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Abstract

This project proceeds from the premise that the historical and logical value of Boole's

logical calculus and its connection with Frege's logic remain to be recognised. It begins by

discussing Gillies' application of Kuhn's concepts to the history oflogic and proposing the

use of the concept of research programme as a methodological tool in the historiography

oflogic. Then it analyses'the development of mathematical logic from Boole to Frege in

terms of overlapping research programmes whilst discussing especially Boole's logical

calculus.

Two streams of development run through the project: 1. A discussion and appraisal of

Boole's research programme in the context of logical debates and the emergence of

symbolical algebra in Britain in the nineteenth century, including the improvements which

Venn brings to logic as algebra, and the axiomatisation of 'Boolean algebras', which is due

to Huntington and Sheffer. 2. An investigation of the particularity of the Fregean research

programme, including an analysis ofthe extent to which certain elements of Begriffsschrift

are new; and an account of Frege's discussion of Boole which focuses on the domain

common to the two formal languages and shows the logical connection between Boole's

logical calculus and Frege's.

As a result, it is shown that the progress made in mathematical logic stemmed from two

continuous and overlapping research programmes: Boole's introduction ofmathematics in

logic and Frege's introduction oflogic in mathematics. In particular, Boole is regarded as

the grandfather of metamathematics, and Lowenheim's theorem ofl915 is seen as a revival

of his research programme.
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Part One: Setting The Scene



1. Introduction

o my Lord! Advance me in knowledge.

Surah 20, Taha, verse 114

History, if viewed as a repository for more than anecdote or chronology, could
produce a decisive transformation in the image of science by which we are now
possessed.

Thomas Kuhn

1.1 Remarks on Gillies' 'The Fregean Revolution in Logic'

In the historiography of science concerned with the historical development of knowledge,

there has been a fixation on empirical sciences for illustrations. For instance, although Kuhn

himself acted as a commentator in a session in which the growth of mathematics was

discussed in the light of his work at the fiftieth-anniversary meeting of the 'History of

Science Society' held inl974 at Norwalk, he never wrote anything about non-empirical

sciences. Therefore, the book, Revolutions in Mathematics edited by Donald Gillies is more

than welcome. In particular, in the paper on 'The Fregean Revolution in Logic', Gillies

espouses Kuhn's general analysis of revolutions in science in order to approach the Fregean

revolution.

Gillies holds that Frege (1848-1925) is a revolutionary in logic and that his revolution can

be compared to 'the Copernican revolution in astronomy and physics' in which the

Aristotelian-Ptolemaic paradigm was 'overthrown and irrevocably discarded' and replaced

by the Newtonian paradigm. Thus Gillies appears to be reliant upon Kuhn's concept of

'paradigm', which has in his view just the right degree of precision for the analysis of

revolutions in science and mathematics (Gillies 1992, p. 270).

But Gillies does not endorse two aspects of the analysis of Kuhn's concept of paradigm,
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namely incommensurability and the birth of a paradigm in a 'flash of intuition'. Unlike Kuhn,

who denies the possibility of comparing two different paradigms, he considers that 'in a

scientific revolution the old paradigm is compared with the new, and judged on perfectly

rational grounds to be inferior' (Gillies 1992, p. 266). Regarding the second aspect of

Kuhn's analysis, he suggests replacing the romantic theory of the birth of paradigms by a

more prosaic view which he finds in the concept of 'research programme' developed in the

Popperian school.

Gillies then argues that 'it is work on a research programme by a small group, or, in the

limit, a single individual, that gives rise to a new paradigm' (Gillies 1992, p. 286). For him,

'a change in programme marks the beginning ofa revolution ifthe programme leads to the

development of a new paradigm' (Gillies 1992, p. 286). Thus, he claims that the

programmes ofFrege and Peano were revolutionary in that they generate a new paradigm,

whereas Boole's research programme was not revolutionary. Gillies argues that although

Boole's logical calculus does suggest extensions of traditional logic, there is nothing in the

programme likely to bring about a dramatic alteration in the content of traditional logic

(Gillies 1992, p. 287). He points out that forty nine percent of Boole's Mathematical

Analysis of Logic deals with traditional logic in order to show the conservative rather than

revolutionary nature of Boo le's advance). He says

Peano should, like Frege, have been led by his research programme to make advances
in logic going beyond anything achieved by Boole (Gillies 1992, p. 291).

1.1.1 Gillies' General Thesis

When Gillies holds that the Fregean revolution in logic was analogous to the Copernican

revolution in astronomy and physics, he refers to Kuhn's concept of'extraordinary science'.

Gillies considers as three standard examples of revolutions in logic, the Aristotelian, the

Fregean, and the Godelian revolutions. He regards Aristotelian logic as the old paradigm

which was replaced with the new paradigm ofFregean logic, whose dominance was then

I It would have been fair if Gillies had added that The Laws of Thought contains 424 pages and 22
chapters, and only one chapter of9 pages is devoted specifically to Aristotelian logic.
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ended by the publication of Godel's incompleteness theorems in 1931. Hence he assumes

that there are only occasional revolutions in logic, and that 'normal logic' characterised by

routines and puzzle-solving prevails within each of these paradigms. Thus, on his view,

logicians can rest within their cocoons from which they gain an intellectual protection until

one or a few of them working on a particular research programme point out 'anomalies'

leading to the development of a new paradigm. This research programme is then called a

'revolutionary' research programme.

In oppositiorrto this picture of the development oflogic, I shall claim that although Kuhn's

.. concept of 'scientific revolutions' can be considered as one of the core units for discussing

the growth oflogic, it does not have the importance that Gillies seems to associate with it.

Indeed, regarding the history of mathematical logic, it can be suggested that logical

revolutions are not so revolutionary and 'normal logic' not so normal as Gillies' analysis

suggests. For a basic feature of the development of mathematical logic is that there is a

sense in which knowledge gained within earlier logical research programmes is preserved

in their successors. In fact, there is an overlapping of logical research programmes which

makes the focus on revolutionary periods misleading. Furthermore, the discussion of the

conceptual foundations of any logical research programme is a historically continuous

process which makes it difficult to single out any extended historical episode when only one

logical research programme stood alone. It follows that the emergence of a logical research

pro gramme does not often exhibit the unanimity of adherence or the abandonment of critical

discourse which, in Kuhn's eyes, mark the aftermath of a scientific revolution.

My proposal is to use the concept of 'research programme? as a tool for the analysis of the

development of mathematical logic. Thus I hold that a familiar phenomenon in the history

of logic is the redevelopment and extension of earlier logical research programmes. For

instance, each of Boole (1815-1864), Lowenheim (1878-1940) and Hilbert (1862-1943)

initiated a new research programme which preserved much of the theoretical structure of

2 Here I use the concept of 'research programme' in a sense akin to the Popperian school: to indicate
not a dominant theory, but rather 'a mode of explanation which is considered so satisfactory by some
scientists that they demand its general acceptance' (Popper 1970, p. 55). However, I shall not adhere to
Lakatos' specific ideas about research programme, i.e., the concepts of 'hard core' and 'positive
heuristic'(see Lakatos 1970). The use of the latter is very much favour by Gillies (see Gillies 1992, pp. 284-
286 where he discusses research programme in general terms).
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its predecessor. They were not solving puzzles within a 'normal logic' i.e. an existing

research programme. Yet, according to Gillies, their works did not lead to the development

of a new paradigm, either. Gillies does indeed use the notion of 'research programme', but

nonetheless for Gillies research programmes either lead to revolutionary advances or they

take place within an old paradigm. But these are not the only alternatives and most work in

mathematical logic is neither strictly revolutionary nor just 'normal science'. The image

according to which all logicians spend most of their time doing what Kuhn calls 'puzzle-

solving' - except in rare periods of crisis - does not seem to capture the actual development

of mathematical logic.

Once it is suggested that the 'normal' state oflogic is in fact characterised by the emergence

of new research programmes, and the criticism and extension of older ones, the task which

the historian of logic has to set himself should be the study of specific logical research

programmes and the discussions of their relative merits. Hence, instead of exaggerating the

difference between 'normal' and 'revolutionary' logic which probably has led Gillies to focus

on, 'periods ofrevolutionary activity', I shall discuss the development of mathematical logic

from Boole to Frege in terms of overlapping research programmes.

A logical research programme is to be conceived as a set of guidelines which is accepted by

some logicians for the construction of specific logical theories. It exhibits a leading principle

and encompasses basic concepts, a special symbolism or terminology. In this sense, Boole's

The Mathematical Analysis of Logic (1847) generated a research programme whose leading

principle was the application of mathematics to 10gic. Until about 1900 this pro gramme were

pursued by A. Morgan (1806-1876),1. Venn (1864-1923) W. S. Jevons (1835-1882) and

specially C. S. Peirce (1839-1914) and Ernst Schroder (1841-1902). During the latter part

of the same period a new research programme emerged in Frege's Begriffsschrift (1876)

whose leading principle was no longer the application of mathematics to logic but,

conversely, the applicationoflogic to mathematics. The development ofFrege's programme

appeared in the Principia Mathematica (1910-1913) by A. N. Whitehead (1861-1947) and

B. Russell (1872-1970).

However, the basis of Frege's programme was provided by the works of the nineteenth

century algebraic logicians within Boole's research programme. In effect, Boole and his

5



followers made explicit rules of deduction by developing a purely symbolic system. This was

extended by Frege who gave a final and definitive form to what formal deduction actually

was. Thus Frege's research programme extended over and covered part of Boo le's research

programme. Hence there was an overlapping of Boo le and Frege's research programmes

which rendered the change ofprogramme in this case quite complicated. And if this change

is to be labelled 'revolutionary', then such a revolution should not be compared to the

Russian revolution in which something is 'overthrown and irrevocably discarded' (see Gillies

1992, p.269).

Gillies' conception of the history of logic raises the question of the appropriateness of

Kuhn's concept of paradigm for analysing the development of mathematical logic. Where

does Gillies draw the line between, on the one hand Aristotelian and Fregean paradigms, and

on the other hand different articulations ofthese paradigms? Does he risk casting a shadow

over the great work which was being done before and after Frege? Before Frege, Boole's

logical calculus initiated the application of algebra to logic, which was of central influence

on the later development of mathematical logic. And after Frege, the rich and stimulating

debates concerning logicism, formalism, and intuitionism brought forth interesting

developments that are based upon the critical treatment oflogical problems. These leading

schools of thought belonged to the background of Godel (1906-1978), who then criticised

all of them. Therefore, there were productive differences in play in logical activities before

and after Frege, which should not be discounted. It then appears to be an oversimplification

to reduce the whole logical enterprise into Aristotle, Frege, and Godel.

Furthermore, how can Gillies pinpoint unequivocally the appearance ofFrege's paradigm

or the specific historical epoch of its emergence and effectiveness? He regards propositional

and first-order predicate calculus as the core of the Fregean paradigm. But, as Putnam

points out, the fact is that Peirce and his student o. H. Mitchell worked out the quantifier

in the way in which it is now recognised.' For they used the symbols 1: for the existential

3 In a paper entitled 'Peirce the Logician' and published in his book, Realism with a Human Face
(1992), Putnam acknowledges that Frege is historically first to discover the quantifier. But Putnam attributes
what he calls the effective discovery of the quantifier to Peirce and his student, by which he means that it
is to Peirce's work rather than to Frege's that modem quantification theory can trace its origin (Putnam
1992, p. 255-58). He even points out that Whitehead came to his knowledge of quantification through Peirce
and his student. As for Russell, Putnam can not find out where he learnt about quantification (Putnam 1992,
p.258).
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quantifier, and Il for the universal quantifier, together with bound variables, in the context

of a one-dimensional notation which is recognisable as a variant of modern notation, unlike

Frege's counter-intuitive two-dimensional notation (see section 7.1). It is no surprise.then,

that Lowenheim proved his theorem in Peirce's notation. Skolem (1887-1963) also used it

in his model-theoretic approach to logic (1920-22). Even Godel (1931) used Il for the

universal quantifier. Thus it was Peirce and his student's notation that became known by the

logical community. As Putnam stresses it, 'Frege's notation repelled everyone ... Peirce's

notation, in contrast, was a typographical variant of the notation we use today' (Putnam

1992, p. 256). A point of fact is that when Frege published his Begriffsschrift in 1879, no

one at the time grasped clearly enough what he had achieved. Itwas not until some decades

later that the achievement began to generate the desired attention. His thought reached the

awareness of others mostly through Peano, Russell, Carnap and Scholz. The fact that

Frege's thought was in advance of his time is a problem neither anticipated nor treated by

Gillies' account of the historiography oflogic.

Although Gillies may be correct to believe that revolutions occur in logic, the conclusion he

draws from it seems to be too strong and far-reaching. For instance, he claims that when the

Fregean revolution in logic occurred the Aristotelian paradigm was discarded. However, as

a matter of fact, it turns out that in the Begriffsschrift Frege reproduced the square of

logical opposition as it stood in Aristotelian logic (see subsection 5.3.3). He also mentioned

the syllogisms fEIAptOn and fEsApO, and considered the syllogism bArbArA, which is

universally valid if expressed into his logical system. Therefore, Aristotelian logic has not

been completely discarded in Fregean logic. Indeed, logic involves theoretical development,

but such a development is carried out slowly and by preserving principles it has once

acquired.

1.1.2 Gillies on Peano's Research Programme

According to Gillies, ifhis general thesis is correct, then Peano 's research programme was

revolutionary in that it led to the treatment of Frege's (earlier) work as a new paradigm

whereas Boole's research programme was not revolutionary. In defending his thesis Gillies

argues that, in 'The Principles of Arithmetic'(1889), Peano (1858-1932) found an adequate

means of expressing universal and existential quantifiers, which Boole obviously did not.
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However, as we have seen, it turns out that the quantifiers had already been used by Peirce

and his student O. H. Mitchell in his publication 'On a New Algebra of Logic' (1883), and

certainly their works were squarely in Boole's research progrannne. Ineffect therefore the

use of the quantifiers does not seem here to be a good criterion for Gillies to evaluate the

revolutionary character ofPeano's research progrannne against Boole's. The truth is that,

although Peano's work was of a somewhat different type, it belonged to Boole's research

progrannne, of which it represented an important development. As Frege wrote to Peano,

'I see that you follow Boole, but use some other signs and try to make his logic fruitful for

mathematics (Frege before 1891, p. 108).

Unlike Frege, Peano did not try to reduce mathematics to logic. On the contrary, he set up

an axiomatic-deductive system in which the axioms were stated in the logical symbols that

form his 'pasigraphy'. He analysed the methods of mathematics and tried to apply

symbolical processes to the propositions of mathematics. It does not seem, as Gillies

suggests, that the logic involved in Peano's axiomatisation of arithmetic was fully explicit.

For, as Heijenoort pointed out, Peano did not have any rule that would play the role of a

rule of detachment (Heijenoort 1967a, p.84). As a result, we do not find in Peano's work

a logical method in finished form The first proof Peano gave in 'The Principles of

Arithmetic' can illustrate this point. Instead of presenting a proof of the theorem 2 EN,

he actually gave a list of formulas in which each one is very close to the next (Peano 1889,

pp. 113-114). But, as Heijenoort noted, 'however close two successive formulas may be,

the logician cannot pass from one to the next because of the absence of rules of inference.

The proof does not get off the ground' (Heijenoort 1967a, p.84). Moreover, it was this

shortcoming that Frege proposed to overcome by showing that mathematical proofs could

be formalised. Thus he defmed Peano' s primitive arithmetical concepts in logical terms, and

deduced his arithmetical axioms from logical axioms. Hence the conception of logic- and

especially of its relation to mathematics- is essentially different in Peano and in Frege.

Like Boole, Peano was concerned with mathematical logic as a kind of auxiliary discipline

of mathematics. There is an 'arithmetization' of logic in Peano which resembles the work

carried out within Boole's research progrannne. Peano wanted to conceive mathematics as

a purely formal procedure independent from the interpretation of the symbols involved. He

realised that the notations of logic are not just a 'pasigraphy'; they are also a powerful
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instrument for analysing propositions. So, in the preface of the 'The Principles of

Arithmetic', he acknowledged that he used the research of Boole. As he wrote, 'the

notations and propositions oflogic which are contained in numbers II, III, and IV, with

some exceptions, represent the work ofmany, among them especially Boole'(Peano 1889,

p. 102). Also, in his 'The Operations of Deductive Logic', he noted the equivalence of the

calculus of sets and the calculus of propositions, and gave a treatment of deductive logic

based on his study of the works of Boole, Schroder, Peirce and others scholars working

within Boole's research programme. Moreover, as Gillies admits, Peano did share with

Boole the fundamental thesis that the notion of class is the logically primitive notion. Hence

even ifPeano's intention was slightly different, the heuristic of his programme dovetailed

with Boole's logical calculus.

Gillies also argues that Peano made advances in logic going beyond anything achieved by

Boole in that he, like Frege, was led by his research programme far beyond the confines of

traditional Aristotelian logic (Gillies 1992, p. 293). For, in his eyes, Peano made a

remarkable discovery which showed that the laws of Aristotelian logic are invalid in special

cases in which the extensions of some of the predicates are empty.

But the discovery that Gillies attributes to Peano was in practice pointed out by Boole. It

must be admitted that Boole did not directly compare his own work with Aristotelian logic

and make explicit the problem of existential import. But, in his Mathematical Analysis of

Logic, he implicitly introduced the concept of null class. Indeed, in his algebraic notation

zero appears as the symbol of such a class. He interpreted the universal proposition 'allXs

are Ys' as follows:

as all the Xs which exist are found in the class Y, it is obvious that to select out of the
Universe all Ys, and from these to select allXs, is the same as to select at once from
the Universe all Xs. Hence

xy=x

or

x (1 -y) = o.

(Boole 1847, p. 21).
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Thus, as in modem class algebra, Boole interpreted the proposition' AllX's are Y's' as non-

existential in the sense of not implying the existence of members ofthe class denoted by the

subject term.

Moreover, the comparison between Boole's algebra of classes and Aristotelian logic in

regard to the interpretation of the existential import of propositions occurred in Venn's

Symbolic Logic of1881 (see subsection4.1.1). Also, in his paper 'On the Algebra of Logic'

published in the American Journal of Mathematics of 1880, Peirce assumed that universal

propositions do not, while particular propositions do, imply the existence of their subjects.

(Peirce 1880, p. 23). Then, in a short paper 'The Aristotelian Syllogistics', he showed again

that the distinction between a universal proposition and a particular proposition is that the

former does not, while the latter does, imply the existence of their subjects (Peirce 1893 p.

280). In this interpretation, the traditional square of opposition must be subject to revision.

Peirce did it as follows:

A and E, All Sis P, and No S is P, are true together when no S exists, and false
together when part only of the S's are P. I and 0, some S is P, some S is not P, are
true and false together under precisely the opposite conditions.
A and I, Any Sis P, Some Sis P, are true together when there are S's all of which
are P, and are false together when there are S's none of which areP.E and 0, No S
is P, and Some S is not P, are true and false together under precisely the opposite
circumstances ... (Peirce 1893, p. 283).

Thus, the problem of existential import had become more explicit with Venn and Peirce,

who worked within the research programme outlined by Boole.

Consequently, if what Gillies considers as the justification of the revolutionary character of

Peano's research programme is correct, then he should consider Boole's research

programme as revolutionary as well. For the use of the quantifiers and the rejection of the

existential presupposition had been done within Boole's research programme. In truth, the

importance ofPeano's work lies in its being a transitional link between Boole and Frege's

research programmes.

There is no doubt that Gillies' paper, 'The Fregean Revolution in Logic', encompasses
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valuable insights. The claim that there is a Fregean revolution in logic is certainly correct.

The use of the concepts of the historiography of science, so as to substantiate such a claim

is helpful. But I will not be considering the concept of'revolution' as the basic category for

the analysis of the history oflogic which Gillies has assumed. Instead, I will be using the

concept of research programme as a tool in the analysis of the development ofmathematical

logic from Boole to Frege.

1.2 Outline of The Project

I want to show that the astounding progress made in mathematical logic in the twentieth

century was produced by two successive and overlapping research programmes. One is due

to Boole, who created an algebra oflogic, and the other, without wiping out the first, is due

to Frege, who set up the logic of mathematics. The work of Boo le and Frege gave rise to

two research programmes which have given rise to important consequences, such as

Lowenheim's theorem of 1915 and Godel's proof of the incompleteness of arithmetic in

1931.

I shall expound and discuss here especially Boole's work, which was the first successful

mathematical treatment of one part of logic. The criterion for selecting this approach

depends on the following observation: we have yet to grasp the nature and the scope of

Boole's work on logic since the few recent accounts of it are more or less sketchy, and fail

to assess the relationship between the work of Boo Ie and Frege. Hence, the historical and

logical values of Boo le's research programme, and its connection with Frege's, remain to

be recognised.

In the next second part of my dissertation, I shall be concerned with Boole's introduction

ofmathematics in logic. In the second chapter, I give a resume of Aristotelian logic, in order

to acquaint the reader with the elementary concepts oflogic, which Boole seeks to develop

in a rigorous mathematical system. I also discuss the early innovations in logic made by

Hamilton and de Morgan and the move towards abstractness in algebra, to which Boole

himself contributed with his mathematical works. This shows that the mathematical analysis

oflogic is not a happy coincidence, but a direct result of the reform of traditional logic, and

the mathematical work of Boo le's compatriots and his own research on mathematics.
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In the third chapter, I describe Boole's logical system in some detail. I include some

mathematical and logical technicalities, which are unavoidable in order to apprehend Boole' s

computational procedure, and how mathematics can be introduced in logic. I deal with the

system of signs of Boole's logical calculus, the formulation of its laws, the rules of the

operation of this kind of algebra, and the setting up of his logical system. Then I show the

way in which Boole performs the practical application of the algebraic method to logic.

Subsequently, I discuss some criticisms levelled at Boole. I defend Boole against the

accusation ofmathematicism. I do not, however, try to defend his use of the symbol 'v' to

express existential judgments. But I indicate the attempts made by Peirce, Schroder and

Whitehead to work out a way of repairing the flaw of Boo le's 'v'.

In the fourth chapter, I am concerned with further developments of Boo le's logical calculus.

I point out the recurrence of a set oflogical problems, and exhibit the improvements which

Venn brought to logic as algebra. Then, I give an account of the axiomatic methods for

'Boolean algebras' set up by Huntington and Sheffer, who drew from Boole's logical

calculus a method whose principles have been cast into the form of postulate sets.

In the third part, I shall be dealing with the introduction oflogic in mathematics. I introduce

Frege's logical system in chapter five. I first discuss the concept of logic, in order to

elucidate how it is understood by Frege and Boole, and to show the closeness oftheir views

on the subject-matter. Then I describe the project of Begriffsschrift and discuss how the

concept offormal proofwas conceived by Leibniz. Subsequently, I give an account of the

first two parts of Begriffsschrift, which encompass two major achievements: the device of

a 'language of pure thought', and an axiomatisation of propositional logic. The chapter

contains also some logical technicalities indispensable for the understanding of Frege's

logical system. Finally, I discuss the extent to which Begriffsschrift is a revolution in the

history oflogic, and discuss the predominant current view of the place of Begriffsschrift in

the history oflogic.

In the sixth chapter, I shall discuss the relationship between Boole and Frege. I consider

Frege's discussion of Boo Ie's logical calculus, and show that in this discussion Frege just

confined himself to comparing the two formula-languages whilst bearing in mind the

differences between their respective purposes. I point out the domain common to the two
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formal languages and the logical lineage between Boole and Frege. I stress that although

they did not have the same conception of the relation oflogic to mathematics, their works

show the close relationship between logic and mathematics, in such a way that the

separation of the two ceases to be a sharp one. I also indicate Frege's different and more

ambitious way of treating logic, and draw a picture of'Boole-as-Frege-discusses-him'.

I conclude, in the fourth part, by showing the importance of Boole in the history oflogic.

I stress that Boole's research programme through the work of Peirce developed a

propositional calculus and a predicate calculus of functions of one and of several variables

with quantification. Then I inquire about the conditions under which metamathematics

emerged. I argue that Boole should earn the right to be considered as the grandfather of

metamathematics. The argument is substantiated, on the one hand, by developing the idea

that Boole's formalist treatment oflogic leads on to Hilbert's metamathematics, and on the

other by regarding Boole's semantics as having suggested the model theoretic approach to

logic that is prominent in Lowenheim's paper of 1915, which constitutes a revival of the

Boolean research programme. This leads me back to Gillies' 'The Fregean Revolution in

Logic'. I suggest that the emergence of the model-theoretic approach to logic should not

be regarded as a part ofthe Fregean revolution, but a distinct research programme whose

possibility required the research programme of Boo le.
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Part Two: Boole: Mathematics in Logic



2. Background to Boole's Logical Calculus

Without a grain of metaphysics, there cannot be science.

Cantor

Introduction

Mary Everest Boole" and Hackett' both alluded in their writings to the existence of some

metaphysico-poetic roots of Boo le's logical calculus. For instance, in the pamphlet Boole's

psychology, Boole's wife revealed that in 1832, when Boole was about seventeen, it 'flashed

upon' him as he was walking across a field that, besides the knowledge obtained from direct

observation, man derives knowledge from some source undefinable and invisible- which she

called the 'unconscious'.

Perhaps Boole's logical calculus exhibits a metaphysical mark. But this metaphysics should

not be isolated in an inaccessible sky of ideas or entities without any contact with

experience. It should be rather a kind of metaphysics set to work, anchored in the finitude

of the world, and in the doings of nature. Viewed as such, metaphysics may then playa

stimulating role by opening the way to science. Indeed, a scientific theory always emerges

from a metaphysical inspiration, instead of an accumulation of observations. As Popper puts

it, 'scientific discovery is akin to explanatory story telling, to myth making and to poetic

imagination' (PopperI98I, p. 87). However, such an inspiration occurs only within the

various elements of the scientist's background which involve traditional beliefs, criticism,

logic, imagination and empirical tests.

Accordingly, disregarding the kind of metaphysico-poetic interpretation of the genesis of

4 M. Everest Boole, quoted in Laita (1977), p. 163.

5 Hackett, The Method of George Boole, Proceeding of the Royal Irish Academy, vol. 57, Sect. A.
pp.78-86.
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Boole's logical calculus that has been advocated by Mrs Boole, I shall show, in this chapter,

that there are objective circumstances which framed Boole's metaphysical inspiration to

attempt the dressing oflogic with mathematical clothes. Amongst these circumstances, on

the one hand, I shall show the general logical ambience in Britain during the early nineteenth

century, which led to the introduction of some innovations into the syllogistic doctrine.

These early innovations in logic were made by Hamilton with the quantification of the

predicate, and de Morgan with the notion of 'the universe of discourse'. On the other hand,

I shall describe the gradual emergence of symbolical algebra in Britain to which Boole

contributed with his early and late mathematical works.

2.1 A Resume of Aristotelian Logic

Before proceeding to show the logical ambience, and to describe the gradual emergence of

symbolical algebra in Britain, I shall give a resume of Aristotelian logic, so as to acquaint

the reader with the basic concepts of logic which Boole would develop in a rigorous

mathematical system.

2.1.1 Categorical Propositions

Aristotle is concerned with the classification and interrelations of propositions. Categorical

propositions have a subject term and a predicate term and contrast with hypothetical

propositions which have two or more categoricals united by a connective. Categoricals join

together exactly two categorical terms and asserts that some relationship holds between the

classes they designate. They are subdivided according to quantity into universals and

particulars or propositions which are indefinite; and according to quality into affirmatives

and negatives. As Aristotle puts it,

a premiss then is a sentence affirming or denying one thing of another. This is either
universal or particular or indefinite. By universal I mean the statement that something
belongs to all or none of something else; by particular that it belongs to some or not to
some or not to all; by indefinite that it does or does not belong, without any mark to
show whether it is universal or particular, e.g., 'contraries are subjects of the same
science', or 'pleasure is not good' (Aristotle, Prior Analytics book I, 1).

A proposition is a 'judgement expressed in words' or a 'sentence indicative' which is either
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affirmative or negative: affirming or denying are the two contraries qualities of logical

proposition. An A:ffinnative proposition is one whose copula is a:ffinnative. A Negative

proposition is one whose copula is negative. There is also the quantity of a proposition: if

the predicate is said of the whole of the subject, the proposition is Universal; if of a part of

it only, the proposition is Particular. Indefinite propositions can turn out to be universal or

particular according to their analysis. For instance, 'contraries are subjects of the same

science' can be taken as a universal: contraries, without exception, come always under the

same science: then the subject is universal. On the other hand, the second example, 'pleasure

is not good', can be taken as a particular: some pleasures are not good. The subject is here

a particular. In addition, there are singular propositions such as 'Brutus was a Roman',

which are considered as universals because in them we speak of the whole subject. In fact,

however, Aristotle does not treat singular propositions in his logic.

A Universal a:ffinnative proposition is called an A-proposition, a Particular a:ffinnative

proposition an I-proposition, a Universal negative proposition an E - proposition and a

Particular negative proposition an 0- proposition. These types of propositions A, E, I, 0

are tabulated in a square, with universal at the top, particular at the bottom, affirmative on

the left, negative on the right. Aristotle begins to formulate the square of opposition in De

Interpretatione 6-7, which contains three claims: that A and 0 are contradictories, that E

and I are contradictories, and that A and E are contraries (l7b.17-26):

I call an affmnation and a negation contradictory opposites when what one signifies
universally the other signifies not universally, e.g., everyman iswhite -- not everyman
is white, no man is white -- someman is white.But Icall the universal affmnation and
the universal negation contrary opposites, e.g., everyman is just -- no man is just. So
these cannot be true together, but their opposites may both be true with respect to the
same thing, e.g., not everyman is white -- someman is white.

From these three claims, we can easily show that I and 0 are subcontraries: they cannot

both be false. For suppose that I is false. Then its contradictory, E, is true. So E's contrary,

A, is false. So A's contradictory, 0, is true. This refutes the possibility that I and 0 are both

false. Subaltemation also follows. Suppose that A is true. Then its contrary E must be false.

But then the E's contradictory, I, must be true. Thus if A is true, so must be I. Likewise

subaltemation can be demonstrated from E to O. In short, Aristotelian logic states the

following rules: two contraries cannot be both true, but can both be false. Subcontraries
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cannot be false but can both be true. If one of a pair of contradictories is true, then the other

is false; and vice versa. It is stated that if A or E is true, its subaltern is also true. The

successors of Aristotle layout these relations between A, E, I ,0 in quadrata formula:

A Contraries E
All S is P No S is P
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Some S is P Some S is not P

Later, I will show the change brought to the square of opposition by modem logicians (see

subsection 4.1.1). But why does Aristotelian's square of opposition need changing?

Consider a case where S does not in fact apply to existing things. Thus the I form: 'Some

Sis P is false. But then its contradictory E form: 'No S is P must be true. But then the

subaltern 0 form: 'Some S is not P must be true. But this is quite wrong, since S is empty.

In effect, Aristotelian logic differs from modem logic in that it permits the subaltern

inference of 'Some S is not P' from 'No S is P ( and likewise, ' Some S is P' from 'All

S isP') whereas modem logic does not permit the inference. Modem logicians hold that if

there is no S, then 'All S isP and 'No S is P are true, while 'Some Sis P' and 'Some S

is not P' are false.

It is worth noting in this connection how medieval logicians approached this issue of the

existential import of universal propositions. In Truth and Consequence in Mediaeval Logic,

Moody says that in practice the medieval logicians assumed the rule that all affirmative

categoricals have existential import, as an overall postulate, without explicitly adding it to

the special truth rules for sentences of the four traditional forms (E. A. Moody 1953, p. 50).
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Indeed, the medieval logicians rehabilitated the traditional square of opposition through the

introduction of the theory of supposition. This theory was principally concerned with what

a categorical term can be taken to refer to in a particular context. Thus the four traditional

forms can be said to suppose that the terms to which they refer do apply to existing things.

That is the conditions of their truth or falsity are satisfied only if it is supposed that the

existential question has already been answered in the affirmative. If it is supposed that all

terms do apply to existing things, then the logical relations holding among them do hold.

Kneale recognises that Abelard (1079-1142), who was influential in the formation of

medieval logic, had apparently accepted the ordinary account of the square of opposition.

However, he holds that Abelard should have the credit ofbeing the first to worry about the

traditional square of opposition (Kneale 1962, p. 211). For he advocated the view that

an affirmative categorical proposition was true if and if only the subject term and the
predicate term both stood for the same thing or things (Kneale 1962, p. 209).

This view was accepted by many of the successors of Abelard. Thus, in Sophisms On

Meaning and Truth, Buridan (1300-60) stated the conditions for the truth of a particular

affirmative, as well as those for the truth of a universal affirmative as follows:

it is that every true particular affirmative is true because the subject and the predicate
stand for the same thing or things. And every universal affirmative is true if whatever
thing or things the subjects stands for, the predicate stands for that thing or things
(Buridan c. 1496/1500, p. 93).

Certainly, from the requirement that all the terms apply to existing things, it follows that

Aristotelian's square of opposition becomes perfectly in order. As Boehner stresses, by

admitting the inference 'Some man is mortal' from the proposition 'Every man is mortal',

the Scholastics then insisted on the existential import ofa categorical (Boehner 1952, p. 30).

Bochenski points out, as well, that the medieval logicians discussed the problem of the

empty term through the notions of 'ampliation' and 'appellation'. In order to illustrate the

point, he cites two thirteenth century texts, one from Peter of Spain (ca1210-77) and one

from William of Shyreswood, and a text from Buridan as an example of the fourteenth

century theories (Bochenski 1970, p. 175). It appears through these texts that medieval
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logicians clearly recognised and squarely faced the problem of empty terms". But it seems

that every time they confronted the problem they agreed with Aristotle by preserving the

customary square of opposition.

2.1.2 Conversion and Syllogism

In order to provide universal types of reasoning, Aristotle devises two logical operations:

Conversion and Syllogism.

Conversion is a type of immediate inference in which from a given proposition another

proposition is drawn which has as its subject the predicate of the original proposition. In

Prior Analytics I, 2, Aristotle writes:

it is necessary then that in universal attribution the terms of the negative premiss should
be convertible, e.g., if no pleasure is good, then no good will be pleasure; the terms of
the affirmative must be convertible, not however, universally, but in part, e.g., if every
pleasure is good, some good must be pleasure; the particular affirmative must convert
in part (for if some pleasure is good, then some good will be pleasure); but the
particular negative need not convert, for if some animal is not man, it does not follow
that some man is not animal.

Thus, Aristotle observes that E-proposition can be converted in this way: if 'no pleasure is

good', then it follows that 'no good is pleasure'. The proposition is negative and its terms

are transposed: the subject of the original proposition is a predicate in the converse and its

predicate a subject in the converse. I-proposition can be converted in the same way: if'some

pleasure is good', then it follows that 'some good is pleasure'. In later terminology such

propositions were said to be converted simply. But A-proposition cannot be converted in

this way; if 'every pleasure is good', it does not follow that 'every good is pleasure'. It

follows, however, that 'some good is pleasure'. The proposition 'every pleasure is good'

means that every pleasure is a part of good, but not every good is necessarily pleasure. We

must therefore limit its quantity from universal to particular; in such cases the conversion

6 I have chosen not to spell out the medieval logicians ' attempt to solve the problem of the empty term
I shall refer the reader to A history of Formal Logic, where Bochenski gives three other series of texts, the
first attributed to St Vincent Ferrer (1350-1419), the second from Paul of Venice, the third from a neo-
scholastic of the 17thcentury John of St Thomas. Each text gives a different solution of the problem of the
empty term. For instance, Paul of Venice states the general rule that both propositions in a subaltemation
must have subjects with exactly the same supposition (Bochenski 1970, pp. 221-24).
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was later called by limitation or per accident. Regarding O-proposition, Aristotle says that

it 'need not convert'; from the fact that 'some animal is not man', it does not follow that

'some man is not animal'. These laws of conversion can be used to reduce other syllogisms

to syllogisms in the first figure, as described below.

Syllogism is a type ofmediate inference in which from 'certain things being stated' which

form the premises of reasoning, we draw necessarily something other than what is stated

which will be the conclusion. In Prior Analytics I, 4, Aristotle gives its technical definition

as follows:

whenever three terms are so related to one another that the last is contained in the
middle as in a whole, and the middle is either contained in, or excluded from, the first
as in or from a whole, the extremes must be related by a perfect syllogism. I call that
term middle which is itself contained in another and contains another in itself: in
position also this comes in the middle. By extremes I mean both that term which is itself
contained in another and that in which another is contained. IfA is predicated of allB,
and B of all C, A must be predicated of all C: we have already explained what we
mean by 'predicated of all'. Similarly also, ifA is predicated of no B, andB of all C,
it is necessary that no C will be A.

Thus, a categorical syllogism is the inference of one categorical proposition, the conclusion,

from two others, the premises, each premise having one term in common with the

conclusion and one term in common with the other premise. For example:

Every animal is mortal

Every man is an animal

Therefore, every man is mortal

The predicate of the conclusion 'mortal' is called the major term and the premise which

contains it the major premise. The subject of the conclusion 'man' is the minor term, and

the premise which contains it the minor premise. The term common to the two premises

'animal' is the middle term. In the above example that matches the relation between the

three terms as described by Aristotle, we have a perfect syllogism.

But there are other types of syllogisms. Indeed, syllogisms are divided into four figures,

according to the placing of the middle term in the two premises. Perfect syllogisms belong
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to the first figure because the middle term is subject in the major premise and predicate in

the minor; in the second figure, the middle term is predicate in both; in the third figure

subject in both; in the fourth predicate in the major and subject in the minor. This last figure

was introduced by the successors of Aristotle who regarded the fourth figure as a redundant

inversion of the first figure. The following schemata, with P for the major term, S for the

minor, and M for the middle, sums up these distinctions:

I si Figure 2nd Figure 3rd Figure 4thFigure

M P P M M P P M

S M S M M S M S

S P S P s P s P

Within each figure, syllogisms are further divided into moods, according to the quantity and

quality of the propositions they contain. Thus, in the first figure we can enumerate the

following examples:

Every X is Y

EveryZisX

Therefore, every Z is Y

NoXis Y

EveryZisX

Therefore, No Z is Y

Every X is Y

SomeZ isX

Therefore, some Z is Y

NoXis Y

SomeZ isX

Therefore, some Z is not Y

These are the four valid moods of the first figure. The first has three universal affirmatives

A-A-A; the second a universal negative, a universal affirmative and as a conclusion a

universal negative E-A-E; the third a universal affirmative, a particular affirmative and

another particular affirmative A-I-I; and finally the fourth mood has a universal negative,
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a particular affirmative and a particular negative E-I-O. They are called the perfect moods,

and all the rest imperfect.

The Scholastics came up with a mnemonic device for representing the moods of all

syllogisms commonly regarded as valid. They gave them names in which the vowels indicate

the nature of the propositions that form the syllogism. Thus, the above moods are called

respectively bArbArA, cElArEnt, dArIl et fErIO. Similarly, we have the following

mnemonic verses for the other three figures:

2nd figure: cEsArE, cAmEstrEs, fEstInO, bArOcO.

3rd figure: dArAptI, dlsAmIs, dAtIsI, fElAptOn, bOcArdO, fErIsO

4th figure: brAmAntIp, cAmEnEs, dlmArls, fElApO, frEslsOn.

In order to demonstrate the validity of a syllogism, we must reduce it to one of the four

perfect moods. For instance, to demonstrate the validity of the syllogism cAmEstrEs of the

second figure, we reduce it to the corresponding perfect syllogism cElArEnt. The letter, 'c',

in cAmEstrEs, indicates that we must proceed by reducing this mood to those in the first

figure beginning with the same letter. The letter, 'm', indicates that we must proceed by

transfer or inversion of the premises. Finally the letter, 's', which appears twice indicates that

we must proceed by a simple conversion of the proposition, which is pointed out by the

vowel that precedes that's'. Let us consider cAmEstrEs:

Every X is Y

NoZis Y

Therefore No Z is X

The inversion gives:

NoZis Y

Every X is Y

Therefore, No Z is X
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By simple conversion, we obtain cElArEnt:

No YisZ

Every X is Y

Therefore No X is Z

Lukasiewicz first undertakes to rebuild Aristotle's syllogistic in a simple and rigorous way.

He completely axiomatises the theory by using the modern technique of formal logic. In this

way, the perfect moods of syllogism, which are self- evident, play the role of axioms of this

deductive system. What is called the reduction of the other figures to those of the first, is

the demonstration of these syllogisms from the axioms, considering these derivative

propositions as the theorems of the system. As Lukasiewicz sees it,

Aristotelian theory of the syllogism is an axiomatized deductive system, and the
reduction of the other syllogisticmoods to those of the first figure, i.e., their proof as
theorems by means of the axioms, is an indispensablepart of the system
(Lukasiewicz 1951,P 44).

It follows that Lukasiewicz refutes the beliefthat there is a deep hiatus between Aristotelian

logic and modern logic, and acknowledges it as 'a system the exactness of which surpasses

even the exactness of a mathematical theory' (Lukasiewicz 1951, P 131).

However, Lukasiewicz bases his axiomatisation upon an interpretation of Aristotelian logic

which is radically different from traditional syllogism. Aristotle considers traditional

syllogism as a set of propositions which are not unified so as to form a single proposition,

whereas Lukasiewicz regards a syllogism as a conditional in which the premises function as

a conjunctive antecedent and the conclusion as a consequent. For example, he analyses

bArbArA not as an inference, but as a single proposition that must be either true or false:

'If A belongs to All Band B belongs to all C, then A belongs to all C.'

This interpretation has been discredited by Lear who argues that

the opening sentence of the Prior Analytics states that the scope of inquiry is proof
(24a10) and one cannot make sense of the claim that a proof is a type of syllogism
(25b28ff) if one treats a syllogismas a conditional (Lear 1980, p. 9).
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The argument seems to be convincing, since it is true that a proof is not a single proposition,

but an inference, that is, a definite structure carried out from premisses to conclusion. Yet

Lear shares with Lukasiewicz an interest that consists of exhibiting Aristotelian logic under

a formal system Indeed, he too attempts to present Aristotle's logical programme as a

system of formal inference that can be subjected to mathematical examination. He even

claims that when, in Prior Analytic A 23 and A 25 Aristotle argues that every deductive

argument can be expressed as a series of syllogistic inference, he is at the same time raising

the possibility of proof-theory and thus earns the right to be considered not only the father

oflogic, but also the grand father ofmetalogic (Lear 1980, p. ix).

Most of the features of Aristotelian logic which are now developed as a formal science akin

in symbolism and rigour to mathematics have been introduced. What is not so far considered

is the theory of forms of argument which have more than three propositions. In the book,

The Art of Thinking, 'The Port Royal Logic' discussed the topic. Arnauld and Nicole argued

that an argument can have many more than three propositions without thereby being invalid.

They called such an argument a 'sorites'. As they defined it,

a sorites is an argument composed of more than three sentences so that the first two
sentences give a conclusion which when taken with the third sentence gives another
conclusion, and so on (Arnauld & Nicole 1662, p. 178).

They considered 'sorites' as the most connnon type of reasoning inmathematics, and relied

upon the rules given for syllogisms to work it out. An example given by Stanley William

(1919, p. 89) illustrates what is meant by 'sorites':

All born within sound of Bow-bells are Cockneys

All Cockneys are Londoners:

All Londoners are Englishmen:

All Englishmen are Teutons

All Teutons are Aryans:

:.Allborn within sound of Bow-bells are Aryans.

In this example, it can be noticed that the predicate of one proposition is the subject of the
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next and the predicate of the conclusion is proved true of the subject of the first premise.

This is why Cicero called the 'sorites' a 'chain of argument'. The above 'progressive

sorites" can be resolved into its component syllogisms. But, regarding the method of

resolution, I shall refer the reader to Stanley William's Principles ofLogic(1919, pp. 89-92)

and Lewis Carroll' Symbolic logic & Game of Logic (1958, pp. 84-93).

It should be stressed, however, that there is a form of argument that is not resolvable into

the syllogism. Such an argument is called a 'dilemma'. A dilemma is

a form of argument of which the major premise is composed of two hypothetical
propositions; the minor premise of a disjunctive proposition; and the conclusion of
either a categorical statement or a disjunctive proposition, according as the dilemma is
Simple or Complex. (Stanley William 1919, p. 84).

In his Elements of Logic (1826, p. 90) Whateley gives the following example of the

'destructive dilemma":

If this man were wise, he would not speak irreverently of Scripture in jest; and ifhe were

good, he would not do so in earnest;

but he does it, either in jest, or earnest;

therefore he is either not wise, or not good.

Although, as Whately showed it, every dilemma may be reduced into one or more simple

conditional syllogisms (Whately 1826, p. 90), it becomes clear, with forms of argument as

complicated as the dilemmas, that we are concerning with logical inferences which are more

appropriately handled by formal symbolism than natural language. Hence the importance of

Boo le's logical calculus which makes fuller use of mathematical processes, and thereby goes

substantially beyond the theory of syllogism.

The above rapid overview of Aristotelian logic shows that Aristotle developed the study of

7 A 'sorites' has two different forms: a progressive, which is the usual form given above, and a
regressive form (see Stanley William 1919, p. 89).

8 A dilemma has three different forms: the simple constructive dilemma, the complex constructive
dilemma and the destructive dilemma (see Stanley William 1919, pp. 84-7).
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forms ofreasoning by reference to some general principles which establish under an abstract

form the validity of deductive inference. He carried out a research programme in logic which

has had an unparalleled influence upon the history of this discipline. A prospective reading

would stress some further points, which make him the precursor of modern formal logic.

Amongst these points may be listed the following: the use of abstract schemas essential to

formal logic; the latent idea of a formal system oflogic; the general conception oflogic as

a formal method of science; the establishment of certain fundamental laws: the law of non-

contradiction, the law ofexc1uded middle; and the nonexistence of psychological terms in

his exposition of the theory of syllogism, shunning thereby what is called 'psychologism' in

logic.

Nonetheless, Aristotelian logic had a limited range. It neglected propositional logic, and so

did not cover the whole field oflogic. It did not explore forms of arguments, such as 'Ifthe

first then the second, the first; therefore the second', whose validity can be demonstrated

by replacing the place-holders 'the first' and 'the second' by propositions. The Stoics were

concerned with such arguments but did not take propositional logic to be a supplement, but

rather a competitor, to Aristotelian syllogistic. In addition, Aristotelian logic did not

explicitly consider the important topic ofthe existential import of propositions. Furthermore,

because it overlooked the logical properties of the copula upon which the validity of an

inference is based, it was prevented from developing a more satisfactory calculus of

reasoning than the syllogism. What was especially lacking in it was a theory of relations. It

was therefore inadequate for mathematical demonstrations. As de Morgan observed in his

1860 paper, 'On the syllogism: IV; and on the Logic of Relations', syllogism was

inadequate for the relational reasoning that occurs often in mathematics. He wrote:

it is not the truth that all inference can be obtained by ordinary syllogism, in which the
terms of the conclusion must be terms of the premises. If anyone will by such syllogism
prove that because every man is an animal, therefore every head of a man is a head of
an animal, I shall be ready to- set him another question (de Morgan 1850, p. 216).

Certainly, there are forms of arguments which are employed in mathematical reasoning that

cannot be resolved into the syllogism. For example, implications, such as 'If x is greater than

y, and y is greater than z, then x is greater than z' do not fall into any of the types of

syllogisms. As Beth stresses it, the relation was the bete noire of Aristotelian logic (Beth
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1965, p. 47).

These limitations" may serve to suggest what a new research programme should include

when logic is conceived more satisfactorily. Such a new research programme was outlined

by Boole and de Morgan. Boole thought of logic as concerned with form of reasoning

independent of the language within which it was expressed. He proposed that logical

processes could only be both generalised and expedited through the systematic use of

mathematical symbolism. Whilst dealing with the processes of mathematics, he realised that

an indefinitely large number ofvalid inferences were possible that could not be evaluated by

the Aristotelian methods. Boole then developed an algebra oflogic which covers a totality

of proofs and mode of inferences within which Aristotelian syllogistic and propositional

logic are represented (though not both at once) and recognised as valid inferences. He

showed that mathematical processes are applicable not only to the domain of numbers, but

to the relations between classes and between propositions, and in general to any ordered

domain whatsoever. Following in the footsteps of Boo Ie, de Morgan presented in algebraic

form a logic of relations. Indeed, in his 1860 paper, 'On the syllogism: IV; and on the Logic

of Relations', he formalised the logic of binary relations as a generalisation of Aristotelian

syllogistic and laid the foundation for the theory of relations.

2.2 Logical Ambience in Britain Before Boole

The logical ambience in Britain during the nineteenth century consisted mainly of attempts

to carry out a new logic. Since traditional logic could not dovetail with the current progress

of mathematics, it was widely criticised. Thus, for instance, Mill carried out a study of

inductive inference to get rid of what he regarded as an inconsistency in the logical theory.

In the second book of System of Logic, Mill considered syllogism as a process of apparent

inference, and introduced induction as being 'without doubt, a process of real inference'.

In his eyes, the conclusion of syllogism does not teach us anything more than what was

already included in the premises.

9 I did not mention here an important limitation of Aristotelian logic, that is the analysis of
propositions in terms of subject and predicate, which is retained by Boole. This analysis conceals
propositions of very different forms by considering singular propositions (i.e. 'Socrates is mortal ') as 'truly
universals' (i.e. 'All Greeks are mortal'). As we shall see, it is Frege's new theory of judgment which
overcomes such a limitation (see subsections 5.3.2, 5.3.3 and 6.4.1).
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There were attempts to defend Aristotelian logic, such as Whateley's Elements of Logic,

which marked a revival of logic after its discredit in the eighteenth century. For him,

deductive argument is not simply a matter of word-play, a kind of verbal sword-play. He

believed in the fruitfulness of syllogism, which aims 'to expand and unfold the assertions

wrapt up, as it were, and implied in those with which we set out, and to bring a person to

perceive and acknowledge the full force ofthat which he has admitted ... ' (Whateley 1826,

p. 216). Thus, the conclusion is implicit in the premises and the utility of the syllogism is

precisely to make us aware of it.

However, it was only in the second half of the nineteenth century that there were attempts

to introduce some innovations in the syllogistic doctrine, so as to make it suitable for the

spirit and the methods of mathematics. In opposition to the tendency to criticise syllogism,

Hamilton and de Morgan claimed that the traditional forms of reasoning should not be held

in contempt, but improved, and they introduced the quantification of the predicate and the

idea of 'the universe of discourse'.

2.2.1 Hamilton: The Quantification of The Predicate

Hamilton was first convinced ofthe need to extend and correct traditional logic in 1833. In

the article on 'Logic', in the Edinburgh Review, first published in the same year, he carried

out a thorough quantification of the predicate in affirmative propositions. Then, before

1840, through his public lectures, he extended the principle of an explicitly quantified

predicate equally to negatives. Finally, the 'New Analytic of Logical Forms', in which the

theory was spelled out, was published in 1846.

Hamilton's expression of'New Analytic' describes the attempt to renew the organon of the

'Master of Stagirite'. According to him, since the theory of the syllogism had remained

where it was left by Aristotle, the 'New Analytic' intends to complete and simplify it. For,

he claims:

Aristotle, by ari oversight, marvellous certainly in him, was prematurely arrested in his
analysis; he began his synthesis before he had fully sifted the elements to be
recomposed; and, thus, the system which, almost spontaneously, would have evolved
itself into unity and order .. , (Hamilton 1873, p. 510)
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The 'Old Analytic' had not pursued the logical analysis oflanguage to the ultimate elements,

so as to perform a systematic and rigorous method of analysis of propositions before

rearranging them in a synthetic manner. In Hamilton's eyes, the logical analysis of Aristotle

is unsatisfactory in that it does not point out the extension of their elementary forms in the

analysis of propositions. Hence, in order to 'place the keystone' in the 'Aristotelic arch',

Hamilton's 'New Analytic' aims to bring forth an arrangement oflo gical propositions, which

takes into account the extension of their terms.

The principle being 'to state explicitly what is thought implicitly' , it appears to Hamilton that

the fundamental mistake of traditional logic is to ignore

that the predicate has always a quantity in thought, as much as the subject; although
this quantity be frequently not explicitly enounced, as unnecessary in the common
employment oflanguage; for the determining notion or predicate being always thought
as at least adequate to, or coextensive with, the subject or determined notion, it is
seldom necessary to express this, and language tends ever to elide what may safely be
omitted. But this necessity recurs the moment that, by conversion, the predicate
becomes the subject of the proposition; and to omit its formal statement is to degrade
logic from the science of the necessities of thought to an idle subsidiary of the
ambiguities of speech .. , (Hamilton 1873, p. 516).

Thus, the doctrine of the quantification of the predicate is based on the account according

to which Aristotelian classification of propositions considers only the quantity ofthe subject,

not that ofthe predicate. This classification distinguishes propositions into three categories,

universal; particular, and singular, referring to their quantity. But, for Hamilton, such a

quantitative classification is insufficient, insofar as it does not consider all the possible

relations between subject and predicate. In his view, it is necessary to quantify the predicate,

which is a term, so as to set up precisely all these relations.

For example, let us consider a proposition such as, 'All men are mortals' . In Aristotle's eyes,

the quality of this proposition is affirmative and its quantity universal. Thus the quantity of

the proposition is that of the subject 'men'. But what about the predicate 'mortals'? In order

to quantify it, we employ the logical operation of conversion, and then obtain the

proposition' Some mortals are men'. When we compare the first and the second proposition,

which is obtained after conversion, we shall notice that what we really wanted to say by 'All
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men are mortals' is 'All men are some mortals'. It follows that what was implicitly

concealed in the first proposition, that is, the quantity of the predicate, is now explicitly

expressed in the second.

Likewise, when we say' All men are rational animals' what we really wanted to say is 'All

men are all rational animals'. Thus the proposition, 'All men are rational animals' gives the

proposition, 'All men are all rational animals' by modifying the predicate quantitatively. In

the proposition, 'All men are all rational animals', there is a relation of equivalence between

the extension of two terms: 'All men' and 'All rational animals'. Thus the relation between

the terms constituting the proposition is extensional. It is the identity between two terms

rather than the inclusion of the predicate in the subject, as it was conceived by Aristotle.

From the doctrine of the quantification of the predicate, Hamilton extends the range of

classification of Aristotle's four forms:"

(1) All a is all b

(2) All a is some b

(3) Some a is all b

(4) Some a is some b

(5) Any a is not any b

(6) Any a is not some b

(7) Some a is not any b

(8) Some a is not some b

As a result of Hamilton's doctrine of the quantification of the predicate, the traditional

canonic form of proposition, which was '8 is P', is replaced by the form '8 = P'.

Henceforth a proposition could be regarded as an equation that equates two terms according

to their extensions. There follows the necessity of representing in symbolic form the precise

quantitative nature of the process of predication. Thus, we could operate with propositions

according to rules similar to those used in operating with elementary algebraic equations.

to 'Application of Doctrine of Quantified Predicate to Propositions', Lectures on logic, 1873, VoI2,
pp. 529-534.
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Hence a big step forward is made toward the beginning of an algebra oflogic. As Lewis puts

it, 'without Hamilton, we might not have had Boole' (Lewis 1960, p. 37).

However, it seems to be a strong claim to consider Hamilton as one of the precursors of

modem mathematical logic, inasmuch as he contends that the study of mathematics is at

once dangerous and useless, and 'a mathematician in contingent matter is like an Owl in day-

light'(Hamilton 1852, p. 652).

2.2.2 Hamilton versus de Morgan

There was a controversy between Hamilton and de Morgan about the priority in adoption

of the doctrine of the quantification of the predicate. Hamilton charged de Morgan with

plagiarism. I shall argue that the accusation was unfounded, in so far as the two theories

sprang from different sources, and were independently developed. de Morgan specified this

difference as follows:

the system I now write upon does contain that extent of quantification, and though it
was published before I had any knowledge even of the fact of Sir William Hamilton
having a system of his own, yet I can most distinctly affirm that all my perception of
complete quantification of both terms was derived from the algebraical form of
numerical quantification (My emphasis ) (de Morgan 1850, vol. 9 p. 90).

Unlike Hamilton, who was well-known for his aversion of mathematics, which is not, for

him, a road of any kind to logic, de Morgan derived his theory of the quantification of the

predicate from the algebraical form ofnumerically definite proposition. Whereas Hamilton

was confined to the idea of quantifying the predicate and the subject, de Morgan went

further to introduce numerically definite propositions, which allowed him to build up

numerically definite syllogisms. He exemplified the algebraical form of numerical

quantification as follows:

a numerically definite proposition is of this kind. Suppose the whole number of X s
and Y s to be known: say there are 100 X sand 200Ys in existence. Then an
affirmative proposition of the sort in question is seen in '45X s ( or more) are each
of them one of70Ys': and a negative proposition in '45X s (or more) are no one of
them to be found among 70 Y s ' (de Morgan 1847, p. 164).
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Thus, by using number and proportion in order to express 'some', de Morgan could specify

the scope of a particular proposition, which is indeterminate between the traditional forms

ofreasoning. It follows that he relied upon mathematics to approach the quantification of

the predicate. Therefore he was not on the same wavelength as Hamilton, whom Peirce

rightly described as 'this strikingly unmathematical scholar'. The difference of sources of

their two theories of quantification is evidence in favour of de Morgan who should then be

discharged from Hamilton's accusation of plagiarism.

Moreover, the controversy about the priority in adoption of the doctrine of quantification

was inappropriate and surprising, since the doctrine had been formulated a few years before

by George Bentham in his work, Outline of a New System of Logic (1827). In this book,

Bentham presented the eight propositions in a way very much like Hamilton's by combining

the quantity and the quality of the subject with those of the predicate. He looked into the

extension of the subject and the predicate, and into their different relations within the

context of judgement.

2.2.3 de Morgan: The Universe of Discourse

de Morgan's main innovation consists of the introduction of the idea of 'the universe of

discourse'. His important writings on logic may be found in the Formal logic, first published

in 1847, and a series of essays in the Transactions of the Cambridge Philosophical Society,

amongst which is 'The Theory of Syllogism', published in 1850.

In Formal Logic, he introduces the notion of 'the universe of discourse' as follows:

let us say that the whole idea under consideration is the universe (meaning merely the
whole of which we are considering parts) and let names which have nothing in common,
but which between them contain the whole idea under consideration, be called contraries
in, or with respect to, that universe. Thus, the universe being mankind, Briton and alien
are contraries, as are soldier and civilian, male and female, &c.: the universe being
animal, man and brute are contraries, &c. (de Morgan 1847, p. 42).

Thus, contrary names fill up the whole universe of discourse which varies from context to

context, and thus contains only what we concur to consider at a certain time, in a certain

context. The universe of discourse being animals, male and female are contraries. They are
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both wholly contained in that universe of discourse; no one of them fills alone the universe

of discourse, or applies to everything in it. The universe of discourse is presupposed in

ordinary language, when, for instance, a teacher says' everybody is here'. He presupposes

then that 'everybody' is restricted to persons registered on the course. It follows that, in

order to understand properly a general proposition, it is always important to restrict

ourselves to a universe of discourse which is the range of objects under consideration in a

defined context.

However, if the universe of discourse is implicitly presupposed in ordinary language, it must

then be explicitly definite in logic, so as to allow no dispute whatsoever about what does or

does not belong to it. Thus, de Morgan specifies the notion:

by the universe of a proposition, I mean the whole range of names in which it is
expressed or understood that the names in the proposition are found. If there be no such
expression nor understanding, then the universe of the proposition is the whole range
of possible names. If, the universe being the name U, we have a right to say 'every X
is Y, ' then we can only extend the universe so as to make it include all possible names,
by saying 'Every X which is U is one of the Y s which are U s,' or something
equivalent (de Morgan 1847, p. 64).

Unlike Aristotle, who leaves out negative terms because of their indeterminateness, de

Morgan introduces them into the proposition whilst presupposing a universe of discourse

in which they are specified, as well as their corresponding positive terms. As he puts it,

the introduction of contraries does, in fact, introduce a third term into the proposition;
the universe, or summum genus, be it the whole universe ofthought, or a conceivably
separable portion of it. And it is to be particularly remembered, that every term is
supposed to be part only of the universe: that is, to have an existing contrary in that
universe (De Morgan 1850, vol. 9 p. 91).

Thus, de Morgan considers the negative and the positive terms as embracing the whole

universe. They cannot both apply at once. They are represented by large and small letters:

if X stands for a positive term, x is the negative term. And everything in the universe is

either X or x: and nothing is both. Thus, if X represents the term 'man', x expresses 'not-

man'. The universe of discourse is a device invented so as to make the determinateness of

the negative term x completely unambiguous. Only the elements that are members of X or

are members of x are contained in the universe of discourse.
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de Morgan's introduction of contrary terms and its corollary, the universe of discourse,

allows a homogeneous presentation oflogical propositions. His research with Hamilton on

the extension of concepts leads happily to the possibility of representing a logical

proposition by an equation, and thereby making it suitable for the methods of mathematics.

Then the way is prepared for expressing the traditional forms of logic with algebraic

symbols. Indeed, the outcome of Hamilton and de Morgan's innovations made possible a

view oflogic as being, at least in one of its parts, an algebra of classes.

2.3 The Move Towards Abstractness in Algebra

The introduction of variables, general symbols, to denote numbers by Francois Viete gave

rise to the view of algebra as a generalisation and extension of arithmetic. In Artem

Analyticam Isagoge published in 1591, he demonstrated the value of symbols by using plus

+ and minus - signs for operations, and letters to represent unknowns. He suggested using

letters as symbols for quantities, both known and unknown. He employed vowels for the

unknowns and consonants for known quantities. Viete's work was a great conceptual

advance in that it brought forth the first systematic algebraic symbolism, which allows one

to distinguish sharply between the important concept ofvariable and the idea of an unknown

quantity.

Indeed, by contrast with the concept of number as a measure of the size of a perceivable

magnitude, the concept of variable, which Greek mathematicians would regard as

unthinkable, is not a measure of a variable magnitude, but a way of expressing a general

relationship between magnitudes. The relation between variables expressed as an equation

is called a function, which is represented by a functional equation of the form

y =f( x ).

The concept of variable opened new avenues for mathematical research, which then grew

in power and variety of application. As Tarski puts it,

the inventionof variables constitutes a turning point in thehistory ofmathematics;with
these symbols man acquired a tool that prepared the way for the tremendous
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development of the mathematical science (Tarski 1942, pp. 13-4).

Such a tremendous development of mathematics was best exemplified by Leibniz and

Newton's work. They both carried out infinitesimal methods, which led to extending the

concept of algebra to deal with the formulation and properties of general axiomatic abstract

systems, including arithmetical algebra, these systems being sets of elements with general

operations and with a number of axioms. Thus, new algebras emerged which could describe

mathematical entities that are not numbers.

2.3.1 The Emergence of Symbolical Algebra in Britain

The progressive detachment of mathematics from the world of our sense experience is

exemplified by the emergence of symbolical algebra in Britain, in the first half of the

nineteenth century. Many British mathematicians discussed the abstract basis of algebraic

calculus. In 1830, Peacock, one of the founder of the Analytical Society", published the

book A Treatise on Algebra; in 1833 he laid down 'the principle of the permanence of

equivalent forms'. In 1840, Gregory, the editor of the Cambridge Mathematical Journal, 12

a personal friend of Boo le, published a paper 'On The Real Nature of Symbolical Algebra';

in 1841 he wrote his book, Examples of The Processes of The Differential and Integral

Calculus, which laid down the fundamental principle of the method of symbolical algebra.

Almost in the same period, de Morgan wrote some essays on 'The Foundations of Algebra',

and in 1849 the 'Trigonometry and Double Algebra'.

These great mathematicians came up with the discovery that the laws which govern

arithmetical algebra specify a certain domain, but algebra can be understood in a more

general sense, so that its calculi may be applied, often by restricting some of its particular

laws, to entities that are not numbers. Thus, they gave rise to a new kind of algebra, named

II The Analytical Society was formed in 1812 in Cambridge by Peacock, Babbage and Herschel who
aimed to promote analytical methods in mathematics as used on the Continent that is, the notation d x /
dt ofLeibniz which is opposed to Newton's fluxion notation. In 1819, the Analytical Society was replaced
by the Cambridge Philosophical Society.

12Thejournal was founded in 1837, at the beginning, most of the contributors were from Cambridge.
I may cite Ellis, de Morgan, Thomson, Cayley, Sylvester and Stokes as the most famous names which were
mentioned in its first series. The release of the journal coincided with the changes in British mathematics
carried out by the innovators of Analytical SOCiety, who needed a journal to publish their research material.
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by Peacock 'Symbolical Algebra', and later known as Abstract Algebra. The most important

principle to emerge was that the laws that govern the combination and manipulation of

mathematical entities are more determinate than the possible interpretations ofthese entities.

Such an algebra of entities, which are not numbers in any ordinary sense, changed

definitively the understanding of the symbolical nature of mathematics.

Since the problem of notation played a central role in the emergence of symbolical algebra,

it seems apposite to point out here the difference between the notations used by Leibniz and

Newton to represent their infinitesimal methods, which led to extending the concept of

algebra. In the book, George Boole: his Life and Work, MacHale describes the difference

of the two approaches as follows:

Newton was at heart an applied mathematician for whom mathematics was a very
powerful tool by means of which he hoped to construct a model of the physical universe
and thereby understand its structure. Itwas inevitable that he should be a geometer and
that his basic approach to mathematics should be intuitive and geometric. Leibniz, on
the other hand, with his strong background in philosophy, was more a pure
mathematician though, of course, the distinction between the disciplines was virtually
non-existent in those days. He viewed the calculus as an exciting development in its
own right rather than as a tool for physics. His approach to the subject was akin to that
of a present-day algebraist and his methods were abstract and analytical (MacHale
1985, p. 44).

Thus, MacHale clearly favours Leibniz' s approach. But what was really fundamental in their

difference is the notation used to express their infinitesimal methods. According to MacHale,

the use of the symbol

dx
dt

indicates that Leibniz envisaged differentiation as a process of an operator applied to the

variable x; it may yield computation when the symbol

d
-=D
dt

is regarded as a mathematical entity in its own right. On the other hand, Newton's 'method

of fluxions', which was more dependent on diagrams and geometric models, demonstrates

that he considered the subject as physical motions of various kinds. His dot notation did not
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specify change in x with respect to time. So Leibniz's notation was more general.

By preferring Leibniz's notation rather than Newton's one, MacHale follows the way

opened by the innovators of Analytical Society, namely, the algebraist George Peacock

(1791-1858), the astronomer John Herschel (1792-1871) and Charles Babbage (179112-

1871). These mathematicians, following the example of Woodhouse", had shown their

devotion to science beyond all chauvinism by adopting Leibniz's notation. Thus, it has been

told that Babbage described the aim of the society as to promote the principles of pure

'd'ism' as opposed to the 'dot-age' of Cambridge, which preferred the dot notation of

Newton. They changed the mainstream of British mathematics through the publication of

their textbooks and the translations of the Continental works. To this end, they were backed

up by the Cambridge Mathematical Journal, which published their research.

Peacock's Treatise of algebra, 'written with the view of conferring upon Algebra the

character of a demonstrative science', was amongst these textbooks. In order to attain this

aim Peacock suggested a review of the relationship between arithmetic and algebra. Instead

of conceiving arithmetic as the foundation of algebra, he viewed it as 'a science of

suggestion, to which the principles and operations of algebra are adapted, but by which they

are neither limited nor determined.' Accordingly, he distinguished 'arithmetical' from

'symbolical' algebra. Arithmetical algebra is concerned with numbers, and the operations

are those of arithmetic. As for symbolical algebra, it is 'a science, which regards the

combinations of signs and symbols only according to determinate laws, which are altogether

independent of the specific values of the symbols themselves.'

Nonetheless, Peacock worked out a way to link the two by the 'principle ofthe permanence

of equivalent forms', which states that:

whatever form is algebraically equivalent to another when expressed in general
symbols, must continue to be equivalent whatever these symbols denote.

Conversely,

13 In 1803, Woodhouse, a Cambridge mathematician, released his Principles of Analytical
Calculation in which he gave an account of the Continental usage of the differential notation, and required
more consideration of the subject. The book happily influenced the founder of the Analytical Society.
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whatever equivalent form is discoverable in arithmetical algebra considered as the
science of suggestion when the symbols are general in their form, though specific in
their value, will continue to be an equivalent form when the symbols are general in their
nature as well as in their form. (Carl Boyer 1989, p. 576)

Arithmetical algebra is indeed also a collection of basic rules which form an axiomatic

structure. Similarly symbolical algebra deals with the formulation and properties of general

axiomatic abstract systems of this form. These systems are sets of elements with general

operations and with a number of axioms.

However, symbolical algebra is based on axioms which differ from those of arithmetical

algebra. Peacock had seen the necessity of turning symbolical algebra into a structure of

postulate sets, which are not the same as those of arithmetical algebra. Thus the procedure

of symbolical algebra does not depend upon the meaning of the symbols, but merely upon

the laws of their combinations.

Following Peacock other British mathematicians went on further to envisage algebra in an

abstract fashion. For instance, in the 'Trigonometry and Double Algebra', de Morgan

claimed that it may be possible to build up an algebraic system with arbitrary symbols and

a set of laws under which these symbols would be handled. As for Gregory he wrote an

essay 'On the Real Nature of Symbolical Algebra' and published the book, Examples of The

Processes of The Differential and Integral Calculus. In the latter, he said:

in this chapter 'On general theorems in the differential calculus' I shall collect those
theorems in the differential calculus which, depending only on the laws of combination
ofthe symbols of differentiation, and not on the functions which are operated by these
symbols, may be proved by the method of separation of symbols: but as the principles
of this methods have not as yet found a place in the elementary works of calculus, I
shall first state briefly the theory on which it is founded.

Then he pointed out the fundamental principle of the method as follows:

the laws with which we have here concern are few in number, and may be stated in the
following manner. Let a, b represent two operations, u, v two subjects on which they
operate, then the laws are:

a b Lu l s=b a I u )
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a(u+v)=a(u)+a(v)

a m. an. u = a m+n . U

... The third law is not so much a law of combination of the operation denoted by a
but rather of the operation performed on a which is indicated by the index affixed to
a .,. these are the laws employed in the demonstration of the principal theorems in
Algebra . . . but they are not confmed to symbols of numbers: they apply also to the
symbol used to denote differentiation (Laita 1977, 34, p.I72).

Thus, Gregory laid down the method which consists of extending the ordinary laws of

arithmetical algebra to symbols standing for mathematical entities that are not numbers. As

a result, the principle of an extension to logical symbols was set in motion. Indeed, in The

Mathematical Analysis of Logic (Boole 1847, pp. 15-18), Boole conceived logic as an

algebra with the same distributive and commutative laws as in symbolical algebra, and the

index law, waiting for interpretation. It follows that the first principles of Boo le's logical

system are derived from Gregory's principle of the method of symbolical algebra, when

interpreted in logic.

Hence, it can be said that the ground for Boole's logical calculus was prepared by the move

of the British mathematicians towards abstractness in algebra, which allowed logic to be

regarded as a domain over which universal mathematical calculus is performed which

embodies not only arithmetical algebra, but also other possible calculi.

2.3.2 Boole's Contributions to Symbolical Algebra

Boole wrote several papers and was one of the first to look into the basic properties of

numbers, such as the commutative, the associative and the distributive properties, which

underlie the discipline of algebra. Thus, he was aware of an abstract structure in algebra

without necessarily any interpretation to numbers or anything else. He published a paper on

'Exposition ofa General Theory of Linear Transformations' (1843) in which he gave rise

to the algebraic theory of invariants. In the book Men of Mathematics (1953, p. 483), Bell

even holds that Boole discovered invariants."

14 Originally, Arthur Cayley, a personal friend of Boo le was considered as the inventor of invariant
theory in his memoir: 'On the Theory of Linear Transformation', which was published in 1845. But, in the
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I shall point out the contributions made by Boole himself to the development of symbolical

algebra, so as to show that the mathematical analysis oflogic is not a happy coincidence, but

a direct result of the mathematical work of Boole's compatriots and his own research. on

mathematics.

Boole's outstanding contributions to the move towards abstractness in algebra can be found

in his early and late works. In the book George Boole: His Life and Work, MacHale

recapitulates Boole's early contributions to mathematics as follows:

Boole contributed some twenty-four mathematical papers to the Cambridge Journal,
twelve to each series. These papers covered a wide range of mathematical topics
including differential equations, integration, logic, probability, geometry and linear
transformations. However, the importance of these contributions lies not so much in
their content, but in the fact that they stressed the importance of the manipulation of
symbolic operators in various areas of mathematics (MacHale 1985, p. 52).

Amidst Boole's early publications, I shall single out two papers, in which he followed the

mainstream of generalisation from symbolization whilst showing his own initiative by

separating the symbols of mathematical operations from the subjects upon which they

perform and to investigate these operations on their own account. Indeed, these papers

deserve consideration here in that they exemplify what MacHale considers as the nodal point

of Boo le's contributions, that is, 'the importance of the manipulation of symbolic operators' .

The first paper is entitled: 'On The integration of Linear Differential Equations with

Constant Coefficients'. It was published in 1841 in the Cambridge Journal. In it, Boole

gave a simplification ofthe so-called 'method of separation of symbols' which Gregory had

applied to the Integration of Linear Differential Equations with constant coefficients. He

exhibited a process which showed that 'the form of the solution depends solely on the

method of decomposing the original operating factor; and this decomposition is effected by

means of processes which are common to the two operations under consideration, being

founded only on the common laws of the combinations of the symbols (Boole 1841c, p.

119). The method according to which, once the symbols and rules are specified, one may

proceed to carry out the results without interpreting every step of the process is apparent

paper, Cayley acknowledged that: 'The following investigations were suggested to me by a very elegant
paper on the same subject, published in the journal by Mr. Boole' (MacHale 1985, p. 56).
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in his logical development of functions. The philosophy which was developed on the basis

of this method was to 'separate' symbols from their senses and to perfonnoperation upon

them according to definite algebraic rules. This idea of formal procedure in mathematics in

which the symbols and rules of operations in a particular discipline are freed from all

meaning guided the setting up of Boole's logical system

The second paper is, 'On a General Method in Analysis': it appeared in Philosophical

Transactions of The Royal Society in 1844. The paper was the most important in all Boole' s

publications. He was awarded a medal by the Royal Society for his contributions to analysis.

In the paper, Boole extended the ordinary laws of analysis to symbols expressing

mathematical entities that are not numbers. He introduced it by appreciating what hadbeen

already achieved in analysis by mathematicians such as Gregory, Servois, R. Murphy, de

Morgan, &c., who paid much attention to 'the calculus of operations' , or the method of 'the

separation of symbols'. Then, he went on to say:

Mr. Gregory lays down the fundamental principle of the method in these words: "There
are number of theorems in ordinary algebra, which, though apparently proved to be true
only for symbols representing numbers, admit of a much more extended application.
Such theorems depend only on the laws of combination to which the symbols are
subject, and are therefore true for all symbols, whatever their nature may be, which are
subject to the same laws of combination." The laws of combination which have hitherto
been recognised are the following, 7r and t; being symbols of operation, u and V

subjects.

1. The commutative law, whose expression is 7r t;u = t; 7r U.

2. The distributive law, 7r (u + v) = n U + n V.

3. The index law, tt"' n" U = n":": U.

Perhaps it might be worth while to consider whether the third law does not rather
express a necessity of notation, arising from the use of general indices, than any
property of the symbol n. The above laws are obviously satisfied when 7r and t;are
symbols of quantity. They are also satisfied when n and t; represent such symbols

d
as - , s, &c., in combination with each other, or with constant quantities

dx
(Boole 1844, p. 225).

However, Boole noted that the above method was of necessity limited in its application to
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only linear equations with constant coefficients. He pointed out that the 'calculus of

operations' tended rather to simplify the processes of analysis than to extend its power.

Hence, in the paper, he set out to 'develop a method in analysis, which, while it operates

with symbols apart from their subjects, and may thus be considered as a branch of the

calculus of operations, is nevertheless free from the restrictions to which we have alluded'

(Boole 1844, p. 226). Thus, Boole virtually launched the possibility ofan extension of the

ordinary laws of analysis to logic. As MacHale sees it,

the importance of Boole's paper of 1844 lies not so much in the results he proved
(though undoubtedly they constituted quite a significant contribution to mathematics)
but rather in the influence it had on his subsequent ideas and development. He was now
on the threshold of his greatest discovery-namely, that the essence of mathematics
consists in the study of form and structure rather than content, and that 'pure
mathematics' is concerned with the laws of combination of 'operator' in their widest
sense. This paper gave Boole's confidence in his own understanding of the true nature
of mathematics an enormous boost and, as time went on, he became firmly convinced
that he had a mission to explain to the world the nature of logic, thought and,
ultimately, the workings of the human mind (MacHale 1985, p. 65-66).

Boole's late contributions to symbolical algebra are displayed in his books, A Treatise on

Differential Equations (1859), andA Treatise on the Calculus a/Finite Differences (1860).

In these books, Boole worked on differential equations, and on the calculus of finite

differences. 15 He developed symbolical processes free from any exclusive interpretation, and

investigated whether these algebraic methods could be applied to the solution of differential

and difference-equations. Boole found that they were.

Thus, in his Treatise on Differential Equations, he gave an account of the state of

knowledge on the subject of differential equations in the second half of the nineteenth

century, and thereby reiterated the leadership of British mathematicians in algorithm

analysis. The fundamental principle of the differential calculus is in fact an extension of

15 As Boole put it, 'the Calculus of Finite Differences may be strictly defined as the science which
is occupied about the ratios of the simultaneous increments of quantities mutually dependent. The
Differential Calculus is occupied about the limits to which such ratios approach as the increments are
indefinitely diminished (Boole 1860a, p. I). Thus, a difference equation is an equation involving the
differences between successive values of a function of an integer variable. It can be regarded as the discrete
version of a differential equation, which is an equation involving the first or higher derivatives of the
function to be solved for. If the equation only involves first derivatives it is called an equation of order one,
and so on. Equations of degree one are called linear. Equations in only one variable are called ordinary
differential equations to distinguish them from partial differential equations, which are equations involving
derivatives with respect to more than one variable.
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arithmetical algebra which depends upon the introduction of a new idea-the idea of limit,

which Boole defined as 'a fixed value toward which some varying value may be made to

approach as nearly as we please, but which it cannot be made to reach' (Boole 1849, p. 40).

According to him, given the expressions of two quantities one of which X increases

uniformly and the other increases with it but not necessary in a uniform manner, the

differential calculus solves the general problem of expressing the limit of the ratio by

working out its exact value.

Boole showed that there exist large and very important classes of differential equations the

solution of which depends on some process of successive reduction. He stressed that the

reduction could be effected with greatest generality by symbolical methods. Hence in

Chapter XVI. he attempted 'to found the methods of solution of differential equations upon

the study of the modes of their formation' (Boole 1859, p. viii). He introduced the algorithm

of differential operators in order to solve linear differential equations. Boyer gives a simple

example to illustrate Boole's symbolical method: for working out the differential equation

ay //+ by /+ C Y = 0,

the equation is written in the notation

(a D 2 + b D + c) y = o.

Then, regarding D as an unknown quantity rather than an operator, we solve the algebraic

quadratic equation

aD 2 + b D + c = o.

If the roots of the algebraic equation are p and q, then e P x and e q x are solutions of the

differential equation and

AePx+Beqx

is a general solution of the differential equation (Boyer 1989, p. 635). Boyer then notices
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that 'there are many situations in which Boole, in his Treatise on Differential Equations,

pointed out parallels between the properties of the differential operator (and its inverse) and

the rules of algebra (Boyer 1989, pp.635-6). As Boole saw it, 'in thus expressing an

operation by a symbol, in studying the laws of that symbol, and in founding processes and

methods upon these laws, we introduce no strange or novel principle of Language; for it is

the very office of Language to express by symbols the procedure of Thought' (Boole 1859,

p. 381). Further, he said that

in any system inwhichthought is expressedby symbols, the laws of combinationof the
symbols are determinedfrom the study of the correspondingoperations in thought. But
it may be that the latter are subject to conditions ofpossibility as well as to laws when
possible. And thus it may be that two systems of symbols, differing in interpretation,
may agree as their formal laws whenever they both express operations possible in
thought, while at the same time there may exist combinations which really represent
thought in the one but not in the other.(Boole 1859, p. 398).

Thus, Boole drew as a conclusion the general principle that,

the mere processes of symbolical reasoning are independent of the conditions of their
interpretation (Boole 1859, p. 399).

He noticed that, whether it be taken as belonging to the realm of a priori truth, or as a

generalisation from experience, it would be an error to consider the principle as a

mathematical principle. He claimed its place among 'the general relations of Thought and

Language' (Boole 1859, p. 399).

Regarding the solution of difference equations, Boole followed the same procedure in his

Treatise on the Calculus of Finite Differences. In chapter XIII of this book, he wrote,

the symbolicalmethods for the solutionof differential equationswhether in fmiteterms
or in series are equally applicable to the solution of difference-equations.Both classes
of equations admit of the same symbolical forms, the elementary symbols combining
according to the same ultimate laws. And thus the only remaining difference is one of
interpretation, and of processes foundedupon interpretation (Boole 1860a, p. 236).

Thus, in his Treatise on the Calculus of Finite Differences, which was a text-book in

Cambridge until the 1920s, Boole stressed the connections between difference equations and

differential equations, and pointed out the power of abstract operator methods when applied
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to a new area of mathematics. Of particular interest for MacHale is the chapter on linear

difference equations with variable coefficients, where Boole developed symbolical processes

for their solution whilst using the method of'the separation of symboIs'. Then, he concludes

that 'once again, Boole anticipated the trends and need of the twentieth century, because

modem computers and calculating machines are based on the discrete difference equation

rather than the continuous differential equation (MacHale 1985, p. 220).

It follows that the main philosophical outcome of Boo le's contributions to the move towards

abstractness is the productive insight that an algebraic method proceeding by purely

symbolical forms can be applied to different areas of mathematics and even to logic, and

then can be conceived as an abstract calculus capable of various interpretations. This

calculus treats of the combinations of arbitrary symbols upon which operations are

performed by means of arbitrary laws, and its validity does not depend upon the

interpretation of the symbols. As we would now put it, it is a method of'disinterpretation'.

Now how did Boole carry out the extension of symbolical methods to logic and achieve

what MacHale perceives as a 'mission to explain to the world the nature oflogic, thought

and, ultimately, the workings of the human mind'?
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3. Boole's Computational Procedure in Logic

Logic is an old subject, and since 1847 it has been a hard one.

George Boolos

Introduction

Early in the Spring of 1847, the controversy between de Morgan and Hamilton, prompted

Boole to conceive logic as a deep system of relations based upon facts that are not

quantitative. In the preface of the Mathematical Analysis of Logic, Boole says:

in presenting this Work to public notice, I deem it not irrelevant to observe that
speculations similar to those which it records have, at different periods, occupiedmy
thoughts. In the Spring of the present year, my attention was directed to the question
then movedbetween Sir W. Hamiltonand Professor deMorgan; and I was inducedby
the interestwhich it inspired,to resumethe almost-forgottenthread offormer inquiries.
It appeared to me that, although Logicmight be viewedwith reference to the idea of
quantity, it had also another and deeper system of relations. If it was lawful to regard
it fromwithout, as connectingitselfthrough the mediumofNumber with the intuitions
of Space and Time, it was lawful also to regard it from within, as based upon facts of
another orderwhichhave their abode in the constitutionof theMind (Boole 1847,p.l).

The outcome of such a view of logic, and of the investigations which it suggested, is

displayed in Boole's pamphlet, which presents a logic based on mathematics. Thus, Boole

sided with de Morgan in the controversy between Hamilton and de Morgan, concerning the..
origin of the theory of quantification of the predicate. For de Morgan did not confine the

idea, as Hamilton did, to quantifying the predicate and the subject, but rather went further

to carry out a more mathematical theory oflogic. Hence, Boole, as a mathematician, found

himself in favour of de Morgan's promising approach. So, whilst thinking to publish The

Mathematical Analysis of Logic, he wrote to de Morgan, who was at the same time

finishing his Formal Logic. Then, so as to avoid being charged again with plagiarism, de

Morgan suggested to Boole that they should both publish their work without checking over

their results. It has been said that the two books appeared in the bookshop on the very same

day.
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Although Boole's work on mathematical logic was inspired by the controversy between

Hamilton and de Morgan, there is no doubt that the new interest of British mathematicians

in symbolic manipulation, which opened new ways in symbolic algebra, was a more

significant influence upon him. As has been said, his compatriots, such as Gregory, prepared

the way for Boole to come up with symbolical methods in analysis, which operate with

symbols apart from their meanings and may thus be regarded as a branch of the 'method of

separation of symbols'. The method consists of working out differential equations by use

of the operator D, and Boole extended its laws to symbols expressing mathematical entities

that are not numerical. As a result, he built up an algebra oflogic by means ofwhat he called

the 'process of analysis', that is, the process by which combinations of interpretable symbols

are carried out according to well-determined rules of combination. In a postscript to 'On a

General Method in Analysis', Boole showed clearly that he was aware of the existence of

a universal calculus of symbols, which may be interpreted in different calculi:

Fearful of extending this paper beyond its due limits, I have abstained from introducing
any researches not essential to the development of that general method in analysis which
it was proposed to exhibit. It may however be remarked that the principles on which the
method is founded have a much wider range. They may be applied to the solution of
functional equations, to the theory of expansions, and, to a certain extend, to the
integration of non-linear differential equations. The position which I am most anxious
to establish is that any great advance in the higher analysis must be sought for in an
increased attention to the laws of the combination of symbols. The value of this
principle can scarcely be overrated: And I can only regret that in the absence of books,
and circumstances unfavourable for mathematical investigation, I have not been able
to do that justice to it in this essay which its importance demands (Boole 1844, p. 282).

Boole made here with anxiety the suggestion that it is possible to carry out a new calculus

from his general method in analysis. He knew that a way was opened now for

mathematicians who ought to be aware of its scope. Certainly, he was anxious because he

understood how promising were the newly opened avenues. However, regrettably, he did

not have the material essential to their exploration. At this time, Boole was on the verge of

'discovering' his algebra oflogic.

Later, the logical calculus, which he drew from the general method of analysis, is presented

in the introduction of The Mathematical Analysis of Logic as follows:

they who are acquainted with the present state of the theory of Symbolical Algebra, are
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aware that the validity of the processes of analysis does not depend upon the
interpretation of the symbols which are employed,but solely upon the laws of their
combination ... It is upon the foundation of this general principle, that I purpose
to establish the calculus of Logic, and that I claim for it a place among the
acknowledged forms of Mathematical Analysis, regardless that in its objects and
in its instruments it must at present stand alone (Boole 1847, pp. 3-4).

Accordingly, since the abstract grounds of symbolical algebra had been laid down by British

mathematicians including Boole himself, it was possible to regard algebra as a general

methodology of calculus of symbols which could be interpreted in logic. Hence Boole

claimed that the ultimate forms and processes of logic, as a science, are mathematical.

Consequently, he made an epistemological shift, in that logic henceforth has nothing to do

with philosophy. As he put it,

we ought no longer to associate Logic andMetaphysics, but Logic andMathematics...
Logicrests likeGeometryupon axiomatic truths, and its theorems are constructedupon
that general doctrine of symbols, which constitutes the foundation of the recognised
Analysis (Boole 1847, p. 13).

It should be mentioned that, in the seventeenth century, Leibniz had already hinted at the

idea of introducing mathematics in logic. He even believed that 'if anyone wants to write

like a mathematician in metaphysics or moral philosophy there is nothing to prevent him

from rigorously doing ... ' (Leibniz 1996, p. 261). For, according to him, there is a formal

analogy between the disjunction and conjunction of concepts on the one hand and addition

and multiplication of numbers on the other. Thus, primitives concepts can be expressed by

prime numbers and complex concepts by non-prime numbers., The rules which govern the

combination of concepts state that a term composed of simple terms can be expressed by

the product of the prime numbers which represent its simple terms. For example, in the

proposition 'man is a rational animal' , if 'man' is represented by 'm', 'animal' by 'a', and

'rational' by 'r', then the proposition is formulated as follows:

m=ar.

If 'a' and Or' represent numbers, for example a = 2, r = 3, then m = 6, and the above

formula has as a numerical expression:
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6=2X3.

This led Leibniz to envision a logical algebra which he called Calculus ratiocinator (see

subsection 5.2.2}. However, he did not formulate the analogy between combination of

concepts and multiplication of numbers precisely, and then use it as the basis of a calculus

oflo gic.

But, what was only a suggestion by Leibniz became a reality to Boole, who embodied, in

The Mathematical Analysis of Logic (1847) and in The Laws of Thought (1854), a system

oflogic based on the model of algebra. In this chapter, I shall expound and discuss Boole's

important research programme whilst describing his computational procedure, and showing

how logic can be cast in the form of a computation.

3.1 Boole's Algebraic Notation

Boole models his logical calculus closely upon arithmetical algebra, from which it differs

only by the 'index law'

:x! = x,

which is particular to the type of algebra he is presenting. Thus, Boole employs as a notation

the symbols of arithmetic, and sets up a way of expressing logical relations by means of

equations. His logical calculus is based upon the relation of extension and directs attention-to the symbols of the expressions rather than to their contents. The symbols represent

classes, including the 'universe of discourse' and the empty class which are expressed by 1

and 0 respectively.

Boole relies upon a method that depends upon three fundamental ideas: the conception of

the symbols, the laws oflogic formulated as rules for operations upon these symbols, and

the consideration that these rules of operation are analogous to those of an algebra of the

numbers 0 and 1.He claims:

all operations of language, as an instrument of reasoning, may be conducted by a
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system of signs composed of the following elements, 1st • Literal symbols, as x, y,
etc..., representing things as subjects of our conceptions.2nd

• Signs of operations, as
+, -, x, standing for those operations of mind by which the conceptions of things are
combined or resolved so as to form new conceptions involvingthe same elements.
3rd

• The sign of identity,= (Boole 1854, p. 27).

3.1.1 The System of Signs

Boole represents the elements oflanguage as elements of an instrument of deduction by a

system of signs. In it, the symbols 'x', 'y', etc., replace names, proper names or common

names, adjectives and descriptive expressions. The signs for operations like '+', '-', 'x' ,

are the logical operations by which we assemble parts into a whole or separate a whole into

its parts. They allow us to form new concepts from given concepts.

The sign '+' is used for the union of two classes (though only of classes that are disjoint).

For example, if'x' refers to the set ofwomen and 'y' to the set of men, then 'x +y'express

the set of women and men; and 'x + y = z' is true ifand only if all people Cz ) are (either)

women ( x ) or men ( y ). The inverse operation of subtraction gives 'x = z - y', 'women

are all people except men'. This is possible only if we assume that there is nothing in

common between 'x'and 'y'. Thus, 'x +y' is interpreted as, either 'x' or 'y'; not both. Let

us consider the example: 'all members of Graduate Seminar are either Masters or

Bachelors', which is expressed by the equation 'z = x +y', where 'x' represents 'Masters',

'y' 'Bachelors', and 'z' 'members of Graduate Seminar'. Then, it is not logically possible

to say: 'x = z - y' that is, 'Masters are all members of Graduate Seminar except

Bachelors'. For, there is something in common between 'x' and 'y', since 'Masters' are also

'Bachelors'. Hence Boole adopts an exclusive interpretation of 'or' expressed by '+'

precisely in order to obtain a duality between addition and subtraction. However, the result

of the exclusive interpretation of the symbol '+' is to bar from Boole's logical calculus the

equation 'x + x = x', a special law ofan algebra oflogic, which Jevons introduces.

As in arithmetical algebra, successive operation is performed by multiplication to denote the

intersection ofthe classes 'x' and 'y'. For example, if we suppose 'x' represents 'all animals

with horns'; 'y' represents 'sheep', then the logical product 'x y' represent 'sheep with
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horns'.

The sign of identity '=' indicates that the two classes between which it stands are the Same

and thus have the same members.

3.1.2 The Laws of Boole's Algebra of Logic

The symbols of Boole's logic are, in their use, dependent upon definite laws, 'partly

agreeing with and partly differing from the laws of the corresponding symbols in the science

of Algebra'(Boole 1854, p. 27). Thus, regarding the operation of logical addition, Boole

states that it is commutative:

x +y =y +x.

The logical multiplication is distributive over it:

z ( x + y ) = z x + z y.

For example, 'European men and women' is the same as 'European men and European

women'. He also implicitly implies its associativity:

x + ( y + z ) = ( x + y ) + z.

•
From the logical subtraction 'x - y' (e.g. 'men excepting Asiatics'), Boole infers: '- y + x'

(e.g. excepting Asiatics, men) i.e.

x - y = - y + x.

As in arithmetical algebra, he also obtains:

z(x-y)=zx-zy.

An example ofthis would be:'z'represents the adjective 'white' applied to the phrase 'men
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except Asiatics', which is the same as to say, 'white men, except white Asiatics'.

As for logical product, since the order of the operation of selection does not affect the

result, then the commutative law holds:

xy =yx.

Also, the associative law holds:

(xy)z=x(yz).

The operation of selection from classes also leads him to a law that holds in arithmetic only

for 0 and 1, that is, 'the index law':

The neutral element law:

Ox=O;

1 x =x,

leads him to hold that in logic 'O'stands for 'Nothing' and '1' signifies 'Universe' or what

de Morgan calls the 'universe of discourse'. The universal class' 1 'enables him to write:
•

'1 - x' for the 'contrary' of the class denoted by 'x'. For example, if'x' refers to the class

of living beings, then the expression' 1 - x' represents the universe except the 'x's' or all

things which are not 'x's', that is, the class ofinanimate beings, the complement of'x'. Thus,

he can express the principle of non-contradiction as follows:

x (1 -x ) = O.

This principle, which Aristotle described as the fundamental axiom of all philosophy, can be

drawn also from the fundamental law of thought:
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X 2 = X .: X - X 2 = 0 .: xl - X 2 = 0

.: X ( 1-x ) = 0.16

The empty class '0' implicitly commits him to holding the law

x + 0 =x.

It allows him, as well, to give an equational form to logical deductions, and to make possible

its algebraic treatment. '1' and '0' may be called neutral element which are the two limits

of class extension.

Boole observes that if there is the equation: 'x = y', then whatever class 'z' may represent,

there is also 'z x = z y', which is formally the same as the algebraic law: 'If both members

of an equation are multiplied by the same quantity, the products are equal?". Though he

does not explicitly state them, the following transposition laws hold as well:

If x = y , then x + z = Y + z:
Ifx =y, then x - z =y - z:
Ifx=y, then z z e z y.

Let us sum up now the laws of Boole's algebra that are explicitly or implicitly assumed:

..
x+y=y+x x-y=-y+x xy=yx

16Boole assigns the principle of non -contradiction to the place of just another axiom, and regards it
as algebraically equivalent to the principle of idempotence (viz. the result of an act of selection, which is
repeated several times, is simply equivalent to the act of the first operation) . Thus, 'what has been
commonly regarded as the fundamental axiom of metaphysics is but the consequence of a law of thought,
mathematical in its form' (Boole 1854, p. 50).

17 Boole goes on to note that there is a case in which the analogy with algebra does not hold: 'Suppose
it true that those members of a class x which possess a certain property z are identical with those members
of a class y which possess the same property z, it does not follow that the members of the class x
universally are identical with the members of the class y. Hence it cannot be inferred from the equation z
x = z y, that the equation x = y is also true'. (Boole 1854, p. 36) So, the law of algebra, that sides of an
equation may be divided by the same quantity has no formal equivalent here.
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x+(y+z)=(x+Y)+z (xy)z=x(yz)

z(x+Y)=zx+zy z(x-y)=zx-zy

x(1-x)=O

x+O=x 1x=x

If x =y, then z x = z y ; Ifx = y, then x + z = y + z ; If x = y, then x - z = y - Z •

As a result, it is possible now that logic may be considered as a particular kind of algebra

in which the quantitative symbols have only the values 0 and 1. Hence Boole concludes:

let us conceive, then, of an Algebra in which the symbols x, y, Z, etc., admit
indifferentlyof the values 0 and 1, and these values alone. The laws, the axioms, and
the processes, of suchAlgebra will be identical in their wholeextent with the laws, the
axioms, and the processes of an Algebra of Logic. Difference of interpretation will
alonedivide them Upon this principle the method of the followingwork is established
(Boole 1854, pp. 37-38).

As an illustration of the general principle of this algebra of logic, Boole refers to the

definition of wealth due to the economist N. W. Senior: 'wealth consists of things

transferable, limited in supply, and either productive of pleasure or preventive of pain'. With

'w' standing for wealth, 't' things transferable, 's' limited in supply, 'p' productive of

pleasure, 'r' preventive of pain, Boole, after omitting the conjunction 'and' regarded as

superfluous, obtains the equations:

w=st{pr+p(1-r)+r(1-p)}
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and,

ur e e t l p t l=r t+r t l+p l }

according to whether the 'or' in 'either productive of pleasure or preventive of pain' is

interpreted inclusively or exclusively (Boole 1854, pp. 59-60).

After having set up the system of signs of the algebra and formulated the laws, Boole

proceeds to state the rules of the operation of this kind of algebra that holds solely for the

numbers 1 and 0, and then to build up his logical calculus.

3.2 Boole's Procedures of Computation

Boole's general method may be described as follows: he formulates a logical problem by

means of an equation inwhich symbols have a logical sense; he operates upon the symbols

without taking into account their meaning, giving them only an algebraic sense; then

eventually he restores their logical sense by the procedure of interpretation. The

development and elimination procedures enter into play in the intermediary step between the

formulation of the logical problem and the interpretation of its solution. These formal

processes of computation are viewed as 'sufficient for all the practical ends oflogic'(Boole

1854, p 130). They indeed lay the groundwork for Boole's general method in logic.

3.2.1 Development of Logical Function ..

Without giving any special definition of a logical function, Boole says only that in

expressions, such as

f( x ), f( x, s )....

the symbol x, y, ...may be regarded as logical symbols, admitting only the values 0 and 1.

Then he carries out the mechanical procedure of development that allows him to compute

logical problems.
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Boole defines the procedure of development as follows:

any function f (x ), in which x is a logical symbol, or a symbol of quantity susceptible
only of the values 0 and 1 is said to be developed, when it is reduced to the form a
x + b ( 1 - x ), a and b being so determined as to make the result equivalent to the
function from which it was derived (Boole 1854, p.72).

Thus, the definition concerns any function, logical or not; it suffices only that the variable

x is restricted to the values 1 and O. As a result, the general formula for development ofa

logical function can be formulated: Let us suppose

f (x ) = a x + b ( 1 - x ).

In order to determine the values of a and b, we need only to substitute for x the values 1

and O. Then, we obtain:

f ! 1) = a 1 + b ( 1 - 1) = a

f (0) = a 0 + b ( 1 - 0) = b.

Ifwe substitute in the function, f (1) for a and f (0) for b, then we can infer that

f(x)=f(l)x+f(O)(l-x)

This formula is the development of the function f (x ) with respect to x.

Boole goes on to develop a function involving any number of logical symbols. He first

begins with a function that involves two symbols, x and y: f (x, y ). Considering this first

as a function of x alone, and developing it by the general theorem:

f (x) = f ( 1) x + f (0) ( 1 - x ),

he can write:
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f (x, y) = f (1,y) x + f (0, y) ( 1 - x ).

Then, regarding the result as a function of'y' Boole can write:

f (x, y) = f (1,1) x y + f (1,0) x ( 1 -y) + f (0, 1) ( 1 -x ) y + f (0, 0) ( 1 -

x)(1-y),

which is the complete expansion of f (x, s ). Thus, functions involving any number of

logical symbols may be developed in a similar way.

Boole states the general rule of development as follows:

1st. To expand any function of the symbols x, y, z - Form a series of constituents in
the following manner: Let the first constituent be the product of the symbols; change
in this product any symbol z into 1-z for the second constituent. Then in both these
change any other symbol y into 1-y for two more constituents. Then in the four
constituents thus obtained change any other symbol x into 1 - x for four new
constituents, and so on until the number of possible changes is exhausted.
2ndly. To find the coefficient of any constituent.- If that constituent involves x as
factor, change in the original function x into 1;but if it involves 1-x as a factor,
change in the original function x into O. Apply the same rule with reference to the
symboly, zetc.: the fmal calculated value of the function thus transformed will be the
coefficient sought ( Boole 1854, pp. 75-76 ).

Accordingly, the general rule of development consists of two parts: the first introduces the

constituents of the expansion; the second determines their respective coefficients. Thus, a

function with three arguments has 2 3 = 8 terms. These terms are formed by a coefficient

equal to 0 or 1 and a product of the symbols, that is, the constituent. The sum of the

constituents, multiplied each by its respective coefficient, is the development required. For

example, we have respectively the following constituents and coefficients for a function

involving three logical symbols:

xyz

xy(l-z)
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x(1-y)z

x(1-y)(1-z)

(1-x)yz

(1-x)y(1-z)

(1-x)(1-y)z

(1-x)(1-y)(1-z)

1, 1, 1

1, 1, °
1, 0, 1

1,0, °
0, 1, 1

0, 1, °
0, 0, 1

0, 0, O.

,
Hence the required development of the function:

f (x, y, z ) = f (1, 1, 1,) x y z + f (1, 1, 0) x y ( 1 - z )

+ f (1, 0, 1) x ( 1 -y) z + f (1, 0, 0) x ( 1 -y) ( 1 - z )

+ f (0, 1, 1) ( 1 - x ) y z + f (0, 1, 0) ( 1 - x ) y ( 1 - z )

+ f (0, 0, 1) ( 1 - x ) ( 1 -y ) z + f (0, 0,°)(1 - x ) ( 1 -y ) ( 1 - z )

Boole's procedure of development corresponds to what we now call 'disjunctive normal

form'. A formula of the propositional calculus is said to be in disjunctive normal form if it

contains disjunction and negation as propositional connectives, applies only to propositional

variables, and does not conjoin any disjunctions. Now, it turns out that in the section

'Properties of Elective Functions' of The Mathematical Analysis of Logic, Boole notes that

any formula l/J (x) of propositional logic containing the propositional variable x is equal

to the formula

l/J(1)x+ l/J(0)(1- x).
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Here J and 0 are constants of propositional logic for truth and falsity. The quantities

f/J (0), f/J (J) are called the moduli of the function f/J (x). Replacing Boole's exclusive

disjunction with the inclusive U , the formula can be written in modem notation as,

(rp(J)n x)u (rp(O)n IX),

in which the disjunctions are incompatible. It follows that Boole was aware that every

formula of propositional logic is equal to a disjunctive normal form. As Boolos notices it,

what Boole realized was that iterating this operation shows that an arbitrary
propositional formula

is equivalent to the disjunction of the 2m formulas

where each i, is either J or 0 and ± x). is X. or I X . according as X. is J or 0 .
) )))

Boole termed the equivalence the law of development, and called (his analogues of) the
constant formulae ffJa.....,im) the moduli of ffJ ( X I' ... ,Xm) . Since each modulus

is equal to J or 0 (and it can be easily calculated which), every propositional formula

is, as Boole saw, equivalent to the disjunction of those formulae

for which the moduli ffJo.....,im) do not vanish ( are not = 0)
(Boolos 1998, p. 244).

Thus, in the historical notes of the propositional calculus, Church recognises that 'the full

disjunctive normal form may be traced back to Boole's law of development' (Church 1956,

pp. 165-66).

The disjunctive normal form has been used for the purpose offormalizing deductive logic.
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For instance, inPrinciples of Mathematical Logic, Hilbert and Ackermann have shown that

the decision problem" for the propositional calculus can be worked out by using Boole's

development of the disjunctive normal form of the propositional variables. According to

them, 'the disjunctive normal form has the advantage of special clarity. The individual

components of the disjunctive indicate the various possible cases in which the given

sentential combination holds true. Thus, for example, the disjunctive normal form which

belongs to X == Y reads ( X & Y) u (X & Y), and this enables us to recognize that X

and Y must either both be true or both be false in order for X == Y to be true' (Hilbert and

Ackermann 1928, p. 18).

Boole comes up with the procedure of development whilst seeking a 'general method'.

Although, he does not state precisely what he means by 'general method', he stresses the

difference between the algebraic notation, which constitutes his basic logic, and the general

method of development. This difference lies in the fact that the basic logic is restricted to

operating with meaningful logical operations, whereas the general method of development

applies pure formal procedures in logic. Boole wants to employ non-logical algebraic

procedures in logic, so as to reinforce logical deduction. Thus, the method of development

is a procedure by which, once the symbols and rules are defined, it is possible to compute,

and to obtain results, without interpreting every step of the processing. It exemplifies

Boole's computational procedure in logic.

There are some general principles relating to the use of the method, which describe the

conditions for a valid reasoning by the means of symbols. Boole states them as follows:

IS\ That a fixed interpretation be assigned to the symbols employed in the expression
of the data; and that the laws of the combination of those symbols be correctly
determined from that interpretation.
2nd, That the formal processes of solution or demonstration be conducted throughout
in obedience to all the laws determined above, without regard to the question of the
interpretability of the particular results obtained.
3rd,That the final result be interpretable in form, and that it be actually interpreted in

18 Wilder defines a decision procedure as follows: 'given a collection C, offonnulas in a theory T,
a decision problem for C in T is the problem of finding a method-an effective procedure-by which, given
any formula, we can decide in a finite number of steps whether it is in C. If such a method exists, it may
be called a decision method or decision procedure for C, (Wilder 1965, p. 275).
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accordance with that system of interpretation which has been employed in the
expression of the data (Boole 1854, p. 68).

3.2.2 The Logical Interpretation

Boole is aware that what is of interest for a logician employing the formal procedure of the

method of development is the finding of logical interpretation for the result of the

processing. In this sense, he writes:

the constituents of the expansion of any function of the logical symbols x, y, &c., are
interpretable, and represent the several exclusive divisions of the universe of discourse,
formed by the predication and denial in every possible way of the qualities denoted by
the symbols x, y, &c. (Boole 1854, p 81).

Thus, if the function f (x, y ) is considered with constituents,

x y; x ( 1-y); ( 1-x ) y; ( 1-x ) ( 1-y),

then 'xy' will refer to the class that has both the qualities expressed by 'x' and )1'; 'x ( 1 -

y)' the class having the quality 'x', but not the quality 'y'; '( 1 - x ) y' the class with the

quality 'y', but not the quality 'x'; and '( 1 - x ) ( 1 - y )' the class that does not have any of

the qualities considered. These four classes described by affirmation and negation of the

qualities x andy are distinct from each other, but form together the universe of discourse.

In order to determine the interpretation of any logical equation of the form 'V = 0', Boole

states this rule:

Develop the function V, and equate to 0 every constituent whose coefficient does not
vanish. The interpretation of these results collectively will constitute the interpretation
.of the given equation (Boole 1854, p 83).

Regarding the coefficients, he gives the following canons of interpretation:

1si The symboll , as the coefficient of a term in a development, indicates that the whole
of the class which that constituent represents, is to be taken.
2nd The coefficient 0 indicates that none of the class are to be taken.
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o
3rdThe symbol - indicates that a perfectly indefinite portion of the class, i.e. some,o
none, or all of its members are to be taken.
4th Any other symbol as a coefficient indicates that the constituent to which it is
prefixed must be equated to 0 (Boole 1854, p. 92).

But, in addition Boole states that

if the solution of a problem, obtained by development, be of the form

o 1
w= A+OB+-C+-Do 0'

that solution may be resolved into the two following equations, viz.,

w= A+ vC

D= 0,

v being an indefinite class symbol (Boole 1854, p. 92).

The interpretation of the first equation shows what elements are or may be a part of the

composition of w, the class of things whose definition is sought; and the interpretation of

the second equation shows what relations exist among the elements ofthe original problem,

independently of w. Boole justifies the second equation by premising as a theorem that

if a function V, intended to represent any class or collection of objects, w, be expanded,
and ifthe numerical coefficient, a, of any constituent in its development, do not satisfy
the law.

a (1 -a) = 0,

then the constituent in question must be made equal to 0 (Boole 1854, p. 90).

After having given the proof of the theorem (Boole 1854, pp. 90-1), Boole then shows

generally that

any constituent whose coefficient is not subject to the same fundamental law as the
symbols themselves must be separately equated to 0 (Boole 1854, p. 91).

1
According to him, the usual form under which such coefficients occur is ' 0 " which does
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not satisfy the fundamental law above referred to.

As an example for the interpretation oflogical equations, let us take the definition of 'Clean

beasts' as laid down in the Jewish law, viz., 'clean beasts are those which both divide the

hoof and chew the cud'. The proposition is represented by the equation

x=yz,

where x stands for the clean beasts, y beasts dividing the hoof and z beasts chewing the

cud. In order to determine the relation, in which 'beasts chewing the cud' stands to 'clean

beasts' and 'beasts dividing the hoof, we divide by y:

x
z= -.

y

But being a division this equation is not in a logically interpretable form, and thus its right

hand side,

x
y

requires to be developed according to the formula for expansion of logical functions into

constituents that is,

x- = f (x, y ) = f (1, 1) x y + f (1,0) x ( 1 -y )
y

+ f (0, 1) ( 1 - x ) y + f (0, 0) ( 1 -x ) ( 1 -y )

Thus, we have the following coefficients:
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1 ° °f(1,1)= 1;f(1,0)= o;f(O,1)= j;f(O,O)= 0·

Hence,

100
z= xy+ Ox(1- Y)+j(1- x)Y+(j(1- x)(1- y).

The expression may be written as,

° 1z= xY+ 0(1- x)y+ 0(1- x)(1- y)+ Ox(1- y),

which is of the form

Hence, according to Boole's canons of interpretation stated above, the developed

expression may be rewritten into the two following equations:

z=xy+v(l-x)(l-y)

x(l-y)=O

Boole interprets the first equation as saying:

Beasts which chew the cud consist of all clean beasts ( which also divide the hoof) [
x y ], together with an indefinite remainder (some, none, or all) [indicated by v ] of
unclean beasts which do not divide the hoof [ v ( 1 - x ) ( 1 - y ) ] (Boole 1854, p.
87).

The second equation may be interpreted as: 'There are no clean beasts which do not divide

the hoof [x ( 1 - y ) = 0 ] .This is an independent relation which conveys a meaningful

piece of information. It is a bonus that the procedure of development brings out.

This shows the fecundity and the ingenuity of Boole's procedure of computation, which
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yields a logically interpretable solution. The procedure seems to survive in modem abstract

algebra, which embodies an infinity of systems, only some of which are logically

interpretable.

3.2.3 Elimination of Logical Symbols

As the middle term is eliminated in a syllogism in order to unfold the conclusion which was

implicit in the premises, Boole uses the procedure of elimination to get rid oflogical symbols

which are not expected to appear in the conclusion. He does so by means of the algebraic

notation, and this in a more general and systematic way than the traditional argument. Thus,

Boole claims that the object of the method is to eliminate any number of symbols from any

number of logical equations, and to present in the result the relations which remain. By

contrast with arithmetical algebra, in which we are able to eliminate one symbol from two

equations, two symbols from three equations, and generally n - 1 symbols from n equations,

Boole points out that in a logical system from a single equation an indefinite number of such

symbols may be eliminated independently of the number of equations. He states the theorem

of the method of elimination as follows:

If f (x ) = 0 be any logical equation involving the class symbol x, with or without
other class symbols, then will the equation f ( 1 ) f (0) = 0 be true, independently
of the interpretation of x from the above equation. In other words the elimination of x
from any given equation, f (x ) = 0 ,will be effected by successively changing in that
equation x into 1, and x into 0, and multiplying the two resulting equations together.
Similarly the complete result of the elimination of any class symbols, x, y &c., from
any equation of the form V = 0 , will be obtained by completely expanding the first
member of that equation in constituents of the given symbols, and multiplying together
all the coefficients of those constituents, and equating the product to 0 (Boole 1854, p.
101).

Boole proves this theorem in three different ways. Let us consider only the first proof, which

is entirely algebraic. He develops the equation f (x ) = 0 to have

f (1) x + f (0 ) (1-x ) = 0,

which can be rewritten in the form
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{f (1 ) - f (0 ) } x + f (0 ) = o.

From this we can infer that

x= f(O)- f(1)
frO)

which gives

1- x= 1- f(O)- f(1)
frO)

f(O)- f(1) frO)
1- x= f(O)- f(1) - f(O)- f(1)

1- x= - f(O)- f(1)
f(1)

Now, according to the fundamental law of his algebra

x(l-x)=O

we can substitute these expressions for x and 1 - x

frO) f(1)
(f(O)- f(1)J{- f(O)- f(1)J= 0

and then obtain as a result
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- (f(O)- f(1)}2 = 0;
f (O)f (I)

a
since where b = 0, a = b x 0 = 0, hence

f (0) f (1) = 0,

the equation sought.

The proof leads to the rule of elimination of any symbol from a proposed equation:

the terms of the equationhavingbeenbrought, by transposition if necessary, to the first
side, give to the symbol successively the values 1and 0, and multiply the resulting
equations together (Boole 1854, p. 103).

As an example of the procedure of elimination, let us resume N.W. Senior's definition of

wealth: 'wealth consists of things transferable, limited in supply, and either productive of

pleasure or preventive of pain'. With w standing for wealth, t things transferable, s limited

in supply, p productive of pleasure, rpreventive of pain, Boole, after assuming the inclusive

interpretation of the 'or' in 'either productive of pleasure or preventive of pain' , obtains this

equation:

w=st{pr+p(l-r)+r(l-p)}

or

w = s t {p + r (1-p ) l,

Then, Boole notes that from this equation we can eliminate any unwanted symbols and

express the result by the procedure of development and interpretation. Let us see what the

expression for w, wealth, would be if the element r, standing for preventive ofpain, were
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eliminated. By bringing the terms of the equation to the first side, we have

w - s t (p + r - r p) = o.

Considering r = 1, the left hand side of the equation yields 'w - s t', and considering r =
o it yields 't» - s t p'. Then applying the rule of elimination, that is, f (1) f (0) = 0 we

get

( w - s t) (w - s t P ) = 0,

or

w - w s t p - w s t + s t p = 0,

which can be rewritten as,

w ( 1-s t p - s t ) + s t p = 0,

or

w ( 1-s t p - s t ) = - s t p.

It is then easy to infer that

stpw- .
- st + stp - 1'

and according to the formula for expansion oflogical functions into constituents, that is,

f (s, t,p) = f (1, 1, 1) s t P + f (1, 1, 0) s t ( 1 -p )

+ f (1, 0, 1) s ( 1 - t ) p + f (1, 0, 0) s ( 1 - t ) ( 1 -p)

+ f (0, 1, 1) ( 1 - s ) t P + f (0, 1, 0) ( 1 - s )t ( 1 -p)

+ f (0, 0, 1) ( 1 - s ) ( 1 - t ) p + f( 0, 0, 0) (1 - s ) ( 1 - t ) ( 1 -p )
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we develop the right hand side of the equation, that is, ' stp " because it is a
st+stp-1 ..

division which is not logically interpretable. Thus, we have the following coefficients:

o 0 0 0
/(1,1,1)= 1;/(1,1,0)= 0;/(1,0,1)= -];/(1,0,0)= -];/(0,1,1)= -];

000
/(0,1,0)= -];/(0,0,1)= -];/(0,0,0)= ":

Hence,

000 0
w= 1stp+-st(1- p)- -s(1- t)p- -s(l- t)(l- p)- -(1- s)tpo 1 1 1

000
-](1- s)t(l- p)-](1- s)(l- t)p-](l- s)(l- t)(1- p).

o
According to the 4thRule of interpretation the terms whose coefficients are -] must vanish,

therefore we obtain

o
w= stp+ ost(1- p),

which is interpreted as,

wealth consists of all things limited in supply, transferable, and productive of pleasure,
and an indefinite remainder of things limited in supply, transferable, and not productive
of pleasure (Boole 1854, p. 107).
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From all this, it can be said that the Boole's mechanical procedures of computation operate

upon the basis that logical derivations can be carried out by means of symbols satisfying the

laws of an algebra for 1 and O. He handles logical derivations almost exclusively according

to algebraic laws, regardless the direct logical interpretation of the symbols. That is why

Boole is often criticised for introducing uninterpretable symbols such as subtraction and

division into his computational procedure (see subsection 3.6.1). However, it should be

stressed that it is quite important, in the nineteenth century, that Boole was already aware

that symbols may be employed, without being 'locked in' to a determinate meaning.

Nowadays, such an idea corresponds to the method of'disinterpretation' - i.e. a procedure

which is formulated purely in terms of syntactical manipulation.

3.3 Boole's 'Primary Propositions'

In what follows, I shall first be concerned with the general method for the expression of

'primary propositions'. Then I shall show how the principles and the processing of his

computational procedure can be applied to them. In doing so, I shall describe Boole's

procedure of computation called the method of reduction, which allows one to reduce any

systems of propositions to an equivalent single one, to which the procedures of computation

described above may be immediately applied.

3.3.1 The Expression of Primary Propositions

A primary proposition consists oftwo terms, namely the subject and the predicate between

which a relation is asserted. Boole shows how the relations between these terms are to be

expressed symbolically. Thus, if both subject and predicate of a proposition are universal,

e.g. as where'All fixed stars are suns' is interpreted, so as to imply 'All suns are fixed stars',

then its expression will be

x=y

Here, x represents 'fixed stars' and y 'suns' and the formula expresses a relation of identity

between two classes, 'Fixed stars' and 'Suns'. It follows as a rule that 'when both subject

.and predicate of a proposition are universal, form the separate expressions for them, and
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connect them by the sign =' (Boole 1854, p. 59).

Let us take the case in which the predicate is particular, that is, an affirmative universal

proposition, e.g. 'All men are mortal. ' The proposition means that' All men are some mortal

beings' and the expression of the predicate 'some mortal beings' is required. Since in his

notation there is no place for individual variables or quantifiers to bind them (i.e. universal

and existential operators), Boole expresses the proposition by introducing a special symbol

'v' to express 'some' as it occurs in 'some mortal beings'. So 'v x' represents

a class indefinite in every respect but this, viz., that some of its members are mortal
beings, and let x stand for 'mortal beings,' then will v x represent 'some mortal
beings.' Hence ify represents men, the equation sought will be y = v x
(Boole 1854, p. 61).

It follows that the expression of the proposition 'All men are some mortal beings' is

y = vx.

Thus, Boole derives a rule for expressing an affirmative universal proposition whose

predicate is particular: 'express as before the subject and the predicate, attach to the latter

the indefinite symbol 'o', and equate the expressions'(Boole 1854, p. 61). Later, I will

discuss the inconsistent treatment which Boole gives to the symbol 'v' and the problems and

misunderstandings it causes (see subsection 3.6.2).

Considering the case of universal negative propositions, e.g. 'No men are perfect beings',

Boole notes that

we do not speak of a class termed 'no men' , and assert of this class that all its members
are 'perfect beings'. But we virtually make an assertion about 'all men' to the effect
that they are 'not perfect beings' (Boole 1854, p. 62).

Thus, the true meaning of the proposition is : 'All men are not perfect.' With y representing

'men', and x 'perfect beings,' we have

y=v(l-x).
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Hence the rule: 'to express any proposition ofthe form ''No x's are y's," convert it into the

form "All x's are not y's.", and then proceed as in the previous case'(Boole 1854, p. 63).

Finally come the cases in which the subject ofthe proposition is particular, e.g. 'Some men

are wise' and 'Some men are not wise'. In the latter case, Boole remarks that the negative

'not' may be referred to the predicate 'wise', 'for we do not mean to say that it is not true

that "Some men are wise," but we intend to predicate of "some men" a want of wisdom. '

Thus, the form of the proposition is 'Some men are not-wise.' With y representing 'men',

x 'wise', and introducing' v as the symbol of a class indefinite in all respect but this, that

it contains some individuals ofthe class to whose expression it is prefixed' (Boole 1854, p.

63), we have

vy=v(l-x).

The particular affirmative 'Some men are wise' is expressed as,

v x = v y.

As a result, Boole embodies all these cases in the general rule for the symbolical expression

of primary propositions:

1st • If the proposition is affirmative, form the expression of the subject and that of
predicate. Should either of them be particular, attach to it the indefinite symbol v, and
then equate the resulting expressions.
2ndly. If the proposition is negative, express first its true meaning by attaching the
negative particle to the predicate, then proceed as above (Boole 1854, p. 63).

It is then easy to infer the symbolical expression of the four fundamental types of reasoning

as follows: (Boole 1854, p. 228)

A. All Y's are X's y = vx

E. No Y's are X's y=v(l-x)
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I. Some ¥'s areX's vy = vx

O. Some ¥'s are not-X's vy=v(l-x)

There is what Boole calls 'the modem extension of Aristotelian logic' due to the

introduction by de Morgan of contrary terms, which has led to the enlargement of the four

traditional forms to eight. Accordingly, Boole expresses the four remaining forms by

substituting 1 -y for y in the above A, E, I, 0 forms.

3.3.2 Reduction of Systems of Propositions

Since the procedure of elimination is applicable only to logical equations taken individually,

Boole introduces another formal device, which may be applied to systems of propositions.

The method is a technique of reducing a system of propositions to an equivalent single

proposition, which may then be interpreted as it has been described above. Boole carries out

a first method called, the 'method of indeterminate multipliers'", by which each equation

after the first is multiplied by an arbitrary constant and the equations then added. But these

indeterminate multipliers have the inconvenience of complicating the procedure of

elimination and development. Hence, Boole adopts a second method, which does not require

the introduction of arbitrary constants, and thereby is preferable. The rule of this method is

stated as follows:

1st. that any equations which are of the form V = 0, V satisfying the fundamental law
of duality V ( 1 - V ) = 0, may be combined together by simple addition.
2nd • that any other equation of the form V = 0 may be reduced, by the process of
squaring, to a form in which the same principle of combination by mere addition is
applicable (Boole 1854, p. 123).

Subsequently, Boole determines what equations in the expression of propositions conform

to the first, and what to the second group. This leads him to consider what he calls 'the

great leading types of propositions symbolically expressed'(Boole 1854, p.64). So an

example ofan equation of the first group is

19 This method is presented in the last pages of The Mathematical Analysis of Logic, pp. 78-81.
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X=vY.

It satisfies the law of duality and is the symbolical expression of propositions of which the

subject is universal and the predicate particular. Boole writes it in the equivalent form

X(l-Y)=O

by eliminating the symbol 'v'. This is done by writing the equation 'X = v Y' in 'zero form',

that is, 'X - v Y = 0'.Thus, in making v = 0, we have X = 0; and v = 1,X - Y =O. Then,

according to the rule of elimination, that is, f (1) f (0) = 0,we equate their product to

o and obtain 'X (X - Y) = 0', or 'X ( 1 - Y) = 0'.

An example of an equation of the second group is

X=Y.

It expresses propositions ofwhich both terms are universal. It is written in 'zero form', that

IS,

X - y= O.

Then, Boole squares both sides of the equation to obtain

X -2XY + Y= 0,

or

X ( 1 - Y) + Y ( 1 -X) = 0,

which satisfies the law of duality and can be logically interpreted.

Considering again the equation

X=Y,
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Boole remarks that we may arrive at the same equation in a different manner. Thus, the

equality 'X = Y' is equivalent to the two equations

X=vY;

Y=vx,

'for to affirm that X's are identical with Y's is to affirm both that All X's are Y's and that

All Y's are X's.' Now eliminating v, these equations give

X (1 - Y) = 0;

Y(1 -X ) = 0,

of which the sum is equivalent to the preceding equation that is,

X (1 - Y) +Y (1 -X) = o.

Finally, Boole considers a proposition of which both terms are particular, which is an

example of an equation of the second group. The form of the equation is

vX= v Y.

By transposing the second member to the first side, and squaring the resulting equation

according to the rule, we have the equation

v X ( 1- Y) + v Y( 1-X) = o.

Boole embodies the above considerations in a rule:

the equations being so expressed as that the terms X and Y in the following typical
forms obey the law of duality, change the equations

X = v Y into X ( 1 - Y) = 0

X = Y into X ( 1 - Y) + Y ( 1 - X) = 0
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v X = v Y into v X (1 -Y) + v Y (1 -X) = 0

Any equationwhich is given in the form X = 0 will not need transformation, and any
equation which presents itself in the fonnX = 1 may be replaced by 1 - X = 0, as
appears from the second ofthe above transformations (Boole 1854, p. 124).

3.4 Systematisation and Generalisation of Aristotelian Logic

Boole's computational procedure provides a general and systematic method which enables

him to perform the operations of Conversion and Syllogism, and thereby to cast Aristotelian

logic in the form of a computation. He describes his aim as follows:

the course which I design to pursue is to show how these processes of Syllogismand
Conversionmay be conducted in the most general manner upon the principles of the
present treatise, and, viewingthemthus inrelationto a systemofLogic, the foundations
of which, it is conceived, have been laid in the ultimate laws of thought, to seek to
determinetheir true place and essential character (Boole 1854, p. 228).

In traditional theory, Syllogism appears as various processes without a veritable corpus, for

the procedures are handled case by case without a systematic unity. The different types of

Conversion use different forms of processing strictly distinguishable from those of

Syllogism. The disparate technique ofthe art of the mnemonic verses particularly convinces

Boole that the scholastic logic

is not a science,but a collectionof scientifictruths, too incompleteto form a systemof
themselves, and not sufficiently fundamentalto serve as the foundationupon which a
perfect systemmay rest (Boole 1854, p. 241).

Thus, in order to lay down the foundation of a better system he aims to show how readily

the rules of the logical operation of Conversion and Syllogism can be followed when

performed with algebraic symbolism.

However, it should be mentioned that Boole's criticism of the traditional theory does not

apply to the Aristotelian system itself. Moreover, modem axiomatisations of Aristotelian

logic make a distinction between Aristotelian system and the traditional theory. For instance,
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Lukasiewicz sets up Aristotelian theory of the syllogism as an axiomatic deductive system

in which the reduction of the other syllogistic moods to those of the first figure is a part of

the system. As well, in Lear's eyes, Aristotle had a unified and coherent notion of logical

consequence; and he even attempts to demonstrate the completeness and compactness of

Aristotle's logical programme (Lear 1980, pp. 15-33).

Nonetheless Boole provides a valuable alternative approach to Aristotelian logic, which

constitutes an advance in the history oflogic.

3.4.1 Doole's Laws of Conversion

From the symbolical expressions of the four fundamental propositions given above, Boole

draws his laws of Conversion. Conversion consists, sometimes, in a simple transposition of

the terms of a proposition, without altering their quality, as when we change Some Y's are
X's into Some X's are Y's, that is,

v y = v x into v x = v y .

Let us consider the universal affirmative all Y's are X's which is represented by the

equation,

y = vx.

Here the symbol v must be eliminated, according to the rule of elimination which consists

of bringing the terms of the equation to the first side, giving to the unwanted symbol

successively the values 1and 0, and multiplying the resulting equations together. Thus,
"

from the given equation we have

y - v x = 0,

then making v = °gives y = 0 ; and making v = 1gives y - x = O. By multiplying the

resulting equations we obtain
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y ( y - x ) = 0 => y - y x = 0,

i.e.,

y ( 1-x ) = 0,

which gives by solution with reference to 1 - x,

o
I-x =-.

y

o
Since the right hand side of this equation' -' is a division and is not logically interpretable,

y

it must be developed according to the formula for expansion of logical functions into

constituents, that is

f( y) = f( 1)y + f( 0) ( 1-y).

o 0
Thus, we have the following coefficients f (1) = 1"f (0 ) = 0' which enable one to form

the constituents of the equation and to obtain its development:

o 0
1- x = - y + -( 1- y ) .

1 0

o
According to the Rule of interpretation, the term whose coefficient is - must vanish; and

1

o
the symbol 0 may be replaced by the symbol v. Hence we have:

1-x = v ( 1-y);

which is interpreted as: All not-Xis are not- Y's. This is an example of 'negative conversion'.
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Boole takes it that these examples demonstrate that Conversion is a particular application

of a much more general procedure in logic. In Boole's eyes, such a procedure

has for its object the determination of any element in any proposition, however
complex, as a logical function of the remaining elements. Instead of confming our
attention to the subject and predicate, regarded as simple terms, we can take any
elementor any combinationof elementsenteringinto either of them;make that element
or that combination, the 'subject' of a new proposition; and determine what its
predicate shall be, in accordance with the data afforded to us (Boole 1854, p. 230).

Furthermore, Boole remarks that even the simple forms of the propositions enumerated

above afford some ground for the application of such a method, beyond what the traditional

laws of conversion offer. Thus, the universal affirmative proposition, all Y's are X's, which

is represented by the equation,

y = vx,

yields the following:

y(l-x)=O

which is the first proposition obtained by eliminating the symbol v according to the rule of

elimination. Boole interprets it as follows:

There are no Y's that are not-X's (Boole 1854, p. 230).

From the above equation we can infer that

o
y=-

1- x'

which gives by solution with reference to 1 -y,
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o
1-y=1---

1- x

1- x 0
1- y= -----

1-x 1-x

hence

1- x
1- y= --.

1- x

1- x
This equation, as it stands, cannot be interpreted, so its right hand side ' -1- ,must be

-x

developed according to the formula for expansion oflogical functions into constituents, that

is,

f Cx ) = f (1)x + f (0) ( 1-x ).

Thus, we have the following coefficients:

o
f(1)= O;f(O)= 1,

which then enable us to form the second proposition:

o
1- y= Ox+ (1- x),

which Boole interprets as
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Things that are not-Y's include all things that are not-X's, and an indefinite remainder
of things that areX's (Boole 1854, p. 230).

In the same way, from the first equation

y (1 -x ) = 0,

we can infer that

y - y x = 0,

hence,

y
X=-.

Y

This equation also is not in an interpretable form and thus the right hand side ' Y , requires
Y

to be developed according to the formula for expansion of logical functions into

constituents, that is,

f (y) = f (1)y + f (0) ( 1-y),

which gives as coefficients:

o
/(1)= 1;/(0}= O'

Therefore, we obtain the third proposition:

o
X = Y + 0 (1- y),

which Boole interprets as
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Things that areX's includeall things that areY's, and an indefmiteremainder of things
that are not- Y's (Boole 1854, p. 230).

What Boole shows is that we can model the procedure of Conversion within his algebra of

logic so that to render it more general and systematic.

3.4.2 Doole's Solution of Syllogism

The mood bArbArA readily shows the nature of syllogism. Let us consider the propositions,

AllX's are Y's

All Y's are Z's.

From these premises we may draw the conclusion,

All X's are Z's.

We have here what is called a syllogistic inference. The terms X' and 'Z' are the extremes,

and 'Y' is the middle term, Boole defines generally the function ofthe syllogism as follows:

given two propositions (... ), and involvingonemiddleterm or commontermY,which
is connected in one of the propositions with an extremeX, in the other with an extreme
Z; required the relation connecting the extremesX and Z (Boole 1854, p. 231).

Hence, in his eyes, it is easy to use a computational procedure to give a more general

conclusion of Syllogism. Thus, he worked out syllogisms by the means of the processes of

elimination and reduction of systems of propositions.

Let us take the above syllogism bArbArA as an example. The premises are expressed in the

symbolic language as follows,

x = vy,

y = vz;

83



by substitution we have,

x = v v z.

Boole's treatment of'v' is such that v v z = v Z, hence

X=VZ

which means

AlIX's areZ's.

We could have used the method of reduction and elimination as well. Thus, when the symbol

v is eliminated in both equations, we obtain

x ( 1-y) = 0;

y (1-z ) = o.

Then adding these equations, and eliminating y, in accordance with the rules of reduction

and elimination, we have

x (1-z ) = o.
From this equation we can infer

o
X=--.

1- z

The right hand side of this equation is uninterpretable as it stands, and so must be developed

according to the formula for expansion oflogical functions that is,

f Cz ) = f (1) z + f (0) ( 1-z ),
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which gives the following coefficients:

o 0
/(1)= O;/(O}=],

Hence we have

o
x= =:zo '

which is interpreted into

All X's are Z's.

Next we consider as an example cElArEnt which belongs to the mood E A E in the first

figure. The premises,

No Y's are X's

All Z's are Y's

are expressed as follows,

y=v(l-x)

z = vy.

When the symbol v is eliminated in both equations we have

xy=O

z (1 -y) = o.

In accordance with the procedure of reduction and elimination, we add these equations, and

eliminate the unwanted symboly to have
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zx = 0,

from which we can infer

o
z=-.

x

o
This equation being uninterpretable, we must develop its right hand side' - , according to

x

the formula for expansion oflogical functions that is,

f (x) = f (1) x + f (0) ( 1-x ),

which gives as coefficients

o 0
f (1) = 1'·f (0) = o

Therefore, we have

o
z=(j(1-x),

which is interpreted into

No Z's are X's.

The same computational procedure may be used to work out any sort of syllogism

whatsoever.

It is worth emphasising the advantages of the implementation of Boole's computational

procedure as compared with the Aristotelian syllogism. First, it allows us to deal with

propositions involving several terms, whereas Aristotelian logic deals only with propositions

with two terms. Secondly, it enables us to analyse all possible combinations, and thus to

draw many legitimate conclusions. In order to illustrate this point, let us take the syllogism

cElArEnt, as an example. From the premises,
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No ¥'s are X's

All Z's are ¥'s,

Aristotelian logic draws only one conclusion:

No Z's are X's .

It is beyond question that this conclusion is entailed by the premises. However, there are

others which are also satisfactory but concealed by the Aristotelian inference. Now, since

the given syllogism embodies three terms, I shall not present separately the two premises;

instead Ishall consider the eight possible combinations of the three terms by using Boole's

procedure of development of logical functions into constituents. Thus, the constituents

which are inconsistent with one or the other of the premises [y x = 0; z ( 1 -y) = 0 ] are:

xyz

x y t I= z )

xz(1-y)

z ( 1-x ) ( 1-y ).

Here the first premise y x = 0 tells us that the constituents 'x y z' and 'x y ( 1 - z )' are

empty; therefore they are false and must be eliminated. Similarly, the second premise 'z (

1 - y ) = 0' eliminates the constituents 'x z ( 1 - y )' and 'z ( 1 - x ) ( 1 - y )'. The

remaining constituents are consistent with one or the other of the premises and therefore

true:

x(1-y)(1-z)=1

yz(1-x)=1

y(1-x)(1-z)=1

(1 -x ) ( 1 -y) ( 1 -z ) = 1.

Regarding the constituents which are inconsistent with the premises, if we add the first and
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the third one, that is,

x y z + x z ( 1 -y) = 0,

then we obtain the traditional conclusion of the syllogism cElArEnt,

zx=O

or,

No Z's are X's .

But there remains a certain number of other allowed combinations, which are as many

legitimate conclusions of the premises. For instance, the second equation of the constituents,

which are inconsistent with the premises, that is,

xy(l-z)=O

tells us that X's that are Y's, but not Z's do not exist; and the first equation of the

constituents which are consistent with the premises, that is,

x(l-y)(l-z)=l,

says that there are X's that are neither Y's nor Z's.

Here the fruitfulness of Boo le's computational procedure is again exlubited. The procedure

is not bound up with the traditional syllogistic conclusions in that it brings out all the

possible inferences from the premises. It has the advantage of special clarity, for it indicates

the various possible conclusions which are entailed by the premises.

There is an interesting connection between the decision procedure and the way in which the

above procedure is handled. As Tarski puts it, a decision procedure is like 'a recipe, which

tells one what to do at each step so that no intelligence is required to follow it; and the
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method can be applied by anyone so long as he is able to read and follow directions'"

(Wilder 1965, p. 275). For instance, regarding the propositional calculus, the procedure of

building up a truth-table is a decision procedure for validity in that one can apply it to any

formula, to determine whether it is valid, and it always gives the answer in a finite number

of steps. Likewise, a syllogism has been worked out above by using Boole's formula for

expanding logical functions, in which the symbols [ 0,1] are intended to indicate the falsity

or truth of the constituents. One can test a syllogism by enumerating all possible

combinations ofterms, and then eliminating those that are not consistent with the premises.

Thus, Boole's procedure of development virtually allows the use of 'matrix analysis?', a

sort of truth-table method for working out logical problems, and that is exactly what one

does when one considers the case of a propositional function being false or being true.

Hence, although its first explicit application to truth-value propositions came later, the truth-

table method was already implicit in Boole's procedure of development (see also below

subsection 3.5.1).

Although the above procedure was not used by Boole himself to work out syllogisms, it is

implied in his method of expansion. Moreover, it afforded ground for a further development.

Thus Jevons devised a method which consists ofbuilding up a table that exhausts all possible

combinations of given syllogistic premises, which he called the 'logical alphabet'. Then each

premise forced him to eliminate certain lines of this 'truth table'. Finally he analysed the

remaining lines that are all consistent with the premises to find out the relation connecting

the two extremes. He called this procedure 'combinatorial logic' .

Venn also made use of the same method, which he described as follows: 'we take the given

premises, break them up into fragments, and then put these fragments, or a part of them,

2o-rhus, it should be even possible to build up a machine that would help to perform the operation,
and it has been done by Boole's followers such as, Jevons and Venn.

21Jevons has been often viewed as the first who makes use of matrix analysis in carrying out his
method called 'combinatorial logic'. But, as Venn highlights, in 1811 Semler already insisted on the
procedure of enumerating all possible combinations of terms, then eliminating those that are not consistent
with the premises, which is almost identical with Jevons's method (Venn 1894, p. 415). Furthermore, as
Gardner puts it, 'ifby"matrix method" we mean nothing more than recognition of the alternate possible
combinations of truth values for a given binary function, then this recognition goes all the way back to the
ancient Stoic-Megaric school. A truth table for material implication, for example, is given by Sextus
Empiricus to define the meaning of a conditional statement as it was understood by Philo of Megara'
(Gardner 1982, p. 103).
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to gether in some other arrangement in order to build up the structure required' (Venn 1894,

p. 401). Thus, on behalf of Boole he claimed to have substituted a system ofpolytomy in

the place of the old dichotomy (see subsection 4.1.2).

This interesting development towards the use of the truth-table method leads us to the

implementation of Boole's computational procedure in the expression of propositional

calculus.

3.5 Boole's 'Secondary Propositions'

Secondary propositions are those which 'concern or relate to other propositions considered

as true or false'. They express judgments concerning the truth or falsehood of other

propositions: the conditional 'If the sun shines the day will be fair' is interpreted as

expressing a judgment, which concerns a relation of dependence between the proposition,

'the day will be fair,' and the proposition, 'the sun shines', to the effect that the truth of the

former depends on the truth of the latter. Boole also considers as secondary propositions

'all those propositions which assert truth or falsehood of propositions'. In effect therefore

Boole's treatment of secondary propositions amounts to a calculus of propositions.

Boole's analysis of secondary propositions occurs in the chapter on Hypotheticals of The

Mathematical Analysis of Logic, and in the chapters XI, XII of The Laws of Thought. He

carries out two different approaches. In the first publication the resulting calculus of

propositions is based upon the idea of 'cases' or 'circumstances'. But in The Laws of

Thought he retreats from the idea of a 'universe of cases' to that of 'times for which a

proposition is true. ' I shall discuss these two developments of propositional calculus whilst

emphasising the calculus of hypotheticals as it stands in The Mathematical Analysis of

Logic. For the earlier approach to propositional logic would make him the founding father

of modem logic.

3.5.1 Calculus of Hypothetical Propositions and 'Cases'

In the Mathematical Analysis of Logic, Boole interprets the symbol '1' in secondary

propositions as the universe of 'cases' or 'conjunctures of circumstances'.
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Boole writes,

to the symbolsX, Y,Z, representativeof propositions, wemay appropriate the elective
symbolsx, y, z, inthe followingsense.The hypotheticalUniverse,1, shall comprehend
all conceivable cases and conjunctures and circumstances. The elective symbol x
attached to any subject expressive of such cases shall select those cases inwhich the
Proposition X is true, and similarly for Y and Z. If we confme ourselves to the
contemplationof a givenPropositionX, and hold inabeyance any other consideration,
then two cases only are conceivable, viz. first that the given Proposition is true, and
secondly that it is false. As these two cases together make up the Universe of the
Proposition, and as the former is determined by the elective symbol x, the latter is
determinedby the symbol1 - x (Boole 1847, p. 49).

Thus, when 'X', 'Y', 'Z', etc ... represent propositions, the hypothetical universe '1'

'comprehends all conceivable cases and conjuncture of circumstances'. The elective symbols

'x', )1', 'z', etc. corresponding to the propositions 'X', 'Y', 'Z', etc. select, from any subject

'expressive of such cases,' those cases in which the respective propositions are true. Thus,

ifthe Propositions 'X' and 'Y' are combined, then the total number of conceivable cases are

shown in the following scheme.

Combinations of Propositions Combinations of Circumstances

1sI X true, Y true x y

2nd X true, Y false x ( 1 - y )

3rd X false, Y true .( 1 - x ) Y

4th X false, Yfalse ( 1 - x ) (1 - y)

In a similar way if three propositions are considered, then there are eight cases in the

Universe. In general, for n propositional variables, the hypothetical Universe is defined

relative to these propositional variables to be the class consisting of 2 n cases.

In the above scheme if we consider the sum of the two first cases,

xy+x(1-y)

then we have

x,
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the elective symbol for the general case of X being true independently of Y; and the sum

of the two last cases

(1-x)y+(1-x)(1-y)

yields

1-x,

the elective symbol for the general case ofXbeing false. The sum of the elective expressions

representing any number of cases will be 1.

Boole expresses the truth of a proposition X, by saying that the elective symbol 1 - x

selects those cases in which the proposition X is false. But, if the proposition is true, there

are no such cases in its hypothetical Universe, therefore

Similarly the expression of a false proposition is

x e I).

He says that, '. . . in every case, having determined the elective expression appropriate to

a given Proposition, we assert the truth of that proposition by equating the elective

expression to unity, and its falsity by equating the same expression to 0' (Boole 1847, p.

51). The following rule is stated:

consider what are those distinct and mutually exclusive cases of which it is implied in
the statement of a givenProposition, that someone of them is true, and equate the sum
of their elective expressions to unity. This will give the equation of the given
Proposition (Boole 1847, p. 52).

As an example to illustrate the rule, I shall consider the two propositions, X and Y, that are
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simultaneously true. Boole employs the multiplication sign, which affirms the first case, and

denies the other three. Therefore the only case to be considered is

1st X true, Y true x y .

According to the rule, the equation sought is

xy = 1.

When we develop the first member of the equation according to Boole's procedure of

development oflogical functions into constituents, that is,

f (x, y ) = f (1, 1) x Y + f (1, 0) x ( 1 -y ) + f (0, 1) ( 1 - x ) Y + f (0, 0) ( 1 -

x) ( 1-Y),

then we have the following coefficients:

f (1, 1) = 1;f (1,0) = 0; f (0, 1) = 0; f (0, 0) = O.

Hence we obtain this expression

(1) 1 x y + 0 x ( 1 -y) + 0 ( 1 - x ) y + 0 ( 1 - x ) ( 1 -v ).

As a second example, when we consider the disjunctive proposition, ie,. 'Either X is true,

or Y is true,' and assume its members to be exclusive, then the addition sign denies the first

case and the last. Therefore the cases to be considered are

2nd X true, Y false x ( 1-y )

3rd X false, Y true ( 1-x ) y .

The sum of these elective expressions equated to unity yields

93



x-2xy+y=1.

In expanding the function, as it has been done above, then we have this expression

(2) 0 x Y + 1x ( 1-y) + 1y ( 1-x ) + 0 ( 1-x ) ( 1-y).

As a third example, let us consider the proposition, Either X is true or Y is true, and assume

that the two members of the proposition are not exclusive. The addition sign denies the last

case. Hence the cases to be considered are

1st X true, Y true x y

2nd X true, Y false x ( 1 - y )

3rd X false, Y true .( 1 - x ) y.

The sum of these elective expressions equated to unity gives this function

x+y-xy=l

of which the expansion yields the following expression

(3).1 x y + 1x ( 1-y) + 1(1-x ) y + 0 ( 1-x ) ( 1-y).

Lastly we consider the expression of the conditional proposition, ifX is true, then Yts true,

here it is implied that all the cases ofX being true, are cases ofYbeing true. It is expressed

by

x (1-y) = o.

Hence the second case is denied, and thus the cases to be considered are

1st X true, Y true x y

3rd X false, Y true ( 1-x ) y
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4th X false, Y false ( 1 - x ) ( 1 - y ).

The sum of these elective expressions equated to unity gives

xy-x+1=1.

When we develop the function we have

(4).1 x y + 0 x ( 1-y) + 1(1-x ) y + 1(1-x ) ( 1-y).

As a result, it appears that Boole has the idea of all possible distribution of truth-values. As

he puts it,

it is evident that if the number of elective symbols ism, the number of the moduli will
be 2 m , and that their separate values will be obtained by interchanging in every
possible way the values 1 and 0 in the places of the elective symbols of the given
function (Boole 1847, p. 63).

Accordingly, Boole's procedure of development may be construed as the truth-table

representation of a logical function, inasmuch as it pictures both those constituents

corresponding to truth-possibilities, which the formula matches, as well as those which it

does not. In this sense, we may extend the notion of 'truth-table' to correspond to

expression such as,

(1) 1x y + 0 x ( 1-y) + 0 ( 1-x ) y + 0 ( 1-x ) ( 1-y) ,

which is obtained by giving the values 1 and 0 to the arguments of the function x y, and

thus to have as values 1, 0, 0, 0 for the constituents. We may lay aside here the meaning

of these values, which is not to be taken into account in the procedure of computation. In

the language ofmathematics this table is a function from the set { 1, O} into the set { 1, 0,

0, OJ. Thus the conjunction of the two propositions X and Y yields the following truth-

table:
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x y XY

1 1 1
1 0 0
o 1 0

o 0 0

The propositional interpretation ofthis truth-table would be the truth-functional account of

the word 'and' which is true if and only ifboth X and Y are true.

Likewise, the constituents ofthe expression (2) have as values 0, 1, 1, 0,when we give the

values 1 and °to the arguments of the function

x-2xy+y.

Hence we have the truth-table:

X
1
1

o
o

Y X+Y
1 0
o 1

1 1

o 0

The logical interpretation of this truth-table would be the truth-functional account of the

words 'either ... or' interpreted as an exclusive disjunctive proposition, which is true if

and only if X is true and Y false or Y is true and X is false.

The constituents of the expression (3) have as values 1, 1, 1, 0, when we give the values

1 and ° to the arguments of the function

x + y - xy.
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Then we have the following truth-table:

x Y X+Y
1 1 1

1 0 1
o 1 1
o 0 0

The propositional sense of the truth-table would be the truth-functional account of the

words 'either ... or' interpreted as an inclusive disjunctive proposition, which is false ifand

only ifboth X and Yare false.

Finally, the constituents of the expression (4) have as values 1, 0, 1, 1, when we give the

values 1 and 0 to the arguments of the function

x y=x +L,

Hence we have this truth-table:

x Y X_, Y
1 1 1
1 0 0
0 1 1
0 0 1

which corresponds to the truth-functional account of the conditional proposition 'if ...

then', which is false if and only if X is true and Y is false. It is worth noting that this

treatment of the conditional as true where the antecedent is false is congenial to the
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'Boolean' treatment of universal propositions as lacking existential import.

Boole's anticipation of modem logic has been stressed by Kneale, who says that the chief

novelty in Boole' s system is his theory of truth- functions and their expression in disjunctive

form (Kneale 1962, p. 420). He shows that Boole has all that is needed for an interpretation

, of his system in terms of the truth-values of propositions, and therefore he should not have

dropped the promising suggestion laid down in The Mathematical Analysis of Logic (Kneale

1962, pp. 413-14).

Moreover, according to Kneale, it has been proved by P. Henle (see Lewis and Langford,

Symbolic Logic p. 501) that the most economical system of modal logic is equivalent to

Boole-Schroder algebra (not the two-valued algebra) when the elements of the algebra are

taken to be propositions and the modal sign o is introduced by the rules:

oP = 1 if and only ifP ~0,

o P = 0 if and only ifP = O.

Then Kneale claims that ' this system, with its strong reduction principle, is the working out

of what Boole had in mind when he suggested in his Mathematical Analysis of Logic that

the sign 1 might be taken to represent the sum of all possibilities, which he called the

Universe of the Proposition' (Kneale 1962, p. 552).

Hailperin too holds that 'Boole need not have given up this approach which he had adopted

in Mathematical Analysis of Logic, for when suitable clarifications and corrections are

made, still remaining within the ambit of his ideas, a viable logic of propositions does result

(Hailperin 1984, p. 40). He builds up, in accordance with modem standards of rigour, a

formal system for Boole's calculus of elective symbols.

Furthermore, whilst sharpening the point that Boole made great accomplishments in logic

before Frege carried out his Begrijfsschrijt, Boolos corroborates as well the above

interpretation of Boo le' s propositional calculus. He points out indeed that in the next-to-last

section of The Mathematical Analysis of Logic, called 'Properties of Elective Functions,'

Boole clearly had the idea of all possible distributions of truth-values. Thus, in his eyes, one
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main feature of the method of truth-tables, usually credited to Post and Wittgenstein, was

on prominent display in Boole's early monograph (Boolos 1998, pp. 244-45).

It is said that a few years after he wrote it, Boole described the booklet as 'a hasty and

regretted publication'. But Kneale reveals that 'towards the end of his life Boole said that

he was dissatisfied with the exposition and arrangement of his Laws of Thought, and that

he wished he had spent twice as long in working out the ideas first presented in his

Mathematical Analysis of Logic' (Kneale 1947, p. 173).

3.5.2 Propositional Calculus and 'Time'

In The Laws of Thought, Boole adopts the notion of 'time for which a proposition is true,'

and then bases the propositional calculus upon his calculus of classes. He suggests

establishing a system of notation for the expression of secondary propositions, in which the

symbols are exposed to the same laws of combination as the corresponding symbols

employed in the expression of primary propositions. He writes:

let us employ the capital letters X, Y, Z, to denote the elementary propositions
concerning which we desire to make some assertion touching their truth or falsehood,
or among which we seek to express some relations in the form of a secondary
proposition. And let us employ the corresponding small letters x, y, z, considered as
expressive of mental operations, in the following sense, viz. : let x represent an act of
the mind by which we fix our regard upon that portion of time for which the proposition
X is true; and let this meaning be understood when it is asserted that x denotes the time
for which the proposition X is true. Let us further employ the connecting +, -, =, &c.,
in the following sense, viz. : Let x + y denote the aggregate of those portions of time
for which the propositions X and Yare respectively true, those times being entirely
separated from each other. Similarly let x - y denote that remainder of time which is
left when we take away from the portion of time for which X is true, that by
(supposition) included portion for which Y is true. Also, let x =y denote that the time
for which the proposition X is true, is identical with the time for which the proposition
Y is true. We shall term X the representative symbol of the proposition X, &c. (Boole
1854, pp. 164-65).

Thus, Boole considers secondary propositions to concern the times at which primary

propositions are true, and abstracts from them class terms by assembling into a class the

times for which the propositional function is true. The small letters 'x', y', 'z', are expressed

to stand for the time during which the propositions represented by the capital letters 'X', 'Y',
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'Z', are true. From the above definition, it follows that

x+y=y+x,

for the two members of the equation denote the same sum of time.

Further, Boole expresses by 'x y' the whole operation of that portion of time in which the

propositions X and Yare both true. From this definition we infer,

xy =yx.

For, as Boole sees it, whether we select, first that portion of time in which the proposition

Y is true, then out of the result that contained portion in which X is true; or first, that

portion of time for which the proposition X is true, then out of the result that contained

portion of it in which the proposition Y is true; we shall arrive at the same final result, that

is, that portion of time in which the propositions X and Yare both true.

Then Boole adds to the above laws this one,

x (y +z) =xy +xz;

and the fundamental law of his logical system, that is,

x (1 - x) = O.

There follows Boole's laws of secondary propositions, which are summed up as follows:

x+y=y+x xy=yx

x (y +z) =xy +xz

X2=X~ x(l-x)=O

Thus, the commutative law, the distributive law, and the fundamental law of duality apply
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in Boole's calculus of proposition. As the index law is satisfied by the symbols [ 0, 1 ], then

it is required to give them an interpretation in the logic of proposition. Hence, for Boole, in

the expression of secondary propositions, '0 represents nothing in reference to the element

of time' , and '1 represents the universe, or whole time, to which the discourse is supposed

in any manner to relate.' Hence, in secondary propositions, the universe of discourse may

be a single day or a passing moment, or the whole duration of time, that is, the eternity.

Boole proceeds next to deduce general rules for the expression of secondary propositions.

Since 1 expresses 'all time' and x the time for which the proposition X is true, so '1 - x'

expresses the time for which the proposition X is false. As 'xy' expresses the time for which

the propositions X and Yare both true, when it is combined with the formula that expresses

their falsehood, then we have the following interpretations:

x ( 1-v ),

the time in which the proposition X is true and the proposition Y false.

(l-x)(l-y),

the time in which the proposition X and Yare simultaneously false.

x ( 1-y) + y ( 1-x ),

the time in which either X is true or Y is true, but not both true.

x y + ( 1-x ) ( 1-y),

the time in which X and Y are either both true or both false.

It should be added that the same principle may be applied when another symbol z occurs.

Subsequently, Boole can state the laws ofthe expression of propositions. Thus, the equation
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x=l

expresses the proposition X is true at all times.

The expression

x=O

means that the proposition X is false at all times.

The equation

x(l-y)+y(l-x)=l

expresses the disjunctive proposition, 'at all times either the proposition X is true or the

proposition Y is true' with the assumption that the two propositions are mutually exclusive.

If they are not exclusive, then we add to the left hand side of the above equation x y to have

x+(l-x)y=l.

The conditional proposition, 'if the proposition Y is true, the proposition X is true,' is

expressed as

y = vx.

Boole interprets this as: the time in which the proposition Y is true is some of the time in

which the proposition X is true; that is, to say, that it is some indefinite portion ofthe whole

time in which the proposition X is true. The symbol v stands for time indefinite. But at this

point Boole's approach is problematic. The expression 'v x' is normally used by Boole to

express 'Some X', and thus implies existence. In the present context, therefore, if Boole

uses 'y = v x' to express the conditional 'ifY then X', it will follows that the conditional as

a whole is false if Y is false, contrary to the truth functional account of the conditional as
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the familiar 'material conditional' set out in The Mathematical Analysis of Logic (see

subsection 3.5.1). Boo le however avoids this implication by allowing here that even if there

is no time when X is true, still 'y = v x'. This indeed preserves the treatment of the

conditional as material; but it shows the problematic nature of Boo le's use of'v'.

Lastly, the following propositions

1SI. If either X is true or Y is true, then Z is true

2nd• If X is true, then either Y is true or Z true

3rd• If either X is true or Y is true, then either Z and Ware both

true, or they are both false,

in which the conditional and the disjunctive both exist, are expressed respectively as,

x(l-y)+(l-x)y=vz

x=v{y(l-z)+z(l-y)}

x ( 1 -y) +y ( 1- x) = v [z w + ( 1-z ) (l -w)}

It should be observed that Boole does not represent 'X is sometimes true'. There is also no

symbol for inclusion between classes, and therefore no symbol for the implication between

propositions. In his calculus of classes, 'All X's are Y's' or ' X's are included in Y's ' is

represented by 'x = v y'. Identically,' All times when X is true are times when Y is true' or

'If X then Y' or 'X implies Y' is 'x = v y'. Hence, Boole would conceive of the logic of

propositions as incorporated in the Aristotelian syllogistic by reducing the form If'X then

Y' to 'All times when X is true are times when Y is true'.

It follows that Boole's procedures of computation, which have been so far accounted and

illustrated in primary propositions, will be operational in the propositional calculus without

any modification.

Boole did not clearly explain why he abandoned the direction taken in The Mathematical

Analysis of Logic for interpreting the symboll as the universe of 'cases'. In The Laws of
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Thought, he only tried to explain, in a vague way, what he considered as unsatisfactory in

such an interpretation. He wrote,

in a former treatise on this subject (Mathematical Analysis of Logic, p. 49), following
the theory of Wallis respecting the Reduction of Hypothetical Propositions, I was led
to interpret the symbol 1 in secondary propositions as the universe of 'cases' or
'conjectures of circumstances;' but this view involves the necessity of a definition of
what is meant by a 'case', or 'conjecture of circumstances;' and it is certain, that
whatever is involvedin the term beyond the notion of time is alien to the objects, and
restrictive of the processes, of formal Logic (Boole 1854, p. 176).

Boole hinted first at a philosophical reason why he interpreted the symboll, in The Laws

of Thought, not as the universe of cases, but the eternity. He took it that secondary

propositions involve the notion oftime, to some extent in accordance with the view of Kant

who regards time as one of the forms of the human understanding, and therefore one of the

conditions of knowledge imposed by our own minds upon all that is submitted to its

apprehension. Thus Boole thought that the formal processes of reasoning in secondary

propositions require, as an essential condition, the occurrence in time of the propositions

about which we reason. Hence he regarded the idea oftime as essential to the establishment

of a theory of secondary propositions.

However, Boole then dismissed these metaphysical speculations, and held that

the reason why the symboll in secondarypropositions represents, not the universe of
events, but the eternity in whose successivemomentsand periods they are evolved, is,
that the same sign of identity connecting the logical members of the corresponding
equations implies,not that the eventswhichthosemembersrepresent are identical, but
that the times of their occurrence are the same. These reasons appear to me to be
decisive of the immediatequestion of interpretation (Boole 1854, p. 176).

Indeed Boole interprets a hypothetical proposition such as 'If the sun shines, then the day

will be fair' into: the class of moments of time in which the proposition 'the sun shines' is

true is some of the class of moments of time in which the proposition 'the day will be fair'

is true. This amounts to identifying the extension of the concepts which are specified as

classes of moments of time in which a proposition is true. But, as Frege pointed out, 'this

conception has the disadvantage that time becomes involved where it should remain

completely out of the matter' (Frege 1882c, p. 93).
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When McColl introduced implication as a connective symbol to treat secondary

propositions, he separated Boole's secondary propositions from his primary propositions

(see section 5.5). Thus Frege observed that McColl succeeded in avoiding intermingling

time and logic. But, as a result, 'every interconnection is severed between the two parts

which, according to Boole, compose logic. We proceed, then, either inprimary propositions

and use the formulas in the sense stipulated by Boole; or else, we proceed in secondary

propositions and use the interpretations of McColl' (Frege 1882c p.93). So the logical

transition from primary propositions to secondary propositions, or the other way around,

becomes impossible. However, as will be shown later, Frege set up a simple and appropriate

organic relation between Boole's primary and secondary propositions, and provided their

homogeneous presentation through his unified logical system (see subsection 6.4.1).

3.6 Some Criticisms of Boole's Logical Calculus

Although logicians and historians ofthe discipline acknowledge the importance of Boole's

logical calculus and give it an important place in the history of logic, it is nonetheless

striking that many of them are not familiar with his work. Having explained the basic

structure of Boo le's theory, I shall here discuss some criticisms levelled at Boole.

3.6.1 Boole's 'Mathematicism'

The central charge laid against Boole's logical calculus may be encapsulated in what

Bochenski calls 'Boole's mathematicism', which is his propensity to introduce mathematical

procedures into the process of thinking, so that he fails to keep the logical meaning of the

symbols. As he puts it,

Boole's mathematic ism goes so far ... that he introduces symbols and procedures
which admit of no logical interpretation, or only a complicated and scarcely interesting
one. Thus we met with subtraction and division and number greater than 1 (Bochenski
1970, p. 298).

Boole would reply to such a criticism by comparing the introduction of uninterpretable

symbols in the procedure of computation with the use of imaginary numbers in mathematics.
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As he says,

the chain of demonstration conducting us through intermediate steps which are not
interpretable, to a final result which is interpretable, seems not only to establish the
validity of the particular application, but to make known to us the general law

manifested therein. . . The employment of the uninterpretable symbolH,in the
intermediate processes of trigonometry, furnishes an illustration of what has been said.
(Boole 1854 p. 69).

The general principle underlying this procedure is that the formal processes of reasoning

depend only upon the laws of the symbols, and not upon the nature of their interpretation.

But is it tolerable that Boole introduces uninterpretable expressions in his logical calculus,

even if they are eliminated by a process of interpretation? Feys answers this question as

follows,

we have not to do with any nonsense; some steps would make nonsense in modern class
algebra, but every step of the method makes sense in ordinary algebra, as a means of
obtaining special forms of solution in it-let us say solutions such that XX = X and with

1
no 0 . In fact the method may be compared with the biblical method in dealing with

cockle: to let it grow together with wheat, then to separate and to burn the cockle away
(Feys 1955, p. 100).

Since the cockle is not a parasite which is liable to damage the wheat, the method works

well enough. Likewise, Boo le's procedure relies provisionally upon uninterpretable symbo Is

in the computation, but eventually they are expunged by the interpretation. The procedure

may be described as follows: Boole expresses a problem by means of an equation in which

symbols have a logical meaning; he then carries out operations on them as though the

symbols are restricted to the values 0 and 1, giving them a mathematical meaning, then he

restores them to their logical meaning by using the development and interpretation

procedure. The final result is both valid and interpretable; and the difficulties arising from

the uninterpretable symbols are thereby circumvented. In truth the final result obtained by

the procedure does not depend upon the meaning ofthe symbols but only upon their formal

laws.

Yet by the time of the non-symbolic Aristotelian logic, the assumption was that throughout

a valid reasoning words must hold the same meaning - and a meaning known previously. But

106



it turns out that modem formalised reasoning is not concerned at all with the meaning of the

symbols. As Camap defines it,

a theory, a rule, a definition, or the like is to be calledformal when no reference is made
in it either to the meaning of the symbols (for example, the words) or to the sense of the
expressions (e.g. the sentences), but simply and solely to the kinds and order of the
symbols from which the expressions are constructed (Carnap 1934, p. I).

In his book, The Logical Syntax of Language, Carnap maintains the view that we have in

every respect complete liberty with regard to the forms of language; both the forms of

construction for sentences and the rules oftransfonnation may be chosen quite arbitrarily.

He calls this standpoint the 'principle of tolerance' , that is, 'it is not our business to set up

prohibitions, but to arrive at conventions'(Camap 1934, p. 51). Hence, 'in logic, there are

no morals'; 'everyone is at liberty to build up his own logic, ie. his own language, as he

wishes'(Camap 1934, p. 52).

In keeping with the above, in the section on 'Formalism' in his book, Quiddities, Quine

defines formalism as disinterpretation - i.e. formulating purely in terms of syntactic

manipulation. He goes on to say:

today formalism is the stock in trade of the thousands of no-nonsense technicians who
make their living programming computers. A computer requires blow-by-blow
instruction, strictly in terms of what to do to strings of marks or digits, and eked out by
no arm-waving or appeals to common sense and imagination; and such, precisely, is
formalism (Quine 1987, p. 67).

It turns out that Boole, without going as far as this, has a clear idea that symbols may be

employed, without depending upon a determinate meaning, and such an idea seems to

dovetail with the above modem definitions offonnalism. As Putnam sees it, 'in fact, Boole

was quite conscious of the idea of disinterpretation, of the idea of using a mathematical

system as an algorithm, transforming the signs purely mechanically without any reliance on

meanings' (Putnam 1992, p. 254).

C. I.Lewis, in his A Survey of Symbolic Logic, notices that 'Boole allows operations which

have no direct logical interpretation, and is obviously more at home in mathematics than in

logic'; he acknowledges that
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it is probably the great advantage of Boole's work that he either neglected or was
ignorant of those refmementsof logicaltheory which hampered his predecessors. The
precise mathematical development of logic needed to make its own conventions and
interpretations; and this could not be done without sweeping aside the accumulated
traditions of the non-symbolicAristotelian logic (Lewis 1960, p. 51).

Moreover, criticisms that Boole introduces logically uninterpretable expressions in his

logical calculus are misguided in that they rest upon a misunderstanding of the postulate of

his general method in logic, that is, the manipulation of an independent formal procedure of

computation viewed as a support of logical deductions. Boole considers most of these

uninterpretable expressions as belonging to the procedures of computation which allow him

to carry out the requisite formal processes in order to work out logical problems. They are

not logical expressions, and Boole has never claimed the contrary. This can be substantiated

by a close analysis of The Laws of Thought.

In this book Boole separates sharply his fundamental logical system from the procedures of

computation. They are carried out in different chapters: Chapter II presents the fundamental

logical system, upon which depend Chapters V-VIII in which Boole's computational

procedures occur. The so-called logically uninterpretable expressions appear in these

chapters where Boole carries out his 'general method in logic.' He specifies the difference

between these two aspects of his work as follows:

the previous chapters of this work have been devoted to the investigation of the
fundamental laws of the operations of the mind in reasoning; of their developmentin
the laws of symbolsof logic; and of the principles of expression, by which that species
of propositions called primary may be represented in the language of symbols. These
inquiries have been in the strictest sense preliminary. They form an indispensable
introduction to one of the chief objects of this treatise-the construction of a system or
methodoflogic upon thebasis of an exact summaryofthe fundamentallaws of thought
(Boole 1854, p. 66).

Thus, Boole considers his fundamental logical system to serve as a necessary prelude to his

general method. It is confined to manipulating interpreted logical operations, whereas the

general method applies computational procedures, which are not exclusively logical. Boole

describes his general method while wondering' ... whether it is necessary to restrict the

application of symbolical laws and processes by the same conditions of interpretability under

which the knowledge of them was obtained.' According to Boole, 'if such restriction is

necessary, it is manifest that no such thing as a general method in logic is possible.' But 'on
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the other hand, if such restriction is unnecessary, in what light are we to contemplate

processes which appear to be uninterpretable in that sphere of thought which they are

designed to aid?' (Boole 1854, p. 66) As might be expected, Boole claims such a restriction

to be unnecessary and then answers that question.

He observes that this apparent failure of correspondence between process and interpretation

does not manifest itselfin the ordinary applications ofhuman reason. 'For no operations are

there performed ofwhich the meaning and the application are not seen'. Accordingly, there

are many who would be disposed to extend the same principle to the general use of

symbolical language as an instrument of reasoning. They may argue that

as the laws or axioms which govern the use of symbols are established upon an
investigation of those cases only in which interpretation is possible, we have no right
to extend their application to other cases in which interpretation is impossible or
doubtful, even though (as should be admitted) such application is employed in the
intermediate steps of demonstration only (Boole 1854, p. 67).

But, in Boole's eyes, this objection itself is fallacious. For, as he puts it,

whatever our a priori anticipations might be, it is an unquestionable fact that the
validity of a conclusion arrived at by any symbolical process of reasoning, does not
depend upon our ability to interpret the formal results which have presented themselves
in the different stages of the investigation (Boole 1854, pp. 67-68).

We have here the foundation of the general method in logic which is stated in this postulate:

we may in fact lay aside the logical interpretation of the symbols in the given equation;
convert them into quantitative symbols susceptible only of the values 1and 0; perform
upon them as such all the requisite processes of solution; and finally restore them to
their logical interpretation (Boole 1854, p. 69).

It is clear that this procedure is different from the one at work in the fundamental logical

system of Chapter II. It may be exemplified by Boole's process of development of any

functions, logical or not, into constituents, which does not need to bring out logically

interpretable expressions. Let us illustrate these two cases in which occur the so-called

uninterpretable expressions.

The first case is apparent in Boole's definition of men, viz., 'men are rational animals',
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which is expressed as

x= yz.

With x standing for 'men', y for 'rational beings' and z for 'animals', Boole works out a

definition of 'rational beings' in terms of 'men' and obtains the equation

x
Y--- .

z

Since, as a division, the right hand side of the equation is not logically interpretable, he then

develops it and obtains,

o 1
y = lzx+ Oz(1- x)+ 0 (1- z)(1 - x)+ 0(1 - z)x.

According to Boole's canons of interpretation this expression can be rewritten as,

y = zx + v(1- z)(1- x);

(1- z)x = 0,

which are respectively interpreted into

1stRational beings consist of all animals that are men (... ) and an indeftniteremainder
(somenone or all) of beings that are neither animals nor men.
2nd Men that are not animals do not exist (Boole 1856, p. 98).

Boole makes an observation upon this symbolical equation in which occur what have been

criticised as uninterpretable expressions. In his eyes, 'the equation exhibits the result ofthe

abstraction as obtained by the process of development that process depending not upon the

meaning of the symbols z, x, but only upon their formal laws' (Boole 1856, p. 99). Thus,

it is clear that while processing the expansion of the function
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x
Y=-,z

1 0
Boole does not consider the symbols such as ' - , and ' - 'involved in the process as logicalo 0 .

, at all. They are the result of the formal treatment ofz, x, as quantitative symbol restricted

1
to the values 0 and 1. But, for him, in the resulting expression, the coefficient ' 0 '

attached to the constituent '( 1 - z)x' indicates not only that no part of the class

represented by that constituent is included but that the existence of such class is forbidden

o
by the premises. The coefficient' 0 'attached to the constituent' (1- z) (1- x) , implies

that an indefinite portion of the class represented by that concept is signified (Boole 1856,

p.99).

The second case in which the charged uninterpretable symbols occur can be found in the

first example of development that Boole himself gives. He expands the function

1+ x
1+ 2x'

and obtains,

1+ x 2
1+ 2x = 3x + 1- x.

This is an example of development which is not carried out in a logical context, and Boole

does not claim that this formula is logically interpretable. He even specifies that 'by the

principle which has been asserted in this chapter, it is lawful to treat X as a quantitative

symbol susceptible only of the values 0 and l' (Boole 1854, p. 72).

111



1 0
It follows that the criticisms of the symbols such as, ' 0 ' and ' 0 'are misguided. Indeed,

these uninterpretable logical symbols mostly occur as coefficients of the constituents of an

expanded function. The critics claim that they are both logical and uninterpretable.

However, in Boole's work, they are either non-logical expressions which appear in the

intermediate steps ofthe process of deduction which yields a logically interpretable result

according to the rule ofthe general method, or they belong to expressions which constitute

an illustration of non-logical examples ofthe procedure of development. In both these cases

in which the uninterpretable expressions in question occur, it cannot be said with cogency

that Boole's position is illegitimate.

Regarding now the complaint that Boole introduces division into logic, at first sight this

seems irrelevant since in Chapter II of The laws of Thought he clearly does not count it as

a logical operator. He claims:

... the axiom of algebraists, that both sides of an equation may be divided by the same
quantity, has no formal equivalent here (Boole 1854, pp. 36-37).

Thus, Boole refuses to consider division as a logical operator. However, it may be argued

o
that he introduces division in his logical calculus via the expression' 0 '. For he says,

o
... as in Arithmetic, the symbol 0 represents an indefinite number, except when

otherwise determined by some special circumstance, analogy would suggest that in the
system of this work the same symbol should represent an indefinite class
(Boole 1854, p. 89).

o
Hence it follows that the expression ' 0 " which is supposed to be a mathematical

expression belonging to his procedures of computation, is counted as an elective symbol

such as, x, y, Z of his fundamental logical system. Hence, Boole contradicts himself since

he claims to exclude division in his logical calculus. But, in Van Evra's eyes, it is not clear
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o
that Boole intends' - , to function as an elective symbol of his fundamental logical system.o

o
On the contrary, he argues that 'Boole seems to use 0 not to stand directly for an indefinite

class, but as a way of indicating the irrelevance of class size, in certain cases, for the validity

of inferences in which they occur' (Van Evra 1977, p. 370). Thus, the expression would

then be restricted to the general method, and not be a part of Boo le's fundamental logical

system.

Yet it should be noted that Peirce provides a means that enables one to eliminate division

in Boole's logical calculus. For him, the rule for clearing fractions is the definition of

division, which he gives as follows,

b
let x = - .Then the question we have now to ask is what is the meaning of x in terms

a
of band a. The answer is a x = b. That is x is a class which when determined by the
comprehension of a gives b (Peirce 1865, p. 227).

b
Thus, - is a class which, when multiplied by a yields b, that is, it comprises all b and some,

a

all, or none of what is not a beside. So, the inverse process of division implies that the

comprehension of the dividend includes the comprehension of the divisor. It follows that to

o 0
find what 0 means, we put it equal to x, 0 = x; multiply by 0 and then obtain 0 x x =

o
O.Now this is true whatever be the value ofx. Hence if 0 x = y, then 0 x x = 0 xy. But

this is true whatever the relationship between x and y - whether y is all of x, some of x or

J
none of x. As for the meaning of - , we must remember that when one letter is divided by. 0

another, it must be that the dividend contains the divisor as a factor. Now to say that 1

contains 0 as a factor amounts to saying that it enters into the meaning ofnothing and does
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1
not exist. This same result may also be obtained when we let 0 = y ;then multiplying by

zero, we have 0 x y = 1, which means that the class common to y and to nothing is the

universal class. But no such class exists or is conceivable.

, In the case of subtraction the issue is that subtraction can have a logical meaning only at the

condition of giving an exclusive interpretation to addition. This works in arithmetic, but is

not suitable for logical sum. Jevons' introduction of a non-exclusive disjunction, however,

shows how Boole's treatment of disjunctive as exclusive can be set aside. It enables Jevons

to formulate the self-evident law of thought, the law of unity, 'x + x = x', which he

considers as inconsistent with Boole's logical calculus (Jevons 1864, p. 74). He claims that

since Boole assumes as a condition of his system that each two terms must be mutually

exclusive, he cannot recognise the law of unity. Indeed, in Boole's logical calculus the

expression

x w I l v x )

denotes all x's with all not-x's, which taken together, yield all things, or 1 the 'universe of

discourse'. As Jevons suggests, let us attempt, by multiplication with x, to select allx's from

this expression for all things,

x ( x + 1-x ) = x + x-x.

Boole would obtain x as the required expression for all x's by deleting + x and - x.

However, for Jevons, it is self-evident that

x +x =x.

Hence

x+x-x=O
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and not

x.

For Jevons, who interprets non-exclusively the symbol '+', the above expression is

'nonsense' and not null set as the '0' which means 'excluded from thought' indicates. It

follows that Boole's operation of subtraction is inconsistent with Jevons' self-evident law

of unity, which eliminates expressions such as '2 x' that have no interpretation.

3.6.2 The Inconsistent Treatment of The Symbol 'v'

Beyond any doubt, it should be admitted that, in The Laws of Thought, the way in which

Boole handles the symbol 'v' appears to be very confusing. He considers the affirmative

universal proposition, 'All men are mortal' as meaning that 'All men are some mortal

beings', and employs the symbol 'v' in order to express 'some'. He expresses the

proposition as follows,

y = vx.

Thus, it is assumed that the class which the symbol 'v' represents must not be empty and

that it is possible that this class is the universal class. The symbol 'v' is handled here, as

though it were a class symbol. As Boole stresses,

it is obvious that v is a symbol of the same kind as x, y, &c., and that it is subject to
the general law, v 2 = v, or V ( 1 - v ) = 0' (Boole 1854, p. 61).

So Boole conceives of 'v' as representing a non-empty class of indefinite extension which

may even be the universal class. In truth this seems to be a mistake since there is no such

class, and what is indefinite is not the class represented by 'v' but whether 'v' represents a

class of one extension or another. That is, it is to be indefinite whether 'v' represents one

non-empty class or another-any will do, including the universal class.

Jevons believes that Boole's way of expressing the affirmative universal proposition by using

the symbol 'v' only introduces complexity, and destroys the beauty and simple universality
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of the system which may be created without its use. Accordingly, in The Principles of

Science, Jevons declares: 'throughout this system of logic I shall dispense with such

indefinite expressions ... (Jevons 1874, p. 41). He does so by expressing the proposition

'All A's are some B's' in the form: 'A = AB'. This form was probably first employed by

Leibniz in his 'Difficultates qucedam logicce' saying 'omne A est B; id est equivalent AB

et A' (see Venn 1881, p. 176).

Moreover, Boole will suggest later the elimination of the symbol from the expression of

universal propositions. For instance, he regards the affirmative universal proposition,

y = vx,

as having existential import, inasmuch as the symbol 'o' is not totally indefinite and is fixed

so as to have 'some of its members ... mortal beings.' Thus, 'v x' denotes 'some x' or, 'x

is not empty'. But, this device for the expression of existential propositions is in practice

eliminated by Boole with his procedure of elimination which consists of substituting 1and

o for v in

y - v x = 0,

and of multiplying the resulting equations together to have,

y (1-x ) = O.

As a result, the existential import of the universal affirmative is discarded.

However, regarding the particular affirmative 'some x's are y's " which is expressed as

v x = v y,

Boole introduces 'vas the symbol of a class indefinite in all respects but this, that it contains

some individuals of the class to whose expression it is prefixed' (Boole 1854, p. 63). Thus,
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since the meaning of'v' depends on what it is prefixed to, it is not the same as a class

symbol. So, further, he says ' ... v is not quite arbitrary, and therefore must not be

eliminated. For v is the representative of some, which, though it may include in its meaning

all, does not include none' (Boole 1854, p. 124).

Hence Boole gives an inconsistent treatment to the symbol 'v'. He treats the symbol 'v' in

the universal affirmative

y=vx

differently from the one in the particular affirmative

v x = v y.

He discards the existential import of'v' from the first expression, but leaves it as it stands

in the second one. It follows that Boole's use of the indefinite class symbol 'v' is

inconsistent with respect to existential import.

In addition, Boole expresses the particular negative some x's are not y's

v x = v (1 -y),

where v stands for the indefinite class some. But as Peirce sees it, the absurdity of this is

evident from the fact that by transposing we get

vy=v(l-x)

or some y's are not x's. But it does not follow from some x's are not y's that some y's are

not x's. This expression is therefore wrong. Indeed, in his paper, 'Description of a Notation

for the Logic of Relatives' (1870, pp. 422-25), Peirce criticises Boole's treatment of

particular propositions in detail.
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A defect of rigour which occurs in Boole's logical calculus while handling the symbol 'v'

can be also shown in this example: from the equations

vx=vy

expressing 'some men are married', and

vx=v(l-y)

'some men are unmarried', it is obtained by substitution

vy=v(l-y)

expressing 'some married are unmarried' which is contradictory.

Another misunderstanding that the symbol 'v' leads to is that Boole interprets the

o
expression 0 as indicating that all, some, or none of the class to whose expression it is

affixed must be taken, and claims that it may be replaced by an uncompounded symbol v

(Boole 1854, p. 90). Thus, 'v' is understood to include all, some, none. However, he holds,

as well, that 'v is the representative of some, which, though it may be include in its meaning

all, does not include none'(Boole 1854, p. 124). This is also a defect of rigour that incurs

o
in Boole's work. As Venn notes, if we put 'v' as an equivalent for 0' this 'v' is by no

means a substitute for the 'some' of ordinary logic, since it includes 'nothing'; still less for

the 'some' of ordinary language, since it also includes 'all'. Therefore, Venn says, 'it is the

more necessary to call attention to this since Boole himself has repeatedly treated this v as

equivalent to "some", which I can only regard as an oversight' (Venn 1881, 175, see also

p. 161n).

Undoubtedly, the symbol 'v' is a baffling problem in Boole's logical calculus. In fact it is not
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a suitable way of expressing particular existential judgments. But attempts were made by

Peirce, Schroder and Whitehead to work out a way of repairing the flaw of Boole' s 'u'. In

effect, in his 1870 memoir, 'Description of the Notation for the Logic of Relatives' , Peirce

noticed that Boole's insistence on using equational forms prevented him from negating

propositions and forced him to represent particular propositions with his symbol 'u'.

, However, according to Peirce, the simplest way to express particular propositions was to

allow propositional negation and also inclusion (Peirce 1870, p. 423). So Peirce introduced

a new symbol '< ' and let ~ <B' mean the same asA is included inB (or AnA are B) and

it is not true that B is included inA (or it is not true that 'All B are A'). It follows that

'some animals are horses' can be expressed by '0 < a, h' (or equivalently, a, h > 0), where

the comma represents Boolean multiplication, and 0 stands for the null class. The traditional

syllogistic forms can be shown valid in this symbolism Thus Peirce's new symbol provided

a way to express particular propositions. But the use of the symbol required him to drop the

fundamental principle that all propositional forms must be represented in terms of equations

or inclusions, for the definition of '< ' involves the denial of an inclusion.

In his Vorlesungen tiber die Algebra der Logik (vol.ii 1891), Schroder too devised a simple

expedient of expressing particular propositions. According to Burris (1998, pp. 31-33),

Schroder pointed out that one could not use equation to handle existential statements. He

then introduced negated equations by using the symbol 'F. The use of this notation allows

one to have the correct translation of the traditional syllogistic forms into the language of

the calculus of classes.

Regarding Whitehead's way of handling existential expressions, let me merely say that, in

his Universal Algebra (1898, Bk. II, Chap. 3, pp. 81-97), he introduced new symbols, such

as 'j' and ' 61', and let any combination of symbols involving them be called an existential

expression. Thus 'xi' expresses that 'x'exists and 'x + 61'expresses that 'x 'is not equivalent

to the universe 'i' (Whitehead 1898, pp. 83-84). However, the complicated form of

Whitehead's approach led Quine to wonder why he did not favour the simple way of

expressing existence statements by means of inequalities: 'x 'F 0' for 'Something belongs to

x', and 'x =l' for 'Something does not belong to x'. Quine's answer was that perhaps

Whitehead was viewing algebras strictly as systems of equations as opposed to inequalities
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(Quine 1966, p. 10).

The flaw of Boole's 'v' seems to be repaired by writing particulars as inequations. As a

result, a tidy system of calculus of classes is obtained which is easily decidable, and in some

respect much more powerful than syllogistic (see section 4.2). But it is the device of

quantification introduced by Frege and Peirce which will set Boole right over particulars

(see subsection 5.3.3 and section 7.1).

However, despite the fact that Boole could not provide a suitable way of expressing

particular existential judgements and that his computational procedure is a cumbersome

piece of machinery with some defects of rigour, it remains, nonetheless, that in some

respects his research programme went beyond Aristotle's. In effect, Boole came up with a

mathematical technique which provides an algebraic treatment of the syllogism. Before

Boo Ie, the premises occurring in syllogistic theory involved only two terms. But when Boole

introduced his new notation, inferences could be treated in a way which permitted any

number ofterms, and where the premises and conclusions involved any number of addition,

multiplication and negation signs. Thus Boole performed an extension and improvement of

Aristotelian logic. Furthermore, Boole's mathematical technique could express both

syllogisms and propositional logic which Aristotelian logic did not cover. Boole's new

notation could be used to represent a logical structure which might have an interpretation

either in Aristotelian or in propositional logic. So Boole developed a truth-functional

analysis of propositionallo gic whose formula is expressed in a disjunctive normal form. This

important innovation goes beyond anything to be found in Aristotelian logic. Moreover,

Aristotelian logic did not contain a formulation of the logic of relations, but de Morgan

(1860), Peirce (1870) and Schroder (1895) whilst working within Boole's research

programme developed a comprehensive theory of relations. This development was made

possible through the systematic use of Boo le's new mathematical technique and notation.

In addition, in the course ofthe twenty century, Boolean logic was tidied up and presented

in a strictly axiomatic form without reference to any special interpretation. One

interpretation of the system was what Huntington called the algebra of logic which both

provides a model for syllogistic but also for further matter and also provides a mathematical

decision procedure. This refinement of Boolean algebra is even important for modem

mathematicians.
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4. Some Further Developments of Boole's Logical

Calculus

The time must come when the inevitable results of the admirable investigations of the
late Dr. Boole must be recognised at their true value.

Jevons

Introduction

At the end of the nineteenth century, after Boole carried out the leading principles of the

research programme for the' Algebraic School', the task then fell to Jevons, Venn, Peirce,

Schroder and Whitehead of developing systematically Boole's logical calculus. Thereafter,

at the beginning ofthe twenty century, Sheffer and Huntington brought out the concept of

'Boolean algebra' whilst building up several sets of independent postulates for the algebra

oflogic, which was thereby presented as an axiomatic system.

In this chapter, I shall not be exploring every way in which Boole's logical calculus was

developed. Rather, I shall be focussing mainly on the attempts of Venn to complete Boole's

10gical calculus. Then I shall describe, in the light of our modem interpretation, the algebraic

expression of the calculus whose abstract formulation is known as Boolean algebra and its

axiomatisation, which was set up by Sheffer and Huntington. In doing so, I want to point

out the persistent recurrence of the same set of logical problems which Boole's research

programme brought forth.

4.1 Venn: Diagrammatic Representation of Boole's Logical Calculus

Venn follows basically the way paved by Mathematical Analysis of Logic in attempting to

establish Boole's formal procedures upon purely logical principles. He aims to give a logical

interpretation of Boo le's system, which would then be 'independent of the mathematical

calculus.' But he does not jettison what he considers as being the 'most characteristic and
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attractive in Boole's system': the mathematical dress. Rather, he remains close to Boole, for

it is important to be acquainted with mathematical formulae when dealing with logic. He

then carries out, in symbolic logic, an extension of the signification oflogical symbols similar

to that existing in mathematics. Moreover, Venn regards his logical system as a calculus of

classes in extension. In the Symbolic Logic published in 1881, he devises a diagrammatic

method, which visualises the structure of Boo le's logical calculus with such pictorial clarity

that it becomes obvious to 'see' what this logic is all about.

I shall be concerned with Venn's systematic interpretation of propositions in term of

existence, and the practical possibility it yields, namely the geometrical illustration of the

operations between classes or the truth-values of propositions by means of diagrams.

4.1.1 A Compartmental View

The resort to diagrams so as to picture the structure of Boo le's logical calculus presupposes

an interpretation of propositions in terms of their existential import. In Venn's eyes, this is

given through what he calls 'the compartmental view', which is based on the question of the

occupation or non occupation of compartments. What is then required is a construction of

notation for all possible combinations which any number of class terms may involve, and

a mode of symbolic expression pointing out which ofthese distinct compartments are empty

or occupied, according to the premises of the propositions in question. However, it turns

out that Boole's logical symbolism is such a symbolic language, which spares Venn from

building up another one.

The compartmental view is an extensional calculus of classes, which leads to a complete

arrangement of all the compartments obtained by putting any number of classes together,

and indicating whether objects exist that have the particular combination of attributes in

question. Venn takes two class terms x and y, and considers the simple cases given by their

combination. In this case, there are four possible compartments, because everything which

exists must either have both the attributes expressed by x andy, or neither of them, or one

and not the other. With x standing for not-x and y for not-y, these four compartments are

represented by this scheme:
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xy= 0, orNox isy,

xy = 0, or Ally is x,

xy = 0, or All x isy,

x y = 0, or Everything is either x or y.

x y stands for the compartment, or class ofthings which are both x and y, and the equation

x y = 0 indicates that the compartment is unoccupied. xy stands for the compartment, or

class of things which are both not- x and not- y, and the equationxy = 0 indicates that

the compartment is unoccupied. And likewise with the other equations.

Venn's approach brings up the problem of the import of propositions, as regards the

existence of their subjects and predicates. In order to work out this problem, Venn raises

two fundamental questions: whether the universal proposition 'Allx isy', affirms or implies

that there are such things as x or y ? Or again does the particular proposition, 'Some x isy,'

make any different implication as to this special point ofthere being any x or y?

Regarding the particular proposition, 'Some x is y,' there is no difficulty: the existence of

such things as x or y is required for the truth of this proposition; they have an existential

import. Itwill be shown later that, in the diagrammatic method, a star is put in the conjunct

of the two compartments for indicating that the conjunct is not unoccupied. Thus, the

particular proposition may be read, 'Some, and there are some ... '. It always implies the

existence of members ofthe subject class.

What, however, of the universal proposition? Ifwe say 'All x isy,' does the proposition

imply that there exists an x? According to Venn, a proposition asserting the existence of

some members of the subject class does not need to be associated with the universal form.

This is because he decides to express universal propositions systematically in negative terms.
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He claims,

every universal propositionmay of course be put into a negative form: this is familiar
to every logician, the distinction of our system being that this negative side of a
proposition ismoreconsistentlyanduniformlydeveloped,and providedwith a suitable
symbolicnotation.Now ifwe adopt the simpleexplanation(of a universal proposition)
that the burden of implication of existence is shifted from the affirmative to the
negative form; that is, that it is not the existence of the subject or the predicate (in
affirmation) which is implied, but the non-existence of any subject which does not
possess the predicate, we shall fmd that nearly all difficulty vanishes
(Venn 1881, p. 157-58)

This interpretation may be associated with a representation of classes as 'compartments,'

to which the propositions indicate precisely whether they are occupied or unoccupied. Since

particular propositions have an existential import, universal propositions should be analysed

as the negation of the contradictory particular propositions, so as to eschew the difficulty

stemming from the fact that the universal proposition does not have existential import.

Under this negative form, there does not remain any uncertainty related to the interpretation

ofa universal proposition. For instance, the proposition 'All x isy,'does not imply that the

compartment x y is occupied, it shows that the compartment xy is unoccupied: it then

shows that one of the four possible classes is empty. As Venn puts it,

instead of regarding the affirmative form as being the appropriate and unambiguous
form, we regard the corresponding or equivalent negative form as possessing these
attributes. Whether there be anyx's ory's we do not know for certain, but we do feel
quite sure that there is no such thing existing as ' x which is noty'
(Venn 1881, p. 158).

Venn interprets negatively the proposition 'all x is y', as saying, 'there are no such things

as xy , and expresses symbolically this proposition in the form xy = o. As he suggests it,

put the propositions 'All x isy', 'Nox isy', intothe forms xy = 0,xy = 0, and

the statements 'There is no xY ','There is no xy ,'must admit of verificationand
be intelligible ... (Venn 1881,p. 144).

The advantage ofthis interpretation of the universal as existential negative is obvious when

considering the combination of two propositions, as in the above scheme. Thus, the

proposition 'All x isy,' is better written, 'No x is not-y' or xy = 0, which shows that
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the class of xy is empty. But, it does not tell us anything about the three others alternatives.

The symbols being subject to the universal condition expressed by

1= xy+ xy+ xy+ xy,

which means that the universe is the union of x y, x not-y, y not-x, not-x not-y, when

one of these classes is empty, there are three classes left out. However, it is required that

one, or two, or all three must be non-empty", but it is not clear which of these is non-empty.

Ifnow the first proposition, 'All x isy,' is associated with a second that asserts that 'Ally

is x', then one of the three classes, xy, is empty and there remains only two possible

classes: x y or xy. A third proposition will then be required in order to assert that one only

of these two classes is non-empty. If for example this third proposition asserts that 'x y is

all' , i.e. that the universe is both x and y, then the class xy is empty, and x y is the only class

which is non-empty.

It follows that the traditional square of opposition, which has been already tabulated (see

subsection 2.1.3), requires changing. For, the difference between the symbolic logic and

traditional logic depends on the existence of members of the subject class. In effect, in

traditional logic the subject of a universal proposition is assumed implicitly to have an

existential import in the sense that the class denoted by the subject term is not empty. On

the other hand, in symbolic logic the universal propositions do not have an existential import

in the sense of not implying the existence of members ofthe class denoted by the subject

term. Thus, even though Boole represents the universal proposition in the form x = v y and

implies for the subject of the proposition an existential import, while working out logical

equations he always eliminates the 'v' obtaining x ( 1 - y ) = O. The universal proposition

represented in this form is non-existential since 'v' has dropped out. Hence, as in modem

class algebra, Boole interprets' All x is y' as being without existential import.

22Like Huntington's Postulate VI and Sheffer's Postulate 1 (see subsections 4.3.1 and 4.3.2),Venn
requires that the universe not be empty so as to keep the system from being vacuous.
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Venn, following Boole in this interpretation of 'All x isy' ,makes the problem of existential

import more explicit. Indeed, according to the compartmental view, all the valid relations

between the four propositions on the square of opposition are also valid, if there are

members of the subject class. But only the relation of contradiction is valid if there are no

members of the subject class. Thus the symbolical expressions of the relations between the

four forms of propositions are: X Y = 0 and X Y '* 0 for respectively the universal

a.tli.tml1:ive andtle particu1arnegativepropositionswhicharecontradictories; xy = 0 and xy #. 0

for the universal negative and the particular affirmative propositions which are also

contradictories. Then what is called the Boolean square of opposition, which changes the

appearance of the traditional square of opposition, may be tabulated as follows:

A: XY=O E: xv -o
C e S

0 n o r
t r c t

a d i

a d r; I
t r 0

n r
0 8SC

I: XY;&O O:XV.O

It can be noticed that contraries, subcontraries, and subalterns are missing in the Boolean

square of opposition. For if the subject class of the universal proposition is empty, then the

rule of the traditional square of opposition that A and E propositions, being contraries,

cannot both be true does not hold. The rule that both subcontraries can be true but both

cannot be false again does not hold if the subject class is empty. If an A proposition is true

when the subject class is empty, its contradictory proposition is false. The contradictory is

an 0 proposition, but because there are no members of the subject class, the corresponding

E proposition is true. In this case, an E proposition is true when its subaltern 0 is false. This
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does not comply with the rule of the traditional square of opposition. A similar situation

occurs between an A and its subaltern I when the subject class is empty.

4.1.2 A Geometrical Illustration of Boole's Logical Calculus

The compartmental view leads to the possibility of visualising the logical operations by

means of diagrams drawn in such a way that each compartment ofthe picture represents one

of the cases which the premise of a logical problem requires one to consider. Venn specifies

the novelty of the method:

I tried at first, as others have done, to illustrate the generalised processes of the
symbolic logic by aid of the familiar method, but soon this was quite unsuitable for the
purpose. Though the method here described may be said to be founded on Boole's
system of logic, I may remark that it is not in any way directly derived from him. He
does not make employment of diagrams himself, nor does he give any suggestions for
their introduction (Venn 1881, p. 114).

Before Venn, Euler" a Swiss mathematician ofthe eighteenth century, carried out a way of

illustrating syllogistic inferences by using circles. But Venn comes up with an ingenious

modification on Euler's circles by using two ideas which are fundamental in Boo le's algebra

of logic, the null class i.e. the class with no members and the universal class i.e. everything.

Thus, Venn's diagrams are dissimilar to those of Euler in that Venn first pictures all possible

combinations by distinct compartments, and then indicates, by marks within the various

compartments, which combinations must be empty and which not empty according to the

premise of a given logical problem. Venn describes what he intends to do in the following

manner:

what we propose to do is to form a framework of geometrical figures which shall
correspond to the table of combinations of x, y, z, &c. All that is necessary for this
purpose is to describe a series of closed figures, of any kind, so that each in succession
shall intersect all the compartments already produced, and thus double their number.
That this successive duplication is what is done with the letter symbols is readily seen.

Thus with two terms, x andy, we have four combinations; xy, x y, xy, x y. Introduce

23 For a clear exposition of Euler's endeavour as well as an analysis of its defects Venn's Symbolic
Logic may be consulted. A brief historic of some previous attempts to design the geometric illustration of
proposition before and after Euler is also given in the last chapter ofthis treatise. On these diagrammatic
representation of logical process, see also Martin Gardner: Logic Machines and Diagrams (1958). For a
criticism of Euler's circles, see L. S. Stebbing, A Modem Introduction to Logic, (1950, pp. 72-78).
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the term z and we at once split up each of these four into z and not- Z parts, and so
double their number. Provided our diagrams are so contrived as to indicate this, they
will precisely correspond, in every relevant respect, to the table of combinations of
letters (Venn 1881, p. 113-14).

Now, in order to show how Venn employs diagrams of overlapping compartments to

illustrate the Boole's procedure of development through a visualisation of the relations

between classes, the syllogisms cAmEnEs and dhnArls, which belong respectively to the

mood A E E and I A I in the fourth figure, should be worked out. But, before proceeding

to employ the diagrammatic method, it should be noted that for Venn, in the diagrammatic

representation of proposition, the symbols stand for compartments. Then, when it is

required to determine what combinations are emptied out by any given proposition, they are

just shaded out, so as to indicate that these compartments are unoccupied. When it is

required to indicate that a compartment is occupied, a star * is placed inside it. If it is not

sure whether a star * belongs in one compartment or an adjacent one, then it is put on the

line between the two compartments.

I shall proceed to carry out the diagrammatic scheme. Let us draw first three circles, which

intersect as follows,

x

y z

The circles are marked x, y, and z. Each one is cut up into four parts, and each common

part of two circles into two parts. There are eight compartments. All the points inside circle

x are members of the compartment x. All point outside the same circle are not-x. And

likewise with the other circles. The circles overlap in such way that, if each compartment

is marked with appropriate symbols to indicate its members, then a compartment is obtained

for every possible combination of the three symbols and their negation. Hence, there are
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eight compartments, which correspond to the eight combinations given by the three

symbols;

ryz, xy z , x yz, x yz , xyz , xy z,x yz , x yz.

Each compartment has a symbolic name ready provided for it, and with a finger the

compartment referred to can be indicated. The schemes of symbols and compartments agree

in their elements being mutually exclusive and collectively exhaustive. The method may be

extended to any number of terms. A pair of terms give 22 combinations, three 23

combinations, four 24combinations or 16, and so on ... The diagram representing three

terms is drawn as,

x

y z

The compartment outside of all three circles represents the compartment of x y Z , or all

those things which are not members of any of the three classes.

Accordingly, the first syllogistic inference cArnEnEs, may be represented by means of the

diagrammatic method,

All x isy

Noy isz

:. No x is z,
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The first premise 'All x is y' means that the compartment of things which are x and not-y

is unoccupied. All compartments inwhich these two terms are found must then be shaded

out,

x

y z

The second premise is 'No y is z', which tells us that all compartments containing the

combination y z are unoccupied; the diagram is further shaded out as,

x

y z

At this level, it must be seen that a valid conclusion concerning the relation between x and

z can be drawn. For all compartments containing both x and z are unoccupied; therefore

'No x isz' is inferred. Ifit is supposed that x is not an unoccupied compartment, then 'some

x is not z' can also be inferred.

Regarding the second syllogistic inference, dlmArls, it shows how particular premises can

be represented:

Some x isy
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Ally is z

.'. Some x isz

The first premise, 'Some x is y' requires a star * on the edge of the z circle, for it is not

known which of the two compartments (or perhaps both) maybe occupied. The following

, diagram shows its pictorial representation:

x

y z

The second premise,'AlI y is z' empties out one of these compartments. So we must put

the star * in the occupied compartment as illustrated in this diagram:

y z

A relation of x to z is now readily detected. From the two premises, the conclusion 'Some

x is z' must be drawn.

Thus, Venn's diagrammatic method allows the visualisation of the logical operations of

Boole's calculus of classes. As a result, even a philosopher without any mathematical

background can 'see' now what Boole's logical calculus is all about. The method is
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somehow similar to the decision procedure so far explained (see subsection 3.4.2). It enables

one to test the validity of syllogisms.

The diagrammatic method can be employed so as to represent a disjunctive relation. For

instance, the proposition, all x is either y or z in which 'or' is interpreted in the inclusive

sense of' either or both,' yields this picture:

x

y z

For the 'exclusive' disjunction the following diagram is obtained:

x

y z

The method can be extended so as to carry out four terms. Venn notes that with four terms

the most simple and symmetrical diagram is drawn by making four ellipses intersect one

another in the following manner,
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x w

He then shows the scope and power ofthe diagrammatic method whilst working out the

following premises,

Every y is either x and not z, or z and not x;

Every w y is either both x and z or neither of the two;

All x y is either w or z, and all y z is either x or w.

It is required to work out any obvious conclusion, which follows from them. Venn finds that

these propositions involve the elimination of the following classes: yxz,yxz by the first

-
premise; wyxz, wyxzbythesecondpremise;and xywz,yzxzbythethirdpremise. When

the corresponding compartments in the diagram are shaded out, this result is obtained,

x w

Subsequently, Venn says, 'it is then clear at a glance that the collective effect of the given

premises is just to deny that there can be any such class of things as y in existence, though

they leave every one of the remaining eight combinations perfectly admissible. This, then,

is the diagrammatic answer to the proposed question' (Venn 1881, p. 130).
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Although Venn does not elaborate specifically his method, so as to deal with propositional

calculus, he recognises that the diagrams can be employed for working out problems in this

domain. In Chapter XVIII of Symbolic Logic, entitled 'Class Symbols As Denoting

Propositions', he sets out to interpret the use of his symbols in a way in which they 'stand

for propositions, i.e. not for the propositions themselves, but for their truth or falsehood'

(Venn 1881, p. 43 ). In the light of Boo le's calculus of secondary propositions, he carries

out all the required material that allows an interpretation of the class calculus as

propositional calculus. There follows the possibility of diagramming these propositions when

their premises are not made more complex by parenthetical assertions. But in order to

employ the Venn circles for propositional logic we must give a different interpretation.

Thus, each circle represents a proposition which may be true or false rather than a class

which mayor may not have members. The marks on the compartments indicate possible or

impossible combinations of true and false values ofthe terms. A compartment is shaded out

to show that it is an impossible combination of truth-values. A compartment left blank

indicates a permissible combination. The combination XYZ is represented as a small circle

outside the other three for simplifying the shading of this compartment when required. Here

is the diagrammatic scheme of the propositional calculus:

x

y

The method can be further illustrated by working out the conditional proposition, 'IfX then

Y' or X ~ Y. The truth-table ofthe conditional shows that there are four possible true and

false combinations ( TT, TF, FT, FF ) amongst which only the combination TF is not valid.
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Likewise the Venn diagram for the conditional represents the four possible combinations of

truth-values ( XY, XY, XY, XY), amongst which only the compartment XY indicates

an impossible combination of truth-values. Hence, in the above diagram, all compartments

containing XY are shaded out. As a result, a diagram equivalent to the diagram for the

universal affirmative proposition' All x is y' is obtained. It is represented as,

x

o
It should be mentioned that, at the time when Venn devised the diagrammatic method, other

rectangular diagrams were drawn by Allen Marquand, Alexander Macfarlane, and Lewis

Carroll" . All these diagrams can be used for the calculus of classes and propositions

because of the isomorphism between the two calculus.

Venn's diagrams have been employed to illustrate the concepts, relations and procedures

of Boo le's logical calculus. But, although the diagrams are practical for many purposes, they

are only a means of illustration which should not spare acquaintance with the algebra.

Moreover, an important weakness of the method is that the diagram is appropriate only with

an upper limit of four classes. Hence, if Boolean algebra is restricted to its application in

Venn's diagrams, then it becomes incomplete. Furthermore, the mathematical imagination

may be dampened when it relies too much upon diagrams. However, a full understanding

of the algebra, as a system of pure logic, is best achieved by means of a postulational

method, which carries out a logical or mathematical system.

24 Allen Marquand released his paper titled 'A Logical Diagram for n Terms' which appeared in the
Philosophical Magazine, vol. 12, October, 1881. Macfarlane's 'The Logical Spectrum' is published in
Philosophical Magazine, vol. 19, 1885. Lewis Carroll's diagram appeared in his book, The Game of Logic,
1886.
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4.2. Modern Algebra of Logic

Modem algebra of logic arises from the work of Boole' s followers, who have straightened

out his logic of classes by jettisoning what was not completely intelligible in the system As

a result, they study an algebraic structure, that is a set with one or more operations defined

on it, of which the natural numbers with addition and multiplication constitute an example.

Such an abstract structure is what is called 'Boolean Algebra.' As Tarski defines it,

Boolean Algebra, also called the algebra of logic, is a formal system with a series of
important interpretations in various fundamental departments oflogic and mathematics.
The most important and best known interpretation is the calculus of classes (Tarski
1956, p. 320).

Thus, there are several equivalent systems of primitive symbols and axioms, which concur

in the setting up of the abstract calculus. But Boolean algebra has been interpreted, for the

most part, as applying to classes. Then, as an example of these systems, let us construe

Boolean algebra as a structure including a set B ,two binary functions n (conjunction or

intersection) and U (disjunction or union) on B, plus one unary function

(complementation) on B , and two distinct elements 0 ( the null- element) and 1 (the

unit element) of B , satisfying the following axioms, for all x, y, Z E B

(i) xny=ynx,
(ii) (xny)nz=xn(ynz),
(iii) Inx=x,

(iv) xn X = 0,

xuy=yux,
(x u y) u z = xU (y u z),

ou x = x,
x u x = 1,

(v) xn(yuz)=(xny)u(xnz), xu(ynz)=(xuy)n(xuz),
(vi) X n X = X

In order to avoid confusing Boolean algebra with the arithmetical operation of addition the

symbol, 'u ' is here employed as the inclusive disjunction or union that corresponds to
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Boolean 'addition' sign '+' when it is interpreted inclusively, and the symbol n as the

conjunction or intersection that corresponds to Boolean multiplication sign. This notation

is taken from the calculus of classes of Whitehead and Russell in Principia Mathematica.

The notation of the negation belongs to Sheffer and Huntington, who put the bar over the

class symbol except where a parenthesis is negated. Now, (i) is called laws of commutativity,

(ii) laws of associativity, (Ui)-(vi) laws of tautology, (iv) laws of complementation and (v)

laws of distributivity .

There may be added some other fundamental laws such as the law of unity:

xU x= x

and the laws of absorption:

xu(xny)=x
xn (XU y)= x,

which were formulated by Jevons.

Since a conjunction can be expressed as a disjunction if the negation of the classes is

performed, the following equivalences called de Morgan's theorems= are fundamental laws

of Boolean algebra:

(XU y)= -(xn y),

(xr. y)= -(XU y).

The ordinary assumption that a double negation is equivalent to an affirmation is also a

fundamental law of the algebra. It is called the law of double negation:

25 By referring to the Venn diagram, as an application of Boolean algebra, these theorems can be
readily shown to hold. But this does not prove them to be true. However, they are a special case of the law
of duality which can be proved. See C. I. Lewis, A Survey of Symbolic Logic (1960), pp. 123-126; W. V.
Quine, Methods of Logic (1974), pp. 59-63; and A. Church, Introduction to Mathematical Logic (1956),
pp. 106-108,201-205.
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=
x= x.

Finally, the law of expansion may be expressed. It allows a class symbol to be developed by

reference to another class when conjoining it first with the other class, and then with the

negation of the other class, and then disjoining the two conjunctions. Hence we have,

x = (xr. y)u (xr. y).

All these fundamental laws allow one to perform Boolean operations by working out

problems in the algebra. In this direction, 0 stands for the empty class, and when a class is

empty, it is equated to 0 .On the other hand, when a class has members, it is not equal to

O. It follows that the four propositions of traditional logic are expressed in Boolean

methods by equations or inequations (see also subsection 4.1.1). Thus, we obtain the

following scheme:

A. All xis Y xn y= 0

E. No xis Y xn y= 0

I. Some x is y xn yt 0

o. Some x is not y xn y* 0

In order to handle the equations and the inequations, there are four rules of inferences in

Boolean algebra. The first two rules concern the equations and are stated as follows:

(i) if x = 0 (ii) If xU Y = 0

and y = 0 then x = 0
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then xu y= 0 andy = 0

The two other rules concern the inequations:

(iii) if x n y;t 0 (iv) if xu y:;t 0

then x;j:. 0 and x = 0

and y;j:. 0 then y s 0

Rule (i) states that if two classes are empty, then their disjunction is empty. Rule (ii) is the

inverse of (i), that is, if the disjunction of two classes are empty, then each of the disjoined

classes is empty. Rule (iii) states that if the conjunction of two classes has at least one

member, then each of the conjoined classes has at least one member. Rule (iv) states that if

the disjunction of two classes has at least one member, and if one of the classes is empty,

then the member belongs to the other class. It may be worth noting that rule (iv) is not the

inverse of rule (iii). The inverse of rule (iii) does not hold. From x;j:. 0 and y;j:. 0 , it

cannotbeinferredthatthemembersineithercaseisintheconjunctionofx and y .Hence xn y -t 0

cannot be asserted on the basis of x t 0 and y to.

Let us now illustrate how the algebraic methods perform in the calculus of classes by

working out the syllogism cElArEnt, which belongs to the mood E A E in the first figure.

The premises are expressed as follows,

y() X = 0

zt> y= O.

It is required to ascertain the relation between x and z. Thus, according to the law of

expansion, which states that a class symbol is expanded by reference to another class by
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conjoining it first with the other class, and with the negation of the other class, and then

disjoining the two conjunctions, we develop the first premise with respect to Z • Hence we

obtain:

-
((ynx)nz)u((ynx)nz) =0.

In like manner we develop the second premise with respect to X , and obtain:

((z n y) n x) u ((z n y) n x) = O.

According to the above first rule of inference (i), we may add the premises, and obtain:

-
[((y n x) n z) u ((y n x) n z)] u [((z n y) n x) u ((z r, y) n x)] = o.

The law of associativity allows us to rewrite the first and the third constituents of this long

disjunction as follows:

(z n x ir: y and (Z n x)n y.

By the second above rule of inference (ii) applied twice and the first rule of inference, we

can expunge the second and the last constituents, and thus we obtain the equation:

«z II X) II y) U «z II X) II y) = o.

It is now easy to eliminate y by applying the Boolean rule of elimination, that is, if an
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expression is put into the form (x n y) u (z n y ) = 0, then the result of elimination will

be x n z = O. Hence from our formula we obtain:

zrv x= Il ,

which is the valid conclusion ofthe syllogism cElArEnt. As well, we could get z n x = 0
straight from the law of expansion

x= {x t> y)u (x c. y),

with z n x substituted for x .

We may carry out all syllogistic inference containing universal premises in a similar way. The

procedure consists of developing each premise so as to involve all classes, and then adding

the premises. In the case of a valid form of syllogism, we will notice that there are two

constituents in the disjunction such that the middle class may be eliminated from them. But

if the form of the syllogism is invalid, then we will not have two constituents such that the

middle term may be eliminated, and thus no conclusion may be drawn.

However, regarding a particular premise, this procedure changes, for the particular premise

is expressed by an inequation, and thus the premises cannot be added. As an illustration, let

us consider the syllogism dlmArIs, which belongs to the mood IA I in the fourth figure.

The premises may be symbolised as follows:

x rv y s O
-

y c. z=U,

In order to eliminate y and determine the relation between x and z ,we develop the first

premise with respect to z:

«xn y)n z)u «xn y)n z);t O.
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Next, we develop the second premise with respect to x:

- -
((y n z) n x) U ((y n z) n x) = O.

According to the second rule of inference (ii), we may infer from the above disjunction that

-
(yn z)n x = o.

By the law of associativity we may rewrite this conjunction as,

-
(yn z)n x = (xr. y)n z.

-
As may be noticed, it turns out that (x n y) n z is one ofthe constituents in the expansion

of the first premise that is,

« X n y) n z) U «X n y) n z) =t: O.

-
This disjunction is not empty, but (x n y) n z is empty according to the above procedure,

which proceeds by the development ofthe second premise with respect to x , the application

ofthe second rule ofinference (ii) and the use ofthe law of associativity. Hence, the fourth

rule of inference (iv) allows us to infer that

(x r, y)n zt O.

Now, according to the third rule of inference (iii), if( x n y)n z *" 0, then
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x rv z e t),

This is the valid conclusion of the syllogism dImArIs.

The same procedure may be employed to work out all valid syllogisms containing a

particular premise. We first proceed by developing the two premises where the universal

premise shows that one of the conjunctions in the particular premise is empty. Then by the

fourth rule of inference, we may infer that the other conjunction in the particular premise is

not empty. This will leads to a valid conclusion by the third rule of inference.

I shall spare the reader an illustration containing more than three classes, though the

algebraic methods work out any number of classes involved in a logical problem

It should be pointed out that, in working out the above two syllogisms, we carne across

formulas, such as

-
[((y (l x) n z) U ((y (l x) n z)] U [((z n y) (l x) U ((z (l y) (l x)] = 0,

which is called 'disjunctive normal form' For, in this disjunction, the negation sign applies

only to individual variables, which are conjoined, and then the conjunctive sets are disjoined.

Boole's 'law of development' (expansion into constituents) exemplifies a formula in

disjunctive normal form (see subsection 3.2.1). For instance, in Boole' s notation the formula

is written as,

yxz + yx(l- z) + z(1- y)x + z(l- y)(1- x) = o.

Now when Boole's exclusive disjunction is substituted for the inclusive symbol U and the

multiplication of classes represented by the symbol n , the formula corresponds to the

above disjunctive normal form
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We may put a formula into disjunctive normal form by using successively de Morgan's

theorems, the laws of distributivity and the law of double negation. Whilst dealing with the

syllogistic inference, we have employed such a disjunctive normal form, which comes out

with the expansion of the premises of the given syllogism to obtain all classes involved.

Thus, the rules of inference and the laws of the system have allowed us to draw the valid

conclusion. As a decision procedure, the disjunctive normal form enables us to work out the

decision problem for the calculus of classes.

In the interpretation of Boolean algebra as applying to classes," the symbol' 1 ' stands for

the universal class, and the expansion of the disjunctive normal form for classes yields the

universal class. The symbol '0 ' stands for the null class, and the denial of the Boolean

expansion of the disjunctive form for classes is the null class. The symbol u allows an

operation on two classes which yields a new class containing as its members those, and only

those, things which belong to at least one of the two classes. The operation is called addition

of classes, and the resulting class is the sum or union of the two classes. The symbol n is

an operation on two classes called multiplication of classes. It consists in forming a new

class whose members are those, and only those, things which belong to both classes. The

resulting class is the product or intersection of the two classes.

Boolean algebra applies as well to several mathematical domains, e.g., a geometrical

application to overlapping plane compartments of space and set theory. In Huntington's

eyes, the most familiar example of a Boolean algebra is the following:

K = the class of regions in a square (including the null region, and the whole square);

a + b = the smallest region which includes both a and b;
a' = the region complementary to a with respect to the square;
ab = the region common to a and b.
Here the relation' a < b means a is included inb' (Huntington 1933, p. 278).

26Asmight be expected, Boolean algebra can also be interpreted as applying to propositional forms
defined in terms oftheir truth values. For a thorough development ofthis application, I shall refer the reader
to chapters three and four of Lewis's book: A Survey of Symbolic Logic, and chapters fourteen and fifteen
of Newton Lee's Symbolic logic, which both constitute the main source of inspiration when carrying out
the above description of Boolean algebra.
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Venn's diagrams are an illustration of such an application of Boolean algebra.

It is worth noting that Boolean algebra is set up as a logical structure, or an abstract system.

Accordingly, whether or not an interpretation is given is out of play in the structure of the

system. The various interpretations which may be given do not define the logical system.

4.3 Axiomatic Methods for 'Boolean Algebras'

The most important development of Boo le's logical calculus is the setting up of axiomatic

methods for the calculus. Although Boole did not layout a system of axioms, it is

undeniable that his algebra oflogic provides the basis for a method in which the principles

are cast into the form of postulate sets. Indeed, in the beginning of the 20th century,

Huntington and Sheffer presented explicitly the implicit structures embedded in Boole's

computational procedure, and thus opened a new avenue, namely the metamathematical

inquiry into the algebra oflogic. In what follows, I shall give an account of the axiomatic

methods in their respective papers on 'A Set of Five Independent Postulates for Boolean

Algebras"? and 'Sets ofIndependent Postulates for the algebra of Logic'.

4.3.1 Huntington: Sets of Independent Postulates for Boolean Algebra

In 1904 and 1933, Huntington published two papers, in which he developed six sets. I shall

be limiting myself to giving an expository account of the first and the fourth sets.

Huntington introduces the paper of 1904 by stressing that,

27 These papers are published in Transactions of the American Mathematical Society Vol. 14 (1913)
for Sheffer; Vol5 (1904), pp. 288-309, and Vol35 (1933), pp. 274-304, for Huntington. Others axiomatic
methods have been also constructed for Boolean algebra. A brief bibliography of these sets of postulates is
given by Huntington in his paper 'New Sets ofIndependent Postulates for The Algebra of Logic ' published
in Transactions of the American Mathematical Society vol 35(1933) p 27 Later, Tarski published a paper
(1935) containing a study of some alternative systems of Boolean algebra. As a result, he brought out several
equivalent sets of postulates for an extended (or complete) system of Boolean algebra, which deals with two
operations, namely the logical sum and the logical product applicable to all elements of a certain set of
elements, or universe of discourse, denoted by 'B'. The paper can be found in his book: Logic, Semantics,
Metamathematics (1956, pp. 320-34).
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the algebra of symbolic logic, ( ... ) although originally studied merely as a means of
handling certain problems in the logic of classes and the logic of propositions, has
recently assumed some importance as an independent calculus; it may therefore be not
without interest to consider it from a purely mathematical or abstract point of view, and
to show how the whole algebra, in its abstract form, may be developed from a selected
set a fundamental propositions, or postulates, which shall be independent of each other,
and from which all the other propositions of the algebra can be deduced by purely
formal processes (Huntington 1904, p. 288).

Thus, he sets out to build up an axiomatic system for the algebra of logic regardless to its

possible interpretations.

InHuntington's eyes, a postulate set is regarded as a system, in which the primitive ideas

constitute the set K and may be called 'a class (K.) of elements' ( a, b, c...J.' The primitive

relations are the two 'rules of combination', + and x (Huntington 1904, pp. 288-289). The

postulates bring the K elements and the rules of combination together into a system

Then he states the object of his paper as follows:

having chosen a set of fundamental concepts and a set a fundamental proposition for
each of the three sections, I show, first, that the fundamental propositions of each set
are consistent (and independent); and secondly, that the fundamental concepts of each
section can be defined in terms of the fundamental concepts of each of the other
sections, while the fundamental propositions of each section can be deduced from the
fundamental propositions of each of the other section. Then we may say, first, that each
section determines a definite algebra, and secondly, that the three algebras are
equivalent (Huntington 1904, pp. 290-291).

The first section carries out Huntington's first set, which is the closest to Boole's system in

that it considers the two operations of addition and multiplication as primitive relations. But,

Huntington distinguishes the inclusive disjunction from the arithmetical operation by placing

the sign in a circle (8, and the conjunction by using a dot in a circle (9. He also employs the

symbols /\ and V, which resemble an empty glass and a full glass, so as to facilitate the

respective interpretation of them as 'nothing' and 'everything'. He borrows them from

Peano's Formulaire de Mathematiques. In the paper of 1933, he changed the symbolism

whilst reproducing the first set. Thus, the original /\ , V, and a are replaced respectively

by z, U, and a' ; and the circle around + and x are omitted. For convenience I shall use the

latter symbolism in the following tabulation of the postulates of the first set. The postulates
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define a class K with elements, a, b etc ...

la. a + b is in K whenever a and b are in K.

lb. a x b is in K whenever a and b are in K.

lIa. There is an element z such that a + z = a for every element a in K.

lIb. There is an element u such that a x u = a for every element a in K.

IlIa. a + b = b + a whenever a, b, a + b, and b + a are in K.

IIlb. a x b = b x a whenever a, b, a x b, and b x a are in K.

IVa. a + (b xc) = (a + b) ( a + c) whenever a, b, c, a + b, a + c, b x

c, a + ( b xc), and ( a + b) ( a + c) are in K.

IVb. a x ( b + c) = a x b + a x c whenever a, b, c, a x b, a x c, b +

c, a x ( b + c) and ( a x b) + ( a xc) are in K.

V. If the elements z and u in postulates lIa andlIb exist and are unique,

then for every element a in K there is an element a / such that a + a /=
u and a x a /= z.

VI. There are at least two elements, x and y, inK such that x yey.

It should be noted that Huntington acknowledges that in the postulates la - V, he follows

closely Whitehead, who gave a complete general theory of algebra and presented what he

called 'the fonna1laws' of the algebra in his A Treatise on Universal Algebra, (1898, vol.

I pp. 35-37). In it, he set out 'to exhibit the new algebras, in their detail, as being useful

engines for the deduction of propositions; and in their several subordination to dominant

ideas, as being representative symbolisms of fundamental conceptions' (Whitehead 1898,

p. viii).

In the above postulates, there are two particular K elements, the empty class and the

universal class, and one particular primitive operation, the negation. The system may be

described as involving the K elements a, b, c, ... , which can be interpreted either as classes

or propositions; and the particular K elements z, the empty class, and u , the universal class
or falsity and truth Huntington formulates a rule of inference based upon the symbol '='.
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The particular primitive operation, the negation, is considered as undefined.

The undefined rules of combination are addition (disjunction), multiplication (conjunction)

and negation. There are ten postulates, which show how the K elements a, b, c, ... , z and

U, and the rules of combination +, x and - can be put together into meaningful propositions

of the system

The Postulates IlIa. and IIIb. are well known as the law of connnutativity for addition and

multiplication.

As well, the postulates IVa. and IVb., which are the laws of distributivity for addition and

multiplication.

Postulates, IIa. lIb. and V. postulate the existence of the empty class, the universal class

and the negation.

Postulates Ia, and lb. state that the addition of any two K elements is itself aK element, and

the multiplication of any two K elements is itself a K element. They are what Sheffer calls

K-closing postulates.

Postulate VI., which is the last postulate of the set, is intended to ensure that the system is

not empty by stating that there are at least two distinct K elements. The postulate is included

only to keep the system from being vacuous.

I shall spare the reader the metarnathernatical apparatus, upon which Huntington relies in

order to prove the consistency and the independence of the first set. However, let us point

out that he demonstrates the consistency of the postulates by exhibiting a system (I{, +, x)

in which I{, +, and x are so interpreted that all the postulates are satisfied. 'For then the

postulates themselves, and all their consequences, will be simply expressions of the

properties of this system, and therefore cannot involve contradiction (since no system which

really exists can have contradictory properties)' (Huntington 1904, p. 293). As an

illustration, he gives the system: K = the class of regions in the plane including the 'null

region' and the whole plane; a + b = the 'logical sum' of a and b; ab = the 'logical
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product' of a and b.

The ten postulates are also independent, inasmuch as none of them can be drawn from the

other nine. This can be demonstrated by exhibiting for each postulate, a system (K., +, x),

which satisfies all the other postulates, but not the one in question. 'This postulate, then,

cannot be a consequence of the others; for if it were, every system which had the other

properties would have this property also, which is not the case'(Huntington 1904, p. 296).

Huntington's fourth set is presented in the paper of 1933 in which he builds up three more

sets. The paper is suggested by the developments made in the setting up of postulates for

Boolean algebra. Amongst these developments, he notes the set of postulates given by

Sheffer in 1913, which are expressed in terms of ( K., / ) where the 'stroke' represents

another binary operation called 'rejection,' such that a / b = (a + b)'. Then he points out

the two sets given by Bernstein in 1914, which are expressed in terms of (K., =) where the

'_' represents another binary operation called 'exception,'such that a _ b = a x b /; and

in terms of (K., +), where the '+' indicates a binary operation called 'adjunction,' such that

a+b=a+b/.

Huntington was particularly struck by the expression of the primitive propositions of Section

A of the Principia Mathematica (1910) in terms of a class called the class of 'elementary

propositions,' a binary operation called 'disjunction,' and a unary operation called

'negation'. In 1931, this stimulated Bernstein to show how these primitive propositions can

be expressed in abstract mathematical form in terms of ( K., +, / ). Subsequently, there

occurred a discussion about the relation between the theory of the Principia and the theory

of Boolean algebra." According to Huntington, there follows that 'it becomes a matter of

interest to construct a set of independent postulates for Boolean algebra explicitly in terms

of (K., +, / ), for comparison with the Principia' (Huntington 1933, p. 276) . I shall be

saying a little more about this comparison when commenting upon the following fourth set

28 In his paper of 1913, Sheffer applied his set to the primitive logical constants given by Whitehead
and Russell in the Principia, and had made it possible 'to reduce, by one each, the number of primitive ideas
and of primitive propositions used in the Principia for the foundation of logic.' (pp.486-488) InAppendix
II of his paper of 1933, Huntington himself carried out a revision of the primitive propositions of the
Principia (Section A), without using the equality sign, or the Boolean notation '=1,' and constructed a set
of independent postulates for Principia Mathematica (pp. 301-304).

149



of Huntington:

4.1. Ifa and b are in the class K, then a + b is in the class K.

4.2. Ifa is in the class K, then a' is in the class K.

4.3. a + b = b + a.
4.4. ( a + b) + c = a + ( b + c).

4.5. a + a = a

4.6. ( a /+ b ) /+ ( a /+ b ) /= a.

4.7. Definition. ab = ( a /+ b /) /,

4.8. ab + ab /= a.

This set of postulates is expressed in terms of ( K, +, / ), K is a class of elements a, b, c,

...; a + b denotes the result of a binary operation called logical addition; and a / denotes
the result of a unary operation called logical negation. The set shows how the whole system

can be built up with the operation of addition, or disjunction, and the negation as the sole

primitive relations, or rules of combination. It should be noticed that this time Huntington

does not involve the empty class and the universal class in the postulates. He slips into the

system the universal class, called the 'universe' element of the system, and the empty class,

called the 'zero' element of the system, through explicit definitions, and then gives the proof

of the theorems about them The set contains eight postulates, but he later deleted 4.5., for

it can be deduced from the others (Transactions of the American Mathematical Society,

Vol. 35, p. 557). By aid of the definition 4.7. the postulate 4.6. can be replaced by 4.8.

Huntington recognises that the set four 'appears to be the simplest and most ''natural'' of

all the sets of postulates for Boolean algebra'(Huntington 1933, p. 276).

Moreover, in Appendix I of the paper, Huntington seeks the connection between Boolean

algebra and the Principia through a comparison between set four and the elementary

propositions set forth in Section A of the Principia. So as to make the comparison, he first

quotes the propositions in question from the second edition of the Principia.

1.71. If P and q are elementary propositions, p V q is an elementary

proposition.

150



1.7. Ifp is an elementary proposition, -pis an elementary proposition.

4.31. f-: p Vq. ==. q VP

4.33. f-: (p Vq) V r. == • p V (q V r )

4.25. f-: p . == . p VP

4.5. f-: p . q. ==. - ( - p V - q )

4.42. f-: . p. ss: p . q. V.p. - q

Then, Huntington notes that ifwe call the class of 'elementary propositions' the classK, and

write p + q for p Vq, and p / for -p, then' these propositions are precisely the same as

the postulates of our fourth set of Boolean algebra, except that the sign :;occurs in place

of the sign =' (Huntington 1933, p. 299). Consequently, he goes on to examine the

properties of the sign- as used in the Principia, in comparison with the postulates he lays

down governing the use of the equality sign = in his fourth set. This leads him to distinguish

between what he calls the formal statements and the informal statements in the Principia.

Amongst the informal statements he cites 4.22, which states that':; , denotes 'the relation

of equivalence,' and that the relation of equivalence is reflexive 4.2 ,syrrnnetrical4.21 and

transitive 4.22 '. This comes to the same thing as the three following postulates of the set

for =, which he gives to 'express Boolean algebra in terms of the four undefined concepts

( K, +, /, =)' (Huntington 1933, p. 280).

A. If a is in the class K, then a = a.

B. Ifa = b, thenb = a.

C. If a = b and b = c, then a = c.

Therefore, if the above mentioned informal statement is considered as a valid part of the

theory of the Principia, Huntington can state the following theorem:

with respect to (K, II, -, == ), the informal system of the Principia is a Boolean
algebra (Huntington 1933, p. 300).

One implication of this theorem is that Boole was certainly a pioneer in the progress of

modern fonnallogic since his algebraical procedures survive inmodern abstract algebra, and
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particularly in Boolean algebra. As has been admitted in the Principia, Russell and

Whitehead were 'concerned with rules analogous, more or less, to those of ordinary algebra.

It is from these rules that the usual "calculus of fonnallogic" starts' (Whitehead and Russell

1927, Voll, p. 115). Accordingly, Boole's calculus of classes is, indeed, the historical point

of departure of the Principia, which encompasses the general theory of classes that develops

the whole of aritlnnetic, including algebra, analysis, and so on, as a part of pure logic.

In addition, it is interesting to note that for Quine, the Boolean algebra of unions,

intersections, and complements, which he construes as a 'virtual theory of classes', is logic,

pure logic in disguise, whereas Frege, Whitehead, and Russell's general theory of classes,

which admit 'E' as a genuine predicate, and classes as values of quantifiable variables, is

embarked on a substantive mathematical theory (Quine 1970, p. 72).29Quine even argues

that what is done in the name of set theory is quite within the reach of Boolean notation of

unions, intersections and complements, which 'merely does in another notation what can be

done in that part oflogic of quantification which uses only one-place predicate letters. The

variables in Boolean algebra are unquantified and can be read as schematic one-place

predicate letters'(Quine 1970, p. 69).

4.3.2 Sheffer: A Set of Five Independent Postulates for Boolean Algebras

Sheffer is the first to suggest the name of 'Boolean algebras' in the paper, 'A Set of Five

Independent Postulates for Boolean Algebras', written in 1913. He produces the most

economical set of postulates in that it deals only with one primitive operation:

1. There are at least two distinct K-elements.

2. Whenever a and b are K-elements, a / b is a K-element.

Def. a '= a/a.

3. Whenever a, b, and the indicated combinations of a are K-elements,

(a') '= a.

29. It is not my purpose here to elaborate this point related to the scope of logic and to the reductionist
programme of Frege and his followers (see subsection 6.3.2 and Quine 1970, pp. 61-79).
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4. Whenever a, b, and the indicated combinations of a and b are K-elements,

5. Whenever a, b, c, are the indicated combinations of a, b, and c are K-elements,

The set assumes a class K- elements a, b, c, ... , a binary K-rule of combination the stroke,

,t,and five postulates. It differs from the previous sets in that it contains a smaller number

of postulates, and does not involve existence postulates for the empty class, the universal

class, or negation. He uses negation in some of the postulates, but he defines it as:

Def. a /= a/a.

Later, when he applies the set to primitive logical constants given in the Principia, he

defines disjunction in term of rejection" as follows:

Def. - For any two elementary propositions, p and q,

p uq = (p/q) [I p i q ),

He draws the empty class and the universal class from the postulates, even if they do not

figure in the statement of his postulates. The theorems ofthe empty class and the universal

class are:

IIa. There is a K-element z such that for any K-element a, ( a / z ) /= a
lIb. There is a K-element u such that for any K-element a, a / / u /= a.

The first postulate 1. is an existence postulate which shows that the system is not empty. So

if one does not object to vacuousness, this postulate is dispensable. The second postulate

2. requires that the K-rule of combination / shall be K-c1osed: it is a K-closing postulate.

30 As a logical constant, Sheffer names the stroke "]', rejection 'for, if K is the class of all
propositions of a given logical type, then whenever p and q are two propositions of this type, p / q may be
interpreted as the proposition neither p nor q; in other words, / has the properties of the logical constant
neither-nor (Sheffer 1913, p. 487).
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Postulate 3. is the principle of double negation. Postulate 4. states a relation between a, b,

a /such that the empty class can be defined. The fifth postulate 5. is a proposition of the law

of distributivity for the K-rule of combination [,

Sheffer gives a proof of the equivalence of the set to Huntington's first postulate set of

1904. Such a proof cannot be carried out here; it will suffice to say that a set is shown to

be equivalent to another by defining all the primitive ideas and rules of combination of the

other and by proving its postulates as theorems and vice versa. This is what Sheffer does

whilst demonstrating that there is a reciprocal implication between set 1-5 and Huntington's

set.

Let us say, in concluding, that the development of Boo le' s logical calculus, as a pure formal

process, has been achieved by the axiomatisation of Boolean algebra. The three sets of

postulates for Boolean algebra which have been described above have shown that the same

logical system may be set up in several different ways. The system itself is abstract in the

sense that it is a purely deductive theory, independent of the interpretations which may be

given to the symbols. The logical concepts of the system are meaningful, but their meanings

are not derived from experience, and the ways in which these concepts enter into

combinations do not depend on the empirical world. Hence, the logical syntax of the system

is constituted by the meaningful combinations and relations of the symbols.

However, the structure of the logical system may be applied to classes, to propositional

forms, to several mathematical domains such as geometry, set theory etc ... But, as a logical

syntax, Boolean algebra is an abstract system, of which its interpretation is irrelevant to the

systematic structure. Thus, the logic of the system cannot be defined by the interpretation

of the algebra. From this we can infer a fundamental principle: a logical system is

syntactically independent of interpretation. It is, in other words, purely formal. Then arises

this question: what is really the meaning of the K-elements of the sets and the rules of

combination? They do not have meaning at all, inasmuch as the syntax of the system is not

confined to any meaning in any locus whatsoever.

It should be noticed that all the sets of postulates for Boolean algebra use the words of

ordinary language such as 'for all', 'there are at least', 'if ... then', and thereby require a
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logical system involving a theory of quantification and rules for derivation. In other words,

if one locus of Boolean algebra is a calculus of classes, then there must be a more

fundamental theory about the inference of propositions from other propositions. Such a

more fundamental theory is now provided by Frege's Begriffsschrift.
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Part Three: Frege: Logic in Mathematics



5. An Account of the First Two Parts of Frege's

Begriffsschrift

Cum deus calculat, .fit mundus.

G. W. Leibniz

Introduction

Although Frege and Boole both referred to mathematics, this common reference should not

conceal a difference of conception of the relation between logic and mathematics. Theywere

aware that there is no sharp boundary between them. But, unlike Boole, Frege regarded

logic as more fundamental than mathematics, and distinguished himselfby introducing, for

the first time, logic in mathematics. In the Begriffsschrift published in 1879, Frege

constructed a logical language, that is, as the title of the booklet suggests, 'a formula

language, modelled upon that of arithmetic, for pure thought.' He did so precisely because

he needed such a logical tool, so as to draw mathematical inferences and definitions in a

more rigorous way than could be done with ordinary language, and thereby to lay down the

foundations of arithmetic as an extended logic.

In this chapter, I shall point out the particularity of Frege's work, which constitutes one of

the two research programmes from which modem mathematical logic springs. I will sketch

first the project of Begriffsschrift, which has an ideal of rigorous proof, and discuss how the

concept of formal proofwas conceived by Leibniz. Then I will give an account of the two

first parts of Begriffsschrift, which encompass two major innovations: the device of a

'language of pure thought' capable of representing perspicuously the conceptual content

of a judgement; and a rigorously axiomatized presentation of propositional logic. Finally,

I will discuss how far Begriffsschrift deserves its current predominant place in the history

oflogic.
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But, first, I shall briefly inquire into the concept of logic, so as to elucidate how it is

understood by Frege and Boole.

5.1 What is Logic about?

It is at about the time of the two-volume Grundgesetze der Arithmetik (Basic Laws of

Arithmetic, 1893 and 1903) that Frege spelled out his conception oflogic. In the book, he

stressed the universal validity of the laws of thought, and the distinction between logic and

psychological considerations. His concern was with the difference between logical and

psychological laws and with the notions of objectivity and truth.

I shall sketch two aspects in which Frege's conception oflogic may be apprehended: the

view oflogic as universal laws applicable to every science, and the principle of distinction

between logic and psychology. Then, in the light of the epistemological framework whereby

Frege approached this distinction, I shall show that Boole shares much the same conception

oflogic.

5.1.1 Logic as Universal

Frege regards logic as a science with laws, which are universal and applicable to every

science. It determines the nature and conditions ofvalid reasoning, which scientists employ

in attempting to introduce order into their disciplines. He says:

it will be granted by all at the outset that the laws of logic ought to be guiding principles
for thought in the attainment of truth ... Inone sense a law asserts what is; in the other
it prescribes what ought to be. Only in the latter sense can the laws of logic be called
'laws of thought' ... only if we mean to assert that they are the most general laws,
which prescribe universally the way in which one ought to think: if one is to think at all
(Frege 1893, I, XV).

Thus, the logical laws are laws of thought only in the sense in which they prescribe what

ought to be and not what is. They are meant to be applicable to all scientific reasoning.

Hence, logic becomes a standard in the sense that the laws which regulate this particular

kind of reasoning are normative for any other kind of science that involves reasoning as a

means ofjustifying its truth. But how does logic occupy this very central position amidst all
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other sciences? - By its unqualified universality.

Weiner characterises the universality of logic as follows: 'the justification of a truth that can

be inferred from the logical laws is not dependent of any particular facts. On the other hand,

since the variables range over the entire universe, including the realm of natural sciences,

Frege's logical laws can be used in inferences concerning any objects that are the subject of

some special science'(Weiner 1990, p. 70). Thus, the structure ofFrege's logical language

justifies its universal applicability in inferences occurring in any science whatsoever. This

structure is represented by the logical constants such as negation and the conditional signs,

and by the variables. The quantifiers that bind the variables capture multiple generality, and

permit generalisation over all objects. This syntactical universal language does not restrict

itself to any particular branch of science, and so its truths are 'maximally general truths'

concerned with concepts and relations of all science. As Ricketts says, 'purely logical laws

then set forth generalizations that, not mentioning any objects or concepts investigated by

the special sciences, do not distinguish among these. It is in this sense that logic, on the

universalist conception, is the maximally general science' (Ricketts 1996, p. 123).

5.1.2 Psychologism versus Logic

There now arises the question as to how logic is concerned with truth. The attempt to

answer this question prompts Frege to state a principle: 'always to separate sharply the

psychological from the logical, the subjective from the objective'(Frege 1884, p. X). He

does so whilst explaining what he means by' being true' and 'being taken to be true':

being true is different from being taken to be true, whether by one or many or
everybody, and in no case is to be reduced to it. There is no contradiction in
something's being true which everybody takes to be false. I understand by 'laws of
logic' not psychological laws of takings- to-be-true, but laws of truth ... If being true
is thus independent of being acknowledged by somebody or other, then the laws of truth
are not psychological laws: they are boundary stones set in an eternal foundation, which
our thought can overflow, but never displace (Frege 1893, I, XVI).

Frege prises apart logical laws and psychological ones. Psychological laws are subjective and

dependent upon what the subject holds to be true, whereas the laws oflogic are objective

and independent of what is held as true by anyone.
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In psychology, the laws of judgement are the same type as the laws of nature governing

events in the external world. By contrast, in logic, the laws ofthought are 'laws of valid

inference' giving a proof of truth. They are not conceived as laws that describe how one

comes to hold something as true. The laws of valid inference require that the truth of a

thought rests upon previously assumed thoughts, that if the premises are true, then the

following thoughts must also be true. They are concerned with the justification of thoughts,

and tell us how one should think by giving a normative account of the correct use of

thinking. Thus, logic is a regulative science. As Frege puts it,

to make a judgement because we are aware of other truths as providing a justification
for it is knownas inferring.There are laws for this kindofjustification, and to establish
these laws of correct inference is the goal of logic (Frege 1879/91, p. 3).

On the other hand, psychology is not concerned with justification of judgements, but rather

with their 'causes' that have no inherent relation to truth. As Frege sees it, 'the causes which

merely give rise to acts of judgement do so in accordance with psychological laws; they are

just as capable ofleading to error as ofleading to truth; they have no inherent relation to

truth whatsoever; they know nothing of the opposition of true and false' (Frege 1879191,

p.2).

In Frege's eyes, psychologism as 'the corrupting incursion of psychology into

logic'(FregeI893, XIV p. 12) has two varieties: (i) the reduction oftruth to an individual's

taking something to be true (Frege 1893, XV p. 13), and (ii) the beliefin empirical evidence

as basis for philosophy (Frege 1879191, p. 2).31It erects an 'epistemological obstacle' which

logic must surmount in order to reach the realm of objective knowledge. For him,

it is the business of the logician to conduct an unceasing struggle against psychology
and those parts of language and grammar which fail to give untrammelled expression
to what is logical.He doesnot have to answer the question:how does thinkingnormally
take place in human beings?What course does it naturally follow in the human mind?
(Frege 1879/91, pp.6-7)

Frege takes it that in order to eliminate psychologism from logic one must espouse realism

31 These two varieties of psycho log ism are also pointed out in The Foundations of Arithmetic (1884)
where Frege repels the invasion of psychology of mathematics by answering negatively these two questions:
(i) is number something subjective? (p. 33); and (ii) are the laws of arithmetic inductive truths? (p. 12).

160



or Platonism". Indeed, in the late paper Thoughts (1918-19) he describes thoughts as

neither things in the external world nor ideas. He claims instead the existence of a 'third

realm' in addition to that of the external world and the realm of subjective ideas, such that

thoughts are abstract objects that exist independently of us in this realm.

5.1.3 Boole and Frege on Logic

The epistemological framework in which Frege poses the problem of psycho log ism seems

to include Boole among those who are criticised. For Boole's references to 'mental acts'

have prompted many authors to label his view of logic as a kind of psychologism. For

instance, inFrege: An Introduction to His Philosophy, Currie argues that 'Boole's ideas on

the philosophy oflogic exemplify some aspects of psycho logism' (pp. 15-16). As for Baker

and Hacker, in Frege: Logical Excavations, they hold that 'Boole had taken it for granted

that the laws of logic are in some sense laws of psychology' (Baker and Hacker 1984, p.

41).

But, if the two varieties of psycho logism which Frege criticises are related to subjectivity,

that is, the products of the individual mind and the use of inductive methods, then the

characterisation of Boo le's logical conception as psychologism does not hold water. Boole

conceives the laws oflogic as the same for all of us. This does not by itself show that they

are not psychological. But he also holds that logic is independent of the thinking subject, and

this does imply a non-psychological conception oflogic. In The Mathematical Analysis of

Logic, he heralds clearly that

it will not be necessary that we should here enter into the analysis of that mental
operation which we have represented by the elective symbol ... Our present concern
is rather with the laws of combination and of succession, by which its results are
governed, and of these it will suffice to note the following. The result of an act of
election is independent of the grouping or classification of the subject
(Boole 1847, p.16).

32 There are different accounts of what Frege's Platonism amounts to. Thus, there is a philosophical
dispute which flows from the enquiry into the question whether Frege is an epistemological or ontological
Platonist. I shall refer the reader to Dummett, 'Platonism', in Truth and Other Enigmas, (pp. 202-214) Joan
Weiner, Frege in Perspective (pp. 176-224), Sluga, Gottlob Frege,(pp. 100-107), and Baker and Hacker,
Frege: Logical Excavations, (pp. 59-62).
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Accordingly, Boole aims to inquire into the fundamental laws of those operations through

which reasoning is carried out, so as to express those laws in the symbolic language of

logical calculus, and thus to demonstrate that logic is the science of reasoning. As he puts

it, 'logic while it is the science of reasoning in general is in a more especial sense the science

of reasoning by signs. It investigates the forms and the expressions to which correct

reasoning may be reduced and the laws upon which it is founded' (Boole 1848a, p. 1).

Hence Boole is not concerned with the question of 'how people actually think'. He wants

rather to give a normative explanation of the correct use of reasoning. There is no trace of

subjectivism in this investigation of the actual laws governing thought. Kneale corroborates

this view when he writes that 'although Boole called his most ambitious work on logic The

Laws of Thought and sometimes wrote as though he supposed himself to be investigating

the constitution of the human intellect, it is clear that his algebra has nothing to do with

thought processes. In each of the interpretations which we call logical it is concerned with

relations between entities that are entirely non-mental' (Kneale 1962, p. 738).

There is also no trace of Mill's psychologism in Boole's logical investigations. Indeed, in

The laws of Thought, he disqualifies the use of inductive methods when he says:

the knowledge of the laws of mind does not require as its basis any extensive collection
of observations. The general truth is seen in the particular instance, and it is not
confirmed by the repetition of instances. [... ] A general truth in Logic. .. is made
manifest in all its generality by reflection upon a single instance of its application. And
this is both an evidence that the particular principle of formula in question is founded
upon some general law or laws of the mind, and an illustration of the doctrine that the
perception of such general truths is not derived from an induction from many instances,
but is involved in the clear apprehension of a single instance (Boole 1854, p. 4).

Certainly, Boole is here aiming at Mill, to whom he explicitly refers in a letter addressed to

John Penrose on the 13th March 1855: 'on the other hand writers like Mill seem to me to be

equally in error who maintain openly or by implication that propositions are unmeaning

unless their terms relate to the distinctly conceived objects of individual experience ... It

seems to be a law of human reason that we can in various instances affirm propositions

without absolute certainty of their truth, respecting things which we can only picture or

represent to ourselves as the limits of an indefinite process of abstraction. Nearly all if not

all scientific truths are of this kind (Boole 1855, p. 200).
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Thus, Frege's arguments against psychologism in Mill's sense do not apply to Boole. On the

contrary, Frege and Boole both criticise empiricism, which is a variety of psychologism

which regards the laws oflogic as obtained by induction from observations. Moreover, it

is significant that whilst levelling his criticism at psychologism, Frege never mentions Boole

as amongst those who advocates it. Knowing how polemical he is, it may be supposed that

Frege is conscious of the resemblance between his logical conception and Boole's.

Indeed, in a fragment of Boo le's manuscripts, there is the following view oflogic similar to

Frege's universalist conception oflogic:

the phenomenal study of things belongs to physics or to psychology, the inquiry into
their absolute nature if indeed such an inquiry be possible is the business of
metaphysics. Logic has other objects and is concerned with other relations - but as the
relations with which it is concerned are universal (for all existing things can be
contemplated under the notion of class or kind) Logic stands related to all other sciences
(Grattan-Guinness 1997, p. xlviii).

Regardless of everything that mayparticularise their two systems, Boole and Frege form the

two sides of mathematical logic as a science. As Kneale puts it, 'Boole and Frege, like

Leibniz before them, presented logic as a system of principles which allow for valid

inference in all kinds of subject-matter ... ' (Kneale 1962, p. 739). Boole regards logic as

having a subject matter which determines what follows necessarily from a proposition. Thus

he says, 'when one or more propositions are given and from these we can infer the truth of

some other proposition not identical with the given ones such a conclusion is obtained by

a process of reasoning' (Boole 1848a, p. 2).

Furthermore, it should be pointed out that Boole even holds a surprising epistemological

view close to Frege's conception of science. He writes,

it may, perhaps, be permitted to the mind to attain a knowledge of the laws to which it
is itself subject, without its being also given to it to understand their ground and origin,
... Such knowledge is, indeed, unnecessary for the ends of science, which properly
concerns itself with what is, and seeks not for grounds of preference or reasons of
appointment ... It is to be remembered that it is the business of science notto create
laws. but to discover them. (Boole 1854, p. 11).

As a scientist, Boole does not investigate the ground or origin of knowledge which is likely
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to lead only to metaphysical discussion. He rather seeks to discover the laws inherent in

'what is' and to exhibit them, so as to give their objective and universal characteristic. In his

eyes, 'the object of science, properly so called, is the knowledge of laws and relations'

(Boole 1854, p. 39). This view leads him to state an epistemological principle: the laws of

reasoning must be independent of metaphysical theories of the nature of the mind. These

laws have a real existence and 'contain an element of truth which no ulterior criticism upon

the nature, or even upon the reality, of the mind's operations, can essentially affect' (Boole

1854, p. 40).

In effect, for Boole mathematical and logical propositions are necessary truths but, due to

the imperfection of the senses, escape exact verifiability. He inquires about what these

propositions really are. Are they merely a collection of experiences or does the mind supply

some connecting principle of its own? For him, neither individual objects of experience, nor

the mental images which they suggest, can give the correct answer. Mathematical and

logical truths are, in some sense, out there to be discovered. Thus Boole seems to hold a

Platonist or realist position. He says

although the perfect triangle, or square, or circle, exists not in nature, eludes all our
powers of representative conception, and is presented to us in thought only, as the limit
of an indefinite process of abstraction, yet, by a wonderful faculty ofthe understanding,
it may be made the subject of propositions which are absolutely true. The domain of
reason is thus revealed to us as larger than that of imagination (Boole 1854, p. 405).

This position, which indicates that truths about mathematical objects are eternally true and

are true independent of us, is exactly what Frege holds when he says,

numbers do not undergo change, for the theorems of arithmetic embody eternal truths.
We can say, therefore, that these objects are outside time; and from this follows that
they are not subjective percepts or ideas ... (Frege 1895b p. 230).

5.2 The Project of Begriffsschrift

Although Frege was well acquainted with the formula language of mathematics, he makes

clear that the modelling oflogic upon the formula language of arithmetic, at which he hints

in the title of his pamphlet, 'refers more to the fundamental ideas than to the detailed
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structure'(Frege 1879, p. 104). So he keeps logical symbols distinguished from those of

arithmetic, so as to avoid confusing them. In his eyes, logic is both a lingua characterica

and a calculus ratiocinator in the Leibnizian sense; hence logic is adequate for expressing

mathematical inference, and not a mere calculus restricted to abstract logic. Unlike Boole,

it is not in question for Frege to establish an 'artificial similarity' between the notations of

arithmetic and logic, but to introduce logic into mathematics through the logical

reconstruction of arithmetic. This leads Frege to design the Begriffsschrift.

5.2.1 An Ideal of Rigour in The Proof

Frege believes that mathematics is derivable from logic, and he wants to employ a logical

tool to prove it. But, he realises that he cannot succeed without developing a 'formula

language of pure thought', for ordinary language is not suitable to represent proofs. Hence,

it is the ideal of a perfect rigour in mathematical procedure that gives rise to the project of

Begriffsschrift.

Indeed, Frege strives 'to reduce the concept of ordering-in-a-sequence to that of logical

ordering, in order to advance from here to the concept of number' (Frege 1879, p. 104).

There follows the project of Begriffsschrift:

so that something intuitive could not squeeze in unnoticed here, it was most important
to keep the chain of reasoning free of gaps. As I endeavoured to fulfil this requirement
most rigorously, I found an obstacle in the inadequacy of language; despite all the
unwieldiness of the expressions, the more complex the relations became, the less
precision - which my purpose required - could be obtained. From this deficiency arose
the idea of the 'conceptual notation' presented here. Thus, its chief purpose should be
to test in the most reliable manner the validity of a chain of reasoning and expose each
presupposition which tend to creep in unnoticed, so that its source can be investigated
(Frege 1879, p.l04).

Frege aims to exhibit a chain of inference in which there are no gaps. It is not only required

to make explicit the mathematical principles which provide the content ofmathematics, but

also the underlying logical principles which ensure its formal structure.

The logical connections between mathematical formulae cannot be expressed in ordinary

language, which is imprecise and ambiguous. But there is symbolism for mathematical
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procedure which can exhibit the validity ofmathematical definitions and inferences. Hence,

in order to achieve an ideal of rigour in proof, Frege builds up a formula language which is

more adequate than ordinary language.

Accordingly, the necessity of a formula language stems from the inadequacy of ordinary

language as a tool for the aim of representing perspicuously logical inferences involved in

mathematical proofs. Frege then constructs a 'language of pure thought', that is, a system

of conceptual notation with all the rigour it needed to ensure that mathematical inferences

are protected from the imprecisions and the ambiguities of ordinary language. He presents

it as the support and the object of a logical calculus, which would be then performed

independently of the meaning of the symbols.

Frege has already discovered that Aristotelian logic, which analyses propositions in terms

of subject and predicate, is not also an appropriate instrument to represent all the logical

principles that enter into the formal structure of mathematical inferences. Instead, he sets

out to analyse propositions into function and argument, which then allows him to carry out

the validity of inferences concerning with multiple generality that occur in mathematics. As

a result, he performs a revolution in logic.

The project of Begriffsschrift is then the construction of a notation for representing

inferences and the setting up of a formal system for rigorously testing their validity.

5.2.2 Leibniz and The Concept of Formal Proof

In the preface ofthe Begriffsschrift, Frege speaks of the attempts made by his predecessors

like Leibniz who, had had an idea of a universal characteristic, called calculus ph ilosophicus

or ratiocinator, that is, of an adequate system of notation which represents by appropriate

symbols concepts and logical operations, and submits them to a formal algorithm.

I shall briefly describe the intellectual ambience in which the concept of formal proof

emerged at the time of Leibniz, who posed the 'bare preliminaries' of the formalisation of

logic, which Boole then developed elegantly in his logical investigations.
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In the seventeenth-century intellectual revolution, which laid down the foundations for the

modem scientific epoch, it was increasingly common to discredit logic. Descartes was

particularly famous for vehemently opposing Aristotelian-scholastic deduction. For him, the

criterion of truth being clarity and distinctness, it should not be in question for reason to rely

upon the traditional logical rules. The mnemonic verses such as bArbArA and cElArEnt are

useless: they are pure psittacism which blunts our reason and should then be booted out of

philosophy to rhetoric. Truth can solely be grasped by what he called inspectio mentis, that

is, the intuitive or psychological perception of a clear and distinct idea. At the bottom of

Regula X, he wrote:

it may perhaps strike some with surprise that here, where we are discussing how to
improve our power of deducing one truth from another, we have omitted all the precepts
of the dialecticians, by which they think to control the human reason. They prescribe
certain formulae of argument, which lead to a conclusion with such necessity that if the
reason commits itself to their trust, even though it slackens its interest and no longer
pays a heedful and close attention to the very proposition inferred, it can nevertheless
at the same time come to a conclusion by virtue of the form of the argument alone.

Since Descartes wanted to pay 'a heedful and close attention to the very proposition

inferred', so as to keep his mind attentive whilst examining the truth, he rejected the

formulae of argument prescribed by the logicians called 'dialecticians', and then added:

it may appear still more evident that this style of argument contributes nothing at all to
the discovery of the truth, we must note that the Dialecticians are unable to devise any
syllogism which has a true conclusion, unless they have first secured the material out
of which to construct it, i.e. unless they have already ascertained the very truth which
is deduced in that syllogism. Whence it is clear that from a formula of this kind they can
gather nothing that is new, and hence the ordinary dialectic is quite valueless for those
who desire to investigate the truth of things. Its only possible use is to serve to explain
at times more easily to others the truths we have already ascertained; hence it should
be transferred from Philosophy to Rhetoric (Descartes 1955, pp. 32-33).

This depreciation ofthescholastic teachings is symptomatic of the ignorance of Descartes

of what a proof is. As Hacking tells us, 'Descartes thought that truth conditions have

nothing to do with demonstration'{Hacking 1973, p. 1). However, what the seventeenth

century called 'geometers' method' is a method of proof Geometry is indeed a deductive

science based upon definitions and axioms which allow the inference of theorems.

Leibniz, who knew what proof is, recognised the importance of geometry as a formal
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procedure. Hence by attempting to restore to logic its status of rigorous science, he pointed

out that

logic admits of demonstrationas much as geometrydoes, and geometers' logic that is,
the methodsof argumentwhichEuclid explainedand establishedthrough his treatment
of proportions, can be regarded as an extension or particular application of general
logic (Leibniz 1765, IV, II, 13, p.371).

He contrasted the Cartesian psychological criterion oftruth with the method of geometers,

which provides proofs, and thereby demonstrates their conclusions to all human beings.

Consequently, Leibniz assessed logic differently from Descartes and the majority of the

thinkers of his time. In the New Essays, in responding to Locke who, wanted to get rid of

logic, he corrected the current unbridled attitudes against logic as follows:

Ihold that the inventionof the syllogisticform is oneof the finest, and indeedone of the
most important, to have been made by the human mind. It is a kind of universal
mathematics whose importance is too little known. It can be said to include an art of
infallibility, provided that one knowshowto use it and gets the chanceto do so- which
sometimesone does not. But it must be grasped that by 'formal argument' Imean not
only the scholastic manner of arguing which they use in the colleges, but also any
reasoning in which the conclusion is reached by virtue of the form, with no need for
anything to be added. So: a sorites, some other sequence of syllogisms in which
repetition is avoided, even a well drawn-up statement of accounts, an algebraic
calculation, an infmitesimalanalysis- I shall count all of these as formal arguments,
more or less, because in each of them the form of reasoning has been demonstrated in
advance so that one is sure of not going wrong with it (Leibniz 1765, IV, XVII, 4,
p.479).

This passage itself sums up the view of Leibniz on traditional logic. On the one hand it

reveals the admiration he had for the syllogistic forms of reasoning. But on the other hand

it shows clearly that this admiration concerns the formal proof which underlies these

procedures. In opposition to Descartes and Locke, who condemned formalism, Leibniz

knew what a proof is, that is, 'a sequence of sentences beginning with identities and

proceeding by finite number of steps of logic and rules of definitional substitution to the

theorem proved' (Hacking 1973, p. 4). Hence, he admired syllogistic theory in that the

inferences are valid in virtue of its form, not its content. As Hacking sees it,

the merit of the old systemwas that it gave us some understanding of the nature and
interconnectionof truths. The demeritwas the inadequacyof the impliedmethodology
of doingphysics by deduction.SoLeibnizgrafted a newmethodologyon the old theory
of demonstration ... It is turned into the theory of formal proof. In the old tradition
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onlyuniversalpropositions are subjectto demonstration.Inthe newpractice, onlywhat
we now call pure mathematics fits this model (Hacking 1973, p. 14).

Now, the new methodology that Leibniz grafted on the old theory of demonstration is

envisaged as a project of formulating a universal characteristic,

which renders truth stable, visible and irresistible, so to speak, as onmechanical basis
... Algebra, whichwe rightlyhold in such esteem, is only a part of this general device.
Yet algebra accomplishedthis much- that we cannot err even if we wish and that truth
can be grasped as if pictured on paper with the aid of a machine. I have come to
understand that everything of this kind which algebra proves is due only to a higher
science,whichI nowusually call a combinatorial characteristic (Hacking 1973,p. 5).

This combinatorial characteristic provides a kind of thread that could guide us infallibly into

the labyrinth of proofs featuring any demonstration. It is a direct result of the marriage

between mathematics and logic. It turns resolutely towards the future in that it anticipates

modem 10gic by laying down the foundation upon which modem mathematicallo gic is built.

Leibniz first designed his project in his early work in which he heralded the undertaking to

set up a system ofwritten symbols separated from speech, and directly expressing the fact. 33

Then, he discussed it later in the New Essays, where he aimed to overcome the difficulties

relating to 'general truths' that are almost incomprehensible because 'conceived and

expressed inwords'. He suggested replacing the spoken words with a 'Universal Symbolism

- a very popular one', that is, a system of 'little diagrams' independent of ordinary language

in which the' little diagrams' and their combination stand directly for things and not words,

in such a way that each people may express and understand them on their own (Leibniz

1765, VI, II, 13, p.399). It is a symbolical system, or an ideography language in which the

words and their combinations are depicted in characters or signs to ensure the possibility of

fixing firmly to the paper diverse sequences of reasoning, so as to enable one to grasp at a

glance their syntactical structure. Such a pictorial symbolism would literally 'speak to the

eyes', and would sustain our steps into the labyrinth of proofs like 'the little wheeled device

which keeps toddlers from falling down'(Leibniz 1765, IV, II, 13, pp.371-372}.

Leibniz built up his system oflogic in such a way as to make 'a chain of reasoning which will

33 In his 'Dissertation on Combinatorial Art' written in 1666, Leibniz in studying the combinatorial
method, which is based upon the decomposition of ideas in simple elements, claimed 'Notas quam maxime
naturales '.
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represent all the argumentation even of an orator. It will have been stripped of its

ornamentation and reduced to the bare bones of "logical form"'(Leibniz 1765, IV, XVII,

4, pA81). He preferred the numbers and the symbols of algebra for expressing his

characteristic rather than Chinese or Egyptian hieroglyphs, because the former allows us to

carry out reasoning and demonstrations by a calculus analogous to those of arithmetic and

algebra, whereas the latter serve to represent ideas or facts. Hence Leibniz realised that the

universal characteristic was a symbolic language that could be treated as a calculus of

reasoning, like an algebra. Thus, the characters represent the 'alphabet ofhuman thought'

within which we could define all our concepts through the operations of negation,

conjunction, and disjunction. In other words, they are primitives concepts from which

complex concepts could be built by means of rules of combination. Leibniz called this

process of building complex concepts 'the art of combination', which is a calculus of

reasoning.

It follows that the logical project of Leibniz may be seen as mathematics under the two

aspects of lingua characterica and of calculus ratiocinator, which both laid down the

foundation upon which modem mathematical logic is built. He modelled his system oflogic

upon mathematics as a universal formula language, because what makes mathematics

successful in its demonstrations is the fact that, as a deductive science, it proceeds apart

from the contents of its propositions. It then appears that mathematics and logic both aim

at an ideal of formal proof which should connect them inextricably. But, as opposed to

modem conceptions of mathematical logic, Leibniz failed to realize that the relations

involved in his combinatorial characteristic must be analysed. He took for granted the truth

of the primitive concepts since they were to be given by means of 'the alphabet of human

thought'. In truth this seems to be a mistake since, as has been seen, (see section 4.3) the

primitive concepts of an axiomatic system are not given; they are, to some extent at least,

arbitrarily singled out.

In addition, Leibniz did not really achieve his logical project, which came to us in a

fragmentary form." But in the nineteenth century, following the way paved by Leibniz,

34 It is Couturat and Russell's interpretation of his logic that makes it possible to reconstruct now
Leibniz 's latent idea of a mathematical logic. This interpretation can be found in Couturat: La Logique de
Leibniz, 1985; and Russell: A Critical Exposition of The Philosophy of Leibniz, 1900.
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Boole performed a calculus ratiocinator by clothing logic in the dress of algebraic

symbolism, and thereby carried out a formal proof which a scientific theory of deductive

reasoning needed. Thus, it can be said that Leibniz and Boole, who both knew the

importance of formal proofin a system of truths, began what Begriffsschrifl subsequently

developed more systematically: a Universal Characteristic, which represents perspicuously

logical relations.

In this connection Russell holds:

mathematical logic (. . .) is mathematical in two different senses: it is itself a branch of
mathematics, and it is the logic which is specially applicable to other more traditional
branches of mathematics. Historically it began as merely a branch of mathematics; its
special applicability to other branches is more recent development. Inboth respects, it
is the fulfilment of a hope which Leibniz cherished throughout his life, and pursued with
all the ardour of his amazing intellectual energy (Russell 1922, p. 49).

Although it seems to be sketchy, it may be plausible to infer from Russell's analysis that

Boole's logical system is the realisation of the first aspect ofthe logical project ofLeibniz,

which makes it a 'branch of mathematics', whereas Frege's logical system is the

achievement of the second aspect of characteristic language 'applicable to other more

traditional branches of mathematics' .

5.3 A Formula-Language For Pure Thought

Frege attempts 'a fresh approach to the Leibnizian idea of a lingua characterica'. As a

mathematician, he realises that the condition for introducing correct reasoning in

mathematics requires a symbolic notation which represents the logical structure of reasoning

of any kind. Hence, he builds up a system of signs written with special symbols 'for pure

thought', expressing 'conceptual content.' In this formula-language, the symbols and their

combinations must be precisely defined in such a way that the rules of deduction assure the

validity ofthe reasoning. As a result, Frege carries out for the first time the Leibnizian idea

of a lingua characterica.

5.3.1 Frege's Symbolic Notation
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Frege divides all the symbols he employs into 'those which one can take to signify various

things and those which have a completely fixed sense. '(Frege 1879, p. 111) The first are the

letters which serve for the expression of generality. But, although we can give to a letter any

sense we wish, Frege insists that we must retain the same sense throughout the context in

which the letter occurs. The second serve for the expression of negation, conditionality and

identity. As in mathematics, the terms 'variables:" and 'constants' maybe respectively used

to designate these two kinds of symbols. But these terms are best understood only when

Frege introduces his semantic theory." In the first chapter of Begriffsschrift Frege lets the

capital letters 'A' and 'B' abbreviate the propositions. But he does not follow this practice

in the second chapter where he takes small case letters 'a', ob' and so on as abbreviations

for the propositions.

Since Frege's notation is concerned with 'conceptual content', he distinguishes 'judgment'

from its mere 'content' and employs two signs to capture the distinction. I shall give the

definition of the symbols employed in Frege's conceptual notation.

5.3.1.1 The Content-Stoke

The content of a judgment is regarded as a 'combination of ideas': e.g., a complete sentence

and its sign is 'combined ... into a whole' by a horizontal stroke prefixed to the sign, e. g.,

---A

The long horizontal line to the left of the proposition is called the 'content stroke', that is,

35 Frege prefers to call the symbols 'italicised letters' instead of using the expression 'variable',
which he regards as misleading in his paper, 'Logical Defects in Mathematics' (see Frege 1898/99, pp. 159-
66). Indeed, as Quine says it, 'a variable is not best thought of as somehow varying through time, and
causing the sentence in which it occurs to vary with it. Neither is it to be thought of as an unknown quantity,
discoverable by solving equations' (Quine 1974, p. 122).

36 For, as Church defines them, a variable is a symbol which has a certain non-empty range of
possible values; and a constant is a proper name having a ~enotation (Churc.h. 1956, p '. 9). A variable for
which sentences expressing propositions may be substituted IS called a propositional variable. The range of
a propositional variable is the two truth-values.
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a 'mere combination of ideas, 37 of which the writer does not state whether or not he

acknowledges its truth'(Frege 1879, p. 111). The complete symbol can be read as 'the

circumstance that' or the 'proposition that'." This paraphrase intends to highlight the fact

that the assertible-content does not have an assertoric force.

5.3.1.2 The Judgment-Stroke

If the given content is asserted for expressing ajudgment, that is, to acknowledge its truth,

then the 'judgment stroke' is added to the left end of the content stroke: e. g.,

t----A

For Frege ' ... the horizontal stroke ... ties the symbols which follow it into a whole; and

the assertion, which is expressed by means of the vertical stroke at the left end of the

horizontal one, relates to this whole'(Frege 1879, p. 112). Thus, the judgment stroke

expresses the 'assertion' of the whole formed by the sign for the content and the content

stroke." The composite prefix may be construed as 'the common predicate of all

judgments', in so far as any proposition can be given in the form '... is a fact', e.g., 'The

violent death of Archimedes at the capture of Syracuse is a fact'. Here then 'the subject

contains the whole content, and the predicate serves only to present this as a judgment. '

Frege says that 'such a language would have only a single predicate for all judgments,

37 Instead of combination of 'ideas', the reader can read 'thought', for Frege writes that he now
simply says "Gedanke" ( see Van Heijenoort 1970, footnote 6).

38 Instead of 'circumstance' and 'proposition' Frege would simply say 'thought' (see Van Heijenoort
1970, footnote 9).

39 In Principia Mathematica, Whitehead and Russell employ the assertion sign and put it before their
symbolic propositions. But the presence of the sign shows that 'there is no need of the distinction between
real and apparent variables, nor of the primitive idea "assertion of a propositional function.'" According to
them, an asserted proposition of the form ';-. f x' is taken as meaning ';-. (x) f x.'(Whitehead and
Russelll927, vol. 1, p. XIII). In Mathematical Logic, Quine comes near enough to this interpretation to
justify his retention of the notation. He employs the sign as a syntactical notation which plays the role of an
abbreviation. He writes ";-. (¢)" to mean that the closure of ¢ is a theorem' (Quine 1961, p. 88). In
Introduction to Mathematical Logic, Church uses the sign 'as a syntactical notation to express that a well-
formed formula is a theorem. Thus ";- p .::Jp" may be read as an abbreviation of "p .::Jp is a theorem'" The
notation enables him to state a metatheorem about simultaneous substitution which he then uses as a derived
rule ojinjerence (Church 1956, p. 83). This has become standard notation.
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namely "is a fact'?" (Frege 1879, p. 113). Frege introduces the judgment-stroke or the

assertion sign in order to distinguish rigorously judgement from assertible-content within the

formal notation for inference. He points out that 'the relation in a hypothetical is not one

between judgements but between contents of possible judgement, But if I affirm that this

relation holds, I then express a judgement' (Frege 1880/81, l ln).

5.3.1.3 The Negation-Stroke

The negation-stroke is placed vertically under the content-stroke dividing it into two parts.

The part to the right of the negation stroke is the content stroke of the original content, the

part to the left that of its negation. The whole expresses that the 'content does not occur'

without expressing whether this thought is true. Thus, negation attaches to the underside

of the content stroke and is a mark of a possible content of judgment but not an act of

judgment, e.g.,

--.--A

5.3.1.4 The Conditional-Stroke

Frege introduces the condition-stroke as follows: If A and B stand for possible contents of

judgment, there are the four following possibilities:

A affirmed, B affirmed;

A affirmed, B denied;

A denied, B affirmed;

A denied, B denied.

In this tabulation of the four possibilities, Frege, without giving any further justification,

40 This view according to which the judgement stroke may be regarded as equivalent to the common
predicate of all judgements, that is, ' ... is a fact' was repudiated by Frege in On Sense and Reference
(1892), where he argues that a truth-value cannot be a part of thought but the reference of sentence (see
Frege I892a, p. 64).
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does not use the word 'true' and 'false' but rather 'affirmed' and 'denied'. In fact, in the

Begriffsschrift, he does not employ truth-values. It can be, however, inferred from his

explanation of the meaning of the conditional stroke that he is thinking of using the truth-

table method. There follows a puzzling point, in so far as it is quite clear that in his

Foundations of Arithmetic and the publications that come after, the conception of truth

constitutes a determining factor in Frege's logical writings. Why does Frege move from

'denied' to 'false', from 'affirmed' to 'true'? Sluga conjectures that this change of

terminology is accompanied by a new interest in the notion of objectivity, which is an

essential part of the attempt to clarify the notion of truth (Sluga 1980, p. 111). Certainly,

this explanation that links objectivity, thought, or sentence to truth would dovetail with

Dummett's view that 'the root notion of truth is then that a sentence is true just in case, if

uttered assertorically, it would have served to make a correct assertion'(Dummett 1991a,

p.165- 6).

The formula:

'stands for the judgment that the third of these possibilities does not occur, but one of the

other three does.' In other words, 'it is denied that A denied and B affirmed' namely, the

third possibility. For Frege, 'the vertical stroke which connects the two horizontal ones is

the conditional stroke. The part of the upper horizontal stroke situated to the left of the

conditional stroke is the content stroke for the meaning (... ) of the symbol combination;

to this is attached every symbol which is intended to relate to the content of the expression

. as a whole. The part of the horizontal stroke lying between A and the conditional stroke is

the content stroke of A. The horizontal stroke to the left of B is the content stroke of B'

(Frege 1879, p. 116). Frege holds that we can make a judgement expressed by the above

formula without knowing whether A and B are to be affirmed or denied. As an example, he

takes B to stand for 'the circumstance that the moon is in quadrature [with the sun]', and

A 'the circumstance that it appears as a semicircle'. In this case, he claims that the formula

can be translated with the aid of the connective 'if: 'if the moon is in quadrature [with the
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sun], it appears as a semicircle'(Frege 1879, pp. 115-116). Thus, Frege reintroduces the

symbolical expression of the conditional that turned out to be the 'material' conditional,

which was favoured by Philo of Megara in antiquity but had been cast away by logicians

(except Boole). Frege notices that the third possibility 'not ( B and not -A )' has some

logical properties in common with the ordinary language expression 'if B then A'. But he

also stresses that the symbol does not fully correspond to the conjunction 'if. He says that

'the causal connection implicit in the word "if', however, is not expressed by our symbols,

although a judgement of this kind can be made only on the basis of such a connection; for

this connection is something general, but at this point we do not yet have an expression for

generality' (Frege 1879, p.116). This last comment indicates that Frege holds that the

introduction of the notation for generality enables him to express perspicuously causal

connections.

From the sign of conditionality, Frege draws the expression of a simpler more perspicuous

rule of inference that is, the rule of modus ponens (see subsection 5.4.2). When combined

with the sign of negation, the sign of conditionality also enables him to define the other

signs, e.g.,

h=cA

B

is translated by 'the case in which B is to be affirmed and the negation ofA is to be denied

does not occur'; or 'the possibility of affirming both A and B does not exist'. 'A and B

exclude each other'. Hence, the following cases are obtained:

A affirmed, B denied;

A denied, B affirmed;

A denied, B denied.

The negation of the whole content of this judgement gives the formula:

~A
B
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which is translated by 'the case in whichA and B are both affirmed occurs', or' Both A and

B are facts': that is the conjunction. Hence, the following case is obtained:

A affirmed, B affirmed.

Frege could have used conjunction as primitive connective instead ofthe conditional stroke.

The great advantage, however, of taking the conditional as primitive is the fact that it

connects directly with modus ponens as a simpler rule of inference. As he puts it, 'instead

of expressing "and" by means of the symbols for conditionality and negation, as is done

here, we could, conversely, represent conditionality by means of a symbol for "and" and the

symbol for negation' (Frege 1879, p.123).

The formula:

means 'the case in which A is denied and the negation of B is affirmed does not obtain', and

is translated by 'A and B cannot both be denied': that is the disjunction. Hence the following

cases are obtained:

A affirmed, B affirmed;

A affirmed, B denied;

A denied, B affirmed.

Another way of describing this case is as one where' A or B' is affirmed, as long as one

adopts the inclusive use ofthe expression 'A or B' in which the joint affirmation of A and

B is not excluded; of course this was not Boole's view (see subsection 3.2.1).

5.3.1.5 The Sign of Identity

Frege introduces a sign for identity of content by saying that the formula:
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~(A - B)

means 'the symbol A and the symbol B have the same conceptual content, so that we can

always replace A by B and vice versa'. TIlls needs considerable interpretation if

misunderstanding is to be avoided. The now familiar interpretation of 'A == B' as 'A if and

only ifB' is not what Frege has in mind. Instead 'A' and 'B' here are individual variables

and Frege is indeed thinking of cases which we might express as 'a = b'.41 Thus, unlike

conditionality and negation, the judgement expressed by the formula is about names, and not

contents. Frege says: 'although symbols are usually only representatives of their contents-so

that each combination [of symbols usually] expresses only a relation between their contents-

they at once appear in propria persona as soon as they are combined by the symbol for

identity of content, for this signifies the circumstance that the two names have the same

content' (Frege 1879, p. 124). Since the same content may be given in different way, he

argues that a symbol for identity of content is necessary. As an illustration of his treatment

of identity as a relation between two names that have the same content, Frege uses an

example from geometry. He gives the name 'A' which represents a fixed point on a circle,

and the name 'B' which represents the point of intersection of the circle and a ray revolving

aboutA. When the revolving ray is perpendicular to the diameter drawn fromA, then 'A'

and 'B' represent the very same point. Thus the names 'B' and 'A' has the same content.

But, in this example, Frege does not consider the manner in which the content is determined

(as the point on the circle) as an aspect of meaning.

TIlls will be done in his 'Uber Sinn und Bedeutung', where he splits the notion of content

into sense and reference. In this article, Frege changes his view that identity is a relation

between names. He sets out to give an account of the sign of identity in a more satisfactory

way than was done in the Begriffsschrift. In order to explain the fact that there are

statements of the form 'a = b' which 'contain very valuable extensions of our knowledge

and cannot always be established a priori' , Frege holds that the sign 'a' is not distinguished

from the sign ob' only as object. If we assume 'a = b' to be true, then 'a = a' and 'a = b'

41 In The Basic Laws of Arithmetic, Frege retains all the symbols of Begriffsschrift except.'>' which
is replaced by the sign of equality.

178



can have different cognitive values only if'a' is distinguished from 'b' not only in form but

also in 'the manner in which it designates something'. 'A difference can arise only if the

difference between the signs corresponds to a difference in the mode ofpresentation ofthat

which is designated'{Frege 1892a, p. 57). Using again an example from geometry, he

considers a,b, c, as the lines connecting the vertices of a triangle with the midpoints of the

opposite sides. An elementary geometric statement tells us that the point of intersection of

a and b is identical with that of band c so that the statement 'the point of intersection of

a and b is the same as the point of intersection of b and c' is true. So the expressions 'the

point of intersection of a and b' and 'the point of intersection of b and c' are different

designations for the same point. But these names 'likewise indicate the mode of

presentation; and hence the statement contains actual knowledge'{Frege 1892a, p. 57).

Thus, Frege brings forth, in addition to the designation which he calls the reference,

something else 'wherein the mode of presentation is contained' and he calls this the sense

of the sign (Frege 1892a, p. 57). Accordingly, he says that 'the reference ofthe expressions

'the point of intersection of a and b' and the point of intersection of b and c' would be the

same, but not their senses'{Frege 1892a, p. 57).

Furthermore, the sign of identity allows the expression of definitions occumng ID

mathematical proofs. For Frege, in these formal definitions, the sentence does not say, 'the

right side of the equation has the same content as the left side'; but, 'they are to have the

same content'. This sentence is therefore not a judgement; and thus also not a judgement

of the kind Kant called synthetic. What stands on the left side of the symbol ofidentity is the

definiendum or the expression being defined, and on the right side the definiens or the

expression supplying the definition. Regarding proofs, a definition has as a function to

permit the replacement of the definiendum with the definiens, thus unfolding what was

previously wrapped in the definiendum. According to Frege 'the only aim of such definitions

is to bring about an extrinsic simplification by the establishment of an abbreviation. Besides,

they serve to call special attention to a particular combination of symbols from the

abundance of the possible ones and thereby obtain a firmer grasp [of it] for the

imagination'{Frege 1879, p. 168).

5.3.2 Frege's New Theory of Judgement: Function / Argument
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One of the most important innovations of the Begriffsschrift is Frege's new theory of

judgement. It leads him to introduce, for the first time in the history oflogic, the device of

quantification for the analysis of general propositions. Frege himself believes that 'the

replacement ofthe concepts ofsubject andpredicate by argument and/unction, respectively

will prove itself in the long run (Frege 1879, p. 107). In order to understand Frege's

advance over Aristotelian and Boo lean 10gic in this respect, it will help to begin by sketching

how the theory of judgement stood before him.

Aristotelian logic played a fundamental role in the theory of judgement which was dominant

before Frege. Itwas concerned with the evaluation of inferences whose validity was based

on relations between terms. As a logic of general terms, it dealt with the various patterns of

argument which could be represented by combining the expressions 'all', 'some', 'no' with

terms. According to Aristotelian logic every judgement can be analysed as composed of a

subject-term and a predicate-term.

But the analysis of judgements in terms of subject-term and predicate-term involved

difficulties. Indeed, it concealed propositions of very different forms by assimilating singular

propositions (i.e. 'Socrates is mortal') to universal propositions (i.e. 'All Greeks are

mortal'). And since judgements are obtained by combining terms in various sharply

delimited ways, it tolerated few forms of judgements. For instance, the analysis could not

accommodate relational predicates. The proposition, 'Hydrogen is lighter than carbon

dioxide' could not be analysed in this way. Moreover, the most important difficulty was its

inability to deal with propositions involving multiple generality (i.e. 'Every son is the child

of some father') which the medieval logicians tried to account for by means of their theory

of supposition. An example of a valid inference for which Aristotelian logic could not

provide involving such multiple generality was the following:

Every man is an animal,

Every head of a man is a head of an animal.

Yet propositions involving multiple generality are abundant in mathematics ( 'Every natural

number is exceeded by at least one natural number'). It follows that if one is to be able to
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carry out the logical analysis of mathematical inferences, then a satisfactory account of

multiple general propositions is required.

Regarding these difficulties, Boolean logic had not gone beyond Aristotelian logic. Boole

was indeed never able to advance much beyond the principles of Aristotelian logic because

he lacked a proper theory of quantification. He retained the Aristotelian analysis of

propositions in terms of subject-term and predicate-term, with the copula conceived as

identity. For him, the analysis of a proposition consists of identifying the subject and the

predicate as distinct terms within the proposition, which are somehow 'given' prior to the

formation of the proposition. He assumed that judgement expresses identity of the

denotation of its terms: Boole's conception of terms and their relation to judgement was

basically the Aristotelian conception. Admittedly, although Boole did not deal himself with

the logic of relative terms, it was carried out within his research programme (see subsection

2.1.2).

However, the logical system which Frege develops in the Begriffsschrift overcomes the

difficulties of Aristotelian and Boolean logic once and for all. He introduces a new theory

of judgement which provides a more flexible tool for the analysis of propositions. Indeed,

the function / argument analysis of propositions opens up an infinite space oflogical forms.

Functions can have several arguments, and they can be picked out of any level of the

hierarchy offunctions. Frege develops polyadic predicate logic i.e. a logic using predicates

that take any number of arguments. Unlike Aristotelian and Boolean logic, polyadic

predicate logic brings out the detailed structure of relational predicates and just includes

monadic predicate logic i.e. a logic using predicates that take one argument, as a simple

case. The development ofpolyadic predicate logic is very important since a great number

of valid inferences in mathematics and empirical science cannot be proved via the methods

appropriate to either propositional or monadic predicate logic.

Frege writes:

a distinction between subject and predicate does not occur in my way of representing
a judgement. To justify this I note that the contents of two judgements can differ in two
ways: first, it may be the case that [all] the consequences which can be derived from the
first judgement combined with certain others can also be derived from the second
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judgement combined with the same others; secondly this may not be the case. The two
propositions, 'At Plataea the Greeks defeated the Persians' and' At Plataea the Persians
were defeated by the Greeks', differ in the first way . . . Now I call the part of the
content which is the same in both conceptual content (Frege 1879, pp. 112-113).

Two judgements may differ in various ways which do not affect their contributions to the

validity of any inferences in which they occur. Frege introduces what he calls, 'conceptual

content', for what two such judgements have in common. Logic for him is the. study of the

objective contents of judgements. The grammatical difference between subject and predicate

is of no relevance. Accordingly, Frege rejects the grammatical notions of subject and

predicate and substitutes for it the mathematical notions offunction and argument. He gives

the formal description of function and argument as follows:

if, in an expression (whose content need not be assertible), a simple or a complex
symbol occurs in one or more places and we imagine it as replaceable by another
[symbol] (but the same one each time), at all or some of these places, then we call the
part of the expression that shows itself invariant [under such replacement] a function
and the replaceable part its argument (Frege 1879, p. 127).

In the Begriffsschrift, although Frege mentions that 'arguments' are symbols which denote

an object (i.e. names), function and argument are called expressions, not what expressions

represent or denote. Moreover, he makes it clear that the distinction between function and

argument does not concern the conceptual content. As he emphasises, 'this distinction has

nothing to do with the conceptual content, but only with our way ofviewing it'(Frege 1879,

p. 127).

Since Frege seems to be concerned with linguistic functions in sections 9 and 10 of

BegrifJsschriJt in which he introduces the notion offunction, let us consider the following

sentence about the legendary outlaw of 12thcentury England as an illuminating explication

of the notion,

'Prince John outlawed Robin Hood'

and replace the name 'Prince John' with the name 'King Richard'. In this way, its content

is altered from a true sentence into a false sentence. The sentence may be considered as

being built up of a constant component
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' ... outlawed Robin Hood'

and a replaceable symbol,

'Prince John'.

The name of 'Prince John' is replaceable by names which designate other persons in the

same way as 'Prince John' designates Prince John. Now, in a sentence built up in this way,

Frege considers the first fixed component as a function, and the second component as the

argument of the function. Thus, the sentence

'Prince John outlawed Robin Hood'

is the result of completing the expression

' ... outlawed Robin Hood'

with the name

'Prince John',

and the sentence

'King Richard outlawed Robin Hood'

is the result of completing the same expression with the name

'King Richard'.

In other words, the sentence 'Prince John outlawed Robin Hood' is the value ofthe function

, ... outlawed Robin Hood' for the argument 'Prince John', and 'King Richard outlawed

Robin Hood' is the value of the same function for the argument 'King Richard'. Moreover,

a sentence may be analysed in more than one way. Thus the sentence
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'Prince John outlawed Robin Hood'

is not only the value of the function' ... outlawed Robin Hood' for the argument 'Prince

John'; it is also the value ofthe function 'Prince John outlawed ... ' for the argument 'Robin

Hood'. The functions ' ... outlawed Robin Hood' and 'Prince John outlawed ... ' are

unsaturated and each needs to be completed by a single name to turn them into a sentence;

they are functions of an argument.

It should be made clear here that, in the Begriffsschrift, Frege views the sentence, 'hydrogen

is lighter than carbon dioxide' itself as the value of the different functions for different

arguments, just as is shown with the sentence 'Prince John outlawed Robin Hood'. Frege

is concerned there with linguistic notions: sentences, the names they contain and the

functions which map names as arguments onto sentences as values. It is only after the

appearance of The Foundations of Arithmetic (1884) that Frege thinks of truth-value as the

value ofa function. In his paper,'Function and Concept', he writes:

I now say: 'the value of our function is a truth-value', and distinguish between the
truth-values of what is true and whatis false. I call the first, for short, the True; and the
second, the False (Frege 1891, p. 28).

On this view, therefore, in a sentence such as 'Caesar conquered Gaul', 'Caesar' is a proper

name and 'conquered Gaul' is a 'concept word'. The name refers to the object for which it

stands, and the 'concept word' refers to the concept for which it stands, and this concept

is itself a function mapping objets onto values. Thus the concept for which' ... conquered

Gaul' stands maps the man Caesar onto that which is denoted by the sentence 'Caesar

conquered Gaul'. But what is denoted by this sentence? Since the sentence is true, for

Frege it denotes the truth-value True.

Frege's function/ argument analysis of sentences goes beyond the Aristotelian and Boolean

analysis. The function

' ... outlawed ... '

needs to be saturated at each end to turn it into a sentence: it is a function oftwo arguments.
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Frege says,

if we imagine that in a function a symbol, which has so far been regarded as not
replaceable, is now replaceable at some or all of the places where it occurs, we then
obtain, by considering it in this way, a function with another argument besides the one
it had before. In this way, functions of two or more arguments arise (Frege 1879, p.
128).

It follows that, in this kind of function, the order of occurrence of the arguments does

matter. I shall take an example of a sentence given by Frege for illustration:

'Cato killed Cato'.

The sentence may be analysed into function ofthe argument 'Cato' in more than one way.

It does matter whether 'Cato' is considered as replaceable by another argument at the first

occurrence or the second occurrence or at both occurrences. The four functions that may

result from such an analysis are all different. In the first,

'... killed Cato'

'killing Cato' is the function; in the second,

'Cato killed ... '

'being killed by Cato' is the function; in the third, the relational expression

'... killed ... '

in which 'killing' is the function is obtained. Here the two unsaturated occurrences maybe

filled by two different names by using two different letters to fill the empty places: X killed

Y. Finally, in the fourth,

' ... killed oneself

'killing oneself is the function. Here we must show that the two unsaturated occurrences
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are to be completed with the same name by using the same letter to complete the empty

places: X killed X.

Thus, what has been effected may be described as consisting of picking out four component

expressions of the sentence 'Cato killed Cato", and removing one or two occurrences of

each of them to form an unsaturated expression which can be viewed as a component,

whose argument-places were filled by the components that have been removed.

This way at looking at the third and the fourth functions, which result from the analysis of

the sentence 'Cato killed Cato', shows clearly the difficulty of the Aristotelian or Boolean

analysis of proposition in terms of subject and predicate. For Frege's analysis pays no

attention to the distinction between subject and predicate. Rather, what we have there is a

relational expression in which the two concepts of murder and suicide can be distinguished

by using letters or variables (a term which Frege dislikes) to differentiate between 'Xkilled

Y' and 'X killedX' . Certainly, this analysis expresses more of the complexity of the sentence

in question than the Aristotelian or Boolean's analysis. Regarding Frege's aim, Weiner

stresses the importance of a dyadic function as follows:

the introduction of two-place functions as constituents of conceptual contents allows
Frege to express the sort of complexity that is needed if he is to be able to show that
general truths about sequences can be derived using logic alone (Weiner 1999, p. 40).

Indeed, the complicated relational inferences occurring in the mathematical notion of

following in a series require dyadic functions in order to be perspicuously represented.

Although in this process of 'functional abstraction' the value of a function must be

determinate for a given argument, Frege talks of 'an indeterminate function' in order to

express general claims about functions. He writes,

in order to express an indeterminate function of the argument A, we put A in
parentheses following a letter, for example:

{fJ(AJ.

Similarly,
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1/1(A, B)

represents a function ( not more explicitlydetermined) of the two argumentsA andB.
Here, the places ofA andB in the parentheses represent the positions that A and B
occupy in the function, regardless of whetherA orB each occupies oneplaces or more
[in that function]. Thus, in general

1/1(A, B) and 1/1( B,A)

are different (Frege 1879, p. 129).

Accordingly, Frege describes the distinction between function and argument in a very

abstract and formal way. As it has been done by logicians before him, he uses schematic

letters to bring out the logical structure of propositions. In order to symbolise a function of

the argument A, he employs a Greek letter tP followed by an 'A' in parentheses: tP ( A)

which signifies that A has the property tP. A function of two arguments A and B is written

1/1 ( A, B ), where the places of A and B within the parentheses stand for the places

occupied byA and B in the function which signifies that 'B stands in the 1/1- relation to A'.

In addition, Frege says that since the symbol 'tP' occurs at a particular place in the

expression 'tP (A )' , and since we may conceive of it as replaced by a symbol, such as 'tfI,
which then expresses another function of the argument A, we can consider tP ( A) as a

function of the argument tP (Frege 1879, p. 129). This is a shift to a different level of

analysis in that Frege is saying that at the first-level, 'tP' is a function of the argument 'A',

but ifwe choose the judgement may also be considered as a function of the function inserted

in it. Indeed, for Frege a function occurs as an argument to another function only if the

expression of the second fills the gap in the incomplete expression of the first and so

produces a complete propositional expression. The expression for such a function is found

in Frege's way of representing generality in a proposition. Consider the proposition 'Every

positive integer can be represented as the sum of four squares' which is to be split up into

function and argument as follows: 'whatever arbitrary positive integer you take as argument

for the function "... can be represented as the sum of four squares", the resulting

proposition is always true'. Assuming that we are dealing with the universe of positive

integers, the symbolical expression of the proposition is:
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('rt'x)(tP(x))

with tPstanding for 'can be represented as the sum of four squares'. The symbol ''rt'x'is the

universal quantifier. The second 'x'is a variable indicating a place in which for the first-level

function tP an argument may be inserted. The function symbol tP itself may also be

considered as an argument; on this way of analysing it, the whole proposition may be

considered as the value of the function,

('rt'x)(. .. x )

for the argument,

tP.

This function having a function as its argument is what is called a second-level function."

Thus, although Frege borrows his notation from functional analysis, it does not follow that

he restricts himself to functions whose values are numbers. In the Begriffsschrift, he is

concerned with linguistic functions having words as arguments and sentences as values. In

his later work he takes it that a function is not just something whose values and arguments

are mathematical objects, but can have values and arguments of any kind. The notion of

function which is rooted in mathematical analysis is therefore extended to allow a

perspicuous representation of logical relationships. Hence, Frege is quite right to say that

the concept of function in Analysis, which in general he has followed, is far more restricted

than the one he developed (Frege 1879, p. 129).

In the Begriffsschrift, whilst comparing the two propositions 'The number 20 can be

represented as the sum of four squares' and 'Every positive integer can be represented as

42 In the Begriffsschrift, Frege does not develop the second-order predicate calculus, but in the
Grundgesetze der Arithmetik, he devises a notation for expressing functions of the second level. This
mathematical technique of logical analysis may be further pursued so as to reach a higher level of functions.
Thus the abstract functional analysis contains an implicit theory of logical types. There is indeed an
ascending hierarchy of types , such as first-level functions, second-level-functions, etc., and an differentiation
of typesat each level, such as functions of one argument, two arguments, etc.
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the sum of four squares', Frege warns against an illusion to which the use of ordinary

language can easily give rise - that of considering the expressions 'the number 20' and 'every

positive integer' as the subjects of their respective propositions. He argues:

If we compare the two propositions:

'The number 20 can be represented as the sum of four squares'

and

'Every positive integer can be represented as the sum of four squares.'

it appears possible to consider 'being representable as the sum of four squares' as a
function whose argument is 'the number20' one time, and 'every positive integer' the
other time. We can discern the error of this viewfromthe observation that 'the number
20' and 'every positive integer' are not concepts of same rank. What is asserted of the
number 20 cannot be asserted in the same sense of the [concept] 'every positive
integer'; though, of course, in somecircumstances it may be asserted of everypositive
integer. The expression 'every positive integer' by itself, unlike [the expression] 'the
number 20', yields no independent idea; it acquires a sense only in the context of a
sentence (Frege 1879, pp. 127-128).

Unlike Boole who contends for the view that singular propositions are 'truly universals'

(Boole 1847, 59f) and so follows Aristotle, Frege points out here the difference between

singular propositions, involving singular terms, and general propositions. Thus Frege rejects

the traditional treatment of singular propositions as universal categoricals. Moreover, Frege

recognises singulars as the fundamental unit of predication and uses it to bridge the gap

between Boole's primary and secondary logic (see subsection 6.1.4).

However, Frege's claim that there is a difference between 'the number 20' and 'every

positive integer' and they do not represent concepts of the same rank should be discussed.

Frege observes that (1) what is asserted of 'the number 20 cannot be asserted in the same

sense ofthe concept' every positive integer'; and (2) the expression 'every positive integer'

by itself, unlike the expression 'the number 20', yields no independent idea; it acquires a

sense only in the context ofa sentence. Frege maybe interpreted as having in mind in (1)

to introduce the difference between concepts of first and second level; and in (2) to mark

as different dependent and independent entities.

This latter interpretation is problematic. Frege claims, in effect, that 'every positive integer'
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acquires a sense only in the context of a sentence because it is a dependent expression. But

does not the same apply to 'the number 20'? It is striking that Frege considers here 'the

number 20' as an independent idea which does not acquire a meaning only from the context

of the sentence. For, in The Foundations of Arithmetic, he states as a principle 'never try

to define the meaning of a word in isolation, but as it is used in the context of a proposition'.

And subsequently he contends that 'only by adhering to this can we avoid a physical view

of number without slipping into a psychological view of it' (Frege 1884, p. 116). The

concept of number is then obtained by determining the sense of a proposition in which a

number word occurs, or by fixing the sense of a numerical identity.

Frege may be interpreted in this way: 'the number 20' has an independent denotation

(reference), unlike 'every positive integer'. How to show this? By pointing out that 'Every

positive integeris even or odd' is not equivalent to 'Every positive integeris even' or 'Every

positive integer is odd'. But 'The number 20 is even or odd' is equivalent to 'The number

20 is even' or 'the number 20 is odd'. In effect, Frege is paving the way for his analysis of

universal propositions. It is his theory of quantification which explains how such

propositions should be understood. Although the expression 'every positive integer' stands

for a concept, it stands for something that needs further analysis. The logical structure of

the concept 'every positive integer' (i.e. for all x, if x is a positive integer) is concealed by

ordinary language.

If the above interpretation is correct, then it may be said that when Frege made his

observations, he thought mainly of the notion of generality. And since his analysis of this

notion involves the universal quantifier, his observations may be taken as an anticipation of

his later distinction between first and second level concepts.

5.3.3 Frege's Theory of Quantification

The theory of quantification stems from Frege's theory of functions. It constitutes the

technical apparatus with which Frege expresses perspicuously the generality involved in

mathematical propositions such as, 'Every even number is the sum of two primes'. Thus,

he provides mathematicians with a method of proof which allows them to shun intuition in

their inferences, and to represent them in a more precise way than can be done with ordinary
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language and mathematical symbols. Frege then builds up a new logic capable of expressing

judgements with multiple generality occurring in mathematical proofs.

Aristotelian logic was concerned with syllogisms, and set up a number of rules in order to

work out a valid inference. However, syllogistic theory was unable to provide an adequate

representation of all inferences containing words such as,'every' or 'any'(or 'all' and

'some'}. For the focus ofreasoning was on inferences about types of thing. For instance, the

proposition 'All men are mortal' was about men and mortal things. Frege, by contrast,

considers as the fundamental form of a general proposition a proposition about everything.

Thus, in his account, the proposition 'All men are mortal' is not about men at all, but one

about everything - to the effect that anything is such that 'ifit is a man, then it is mortal'.

It follows that a general proposition such as 'All men are mortal' is a complex proposition

which can only be analysed by means of the quantifier notation and its associated variable.

Furthermore, when it is understood that 'All men are mortal' is equivalent to the universal

closure of the functional expression 'if x is a man then x is mortal', every proposition

representable in Aristotelian syllogistic can be represented perspicuously. This is achievable

because Frege reverses the order of priority Boole ascribes to his 'primary' and 'secondary'

propositions. The crucial point is that Frege regards judgements as prior to concepts (see

subsection 6.1.4).

The device of quantification is carried out in sections 11 and 12 of Begriffsschrift, where

Frege sets up a way in which the complexity of a proposition is accounted for in terms of

variables and quantifiers. He writes:

in the expression of a judgement,we can always regard the combinationof symbols to
the right of

as a function of one of the symbols occurring in it. If we replace this argument by a
German letter and introduce in the content stroke a concavity containing the same
German letter, as in
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then this stands for the judgement that the junction is a fact whatever we may take as
its argument (Frege 1979, p. 130).

Inthis formula, the German or gothic letters stand for the variables and the concavity which

occurs within the content stroke expresses: 'whatever we may take'. This 'concavity' is now

known as 'the universal quantifier'. The above formula is saying that every judgement of the

form qJ ( x ) is to be affirmed, and may be written in the modem language of predicate

calculus as follows:

(Vx) qJ(x).

I shall consider again the following general proposition in order to throw more light on

Frege's notation for generality:

'Every positive integer can be represented as the sum of four squares.'

Itmay be expressed as follows:

'For every a, ifnis a positive integer, thennis representable as the sum offour squares '.

The quantifier expression begins the expression here. The second and the third German or

gothic letter are places that could be filled by a positive integer name. But the German or

gothic letter is a variable, not a positive integer name. Hence, the German or gothic letter

does not here stand for some particular object, instead it expresses generality when put

together with a quantifier. It is a bound variable since its occurrences in the expression are

all tied to the quantifier expression that begins the expression. Inother words, the quantifier
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expression has the entire expression in its scope". In Frege's notation our general

proposition is represented as

with t/f and l/J standing for respectively the functions, 'being a positive integer' and 'being

representable as the sum of four squares'. Inmodem notation, its symbolisation is:

( b"x ) (x is a positive integer ~ x is representable as the sum of four squares ),

or,

(V'x)('I'(x) ~ <I>(x)).

This way of expressing generality points out two important features, which are the use of

variables and of quantifiers which delimit the scope of the generality. What Frege does is to

introduce a new symbol, that is, the 'concavity' over which stands a variable, so as to

indicate scope. According to him the concavity with the German or gothic letter written in

it is necessary, in so far as 'it delimits the scope of the generality signified by the letter. The

German letter retains its significance only within its scope' (Frege 1879, p. 131). Moreover,

there is what is called 'multiple generality' , and the symbols for generality themselves may

have different scope. As Frege says it, 'the scope of one German letter can include that of

another'(Frege 1879, p. 131). This occurs frequently in the third part of the Begriffsschrift

in which Frege deals with the mathematical notion of sequences involving multiple

43 A quantifier expression that has the entire expression in its scope is particularly important in that
it allows substitution. Thus from the sentence 'If everything is wet we cannot light a fire' (Kneale 1962, p.
487), which, when written in Frege's notation, would include a universal quantifier that does not have the
entire sentence in its scope, one cannot derive, by substitution, 'If the grass is wet we cannot light a
fire' .(maybe the fire can be lighted, so long as the wood is dry). But from the proposition 'All men are
mortal', which, when written in Frege's notation include a universal quantifier that has the entire
proposition in its scope, one can derive by substitution 'If Socrates is a man then Socrates is mortal'. Frege
then introduces in his notation italic letters to designate letters not linked to any explicit quantifier. In the
terminology of modem logicians, italic letters are called free variables (see subsection 5.4.2).
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generality. The variables and the quantifiers allow Frege's logic to handle polyadic

predicates and nested quantification, and thus make it more powerful than all the great

logical systems of the past.

In effect, as mentioned in the previous subsection, the most important weakness oflogic

before Frege was its inability to handle sentences involving expressions for multiple

generality which are abundant in mathematics and are often ambiguous. The theory of

'supposition', which is developed by Medieval logicians, was intended, in part to solve

problems involving multiple generality i.e. how to distinguish 'Every donkey of some man

is running' from' Some donkey of every man is running ,44. The theory considered a term i.e.

'men' as referring to individual men, such as Socrates and Plato, but referring to them in

different ways determined by the different structures of the sentences in which it occurs.

General terms i.e. 'men' and 'mortal' referred to members of classes. As Boehner says,

'supposition deals for the most part with the extension or range of predicates in reference

to individuals' (Boehner 1952, p. 28).

But, although the theory of supposition had to take into account semantical considerations,

it did not use artificial language and was satisfied with the clarification and determination

ofthe structures ofthe Latin language. It could not therefore provide a satisfactory account

of sentences containing expressions for multiple generality". For, as Dummett points out,

the difficulty ofthe medieval theory of suppositio arose out oftrying to consider a sentence

like 'Everybody envies somebody' as being constructed simultaneously out of its three

components, the relational expression represented by the verb, and the two signs of

generality (Dummett 1981b, p. 10). As a result, it fails to represent differences in the scope

of quantifiers when they occur in a single sentence.

Frege, by contrast, does not account for quantifier expressions by referring to the quantity

44 In his 1978 paper, 'Multiple Quantification and the Use of Special Quantifiers in Early Sixteenth
Century Logic', Ashworth investigates the analysis which logicians in the medieval tradition gave of such
sentences as 'There is somebody all of whose donkeys are running', 'Everybody has at least one donkey
which is running', and 'At least one ofthe donkeys which everybody owns is running'. His discussion is
based on the work ofa group oflogicians who were at the University of Paris in the first two decades of the
sixteenth century, in particular Fernando de Enzinas, Antonio Coronel, and Domingo de Soto.

4S Currie points out the weakness of the theory ofsuppositio (see Currie 1982, pp. 25-26). See also
the accounts in Boehner (1952), Moody (1953), Geach (1962) and Ashworth (1978).
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of terms, Rather, his 'proper name' is understood to refer to some given object of the

appropriate domain. Frege considers a sentence involving multiple quantification as having

different constructional histories, corresponding to the different symbols of generality

occurring in it. This conception leads him to semantical considerations in that it requires the

account of the truth-conditions of sentences containing expressions of generality. Since he

aims to explain the mathematical notion of following in a series in purely logical terms, he

builds up a logical language which can handle polyadic predicates and nested quantifiers.

The power of this artificial language can be evaluated by looking at an example of dyadic

quantifiers in which two occurrences of quantifying expressions are connected by a

relational expression. Let us consider the multiply general sentence:

'Everybody loves somebody'.

The sentence is ambiguous in that it may be interpreted in two different ways: it may be

understood as saying that for everybody there is someone to love, or as saying somebody

is loved by everybody. The elucidation of the ambiguity of the sentence requires the

understanding of its two different constructional histories. In what follows, the truth-

condition of the sentence in its interpretation corresponding to 'for everybody there is

someone to love' will be accounted for in a Fregean way by first interpreting the universal

quantifier and then dealing with the existential quantifier. Thus the sentence would be

viewed as being constructed by first inserting the existential quantifier and then the universal

quantifier. So the order of interpretation reverses the order of construction. It would be

represented in the quantifier notation in such a way that the scope ofthe universal quantifier

would include that of the existential quantifier.

In Frege's logical language a sentence may be constructed by putting together a quantifier

and a monadic predicate. Then the function / argument analysis allows one to consider the

monadic predicate itself as having been constructed from a sentence by removing one or

more occurrences of some one singular term i.e. proper name. Thus suppose we begin with

a sentence such as

'Abraham loves Sara'
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and remove 'Sara' to yield the functional expression

'Abraham loves ... '.

We can then insert the sign of generality 'somebody' into the gap, yielding

'Abraham loves Somebody'.

This resulting sentence may be, in turn, subjected to the same process by removing

'Abraham' from the sentence and inserting the sign of generality 'Everybody', and thus

arriving at our original sentence

'Everybody loves Somebody'.

In order to describe syntactically the sentence, it is necessary to introduce a symbolic

notation for existential quantification i.e. ( :3 x ) in modem notation, which stands for the

expression of generality 'somebody' as the universal quantifier does for the expression of

generality 'everybody'. The contribution of this existential quantifier to the truth-value of

an entire sentence may be given by a rule that states the conditions under which the

corresponding functional expression, suitably completed, must produce truth (see Frege

1893, pp. 42-43). This rule states that

(:3x)tP(x)

stands for the judgement that the function tP( x ) is a fact for some argument". We already

know that a sentence containing the universal quantifier is true if and only if the functional

expression is a fact whatever we take as its argument. Regarding a monadic predicate, it is

true of a given individual if and only if the sentence which results from inserting a name of

that individual in the gap of the predicate is true.

46 In section 12 of the Begriffsschrift as well as in section 8 of the Grundgesetze der Arithmetik, Frege
combines the sign of negation and the universal quantifier so as to represent the existential quantifier. He
also accounts for its truth-condition.
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From these simple rules we can now provide a Fregean account of the truth-conditions of

the sentence' Everybody loves Somebody' corresponding to its above constructional history

by dealing with the expressions of generality in the inverse order of their occurrence in the

sentence. Thus,' Everybody loves Somebody' is true if and only if each of the sentences,

'Abraham loves somebody', 'Ismhae1loves somebody', 'Isaac loves somebody' and so on,

is true; and 'Abraham loves somebody' is, in tum, true if and only if at least one of the

sentences, 'Abraham loves Sara', 'Abraham loves Hagar', 'Abraham loves Keturah' and so

on, is true. As this example shows, there is an ad hoc convention which we tacitly employ,

that is, 'the order of construction corresponds to the inverse order of occurrence ofthe signs

of generality in the sentence: when "everybody" precedes "somebody", it is taken as having

been introduced later in the step-by-step construction, and conversely' (Dummett 1981b ,

p. 12, see also pp. 8-33, to which this treatment ofFrege's account of generality is indebted,

for useful elaboration).

It is, of course, also possible to interpret 'Everybody loves Somebody' in another way, as

in effect 'Somebody is loved by everybody' (writing it in accordance with Dummett ad hoc

convention). On this interpretation, the order of construction is reversed ('everybody' is

inserted before 'somebody') and as a result, the order of interpretation of the quantifiers is

likewise reversed.

What is comprehended from the above expression of the power of Frege's device of

quantification can be recapitulated in three points: first Frege's account of generality shows

how the truth-conditions of general sentences depend upon those of the corresponding

singular sentences subjected to the function / argument analysis; secondly this account

proceeds step-by-step and as the construction of the sentence goes on, the expression of

generality decreases at each stage; and finally, the application ofFrege's account to natural

language requires the consideration ofthe sentence as having a constructional history, that

is, as being constructed in stages.

It is now possible to understand the notion of the 'scope' of a quantifier. The two

interpretations of the sentence 'Everybody loves Somebody' involve two different scopes

of the quantifiers. In the interpretation matching the constructional history in which the

universal quantifier is inserted last (For everybody there is someone to love), the existential
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quantifier lies within the scope of the universal quantifier, whereas in the interpretation

matching the constructional history in which the existential quantifier is inserted last

(Somebody is loved by everybody), the universal quantifier lies within the scope of the

existential quantifier. When a quantifier lies within the scope of another, there results a kind

of complexity that was never spelled out by the great logicians of the past. As Dudman puts

it,

the essence of Frege's advance beyond Boole was the appearance, in 1879, of
truthfunctional connectives within the scope of quantifiers, along with quantifiers within
the scope of truthfunctional connectives. But sirrrultaneously there occurred a yet
greater advance: the appearance of quantifiers within the scope of quantifiers (Dudman
1976, p. 137).

Indeed, the appearance of quantifiers within the scope of quantifiers allows Frege to

represent perspicuously relations of considerable complexity as the complicated inferences

in mathematics and scientific discourse whatsoever. For example, with 'Pr (y)' standing

for' y is a prime number' and 'x' for a number, the well-known mathematical judgement,

'there is a prime number greater than any given number', can be represented in modem

notation as follows:

( Vx) ( ~y) ( Pr (y) 11 (y > x)).

Certainly, the handling of the nested quantifiers ( Vx ) ( ~ y ) goes beyond anything to be

found in Boole. Frege also employs the notion of the scope of the quantifier in Part III of

the Begriffsschrift in order to define 'y follows x in the f - sequence' ( see Frege 1879,

formula 69, section 24, p. 167). TIlls definition plays an important role in Frege's aim to

reduce mathematical induction to logical inference.

So far what has been done is to apply Frege's account of generality to ordinary language

sentences and to show how it can elucidate the ambiguities which teem in them But, by

replacing the notation used to express generality in ordinary language with a new notation -

that of quantifiers and variables, Frege makes impossible the occurrence of such ambiguities

in his logical language. As Dummett says, 'the point of this new notation was to enable the

constructional history of any sentence to be determined unambiguously' (Dummett 1981b,

p. 12). Indeed, Frege's new notation which assigns a different logical form to each
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interpretation of the sentence 'Everybody loves Somebody' clears up the ambiguity. In

Frege's notation the interpretation corresponding to 'For everybody there is someone to

love', appears as

~L(4,b)

Whilst the other interpretation corresponding to 'Somebody is loved by everybody' is

written

The first formula will be represented in the modem equivalent of Frege's notation as

(Vx)(~y)Lxy

in which the different variables ('x' and 'y') indicate clearly the scopes of the two

quantifiers. The second formula will be written as

( ~ x ) ( Vy) L y x.

It should be noted that while dealing with the step-by step construction of the sentence

'Everybody loves Somebody' a symbol for existential quantification was introduced.

However, Frege himself does not introduce a special symbol to represent the word 'some'.

For it does not seem indispensable to have a special notation for the existential quantifier,

in so far as it had long been assumed by some logicians that a sentence such as 'some swans

are black' is equivalent to 'not all swans are not black.' In other words, saying that

something has a particular property is denying that everything fails to have the same

property. Frege makes use of this relationship between 'some' and 'not all ... not' in order

to express an 'existential' proposition. Thus, 'some swans are black' may be represented in

Frege's notation by means of the universal quantifier and the negation sign as follows:
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With f{J standing for the function, 'being a black swan', the formula means: there are black

swans or is at least one black swan. Inmodem notation the formula is equivalent to

Accordingly, Frege is not only capable of delimiting the scope of general contents; he is also

capable of expressing particular as well as existential judgements by combining his

'quantifier' with the negation sign. I shall show how Frege applies such a combination to

propositions of restricted generality such as the type of proposition in Aristotelian logic.

Indeed, Frege shows his ability to account for restricted generality in terms of unrestricted

generality and truth-functions with the four types of proposition found inAristotelian square

of opposition (Frege 1879, pp. 133-5). Thus, he notes that 'Every X is a P', or 'AllX's are

P's' is equivalent to 'If something has the property X, then it also has the property P'. And

this is expressed in Frege's notation as follows:

~P(o)

L_X(~)

The formula will be true if nothing has the property X, i.e. if there are no X's.

'No !Pis a P' is equivalent to 'What has the property !Pdoes not have the property P'. It

is expressed as:

pro)

y.r(~)

'Some A's are not P's' is equivalent to 'It is not the case that everything which is A is a P',

its notation appears as:
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Finally, 'Some M's are P's', which is equivalent to 'It is possible for a M to be a P' is

represented as:

Frege (1879, p. 135) then tabulates the square oflogical opposition as:

~PlOJ Contraries --.!rc P (Ill
X (Ill s X (Ill

C 0 .e
r I

n t
. c t

0
(f) r a Cl)c c.... d I ....ID ID~

a d ~
C'G

c t C'G.0 .0::::J t r 0 ::::J
00 r . 00n

0 I
C e s

~P(1ll [Sub ]Contraries -nArc P(1llX (Ill X(Q)

These four types of Aristotelian propositions named A, E, I, 0 can be expressed in modem

notation as follows:

A: (Vx) (X(x) _P(x));
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E:( Vx) (X (x) _..,P Cx) ):

I: ..,( Vx ) (X (x ) _ ..,P ( x ) ) or ( 3x ) (X ( x ) & P ( x ) );

0: ..,( Vx ) (X (x ) _ P ( x ) ) or ( 3x ) (X (x ) & ..,P ( x ) ).

What is striking here, and then should be stressed, is the fact that Frege curiously pictures

the relations between the four propositions as they stand in Aristotelian logic without

noticing that contrariety, subcontrariety and subordination are all invalid irrnnediate

inferences within his formal proof. Inthe Aristotelian representation of the square of logical

opposition A and E are contraries, which means that they cannot both be true but may be

both false. I and 0 are subcontraries, that is, they cannot both be false but may both be true.

A is the subaltern of I which means that I cannot be true without A being true, but A may

be true without I being true.

What Frege fails to note is that in his system A and E can both be true, if there are no X's;

I and 0 can both be false, if there are no X's; and I does not follow from A, and 0 does not

follow fromE. For example, according to the rule of Aristotelian logic 'All X isP' and 'No

X is P' cannot both be true. The expressions of these in Frege's system are respectively:

(Vx) (X(x) _P(x))

(Vx) (X(x) _..,P(x))

But if there are noX's as in the proposition 'All Sirens are seductive' , then by the truth- table

definition of the implication both these propositions are true, or to use the current

expression are 'vacuously true. ' Hence there is a case in which contraries are both true. The

rule of subcontrariety states that 'Some X isP' and 'Some X is not P' may both be true, but

cannot both be false. However, if there are no X's, then both subcontraries are false. The

rule of subordinates is that, if 'All X is P' is true, then so is 'Some X is P'. But if there

no X's, then 'All X is P' and 'No X is P' are 'vacuously true', while 'Some X is P' and

'Some X is not P' are false. Accordingly, the only rule of the square oflogical opposition
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which remains valid in Frege's logical system is the law of contradictories (see subsection

4.1.1).

In the footnote 21 of his later work, Grundgesetze der Arithmetik, Frege notes that 'many

logicians seem to assume without ado that concepts are realized, and to overlook entirely

the very important case of empty concepts, perhaps because they quite wrongly do not

recognize empty concepts as justified' (Frege 1893, p. 56). But, in the Begriffsschrift, when

Frege concerned with the type of proposition dealt with in Aristotelian logic, unfortunately

he reproduced the square of opposition as it stands and ipso facto gave the impression of

being amongst these logicians who 'wrongly did not recognize empty concepts as justified' .

On this issue, it is worth noting that Frege and Boole had a similar attitude. Both of them

were committed in their logical systems to declining the existential import of universals

propositions, but neither of them realised when writing that this was a significant point that

needed to be highlighted.

5.4 A Formal System of Logic

After having built up the formula language as a tool specially devised for mathematicians to

render their definitions and inferences in greater exactitude, Frege sets up logic as an

axiomatic science, in which inferences that have been accepted as valid by means of

Aristotelian or propositional logic may also be proved as valid. He develops a formal system

of logic which proceeds by primitive symbols, rules of combination of these symbols,

axioms, and rules of inference proving the theorems. In this way, Frege follows the

Euclidean procedure of setting up geometry as an axiomatic science.

I shall first discuss the epistemological issue underlying the quest of rigour and precision in

science, that is, the investigation and the identification of the ultimate foundations of

indemonstrable truths. Then, I shall present Frege' s axiomatisation of propositional calculus.

5.4.1 A Euclidean Procedure

In the first section of The Foundations of Arithmetic, Frege writes:
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after deserting for a time the old Euclidean standards of rigour, mathematics is now
returning to them, and even making efforts to go beyond them. . . . Proof is now
demanded of many things that formerly passed as self-evident.Again and again the
limits of validity of a proposition have been in this way established for the first time
... In all directions these same ideals can be seen at work - rigour of proof, precise
delimitation of extent of validity, and as a means to this, sharp deftnition of concepts
(Frege 1884, p. 1).

By advocating a Euclidean procedure, Frege underlines an epistemological issue: the status

of logical axioms. Frege holds that true knowledge such as logic must imitate Euclidean

procedure. There is an exact analogy between logic and geometry regarding the nature and

the way in which the primitive logical axioms are carried out. The axioms of geometry are

a generalisation expressing a relation between concepts whose theorems are a demonstration

of the kernel of its primitive concepts. Likewise, the axioms and the theorems ofFrege's

propositional calculus elucidate the nature of the primitive logical constants such as the

indefinable symbols of negation and conditionality.

But like geometrical axioms, the logical axioms are not drawn from definitions of concepts,

since Frege conceives them as indemonstrable truths. They cannot be drawn from a

definition of 'truth' either, because, in his eyes, the notion of 'truth' itself is indefinable.

Instead, logic, as he sees it, is a process of justifying truths: it justifies the truth of

propositions from propositions whose truths are clearly recognised. What is distinctive

about logic (as compared with geometry) is its absolute universality.

In an essay On Euclidean Geometry, Frege writes:

no thought that is held to be false can be accepted as an axiom, for an axiom is a truth.
Furthermore, it is part of the concept of an axiom that it can be recognized as true
independentlyof other truth. (Truths canbe inferredin accordancewiththe logicallaws
of inference.) If a truth is given, it can be asked fromwhat other truths its truth follows
inaccordancewith the logicallawsof inference.Whenthis questionhasbeenanswered,
we can go on to ask of each of the truths that we have thus discoveredfromwhat other
truths its truth follows in accordancewith the laws of inference (Frege 1899/1906, p.
168).

Thus, logical justifications may be pursued until axioms are reached. That is why Frege says

that 'there must be judgements whose justification rests on something else, if they stand in

need of justification at all'(Frege 1879/91, p. 3). There epistemology comes in, so as to

account for the 'something else' upon which rest some judgements that cannot be justified
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by inferring them from other judgements.

In the preface of Begriffsschrift, Frege distinguishes between two ways of grasping

knowledge, an inquiry into the' context of discovery' of a particular form ofknowledge, and

an inquiry concerning its justification. He claims:

the apprehension of a scientific truth proceeds, as a rule, through several stages of
certainty. First guessed, perhaps, from an inadequate number of particular cases, a
universal proposition becomes little by little more firmly established by obtaining,
through chains of reasoning, a connectionwithother truths -whetherconclusionswhich
fmd confirmation in some other way are derived from it; or, conversely, whether it
comes to be seen as a conclusion from already establishedpropositions
(Frege 1879, p 103).

There follow two questions: on the one hand, it may be asked in what way a proposition is

progressively obtained, and on the other hand, in what way it is to be most securely

established. It is the task of a theory of knowledge to answer to the second question, and

Frege holds that 'its answer is connected with the inner nature of the proposition

concerned'. A proposition can be justified whilst recognising that there is a limit beyond

which we have to stop establishing it as true. Otherwise, we would be lost in a regressus in

infinitum. As he puts it: ' the question why and with what right we acknowledge a law of

logic to be true, logic can answer only by reducing it to another law oflogic. Where that is

not possible, logic can give no answer' (Frege 1893, I, XVI). Where that is not possible we

arrive at the primitive logical axioms, which then must be accepted without a purely logical

justification.

Although Frege recognises that epistemology aims to identify the ultimate grounds ofthese

primitive logical axioms, it was not actually his concern to illuminate the issue. Hence,

Weiner is correct when saying that 'the point at which epistemology, on Frege's view,

comes in to an investigation of justification is precisely the point at which, in his own

discussions of justification, Frege is mute.' He admittedly claims that 'it would not perhaps

be beside the mark to say that the laws oflogic are nothing other than an unfolding of the

content of the word 'true'. Anyone who has failed to grasp the meaning of this word-what

marks it off from others-cannot attain to any clear idea of what the task oflogic is'(Frege

1879/91, p. 3). But we cannot take from this statement any clear method for identifying the

'basic' laws of logic. Hence like the Euclidean axioms, the grounds which justify the
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recognition of a truth express an indemonstrable truth that has to be immediately recognised.

However, although Frege appeals to the Euclidean model, he goes beyond it so as to perfect

it. For,

even such a conscientious and rigorous writer as Euclid often makes tacit use of
presuppositions which he specifies neither in his axioms and postulates nor in the
premisses of the particular theorem ... Onlyby paying particular attention, however,
can the reader become aware of the omissionof these sentences, especially since they
seemso closeto being as fundamentalas the laws of thought that they are usedjust like
those laws themselves (Frege 1882b, p. 85).

This is tantamount to saying that if the Euclidean proofs were given in Fregean formula

language, then the omission ofthese sentences would be apparent. For the inference carried

out by his logical language may be seen as a logical consequence of the laws of thought. But

in the Euclidean proofs there seems to be no need for following rules of inference.

Moreover, the axioms oflogic are justified immediately by a 'logical source of knowledge

which is wholly inside us and thus appears to be more proof against contamination' due to

the mistakes that may stem from the senses, which yet provide the axioms of geometry

(Frege I92412Sb, p. 269).

Consequently, in order to gain more rigour and precision, Frege requires logic to be

presented as an axiomatic deductive system, in which the primitive propositions are explicit

together with the rules which govern and regulate the chain of inference proving the
•

theorems. The Fregean formula language does not let through anything that was not

expressly presupposed, even the propositions that 'seem so close to being as fundamental

as the laws of thought' which we may consider so obvious that we do not need to express

them explicitly,

5.4.2 The Axiomatisation of Propositional Calculus

The requirement of rigour in the axiomatisation of logical propositions is exhibited in the

.chapter of Begriffsschrift entitled 'Representation and Derivation of Some Judgments of

Pure Thought'. There Frege sets up the systematic formulation of propositional calculus by

presenting it in an axiomatic form, from which all laws oflogic are inferred in accordance
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with only two primitive signs (negation and conditional), one rule of inference (modus

ponens and an implicit rule of substitution) and nine primitive axioms. In fact, Frege also

employs a further rule of inference: an implicit rule of substitution.

5.4.2.1 The Axioms

Three of the axioms require only the variable letters and the sign for conditionality (the

formulae 1, 2, and 8); another three require the sign of negation (formulae 28,31 and 41);

the last three axioms require the sign for identity of content and generality. The formulae

are exhibited inBegriffsschrift as follows:

(l)~b (2)~1 ~)~ia

~c~8)~i (31)~: (41)h== ~

(52)h-r- j (d)
I L::j(e)

re:: d)
(54)~(c:: c) (58)~ j(c)

~ j(O)

The modem notation of these expressions may be given as follows:

(1): I- a ~ (b ~ a),

(2): I- ( C ~ (b ~ a ) ) ~ ( (c ~b) ~ (c ~a) ),

(8): I- ( d ~ (b ~ a) ) ~ (b ~ (d ~ a) ),
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(31): I- -, -, a - a,

(41): I- a - -, -, a,

(52): I- ( e = d) - ( f (c) - f (d) ),

(54): I- e = e,

(58): I- (tla)f (a) ~ f (c) .

Frege employs italic letters to express all the axioms. For him 'an italic letter is always to

have as its scope the content of the whole judgement, and this need not be signified by a

concavity in the content stroke ... ' (Frege 1879, p. 131). In the terminology of modem

logicians, italic letters are called free variables. An occurrence of a variable in a proposition

is called free in that proposition when it neither occurs in, nor is it bound by, any quantifier

within the limits of the given proposition. Thus the occurrences of the variables, 'a', 'b"e'

and 'd' in the axioms are free therein, but the occurrences of the gothic letter in the ninth

axiom are bound, that is, not free, in this propositional function. These variables whose

ranges are the truth-values, and for which sentences expressing propositions may be

substituted are called propositional variables. In the modem notation of the three last

axioms, we take the letter 'f as an abbreviation for predicate expressions; and the variables

'e', 'd' as individual variables. But it is worth noting that in his use of italic letters Frege

does not distinguish between propositional variables and individual variables.

The first six axioms may be regarded as appertaining to the calculus of propositions, which

is an independent theory, and the most fundamental part of logic upon which the calculus

of propositional functions depends, so as to be formulated systematically. The ninth, in

which the quantifier appears, is required for the logic of quantifiers. The seventh and eighth

axioms appertain to the theory of identity.
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5.4.2.2 Rules of Inference

There is a difference between the axioms and the rules of inference within an axiomatic

system in that an axiom constitutes a logical truth of the system, whereas a rule ofinference

is not itself true or false. It just allows us to derive a consequence from a proof when we

have already set up some self-evident axioms. Thus, in order to infer the theorems from the

axioms of his formal system of logic, Frege relies upon two rules, namely, those of

detachment and substitution. The former is called modus ponens and is the only rule of

inference he explicitly acknowledges.

Indeed, Frege utilises modus ponens as a rule ofinference to carry out the theorems of his

logical axiomatic system, and thereby to prove all the laws oflogic. For him, modus ponens

is a formal procedure, which allows a proposition to be written down, given that other

propositions have been written down. The proof is purely formal, since it is the form rather

than the content, which allows one to move from one proposition to another. Here is how

he expresses the rule: Ifwe have two propositions

fL=A
8

and

1----8

then a rule of inference allows to draw as a conclusion the proposition

t----A

The cogency ofthis rule of inference requires that the same proposition be expressed by the

antecedent of the conditional and by the second premise. That is why modus ponens is called

by modem logicians 'affirming the antecedent'.
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Although Frege claims that he uses only modus ponens as a rule of inference, he actually

employs a rule of substitution, of which he shows the procedure in section 6 of

Begriffsschrift. Indeed, it would be arduous ifthe proofs would always have to be written

in full. Frege then figures out a way to abbreviate the procedure. It is described as follows:

'each judgement which occurs in the context ofa proof is labelled with a number which is

placed to the right of the judgement at its first occurrence' (Frege 1879, p. l18). As an

example, he says: suppose that the judgement

has been labelled with X. Then, Frege writes the modus ponens inference this way:

1----8
(X):-----

I----A

In addition, Kneale points out the existence of two others rules of inference those of

generalisation and confinement. Regarding the rule of generalisation, it follows from Frege's

statement that 'an italic letter may always be replaced by a German letter which does not yet

occur in the judgement; when this is done, the concavity must be placed immediately after

the judgement stroke'(Frege 1879, p. 132). Thus, as Kneale notes it, the statement amounts

in effect to a third rule of inference (Kneale 1962, p. 489). As an example, instead of

1------ X (a)

Frege puts

~X(a)

if a occurs only in the argument place ofX (a ).

Frege provides also an introduction rule for the universal quantifier. Namely that if the

210



conditional

~(a)

A

is affirmed, then the generalised conditional

is also affirmed, 'ifA is an expression in which a does not occur and a stands only in

argument places of <P( a)' (Frege 1879, p. 132). Kneale identifies this inference as Frege's

fourth rule, which he calls confinement (Kneale 1962, p. 489).

Subsequently, Kneale says that 'taken with these four rules his axioms are indeed a complete

set in the technical sense of that phrase, though their sufficiency could not be demonstrated

in Frege's day' (Kneale 1962, p. 489). Indeed, the axioms and rules constitute a complete

set of axioms and rules for first-order predicate logic. Although in the Begriffsschrift there

is no metamathematical investigations into the completeness, consistency, or independence

ofthe axioms, Frege's axiomatic system addresses the issue. Already, in Grundgesetze der

Arithmetik, he considers completeness to be indispensable for the rigour of the conduct of

proof in that it does not permit the tacit attachment of presupposition in thought (Frege

1893, VI, p. 2). However, it was left to Frege's successors to show the completeness of

first-order logic. According to Kneale, in On the History of the Logic of Propositions,

Lukasiewicz later proved the completeness of Frege's axiomatisation in which every valid

logical truth oftwo-valued propositional calculus can be demonstrated using his six axioms

and the rules of inference. But the first proof of the completeness of the first -order predicate

calculus was given by Godel in his 1930 doctoral thesis.

After Frege's axiomatisation of propositional calculus, the earliest attempt to complete his

system was made by Russell and Whitehead in Principia Mathematica, which aimed at

proving that pure mathematics is nothing other than an extension of formaIlogic. Their
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work then gave an impetus to all further research in mathematical logic. Thus Hilbert and

Ackermann's metamathematical considerations revolved around it. As well, Godel's most

famous paper is entitled: 'On Formally Undecidable Propositions in Principia Mathematica

and Related Systems 1.' This shows the great influence ofFrege's research programme to

which Principia Mathematica belongs.

5.5 The Place of Begriffsschrift in the History of Logic

Frege is widely considered as the greatest logician since Aristotle. In the Begriffsschrift, he

developed the first modem system offormallogic, showing that mathematical induction may

be expressed in such a way that it may be regarded as a particular case of the familiar logical

forms of inferences, and thereby reducible to the laws of logic. Certainly, this is a

tremendous achievement, which puts him in the logical pantheon beside Aristotle. However,

I shall address a historical issue related to the extent to which Begriffsschrift may be

considered as a novelty in the history oflogic.

Undoubtedly, 1879 is a revolutionary epoch in logic. But Begriffsschrift may not have been

so new as some readers of Frege have claimed. It represents the harvest of the work in

mathematics and logic which was carried out in the second half of the nineteenth century,

and which sowed seeds in the ground for the growth of mathematical logic.

Dummett, the doyen of Frege's studies, is in complete disagreement with this view. As he

claims it,

Frege's ideas appear to have no ancestry. He applied himself to fonnallogic, and
invented a totally new approach ... It is true that his works are full of diatribes against
the mistakes of others: but he never seems to have learned from anybody else, not even
by reaction; other authors appear in his writings only as object-lessons in how not to
handle the subject. And so, perhaps, it is vain to wish that he had paid more attention
to the work of his successors in logic and the foundations of mathematics: perhaps he
was incapable of sailing any sea on which other ships were in sight
(Dummett 1981b, p. 661).

As Pallas sprang from Zeus's forehead, Frege's logic then arose ex nihilo! Frege would not

line up with Dummett's account, in so far as he held that
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the historical approach, with its aimof detectinghowthings begin and of arriving from
these origins at a knowledgeof their nature, is certainly perfectly legitimate ... Often
it is only after immense intellectual effort, which may have continued over
centuries, that humanity at last succeeds in achieving knowledge of a concept
in its pure form ... ( Frege 1884, p. vii ).

He then did not believe that knowledge sprouts in the individual mind like leaves on a tree,

or is to be accounted simply and solely by reference to the genius of a single man. On the

contrary, he suggested that knowledge is typically the result of a continual process of

inquiry. Thus he acknowledged that the symbolism for logical relations originated with

Leibniz and was revived in modem times by Boole, R. Grassmann, S. Jevons, and others

who brought out the logical forms to which he then added content (Frege I 882b, p. 88).

Hence, whilst admitting that logic is an arena for revolutions and that Frege performed one,

it turns out however that such a revolution would not have occurred if the mid-nineteenth

century had not prepared the ground for a revolution in logic.

This revolution emanated from mathematics. Frege, whose mathematical specialty like

Boole's, had actually been calculus, was seeking to provide mathematics with a solid

foundation. Itwas whilst working in this direction that he stumbled upon the imperfections

of natural language, and whilst attempting to overcome these obstacles by his conceptual

notation, he switched from mathematics to logic. Boole and Frege's work presupposed on

the one hand the generalisation of algebra, and on the other hand the generalisation of the

theory of functions. They both relied upon the development of mathematics. As Boolos

points out, 'the Begriffsschrift contains substantial mathematical results on the theory of

relations which must be considered significant contributions to the abstract or generalizing

tendency inmathematics that began in the late nineteenth century' (Boolos 1998, pp. 135-6).

Itwas therefore the development ofmathematics which stimulated the regeneration oflogic.

Boole was particularly distinguished by generalising and systematising syllogistic inferences,

and thereby conceived logic as algebra. As was shown earlier, in 1847 he even anticipated

the truth-value analysis 0f' logical connectives' in the Mathematical Analysis of Logic (see

subsection 3.5.1).

Other significant developments were- (i) in papers from the 1880s, Peirce hinted at the

possibility of expressing Boole's 'elective function' by only one primitive sign namely
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'neither ... nor ... ', which Sheffer used in his axiomatisation of Boolean algebras. He

carried out a refinement of Boole's algebra of logic and, especially, the development of

techniques for handling relations within that algebra. He invented quantification theory, and

this in complete ignorance ofFrege's work (see section 7.1). According to lecture notes

taken by a student of Peirce's, Allan Marquand, Peirce gave a lecture inDecember ofl879

inwhich he presented an axiomatisation of arithmetic." The review of this axiomatisation

leads Boolos to claim that 'it is certain that the idea of applying the logic ofrelations to the

'primitive' relation of one number's succeeding another in order to characterize the natural

number series was in the air over Baltimore, far from that over Jena, the year the

Begriffsschrift was published' (Boolos 1998, p. 248).

(ii) In1877 McCo1l48 suggested separating the calculus of propositions from the calculus of

classes, and then introduced implication as a connective symbol to treat the former. In his

paper 'Symbolic Reasoning' he read the expression a : b 'a implies b', or 'if a is true, b

must be true' . He called the expression 'implication' or 'conditional statement' which is also

'a very simple and suggestive representation of a great and fundamental laws which runs

through all reasoning', namely, the law of implication. According to him, 'this law expresses

the broad fact that the sole function of the reason is to evolve fresh knowledge from the

antecedent knowledge already laid up in the store-house of the memory, and unless we

supply it with this material to work upon, it will not work at all' (McColl 1880, p. 52). Thus,

two years before the Begriffsschrift, he brought forth the first purely symbolical presentation

of a variant version of propositionallo gic which he called' calculus 0f equivalent statement' .

As Church acknowledges it, 'a true propositional calculus perhaps first appeared (... ) in the

work of Hugh McColl ... ' (Church 1956, p. 156).

(iii) In Was Sind und Was Sol/en die Zahlen? published in 1888, Dedekind showed the

validity of the principle ofmathematical induction. He provided a definition ofthe ancestral

47 See the introduction to Volume 4 of the Writings of Charles S. Pierce p. xliv.

48 Hugh McColl (1857-1909) wrote several texts in mathematicallogic: 'The Calculus of Equivalent
Statements and Integration Limits' (Proceedings of the London Mathematical Society, 1877-1878);
'Symbolic Reasoning' ('Mind', London, 1880); 'Symbolic Logic and its Applications' (London, 1906).

214



of a relation. Indeed when Boolos recently read the first draft" of Was Sind und Was Sollen

die Zahlen? he realised that it is quite possible that Dedekind formulated the definition for

the first time several years before 1878, possibly towards 1872, and quite possibly before

Frege arrived at the definition of 'y follows x in the {-sequence' (Boolos 1998, p. 250).

It follows that the line of argument in Begriffsschrift was not altogether unique. There was

a logical Zeitgeist manifest in the work of logicians other than Frege at this time. Frege

himself was acquainted with some of these works during the mid-nineteenth century, in

particular Boole's logical calculus. Accordingly, in opposition to Dummett, it can be said

that Frege was not sailing a sea on which other ships were not in sight.

Sluga too claims that:

Frege's logic effectivelybrought to an end the dominanceof Aristotelian logic which
had been taken for granted in the schools for more than two thousand years. Post-
Aristotelian logic begins only with Frege. By terminating the life span of Aristotle's
system Frege completed a process that had begun centuries earlier with Galileo's
destruction of Aristotelian physics. In the field of logic, it was an epoch-making
(Sluga 1980, p. 65).

Although Begriffsschrift propelled a logical renaissance which extended Aristotelian logic,

there is again here an exaggeration. Post-Aristotelian logic did not pop out of a tabula rasa.

It was rather the result ofa process of revival oflogic, which allowed Boole to introduce

mathematics in logic, and Frege to bring logic in mathematics. It is then problematical to :fix

a definite point for which it may be said (with Sluga): here begins Post-Aristotelian logic.

Furthermore, the comparison with Galileo would have led Sluga to mitigate his strong claim.

Indeed, in regarding nature as written with mathematical characters, Galileo deciphered this

language and undermined Aristotelian physics. But similarly, before Frege, Boole saw that

thought can be written inmathematical texture, and started first to point out the fundamental

laws of this mathematics of thought. Hence, strictly speaking, it pertains to Boole to be

considered as the 'Galileo of thought'.

49 Recently, in 1976 the publication of Pierre Dugac's Richard Dedekind et les Fondements des
Mathematiques contains a large number of previously unpublished texts, including the first draft of Was
Sind und Was Sollen die Zahlen? mentioned by Dedekind. According to Boolos, the draft contains most of
the ideas and proofs found in the later version (Boolos 1998, pp. 249-250).
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In addition, in his Survey of Symbolic Logic of 1918, C. I. Lewis describes in great details

the research programme outlined by Boole, and, at the end of the book, he relegates the

logic of Principia Mathematica to a brief section of six pages. The first chapter of the book

contains the first history of the development of symbolic logic. However, the work ofFrege

is barely mentioned there. It is only in the last two pages that Lewis refers to Frege,

remarking that 'the work ofFrege, though intrinsically important, has its historical interest

largely through its influence upon Mr. Bertrand Russell' (Lewis 1960, p. 114). This shows

that logic did not have to wait for Frege to develop, and those who conceive of such a

development as entirely dependent upon the work ofFrege are historically wrong. Lewis'

Survey of Symbolic Logic demonstrates indeed what logic looked like to someone who was

very familiar with logic.

The exaggerations of the importance of Frege's work have also prompted Putnam to

reconsider the account of the history oflogic. In an essay, 'Peirce the logician', published

in his recent collection of articles called Realism with a Human Face, he draws attention to

the view of Quine according to which 'logic is an old subject and since 1879 it has been a

great one'. He takes this claim as a slight to Boole, and stands in opposition to the

predominant view that 1879 was an 'epochal' year in the history oflogic. He shows that

independent ofFrege, Peirce had set up a logical language adequate for general logic, which

is structurally equivalent to the modem systems. Then, he claims that the possibility ofthe

logical definition of number and the subsequent project oflaying down the foundation of

arithmetic as an extended logic were independently suggested by Peirce.

Such a tendency to reconsider the place of Begriffsschrift in the history oflogic is pursued

by Boolos who reexamines the view about the history oflogic, which he had held for a long

time: 'that 1879 was a watershed year for logic'. In '1879?' an essay in his collection of

articles called Logic, Logic and Logic published in 1998, he begins to sharpen the point by

discussing an observation about propositional logic which Boole made towards the end of

The Mathematical Analysis of Logic. By reference to the section of this booklet called

'Properties of Elective Functions' and to Boole's law of development of functions, he

argues that 'Boole clearly had the idea of all possible distinctions oftruth-values'{Boolos

1998, p. 245). He then goes on to show how Peirce and Dedekind accomplished remarkable

achievements towards the logical definition of number.
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The main point of '1879?' is apposite: tremendous achievements in logic had been

previously carried out independently of Frege by mathematicians and logicians such as

Boole, Peirce, Dedekind. Nonetheless, it should be emphasised that there has never been any

question of contesting the importance of the place of Begriffsschrift in the history oflogic.
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6. Boole-as- Frege- Discusses-Him

The growth of knowledge depends entirely on the existence of disagreement.

Karl Popper

Introduction

Frege's discussion of Boole's algebra of logic occurs in the following essays: 'Boole's

Logical Calculus and the Concept-Script'(1880/81), 'Boole's Logical Formula-Language

and myConcept-Script'(1882), and 'On the Aim of the ConceptuaINotation'(1882). In the

first essay, he spells out the aims and properties of his own symbolic notation, and compares

them to Boole's logical calculus, so as to show its 'more far-reaching aim'. The second is

a shorter version of the first essay. In the third, Frege discusses Boole's formula-language,

analysing it, and pointing out the reason why he does not employ it for his own aim. He

brings out two shortcomings of Boole's logical calculus: the first is the fact that the

principles of Aristotelian logic have not been altered because ofthe nonexistence of a theory

of quantification; and secondly the fact that Boole uses the same symbols to represent both

his 'primary' and 'secondary propositions', leaving them unrelated to each other.

These three essays are concerned specifically with Boole's logical calculus. They are written

between 1879 and 1882 when Frege had to refute the objections to his Begriffsschrift raised

by Schroder, who claimed that his notation did not differ essentially from Boole's formula-

language and could actually be considered as a transcription of the Boole's notation, which

would be preferable (Frege I882c, p. 90).

Given that Frege was performing a strenuous exercise to explain and defend his new logic

and the critical tone of these essays, it could be easily thought that he was adjudicating

between the two notations, and simply jettisoning Boole's logical calculus. In effect, various

Fregean readers have highlighted above all the singularity ofFrege's work and have radically

insulated it from Boole's. Amongst them Sluga is particularly notable, advancing the
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standard account ofFrege's discussion of Boo Ie, against which I shall take a stand so as to

draw a different picture ofBoole-as-Frege-discusses-him.

I shall argue that there is a logical lineage between Boole and Frege which would make it

untenable to separate completely the Fregean and the Boolean research programmes.

Indeed, despite the difference, there is a substantial overlap in content between the two

research programmes. Whilst focussing on Frege's essays where he approaches the relation

between the two notations, I shall point out that what makes Frege's discussion of Boo le

important is not only what it tells us about how Frege differentiates himself from Boole, but

also what it tells us about how Frege carries further Boole's project of introducing

mathematics in logic.

In the essay on 'Boole's Logical Calculus and the Concept-Script', Frege writes,

despite all differences in our further aims, it is evident from what has been said already
that the first problem for Boole and me was the same: the perspicuous representation
of logical relations by means of written signs. This implies the possibility of comparing
the two. If I now tum to this, it cannot be done in the sense of adjudicating between the
two formula-languages, which is to be preferred. To raise such a question would mean
referring back to their ultimate aims, which are more ambitious in my case than in
Boole's. It would indeed be more than possible that each set of signs was the more
appropriate for its own ends. Nevertheless, it seems to me worthwhile to work out the
comparison in detail, since in that way many of the peculiarities of my concept-script
are thrown into sharper focus (Frege 1880/81, p. 14).

This passage itself sums up the manner in which Frege conducts his discussion of Boo le, and

is symptomatic of his legendary intellectual honesty. Frege clearly refuses to adjudicate

between the two logical systems, and to decide which is preferable. Instead, he emphasises

upon the difference between the two purposes, and acknowledges that it may be plausible

that each system would be appropriate for the aim for which it is intended. In 'On the Aim

of the Conceptual Notation', he raises the question whether his formal language governs a

smaller region than Boole's: 'ifthe same department of knowledge is symbolized by means

of two symbol systems, then it follows necessarily that a translation or transcription from

one into the other would be possible. (... ) We can ask whether this translation is feasible

throughout, or whether perhaps my formal language governs a smaller region' (Frege

1882c, p. 98).
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In order to draw a picture ofBoole-as-Frege-discusses-him, I shall regard the above passage

as framing such a picture. Frege shares, indeed, the same subject-matter as Boole, though

he treats it in a different way. But, this difference oftreatment ofthe same problem is mainly

due to the fact that they do not have the same purpose. Boole intends to describe a type of

algebraic structure as part of his algebra oflogic that allows him to express logical relations

as algebraic equations, which are then worked out according to algebraic laws. Whereas

what Frege has in mind is the expression of a content that prompts him to set up a notation

for logical relations which is suitable for incorporation into the formula-language of

mathematics.

I shall consider as a nodal point ofFrege's discussion of Boo Ie the thesis that 'the logically

primitive activity' is judgement rather than concepts. It is indeed what allows Frege to

achieve more far-reaching goals than Boole in yielding the functional analysis of judgements,

from which stems the representation of generality that extends beyond Boole's logical

calculus.

6.1 The Standard Account of The Discussion

According to Sluga, Heijenoort's insight in his paper, 'Logic as Calculus and Logic as

Language', was to argue that, in order to understand the conditions under which

metamathematics emerged, the Fregean (or logicist) and the Boolean (or algebraist)

traditions must be sharply distinguished in the early history of symbolic logic (Sluga 1987,

p. 81). Thus Sluga looks at Frege's own assessment of the relations between his logic and

Boolean algebra, in order to extend and adjust Heijenoort's insight.

I shall discuss the account ofFrege's discussion of Boole, which Sluga gives in his paper,

'Frege Against the Booleans', whose title itself reveals his antagonistic account of the

relations between the Boolean and the Fregean research programmes.

Sluga builds his account upon the distinction between calculus ratiocinator and lingua

characterica. He scrutinises the relation between Boole and Frege through what he regards,
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in a subjective way, as a personal rivalry between Schroder and Frege." In his review of

Begriffsschrift, Schroder claimed that 'Frege's title does not correspond at all to the

content. Instead of leaning toward a universal characteristic, the present work definitely

leans towards Leibniz's calculus ratiocinator'(Sluga 1987, p. 83). But, for Sluga 'in

contrast, Frege argued that the situation was just the other way around .:Boolean algebra

was a mere abstract logic, a mere calculus, whereas his own was capable of expressing an

actual content and could be considered a partial realization of a characteristic language'

(Sluga 1987, p. 83).

Sluga distinguishes sharply between calculus and characteristic language, and expresses the

disagreement between the Booleans and Frege in Leibnizian terms, namely, those of

calculus ratiocinator and of lingua characterica. According to him, on the one hand, the

Booleans took up one aspect of Leibniz's conception of the logical symbolism, that is, a

mechanical calculating procedure. On the other hand, Frege set up a characteristic language

whose construction requires a conceptual and philosophical analysis. Then, Sluga draws his

picture ofFrege's assessment of Boolean algebra as follows:

if Frege did not consider Boolean logic a lingua characterica, i.e. an appropriate
notation, that was, in the end, due to the fact he didnot believethat the Boolean system
of notation gives a proper intuitive representation of the forms of thought and of the
structure of human knowledge.A proper logicwould, in Frege's eyes, have to be built
on the priority principle, reflect the primacy of propositional logic over class logic,
show that logic is the foundationof arithmetic, and facilitate the integrationof various
kinds of knowledgeintoonesymbolismwith a singleinterpretation(Sluga 1987, p. 92).

There is no doubt that Sluga's 'Frege Against the Booleans' encompasses valuable insights.

The recognition ofFrege's principle of priority as constituting 'the true center ofhis critique

of Boolean logic' (Sluga 1987, p. 86) is certainly a clear perception of the problem, which

I shall accept. He correctly argues that this principle, which gives judgements 10gical priority

over concepts, guided Frege at two points in the construction ofhis logic which differs from

Boole's. One was in the discovery ofthe function-argument analysis of judgements and the

other was in his analysis of general propositions (Sluga 1987, p. 88). However, in

50 In fact, Frege considers Schroder's review ofhis monograph as friendly and attempts to supplement
and correct the comparison he makes between Boolean logic and his Begriffsschrift (Frege 1880/81, p. II).
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attempting to dichotomize sharply the two research programmes through the distinction

between a calculus and a characteristic language, Sluga appears to have overdrawn his

picture.

It should be noted that although Sluga clearly heralds that he wants to look at Frege's own

assessment ofthe relation between his logic and Boolean algebra, he does not refer directly

to what Frege actually thinks about this relation. Instead, it is through Schroder's review of

Begriffsschrift that he mostly approaches the relation between Boole and Frege. His use of

the term 'assessment' is also inappropriate, in so far as Frege makes clear in his discussion

of Boo le that he does not attempt to adjudicate between the two logical systems which is

to be preferred.

In Frege's conception an adequate notation requires one to supplement the signs of

mathematics with a formal element and Boole's logical calculus was unsuited to this task.

But this cannot be an objection to Boole since, as Frege recognises, such a supplementation

does not enter into his intentions. Hence, in order to prevent any misjudgement between

their two formula-languages, Frege warns that whilst comparing them it is always necessary

to bear in mind the difference between the purpose that governed Boole in his symbolic logic

and the one that governed him in his Begriffsschrift.

It is worth returning to the distinction between calculus ratiocinator and lingua

characterica, which Sluga points out as playing a cental role in the 'quarrel' between Frege

and the Booleans. A lingua characterica is an ideography language in which the logical

structure ofthe expressions follows the structure of the things represented. Such a language

is characterised by the use of predicate letters, variables, and quantifiers, and thus is

articulated and can express a meaning. It provides a method for setting down the logical

relations involved in all scientific knowledge in a written form which is as perspicuous as

mathematical notation. A calculus ratiocinator by contrast denotes a formal system for

reasoning about the logical relations. It is a form of a computation for determining the truth

of our propositions, a production of relations through the transformation of formulas

according to determinate rules.

On this issue Sluga lines up with Heijenoort, who characterised the difference between the
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'Boolean and the Fregean traditions' by drawing attention to the fact that Frege called

Boo lean algebra a calculus ratiocinator whilst describing his own as a lingua characterica.

In the book, Frege and Godel, Two Fundamental Texts inMathematical Logic, Heijenoort

reiterated the same claim in holding that 'in distinguishing his work from that of his

predecessors and contemporaries, Frege repeatedly opposes a lingua characterica to a

calculus ratiocinator' (Heijenoort 1970, p. 3). So Heijenoort and Sluga both want to

confine logic to only a lingua characterica but misunderstand this as the scope ofFregean

logic.

However, Frege was very clear about the relation between calculus ratiocinator and lingua

characterica; he writes,

I wished to produce, not a mere calculus ratiocinator, but a lingua characterica in the
Leibnizian sense. In doing so, however, I recognize that deductive calculus is a
necessarypart of a conceptual notation (My emphasis) (Frege 1882c, p. 91).

In recognising that 'deductive calculus is a necessary part of a conceptual notation', Frege

shows the genuine lineage between his logical system and Boole's. He reiterates his

integrative view of the relation between calculus ratiocinator and lingua characterica in

'On Mr. Peano's Conceptual Notation and My Own,' an essay written in 1897. In it, Frege

portrays his achievement as follows,

in Leibnizian terminology we can say: Boole's logic is a calculus ratiocinator but not
a lingua characterica;Peano's mathematical logic is in the main a lingua characterica
and at the same time also a calculus ratiocinator, whereas my conceptual notation is
both, with equal emphasis (Frege 1897b, p. 242).

Indeed, in Frege's conceptual notation inference is conducted like a calculation in the sense

that there is an algorithm there, that is 'a totality of rules which govern the transition from

one sentence or from two sentences to a new one in such a way that nothing happens except

in conformity with these rules'(Frege 1897b, p. 237). Thus, the logical project ofLeibniz,

which was seen as mathematics under the two aspects of a calculus ratiocinator and of a

lingua characterica, forms the whole ofFregean logic. And since Boole attempted the first

aspect, that is, a calculus ratiocinator, it follows that his attempt leads up to one part of

Fregean logic.
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Accordingly, the lineage between Boole and Frege lies in the fact that they are both

concerning with a formal method. Frege's formula language appears to be formal in that the

choice of its symbols and the inference derived from these symbols are governed by few

explicit rules, in such a way that the conclusion of reasoning is only drawn according to the

symbols. This resembles Boole's 'process of analysis', a process by which combinations of

interpretable symbols are carried out according to well-determined rules of combination. As

Frege acknowledges it, they have at the outset the same problem: 'the perspicuous

representation oflogical relation by means of written signs'(Frege 1880/81, p. 14).

Sluga seems to have perceived the relation between the two systems when referring to

Boole's mechanical procedure performed on algebraic symbols. He holds that 'Frege did not

want to dispute the significance of such technical improvements in logic. On the contrary,

he conceived ofhis own system as also providing such a technique for problem-solving, such

a calculus'(Sluga 1987, p. 84). Indeed, it is actually a calculus of this kind that shows the

close relation between Boole and Frege, regardless of the fact that it was carried out in two

different ways. For Frege grants that, in Boole's logical calculus, conclusions may be drawn

from premises by means of mechanical calculating procedure, even though he is convinced

that a complete logic requires more.

Consequently, a fair account ofFrege's discussion of Boo le should not lead one to oppose

radically their two formula languages. Frege is not against Boole. Rather he takes further

what Boole started. Their logical systems constitute two overlapping research programmes.

But Boole wants to treat logic as algebra whereas Frege regards logic as fundamental.

6.2 Boole and Frege: The Same Subject-Matter

In the essay 'Boole's Logical Calculus and the Concept-Script', Frege introduces the

discussion of Boole by giving credit to Leibniz, who sowed such a profusion of seeds of

ideas in the ground, which then were further developed and brought to fruition. Frege

counts amidst these seeds the idea of a lingua characterica having a closest possible links

with that of a calculus ratiocinator. Then, he recalls,

in a short monograph, I have now attempted a fresh approach to the Leibnizian idea of
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a lingua characterica. In so doing, I had to treat in part the same subject-matter as
Boole, even if in a differentway (Frege 1880/81, p. 10).

According to Frege, this treatment of the same subject-matter as Boole led Schroder to

draw a comparison between Boole's logical calculus and his Begriffsschrift, which he

attempts now to supplement and correct in the paper.

I shall be stressing the domain common to Boole and Frege's formal languages, that is, 'the

perspicuous representation of logical relations' and the deductive calculus of reasoning.

6.2.1 The Perspicuous Representation of Logical Relations

Boole and Frege share the same subject-matter: they want to provide a basis for a formal

theory of inference. In doing so, they have to construct a symbolical language suitable for

replacing ordinary language, which is ambiguous, because ofthe imperfect correspondence

between the disposition of words and the structure of the concepts. They have a common

problem, that is, the attempt to dissipate such an ambiguity within the framework of

ordinary language. They bring forth an important change, that is, the move from the oral

utterance, which indicates imperfectly what a symbolical notation should express clearly, to

a perspicuous formulation oflogical relations. Thus, in the discussion of Boole's logical

calculus, Frege acknowledges that

it is evident that the first problem of Boole and me was the same: The perspicuous
representation of logical relations by means of written signs (Frege 1880/81, p. 14).

The first step of this move had been made by Aristotle, whose syllogisms already employed

schematic letters in place of words. This reliance upon letters instead of words in the process

of reasoning began formal logic. There is a great advantage of symbolic notation over

speech, which lies in the fact that it clarifies the structure of the relevant arguments. As

Leibniz puts it, it 'would literally speak to eyes' (Leibniz 1765, p. 399) rather than to ears,

and thus would set up the requirements of a scientific calculation, thereby allowing formal

logic, after the discovery of variables, to make a second step by turning reasoning into

calculus. Iflogic is about valid reasoning and the formal rules which govern it, then what

is logical must be abstracted from the ordinary concatenation of words, which tend to
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conceal the actual structure of a proposition. Therefore, any attachment to traditional

grammar, which fails to capture the logical structure ofa proposition, must be abandoned.

This is what Boole does through the construction of a logical language, in order to express

logical relations perspicuously. Hence, Frege, knowing the importance of the necessary

departure oflogic from ordinary language, acknowledges that it is useful to be acquainted

with a means of expression of a quite different kind, such as the formula-language of algebra

(Frege 1879/1891, p. 6). And if a lingua characterica seeks to depict the structure ofa

proposition, it is clear then that 'the formula-language ofmathematics comes much closer

to this goal' (Frege 1880/81, p. 13). Thus, Frege is convinced that the use of arithmetical

signs for logical purposes spares us the necessity of learning a completely new algorithm

(Frege 1880/81, p. 12). He stresses this conviction again in a letter addressed to Hilbert in

which he says that 'the advantages of perspicuity and precision are so great that many

investigations could not even have been made without a mathematical sign language' (Frege

1895c, p. 33).

However, it should be acknowledged that Boole's formula-language does not achieve

completely the perspicuous representation oflogical relations. For, as Frege sees it,

anyone demanding the closest possible agreement between the relations ofthe signs and
the relations of the things themselves will always feel it to be back to front when logic,
whose concern is correct thinking and which is also the foundation of arithmetic,
borrows its signs from arithmetic. To such person it will seem more appropriate to
develop for logic its own signs, derived from the nature of logic itself; we can then go
on to use them throughout the other sciences wherever it is question of preserving the
formal validity of a chain of inference (Frege 1880/81, p. 12).

Boole's logical language, which borrows its signs from arithmetic, cannot fulfil these high

demands, in so far as the language of mathematics, upon which he relies, was still using

verbal language in the proofitself, and thus undermining the formal rigour ofthe inference.

Hence, it remains to supplement the signs of mathematics with a formal element. But,

according to Frege, Boole's logical calculus, which solves only one part of the problem of

the perspicuous representation oflogical relations, cannot do that. For it uses the signs +,

0, and 1 in a sense which is different from their arithmetical ones. However, 'it would lead

to great inconvenience if the same signs were to occur in one formula with different
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meanings' (Frege 1880/81, p. 13). What then should be done is to develop distinctive signs

for logical relations, which can be incorporated into the formula-language of mathematics,

and thus to form a complete logical language capable of expressing inferences and

definitions involved in mathematics in particular, and science in general. It follows that the

problem ofthe perspicuous representation oflogical relations is only completely solved with

Frege's concept-script, in which the written formula represents the structure of thought as

an objective entity, expressing perspicuously its logical content.

But Frege does not reproach Boole's formula-language its inadequacy of preserving the

formal validity of a chain of inference, because, as he acknowledges, it is not Boole's

intention to set up his notation for such an application. Then, in referring to 10gicallaws that

assume the form of a computation, he admits that 'these means fulfill their purpose, at least

as far as the range of problems that Boolehas inmind are concerned'(Frege 1880/81, p. 12).

6.2.2 The Deductive Calculus of Reasoning

In 'On The Aim of Conceptual Notation', Frege points out something he has in common

with Boole's logical calculus: 'the subordination of concepts'. Indeed, the subordination of

one concept to another can be captured in Boole's notation as follows:

x =xy

For example, if x means the extension ofthe concept 'men' and y means the extension of

the concept 'mortals', then the equation says: the extensions of the concepts 'men' and

'mortals' are the same; that is, 'All men are mortals' .

In opposition to Schroder, who holds that his concept-script has almost nothing in Common

with Boole's calculus of concepts, Frege shows the contrary in demonstrating how his

concept-script can also represent the subordination of concepts. Thus, regarding the

judgement

'if.r= 9, thenx4= 81.'
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he says: 'now we can call a number whose square is 9 "a square root of9", and one whose

fourth power is 81 "a fourth root of81", and translate: all square roots of9 are fourth roots

of 81' (Frege 1882c, p. 99). Then, as can be readily seen, the concept 'square root of 9 '

is subordinated to the concept 'fourth root of 81'. Unlike Boole's use of 'x', for Frege

'x'expresses the generality of the judgement, which means that whatever we may replace

by x, the content should hold. I shall show that his concept-script has a considerable

advantage over Boole's notation in that it relies upon a theory of quantification, which

allows one to represent the scope of the generality.

In the last part ofthe essay 'Boole's Logical Calculus and the Concept-Script' (pp. 35-45),

Frege also confines his attention to the domain common to the two formal languages. He

disregards Boole's primary propositions, and compares their two propositional calculi. As

a result, he shows that the axiomatisation of propositional calculus which he sets up in the

Begriffsschriftneeds fewer primitive signs for logical relations, and therefore fewer primitive

laws than Boole's logical calculus.

In effect, Frege claims that, in his case, contents of possible judgements expressed by the

symbols A and B are connected by the conditional stroke, whereas in Boole's system they

are connected by identity, addition and multiplication. Thus, of the four possibilities

AandB

A and notB

notA andB

not A and not B,

Frege observes that Boole's identity sign A = B denies the middle two of the four

possibilities. The addition sign A +B, which Boole construes exclusively, denies the first

and the last; and the multiplication sign AB affirms the first to deny the other three. The

inclusive interpretation ofthe addition sign, which Jevons and Schroder adopt, denies only

the last possibility. In order to capture conditionals, Boole employs the notation:

A (1 -B) = o.
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Thus, there is only two basic signs in Frege to three in Boo Ie. Hence, there exists an inflation

of signs in Boole which entails an inflation of primitive rules for computation. This is what

strikes Frege, who finds its reason 'in the desire to force on logic signs borrowed from an

alien discipline, instead oftaking one's departure from logic itself and its own requirements'

(Frege 1882d, p. 48).

Since the more primitive signs you introduce, the more axioms you need, by contrast with

Boole, Frege follows the principle:

it is a basic principle of science to reduce the number of axioms to the fewest possible.
Indeed, the essence of explanation lies precisely in the fact that a wide, possibly
unsurveyable, manifold is governed by one or a few sentences. The value of an
explanation can be directly measured by this condensation and simplification: it is zero
if the number of assumptions is as great as the number of facts to be explained
(Frege 1880/81, p. 36).

Thus, in order to arrive at the fewest possible primitive signs he chooses those with the

simplest possible meanings, seeing that 'the simpler a content is, the less it says'. For

instance, he claims, 'my conditional stroke, which only denies the third of the four cases,

says less than Boole's identity sign which denies the second as well. The multiplication sign

says even more, because it denies the fourth possibility as well, eliminating all choice. Only

the addition sign, like my conditional stroke, excludes only one case, if you adopt Stanley

Jevons' improvement ... ' (Frege 1880/81, p. 36). Yet one can express everything one

wants with negation and either disjunction or conjunction. But that would not fit with .

Boole's algebraic approach which demands equations.

Frege attempts to manage everything with the fewest possible primitive laws. By means of

these primitive laws; he provides a definition of the ancestral of a relation, and shows the

validity of the principle of mathematical induction. In this way, he dovetails with the

principles that guide him in setting up the axiomatisation of propositional calculus.

In this axiomatisation, Frege lays down, in the Begriffsschrift, nine axioms and five rules;

whereas, according to him, Schroder uses fifteen axioms in his Operationskreise des Logik-

kalkuls. Then, he counts fourteen primitives propositions (nine axioms plus five rules) in his
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system, and claims to command a somewhat wider domain than does Schroder with fifteen

(Frege 1880/81, p. 39). He eventually simplifies the system, so as to obtain eleven basic

propositions, and then may claim,

I see in this the success of my endeavour to have simple primitive constituents and
proofs free from gaps. And so I replace the logical forms which in prose proliferate
indefinitely by a few. This seems to me essential if our trains ofthought are to be relied
on; for only what is finite and determinate can be taken in at once, and the fewer the
number of primitive sentences, the more perfect a mastery can we have of them (Frege
1880/81, p. 39).

However, it should be pointed out that in the later development of Boo le's logical calculus,

Sheffer and Huntington offered a set of five independent postulates, which assumes only one

undefined K-rule, and thus dovetails with Frege's basic principle of science, that is, to

reduce the number of axioms to the fewest possible (see section 4.3). Their set of postulates

for Boolean algebras are even more condensed and simpler than the system that Frege

presents in the Begriffsschrift.

In the last six pages of his essay (pp. 39-45), Frege finishes with his comparison in the

domain common to the two formal languages by working out Boole's example 5 (Boole

1854, p. 146) in order to illustrate how his concept-script can be used to solve the logical

pro blems Boole tackles, and even do so with fewer preliminary rules for computation (Frege

1880/81, p. 46). I shall not venture into the long-winded calculations ofFrege's technique

for problem-solving. It suffices to give some indication of how the calculations go. Frege

first translates the individual data into his notation. He then picks out the judgements that

must be eliminated, and thus obtains the solution among the remained judgements. As he

describes it, 'whereas the dominant procedure in Boole is the unification of different

judgements into a single expression, I analyse the data into simple judgements, which are

then in part already answers to the questions. I then select from the simple judgements those

lending themselves to the eliminations needed, and so arrive at the rest ofthe answers. These

will then contain what we wanted to find out' (Frege 1880/81, p. 45).

But, as the editors ofthe Posthumous Writings point out, Frege's procedure of computation

contains 'mistakes', and a 'morass of confusion', which may put the correctness of his

solution in jeopardy (Footnote 1, p. 41). Indeed, the way in which Boole works out the
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problem seems to be more appropriate. It takes him only two pages to bring out the solution

of the problem, whereas Frege devotes five pages to it. Hence, in the case of problem-

solving, the one-dimensional notation of Boo le's logical calculus has an advantage over the

Frege's two-dimensional notation of his concept-script, at least in terms of space and time

management.

As Frege himself would expect, Boole's logical calculus is better suited than his concept-

script to solve the sort of problems for which it is specifically set up. After all, does not

Frege say that 'it would indeed be more than possible that each set of signs was the more

appropriate for its own ends'? (Frege 1880/81, p. 14)

It is now in this difference of ends that lies the peculiarity of each way of treating the same

subject-matter. This is what should be always borne in mind when comparing Boole's

system of notation to Frege's if we are not to go astray.

6.3 The Relation of Logic to Mathematics

The two different ends of Boo Ie and Frege, which justify the different way of treating the

same subject-matter, bring forth as a corollary two different conceptions of the relation of

logic to mathematics. I shall recall their different purposes, and stress that although they do

not have the same conception of the relation oflogic to mathematics, the works of Boo Ie

and Frege show the close relationship between logic and mathematics, in such a way that

the separation of the two ceases to be a sharp one.

6.3.1 Doole: Logic as an Auxiliary Part of Mathematics

The purpose of The Laws of thought is 'the construction of a system or method of Logic

upon the basis of an exact summary ofthe fundamentallaws ofthought' (Boole 1854, p. 66).

Boole applies a strong algebraic apparatus to such informal objects as the 'laws of thought' .

He points out the relation between the laws of thought and operations like addition and

multiplication. Then, he chooses negation, conjunction, and disjunction as the primitive

logical operations, and sets up calculi common to thinking in different areas such as, classes,

propositions, probabilities, etc,. By relying upon symbolical algebra, he begins with one or
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more systems of related operations and articulates a common abstract structure. This leads

him to posit a set of axioms which is satisfied by each of the systems. It follows that Boole

regards logic not as an abstraction from the actual processes of thought, but as a formal

construction, for which an interpretation is then sought.

The purpose of Boo le then yields a conception of the relation oflogic to mathematics. In

the Mathematical Analysis of Logic, he believes that we ought to associate mathematics

with logic and espouses a general view of their relation. Since mathematics is no longer

restricted to magnitude, Boole is convinced that there is a common ground upon which logic

and mathematics may meet, and exchange with each other. Hence he holds that mathematics

and logic are inseparable.

There is not only a formal correspondence between logic and mathematics, but also a partial

identity. On the one hand, symbolical algebra, upon which Boole models his logical calculus,

is a general science of relations, in which each relation yields a special formal theory with

its own axioms and theorems, and a calculus of which these axioms constitute the rules of

operation. On the other hand, the logical form of reasoning is a rigorous and explicit

deduction in which conclusions are drawn from premises according to general and formal

rules set up a priori, and apart from the content of the relations to be considered. It is clear

from this that mathematics comes close to logic. Thus, Boole regards both of them as

depending upon 'general principles founded in the very nature of language' and upon a

resulting 'agreement in process'(Boole 1854, p. 6). It is in the symbolical notation, which

achieves the ideal of formal logic that logic and mathematics may be joined together, may

assist each other, and eventually may merge.

But, in Boole's eyes, mathematics even does more, in so far as it provides logic with the

rigorous and precise forms which make it perspicuous. In the Laws of Thought, he claims

that 'the ultimate laws oflogic are mathematical in their forms' (Boole 1854, p. 11). Thus,

iflogic is presented in such a way that it consists of symbols and precise rules of operation

upon these symbols, then it ensues that it is an auxiliary part ofmathematics. In the end, this

seems to be Boole's conception of the relation oflogic to mathematics.

Such a conception is somewhat in accordance with that of Hilbert, who 'remarked that
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symbolic logic could be treated as though it were a branch of elementary number

theory'(Kneale 1962, p. 714).

6.3.2 Frege: Mathematics as a Branch of Logic

Unlike Boole's logical calculus, which is restricted to a 'pure logic' that does not express

a 'content', Frege's Begriffsschriftstrives 'to make it possible to present a content when

combined with arithmetical and geometrical signs'. In 'Boole's logical Formula-language

and my Concept-script', Frege tells us his purpose:

I wanted to supplement the formula-language of mathematics with signs for logical
relations so as to create a concept-script which would make it possible to dispense with
words in the course of the proofs, and thus ensure the highest degree of rigour whilst
at the same time making the proofs as brief as possible' (Frege I882d, p. 47).

What Frege intends to do is to introduce new signs for logical relations in order to obtain

a genuine formula-language, which then can be used to render mathematical inference more

rigorous, and thus to lay down the foundations of arithmetic as an extended logic. His

explicit purpose is to complete the formula language of arithmetic in such a way that a

mathematical proofno longer requires the use of text in ordinary language.

It follows that Frege conceives his logical system neither as an auxiliary part ofmathematics,

nor as the result of abstractions from reasoning in particular domains. Moreover, the

purpose of Frege contains a philosophical insight, that is, the epistemological question of

the status of mathematical truths that is the point of departure of his logical investigations.

Are they analytic or synthetic? Such a philosophical question cannot be found in the work

of Boo le. Indeed, the fundamental idea ofFrege is that mathematics is a branch oflogic. He

then aims to reconstruct the whole of that science by means oflogical symbolism.

This reductionist programme is sustained by a conception of the relation of logic to

mathematics. As Frege sees it, 'mathematics has a closer ties with logic than does any other

disciplines; for almost the entire activity of the mathematician consists in drawing

inferences.' Thus, since inferring and defining are subject to logical laws, Frege draws the

conclusion that 'logic is of greater importance to mathematics than to any other science'
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(Frege 1914, p. 203). In 'On Formal Theories of Arithmetic,' he also says that 'no sharp

boundary can be drawn between logic and arithmetic. Considered from a scientific point of

view, both together constitute a unified science' (Frege 1885, p. 112). Although the

dichotomy between the two may be understood for practical considerations, Frege believes

that this must not become a breach to the detriment of logic and mathematics. He even

reminds logicians that 'they cannot come to know their own discipline thoroughly unless

they concern themselves more with mathematics'{Frege 1885, p. 113).

However, under the name of 'formal theory', Frege holds the conception that 'all

arithmetical propositions can be derived from definitions alone using purely logical means ... '

(Frege 1885, p. 112) From this he draws the conclusion that 'there is no such thing as a

peculiarly arithmetical mode of inference that cannot be reduced to the general inference-

modes oflogic'{Frege 1885, p. 113); and the requirement that 'everything arithmetical be

reducible to logic by means of definitions' (Frege 1885, p. 114). Consequently, Frege uses

logic to provide the foundations ofmathematics by deriving all mathematical notions from

logical ones.

But is it plausible to give a logical definition to the notions of mathematics, or does

mathematics possess a specificity so that its logical reconstruction would be inadequate?

Unfortunately, some serious fissures, such as the paradoxes, developed out of Frege's

reductionist programme, and endangered the solidity ofthe enterprise to provide a logical

basis for the whole mathematical edifice. Frege holds indeed that propositions about natural

numbers are propositions about the extensions of certain concepts. The number seven, for

example, is the extension of the concept that applies to and only to the concepts that apply

to exactly seven objects. But this theory of extensions is shown to be inconsistent due to

Russell's paradox.

It is not necessary or appropriate here to discuss the detailed reactions to Russell's paradox

(including Frege's own). Nonetheless it is fair to conclude that they all suggest that there

is a deep division between logic and set theory (the theory of extensions of concepts); and

thus that even if one can model arithmetic on set theory, one does not thereby reduce

arithmetic to logic. As Putnam puts it, the central charge laid against Frege's work is that

what they (Frege, Russell and Whitehead) called logic is not logic but 'set theory'{Putnam
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1990, p. 259).

As a result, Frege's aim to make plausible the derivation of mathematics from logic ceases

to have its first sense. Rather the question is now to find a very general system of symbols

upon which the whole edifice of mathematics can be built, and this entails that the problem

is no longer of a purely logical nature. In this direction, in 'A new Attempt at a Foundation

for Arithmetic'(1924/25), Frege himself admits that he has 'to abandon the view that

arithmetic does not need to appeal to intuition either in its proofs, understanding by intuition

the geometrical source of knowledge, that is, the source from which flow the axioms of

geometry' (Frege 1924/25a, p. 278). Subsequently, he claims that the whole of mathematics

is ultimately the result of' geometrical source ofknowledge', with, of course, the logical one

always required where inferences are drawn.

Frege's failure to derive mathematics from logic should however be qualified. For, in his

book, Frege's Conception of Numbers as Objects published in 1983, Crispin Wright gives

a new interpretation of Frege studies which may save Frege from contradiction. Wright

endeavours to show that the method followed by Frege in The Foundations of Arithmetic

is consistent, and can be used for establishing the Peano Axioms without relying upon

classes. Thus, in section xix of the book, he provides proofs of the Peano Axioms (see pp.

154-169). He points out that within pure second-order predicate calculus, the Peano Axioms

can be derived from what is called 'Hume's principle', that is, ' the number ofF's is identical

with thenumberofG's ifand only if there is a one-one correspondence between theF's and

the G's'. For Wright, it is possible 'to define arithmetical concepts in terms oflogical ones :

so that, for any particular (decidable) axiomatisation of number theory, a base class of its

theorems have purely logical transcriptions which can be demonstrated to be theorems of

logic; and from this base class all theorems of the axiomatisation in question follow by

logical means' (Wright 1983, p. 137-8).

Following the way paved by Wright, Boolos argues that 'the number principle', which is

related to Frege' s principle about sets, turns out to be consistent. As he claims, ' if one reads

The Foundations of Arithmetic carefully, one sees that Frege uses the set principle only to

derive the number principle, ''the number ofF s = the number of G s if and only if the F s

and the G s are in one-one correspondence." After deriving the good number principle from
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the bad set principle, Frege has nothing more to do with sets. Once he has obtained the

number principle, he proceeds to show how to derive arithmetic from it with the aid of

nothing other than the system oflogic he had set out in the Begriffsschrift'(Boolos 1998,

p. 151).

Although these successful interpretations ofFrege's system make it provable that arithmetic

is simply a development of logic, it remains a limited success. Possibly, some parts of

mathematics can be reduced to logic but no one has yet shown that all mathematics can be

so reduced. Moreover, in the paper, 'On Formally Undecidable Propositions of Principia

Mathematica and Related Systems I' written in 1931, Godel's famous incompleteness

theorem shows that, in the most comprehensive formal system such as, the system of

Principia Mathematica and the Zermelo-Fraenkel axiom system of set theory which contain

the laws of simple arithmetic, there would always be true propositions of the system that

could never be proved or disproved within the system. They are undecidable. Thus, by

proving that second-order logic and set theory' Iare destined to remain forever incomplete

Godel shows in effect that for any theory which aims to include arithmetic there are

propositions which are not provable within the theory but which can be seen to be truths of

arithmetic. Hence second-order logic and set theory do not seem to belong to the domain

oflogic, which must have a complete and effective set of axioms like quantification theory

or first-order predicate calculus.

Godel's theorem has an important bearing on the claims ofthe Fregean research programme.

Indeed, although logic is a fundamental theory since it is presupposed by all the deductive -

theories, such as mathematics, it does not seem to be a good idea to assert that all

mathematics can be reduced to logic, if what Frege, Whitehead and Russell call logic is set

theory", which belongs to the domain of mathematics, and is, by definition, incomplete at

Silt might be objected that to describe set theory as 'incomplete' is not quite right, for it is our
attempted formalisations that is incomplete, and an extension of our present axiom system may, eventually,
generate a complete set theory. However, according to Godel, this objection is untenable. For in a lecture,
'Some Basic Theorems on The Foundations of Mathematics and Their Implication', delivered in 1951, he
shows mathematics to be 'incompletable' or 'inexhaustible' and absolutely undecidable, 'not just within
some particular axiomatic system, but by any mathematical proof the human mind can conceive'(G6del
1951, p. 310).

52 I follow here Quine, for whom set theory does not belong to logic, although pioneers in modem
logic like Frege, Peano, and various of their followers, notably Whitehead and Russell, viewed it as logic
(Quine 1970, pp. 64-66).
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any given time. In truth, mathematics and logic are both fundamental and neither reducible

one to another.

Furthermore, as well as the contrast between Russell's logicism and Hilbert's formalism

which focused on the question whether logic can be construed as a formal system, or

whether its symbols demand to be interpreted, there is a general thesis common to both

schools of thought: a mathematical system must be constructed in such a way as to allow

the inferences and definitions to be carried out without any reference to the meaning of the

axioms, although the expressions and rules of operation have been set up on the basis of the

meaning of these axioms. This point of likeness of Russell and Hilbert is what has been

already construed as the lineage between Boole and Frege who both aim at the outset to

construct a formal process as a support oflogical deductions. It shows, in a way, the close

relationship between logic and mathematics. Which is more fundamental, logic or

mathematics, ceases now in a way to be a good question.

Nevertheless, the failure ofFrege's reductionist programme does not devalue the logical

system which was designed to carry out such a programme. On the contrary, it still remains

all-important in that it brings forth a new logic.

6.4 The Nodal Point of Frege's Discussion of Boole

I shall consider, as the nodal point of Frege's discussion of Boole, the thesis that 'the

logically primitive activity' is judgement rather than the formation of concepts. In Frege's .

eyes, Boole's assumption oflogically perfect concepts as ready to hand, and judgments to

be drawn from by comparing them via their extensions brings him close to Aristotelian logic.

For in Aristotle, as in Boole, the logically primitive activity is the formation of concepts
by abstraction, and judgment and inference enter in through an immediate or indirect
comparison of concepts via their extensions (Frege 1880/81, p. 15).

As opposed to this, Frege begins with judgments and allows the formation of concepts to

proceed from them. His construction of judgements as prior to concept formation, and the

representation of generality in mathematics, which flows from his functional analysis of

mathematical judgments are presented in the essay 'Boole's logical Calculus and the
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Concept -script' (pp. 14-20). In these pages, Frege shows how his concept-script commands

a wider domain than Boole's formula-language.

6.4.1 Judgements as Prior to Concepts

At first sight, it might appear from the title of his booklet, Begriffsschrift or 'Conceptual

Notation', that Frege regards concepts as the logically prior notion from which judgment

maybe formed. But, this would be a misunderstanding of the leading principle ofFrege's

work in logic. In the Begriffsschrift, 'judgement' is discussed right at the start and this

priority of judgement over concepts is affirmed in his essay, 'Boole's Logical Calculus and

the Concept-script':

I start out from judgements and their contents, and not from concepts ... I only allow
the formation of concepts to proceed from judgements (Frege 1880/81, p. 16).

Towards the end of his career Frege reaffirmed the same point in his 'Notes for Ludwig

Darmstaedter' (July 1919):

I do not begin with concepts and put them together to form a thought or judgement; I
come by the parts of a thought by analysing the thought. This marks off my concept-
script from the similar inventions ofLeibniz and his successors, despite what the name
suggests; perhaps it was not a very happy choice on my part (Frege 1919, p. 253).

In Frege's eyes the primacy of judgement over concepts is a distinctive feature ofhis logic.

Although he does not mention it explicitly in the Begriffsschrift, this important principle .

underlies the creation of his formula-language. It encompasses a fundamental innovation in

logic, which no longer starts from concepts so as to build up judgments. Rather, concepts

are obtained by splitting up a judgement content into parts.

Consequently, Frege can avoid the division in Boole's logical calculus between primary and

secondary propositions that gives the priority to 'primary propositions.' In Boole's logical

calculus, 'primary propositions' are treated by the logic of classes, which embraces

syllogistic theory, and 'secondary propositions' are the object of propositional calculus.

Boole (1854, p. 53) gives as an example of a primary proposition:
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(I) Animals are either rational or irrational

and of a secondary proposition:

(2) Either animals are rational or animals are irrational

With x standing for 'rational', y for 'irrational', and z for 'animals,' Boole would express

the two propositions respectively as,

(I) z = x ( 1-y) + y ( 1-x );

(2) x ( 1-y ) + y ( 1-x ) = 1.

In (2) 1represents the universe of discourse, that is, 'animals' under which everything that

is being considered falls. Thus, although he employs the same algebraic notation to represent

them, these two propositions have different interpretations; and he fails to identify the

logical connection between them. However, as it can be readily seen, the first follows from

the second. But, Boole cannot express this in his logical calculus, which is incapable of

representing inferences in which both primary and secondary propositions occur. In his

paper, 'From Boole to Frege'(1976), Dudman brings out very clearly the failure of Boo le's

account for the affinity between the propositional calculus and the class calculus. But in

what does this affinity consist?"

As Dudman says, 'in answering this question Boole aligns himself with his traditional

predecessors; for according to him the affinity consists in an underlying identity between the

two logics: the logic of hypo thetica Is is really only the logic of categoricals all over again,

53 In 1903, Russell formulated the question as follows: 'the symbolic affinity of the propositional
calculus and the class calculus is, in fact, something of a snare, and we have to decide which of the two to
make fundamental' (Russell 1903, p. 12). The question had been discussed in the late nineteenth century.
For instance, according to Russell, in 'The Calculus of Equivalent Statements' McColl contended for the
view that implication and proposition are more fundamental (Russell 1903, p. 12). As for Peirce, he writes:
'I was ... led to suppose that the whole non-relative logic (the propositional calculus) was derivable from
the principles of the ancient syllogistic ... My friend, Professor Schroder, detected the mistake and showed
that the distributive formulae . . . could not be deduced from syllogistic principles. I had myself
independently discovered and virtually stated the same thing (1885, p. 1731). Venn also expressed his view
on the issue (see Venn 1881, Chapters 8 and 18).
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but under another disguise' (Dudman 1976, p. 1I9). Indeed, belief in an underlying identity

between secondary proposition and primary proposition prevents Boole from representing

both at once. Thus he cannot recognise that (2) implies (1) and is unable to exhibit this

implication. In Boole's system, as Frege notes it, ' any logical transition from one kind of

judgment to the other - which, to be sure, often occurs in actual thinking - is blocked'

(Frege 1882c, p. 93).

Yet Boole is correct in noticing that (I) does not imply (2). Thus (I) and (2) are not

equivalent. According to him,

the proposition, 'Animals are either rational or irrational,' is primary. It cannot be
resolved into, 'Either animals are rational or animals are irrational,' and it does not
therefore express a relation of dependence between the two propositions connected
together in the latter disjunctive sentence (Boole 1854, p. 53).

But, in The Mathematical Analysis of Logic, Boole stresses in a footnote that he is not able

to agree with some writers who 'regard it as the exclusive office ofa conjunction to connect

Propositions, not words' (Boole 1847, p. 59).

However, Frege rejects Boole's claim that it is not the exclusive office of a 'conjunction'

to connect propositions. He is able to do so because his logical system is based on singular

propositions, such as 'Socrates is mortal' or 'This animal is either rational or irrational'. As

Boole himself suggests, when in the predicate in such a singular proposition the connective

'or' occurs as a propositional operator, it is allowable to be rewritten as a 'conjunction' of

propositions:

This animal is either rational or irrational, is equivalent to, Either this animal is
rational, or it is irrational. This peculiarity of singular Propositions would almost
justify our ranking them, though truly universals, in a separate class (Boole 1847, p.
59).

Hence there might be a way of rewriting (1) in which it is the office of the connective 'or'

to construct propositions out of propositions, as it does in (2) (see Dudman 1976, pp 123-

28, for useful elaboration). Frege rejects the traditional and Boolean view of singular as

'truly universals' and considers the singular proposition as the fundamental unit of

predication. By doing so, he is able with the help of the device of quantification to bridge

240



the gap between primary and secondary logic which for Boole is unbridgeable.

As a result, Frege provides us with a logic which enables both (1) and (2) to be symbolised

in such a way that the same symbols have the same interpretation, and also allows the

implication with (2) as antecedent and (1) as consequent to be exhibited in a way that

reveals its validity. Indeed, Frege's logical system allows the expression of this implication

in modem notation as,

(3) [('r/x) ( A x ~R x ) V ('r/x) ( A x ~ I x ) J ~ ('r/x) [ A x ~ ( R x V I x ) J.

Thus (3) shows how (2) and (1) can be integrated within a single, comprehensive logical

structure. The quantifier appears here as the most important discovery of Frege which

allows him to show that the difference between primary and secondary logic is merely a

difference of scope. Indeed, the quantifier explicitly delimits the distinction between (1), that

is the universality of a disjunction, and (2), that is a disjunction of universalities. The

symbols ' ~' and ' V are employed as truth-functional propositional operators. (3) is also a

conditional in which (2) is shown to imply (1). But it makes it clear that the converse does

not hold. (3) is a theorem of the axiomatic system of the predicate logic which Frege sets

up in the Beg riffsschrift. In effect, by observing that Frege' s axiomatic treatment of the logic

of truth- functions distributes universal quantification through conditionality, Dudman sets

out to demonstrate the theorem with the help of the fundamental axiom of generality and

the transformation rules, such as the rule of detachment, the rule of substitution and the rule

of confinement (see Dudman 1976, pp. 132-33).

Frege now can answer the question about the affinity between the propositional calculus and

the class calculus. Unlike Boole, he succeeds in accounting for that affinity by making

secondary logic fundamental. In Frege, as Dudman puts it, 'for the first time, logic is

presented as an organic whole, with the predicate calculus based on the sentential calculus

(Dudman 1976, p. 134). Indeed, Frege's progress over Boole is his construction of the first

unified logical system which bases primary logic upon secondary logic. This construction

is possible because of his discovery of quantification, 'the deepest single technical advance

ever made in logic' (Dummett 1981b, p. xxxiii). Such a discovery is even deeper insofar as

it enables Frege to give an account of inferences involving multiple generality which are
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common place in mathematics.

Moreover, Boole reduces the 'secondary propositions' to the 'primary propositions' in

construing the conditional judgment 'if B then A' as a case of subordination of concepts,

interpreted as 'the class of time instants at which B is included in the class of time instants

at which A'. SO he represents the proposition as,

A (1 -B) = 0,

which is the expression ofthe general proposition, AllA's areB's. Thus, for Boole, 'primary

propositions' are prior to 'secondary propositions.' He analyses a general proposition as

having a subject and predicate as its necessary structure. For instance, in the proposition,

'Every square root of 4 is a 4th root of 16' , 'Every square root of 4' is the subject, and 'a

4th root of 16' is the predicate. His analysis of the proposition would then consist of

extracting these two concepts as distinct elements within the proposition, and putting them

together so as to form a judgement. In truth, Boole's analysis of propositions in terms of

subject and predicate is one reason why his logical calculus is unsuitable to carry out some

valid inferences involving generality that occur in mathematics.

On the other hand, Frege claims:"

in contrast with Boole, Inow reduce hisprimary propositions to the secondary ones
(Frege 1880/81, p. 17).

He considers secondary proposition as prior and the basis of his logical system. Thus, he

interprets the proposition, 'Every square root of 4 is a 4th root of 16', or the subordination

of the concept 'square root of4' to the concept '4th root of 16' as a complex one in that it

is composed from several 'quasi-sentences' 55. The proposition means:

54 However, Dudman argues that in Frege' s case there is no attempt to reduce primary to secondary.
He claims that 'on the contrary, when, in BS (Begriffsschrift), we move up from the logic of hypo thetica Is
to the logic of categoricals, there swing into action for the first time one new primitive (the quantifier), one
new axiom (§22) and one new transformation rule (the Confinement Principle). Quantification theory does
not reduce to the logic of truth functions but is superimposed upon it (1976, p. 134).

55 Frege calls something 'a quasi-sentence if it has the grammatical form of a sentence and yet is not
an expression of a thought, although it may be part of a sentence that does express a thought, and thus part
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if something is a square root of 4 then it is a 4th root of 16.

Here, there are two 'quasi-sentences,' 'something is a square root of 4' and 'it is a 4th root

of 16', which are connected. The connection can be seen in the relationship between

'something' in the first 'quasi-sentence' and 'it' in the second. It ismore apparent when the

proposition is rewritten as, 'if something is a square root of 4 then that thing is a 4th root

of 16.' In order to show readily the connection, let us substitute for 'something' and 'it' the

same proper name '2', and obtain a proposition which is a particular case of the above

general proposition. Thus, we have, 'if 2 is a square root of 4 then 2 is a 4th root of 16,

which is true if the above proposition is true.

Ifwe now recur to Frege's analysis of proposition in terms of function and argument (see

subsection 5.3.2), which is based upon his thesis that judgements are prior to concepts, then

we can substitute 'something' and 'it' for a variable 'x'and obtain:

'if x is a square root of 4, then x is a 4th root of 16',

in which the functional expressions 'being a square root of 4' and 'being a 4th root of 16'

are joined together by the conditional connective. The variable 'x' serves for the expression

of the generality of the proposition. 56Hence Frege reduces Boole' s primary proposition, 'All

A's are B's' to the complex conditional proposition, 'ifA then B'. The reduction proceeds

from terms ( A / B ) to predicates (A ( x ), B ( x ) ) and with the introduction of the

universal quantifier All A's are B's is construed as ( Vx ) ( A ( x ) _B ( x ) ). Thus, the

above expression can be written as,

'For all x if x is a square root of 4, then x is a 4th root of 16'.

The introduction of the quantifier 'For all x' enables Frege to express the scope of the

generality. As a result, he claims: 'I believe that in this way I have set up a simple and

of a sentence proper' (FregeI906, p. 190).

56 Iuse here the conventional variable 'x', but Frege himself prefers to use the italic letters, 'a', 'b',
for the reasons indicated in footnote 35.
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appropriate organic relation between Boole's two parts' (Frege 1880/81, p. 18). Indeed,

Boole regards the two parts of his logical calculus as two different interpretations of the

same algebraic structure, whereas Frege sets out to 'give a homogenous presentation ofthe

lot' (Frege 1880/81, p. 14).

It follows that the thesis of the priority of judgements over concepts, which lightens his way

of analysing propositions, allows Frege to carry out a new logic. It leads him to two points

in the setting up of his logical system: the functional analysis of mathematical judgements

and the representation of generality in mathematics. I shall consider these two implications

of the priority thesis within Frege's discussion of Boo le.

6.4.2 Functional Analysis of Mathematical Judgments

In the discussion of Boole, in order to illustrate how the method of extraction of function

works, Frege gives as an example this mathematical possible judgement:

The analysis in terms of subject-predicate would suggest that this possible judgment has a

single, unique structure, whereas the method of extraction offunction shows that the same

content, i.e., 24 = 16; can be analysed in various way so as to obtain the above possible

functions:

For instance, since Frege allows the formation of concepts to proceed from judgments, we

may imagine the 2 in the content of the possible judgment

to be replaceable by (- 2 ) or by 3 ,which may be indicated by putting an x in the place of

the2:
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The content is thus split into a constant and a variable part. 'The former, regarded in its own

right but holding a place open for the latter, gives the concept "4th root of 16".'

Thus, Frege expresses

by the sentences '2 is fourth root of 16' or the individual2 falls under the concept '4th root

of 16'. But it is also possible to say that '4 is a logarithm of 16 to the base 2'. The 4 is

taken to be replaceable so as to obtain the concept 'logarithm of 16 to the base 2':

with the x standing for the sign for the individual falling under the concept. Here the 16

in X4 = 16 may also be regarded as replaceable in its turn by

which expresses the relation of a number to its 4th power.

Accordingly, Frege claims:

instead of putting a judgment together out of an individual as subject and an already
previously formed concept as predicate, we do the opposite and arrive at a concept by
splitting up the content of possible judgment (Frege 1880/81, p. 17).

For Frege, if a content of possible judgement is analysable in this way, then it must be

already articulated. However, this does not mean that concepts and relations involved are

constituted apart from objects. On the contrary, Frege recognises them as given with the

first judgement in which they are ascribed to things. Hence, he writes that 'in the concept-

script their designations never occur on their own, but always in combinations which express

contents of possible judgement.' He then compares this process to the behaviour of the

atom: 'we suppose an atom never to be found on its own, but only combined with others
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moving out of one combination only in order to enter immediately into another' (Frege

1880/81, p. 17). So a concept is never found on its own, but always occurs in the context

of a judgement.

Dummett states as a thesis Frege's method of extraction of function:

thought is not built up out of its components concepts, rather, the constituents of the
thought are arrived at by analysis of it (Dummett 1981a, p. 261).

This thesis also appears in a letter which Frege addressed to Marty:

I think of a concept as having arisen by decomposition from a judgeable content (Frege
1882a, p. 101).

On the other hand, Boole, following the tradition, would take the opposite way: that

judgements are drawn from concepts by putting them together in different ways. This is the

result of his belief that concepts are given and logically prior over judgements. Hence what

has been considered as the nodal point of Bocle-as-Frege-discusses-him surfaces here again.

Frege's thesis that judgements are prior to concepts leads him to the analysis of generality

and constitutes what differentiates him from Boole.

6.4.3 Representation of Generality in Mathematics

In the interpretation of the subordination of the concept 'square root of 4' to the concept

'4th root of 16' as meaning: 'if something is a square root of 4 it is a 4th root of 16', Frege

claims to distinguish between concept and individual, which Boole does not, for his letters

never mean individuals but always extensions of concepts.

In Frege's eyes, there must be a distinction between concept and thing, even in the case in

which only one thing falls under a concept. As he puts it, 'the concept "planet whose

distance from the sun lies between that of Venus and that of Mars" is still something

different from the individual object the Earth, even though it alone falls under the concept'

(Frege 1880/81, p. 18). This distinction allows him to form concepts with different contents

whose extensions are restricted to this one thing, the Earth. Likewise, he distinguishes the
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case of one concept being subordinate to another from that of a thing falling under a

concept. Thus, in his concept-script the distinction is shown by representing the sentence

'if something is a square root of 4 it is a 4th root of 16' as follows,

and the sentence 'the individual2 falls under the concept '4th root of 16' as,

24= 16

Frege then represents generality as well as particular and existential propositions, which

have only an inadequate expression in Boole's logical calculus. Thus, he intends, on the one

hand, to stress that the difference between Boole's logical calculus and his concept-script

is closely bound up with their original purpose, and on the other hand that because of his

notation for generality, his domain oflogic was wider than Boole's.

Indeed, Frege aims to set up his concept-script for mathematicians, so that they can carry

out their inferences perspicuously; hence he is concerned with mathematical judgements

such as, 'All square roots of 4 are 4th roots of 16'. The generality in this judgement

symbolised as,

X4= 16

is expressed by the symbol x. The judgment is valid whatever we may replace by x. Frege

stipulates that 'the roman letters used in the expression of judgements should always have

this sense'(Frege 1880/81, p. 18). The roman or italic letter 'x' is now what is called a free

variable. It has as its scope the content of the whole judgement, and this need not be

indicated by a quantifier notation (see Frege 1879, p. 131). Then he considers the case

where the content of such a general affirmative judgement occurs as an antecedent of a
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hypothetical judgement; e.g.: 'if every square root of 4 is a 4th root of m, then m must be

16'. The content of this judgement may also be rendered as follows: 'if, whatever you

understand by x it holds that X4 =m must be true ifx! = 4, then m = 16'. In the expression

m =16

~:::~
which does not represent the judgement, we may see that the generality to be expressed by

x must not govern the whole but must be confined to this part:

Then Frege says:' I designate this by supplying the content-stroke with a concavity in which

I put a gothic letter which also replaces the x':

.. 4= m~-r
L ..2= 4

Thus, he confines the generality represented by the gothic instead of italic letter to the

content in whose content stroke the concavity occurs. The gothic letter stands for what is

now called a bound variable. For the occurrence of the gothic letter lies within the scope

of the universal quantifier represented by the concavity which occurs only in one part ofthe

judgement. Accordingly, the judgement may now be expressed as follows:

m = 16

In 'On The Aim of Conceptual Notation', Frege then claims:
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I consider this mode of notation one of the most important components of my
'conceptual notation', through which it also has, as a mere presentation of logical
forms, a considerable advantage over Boole's mode of notation. In this way, in place
of the artificial Boolean elaboration, an organic relation between the primary and the
secondary propositions is established (Frege l882c, p. 99).

This notation for generality allows also Frege to express particular and existential

judgements. Thus, the judgement' Some 4th roots of 16 are square roots of 4' is represented

as

As for the existential judgements such as, 'there is at least one square root of 4', he gives:

As a result, Frege says that 'even when we restrict ourselves to pure logic my concept-script

commands a somewhat wider domain than Boole's formula-language. This is a result of my

having departed further from Aristotelian logic' (Frege 1880/81, p. 15). This departure from

Aristotelian logic resides in his treatment of judgement as the logically primitive activity,

which has been construed as central in his discussion of Boo le.

In 'Boole's logical Calculus and the Concept- script', (pp. 21-27) since the difference in

extent of the domains governed by Boole's logic and his concept-script depends upon their

further purposes, Frege shows through examples how 'the construction of his notation

enables it, when combined with the signs of arithmetic, to achieve the more far-reaching

goals it set itself (Frege 1880/81, p. 21). Thus, he represents complex mathematical

propositions which have only been expressed in words. For instance, he gives the definitions

of the continuity ofa function, ofa limit, and that offollowing in a series, which appears in

section 26 of Begriffsschrift. Then, Frege proves an arithmetic proposition such as, 'the

theorem that the sum of two multiples of number is in its tum a multiple ofthat number',

by giving its formal derivation (pp. 27-32). In all those respects Frege is convinced that

Boole's formula-language is unsuited, and therefore his logical system is more ambitious in
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that it 'sees' further than Boole's.

6.5 A Picture of Boole-as-Frege-Discusses-Him

The point where a picture of Boo le-as-Frege-discusses-him may be drawn is now reached.

It has been shown that in his comparison between Boole's logical calculus and his concept-

script, Frege confines himself to comparing the two formula-languages whilst bearing in

mind the difference of their respective purposes. He neither adjudicates between the two

formula-languages, so as to decide the more preferable, nor does he simply jettison Boo le's

logical calculus. Rather, he shows the domain common to the two formal languages,

although he stresses his different and more ambitious way of treating it. It follows that what

makes Frege's discussion of Boole important is not only what it tells us about how Frege

sees his difference from Boole, but also what it tells us about how Frege carries out further

Boole's attempt to attach mathematics to logic.

Thus the standard account ofFrege's discussion of Boo Ie, which focuses mainly upon what

differentiates them, misses thereby the mathematical logic lineage between them, and

misapprehends what Frege actually performed: a revolution in logic in which Boole's logical

calculus is overcome and subsumed as a calculus of classes. But this needs to be qualified

by a proper understanding ofthe way in which Boole's research programme was developed

in modem Boolean algebra oflogic. Indeed, an interesting development of Boo le's logical

calculus can show how closely it is related to Frege's first-order predicate calculus.

In effect, Boole carried out a calculus of classes which was concerned with the relations

between classes whose elements, if they are not empty, are all contained in a common

domain ofindividuals called the universe of discourse. In Basic Laws of Arithmetic, Frege

too developed a calculus of classes which was concerned not only with relations of

inclusion, intersection, and disjunction, between classes ofthe same level, but also with the

membership of one class in another. Frege's theory of classes will find its systematic and

exhaustive development in Whitehead and Russell's Principia Mathematica.

However, it turns out that in his axiomatisation of Boole's logical calculus Huntington

showed the connection between Boolean algebra and the Principia Mathematica through
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a comparison between his fourth set and the elementary propositions presented in Section

A of the Principia Mathematica (see subsection 4.3.1). This comparison led him to point

out the close relation between the two axiomatic systems. In truth, it appears that the

modem Boolean algebra of unions, intersections, and complements, which has various

interpretations, is equivalent to that part offirst-order predicate calculus which employs only

one-place predicate letters. For the variables in Boolean algebra are unquantified and can

be interpreted as schematic one-place predicate letters. Alternatively, as Kneale sees it,

Boole's algebra of classes is a fragment of the restricted calculus of propositional function

(KnealeI962, p. 624).

It follows that although historically distinct the Boolean and the Fregean research

programmes are not incompatible, and therefore a complete separation of the two is not

appropriate. Moreover, after the failure of the Fregean research programme into the

foundations of mathematics, systematic work in metamathematics resembles somewhat

Boole's method, insofar as it inquires into the validity of well-formed formulas capable of

various interpretations. Indeed, Lowenheim's paper of 1915 is a work within both Boole

and Frege's research programmes, and somewhat a blending of the two logical calculi. In

this connection, it is more than regrettable that the correspondence between Frege and

Lowenheim was ultimately lost in the Second World War. For, according to Sluga, in this

correspondence, Frege was eventually convinced of the possibility of an investigation of

logical and mathematical formalism as an uninterpreted calculus (Sluga 1987, p. 94).
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Part Four: Conclusion



7. Metamathematics: A Return to Doole's Research

Programme

. .. in playing music, a series of processes which were originally conscious must
have become unconscious and mechanical so that the artist, unburdened of these
things, can put his heart into the playing.

G. Frege

Introduction

The concept of 'research programme' has been used as a tool for the analysis of the

development of mathematical logic from Boole to Frege. This has led to the study of the

two research programmes and the discussions of their relative merits as well as the review

of their relationship. As a result, it has been shown that the progress made in mathematical

logic stemmed from two continuous and overlapping research programmes: Boole's

introduction ofmathematics in logic and Frege's introduction oflogic in mathematics. Ithas

then been argued that there is a progressive continuity in the development ofmathematical

logic, and if that science is an arena where revolutions take place, it is not, however, the

case that when a previously existing research programme is overthrown, it is irrevocably

discarded. Rather, a successor research programme must respect the achievement of the

research programme it displaces. Moreover, since it has been claimed that the 'normal' state

oflogic is not characterised by routines and puzzle-solving, but by the redevelopment and

extension of earlier logical research programmes, the concept of 'revolution' has not been

used as the core unit for analysing the history oflogic.

This line of reasoning dovetails with the historical cartography of mathematical logic drawn

by Hilbert and Ackermann. Their mapmaking of the development of that science may be

worth reproducing here in full:
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the first clear idea of a mathematical logicwas formulatedby Leibniz. The first results
were obtainedby A. Morgan (1806-1876) andG. Boole (1814-1864). The entire later
developmentgoesback toBoole.Amonghis successors,W. S. Jevons (1835-1882) and
specially C. S. Peirce (1839-1914) enriched the young science. Ernst Schroder
systematically organized and supplementedthe various results of his predecessors in
his Vorlesungen tiber die Algebra der Logik (1890-1895), which represents a certain
completionof the series of developmentsproceedingfromBoole. Inpart independently
of the development of the Boole-Shroder algebra, symbolic logic received a new
impetus from the need of mathematics for an exact foundation and strict axiomatic
treatment. G. Frege published his Begriffsschrift in 1879 and his Grundgesetze der
Arithmetic in 1893-1903.G. Peano and his co-workers began in 1894the publication
of the Formulaire des Mathematiques, in which all the mathematical disciplineswere
to be presented in terms of the logical calculus. A highpoint of this developmentis the
appearance of thePrincipia of Mat hematic a (1910-1913) by A. N. Whiteheadand B.
Russell. Most recently Hilbert, in a series of papers and university lectures, has used
the logical calculus to fmd a new way of building up mathematics which makes it
possible to recognizetheconsistencyof thepostulates adopted.The first comprehensive
account of these researches has appeared in the Grundlagen der Mathematik (1934-
1939), by D. Hilbert and P. Bemays (Hilbert and Ackermann 1928, pp. 1-2).

To this integrative picture of the historicity of mathematical logic, one should add

Lowenheim's paper of 1915, Godel's first incompleteness theorem of 1931, and the crucial

work carried out from the 1930s onwards, which is one of the most remarkable events in

the development of mathematical logic, bringing together many brilliant minds working on

closely related programmes. It is such an integrative picture that underlies this treatment of

the development 0fmathematicallo gic from Boole to Frege in terms of overlapping research

programmes.

In what follows, I shall show the importance of Boo le in the history oflogic. I stress that

Boole's research programme through the work of Peirce developed a propositional calculus

and a predicate calculus of functions of one and of several variables with quantification, and

Boole himself made a significant contribution to the development of mathematical logic

which should not be overlooked. Then I shall inquire about the conditions under which

metamathematics emerged. I argue that Boole should earn the right to be considered as the

grandfather of metamathematics. The argument is substantiated on the one hand by

developing the idea that Boole's formalist treatment of logic leads on to Hilbert's

metamathematics, and on the other by regarding Boole's semantics as having suggested the

model theoretic approach to logic that is prominent in Lowenheim's paper of 1915, which

constitutes a revival of the Boo lean research programme. This leads me back to Gillies' 'The

Fregean Revolution in Logic'. I suggest that the emergence of the model-theoretic approach
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to logic should not be regarded as a part of the Fregean revolution, but a distinct research

programme whose possibility required the research programme of Boo le. Finally, in order

to stress the close relationship between Boole and Frege, I draw an overall portrait of them,

which was actually portrayed by Frege himself

7.1 The Importance of Boole in The History of Logic

Boole is one ofthe greatest logicians since Aristotle. As Peirce holds it, his book, The Laws

a/Thought 'is destined to mark a great epoch in logic; for it contains a conception which

inpointoffruitfulness will rival that of Aristotle's Organon'(Peirce 1865, p. 224). However,

the historical and logical significance of his work has been generally overlooked. For

instance, in his Esquisse d 'une histoire de la logique, which gave a decisive impetus to the

renewal of historical studies oflogic, Scholz reserved only a few lines of allusion to Boole's

creation of the calculus of logic (Scholz 1931, pp. 88-89). Furthermore, since the

appearance of the theory of quantification, the critics of Boo le have considered him from

the perspective of a logician of our time. Accordingly, they have tended to assess his logical

calculus in accordance with modem standards of rigour. In this direction, Dummett's

assessment of Boo le has been particularly influential.

Dummett contends:

Boole cannot correctly be called 'the father of modern logic'. The discoveries which
separate modern logic from its precursors are of course the use of quantifiers (or, more
generally, of operators which bind variables and can be nested) and the concept of a
formal system, both due to Frege and neither present even in embryo in the work of
Boole. Boole has indeed a great historical importance both for abstract algebra and for
logic. As had Leibniz two centuries earlier, he devised a general theory of classes under
Boolean operations, a theory which of course contained the traditional theory of the
syllogism. This move gained its importance for logic rather from the novelty of any
extension oflogical theory than from the magnitude of the extension itself; and anyone
unacquainted with Boole's works will receive an unpleasant surprise when he discovers
how ill-constructed his theory actually was and how confused his explanations of it
(Dummett 1978, p. 67).

That Boo le's 10gical calculus is not rigorously developed compared to modem quantification

theory is certainly true. It is certainly true that it cannot symbolise properly statements like

'Some men are vegetarians', or dyadic and higher-degree relations, and that there are no
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quantifiers in his logical system. But it is altogether not appropriate to assess Boole's work

according to modem standards of rigour, overlooking the fact that it has not been carried

out in our time.

Dummett gives us the impression that Frege discovered the quantifier ex nihilo by himself

But, as we have seen, Frege's work is not the only source for our modem conception of the

quantifier. For, within the Boolean research programme, and quite independently ofFrege,

Peirce, his student O. H. Mitchell and Schroder had developed a logic of relations in which

they had presented the quantifier. 57 They introduced a typographical notation that, like the

modem one, lends itself to writing formulas on a line in contrast with Frege's notation,

which is two-dimensional. It also allows a simple analysis of normal-form formulas into a

prefix, which Peirce called the quantifier, and a matrix that he called 'the Boolean part' of

the formula.

In the paper, 'On the Algebra of Logic: A Contribution to the Philosophy of Notation'

published in the American Journal of Mathematics in 1885, when Peirce came to the

distinction of some and all, he noted:

all attempts to introduce this distinction into the Boolean algebra were more or less
complete failures until Mr. Mitchell showed how it was to be effected. His method
really consists in making the whole expressionof the proposition consist of two parts,
a pure Booleanexpressionreferringto an individualand a Quantifyingpart sayingwhat
individual this is. Thus, if k means 'he is a king,' and h , 'he is happy,' the Boolean

(k+ h)

means that the individual spokenof is either not a kingor is happy. Now, applyingthe
quantification, we may write

Any (k+ h)

to mean that this is true of any individualin the (limited)universe, or

Some (k+ h)

57 Peirce credits the idea of quantifier to his student O. H Mitchell who discovered it four years later
than Frege in his publication 'On a New Algebra of Logic' in Studies in Logic (1883). But the use of an
operator variable in connection with the quantifier was a contribution of Peirce as a modification of
Mitchell's notation.
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to mean that an individual exists who is either not a king or is happy. So

Some (kh)

means some king is happy, and

Any (kh)

means every individual is both a king and happy (Peirce 1885a, pp. 178-79).

What is clearly noticeable here is the quantification structure. Peirce credited Mitchell for

quantifying the notions of 'any' and 'some' in Boolean algebra. By a 'pure Boolean

expression' Peirce meant here roughly what we would now call 'a propositional function'

and by 'the Quantifying part' what we would now call 'the quantifier'.

But, as Peirce pointed out, 'the algebra of Boo le affords a language by which anything may

be expressed which can be said without speaking of more than one individual at a

time'{Peirce 1885a, p.177). Thus a Boolean expression can only make an assertion about

an individual class. It is not expressive enough to represent relations of considerable

complexity as the complicated inferences in mathematics, for polyadic quantifiers would be

needed to do so.

In effect, in order to bring out the detailed structure of relational predicates, not only

properties ofindividuals are required, but also binary relations between individuals and some

way ofhandling more than one variable at a time. As will be seen, Peirce focused on a logic

of many variables, thereby developing a semantics for first-order predicate logic. He was

capable of dealing with polyadic predicate logic, that is, the general case of quantifying an

argument of a propositional function of many variables.

In his 1885 paper, Peirce carried out, indeed, a new system of his own which he called 'the

first-intentional logic of relatives'{p. 177). The system involves individuals variables and

quantifiers and drops relative product and relative sum. Peirce specifically was concerned

with the quantifiers as an object of investigation. Thus he introduced his system by

explicating the notation he was using for them and what the quantifier operations mean. He

wrote:
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Here, in order to render the notation as iconical as possible we may use ~ for some,

suggesting a sum, and n for all, suggesting a product. Thus Li X i means that X is

true of some one of the individuals denoted by i or

~iXi = Xi+ Xj+ X.I: + etc.

In the same way, njX j means that X is true of all these individuals, or

If X is a simple relation,il,il1x'l means that every i is in this relation to every j ,

L,lljx,j that some one i is in this relation to every j, IIjLi Xu thatto every j

some i or other is in this relation, LiL j X ij that some i is in this relation to some

j (Peirce 1885a, p. 180).

Peirce's explication of the meaning of the quantifier operations is clearly an explication not

at the level of syntax but at the level of semantics. Moreover, he pointed out the use of

individual variable (in the above notation' X ' is a predicate, monadic or dyadic, not an

individual variable), which he called 'indices', as an important aspect of the notion of

quantifiers and gave their linguistic meaning as follows:

the index asserts nothing, it only says 'There!' It takes hold of our eyes, as it were, and
forcibly directs them to a particular object, and there it stops. Demonstrative and
relative pronouns are nearly purely indices, because they denote things without
describing them; so are the letters on a geometrical diagram, and the subscript numbers
which in algebra distinguish one value from another without saying what those values
are (Peirce 1885a, p. 163).

Peirce formed his notation for quantification by means of indices. They serve to 'distinguish

one value from another without saying what those values are'. Indices are neithernarnes nor

constants; they are more like variables. They carry what is being talked about in a given

discourse, i.e., individuals. Thus, although indices are mathematical notation, they are

interpreted as pronouns. The sense of the word "denote" is supposed to be given by some

interpretation function. Indeed, Peirce understood that he was dealing not merely with an

algebra but with language. However, he did not follow the characteristic procedure when

setting up a first-order predicate logic. He did not begin, for example, by saying what is a
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well- formed formula and, to this end, by providing formal definitions of variables, predicate

symbols, and quantifiers and specific formation rules. Rather, Peirce engaged-in informal

semantic exposition in presenting his system Thus he gave examples borrowed from

everyday English language to illustrate his notation and how it is to be interpreted. He said:

let [ ..mean that i is a lover of ,. , and b " that i is a benefactor of J. . Thenu . u

nLj i»,
means that everything is at once a lover and a benefactor of something; and

that everything is a lover of a benefactor of itself.

And

let 0, mean that i is a griffin, and c. that i is a chimera then
"" I'

means that if there be any chimeras there is some griffin that loves them all (Peirce
1885a, p. 180).

It can be observed that all quantifiers are clustered together at the left side. Thus Peirce

wrote the formulas in prenex form with a matrix within which a disjunction of conjunction

of formulas of relational expressions is inserted. In this above notation, Peirce certainly

reached something not far from modem quantification theory.

Peirce also considered the procedure in working with his first-order predicate logic (see pp.

182-184). Of the seven methods which he pursued, I shall here give the two inference rules

used for his quantifiers. The first rule states that:

259



Thus different expressions with distinct indices can be written together, and all the

quantifiers can be brought to the left. According to Peirce, this rule is the most useful on the

whole. The second rule states that:

Il.Il.c = Il.Il.v
LjLjXij = LjLjXjj.

Thus the quantifiers of different expressions may be moved relatively to one another without

deranging the order of the indices of anyone expression.

What has been said so far seems to indicate that Peirce was aware of semantical

considerations. The discussion of what he called 'the universe' would show again the

Peircian semantical approach. He affirmed:

I propose to use the term 'universe' to denote that class of individuals about which
alone the whole discourse is understood to run. The universe, therefore, in this sense,
as in Mr. De Morgan's, is different on different occasions' (Peirce 1870, p. 366).

Thus Peirce began with a class of individuals, namely a 'universe', which is a basic idea of

model theory. Indeed, Peirce had a clear notion of a propositional function of many

arguments on a domain D, with values 0, 1. Hence his approach should be taken to be

model-theoretic in that on the one hand the reasoning was about an interpretation under

which a proposition is true, that is, a model of the proposition; and on the other the validity

of inference was to be tested by truth with reference to that model. It follows that Peirce's

work which was then developed by Schroder involved the main elements of the new

research prograrrnne that Lowenheim initiated, namely the model theoretic progrannne

which has become a very important part of modem logic.
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In sum, in his 1885 paper, Peirce set up a language for first-order predicate logic and the

rules for its use. Although his system was not as well-formed as Frege's, he developed a

theory of quantification which is virtually equivalent to modem first-order predicate logic".

Peirce even distinguished between first-order and second-order predicate logic" and treated

the former by itself. Moreover, it was Peirce's notation and method that were employed by

modem logicians, such as Lowenheim and Skolem in their model-theoretic approach to

logic. Peirce was the first person to publish a paper that used explicitly the term 'quantifier':

'if the quantifying part, or Quantifier, contains Lx' .. '(Peirce 1885a, p.183). As Church

acknowledges it, 'the terms "quantifier" and "quantification" are Peirce's' (Church 1956,

p. 288). Thus some years later than Frege, Peirce and Mitchell made their discovery of the

quantifier without having ever taken know ledge of the work of Frege.

Then, these simple facts lead Putnam to say:

Frege did 'discover' the quantifier in the sense of having the rightful claim to priority;
but Peirce and his students discovered it in the effective sense. The fact is that until
Russell appreciated what he had done, Frege was relatively obscure, and it was Peirce
who seems to have been known to the entire world logical comnmnity. How many of
the people who think that 'Frege invented logic' are aware of these facts?
(Putnam 1992, p.257)

Seemingly Durnmett is not; otherwise he would not have been so outright when declaring

that the use of quantifiers is due to Frege and altogether absent from Boole's logic. But,

although the quantifiers are not present in Boole's work itself, it turns out that they were

developed by his followers, that is, the members of the 'Algebraic School' who worked

within the research prograrrnne established by Boole's logical calculus. Thus we have seen

that Peirce was not satisfied with Boole's use of the symbol 'v' to express existential

judgments (see subsection 3.6.2). It is true that their dissatisfaction with this aspect of

58 Peirce's development of the quantifiers should not give the misleading impression that his system
was as well-formed as Frege's. For, unlike Frege, Peirce did not build a formal language since he did not
introduce a formal notion of formula or of proof in his system.

S9 Peirce extended his system to what he called, 'second-intentional logic' . Itcontains a second family
of variables, ranging over relations. Mathematical notions occurred in this second-intentional logic. For
instance, he defined one-to-one correspondence employing second-order quantifiers (see Peirce 1885a, p.
188).
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Boole's notation is in a way what led Peirce and his student O. H. Mitchell to their own

discovery and treatment of quantifiers. Indeed, their discovery of the quantifiers provided

a vast extension of the programme they had inherited from Boole for developing a calculus

of deductive reasoning. Therefore, by using the discovery ofthe quantifiers as a criterion to

separate modem logic from its precursors, Dummett fails to identify unequivocally where

modem logic starts.

Yet, in his 1985 review of MacHale's book on Boole, Quine noted that 'logic became a

substantial branch of mathematics only with the emergence of general quantification theory

at the hands of Peirce and Frege' and thus dated modem logic from there. But Quine even

conceded that:

the avenue fromBoole through Peirce to the present is oneof continuousdevelopment,
and this, if anything, is the justification for dating modern logic fromBoole; for there
had been no comparable influence on Boole from his more primitive antecedents
(Houser 1997, p. 6).

Thus, even if Quine did not date modem logic directly from Boole, he did admit its origin

from Peirce who squarely belonged to Boole's research programme. It follows that the

continuous development of modem mathematical logic could not be precisely accounted for

without including Boole's research programme. Indeed, after Leibniz's project of calculus

ratiocinator, which formulated for the first time the idea of mathematical logic, it took

almost two centuries until Boole came up with the great idea of introducing mathematics

in logic. Thereafter, mathematical logic evolved continuously and the debate concerning the

foundation of mathematics which was initiated by Frege at the beginning of the twentieth-

century gave a boost to work in the area. This seems to be a 'fair-minded' account of the

different 'moments', which stresses the historical importance of the different schools

involved in the development of mathematical logic. It seems inconceivable, as Putnam sees

it,

that anyone could date the continuous effectivedevelopmentof modem mathematical
logic fromanypoint other than the appearance ofBoole's twomajor logicalworks, the
Mathematical Analysis and the Laws of Thought (Putnam 1990, p. 255).

Boole carried out a formal system in that he built up an algebra oflogic by means of what
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he called the 'general method', that is, the process by which combinations of interpretable

symbols are carried out, according to well-determined rules of combination of the symbols

in abstraction from their nature. This abstract formal use of symbols suggested to him that

he should try to fit an algebraic structure to logical relations. Hence it is quite indefensible

that Dummett denies in Boole's logical calculus the presence even in embryo of a formal

system.

The 'general method' shows best the importance of Boole in the history of logic. The

method is not simply a symbolical expression of ordinary language, which had been the chief

concernoflogic from Aristotle's time onwards. Bymeans ofhis method, Booletreated logic

for the first time mathematically. It allowed him to apply mathematical procedures to logic

whilst preserving the basic independence oflogic from mathematics. He brought forth a

formal system, capable ofvarious interpretations in different domains, from which stemmed

the concept of 'Boolean algebra' which now plays a pivotal role in mathematical logic and

computer design. Boole's formalism even enhanced metamathematical investigations, a

distinctive feature of modem mathematical logic (see below sections 7.2 and 7.3).

Furthermore, Boole's systematisation and generalisation of Aristotelian logic did not only

encompass the traditional theory ofthe syllogism. It represented a significant transformation

ofthe theory: before Boole, syllogistic theory was restricted to concern with premises which

include exactly two terms. But when Boole implemented his computational procedure in

syllogism, inferences which include any number of terms could be drawn. This allowed the

analysis of all possible combinations, and thus the deduction of many conclusions consistent

with the premises. Moreover, when Boole tacitly introduced the concept of the null class

(see Boole 1847, p. 21), the Aristotelian view that all quantified propositions have

existential import was abandoned. The modem view, due to Boole, is that existentially

quantified propositions do have existential import and that universally quantified

propositions do not. It should be also noted that Boole gave one clear conception oflogical

relations, though it pertained to de Morgan, who worked within his research programme,

to develop a systematic formulation of a theory of relations, which had been left out in

Aristotle's logical system.

Accordingly, Boole's work has a great logical importance in that it carried out a significant
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extension and improvement of the traditional theory of syllogism. Indeed, the generalisation

and systematisation of Aristotelian logic is a significant advance in the development of

mathematical logic. What is undeniable is that with Boole Aristotle's influence started to be

loosened so as to allow a modem prospect oflogic.

In addition, Dummett does not mention Boole's propositional calculus in which Boole had

the idea of all possible distributions of truth-values. Thus, the method of truth-tables, which

has been attributed to Post and Wittgenstein, can be traced back to Boole's calculus of

hypothetical propositions. It follows that Boole went well beyond the simple creation of a

general theory of classes which encompasses the traditional theory of syllogism. He built up

a calculus of propositions, presenting its earliest systematic formulation, at least since the

Stoics. This reinforces the importance of Boo le in the history oflogic. As Kneale puts it,

the chief novelty in Boole's system is his theory of elective functions and their
development, or, as we should now say, his theory of truth-functions and their
expressions in disjunctive normal form. Philo of Megara discussed particular elective
functions and explained how they could be developed, but Boole should have the credit
of being the first to treat these two topics in general fashion (Kneale 1962, p. 420).

It turns out that Boole played an important role in the halfway period between the

Aristotelian and the Fregean research programmes. He carried out the leading principle of

the research programme of the 'Algebraic School', which was then enriched and

systematically developed by Peirce and Schroder who opened up the model-theoretic

approach to logic.

Now, an appraisal that does justice to Boole's work was given by McColl:

the first person to show that symbolical reasoning might also be employed with
advantage in the investigation of matters usually considered altogether beyond the
sphere of mathematics was the late Professor Boole. This he did first in his
Mathematical Analysis of Logic, and afterwards more fully in his celebrated Laws of
Thought, published in 1854. These works excited much admiration in the mathematical
world, and, it may be added, caused no small trepidation among logicians, who saw
their hitherto inviolate territory now for the first time invaded by a foreign power, and
with weapons which they had too much reason to dread (McColl 1880, p. 46).

7.2 Hoole's Anticipation of Metamathematics
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Metamathematics was furthered by those working within Hilbert, Lowenheim and Tarski's

research programmes, in which the modem distinction between the syntactic (proof-

theoretic) and the semantic (model-theoretic) approach of the notion oflogical consequence

is explicitly stated. These works on metamathematics led to the highest point in the

development of mathematical logic with the achievements of Godel. Of particular 'interest

was the publication of his incompleteness theorems in 1931, which rendered very doubtful

the Frege-Russell and Whitehead reductionist programme as well as the Hilbert programme

of a 'complete' mathematics.

I shall argue that the very possibility of metamathematical investigations emerged with

Boole, for such inquiry supposes the existence of formal systems capable of various

interpretations that can be subjected to mathematical study.

7.2.1 Boole's Logic as Formalism

Boole wanted to extend mathematics by establishing an abstract view of mathematical

operations without regard to the objects of these operations. He claimed 'a place among the

acknowledged forms of Mathematical Analysis '(Boole 1847, p. 4) for the calculus oflogic.

But, by doing so, he did not merely want to include logic in traditional mathematics. Rather,

he thought of a new mathematics which is expressed as follows: 'it is not the essence of

mathematics to be conversant with the ideas of number and quantity' (Boole 1854 p. 12).

Thus Boole set up algebraic systems of related operations, and articulated a common

abstract structure which led him to formulate a set of axioms that are satisfied by each ofthe

systems. Amongst these systems was logic which Boole constructed as a formal process of

reasoning depending only upon the laws of the symbols, and not upon the nature of their

interpretation.

Boole's formalist treatment oflogic led on to Hilbert's metamathematics. In effect, Hilbert

was concerned with notions about syntax and proof and aimed to shed light on formal

languages and deductive systems. Unlike Frege, Russell and Whitehead, he did not believe

that arithmetic could be reduced to logic. Rather, he argued that both should be integrated

in an axiomatic system of which the postulates are then proved consistent, complete, and

independent. He called the project of providing such proofs metamathematics. In order to
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carry out this project, Hilbert needed a symbolic language. For him the purpose of this

symbolic language in mathematical logic is to achieve in logic what it has achieved in

mathematics, namely, an exact scientific treatment of its subject-matter. In their book,

Principles of Mathematical Logic, Hilbert and Ackermann wrote:

the logical relations which hold with regard to judgements, concepts, etc., are
represented by formulas whose interpretation is free from the ambiguities so common
in ordinary language. The transition from statements to their logical consequences, as
occurs in the drawing of conclusions, is analysed into its primitive elements, and
appears as a formal transformation of the initial formulas in accordance with certain
rules, similar to the rules of algebra (Hilbert and Ackermann 1928, p.1).

Thus, like Boole, Hilbert conceived logic as a formal process which proceeds by the

combination of pure symbols, subject to certain rules and in abstraction of their meaning.

Hence logic is a play of symbols, according to certain rules. It may be even said that with

Hilbert logic is a logic of symbols. As he himself said, 'what we consider is the concrete

signs themselves, whose shape ... is immediately clear and recognizable' (Hilbert 1925,

376). Here is the core offormalism: logic and mathematics, in particular, are about symbols.

Hilbert was quite conscious of what the algebra oflogic, with its emphasis on algorithms,

could mean for all mathematics. For once logical formalism is established one can expect

that a systematic computational treatment of logical formulas is possible, which would

somewhat correspond to the theory of equations in algebra. As he said,

we may proceed in the logical calculus just as we do in algebra, where we write
formulas with letters which mean that for any arbitrary numerals that we substitute for
the variables the resulting numerical equation is true (Hilbert and Ackermann 1928, p.
58).

Thus Hilbert's conception oflogical calculus is akin to Boole's idea of using an algebraic

system as an algorithm, handling the symbols purely mechanically without any dependence

on meanings. Such an idea is now called 'disinterpretation'. Dummett finds the same

analogy between Boole and Hilbert in their manner of construing a mathematical theory. As

he points out,

for Hilbert, a defmite individual content ... may legitimately be ascribed only to a very
narrow range of statements of elementary number theory ... All other statements of

266



mathematics are devoid of such a content ... The other mathematical statements are
not ... devoidof significance:but their significance lies wholly in the role which they
play within the mathematical theories to which they belong, and which are themselves
significant precisely because they enable us to establish the correctness of finitistic
statements.Boole likewisedistinguished,amongst the formulas of his logical calculus,
those which were interpretable from those which were uninterpretable: a deduction
might lead fromsomeinterpretableformulasaspremisses, via uninterpretable formulas
as intermediate steps, to a conclusionwhich was once more interpretable (Dummett
1978, p. 219).

Hilbert believed that a mathematical theory is to be constructed strictly formally. For him,

any mathematical theory can be firstly completely formalised and then subjected to a

mathematical analysis. This formalisation is to be done in an axiomatic manner. He thought

of the axiomatic method as the instrument suited to the human mind and indispensable for

all scientific thinking. But the language which he used in a mathematical theory is different

from the language which he used in order to analysis that theory. Hilbert considered the

mathematical language as a separate item and studied it as mathematical language itself

Boole's treatment of algebra as an abstract structure may be taken as a heuristic preliminary

for Hilbert's construction ofa formal mathematical theory and a language about it. Indeed,

like Hilbert who advocated the axiomatic method, Boole believed that

all sciences consist of general truths, but of those truths some only are primary and
fundamental, others are secondary and derived . . . And it is so also in the purely
mathematical sciences.An almost boundless diversity of theorems,which are known,
and an infinitepossibility of others, as yet unknown,rest together upon the foundation
of a few simple axioms; and yet these are all general truths (Boole 1854 p. 5).

Boole did not explicitly define the syntactic notion oflogical consequence: but it is implicit

in his logical calculus. For there is the formal system, with its symbols and rules of

formation, axioms and laws of derivation. Thus, Boole would have had the material

necessary to formulate the notion of completeness. Moreover, although he did not use

completeness in the modem technical sense, he toyed with the notion when asking

whether in any science, viewed either as a system of truth or as the foundation of a
practical art, there can properly be any other test of the completeness and the
fundamental character of its laws ( Boole 1854p. 5).

Boole went beyond the mere analytical processes and investigated the condition of a perfect
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method in the construction of the science of reasoning. He inquired about what is best as

respects not only the mode or form of deduction, but also the system of premises from

which the deduction is to be made (Boole 1854, p. 150). This led him to assess his method

as possessing 'a theoretical unity and completeness which render it deserving of regard'

(Boole 1854, p. 157).

However, the existence in Boole's logical system of material necessary to formulate the

notion of completeness was known to Peirce. In effect, in his 1885 paper, Peirce exhibited

the pattern of reasoning that the truth-tables tabulate and suggested the general notion of

validity in the propositional calculus as follows:

to find whether a formula is necessary true substitute f and v for the letters and see
whether it can be supposed false by any such assignment of values (Peirce 1885a, p.
175).

For Peirce v and f are two constant values. Ifthe value of a proposition is v, the proposition

is true, and if it is f the proposition is false. Boole chose v = 1, f = O. As an example,

Peirce took the formula

(x < y) < {( y < z ) < (x < z l l.

For convenience of notation, I use here the sign' <' instead of Peirce's inclusion (illation)

sign. Thus to make the formula false we must take

(x<y)=v

{(y<z)«x<z)}=f.

The last gives

( y < z ) = v, ( x < z ) = f, x = v, z = f.

Substituting these values in

(x<y)=v (y<z)=v

we have
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(v < y ) = v (y < f) = v,

which cannot be satisfied together.

This notion of validity makes possible a notion of completeness of formal systems of the

propositional calculus: a system is complete if every valid formula is a theorem. According

to Hilbert and Ackermann, the familiar account of the completeness of an axiom system is

that a system is complete if all the valid formulas of a certain domain which is characterised

by content can be proved from the set of axioms'? (Hilbert and Ackermann 1928, p. 42).

Hilbert and Ackermann then gave an explicit proof ofthe completeness of the propositional

calculus in this sense (see p.43). Ifnow Boolean algebra with two elements can be regarded

as a propositional calculus, then a completeness proof can be extracted from developed

normal forms which were due to Boole (see subsections 3.2.1 and 3.5.1). Moreover Hilbert

and Ackermann showed that the decision problem for the sentential calculus is also solved

by means of a technique using Boolean developed normal forms (see Hilbert and Ackermann

1928, pp.17-18).

In addition, although Boole did not construct one, he suggested an axiomatic method as the

form under which all systems of truth should be presented (1854, p. 5). This would then

imply implicitly the metamathematical investigations into the axioms adopted in this system.

Hence, when Boole's followers, such as Sheffer and Huntington, built up their sets of

independent postulates for Boolean algebra, they were explicitly concerned with the proof

of the consistency and the independence of the postulates ofthe axiomatic system of Boo le's

logical calculus (see section 4.3).

Boole conceived his algebra as a logical structure which admits of a variety of

interpretations, and as these are independent of each other, it follows that the structure is

independent of any of them. The concepts and operations of Boole's algebra can be

60 Hilbert and Ackermann also defined the completeness of an axiom system in an unfamiliar sense,
that is, 'an axiom system is termed complete only if a contradiction always arises when there is added to
the axioms a formula not previously provable from them' (Hilbert and Ackermann 1928, p. 42). They gave
an explicit proof of the completeness of the propositional calculus in this sense (see p.43).

269



interpreted as applying to classes, propositions, electronic circuits", probabilities and several

other mathematical domains. For instance, Huntington interprets them as applying to

geometry, that is, to overlapping plane compartments of space (see section 4.2). On the

other hand, unlike Boole, Frege thought of logic as a universal language embracing a

universe of all conceptions, and thus it is impossible to 'step outside' of such a language so

as to raise metamathematical questions. Moreover, in Frege's language of predicate logic

'every logical formula has a fixed meaning; there is no question of reinterpreting any sign'

(Goldfarb 1979, p. 354).

It follows that Boole's formal system, capable of various interpretations in different calculi,

was likely to have suggested the actual work on metamathematics inquiring into the validity

of well-formed formulas in these different calculi. Boole thus opened a new avenue for

mathematicians to consider the interpretations of their languages and metasystematic

questions about their systems.

7.2.2 Boole's Logic as Semantics

Boole gave various different interpretations of his logical calculus, interpreting the symbols

either as classes, or as propositions, or even as periods of time. He suggested

correspondences between these interpretations and thereby could be regarded as developing

an early formal semantic theory. He stressed that it is necessary that each symbol of his

logical system should possess, within the limits of the same discourse or process of

reasoning, a fixed interpretation. But what does the symbols stand for in the processes of

reasoning? For Boole, the general answer to this question is,

that in the processes of reasoning, signs stand in the place and fulfil the office of the
conceptions and operations of the mind; but that as those conceptions and operations
represent things, and the connexions and relations of things, so signs represent things
with their connexions and relations; and lastly, that as signs stand in the place of the
conceptions and operations of the mind, they are subject to the laws of those
conceptions and operations (Boole 1S54, p. 26).

Thus Boole distinguished between the syntactic relations among signs themselves and the

61 In 1938, C. E. Shannon applied Boolean algebra to the study of switch and relay circuits in
electrical communication engineering.
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semantic relations between signs and things. He pointed out that signs are subject to fixed

laws of combination depending upon the nature of its interpretation. By referring to relations

between signs and other things in the world or their meanings, Boole specified the

semantical aspect of his logical system.

Moreover, without going as far as Lowenheim and Tarski (1902-1983), Boole engaged in

metatheoretical argumentation by raising semantic problems when he inquired about the

conditions of valid reasoning by the aid of symbols. Thus he stated semantical rules in the

metalanguage that concerns the meaning of expressions in the object language. These rules

require that (I) a fixed interpretation is assigned to the symbols employed in the expression

ofthe data; and that the laws of the combination of those symbols are correctly determined

from that interpretation; that (2) the formal process of demonstration is conducted according

to the laws without regard to the question ofthe interpretability of the results obtained; and

that (3) the final result is interpretable in accordance with that system ofinterpretation which

has been employed in the expression ofthe data. Boole observed that the necessity that the

fixed interpretation ofthe symbols should be in such a form as to admit of that interpretation

being applied is founded on the principle that

the use of symbols is a means towards an end, that end being the knowledge of some
intelligible fact or truth. And that this end may be attained, the final result which
expresses the symbolical conclusion must be in an interpretable form (Boole 1854, p.
68).

This semantical principle which is based on the notion ofinterpretation and Boole's term of

'universe of discourse' suggested what is now known as model theory. For an interpretation

under which the final result is true is said to be a model of the system. Boole's logical

system can be interpreted as a theory of propositional functions of any number ofvariables

with values 0,1 on a domainD which is a basic idea of model theoretic approach to logic.

Furthermore, this interpretation can exhibit a technique i.e. a decision procedure for testing

validity which involves the concepts of truth and falsity. Indeed, Boole's developed normal

forms may be construed as the truth-table representation of a logical function, inasmuch as

it pictures both those constituents corresponding to truth-possibilities, which the formula

matches, as well as those which it does not (see subsection 3.5.1). This test involves

picturing circumstances that would make compound propositions true or false. Such
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circumstances maybe thought of as 'models' of the possible truth-conditions, and the test

that involves such considerations are therefore called model-theoretic. Hence it appears that

Boole's approach to logic was in this respect model theoretic.

Model theory is the study of interpretations and their properties. It was initiated by

Lowenheim and then developed by Tarski who was concerned with the methodology of

deductive systems. Tarski analysed central semantic notions, such as logical consequence,

satisfiability, and decidability, which direct the course of various ongoing research

programmes (see Tarski 1956). As will be shown below, it turns out that Lowenheim's

theorem of 1915, which gave rise to the model-theoretic treatment to logic, required a

formal system capable of various interpretations in different domains of discourse, such as

Boole's logical calculus.

From all this it can be concluded that, by the simple fact that his abstract algebraic structure

raised syntactic and semantic problems, Boole should earn the right to be considered as the

grandfather of metamathematics.

7.3 Lowenhelm's Revival of Boole's Research Programme

Metamathematical investigations ofthe model-theoretic kind first appeared in Lowenheim' s

paper 'On Possibilities in the Calculus of Relatives ' (1915) in which he was concerned with

Peirce and Schroder's work in Boolean algebra, and not, as it might have been expected,

with the logic ofFrege or Russell and Whitehead's Principia Mathematica. The historical

importance of the paper is stressed by Van Heijenoort who concludes his 'Logic as Calculus

and Logic as Language', by noting that 'after Begriffsschrift (1879), Lowenheim's paper

(1915), and Chapter 5 of Herb rand's thesis (1929) are the three cornerstones of modern

logic' (Van Heijenoort 1967b, pp. 328-39).

In effect, Lowenheim's paper appeared as a pioneer work in mathematical logic. In this

paper, which undoubtedly belongs to the algebraic trend in logic, Lowenheim revived

Boole's research programme. He was mainly concerned with the validity, in different

domains, of formulas of first-order predicate calculus with identity and the decision

problems. He denoted the universe of discourse by 11 , that is, a basic domain ofindividuals

272



consisting of at least one element. Itmay be finite or infinite and if infinite, countable or not.

He used Schroder's notation, the logic of relatives and the notation of the universal and

existential quantifiers introduced by Peirce, and the Boolean expansion, in terms of the

distinguished classes, as a disjunctive normal form. Also, Lowenheim began his paper by

treating a calculus of relatives in which the quantifiers and the relative coefficients are

eliminated. As Heijenoort notes, 'the calculus thus obtained contains variables and constants

for binary relations, and the operations are the Boolean operations, together with the

converse, the relative product, and the relative sum' (Van Heijenoort 1967a, p. 229).

The results ofthe content ofLowenheim's paper regarding the first-order predicate calculus

with identity are recapitulated by Church as follows: a solution of the decision problem for

validity in the case that only individual predicate variables appear; a reduction of the general

case of the decision problem for validity to that in which only binary predicate variables

appear; recognition of the existence of well-formed formulas that are valid in every finite

domain but not valid in an infinite domain, and a demonstration that no well- formed formula

containing only individual predicate variables can have this property; finally, a proof ofthe

metatheorem known as Lowenheim's theorem (Church 1956, p.293).

This famous Lowenheim's theorem says that

if the domain is at least denumerably infinite, it is no longer the case that a first-order
fleeingequation is satisfied for arbitrary values of the relative coefficients(Lowenheim
1915, p. 235).

Lowenheim defined a fleeing equation as 'an equation that is not satisfied in every 11 but is

satisfied in every finite lIt (Lowenheim 1915, p. 233). Church rewords the theorem as

follows: 'if a well-formed formula is valid in an enumerably infinite domain, it is valid in

every non-empty domain' (Church 1956, p. 238). In 1920 the theorem was restated and

reproved by Skolem, to yield the famous Lowenheim-Skolem theorem (see Skolem 1920,

p.256).

It is worth noting that the first application that Lowenheim made of his theorem is to the

Boolean calculus of classes. As he said, 'all questions concerning the dependence or

independence. of Schroder, Miiller, or Huntington's class axioms are decidable (if at all)
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already in a denumerable domain' (Lowenheim 1915, p. 240). Furthermore the theorem is

entirely proved in Peirce's notation which makes Putnam say that 'first-order logic and its

metamathematical study would have existed without Frege' (Putnam 1992, p 258).

Lowenheim distinguished quantification over individuals from quantification over relatives,

and showed that his theorem cannot be proved for higher-order logic. Thus for the first time

a distinction is made between first-order and higher-order logics. Indeed, Lowenheim

carefully delineated the class of first-order expressions which would later be known as the

first-order part ofa logical system. But, as Goldfarb notes in his paper on the nature of the

quantifier, 'Lowenheim's interest in the first-order fragment of the relative calculus seems

motivated by purely algebraic, rather than foundational considerations' (Goldfarb 1979, p.

355). Nonetheless Lowenheim claimed that

every theorem of mathematics, or any calculus that can be invented,can be written as
a relative equation; the mathematical theorem then stands or falls according as the
equation is satisfiedornot.This transformationof arbitrary mathematicaltheoremsinto
relative equations can be carried out, I believe, by anyone who knows the work of
Whitehead and Russell (Lowenheim 1915, p. 246).

Lowenheim called 'relative equation' a first-order equation. Thus he thought that all

mathematical judgements can be represented by first-order expressions in the calculus of

relations. But the possibility of this remark within the framework of Lowenheim appears to

be doubtful. Does the relative calculus, which contains variables only over individuals in a

domain and over sets and relations of individuals, have the enormous expressive capacity

required to capture mathematical inferences involving high-order notions? Moreover,

according to Goldfarb, Lowenheim did not have a full sense of the role of the object

language in formalisation of mathematics, and the absence of formal inference rules prevents

the use ofthe relative calculus for axiomatisation, in the sense offormal systems (Goldfarb

1979, p. 355). In effect, as Goldfarb sees it, 'Lowenheim lacks a general notion ... of a

formalized mathematical theory, which could encompass systems with infinitely many

axioms'. However, 'without such a notion, there can be little question of providing first-

order encodings ofmathematics'(Goldfarb 1979, p. 355).

The considerations of the validity of formulas in different domains which underlay

Lowenheim's theorem were rendered possible by Boole's logical calculus, in which the
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universe of discourse denoted by 1could vary from context to context, and thus contains

only what we concur to consider at a certain time, in a certain context. As Boole said,

... whatevermay be the extent of the fieldwithinwhich all the objects of our discourse
are found, that fieldmay properly be termed the universe of discourse (Boole 1854, p..
42).

Since Boole treated his logical system as a formal calculus capable ofvarious interpretations

with different domains of discourse, hence arises the possibility of demonstrating the validity

of well-formed formulas in different domains of discourse.

Thereafter, Boole's followers, such as Peirce and Schroder, carried out the calculus of

relatives in which the quantifiers occur as certain possibly infinite sums and products over

individuals or relations. They wanted to apply logical formulas to different universes of

discourse and to treat first-order predicate calculus by itself Goldfarb remarks that they

investigated the following question:

given an equation between two expressions of the calculus, can that equation be
satisfied in various domains-that is, are there relations on the domain that make the
equation true? (Goldfarb 1979, p. 354).

Such an inquiry is very much like the modem notion of satisfiability oflogical formulas. As

Heijenoort remarks, 'behind the Frege-Russell trend in logic, Lowenheim renews contact

with Boole and Schroder, while making important contributions of his own to logic' (Van

Heijenoort 1967b, p. 228).

For Heijenoort and Goldfarb, metamathematical considerations are ruled out in the logicist

programme, because Frege set up his logical system as a universal language in which the

quantifiers binding individual variables range over all objects. Indeed Frege treated first-

order predicate calculus as a part of an ideal language with a fixed universe of discourse

consisting of all there is, namely, 'all objects'. The universe of discourse of this lingua

characterica is the universe. As Goldfarb puts it,

for Frege we may be speaking of all objects or all functions; for Russell of all
individuals or all propositional functions of some particular order. The ranges of the
quantifiers are fixed in advance once and for all. The universe of the discourse is
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always the universe, appropriately striated (Goldfarb 1979, p. 352).

Thus this lingua is completely universal, and therefore there is no interesting perspective

'outside' Frege's logical system from which to study it. Wittgenstein, who was vehemently

opposed to anymetatheoretical investigations opened, his Notebooks (1914) as follows:

logic must take care of itself. If syntactical rules for functions can be set up at all for
functions, then the whole theory of things, properties, etc., is superfluous. It is also all
too obvious that this theory isn't what is in question either in the Grundgesetze, or in
Principia Mathematica (Wittgenstein 1914, p. 2).

However, although metamathematical considerations seemed to be more or less alien to

Frege's research programme, Heijenoort and Goldfarb's conviction that semantic notions

are unknown in Principia Mathematica as they are in Frege's work should be moderated.

Indeed, in the introduction of the Tractacus Logico-Philosophicus, Russell demurred from

Wittgenstein's argument against the possibility of metamathematics. He wrote:

these difficulties suggest to my mind some such possibility as this: that every language
has, as Mr Wittgenstein says, a structure concerning which, in the language, nothing
can be said, but that there may be another language dealing with the structure of the
first language, and having itself a new structure, and that to this hierarchy oflanguages
there may be no limit (Wittgenstein 1913, p. xxii).

In The Basic Laws of Arithmetic, Frege too tried to show that proper names, names offirst-

level functions, and every proposition of Begriffschrift have a denotation (Frege 1893, pp.

83-89). This seemed to hint at the possibility of a semantic theory. As Dummett held it,

Frege's notion of reference is best approached via the semantics which he introduced
for formulas of the language of predicate logic. An interpretation of such formula ...
is obtained by assigning entities of suitable kinds to the primitive non-logical constants
occurring in the formulas ... this procedure is exactly the same as the modem semantic
treatment of the language of predicate logic' (Dummett 1981b, pp. 89-90).

Dummett could therefore claim that Frege had had within his grasp the concepts necessary

to frame the notion ofthe completeness of a formalisation oflogic, as well as its soundness

(Dummett 1981b, p. 82). Moreover, once again, it is regrettable that the correspondence

between Frege and Lowenheim was lost in the Second World War. For it is said that

Lowenheim had written to Frege in 1908 to argue for the possibility of a purely formal

arithmetic on the basis of considerations from the second volume of The Basic Laws of
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Arithmetic, and he even convinced him of such a possibility.

Nonetheless, it remains true that metamathematical considerations of the model-theoretic

kind arose from Boole's research programme and not from Frege's. But it should be

stressed as well that they have reconnected the two research programmes which had been

separated and classified respectively under the headings of 'logic as calculus' and 'logic as

language'. Indeed the development of mathematical logic in the first few decades of the last

century is a blending of the two research programmes. In this sense, Lowenheim's theorem,

which is a revival of Boo le's research programme, is a metamathematical study of the first-

order predicate calculus which is exhibited in Frege's Begriffsschrift.

Heijenoort writes that 'with Lowenheim's paper we have a sharp break with the Frege-

Russell approach to the foundations oflogic and a return to, or at least a connection with,

pre-Fregean or non-Fregean logic' (Van Heijenoort 1967b, p. 328). But the break is not as

sharp as Heijenoort suggests, for through Lowenheim the Boolean and Fregean research

programmes are somehow connected. Moreover, the gulf between 'logic as language' and

'logic as calculus' does not seem to be unbridgeable. Indeed, semantic notions were not

foreign to logicists who considered language as fully interpreted, universal, and referring

only to one world. There was a great deal of interplay between logicists on one hand and

metamathematicians and algebraists on the other. In truth, modem logic is a descendant of

the interaction of the logicist and the algebraic research programmes.

7.4 Back to Gillies' 'The Fregean Revolution in Logic'

In the introduction of his paper 'The Fregean Revolution in Logic', Gillies considers the

beginning of the Fregean revolution with the publication in 1879 of the Begriffsschrift.

Although he recognises that opinions may differ as to when the revolutionary period ended,

he sees the publication of Godel's incompleteness theorem in 1931 as forming a natural

terminus (Gillies 1992, p. 265). Gillies' general conclusion is this:

Frege's Begriffsschr(ft undoubtedly contributed a number of central conceptions to the
new paradigm for logic, but the Begriffsschrift did not become the canonical text of the
new logic. The semantic sideoflogic was developed independently of Frege, while the
ideas of the Begr(fJsschrift itself were taken up and developed by logicians such as

277



Peano, Russell, Hilbert, Carnap, and Church. In the process, Frege's original system
was modified inmany respects (Gillies 1992, pp. 276-77).

Thus, Gillies seems to consider the subsequent development of mathematical logic after

Frege and before Godel as a part of the Fregean Revolution. It has already been argued that

Gillies' application of Kuhn's concept of 'extraordinary science' to logic leads to an

oversimplification of the development of logic consisting of reducing the whole logical

enterprise into Aristotle, Frege, and Godel. Thus the concept of research programme has

been preferred over that of'revolution' for discussing the development oflogic (see section

1.1). But even ifit is assumed that the Kuhnian analysis of revolutions which Gillies basically

follows is appropriate for studying the history of logic, it would then follow that the

emergence ofthe semantic side oflogic should be considered as a new paradigm. For it was

an achievement which showed the two characteristics to which Kuhn refers as a definition

of paradigms, that is, a sufficiently 'unprecedented' and 'open-ended' achievement which

attracted a community of mathematicians and logicians away from the predominated logicist

programme (Kuhn 1962, p. 10).

Gillies himself admits that the semantic side oflogic was developed independently ofFrege.

But, if granted that the concept of research programme is the core unit for studying the

development logic, then the model-theoretic approach to logic should be regarded as a new

research programme distinct from the Fregean research programme in that it would be a

change from a Fregean programme, whose core was the syntactic axiomatisation oflogic,

to a programme in which semantic considerations prevail. This research programme would

begin with the publication of Lowenheim's paper of1915, which would perform a rupture

with Frege's programme. In effect, before Lowenheim's paper there was no semantical

analysis concerned with the connection between an axiomatic-deductive system and its

interpretations or models. The characterisation of the conditions under which a formula is

true in a model was an unprecedented study in logic.

Lowenheim outlined the research programme within which Skolem and Herbrand carried

out their work. Furthermore, the method used by Godel to show, for the first time, the links

between the semantic concepts of validity and satisfiability of a formula and the syntactic

concept of provability implies Lowenheim's theorem. Following subsequent work ofTarski,

the model-theoretic approach to logic at present constitutes an extremely active open-ended
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area of research. For instance, in their book Model Theory, Chang and Keisler (1973)

include some of the more recent results which are the Keisler-Shelah isomorphism theorem,

the Morley categoricity theorem, the work of Ax-Koch en and Ershov in field theory, and

the results of Rowbottom, Gaifinan and Silver on large cardinals and the constructible

universe. These results which are stimulating present and future model-theoretic research

cannot be simply considered as a part ofFrege's original system. Rather, they belong to a

new research programme.

However, it should be noted that the advance of the semantic side of logic would

complement without completely discarding the Fregean research programme. In this

connection, Gillies borrows from Kuhn the analogy between political revolutions and

scientific revolutions for the subsequent application to logic. Although his general view is

that revolutions in mathematics are of the 'Franco-British' type in which "something" is not

"overthrown and irrevocably discarded" but simply loses its former importance, he compares

the Fregean revolution in logic to the 'Russian revolution' in which the "something" is

"overthrown and irrevocably discarded" (Gillies 1992, p. 269). Accordingly, he would

consider that there is an absolute and radical rupture of continuity in the development of

logic. This would explain why he seems to minimise the importance of the research

programme of Boo le and its further refinements.

But logical research programmes do not seem to involve such an absolute and outright

breach of continuity. Rather, there is a continuous development of mathematical logic which

is made up of overlapping research programmes that share the so-called 'common logic'.

Whether one considers the Fregean revolution or the Godelian revolution, in each case the

continuities in conceptual and theoretical structure exist. A revolutionary period in logic is

not a period in which a 'routine' is overthrown and replaced by another. When Gillies says

that there is a Fregean revolution, I agree. Because the concept of'revolution' can be used

to express the historical importance of Frege's great achievement, and the analogy to

po litical revo lution can be regarded as a means of expression for the historian. But I disagree

when Gillies applies Kuhn's concept of 'normal scientists' to all those logicians who did not

initiate, by a 'Gestalt switch', an extraordinary revolution. In effect, following Kuhn's view,

Gillies presumably thinks that there are two different historical periods to be distinguished

in the history oflogic: (1) normal periods in which there is an established 'routine' ofpuzzle
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solving; (2) extraordinary period consisting of a crisis followed by a revolution. But this

classification does not fit the history oflogic. For instance, where would Gillies classify the

splendid achievement of the model-theoretic approach to logic? He has to regard it as part

ofthe new established 'routine' of the Fregean paradigm, so that the development of model

theory turns out to be just 'normal logic '.

Against this I put forward an alternative between Kuhn's dualistic scheme. This alternative

is built upon the concept of research programme without venturing into Lakatos' specific

ideas about the concept. This concept of research programme can playa methodological

role in the historiography oflogic by guiding and helping research in this area. There is much

evidence to suggest, indeed, that the history of logic is marked by overlapping and

interpenetrating research pro grammes whose involvements sustain the development oflo gic,

and this would make the focus on 'revolution' misleading. For, once it is recognised that the

non revolutionary periods are not characterised by the application of a 'routine', but the

modification and extension of old research programmes, the historical interest should

become the treatment of different research programmes in order to find out what they have

in common, what is not puzzle-solving about them and why this is so.

In this dissertation, I have tried to show how Boole's work initiated a research programme

through which logicians used algebra to develop logic well beyond Aristotelian syllogistic.

I also tried to show that the Boolean research programme, within which a theory of

quantification and relational predicates were developed, is not completely overthrown either

by Frege's work or the work of later logicians who used Frege's revolutionary insights.

Instead the Boolean research programme led to the development of the model-theoretic

approach to logic which is today recognised as complementing the proof-theoretic approach

that is rightly regarded as Fregean in its foundation.

7.5 An Overall Portrait of Boole and Frege

Although Boo le and Frege' s research pro grammes were developed independently arid were

historically distinct, they were not antagonistic. Rather, Frege's research programme

extended over and covered a part of Boo le's. Thus Frege's logical system could be regarded

as an integrated whole in which his logic, beginning from different basics, embodies Boole's
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as a fragment of his first-order predicate calculus. I shall here stress again some aspects of

the close relationship between Boole and Frege.

For Boole, the laws of thought do not depend upon our will, and the forms ofthe science,

ofwhich they constitute the basis, are independent ofindividual choice. They have nothing

to do with mental processes except to be conveyed via this path. He thus departed from

psychologism by regarding the laws oflogic as objective, and prescribing the character of

its mathematical form and forbidding any other form of manifestation that is not scientific.

He presented logic as a system of principles which allow for valid inference in all kinds of

discipline. Hence Boole regarded logical laws as normative and universal. Such a conception

oflogic dovetails with Frege's principle which affirms the separation of the logical from the

external world and the realm of subjective ideas.

Boole regarded logic as concerned with the study not of content, but of the form and

structure of propositions. As Bochenski sees it, 'what is quite new in Boole, and in contrast

to the whole tradition, Leibniz included, is that he did not think oflogic as an abstraction

from actual process, as all previous logicians had done, but as a formal construction for

which an interpretation is sought only subsequently' (Bochenski 1970, 279). Kneale also

notes that in expressing truths oflogic in symbolism derived from mathematics Boole was

already interested in the kind of formal study which is required for the solution of questions

about the foundations of mathematics (Kneale 1947, p.158). It is indeed the construction

of a formal system of logic that provides the connection between Boole and Frege. The

latter set up a formal process of analysing logical relations when working out the problem

of the foundations of mathematics. They both held that logic was concerned with the form

of reasoning independent of the language within which it was expressed.

Boole employed his symbolic notation to formalise propositional calculus. In the

Mathematical Analysis of Logic, he even developed a truth-functional analysis of

propositional logic. His 'cases or conjunctures of circumstances' hinted at the notion of

'truth-value'. As Sluga admits, 'it is even plausible to assume that Frege modelled his

propositional logic on that of Boo le. Both assume naturally that propositions are either true

or false and that they cannot be both at once. Both consider the truth and falsity of a

complex proposition to be determined by the truth and falsity of the simple propositional
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components. For both, in short, propositional logic is two-valued and truth-functional'

(Sluga 1980, p. 80). However, Frege extended the propositional calculus to a more general

theory, namely, the predicate calculus ofwhich Boole's propositional calculus constitutes

a part.

The overall portrait ofFrege and Boole that has now to be drawn was portrayed by Frege

himselfin the essay, 'On Mr. Peano's Conceptual Notation and My Own,' where he stressed

that from another point of view his logical system is closer to Boole's than Peano's. He

wrote,

we can recognise a closer affinity betweenBoolean logic and my conceptual notation,
in as much as the main emphasis is on inference,which is not stressed so much in the
Peano logical calculus (Frege 1897bp. 242).

In correspondence addressed to Hilbert on the I sI of October 1895, Frege held the same

view by employing a botanic metaphor, the process oflignification, so as to picture the close

relation between his concept-script and Boole's logical calculus:

where a tree lives and grows it must be soft and succulent. But if what was succulent
did not in time tum intowood, the tree couldnot reach a significantheight.On the other
hand, when all that was greenhas turned intowood, the tree ceases to grow
(Frege 1895c p. 33).

If! imagine now Frege's Begriffsschrift as a cherry tree blooming, then Boole's Laws of

Thought is the hard fibrous lignified substance under the bark of such a tree.
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