 I 1 0 
01273 I 1 0 
01274 I 1 0 
01275 I 1 0 
01276 I 1 0 
01277 I 1 0 
01278 I 1 0 
01279 I 1 0 
01280 I 1 0 
01281 I 1 0 
01282 I 2 0 
timestore:storage; 
01283 I 2 0 
ii,tt:integer); 
01284 I C 2 0 
file. } 
01285 I 
01286 I 
01287 I 
01288 I 
01289 I 
01290 I 
01291 I 
01292 I 
01293 I 
01294 I 
01295 I 
01296 I 
01297 I 
01298 I 
01299 I 
01300 I 
01301 I 
01302 I 
01303 I 
01304 I 
01305 I 
01306 I 
01307 I 
01308 I 
01309 I 
01310 I 
01311 I 
01312 I 

2 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

o 
o 
o 
o 
1 
1 
1 
1 
o 
o 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
4 
4 
4 

TYPE 
storage=ARRAY (1 .. terminus) OF real; 

VAR 
meanintstr:storage; 
timearray:storage; 
poptime:storage; 
muttime:storage: 
vtime:storage: 
mi:double: 
i,j,t:integer; 

PROCEDURE File_Write (results:array2; VAR 

VAR filename: text; 

(This procedure writes results from array to a text 

VAR 
mi:double; 

BEGIN (File_Write) 
mi:=results(ii,tt); 
timestore(tt) :=Sngl (mi); 
Write (filename, timestore(tt); 

END; (File_Write) 

BEGIN (File_Store7 
Rewrite (unigr): 

FOR t:=l TO terminus DO 
BEGIN 

timearray(t) :=t; 
Write (unigr, timearray(t): 
FOR 1:=1 TO web DO 

File_Write (popnsum, poptime, unigr, i, t); 
FOR i:=1 TO web DO 

File_Write (nummut, muttime, unigr, i, t); 
FOR i:=1 TO web DO 

File_Write (v, vtime, unigr, i, t); 
FOR i:=lTO web DO 

BEGIN 
FOR j:=1 TO web DO 

BEGIN 
m1:=meanint{i,j,t); 
meanintstr(t) :=Sngl(mi); 
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01313 I 1 
01314 I 1 
01315 I 1 
01316 I 1 
01317 I 1 
01318 I 1 
01319 I 0 
01320 0 
01321 0 
01322 0 
01323 C 0 
01324 0 
01325 0 
01326 C 0 
01327 0 
01328 0 
01329 0 
01330 0 
01331 0 
01332 0 
01333 0 
01334 0 
01335 0 
01336 0 
01337 0 
01338 0 
01339 0 
01340 0 
of mean '); 

4 
4 
4 
3 
2 
1 
o 
o 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

01341 0 1 
01342 0 1 

END; 

SOURCE LISTING 

Write (unigr, meanintstr[t]); 
IF (i=web) AND (j=web) THEN 

writeln (unigr); 
END; (j-loop) 

END; (i-loop) 
END; (t-loop) 
{ File_Store7 } 

BEGIN (Main program) 

(Inputing experimental code) 
Writeln ('Input code for experiment'); 
Readln (codestr); 
{Inputing parameters as variables} 
FOR i:=l TO web DO 

BEGIN 
Writeln ('Input initial density for species ',i); 
Readln (startpopn[i) 

END; (i-loop) 
Writeln ('Input density of invading population'); 
Readln (invadepop); 
Writeln ('Input extinction threshold'); 
Readln (extinct); 
Writeln ('Input minimum self-limitation in prey'); 
Readln (minselflimit); 
Writeln ('Input mutation rate (density~-1)'); 
Readln (mutation_rate); 
Writeln ('Input SD of normal distribution as fraction 

Readln (fraction); 

01343 COl {Initialisation} 
01344 0 1 Writeln ('Input type of initialisation required'); 
01345 0 1 Writeln ('Enter 0 for non-random initialisation, 1 
for random initialisation'); 
01346 0 1 Readln (choice); 
01347 0 1 IF (choice=l) THEN 
01348 0 2 BEGIN 
01349 0 2 Writeln ('Input mean of negative exponential 
distribution'); 
01350 0 2 
01351 0 2 
01352 0 1 
01353 0 1 
01354 0 1 
01355 0 1 
01356 0 1 
01357 COl 
01358 COl 
01359 0 1 
01360 0 2 
01361 0 2 
required') ; 
01362 0 2 
01363 0 2 
replicates ); 
01364 0 
01365 0 
01366 0 
01367 0 
01368 0 
01369 C 0 
01370 0 
required') ; 

2 
2 
1 
1 
1 
1 
1 

01371 0 1 
time'); 
01372 
01373 
01374 
01375 

o 
o 
o 
o 

1 
1 
2 
2 

Readln (mean); 
END 

ELSE 
choice:=O; 

Writeln (' Input 
Readln (stint); 

step length for invasion counting'); 

(Running model) 
{Set up number of replicates} 
IF (choice = 1.0) OR (choice=O) THEN 

BEGIN 
Writeln ('Input the number of replicate 

Readln (replicates); 

runs 

Writeln ('Random initialised system run for' 

Writeln (' runs.'); 
END 
ELSE 

replicates: =1; 

(Time type) 
Writeln ('Input the type of numerical system 

Writeln ('Enter 0 for discrete time, 1 for continuous 

Readln (ttype); 
IF (ttype=l) THEN 

BEGIN 
Writeln ('Input 
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SOURCE LISTING 

integration'): 
01376 0 2 Readln (step); 
01377 0 2 Writeln ('Input the acceptable tolerance for 
numerical integration'): 
01378 0 2 Readln (tolerance): 
01379 0 1 END: {numerical integration initialisation} 
01380 0 1 
01381 COl 
01382 0 1 
01383 0 1 
01384 0 2 
01385 C02 
01386 0 2 
01387 0 2 
01388 0 2 
01389 a 2 
01390 a 2 
01391 0 2 
01392 C02 
01393 a 2 
01394 a 2 
01395 a 3 
01396 0 3 
01397 0 4 
01398 a 4 
generation_time): 
01399 a 4 

{Replicate loops} 
repl:=TRUNC(replicates): 
FOR ia:=l TO repl DO 

BEGIN {replicate loop} 
(Initialisation) 
G05ccf: 
IF (choice=O) THEN 

NonRandom_Initial (sign, x, b, a): 
IF (choice=l) THEN 

RandomInitial (sign, x, b, a): 
Invln (ia, xic, inct, incs, cstep): 
(Population dynamics) 
generation_time:=O: 
IF ttype=O THEN 

BEGIN {discrete time} 
FOR count:=1 TO terminus DO 

BEGIN 
Iterate_discrete (a, b, x, 

Invasion (a, b, x, constraints, sign, 
mutation rate, fraction): 
01400 - a 4 InvCount (x, xic, ines, inct, cstep): 
01401 a 4 
mean_interaction, 
01402 a 4 
coexisting_mutants): 
01403 0 4 

Time_series (a, x, count, 

Allvar (count, x, population_over_time, 
coexisting_mutants, v): 
01404 a 3 
01405 a 2 
01406 a 2 
01407 0 3 
01408 0 3 
01409 a 4 
01410 0 4 
tolerance, count): 
01411 0 4 

END: {time-counting} 
END; {discrete time} 

IF ttype=l THEN 
BEGIN {continuous time} 

FOR count:=l TO terminus DO 
BEGIN 

Iterate_continuous (a, b, x, step, 

Invasion (a, b, x, constraints, sign, 
mutation_rate, fraction): 
01412 0 4 
01413 0 4 
mean_interaction, 
01414 0 4 
coexisting_mutants): 
01415 a 4 

InvCount (x, xic, incs, inct, cstep); 
Time_series (a, x, count, 

Allvar (count, x, population_over_time, 
coexisting_mutants, v): 
01416 a 3 
01417 0 2 
01418 a 1 
01419 0 1 
01420 C 0 1 
01421 0 1 
coexisting_mutants, 
01422 0 1 
01423 COl 
01424 0 1 
coexisting_mutants, 
01425 a 1 

END: {time-counting} 
END: (continuous time) 

END: (Replication loop) 

{Graphics ... } 
Graphics7 (mean_interaction, population_over_time, 
v, codestr): 

(File writing ... ) 
File_Store7 (mean_interaction, population_aver_time, 
v) : 

01426 a a END. (Main program) 
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SOURCE LISTING 

B.2 MODEL 2 

For historical reasons described in the source code as Model 6. Lines of the 

program are shown in Courier typeface. Fonnatting of the source code in the 

preparation of this Appendix has caused some lines to run on; this does not 

occur in the original code. The program has a similar structure to the·one 

above. 

-LINE-IDC-PL-SL-

00001 o 0 PROGRAM Model6 (input, output, control, invsout, unigr); 
o 0 {This program models species interacting in a trophic 
repeated 

00002 C 
web, under 
00003 C 
00004 C 
00005 C 
00006 C 
00007 C 
00008 C 
00009 C 
00010 C 
sequences) 
00011 C 0 
00012 C 0 
00013 C 0 
00014 C 0 
writing added 
00015 C 0 
00016 C 0 
00017 0 
00018 C 0 
00019 C 0 
00020 C 0 
00021 C 0 

o 0 invasions of mutants.} 
o 0 {version: definitive DOUBLE precision} 
o 0 {reconstructed (9/11/90) from (27/7/90)} 
o 0 {reassembled from archive (27/11/90) 
o 0 (2 species: 5000 generations; NORMINT(O.l) mutation} 
o 0 {Explicit haploid genetic system with body size} 
o 0 {created (1/l2/90)} 
o 0 (basic version without file writing or different random 

o {continuous time added (9/s/91}) 
o (common self-limitation in prey added (4/7/91)) 
o (invasion counting and output added (4/7/91)) 
o {more user-defined parameters, allele variance, 
(*/10/91) } 

file 

o {user-defined fraction added (6/1/92)} 
o {discrete character states added (6/1/92)} 

00022 0 
00023 0 
00024 0 
web} 
00025 0 
per species} 

o 
o 
o 
o 
o 
o 
o 
o 

o 

00026 0 0 
00027 0 0 
00028 0 0 
00029 0 0 
00030 0 0 
00031 0 0 
00032 0 0 
1 •. variation) OF 
00033 0 0 
00034 0 0 
00035 0 0 
00036 0 0 
00037 0 0 
00038 0 0 
control} 
00039 C 
00040 
00041 
00042 

o 
o 
o 
o 

o 
o 
o 
o 

(Author: 
{ 

Paul Marrow 
Department of Biology 
University of York 
York Y01 SOD UK 

( 
{ 

CONST (Global constants) 
web=2; {number of species in food 

variation=10: {number of mutant niches 

terminus=5000; (Number of time steps) 

TYPE {Definitions} 
initialtype=ARRAY (l .. web] OF double; 
strtype=VARYING[80J OF char; 
species=ARRAY (l .. web, 1 .. variation) OF double; 
matrix=ARRAY [l .. web, 1 .. web, 1 .. variation, 

double; 
array2=ARRAY (l .. web, l .. terminus) OF double; 
array3=ARRAY (l .. web, 1 .. web, 1 .. terminus) OF double; 

VAR (Global variables) 
codestr:strtype; 
control:text; 

(experimental code) 
{text file for program 

(Former constants as variables) 
startpopn:initialtype: {starting population size} 
invadepop:double; {invading population size} 
extinct:double; {extinction threshold} 
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00043 
producer} 

o o 

00044 0 0 
00045 0 0 
initialisation} 
00046 0 0 
00047 0 0 

SOURCE LISTING 

minselflimit:double; 

mutation rate:double; 
choice:double; 

ttype:double; 
step:double; 

integration} 
00048 0 0 tolerance:double; 
numerical integration} 
00049 0 0 replicates:double; 
with same parameters} 
00050 0 0 fraction:double; 
mutanchargen normal distn.} 
00051 0 0 repl:integer; 
00052 0 0 a:matrix; 
00053 0 0 sign:matrix; 
interaction strengths} 
00054 0 0 b:species; 
00055 0 0 x:species; 
00056 0 0 xic:species; 
00057 0 0 p:species; 
00058 0 0 v:array2; 
frequency } 
00059 0 0 
00060 0 0 
characteristics} 
00061 0 0 
00062 0 0 

count: integer; 
constraints:species; 

generation_time: integer; 
mean_interaction:array3; 

{minimum self-limitation in 

{mutation rate (density~l}) 
{random/nonrandom 

{discrete/continuous time} 
{step length in numerical 

{acceptable tolerance in 

{number of replicate runs 

{standard deviation of 

{replicate loop counter} 
{interaction strengths} 
{trophic constraints on 

{growth rates} 
{population sizes} 
{invasion counter marker} 
{phenotype:body size} 
{variance of allele 

{time counter} 
{constraints on species 

{dummy time counter} 
{mean interaction 

storage} 
00063 
series} 
00064 
mutants} 
00065 
00066 
00067 
00068 
parameter} 
00069 C 
00070 
00071 
00072 
counter} 
00073 
counter} 
00074 
00075 
counter} 
00076 
invasion 
00077 
invasions 
00078 
00079 
00080 I 
00081 I C 
a uniform 

o o population_over_time:array2; {population time 

o 

o 
o 
o 
o 

o 
o 
o 
o 

o 

o 
o 

o 

o 
o 
o 
o 

o 
o 
o 
o 

o 

o 
o 

o 0 
counting} 

o 0 
results} 
o 0 
o 0 
o 0 
o 0 

00082 leO 0 
by FORTRAN 
00083 leo 0 
00084 0 0 

coexisting_mutants:array2; 

mean_size:array2; 
i,j,m,n:integer; 
unigr: text; 
mean:double; 

{Extra variables 
ia: integer; 
incs:initialtype; 
inct:initialtype; 

pdm:initialtype: 

cstep:integer; 
ccount: integer; 

stint: integer; 

invsout:text; 

for invasion 

%INCLUDE 'nagrandu.pas /LIST' 

{number of coexisting 

{body size over time} 
{*debugging counters*} 
{results store} 
{random distribution 

counting} 
{counter} 
{invasion counter} 
{successful invasion 

{population density 

{step number counter} 
{within step time 

{step length in 

{output file for 

FUNCTION G05caf (x:double):double; EXTERN; 
(This NAG routine produces pseudo-random numbers from 

distribution on (0,1). x is a dummy parameter required 

syntax. ) 

00085 0 0 %INCLUDE 'nagrandn.pas ILIST' 
00086 I 0 0 FUNCTION C05ddf (a, b:double):double; EXTERN; 
00087 I COO {This function produces a random variate from a 
Normal distribution, mean a 
00088 leO 0 standard deviation b.} 
00089 0 0 
00090 0 0 %INCLUDE 'nagrandx.pas ILIST' 
00091 I 0 0 FUNCTION G05dbf (a:double):double; EXTERN; 
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00092 leo 0 
taken from a 
00093 leo 0 
Library manual 
00094 I coo 
00095 0 0 
00096 0 0 
00097 I 0 0 
00098 I Coo 
an unrepeatable 
00099 I COO 
00100 I 0 0 
00101 0 0 
00102 0 0 
00103 I 1 0 
vinput:double) ; 
00104 I C 1 0 
line, and writes 

SOURCE LISTING 

(This function generates a pseudo-random real number 

negative exponential distribution. 

for details.} 

%INCLUDE 'unrepeat.pas /LIST' 
PROCEDURE G05ccf; EXTERN: 

See NAG Fortran 

(This NAG routine sets the random number generator to 

initial state.} 

%INCLUDE 'inputcontrol.pas /LIST' 
PROCEDURE InputControl (lineno:integer; VAR 

(This procedure reads from CONTROL. OAT at a specified 

00105 I C 1 0 result to 
passed back to main 

an integer control parameter which is then 

If line number specified is out of range, an 00106 I C 1 0 program. 
error message is 
00107 I C 1 0 
00108 I 1 0 
00109 I 1 0 
00110 I 1 0 
00111 I 1 0 
00112 I 1 0 
00113 III 
00114 III 
00115 I 1 1 
00116 I 1 2 
00117 I 1 2 
00118 I 1 3 
00119 I 1 3 
00120 I 1 3 
00121 I 1 3 
00122 I 1 1 
00123 I 1 1 
00124 I 1 2 
00125 I 1 2 

displayed. ) 

VAR 
i:integer; (counter} 

BEGIN ( InputControl 

IF lineno > 1 THEN 
BEGIN 

FOR i:=l TO (lineno-1) DO 
BEGIN 

IF Eof (control)=false THEN 
Readln (control) 

END (i-loop) 
END: {IF loop} 

IF (Eof (control)=true) OR (lineno < 1) THEN 
BEGIN 

Writeln ('Error in reading from Control: line 
number out of range'); 
00126 I 1 2 
00127 I 1 2 
00128 III 
00129 I 1 1 
00130 III 
00131 I 1 1 
00132 I 0 0 
00133 0 0 
00134 0 0 
00135 I 1 0 
00136 I C 1 0 
from terminal 
00137 I C 1 o 

o 
o 
o 
o 
o 
o 
1 
1 
1 
1 
1 
1 
1 
2 
2 

00138 I 1 
00139 I 1 
00140 I 1 
00141 I 1 
00142 I 1 
00143 I 1 
00144 I 1 
00145 I 1 
00146 I C 1 
00147 I 1 
00148 I 1 
00149 I 1 
00150 I 1 
00151 I 1 
00152 I 1 

vinput:=O 
END 

ELSE 
Readln (control, 

Reset (control) 

END: ( InputControl 

vinput) ; 

%INCLUDE 'initial_sign.pas /LIST' 
PROCEDURE Initial_Sign (VAR sign:matrix); 

(This procedure reads the values of the sign matrix 

into the program array.) 

VAR 
i,j,k,m,n:integer; (counters) 
signm:double; {sign constraint dummy variable} 

BEGIN { Initial_Sign } 

(Defining wild-types) 
k:=O; 
m:=1: 
n:=1; 
FOR i:=1 TO web DO 

BEGIN 
FOR j:=1 TO web DO 
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00153 I 1 
00154 I 1 
00155 I 1 

3 
3 
3 

, , i,' effect on 
00156 I 1 3 
00157 I 1 3 
00158 I 1 3 
00159 III 
00160 III 
00161 I C 1 1 
matrices} 
00162 III 
00163 I 1 2 
00164 I 1 2 
00165 I 1 3 
00166 I 1 3 
00167 I 1 3 
00168 I 1 2 
00169 III 
00170 III 
00171 III 
00172 I 1 2 
00173 I 1 2 
00174 I 1 3 
00175 I 1 3 
00176 I 1 3 
00177 I 1 2 
00178 III 
00179 III 
00180 I C 1 1 
00181 III 
00182 I 1 2 
00183 I 1 2 
00184 I 1 3 
00185 I 1 3 
00186 I 1 4 
00187 I 1 4 
00188 I 1 4 
00189 I 1 4 
00190 I 1 3 
00191 I 1 2 
00192 I 1 2 
00193 I 0 0 
00194 0 0 

SOURCE LISTING 

BEGIN 
k:=k + 1; 
Writeln ('Input sign constraint for speCies 

species ',j): 
Readln (signm); 
sign[i,j,m,n) :=signm 

END {j-loop} 
END; (i-loop) 

(Defining outer rows and columns of mutant sign 

FOR n:=2 TO variation DO 
BEGIN 

FOR i:=l TO web DO 
BEGIN 

FOR j:=l TO web DO 
sign[i,j,m,n) :=sign[i,j,1.1); 

END; {i-loop} 
END; en-loop} 

n:=l; 
FOR m:=2 TO variation DO 

BEGIN 
FOR i:=l TO web DO 

BEGIN 
FOR j:=l TO web DO 

sign[i,j,m,n):=sign[i,j,l,l); 
END; {i-loop} 

END; em-loop} 

{Defining mutant sign matrices} 
FOR i:=l TO web DO 

BEGIN 
FOR j:=l TO web DO 

BEGIN 
FOR m:=2 TO variation DO 

BEGIN 
FOR n:=2 TO variation DO 

sign[ i, j ,m, n) :=sign Ii, j ,1, 1); 
. END {m-loop} 

END {j-loop} 
END {i-loop} 

END; 

00195 0 0 %INCLUDE 'initial-pop.pas ILIST' 
00196 I 1 0 PROCEDURE Initial_pop (VAR popn:species): 
00197 I C 1 0 {Input is undefined population matrix from either R 
or NRInitial: for m=l 
00198 leI 0 population values are set to StartPopn (global 
variable), for m<>l population 
00199 leI 0 values are set to O. Defined population matrix is 
returned to appropriate 
00200 I C 1 0 initialisation procedure, and thus to main program.} 
00201 I 1 0 
00202 I 1 0 
00203 I 1 0 
00204 I 1 0 
00205 III 
00206 III 
00207 III 
00208 III 
00209 III 
00210 I 1 2 
00211 I 1 2 
00212 I 1 2 
00213 I 1 2 
00214 I 0 0 
00215 I 0 0 
00216 0 0 
00217 0 0 

VAR 
i,m: integer; 

BEGIN 
m:=l; 
FOR i:=l TO web DO 

popn[i,m) :=StartPopn[i); 
FOR m:=2 TO variation DO 

BEGIN 
FOR i:=1 TO web DO 

popn[i,mj :=0 
END 1m-loop} 

END; (Initial_Pop) 

%INCLUDE 'initial_zero.pas ILIST' 

230 



SOURCE LISTING 

00218 I 1 0 PROCEDURE Initial_Zero (VAR grwth:species; VAR 
interact:matrix); 
00219 I C 1 0 {Inputs are partially defined growth rate and 
interaction matrices; 
00220 I C 1 0 for m>1 values are set to 0 and returned to 
initialisation procedures 
00221 I C 1 0 and thus to main program. This prepares the way for 
mutant invasion.} 
00222 I 1 0 
00223 I 1 0 
00224 I 1 0 
00225 I 1 0 
00226 I 1 0 
00227 I 1 1 
00228 I 1 1 
00229 I 1 1 
00230 I 1 2 
00231 I 1 2 
00232 I 1 3 
00233 I 1 3 
00234 I 1 3 
00235 I 1 4 
00236 I 1 4 
00237 I 1 4 
00238 I 1 4 
00239 I 1 4 
00240 I 1 4 
00241 I 1 3 
00242 I 1 2 
00243 I 1 2 
00244 I 0 0 
00245 0 0 

VAR 
i,j,m,n:integer; 

BEGIN 

FOR i:=1 TO web DO 
BEGIN 

FOR m:=2 TO variation DO 
BEGIN 

grwth[i,m] :=0; 
FOR j:=1 TO web DO 

BEGIN 
FOR n:=2 TO variation DO 

interact[i,j,m,n] :=0; 
n: =1; 
interact[i,j,m,n] :=0; 

END {j-loop} 
END {m-loop} 

END {i-loop} 

END; ( Initial_Zero 

00246 0 0 %INCLUDE 'growth_gen.pas /LIST' 
00247 I 1 0 PROCEDURE Growth_Gen (VAR growth_rate:species; 
bsize:species; no,m:integer); 
00248 I C 1 0 {This procedure calculates growth rates, given 
initial phenotypes, 
00249 I C 1 0 
00250 IC 1 0 
00251 I 1 0 
00252 I 1 1 
00253 I 1 1 
00254 I 1 1 
00255 I 1 1 
00256 I 1 1 
00257 I 1 1 
00258 I 0 0 
00259 0 0 

and subject to constraints.) 
{Calls·non-nested procedure InputControl.} 

BEGIN {Growth_Gen} 
IF bsize[no,m)<>O THEN 

growth_rate[no,m]:=(1-bsize[no,m]) 
ELSE 

growth_rate[no,m]:=O; 
IF no>1 THEN growth_rate[no,m]:= -growth_rate [no,ml 

END; {Growth_Gen} 

00260 0 0 %INCLUDE 'selflimit1.pas /LIST' 
00261 I 1 0 
00262 I C 1 0 
self-limitation in 
00263 I C 1 0 
communi ty . } 
00264 I 1 0 
00265 I 1 0 
00266 I 1 0 
00267 I 1 0 
00268 I 1 0 
00269 I 1 0 
00270 I 1 0 
00271 I 1 1 
00272 I 1 1 
00273 I 1 1 
00274 I 0 0 
00275 0 0 

FUNCTION Self_limit (bsize:double):double; 
{This function evaluates an interaction term for 

a producer species, or a consumer in a competition 

CONST 
kt=1; 

VAR 
it:double; {dummy for function} 

BEGIN {Self_limit} 
it:=(kt • bsize); 
Self limit:=it; 

END; T Self_limit } 

00276 0 0 %INCLUDE 'pred_effect2.pas /LIST' 
00277 I 1 0 FUNCTION Pred_effect (sizea,sizeb:double) :double; 
00278 I C 1 0 {This function evaluates an interaction term for 
prey effect on predator.} 
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00279 I 1 0 
00280 I 1 0 
00281 I 1 0 
00282 I 1 0 
00283 I 1 0 
00284 I 1 0 
00285 I 1 0 
00286 I 1 0 
00287 I 1 0 
00288 I 1 0 
00289 I 1 0 
00290 I 1 1 
00291 III 
(sizea - 0.5»» * 
00292 I 1 1 
(sizeb - 0.5»»); 
00293 III 
00294 III 
00295 III 
00296 III 
00297 I 1 1 
00298 III 
00299 I 0 0 
00300 0 0 

SOURCE LISTING 

CONST 
ka=l; 
kb=l; 
kc=l; 
kd=l; 

VAR 
it:double; (dummy for function) 
kdiv:double; 

BEGIN {Pred_effect} 
it:=( (ka * Exp (-1.0 * kb * «sizea - 0.5) * 

(kc * Exp (-1.0 * kd * «sizeb - 0.5) * 

kdiv:=Exp (-1) * (Exp (1) - Exp (0.5»; 
it:=it/kdiv; 
it:=it - 1.541494084; 
IF it>1.0 THEN it:=1.0; 
IF it<O.O THEN it:=O.O; 
Pred_effect:=it; 

END; {Pred_effect) 

00301 0 0 %INCLUDE 'prey_effect1.pas ILIST' 
00302 I 1 0 FUNCTION Prey_effect (sizea,sizeb:double) :double; 
00303 I C 1 0 (This function evaluates an interaction term for 
prey effect on predator.) 
00304 I 1 0 
00305 I 1 0 
00306 I 1 0 
00307 I 1 0 
00308 I 1 0 
00309 I 1 0 
00310 I 1 0 
00311 I 1 0 
00312 I 1 0 
00313 I 1 0 
00314 I 1 0 
00315 III 
00316 III 
(sizea - 0.5»» * 
00317 I 1 1 
(sizeb - 0.5»»); 
00318 III 
00319 I 1 1 
00320 III 
00321 III 
00322 III 
00323 III 
00324 I 0 0 
00325 0 0 
00326 0 0 
00327 I 1 0 
sign_m:matrix; 
00328 I 1 0 
pp,q,m,n:integer); 
00329 I C 1 0 
body sizes.) 

CONST 
ka=l; 
kb=l; 
kc=l; 
kd=l; 

VAR 
it:double; (dummy for function) 
kdiv:double; 

BEGIN {Prey_effect} 
it:=( (ka * Exp (-1.0 * kb * «sizea - 0.5) * 

(kc * Exp (-1.0 * kd * «sizeb - 0.5) * 

kdiv:=Exp (-1) * (Exp (1) - Exp (0.5»'; 
it: =it/kdiv; 
it:=it - 1.541494084; 
IF it>1.0 THEN it:=1.0; 
IF it<O.O THEN it:=O.o; 
Prey_effect:=it; 

END: (Prey_effect) 

%INCLUDE 'interaction_gen.pas ILIST' 
PROCEDURE Interaction_Gen (VAR alphaint:matrix; 

bsize:species: 

{This procedure generates interaction terms given 

00330 I C 1 0 {Calls non-nested procedures for alpha11 (Self Limit), 
alpha12 (Prey_effect), and alpha21 (Pred_effect).) 
00331 I 1 0 
00332 I 1 0 
00333 I 1 0 
00334 I 1 0 
00335 I 1 0 
00336 I 1 1 
00337 I ell 
00338 III 
00339 I 1 1 

VAR 
ba,bc:double; {mean size of prey accumulators} 
h:integer; (counter) 

BEGIN {Interaction_Gen} 
(Set all prey mutants to 
ba:=O; 
bC:=Oi 
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00340 I 1 1 
00341 I 1 1 
00342 I 1 2 
00343 I 1 2 
00344 I 1 2 
00345 I 1 1 
00346 I 1 1 
00347 I 1 1 

SOURCE LISTING 

FOR h:=1 TO variation DO 
IF bsize(l,h)<>O THEN 

BEGIN 
ba:=ba + bsize(l,h); 
bc:=bc +1; 

END; {bsize accumulator} 
ba:=ba/bc; 

00348 I C 1 1 {Generate interaction terms} 
00349 I 1 1 IF (pp>q) THEN 
00350 I 1 1 alphaint(pp,q,m,n):=Pred_effect 
(bsize(pp,m),bsize(q,n); 
00351 I 1 1 IF (pp<q) THEN 
00352 I 1 1 alphaint(pp,q,m,n):=Prey_effect 
(bsize(pp,m),bsize(q,n); 
00353 I 1 1 IF (pp=q) THEN 
00354 I 1 1 alphaint(pp,q,m,n):=Self_limit (ba); 
(self-limitation generated from mean size) 
00355 I 1 1 alphaint(pp,q,m,n):=sign-m(pp,q,m,n) * 
alphaint(pp,q,m,n); 
00356 I 0 0 END; { Interaction_Gen 
00357 0 0 
00358 0 0 %INCLUDE 'nri.pas /LIST' 
00359 I 1 0 PROCEDURE NonRandom_Initial (VAR sgn:matrix; VAR 
population, growth, 
00360 I 1 0 size:species; VAR 
alpha:matrix) ; 
00361 I C 1 0 {This procedure establishes the initial values for 
simulation parameters, as 
00362 I C 1 0 input by the user.} 
00363 I 1 0 
00364 I 1 0 
00365 I 1 0 
00366 I 1 0 
00367 I 2 0 
no:integer); 
00368 I C 2 0 
entered by user.} 
00369 I 2 0 
00370 I 2 0 
00371 I 2 0 
00372 I 2 0 
00373 I 2 1 
00374 I 2 1 
00375 I 2 1 
species ',no); 
00376 I 2 1 
00377 I 2 1 
00378 I 2 1 
00379 I 1 0 
00380 I . 1 0 
00381 I 1 0 
00382 I 1 1 
00383 III 
00384 I 1 1 
00385 I 1 1 
00386 I 1 1 
00387 I 1 1 
00388 I 1 1 
00389 I 1 2 
00390 I 1 2 
00391 I 1 3 
00392 I 1 3 
00393 I 1 3 
00394 I 1 4 
00395 I 1 4 
00396 I 1 5 
00397 I 1 5 
00398 I 1 6 
00399 I 1 6 

VAR 
1, j ,m: integer; (Counting variables) 

PROCEDURE NRInitial_Size (VAR bsize:species; 

{This procedure establishes the initial size as 

VAR 
m:integer; 

BEGIN {NRInitial_Size 
m:=1; 
Writeln ('Input the initial trait (size) for 

Readln (bsize(no,m); 
FOR m:=2 TO variation DO 

bsize(no,m) :=0; 
END; {NRInitial_Size} 

BEGIN { NonRandom-Initial 

Initial_Pop (population); 
Initial_sign (sgn); 
FOR i:=1 TO web DO 

NRInitial_Size (size, i); 
FOR i:=1 TO web DO 

BEGIN 
FOR m:=l TO variation DO 

BEGIN 
Growth_Gen (growth, size, i, m); 
FOR j:=1 TO web DO 

BEGIN 
FOR n:=1 TO variation DO 

BEGIN 
IF (i=j) AND (i=1) THEN 

BEGIN 
Interaction_Gen (alpha, 
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SOURCE LISTING 

size, i, j, m, n); 
00400 I 1 6 IF 
Abs(alpha[i,j,m,n)<minselflimit THEN 
00401 I 1 6 

1 
1 
1 
1 

6 
5 
5 
5 

j, m, n); 
1 4 
1 3 
1 2 
1 1 
1 1 
1 1 
o 0 
o 0 

alpha[i,j,m,n]:=minselflimit * 
END {alphall} 

ELSE 
IF population(j,n)<>O THEN 

Interaction_Gen (alpha, sgn, 

END; (n-Ioop) 
END; (j-Ioop) 

END; (m-loop) 
END; (i-loop) 

Initial_Zero (growth, alpha) 

END; { NonRandom_Initial } 

%INCLUDE 'ri.pas /LIST' 

(-1.0) ; 
00402 I 

'00403 I 
00404 I 
00405 I 
size, i, 
00406 I 
00407 I 
00408 I 
00409 I 
00410 I 
00411 I 
00412 I 
00413 
00414 
00415 I 
growth, 

o 0 
1 0 PROCEDURE Random-Initial (VAR sgn:matrix; VAR population, 

00416 I 1 0 
alpha:matrix; 
00417 I 1 0 
00418 I C 1 0 
directly. } 
00419 I 1 
00420 I 1 
00421 I 1 
00422 I 1 
00423 I 2 
no:integer); 
00424 I C 2 
00425 I 2 
00426 I 2 
00427 I 2 
00428 I 2 
00429 I 2 
00430 I 2 
00431 I 2 
00432 I 2 
00433 I 2 
00434 I 2 
00435 I 2 
00436 I 1 
00437 I 1 
00438 I 1 
00439 I 1 
00440 I 1 
00441 I 1 
00442 I 1 
00443 I 1 
00444 I 1 
00445 I 1 
00446 I 1 
00447 I 1 
00448 I 1 
00449 I 1 
00450 I 1 
00451 I 1 
00452 I 1 
00453 I 1 
00454 I 1 
00455 I 1 
00456 I 1 
00457 I 1 
00458 I 1 

o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
1 
1 
2 
2 
1 
1 
1 
o 
o 
o 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
3 
3 
3 
3 
4 
4 
5 
5 
6 
6 

size, 1, j, m, n); 

size:species; VAR 

VAR const~:species); 
(This procedure defines initial parameters not entered 

VAR 
i,j,m:integer; (Counting variables) 

PROCEDURE RInitial_Size (VAR bsize:species; 

(This procedure generates initial sizes at random.) 

VAR 
m:integer; 

BEGIN (RInitial_Size 
m:=l;-
REPEAT 

bsize(no,m):= g05dbf (mean) 
UNTIL (bsize[no,m»O) AND (bsize[no,m)<1); 
FOR m:=2 TO variation DO 

bsize[no,m) :=0; 
END; {RInitial_Size 

BEGIN { Random_Initial 

Initial_Pop (population); 
IF ia=l THEN 

Initial_sign (sgn); 
FOR i:=1 TO web DO 

RInitial_Size (size, i); 
FOR i:=1 TO web DO 

BEGIN 
FOR m:=1 TO variation DO 

BEGIN 
constr(i,m) :=1; 
Growth_Gen (growth, size, i, m); 
FOR j:=1 TO web DO 

BEGIN 
FOR n:=1 TO variation DO 

BEGIN 
IF (i=j) AND (i=1) THEN 

BEGIN 
Interaction_Gen (alpha, sgn, 

00459 I 1 6 IF 
Abs(alpha[i,j,m,n)<.minselflimit THEN 
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00460 I 
(-1.0) ; 

1 6 

00461 I 1 6 
00462 I 1 5 
00463 I 1 5 
00464 I 1 5 
size, i, j, m, n); 
00465 I 1 4 
00466 I 1 3 
00467 I 1 2 
00468 I 1 1 
00469 I C 1 1 
00470 I 1 1 
00471 I 1 1 
00472 I 1 1 
00473 I 1 1 
00474 I 1 1 
00475 I 1 1 
00476 I 1 1 
00477 I 0 0 
00478 0 0 
00479 0 0 
00480 I 1 0 
count:integer; 
00481 I 1 0 
00482 I C 1 0 

SOURCE LISTING 

alpha[i,j,m,n):=minselflimit * 

END (all-generation) 
ELSE 

IF population[j,n)<>o THEN 
Interaction_Gen (alpha, sgn, 

END; en-loop) 
END; (j-loop) 

END; em-loop) 
END; (i-loop) 

(Output initial parameters) 
Writeln ('Alpha11 = " alpha[1,1,1,1); 
writeln ('Alpha12 = " alpha[1,2,1,1); 
Writeln ('Alpha21 = " alpha[2,1,1,1); 
Writeln ('R1 = " growth[l,l); 
Writeln ('R2 = " growth[2,1); 
Initial_Zero (growth, alpha); 

END; ( Random_Initial ) 

%INCLUDE 'normean.pas ILIST' 
PROCEDURE Normean (VAR x:double; i:integer; 

fraction:double; sizes:species); 
{This procedure generates mutant characters from 

a normal distribution, 
00483 I C 1 0 mean the initial size, standard deviation a 
fraction of this.) 
00484 I 1 0 
00485 I 1 0 
00486 I 1 0 
00487 I 1 0 
00488 I 1 1 
00489 I 1 1 
00490 I 1 1 
00491 I 1 1 
00492 I 1 2 
00493 I 1 3 
00494 I 1 3 
00495 I 1 2 
00496 I 1 1 
00497 I 0 0 
00498 0 0 

VAR 
a,b:double; 

BEGIN ( Normean ) 
a:=Abs (sizes[i,l); 
b:=Abs (sizes[i,l]/10); 
IF (sizes[i,1)<>0) THEN 

BEGIN (generator) 
REPEAT 

x:=G05ddf (a,b); 
UNTIL (x>O) AND (x<1); 

END; (generator) 
END; (Normean) 

00499 0 0 %INCLUDE 'normint.pas ILIST' 
00500 I 1 0 PROCEDURE Normint (VAR x:double; i:integer; 
count: integer; 
00501 I 1 0 fraction:double); 
00502 I C 1 0 {This procedure generates mutant characters from 
a normal distribution, 
00503 I C 1 0 mean the mean size, standard deviation a fraction 
of this.) 
00504 I 1 0 
00505 I 1 0 
00506 I 1 0 
00507 I 1 0 
00508 I 1 1 
00509 I C 1 1 
00510 I 1 1 
00511 I 1 2 
00512 I 1 2 
00513 I 1 2 
00514 I 1 3 
00515 I 1 3 
00516 I 1 2 
00517 I 1 2 
00518 III 
00519 I 1 1 
globa 1 va riable) 
00520 I 0 0 

VAR 
a,b:double; 

BEGIN { Normint } 
{Random number generator NORMINT} 
IF mean_size(i,count-1)<>0 THEN 

BEGIN 
a:=Abs (mean_size[i,count-1); 
b:=Abs (mean_size[i,count-1)/fraction); 
REPEAT 

x:=G05ddf (a,b); 
UNTIL (x>O) AND (x<l); 

END {If. .Then} 
ELSE 

Normean (x, 1, count, fraction, pI; 

END; Normint 
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SOURCE LISTING 

00521 0 0 
00522 0 0 %INCLUDE 'invin.pas /LIST' 
00523 I 1 0 PROCEDURE InvIn (rep:integer; VAR popn, popic:species; 
VAR inkt,inks,ppdm:initialtype; VAR kstep, kcount:integer); 
00524 I C 1 0 {This procedure sets up the invasion counting 
routines} 
00525 I 1 0 
00526 I 1 0 
00527 I 1 0 
00528 I 1 0 
00529 I 1 0 
00530 I 1 0 
00531 I 1 0 
00532 I 1 1 
00533 I 1 1 
00534 I 1 2 
005J5 I 1 2 
00536 I 1 2 
00537 I 1 2 
00538 I 1 2 
00539 I 1 1 
00540 I 1 1 
00541 I 1 1 
00542 I 0 0 
00543 0 0 

CONST 
m=l; 

VAR 
i:integer; {counter} 

BEGIN {InvIn} 
FOR i:=1 TO web DO 

BEGIN 
popic[i,m) :=1; 
inkt[i):=O; 
inks(i) :=0; 
ppdm[i) :=popn[i,1); 

END; {i-loop} 
kstep..: =0; 
kcount:=1; 

END; {InvIn} 

00544 0 0 %INCLUDE 'invasion.pas /LIST' 
00545 I 1 0 PROCEDURE Invasion (VAR alpha:matrix; VAR growth, 
population, si:species; 
00546 I 1 0 VAR constraint:species; 
sign_m:matrix; populationtime:array2; 
00547 I 1 0 
fraction:double); 
00548 I C 1 0 
a mutant into the 
00549 I C 1 0 
growth rate, and 

mutationr:double; VAR 

(This procedure causes a random attempted invasion of 

preexisting food web species. The defined interaction, 

00550 I C 1 0 population matrices are read from main program, and 
passed to nested procedures 
00551 I C 1 0 which check that invasion is possibie, and then 
generate an invader with 
00552 I C 1 0 random characteristics at a random location. The 
altered values for the 
00553 I C 1 0 interaction, growth rate, and population matric@s are 
returned to the main 
00554 I C 1 0 program as output.} 
00555 I 1 0 
00556 I 1 0 
00557 I 1 0 
00558 I 1 0 
generator} 
00559 I 1 
00560 I 1 
00561 I 2 

o 
o 
o 
o 

of 

VAR 
site:integer; 
xx:double; (dummy for random number 

%INCLUDE 'emptyniches.pas /LIST' 
FUNCTION EmptyNiches (popn:species) :Boolean; 

{This function is similar to CheckMutReg, but checks 00562 I C 2 
whole matrix 
00563 I C 2 
elements are 

o population values, and only returns false if all 

00564 I 2 
00565 I 2 
00566 I 2 
00567 I 2 
00568 I 2 
00569 I 2 
00570 I 2 
00571 I 2 
00572 I 2 
00573 I 2 
00574 I 2 
00575 I 2 
00576 I 2 

non-zero.) 
o 
o 
o 
o 
o 
o 
o 
1 
1 
1 
1 
2 
2 

VAR 
1, m: integer; 
z:integer; 
t:Boolean; 

(element counters) 
{empty niche counter} 
(dummy variable for function) 

BEGIN ( EmptyNiches 

z:=O; 
FOR i:=1 TO web DO 

BEGIN 
FOR m:=2 TO variation DO 
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00577 I 2 2 
00578 I 2 1 
00579 I 2 1 
00580 I 2 1 
00581 I 2 1 
00582 I 2 1 
00583 I 1 0 
00584 I 1 0 

SOURCE LISTING 

IF popn I i ,m) =0 
END; {i-loop} 

IF z=O THEN t:=false 
ELSE t:=truei 

EmptyNiches:=t 

END; { EmptyNiches 

THEN z:=z + 1 

00585 I 1 0 %INCLUDE 'checkmutreg.pas ILIST' 
00586 I 2 0 FUNCTION CheckMutReg (popn:species; 
level:integer):Boolean; 
00587 I C 2 0 {This function accepts the current population matrix 
and a parameter 
00588 I C 2 0 representing the location of the intended invasion 
(i.e. trophic level) as 
00589 I C 2 0 input from Invasion, and checks that not all the 
elements of that species' 
00590 I C 2 0 sub-matrix are occupied, returning 'true' if this is 
so, and 'false' if it 
00591 I C 2 0 is not.} 
00592 I 2 0 
00593 I 2 0 
00594 I 2 0 
00595 I 2 0 
00596 I 2 0 
00597 I 2 0 
00598 I 2 0 
00599 I 2 1 
00600 I 2 1 
00601 I 2 1 
00602 I 2 1 
00603 I 2 1 
00604 I 2 1 
00605 I 2 1 
00606 I 2 1 
00607 I 2 1 
00608 I 2 1 
00609 I 1 0 
00610 I 1 0 

VAR 
m:integer; 
z:integer; 
y:Booleani 

{element counter} 
{empty element detector} 
{dummy variable for result} 

BEGIN { CheckMutReg 

Z:=Oi 
FOR m:=2 TO variation DO 

IF popnllevel,m)=O THEN 
z:=z + Ii 

IF z=o THEN y:=false 
ELSE y:=true; 

CheckMutReg:=y 

END; { CheckMutReg 

00611 I 1 0 %INCLUDE 'invasionprob.pas ILIST' 
00612 I 2 0 FUNCTION InvasionProb (popul:species; level:integer; 
mutrate:double):Boolean; 
00613 I C 2 0 (This function makes the mutation rate 
density-dependent. The total 
00614 I C 2 0 density of the species at the invasion level is counted 
and the 
00615 I C 2 0 
establishment) is 
00616 I C 2 0 

probability of invasion occuring (but not successful 

00617 I 2 0 
00618 I 2 0 
00619 I 2 0 
generator} 
00620 I 2 0 
mutation occurs} 
00621 I 2 0 
00622 I 2 0 
00623 I 2 0 
00624 I 2 1 
00625 I 2 1 
00626 I 2 1 
00627 I 2 1 
00628 I 2 1 
00629 I 2 1 
00630 I 2 1 
00631 I 2 1 
00632 I 2 1 
00633 I 2 1 
probability:=false 
00634 I 2 1 

=c1ensity/50.) 

VAR 
x:c1ouble; 

density:double; 

probability:Boolean; 
m: integer; 

BEGIN ( InvasionProb 

x:=O; 
density:=O; 
x:=G05caf (x); 

(dummy for random number 

{density of species at which 

{dummy for InvasionProb} 
{counter} 

FOR m:=l TO variation DO 
density:=density + popul[level,m); 

IFdensity=O THEN probability:=false 
ELSE 

IF x;:.=(density • mutrate) THEN 

ELSE probability:=true; 
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00635 I 2 1 

SOURCE LISTING 

InvasionProb:=probability; 

END; { InvasionProb } 

%INCLUDE 'population_size.pas ILIST' 
PROCEDURE population_Size (VAR popul:species; 

00636 I 2 1 
00637 I 1 0 
00638 I 1 0 
00639 I 1 0 
00640 I 2 0 
level: integer) ; 
00641 I C 2 0 
invading mutant 
00642 I C 2 0 
is the population 

{This procedure writes the starting population of an 
of a 

pre-existing species into the population matrix. Input 

00643 I C 2 0 matrix and the location of the invasion, from ~nvasion. 
The altered 
00644 I C 2 0 
00645 I 2 0 
00646 I 2 0 
00647 I 2 0 
00648 I 2 0 
00649 I 2 0 
00650 I 2 1 
00651 I 2 1 
00652 I 2 1 
00653 I 2 2 
00654 I 2 2 
00655 I 2 1 
00656 I 2 1 
00657 I 2 1 
00658 I 1 0 
00659 I 1 0 
00660 I 1 0 
00661 I 1 0 
00662 I 2 0 
00663 I 2 0 

population matrix is returned to invasion.} 

VAR 
m: integer; (element counter) 

BEGIN Population_Size } 

m:=O; 
REPEAT 

m:=m + 1 
UNTIL popul[level,m)::O; 
popul[level,m):::invadepop 

END; { Population_Size } 

%INCLUDE 'repet6.pas ILIST' 

FUNCTION Repetition_Check (boaysize,populn:species; 
locat:integer; 

msite:integer):Boolean; 
00664 I C 2 0 (This function checks to see whether the new mutant 
has some character(s) 
00665 I C 2 0 the same as any other cospecific mutant; if that is 
so it returns a value 
00666 I C 2 0 of true, else; false.} 
00667 I 2 0 
00668 I 2 0 
00669 I 2 0 
00670 I 2 0 
00671 I 2 0 
00672 I 2 1 
00673 I 2 1 
00674 I 2 1 
00675 I 2 2 
00676 I 2 2 
00677 I 2 2 
:: 

2 2 

2 2 
2 1 
2 1 
1 0 
1 0 
1 0 
1 0 
2 0 
2 0 

C 2 0 

VAR 
m:integer; (counter) 
repet:Boolean; {dummy for function} 

BEGIN (Repetition_Check) 
repet:=false; 

FOR m:=l TO variation DO 
BEGIN 

IF (msite<>m) THEN 
IF Trunc (bodysize(locat,m) .. 1000) 

Trunc (bodysize(locat,msite) .. 

THEN repet:=true; 
END; {m-Ioop} 

Repetition_Check:=repet; 
END; {Repetition_Check} 

%INCLUDE 'delet6.pas ILIST' 
PROCEDURE Delete_Mutant (VAR bodysize,populn:species; 

locat,msite:integer); 
{If a repeated invasion has occured, this procedure 

00678 I 
1000) 
00679 I 
00680 I 
00681 I 
00682 I 
00683 I 
00684 I 
00685 I 
00686 I 
00687 I 
00688 I 
deletes 
00689 I 
00690 I 
00691 I 
00692 I 
00693 I 
00694 I 

the invader.} 
2 0 
2 1 

C 2 1 
2 1 
1 0 
1 0 

BEGIN {Delete_Mutant} 
{Delete body size} 
bodysize(locat,msite) :=0; 

END; {Delete_Mutant} 
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SOURCE LISTING 

00695 I 1 0 %INCLUDE 'mutchargen6.pas /LIST' 
PROCEDURE MutCharGen (VAR inter:matrix; VAR 

location: integer; 
00696 I 2 0 
growth: species; 
00697 I 2 0 
bsize:species; 
00698 I 2 0 
fraction:double); 
00699 I C 2 0 
invading mutants. 

constraints, popul:species; VAR 

signm:matrix; VAR 

{This procedure generates the characteristics of the 

00700 I C 2 0 Population size has already been set, and here the 
intrinsic growth rate of 
00701 I C 2 0 the mutant is set to the same as the species f~om which 
it is derived, and 
00702 I C 2 0 the interaction terms of the mutant are derived 
randomly from a distribution 
00703 I C 2 0 with mean the interaction strength of the original 
species. The values of 
00704 I C 2 0 the interaction terms, and also the growth rates, may 
be subject to 
00705 I C 2 0 
00706 I 2 0 
00707 I 3 0 
locat:integer); 
00708 I C 3 0 
mutant 
00709 I C 3 0 
dynamics, since 
00710 I C 3 0 
00711 I 3 0 
00712 I 3 0 
00713 I 3 0 
00714 I 3 0 
00715 I 3 0 
00716 I 3 1 
00717 I 3 1 
00718 I 3 1 
00719 I 3 2 
00720 I 3 2 
00721 I 3 2 
00722 I 3 2 
00723 I 3 2 
00724 I 2 0 
00725 I 2 0 
00726 I 3 0 
popul:species; 
00727 I 3 0 
fraction:double); 
00728 I C 3 0 
sizes), for an 
00729 I C 3 0 
00730 I 3 0 
00731 I 3 0 
00732 I 3 0 
00733 I 3 0 
00734 I 3 1 
00735 I 3 1 
00736 I 3 1 
00737 I 3 2 
00738 I 3 2 
00739 I 3 1 
00740 I 3 1 
00741 I 3 1 
a global variable} 
00742 I 3 1 
00743 I 3 1 
00744 I 3 1 
00745 I 2 0 
00746 I 2 0 
00747 I 3 0 
constr, 

constraints.} 

PROCEDURE Set_Constraints (VAR constr:species; 

{This procedure sets constraints upon the values of 

characteristics. No effect at present on overall 

all constraints are set to 1.} 

VAR 
i,m:integer; {counters} 

BEGIN (Set_Constraints 

FOR i:=1 TO web DO 
BEGIN 

FOR m:=1 TO variation DO 
constr[i,m) :=1.0; 

END {i-loop} 

END; Set_Constraints 
, 

PROCEDURE Size_Generator (VAR bodysize:species; 

loc, m:integer; VAR 

{This procedure generates new phenotypes (body 

invading mutant.) 

VAR 
x:double; {dummy for random number generator} 

BEGIN {Size_Generator 
x:=O; 
m:=O; 
REPEAT 

m:=m + 1; 
UNTIL popul[loc,m)=invadepop; 
IF count=1 THEN 

Normint (x, loc, count+1, fraction) 

ELSE 
Normint (x, loc, count, fraction); 

bodysize[loc,m] :=X; 
END; {Size_Generator} 

{count is 

PROCEDURE InteractionT_Gen (VAR interactions:matrix; 
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00748 I 3 0 
bs:species; 
00749 I 3 0 
signs:matrix; 
00750 I 3 0 
00751 I C 3 0 
invading mutant. 
00752 I C 3 0 
matrices, and 
00753 I C 3 0 
procedure detects 
00754 I C 3 0 
then goes through 

SOURCE LISTING 

populn:species; VAR 

locat:integer; 

VAR fraction:double); 
(This procedure generates interaction terms for the 

Input are the interaction, constraints and population 

the location of the invasion, from MutCharGen. The 

the mutant element at which invasion takes place and 

00755 I C 3 0 all [j*n) interaction terms for this element, 
producing new values related 
00756 I C 3 0 to the parental values but multiplied by the 
constraint matrix and by 
00757 I C 3 0 random factors. The interaction terms are then 
checked in order that 
00758 I C 3 0 conform to the constraints of the sign matrix, and 
passed back to 
00759 I C 3 0 
Global variables.} 
00760 I 3 0 
00761 I 3 0 
00762 I 3 0 
00763 I 3 0 
00764 I 3 1 
00765 I 3 1 
00766 I 3 2 
00767 I 3 2 
00768 I 3 1 
00769 I C 3 1 
follows ***} 
00770 I 3 1 

2 
2 
2 

00771 I 3 
00772 I 3 
00773 I 3 
fraction); 
00774 I 
true THEN 
00775 I 
00776 I 
false) OR 
00777 I 
00778 I 
00779 I 
00780 I 
00781 I 
00782 I 
00783 I 

3 2 

3 2 
3 1 

(k=50); 
3 1 
3 2 
3 2 
3 3 
3 3 
3 4 
3 4 

bs, locat, j, m, n); 
00784 I 3 4 
minSelfLimit THEN 
00785 I 3 4 

MutCharGen. Note: count and mean_interaction are 

VAR 
i,j,k,m,n,q:integer; {counters} 

BEGIN InteractionT_Gen 
m:=O; 
REPEAT 

m:=m + 1; 
UNTIL populn[locat,m]=invadepop; 
{*** Discrete character states implementation 

k:::O; 
REPEAT 

k:= k + 1; 
Size_Generator (bs, populn. locat, m. 

IF Repetition_Check (bs, populn, locat, m) = 

Delete_Mutant (bs, populn. locat, m); 
UNTIL (Repetition_Check (bs. populn, locat, m) = 

FOR j:=1 TO web DO 
BEGIN 

FOR n:=1 TO variation DO 
BEGIN 

IF (locat=j) AND (locat=1) THEN 
BEGIN 

Interaction_Gen (interactions, signs, 

IF Abs (interactions[locat,j,m,n]) < 

interactions[locat,j,m,n):=minSelfLimit * (-1); 
00786 I 3 4 END {alpha11 generation} 
00787 I 3 3 ELSE 
00788 I 3 3 IF (populn[j,n]<>O) THEN 
00789 I 3 3 Interaction_Gen (interactions, signs, 
bs, locat, j, m, n); 
00790 I 3 2 
00791 I 3 1 
00792 I C 3 1 
00793 I 3 1 
00794 I 3 2 
00795 I 3 2 
00796 I 3 3 
00797 I 3 3 
00798 I 3 3 

END; (interaction generation) 
END; {j-loop} 

(Generate reciprocal interactions) 
FOR i:=1 TO web DO 

.~< BEGIN 
FOR q:=l TO variation DO 

BEGIN 
IF (i<>locat) THEN 

IF (populn[i,q]<>O) THEN 
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00799 I 3 3 
bs, i, locat, q, m); 
00800 I 3 2 
00801 I 3 1 
00802 I 2 0 
00803 I 2 0 

SOURCE LISTING 

Interaction_Gen (interactions, signs, 

END; {q-loop} 
END; {i-loop} 

END; {InteractionT_Gen 

00804 I 3 0 PROCEDURE GrowthR_Gen (VAR g_rate:species; 
locat: integer) ; populn:species; 

00805 I C 3 0 
invading mutant to 
00806 I C 3 0 
subject to 
00807 I C 3 0 
factor] • 
00808 I C 3 0 
the invasion, 
00809 I C 3 0 
MutCharGen is the 
00810 I C 3 0 
00811 I 3 0 
00812 I 3 0 
00813 I 3 0 
00814 I 3 0 
00815 I 3 0 
00816 I 3 0 
00817 I 3 0 
00818! 3 0 
00819! 3 1 
00820 I 3 1 
00821 I 3 1 
00822 I 3 2 
00823 I 3 2 
00824 I 3 1 
global variable.} 
00825 I 3 1 
00826! 3 1 
00827! 3 1 
00828 I 3 2 
00829 I 3 2 
00830 I 3 2 
00831! 3 1 
00832 I 2 0 
00833 I 2 0 
00834! 2 1 
00835 I 2 1 
00836 I C 2 1 
00837 I 2 1 
00838 I 2 1 
00839 I C 2 1 
00840 I 2 1 
location, signm, 
00841 I 2 1 
00842 I 2 1 
00843 I C 2 1 
00844 I 2 1 
00845 I 2 1 
00846 I 1 0 
00847 I 1 0 
00848 I 1 0 
00849 I 1 1 
00850! 1 1 
00851 I 1 1 
00852 I 1 2 
00853 I 1 2 
00854 I 1 3 
00855 I 1 3 
00856 I 1 4 
00857 I 1 4 
00858 I 1 4 
00859 I 1 4 

{This procedure sets the growth rate of the 

that is its parent species. [This may eventually be 

constraint, but at present is only altered by a scale 

Input is the growth rate matrix and the location of 

(i.e. trophic level) from MutCharGen. 

altered growth rate matrix.) 

CONST 
scale=1; (scaling factor) 

{counters} 

Output to 

VAR 
i,m:integer; 
x:double; (dummy for random number generator) 

BEGIN {GrowthR_Gen} 
x:=O; 
m:=O; 
REPEAT 

m:=m + 1; 
UNTIL populn{locat,m)=invadepop; (invadepop is a 

IF populn{locat,m]<>O THEN 
g_rate\locat,ml :=g_rate\locat,1j 

ELSE 
BEGIN 
. G05caf (x); 

g_rate(locat,m):=x * scale: 
END; {else} 

END; {GrowthR_Gen 

BEGIN { MutCharGen } 

* scale 

(Set constraints, where they exist.) 
set_Constraints (constraints, location); 

{Set interaction te~s for mutant} 
InteractionT_Gen (inter, constraints, popul, bsize, 

fraction); 

{Set growth rate for mutant} 
GrowthR_Gen (growth, popul, location); 

END; ( MutCharGen ) 

BEGIN ( Invasion ) 

IF EmptyNiches (population)=true THEN 
BEGIN {try each species independently} 

FOR site:=l TO web DO 
BEGIN 

IF CheckMutReg (population, site)=true 
BEGIN (body of routine) 

IF (count>O) AND (count<>l) THEN 

THEN 

IF populationtime[site, count-1]<>0 
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THEN 
00860 I 1 4 
mutationr)=true THEN 
00861 I 1 5 
extinct} 
00862 I C 1 5 

00863 I 
site) ; 

1 5 

00864 I C 1 5 
characterisitics} 
00865 I 1 5 
site, 
00866 I 1 5 
population, si, sign~, 
00867 I 1 5 
00868 I 1 4 
00869 I 1 4 
00870 I 1 4 
00871 I 1 4 
mutationr)=true THEN 
00872 I 1 5 
00873 I 1 5 
site) ; 
00874 I 1 5 
00875 I 1 5 
population, si, sign_m, 
00876 I 1 5 
00877 I 1 4 
00878 I 1 4 
00879 I 1 3 
00880 I C 1 3 
00881 I 1 3 
00882 I 1 2 

SOURCE LISTING 

IF InvasionProb (population, site, 

BEGIN (check species has not gone 

{Establish mutant population} 

Population_Size (population, 

{Establish mutant 

MutCharGen (alpha, growth, 

constraint, 

END; 
fraction) 

invading } 

IF (count=O) OR (count=l) THEN 
IF InvasionProb (population, site, 

BEGIN 
Population_Size (population, 

MutCharGen (alpha, growth, site, 
constraint, 

END; 
fraction) 

invading at start } 

END; {body of routine} 
(Check that invasions are not repeated) 

END; (sites) 
END; 00883 I 1 1 

00884 I 0 a END; {Invasion} 
00885 0 0 
00886 0 0 %INCLUDE 'invcount.pas /LIST' 
00887 I 1 0 PROCEDURE InvCount (popn:species; VAR popic:species; 
VAR inkt, inks, ppdm:initialtype; VAR kstep, kcount:integer); 
00888 I C 1 0 {This procedure counts the number of invasions and 
successful invasions 
00889 I C 1 0 (ones which actually manage to establish themselves) 
over certain times.} 
00890 I 1 0 
00891 I 1 0 
00892 I 1 0 
00893 I 1 0 
00894 I 1 0 
00895 III 
00896 I 1 1 
00897 I 1 1 
00898 III 
00899 I 1 2 
00900 I 1 2 
00901 I 1 2 
00902 I 1 3 
00903 I 1 3 
00904 I 1 3 
00905 I 1 3 
00906 I 1 3 
00907 I C 1 3 
00908 I 1 3 
00909 I 1 3 
00910 I 1 3 
00911 I C 1 3 
00912 I 1 3 
00913 I 1 3 
00914 I 1 3 
00915 I C 1 3 

VAR 
i,m:integer; 
dv:dollble; 

{counters} 
(durruny Variable} 

BEGIN (InvCount) 
dv:={count/stintli 
IF count > 0 THEN 

IF (dv· Trune (dv» < Abs (1.00-8) THEN 
BEGIN {Resetting} 

kstep:=kstep + 1; 
FOR i:=1 TO web DO 

BEGIN 
IF kstep=1 THEN 

inks[ij:=inks\ij - web; 
IF inks!i] < 0 THEN 

inks!!) :=0; 
{Write output} 
Write (invsollt, Trunc (inkt{i)); 
Write (invsout, Trune (inks{i)); 
Write (invsout, Sngl (ppdm{i)}); 
{Reset counters} 
inkt!i]:=O; 
inks!!] :::0; 
kcount:=l; 
{Reset population density mean} 

242 



00916 I 1 3 
00917 I 1 3 
00918 I 1 3 
00919 I 1 2 
00920 I 1 2 
00921 I 1 1 
00922 I 1 1 
00923 I 1 2 
00924 I 1 2 
00925 I 1 3 
00926 I 1 3 
00927 I 1 4 
00928 I 1 4 
00929 I 1 4 
00930 I 1 3 
00931 I 1 3 
00932 I 1 3 
00933 I 1 3 
00934 I 1 3 
00935 I 1 3 
00936 I 1 2 
00937 I 1 2 
00938 I 1 2 
00939 I 1 2 
00940 I 1 2 
00941 I 1 2 
00942 I 1 1 
00943 I 1 1 
00944 I 0 0 
00945 0 0 

SOURCE LISTING 

ppdm[i] :=0; 
FOR m:=l TO variation DO 

ppdm[i]:=ppdm[i) + popn[i,m); 
END; {i-loop} 
Writeln (invsout); 

END; {Resetting} 
FOR i::1 TO web DO 

BEGIN 
FOR m:=l TO variation DO 

BEGIN 
IF popn(i,m] = invadepop THEN 

BEGIN 
inkt(iJ:=inkt(iJ + 1; 
popic(i,mJ::count; 

END: 
IF popn[i,m] = 0 THEN 

popic[i,m] :=0; 
IF popic[i,m] = count - 1 THEN 

IF popn[i,m) <> 0 THEN 
inks[i):=inks[i) + 1; 

END; (m-loop} 
ppdm[i):=(ppdm[i) * (kcount-l»; 
FOR m:=l TO variation DO 

ppdm[i) :=ppdm[i] + popn[i,m]; 
IF kcount<>O THEN 

ppdm[i) :=(ppdm[i)/kcount); 
END: (i-loop} 

kcount:=kcount + 1; 
END; {InvCount} 

00946 0 0 \INCLUDE 'time_series.pas ILIST' 
00947 I 1 0 PROCEDURE Time_series (alpha:matrix; 
population: species; 
00948 I 1 0 t:integer; VAR meanint:array3; 
00949 I 1 0 VAR popnsum. nummut :array2) ; 
00950 I C 1 0 (This procedure calculates. the mean interaction 
strengths for the different 
00951 I C 1 0 species at a particular time and stores the result 
for use in graphics.) . 
00952 I 1 0 
00953 I 1 0 TYPE 
00954 I 1 0 arrayts=ARRAY [l •. web, 1 .. web, 1 .• variation] OF 
double; 
00955 I 1 0 
00956 I 1 0 
00957 I 1 0 
interaction strength 
00958 I 1 0 
00959 I 1 0 
00960 I 1 0 
00961 I 1 1 
00962 III 
00963 I C 1 1 

VAR 
alphasum:arrayts; 

calc.} 
i,j,m,n:integer; 

{intermediate in 

{counters} 

00964 I 1 1 
00965 I 1 1 
00966 I 1 2 
00967 I 1 2 
00968 I 1 3 
00969 I 1 3 
00970 I 1 3 
00971 I 1 3 
00972 I 1 3 
00973 I 1 4 
00974 I 1 4 
00975 I 1 4 
00976 I 1 4 
00977 I 1 5 
00978 I 1 5 
00979 I 1 5 
(alpha{i,j,m,n)l * 

BEGIN 

{Calculate interaction intensities} 

FOR i:=l TO web DO 
BEGIN 

FOR j:=l TO web DO 
BEGIN 

meanint[i,j,t)::O; 
popnsum[i,tl :=0; 
nummu t [ i, t I : = 0 : 
FOR m:=l TO variation DO 

BEGIN 
alphasum[i,j,m) :=0; 
popnsum(j,t):=O; 
FOR n:=1 TO variation DO 

BEGIN 
alphasum(i,j,m):=alphasum[i,j,m] + 

(Abs 
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SOURCE LISTING 

00980 I 1 5 
population[j,n); 
00981 I 1 5 popnsum[j,t):=popnsum[j,t] + 
00982 I 1 5 
00983 I 1 4 

population(j,n); 
END; {n-Ioop} 

00984 I 1 4 IF popnsum(j,t)<>O THEN 
00985 I 1 4 
alphasum[i,j,m) :=alphasum(i,j,m)/popnsum[j,t) 
00986 I 1 4 ELSE 
00987 I 1 4 alphasum[i,j,m):=O; 
00988 I 1 4 IF (population[i,m)<>O) THEN 
00989 I 1 4 nummut[i,t):=nummut[i,t) + 1; 
00990 I 1 4 IF (i<>j) THEN 
00991 I 1 4 popnsum[i,t):=popnsum[i,t) + 
population[i,m) ; 
00992 I 1 4 
(alphasum[i,j,m) * 

meanint(i,j,t):=meanint[i,j,t] + 

00993 I 1 4 population[i,m]); 
00994 I 1 3 END; {m-Ioop} 
00995 I 1 3 IF popnsum[i,t)<>O THEN 
00996 I 1 3 
meanint[i,j,t]:=meanint[i,j,t]/popnsum[i,t] 
00997 I 1 3 ELSE 
00998 I 1 3 meanint[i,j,t):=O; 
00999 I 1 2 END; {j-loop} 
01000 III END; {i-loop} 
01001 III 
01002 I 0 0 END; { Time_series } 
01003 0 0 
01004 0 0 \INCLUDE 'allvar.pas ILIST' 
01005 I 1 0 PROCEDURE Allvar (t:integer; population:species; 
poptime, muttime:array2; VAR vari:array2); 
01006 I C 1 0 {This procedure calculates the variance of allele 
frequencies over time.} 
01007 I 1 0 
01008 I 1 0 
01009 I 1 0 
01010 I 1 0 
01011 I 1 0 
01012 I 1 0 
01013 III 
01014 III 
01015 I 1 2 
01016 I 1 2 
01017 I 1 2 
01018 I 1 3 
01019 I 1 3 
01020 I 1 3 
01021 I 1 3 

VAR 
i, m: integer; 
allfreq:species; 
sumsq:initialtype; 

{counters} 
(frequencies of alleles) 
{sum of squares for variance} 

BEGIN {Allvar} 
FOR i:=1 TO web DO 

BEGIN 
sumsq(i) :=0; 
FOR m:=l TO variation DO 

BEGIN 
allfreq[i,m]:= 0; 
IF (poptime(i,t)<>O) 

allfreq(i,m] := 
THEN 

(population[i,m)/poptime[i,t]); 
01022 I 1 3 allfreq[i,m):= Sqr (allfreq[i,m); 
01023 I 1 2 END; em-loop} 
01024 III END; {i-loop} 
01025 III FOR i:=1 TO web DO 
01026 I 1 2 BEGIN 
01027 I 1 2 FOR m:=l TO variation DO 
01028 I 1 2 sumsq(i):= sumsq(i) + allfreq(i,m); 
01029 I 1 2 IF (muttime[i,t)<>O) THEN 
01030 I 1 2 vari(i,t):= sumsq(i) - (l/(muttime[i,t)); 
01031 I 1 2 IF (muttime[i,t»l) THEN 
01032 I 1 2 vari(i,t):= (vari[i,t)/(muttime[i,t) - 1» 
01033 I 1 2 ELSE 
01034 I 1 2 vari(i,t):= 0; 
01035 I 1 1 END; (i-loop) 
01036 I 0 0 END; {Allvar} 
01037 I 0 0 
01038 I 0 0 
01039 I 0 0 
01040 0 0 
01041 0 0 \INCLUDE 'iterate_discrete.pas ILIST' 
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SOURCE LISTING 

01042 I 1 0 PROCEDURE Iterate_discrete (alphint:matrix; 
growth_r:species; 
01043 I 1 0 
gen:integer); 
01044 I C 1 0 
defined growth rate 

VAR popn:species; VAR 

{Accepts old population values and times, as well as 

01045 I C 1 0 and interaction matrices from Iteration. Iterates 
difference equations, 
01046 I C 1 0 increments time by I, and returns new population values 
to Iteration.} 
01047 I 1 0 
01048 I 1 0 
01049 I 1 0 
01050 I 1 0 
01051 I 1 0 
01052 I 1 0 
01053 I 1 0 
01054 I 1 0 
01055 I 1 0 
01056 I 1 0 
01057 I 1 0 
01058 I 1 1 
01059 I 1 1 
01060 I 1 1 
01061 I 1 1 
01062 I 1 1 
01063 I 1 2 
01064 I 1 2 
01065 I 1 3 
01066 I 1 3 
01067 I 1 4 
01068 I 1 4 
01069 I 1 5 
01070 I 1 5 
oldpopn(j,n); 
01071 I 1 4 
01072 I 1 3 
01073 I 1 3 
01074 I C 1 3 
01075 I 1 3 
expon:=critical; 
01076 I 1 3 
01077 I C 1 3 
01078 I 1 3 
01079 I C 1 3 
01080 I 1 3 
popn[i,m):=1.000D24; 
01081 I 1 3 
01082 I 1 3 
01083 I 1 2 
01084 I 1 2 
01085 I 0 0 
01086 0 0 

CONST 
cri tical=32; {to prevent overflow} 

VAR 
int:double; 
expon:double; 
i,j,m,n:integer; 
oldpopn:species; 

BEGIN { Iterate_discrete 

int:=O; 
oldpopn:=popn; 
FOR i:=l TO web DO 

. BEGIN 
FOR m:=l TO variation DO 

BEGIN 
FOR j:=1 TO web DO 

BEGIN 
FOR n:=1 TO variation DO 

BEGIN 
int::int + (alphint[i,j,m,n] * 

END 

END; 

END; {n-Ioop} 
END; {j-Ioop} 

expon:=growth_r(i,m] + inti 
{Arithmetic overflow check} 
IF (growth_rli,m) + int»critical THEN 

popn[i,m):=oldpopn[i,ml * EXP(expon); 
{Extinction threshold} 
IF popn[i,m]<=extinct THEN popn[i,m]::O; 
{Maximum population density} 
IF popn[i,m»1.000D24 THEN 

int:=O; 
END {m-Ioop} 

{i-loop} 

Iterate_discrete 

01087 0 0 %INCLUDE 'i_c.pas ILIST' 
01088 I 1 0 PROCEDURE Iterate_continuous (alphaint:matrix; 
growth_r:species; 
01089 I 1 0 VAR popn:species; stepd, 
tol:double; gen:integer); 
01090 I C 1 0 {Accepts old population values and times, as well as 
defined growth rate 
01091 I C 1 0 and interaction matrices from Iteration. Solves 
numerically differential 
01092 I C 1 0 equation system using external NAG procedures for 
time=t+interval and 
01093 I C 1 0 returns solutions and time incremented by one unit to 
Iteration. Note that 
01094 I C 1 0 the equations are stiff and thus must be solved by the 
backward 
01095 I C 1 0 differentiation formulae, rather than easier 
Runge-Kutta or Adams-predictor 
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SOURCE LISTING 

01096 I C 1 0 corrector methods.} 
01097 I 1 0 
01098 I 1 0 
01099 I 1 0 
01100 I 1 0 
01101 I 1 0 
1 .• web*variation) OF 
01102 I 1 0 

TYPE 
workarray=ARRAY (1 .. web*variationJ OF 
storearray=ARRAY (1 .. 1500J OF double; 
jacobarray=ARRAY (l •. web*variation, 

double; 

double; 

01103 I 1 0 
01104 I 1 0 

VAR 

01105 I 1 0 
01106 I 1 0 
01107 I 1 0 
01108 I 1 0 
01109 I 1 0 
01110 I 1 0 
011H I 1 0 
01112 I 1 0 

xx,xend:double; {time parameters for NAG} 
n, system: integer; {dimension parameters for NAG} 
i,m:integer; {counters} 
y:workarray; {results store} 
w:storearray; {working space} 
iw:integer; {dimension of working space} 
ifail:integer;{error report caller} 

01113 I 2 0 
y:workarray; VAR 
01114 I C 2 0 
specific t} 

(unboundJ PROCEDURE Fcn (VAR t:double; VAR 
f:workarray) ; 

01115 I C 2 0 
Iterate continuous} 
01116 I- 2 0 
01117 I 2 0 
01118 I 2 0 
01119 I 2 0 
01120 I 2 0 
01121 I 2 0 
01122 I 2 0 
01123 I C 2 0 
01124 I 2 0 
01125 I 2 1 
01126 I 2 1 
01127 I 2 1 
01128 I 2 1 
01129 I C 2 1 
01130 I 2 1 
01131 I 2 1 
01132 I 2 1 
01133 I 2 2 
01134 I 2 2 
01135 I 2 3 
01136 I 2 3 
01137 I 2 3 
01138 I 2 3 
01139 I 2 1 
01140 I 2 1 
01141 I C 2 1 
01142 I 2 1 
01143 I 2 1 
01144 I 2 1 
01145 I 2 2 
01146 I 2 2 
01147 I 2 3 
01148 I 2 3 
01149 I 2 4 
01150 I 2 4 
01151 I 2 4 
oldpopn(j,q); 
01152 I 2 4 
01153 I 2 4 
01154 I 2 3 
01155 I 2 3 
01156 I 2 3 
01157 I 2 3 
01158 I 2 3 
Sys:=1: 
01159 I 2 3 

{NAG user-supplied procedure ... evaluates dx/dt for 

{Uses non-local variables defined in 

VAR 
i,j,m,q:integer; {counters} 
sys:integer; {output counter} 
int:double; {accumulator} 
acc:double; {accumulator} 
oldpopn:species; {temporary store} 
{Note a:matrix b:species Global variables} 

BEGIN {Fcn 
int:=O; 
acc:=O; 

{Initialise oldpopn} 

sys:=l; 
FOR i:=1 TO web DO 

BEGIN 
FOR m:=l TO variation DO 

BEGIN 
oldpopn(i,m):=y(sYSJi 
sys:=sys + 1; 

END em-loop} 
END; {i-loop} 

{Calculate derivative} 

sys:=1; 
FOR i:=1 TO web DO 

BEGIN 
FOR m:=l TO variation DO 

BEGIN 
FOR j:=1 TO web DO 

BEGIN 
FOR q:=1 TO variation DO 

int:=int + (a(i,j,m,q] * 

acc:=acc + inti 
int:=O; 

END; {j-loop} 
f[sys):=oldpopn(i,m} 
acc:=O; 
sys:=sys + 1; 

* (b(i,mJ + acc); 

IF sys=«web • variation) + 1) THEN 

END {m-loop} 
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2 2 
1 0 
1 0 

SOURCE LISTING 

END {i-loop} 
END; {Fcn} 

2 0 PROCEDURE d02eaf (VAR x:double; xend:double; 

VAR tol:double; 
VAR y:workarray; 
2 0 

01160 I 
01161 I 
01162 I 
01163 I 
n:integer; 
01164 I 
01165 I 
t:double; 

2 0 %IMMED [UNBOUND) PROCEDURE fen (VAR 

01166 I 2 0 VAR 
y:workarray; 
01167 I 2 0 VAR 
f:workarray) ; 
01168 I 1 0 VAR w:storearraYi iw:integer; VAR 
ifail:integer); EXTERN; 
01169 I 1 0 
01170 I C 1 0 
forced with %IMMED} 
01171 I C 1 0 
of first-order ODEs 
01172 I C 1 0 

{Note functions in procedural specification must be 

{NAG procedure which, " .. integrates a stiff system 

over a range with suitable initial conditions, using 
a variable-order, 
01173 I C 1 0 
Differentiation 
01174 I C 1 0 

variable-step method implementing the Backward 
Formulae.' } 

01175 I 1 0 
01176 I 1 0 
01177 I 1 1 
01178 I 1 1 
01179 I 1 1 
01180 I 1 1 
01181 I 1 1 
01182 I 1 1 
01183 I C 1 1 
01184 I 1 1 
01185 III 
01186 I 1 2 
01187 I 1 2 
01188 I 1 3 
01189 I 1 3 
01190 I 1 3 
01191 I 1 3 
01192 I 1 1 
01193 I 1 1 
01194 I 1 1 
01195 III 
01196 I 1 2 
01197 I 1 2 
01198 I 1 3 
01199 I 1 3 
01200 I C 1 3 
01201 I 1 3 
01202 I C 1 3 
01203 I 1 3 
POpn[i,m) :=1.000024; 
01204 I 1 3 
01205 I 1 3 
01206 I 1 2 
01207 I 0 0 
01208 0 0 

(see NAG User Guide FORTRAN routine summary)} 

BEGIN {Iterate_continuous 
xx; =Dble (gen); 
xend:=xx + stepd; 
iw:=1500; 
ifail:=O; 
n:=web * variation; 
{Initialise y} 
system:=l; 
FOR i:=l TO web DO 

BEGIN 
FOR In:=l TO variation DO 

BEGIN 
Y [system) : =popn [1, m) ; 
system:=system + 1; 

END em-loop} 
END; {i-loop} 

d02eaf (xx, xend, n, y, tol, Fcn, w, iw, ifail); 
system:=l; 
FOR i:=l TO web DO 

BEGIN 

END; 

FOR m:=! TO variation DO 

END 
{ 

BEGIN 
popn [i, m) :=y [system) ; 
(Extinction threshold) 
IF popn[i,m)<=extinct THEN popn[i,m):=O; 
{Maximum population density} 
IF popn[i,m»1.000D24 THEN 

system:=system +1; 
END (m-loop) 

(i-loop) 
Iterate_continuous } 

01209 0 0 
01210 I 1 0 

\INCLUDE 'body_size.pas /LIST' 

mean:array2) ; 
01211 I C 1 0 
each species at 
01212 I C 1 0 
01213 I 1 0 
01214 I 1 0 
01215 I 1 0 
01216 I 1 0 
01217 I 1 0 

PROCEDURE Body_Size (size:species; t:integer; VAR 

{This procedure calculates the mean body size for 
each time 

step, and writes it to the mean size variable.} 

VAR 
i,m,n:integer; 
sum:double; 
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01218 I 1 1 
01219 I 1 1 
01220 I 1 2 
01221 I 1 2 
01222 I 1 2 
01223 I 1 2 
01224 I 1 3 
01225 I 1 3 
01226 I 1 4 
01227 I 1 4 
01228 I 1 4 
01229 I 1 3 
01230 I 1 2 
01231 I 1 2 
01232 I 1 1 
01233 I 0 0 
012~4 0 0 
01235 0 0 
01236 I 1 0 
meansize:array2; 
01237 I C 1 0 
produce graphical 

SOURCE LISTING 

BEGIN (Body_Size) 
FOR i:=1 TO web DO 

BEGIN 
sum:=O; 
n:=O; 
FOR m:=1 TO variation DO 

BEGIN 
IF size[i,m)<>O THEN 

BEGIN 
sum:=sum + size[i,m); 
n:=n + 1 

END; {size non-zero} 
END; {summation} 

mean[i,t) :=sum/n; 
END; {i-loop} 

END; {Body_Size} 

%INCLUDE 'graphics4.pas /LIST' 
PROCEDURE Graphics4 (meanint:array3; popnsum, nummut, 

v:array2; coden:strtype); 
(This procedure uses Simpleplot graphics library to 

01238 I C 1 0 plots of the results of evolution of interacting 
species for long runs.} 
01239 I 1 0 
01240 I 1 0 
01241 I 1 0 
01242 I 1 0 
01243 I 1 0 
01244 I 1 0 
01245 I 1 0 
01246 I 1 0 
01247 I 1 0 
01248 I 1 0 
01249 I 1 0 
strength over time) 
01250 I 1 0 
01251 I 1 0 
01252 I 1 0 
series} 

TYPE 
storage=ARRAY [l .. terminus) OF real; 
lab=VARYING (80) OF char; 
axlab=VARYING [50) OF char; 
stringtype=PACKED ARRAY [1 .. 11) OF char; 
string2=PACKED ARRAY [1 .. 35) OF char; 
time_array=ARRAY [I .. web) OF storage; 

VAR 
meanintstr:storage; 

timearray:storage; 
poptime:storage; 
muttime:storage; 

(mean interaction 

(time variable store) 
(population time series) 
(coexisting mutants time 

01253 I 1 0 sizetime:storage; {body size time series} 
{variance of allele 01254 I 1 0 vtime:storage; 

frequency time series} 
01255 I 1 0 timestr,datestr:stringtype; {strings to write 
current date and time} 
01256 I 1 0 strstr,codestr:lab; {intermediate for title 
writing} 
01257 I 1 0 
01258 I 1 0 
conversion} 
01259 I 1 0 
01260 I 1 0 
01261 I C 1 0 
01262 I 1 0 
01263 I 1 0 
01264 I 1 0 
01265 I 1 0 
01266 I 1 0 
01267 I 1 0 
01268 I 1 0 
01269 I 1 0 
01270 I 1 0 
01271 I 1 0 
01272 I 1 0 
01273 I 1 0 
01274 I 1 0 

ymin, ymax:real; 
mi:double; 

i,j,m,n,t:integer; 

{limits of axes) 
{intermediate for type 

(counters) 

{Simpleplot procedures for graphics} 

PROCEDURE Devno (i:integer); FORTRAN; 

PROCEDURE Pap inc (cms:real); FORTRAN; 

PROCEDURE Page (xcms, ycms:real); FORTRAN; 

PROCEDURE Boxpag (tof:Boolean); FORTRAN; 

PROCEDURE Group (nhoriz, nvert:integer); FORTRAN; 

PROCEDURE Picsiz (xlen, ylen:real); FORTRAN; 

01275 I 1 0 PROCEDURE Limexc (varr:storage; nv:integer; VAR 
vmin,vmax:real); FORTRAN; 
01276 I 1 0 
01277 I 2 0 PRCX:EDURE Scales (xmin, xmax:real; xtype:integer; 
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ymin, ymax:real; 
01278 I 1 0 
01279 I 1 0 
01280 I 1 0 
01281 I 1 0 
01282 I 1 0 
01283 I 1 0 
01284 I 1 0 
FORTRAN; 
01285 I 1 0 
01286 I 1 0 
ipen4:integer); 
01287 I 1 0 
01288 I 1 0 
01289 I 1 0 
01290 I 1 0 
FORTRAN; 
01291 I 1 0 
01292 I 1 0 
01293 I 1 0 
01294 I 1 0 
01295 I 1 1 
01296 I 1 1 
01297 I C 1 1 
01298 I 1 1 
01299 I 1 1 
01300 I 1 1 
01301 I C 1 1 
01302 I 1 1 
01303 I 1 1 
01304 I 1 1 
01305 I 1 2 
01306 I 1 2 
01307 I 1 2 
01308 I 1 2 
01309 I 1 2 
01310 I 1 2 
01311 I 1 2 
01312 I 1 2 
01313 I C 1 2 
01314 I 1 2 
01315 I 1 2 
01316 I 1 3 
01317 I 1 3 
01318 I 1 3 
01319 I 1 3 
01320 I 1 2 
01321 I 1 2 
01322 I 1 2 
01323 I 1 2 
density' ) ) ; 
01324 I 1 2 
01325 I 1 2 
01326 I 1 2 
01327 I 1 2 
01328 I 1) 
01329 I 1 3 
01330 I 1 3 
01331 I 1 2 
01332 I 1 2 
01333 I 1 2 
Alleles' ) ) ; 
01334 I 1 2 
01335 I 1 2 
01336 I 1 2 
01337 I 1 2 
01338 I 1 3 
01339 I 1) 
01340 I 1 3 
01341 I 1 2 

SOURCE LISTING 

ytype:integer); FORTRAN; 

PROCEDURE Axes7 (Xtitle, Ytitle:axlab); FORTRAN; 

PROCEDURE Cvtype (ntype:integer); FORTRAN; 

PROCEDURE Drawcv (xarr, yarr:storage; npts:integer); 

PROCEDURE Setpns (ipen1, ipen2, ipen3, 
FORTRAN; 

PROCEDURE Pen (ipen:integer); FORTRAN; 

PROCEDURE Title7 (vert, horiz:char; title:lab); 

PROCEDURE Endplt; FORTRAN; 

BEGIN {Graphics3} 

{Choose output device} 

Devno (1); 

{Set up graph} 

Papinc (28.0 * web); 
FOR i:=l TO web DO 

BEGIN 
Setpns (1,2,3,4); 
Pen (1); 
Page (21.0, 29.7); 
Boxpag (true); 
Group (l,web + 4); 
Picsiz (20.0, 4.0); 

.{Draw graph} 
j:=l; 
FOR t:=l TO terminus DO 

BEGIN 
timearray[t) :=t: 
mi:=popnsum[i,t); 
poptime[t):=Sngl (mi) 

END; {t-loop} 
Limexc (poptime, terminus, ymin, ymax); 
Scales (O.O, terminus,!, 0.0, ymax, 1): 
Axes7 (%STDESCR('Time'), %STDESCR('Population 

Cvtype (3); 
Drawcv (timearray, poptime, terminus): 

FOR t:=l TO terminus DO 
BEGIN 

mi:=nurnmut[i,t); 
muttime[t):=Sngl (mi) 

END; {t-loop} 
Scales (0.0, terminus,!, 0, 10, 1); 
Axes7 (%STDESCR('Time'). %STDESCR('Number of 

Cvtype (3); 
Drawcv (timearray, muttime, terminus); 

FOR t:=l TO terminus DO 
BEGIN 

mi : =v (i, t ) ; 
vtime{t):=Sngl (mi) 

END; (t-loop) 
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01342 I 1 2 
01343 I 1 2 
01344 I 1 2 
Allele Frequency'»; 
01345 I 1 2 
01346 I 1 2 
01347 I 1 2 
01348 I 1 2 
01349 I 1 2 
01350 I 1 3 
01351 I 1 3 
01352 I 1 3 
01353 I 1 2 
01354 I 1 2 
01355 I 1 2 
Size'»; 
01356 I 1 2 
01357 I 1 2 
01358 I 1 2 
01359 I 1 2 
01360 I 1 3 
01361 I 1 3 
01362 I 1 4 
01363 I 1 4 
01364 I 1 4 
01365 I 1 3 
01366 I 1 3 

SOURCE LISTING 

Limexc (vtime, terminus, ymin, ymax); 
Scales (0.0, terminus, 1, 0, ymax, 1); 
Axes7 (%STDESCR('Time'), %STDESCR('Variance of 

Cvtype (3); 
Drawcv (timearray, vtime, terminus); 

FOR t:=l TO terminus DO 
BEGIN 

mi:=meansize[i,t); 
sizetime(t) :=Sng1 (mi) 

END; 
Scales (0.0, terminus,!, 0, 10, 1); 
Axes7 (%STDESCR('Time'), %STDESCR('Mean 

Cvtype (3); 
Drawcv (timearray, sizetime, terminus): 

FOR j:=l TO web DO 
BEGIN 

FOR t:=l TO terminus DO 
BEGIN 

mi:=meanint(i,j,t); 
meanintstr(t):=Sngl (mi) 

END; 

01367 I 1 3 
interaction intensity'»; 
01368 I 1 3 

Scales (0.0, terminus,!, 0.0,1.0,2); 
Axes7 (%STDESCR('Time'), %STDESCR('Mean 

Cvtype (3); 
01369 I 1 3 
01370 I 1 2 
01371 I 1 2 
01372 I C 1 2 
01373 I 1 2 
01374 I 1 2 
01375 I 1 2 
01376 I C 1 2 
01377 I C 1 2 
01378 I 1 2 
01379 I 1 2 
01380 I 1 2 
01381 I 1 2 
01382 I 1 2 
01383 I 1 2 
01384 I C 1 2 
01385 I 1 2 
01386 I 1 2 
%STDESCR('MODEL6'» : 
01387 I 1 2 
%STDESCR(strstr»; 
01388 I 1 2 
%STDESCR(codestr»; 
01389 I 1 2 
01390 I 1 1 
01391 I 1 1 
01392 I C 1 1 
01393 I 1 1 
01394 I 1 1 
01395 III 
01396 I 0 0 
01397 0 0 

Drawcv (timearray, meanintstr, terminus) 
END; 

(Change pen colour) 

Pen (2); 

{Write current time} 
~ & experimental code} 

Time (timestr); 
Date (datestr); 
strstr:=timestr + ' , + datestr; 
codestr:='Experiment ' + coden; 

(Add titles) 

Title7 (%STDESCR('H'),%STDESCR('C'), 

Title7 (%STDESCR('H'),%STDESCR('C'), 

Title7 (%STDESCR('H'),%STDESCR('C'), 

END; (i-loop) 

(End graphics) 

Endplt 

END; ( Graphics) 

01398 0 0 \INCLUDE 'file_store6.pas ILIST' 
01399 I 1 0 PROCEDURE File_Store6 (meanint:array): 
popnsum,nummut,meansize, v:array2); 
01400 I C 1 0 (This procedure writes results to files for input 
into interactive UNIRAS:~ 
01401 leI 0 This version for use with MODEL6.) 
01402 I 1 0 
01403 I 1 0 TYPE 

250 



01404 I 1 0 
01405 I 1 0 
01406 I 1 0 
01407 I 1 0 
01408 I 1 0 
01409 I 1 0 
01410 I 1 0 
01411 I 1 0 
01412 I 1 0 
01413 I 1 0 
01414 I 1 0 
01415 I 1 0 
01416 I 2 0 
timestore:storage; 
01417 I 2 0 
11, tt: integer) ; 
01418 I C 2 0 
file.} 
01419 I 2 0 
01420 I 2 0 
01421 I 2 0 
01422 I 2 0 
01423 I 2 1 
01424 I 2 1 
01425 I 2 1 
01426 I 2 1 
01427 I 1 0 
01428 I 1 0 
01429 I 1 1 
01430 I 1 1 
01431 III 
01432 I 1 2 
01433 I 1 2 
01434 I 1 2 
01435 I 1 2 
01436 I 1 2 
01437 I 1 2 
01438 I 1 2 
01439 I 1 2 
01440 I 1 2 
t) ; 
01441 I 1 2 
01442 I 1 2 
01443 I 1 2 
01444 I 1 3 
01445 I 1 3 
01446 I 1 4 
01447 I 1 4 
01448 I 1 4 
01449 I 1 4 
01450 I 1 4 
01451 I 1 4 
01452 I 1 3 
01453 I 1 2 
01454 I 1 1 
01455 I 0 0 
01456 0 0 
01457 0 0 
01458 0 1 
01459 0 1 
01460 COl 
01461 0 1 
01462 0 1 
01463 COl 
01464 0 1 
01465 0 2 
01466 0 2 
01467 0 2 
01468 0 1 
01469 0 1 

SOURCE LISTING 

storage=ARRAY (l .. terminus) OF real; 

VAR 
meanintstr:storage; 
timearray:storage; 
poptime:storage; 
muttime:storage; 
sizetime:storage; 
vtime:storage; 
mi:double; 
i,j,t:integer; 

PROCEDURE File_Write (results:array2; VAR 

VAR filename:text; 

{This procedure writes results from array to a text 

VAR 
mi:double; 

BEGIN {File_Write} 
mi:=results(ii,tt]i 
timestore(tt):=Sngl (mi); 
Write (filename, timestore(tt); 

END; {File_Write} 

BEGIN {File Store4 
Rewrite (unIgr); 

FOR t:=l TO terminus DO 
BEGIN 

timearray[t]::t; 
Write (unigr, timearray[t); 
FOR i:=1 TO web DO 

File_Write (popnsum, poptime, unigr, i, t); 
FOR i:=1 TO web DO 

File_Write (nummut, muttime, unigr, i, t); 
FOR i:=1 TO web DO 

File_Write (meansize, sizetime, unigr, i, 

FOR i:=1 TO web DO 
File_Write (v, vtime, unigr, i, t); 

FOR i:=l TO web DO 
BEGIN 

FOR j:=1 TO web DO 
BEGIN 

mi:=meanint[i,j,t]; 
meanintstr(t):=Sngl(mi)i 
Write (unigr, meanintstr[t); 
IF (i=web) AND (j=web) THEN 

Writeln (unigr) i 
END; {j-loop} 

END; {i-loop} 
END; {t-loop} 

END; {File_Store6} 

BEGIN {Main program} 

{Inputing experimental codes} 
Writeln ('Input code for experiment'); 
Readln (codestr); 
{Inputing parameters as variables} 
FOR i:=1 TO web DO 

BEGIN 
Writeln ('Input initial density for species ',i); 
Readln (startpopn[i) 

END; {i-loop} 
Writeln ('Input density of invading population'); 
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01470 0 
01471 0 
01472 0 
01473 0 
01474 0 
01475 0 
01476 0 
01477 0 
of mean '); 

1 
1 
1 
1 
1 
1 
1 
1 

01478 0 1 
01479 0 1 

SOURCE LISTING 

Readln (invadepop); 
Writeln ('Input extinction threshold'); 
Readln (extinct); 
Writeln ('Input minimum self-limitation in prey'); 
Readln (minselflimit); 
Writeln ('Input mutation rate (density A 1) '); 
Readln (mutation_rate); 
Writeln ('Input SO of normal distribution as fraction 

Readln (fraction); 

01480 COl {Initialisation} 
01481 0 1 Writeln ('Input type of initialisation required'); 
01482 0 1 Writeln ('Enter 0 for non-random initialisation, 1 
for random initialisation'); 
01483 0 1 Readln (choice); 
01484 0 1 IF (choice=l) THEN 
01485 0 2 BEGIN 
01486 0 2 Writeln ('Input mean of negative exponential 
distribution'); 
01487 0 2 
01488 0 2 
01489 0 1 
01490 0 1 
01491 0 1 
01492 0 1 
01493 0 1 
01494 C 0 1 
01495 C 0 1 
01496 0 1 
01497 0 2 
01498 0 2 
required') ; 
01499 0 2 
01500 0 2 
replicates ); 
01501 0 
01502 0 
01503 0 
01504 0 
01505 0 
01506 C 0 
01507 0 
requi red' ) ; 

2 
2 
1 
1 
1 
1 
1 

01508 0 1 

Readln (mean); 
END 

ELSE 
mean:=O; 

Writeln ('Input step length for invasion counting'); 
Readln (stint); 

{Running model} 
{Set up number of replicates} 
IF choice = 1.0 THEN 

BEGIN 
Writeln ('Input the number 

Readln (replicates); 

of replicate runs 

Writeln ('Random initialised system run for' 

Writeln (' runs.'); 
END 
ELSE 

replicates: =1; 

{Time type} 
Writeln ('Input the type of numerical system 

Writeln ('Enter 0 for discrete time, 1 for continuous 
time' ) ; 
01509 
01510 
01511 
01512 
numerical 
01513 
01514 
numerical 
01515 
01516 
01517 
01518 
01519 
01520 
01521 
01522 
01523 
01524 
01525 
01526 
01527 
01528 
01529 

o 1 Readln (ttype)i 

c 

c 

ccount) ; 

o 1 IF (ttype=1) THEN 
o 2 BEGIN 
o 2 Writeln ('Input the step length required for 

integration') ; 
o 2 Readln (step); 
o 2 Writeln ('Input the acceptable tolerance for 

integration') ; 
o 2 Readln (tolerance); 
o 1 END; (numerical integration initialisation) 
o 1 
o 1 
o 1 
o 1 
o 1 
o 2 
o 2 
o 2 
o 2 
o 2 
o 2 
o 2 
o 2 

{Replicate loops} 
Rewrite (invsout); 
repl:=TRUNC(replicates)i 
FOR ia:=l TO repl DO 

BEGIN {replicate loop} 
(Ini t ialisa tion) 
g05ccf; 
IF (choice=O) THEN 

NonRandom_Initial (sign, x, b, p, al; 
,IF (choice=l) THEN 

Random_Initial (sign, x, b, p, a, constraints); 
InvIn (ia, x, xic, inct, incs, pdm, cstep, 
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01530 C02 
01531 0 2 
01532 0 2 
01533 0 3 
01534 0 3 
01535 0 4 
01536 0 4 
generation_time); 
01537 0 4 
population_over_time, 
01538 0 4 
01539 0 4 
ccount); 
01540 0 4 
mean_interaction, 
01541 0 4 
coexisting_mutants); 
01542 0 4 

SOURCE LISTING 

{Population dynamics} 
generation_time:=O; 
IF ttype=O THEN 

BEGIN {discrete time} 
FOR count:=1 TO terminus DO 

BEGIN 
Iterate_discrete (a, b, x, 

Invasion (a, b, x, p, constraints, sign, 

mutation_rate, fraction); 
InvCount (x, xic, incs, inct, pdm, estep, 

Time_series (a, x, count, 

coexisting_mutants, v); 
Allvar (count, x, population_over_time, 

Body_size (p, count, mean_size); 01543 0 4 
01544 0 3 
01545 0 2 
01546 0 2 
01547 0 3 
01548 0 3 
01549 0 4 
01550 0 4 
tolerance, count); 
01551 0 4 
population_over_time, 
01552 0 4 
01553 0 4 
ccount); 
01554 0 4 
mean_interaction, 
01555 0 4 
coexisting_mutants); 
01556 0 4 

END; (time-counting) 
END; {discrete time} 

IF ttype=l THEN 
BEGIN {continuous time} 

FOR count:=1 TO terminus DO 
BEGIN 

Iterate_continuous (a, h, x, step, 

Invasion (a, h, x, p, constraints, sign, 

mutation_rate, fraction); 
InvCount (x, xic, incs, inct, pdm, estep, 

Time_series (a, x, count, 

Allvar (count, x, population_over_time, 
coexisting_mutants, v); 
01557 0 4 
01558 0 3 
01559 0 2 
01560 0 2 
01561 C02 
01562 0 2 
population_over_time, 
01563 0 2 
01564 C02 
01565 0 2 
population_aver_time, 
01566 0 2 
01567 0 1 
01568 0 1 
01569 0 0 END. 

Body_size (p, cOllnt, mean_size); 
END; {time counting} 

END; {continuous time} 

{Graphics ... } 
Graphics4 (mean_interaction, 

coexisting_mutants, mean_size, v, 

{File writing ..• } 
File_Store6 (mean_interaction, 

coexisting_mutants, mean_size, v); 

END; {Replication loop} 

(Main program.) 
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LIST OF SYMBOLS 

The following list describes most of the symbols introduced in this thesis. 

Some common mathematical and statistical symbols have been omitted. 

Symbol Chapter Description 

a 5 Intercept of least-squares linear regression. 

b 5 Slope of least-squares linear regression. 

ci • c2 4 Constants of transformation of F21 • 

F 5 F-ratio in analysis of variance. 

Fij 3,4 Function relating body size (investment in 

predatory or anti-predator traits) to 

interspecific interaction coefficient for 

species j effect on species i. 

fij 2 See Fij above. 

Iij 4 Weighted mean of intergenotypic interaction 

coefficients for interspecific interaction 

coefficient for species j effect on species i. 

i 1-4 Subscript identifying particular species. 

j 1-4 Subscript identifying particular species. 

kl • k2• kJ• k4 

4 Constants defining form of F21 function. 

ks 4 Constant defining form of Fu function. 

m 4 Subscript identifying particular mutant 

genotype within a species. 

n 1,2,4 Any number. 

n 4 Subscript denoting mutant genotype within a 

species with an effect on another genotype. 

n 5 Number of observations. 

PI 3 Parameter controlling depth of FI2 function. 
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SYMBOLS USED 

Symbol Chapter Description 

P2 3 Parameter of cross-product term for F 12• 

P3 3 Parameter defming location of trough of F 12, 

with respect to S l' 

P4 3 Parameter controlling degree of spread of F 12, 

with respect to SI' 

Ps 3 As P3, but with respect to S2' 

P6 3 As P4, but with respect to S2' 

P7 3 Parameter controlling height of F2I function. 

Ps 3 Parameter of cross-product term for F 21' 

P9 3 Parameter defining location of peak of F 2I , 

with respect to St. 

PIO 3 Parameter controlling degree of spread of F 2I , 

with respect to St. 

Pu 3 As P9, but with respect to S2' 

PI2 3 As PIO' but with respect to S2' 

PI3' PI4' PIS 

3 Parameters defining Fu function. 

'I 1-4 Intrinsic growth rate of species i. 

'im 4 Intrinsic growth rate of mutant genotype m 

in species i. 

Sj 2-5 Investment in predatory or anti-predator traits 

(as appropriate) for species i. Equivalent to 

body size of species i. 

SI' S2 2 Partial derivative of SI' S2 with respect to 

time. 

t 1-4 Time. 

Wi 2,3 Fitness function of species i. (per capita 

growth rate of species i). 
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SYMBOLS USED 

Symbol Chapter Description 

wt 3 Fitness function for mutant of species i. 

Wim 4 Fitness function for genotype m of species i. 

Xi 1-4 Population density of species i. 

xim 4 Genotype density of genotype m in species i. 

X im 
, 

4 Discrete time density of genotype m of 

species i at time t + 1. 

" 2,3 Prey equilibrium density. Xl 

" 2,3 Predator equilibrium density. x2 

(Xij 1-5 Interspecific interaction coefficient for effect 

of species j on species i. 

(Xij 
, 

3 Interaction coefficient as above for mutant of 

species i. 

(Xijmn 4 Intergenotypic interaction coefficient for 

effect of genotype n in species j on genotype 

m in species i. 

"fl' "f2 2 Values of p at which predator equilibrium 

density is zero. 

01, O2 3 Symbols introduced for notational 

convenience in P12' 

03,04 3 Symbols introduced for notational 

convenience in P 21 • 

ei 3 Mutant effect on body size of species i. 

e 2 Maximum (turning point) of 112 and/21 when 

their two maxima are coincident. 

eij 2 Maximum (turning point) of Iij' 
p 2 Function relating body sizes of predator and 

~ 
prey to interspecific interaction coefficients. 
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