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Abstract

This thesis deals with the subject of nonparametric methods, focusing on
application to economic issues.

Chapter 2 introduces the basic nonparametric methods underlying the
applications in the subsequent chapters.

In Chapter 3 we propose some basic standards to improve the use and
reporting of nonparametric methods in the statistics and economics literature
for the purpose of accuracy and reproducibility. We make recommendations
on four aspects of the application of nonparametric methods: computational
practice, published reporting, numerical accuracy, and visualization.

In Chapter 4 we investigate the effect of life-cycle factors and other de-
mographic characteristics on income inequality in the UK. Two conditional
inequality measures are derived from estimating the cumulative distribution
function of household income, conditional upon a broad set of explanatory
variables. Estimation of the distribution is carried out using a semiparamet-
ric approach. The proposed inequality estimators are easily interpretable
and are shown to be consistent. Our results indicate the importance of inter-
family differences in the analysis of income distribution. In addition. our
estimation procedure uncovers higher-order properties of the income distri-
bution and non-linearities of its moments that cannot be captured by means
of a “standard” parametric approach. Several features of the conditional
distribution of income are highlighted.

Chapter 5 we reexamine the relationship between openness to trade and
the environment, controlling for economic development, in order to iden-
tify the presence of multiple regimes in the cross-country pollution-economic
relationship. We first identify the presence of multiple regimes by using
specification tests which entertain a single regime model as the null hypoth-
esis. Then we develop an easily interpretable measure, based on an original
application of the Blinder-Oaxaca decomposition, of the impact on the en-
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vironment due to differences in regimes. Finally we apply a nonparametric
recursive partitioning algorithm to endogenously identify various regimes.
Our conclusions are threefold. First, we reject the null hypothesis that all
countries obey a common linear model. Second, we find that quantitatively
regime differences can have a significant impact. Thirdly, by using regres-
sion tree analysis we find subsets of countries which appear to possess very
different environmental/economic relationships.

In Chapter 6 investigate the existence of the so called environmental
kuznets curve (EKC), the inverted-U shaped relationship between income and
pollution, using nonparametric regression and a threshold regression meth-
ods.We find support for threshold models that lead to different reduced-form
relationships between environmental quality and economic activity when
early stages of economic growth are contrasted with later stages. There
is no evidence of a common inverted U-shaped environment/economy rela-
tionship that all country follow as they grow. We also find that changes that
might benefit the environment occur at much higher levels of income than
those implied by standard models. Our findings support models in which
improvements are a consequence of the deliberate introduction of policies
addressing environmental concerns. Moreover, we find evidence that coun-
tries with low-income levels have a far greater variability in emissions per
capita than high-income countries. This has the implication that it may be
more difficult to predict emission levels for low-income countries approaching
the turning point.

A summary of the main findings and further research directions arc pre-
sented in Chapter 7 and in Chapter 8, respectively.
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CHAPTER 1. INTRODUCTION

This thesis is about the practice, and visualisation of nonparametric
econometrics. The primary objective is to to apply nonparametric and semi-
parametric methods to relevant economic issues. Though nonparametric and
semiparametric models have received considerable attention from theoretical
econometricians, they were still used only sparingly by applied economists
until recently. There are a few possible explanations for this apparent initial
lack of interest from practitioners. In comparison with constructing an his-
togram or fitting a linear model, nonparametric and semiparametric methods
can be theoretically more advanced and often, especially in the past, require
relatively more advanced computer programming skills. Also, because of the
nature of the estimated functional relationships, traditional tabular formats
used to report econometric results have become less useful. More often, com-
putational results can be communicated accurately and clearly only by means
of graphs. Because of the nature of the computed results visualization has
become an essential part of nonparametric econometrics. A different set of
tools coming from a variety of disciplines is needed to apply these methods
to the solution of economic problems. This thesis acknowledges the multi-
disciplinarity of the subject by drawing on research from economics, mathe-
matical statistics, numerical analysis, computer programming, and computer
graphics.

The topic of nonparametric and semiparametric methods is too vast and
and complex to be given an exhaustive treatment in a doctoral thesis, indeed
many have been already written on the topic. In this thesis emphasis will
be given to methods that enable the inclusion of multiple explanatory vari-
ables without suffering of the so called “curse of dimensionality™ problem.
Also, more traditional parametric based methods will be used to support and
strengthen nonparametric results. As Scott (1992) points out: “there is a
natural flow among the parametric, exploratory, and nonparametric proce-
dures that represent a rational approach to statistical data analysis. Begin
with a fully exploratory point of view in order to obtain an overview of the
data. If a probabilistic structure is present, estimate that structure nonpara-
metrically and explore it visually. Finally, if a linear model appears adequate,

adopt a fully parametric approach.” We will attempt to follow this precept
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as closely as possible.

The dataset used in the examples and in the main applications are another
contribution of this thesis. They were all prepared from the original sources
and took a considerable amount of time to prepare.

This thesis is organized in three main parts.

Part T introduces the fundamental concepts underlying the analyses of
subsequent chapters. Chapter 2 purports to provide an introduction to the
basic nonparametric methods. In this Chapter we introduce the distinction
between parametric and nonparametric models. We also highlight the impor-
tance of visualization when applying nonparametric methods. Several origi-
nal applications are provide to illustrate the use of nonparametric methods
in economics. For instance, Example 4 introduces an original methodology
to estimate a conditional density with an application to labor economics.
Also, Example 3 was contributed to the forthcoming book by Li & Racine
(2006), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press. In Chapter 3 we propose some basic standards to improve the
use and reporting of nonparametric methods in the statistics and economics
literature for the purpose of accuracy and reproducibility. In this Chapter
we make recommendations on four aspects of the process: computational
practice, published reporting, numerical accuracy, and visualization.

Part II presents the main economic applications of nonparametric meth-
ods. In Chapter 4 we investigate the effect of demographic and socio-economic
characteristics of households on income inequality in the UK. We propose
the use of a semiparametric method to estimate conditional measures of in-
equality from an estimate of a conditional distribution, in order to control
for different determinants of income inequality. To estimate the conditional
distribution, we resort to the semiparametric method developed by Foresi
& Peracchi (1995). Conditional quantiles are obtained by inverting the esti-
mated conditional distribution and conditional measures of income inequality
are derived from the conditional quantiles.

The data used in the analysis have been taken from the database pro-

duced by the Consortium of Household panels for European socio-economic
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Research (CHER)." The CHER database for United Kingdom (UK) is based
upon the results of the British Household Panel Survey (BHPS), which is
carried out in the UK annually over a target sample size of 5000 households.

Our approach is novel in at least four respects. First, by estimating the
entire conditional distribution of income over a broad set of determinants, our
estimation procedure uncovers higher-order properties of the income distri-
bution and non-linearities of its moments that cannot be captured by means
of a “standard” parametric approach. For example, similar to the results
obtained in the previous literature, we find that the shape of the age-income
profiles agrees with the observable prediction of the life-cycle model. which
assumes that resources are accumulated at a faster rate at a young age. Also,
we find that income of families during the period of child rearing is higher
than income in the retirement stage of the life-cycle, when economic respon-
sibility is greatly reduced. In addition, we find that the age-income profiles
peak later for the wealthier households and appear considerably non-linear,
declining rapidly after the age of 50. Besides having important consequences
for the policy maker as such, this asymmetry might also indicate the presence
of different factors affecting the upward and downward branches of the age-
income profile that have not been included in our and previous analysis. For
instance, factors that determine a loss in earning capacity at retirement age
of individuals, like deterioration of health and increasing aversion towards
risk, could help in explaining the observed asymmetry.

Second, by estimating the whole distribution we are able to identify where
in the distribution of income the various determinants exert their greatest im-
pact. This detailed analysis can provide further insight into the determinants
of inequality, of great importance to researchers as well as policy makers. For

example, we find that the impact of employment status is spread over the

1The aim of CHER is to create an international comparative micro database contain-
ing longitudinal datasets from many national household panels and from the European
Household panel study (ECHP). This will provide the basis to facilitate comparative cross-
national and longitudinal research and to study processes and dynamics of policy issues
related to family structures, educational aspects, labour force participation, income distri-
bution, poverty, etc. Access to the (beta version of the) database has been granted while
visiting the Integrated Research Infrastructure in the Socio-Economic Sciences (IRISS) at

CEPS/INSTEAD.
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entire income distribution. This finding seems to agree with results obtained
by Nolan (1988-89) using 1977 Family Expenditure Surveys (FES) data in
his analysis of the impact of UK economic conditions on income inequality.
However, in addition, we find that the impact on income is substantially
greater for lower income families. |

Third, we devise a method for obtaining nonparametric conditional in-
equality measures by inverting the estimated conditional distribution. OQur
estimates indicate that, for instance, if the household size increases from 2
to 4, households in the top 90th percentile of the income distribution move
from earning 3.2 times more then households in the 10th percentile to earning
about 2.5 times more. This amounts to a 20 per cent fall in inequality. This
increase in inequality is obtained controlling for other important determi-
nant of inequality, such as the age structure, the presence of a retired head,
and young children. Previous approaches, based on the “standardization” of
inequality series, inequality decomposition by population sub-groups, or non-
paramétric methods, have not been to identify the contribution of individual
factors on inequality, except for very simple cases.

Finally, our approach allows us to establish consistency and to estimate
asymptotic variances of the proposed inequality estimators, which is useful
for inference purposes. It provides a visually clear representation of both
the substantive and statistical impact of each individual factor on income
inequality, keeping all others constant. For instance, we find that for the UK
sample, household size, number of young children, age of head, and employ-
ment status, have a large substantive and statistical impact on inequality.
Factors such as years of education, marital status, and urban versus rural
households, on the other hand, do not significantly impact inequality.

Chapter 5 reexamines the relationship between openness to trade and the
environment, controlling for economic development, in order to identify the
presence of multiple regimes in the cross-country pollution-economic rela-
tionship.

The data used in this Chapter consists of 2,294 observations representing
74 countries, 23 OECD and 51 non-OECD members, spanning the years

1960-1990. The dataset was constructed using data from various sources.
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For the sulfur emissions, we took the data from the Historical Global Sulfur
Emassions data set of A.S.L and Associates (1997), which includes the sulfur
dioxide emissions from burning hard coal, brown coal, and petroleum, and
sulfur emissions from mining and related activities for most of the countries
of the world during the period 1850-1990 (Allen S. Lefohn 1999). The carbon
dioxide emissions data come from the 1998 World Bank World Development
Indicators CD-ROM. Most macroeconomic data is derived from the Penn
World Tables(PWT) Mark 5.6 which compiles data for 152 countries on 29
subjects for the period 1950-1992. Foreign Direct Investment data are taken
from the UN World Trade Data Base discussed in Feenstra, Lipsey, and
Bowen (1997).

In this Chapter we first identify the presence of multiple regimes by using
specification tests which entertain a single regime model as the null hypoth-
esis. We then develop an easily interpretable measure, based on an original
application of the Blinder-Oaxaca decomposition, of the quantitative impact
on the environment due to differences in regimes.

We reject the linear model commonly used in the previous empirical lit-
crature in favor of a multiple regime alternative in which different countries
obey different models when grouped according to income, trade policies, fac-
tor endowment, and other relevant variables. We also find that as much as
40 per cent of the pollution gap between developed and developing countries
can be attributed to regime differences rather than economic activity. Ap-
plying a recursive partitioning method, we find that the impact of openness
to foreign markets on sulfur and carbon dioxide emissions varies according to
the level of development, trade policies, and the productive structure of the
economy. Our result also show there is substantial geographic homogeneity
within each regime, giving some support to findings by geographical factors
(see, e.g., Neumayer, 2002). Our finding also highlight the importance ot
democracy (see, e.g., Torras & J.K., 1998; Harbaugh et al., 2002), corruption
(see, e.g., Lopez & Mitra, 2000), and civil and political liberties (see, e.g.,
Barrett & Graddy, 2000; Torras & J.K., 1998). We find support for stud-
ies that based on the poor environmental performance of Soviet economies

and dictatorships established in Latin America, Asia and Africa, have been
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advocating democratic reforms as a way to promote both economic and envi-
ronmental welfare (see, e.g., McCloskey, 1983; Payne, 1995). Income turning
point estimates of the relationship between income and emissions agree with
previous empirical studies on similar local impact pollutants. Only for the
for the high-income countries the turning point is within the sample range at
$16,000. For medium and low income countries, the turning point is either
non-existent or the curve is monotone increasing over the sample range. For
poorest countries the income variables are not statistically significant. For
the poorer countries with low capital intensity, the turning point is outside
the sample range, whereas for the countries with higher capital-per-worker,
the curve is U-shaped with very low turning point so that the curve is mono-
tone increasing over the sample range. Our results for sulfur emissions seem
to give some support to the pollution haven hypothesis. The impact of open-
ness to trade on pollution is almost 4 times higher than it is for rich countries
then for poor countries. We find that turning points for CO, emissions tend
to be higher than those for SO, emissions. For instance, The turning point
for the rich country group was $9,679 per capita, whereas its $23,420 per
capita for the high capital intensity high income) group for CO, emissions.
A higher turning point for CO, is consistent with the environmental eco-
nomics literature suggesting that inverted-U type relationships relationships
are more likely to be found for certain types of environmental indicators, par-
ticularly those with a more short-term and local impact rather than those
with a more global and long-term impacts (see, e.e, Arrow et al., 1995; Cole
et al., 1997; Selden & Song, 1994). This finding also agrees with Dijkgraaf &
Melenberg (2005) which finds that the inverted-U for CO is likely to exist for
several, but not all, countries. In particular, our findings could explain the
sensitivity of their estimated emissions income relationships for CO,, even
with a relatively homogeneous sample of OECD countries.

Chapter 6 investigates the existence of the so called environmental kuznets
curve (EKC) using nonparametric regression methods. The EKC empirical
law features two variables of considerable interests to economists and pol-
icy makers, namely an indicator of environmental quality and the level of

per capita income. The link between these variables takes the form of an
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“inverted-U” shaped curve in the pollutant/income space. Several ad hoc
explanations have been proposed to justify this empirical law. A simple and
frequently used explanation for the EKC is that its inverted-U shape reflects
changes in the demand for environmental quality as income increases. As-
suming that environmental quality is a normal good, pollution will rise in
the early stages of economic development, to decline later as income contin-
ues to rise. Several papers explain the Kuznets curve by using models with
threshold effects in either pollution abatement, (see, e.g., Jones and Manuelli,
1995), or environmental policy regulation (see, e.g., Stokey, 1988). Thresh-
old effects lead to a very different relationship between environmental quality
and income during early stages of economic development as opposed to later
stages. The threshold-effect predicts a period of long inactivity in private
sector responses Lo ever tightening pollution policy: the income-effect theory
predicts that the abatement intensity rises continuously as policy tightens.
Using nonparametric regression methods we have also estimated the non-
parametric elasticity with respect of per capita income. The flexible nature
of nonparametric estimation allows as to find evidence of an asymmectric
behaviour of the curve before and after the turning point, consistent with
threshold-effect models. This finding is also consistent with the empirical cv-
idence found by Vincent (1997) and Carson (1997) concerning the existence
of a Kuznets curve within individual countries as summarised by Panayotou
(2000). We test the nonparametric findings using Hansen’s (2000) thresh-
old model. Threshold models can be viewed as parsimonious strategies for
nonparametric estimation. Our estimates suggest that there might be a sam-
ple split based on per capita income. No evidence of a split based on trade
variables was found. The income turning point of the global sample is much
lower than the threshold income that divides the two regimes. Changes
that might benefit the environment occur at much higher levels of income
than those implied by standard EKC models. The turning point of the
global sample is much lower than the threshold income that divides the two
regimes. We find that the impact of income on pollution is greater in regime
of richer countries than in the poorer regime. This is consistent with the

nonparametric findings. Moreover, we find that regime differences are also
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apparent from the estimated error variance. The estimated error variance
of the poorer countries regime is more than twice that of the richer coun-
tries regime. This result supports claims made previously in the literature.
For instance, Panayotou (2000) after examining the evidence form Vincent
(1997) and Carson et al. (1997a) concerning the existence of a Kuznets curve
within individual countries concludes that: “whereby rising incomes result
in a more effective regulatory structure by changing public preferences and
making resources available to regulatory agencies. States with low-income
levels have a far greater variability in emissions per capita than high-income
states suggesting more divergent development paths. This has the implica-
tion that it may be more difficult to predict emission levels for low-income
countries approaching the turning point.” We also verify this hypothesis with
a formal test.

Finally Part III presents a short summary (Chapter 7), some direction

for further research (Chapter 8), and concludes.
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CHAPTER 2. BASIC NONPARAMETRIC METHODS WITH
ECONOMIC APPLICATIONS

2.1 Introduction

This chapter provides an introduction to the basic nonparametric methods
underlying the applications in the subsequent applied chapters.

First, we briefly introduce the distinction between parametric and non-
parametric models. Then we introduce the basic univariate and multivari-
ate nonparametric kernel density estimators, the fundamental nonparametric
building blocks of subsequent applications. Several original applications are
provided to illustrate to illustrate the practical relevance of nonparametric
methods in economics.’

This chapter is based mostly on class notes for courses attended in the
90’s in the Virginia Polytechnic Institute and state University in Blacksbourg,
Virginia, USA. More specific references will be provided for selected topics.

This material should serve as a brief introduction to Chapter 3 on report-
ing nonparametric computational-based results. Also, several later chapters
will make use of the estimators presented here.

The univariate kernel density estimator, besides serving as the building
block for the multivariate kernel and the conditional kernel estimator pre-
sented in Section 2.7, was also used in Chapter 3, Section 3.2, to produce the
estimate of the household income density in the two panels of Figure 3.10
on page 89, Figure 3.2 on page 61, the two panels in Figure 3.3 on page 62,
Figure 3.4 on page 63, and Figure 3.5 on page 67 in Section 3.4. In Chap-
ter 4 on income inequality, a univariate gaussian kernel was used to produce
the income density estimate shown Panel 4.1(c) in Figure 4.1 on page 102 in
Section 6.10. In Chapter 6, the univariate kernel density estimator features
in Section 6.3 on page 6.3 to derive the nonparametric kernel regression esti-
mator of Nadaraya (1964) and Watson (1964) and the local linear regression
estimator. It also used, for example, in Section 6.7 to produce the nonpara-
metric regression estimates of the environmental Kuznets curve in Figure 6.8

on page 184 and Figure 6.9 on page 185.

1For instance, Example 2 and 4. Example 4 introduces an original methodology to
estimate a conditional density with an application to labor economics. Example 3 was
contributed to the book by Li & Racine (2006), Nonparametric Econometrics: Theory
and Practice, Princeton University Press.

12
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The bivariate gaussian product kernel is used, for instance, in Chapter 4
to produce the estimate of the joint density of household income and age of
head, displayed in panel 4.1(d) of Figure 4.1 on page 102 in Section 6.10.

Together with the univariate kernel, the bivariate kernel was used in
Chapter 4 to estimate the density of household income conditional on age of
the head in Panel 4.2(a) of Figure 4.2, and the density of household income
conditional on household size in Panel 4.3(b) of Figure 4.3 on page 103 in
Section 6.10.

In Section 2.2 we review the basic definitions of parametric familics and
models against which the nonparametric equivalent are later contrasted and
defined. Section 2.3 presents the basic definitions of nonparametric and semi-
parametric models. In Section 2.4 we present the advantages and disadvan-
tages of using nonparametric methods in economics. Examples are used to
illustrate the usefulness of the nonparametric methods. Some problems with
nonparametric methods are presented in Section 2.5. In section 2.6 the ideas
behind the construction of the univariate kernel density estimator of a density
function are introduced. In Section 2.7 few of the main issues associated with

multivariate kernel density estimation are addressed. Section 2.8 concludes.

2.2 Populations, Samples, and Parametric Mod-

els

In statistical inference, a data set is viewed as a realization or observation
of a random element defined on a probability space (€2, #, P) related to a
random experiment. The probability measure P is called the population.

As the population P is unknown, to simplify the analysis, a set of as-

sumptions on it are usually made in the form of a statistical model.

Definition 1 (Parametric family and model) Given a measurable space,
(Q, %), a set of probability measures defined on that space, P the triplet
(Q, F, P) is known as a statistical model.

If a sct of probability measure . indexed by a parameter 6 € O, is said

to be a paramctric family iff © C R for some fixed positive integer d, and
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cach Pp is a known probability mcasure when € is known. The index set ©

is referred to as the parameter space and d is called its dimension. o

Example 1 Consider estimating a density function, f. The parametric
methods specify the form of f(r:@). If we assune that f(r: @) is the normal

density. with @ = (u,02)T, the parametric normal family is then

1
oV 2w

((_(.7,_#)2//20.2

flz) =

where the mean g and the variance o? are the parameters of f. The problem
of completely describe the distribution function is reduced to the problem of
estimating @ = (p,0%)T. A parametric estimator of f is then

) | S

f(:c) — ¢l /2e"

oV 2

where g and o are estimated from a sample using the well known sample

mean and sample variance formulae, respectively

.1
M:;Zl:l'i,

and

9D 1 - )
= — T, = -
6= —o ,-:1( 1)

Using regional Italian data on capita GDP (constant prices 1990) for
the period 1951-1998 provided by ISTAT (Istituto di Statistica Nazionale)?,
Figure 2.1 presents three views, 1955, 1975, and 1995, of the evolution of
real GDP per capita (millions of 1990 Lire). The sample mean and standard
deviations for the estimates are: fygs; = 0.0827. Tloss = 2.237202. Higrs =
12.3468. Gro-5 = 3.288181. [i1g0; = 18.4447. and 1955 = 1. 447884 -

2Except form the 1951-1963 period (CRENo0S) and the 1996-1998 period (SVIMEZ).

14



CHAPTER 2. BASIC NONPARAMETRIC METHODS WITH
ECONOMIC APPLICATIONS

—— 1955
--- 1975
~~~~~~ 1995
0.15 4 .
2 0.10
= i
c
[}
=
0.05 - |
0.00 - BREE
5 10 15 20 25

GDP per capita (millions of 1990 Lire)
Figure 2.1: Evolution of Italian GDP per capita, 1951-1988

2.3 Nonparametric and Semiparametric Mod-
els

According to David (1995), the term nonparametric applied to estimation
and statistical inference has been first used in (Wolfowitz, 1942, p. 264):
“We shall refer to this situation [where the knowledge of the parameters,
finite in number, would completely determine the distributions involved] as
the parametric case, and denote the opposite case, where the functional forms
of the distributions are unknown, as the non-parametric case.”

The term “nonparametric” has acquired over time two separate more
narrow meanings, one roughly in the statistical literature and another in the
econometric literature. The older use of the term refers to tests, such as
the Kolmogorov-Smirnov test, Wald-Wolfowitz runs test, Mann-Whitney U
test, etc., (see, e.g, Hollander & Wolfe, 1973) that do not assume normality,
and that are often based on rank transformed data. More recently, the term
has been used to refer to “smoothing techniques,” as in Simonoff (1999).

We will take the more modern use of “nonparametric” to refer mostly to
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density estimation and regression smoothing. (Scott, 1992, p. 44) provides
an interesting discussion on when is an estimator nonparametric.

Excellent general surveys of nonparametric methods written for statisti-
cians include Simonoff (1999) and Loader (1999). Other excellent survevs
focusing on kernel and local regression methods include Bowman & Azzalini
(1997), Wand & Jones (1995) and Fan & Gijbels (1996). Survey dealing with
some issues of key interest in econometrics include Pagan & Ullah (1999),
Yatchew (1999), and Li & Racine (2006).

For the purpose of this thesis we need the following definitions.

Definition 2 (Nonparametric family and model) A family of probabil-
ity measures is said to be nonparametric if it is not parametric according to
Definition 1

A nonparametric model refers to the assumption that the population P

is a nonparametric family. o

Remark 1 Nonparametric families are probability measures indexed by an
infinite-dimensional parameter set. Another name is “families with large

parameter space.” o

Remark 2 In principle nonparametric families are not restricted by any
assumption. In most applications though, assumption on the support of the
distributions, on the existence of moments, on the shape of the distributions,

and on the smoothness of the distributions, are made. 0

Definition 3 (Semiparametric family and model) Semiparametric fam-
ilies are usually characterized by two components, a component with a finite
dimensional parameter set and a component with an infinite-dimensional
parameter set, i.e., a function.

A semiparametric model refers to the assumption that the population P

is a semiparametric family. o

2.4 Nonparametric Vs. Parametric Models

We argue that nonparametric and semiparametric methods can provide in-

formation of considerable value to economists. This information would be
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difficult to detect using parametric models. Particular features appearing
in the data can be fitted only through ad hoc assumptions with parametric
models. A few examples shall illustrate these points.

The following two example apply nonparametric regression to economic

problems.

Example 2 (Environmental Kuznets Curve) There exists an extensive
parametric literature in environmental economics, where an indicator of en-

vironmental quality is generally modeled as

yi = Bo + B, + Baa? + u;

where v; is the natural logarithm of pollution emissions per capita, x; is the
natural log of income per capita, and u; the standard error term. Some-
times a cubic term is added to the basic regression equation. Researchers
are interested in determining whether an inverted-U relationship between
environmental quality and economic growth. For this purpose estimating a
polynomial function appears adequate. However, since polynomial functions
possess all orders of derivatives everywhere, this property might smooth out
important features that are present in the data, such as an asymmetric be-
havior around the turning points. For example, in the estimation of the
relationship between per capita GDP and an environmental indicator, re-
searchers might be interested not only in determining the existence and loca-
tion of turning points but also whether the behavior of an up swing following
a down swing is symmetric. Asymmetric behavior around a turning point,
besides having important consequences for the policy maker as such, might
also indicate the presence of different factors affecting the downward and the
upward branch of the curve. Figure 2.2 suggests that such an asymmetric
behavior is supported by the data. Stern and Common (2000) have pointed
out that trade might play an important role in explaining the downward part
of the EKC for developed countries. Asymmetries might also indicate the

presence of irreversibilities. 0

17



CHAPTER 2. BASIC NONPARAMETRIC METHODS WITH
ECONOMIC APPLICATIONS

E OKWT
Te] OBGR
—1 -—— Locpoly :
- - NW OSYR OSVN OCAN
OAU
< - OL?WUNOCEK OUSA
0‘\438 &ngm( G%EOI%;P
K
" @ Oidra
o) BRER P OnzL
_ o — OHRV @Sg}-‘,
o OPHL OTUSTUR : OAUT
= , OCHE
1
-~ { OIDN
OLKA
o £, 1
]
MR ONPL OVNM '
- OBGD !
L Lo S e o g
T 1 I
6 7 8 9 10
log(gdpPPP)

Figure 2.2: Local Polynomial and Nadaraya-Watson estimate for SO,.

As another example, Pagan & Ullah (1999) consider the relationship be-
tween the natural income and age, using data on a sample of 205 Canadian
workers from a 1971 Canadian Census Public Tapes (Ullah, 1985). The stan-
dard approach in labor economics is to assume a quadratic relationship in
age, estimated by OLS. The nonparametric approach makes no assumptions
about the functional form of the relationship. The nonparametric specifica-
tion finds a flatter peak than the quadratic curve and indicates the presence
of a “dip” around the mean age of 40. Pagan & Ullah (1999) argue that a
possible explanation lies in the generations effect. The dip is produced by the
overlap of earning trajectories of different generations. Thev conclude that
“only if the sociopolitical environment of the economy has remained stable
intergenerationally can we assume these trajectories to be the same” (Pagan
& Ullah, 1999, p. 154). This result is robust to bandwidth choice, and is
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observed whether using simple rules of thumb or data-driven methods such

as likelihood cross-validation. Figure 2.3 shows the stacked density estimates
from 1951 to 1988.°
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Figure 2.3: Nonparametric and quadratic fit, income/age profile (Canadian
workers data)

Though it is true in both cases that parametric specifications could be
used to fit these complex models, parametric model would find the detection
of these features problematic. The parametric specification (say through
mixtures, dummies, etc.) would require ad-hoc assumptions.

Moreover semiparametric models and estimation methods, where un-
knowns are a finite dimensional set of parameters and functions, retain the
flexibility of nonparametric methods, whilst, mitigating most of the problems

with nonparametric methods.

“The figure was obtained using univariate gaussian kernel evaluated on 100 equally
spaced points in the interval [21,65] with bandwidth selected using the plug-in method
for local linear regression described in Ruppert et al. (1995b) as implemented in the spill
function provided by R’s sm library by Bowman & Azzalini (1997). This result is robust
to the choice of kernel and bandwidth selection method.
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The following example illustrate the use of nonparametric density estima-
tion to shed light on important economic problems and can reveal features

not identifiable by parametric means.

Example 3 (Italian income distribution evolution) Using the data de-
scribed in Example 1, Figure 2.4 shows the stacked density estimates from

1951 to 1988*.
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Figure 2.4: Evolution of Italian GDP per capita, 1951-1988

IThe figure is composed of 48 stacked kernel density estimates using univariate gaussian
kernel evaluated on 100 equally spaced points in the interval [2,38] with bandwidth select ed
using the plug-in method described in Sheather & Jones (1991) as implemented in the sm
R library by Bowman & Azzalini (1997). This result is robust to the choice of kernel and
bandwidth selection method.
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It is clear from the Figure, that the Italian distribution of per capita GDP

displays an interesting dynamics: it starts as a unimodal distribution in the

50s and becomes bimodal in the 60s. The two mode tend to diverge during
the 90-98 period. This is also illustrated in Figure 2.5
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Figure 2.5: Evolution of Italian GDP per capita, 1951-1988

GDP per capita (millions of 1990 Lire)

2.5 Limits of Nonparametric Models

2.5.1 Curse of Dimensionality

Curse of dimensionality (Bellman, 1961, see) refers to the exponential growth

of hypervolume as a function of dimensionality. An example in Hastie &

Tibshirani (1990, p. 84) clearly illustrates the problem.

Consider two hypercubes cubes with identical orientation, both centered

on the origin of a cartesian coordinate system. Suppose that one cube has

sides of length ¢ and the other has slightly smaller sides of length € — €.
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The volume of the d-dimensional hypercube of side length ¢ is given by the
formula

Vo= £2,

Consider the fraction of the volume of the larger cube in between the cubes.
Then

. ‘7([(() — ‘Yd(l — 6) [’d — (( —_ E)d €\d
1 — lim —— % _( _ _) -

Hence, the content of an hypercube tends to concentrate toward its surface,
a d — 1-dimensional subspace, as the number of dimensions increase. This
conversely, implies that the center becomes less and less important, as the
dimension increases. This “space distortion” has potentially serious practical
consequences for data analysis. For example, in parametric linear regression,
the fact that the data tends to concentrate in a lower dimensional space,
renders the method prone to the problem of multicollinearity.

In nonparametric estimation this problem limits the applicability of the
technique low-dimensional cases only. Most nonparametric methods employ
the concept of local neighborhood to compute estimates. For example in
nonparametric regression analysis, to calculate a conditional mean at a par-
ticular point, only the k-nearest points are included in the averaging (hard
neighborhood) or the data are weighted according to their distance from the
conditioning value (soft neighborhood).

Comnsider constructing a cube-shaped neighborhood of a point, say the
origin. that should include all. p - 100 per cent, of the data, assumed to
be uniformly distributed within a unit hypercube. The cubic neighborhood
should have side length ¢ = p'/?. This signifies that to include 10 per cent of
the data, i.e p = 0.1, when d = 1, the length of the side of the cube-shaped
neighborhood should be ¢ = 0.1. With d = 10. { ~ 0.8. This example
illustrates the idea of “local,” in high dimension cannot be readily understood
using intuition developed within much simpler low-dimensional geometry.
Figure 2.6 represents the side length of the hypercube needed to capture a
pre-specified proportion of the data for dimensions d = 1,2, 3,10, 20, from
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the bottom upwards, respectively.
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Figure 2.6: Curse of dimensionality illustration

The curse of dimensionality problem affects also density estimation meth-
ods. Consider the case of density estimation. Conceptually, estimating a
density function nonparametrically appears to be simple. The most basic
nonparametric method of density estimation is the histogram. Because of the
curse of dimensionality problem, as the dimension of the data increases, the
complexity of estimating a density via an histogram increases exponentially,

the number of histogram grid cells increases exponentially as the dimensions
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increase. This effect cannot be avoided, even by other, more complicated.

nonparametric estimation methods.

2.5.2 Interpretability

A problem with nonparametric methods is the difficulty in presenting and
interpreting results in a multivariate setting. As the number of dimensions
increases, only a lower dimensional projection can be displayed and inter-
preted. Several graphical devices may be needed to display and to highlight
important features in the estimates. Moreover, the curse of dimensionality
problem makes interpreting multi-dimensional problems difficult. as intuition
acquired in low-dimensional geometry can be of no help when we move be-

yond the three dimensions.

2.5.3 Forecasting

A further problem with nonparametric methods is that they do not readily
permit extrapolation. In the case of E[Y|z], it does not provide predictions
at points = that are not in the support of X. This could be a serious problem
when analyzing policies and making forecasts, whose main purpose is to make
statements about what could happen under conditions that do not exist under
the data available. A parametric model. in which E[Y|r] is known up to a

finite-dimensional parameter, provides predictions a all values of r.

2.6 Univariate Kernel Density Estimation

Much work has been done on the problem of density estimation. One of
the most popular methods is that of kernel smoothing. We refer to Watson
(1964), Nadarava (1964). Silverman (1986). Wand & Jones (1995), and Simonoff
(1999) and the references given therein.

If we consider the definition of f(z):
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If we replace F'(z) with the empirical CDF

~ 1 <&
F.(r)=— B .
(7) " Zl 1( ©0,x| (mz)
we get

 F@+% —F(r=1t

~ -) 1 n
f(I) h = ;I; 2_1: 1(.r—l1/"2..r+h/2](-ri)

which can be rewritten as

where

The Kernel density estimator is the central finite-difference approximation
to the derivative of the ECDF.

The problem is this estimator is not smooth. If We choose K to be the
standard normal we obtain the classical density estimator.

Figure 2.7 shows the components of a kernel density estimate based on a
Normal kernel. The four data points are marked by crosses on the horizontal
axis. The data are represented by. Centered at each data point are the
broken curves represent the normal components, namely., #K (L‘h—\) (i.e.,
1/n times a normal density with mean X; and standard deviation h). The

solid curve represents the kernel density estimate.

Figures 2.8 and 2.9 illustrate the impact of the choice of bandwidth on
the shape of the estimated kernel. in Section 2.7 starting on on page 35. A
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Figure 2.7: Construction of kernel density estimate

Java applet we have developed,” that allows the user to watch the effects of
changing the bandwidth and the shape of the kernel function on the resulting
density estimate, was cited in a survey of density estimation by (Sheather,
2004, p. 589).

Next we introduce an original methodology to estimate a conditional
density with an application to labor economics, that makes use of kernel

density estimation.

SThe applet can be found at http://www-users.vork.ac.uk/~jb35 /mygr2.hm.
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Example 4 (Impact of Unionization) Consider the case of density esti-
mation. We want to determine the impact of unionization on the distribution
of wages conditional on many determinants. The data are assumed to be a
realisation of a strictly stationary stochastic process {(‘Z, )}) }OO , where Y;
is a scalar and X; is a d-dimensional vector, usually of individug(;ttributes.
This general [ramework includes the particular case were the pairs AV Y,)
are independent and identically distributed. Let f(y|Z) be the conditional
density of Y; given X; = &, which we assume to be smooth in both # and
y. We are interested in estimating f(y[F) from the data {(‘{, Y,-) }oo . The
kernel density estimator for ordinary data can be written as the (-()ni\?((;lm,ion

product

fy(y) = (Fy * Kh) (y) = /°° Ky(y —u) dFY(U) (2-1)

—o0
where the integral is a Stieltjes integral, Fy is an estimate of the cumulative
distribution function of Y, and Kx(u) = h7'K(u/h). The kernel function
K will be taken to be the Gaussian distribution throughout the paper. The
smoothing parameter h will be taken to be the asymptotically optimal for
estimating a density function when the underlying distribution is Normal.
Equation 2.2 uses the ideas of convolving a kernel with the density estimate
induced by an estimate of the cumulative distribution function. When Fy is
the empirical cumulative distribution function. E,(r)=n"" PR IAVES ]

Equation 2.2 can be rewritten as

fr(y)=n")  Kaly —Yi) (2.2)
i=1

which is the usual way to represent the kernel density estimator. By analogy,
the kernel estimator of fy| x(ylz) induced by the conditional distribution

function ﬁ’y| x 1s then
w ~

Fr (1) = / Kaly — ) dEy 5 (u) (2.3)

-0
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where Fy| x 1s an appropriate estimator for the conditional distribution func-
tion of Y given X = Z. A similar approach has been followed to estimate
a hazard function by using an “empirical cumulative hazard function” and
densities with right-censored data by using Kaplan-Meier’s generalization of

the ECDF (see Wand and Jones, 1995. Equation 2.3 can be rewritten as

n

FrigWld) = wily(y —Yy)

i=1

~

where w; is the size of the jump of yix ab Y;. Once an estimate for the
weights w is obtained the conditional density can be estimated by weighted
kernel methods.

To obtain the weights w we need from an estimate of the conditional dis-
tribution function. The following paragraph describes the simple semipara-
metric approach used by Foresi and Peracchi (1995) for estimating Fy x (y | £).

In general, if we define a new random variable using the indicator function
Z; = 1]Y; < yl, then E[Z;|X; = &] = Fyx(y| Z). In order to estimate
Fy x(y| %) we propose to use the simple semiparametric approach used by
Foresi & Peracchi (1995). A summary of other analogous nonparametric
methods that could be employed is provided by Hyndeman et al. (1996) and
by Hall et al. (1999).

The simplest approach is to fit a logistic binary regression model to Z;. By
estimating J distinet functions Py (), .. .. P;(F) where P;(¥) = F(y;|¥) and
—00 < yj -+ < ys < x are distinet points in the support of Y. By fitting J
distinet logistic binary regressions to cach binary variable Z;; = ooy, (Yi),
j=1.....J.where I4(-) denotes the indicator function of the event A, we can
approximate the cumulative distribution, F'(y|Z). The logit model, besides
being simple to implement and available in most econometric packages, also
ensures that the estimated functions are bounded between 0 and 1. However,

this method does not guarantee the monotonicity property of the conditional

distribution function.®

To illustrate the effectiveness of the new approach we are going to apply

6For more details, see Foresi and Peracchi, 1995.
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it to the wage dataset from Johnston and DiNardo (1997). Figure 2.10
shows the conditional empirical CDF and figure 2.11 plots the conditional
distributions for union and non union workers . The estimates suggest that
for men unions have an equalizing effect. The density center is shifted to the
right when union=1. The density for union=0 has less weight at its center
and more on its lower half. Lower wage workers are the ones that benefit the
most from unionization. There is a suggestion that at relatively high wages

union have a negative impact. o

Figure 2.10: Conditional CDF of log(wages)
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Figure 2.11: Conditional Density of log(wages)
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Figure 2.12: Conditional Density
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Figure 2.13: Conditional Density
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2.7 Multivariate Kernel Density Estimation

2.7.1 Introduction

In this section we will investigate how kernel density estimation can be ex-
tended to include multivariate settings. Multivariate kernel density estima-
tion is a prerequisite for conditional density estimation. A comprehensive
treatment of the argument can be found in the monographs by Wand &
Jomnes (1995), Scott (1992), and Fan & Gijbels (1996).

Let X1, X5,...,X, be a Ri-valued random sample from an unknown F
with Lebesgue density f. The most general kernel density estimator of f is

given by

-~ 1 —— .

fla: H) = }_I;[\H(a: — X)) (2.4)
where H = {h;;} is a d X d positive definite matrix of bandwidths,

Ku(z) = |H|"" K(H ),

and K is a d-variate kernel function satisfying the condition

/K(a:) de = 1.

Typically K is taken to be a d-variate density function. Using the standard

d-variate gaussian kernel function

1 d
P(x) = W(‘XD (_:1:23:> (2.5)

then K g (x — X;) becomes the joint probability density of the multivariate-

normal vector random variable & with mean vector X and positive-definite

variance-covariance matrix H, N(x, X;), in which case (2.4) becomes

7

Ky (o —X,) = [HI7V2K (H‘l"g(m—Xi)) (2.6)
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- 1 & 1 - X)"H ' (z -
f(ﬂﬁ;H):ﬁ;(zw)d/z‘H[l/z"‘Xp (_(a: ) 2 . Xl)) (2.10)

Another popular d-variate kernel is a generalization of the univariate

Epanechnikov kernel

(d+2)I'(d/2+ 1)
(27 )d/2

K(z) = (1—z"z) I pre<) (2.11)

2.7.2 Smoothing Parametrisation Selection

In general W belongs to the class of positive definite (and therefore sym-

metric) matrices

( 2
w] Wiz - Wy
2
wiz Wy - Wy T
Wy, =W = _ _ . -V nonzero z.xt Wax >0 o
-1
L Wy1 Wqz - Wy J

If W € #,, then it has ;d(d+1) distinct smoothing parameters. The number
of parameters to be chosen or estimated can be drastically reduced if W' is

restricted to the subclass of diagonal positive definite d-dimensional matrices

W, = {diag(wf, W) Wy Wal . wy > 0} .
1 1 —1/2 r —1/2
= Gy P (_5 (2 (@ -x)) (1 (:c—-X,))) (2.7)
1 1 ~1/2 py—1/2
= Gy O (—i(m—X)lH VPH (a:—X,)) (2.8)
= (27(1)(1/._, -exp (—-%(:1: ~-X)"H ' (x— X;)) (2.9)

since H is positive definite, and therefore has a square root, such that

H—l — H—leH—l/Z
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This parametrisation allows different degrees of smoothing in each co-

ordinate direction. Then for W € #;, (2.4) can be written as®

d -1 n
o~ ]_ A — 4‘&—- Ty — 4\"0 RF Bt \"
o, H) =~ [[m]) Y Kk|{—2 2 =
I ) " (kl A) i=1 ( h h - ha >

(2.12)
If the h’s are assumed all equal, i.e., H belongs to the subclass

2= {3 :h >0}.
the kernel estimator simplifies to

fla;h) = ni,, ZK <w _hX") . (2.13)

We note that 7, C 2 C J%, and that each of theses classes represent
multivariate estimators with, 1, d, and %d(d + 1) independent bandwidth

parameters.

The same principle guiding the choice of bandwidths for the univariate
case apply to the multivariate setting. Following Silverman (1986), if we
define the constants a = [ ;K (t) dt and § = [ K(t)* dt, using the multi-

variate form of Taylor’s theorem, yields the approximations for the bias and

8Let W = ding(wj3,...,w3), then

Ki (m— X;) = W[ 2K (H (o - X0)

= |Wl—l/2K (diag(w.fa w::;, st w%)-l/z (ZB - Xi ))

wl_l 0 0 Iy ‘Xil

| 0wyt o 0 |[m—Xe
WK ’ -

0 e 0 wll—l Tq— XI([

-1
d
11 (B Xz Xz X
— wl“ ) yeety
w, wo wq
k=1

: d
Note that for W diagonal. |[W| = wyws - - wy = [Le—1 Wk-
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the variance

| =

bias, (x) =~

n2avV? f(x) (2.14)

and

—~

var f(x) ~ %h“d,@f(:c). (2.15)

Combining (2.14) and (2.15) yields the approximate mean integrated square
error

10 [193@)yde + 1. (2.16)

The derivation of the mean squared error and the mean integrated squared
error is analogous to the one-dimensional case. We will sketch the asymptotic
expansions and concentrate on the asymptotic mean integrated squared error.

As usual, has a bias part and a variance part. The bias of f(x; H) is defined
as E f(a;: H) — f(x) and the integrated squared bias

IB :/{Ef(t: H)—,/‘(t)}2 dt (2.17)

The asymptotic integrated squared bias AIB is the first order term of
IB, i.e.
IB — AIB
— =o(1l 2.18
as | X| — 0, n — oo, and n|X | — oco. Define now the integrated variance

9

IV = /E {f'(t:H) ~EJ(t: H)}' dt (2.19)

and the asymptotic integrated variance AIV analogous to AIB. Then the

asymptotic mean integrated squared error, AMISE, can be calculated as
AMISE = AIB + AIV.

Here and in the following we denote with V; the gradient of f and with X

the Hessian matrix of second order partial derivatives of f. Then the Taylor
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expansion of around x is

flex+u) = f(x) +u Vi(z)+ %uT,%”f(a:)u + o(z" ).

This leads to the expression®

B (e W) = [ Kwle —w)f(wyi
= IW|‘”'3IW‘”2|/K(sﬂ'(w — W%g)ds = /K(s)f(a: — W'2g)ds
~ /1\'(3) {f(a:) — sTWAV (z) + %sTwl/wff(x)Wl*‘-’s} ds
= [(x) —/STWl/szK(s) ds—i-%/STWUZ%f(m)Wl/st(s) ds
= f(x) + %u- (W”z%f(x)wl/f/ssTA'(s) (ls)

= St (WA (@)

Assuming

[uktw du=o,

and
uul K (u) du = po(K )14,

then (2.7.2) yields

E fla; W) — f(x) ~ - pa(I) 0 { W75 ()W }

¥

1o | b=

and therefore the asymptotic integrated bias is

AIB = i,;;:u\—) / (b {W ()}

Note that [ g(Az) dz = |Al [ g(y) dy and z = H1/2(x — y) and therefore y =
x—HY?z.
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—~

The variance of f(x; W) is given by
va,r(]?(m;W)) = E (P(a: W)) — (E (]/”\(:c;W)))2

1 R o , ‘ 2
= Lw [ Krie - Wi as— 1 ([ Ko @ - W)

n
~ %'WI_l/Z/K(S)Q (,/'(a;)sTWl/BVf) ds

1 .
= —|W|_1/2/K(s)2j'(a:) ds — %IW!_l/Q/K(s)ZsT ds

n

= W) [ Ko ds

= W (@) KR

where || K || denotes the d-dimensional Lo-norm of K.
Combining the asymptotic integrated bias (AIB) and the asymptotic in-
tegrated variance (AIV) to get the AMISE for the multivariate kernel density

estimator
AMISE = () [{ (W @) + W T @INR (220
If we define a scalar w > 0 and a d X d matrix A such that
W = w’A where |[A| =1
then (2.20) can be written as
AMISE = -i-w*uig(f(> / (tr {AS(@)}}2 + %w‘qHKllg (2.21)

Allowing changes in w the optimal orders for the smoothing parameter

w and AMISE are
wy = O (n_l/(q“)) . and

AMISE = O (n=/t*) .

Analytic expression for the AMISE optimal bandwidth matrix are not
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Figure 2.14: Construction of a bivariate kernel density estimate.
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(a) Normal kernel density mass centered  (b) Contour view of the resulting kernel
at each observation. density estimate. The bandwidths are
H = ding(0.51858 13, 0.3 135906) .

available for the general multivariate case. Explicit formulae can be derived

for some special cases, as it is illustrated in the next section.

2.7.3 Rule-of-thumb Bandwidth Selection

Rule-of-thumb bandwidth selection provides a formula arising from a refer-
ence distribution. The obvious candidate for a reference distribution in the
multivariate case is the pdf of a multivariate normal distribution. N(u, X).
Suppose that the kernel is Gaussian, i.e., the pdf of N(0,I). In this case,
ma(K) = 1 and ||K||3 = 577z From (2.20), since.

1
2 _ —1\2 2 ~1
[ v W) do = s (2 OV W)
Figure 2.14 shows a parametrization with independent normals. Fig-

ure 2.15 shows a parametrization with independent normals. More discussion

on bandwith selection can be found in Scott (1992).
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Figure 2.15: Construction of a bivariate kernel density estimate.
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at each observation. density estimate. The bandwidths are

H — (0-4043552 0.1530887 )
0.1530887 0.7748501 /-

2.7.4 Kernel Selection
K can also be generated from univariate kernels, s, through a product kernel
d
K*(z) = [ ] slz;)- (2.22)

j=1

Using a product kernel 2.12 simplified further to

n d -
- ]. I] — ‘\ij
‘h) = — E I | —_ . 2.23

The most frequently used multivariate kernel is the product kernel den-

sity estimator with normal kernels and bandwidth parametrisation H =

diag(d,, ds), i.e.,

i~ 1 - I — ‘\—,'1 o — ‘\',2>
: he) = E LI — .
f(xl7:r27 h17 2) ”hlhg — ¢ ( hl ) ¢ ( h2

Figure 2.16 shows a perspective and contour view of a bivariate normal
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Figure 2.16: Perspective and contour plot of a bivariate normal kernel with
dependent and independent normals.
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kernel using dependent and independent normals.

This version of the multivariate kernel will be the one used in subsequent
chapters. Properties of this multivariate kernel are discussed in details in
Scott (1992).

The next example will look at an application of the multivariate kernel

to economics.

Example 5 (Stochastic kernel) Figure 2.17 shows a contour and perspec-
tive view of a bivariate kernel density estimate of the natural log of Real GDP
per worker relative to the USA in 1960 and in 1988. The dataset used in this
example comes from the Penn World Table. This estimate can be viewed
as a continuous version of transition probability matrix where the number
of distinct cells tend to infinity. The peaks in the perspective plot represent
“basins of attraction”, as countries close to one of the peaks have high proba-
bility to remain there. On the other hand, countries located in “valleys” will
have a small probability to remain in the same income range. This serves as
a representation of the vanishing middle class phenomenon. Also, the fact
that most of the probability mass lies on the 45 degree line suggests that

mobility among countries is low. o

The next example uses the univariate and bivariate kernel to produce a

conditional density/distribution estimator.

Example 6 (Conditional density) Using univariate and multivariate ker-
nel, we can construct a nonparametric conditional quantile estimator as de-
veloped by Samanta (1989). A similar approach has been used by Trede
(1998b) to illustrate and compare income mobility in Germany and the US.
Let (X1,Y1),-.., (X, Ys) be independent and identically distributed two di-
mensional random variables with joint density f(z,v) and a joint distribu-
tion function F(y,zx f f Y f(u,v) du dv. The marginal density of X
is g(x f fly,z dy. The conditional density and distribution function

of Y given X = z are

flylz) =
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Figure 2.17: Bivariate kernel estimate of stochastic kernel.
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and

¥ fy,z) du
9(x) '

respectively. A product kernel estimate of f(z, Y) is

. I R =X, y—Y,
fn(-’E,y) = n]'l,rll,y ;]\ < he ) k ( hy )a

while the kernel density estimate of g(z) is

R 1 - A= ‘\','
4n(@) = nh, ,-Z:;A ( hy )

Flylz) = / " Flule) du -

so that

fuly, z)
gn(z)

and the kernel estimator of the conditional distribution function is give by,

fn(ylx) =

B (y, )
n(z)

1 e y—1, =X,
Bn(x,y) = ’ '
(I v) nh.h, ;K < h, ) ’ ( hy )

with K'(y) = [¥_ k(u) du.
More derivation details, a proof of strong consistency, and of asymptotic

ﬁ’n(ylm) = /_y fn(u|z) du =

where

normality can be found in Samanta (1989).

This approach is used in Chapter 4 to estimate the density of household
income conditional on age of the head in Panel 4.2(a) of Figure 4.2, and the
density of household income conditional on household size in Panel 4.3(b) of
Figure 4.3 on page 103 in Section 6.10.

Panel 4.2 displays the contours of the estimated density of household in-
come conditional on age of the head. The relationship between mean income

and age appears to be non-linear, increasing up to the age of 50 and declining
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afterwards. The contours also suggest that inequality in the distribution of
household income could be functions of life-cycle factors. Income inequality
seems also to increase up to the age of 50 and decline, more sharply, after-
wards. Moreover, the contour view seems also to suggests that inequality is
lower for older household heads than for younger ones, as the contour lines
are more closely bunched together for older household head than for younger

ones. -
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Figure 2.18: Estimated density of household income conditional on age of
head.
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Figure 2.19: Estimated density of household income conditional on household

size.
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2.8 Conclusion

We have provided several original examples to illustrate how these methods
can be used to detect interesting features that would be harder to detect
by standard parametric specifications alone. These methods can be used
in conjunction with parametric methods to mutually support each others
findings. Once a probabilistic structure has been identified by nonparametric
means, we can adopt, if appropriate (and on an independent sample!), a
fully parametric approach, to “buttress” the nonparametric results and to
test relevant economic hypothesis. See the last paragraph in Appendix D
on page 239 for further comments on the appropriateness of nonparametric

methods.
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CHAPTER 3. REPORTING NONPARAMETRIC
COMPUTATIONAL-BASED RESULTS

3.1 Introduction

Nonparametric smoothiﬁg methods have become increasingly popular among
economists and statisticians in recent years and have firmly established them-
selves as important applied tools. Their increase in popularity can be at-
tributed in part to their flexible nature but also to the ever growing compu-
tational power, the availability of more powerful graphic devices, and their
implementation many in off-the-shelf software. Many statistical and ccono-
metrics software application offer nonparametric density and regression es-
timators that can be accessed with few click of a mouse or with a simple
function call at a prompt. This simplicity is only apparent as important im-
plementation details are hidden from the user’s point of view. Nonparametric
methods are inherently computationally intensive and rely on a plethora of
implementation details that can be built-in the software application, fixed as
default settings, or determined by the researcher. The control available over
these implementation details is a function of both the sophistication of the
software and the user. More knowledgeable users and better designed soft-
ware can give greater control over the nonparametric estimation procedure.
Detailed control over the estimation procedure is often required to achieve
more accurate results, for correct model selection strategy. for efficiency in
computation, and to facilitate reproducibility and further research. Under-
standing many implementation details requires knowledge of computational
disciplines such as numerical analysis, computer programming, and computer
graphics. Few published published papers and books report nonparametric
results accurately and extensively: they often refer to published methodology
and only present the graphical output. This makes assessing the quality and
robustness of the result at best difficult. Lack of detailed documentation can
also make nonparametric computation-based results hard to reproduce.
Hoaglin & Andrews (1975) provided a list of items that should accompany
any computation-based result in statistics. In principle, any information use-
ful to assess the accuracy of the results and to facilitate their reproduction,
should be supplied. These recommendation have been echoed in many statis-

tics and econometrics papers and books and have been incorporated in style
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guides for authors of statistical journals such as the Journal of Statistical
Software. Even so, almost after ten years from the publication of Hoaglin
and Andrews’ recommendations, Hauck & Anderson (1984) found little ev-
idence of improvement in the reporting of computational-based results by
statisticians. Recommendations focussing on more specific methods used
in statistics and econometrics have also appeared in the literature. For in-
stance, guidelines on how to present Monte Carlo results, appeared in Gentle
(2003). Geweke (1996), and Baiocchi (2005). No recommendations specific
to nonparametric smoothing methods have been proposed.

In this chapter we propose some basic standards to improve the use and
reporting of nonparametric methods in the statistics and economics literature
for the purpose of accuracy and reproducibility. We will make recommen-
dations in four aspects of the process: computational practice, published
reporting, numerical accuracy, and visualization. Section 3.2 discusses some
important practical issues in nonparametric estimation. Practical aspects of
nonparametric methods concern the speed of the algorithm, the ease of imple-
mentation, their numerical accuracy, reproducibility, and the availability of
portable implementations. In Section 3.3 we provide guidelines for reporting
computation-based nonparametric results in published research. Researchers
should provide information useful to assess the accuracy of the results and
to facilitate their independent reproduction. In Section 3.4 we propose a
methodology to assess the numerical reliability of software implementation
of nonparametric methods. Because of the nature of the estimated function
visualization of nonparametric estimated curves becomes an essential part
of nonparametric estimation. Section 3.5 focusses on the reproducibility of
computational results. Section 3.6 discusses guidelines for the graphical pre-
sentation of estimated nonparametric curves. Section 3.7 presents an example

of reporting applied to financial data. Section 3.8 concludes.

3.2 Computational Practice

Computing nonparametric estimates should conform to best practice from

other disciplines engaged in computing. It is important to avoid reinventing

52



CHAPTER 3. REPORTING NONPARAMETRIC
COMPUTATIONAL-BASED RESULTS

the wheel when writing software. For basic nonparametric routines there
exist well written and documented routines which are implemented in many
applications because of their ease of application. Table 3.1 presents a se-
lection of R! can be used to perform the experiment on most computers in
merely a fraction of a second. packages and functions available for nonpara-
metric estimation. Even from a quick inspection of the table, it is apparent
that different modules can provide overlapping functionality. Indeed, as an
example the methods width.SJ, hsj, dpik, sjpi, respectively provided by the
MASS, sm, KernSmooth, and locfit packages, can all be used to select a
bandwidth for kernel density estimation using method described in Sheather
& Jones (1991). From an implementation point of view, packages providing
similar functionality might differ in their interface, the algorithms imple-
mented, design, and so on. From a user point of view, the choice of which
software or package to employ will depend upon several factors, such as the
field of application, ease of use, efficiency, and sophistication of the user. To
complicate matters further, often modules are not well documented or have
.only an incomplete documentation. We will show that this latter issue can
produce unexpected results. Using well-established software is always rec-
ommended but has its own risks associated with it. Often, knowledge of the
estimators as well as numerical and visualization methods is required for a

successful use of the software.?

Table 3.1: R packages and functions for nonparametric density and regression

estimation

'R is an open-source implementation of the S language (see, e.g., Thaka and Gentleman,
1996).

2The hardware used in this Chapter was a Dual Intel Pentium IV (Prestonia) Xeon
Processors 3.06 GHz with HT Technology with 4 GB of RAM running on Microsoft Win-
dows XP /2002 Professional (Win32 x86) 5.01.2600 (Service Pack 2). We used R release
2.1.0, the standard Win32 release available at the time of writing the present chapter.

93



CHAPTER 3. REPORTING NONPARAMETRIC

COMPUTATIONAL-BASED RESULTS

stats (base)

Package Function Description
density Computes kernel density
hist computes a histogram of the

given data

smooth.spline

Fits a cubic smoothing spline as
described in Chambers & Hastie
(1991)
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Package Function Description
ksmooth The Nadaraya-Watson kernel re-
gression estimate as described in
Wand & Jones (1995)
loess Scatter Plot with Smooth Curve

Fitted by Loess as described in
Cleveland et al. (1992)

Graphics (base)

nclass. Sturges

Computes kernel density

nclass.scott

computes a histogram of the

given data

smooth.spline

Fits a cubic smoothing spline as
described in Chambers & Hastice
(1991)

(2002)

functions for

econometrics as in Fox

[\
[}

nclass.FD The Nadarava-\Watson kernel re-
gression estimate as described in
Wand & Jones (1995)
car: Data and n.bins Computes  number  of  bins

for histograms with differ-
ent  rules. Implementing
option “freedman.diaconis”™
(n'/? . range)/(2 - IQR) as
described in Freedman &
Diaconis  (1981). “sturges”
[log,n + 1].  implementing
Sturges” rule  Sturges  (19206).
sscott”™ [nY? - range/(3.5 - s)]
as in Scott (1979). and -sim-
ple” implementing |10 log,,(n)]
for n > 100. or [2/4/(n)] for
n <= 100. Venables & Ripley
(1999) where n is the number of
observations. range is the range
of z. IQR is the inter-quartile
range of z. and sy is the sample
standard deviation of z. |z].
the floor function, denotes the
integer part of z while [z]. the
ceiling [unction.  denotes  the
smallest integer m such that

m 2> .

Continued on next page
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Package

Function

Description

(1999)

MASS: Functions for
density estimation for
Venables & Ripley

bandwidth.nrd

A well-supported rule-of-thumb
for choosing the bandwidth of a
Gaussian kernel density estima-

tor

hist.scott

Plot a histogram with automatic
bin width selection, using the
Scott formula

hist. F'D

Plot a histogram with automatic
bin width selection, using the

Freedman-Diaconis formula

kde2d

Two-dimensional kernel density
estimation with an axis-aligned
bivariate normal kernel, evalu-

ated on a square grid.

width.SJ

Uses the method of Sheather &
Jones (1991) to select the band-
width of a Gaussian kernel den-

sity estimator

bev

Uses biased cross-validation to
select the bandwidth of a Gaus-

sian kernel density estimator.

ucv

Uses unbiased cross-validation to
select the bandwidth of a Gaus-

sian kernel density estimator.

(1995)

KernSmooth: Functions

for kernel smoothing
for Wand & Jones

bkde

Compute a binned kernel den-
sity estimate using the fast
Fourier transform as described in
Silverman (1982)

bkde2D

Compute & two-dimensional
binned kernel density as de-
scribed in Wand (1994)
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Package

Function

Description

dpik

Select a Bandwidth for kernel
density estimation using method
described in Sheather & Jones
(1991)

dpill

Select a bandwidth for local lin-
ear regression using method de-
scribed in Ruppert et al. (1995b)

locpoly

Estimates a probability density
function, regression function or
their derivatives using local poly-
nomials. A fast binned imple-
mentation over an equally-spaced

grid is used.

sm: Functions for kernel

smoothing for Bowman
& Azzalini (1997)

sm.density

Nonparametric density estima-
tion in one, two or three dimen-

sions

SM.Tegression

Nonparametric regression with

one or two covariates

hnorm Normal optimal smoothing pa-
rameter
hcv Cross-validatory choice of
smoothing parameter
hsj Sheather-Jones choice of smooth-
ing parameter for density estima-
tion
locfit: Functions for locfit Function for fitting local regres-
fitting local regression sion and likelihood models
and likelihood models sJpt Computes a bandwidth via the
for Loader (1999) plug-in SJ method
kdeb Function to compute kernel den-

sity estimate bandwidths

a7
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Package Function Description
ash: David Scotts ashl Computes univariate averaged
ASH routines as in shifted histogram
Scott (1992) ash?2 Compute bivariate ASH estimate
GenKern: Computes KernSec Computes univariate kernel den-
generalised KDEs as in sity estimate using Gaussian ker-
Lucy & Pollard (2002) nels which can also use non-

equally spaced ordinates and
adaptive bandwidths and local
bandwidths

KernSur | Compute bivariate kernel den-

sity estimate using five parame-
ter Gaussian kernels which can

also use non equally spaced and

adaptive bandwidths

Ueberhuber (1997) identifies four sources of uncertainty of numerical compu-

tations resulting from the use of ready-made software:

1. the risk of selecting a program that is not suitable to solve the problem at
hand,

2. incorrect results due to the inadequate use of software,

3. software bugs, including design errors, code errors, and shortcomings in the

documentation, and

4. bugs and incorrect use of compilers and operating systems.

Selection of the appropriate use of software for nonparametric estimation re-
quires careful consideration and knowledge. For instance, when estimating a den-
sity using available software several parameter require careful consideration. In
density estimation, bandwidth selection, number and location of grid points used
to evaluate the nonparametric estimate, data transformation used, binning and
other speed-enhancing approximation method used, etc. It is an established fact
that different implementations of the same statistical or econometric procedure
can produce different results. This is indeed the case for nonparamectric methods.

As more sophisticated nonparametric procedures become available in statistics
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and econometric packages, particular care is required to identify defaults and op-
tions of various implementation before the procedure can be applied fruitfully and

accurately.

Bandwidth Plug-in bandwith selectors are based on the analogy principle
whereby unknown functionals that appear in the formulae of asymptotically op-
timal bandwidth are replaced by their sample nonparametric analogue. Many
choices of bandwidth estimators and implementations are available computational
methods can be made when implementing these selectors. Different implementa-
tion of the same estimator often produce different numerical values. It is important
that not only the method used to select the bandwidth, but also the numerical

values as well be reported for reproducibility purposes.

Grid points Figure 3.10 displays univariate kernel density estimates of income
in UK for the year 1991 using 4571 observation on British households from the
British Household Panel Survey (BHPS). The main features characterizing the
British income distribution are positive skewness and some degree of bimodality.
Panel (a) displays a density estimate of the income distribution that uses 20 grids
points, whereas Panel (b) displays a density estimate with 30 grid points.> Note
that the density in Panel (a) has no modes whereas Panel (b) displays another
mode also described in Jenkins (1995b) and Schmitz & Marron (1992), where
arguments in favor of a bimodal distribution of the density of household income

in Great Britain are discussed.

Binning Applying nonparametric methods requires serious

Panel (a) of Figure 3.3 seems to suggest that a larger bandwidth is needed to
smooth what appear as spurious feature in the estimated density. “True” modes
are masked by “spurious” modes which are an artifacts caused by the discretization

of the data. If we increase the bandwidth, or adopt the normal rule for bandwidth

selection, we obtain

3Gaussian kernel density estimate of household income evaluated on a grid of 20 equaflly
spaced grid points in the interval [0, 50000] using a bandwidth of 713.989 calculated using
method described in Sheather & Jones (1991) as implemented in the R package KernS-
mooth.
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Figure 3.1: Gaussian kernel estimate of income.
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(a) Gaussian kernel density estimate of  (b) Gaussian kernel density estimate of
household income evaluated on a grid of  household income evaluated on a grid of

20 equally spaced grid points. 30 equally spaced grid points.

3.3 Published Reporting

Results based on nonparametric methods should be reported as carefully as any
other computation result. Hoaglin & Andrews (1975) provided a list of items that
should accompany any computation-based result. In principle, any information
useful to assess the accuracy of the results and to facilitate their reproduction,

should be supplied. As a minimum, taking into account recent development, the

study should provide:

e information on the nonparametric estimator, including the underlying ker-
nel, the bandwith selector used, convergence properties, etc. which should

be fully adequate for the needs of the study,

e details on any transformation applied to the data to reduce boundary bias

such as the logarithmic transformation and other boundary adjustments,

e number and location of grid points used for estimation,

60



CHAPTER 3. REPORTING NONPARAMETRIC
COMPUTATIONAL-BASED RESULTS

Density
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Figure 3.2: Different implementation of density estimator comparison

interpolating algorithm used for the display of the results,

details on any measure employed to speed computations such as binning or

the fast fourier transform,

detailed information of programming languages or software applications used,

vendor, version, serial number, alternative platforms on which it runs, etc.,

information on the computer used, including details on the CPU, and oper-

4

ating system,* moreover

any published result should be checked for robustness with respect to the

Tt is worth remembering that in the fall of 1994, a serious design flaw was discovered
in the Intel Pentium processor, commonly referred to as the “Pentium floating-point-
division bug” or “Pentium bug” in short. As a consequence, certain floating-point division
operations performed by the Pentium processor produced incorrect results.
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Figure 3.3: Gaussian kernel estimate of income.
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(a) Gaussian kernel density estimate of
household income using the sm.density
function provided by the sm R package
evaluated on a grid of 200 equally spaced
grid points from 0 to 50000, with band-
width equal to 713.989.
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(b) Gaussian kernel density estimate of
household income using the density func-
tion provided by the stats R package
evaluated on a grid of 200 equally spaced
grid points from 0 to 50000, with band-
width equal to 713.989.

choice of alternative kernels and bandwith selectors.

All the items listed above provide information to help assess the accuracy of the
nonparametric computer-based results. It is assumed that computations follow the
current state of the art. Preference should be given to well-known, good algorithms
and software available in the public domain. Nonparametric routines not in the
public domain or that have not being tested before, should be thoroughly tested

empirically before use (see Section 3.4).
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Figure 3.4: Wrong model selection strategy
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3.4 Numerical Accuracy of Nonparametric Pro-

cedures

It is well-known that different software applications implementing a statistical or
econometric procedure can produce different sets of solutions to the same esti-
mation problem. McCullough & Vinod (1999a), McCullough (1998), McCullough
(1999), Sawitzki (1994a), Sawitzki (1994b) provide examples in which the com-
putational results obtained by several econometric and statistical packages are
different. The problem of assessing accuracy is even more crucial for nonlincar
procedures (see, e.g., McCullough & Renfro, 1999a; McCullough & Vinod, 2003).
Sometimes the discrepancies can be attributed to implementation. In other in-
stances, the reason for the discrepancies is less obvious. Question of accuracy
can be addressed using benchmarks. However, benchmarks can be of more use
than determining the accuracy of software; they can also assist in setting standard
features which econometric software should possess, such as defaults and options
for nonparametric procedures or bandwidth selection methods. This function of
benchmarks has been highlighted in McCullough & Renfro (1999a), and is grow-
ing in importance as more computationally intensive nonlinear procedures become
part of the standard researcher’s toolkit.

Given the open source nature of R, considerable information about these issues
can be gathered form inspecting the code directly. Even so, testing can still pro-
vide critical information for several reasons. For example, visual code inspection
is not always practical as it might be too time consuming and require a consid-
erable knowledge of R programming. Also, even though a particular algorithm
is theoretically sound, it is important to assess whether it has been implemented
correctly and efficiently in the software and package under scrutiny. Another po-
tential benefit of thoroughly testing the implementations using a standard battery
of tests is that it allows to make comparisons with other software packages useful
for statistics that have already been tested for reviews in specialized journals.

To assess the numerical reliability of software usually the methodology pro-
posed by McCullough (1998) is followed. This testing methodology focuses on

three features of statistical software:

(i) estimation, using the Statistical Reference Datasets® (StRD) (Rogers et al.,

5 Available at the web address hitp://www.itl. nist.gov/div898/strd/.
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1998) from the National Institute of Standards and Technology (NIST) to

evaluate the accuracy of univariate summary statistics and linear regression;

(ii) statistical distributions, using the exact values, computed with ELV (Kniisel,

1989) to verify the accuracy of statistical distributions computations; and

(iii) random number generation, using the DIEHARD (Marsaglia, 1996) Battery
of Randomness tests to determine whether random numbers are seem to

behave as independent samples uniformly distributed over (0,1).

To implement a benchmark a suitable reference dataset is required. Such a
dataset should be well-known and easily accessible. We use data on eruptions
lengths of time of Old Faithful, a well-known geyser in Yellowstone National Park
in Wyoming, as the reference datatset. The Old Faithful dataset has some in-
teresting features that make it a popular choice for examples to illustrate non-
parametric methods (see, e.g., Silverman, 1986; Scott, 1992; Bowman & Azzalini,
1997; Simonoff, 1999). The version of data used is described in Azzalini & Bowman
(1990) or Hardle (1991) and is provided in Appendix B. The data used consists of
272 measurements of the duration, in minutes, of an eruption of the Old Faithful
geyser. The eruptions last from 1 minute and 36 seconds to 5 minutes and 6 sec-
onds. Figure 3.5 shows a gaussian kernel density estimate obtained using a grid of

200 points in the interval [1,6] with a bandwidth of 0.15.

The figure clearly show the presence of two modes, one of “short™ cruptions of
1 minute and 54 seconds and the other of longer eruptions of 4 minutes and 27
seconds. For the certified values, gaussian kernel density estimate of eruption dura-
tions evaluated on a grid of 17 equally spaced grid points in the interval [1, 5] using
a bandwidth of 0.15 were computed with high precision. The certified values were
obtained using PARI using a precision of 100 significant decimal digits. PARI /GP
is a widely used computer algebra system designed for fast computations in num-

ber theory. PARI allows fast computations with arbitrary precision arithmetic.

6PARI is a C library, allowing fast computations with arbitrary precision arithmetic.
gp is an interactive shell giving access to PARI functions, much easier to use. Pari is
distributed under the terms of the GNU General Public License and is available for most
commonly used computer platform. PARI-GP was originally developed in 1987 by a team
led by Henry Cohen at the laboratory of number theory A2X, University of Bordeaux 1 and
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Estimate Estimate Estimate Certified
Value : ,
density sm.density kernel value
1.00 4.4244466496146813e —6 4-3244018404174050e —6 4-3244018404174021e—6 4-324401840417410489%¢—6

1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00

1.4317615027741204e — 3
6-0720458633242019¢ — 2
4-0173446675594671e — 1
4-8791375678965188e — 1
2:9350465936165387¢ — 1
1-1860145325603355¢e — 1
4-3640929256470035e — 2
3-2501747531810676e — 2
0-8066251820211086e — 2
1.3391036154321939% — 1
2-3359237533776925¢ — 1
4.1205538906156358e — 1
5-3931955480530891e — 1
9-8353432312898845e — 1
4-1566358196367742e — 1
1.6344012239884725e — 1

1-4106366263239728¢ — 3
6-0447409539174907e — 2
4-0158966441537991e —1
4-8758384833916907e — 1
2-9321389962726524e — 1
1-1839925036257792e — 1
4-3566855467890193e — 2
3-2446841658661262¢ — 2
5:7974448038795250e — 2
1.3378481985161042¢ — 1
2-3329325994125560e — 1
4-1169672698426613e — 1
5-3883539992365226¢€ — 1
5-8308556073550899%¢ — 1
4-1533449442326342¢ — 1
1.6320444378071458e — 1

1-4106366263239723e — 3
6-0447409539174941e — 2
4-0158966441537985¢ — 1
4.8758384833916912¢ — 1
2-9321389962726524e — 1
1-1839925036257790e — 1
4.3566855467890200e — 2
3-2446841658661275e — 2
5-7974448038795222¢ — 2
1-3378481985161045e — 1
2-3329325994125549¢ — 1
4.1169672698426624e — 1
5-3883539992365193¢ — 1
5-8308556073550899%¢ — 1
4.1533449442326326e — 1
1-6320444378071458¢ — 1

1-410636626323972574e—3
6-044740953917489381e—2
4-015896644153799042¢ -1
4-875838483391690262¢—1
2-932138996272652723e—1

1-183992503625778919e—1

4.356685546789018129¢—2
3:244684165866129053¢—2

5-797444803879524222¢—2
1-337848198516104283e—1
2:332932599412556658¢ —1
4.116967269842663951¢ —1
5-388353999236521145¢—1
5-830855607355092001e—1

4-153344944232636620e—1

1-632044437807145318e—1

Table 3.2: Nonparametric estimates results for Old Faithful geyser data
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Figure 3.5: Old Faithful eruption times density estimate

The certified results are reported to 11 decimal places for each dataset. Clearly.
most of these digits are not statistically significant, and we arc not advocating
that results should be reported to this number of digits in a statistical context.
We do believe, however, that this number of digits can be useful when testing the
numerical properties of a procedure. A good nonparametric density estimation
procedure should be able to duplicate the certified results to at least 7 or 8 digits.
There can be several reasons that a given result might not agree with the certified
values. First, the code might be wrong. More probably, in this case, there might

be several default assumption made that result in different estimates, different

is now maintained by Karim Belabas at the Mathematics department of the University of
Paris-Sud 11 with the help of many volunteer contributors. Math: :Pari (version 2.010603)
is a Perl interface for PARL
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approximations, etc.

Table 3.2 reports the estimation results for the density function, the sm.density
function provided by the sm package, a simple implementation in R, ker, by the
author, and the certified values computed with PARI.

ker <- function( x, y, h ) {
n  <- length(y)
sum <- 0
for (i in 1:n) { sum = sum + 1/(n*h) * donorm( (x-y[il)/h) }

return( sum )

Differences are generally small. The main difference is in the results for density
which implements a binned kernel density estimator which cannot be changed (as
opposed to sm.density).

Table 3.3 reports the accuracy of the functions under scrutiny. The accuracy
of the estimates is measured by the base-10 logarithm of the relative error (LRE)

given by the formula

Ire(q, ) = —logyg ('iﬁ—‘) , (3.1)

where g represents the estimated value and ¢ the correct value. When the two
values are sufficiently close, the LRE is a measure of the number of correct signifi-
cant digits. The implementation in Perl used for this chapter that allows for cases
where Ire function is undefined and checks for closeness of estimated and correct
values, is provided in Appendix A.

The table on accuracy confirms the impressions from the estimates.
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Table 3.3: Numerical accuracy of R nonparametric kernel density estimates
functions

Grid LRE LRE LRE
value density sm.density kernel
1.00  1-63573 - 14-8964 147122
1.25  1-82462 15-7972 15-71
1.50  2-34514 15-6615 15-1076
1.75 3-44301 16-8444 15-8693
2.00  3-16966 16-0474 15-7162
225 3-00365 15-9575 15-9575
2.50  2-T6750 15-6255 16-1675
2,75 2:76949 15-5707 15-3672
3.00 2-77155 15-0557 15-3197
3.25  2-80038 15-8729 154572
3.50  3-02762 16-2048 15-7911
3.75  2:89200 15-51492 15-1227
4.00  3-05989 15-191 15-4237
1.25  3-04647 15-5688 15-4654
450 3-11372 154432 15-4432
175  3-10109 152344 15-0141
5.00 2-84041 15-5306 15-5306

69



CHAPTER 3. REPORTING NONPARAMETRIC
COMPUTATIONAL-BASED RESULTS

3.5 Reproducibility of Nonparametric Com-

putation Results

Econometrics and other traditionally empirically-oriented economic models such
as input-output analysis are inherently computational. More recently, the use of
ever more powerful computers and the development of increasingly sophisticated
software applications has allowed economists to explore economic models with less
restrictive assumptions, estimate and test richer behavioral models, experiment
with different complex methodologies, compare different estimation methods, etc.
All these approaches have become part of the cross-disciplinary subject we now
refer to as computational economics. In general terms, the goal of computational
economics is to advance the subjects of economics, mainly through the analy-
sis of mathematical economic models by the application of advanced computing
techniques. To appreciate the wide range of economic issues were computational
methods have been brought to bear, one just needs to glance at the table of
content of issues of this Journal, the Journal of Applied Econometrics, Journal
of Economic Dynamics and Control, or at the papers collected in books, such as,
Varian (1996), Amman et al. (1996), and Judd & Tesfatsion (2006). Many of these
applications rely rather heavily on computing.” Increasingly often, economists use
computers, not only for computations on data and model simulations, but also
for simple, mechanical operations such as searching for information, collecting and
storing data, changing the format of data, validating data, post-processing output
from statistical applications, writing reports, handling tedious and complex alge-
braic manipulations, collaborating with other researchers, and in disseminating
the final results. The use of computers has also benefited learning and research by
suggesting conjectures and enriching our understanding of abstract economic and
econometric concepts by means of examples and visualizations.

On the negative side, this increasing dependence of economists on computers

"We could say that these methods are computationally intensive, however this ex-
pression is rather fluid as yesterday’s computationally intensive methods become today’s
standard approaches. As an example, Leontief (1966) recounts that in 1939 to solve a
system of 42 equations in 42 unknown, in what was the first effort to analyze a large cco-
nomics model through computers, required several months of programming and 56 hours
of computing on the Harvard Mark II computer, one of the most powerful computers
available at the time. Today the same calculations can be done in a fraction of a second
on a standard PC after comparatively very little programming effort.
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has resulted in research that has become increasingly difficult to replicate. Imple-
mentation details of computations in economics are left out of traditional printed
publication. Reproducibility relies on a plethora of implementation details that
are difficult to communicate through conventional printed publications. As Dewald
ct al. (1986) pointed out. this lack of information can result in months of effort by
researchers trying to replicate a study yielding inconclusive results regarding the
validity of the original study. Program written in specialized languages such as
GAUSS are often not easily portable between different platforms and versions of
the program. Programs written in conventional programming languages such as
FORTRAN or C++ also depend on implementation details including the vendor,
version of the compiler, and the specific platform on which thev run. All these fac-
tors can amount to insurmountable obstacles in the replication of computational-
based results in economics, as extensively reported by Dewald et al. (1986). For
instance, Dewald et al. (1986) report that they had to abandon attempts to re-
produce results from a large macroeconometric model because of difficulties in
transferring programs and data across computer systems. McCullough & Ren-
fro (1999b), in a survey of GARCH estimation procedure implemented in various
packages, found that often important information that affects computed results,
such as parameter initialization, was not available. Buckheit & Donoho (1995)
pointed out that in the field of computational experiments researchers often can-
not reproduce their own work, even only a few months after its completion, that
research students have difficulties in presenting their problems to their academic
advisers, and that researchers cannot reproduce computational results of other re-
searchers and other published work. There is substantial evidence that analogous
problems occur also in economics (see, e.g, Dewald et al., 1986).

Computational and empirical results in economics require independent verifi-
cation in order to contribute to the advancement of the subject of economics. An
important step in that direction is that published computational results should be
reproducible by other researchers. Ideally, reproducibility implies that identical
computational results should be obtainable in a short amount of time, without
requiring expensive computational resources, proprietary data, licensed software,
and any application-specific knowledge. Of course, insisting on “bit-by-bit” re-
producibility of computational results in economics is not always practical and

the definition must be interpreted in the light of the specific context of applica-
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tion.® In applied work, it is quite frequent that a particular commercial software,
dataset, or expensive equipment makes research results difficult to reproduce.? In
practice. obtaining qualitatively similar results might be sufficient to claim that a
computational result has been reproduced.

There has been an increasing interest in making research in empirical economics
reproducible since the alarm raised by Dewald et al. (1986), in their Journal of
Money, Credit and Banking (JMCB) project, in which they attempted and failed
to replicate most empirical results published or submitted to the same journal.
Based on their recommendation several journal introduced publicly available In-
ternet archives and required the submission of data and programs from the authors
of the empirical papers submitted. In a more recent investigation, Vinod (2001)
found that approximately 70 per cent of articles from prestigious economic journals
were not reproducible. He attributed this problem to sloppy record keeping, inac-
curate software, and the lack of maintenance of software and data, in particular,
after publication. McCullough et al. (2006) take stock of 23 years experience of the
JMCB data and code archive. They convincingly argue that, though most empiri-
cal work could still not be reproduced, the requirement of a data and code archive
should be adopted by more journals and that stricter rules that ensure compli-
ance from the author should be introduced. Based on the experience, they provide
guidelines to facilitated the reproduction of empirical research in economics. Open
source software, software whose source code is made freely available to the public,
enabling anyone to copy, modify and redistribute the source, is naturally con-
ducive to reproducibility. In this section we want to highlight the potential role of
open source software in organizing computational based research and in mediating
researcher’s interaction with each other, PhD students, and journal editors, by
streamlining operations such as replication, validation, and supporting students’
participation in the research process.

Claerbout (see, e.g., Buckheit and Doncho, 1995), has recently championed the
issue of reproducibility in the computational sciences. Empirical research requires
independent verification. An important step in that direction is that published

computational results should be reproducible by other researchers. However, re-

8Gentle (2003) talks of Monte Carlo computation being strictly reproducible if the
software and the seeds used for the random number generators are preserved.
9Stokes (2004) discusses the potential advantages of using different software to solve

the same problem.
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producing computation results from published work often proofs to be a difficult
and daunting task. Reproducibility relies on a plethora of implementation de-
tails that are difficult to communicate through conventional printed publications.
Buckheit & Donoho (1995) point out that in the field of computational experi-

ments:

e researchers often cannot reproduce their own work, even a few months after

the study has been completed,

e research students have difficulties in presenting their problems to their aca-

demic advisers, and

e researchers cannot reproduce computational results of other researchers and

other published work.

Reproducibility implies that, ideally, identical results should be obtainable in
a short amount of time, without requiring expensive computational resources, pro-
prictary data. licensed software. and any application-specific knowledge. Schwab
et al. (2003) classify their computational problems according to their degree of
reproducibility in:

e Easily reproducible result files can be regenerated within ten minutes on

a standard workstation.

e Non-reproducible result files, such as hand-drawn illustrations or scanned

figures, cannot be recalculated by the reader.

e Conditionally reproducible result files require proprietary data, licensed
software, or more than 10 minutes for their re-computation. The author
nevertheless supplies a complete set of source files and rules to ensure that

readers can reproduce the results if they possess the necessary resources.

Based on this stringent requirements, most computational results in economics
would be classified under the headings of “conditionally reproducible” at best. In
a recent investigation, Vinod (2001) found that approximately 70 per cent of arti-
cles from prestigious economic journals were not reproducible. He attributed this
problem to sloppy record keeping, inaccurate software, and the lack of maintenance
of software and data, in particular, after publication.

In their Journal of Money, Credit and Banking seminal project, Dewald et al.
(1986) attempted to replicate computation results published or submitted to the
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journal. Of the 92 authors asked to supply data according to the journal policy,
75 responded, and 68 submitted something. The first 35 datasets were examined
and only 7 were judged to be free of problems. The authors attempted to replicate
the results of 9 papers for which they had obtained data and software code; only
fowr computational results could be reproduced closely. Based on their findings,
Dewald et al. (1986) recommended that journals require the submission of data
and programs from authors at the time empirical papers are submitted.

We can identify several reasons why full and easy reproducibility of compu-
tational results is a desirable goal in economics. As we already mentioned, re-
producibility facilitates independent verification. Moreover. it could help the peer
review Process and Supervision. Peer review is the scholarly process for qual-
ity assurance mostly used in economics in the publications of articles and in the
awarding of research grants. This process ideally should assists authors of scholarly
papers in meeting the standard of their disciplines. This process presumes that the
article being reviewed has been honestly written and that no gross mistakes in the
implementation of the methodology have been committed. Though occasionally
problems can be detected from the printed results, the process is not designed to
detect fraud or error. The reviewers usually do not have access to the datasets
and software code used to obtain the computational results. Easily reproducible
results would considerably help this process.

Research in economics is often a process of iterative refinement. Reproducible
results are also casier to improve upon. Supervision can also benefit from repro-
ducibility at least in two ways. Firstly, by using computational results that are
easily reproducible and modifiable to solve other economic problems, research stu-
dents can learn and get started with their own research. Secondly, reproducible
results can be better monitored for quality.

The open source software development model proponents advocate unrestricted
access to the source code of software and contend that this more open style of li-
censing allows for a superior software development process. This two basic tenets
can facilitate reproducibility and independent verification. Open source software
can be freely distributed making replication of computational results easier for in-
dividual researchers without subsidized access by a major university of commercial
software.

Software vendors rely on the law of contracts and intellectual property to pro-

tect their softwares source code from being used by researchers for other purposes.
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Typically, the software application is “purchased” through a licensee /licensor con-
tract. Because the source code is kept secret, software is usually delivered to
licensees in object code or executable form, i.e., in machine-only readable form.
It is possible to identify several, actual and potential, advantages of using OS
software for researchers, students, and academic institutions.

Typically, open source software can be obtained at the cost of the media (CDs
or diskettes) or network bandwidth (for distribution via the world wide web).
Commercial packages used by economist can be quite expensive, especially if up-
grading and licensing occurs frequently. Cost considerations can discourage the
adoption of a commercial package by institutions from developing countries, and
also by resource constrained universities in more developed countries. Moreover,
newer versions that add new features can make previous versions rapidly obso-
lete (it is of small consolation if, after a long wait, you manage to obtain code
thal “Requires version z.z or greater. and library 4”). Analogous problems arise
when modification or extended functionality is required. Asking for features to be
included is a long and tedious process. Some well known software producer are
slow to respond, even in fixing serious bugs identified and reported on specialized
journals. “Toolboxes”, “modules”, “packages”, etc., can be extremely expensive,
sometimes more than the core software itself. GNU’s copy-left license guarantees
the freedom to improve the program, and release the improvements to the public,
so that the whole scientific community can benefit.

Uncertainties about the future development of a software application can also
prevent its adoption. Under the GNU license, the software (and the option for
support and development) will also be available if the software producer no longer
exists.

Open source software is reputed to have a high degree of Reliability. Seri-
ous errors have been found in some econometric and statistical packages, (see,
e.g., Kniisel, 1995; McCullough & Vinod, 1999b). Vendors of proprietary software
rarely describe the algorithms used to implement econometric and statistical pro-
cedures, nor provide information about their reliability. This is a serious omission
that makes the use of “black box” packages less attractive for academic research.
Algorithm used, their implementation benefit form being open source. To ensure
the highest standard of quality and degree of confidence in the results obtained.
software should be subject to peer review as any other aspect of research and based

on openly published and freely available algorithms and source code.
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Open source software can promote efficiency and learning. Applied econome-
tricians will sometimes have the necessity to engage in the process of crafting their
own programs. Free software allows to obtain the source code and study it. The
writing of code or the adapting of existing own to one’s needs is thus facilitated.
Free Software should avoids “re-inventing the wheel.” The GNU license guaran-
tees the freedom to redistribute copies, modified or not, so that the whole scientific
community can benefit.

Disadvantages of opens source software include abandoned code and code “fork-

” For an example of software used in statistics and econometrics that has

ing.
de facto been abandoned see the discussion on Xlisp-Stat in de Leeuw (2005).
Forking of a project occurs when a developer takes code from a project and
develops it independently of the original project. An example of forking is the
Gnu-Emacs/XEmacs split. Forking is generally considered harmful in terms of
wasted resources, but it can also create some beneficial competition as the EGCS
(Experimental/Enhanced GNU Compiler System) which was a fork from GCC
(GNU Compiler Collection) which was eventually reincorporated in the official
GCC project. For a description of how GCC and other Unix-like software tools
are used in economics see Racine (2000).

Software used by economists for research, learning, and teaching include econo-
metrics, statistical, symbolic, and various simulation and optimization packages.
Table 3.4 presents the current legal status of software useful to economists re-
viewed by the Journal of Applied Econometrics (JAE). The table also report the
volume, issue, and page numbers were the review appears. An important dis-
tinction to keep in mind is the one between open source and freeware/shareware
software. With open source software, the source code is bundled with the soft-
ware and is free for everyone to inspect and acquire, with freeware /shareware the
software is “free” to be distributed, but the source code is withheld from the pub-
lic. Open source is made available under a variety of license types. The GNU
General Public License (GPL), the GNU Lesser General Public License (LGPL),
the Mozilla Public License (MPL), the BSD License, the Apache Software License,
the MIT License, the Artistic License, and the Perl license are among the best
known. For a an explanation of these different Open Source license flavors, con-
sult St. Laurent (2004). The table clearly shows how most free software deemed
useful for economists falls under the Open Source GPL agreement and includes

a completely functional UNIX operating system (GNU Linux), programming lan-
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guages and developing tools (GCC, and CYGWIN), powerful typesetting system
(MiKTEX/TeTgX), and a high-level, cross-platform programming language with
network and object-oriented programming support (Perl). Software applications
that can compete with commercial applications traditionally used in Economics,
include a high-level language for matrix and numerical computations (GNU Oc-
tave), which is comparable in terms of functionality to specialized applications such
as GAUSS and MATLAB, a sophisticated programming environment for statisti-
cal computing and graphics based on the S programming language (GNU R), with
functionality analogous to applications such as SAS, SPSS, STATA, or S-plus, and
a complete econometric package (GRETL), still under development but already
with features that makes it comparable to applications such as PcGive, EViews,
and MicroFit.

GNU (sometimes pronounced “guh-NEW?”) is an acronym for “GNU’s Not
Unix”. It is the name of a project by the Free Software Foundation (FSF) whose
purpose is to promote the free exchange of software. The GNU project was started
in order to develop a complete Unix-compatible operating system as well as an
extensive set of software tools, all to be made freely available to the general public.
The project has grown to include programs that were developed by many other
people for their own purposes, which shared the same underlying philosophy of
software freedom. For more details on the organization, see Stallman (1985).
GNU'’s success as a catalyst in the production of free software is mostly attributable
to the introduction of a form of software licensing, known as the GNU General
Public License, or GPL, which encourages the free distribution of software.!® In
the next few paragraphs we briefly review some of the most successful OS project
useful to economists.

GNU/Linux is a Unix-like computer operating system combined with libraries
and tools from other GNU projects. Linux distributions incorporate large number
of software applications with the core system. It was originally developed by
Linus Torvalds for Intel microprocessors in 1991 but has since then considerably
expanded to support a variety of computer architectures. A review of GNU/Linux

from an economist’s pointy of view can be found in MacKinnon (1999).

10The crucial difference between GNU software and software placed in the public domain,
without copyright, is that the GNU GPL makes sure that anyone who redistributes the
software, with or without changes, must pass along the freedom to make further copies

and changes.
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Software Useful for Economists reviewed by the JAE
Free/Open source Proprietary/ Closed
Public Netlib BACC 4 (6), 677-89
Domain gpwsihetylib. or EasyReg 203-07
f B Freeware’ Scilab E § 553-59
GCC (GNU C++) ViSta 7 (4), 405-14
11 (2), 199202 GAUSS 5 (2), 211-20
CYGWIN Tools EViews 5 (1), 107-10
15 (3), 33141 LIMDEP 4 (2), 191-02
GNU/Linux MATLAB 12 (6), 735-44
Open 14 (4), 443-52 MicroFit 3 (1), 77-89
Source GNU Octave Ox*® 2 (1), 77-89
15 (2000) (5), 531-42 Commercial PcGive 3 (4), 411-20
GNU R RATS 2 (2), 181-90
14, (3), 319-29 Shazam 4 (2), 191-02
GRETL SORITEC 17 (1), 85-90
18, (1), 105-10 S-plus 2 (1), 77-89
Per] Stata 6 (5), 63746
18, (3), 371-78 TSP 2 (4), 445-53
mikTEX /teTEX XploRe 3 (6), 673-79
16, (1), 81-92 LISREL 19 (1), 13541
Maple 0 (3), 329-37
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Table 3.4: Legal status of software applications useful to Economists reviewed by the JAE

*Web site directing to mostly public domain Fortran and Java code for matrix computations including solving linear equations,
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GNU R, an open-source programming environment for data analysis and
graphics, has in only a decade grown to become a de-facto standard for statistical
analysis against which many popular commercial programs may be measured. R’s
source code was initially written by Ross Thaka and Robert Gentleman (see Thaka
& Gentleman, 1996) at the Department of Statistics of the University of Auckland
in Auckland, New Zealand. Since the mid 90’s there has been a core group (the “R
Core Team”) who can modify the R source code archive. R provides cutting-edge
statistical and visualization methods. For an introduction on how R can be used
in Econometrics see, e.g., Racine & Hyndman (2002).

GRETL, an acronym for GNU Regression, Econometrics and Time-series Li-
brary,'? is a cross-platform software package for econometric analysis, written in
the C programming language. GRETL is the first complete econometric software
package to be released under the GNU software license. The software consists
of a shared library, a command-line client program, and a graphical client pro-
gram. It comes with many sample data files from Greene (2000) and Ramanathan
(2002), which are immediately accessible from the menu. It supports several least-
squares based statistical estimators (including two-stage least squares and panel
data methods), time series models (including the Cochrane-Orcutt procedure and
VARSs), and some maximum likelihood methods (logit and probit). It also has
built-in commands for several econometric tests (including the Chow, Hausman,
and Dickey-Fuller tests). It calls gnuplot to generate graphs and is capable of gen-
erating output in I{TEX format. GRETL has been written by Allin Cottrell based
on ESL (Econometrics Software Library) code written by Ramu Ramanathan of
the University of California, San Diego. It can be obtained from the world wide
web at http://gretl.sourceforge.net/, where the source package and binary
distributions running on GNU /Linux and Microsoft Windows in the form of a self-
extracting executable can be downloaded. Particularly noteworthy is the fact that
the program is also distributed on CDs that accompany two popular econometrics
textbooks, Ramanathan (2002) and Wooldridge (2002). These books use GRETL

11R is available from the WWW’s Comprehensive R Archive Network (CRAN) located
at http: //cran.r—project.org/, where source code, additional libraries, documentation,
and links to binaries distributions of R are available for various platforms, including Win32,
Mac, and Unix/Linux.

12There is also an obvious reference to the classic fairy tale “Hansel and Gretel,” in which
Gretel is the mature and resourceful girl whose ingenuity saves her sibling’s life from an
evil witch who, after kidnapping them by means of gingerbread and candies, intends to

fatten and eventually eat him.
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extensively for their applied examples making GRETL a useful tool for practicing

and teaching econometrics. An example of how GRETL can be used to analyze
economic data can be found in Baiocchi & Distaso (2003).

GNU Octave is a high-level matrix-based language, primarily intended for
numerical computations, available for different platforms at the following URL:
http://wuw.octave.org/, that is mostly compatible with MATLAB. It provides
a convenient command line interface for solving common numerical linear algebra
problems, including the roots of nonlinear equations, integrating ordinary func-
tions. manipulating polvnomials. and integrating ordinary differential equations.
It may also be used as a batch-oriented language. It is easily extensible and
customizable via user-defined functions written in Octave’s own language, or us-
ing dynamically-loaded modules written in C++, C, Fortran, or other languages.
GNU Octave was originally written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas. Octave is free
software distributed under the terms of the GNU General Public License (GPL)
as published by the Free Software Foundation (FSF). For a survey on how Octave
can be used in economics see Eddelbuettel (2000).

GNU Emacs, a program written by Richard Stallman of the Free Software
Foundation, can serve as an integrated environment in which to run applications
useful to economists. There is an Emacs package called ESS, an acronym for
E'macs Speaks Statistics, (2004) which provides a standard interface between statis-
tical and econometric programs and statistical processes. It is intended to provide
assistance for interactive statistical and econometrics programming and data anal-
ysis. Languages supported include: S dialects (S-Plus , and R), LispStat dialects
(XLisp-Stat, ViSta), SAS, Stata, and SPSS dialect (SPSS, PSPP).

A complete computing environment that includes all the above mentioned
applications and many more is Quantian Eddelbuettel (2003). Quantian is a
Linux based system that is a directly bootable and self-configuring from a sin-
gle cdrom/dvdrom. Quantian comprises Knoppix (Knopper, 2003) from which it
takes its base system software, along with automatic hardware detection and con-
figuration, and scientific software such as the above mentioned applications and
many more including, general purpose computer algebra systems such as Axiom,
Maxima, PARI/GP , etc., numerical matrix oriented applications such as Scilab,
Numeric Python, Euler, and PDL, optimization software such as Ip-solve, GNU

Scientific Library, programmable editors such as GNU Emacs with support for
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econometric and statistical applications including Stata, SAS, S-PLUS. and GNU
R, and so on.

One of the features that make many open source projects so successful is their
modular nature. The functionality of modular application can be easily extended
to cover more specialized areas of application. Modular application make it par-
ticularly easy to create, install, update, and access the optional code and data,
with accompanying documentation, within the main application. Functions, data,
and documentation provided by extra modules are easily made available to the
user without the need of any application-specific knowledge typically with just
one statement (\usepackage{...}, library(...), use ...). This allows code
written to satisfy the need of a particular researcher to be easily reused and mod-
ified by others. For instance, modules (in Perl), libraries (in R), macro packages
(BTEX) useful to economists are continuously added. Modules are made available
in the main Web site were the software is distributed. So called package managers
(for instance the MiKTEX Package Manager and the Perl Package Manager) allow
the installation or update on demand of additional packages. Other applications,
such as R, allow installation and updating to occur making appropriate selections
from the main menu bar.

In the next section, we review some of the main advantages and disadvantages

of open source software.
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3.6 Visualization

Traditionally, results in empirical economics are presented in the form of tables.
The advantage of tables is that information can be clearly organized and they
show exact numerical values. However, tables can only be practically used only
when the computational results can be represented or summarized as a small finite
set of numbers. Often, to manage large numbers of results resulting from changes
in experimental conditions, response surfaces are fitted (see, e.g., Davidson &
MacKinnon, 1993, chap. 2). More often, computational results can be communi-
cated accurately and clearly only by means of graphs. Nonparametric curves are
made of linearly interpolated values of the nonparametric estimates computed on
a equi-spaced fine grid of points Because of the nature of the computed results vi-
sualization has becomes an essential part of nonparametric econometrics. However
no attention has been given to best practices in the visualization of computational
results. Visualization should display data accurately and clearly, and should help
to highlight important characteristics. A well designed graph should be able to
facilitate exploration, communication, as well as calculation and processing of the
computational results.

Some methods of visualization, such as kernel density estimation used to
present monte carlo results in econometrics, are themselves computational meth-
ods and depend on a plethora of implementation details that can be built-in the
software application, fixed as default settings, or determined by the researcher.
Given the importance of visualization in nonparametric estimation, the same high
standard for obtaining the computational result should be applied to the produc-
tion of figures.

Function visualization methods can draw on the relevant literature in the fields
of scientific visualization, psychology, and computer graphics. Several graphics pa-
rameter can affect the presentation of computational results. Excellent reference
for guidelines on how to produce good quality graphs. In particular, Cleveland
(1980, 1993) or Tufte (1983) should serve as a useful guides. In view of the above
considerations, we feel that the nonparametric results that are displayed graphi-
cally should should be accompanied by detailed information on any interpolating,
smoothing, or other algorithm used for the display of the results.

Several graphics parameter can affect the presentation of nonparametric re-

sults. For instance, the aspect ratio is a critical factor in the judgment of slope
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changes.

In graphical displays of nonparametric estimates we judge the orientations of
line segments to decode information about the rate of change of one variable with
respect to another.

Consider, as an example, Figure 6.8 where the Nadaraya-Watson and the Local

polynomial estimates of an environmental Kuznets curve for S0, emissions are

shown.
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Figure 3.6: Local Polynomial and Nadarava-Watson estimate for the SO,. The
two turning points data on the estimated turning point. The NW estimator assigns
weights proportional to the heights of the rescaled kernel. A rugplot, which adds
a mark for each observation on the x-axis, is added to aid the interpretation. The
data have been jittered (a small amount of noise has been added to the data) to
avoid mark’s overlapping. The ISO-3166 3-letter identifications code has been used
to label the countries. If the true turning point is located at high level of income
the estimated turning point will be shifted to the left.

Its clear that in Figure 6.8 we judge the orientations of the short line segments

that make up the estimated nonparametric environmental Kuznets curve to decode
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information about the relative steepness of the curves and the amount of curvature.
This decoding is greatly affected by the aspect ratio of the graph. The data
rectangle of a graph is a rectangle that just encloses all of the data. The aspect
ratio is the physical height of the data rectangle (measured in cm, for example)
divided by the width. Figure 3.7 shows the data rectangle of an hypothetical
stylized EKC, as a dashed rectangle. The aspect ratio is the height of the data
rectangle in physical units divided by the width. in this case. })12“—(‘1;“ ~ 0.56. After
the turning point, an increase in GDP by a thousand of US dollars results in a fall

of .75/.7 = 1.07 tons of sulfur emissions.
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Figure 3.7: Terminology. The dashed rectangle that encloses the data is
the data rectangle. The aspect ratio is the height of the data rectangle in

physical units divided by the width.

To test recent models of the relationship between growth and environment we

might not only be interested in determining the location of turning points but
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also whether the behavior of an up swing following a down swing is symmetric.
Asymmetric behavior around a turning point, besides having important conse-
quences for the policy maker as such. might also indicate the presence of different
factors affecting the downward and the upward branch of the curve. Cleveland &
McGill (1987) conjectured that accuracy of comparative slope judgment is maxi-
mized when the average angle is of positively sloped line segments is set close to
45°. Cleveland refers to this averaging procedure for sclecting the aspect ratio as
“hanking to 45°7 (1994. p. 70). The conjecture is based on the maximum resolu-
tion theorem (see, Cleveland & McGill, 1987, p. 201) which states that given the
orientation, in radians,

a;(a) = arctan(as;)

where s;. for 4 = 1,2. are the physical slopest? of two line segments. the orienta-
tion resolution, defined as the absolute difference between the orientations of two
segments

r(a) = |ai(a) — ax(a)
is maximized when the orientation of the mid-angle

ay(a) + as(a)
2

ala) =
is a(a*) = Z. The proof of the theorem can be found in Cleveland (1994).
Figure 3.8

Cleveland & McGill (1987) found by experimentation that the accuracy of slope
judgment increased as the slope approached 45°. Nonparametric curves are made
of an entire collection of line segments. Consider a nonparametric curve consisting
of n line segments. Following the approach suggested in Cleveland (1994), finding

the desired aspect ratio amounts to solving the following the nonlinear equation

T_jarctan (a(h,v)%) \ﬂl,/h + a?(h,v)v;/v Ty

> \/h,-/h +a2(h,v)?; /¥
13physical slopes are slopes when vertical and horizontal coordinates are the physical

distances from the left and bottom side of the data rectangle, where both distances are

measured in the same units.
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Figure 3.8 Illustration of the 45° principle. In the upper left panel the
average orientation of two line segment is 45 degrees. The aspect ratios
of the upper left and lower right panels are respectively larger than 6 and
smaller than .2. The absolute angular separation of the latter two panels is
smaller as shown with the help of the dashed line.
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where v and h are respectively the hight and width in physical units of the data
rectangle. v and h the hight and width respectively in scale units. 4; and h, are the
changes in scale units of the éth segment along the vertical and horizontal scale
respectively. For example. for Figure 3.7. v = 1 t pc. h = 2.3 thousands of US $
per capita. v = 1t pe. 92 = —0.75 { pe. hy = 1.6 thousands of US §$ pe. hy = 0.7
thousands of US $ per capita. The value of v is 5.18 cm. the value of A, 9.2 cm.
The implementation in R used for this chapter is provided in Appendix C.

The choice of aspect ratio should be dictated by the shape of the curve. Fig-

ure 3.9 shows a recursive aspect ratio plot that for each point computes the aspect

ratio hy hanking to 45° using the 50 closest segments.

The graph clearly shows that if we want make the perception of the second mode
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Figure 3.9: Aspect ratios
more accurate, then an aspect ratio of about 0.9 would be more appropriate. Note
that the aspect ratio computed by banking using all the 500 segment constituting

the curve is about 0.512. Examples of applications of this method to highlight

important nonparametric results are available in other chapters.
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3.7 Example of Reporting

Consider a dataset taken from the CRSP monthly returns database produced
by the Center for Research in Security Prices of the University of Chicago The
Monthly Data are available for the NYSE/AMEX firms from DECEMBER of
1925 and for NASDAQ firms from December of 1972. Figure 3.10 displays a
histogram and a time series plot of a typical series of returns from a randomly
chosen company.** The sample used consists of 360 observations on 721 firms over
the period from January 1973 to December 2002 for which all data was available.
Panel (a) graphs the time series of returns from Jan. 1973 to Dec. 2002 using
a connected plot. The series displays evidence of volatility clustering. Panel (b)
displays a histogram of a typical return series.!® A normal density with mean
and standard deviation equal to their sample analogues, is superimposed on the
histogram for reference. The shape of the histogram suggests that the distribution
of returns appears positively skewed (sample kurtosis is 6.286), and leptokurtic
(sample kurtosis is 62.918), i.e., the distribution of returns is “peaked” and “fat
tailed.”

14The hardware used in this paper was a Dual Intel Pentium IV (Prestonia) Xeon Pro-
cessors 3.06 GHz with HT Technology with 4 GB of RAM running on Microsoft Windows
XP /2002 Professional (Win32 x86) 5.01.2600 (Service Pack 2). . .

B5The number of bins was caleulated according to the fornmla [n'/3 - range/(2 - iqr)]
following Freedman & Diaconis (1981) where igr is the inter-quartile range ol returns.
range is the range of the retwrns. and [z]. the ceiling function. denotes the :\'mnllf\\'l.
integer m such that m > z. Other reference rules hased on the normal distribution give
too few bins and an oversmoothed histogram. This rule is robust to departures from

normality.
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Figure 3.10: Time series plot and histogram of returns.

04

02

Return

0.0

=02
L

T T T T T T
Jan 01,1975 Jan 01, 1985 Jan 01, 1995

Date
(a) Time series plot of monthly returns
from January 1970 to December 2002 for
a typical firm randomly chosen. We used
R release 2.1.0, the standard Win32 re-
lease available at the time of writing the
present paper, together with the routines
to manipulate irregularly spaced time se-
ries provided by the ITS R package, ver-
sion 1.0.9 developed by Whit Armstrong.

02

Return

(b) Histogram of 360 monthly returns
of panel (a) constructed over 41 equally
sized bins between -0.40 and 0.65. A nor-
mal reference distribution with sample
mean 0.0103 and sample standard devi-
ation 0.0919 is shown by the dashed line.
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3.8 Conclusion and Suggestions for Further

Research

Nonparametric smoothing methods have recently become increasingly popular
among cconomists and statisticians in recent vears and have firmly established
themselves as important applied tools. Their increase in popularity can be at-
tributed in part to their flexible nature but also to the ever growing computational
power, the availability of more powerful graphic devices, and their implementa-
tion many in off-the-shelf software. Many statistical and econometrics software
application offer nonparametric density and regression estimators that can be ac-
cessed with few click of a mouse or with a simple function call at a prompt. This
simplicity is only apparent as important implementation details are hidden from
the user’s point of view. Nonparametric methods are inherently computationally
intensive and rely on a plethora of implementation details that can be built-in the
software application, fixed as default settings, or determined by the researcher.
The control available over these implementation details is a function of both the
sophistication of the software and the user. More knowledgeable users and bet-
ter designed software can give greater control over the nonparametric estimation
procedure. Detailed control over the estimation procedure is often required to
achicve more accurate results. for correct model sclection strategy, for efficiency in
computation, and to facilitate reproducibility and further research. Understanding
many implementation details requires knowledge of computational disciplines such
as numerical analysis, computer programming, and computer graphics.

In this chapter we have proposed some basic standards to improve the use and
reporting of nonparametric methods in the statistics and economics literature for
the purpose of accuracy and reproducibility. In particular, we made recommenda-
tions in five aspects of the process: computational practice, published reporting,
numerical accuracy, reproducibility, and visualization.

Possible directions for further research include extending the benchmark from

the univariate density estimator to

e bivariate density estimation with the possible choice of several popular band-

widths, and to the

e bivariate regression, again with a selected number of bandwidth selection

approaches.
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The best way to report the benchmarks is to have them available via the web.
An obvious choice seem to make them available through the Stanford site, “Econo-
metric Benchmarks,”!® maintained by Clint Cummins. “Econometric Bench-
marks” makes some standard benchmark datasets and models for testing the ac-
curacy of econometrics application software available for download. So far bench-
marks are available for basic statistics, linear and nonlinear regression, simultane-
ous equations, time series, qualitative dependent variables, panel data models, and
random number generation. After having constructed the benchmarks, the next
step is to test popular statistics and econometric packages that support some of
these methods and to disseminate reports on how close they come to the bench-

marks.

L6 A ¢cessible at the address http: //www. stanford. edu/~clint/bench/.
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Chapter I

The Determinants of Income
Inequality in the UK: A Conditional
Distribution Estimation Approach
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CHAPTER 4. THE DETERMINANTS OF INCOME INEQUALITY IN
THE UK: A CONDITIONAL DISTRIBUTION ESTIMATION
APPROACH

4.1 Introduction

There seems to be a quite general consensus on the fact that Britain has experi-
enced a dramatic increase in income inequality in the past few decades (see, e.g.,
Atkinson, 1997, and references therein) and that, in order to interpret the ob-
served trend, income distribution analysis should take into account demographic
and soclo-economic changes in the population. In fact, at every moment in time,
the heterogeneous pattern of income earning and wealth accumulation over the
life-cycle of a typical individual affects the distribution’s inequality. Besides life-
cvele factors. other demographic and social characteristics affect the pattern of
income and wealth accumulation and, therefore, the shape of the income distribu-
tion. Changes in household composition and in employment status, investment in
human capital, and health issues are just a few important and recognized exam-
ples. For example, average household size has been falling in the UK over the past
decades, reflecting a longer life span of individuals and an increasing preference
for an independent lifestyle. Lower average fertility rates, rising average marriage
age, and higher divorce rates, have also contributed to this trend.

The importance of controlling for attributes and characteristics of individuals,
when investigating inequality issues, has long been recognized in the theoretical
and empirical literature on income and wealth distribution. Atkinson (1971) ar-
gued that even in a egalitarian society of identical individuals in all respects apart
from age, there is still likely to be considerable inequality in the distribution of cur-
rent wealth as a result of age differences. In his study of U.S. family income, Paglin
(1975) highlighted the importance of inter-family differences in the calculation of
income inequality.

The empirical literature in this field has progressed along at least three dis-
tinct directions. One influential group of studies looks at changes in the income
distribution over time and asks: “What would the distribution have been like if
there had been no change in the structure of a particular determinant.” Assum-
ing that other distributional characteristics are not affected by the hypothesized
“shift,” the difference between the “counterfactual” and the observed distributions
represents the impact of the selected determinant on the income distribution. This
approach was initiated by early work by Semple (1975), Love & Wolfson (1976),
and Dinwiddy & Reed (1977) and has since produced a sizable literature referred

to as shift-share analysis or standardization of the income distribution. Semple
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(1975), for instance, examined the effect of changes in household composition, and
in the proportion of pensioner households, on the distribution of UK family in-
come. He found that taking into account changes in household composition greatly
reduces the observed increase in income inequality.

A second influential group of studies uses decomposition techniqtics to hreak up
overall inequality into “within” and “between” group components. This approach
was pioneered by Bourguignon (1979), Cowell (1980), Shorrocks (1982, 1984), and
Mookerjee & Shorrocks (1982) examining the impact of various demographic and
social factors on income inequality. For the UK, Mookerjee & Shorrocks (1982)
found that the increase in inequality can be explained almost entirely by the “be-
tween” age-group component.

Although this earlier work has provided several insights into the sources of
inequality, it has found it more difficult to identify the relative contribution of
individual factors when several changes occur simultaneously (see, e.g., Mookerjee
& Shorrocks, 1982, p. 900). Also, most of this work is descriptive in nature and
lacks an adequate inferential framework.

There is a third approach, which empirically investigates the link between in-
equality and demographic and social factors. This branch of literature takes a
different perspective and asks: “How do aggregate factors, such as the level of
economic activity, inflation, and unemployment affect income inequality?” Never-
theless some of its results are relevant to our work as well. This approach typically
involves regressing a measure of income inequality such as, for instance, Gini co-
efficients or income shares of quantiles, on a set of macroeconomic indicators and
was initiated by early work by Kuznets (1955), who hypothesized that the relation
between economic development and inequality follows an inverted-U shape. Work
on the relationship between macroeconomic indicators, such as unemployment and
inflation, and inequality include papers by Blinder & Esaki (1978) for the US, Buse
(1982) for Canada, and Nolan (1988-89), for an application to the UK. Results
typically show an inverse relationship between unemployment and income inequal-
ity. On the relationship between educational achievement and inequality see, e.g.,
Checchi (2001) and references therein. As for the question on how international
trade affects inequality see, e.g., Burtless (1995).

In recent years, nonparametric methods have been applied in the study of
income distribution. These methods provide visually clear and complete repre-

sentation of the income distribution that is often more informative than standard
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numerical measures of inequality (see Jenkins, 1995b). The use of nonparametric
methods to estimate the conditional distribution of income and wealth has been
pioneered by Pudney (1993) in his study on the Chinese age-income and age-wealth
profiles. Trede (1998a) used a nonparametric conditional distribution estimation
approach to investigate income mobility in Germany and the US.

In all these papers, the income distribution is conditioned only with respect
to one determinant at a time. Though in principle the nonparametric approach
is valid for the multivariate case, in practice it is fraught with the so-called curse
of dimensionality problem: the rate of convergence of nonparametric estimators
decreases rapidly as the number of covariates increases (Stone, 1982), thus mak-
ing inference often infeasible. In order to overcome this potential limitation, we
propose the use of a semiparametric method to estimate conditional measures of
inequality from an estimate of a conditional distribution, in order to control for
different determinants of income inequality. To estimate the conditional distri-
bution, we resort to the semiparametric method developed by Foresi & Peracchi
(1995). Conditional quantiles are obtained by inverting the estimated conditional
distribution and conditional measures of income inequality are derived from the
conditional quantiles. Another semiparametric approach, analogous in spirit to the
shift-share approach, has been developed by DiNardo, Fortin & Lemieux (1996),
and applied to the closely related field of wage inequality.

Our approach is novel in at least four respects. First, by estimating the entire
conditional distribution of income over a broad set of determinants, our estima-
tion procedure uncovers higher-order properties of the income distribution and
non-linearities of its moments that cannot be captured by means of a “standard”
parametric approach. For example, similar to the results obtained in the previ-
ous literature, we find that the shape of the age-income profiles agrees with the
observable prediction of the life-cycle model, which assumes that resources are ac-
cumulated at a faster rate at a young age. Also, we find that income of families
during the period of child rearing is higher than income in the retirement stage
of the life-cycle, when economic responsibility is greatly reduced. In addition,
we find that the age-income profiles peak later for the wealthier households and
appear considerably non-linear, declining rapidly after the age of 60. Besides hav-
ing important consequences for the policy maker as such, the asymmetry might
also indicate the presence of different factors affecting the upward and downward

branches of the age-income profile that have not been included in our and pre-
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vious analysis. For instance, factors that determine a loss in earning capacity at
retirement age of individuals, like deterioration of health and increasing aversion
towards risk, could help in explaining the observed asymmetry.

Second, by estimating the whole distribution we are able to identify where in
the distribution of income the various determinants exert their greatest impact.
This detailed analysis can provide further insight into the determinants of inequal-
ity, of great importance to researchers as well as policy makers. For example, we
find that the impact of employment status is spread over the entire income dis-
tribution. This finding seems to agree with results obtained by Nolan (1988-89)
using 1977 Family Expenditure Surveys (FES) data in his analysis of the impact
of UK cconomic conditions on income inequality. However. in addition, we find
that the impact on income is substantially greater for lower income families.

Third, we devise a method for obtaining nonparametric conditional inequality
measures by inverting the estimated conditional distribution. Our estimates indi-
cate, for example, that if average household size increases from 2 to 4, households
in the top 90th percentile of the income distribution move from earning 3.2 times
more then households in the 10th percentile to earning about 2.5 times more.
This amounts to a 20 per cent fall in inequality. This increase in inequality is
obtained after controlling for other important factors, such as the age structure,
the presence of a retired head and young children. Previous approaches, based on
the “standardization” of inequality series, inequality decomposition by population
sub-groups, or nonparametric methods, have not been to identify the contribution
of individual factors on inequality, except for very simple cases.

Finally, our approach allows us to establish consistency and to estimate asymp-
totic variances of the proposed inequality estimators, which is useful for inference
purposes. It provides a visually clear representation of both the substantive and
statistical impact of each individual factor on income inequality, keeping all others
constant. For instance, we find that for the UK sample, household size. number
of young children, age of head, and employment status, have a large substantive
and statistical impact on inequality. Factors such as years of education, marital
status. and urban versus rural houscholds. on the other hand, do not significantly
impact inequality.

The paper is organized as follows. In Section 6.10 a description of the data
sources and variable definitions is presented. Then in Section 6.3 the methodology

used in the empirical application is outlined in detail, and conditional measures
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of inequality are introduced. Section 4.4 reports the results of the estimation

procedure and Section 6.11 concludes.

4.2 Data Description

The data used in the analysis have been taken from the database produced by the
Consortium of Household panels for European socio-economic Research (CHER).!
The CHER database for United Kingdom (UK) is based upon the results of the
British Household Panel Survey (BHPS), which is carried out in the UK annually
over a target sample size of 5000 houscholds. The units specified in the data
survey are adult individuals (164 years of age), families, and households. The
chosen definition of household is “One person living alone or a group of people
who either share living accommodation or share one meal a day and who have the
address as their only or main address”.

Following previous studies and analysis in the field, the unit object of the anal-
ysis has been identified as the household, since it is believed that many economic
decisions are taken at the household level (see, e.g., Jenkins, 1995b). The survey
collects information about a variety of aspects of the units considered, from demo-
graphic and educational, to family (and household) structures, labour participation
and main features of the job, economic, social and health status.

The response variable is the (natural log of) disposable (net) income of the

household, defined in the following way

disposable (net) income = total Pre-government income
+total (non-pension) public transfer income
+total pension income
+total income from other sources

—income taxes

1The aim of CHER is to create an international comparative micro database contain-
ing longitudinal datasets from many national household panels and from the European
Household panel study (ECHP). This will provide the basis to facilitate comparative cross-
national and longitudinal research and to study processes and dynamics of policy issues
related to family structures, educational aspects, labour force participation, income distri-
bution, poverty, etc. Access to the (beta version of the) database has been granted while
visiting the Integrated Research Infrastructure in the Socio-Economic Sciences (IRISS) at

CEPS/INSTEAD.
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—contributions to social insurance and pension.

According to this definition, theoretically negative values for the disposable income
are allowed. The BHPS does not actually ask for the disposable (net) income
directly; data are recovered integrating the information available in the survey
with other data sources. Once the disposable income of the household has been
obtained, it has been associated with some individual characteristics of the main
breadwinner inside the household (referred to as “the head” in the remainder of
the paper), and with some features of the household itself.

The income measure has been adjusted for household composition according
to the McClements equivalence scale (see McClements, 1977).2

Previous empirical studies and findings, combined with data availability, have
provided the basis and guidance for the choice of predictors. The following set has

been selected:
e age of the main breadwinner
e gender of the main breadwinner (male = 1, female = 0)
e marital status of the main breadwinner (married = 1, not married = 0)
e the main breadwinner is retired (retired = 1, not retired = 0)
e the main breadwinner is emploved (emploved = 1, not employed = 0)

e number of years of education} of the main breadwinner. This variable is
not directly recorded in the Survey, which rather collects the highest level
of education achieved. Therefore it has been obtained indirectly, assigning
to each level of education the number of years necessary to achieve it (the

variable takes the values 7, 12, 14, 17 and more)
e urban/rural indicator (urban = 1, rural = 0)

e household size

e number of people in the household with less than 16 years of age.

2For a discussion of how the choice of equivalence scale affect inequality measurements
see Glewwe (1991), Coulter et al. (1992), and Banks & Johnson (1994).
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Data are available for the period 1991-99, with an average of 4000 observations
per year. We leave out of the analysis household headed by individuals older than
80 years of age because of the low sample information.3 Summary statistics for
the variables used in this study for the 1991 year appear in Table 5.1.

We will highlight the potential importance of controlling for explanatory vari-
ables when analyzing income distribution by means of the following illustrative
example. Panel 4.1(c) of Figure 4.1 displays the univariate kernel density estimate
of income in UK for the year 1991 (solid line) decomposed into the weighted sum
of the densities of retired (dotted line) and working (dashed line) heads. The main
features characterizing the income distribution are positive skewness and some de-
gree of bimodality.* The figure suggests that positive skewness and the bimodal
structure of the marginal distribution of income for the UK could be due to the
presence of pensioners in the population. This example illustrates that the shape
of the income distribution could be considerably influenced by demographic char-
acteristics. The bivariate kernel surface estimate of the joint density of household
income and age of head, displayed in panel 4.1(d), also seems to support this
conclusion.®

The conditional distribution provides a clearer understanding on how age and
income are related. Figure 4.2 displays two views of the estimated density surface
of household income conditional on age of the head. Panel 4.2(a) displays a per-
spective view of the estimated density of household income conditional on age of
the head. For any value of age, the curve resulting from slicing the surface with
the vertical plane passing through that value and parallel to the income axis, gives
the density of income conditional on the chosen value of age.

Panel 4.2(b) displays the contours of the estimated density of household income
conditional on age of the head. The relationship between mean income and age
appears to be non-linear, increasing up to the age of 50 and declining afterwards.
The contours also suggest that inequality in the distribution of household income

could be functions of life-cycle factors. Income inequality seems also to increase

3This exclusion should also mitigate the effects of a potential source of sample bias. In
fact, because wealthier individuals have a higher survival probability, they might be over
represented in older households (see also, Jappelli & Modigliani, 2005).

4The same features are described in Jenkins (1995b) and Schmitz & Marron (1992),
where arguments in favor of a bimodal distribution of the density of household income in
Great Britain are discussed.

5The marginal and joint distribution were estimated, respectively, using a univariate
gaussian and a bivariate gaussian product kernel.
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Variable Mean Std. Dev. Minimum Maximum Cases
Household income?® 12.690 8-941 0-007 126-4 4571
Age of head 48.35 16-598 17 80 4571
Years of education® 9-658 3-6413 7 17 4571
Household size 2476 1-3080 1 8 4571
Number of children® 0-5872 0-9761 0 6 4571
Employed (employed =1)  0-5946 0-4910 0 1 4571
Retired (retired=1) 0-2260 = 0-4183 0 1 4571
Gender (male=1) 0-6211 0-4852 0 1 4571
Urban (urban=1) 0-7946 0-4041 0 1 4571
marital (married=1) 0-5574  0-4967 0 1 4571

& Income is expressed here in thousands of 1991 UK pounds.

b Years of education is a discrete variable that takes only the values 7, 12, 14, 17. The
last value represents an all inclusive category indicating the completion of 17 or more
years of education.

¢ Number of members of the household with 16 or less years of age.

Table 4.1: Summary statistics
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Figure 4.1: Marginal density of income and joint density of income and age.

up to the age of 50 and decline, more sharply, afterwards. Moreover, the contour
view seems also to suggests that inequality is lower for older household heads than
for younger ones, as the contour lines are more closely bunched together for older
household head than for younger ones.

Figure 4.3 shows a perspective view and a contour plot of the estimated density
of household income conditional on household size.® Panel 4.3(b) shows that the
relationship between mean income and household size is also appreciably non-
linear. Mean income seems to increase with household size up to 5, decrease
afterwards, and increase again after a size of 8. The conditional inequality also
seems to vary considerably suggesting, for example, that large household have a
more stable income.

These pictures, though interesting, could be misleading as important deter-
minants of income are not controlled for; therefore they represent only marginal
relationships. Consider, for example, the impact of household size on income.
Clearly not all the members of the household will contribute to the household

income. For instance, the number of small children could affect income not only

6The conditional distribution was estimated using an univariate gaussian kernel and a
bivariate gaussian product kernel with window width of 3475 for income and 0.3156 for

houschold size.
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(a) Perspective plot of esti-
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Figure 4.3: Estimated density of household income conditional on househo
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bandwidths are 3475 and 0.3156 respectively
for income and household size.
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directly because of the lack of earnings, but also indirectly, because of the time
and effort needed for their care.

This example shows that a deeper insight about polarization and inequality in
income distribution analysis could be gained by controlling for various determi-
nants of income. In the next Section the methodology followed in our empirical

analysis will be outlined in detail.
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4.3 Semiparametric Estimation Method and

Conditional Inequality Measures

Even though the conditional mean is an important characteristic of a distribution,
it does not summarize all the information contained in it. Higher order moments
can often provide a deeper understanding of the relation existing among variables.
Also, the linearity assumption of the conditional mean is very restrictive and, in
cases like this one, may not be appropriate.

The estimation method employed in this paper provides a detailed description
of the cumulative distribution of household income, without relying on strong para-
metric assumptions. The conditional distribution, the “fundamental” econometric
object of analysis, could uncover higher-order properties of the distribution and
non-linearities of its moments that cannot be captured by means of a “standard”
linear regression analysis, which focuses on just one of its moments.

The following subsections show how an estimate of the conditional cumulative
distribution of income can be obtained by means of a sequence of logit models.

The data are assumed to be a realisation of a strictly stationary stochastic pro-
cess {(X;,Yi)}2,. where Y is a scalar response variable and X; is a k-dimensional
vector of covariates (with k > 1). This general framework includes the particu-
lar case were the pairs (X, Y;) are independent and identically distributed. Let
F(y|z) be the conditional distribution of Y; given X; = x. which we assume to be
smooth in both & and y. We arc interested in estimating F'(y|z) from a random

sample {(X;, Y} ;.

4.3.1 Estimating the Conditional Distribution Func-
tion of Income

Suppose that we are interested in estimating the conditional probability that a
person’s income falls below a specific threshold value. Typically, if we wish to
investigate poverty, we might be interested in the individual’s probability of falling
helow a certain poverty line . In general, if we define a new random variable
Z; = 1jy,<,}- then we know that E[Z; | X; = x] = F(y|z)." and therefore the

extimation of the conditional distribution may be viewed as a regression of Z; on

"From basic probability theory, the expectation of an indicator function is the proba-
bility of the associated event, that is
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X;. In the next subsection we review the utilized semi-parametric approach.

4.3.2 The Semiparametric Approach

The semiparametric method to estimate conditional distribution functions followed
in this paper has been suggested by Foresi & Peracchi (1995). It consists of esti-
mating a sequence of conditional logit models over a grid of values in the support
of the dependent variable (in this case, income).

Following this method it is possible to condition upon a broad set of predic-
tors, which can have an influence on determining the behaviour of income. This
constitutes an advantage relative to fully nonparametric methods, which can be
not feasible to employ when the number of predictors becomes moderate to large
(usually, greater than 3). Furthermore, the method enjoys the feature of economic
interpretability; in fact, using the linear logit specification. one can think of the
effects of the different predictors on income in terms of “derivatives”.

As previously described. the semiparametric approach consists of running J
distinet logistic regressions on the binary variables Y, = 1 oocyi<y;)- where
Yy < --- <y, are distinct points in the support of Y. j=1,...,Jandi=1,... ,n.
Bv estimating J distinet [unctions F (y;]x). it is then possible to approximate the

conditional distribution F (y|x), defined as

F(y|z)
F (ya|x)

F (y,|x)

Following Foresi & Peracchi (1995), it is possible to impose that the sequence of
conditional distributions is bounded between 0 and 1, by modeling the log-odds
ratios, defined as 7 (y;|x) = In (F (y;lz) / (1 = F (y;lz))). Given an estimate of

E[l(y] = - Pr(A) +0- Pr(A7) = Pr(A).
Soifl A=1[Y; <y|X; =z
E[l{)'iﬁyl X;=a:}] =Y, <yl X, — x),

that is E[A] = F(y| ).
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n(y;|z) it is possible to recover an estimate of F (y;lz) through the relationship

i exp(n (y;|x))
F(ylc) = 14 exp (n (y;]z))”

A convenjent and easily interpretable (from an economic point of view) way of

dealing with the log-odds ratios is to impose linearity, i.e.

where B; is a vector of coefficients. In this way each component of 3; can be
interpreted as the constant partial derivative of the log-odds ratio of F (y;|x) with
respect to the relevant predictor variable. Notice that this wayv of modeling the
log-odds ratios is equivalent to running ordinary logit regressions on F' (y;|x).

One of the potential limitations of the method outlined above is that it does
not guarantee the monotonicity property of the conditional distribution function.?
The potential violation the monotonicity property could create difficulties when
inverting the conditional distribution estimate to obtain the estimates of the con-
ditional quantiles. Particularly problematic is the possibility of multiple solutions.
We have decided to retain the ordinary logit specification, because of its direct in-
terpretability and also because in the empirical application monotonicity is rarely
violated.

Under mild regularity conditions, the logit estimators are consistent and asymp-

totically normally distributed,
\/ﬁ (Ej.n —ﬂ]) ’(L N (0,];’1) 9
where .#; can be consistently estimated by
7=y Ele) (1-F, l2) w2,
i=1

Using the delta method it is immediate to derive the limit theory for the estimator

8For more details, see Foresi & Peracchi (1995). Peracchi (2001) suggests a me‘Fhod. of
modeling the log-odds ratios which implies monotonicity of the conditional distribution

function.
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of F(y;|x):

Vi (B twl) = F (@) X (0.F (o) (1~ F (g o)’ 7 1),

It is possible to generalize the results considering the stacked vector 8 = (B,....3,).
Then
Vi (B = B) 4N (0,57,

where
n

I = Z V(z)® x; ;)

=1

and V (x;) is a J x J matrix with generic element

4 (wi)")s = min (141 (ymlmi) ,147 (y«,il?,)) - F (ym IIB,) F (y~ mi) 3

withm,s=1,...,J and

Fyple),im<s

min (F (ym|zi) , F (y.|z;)) = { Fy.z;),ifs<m

Therefore. letting A(x) = (I; @ ') .9 71 (I, @ ). the limit theory for £ (y|z) is
given by
Vi (B (ylo) = #(gl2)) LN (0,V (2) A=) V (2)). (4.1)

Notice that. since F (y|x) belongs to a class of uniformly bounded functions satis-
[ving the L*? continuity condition. then the convergence established in (4.1) holds

as a process and not just pointwise.

4.3.3 Conditional Income Inequality Measures

In this study we construct two conditional quantile-based measures of inequal-
ity. Our procedure is in the spirit of Pudney (1993), who defined an age-specific
wealth inequality measure based on the unconditional interquartile range coeffi-
cient (IQRC). Denoting by F(wla). the (strictly increasing) conditional distribu-
tion of wealth. w. given age. a, the age-specific inequality measure was defined by

Pudney as » s
Q**a) = Q'*(a)
IQRC(w|a) = 0'2(a) )
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where Q%(a) = {w € R : F(w|a) = p}. Pudney used a nonparametric kernel ap-
proach to estimate the conditional distribution of wages. w. given age. a. F(w|a)
and then invert the distribution to obtain the conditional quantiles. The main
advantage of using a kernel-based approach is that the resulting ¥ (wla) is alwavs
between 0 and 1 and monotonically increasing in a. This is particularly advanta-
geous when inverting it to obtain the conditional quantiles estimates. However,
the curse of dimensionality greatly limits the number of conditioning variables and
thereby the extensibility of this measure.

We propose to define analogous measures of income inequality conditioning for
a large set of income determinants. In general. if £/(y|x) is strictly increasing in y
given X = x then the pth conditional quantile of Y is the inverse of F(y|x) and

is defined as
Q"(x) ={y e R: F(ylz) = p}.

Besides being easy to interpret and readily available in our framework, the advan-
tage of using conditional based measures of income inequality lies in the robustness
of the quantiles as they are not affected by extreme values in the tail of the dis-
tribution. Moreover, this particular choice of measures would allow, if examined
jointly, to capture an important case of income polarization, usually referred to as
the disappearing middle class (see, e.g., Jenkins, 1995b). The main disadvantage
is that the chosen unconditional measure of inequality has no axiomatic base.
Based on the analogous unconditional quantile-based measures of inequality,
we introduce one measure of conditional inequality in the central part of the income
distribution and one of conditional inequality in the tail of the income distribution.
We define the Conditional Relative InterQuartile Range (CRIQR), a measure of
the dispersion in the central portion of the distribution of Y given X = x relative
to the median, as " ”
CRIQR(y|z) = & (2)1 - (2) (@) (4.2)
High figures of CRIQR indicate greater relative inequality. CRIQR can be esti-

mated as follows. Notice that

exp ' B

:——————:’LL’,U'GO,]..
1+ expx’'B; i Uy €1 ]

F (y;|x)

Then the conditional quantile function is defined by inverting the conditional dis-
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tribution function as

=Q" (z) =2'p;.

! (ujlx) = In 1

Given the uniform convergence established in (4.1), conditional quantiles can be
estimated by inverting the estimated conditional distribution function. It follows
that

v (Q (@)~ Q" (2)) & N (0,075 1) . (4.3)

By the delta method, it is possible to find the asymptotic variance of the estimator
of the proposed inequality measure. In fact. for ecach 73,7,3" =1,...,J and for

uj,uj,uir € [0,1]. from (4.3) we have that

AVAL ( " (x) — Q\;:j/ (m)>
uJII( )

Q" (@) avar (@ () +1Q" (=) = Q" (@) aver (@ (a))

Q" ()[*
Q" > avar ( )
[ i ()]

where avar (.) signifies asymptotic variance.
We also define the Conditional Decile Dispersion Ratio (CDDR) as

+

?

QV/19(z)
Q)

The CDDR expresses the income of the top decile of the income distribution (the
“rich”) as a multiple of that of those in the bottom decile (the “poor”), given
X = x. High figures indicate greater inequality in the tail of the distribution of

CDDR(y|x) =

income. Similarly to before

(80 (@) _ 19 @F aar (@ (@) +1Q1 (@) aver (O (@)
avay @:;_,-n (z) - [Q"" (a:)]J‘ .

Consistency of the estimators of the proposed measures follows directly by unbi-

asedness and the variance tending asymptotically to zero.
In the next section the results of the estimation procedure will be presented
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and analyzed.

4.4 Estimation Results

In the following subsection we report the results of the estimation procedures
outlined in the previous section and the estimated conditional inequality measures.
The results shown in this section refer to the year 1991. Data from the Central
Statistical Office show that the year 1991 represents a highwater mark of income
inequality in the UK (Atkinson, 1997).° Results for the following years display a
qualitatively very close behaviour and therefore are omitted for space reasons.
A parametric implementation based on quantile regression that broadly sup-

ports our findings is presented in Appendix D on page 236.

4.4.1 Conditional Distribution Estimates

Each panel in Figure 4.4 graphs the estimated conditional distribution of income
against each predictor (keeping the others constant).!® To aid interpretation in-
come is graphed on a log scale. Also, the range of the income axis has been chosen
so as to aid comparison of quantitative impacts across graphs. Each panel in the
Figures is constructed by first evaluating the estimated functions F (yjlx). over
a grid of 200 cqually spaced points between the Oth and 100th percentile of cach
explanatory variable (keeping the other constant at their mean value) and then
plotting the iso-probability contours. With the aid of these contours it is possible
to clearly appreciate non-linearities and higher order relations, such as inequal-
ity changes, in the conditional distribution of income. In fact, the iso-probability
contours can be viewed as a powerful generalization of the conditional mean and

median that are conventionally employed in econometric inference.!! Each iso-

9Brewer et al. (2005) using more recent data point out that changes in income distribu-
tion before 1991 were very different from changes that occurred in later years. They show
that over the period 1979 to 1990, the increase in inequality was determined by higher

income growth of wealthier households. '
The estimated logit coefficients used to construct the conditional distribution, for the

chosen evaluation points, are shown in Appendix E.
"Though conditional mean and median are both measures of central tendency, they do

not in general agree. As Manski (1988) points out, one might be a linear function of the
covariates and the other not, both might be linear but with different, even of opposite

sign, coefficients.
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probability contour can be interpreted as a regression curve, corresponding to a
particular percentage points of the conditional distribution of income. For example
the 0.5 iso-probability curve represents the more “traditional” conditional median
regression, i.e. it describes the behavior of the conditional median of income as
one explanatory variable changes while the others remain constant. Positively
sloped iso-probability curves are indicative of a positive relationship between the
explanatory variable and the corresponding conditional quantile. A horizontal
contour signifies that the explanatory variable does not appreciably influence any
shape characteristics of the conditional distribution. The percentile points for 0-1
dummy variables, such as employment an marital status, are shown for conve-
nience.

Similarly to Foresi & Peracchi (1995), a violation of the monotonicity constraint
on the conditional distribution function can be readily spotted when any vertical
line crosses the conditional quantile one in more than one point. In the present
case it does not seem to be a problem In general, all conditional relationships are
poorly determined at the extreme of the range, so that care has to be taken when
interpreting those values.

For the sake of parsimony, the results for the categorical variables Gender,
Urban/Rural, and Retired/Working are not discussed in the following paragraphs,

as they were found to be not statistically significant.!?

12806 the coefficient estimates in Appendix E.

112



CHAPTER 4. THE DETERMINANTS OF INCOME INEQUALITY [N
THE UK: A CONDITIONAL DISTRIBUTION ESTIMATION
APPROACH

Figure 4.4: Iso-probability contours of the estimated conditional distribution
function of income
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Age-income profiles The top-left panel of Figure 4.4 graphs the estimated
quantiles of log income conditional on the age of the head. The results are consis-
tent with the observable implications of the life-cycle hypothesis. The age-income
profile, keeping all other factors constant, is clearly hump-shaped. Also, income of
families during the period of child rearing is higher than income in the retirement
stage of the life-cycle, when economic responsibility is greatly reduced. At the
early stages of the life-cycle, household’s median income is just above £9,200. The
profile for the conditional median peaks at around 43 years of age, with an income
value of about £11,950, and declines afterwards, eventually reaching an income of
about £8,000 in the later stages of the life-cycle. These results agree with previous
empirical findings (see, e.g., Jappelli & Modigliani, 2005).

Our approach reveals also nonlinearitics in the age-income profiles not realized
in previous studies. We find that extreme order quantiles peak later. The condi-
tional lower-decile peaks at the age of about 52 and appears relatively flat, and the
upper-decile peaks earlier, at the age of 45, and appears considerably non-linear.
The age-income profile for the richest families in the sample, represented by the
conditional upper-decile, has a value of about £15,700 for younger households,
reaches about £20,500 at its peak and declines sharply after retirement, reach-
ing a value of slightly more than £11,900 at the age of 80. This non-linearity is
unlikely to be captured adequately by parametric methods, unless some ad-hoc
assumptions are made. Since we control for retirement, this dramatic fall is most
likely induced by the decreased earning capacity of older heads due to, among
other things, worsening health conditions and changing attitude towards risk. The
age-income profile for the poorest groups in the sample, represented by the condi-
tional lower-decile, appears relatively flat, peaking at around the age of 52. where
it reaches an income of about £6,300, just £1,000 more than at the early stages
of the life-cycle, and declines to just above £5,300. Besides non-linearities, the
conditional quantiles show that age also provides information about higher prop-
erties of the conditional distribution of income. The spread of the conditional
distribution seems to increase at first, till about 40-50 years of age. and declines
dramatically afterwards. This pattern of inequality is due to the greater arching
of the age-income profiles of the richer families. This implies that the impact on

inequality is much greater for the high income households.
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Education-income profiles The top-right panel of Figure 4.4 graphs the
estimated quantiles of log income conditional on years of education. Education
seems to convey information mostly about location. In fact, parallel conditional
quantile lines imply just a location shift, while the shape of the distribution remains
the same. A more careful look reveals that the middle of the distribution seems
to become less spread whereas the tails seem to diverge, as the years of education

increase. Also, the impact of education seems slightly greater for lower income

families.

Household size-income profiles The top-center panel of Figure 4.6 graphs
the estimated quantiles of log income conditional on houschold size. The profiles for
the conditional quantiles appear to be non-linear in household size. In particular,
the conditional quantiles increase at decreasing rates. Household size conveys
considerable information about the spread of the distribution as well. Conditional
quantiles appear to be getting tighter as the numbers in the household increase.
Because of the changes in slope, the decrease in spread, though substantial, is
difficult to assess visually. Figure 4.5 shows the difference between the 0.9 and
the 0.1 conditional quantiles.!® The difference is graphed on percentage change
scale.!* The graph clearly shows that the change is economically substantial. The
top 10 per cent of the households earn almost 300 per cent more than the bottom
10 per cent with a family size of two, and about 120 per cent more with a family

of four.

Number of young children-income profiles The bottom-left panel of
Figure 4.6 graphs the estimated quantiles of income conditional on the number of
young children present in the household.

The conditional quantiles of log income are decreasing with the number of
young children. The conditional upper-decile has an income of about 18,750 for
childless households and decreases by about 30 per cent (about 5,445), to 13,300 for

13T he line segments of the graph are banked to 15°. i.e.. the aspect ratio of the display
is chosen such that the absolute values of the orientations of the segments constituting the
curve are contered on 15°. which allows a much clearer decoding of visual information,

!This involves just a minor adjustment, as log differences can already be interpreted
approximately in terms of percentage changes.
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Figure 4.5: Difference between the 0.9 and the 0.1 conditional quantiles
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housebolds with two children.!® The fall for the lower-decile over the same range
is very similar. Income for childless households is about 6,560, and decreases by
about 30 per cent (about 1,920), to reach 4,650.

The spread of the conditional distribution seems to vary with the number of
children in a non-linear fashion. The upper quantiles are convex, implying that
decreases in income are increasing with the number of young children, whereas
the lower deciles are convex, so that decreases slacken with the number of young

children.!6

Employment status-income profiles The bottom-center panel of Figure 4.6
graphs the estimated quantiles of log income conditional on the employment sta-
tus of the head. Values between zero and one are computed and displayed as a

continuous curve to simplify comparisons and the interpretation. Households with

15Less than 6 per cent of the households in the sample have more than 2 children and

only 1 per cent more than three. .
16 A positively sloped convex line on a logarithmic scale shows that the rates of increase

are increasing, while a concave one shows decreasing changes. The logarithmic scale is

computed on base e here.
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employed heads have higher conditional quantiles. The impact of employment
status is spread over the entire income distribution. This finding agrees with the
results obtained by Nolan (1988-89) using 1977 FES data in his analysis of the
impact of UK economic conditions on income inequality. We find that the impact
is almost two times larger for the lower income families. The conditional upper-
decile has an income of about £14,600 for unemployed households and increases
by about 34 per cent, to £19,600 for employed households. The increase for the
lower-decile is much sharper. Income for households with unemployed heads is
about £4,500, and increases by more than 55 per cent, to reach £6,980 for house-
holds with employed heads. This differential impact implies that inequality at the

extremes of the distribution is higher for households with unemployed heads.

Marital status-income profiles The bottom-right panel of Figure 4.6 graphs
the estimated quantiles of log income conditional on the marital status of the
household’s head. Values between zero and one are computed and displayed as a
continuous curve to simplify comparisons and the interpretation. Households with
married heads have higher conditional quantiles. The impact of marriage is spread
over the entire income distribution. We find that the impact is almost two times
larger for the higher income families. The conditional upper-decile has an income
of about £16,340 for unmarried household heads and increases by about 22 per
cent, to £18,500 for married household heads. The increase for the lower-decile is
much lower. Income for households with unmarried heads is about £5,125, and
increases by more than 13 per cent, to reach £6,250 for households with mar-
ried heads. This differential impact implies that inequality at the extremes ol the

distribution is higher for households with married heads.

4.4.2 Conditional Inequality Measures Estimates

Estimates of the CRIQR and the CDDR inequality measures are presented in
Figure 4.7. Once the estimate of the conditional distribution is obtained. F;, (y HEAR

the pth conditional quantile can be obtained numerically as the root of the equation

F,ylt)—p=0  with0<p<1.M7 (4.4)

17We used Brent’s method, which combines an interpolation strategy with the bisection
algorithm, to obtain the conditional inverses. This root finding method has the disadvan-
tage that it can only search for one root at a time. Multiple roots, or very close roots,
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Figure 1.6 shows the estimated conditional quantiles and asymptotic confidence

intervals for a set of relevant determinants used to derive the inequality measures

We used Brent’s method, which combines an interpolation strategy with the
bisection algorithm, to obtain the conditionalinverses. '8

Each panel in Figures 4.7 and 4.8 graphs the estimated conditional inequality
measures against each predictor (keeping the others constant). Some interesting

features are highlighted in the following paragraphs.

are a problem, not only from a theoretical point of view, since they represent violation
of the monotonicity assumption of the conditional quantiles, but also from a numerical
point of view. This is true especially with roots of order 2 (“turns” of the conditional
quantiles). In that case, there will be no readily apparent sign change in the function,
so that bracketing a root becomes impossible. In the case of more than one root, only
the first root to be found will be returned. Obviously this could make computing and
interpretation of the conditional quantiles and derived measures more problematic. From
the analysis of the isoprobability curves we already know that this does not appear to be
a conspicuous problem.

8The method approximates the function using an interpolating quadratic curve. When-
ever the zero of the interpolating curve falls outside the bracketing interval (the starting
interval containing the zero), the algorithm falls back to an ordinary bisection step.
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Figure 4.6: Estimated conditional deciles of the conditional distribution func-
tion of log income with one standard deviation confidence interval shown for
the lower (dashed lines) and upper (dotted lines) deciles
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Age-inequality profiles The two panels in the first column of Figure 4.7 dis-
play the estimated age-inequality profiles. The CDDR conditional age-inequality
profile, holding all other variables constant at their mean value. is hump-shaped
with the declining branch of the profile much longer and steeper than the ascending
one.

The profile for the inequality in the center of the income distribution is overall
increasing and has a slightly convex shape. The Age-inequality profile, for changes
in the tail of the income distribution (CDDR), increases by more than 9 cent over
the 20-40 range, flattens out, and falls dramatically for houscholds with a head
aged more than 50, decreasing by about 30 per cent over the 50-80 age range. Our
estimates indicate that, after the age of 60, households in the top 90th percentile of
the income distribution move from earning about 3.2 times more than households
in the 10th percentile to earning less than 2.3 more. Inequality in the middle of the
distribution (CRIQR) decreases by about 32 per cent over the 20-80 age range.

In his study on inequality trends in the UK, Jenkins (1995a), using indices of
inequality decomposed by population sub-groups with FES data, found an analo-
gous pattern of declining inequality for elderly households.

These changes in inequality, as we are controlling for many factors, are most
likely induced by the decreased earning capacity of older heads probably due to,

among other things, worsening health conditions and lower attitude towards risk.

Household size-inequality profiles The two panels in the middle column
of Figure 4.7 display the estimated houschold size-inequality profiles. As expected,
household size has a stabilizing effect on income. Over the household size range
inequality in the tails of the distribution decreases substantially. The top 90th
percentile of the income distribution move from earning about 3.9 times more then
households in the 10th percentile to earning about 2 times more. This amount to
a fall of about 50 per cent.

In particular, the results for inequality in the tails of the distribution show
that if, for instance, household size increases from 2 to 4, households in the top
90th percentile of the income distribution move from earning 3.2 times more then
households in the 10th percentile to earning about 2.5 times more. This amounts to
a 20 per cent fall in inequality. For the same variation in household size, inequality
in the middle of the distribution increases by about 30 per cent. Over the whole

range, 1 to 6, the fall is about 54 per cent.
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As average household size has been falling in the past decades, these results
seem to be able to explain the increase in inequality in the UK income distribution.
These results are consistent with previous empirical literature. Semple (1975), for
instance, using FES data, found that inequality, expressed in terms of the ratio of
highest and lowest quintile income, respectively, to median income, is reduced if

the effect of falling household size is controlled for.

Years of education-inequality profiles The two panels in the last column
of Figure 1.7 display the estimated vears of education-inequality profiles. The in-
equality measures for education are more difficult to interpret as the effects are
both economically and statistically small. The CDDR appears to be increasing
non-linearly with education. Though inequality in the tail of the distribution
increases with education it increases at increasing rates over the compulsory edu-
cation range, where public education is virtually free, and increases at decreasing
rates afterwards. Our estimates indicate that in the compulsory education range,
households in the top 90th percentile of the income distribution move from earn-
ing about 2.85 times more than households in the 10th percentile to earning about
3.08 more, an increase of 8 per cent. After that, richer households go from earning
3.08 more to earning 3.14 more than poorer ones, an increase of only 2 per cent.
This is consistent with a liquidity constraint explanation: access to education is
impeded by the lack of financial resources. This interpretation is corroborated by
the pattern of inequality in the center of the distribution, where we would expect
liquidity constraints to be less binding. The CRIQR on years of education has a
downward trend. Inequality in the middle of the distribution decreases by about
6 per cent over the education range. An inverted-U shaped relationship between
income inequality and educational achievements is found by Checchi (2001) (see

also references therein) using a cross-country panel data approach.

Number of children-inequality profiles The two panels in the first col-
umn of Figure 4.8 display the estimated number of young children-inequality pro-
files. Both the conditional DR and RIQR number of children-inequality profile,
holding all other variables constant at their mean value, appear to be hump-shaped.

Both graphs show an initial large increase of inequality if the household com-

position changes from no children to one child. Our estimates indicate that house-
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Figure 4.7: Conditional measures of in i i

T sures co

’ | . : 1come inequality on age of head, house-
hold size. and vears of education with one standard deviation confidence
intervals

©
z 5 I — =
2 & ] %
8 8 H
£ = e =
3 3 3
? 2 @
n @
e o @ 0
8 @7 g g o
g 3 8§ °
P 2
Z & £
g w | 2 T o7
8 o =] S
b= = =
5 g 2 o
(&) [&] o o 7
o |
oN
. w
&4 -
T T T 1T 1 T T T T T T — T 1 T
20 30 40 50 60 70 80 1 2 3 4 5 6 8 10 12 14 186
Age of head Household size Years of education
o
g 8 5
=} © o
5
5 S g
o g =}
' ['4 .
g g ° g o
€ o T o T 8 4
g ° [ ¥ o
k=l p= =]
3 = =
g 8 g 3 : B
S o 6 © S 21 ...
3 Ch '
o
> 0
o (=]
o =
=)
8 4 - ©
S S g
T T T T 1 o T T T o T T T 71 T
20 30 40 50 60 70 80 1 2 3 4 6 8 10 12 14 16
Age of head Household size Years of education

holds with one young child in the top 90th percentile of the income distribution
earn about 3 times more than households in the 10th percentile while households
with no children earn about 2.85 times more, an increase of about 15 per cent.
The increase is about 6 per cent for the central part of the income distribution.

Because of low sample information for households with more than 2 children,
both the economic and statistical impact, respectively because of numerical insta-
bilities and the large standard deviation, cannot be reliably determined for larger

values of the predictor.
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Employment status-inequality profiles The two panels in the middle col-
umn of Figure 4.8 display the estimated emplovment status-inequality profiles. As
expected, employment has a negative impact on inequality.

Though inequality in the tail of the distribution increases with education it
increases at increasing rates over the compulsory education range, where public
education is virtually free, and increases at decreasing rates afterwards. Qur esti-
mates indicate that households with unemployed head in the top 90th percentile
of the income distribution earn about 3.25 times more than households in the 10th
percentile while households with employed heads earn about 2.8 times more, an
decrease of about 13 per cent.

The decrease is about 23 per cent for the central part of the income distribution.

Marital status-inequality profiles The two panels in the last column of
Figure 4.8 display the estimated marital status-inequality profiles. The inequality
measures for marital status shown in the two panels of the last column of Figure 4.8
are difficult to interpret as the effects are both economically and statistically small.
The extent of marriage secems to have a slightly stabilizing cffect, particularly in
the middle of the distribution.

The decrease for the central part of the income distribution is about 11.6 per
cent. This conclusion has precedents in the empirical literature. For instance,
Dinwiddy & Reed (1977), examining four factors separately, also reached the same

conclusions about the impact of marital status on income inequality in the UK.

4.5 Conclusion and Future Research Direc-
tions

The purpose of this paper has been to analyze the impact of demographic and so-
cial factors on the conditional distribution of household income for the UK, and in
particular on their impact on income inequality. We started by estimating the con-
ditional distribution of income over a broad set of determinants. We then devised
a method for obtaining conditional inequality measures by inverting the estimated

conditional distribution. Our results provide a visually clear representation of both
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Figure 4.8: Conditional measures of income inequality on number of children
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the substantive and statistical impact of each factor on income inequality, keeping

all others constant.
For instance, we find that for the UK sample, household size has a large sub-
stantive and statistical impact on inequality. Combined with the recent trend

of declining household size in the UK, this result can help explain the trend of
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increasing income inequality observed in the past decades in the UK.

The following research directions would seem appropriate to improve and ex-

tend the chapter.

o Extend the approach to make use of the panel nature of the data. Though
preliminary analysis did not show any significant change in the results, a
panel approach would allow to track households over time and to model age
and cohort effects.

Ignoring cohort effects produces age-income profiles that could he biased.
age-income profiles can vary across cohorts, particularly for cohorts that are
distant in time.

e The estimation method assumes that regressors are exogenous. This can be
certainly argued for age and possibly education. However, household income
is an important determinant of the decision to have children, household
formation, marriage, household dissolution, retirement to some extent, and
so on. Some other econometric approach, such as instrumental variables,
could be explored to obtain improved estimates.

e There are several interesting hypothesis that emerge from this study such as
the possible effect of liquidity constraints on education and the possibility
that the impact of worsening health condition or and changing attitudes
toward risk. It would be interesting to extend the paper to formally test
these hypotheses.

e Based on the parametric conditional quantile regression approach presented
in Appendix D on page 236, it would seem more appropriate to use a non-
linear quantile regression approach (see, e.g., Busovaca, 1985, and references

therein) for a more fruitful comparison.
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5.1 Introduction

While developed countries are responsible for most of the increase in greenhouse
gas emissions to date, greenhouse gas emissions from developing countries are
expected to expand significantly (World Bank, 1992). There is a growing concern
that should developing countries follow the same development path of currently
developed countries there could be catastrophic consequences for the environment.

The relationship between economic development and the environment has been
explored by many authors, starting with Grossman & Krueger (1993a), with their
study into the environmental implications of the North American Free Trade
Agreement (NAFTA). The Environmental Kuznets Curve (EKC) hypothesis envis-
ages an inverted-U-shaped relationship between income and environmental degra-
dation. According to this hypothesis, pollution rises with income as long as income
is relatively low and starts declining once income has exceeded a threshold level,
known as income turning point (ITP).

To test this hypothesis, typically the natural logarithm of an indicator of en-
vironmental quality is assumed to depend on two sets of variables. One set of
variables consists of a polynomial in the natural logarithm of per capita income.
The second set of variables consists of control variables that correspond to addi-
tional determinants of environmental quality proposed by researchers.

Dozens of additional variables have appeared in the literature, despite the fact
that fewer than 100 countries are available for analysis in a typical data set (for
a survey see, e.g., Panayotou, 2000). Data limitations relatively to the abundance
of theories has resulted in a large number of non-nested relationships that seem
to support various and alternative theories. The list of control variables used in
the literature on the EKC includes, industrial composition of output (see, e.g.,
Grossman & Krueger. 1995). population density (scc.c.g.. Cropper & Griffiths,
1994; Selden & Song, 1994), openness to trade (see, e.g., Antweiler et al., 2001;
Hettige et al., 1992; Grossman & Krueger, 1993b; Suri & Chapman, 1998), environ-
mental regulation and control (see, e.g., Shafik, 1994a; Baldwin, 1995), democracy
(see, e.g., Torras & J.K., 1998; Harbaugh et al., 2002), corruption (see, e.g., Lopez
& Mitra, 2000), civil and political liberties (see, e.g., Barrett & Graddy, 2000;
Torras & J.K., 1998), power inequality (see, e.g., Boyce, 1994), literacy (see, e.g.,
Torras & J.K., 1998), geographical factors (see, e.g., Neumayer, 2002). income in-
equality (see, e.g., Torras & J.K., 1998; Magnani, 2000; Ravallion et al., 2000),
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and so on. It appears that. given the vast number of proposed variables affect-
ing environmental quality, any parsimonious regression will necessarily leave out
many factors that would be likely to bias the estimated parameters of the included
regressors.

Regression analysis on cross-section data has shown that some pollutant in-
crease until they reach an income per capita approximately between $5,000 and
$8,000. However, it has been noted in the literature that the shape of the estimated
EKCs differs widely according to the sample of countries included, the time span of
the sample, the pollutant, the data used, etc. For instance, Cavlovic et al. (2001),
meta-analysis to investigate systematic variation across Environmental Kuznets
Curve studies, showed that EKC relationships and their associated income turn-
ing points depend on the scale of analysis and the type of pollutants. Harbaugh
et al. (2002) re-examined the empirical evidence for the EKC for three local pol-
lutants, i.e., sulfur dioxide, smoke, and total suspendéd particles (TSP) using a
more representative data set. Harbaugh et al. (2002) are unable to find support
for an EKC using Grossman & Krueger’s specification with an updated version of
the data. They also found that the estimates are extremely sensitive to the sample
chosen and the econometric specification. Extensive literature reviews by Barbier
(1997), Panayotou (2000), and Stern (2004), found considerable variability in the
estimated results across types of environmental quality indicators and samples. Li
et al. (2007), in a more recent meta-analysis that included about three times more
studies than Cavlovic et al. (2001), found that data characteristics, econometric
methods, and the chosen measure of environmental degradation, all considerably
affect the existence of an EKC and the location of a predicted turning point.

One important assumption underlying the majority of cross-country pollution
studies is that all countries obev a common lincar model specification. However,
there is increasing evidence coming from theoretical and empirical literature of
heterogeneity problems. Studies such as Brock & Taylor (2004) and Dijkgraaf &
Vollebergh (2005) have illustrated, albeit in very different ways. that the constant
coefficient linear model assumptions made in standard EKC analysecs are not sup-
ported by the data. Dijkgraaf & Vollebergh (2005) contrasted time-series against
pancl estimates for COs emission in a sample of OECD countries. They found that
combining different emissions-income relationship into a panel distorts estimates.
Brock & Taylor (2004) demonstrated that the relationship between income and

the environment can be exceedingly complex. They argued that income-emissions
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profiles are likely to differ across countries depending on initial conditions or the
level of other structural parameters such as savings, technological change, and
population growth rates.

Regional studies, such as Carson et al. (1997b), Vincent (1997), and de Bruyn
et al. (1998) also provide evidence of the importance of heterogeneity. Vincent
(1997) exposed the limitations of previous cross-section studies by comparing
Malaysia’s actual pollution trends with those that would be predicted by Selden &
Song’s (1994) estimates. It was found that their forecasts overestimated emission
levels for particulate. NOy and CO, whilst even the direction of SO, emissions
was incorrect. Moreover. it was illustrated that if one took the “one size fits all”
argument. underlying the EKC approach. through with Selden & Song’s findings,
one would expect Malaysia to be on the upward portion of the EKC, given the turn-
ing point found by Selden & Song of $8,079 per capita (PPP) and Malaysia’s GDP
per capita in 1987 was only $4,727 per capita (PPP). Nevertheless, from 1987-1991
Malayvsia witnessed a drop in SO, emissions in contrast to the EKC predictions
due to an unobserved shock, “geology and a desire for energy interdependence,
not rising income ... were responsible for the decline in SO» emissions™ (Vincent.
1997). Vincent therefore concluded that although his study did not refute the ex-
istence of the EKC in some nations, “policymakers in developing countries should
not assume that economic growth will automatically solve air and water pollution
problems” (Vincent, 1997).

Carson et al. (1997b) using US time-series spanning the years 1988-1994, found
a negative relationship between seven types of pollutants and income. Their gen-
eral findings were consistent with the EKC hypothesis since a negative relationship
between emissions per capita and income per capita for the seven pollutants ex-
amined was found. However, surprisingly, high income states had low per capita
emissions and vice versa for low-income states. They suggested that it is more
difficult to forecast emission levels for countries, which are about to approach the
apparent turning point thus more research should be directed into this “greater
variability in per capita emissions in lower income jurisdictions than in higher in-
come political jurisdictions” and that this may lead to a “better understanding
of what factors lie behind the cross-sectional EKC” (Carson et al., 1997b). This
interpretation is strengthened by Vincent’s analysis on Malaysia.

de Bruyn et al. (1998) found, by estimating regional time series model indi-
vidually for the Netherlands, Germany, the United Kingdom, and the USA, that
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economic growth increases emissions of carbon dioxide, nitrogen oxides, and sulfur
dioxide. They also highlighted the importance of structural changes within coun-
tries and argued that conventional cross-section based techniques have produced
spurious results by neglecting important dynamic processes.

In this Chapter we re-examine the relationship between economic activity and
the environment, in order to identify the presence of multiple regimes using a
threshold estimation approach based on Breiman, Friedman, Olshen & Stone’s
regression-tree (1984). The EKC has led in some cases to unwarranted and mis-
leading interpretations that countries can overcome their environmental problems
in the long run without consciously adopting environmental policies (see, e.g.,
Beckerman. 1992). However. increasingly. it has been recognized that the effect
of such changes on environmentincome links are not exogenous processes but in-
fluenced by policy choices (see, e.g., Panayotou, 1995; Stern, 1996; World Bank,
1992). In particular, the World Bank’s World Development Report 1992, focusing
on environmental issues, observed that for most air and water pollution, environ-
mental problems “initially worsen but then improve as incomes rise,” and stated
that “There is nothing automatic about this improvement; it occurs only when
countries deliberately introduce policies to ensure that additional resources are
devoted to dealing with environmental problems (World Bank, 1992, p. 10). Our
approach permits in principle to specify better econometric models and to avoid
the dangers of misinterpretation by acknowledging that the relationship between
economic development and the environment is affected by structural differences
across heterogeneous countries. Understanding regime differences in the relation-
ship between economic growth and the environment, is the first step in bringing
about more desirable outcomes through active policy interventions.

In this chapter, we first identify the presence of multiple regimes by using
specification tests which entertain a single regime model as the null hypothesis.
Then we develop an easily interpretable measure, based on an application of the
Blinder-Oaxaca decomposition (Oaxaca, 1973; Blinder, 1973), of the impact on the
environment due to differences in regimes. Finally we apply a recursive partitioning
algorithm (regression tree) to endogenously identify the separate regimes.

Our conclusions are threefold. First, we reject the null hypothesis that all
countries obey a common linear model. Second, we find that quantitatively regime
differences can have a significant quantitative impact. Thirdly. by using regression

tree analysis we find subsets of countries which appear to possess very different
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environmental/economic relationships.

The chapter is organized as follows. Section 5.2 introduces the econometric
and theoretical arguments that support the threshold approach. Section 5.4 re-
views the links between trade and environment. Section 5.5 derives the parameter
heterogeneity implications of the theoretical models. Section 5.6 surveys the ways
parameter heterogeneity has been accounted for in empirical models. Section 5.7
describes the data used in this study. In Section 5.8 we attempt to identify the
existence of multiple regimes in the data by means of specification tests. Sec-
tion 5.9 presents an easily interpretable measure, based on an application of the
Blinder-Oaxaca decomposition, (Oaxaca, 1973; Blinder, 1973) of the impact on
the environment due to differences in regimes. In Section 5.11 the threshold es-
timation methodology based on tree regressions is presented. Section 5.12 uses
regression tree techniques to identify groups of countries obeying common linear

model. Section 5.13 concludes.

5.2 Environmental-Economic Regimes

The processes of economic growth and environmental change are clearly complex
and evolving over time. Identifying all the complex interactions and feedback re-
lationships that are expected to play a significant role in the evolution of these
processes may be an impossible task at this point in time. One important assump-
tion underlying the majority of cross-country pollution studies is that all countries
obey a common linear model specification. Because of the inherent complexity of
the environment-economy interaction, our limited knowledge of it, and the often
poor quality of data, this assumption appears at best as a crude approximation.
Limits in our econometric models can reveal themselves as apparent structural
change. Identifying these structural changes could further our understanding of
the links between the economy and the environment.

Besides econometric arguments, recent theoretical developments in modeling
the relationship between income and the environment also imply the existence
of different regimes. A simple and frequently used explanation for the EKC is
based on a traditional demand-and-supply analysis. A possible way to obtain
an inverted-U shaped EKC consistent with a demand-and-supply framework is to
suggest that the EKC reflects a demand for environmental quality. Assuming that

environmental quality is a normal good, pollution may at first rise with income, but
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will eventually fall as income continues to rise. More formal developments can be
found in Lopez (1994) and Copeland & Taylor (2003). The resulting smooth EKC
from these models is graphed in Figure 6.1. Other models based on traditional
economic theory, such as the one by Andreoni & Levinson (2001), also predicts a

smooth EKC curve for a technology with increasing returns to scale.

Z

Figure 5.1: EKC generated by income effects

Several recent papers have attempted to explain the EKC relationship by intro-
ducing threshold effects in modeling either pollution abatement. (scec. c.g.. Jones
& Manuelli, 1995), or environmental policy regulation (see, e.g., Stokey, 2001).
Threshold effects lead to a very different relationship between environmental qual-
ity and income during early stages of economic development as opposed to later
stages. For instance the abatement-threshold model predicts a kink in the relation-
ship between pollution and income, as shown in Figure 6.2. The policy threshold
model predicts an even more drastic change in regimes, and produces a discon-
tinuous EKC with a discrete drop in pollution and income once the threshold is

reached.

The policy threshold models assume that governments do not adopt environ-
mental policy regulations until income surpasses a threshold level. In this even-
tuality, regime differences could manifest themselves in parameter changes in the
estimated basic EKC regression model. In the basic EKC equation, income, and
powers of it, could serve as proxies for different sets of variables for different sub-
sets of countries subject to different regimes. To estimate and test this class of
models a simple linear specification is obviously not appropriate. Methods that

take into account parameter heterogeneity have to be employed instead.
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Z

Figure 5.2: EKC generated by threshold effects model

5.3 The Impact of Trade on the Environment

The heterogeneity issue seems particularly important in the study of the relation-
ship between trade and the environment. For instance, with regard to the rela-
tionship between, economic growth, trade policies, and the environment economic
theory suggests that an increased openness to foreign markets might have a differ-
ent impact on the environment in developed and developing countries. Grossman
& Krueger (1991), identify three possible mechanisms by which trade and foreign

investment policies can impact pollution.

(i) Scale effect. Trade and foreign investment liberalization determine an ex-
pansion of economic activity and therefore increase pollution. For instance,
if economic growth is fueled by an increase in the demand of energy, which
if satisfied using the pre-existing methods determines an expansion in the

emission of harmful pollutants.

(ii) Composition effect. Trade liberalization should encourage countries to spe-
cialize in the production of goods in which they enjoy a competitive advan-

tage.

(iii) Technique effect. Freer, trade and foreign investment might also impact
production methods. Pollution intensity of production might fall because
of the transfer environmentally friendlier technologies of production. This

effect has become also known as the gain from trade hypothesis.

This composition effect, for instance, gives rise to several competitive hypothe-

sis with regard to the impact of trade and foreign investment on the environment.
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If the comparative advantage enjoyed by a country in the production of goods
originates from differences in environmental regulation, then the composition ef-
fect of engaging in more international trade could result in a deterioration of the
environment.

According to the pollution haven hyvpothesis (PHH). income differences be-
tween countries translate into differences in the strictness of environmental reg-
ulations. The premise of this hypothesis is that high-income countries tend to
demand cleaner environments. To satisfy this demand, governments attempt to
enforce more stringent regulation regimes over the domestic industry, and allow
importing pollution-intensive goods from less regulated countries. Assuming that
production costs positively related to the level of regulation, low-income countries
have a comparative advantage in the production of pollution-intensive goods com-
pared to high-income countries. There will be the tendency for dirty industries to
relocate to low-income countries as a result of international trade.

The race to the bottom hypothesis (RTB) argues that, given a level of income
per capita, the more a country opens to international trade, the laxer regulation on
the environment it will adopt in order to gain international competitiveness. This
hypothesis presupposes that pollution abatement costs are an important compo-
nent of an enterprise’s investment decision, so the countries will compete to lower
the environmental standards in order to gain its comparative advantage.

On the other hand, if the sources of the comparative advantage stems from the
more traditional differences in factor abundance and technology, then the impact
of freer trade will depend on the degree of pollution-intensity of production. This
classical argument gives rise to the factor endowment hypothesis (FEH) concerning

the impact of trade on the environment.

5.4 A survey of empirical evidence from the

literature

Empirical analyses of the impact of trade on pollution generally follow a common
strategy. A cross-section or panel of countries is employed in which an indicator of
environmental degradation is assumed to depend on a polynomial of degree up to
3 in per capita income, an indicator of trade activity, and a set of control variables

that correspond to additional determinants of environmental degradation.

134



CHAPTER 5. ECONOMIC GROWTH, TRADE, AND THE
ENVIRONMENT: AN ENDOGENOUS DETERMINATION OF
MULTIPLE CROSS-COUNTRY REGIMES

Cavlovic et al. (2000) in their meta-analysis study, which can be seen as a
summary of most empirical work don in the area, found that including trade tend
to yield higher turning points. An important result reported in this study is that
carbon dioxide is predicted to have an extremely high turning point.

In a more recent Meta-analysis to investigate systematic variation across En-
vironmental Kuznets Curve studies, Li et al. (2007) found also that controlling for
the impact of trade lowers the probability of finding an EKC relationship.

Suri and Chapman (1998) analyse the impact of international trade on com-
mercial energy consumption and find that most exports by industrialising countrics
arc consumed in industrialised countries. allowing these countries to benefit from
avoided pollution. They find empirical evidence that incorporating trade effects
would tend to increase the turning point for pollutant emissions related to energy
use. a result echoed by other studies!. They find that reductions in environmental
degradation that follow a rise in income is not a result of a positive net improve-
ment in environmental quality, but purely a displacement of pollution from rich
countries to poor. International trade allows this displacement to occur. Several
theories have been established to explain why this may arise. For instance, Frankel
& Rose (2005) and Antweiler et al. (2001) all provide empirical models based on
the Pollution Haven Hypothesis. The assumption is that low income countries
have less stringent environmental regulations and hence have a comparative ad-
vantage in dirty industries. These studies nonetheless fail to find strong pollution
haven effects. Hettige et al. (1992), on the other hand find empirical evidence
which is consistent with the hypothesis that stricter environmental regulation in
OECD countries has led to a locational displacement of dirty industries towards
poorer countries. The only paper to directly test for a factor endowment effect is
Antweiler et al. (2001) who examine the impact of trade liberalisation on sulphur
dioxide concentrations. Thev found some cvidence for factor endowment effects.

Frankel and Rose (2002) provide empirical evidence that trade may indeed
have a beneficial effect on some measures of environmental quality . Thus. it scems
from this perspective that trade at the very minimum will not certainly result in
environmental damage. in fact in many cases it vields environmental benefits. The

findings of the paper generally support the EKC and the proposition that openness

1Suri and Chapman (1998) report that imports of manufactured goods by developed
countries play a role in the EKC downturn and they suggested that with increasing world
trade it is likely that this trend will intensify.
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to trade accelerates the growth process. However, as expected, the criticisms of this
approach are numerous in response to this standard neo-classical type argument.
Harbaugh et al. (2000) provides recent empirical evidence against the existence of
an EKC for certain pollutants . This evidence is inconsistent with other studies
emphasising the controversy surrounding the existing substantiation. Nevertheless
where EKCs are found, trade is seen to be a contributor for the high ITPs which
is in accordance with empirical evidence from other studies.

Clearly more work needs to be done to fully understand the role of international
trade in mediating the relationship with the environment. On the one hand, there
appears to be little evidence in support of the pollution haven hypothesis; to the
contrary, there is increasing evidence open economies tend to be cleaner than closed
economies. However, a growing body of empirical literature has showed that the

existence of EKC’s has profound effects on the environment.
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5.5 Parameter Heterogeneity Implied by Trade
Models

In the previous Sections we have have shown that, with regard to the relationship

between, economic growth, trade policies, and the environment

(i) there is substantial empirical evidence that the impact of an increase in

income on the environment depends on the stage of development, and

(ii) economic theory suggests that an increased openness to foreign markets
might have a different impact on the environment in developed and devel-

oping countries.

The standard approach in investigating the relationship between trade, growth

and the environment, assumes that parameters do not vary across countries, i.e.,

P k
E=py+Y B INC +B,.0OPEN+ Y B; Z;, (5.1)

i=1 j=p+2

where E is a measure of environmental degradation. INC is a measure of economic
activity. OPEN a measure of openness to trade. and Z; are other determinants of
environmental degradation. In particular, the impact of trade on the environment

is a constant

0E 5 ..
dOPEN ~ Pt

The theoretical arguments illustrated in the previous section imply heterogene-
ity. For instance, consider the the pollution haven hypothesis: since high-income
countries demand a cleaner environment, their governments enforce stricter regu-
lations over the domestic industry and allow importing pollution-intensive goods

from less regulated countries, so that

ok <0, forlarge INC,
———— = (33(INC)
O0OPEN >0, forsmall INC,

i.e., the impact of openness on the environment is a function of income. Also, for
the factor endowment hypothesis: the impact of trade liberalization will depend
on the relative availability of the different factors of production (KAPW) in a
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country,

OE >0, for larg
30PEN B3 (K APW) or large KAPW,
<0, forsmall KAPW,

L.e., the impact of openness on the environment is a function of capital abundance.

5.6 Accounting for Heterogeneity in Empiri-
cal Work

It seems reasonable to assume that the marginal impact on environmental degra-
dation of a variable such as the GDP per capita and openness to trade depend
on several factors, such as the level of economic development, factor endowments,
trade policies, etc. This has been explicitly and implicitly recognized in the em-
pirical literature on the subject in several ways.

Empirical analyses of the impact of trade on pollution generally follow a com-
mon strategy. A cross-section or panel of countries is employed in which an in-
dicator of environmental degradation is assumed to depend on a polynomial of
degree up to 3 in per capita income, an indicator of trade activity, and a set
of control variables that correspond to additional determinants of environmental
degradation.

In the EKC literature, a GDP squared term is added to capture those aspects
in the relationship between growth and environment that do not remain the same
as countries develop. These include structural changes in the composition of GDP
and environmental awareness and regulation.

Another approach is to add interaction terms (cross-products) to the basic
regression. For instance, Frankel & Rose (2005), to test the pollution haven hy-
pothesis add to the equation linking pollution with growth and trade, the product

of openness to trade and income per capita. For instance,
E =By + B INC + B> INC® 4+ B;O0PEN + 3,(OPEN - INC) (5.2)

The partial effect of OPEN is given by

oP

_9F 3. +928,INC
50PEN ~ 1T 2h
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which is a linear function of income. If rich countries export pollution-intensive
activities to poor countries through trade activities, then the interaction term is
expected to have a negative impact on a country’s environmental quality.
Antweiler et al. (2001), in order to test the alternative factor endowment hy-
pothesis, include also interaction terms between openness and capital per worker
levels and squares. Polluting capital-intensive activities should relocate through to
the more capital-rich developed countries. The estimated coefficient for the cross-
product is expected to have a positive sign. intensive The impact of an increase
in income on pollution depends on the composition of output, and therefore on
capital per worker. Adding interaction terms has several problems. Firstly, the
inclusion of an interaction term makes the model nonadditive, in the sense that the
effect of one independent variable on the dependent variable varies according the
value of a second independent variable. If, for instance the cross-product between
income per capita and openness is added, the partial effect of openness depends
now on the level of income. The coefficient for openness measures the effect when
income per capita is zero. which makes little sense. Also its statistical significance
of the partial effect of income on pollution will not be a constant. For example
in (5.2) the variance of the impact of trade on the environment, is given by the

expression

oE 5
var (m) = \'ﬂ.l’(ﬂg) + 4 I]VC’~ va.r(ﬂ4) + 2 INC ("()\'(,63, 54)

The t-statistic can then be derived by dividing the partial effect of openness given a
particular value of income. by the standard crror for the partial effect computed at
a particular value of income per capita. It is possible that the impact of openness
on pollution is significant at some levels of income, while non-significant at other
values. For example, openness could impact significantly pollution only in low-

income countries.
Another approach consists of fitting separate regressions based on a threshold

variable (INC). and a threshold (7)

E = By+61 INC + B2 INC*+8; OPEN, INC <7
E =6y +61 INC + 02 INC-® +383 OPEN, INC>T
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Stern & Common (2001) fit an EKC model to OECD and non-OECD samples.
The problem with this approach is the arbitrary choice of splitting variable and,
for continuous variables, the threshold.

Nonparametric methods can also be used in this context. I am aware of only one
applications of this kind. Azomahou & Phu (2006) employs a smooth coefficient

models to estimate the model

Y = Xj0(2j¢) + bi + €t (5.3)

where yj¢ is the response variable (deforestation rate) of country j with j =
1,...,N in vear t. with t = 1,...,7. Xy = (1,zl). with x; being a p x 1
vector and p; represents j;he fixed effect specific to country i. The coefficient
P(zit) = (a(z;f),ﬁ(z,-f)'r)l . The model is fitted using Robinson’s (1988) approach

1 & z;, — 2 - 1 & z —2
ple) = %ZX»"X-;K< T ) mzx./yﬂ(( — )
j=1 =1

yir = X p(zi) + pi + €t (5.4)

where y;s is the response variable (deforestation rate) of country 2 withé=1,...,N
in vear t. with ¢ = 1,...,17. X = (1,:1:,1,) with z;; being a p x 1 vector
and p,; represents the fixed effect specific to country i. The coefficient ¥(zi) =
(a(z,,),,B(z;,)T)T is a vector of smooth functionsThe application suffers from the
curse of dimensionality. Azomahou & Phu (2006) coefficients depend only on on

variable, GDP.

5.7 Data

Our data consists of 2,294 observations representing 74 countries, 23 OECD and 51
non-OECD members, spanning the years 1960-1990. The dataset was constructed

using data from various sources.

e For the sulfur emissions, we took the data from the Historical Global Sul-
fur Emissions data set of A.S.L and Associates (1997), which includes the

sulfur dioxide emissions from burning hard coal, brown coal, and petroleum,
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and sulfur emissions from mining and related activities for most of the coun-

tries of the world during the period 1850-1990 (Allen S. Lefohn 1999).

e The carbon dioxide emissions data come from the 1998 World Bank World
Development Indicators CD-ROM.

e Most macroeconomic data is derived from the Penn World Tables (PWT)

Mark 5.6 which compiles data for 152 countries on 29 subjects for the period
1950-1992.2

e Foreign Direct Investment data are taken from the UN World Trade Data
Base discussed in Feenstra, Lipsey, and Bowen (1997).

The sample of countries used in this analysis together with their associated

PWT numeric code, are contained in in Appendix F. The variables are:

502, ; = Sulfur Emissions measured in tons of sulfur per capita. country 7. vear t.
C02;; = Carbon Emissions measured in tons of carbon per capila. country 4. vear t.
RGDPL;; = Real GDP per capila (1985 intl. prices). country i. vear t.
KAPW,; = Non-residential Capital Stock per Worker (1985 intl. prices). country i. vear t.
Exports+Imports

Nominal GDP
FDI; + = Gross Foreign Direct Investment. in % of GDP. country 4. vear t.

OPEN;; = Openness,

,counlry 2. vear t.

Summary statistics for the variables used in this study appear in Table 5.1.

Figure 5.3 shows scatterplots of emissions against real income per capita. The
variables on the x-axes are graphed on a natural log scale. Panel 5.4(a) displays
a scatterplot of the log of SOy emissions against the log of per capita income.
The graph suggests a non-lincar relationship between mean SOs emissions and
income per capita, consistent with an inverted-U shape. Panel 5.4(b) displays a

scatterplot of the log of COy emissions against the log of per capita income. The

2The PWT are described in Alan Heston and Robert Summers The Penn World Table
(Mark 5): An Expanded Set of International Comparisons, 1950-1988, Quarterly Journal of
Economics, May 1991, pp.327-368. Though PWT Mark 6.1 was available at the momf:nt
of writing, the years spanned by the pollution data, and the fact that updated capital
stock estimates were not yet available, made us keep the older version. The PWT are
available at the Computing in the Humanities and Social Sciences (CHASS) website at
http://datacentre2.chass.utoronto.ca/pwt56/ at the University of Toronto.
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Variable Name  Dimension Mean Std. Dev. Minimum Maximum Cases
Log of SO, p.c. LSO2  log, (t/person) -5.034  1.8803 -13.93 -0.7645 2294
Log of CO; p.c. LCO2 log, (t/person) 0.7256  1.4699 -2.751 4.332 2099
GDP p.c. GDP $/person 5360 6244.2 303 80830 2294
Openness to trade OPEN - 58.99 46.16 4.99 423.4 2204
Capital intensity = KAPW §/person 15580  12993.8 261 73460 1274
FDI FDI - 1.374 1.406 0.003127 17.70 1956

Notes: All monetary figures are in 1985 US dollars.

denoted with the corresponding name prefixed by the capital letter L.

Table 5.1: Summary statistics

The natural log transformed variables are
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graph suggests a linear relationship between CO, emissions and income per eapita.
" Figure 5.3 shows scatterplots of emissions against real income per capita.

Figure 5.3 shows scatterplots of the log of emissions against the log of capital
stock per worker. The horizontal scale are logarithmic. Figure 5.4(c) is a scat-
terplot of the log of SOy emissions against the log of capital stock per worker.
Figurc 5.4(d) is a scatterplot of the log of CO, emissions against the log of capital
stock per worker. Figure 5.3 shows scatterplots of emissions against real income per
capita. The horizontal The Figures’ patterns are similar to the ones in Figure 5.3.

Figure 5.4 shows scatterplots of the log of emissions against the log of openness.
The horizontal scale are logarithmic. Figure 5.5(a) is a scatterplot of the log of
SO, emissions against the log of openness. Figure 5.5(b) is a scatterplot of the
log of CO4 emissions against the log of openness. Figure 5.4 shows scatterplots of

emissions against the log of openness.

5.8 Statistical Significance of Multiple Regimes

In this section we attempt to identify the existence of several regimes using spec-
ification tests which entertain a single regime model as the null hypothesis. We
split the sample into sub-groups based upon various determinants of pollution to
test whether the regression functions differ across the sub-groups.

We start by fitting, for each sub-group, the model

In(E);+ = Bo + B1 In(GDP); + + B2 n*(GDP); ¢ + B3 In(OPEN )i 1+
+ ,84 111([(:4})‘/‘/);.1L + )\f + a; + €t (55)

with 4 = 1,...,N, t = 1,...,7. where E is cither 502+ or CO2,+. a; and
\: are respectively individual and time specific effects, and €; ~ IID(0,0?). The
estimated regression represents the unconstrained version of the model. We then fit
several constrained versions of the model by imposing cross-coefficient restrictions.
We examine sample splits based upon GDP. KAPW. and OPEN. Table 5.2
reports the results of several data splits. Each entry in the table represents the
F statistic of the null hypothesis that all parameters are equal across the sub-

samples under investigation. The first panel of the table divides the countries into

two groups
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Figure 5.3: Scatterplots of emissions against per capita income.

109(S0Q;)

-12

log(CO,)

o

Bo o Ol 8 N
8 "%
S35 3 $ Y
©
T T T L T T T v L T T L LI T L
300 600 1100 2200 4300 8500 16500 32000 300 600 1100 2200 4300 8500 16500 32000
RGDPL (logarithmic scale) RGDPL ({logarithmic scale)

(a) Scatterplot of

log(RGDPL).

log(SO3) against

log(802)

-14

(b) Scatterplot  of log(COz) against
log(RGDPL).

1og(CO2)

LS T ¥ T 1] T T L T T T T
300 600 1300 2800 6600 14700 32800 73500 300 600 1300 2900 6600 14700 32800 73500
KAPW (logarithmic scale) KAPW (logarithmic scale)
(¢) Scatterplot  of log(S0O,) against (d) Scatterplot ol log(CO3) against

log(KAPW).

log(KAPW).

144



CHAPTER 5. ECONOMIC GROWTH, TRADE, AND THE
ENVIRONMENT: AN ENDOGENOUS DETERMINATION OF
MULTIPLE CROSS-COUNTRY REGIMES

Figure 5.4: Scatterplots of emissions against openness.
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Table 5.2: Specification tests for different regimes

Samples defined by Wald statistic*
Two-way split based on

GDPF;, 35.426
KAPW;, 38.483
OPEN;, 33.938

Eight-way split based on
GDP,:’t, KAPWZ"t, and OPENZ‘;t 45.677

2 The Wald statistic is a test of parameter constancy across subsam-
ples asymprotically distributed Xf. under the null of constant pa-
rameters. where A is the number of coefficient estimated (excluding
country dummies).
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Two- and eight-way output splits are based on GDP < $3.500 and GDP >
$3,500. For capital stock per worker two- and eight-way splits are based on
KAPW < $11.500 and KAPW > $11,500. For openness to trade two- and
cight-way splits are based on OPEN < % 50 and OPEN > % 50.

5.9 Economic Significance of Regimes

5.9.1 Introduction

Using a large and representative of both high, OECD, and low-income, non-OECD,
countries, sample, we estimate a reduced-form relationship between the natural
logarithm of per capita income and an environmental indicator. Using the esti-
mates from the high and the low income countries samples, we decompose the
mean log difference in emissions per capita between rich and poor countries into
the effects of differences in their average economic activity and the effect due to
differences in regimes. We find a significant positive effect for the first component
and a large significant negative for the second. The latter part of the decomposi-
tion can be interpreted as the excess emissions occurring in developing countries
that cannot be explained by income related effects. We argue that the second
term in the decomposition can then be interpreted as the part of log of emis-
sions difference due regime differences between rich countries and poor countries.
We proceed to assess weather the “regime differences” component of the “emis-
sion gap” is significantly reduced if openness and foreign direct investments are

included as explanatory variables.

5.9.2 Data and SO; Emission Gap

We define the “Emission Gap” between rich and poor countries as the difference

of their respective log of emissions, i.e.,

Enission Gap = In(Ep) — In(Ex ),

where In(Ep) and In(Ey) be the natural logs of OECD (O) and non-OECD (N)

per capita sulfur emissions.
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The variables used in this study are,

S50;+ = Sulfur Emissions measured in tons of sulfur per capita. in vear t.

GDP,;; = Real GDP per capita (1985 intl. prices). in vear t.
Exports+Imports oar t
Nominal GDP '~ ¥

FDI;; = Gross Foreign Direct Investment. in % of GDP. in vear t.

TRADE,; ;+ =

Sulfur emissions were taken from the data from the Historical Global Sulfur Emis-
sions data set of A.S.L and Associates. The real GDP per capita came from the
Penn World Tables (PWT) Mark 5.6. The values are all measured in 1985 inter-
national US dollars. 3 Foreign Direct Investment data were obtained from the UN
World Trade Data Base.

The sample consists of 11 annual observations, from 1980 to 1990, the last year
available for emissions, on each of 95 countries. The descriptive statistics of the
data for the OECD and non-OECD subsamples are reported in Tables 5.3 and 5.4.
All monetary figures are in 1985 US dollars. The natural log transformed variables

are denoted with the corresponding name prefixed by the capital letter L.

Table 5.3: Descriptive statistics for non-OECD countries

Variable Mean Std.Dev. Minimum  Maximum Cases
LSO 1.40194684 1.15732856 -1.96134011 4.15271265 814
LGDP 3.46441876 .401948778 2.48432661 4.63970573 814
LGDP2 12.1635617 2.77844739 6.17187869 21.5268693 814
LTRADE 1.30102595 .426146389 .000000000 2.49011346 814
LFDI 361835099 .557601851 .000000000 2.94443898 814

Using our data the SOy emission gap is then,
SO, Emission Gap = LSOp — LSOn =

= 2.26470704 — 1.40194684 = 0.8627602.

3The PWT are described in Alan Heston and Robert Summers The Penn World Table
(Mark 5): An Expanded Set of International Comparisons, 1950-1988, Quarterly Journal
of Economics, May 1991, pp. 327-368.
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Table 5.4: Descriptive statistics for OECD countries

Variable Mean Std.Dev. Minimum  Maximum Cases
LSO 2.26470704 1.06196150 -1.89688075 4.11972491 231
LGDP 4.06674365 .166822076 3.47654372 4.32092077 231
LGDP2 16.5661131 1.31290362 12.0863562 18.6703563 231
LTRADE 1.62284191 .255359757 1.01105803 2.07993370 231
LFDI 963775374 .643684250 .000000000 2.56494936 231

Since natural logarithmic differences are approximately equal to percentage dif-
ferences, we can state that OECD countries emit 86 per cent more sulfur dioxide
then non-OECD countries. In the next Section we provide a useful decomposition

of this gap by an application of the Blinder-Oaxaca decomposition.

5.9.3 Decomposition of the Emission Gap

With the coefficients from separate models for OECD and non-OECD countries,
the emission gap between rich and poor countries can be decomposed into the
differences in pollution emissions due to difference in the level of economic ac-
tivity and differences due to differences in the reduced form relationship between
environmental quality and economic activity.

The method employed was developed by Blinder (1973) and Oaxaca (1973)
and has been used traditionally to investigate discrimination in wages. Let In(Fo)
and In(Ey) denote the natural logs per capita sulfur emissions of OECD (O) and
non-OECD (N) countries. The decomposition presupposes the estimation by OLS

of the standard emission/income model for the two samples separately

In(Ep) = XoB0 +uo (5.6)
m(Ey) = XyBy +ux. (5.7)

where X is a vector of characteristics and B is a conforming vector of regression
coefficients. A numerical consequence of using ordinary least square is that the

residuals sum to zero. This implies that the regression hyperplane includes the
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points of means of the data. So for the two samples we have

In(E 7

In(E,

(5.8)
% (5.9)

m E)

o)
V)

I
fa

where E denotes the geometric mean of emissions per capita, X is a vector of
mean values of regressors. and 3 is a conforming vector of estimated coefficients.

The observed difference in the mean log of per capita emissions must equal

In(Eo) — In(Ex) = X580 — X\ B, (5.10)
i.e., either
n(Eo) — n(Ew) = (Xo - X ) Bo + X (Bo - Bv) (5.11)
or
hl(E()) — ln(EN) = (X_o — —X\) ,B\ +7,o (ﬁo - E\) (5.12)

where (5.11) and (5.12) are obtained by adding (YI\ Bo — Xf\- ,@0) to (5.10) and
(’X_Ioﬁ\ — Xﬁ) B\\) to (5.10), respectively. The first term of the decomposition

is the factor endowment component of the per capita emissions gap, the and the
second term the structural change component.

Neumark (1988) has pointed out, in the context of wage discrimination, that
considerable variation may exist in the estimate of the components obtained using
(5.11) as opposed to (5.12). If (5.11) is selected as the model, it is assumed the
richer countries’ environment/economic regime becomes the one that would exist in
the absence of differences in the technologies adopted, environmental regulations,
and displacement effects, among other factors. In (5.12), the poorer countries’
regime would be the prevailing one. In principle, a weighted average approach
as suggested by Cotton (1988) might be more suitable. As this is a preliminary
study, this choice is not critical and a more detailed analysis can be the subject of
further research.

The structural change component of the “emission gap” between rich and poor
countries, can be interpreted as the difference in emissions occurring in developing
countries that cannot be explained by income related effects. In the absence of

regime differences, OECD and non-OECD countries would have identical emissions
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with the same level of economic activity.

5.10 Decomposition Results

The specification used, using the variable defined in Section 5.9.2, is

LSO, =By + By LGDP, s + 2 LGDP2;+ + 35 LTRADE; ++
+ By LFDI;; + a; + At + €3¢ (5.13)

withi=1,...,N, t =1,...,7T. wherc o; and ), are respectively individual and
time specific effects, and €; ~ II1D(0,02). Tables 5.5, 5.6, and 5.7 display the
results of the fixed and random effects estimation of equation (5.13) with only
GDP variables, with openness to trade, and with both openness to trade and ¥FDI,

respectively.
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Table 5.5: Panel regression results

Region World OECD Non-OECD
Model FE RE FE RE FE RE
LGDP 2.918 2.875 33.974 34.056 2.231 2.387
(2.866) (3.013) (5.182) {3.302) (2.017) (2.321)
LGDP2 —0.301 —0.293 —3.811 —4.047 —0.217 —0.242
(—2.240) (—2.283) (—1.522) (—3.02%) (—1.470) (—1.733)
Constant —4.955 —4.902 —T72.763 | —69.189 —3.688 —3.924
(—2.562) (—2.757) (—5.560) (—5.360) (—1.7%3) {(—2.076)
LTRADE
FDI
TP 4.847176 | 4906143 | 4.45736 | 4.207561 | 5.140533 | 4.931813
TP 127.3802 | 135.1173 | 86.25948 | 67.19246 | 170.8102 | 138.6313
LM Test 4842141 1045.50 3763.40
(0.000000) (0.000000) {0.000000)
Hausman 18 3.51 1.49
(0.912921) {0.063662) (0.474632)
DwW 0.975858 | 0.975858 | 0.86596 0.86596 | 1.043988 | 1.045988
Wald (joint) 3953 17080 3953. 3953. 3953. 3953.
(10) (10) (10) (10) (10) (10)
Wald (t,im(,‘) 526.3 639.7 9206.3 226.3 526.3 526.3
(27) (27) (27) (27) (27) (27)

Notes: The dependent variable is the natural log of sulfur emissions sulphnr dioxide (SO3)
per capila. t statistics are reported in parenthesis. H is the Fixed vs. Random Effects
Hausman test statistic; LM is the Lagrange Multiplier Test for the significance of individual

effects; TP are the income turning point expressed in thousands of US dollars.
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Table 5.6: Panel regression results with trade

Region World OECD Non-OECD
Model FE RE FE RE FE RE
Constant ~5.526 | —5.129 | —72.452 | —68.932 | —3.850 | —3.967
{(—2.84%) (—2.852) (—5.550) (—3.367) {—1.872) (—2.075)
LGDP 3.158 2972 | 34240 | 34542 | 2191 2.347
(3.097) (3.097) (3.234) (5.39%) (1.993) (2.272)
LGDP2 —0.349 | —0.310 | —3.833 | —4083 | —0.227 | —0.243
(—2.580) (—2.402) (—+.359) (—5.096) (—1.549) (—1.733)
LTRADE 0.248 0.078 | —0.638 { —1.011 | 0.328 0.147
(2.568) (0.923) (—1.419) (=2.703) (3.109) (1.600)
TP (logs) | 4524355 | 4793548 | 4466475 | 1.229978 | 4.325991 | 4.829213
TP (levels) | 92.23641 | 120.7290 | 87.04933 | 68.71572 | 124.71 | 125.1131
LM Test 1694.35 956.47 3701.42
(0.000000) (0.000000) (0.000000)
Hausman 13.32 6.13 12.24
(0.003994) {0.105530) (0.006616)
DW 0.992356 | 0.99235G | 0.874958 | 0.874958 | 1.061302 | 1.061302

Notes: The dependent variable is the natural log of sulfur emissions sulphur dioxide (SO3)
per capila. t statistics are reported in parenthesis. H is the Fixed vs. Random Effects
Hausman test statistic; LM is the Lagrange Multiplier Test for the significance of individual
effects; TP are the income turning point expressed in thousands of US dollars.

152



CHAPTER 5. ECONOMIC GROWTH, TRADE, AND THE
ENVIRONMENT: AN ENDOGENOUS DETERMINATION OF
MULTIPLE CROSS-COUNTRY REGIMES

Table 5.7: Panel regression results with trade and FDI

Region World OECD Non-OECD
Model FE RE FE RE FE RE
LGDP 2.485 3.003 27444 27.758 2.196 2.350
(2.434) (2.977) (4.172) (4.309) (1.996) (2.273)
LGDP2 —0.253 —0.320 —2.975 —=3.195 —0.229 —0.244
(—1.865) (=2.300) | (=3.524) | (=3.952) | (—=1.336) (—1.73x)
LTRADE 0.306 0.179 —0.637 | —0.959 0.320 0.141
(3.173) (2.015) (—1.465) | (=2.702) (2.995) (1.510)
LFDI —0.162 —0.026 —0.146 —0.144 0.012 0.009
(—4.437) —1.709) | (=3.801) | (—3.823) (0.429) (0.34%)
Constant —130.526 | —25.381 | —58.882 | —55.995 | —3.847 —3.963
(—4.623) (=1.851) | (—4486) | (—1343) | (—1.869) (—2.071)
TP 4.915 4.690 4.612 4.344 4.805 4.821
TP 136.325 | 108.899 | 100.706 | 76.997 | 122.065 | 124.105
LM Test 4842.41 1045.50 3763.40
(0.000000) (0.000000) (0.000000)
Hausman 14.23 6.43 13.30
(0.006586) (0.169351) (0.009920)
DW 0.975858 | 0.975858 | 0.86596 | 0.86596 | 1.045988 | 1.045988
Wald (joint) 3953 17080 3953. 3953. 3953. 3953,
(10) (10) (10) (10) (10) (10)
Wald (time) 526.3 639.7 5;2()'.3 52(3.)3 :3(2(5.)3 3(‘26.)3
(27) (27) 27) (27 27 27

Noles: The dependent variable is the natural log of sulfur emissions sulphur dioxide (SO3)
per capila. t statistics are reported in parenthesis. H is the Fixed vs. Random Effects
Hausman test statistic; LM is the Lagrange Multiplier Test for the significance of individual

effects; TP are the income turning point expressed in thousands of US dollars.

153




CHAPTER 5. ECONOMIC GROWTH, TRADE, AND THE

ENVIRONMENT: AN ENDOGENOUS DETERMINATION OF
MULTIPLE CROSS-COUNTRY REGIMES

Table 5.8 displays the results of the Blinder-Oaxaca decomposition of the con-
tribution to the gap of each explanatory variables, the total, and the proportion
over the total, for the income and regime differences components. The penultimate
line of Table 5.8 reports the ¢ statistics associated with the two components of the
“emission gap” for the without trade variables, with openness to trade, and with
all trade related variables.*

For instance. when only income related variables arc included, we find that the
that the pollution emission differential due to differences in the level of economic
activity is 2.696, whereas the emission differential due to differences in the reduced
form relationship between environmental quality and economic activity is -1.833.
This implies that richer countries would emit 270 per cent more sulfur dioxide
than poorer ones, i.e., the gap would be much wider, if poorer countries’ emissions
were obtained by evaluating their level of economic using the OECD estimated
relationship. The difference between this “counterfactual emission gap” and the
existing one of 180 per cent can be interpreted as the excess pollution emissions
that poorer countries are currently causing because of differences in regimes.This
suggests that rapid growth of developing countries that is not accompanied by
significant structural changes, in the shape of technologies adopted. environmental
regulations, and so on, could have detrimental consequences on the environment.
Including trade and FDI, reduces the regime differences component to 130 per

cent.

IThe t statistics were computed usino standard cconometric results. If w is a £x1 vector
of constants. then w'B ~ N (w'B,w'e? (X' X )™ Lw) . The variance can be estimated with
w’s? (X' X)) rw. To calculate the t btd,tlbtlcs of the unexplained component we can apply
the above result by treating the veetor of sample means for the non-OECD countries as
constant. Assuming that the two sets of observations are independent tlmn ﬂ() dn(l ,3\
will be independent with means 8o and By, and covariance matrices 05 (X, Xo) ™ and

o3 (X' X \v)t The osllnmtvd covariance matrix for d = ,80 — ﬁ\ is given by var(d) =
o3 (’)X()) —0—0”\‘ (X'X\) . Applyving the above result, for w = X v . the variance of
x5 5a ~ Xyd

Is the N var w0 that £ = ——=8%__—_ For the explained component,
X \d is then Xy var(d) X v, so tha @ p
— l/\ . — —
the variance of (X o—X _\) Bo. applving the above result with w = (X o—X _\:‘), is

then (Yo — _X_\)I \':11'(ﬁ()) (7() — Y_\-), so that
(Xo-%.) B0

\/ZX_O - YA\'>,‘7I(27(X(I)XO)~1 (—XO - Y\> |

t —
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Table 5.8: Blinder-Oaxaca decomposition of sulfur emissions of QOECD and
non-OECD countries

variable Income with Trade with Trade/FDI
Model AB-X |B-AX | AB-X|B-AX | A3-X| B-AX
Constant -65.265 -64.965 -52.033
LGDP 109.713 | 20.513 | 111.534 | 20.805 | 88.024 16.720
LGDP2 -16.281 | -17.817 | -46.706 | -17.974 | -35.900 | -14.067
LTRADE -1.506 | -0.325 | -1.430 -0.309
LFDI -0.055 -0.086
Total Gap | —1.833 | 2.696 | —1.643 | 2.506 | —1.395 2.258
(—73.998) (5.707) (—5.688) (5.368) (—4.896) (5.060)
Proportion | 40.47 99.53 39.60 60.40 38.19 61.81

Notes: Calculations are based on mean values of all variables in Tables 5.3 on page 147
and 5.4 on page 148 and the estimation results in Tables 5.5 on page 151, 5.6 on page 152,

and 5.7 on page 153. t statistics associated with each component are given in parenthesis.

We found that the Blinder-Oaxaca decomposition is a promising technique
that can be used decompose the emission gap between rich and poor countries.
Using a large sample of panel data representative of both high and low-income
countries, we find that structural differences between developed and developing
countries can be quite substantial. We also find support for the hypothesis of
pollution displacement from rich to poor countries via international trade and
foreign direct investment. More general decompositions could provide information
on the evolution over time of the various effects. Also focussing on the entire
distribution rather than the mean only could provide interesting insight into the
relationship between economic activity and the environment. In the next sections
we will emplov a tree regression approach to explore the cxistence of different

environment /economic regimes.
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5.11 Tree Regression Methodology

Though the exogenous splits introduced in Sections 5.8 and 5.9 allow simple spec-
ification testing and to assess the economic environmental significance of regime
differences, they do not permit the identification of economies with a common
relationships between the environment and economic factors.

In this section we are going to describe the regression-tree approach introduced
by Breiman et al. (1984). This approach is particularly well suited when there is
significant interaction structure between the explanatory variables. The method
was applied by Durlauf & Johnson (1995) to investigate the existence of multiple

regimes in cross-country growth behavior. If we rewrite the support of cach z; ; as

the union of M intervals. ajo <z j < aji1..... ai.yj—1 <z, < a; M, the support
S of X. can then be expressed as S = UM S,,. The function f(X) can then be

approximated by a piecewise linear function of the form

e
F(X) = 6, (X)XBs,,,
m=1

where

1, fXes,:
6171(X) -

0, otherwise.

If for cach variable . 4 = 1,...,r we split the data into two subgroups fol-
lowing the decision rule: assign observation j to S,.i if z; ; < a, otherwise assign
the observation to Sn;. Letting a take on values across the support of z; and
repeating this operation for all variables included in the model, we can identify
all possible binarv data splits. Let B(,_,- denote all OLS estimate of y; onto X
using the observation assigned to Sq; Define Bg_; in an analogous way. Some split
variable z; and some value a will minimize the sum of squared residuals (SSR)
over all possible splits

S (5-%8.) + 2 (w-XB)

jesa,i jesﬁ‘i

One crucial limitation of this approach is that the estimated thresholds have
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no known distribution theory. Hansen (2000) developed an threshold estimation
testing procedure procedure with accompanying distribution theory. This method-
ology will be applied at the end of Chapter 6, in Section 6.9, starting on 189.

We adapt the method to work with panel data by applying the within (time

demeaning) transformation to the dependent. y and the independent. z. variables.

i.e.,
Yit — Yi.
Tyt — T;.
where 7;, = %Zf yi+ and T; = %Zf z;+ are the within averages.

By running an OLS on the transformed data we are estimating a panel fixed
effect model and are able to control for individual heterogeneity. Since the re-
gression has been performed with an ordinary least squares program, a degrees of
freedom correction has to be applied to standard errors and t-statistics to obtain

the corresponding correct values,

seo ) = 4 2 se.(P

where v, = v, — N, “a” denotes adjusted and, “u” unadjusted.

5.12 Tree Estimation results

In this section we present the fixed effects tree regression result {rom the S0,

and the CO, equations. Regression tree estimates where obtained using GUIDE,

developed by Loh (Loh, 2005).°

5GUIDE stands for Generalized, Unbiased, Interaction Detection and Estimation. It
is freely available from the Internet address www.stat.wisc.edu/~1oh/ as compiled ex-
ecutables for Linux and Windows on Intel and compatible processors, and for Mac 0s X.
The hardware used was a Dual Intel Pentium IV (Prestonia) Xeon Processors 3.06 GHz
with HT Technology with 4 GB of RAM running on Microsoft Windows XP /2002 Prof.es—
sional (Win32 x86) 5.01.2600 (Service Pack 2). We used GUIDE Regression Tree version
3.1, the standard Win32 release available at the time of writing the present Chapter.
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Sulfur Emissions The specification used to estimate a tree is the log-log func-
tional form,

In(80s);+ = By + B1In(GDP), s + By In*(GDP), 4 + B4 n(OPEN); .+
—+ ﬁ_; hl(FDI),‘.t + ,33 ].D(KAPW),T “+ a; + €5t (514)

with ¢ = 1,...,N, t = 1,...,1, using the variable defined in section 5.7 on
page 140. The results of the tree regression procedure applied to the sulfur emis-
sions cquation are shown as a binary tree in Figure 5.5. Diamonds in this figure
indicate the splitting criteria for the sample expressed in terms of splitting variable
and threshold value; circles represent terminal nodes which contain the estimated
subsamples. Number in italics beneath a leaf is the sample mean of LSO. The re-
gression tree for sulfur emissions partitions the sample into low-, intermediate- and
high-income countries, groups (4), (5) and (3), respectively, and then partitions the
low output countries into low- and high-capital intensive countries, groups (6) and
(7) respectively. The fact that, given the opportunity to split the sample by either
income, capital intensity, openness to trade, and foreign direct investment, the
regression tree shows preference for income splits suggests that income dominates
trade and endowment variables as a variable useful in identifying multiple regimes
in the so, data.  The estimated terminal subsamples are: (3) GDP > $9,400,

GDP

4.59E-02

_J.90E-02  2.5]E-02

Figure 5.5: Regression binary tree for sulfur emissions

(5) $5.200 < GDP < $9.400. (6) KAPW < $4.700 and GDP < $5,200, and (7)
KAPW > $4.700 and GDP < $5,200. The list of countries belonging to each
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Table 5.9: Regression tree sample break for SO,

Terminal node number

5 3 6 7
Barbados Australia Guatemala  Argentina
Cyprus Austria Honduras Bolivia
Spain Belgium India Chile
Greece Canada Kenya Colombia
Ireland Switzerland Morocco Romania
Israel Germany, West ~ Madagascar Czechoslovakia
S. Korea Denmark Nigeria Peru
Mexico Finland Philippines Iran
Taiwan France Thailand Sri Lanka
Portugal United Kingdom Zambia Syria
U.S.S.R. Hong Kong Zimbabwe  Turkey
Trinidad and Tobago Italy Yugoslavia
Venezuela Japan

Kuwait

Luxembourg

Netherlands

Norway

New Zealand
United Arab E.
Singapore
Sweden

U.S.A.

subsample are presented in Table 5.9.

The list indicates that there is substantial geographic homogeneity within each
group, giving some support to findings by geographical factors (sce. e.g.. Newmaver.
2002). The low income high capital intensity is composed almost exclusively by
Latin American and Eastern European countries. The low income and low capital
intensity group is composed almost exclusively by developing African countries.
North American and European countries dominate the high-income group. This
classification also suggests the importance of democracy (see, e.g., Torras & J K.,
1998; Harbaugh et al., 2002), corruption (see, e.g., Lopez & Mitra, 2000), and
civil and political liberties (see, e.g., Barrett & Graddy, 2000; Torras & J.K,,
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Table 5.10: Fixed Effects coefficient estimates at each node for sulfur

Node? 2 4 6 7 5 3
Constant | —0.0008179 0.04756 0.1166 —0.02178 —0.07181 —0.245
(—0.01) (2.433) (3.852) (—0.844) (—1.324) (—4.212)
LGDP 2.611 0.4866 —1.066 1.614 0.1182 50.35
(2.757) (0.453) (—0.598) (0.905) (0.032) (14.3)
LGDP2 —0.1217 0.01661 0.1365 —0.07242 0.03534 —2.601
(—2.071) (0.238) (1.112) (—0.649) (0.16) (—13.25)
LKAPW 0.01842 0.1824  0.04662 0.513 —-0.5246 —2.16
(0.196) (2.03) (0.355) (3.866) {(—2.328) (—13.11)
LOPEN 0.2544 0.1207 0.09293 0.1011 0.6897 0.8793
(2.413) (1.25) (0.527) (0.932) (2.467) (5.307)
LFDI 0.07533 0.07777 0.1029  0.06401 0.07759  0.01739
(3.316) (3.795) (3.286) (2.457) (1.206) (0.529)
Cases 1893 1447 1136 311 446 401
R? 0.1628 0.2832  0.2876 0.3464 0.1011 0.6770
TPP 10.73 3.905°  11.14 9.679
(45,610) (49.64) (68,970) (15,980)
Notes: The dependent variable is the natural log of sulfur cmissions per capita. For the coefficient t statistics

are reported in parenthesis. Country-specific dummies are included in all eguations.

2 Node numbers correspond to the node numbers in Figure 5.5.
® Turning points values in US dollars are reported in parenthesis.
¢ Implied curve is U-shaped, monotone increasing over the observed sample.

1998). This is particularly striking if we consider the country composition of
group 7, namely: Argentina, Bolivia, Chile, Colombia, Romania, Czechoslovakia,
Peru, Iran, Sri Lanka, Syria, Turkey, and Yugoslavia. Our findings support stud-
ies that based on the poor environmental performance of Soviet economies and
dictatorships established in Latin America, Asia and Africa, have been advocating
democratic reforms as a way to promote both economic and environmental welfare
(see, e.g., McCloskey, 1983; Payne, 1995). For instance, McCloskey argues that
“Many of the important ecological measures that are being implemented are being
implemented in democracics. . .. [omissis] By contrast, if we consider actual total-
itarian states, China, Chile, the USSR, Argentina, the dictatorships of Africa and
the Arab world, we find that they are far from ecologically minded. ... [omissis]
China and the USSR are among the worst ecological offenders” (McCloskey, 1983,
p. 157).

Table 5.10 presents the fixed effects panel regression estimatcs for cach sub-

eroup. The R? reported are weighted values for fitted cases. We find that for the
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low-income countries with low capital intensity, the model explains about 29 per
cent, for the low-income with high-capital intensity 35 per cent, for the middle-
income countries 10 per cent, and for the high-income countries almost 68 per
cent of the total variation in emissions. The estimates differ considerably both
in their economic and statistical significance across subsamples. This agrees with
Panayotou (2000) which concludes, after examining the evidence form Vincent
(1997) and Carson et al. (1997b) concerning the existence of a Kuznets curve
within individual countries, that: “whereby rising incomes result in a more ef-
fective regulatory structure by changing public preferences and making resources
available to regulatory agencies. States with low-income levels have a far greater
variability in emissions per capita than high-income states suggesting more diver-
gent development paths. This has the implication that it may be more difficult to
predict emission levels for low-income countries approaching the turning point.”

Consistently with most of the literature on sulfur emissions, only for thefor the
high-income countriecs helonging to group (3).° defined here for GDP > $9,400, we
find evidence of a statistically significant within-sample-range turning point located
above the sample mean per capita income of $5,360, at $16,000 per capita. This
could be interpreted as implying that many of the rich nations have crossed the
turning point and lie on the downward sloping branch of an environment-economy
relationship. For medium and low income countries, the turning point is either
non-existent or so high that the curve is monotone increasing over the observed
sample range. For the poorest countries of group (4), the income variables are not
statistically significant.For this subset of countries sulfur emission are monotone
increasing.”

Turning point estimates agree with recent empirical studies on similar local
impact pollutants. Though the turning point we find is higher than the those
typically found in earlier published studies, such as Selden & Song (1994) with a
turning point of $8,700 per capita, it is still much lower than some recent much

higher estimates. For instance, Harbaugh et al. (2002) found a turning point of

6 For sulfur emissions group definition and membership, see Figure 5.5 on page 158 and
Table 5.9 on page 159.

"In particular, for the poorer countries with lower capital intensity of group (6), emis-
sions are very low and the estimated curve is U-shaped. but statistically non significant,
whereas for the countries with higher capital-per-worker belonging to group (7), the turn-
ing point, at about $69,000 per capita, is well outside the sample range, so that the curve
is de facto monotone increasing.
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$39,700 per capita for sulfur dioxide emissions. Harbaugh et al. (2002) in their
work re-examined the empirical evidence for the EKC for three local pollutants,
i.e., sulfur dioxide, smoke, and total suspended particles (TSP) using a more repre-
sentative data set. They found that turning point estimates are extremely sensitive
to the sample chosen and to econometric specifications. For Instance, they also
found that sulfur dioxide emissions increase with income with no evidence of a
turning point for countries with GDP > $8,000. In general, they found that for
most specifications, using cleaner data makes the EKC disappear alltogether for
the local pollutant included in their study. Evidence from recent literature sur-
veys also supposrt our findings. Cavlovic et al. (2001) in their meta-analysis study,
which can be seen as a summary of most empirical work don in the area, found
that including trade tend to yield higher turning points. In a more recent Meta-
analysis to investigate systematic variation across Environmental Kuznets Curve
studies, Li et al. (2007) found also that controlling for the impact of trade lowers
the probability of finding an EKC relationship.

Our results for sulfur emissions seem also to give some support to the pollution
haven hypothesis. The impact of openness to trade on pollution is almost 4 times
higher than it is for rich countries then for poor countries. Frankel & Rose (2005)
and Antweiler et al. (2001) fail to find strong pollution haven effects. Hettige et al.
(1992), on the other hand found empirical evidence supporting the hypothesis that
stricter environmental regulation in OECD countries has led to a relocation of dirty
industries towards poorer countries. However, all provide empirical models based
on the Pollution Haven Hypothesis. The assumption is that low income countries
have less stringent environmental regulations and hence have a comparative ad-
vantage in dirty industries. These studies nonetheless fail to find strong pollution
haven effects. Hettige et al. (1992), on the other hand find empirical evidence
which is consistent with the hypothesis that stricter environmental regulation in
OECD countries has led to a locational displacement of dirty industries towards
poorer countries.

We find no evidence supporting the factor endowment hypothesis. This finding
is somewhat in contrast with the work of Antweiler et al. (2001) who examined
the impact of trade liberalisation on sulphur dioxide concentrations and found
some evidence for factor endowment effects. The discrepancy could be caused by
the way capital abundance was defined in their study. Productivity of workers in

different countries is adjusted for differences in their average human capital levels.
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Note that European countries follow different regimes. Poorer European coun-
tries, and accession countries belong to the poorest economies with higher capital
intensity. Our finding suggest that just joining the European Union will not by
itself be accompanied by improvements in the environment. Structural changés

will need to occur for this to happen.

Carbon emissions The specification used to estimate a tree is the log-log

functional form,

(COy);+ = By + B1In(GDP);  + B2 In*(GDP); + + B4 In(OPEN); 4+
+ B In(FDI)is + B m(KAPW)i+ + a; + ¢ (5.15)

using the variable defined in section 5.7. The results of the tree regression proce-
dure applied to the carbon dioxide emissions equation, are shown in Figure 5.6.

The regression tree for carbon dioxide emissions partitions the sample into low-
, and high-capital intensity countries and then partitions the low capital intensity
countries into low- and high-income per capita countries. The fact that, given the
opportunity to split the sample by either by either income, capital intensity, open-
ness to trade, and foreign direct investment, the regression tree shows preference
for income splits suggests that income dominates trade and endowment variables
as a variable useful in identifying multiple regimes in the data. The estimated sub-
samples are: (3) KAPW > $22.500. (1) KAPW < $22.500 and GDP < $5,600,
and (5) KAPW < $22.500 and GDP > $5,600.

KAPW
< $22.500 4

GDP

-5.15E-02 8.92E-02

Figure 5.6: Regression tree for carbon dioxide emissions

We find that for the low-income countries with low capital intensity. we explain
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about 29 per cent, for the low-income with high-capital intensity 35 per cent, for
the middle-income countries 10 per cent, and for the high-income countries almost
68 per cent of the total variation in emissions.

Table 5.12 presents panel regression estimates for cach subgroup. The R?
reported are weighted values for fitted cases. All variables are significant except
for the trade related variables in group 5 with high income per capita and low
capital intensity. The impact of trade for countries with high capital intensity and
high income is negative.

Even for carbon emissions the impact of openness to trade and FDI is negative
for rich, high capital intensive countries. Though only is for the high capital inten-
sity sample is statistically significant. For poorer, low capital intensity countries
openness to trade and FDI tend to increase emissions. The results for carbon emis-
sions also give some support to the pollution haven hypothesis, according to which
there will be the tendency for the production of dirty to be moved to low-income
countries as a result of international trade.

The estimates of income variables are all statistically significant. We find
evidence of an EKC for carbon dioxide emission for all groups of countries.The es-
timated turning points for high capital intensity and high income countries, groups
(3) and (5) respectively,® presented in Table 5.12 in Section 5.12 on page 163, are
all well above the sample mean income but within the sample range. These turning
points are much higher than the the turning point for SO, emissions. The turn-
ing point for the low capital intensity, low income group, is well out of the range
of the sample ($391,400 per capita) so that emissions are de facto monotonically
increasing. Non-existent or higher that SO, emissions turning points for CO; are
consistent with previously published literature suggesting that EKC relationships
are more likely to be found for certain types of environmental indicators, particu-
larly those with a more short-term and local impact rather than those with a more
long-term and global impacts (see, e.e, Arrow et al., 1995; Cole et al., 1997; Selden
& Song, 1994).

These findings also agrees with, for instance, Schmalensee et al. (1998) and
Dijkgraaf & Melenberg (2005). Schmalensee et al. (1998) found clear evidence of
an inverted-U relationship, with a within-sample turning point between carbon

dioxide emissions and per capita income. More recently Dijkgraaf & Melenberg

“For carbon dioxide emissions group definition and membership, see Figure 5.6 on
page 163 and Table 5.11 on page 165.
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Table 5.11: Regression tree sample break for carbon

Terminal node number

4 ! 3

Argentina United Kingdom Australia
Bolivia Hong Kong Austria
Chile Ireland Belgium
Colombia Israel Canada
Guatemala Korea, Dem. People’s Rep. Switzerland
Honduras Portugal Germany, West
India Venezuela, Denmark
Iran, Islamic Republic of Spain
Kenya Finland

Sri Lanka France
Morocco Greece
Madagascar Italy
Mexico Japan
Nigeria Luxembourg
Peru Netherlands
Philippines Norway
Syrian Arab Republic New Zealand
Thailand Taiwan
Turkey Sweden
Yugoslavia US.A.
Zambia

Zimbabwe

Romania

Czechoslovakia

Notes: The dependent variable is the natural log of carbon emissions per
capila. For the coefficient ¢ statistics are reported in parenthesis. Country-

specific dummies are included in all equations.

a Node numbers correspond to the node numbers in Figure 5.6.
b Turning points values in US dollars are reported in parenthesis.

165



CHAPTER 5. ECONOMIC GROWTH, TRADE, AND THE
ENVIRONMENT: AN ENDOGENOUS DETERMINATION OF

MULTIPLE CROSS-COUNTRY REGIMES

Table 5.12: Fixed Effects coefficient estimates at each node for carbon dioxide

emissions
Node? 2 4 5 3
Constant 0.04315 0.04372 0.02146 —0.02138
(6.562) (5.273) (2.171) (—1.39)
LGDP 3.056 1.842 5.591 16.63
(10.67) (4.101) (8.413) (8.959)
LGDP?2 —0.1427 —0.07151 —0.2725 —0.820606
(—R.214) (—=2.463) (=7.115) (—x.24)
LKAPW 0.14 0.2574 —0.1 —0.841
(4.668) (6.958) (—2.291) (—T7.623)
LOPEN 0.09736 0.1292 —0.005713 —0.295
(2.899) (3.267) (—0.104) (—3.147)
LFDI 0.02442 0.03922 —0.01982 —0.0002541
(3.387) (4.578) (—1.723) (—0.011)
cases 1949 1489 460 345
R? 0.6999 0.7308 0.7407 0.3974
TPP 10.71 12.88 10.26 10.06
(44,710) (391,400) (28,510) (23,420)

Notes: The dependent variable is the natural log of carbon emissions per capita. For
the coeflicient ¢ statistics are reported in parenthesis. Country-specific dummies are
included in all equations.

a Node numbers correspond to the node numbers in Figure 5.6.

b Turning points values in US dollars are reported in parenthesis.

(2005) also found that an inverted-U for CO> is likelv to exist for several. but not

all, countries.

166



CHAPTER 5. ECONOMIC GROWTH, TRADE, AND THE
ENVIRONMENT: AN ENDOGENOUS DETERMINATION OF
MULTIPLE CROSS-COUNTRY REGIMES

5.13 Conclusion and Further Studies

In this Chapter using a combination of parametric of nonparametric techniques,
we reject the linear model commonly used in the previous empirical literature in
favor of a multiple regime alternative in which different countries obey different
models. We demonstrated that regime differences explain an environmentally and
statistically significant proportion of environmental degradation. We find funda-
mental differences in the relationship between growth and environment between
developing and developed countries. Using the Kuznets curve metaphor, we find
that some rich countries may already have passed a turning point and begun to see
improvements in the environment with additional growth while for most others,
while most others are becoming increasingly polluted.

We find that the impact of openness to foreign markets varies according to the
level of development, trade policies, and the productive structure of an economy.

This approach suggests that rapid growth of developing countries that is not
accompanied by significant structural changes could have devastating consequences
on the environment. In addition, evidence to support pollution displacement from
rich to poor countries via international trade and foreign direct investment is
reported. This suggests that in the absence of coordination across countries in en-
vironmental policy, overall world environmental quality will fall with trade. There
is some evidence that China has mitigated some of the negative environmental
consequences by adopting new technology from developed countries through FDI.
In particular, Gallagher (2003) finds that China is adopting cleaner vehicle tech-
nology from the United States. Zhang (2000) finds that the decline in energy
intensity in China almost halved the increase in emissions that would otherwise
have occurred. It is the responsibility of developed countries to assist developing
countries by sharing and facilitate the use of new and cleaner technologies through
investment and trading and in promoting better environmental standards.

There arc some important caveats. Parameter heterogencity might reflect the
impact of omitted pollution determinants. Nonlinearities in the relationship that
cannot be easily captured by parametric models can also produce heterogeneous
parameters. The first problem is partially addressed by adapting the tree regression
to perform a panel data estimation. The second is mitigated by splitting the
sample. Another limitation of these methods based on Breimans’ (Breiman et al.,

1984) tree regression is that they have no known distribution theory. In Chapter 6,
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we will apply to the EKC the threshold estimation and testing procedure developed
in Hansen (2000) that overcomes this limitation. It would be of interest for further
study, to include other pollutants.

It’s clear that the variable used in this study for capital intensity behaves
anomalously, as for richer countries we find that more capital intensity signifi-
cantly reduces emissions. It is often assumed that capital intensity translates into
pollution-intensity. This seems too simplistic. There appears to be the need to
control for the level of “dirtiness” of the industry to improve our analysis. This
variable seems highly correlated with income, as Panel 5.3, showing scatterplots
of the log of emissions against the log of capital stock per worker, clearly illus-
trates. They patterns are very similar to the ones in Figure 5.3 for the GDP
variable. Also, in order to improve the comparability of this study with others,
it would be beneficial to re-estimate the models using capital abundance adjusted
for differences in worker’s productivity, as done in Antweiler et al. (2001).

Clearly more work needs to be done to fully understand the role of interna-
tional trade and foreign direct investment in mediating the relationship with the
environment. We believe that the next important empirical step for this line of
work, after having identified those pollutants and countries having similar cco-
nomic/environment relationships using a nonparametric approach, is to formally
test through parametric methods. the importance of the factors identified in this
study. Such level of detail will allow to test more appropriately alternative theoret-
ical specifications, investigate dynamic relations over time. and cnable rescarchers

to draw more specific and useful policy implications.
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CHAPTER 6. THE RELATIONSHIP BETWEEN GROWTH AND
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6.1 Introduction

This Chapter purports to explore the existence and nature of an empirical “law” of
development and environmental economics by means of nonparametric techniques.
The empirical law features two variables of considerable interests to economists
and policy makers, namely an indicator of environmental quality and the level
of per capita income. The link between these variables takes the form of an
“inverted-U” shaped curve in the pollutant/income space and is referred to by the
literature as the Environmental Kuznets Curve (EKC, hereafter). Environmental
degradation will increase with income at low levels of income, reach a peak and
then decrease with income at high levels of income. After the seminal papers by
Grossman & Krueger (1993a, 1995), and by Shafik (1994b), this relationship has
attracted considerable interest and today is one of the most lively research lines
in development and environmental economics.

Several ad hoc explanations have been proposed to justify this empirical law.
Some economists have stressed the impact of structural changes in the economy,
others the link between demand for environmental quality and income, interna-
tional trade, technologies improvement, and policies. For a comprehensive review
of this literature see Panayotou (2000).

If testing for the possible determinants of the EKC has been a quite popu-
lar exercise in the literature, surprisingly, less attention has been devoted to the
econometric and methodological problems arising from the quantity and quality of
data. Stern & Common (2001) pointed out that environmental data are “patchy
in coverage, and poor in quality.” Also, most of the empirical work is based on
the parametric approach. Only recently, Taskin & Zaim (2000, 2001), have sug-
gested the use of non parametric methods to test the existence of an EKC. The
nonparametric approach should be more suitable than a parametric one because
of its flexibility, as there is no need to specify an a priori functional form but by
letting the data reveal the shape of the relationship. Adding non-linear terms
in a parametric framework, a popular solution for this problem, may also not be
appropriate. This standard approach based on the linear model suffers from a few

drawbacks, especially when studying the EKC relationship.

(i) Polynomial function have all orders of derivatives everywhere. This prop-
erty might smooth out important features such as an asymmetric behavior
around the turning points. We think that we should not only be inter-
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ested in determining the location of turning points but also whether the

behavior of an up swing following a down swing is symmetric. Asymmet-

ric behavior around a turning point, besides having important consequences

for the policy maker as such. might also indicate the presence of different

factors affecting the downward and the upward branch of the curve. Stern

& Common (2001) have pointed out that trade might play an important

role in explaining the downward part of the EKC for developed countries.

Panayotou (2000) after examining the evidence form Vincent (1997) and

Carson et al. (1997b) concerning the existence of a Kuznets curve within in-

dividual countries concludes that “whereby rising incomes result in a more

effective regulatory structure by changing public preferences and making re-

sources available to regulatory agencies. States with low-income levels have

a far greater variability in emissions per capita than high-income states sug-

gesting more divergent development paths. This has the implication that

it may be more difficult to predict emission levels for low-income countries

approaching the turning point.”

(i) The polynomial degree cannot be finely controlled. Regression concerning

the EKC are basically polynomials of second or third order. Usually we are

interested in discriminating between an inverted U and an N shape. Non-

parametric regressions do not have this built in constraint. We will exploit

this particular feature to device a procedure to test nonparametrically the
inverted-U versus the N shaped EKC hypothesis. The test is in the spirit
of the bootstrap based on Silverman’s (1981) test of multimodality of a

probability density function, and its adaptation to testing monotonicity in

a nonparametric regression by Bowman et al. (1998).

(iii) Harbaugh et al. (2002) after re-examining the empirical evidence for the
EKC for three local pollutants, i.e., sulfur dioxide, smoke, and total sus-

pended particles (TSP) using a more representative data set, found that

estimates are extremely sensitive to the sample chosen and the economet-
ric specification. In particular, they found that for cubic polynomials very
small changes in estimated coeflicients, translate into large changes in the
shape of the estimated relationship. They pointed out that the problem is
aggravated by highly correlated independent variables and suggested that

nonparametric can allow for nonlinearities without making use of functional
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forms with correlated polynomial terms.

There are two main parts in this Chapter. The first part uses nonparametric
regression to explore the relationship between economic growth and the environ-
ment. We device a procedure to test nonparametrically the inverted-U versus the
N shaped EKC hypothesis. The test is in the spirit of the bootstrap based Sil-
verman’s (1981) test of multimodality of a probability density function, and of
Bowman’s et. al. (1998) adaptation of this to testing monotonicity in a nonpara-
metric regression. The second part uses a threshold model as a more parsimonious
nonparametric function estimation strategy. This approach will allow to formally
test hypothesis concerning the relationship between economic growth and the envi-
ronment that have emerged from the nonparametric regression approach and that
have been referred to frequently in the EKC literature, but that have never been
formally tested.

The first part of the Chapter is organized as follows. Section 6.2 introduces the
econometric and theoretical arguments that justify the nonparametric approach.
Section 6.3 addresses methodological issues specific to the application of nonpara-
metric regression to the estimation of an EKC curve. Successful empirical modeling
and the choice of appropriate statistical techniques come from careful consideration
of the economic theory behind the problem and the quality of the measured data.
Section 6.7 discusses the test. Section 6.8 presents and discusses the econometric
results. The second part of the chapter is organized as follows. Section 6.9 the
models threshold estimation and testing methodology are introduced. Section 6.10

presents the estimation results. Section 6.11 concludes.

6.2 Environmental-Economic Regimes

The processes of economic growth and environmental change are clearly complex
and evolving over time. Identifying all the complex interactions and feedback re-
lationships that are expected to play a significant role in the evolution of these
processes may be an impossible task at this point in time. One important assump-
tion underlying the majority of cross-country pollution studies is that all countries
obey a common linear model specification. Because of the inherent complexity of
the environment-economy interaction, our limited knowledge of it, and the often

poor quality of data, this assumption appears at best as a crude approximation.
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Limits in our econometric models can reveal themselves as apparent structural
change. Identifying these structural changes could further our understanding of
the links between the economy and the environment.

Besides econometric arguments, recent theoretical developments in modeling
the relationship between income and the environment also imply the existence
of different regimes. A simple and frequently used explanation for the EKC is
based on a traditional demand-and-supply analysis. A possible way to obtain
an inverted-U shaped EKC consistent with a demand-and-supply framework is to
suggest that the EKC reflects a demand for environmental quality. Assuming that
environmental quality is a normal good, pollution may at first rise with income,
but eventually fall as income continues to rise. More formal developments can be
found in Lopez (1994) and Copeland & Taylor (2003). The resulting EKC from
these models is graphed in Figure 6.1. Other models based on traditional economic
theory, such as the one by also predicts a smooth EKC curve for a technology with

increasing returns to scale.

Z

Figure 6.1: EKC generated by income eflects

Several recent papers have attempted to explain the EKC relationship by intro-
ducing threshold effects in modeling either pollution abatement. (sce. c.g.. Jones
& Manuelli, 1995), or environmental policy regulation (see, e.g., Stokey, 2001).
Threshold effects lead to a very different relationship between environmental qual-
ity and income during early stages of economic development as opposed to later
stages. For instance the abatement-threshold model predicts a kink in the relation-
ship between pollution and income, as shown in Figure 6.2. The policy threshold

model predicts an even more drastic changes in regime, and produce discontinuous
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EKC with a discrete drop in pollution and income once the threshold is reached.
The main advantage of the policy model over the abatement model, is that the
policy model generalizes to the multiple good case. It is noteworthy that both
models rely on strong policy responses to increases in income in the development

process.

Figure 6.2: EKC generated by threshold effects model

6.3 Nonparametric Regression

Let (X;,Y:).i=1,...,n, bea random sample from an unknown bivariate pop-
ulation distribution f(z,y). Econometrics frequently focuses on the conditional
expectation function m(z) = E(Y|X = z), where x is some fixed value of X. We

can write
)/,':m(X,')“"U/,', t=1,...,m,

where u; is an independent random crror satisfving E(ui|X; = z) = 0. Itis
not necessary that the conditional variance is a constant function. Typically one
assumes
2
Var(ui| X; = z) = 07 (2)-
The standard assumption made in cconometrics that m(z) = a+6z implies certain

strong assumptions about the data generating process. If f is a bivariate normal

density than it can be shown that the mean of the conditional density of Y given

X is linear
E(Y|X =z)=a+pz.
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There are many wayvs to obtain a nonparametric regression estimate of m (see
Wand & Jones (1995) and for a few examples). In this study we consider the two
important families of estimators and their suitability to estimate the EKC.

The most popular estimator, proposed independently by Nadaraya (1964) and
Watson (1964) (denoted NW thercafter). can be derived from the definition con-
ditional expectation

miz) = (Y| X =2) = [fte)dy= [v 228w, o1

where fy(z). f(z,y). and f(y|z) arc the marginal density of X, the joint
density of X and Y. and the conditional density of Y give X, respectively. An
intuitive approach for estimating m(z) is to substitute the unknown joint and
marginal densities in eq. 6.1 with appropriate kernel estimators.

The NW estimator obtained this way is

_ 27:1 K (';—') Yi
S K ()

m ()

The alternative estimator considered in this investigation is the local linear
estimator, whose better properties have been established only more recently (Fan,
1992, 1993; Hastie & Loader, 1993). To find the estimate of m at a particular
point z it fits a regression line by weighted least squares, using weights coming
from the height of a kernel function centered at z. Observation closer to x are
accorded greater weight. This method belongs to the more general class of estima-
tors known as local polynomial regressions. Another popular member of this class
is the Cleveland’s LOESS estimator (see, Cleveland, 1979). Formally the local

lincar regression estimate of m(x) at point z solves the least squares minimization

problem

a.b

n "‘Xi R
minZK (:1: 3 > (Y; —a—blx—X;))".
i=1

Note that the NW estimator can be seen as solving the following minimization

problem

n _ Xi R
minZK (:c 5 ) (Y —a)” .
i=1
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Econometrics is the application of mathematical statistical techniques to inves-
tigate an economic problem using economic data. Successful empirical modeling
and the choice of appropriate statistical techniques come from careful considera-
tion of the economic theory behind the problem and the quality of the measured
data. In fact, we will show how the nature of the economic relationship and the
quality of environmental data can considerably impact estimates and therefore the
implied policy recommendations. In particular, we will concentrate on the concave
nature of the EKC and on the problem of environmental data quality and their im-
pact on the nonparametric estimates. Environmental data availability and quality,
though improving with time, remains an important problem in investigating the
existence of the EKC. The use of nonparametric regression techniques insures that
missing or less accurately measured observations do not affect distant parts of the
estimated curve as much as the parametric estimator would. However, even non-
parametric methods are not immune to problems. We will see how the asymmetric
nature of the data, in the sense that most environmental data come from the most
industrialized countries, can affect a nonparametric estimator. In particular. we
will see how bias problems resulting from data asymmetry affects more seriously
the Nadaraya-Watson estimator, the standard nonparametric regression estimator
(for an application of this estimator to the ECK see, Taskin & Zaim, 2000).

6.4 Bias in Nonparametric Regression

Bias in estimating the EKC, whether originating from the nature of the EKC
relationship or the environmental data quality. by NW has two important effect.
The first makes the identification of the curve more difficult. The bias has the
effect of “attenuating” the estimated EKC. The bias also affects location and
height of the turning point where a EKC relationship is found. Table 6.1 reports
the pointwise asymptotic bias and variances for the NW and the Local linear
estimator.

One first important observation is that given that the variances of the two
estimators are the same, the local linear estimator is expected to perform better.
If we compare the bias of the Nadaraya-Watson estimator with the local linear
estimator we note that both depend on m” whereas only the NW because of the
local constant fit depends on m’ and f'/f. When |m/| or when f'/ f are large, i.e.

when the slope of the curve is high or when data are highly grouped. then the
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Table 6.1: Bias and Variance of Kernel and Local linear smoothers (Fan
1992) |

Est. Bias Variance
N-W (%m"(x) + %) 2 PR (u)dub? f?;;';,)l 7 K2 (u)du
Loc. lin. " (r) [ uK (u)duh? f;r)(”h S0 W2 (u)du

bias of NW is also large. Because the Kuznets curve would be a concave function
of GDP. the negative m” term implies that the the curve is biased downward
no matter which of the two estimators we use. The m' bias component of the
NW estimator being positive and then negative respectively in the ascending and
descending part of the curve would tend to attenuate the estimated curve. These
are asymptotic results. The bias would tend vanish as the sample size grows and
the bandwidth smaller. Unfortunately large datasets are usually not easy to come
by.

Figure 6.3 illustrates the bias caused by the asymmetry of observations and
the slope of m of the NW estimator. Since most observations are on the right
of the point we are trying to estimate (0.3). the estimate 15 biased upward. This
problem is aggravated at the boundary regions. Suppose that the observations are
confined to the [0,1] interval and that we are trying to estimate m(0).The figure
also shows how at 0, where the slope is positive, the local average is considerably
biased upward. Therefore another source of bias that “gttenuates” the EKC stems
from the fact that in practice we have a bounded support. When estimating the
regression at the leftmost observation, only points that are on the right can be
included, so that if the regression function is positively sloped, as we expect for

the EKC, there will be an upward bias at that point.

Figure 6.4 shows how with equally space observation these biases are visibly
reduced. Economic data being of a non experimental nature depart considerably

from this ideal design. Economic data tend to be clusterd. This will also be

illustrated in the practical application.
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Figure 6.3: Combined effect of the slope of the mean function and the asymmetry
of the observations on the Nadaraya-Watson estimator. Suppose we observe the
data indicated by the circles on a quadratic m(z). The data are shown with no
noise to simplify the illustration. We estimate m(0.3) using the locally constant
NW fit (represented by the horizontal thick line) using the normal kernel shown at
the bottom of the picture.

6.5 Potential Impact of Bias on Turning Point
and ‘Environmental Price’

In this section we illustrate the consequences of the NW bias induced by the com-
bination of slope of the mean function and the boundary effect on the location and
height of the EKC turning point. We will follow the convention established by the
existing literature on the EKC which is to compute the turning points from the
estimated functional relationship. In the existent EKC studies, the estimation of
the turning point has been widely proposed. The reason is twofold: “Estimated
of per capita income associated with the turning point can be compared with the

actual income levels of the observed dataset, thus indicating whether the turning
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Figure G.4: Effect of boundary bias on the Nadaraya-Watson estimator. We
estimate m(0) using the locally constant NW fit when all the data are within the
[0, 1] terval.

point income falls within or outside the observed income range. Analysis of stabil-
ity of the turning point can also shed light on the reliability of the EKC estimates”
Barbier (1997).

Furthermore, if there exists a threshold level of per capita income after which
economic growth “sow the seeds” for the improvement of the environmental quality
is important to know it. If the estimation, and the consequent considerations, of
the turning point has been a popular practice in the EKC literature, surprisingly
not the same can be said for the height of the curve. Of course, the implications
of estimation of the height of the EKC, are not trivial issue. Following Panayotou
(1997), it specifies the ‘environmental price’ of economic growth. So that it rep-
resents the maximum stress that must be carried out by the environment before
experiencing an environmental improvement path. So underestimating the height
may have serious consequences to some ecological threshold (see, Arrow & others,
1995, and Munasinghe, 1999). Following the above definitions. if m(z) is an es-
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timator of the EKC, the nonparametric estimators of the turning point and the

environmental price can be defined respectively as the interior global maximum,

ﬁ:arg max m(x)

k)
ZE(T1,Tn)

and

EP = max m(x).
z€(T1,Tn)

We assume that the curve has bounded support and is defined on [1,z.]. Fig-
ure 6.5 illustrates the effect of the boundary bias on the estimated turning point
and environmental price. The turning point in the example is close to the right
boundary. In this case, the combined effect of downward bias caused by the cur-
vature and the upward boundary bias shifts the turning point to the right. The

estimated environmental price is lower then the true one.

The consequences of this bias can be quite serious. Suppose, for example, the
curve was estimated by using a cross section sample containing mostly rich coun-
tries, not a particularly contrived situation since more reliable data are available
for these countries. These countries might be situated mostly on the downward
part of the curve. Under these circumstances the turning point and the associ-
ated level of pollution, the environmental price, could be seriously underestimated.
Figure 6.6 exemplifies this scenario. If these findings where employed for policy
implication for poorer countries the consequences could be serious. Learning from
the experience of the most industrialized countries when using an inappropriate
estimator could be seriously misleading. We will employ an applied example to

see whether these problems could significantly affect estimatcs.

6.6 Nonparametric Estimation of the Kuznets

Curve Example

We will employ an applied example using 1990 cross-section data from World Re-
sources Institute (around 160 countries) to see whether the aforementioned prob-

lems could significantly affect estimates. As environmental quality indicators we
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Figure 6.5: Combined effect of curvature of the mean function and boundary bias
of the Nadaraya-Watson estimator on the estimated turning point.

have taken the emission per capita of three important air pollutant: sulphur diox-
ide (SO). carbon dioxide (CO,) and nitrogen dioxide (NO,). Our analysis is
more focused on the first pollutant because it shows a clear bell shaped curve.
SO, is a pollutant which action is mainly local (urban smog). SO, is emitted
largely from burning coal (for heating purposes) and high-sulfur oil. Figures 6.8,
6.10 and 6.11 present the results of the nonparametric estimation!. Sulfur dioxide
is the only pollutant among those considered here that displays a clear inverted-U

relationship with per capita income. Figure 6.8 shows the Nadaraya-Watson and

1For the Local polynomial estimate we use direct plug-in methodology to select the
bandwidth of a local linear Gaussian kernel regression estimate, as described by Ruppert,
Sheather and Wand (1995) implemented in their own S library. For the NW estimate we
use the technique of cross-validation to select a smoothing parameter as provide by the
sm R library by Bowman, A.W. and Azzalini, A. (1997).
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Figure 6.6: Effect of slope and boundary bias of the Nadaraya-Watson estimator
on the estimated turning point. Points are a random sample from the uniform
distribution. If the true turning point is located at low level of income the estimated
turning point will be shifted to the left.

the Local polynomial estimate on the same graph. It is clear from the picture
that the attenuating effect causes the NW estimate to be flatter than the locpoly
estimate. A clearer illustration of this effect is provided by Figure 6.9 which shows
the difference of the two curves. The difference is smoothed using a gaussian ker-
nel with a bandwidth of 0.5 to enhance the interpretability. The shape is close to
an inverted-U. This is consistent with the attenuation bias of the NW estimator
hypothesis. One of the most important feature in Figure 6.9 is that the upward
branch of the curve is considerably less prominent then the downward one. Based
on the previous discussion this can be explained by the concentration of the rich
industrialized countries in that branch. The negative slope of the curve and the

concentration of countries determines a downward bias that partially compensate
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the positive boundary bias. The picture also shows that the NW estimate between
1,851 and 23,522 dollars of per capita income differs by as much as 13 per cent.
From the picture it is clear that the asymmetric nature of the data in the
sense that there are mostly high income countries and that they are mostly on the
descending part of the curve. This concentration of high income countries on the
descendent part of the curve seems to be responsible of the difference between the
local polynomial and the NW estimate. The NW estimate of the turning point

and the level of pollution associated with it is is lower then the locpoly one.

Table 6.2 reports the estimated turning points and the associated ‘environ-
mental price’ for the two estimators considered. Since the variable are in logs the
difference between two values given by different estimation methods gives an ap-
proximation to the percentage change of estimated concentration level that results
from changing estimator correspondingly. The NW estimator gives a turning point
that is more than 6 per cent smaller then the one obtained from locpoly estimator.
Also, The associated environmental price of the NW estimator is more than 8 per
cent smaller then the one computed from the local polynomial estimator. These
observations provide evidence that in an actual example the bias is considerably

affecting the estimates in agreement with the theoretical predictions.?

6.7 Nonparametric Testing the Inverted-U Vs.
the N shaped EKC Hypothesis

We sare interested in testing whether the Kuznets curve exists and what shape

it takes, namely whether it is of an inverted-U shape or N shaped. Figure 6.8

2A rugplot is added to aid the interpretation. The data have been jittered to avoid

mark’s overlapping.
(=]
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Figure 6.7: Local Polynomial and Nadaraya-Watson estimate for the SO,

! OKWT
0 — OBGR :
—— Locpoly '
- - Nw OSYR| ogyN OCAN
q— —
—_ ™
N
O
)]
% N
o
—

R ONPL OVNM
OBGD

M = e = =

T L 0
T % % lH'HH 111 I%Jl I nluqil
6 7 8 9 10
log(gdpPPP)

Figure 6.8: Local Polynomial and Nadaraya-Watson estimate for the §O,. The
two turning points data on the estimated turning point. The NW estimator assigns
weights proportional to the heights of the rescaled kernel. A rugplot, which adds
a mark for each observation on the x-axis, is added to aid the interpretation. The
data have been jittered (a small amount of noise has been added to the data) to
avoid mark’s overlapping. The ISO-3166 3-letter identifications code has been used
to label the countries. If the true turning point is located at high level of income
the estimated turning point will be shifted to the left.

suggests the possibility that it might be N shaped. The question of interest is
whether the N shape for the SOs reflects the shape of the underlying EKC or its
caused by random fluctuations. Taskin and Zaim (2000) test the existence of the
curve by testing whether the vector of partial derivatives of the conditional mean
is equal to zero versus the alternative that it is not using Hotelling's T? test. This
approach has at least two limitations. Firstly it is parametric and secondly does
not allow to test for the shape of the EKC. We will approach the existence and

shape problem in an unified way. The N shape is characterized by a sccond turning
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Figure 6.9: Smoothed difference between the Nadaraya-Watson and the
Local polynomial estimates.

point. In order to proceed we need to define a nonparametric estimator for the
second turning point. If we relabel the estimator for first turning point a ﬁl,
we can define the estimator for the second turning point as (the interior global

minimum after the first turning point)

ﬁg =arg min Mm(z),
z€(TP1,zn)

We device a procedure to test nonparametrically the inverted-U versus the N
shaped EKC hypothesis. The test is in the spirit of the bootstrap based Silverman’s
(1981) test of multimodality of a probability density function, and of Bowman’s
et. al. (1998) adaptation of this to testing monotonicity in a nonparametric
regression. To test for the inverted-U shape EKC hypothesis the idea is to see

whether a relatively large b is required to force an N shaped m to an inverted-U
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Figure 6.10: Local Polynomial estimate for the NOs.
shape.
As h tends to infinity, the estimated curve tends to the least square regression

line. This fact alone does not guarantee that the number of turning points is a
monotone decreasing function of h. In fact, for the local polynomial estimator,
this is indeed not the case. We will take comfort from the fact that Bowman et.
al. (1998) find that departures from monotonicity are extremecly unusual.

The test statistic is the critical bandwidth defined as,

herit = min{h| m(z: h) is of an inverted-U shape}.
h>0

Once for given observations we have computed hy we need to decide whether
it is a “surprisinglv” large value for the statistic k.. In order to do this hy has
to be assessed against a suitable null sampling distribution.

A suitable choice of null sampling distribution should posses the following
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Figure 6.11: Local Polynomial estimate for CO,.

desirable properties:

(i)
(if)

(iif)

In order to determine the sampling distri

U shape we should consider the “worst”

The density of H should be such that m is of an inverted-U shape.

Subject to (1) the density of H should produce a plausible shape of m
given the data, since, for example, large values of h would be from very

flat inverted-U shaped curves.

among the densities satistying (1) and (2) we should consider the “worst” of
the infinite possibilities under the null, i.e., that alternative that would make

the decision between an inverted-U shape and an N shape a most difficult
one. Clearly, the the decision would be more difficult if /2 was the most

nearly N shaped, amongst the infinite inverted-U shaped curves.

bution of H under the null of inverted-
of the infinite possibilities under the null,
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Table 6.2: Turning Points and Environmental Prices by Estimator

TP (log) | EP (log) | TP (3) | EP (tous)
Locpoly 9.416488 3.754450 1§ 12289.1 42.7
Nadarava-Watson 9.353129 3.670684 115349 39.3
Difference 6.335975 % | 8.376582 % | 754.5% | 3.4 tons

i.e., that alternative that would make the decision between an inverted-U shape and
an N shape a most difficult one. Clearly, the the decision would be more difficult if
m was the most nearly N shaped, amongst the infinite inverted-U shaped EKC’s.

Bootstrapping is used to provide a null distribution for the test statistic. Ta-
ble 6.3 gives the critical bandwidths and P-values for the bootstrap test of the null
hypothesis that EKC is of an inverted-U shape against the alternative that it is
of an N shape. Using 10000 replication we find that the inverted-U shape cannot
be rejected against the N shaped alternative hypothesis with a p-value of 0.326.
This finding agrees with Shafik’s (1994) parametric findings. Others (Grossman
and Krueger, 1993, for ex.) have found weak evidence of an an N shaped EKC for
SO,. Though with the available data we cannot statistically detect the renewed
positive relationship between per capita income and SOy, it is remains a substan-
tively important feature in our estimate that, because of its policy implications,
cannot be easily dismissed. The high variability in the data and the conservative
nature of these kind of tests Silverman (1983) might considerably bear upon the
results. The table also reports a test of monotonic EKC versus a inverted-U shaped

one. The monotone null is rejected at the 10 per cent significance level.

Table 6.3: Critical Bandwidths and their Estimated P-values

EKC Hypothesis herit | P-value®
Monotone Vs. Inverted-U | 0.93 0.088
[nverted-U Vs. N shaped | 0.24 | 0.326

aTen Thousand replications were used to ob-
tain the approximate null distribution.
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6.8 Nonparametric Elasticity and Asymmet-
ric Behaviour Around the Turning Point

Since the variables are in logarithms the derivative of the EKC has an important
economic interpretation, the elasticity with respect of per capita income of the
environmental quality indicator. Extending the idea of local polynomial fitting,

one can cstimate g(x) as the slope of the local polynomial fit.
e(x) = b(z)" (B'W(z)B) " BTW (2)Y..

Figures 6.12 and 6.13 present the results of the nonparametric estimation of the
elasticities. Sulfur Dioxide’s nonparametric elasticity is relatively elastic for levels
of income below the median and relatively inelastic for levels above the median.
This finding is consistent with with the parametric elasticity found for Sulfur Diox-
ide by Shafik (1994b, p. 766). The nonparametric elasticity shows another inter-
esting feature not identifiable in the parametric estimates. There is a “kink™ at
the turning point of the curve. Before the turning point the the elasticity changes
very slowly whereas after reaching the turning point elasticity starts to decrease
at a higher (more than double) rate. This is consistent with Panayotou’s conclu-
sions (2000). The curve appears to be flatter before the turning point then after
it.This could be evidence of regime differences between countries on the increas-
ing part of the curve and countries on the decreasing part. We attempt to verify
theses preliminary findings in the following sections using a threshold approach,
a more parsimonious nonparametric function estimation strategy. This approach,
will allow to formally test parametrically some of the hypotheses concerning the

relationship between economic growth and the environment.

6.9 Threshold Model Estimation and Testing
Methodology

In this section we review the threshold estimation and testing procedure developed

in Hansen (2000) that will be applied in this chapter to the EKC debate. Com-
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Figure 6.13: Elasticity of NOx with respect to income.
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petitive methods to estimate thresholds, such as Breimans’ (Breiman et al., 1984)
tree regression, have no known distribution theory.

Let {v;, ®;,¢;} be an observed sample. where y;. ¢; € Rand ; = (1,2, ,za)T
The threshold variable g;. which can be an clement of x;. is assumed to have a

continuous distribution. The threshold regression model

y =9 +e, ¢<T7 (6.2)
y =0z +e, ¢>T (6.3)
where 9 = (91,99,...,9,)" and @ = (6;,6,,. .. ,0,)F. After defining the dummy

variable,

di(T) = g, <r}s
the model (6.2)-(6.3), can be written as one equation
Yy = 0l x; + 6 x;d;(T) + e, (6.4)

where & = (81,082, ,0,)F. Equation (6.4) allows all parameters to differ across
regimes. The model can be expressed in matrix notation by defining the n x 1

vectors ¥y = (Y1,Y2,. - - ,yn)! and e = (e, e, .- -, en)T, and matrices

| i dy(7)
x xl ds(7)
X = ) ’ Xr = }
1:]11 nxk m"l;d” (T) nxk
Then (6.4) can be written as
y=X0+ X0 +e (6.5)
Let
S,(0,8,7) = (y— X0 — X:6)" (y— X0~ X9) (6.6)

he the sum of squared errors. Keeping 7 fixed, (6.5) is linear in 0 and 9, yielding

the conditional OLS estimators

(6r) 8(m) = (XXX Ty (67
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where X*T = (X X,

SN’

. The concentrated sum of squared error is

—~ o~

Sn(T) = 8,(0(1),d(7),7) = yy’ —y! X* (X' X1 X3 Ty, (6.8)

and T can be defined as

T =argmin S, (7).
T7€T,

where T, is a suitably bounded set. Hansen (2000) showed that, under some
regularity conditions. the distribution of 7 is nonstandard but free of nuisance
parameters.

To test the hypothesis

H():T:T(),

a likelihood ratio approach can be employed under the maintained hypothesis that
e; is independently and identically distributed N(0,02). Let the test statistic

Sn (T) - Sn(?)
S, (T)

LR, =mn (6.9)

For large values of the statistic (6.9) the null Hy is rejected. Hansen (2000) shows

that under certain regularity conditions

d -
LRH (TD) I 7725,

where £ is a random variable with distribution Pr(€ < z) = (1 —e™/2)* and ° is

a nuisance parameter equal to 1 in the case of homoskedasticity
E(e}|q) = o

Confidence regions based on the likelihood ratio statistic can be obtained by
inverting the likelihood ratio test of Ho: 7 = 75. Denoting with C the desired
asymptotic confidence level, and with ¢¢ the C-critical value for &, the confidence

set is defined as
T = {r|LR, < c}. (6.10)

In case of heteroskedasticity, approximate confidence regions can be constructed
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based on the scaled likelihood ratio statistic,

LR} = T PP (6.11)

where 7' is a consistent estimate of the nuisance parameter (see Hansen, 2000). In

case of heteroskedasticity, the modified confidence set becomes
T* = {7|LR* <¢}. (6.12)

Since the estimator %2 is consistent for the threshold parameter n?. P(r, € T;) —
C asn — . s0 that T* is a heteroskedasticity-robust asymptotic C-level confi-

dence set for 7.

6.10 Data and Estimation Results

We illustrate the usefulness of Hansen’s threshold model to the EKC debate by
fitting a standard model that seeks to explain pollution emissions as a function of
GDP and trade related variables. The specification used to illustratc the procedure

is the log-log functional form of

5021990 = a+ B1 INCiy990 + B2 INC? 990 + B3 OPEN; 1090 + By F DI 1000 + 1
(6.13)

where for cach country <:

502, ; = Sulfur Emissions measured in tons of sulfur per capita. in vear ¢.

INC;; = Recal GDP per capita (1985 intl. prices). in vear .
Exports+Imports
- , 1 vear ¢.
Nominal GDP
FDI;; = Gross Foreign Direct Investment. in % of GDP. in vear t.

OPEN,‘_t =

Sulfur emissions were taken from the data from the Historical Global Sulfur Emis-
sions data set of A.S.LL and Associates, which includes the sulfur dioxide emissions
from burning hard coal, brown coal, and petroleum, and sulfur emissions from
mining and related activities for most of the countries of the world during the pe-
riod 1850-1990 (Lefohn et al., 1999). The real GDP per capita came from the Penn
World Tables (PWT) Mark 5.6. The values are all measured in 1985 international
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US dollars. 3 Foreign Direct Investment data were obtained from the UN World
Trade Data Base discussed in Feenstra et al. (1997). We use the 1990 data, the
last vear available for SO, emissions. over a sample of 45 OECD and non-OECD
countries.

We use two possible threshold variables: INC and OPEN. To select among
the two variables we use heteroskedasticity-consistent Lagrange multiplier test
for a threshold developed by Hansen ( 1996). As the threshold is not identified
under the null hypothesis of no threshold. the p-values are obtained by means of
hootstrapping. Using 1000 hootstrap replications. the p-value for the threshold
model using INC was significant at 0.0365 for the log-linear model and marginally
significant at 0.0980 for the log-quadratic model. This results suggest that there
might be a sample split based on per capita income? No evidence of a split
based on OPEN was found. Figure 6.14 shows the graph of the heteroskedasticity-

robust likelihood ratio sequence LR

(1) against the threshold in natural log of
INC. Income is graphed on a natural log scale. The least square estimate of 7
is the value that minimizes the curve. which oceurs at 7 = $15,329. The 95 %
critical value of 7.35 is also plotted (dashed line). The asymptotic 95 % confidence
set is T* = (15,326, $15,503]. which in the graph is given by the levels income

where the LRY (1) sequence crosses the dashed line.

Table 6.4 presents the linear and quadratic OLS for the global sample and the
two samples based on the spilt on INC. The OLS for the global sample shows
an ITP of about $5.700. in agreement with previous studices for SOy emissions.
The income turning point of the global sample is much lower than the threshold
income that divides the two regimes. Changes that might benefit the environment
occur at much higher levels of income than those implied by standard EKC mod-
els. The ITP of the global sample is much lower than the threshold income that

3The PWT are described in Alan Heston and Robert Summers The Penn World Table
(Mark 5): An Expanded Set of International Comparisons, 1950-1988, Quarterly Journal
of Economics, May 1991, pp. 327-368.

To compute the estimates and confidence intervals for  threshold
model, we wused Hansen’s program written in GAUSS available fr(.)m
http://www.ssc.wisc.edu/~bhansen/progs/progs_threshold.html. ‘ The version
of GAUSS used to run the program was the GAUSS for Windows version 6.0. The
hardware used was a Dual Intel Pentium IV (Prestonia) Xeon Processors 3.06 GHz with
HT Technology with 4 GB of RAM running on Microsoft Windows XP /2002 Professional

(Win32 x86) 5.01.2600 (Service Pack 2).
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Variable Global OLS Regime 1 Regime 2
Constant | —16.991 —86.387 | —28.137 —104.337 | —19.001 —6774.782
(3.0469) (16.3956) (2.9606) (14.8965) (5.5303) (2407.6255)
LGDP —0.1765 15.8955 1.4806 20.3905 | —0.2504 1373.0482
(0.3906) (3.8462) (0.3276) (3.5594) (0.5413) (491.1188)
LGDP2 —0.9192 —1.1702 —69.7848
(0.2216) (0.2117) (25.0332)
LTRADE | 1.3455 1.2542 0.5694 0.6290 1.9999 2.1913
(0.3331) (0.2628) (0.3696) (0.3013) (0.2709) (0.2830)
LFDI —0.4550 -—0.3779 ; —0.2503 —0.1905 | —0.6350 —1.1058
(0.1339) (0.1413) (0.1403) (0.1209) (0.2069) (0.1742)
TP 8.647 8.712 9.838
(5692) (6077) (1.873e+004)
o 0.891 0.762 0.366

Table 6.4: Regression coefficients
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Figure 6.14: Confidence interval construction for threshold

divides the two regimes. On the other hand the impact of income on pollution
is greater in regime 2 than in regime 1. This is illustrated in Figure 6.15 where
the estimated quadratic relationships between income and emission for the two
regimes are illustrated. Regime differences are also apparent from the estimated
error variance. The estimated error variance of regime 1, the poorer countries, is
more than twice that of regime 2, the richer countries. Panayotou (2000) after
examining the evidence form Vincent (1997) and Carson et al. (1997a) concern-
ing the existence of a Kuznets curve within individual countries concludes that:
“whereby rising incomes result in a more effective regulatory structure by changing
public preferences and making resources available to regulatory agencies. States
with low-income levels have a far greater variability in emissions per capita than
high-income states suggesting more divergent development paths. This has the
implication that it may be more difficult to predict emission levels for low-income
countries approaching the turning point.” A formal test supports this hypothesis.
The statistics for the Goldfeld-Quandt test for the null that the two variances are

equal versus the alternative that the variance for regime 1 is higher than that of

196



CHAPTER 6. THE RELATIONSHIP BETWEEN GROWTH AND

ENVIRONMENT: SHOULD WE BE LOOKING FOR TURNING OR
BREAK POINTS?

regime 2 (Goldfeld & Quandt. 1997) is 2.325 with a p-value of 0.039.
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Figure 6.15: EKC estimated curves for different regimes

6.11 Conclusion and Further Studies

The environmental Kuznets curve, the inverted U-shaped relationship between
economic development and environmental quality, is an empirical “law” of envi-
ronmental economics that has been documented in many cross-country studies.

In this chapter we found that threshold estimation is a promising technique
that can be used to test a different class of models of the environment-economic
system and support a conscious policy intervention. Applying this methodology
to the environmental Kuznets curve debate, we find support for threshold models
that lead to different reduced-form relationships between environmental quality
and economic activity when early stages of economic growth are contrasted with

later stages. In agreement with the findings from Chapter 5. we find no evidence of
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a common inverted U-shaped environment/economy relationship that all country
follow as they grow economically. We also find that changes that might benefit
the environment occur at much higher levels of income than those implied by
standard models. These findings suggest that there is nothing automatic about
these changes, improvements are a consequence of the deliberate introduction of
policies addressing environmental problems.

Moreover, we find evidence that countries with low-income levels have a far
greater variability in emissions per capita than high-income countries. This implies
that it may be more difficult to predict emission levels for low-income countries
that may be approaching a turning point.

These findings suggest that policy maker should exercise extreme caution, par-
ticularly in developing countries as, as Arrow et al. (1995) pointed out, “policies
that promote gross national product are not substitutes for environmental pol-
icy.” Moreover, as there is evidence of more uncertainty about possible future
development paths and the location of possible turning points, there are reason-
able erounds for concern that potentially dangerous and irreversible effects on the
environment may occur if appropriate precautionary action is not taken.

There are some important caveats to bear in mind. Estimated error variance
might reflect the impact poorer quality data, omitted pollution determinants, and
SO on.

Possible directions for further research include the following aspects.

o Our threshold estimation has focussed only on one pollutant, sulfur dioxide
emissions. As mention in previous sections, since it is one of the main pol-
lutants, these result should be of interest to policy makers. Also, previous
studies clearly show that sulfur dioxide emissions bebave similarly to other
local impact pollutant with serious health consequences such as nitrogen ox-
ides, and particulates. It is likely that some of this results may be applicable
in other cases, but it would be of interest, in a further study, to apply this
methodology to a global pollutant affecting climate change such as carbon

dioxide.

e Another area requiring further investigation is the choice of control vari-
ants. Based on the results in the previous chapter. it would be beneficial
to reestimate the threshold models using capital abundance, as defined in

Antweiler et al. (2001). Other variables that have been used in the lit-
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erature on the EKC that could be further investigated include, industrial
composition of output (see, e.g., Grossman & Krueger, 1995), population
density (see,e.g., Cropper & Griffiths, 1994; Selden & Song, 1994), openness
to trade (see, e.g., Antweiler et al., 2001; Hettige et al., 1992; Grossman &
Krueger, 1993b; Suri & Chapman, 1998), environmental regulation and con-
trol (see, e.g., Shafik, 1994a; Baldwin, 1995), democracy (see, e.g., Torras
& J.K., 1998; Harbaugh et al., 2002), corruption (see, e.g., Lopez & Mitra,
2000), civil and political liberties (see, e.g., Barrett & Graddy, 2000; Tor-
ras & JXK., 1998), power inequality (see, e.g., Boyce, 1994), literacy (see,
e.g., Torras & J.K., 1998), geographical factors (see, e.g., Neumayer, 2002),
income inequality (see, e.g., Torras & J.K., 1998; Magnani, 2000; Ravallion
et al., 2000), and so on.

e Extending this methodology to panel data observations would improve the
reliability of the results by allowing to control for various unobserved effects

so it would be interesting and important subject of future research.
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CHAPTER 7. SUMMARY

The role of nonparametric methods in econometrics has increased in impor-
tance during the past several yeas. A quick search through through economic
journal databases reveals that, though most economic application of nonparamet-
ric methods are recent, they are steadily growing in number. The choice be-
tween between traditional parametric and semiparametric/nonparametric method
is rapidly tilting towards the latter, as computations become ever cheaper.

Thelr increase in popularity can be attributed in part to their flexible nature
but also to the ever growing computational power, the availability of more powerful
graphic devices, and their implementation many in off-the-shelf software. Many
statistical and econometrics software application offer nonparametric density and
regression estimators that can be accessed with few clicks of a mouse or with a
simple function call at a prompt.

In this thesis emphasis was given to methods that enable the inclusion of mul-
tiple explanatory variables without suffering of the so called “curse of dimension-
ality” that severely limits the applicability of standard neonparametric methods.
In this thesis we have seen, through relevant economic applications, how these
methods can be used in conjunction with parametric methods to mutually sup-
port each others findings. Once a probabilistic structure has been identified by
nonparametric means, we can adopt, whenever appropriate and on an independent
sample, a fully parametric approach, to reinforce the nonparametric results and to
test relevant economic hypothesis.

In Chapter 3 we have proposed some basic standards to improve the use and re-
porting of nonparametric methods in the statistics and economics literature for the
purpose of accuracy and reproducibility. In particular, we made recommendations
in five aspects of the process: computational practice, published reporting. nu-
merical accuracy, reproducibility, and visualization. We have highlighted the fact
that nonparametric methods are inherently computationally intensive and rely on
a plethora of implementation details that can be built-in the software application,
fixed as default settings, or determined by the researcher. The control available
over these implementation details is a function of both the sophistication of the
software and the user. More knowledgeable users and better designed software
can give greater control over the nonparametric estimation procedure. Detailed
control over the estimation procedure is often required to achieve more accurate
results, for correct model selection strategy, for efficiency in computation, and to

facilitate reproducibility and further rescarch. We have also reflected on current
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developments in the practice of computing, visualization, and open source soft-
ware, and their potential usefulness in making empirical research in economics
using nonparametric methods more easily reproducible.

In Chapter 4 we investigated the effect of demographic and socio-economic
characteristics of households on income inequality in the UK. We started by esti-
mating the conditional distribution of income over a broad set of determinants. We
then devised a method for obtaining conditional inequality measures by inverting
the estimated conditional distribution. Our results provided a visually clear rep-
resentation of both the substantive and statistical impact of each factor on income
inequality, keeping all others constant.

Our approach is novel in at least four respects. First, by estimating the entire
conditional distribution of income over a broad set of determinants, our estima-
tion procedure uncovers higher-order properties of the income distribution and
non-linearities of its moments that cannot be captured by means of a “standard”
parametric approach. For example, similar to the results obtained in the previ-
ous literature, we found that the shape of the age-income profiles agrees with the
observable prediction of the life-cycle model, which assumes that resources are ac-
cumulated at a faster rate at a young age. Also, we found that income of families
during the period of child rearing was higher than income in the retirement stage
of the life-cycle, when economic responsibility is greatly reduced. In addition, we
found that the age-income profiles peaked later for the wealthier households and
appeared considerably non-linear, declining rapidly after the age of 60. Besides
having important consequences for the policy maker as such, the asymmetry might
also indicate the presence of different factors affecting the upward and downward
branches of the age-income profile that have not been included in our and pre-
vious analysis. For instance, factors that determine a loss in earning capacity at
retirement age of individuals, like deterioration of health and increasing aversion
towards risk, could help in explaining the observed asymmetry.

Second, by estimating the whole distribution we were able to identify where in
the distribution of income the various determinants exerted their greatest impact.
This detailed analysis provided further insight into the determinants of inequality,
of great importance to researchers as well as policy makers. For example, we found
that, in agreement with previous published results, the impact of employment sta-
tus was spread over the entire income distribution. However, in addition, we found

that the impact on income was substantially greater for lower income families.
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Third, we devised a method for obtaining nonparametric conditional inequality
measures by inverting the estimated conditional distribution. Our estimates indi-
cated, for example, that if average household size increased from 2 to 4, households
in the top 90th percentile of the income distribution would move from earning 3.2
times more then households in the 10th percentile to eaming about 2.5 times more.
This amounted to a 20 per cent fall in inequality. This increase in inequality was
obtained after controlling for other important factors, such as the age structure,
the presence of a retired head and young children. Previous approaches, based on
the “standardization” of inequality series, inequality decomposition by population
sub-groups, or nonparametric methods, have not been to identify the contribution
of individual factors on inequality, except for very simple cases.

Finally, our approach allowed us to establish consistency and to estimate
asymptotic variances of the proposed inequality estimators, which was useful for
inference purposes. It provided a visually clear representation of both the substan-
tive and statistical impact of each individual factor on income inequality, keeping
all others constant. For instance, we found that for the UK sample, household
size, number of young children, age of head, and employment status, have a large
substantive and statistical impact on inequality. Factors such as years of educa-
tion, marital status, and urban versus rural households, on the other hand, did
not significantly impact inequality. Combined with the recent trend of declining
household size in the UK, this results could help explain the trend of increasing
income inequality observed in the past decades in the UK.

Chapter 5 we re-examined the relationship between openness to trade and the
environment, controlling for economic development, in order to identify the pres-
ence of multiple regimes in the cross-country pollution-economic relationship. We
first identified the presence of multiple regimes, then we developed an casily inter-
pretable measure, based on an original application of the Blinder-Oaxaca decom-
position, of the impact on the environment due to differences in regimes, and finally
we applied a nonparametric recursive partitioning algorithm to endogenously iden-
tify various regimes. Our conclusions were threefold. First, we rejected the null
hypothesis that all countries obey a common linear model. Second, we found that
quantitatively regime differences can have a significant impact. Thirdly, by using
regression tree analysis we found subsets of countries which appear to possess very
different environmental/economic relationships. In particular. we found that the

impact of openness to foreign markets on sulfur and carbon dioxide emissions varies

204



CHAPTER 7. SUMMARY

according to the level of development, trade policies, and the productive structure
of the economy. Our result also showed that there is substantial geographic ho-
mogeneity within each regime, giving some support to findings by geographical
factors. Our finding also highlighted the importance of democracy, corruption,
and civil and political liberties. We found support for studies that based on the
poor environmental performance of Soviet economies and dictatorships established
in Latin America, Asia and Africa, have been advocating democratic reforms as a
way to promote both economic and environmental welfare.

In Chapter 6 investigate the existence of the so called environmental kusnets
curve (EKC), the inverted-U shaped relationship between income and pollution,
using nonpa;rametric regression methods.

The flexible nature of nonparametric estimation allowed as to find evidence of
an asymmetric behaviour of the curve before and after the turning point, consis-
tently with threshold-effect models. This finding are also consistent with a strand
of previous empirical evidence concerning the existence of a Kuznets curve within
individual countrics. We investigated these nonparametric findings further using a
threshold estimation method. Our findings have considerable implications for the
policy maker. Applying this methodology to the environmental Kuznets curve de-
bate, we found support for threshold models that lead to different reduced-form re-
lationships between environmental quality and economic activity when early stages
of economic growth are contrasted with later stages. We found little evidence of
a common inverted U-shaped environment/economy relationship that all country
follow as they grow economically. We also found evidence that changes that might
benefit the environment occur at much higher levels of income than those implied
by standard models. These findings suggest that there is nothing automatic about
these changes, improvements are a consequence of the deliberate introduction of
policies addressing environmental problems.

We also found that regime differences are apparent from differences in the
estimated error variance. The estimated error variance of the poorer countries
regime was more than twice that of the richer countries regime. This implies that
it may be more difficult to predict emission levels for low-income countries that
may be approaching a turning point. This result is consistent with recent models
of the EKC that assume that before crossing the turning point pollution in poorer
countries may be completely unregulated.

We found that threshold estimation is a promising technique that can be used
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to test a different class of models of the environment-economic system and support
a conscious policy intervention. These findings suggest that policy maker should
exercise extreme caution, particularly in developing countries, when promoting
growth as a solution to environmental problems. As Arrow et al. (1995) pointed
out, “policies that promote gross national product are not substitutes for environ-
mental policy.” Moreover, as there is evidence of more uncertainty about possible
future development paths and the location of possible turning points, there are rea-
sonable grounds for concern that potentially dangerous and irreversible effects on
the environment may occur if appropriate precautionary action is not taken. With
fast-growing developing countries experiencing increasing environmental problems
like China and India this uncertainty makes inaction a very risky strategy for the
future of our planet.

Based on this, necessarily short, application of nonparametric methods in eco-
nomics, we conclude that these methods are having, and will continue to have a
considerable impact on the discipline. In particular, we have seen that the devel-
opment of semiparametric methods that overcome the “curse of dimensionality”
problem that afflicted earlier nonparametric approaches, has ensured that richer
and more interesting economic problems can be usefully investigated through their

application.
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There are several areas in the application of nonparametric methods to eco-
nomics where additional research would be valuable. For results to become more
detailed and useful to the policy makers the choice of models and variables can
be extended. For policies to be reliable, improvement in the methodology. and
further testing of the models and hypothesis using independent data is needed.

Income inequality is an important field where nonparametric methods have
emerged and established themselves as a tool to advance the discipline. We have
seen how applying nonparametric techniques can provide further insight into the
determinants of inequality, that of great importance to researchers and policy
makers alike.

To strengthen our results, an important aspect to address are potentially en-
dogenous regressors. The estimation method assumes that regressors are exoge-
nous. This can be certainly argued for age and possibly education. However,
household income is an important determinant of the decision to have children,
household formation, marriage, household dissolution, retirement to some extent,
and so on. Some other econometric approach, such as instrumental variables, could
be explored to obtain improved estimates.

There are several interesting hypothesis that have emerged from this study
such as the possible effect of liquidity constraints on education and the possibility
that the impact of worsening health condition or and changing attitudes toward
risk. It would be interesting to formally test these hypotheses on an independent
sample.

Another aspect for further research concerns the methodology. 1t would be
useful to compare our method with other alternative approaches, such as the non-
linear quantile regression. Also, it would be useful to extend the approach we used
to explore inequality to make use of the panel nature of the data. Though prelim-
inary analysis did not show any significant change in the results. a panel approach
would allow to track houscholds over time and to model age and cohort effects.
Ignoring cohort effects produces age-income profiles that could be biased. age-
income profiles can vary across cohorts, particularly for cohorts that are distant
in time.

More research directions on the relationship between the environment and eco-
nomic growth based on our study have also emerged. We investigates the existence
of the so called environmental kuznets (EKC) curve using nonparametric and semi-

parametric regression methods. The EKC features two variables of considerable
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interests to economists and policy makers, namely an indicator of environmental
quality and the level of per capita income.

One area of improvement concerns the dependent variables used. The Blinder-
Oaxaca decomposition and the threshold estimation method both focused only on
one pollutant, namely sulfur dioxide emissions. As it is one of the main pollutants,
these result should be of interest to policy makers. Also, previous studies clearly
show that sulfur dioxide emissions behave similarly to other local impact pollutant
with serious health consequences such as nitrogen oxides, and particulates. It is
likely that some of this results may be applicable in other cases. It would be
interesting, in a further study, to apply this methodology to a global pollutant
affecting climate change such as carbon dioxide and to other local pollutants to
assess the robustness of our results.

The choice of regressors is also an area warranting further investigation. It
became apparent during our analysis that the choice of variables can seriously
affect results. This has also been established in recent published work. For in-
stance, the variable used in this study for capital intensity behaves anomalously,
as for richer countries we found that more capital intensity significantly reduces
emissions, which contrasts with previously published findings. In fact, it is often
assumed that capital intensity directly translates into pollution-intensity. This
seems to be too simplistic. There appears to be the need to control for the level
of “dirtiness” of an industry to improve our analysis. This variable we used was
found to be highly correlated with income. Also, in order to improve the compa-
rability of this study with others, it would be beneficial to re-estimate the models
using capital abundance adjusted for differences in worker’s productivity. Other
variables that have been used in the literature on the EKC that could be further
investigated include, industrial composition of output, population density, environ-
mental regulation and control, democracy, corruption, civil and political liberties,
power inequality, literacy, geographical factors, and income inequality.

For robust policy recommendations. the methodology used can also be refined
further. A more thorough investigation on the sensitivity to our results to im-
plementation details would greatly increase the value of our findings. Alternative
threshold methods that have recently appeared in the literature can also be con-
sidered.

In the reporting of nonparametric results, possible directions for further re-

search include extending the benchmark from the univariate density estimator
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to other multivariate and regression settings. To benefit other researchers, the
best way to report the benchmarks is to have them available via the web. An
obvious choice seem to make them available through the Stanford site, “Econo-

metric Benchmarks,”!

maintained by Clint Cummins. “Econometric Benchmarks”
makes some standard benchmark datasets and models for testing the accuracy of
econometrics application software available for download. So far benchmarks are
available for basic statistics, linear and nonlinear regression, simultaneous equa-
tions, time series, qualitative dependent variables, panel data models, and random
number generation. After having constructed the benchmarks, the next step is
to test popular statistics and econometric packages that support some of these

methods and to disseminate reports on how close they come to the benchmarks.

L Accessible at http: //www.stanford. edu/~clint/bench/.
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Appendix A

Perl Code tor LRE Routine

sub re {
my ( $est, $cert ) = @_;
return abs( $cert — $est ) / abs($cert);

}
sub logl0 {
my $n = shift;
return log($n) / log(10);
+
sub lre {

my ( $est, $cert, $nosd ) = @_;
my $aest = abs(est);
if ( $cert == 0 ) {

if ( abs($est) > 1) {

return O;
}
else {
( -log10($aest) < $nosd )
? return -loglO($aest)
: return $nosd;
}
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elsif ( $cert == $est ) {

return $nosd;

}
elsif ( abs( $est / $cert ) > 2 || abs( $est / $cert ) <1/ 2) {
return 0;
}
else {
( -log10( re( $est, $cert ) ) < $nosd )
? return -logl0( re( $est, $cert ) )
: return $nosd;
}
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Appendix

Old Faithful geyser data

The original dataset contains two variables: eruption duration and waiting times.
Woe retain only one for our purposes. X; is the duration in minutes of an eruption
of the Old Faithful geyser in the Yellowstone National Park.

Table B.1: Old Faithful Test Data
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0} X; () X; ) X, ) Xi

61 | 2.233 ) 62 }4500) 63| 1.750 | 64 | 4.800
65 | 1.817 | 66 | 4.400 | 67 | 4.167 { 68 | 4.700
69| 2.067 | 704700 | 71]4033| 72| 1.967
73 14500 744000 75{1983 | 76| 5.067
7712017 78 | 4567 T9 | 3.883| 80 | 3.600
81 |4133 | 824333 | 83 |4.100 | 84 | 2.633
85| 4.067 | 86| 4.933 | 87 |3.950 | 88| 4.517
89 | 2.167 | 90 | 4.000 | 91 | 2.200 | 92 | 4.333
93 | 1.867 | 94 | 4.817 | 95| 1.833 | 96 | 4.300
97 | 4667 | 98 | 3.750 | 99 | 1.867 | 100 | 4.900
101 | 2.483 | 102 | 4.367 | 103 | 2.100 | 104 | 4.500
105 | 4.050 | 106 | 1.867 | 107 | 4.700 | 108 | 1.783
109 | 4.850 | 110 | 3.683 | 111 | 4.733 | 112 | 2.300
113 } 4900 | 114 | 4.417 | 115 | 1.700 | 116 | 4.633
117 | 2.317 | 118 | 4.600 | 119 | 1.817 | 120 | 4.417
121 | 2.617 | 122 | 4.067 | 123 | 4.250 | 124 | 1.967
125 | 4.600 | 126 | 3.767 | 127 | 1.917 | 128 | 4.500
129 | 2.267 | 130 | 4.650 | 131 | 1.867 | 132 | 4.167
133 | 2.800 | 134 { 4.333 | 135 | 1.833 | 136 | 4.383
137 | 1.883 | 138 | 4.933 | 139 | 2.033 | 140 | 3.733
141 | 4.233 | 142 | 2.233 | 143 | 4.533 | 144 | 4.817
145 | 4.333 | 146 | 1.983 | 147 | 4.633 | 148 | 2.017
149 | 5.100 | 150 | 1.800 | 151 | 5.033 | 152 | 4.000
153 | 2.400 | 154 | 4.600 | 155 | 3.567 | 156 | 4.000
157 | 4.500 | 158 | 4.083 | 159 | 1.800 | 160 | 3.967
161 | 2.200 | 162 | 4.150 | 163 | 2.000 | 164 | 3.833
165 | 3.500 | 166 | 4.583 | 167 | 2.367 | 168 | 5.000
169 { 1.933 | 170 | 4.617 | 171 | 1.917 | 172 | 2.083
173 | 4.583 | 174 | 3.333 | 175 | 4.167 | 176 | 4.333
177 | 4.500 | 178 | 2.417 | 179 | 4.000 | 180 | 4.167
181 | 1.883 | 182 | 4.583 | 183 | 4.250 | 184 | 3.767

Continued on next page
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; X; 1 X; ( Xi 0 X,

185 ] 2.033 | 186 | 4.433 | 187 | 4.083 | 188 | 1.833
189 | 4.417 | 190 | 2.183 | 191 | 4.800 | 192 | 1.833
193 | 4.800 | 194 | 4.100 | 195 | 3.966 | 196 | 4.233
197 | 3.500 | 198 | 4.366 | 199 | 2.250 | 200 | 4.667
201 | 2.100 | 202 | 4.350 | 203 | 4.133 | 204 | 1.867
205 | 4.600 | 206 | 1.783 | 207 | 4.367 | 208 | 3.850
209 | 1.933 | 210 | 4.500 | 211 | 2.383 | 212 | 4.700
213 | 1.867 | 214 | 3.833 | 215 | 3.417 { 216 | 4.233
217 1 2.400 | 218 | 4.800 | 219 | 2.000 | 220 | 4.150
221 | 1.867 | 222 | 4.267 | 223 | 1.750 | 224 | 4.483
225} 4.000 | 226 | 4.117 | 227 | 4.083 | 228 | 4.267
229 | 3.917 | 230 | 4.550 | 231 | 4.083 | 232 | 2.417
233 | 4.183 | 234 | 2.217 | 235 | 4.450 | 236 | 1.883
237 | 1.850 | 238 | 4.283 | 239 | 3.950 | 240 | 2.333
241 1 4.150 | 242 | 2.350 | 243 | 4.933 | 244 | 2.900
245 | 4.583 | 246 | 3.833 | 247 | 2.083 | 248 | 4.367
249 | 2.133 | 250 | 4.350 | 251 | 2.200 | 252 | 4.450
253 | 3.567 | 264 | 4.500 | 255 | 4.150 | 256 | 3.817
257 | 3.917 | 258 | 4.450 | 259 | 2.000 | 260 | 4.283
261 | 4.767 | 262 | 4.533 | 263 | 1.850 | 264 | 4.250
265 | 1.983 { 266 | 2.250 | 267 | 4.750 | 268 | 4.117
269 | 2.150 | 270 | 4.417 | 271 | 1.817 | 272 | 4.467
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Appendix C

R Code for Banking to 45 degrees

### Banking to 45 degrees function
b45 <- function( a, x, y ) {
vbi <- abs(diff(y)) / ( max(y) - min(y) )
nbi <~ abs(diff(x)) / ( max(x) - min(x) )
sum( atan( a * vbi/hbi ) * sqrt( hbi"2 + a~2%vbi~2) ) /
sum( sqrt( hbi"2 + a"2%vbi"2 ) ) - pi/4

ye <- c(2.75, 3.75, 3)
xe <- c(7.8, 9.4, 10.1)

ar <- uniroot( b4b , x=xe, y=ye, lower=-10, upper=10 )$root
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Parametric Quantile Regression

Approach
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APPENDIX D. PARAMETRIC QUANTILE REGRESSION APPROACH

In this section we use a parametric approach to estimate conditional measures
of inequality following an analogous approach to the one developed in This chapter.
We use the parametric quantile regression method of Koenker & Bassett (1978) to
directly estimate the conditional quantiles. Parametric versions corresponding to
our conditional measures of income inequality are then derived from the parametric
conditional quantiles.

Quantile regression has emerged as an influential tool of empirical cconomics in
recent years. For a recent series of applications of quantile regression in economnics
see, e.g., Koenker & Hallock (2001) and Fitzenberger et al. (2002).

To estimate the conditional quantiles we used GNU R’s implementation of
the Barrodale & Roberts (1973) algorithm for least absolute deviation regression
extended to linear quantile regressions as described in Koenker & d’Orey (1987,
1994). This particular algorithm can handle problems involving up to several
thousand obscrvations. It also implements a scheme for computing confidence
intervals for the estimated parameters, based on inversion of a rank test described
in Koenker (1994).1

Figure D.1, shows the estimated quantiles of log income conditional on age of
household head, household size, years of education of the households head, number
of young children, employment status of the head, and on the marital status of
the households head, obtained with the parametric regression quantile approach.
These estimates are used to derive. together with asymptotic confidence intervals,
parametric equivalents to our conditional inequality measures shown in Figures D.2

and D.3 on page 240 and page 241, respectively.

We can see that the overall trend of the parametric conditional deciles is almost
identical to the corresponding nonparametric quantile estimates presented in Fig-
ure 4.6 on page 119 of This thesis. In particular. age-income profiles have both
an inverted-U shape, the number of young children-income profiles are negatively
sloped, household size-income profile are relatively flat and both with increas-
ing and decreasing deciles, and education-income, employment status-income, and
marital status-income profiles are all increasing. This finding is reassuring and

provided support reinforces our findings.

1'We used R release 2.3.0, the standard Win32 release available at the time of writing the
chapter, together with the routines to obtain quantile regression coefficients and standard
errors provided by the quantreg R package, version 4.08 developed by Roger Koenker.
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Fi.gure D.1: Estimated parametric regression deciles of the conditional dis-
tribution function of log income
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The results for the derived conditional inequality measures are less clear. Fig-
ure D.2 and D.3 display the estimated inequality profiles. There seems to be a
similar trend for the Conditional Relative InterQuartile Range (CRIQR) measures
of inequality, looking at the center of the distribution, of the nonparametric ap-
proach with the the Conditional Decile Dispersion Ratio (CDDR) measures of
inequality, focusing on the tails, of the parametric approach. In particular, the
parametric conditional measures show that older household heads, larger house-
hold sizes, more years of education, and being married, have all a negative impact
on inequality for the center of the income distribution, having more young children
has a slightly positive impact. This findings agree with the results from the non-

parametric conditional deciles. Only the result for the employment status differ
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markedly as it appears to be both cconomically and statistically non significant
for the parametric case. Though a more careful analysis would be required to
support this argument more convincingly. these preliminary findings seem to sug-
gest that the parametric approach based on least absolute deviations might be too
sensitive to influential observations, so that smaller local changes are swamped by
“non-local” effects.

As results differ quite substantially, it is reasonable to conclude that the para-
metric specification would require difficult ad-hoc assumptions to match the non-
parametric results, but further analysis is required to support this view. The para-
metric approach can be more efficient assuming that the underlving maintained
model assumptions hold, but can be potentially misleading otherwise. A recent
study comparing parametric and nonparametric quantile regression methods using
a Monte Carlo approach by Min & Kim (2004), found some evidence of superiority
of the nonparametric quantile regression approach particularly when the under-
lying model is nonlinear or the error terms are not normally distributed. Based
on the above considerations, it would seem more appropriate to use a nonlinear
quantile regression approach (see, e.g., Busovaca, 1985, and references therein) in
this case for a more fruitful comparison. This is an interesting investigation worthy
of further research.
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Figure D.2: Parametric based conditional measures of income inequality on

age of head, household size, and years of education with one standard devi-
ation confidence intervals
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Figure D.3: Parametric based conditional measures of income inequality on
number of children, employment and marital status, keeping all other deter-
minants fixed at their respective mean values
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Logit Parameter Estimates
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Figure E.1 plots the estimated parameters ﬁs for the (J = 25) chosen evalua-
tion points. The dotted lines represent the confidence bands (+1.96 xstandard errors)
calculated for each evaluation point.

In general, if the sign of the estimated coefficient is negative (positive) and its
value is significantly different from zero, it means that an increase in the variable
shifts the distribution to the right (left).

Thus, as expected, an increase in education and in the percentage of being
employed determines a shift of the distribution to the right. Also, this means that
it will be less probable for the individual to fall below the vertical line highlighted
in the pictures. Other variables, whose increase determines a shift to the right in
the distribution are the family size and the fact of being married.

Conversely, the only variable whose increase causes a shift to the left of the
distribution of income is the number of people in the household with less than 16
years of age.

For gender, retired and urban/rural indicator a different pattern is obscrved.
The sign of the estimated coefficients change from negative to positive and the
values are frequently not statistically different from zero. This implies that the
distribution of income shrinks as the value of those variables increases.

Finally, age starts from a negative value, then sharply turns positive and starts
decreasing again. turning negative and also losing stat istical significance. The re-
sult in the conditional distribution of an increase of age is an increase in the spread
of the distribution (especially in the tails) and a shift to the left of the centered
60% of the probability mass (comprised between the 20% and 80% quantiles).
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Figure E.1: Logit coefficient estimates
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Countries Included in the Dataset
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APPENDIX F. COUNTRIES INCLUDED IN THE DATASET

Table F.1: Country Codes

1 ALGERIA 95 JAPAN

14 EGYPT 97 KOREA,

18 GHANA 98 KUWAIT

22 KENYA 100 MALAYSIA
25 MADAGASCAR 102 MYANMAR
30 MOROCCO 106 PHILIPPINES
31 MOZAMBIQUE 108 SAUDI ARABIA
32 NAMIBIA 109 SINGAPORE
34 NIGERIA 110 SRI LANKA
41 SAFRICA 111 SYRIA

44 TANZANIA 112 TATWAN

46 TUNISIA 113 THAILAND
48 ZAIRE 116 AUSTRIA

49 ZAMBIA 117 BELGIUM

50 ZIMBABWE 119 CYPRUS

52 BARBADOS 120 | CZECHOSLOVAKIA
54 CANADA 121 DENMARK
60 GUATEMALA 122 FINLAND

62 HONDURAS 123 FRANCE

64 MEXICO 125 WGERMANY
65 NICARAGUA 126 GREECE

71 | TRINIDAD&TOBAGO | 129 IRELAND

72 U.S.A. 130 ITALY

73 ARGENTINA 131 LUXEMBOURG
74 BOLIVIA 133 NETHERLANDS
75 BRAZIL 134 NORWAY

76 CHILE 136 PORTUGAL
77 COLOMBIA 137 ROMANIA

81 PERU 138 SPAIN

83 URUGUAY 139 SWEDEN

84 VENEZUELA 140 SWITZERLAND
88 CHINA 141 TURKEY

89 HONG KONG 142 UK.

90 INDIA 143 USSR

91 INDONESIA 144 YUGOSLAVIA
92 TRAN 145 AUSTRALIA
94 ISRAEL 147 NZ
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