
Generic N allled Entity Extraction

Jose Luis Jara-Valencia

This thesis is submitted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy.

University of York
Department of Computer Science

July 2005

Abstract

This thesis proposes and evaluates different ways of performing generic named entity

recognition, that is the construction of a system capable of recognising names in free

text which is not specific to any particular domain or task.

The starting point is an implementation of a well known baseline system which is based

on maximum entropy models that utilise lexically-oriented features to recognised names

in text. Although this system achieves good levels of performance, both maximum

entropy models and lexically-oriented features have their limitations. Three alternative

ways in which this system can be extended to overcome these limitations are then

studied:

[> more linguistically-oriented features are extracted from a generic lexical source,

namely WordNet®, and then added to the pool of features of the maximum en­

tropy model

[> the maximum entropy model is bias towards training samples that are similar to

the piece of text being analysed

[> a bootstrapping procedure is introduced to allow maximum entropy models to

collect new, valuable information from unlabelled text

Results in this thesis indicate that the maximum entropy model is a very strong approach

that accomplishes levels of performance that are very hard to improve on. However,

these results also suggest that these extensions of the baseline system could yield im­

provements, though some difficulties must be addressed and more research is needed to

obtain more assertive conclusions.

This thesis has nonetheless provided important contributions: a novel approach to

estimate the complexity of a named entity extraction task, a method for selecting the

features to be used by the maximum entropy model from a large pool of features and a

novel procedure to bootstrap maximum entropy models.

2

Contents

1 Introduction 17

1.1 Information extraction 17

1.2 Named entity extraction 19

1.3 Difficul ties in NEE 21

1.4 Main Goal 23

1.5 Document structure 23

2 Previous work and hypotheses 25

2.1 Initial approaches 25

2.2 Machine learning approaches 28

2.3 Bases and hypotheses ... 30

2.4 Maximum Entropy Models . 39

2.4.1 NLP and classification 39

2.4.2 The Maximum Entropy Framework. 41

2.4.3 Learning Maximum Entropy Models 44

2.4.3.1 Parameter Estimation 44

2.4.3.2 Feature selection 46

2.4.4 Modelling . 55

2.4.5 Limitations 58

2.4.6 Maximum entropy tools 60

2.5 Summary and discussion 60

3

CONTENTS

3 Baseline systems

3.1 Corpora analysis

3.2 Analysis of the MUC-7 corpora

3.3 Baseline systems

3.4

3.3.1

3.3.2

Nymble

MENE.

Evaluation . . .

3.4.1

3.4.2

3.4.3

3.4.4

The scoring program

Results for siNymble

Results for LexMENE

Comparison of the baseline approaches.

3.5 Summary and discussion

4 More linguistically informed MENE

4.1 MOLl MENE ...

4.2

4.3

4.4

4.5

4.6

Parameter setting .

Linguistically informed features

Obtaining the new features

Organising the new features

4.5.1

4.5.2

4.5.3

MOLl MENE V3: syntactic patterns

MOLl MENE V4: lemmas, PoS tags and synonyms.

MOLl MENE V 5: trigger synsets .

A comparative experiment

4.7 Reducing feature pools .

4.8 Feature selection

4

62

62

64

72

72

75

78

78

78

81

83

84

85

85

87

95

96

98

98

99

100

104

106

109

CONTENTS

4.9 The new versions

4.10 Results of the new versions

4.11 Adding generalisation of features

4.12 Results of generalisation ..

4.13 Ripper as a baseline system

4.14 Summary and discussion ..

5 Biasing LexMENE

5.1 Why biasing LexMENE? .

5.2 Formalisation

5.3 The proposed approach

5.4

5.5

5.6

5.7

5.8

Getting cases and queries

The similarity measure.

Case Retrieval Nets. .

5.6.1 Unsolved issues

Representing cases . .

5.7.1

5.7.2

5.7.3

Sentence structure

Orthographic pattern.

Lexical pattern

Case retrieval

5.8.1

5.8.2

5.8.3

Reducing the size of the problem

Gathering similar cases ..

Obtaining final similarities.

5.8.3.1

5.8.3.2

Activation of constituent patterns

Activation of lexical patterns . . .

5

111

III

113

114

116

117

120

120

122

123

123

125

127

128

129

129

130

132

135

135

136

136

137

137

CONTENTS

5.8.4

5.8.3.3

5.8.3.4

Activation of orthographic patterns

Activation of cases

Selecting similar cases

5.9 Adaptation .

5.10 Experiments.

5.10.1 Parameters setting

5.10.2 Assessing the hypothesis.

5.11 Summary and discussion

6 Bootstrapping LexMENE

6.1 Why bootstrapping could or could not work for LexMENE?

6.2

6.3

6.4

Main bootstrapping approaches

Experiment settings

Experiments ...

6.5 Lighting the way

6.6

6.7

6.8

LexMENERipper .

An experiment with LexMENERipper

Discussion

7 Conclusions and future work

7.1

7.2

Conclusions

Future work

7.2.1

7.2.2

7.2.3

7.2.4

Answering open questions

Extensions of the proposed approaches

A end-user named entity extractor

Future research

6

138

138

139

140

141

141

146

149

154

154

156

161

163

165

167

168

170

172

172

175

175

176

177

178

CONTENTS 7

A Nymble implementation 180

A.1 Top-level model .. 180

A.2 Training sequence. 182

A.3 Decoding sequence 182

AA Unknown words . . 184

A.5 Estimating top-level and back-off models. 184

A.6 The backing-off and smoothing strategy 186

A.7 Training: a walk-through example 189

A.8 Decoding: a walk-thorugh example 200

A.9 Implementation 210

B A walk-through example for LexMENE 211

B.1 Training . 211

B.2 Decoding 214

C Decision lists 219

C.1 MOLl MENE V6 219

C.2 MOLl MENE V7 221

C.3 MOLl MENE V8 226

CA MOLl MENE V9 230

C.5 MOLl MENE V10 231

C.6 MOLl MENE VII 231

CONTENTS 8

D Biasing LexMENE: details 233

D.l The constituent pattern information entity. 233

D.2 The binary lexical pattern information entity 234

D.3 The lexical pattern information entity 236

DA Reducing the size of the problem 242

D.5 Obtaining final similarities. 244

D.6 Messy details 246

E Smoothing function 248

List of Figures

1.1 Definition of the evaluation metrics. 20

2.1 Example of a collocation lattice 52

2.2 Part of a decision tree for part-of-speech tagging. 57

3.1 Distribution of named entities according to their familiarity 66

3.2 Distribution of NE tokens according to their familiarity. .. 67

3.3 Distribution of named entity phrases according to their familiarity. 68

3.4 Distribution of NE tokens as named entity phrases according to their

familiarity. 69

3.5 The conceptual Hidden Markov Model used in Nymble. 73

3.6 A schematic view of the the Viterbi search for a given named entity class c. 77

3.7 Experiments with three versions of siNymble [dryrun test corpus]. . 79

3.8 Experiments with siNymble [version B] [formal test corpus]. . .. 80

3.9 Experiments with two versions of LexMENE [dryrun test corpus]. 81

3.10 Experiments with LexMENE [version B] [formal test corpus]. .. 82

4.1 Experiments with MOLl MENE VI [dryrun test corpus] .. 89

4.2 Experiments with MOLl MENE VI [formal test corpus] .. 90

4.3 Experiments with MOLl MENE VI and MOLl MENE V2 [dryrun test

corpus]. 91

9

LIST OF FIGURES 10

4.4 Experiments with MOLl MENE VI and MOLl MENE V2 [formal test

corpus]. 92

4.5 Experiments with MOLl MENE V2 [dryrun test corpus] .. 93

4.6 Experiments with MOLl MENE V2 [formal test corpus]. 94

4.7 Comparison of LexMENE and MOLl MENE V2. 94

4.8 Experiments with MOLl MENE V2, V3, V4 and V5 [dry run test corpus]. 104

4.9 Experiments with MOLl MENE V4 105

4.10 Experiments with MOLl MENE V3 [direct reduction of features]. 106

4.11 Experiments with MOLl MENE V5 [direct reduction of features]. 108

4.12 Ripper rules when used as complex features. 111

4.13 Comparison of the performances of version V2, V6, V7 and V8 of MOLl

MENE [dryrun test corpus]. 112

4.14 Comparison of the performances of version V2, V6, V7 and V8 of MOLl

MENE [formal test corpus]. 113

4.15 Example of the generalisation of complex features for MOLl MENE V6. 114

4.16 Comparison of the performances of version V2, V9, V10 and VII of MOLl

MENE [dryrun test corpus]. 115

4.17 Comparison of the performances of version V2, V9, V10 and VII of MOLl

MENE [formal test corpus]. 116

4.18 Comparison of the performances ofR(V2+R(V5)), R(V2+V5) and ver-

sion V8 of MOLl MENE. 117

5.1 Example of constituent pattern information entities. . 130

5.2 Example of orthographic pattern information entities. 132

5.3 Example of lexical pattern information entities. 134

5.4 An example of the computation of the final similarity between two match-

ing lexical features. 138

5.5 Experiments with biLexMENE [cutoff thresholds] [numbers of selected

cases] [dryrun test corpus]. 141

LIST OF FIGURES 11

5.6 Experiments with biLexMENE [cutoff thresholds] [numbers of selected

cases] [formal test corpus]. 142

5.7 Experiments with biLexMENE [smoothing functions: Q &,8] [dryrun test

corpus] 143

5.8 Experiments with biLexMENE [smoothing functions: Q & ,8] [formal test

corpus]. 144

5.9 Experiments with biLexMENE [smoothing functions: ,] [dryrun test cor-

pus] 145

5.10 Experiments with biLexMENE [smoothing functions: ,] [formal test cor-

pus] 146

5.11 Experiments with biLexMENE [different sizes of the training corpus]

[dry run test corpus]. 147

5.12 Experiments with biLexMENE [different sizes of the training corpus] [for-

mal test corpus]. 149

6.1 Experiments with boLexMENE [Y-O] [different thresholds]. 163

6.2 Experiments with boLexMENE [Y-O] [different thresholds] [reduced su-

pervised training data]. 165

6.3 An experiment with LexMENERipper [different cache sizes] .. 169

List of Tables

2.1 Comparison of lattice methods and Random Field Induction for feature

selection.. .. 54

3.1 Types of familiarity for named entities in test corpora. 65

3.2 Distribution of named entities according to their phrase type and famil-

iarity type. 70

3.3 Orthographic features as used in Nymble. 74

3.4 Nymble's back-off/smoothing scheme. 75

4.1 The set of orthographic features in MOLl MENE. 86

4.2 Example of different, possible measures for ranking trigger synsets. 107

4.3 Summary of the performances obtained by the systems presented so far. 118

5.1 Details of experiments with biLexMENE [different sizes of the training

corpus] [dryrun test corpus]. 152

5.2 Details of experiments with biLexMENE [different sizes of the training

corpus] [formal test corpus]. 153

7.1 Summary of the best performance obtained by the named entity extrac-

tion approaches presented in this thesis. 173

A.1 Training events for siNymble's hidden Markov model. . 183

A.2 Decoding events for siNymble's hidden Markov model. 183

12

LIST OF TABLES 13

A.3 The A-weight for each model used by siNymble ... 189

AA Training events for the name-class complete model. 189

A.5 Training events for the word complete model. ... 190

A.6 Training events for the name-class complete model. 191

A.7 Training events for the word complete model. . . . 191

A.8 The counting function applied to the events for the name-class complete

model. 192

A.9 The counting function applied to the events for the word complete model. 193

A.I0 Sample probabilities for the name-class complete model. 194

A.l1 Sample probabilities for the word complete model. ... 194

A.12 The unique function applied to the events for the name-class complete

model. 195

A.13 The unique function applied to the events for the word complete model. 195

A.14 A-weights for the name-class complete model. 196

A.15 A-weights for the word complete model. 197

A.16 Final sample probabilities for name-class generation. 198

A.17 Final sample probabilities for first words generation. 198

A.18 Final sample probabilities for subsequent words generation. 198

A.19 Final sample probabilities for name-class generation considering unknown

words 199

A.20 Final sample probabilities for first words generation considering unknown

words 199

A.21 Final sample probabilities for subsequent words generation considering

unknown words. 199

C.1 Relation between the names of the features as used by Ripper and the

more linguistically informed features in MOLl MENE V3/V6/V9. 220

LIST OF TABLES 14

C.2 Relation between the names of the features as used by Ripper and the

more linguistically informed features in MOLl MENE V 4jV7 jV10. . . . 221

C.3 Relation between the names of the features as used by Ripper and the

more linguistically informed features in MOLl MENE V5jV8jV11. ... 226

List of Algorithms

2.1 The LTG named entity extraction algorithm.

2.2 Generalised Iterative Scaling.

2.3 Improved Iterative Scaling.

2.4 Basic Feature Selection. ..

6.1 The original Co-training algorithm.

6.2 The NaIve Co-learning algorithm ..

6.3 Abney's (2004) Y-1 bootstrapping algorithm.

6.4 The Viterbi Forward Backward Search. . .
6.5 LexMENERipper.

A.1 The Viterbi algorithm used by siNymble ..

D.1 Calculation of the similarity between two constituents.

D.2 Calculation of the similarity between two orthographic features.

D.3 Calculation of the similarity between two lexical features. . ..

DA Calculation of the similarity between two lexical features when at least

27

45

46

50

156

158

160

162

167

201

234

235

236

one of them is null. 237

D.5 Calculation of the similarity between two lexical features with known

meamngs. 238

D.6 Calculation of the similarity between two lexical features without meanings.240

D.7 Calculation of the similarity between two texts according to the lengths

of their common prefixes and common suffixes. 241

D.8 The heuristic used to reduce the number of queries to be processed by

biLexMENE. 243

D.9 Calculation of the similarity between two head lexical features. 245

15

Declaration

All material contained in this thesis is the author's own.

Jose L. Jara V.

16

Chapter 1

Introduction

1.1 Information extraction

Information Extraction (IE) is a relatively new discipline within the wider field of N at­

ural Language Processing (NLP). In general, information extraction can be understood

as any process that selects, extracts and combines data from text in natural language

to produce structured information.

This discipline has emerged because there was a confluence of the necessity for auto­

matically processing information that exists only in natural language form, and the

ability to have a rough understanding of texts by using the current NLP technology

(Grishman 1997).

Although some IE systems are starting their commercial life, the technology is not

completely mature. There is a universal consensus that IE will be of great significance

to companies of all kinds, especially those that make intensive use of information such

as government institutions and finance enterprises (Cardie 1997, Grishman 1997).

Information extraction is quite intuitive for humans. Consider the following example

text from the Management Succession Domain, as used in (MUC 1995):

Topologix Inc. announced that Donald E. Martella, formerly vice president, operation,
was named president and chief executive officer of this maker of parallel processing
subsystems. He succeeds Jack Harper, a company founder who was named chairman.

The task for this domain is to identify succession events contained within the text and

represent them in structures that contain four pieces of information: the person who is

taking the new position, the person who is leaving the position, the position title, and the

organisation where the succession is happening. For the example text above, adapted

from Soderland, Fisher and Lehnert (1997), the resulting answer template would be:

17

CHAPTER 1. INTRODUCTION 18

Event 1 I I Event 2 I I Event 3

Donald E. Martella Jack Harper Person In
-

Jack Harper Donald E. Martella Person Out -

Position president and chief vice president, chairman

executive officer operations

Organisation T opologix Inc. T opologix Inc. T opologix Inc.

However, this task is very complex from the NLP point of view. Firstly, any IE system

must apply a set of pre-processing tools to the text so that sentences, words, subjects,

verbs, objects and ultimately clauses can be identified. Then, it must recognise names of

people, organisations and positions in the text. Then it must recognise relations among

these named entities suggested by expressions like formerly and was named. Finally,

further processing is required to trim away odd words, to relate events reported in

different sentences and to instantiate generic references, which would involve a high

level of coreference resolution which is beyond the state-of-the-art (Cardie 1997).

The most important events in IE history were the ARPA-sponsored Message Under­

standing Conferences (MUCs) held between 1987 and 1997 (see for example (Lehnert,

Cardie, Fisher, McCarthy, Riloff and Soderland 1994, McCarthy 1996, Wilks 1997)).

These conferences introduced several technological challenges and a rigorous evaluation

for the participants, providing the right environment for the development and evolution

of a wide spectrum of approaches to information extraction, from traditional NLP -

i.e. full syntactic, semantic and discourse analyses- to keyword matching with little or

no linguistic analysis (Cowie and Lehnert 1996).

By the latest MUCs, there was a clear generic architecture and virtually all major

participant systems shared -in some form- the same modules (Hobbs 1993, Cardie

1997). This convergence happened because researchers faced the challenges imposed

by the MUCs in similar ways: exploiting the power of shallow parsing - rather than

insisting on a full syntactic analysis, using shallow knowledge such as gazetteers and

small hierarchy lexicons, using the key answers for deriving more shallow knowledge and

using the target corpora for tuning some modules in the system (Cowie and Lehnert

1996, Cardie 1997, Wilks 1997).

This last two steps above have resulted in a shift of information extraction technol­

ogy towards empirical methods -also called corpus-based methods- which address

the current problems in IE systems - and NLP in general: accuracy, portability and

knowledge acquisition (Cardie 1997). However, the performance of these systems re­

mains poor. For example, in the last MUC the best corpus-based system could extract

just over half the events reported in the test corpus (~IUC 1998).

CHAPTER 1. INTRODUCTION 19

1.2 Named entity extraction

As mentioned above, named entity extraction (NEE) -the main problem with which

this thesis is concerned- is a subtask of IE and much simpler than the general extraction

procedure. In few words, NEE can be defined as the identification of expressions in free

text which are "unique identifiers" of entities and their classification as instances of a

finite set of categories. The first subtask is called named entity recognition (NER) and

the second one named entity classification (NEC). However, it is very common in the

literature to use named entity recognition for the whole process instead of named entity

extraction. An attempt at keeping this distinction in this document will be made.

There is a general consensus that named entity recognition is not only relevant for

information extraction, but also an important subtask for many other natural language

engineering applications, such as information retrieval, question/answer and machine

translation systems.

The latest Message Understanding Conferences (MUC) included a track for named

entity recognition, which has become a sort of implicit universal definition for this task.

The input for an NEE system is a text in free form such as the following:

Llennel Evangelista, a spokesman for Intelsat, a global satellite consortium based in
Washington, said the accident occurred at 2 p.m. EST Wednesday, or early Thursday
morning at the Xichang launch site in Sichuan Province in southwestern China.

The system is expected to produce a new version of the input text in which named

entities are marked with SGML tags according to their class. For the input above,

the following is the required output for the MUC competitions, which considered seven

categories: organisations, people, location, dates, time, money and percentages.

<PERSON>Llennel Evangelista</PERSON>, a spokesman for <ORGANISATION>
Intelsat</ORGANISATION>, a global satellite consortium based in <LOCATION>
Washington</LOCATION>, said the accident occurred at <TIME>2 p.m. EST
</TIME> <DATE>Wednesday</DATE>, or <TIME>early Thursday morning
</TIME> at the <LOCATION>Xichang</LOCATION> launch site in <LOCA­
TION>Sichuan Province</LOCATION> in southwestern <LOCATION>China</LO­
CATION>.

It is clear that this output text is much easier to process by a part-of-speech tagger or

a parser, and by higher-level NLP tasks. For example it is clear that for an Internet

retrieval engine or a question/answer machine, the latter text would help in a more

accurate and faster answer to the query where is Sichuan? than the former text.

CHAPTER 1. INTRODUCTION

Pieces of text that are
named entities

Pieces of text that the system
labels as named entities

Set of all pieces of text

Recall

Precision

COR 00
COR+MIS x 1

COR
COR+SPU x 100

Named entities incorrectly
ignored (MIS)

Named entities recognised
correctly (COR)

20

Named entities recogni ed
correctly (COR)

Named entities incorrectly
labelled (SPU)

Figure 1.1: Definition of the evaluation metrics: recall and precision . in terms of correct named entities
(COR). missed named entities (MIS) and spurious named entities (SPU).

MUC competitions also gave a universally accepted method for evaluating the perfor­

mance of systems which attempt named entity extraction. Considering the accuracy of

the system, that is the percentage of pieces of text labelled correctly, is not an appro­

priate measure. For example, suppose that there are 10,000 phrases in a text of which

100 are named entity expressions. Suppose now that a named entity extractor marks 80

instances of which 60 are correct. Then, the system's accuracy would be 99.4%, which

intuitively seems wrong.

Therefore, named entity extractors are evaluated in terms of recall and precision. Recall

is the ratio of the number of named entities that the system recognises correctly to the

total number of named entities in the text. Precision is the proportion of correct named

entities out of the pieces of text that the system labels as named entities. In the example,

the system's recall is 60% (60 out of 100) and the system's precision is 75% (60 out of

80). Clearly these measures are better indicators for the performance of the system.

Figure 1.1 presents a graphical definition and the mathematical definitions of these

metrics, which are based on the number of named entities correctly identified by the

system (COR) , the number of named entities that the system misses (MIS) and the

number of spurious named entities in the system's output (SPU) (Chinchor 199 b).

Although every system tries maximising both recall and precision, soon enough it was

evident that this was hard because a system that tries to maximise precision tends to

mark only entities which it knows for certain and therefore it misses those for which it

is not very sure. The vice versa effect is observed when the systems tries to maximise

CHAPTER 1. INTRODUCTION 21

recall. As it is not very obvious which is more important, MUC competitions opted for

defining a third index called F-score or F-measure -borrowed from metrics designed

by van Rijsbergen (1979) for information retrieval- which is the weighted harmonic

mean of recall and precision, following the formula

F((3) = ((32 + 1) . Precision· Recall
(32 . Precision + Recall

(1.1)

The parameter {3 controls the relative importance given to precision with respect to

recall. Throughout this thesis, the value {3 = 1 will be used, which assigns the same

importance to both indices.

Recently, this named entity extraction task has been extended in the ACE Program,

which has been defined as "a program to develop technology to extract and characterise

meaning from human language" (Sheffield NLP Group 2005). This program includes

Entity Detection and Tracking (EDT) tasks that are similar to the MUC NE task, but

in which text sources are of varying types and quality. In addition, more semantic

and more fine-grain information of named entities is required to fill the answer keys.

These characteristics make the ACE tasks more challenging than the MUC task and

are contrived to lead the development of extraction technology to support automatic

processing of text data (LDC 2005).

1.3 Difficulties in NEE

As in any NLP task, most difficulties in named entity extraction are generated by the

intrinsic ambiguity of natural languages and the amount of knowledge required to solve

this ambiguity.

Firstly, NLP tasks earlier in the pipeline need to solve some of this ambiguity and

determine -for example- sentence boundaries, token boundaries and their part-of­

speech tag. This will inevitably introduce errors in the input to the NEE system.

Secondly, proper names present the same structural ambiguities as common nouns

(Wacholder, Ravin and Choi 1997): compare Midwest Center for Computer Research (a

single name) versus Carnegie Hall for Irwin Berlin (two names); Victoria and Albert Museum (a

single name) versus IBM and Bell Laboratories (two names); Donoghue's Money Fund Report

(a single name) versus Israel's Shimon Peres (two names).

Thirdly, proper names also display semantic ambiguity. as a word -or sequence of

words- can be a name for entities of different nature. This is closely related to word­

sense disambiguation, another NLP task which could benefit from NEE. In the examplc

CHAPTER 1. INTRODUCTION 22

text above, the word Washington might be seen with (at least) four senses: George

Washington (the person), U.S.S. Washington (the ship), Washington D.C. (the city)

and the State of Washington. This semantic ambiguity is quite common among proper

names because places are named after famous people and organisations are named after

their owners or locations (Wacholder et al. 1997).

Fourthly, proper names share ambiguity with common nouns: the word china refers to

the high-quality ceramic ware whereas the word China refers to the People's Republic in

Asia. This type of ambiguity is usually disambiguated through capitalisation in English,

but this is not always the case. Consider the following beginnings of sentences: New

Coke drinkers and New Sears employees. The word New belongs to the name in the first

case, but it does not in the second case (Wacholder et al. 1997), a fact that can only be

determined by world knowledge.

Finally, there is a further level of ambiguity introduced by what humans and particular

applications may recognise as a name. For example, the MUC application required sys­

tems to make the distinction between organisations, people, locations, etc. and artifacts.

Thus, in this case the sentences Good news for Boeing shareholders and They will buy a new

Boeing are of different nature: the former contains an organisation entity whereas the

later refers to an artifact. However, this differentiation may not be required by another

application. In addition, the phrase early Thursday morning can be marked as a named

entity of class time, as in the sample text above. A different person/application can

perfectly consider this phrase as containing two named entities: the date Thursday and

the time morning. Similarly, someone may consider the words Sichuan Province as the

lexical form of a named entity of class location -again as in the text above- while

another person may only consider for this the word Sichuan. In fact, experiments con­

ducted during the MUC-7 competition have estimated that human annotators disagree

in about 3% of the entities they recognised (MUC 1998).

When an NEE system is able to manage all this ambiguity reasonably well for a particu­

lar application, it normally handles a large amount of knowledge in the form of lexicons,

gazetteers, grammars, patterns, ontologies, etc. This generates the second important

drawback of this technology: named entity extractors show poor portability.

Named entities vary significantly in type and form across domains and the knowledge

collected for one of them might become much less useful for another domain. Therefore,

this knowledge requires to be adapted for each application, a process which is gener­

ally time-consuming and error prone. Moreover, this adaptation might sometimes be

impossible due to the lack of experts.

CHAPTER 1. INTRODUCTION 23

1.4 Main Goal

The main goal of this thesis -following the discussion above- is to explore methods

to capture the ambiguity of named entity extraction tasks, so that the extraction can

be done with a relatively good level of performance, but at the same time maintaining

a reasonable degree of portability.

There are several issues that these methods must deal with. First, it is indispensable to

find an appropriate approach to capture and represent the essence of the extraction task,

so that a person does not have to expend large amounts of time doing this. Secondly, it

is necessary to provide this approach with the linguistic and world knowledge required

for the interpretation of text, a difficult assignment that is specially not solved for

general domains. Finally, some mechanism for tuning this knowledge to the specific

task and domain, with little or no human support, must be found. This should include

the management of exceptions, that is pieces of text which are often considered named

entities by the task but in some occasions they are not considered so (or vice versa), as

with the above example for the word Boeing on the MUC-7 task.

These methods should make possible the implementation of an NEE system that is able

to perform generic named entity extraction which is not designed for any particular task

or domain.

A system with these characteristics could be applied to new domains more quickly and

without needing the many hours of work by experts, on both linguistics and the target

domain, that traditional approaches normally require.

In chapter 2, these ideas are developed further by analysing techniques reported in the

literature on how they could contribute towards more portable NEE systems. Several

bases for the research presented here are drawn from this review and three hypotheses

about how generic named entity extraction should be approached are proposed.

1.5 Document structure

Chapter 2 presents a review of previous work on named entity extraction. This review

is used to introduce the bases for this research, as well as the hypotheses which will

be assessed. In the second part of the chapter, the main approach used in this thesis,

namely the maximum entropy framework, is explained in detail.

Following the review of previous NEE systems, two baseline systems are selected and

evaluated in chapter 3. This chapter also expounds a detailed analysis of the Hamed

entities contained in the corpora used in this work.

CHAPTER 1. INTRODUCTION 2-1

Chapter 4 assesses the hypothesis that more linguistic information can be helpful in

extracting named entities. This is done by extending one of the baseline systems, which

is allowed to use domain-independent features derived from a shallow parser and a

general lexical resource.

Chapter 5 discusses the use of a memory-based approach to avoid overlooking exceptions

in the recognition of named entities and managing the lack of abundant training data.

In chapter 6, a study of how bootstrapping techniques may help the adaptation of the

proposed named entity extractor to new domains is presented.

Finally, several conclusions drawn from this work are presented in chapter 7. This

chapter also proposes future lines of research that might enrich the knowledge collected

by this thesis about the extraction of named entities.

In addition to the main text, this document also includes a set of appendices which

provide more detailed information on the analyses and implementations discussed in

the chapters above. All these appendices are correspondingly cited in the text.

Chapter 2

Previous work and hypotheses

This chapter discusses previous approaches to solving named entity extraction. This

review is used to introduce the bases that guide this research as well as the hypotheses
that this thesis aims to assess.

2.1 Initial approaches

The initial attempts made to solve named entity extraction followed the typical ap­

proaches in natural language processing at the time, that is building systems based

mainly on regular expression and dictionaries (also called gazetteers). In the following

paragraphs, three examples which in one way or another characterise the evolution of

these types of approaches are examined.

Fisher, Soderland, McCarthy, Feng and Lehnert (1995) presented a system at MUC-

6 competition, in which input texts were submitted serially to four string specialists

that recognised money/dates/percentages, organisations, people and location entities

respectively. These specialists were hand-coded pattern matching routines applied seri­

ally in the order given above and each component could claim strings in a non-negotiable

manner. The organisation, people and location specialists relied on dictionaries for the

recognition of these named entities.

Fisher et al. (1995) concluded -after the MUC formal evaluation- that the organi­

sation dictionary used in the competition was weak, and as a consequence the recall

obtained on this kind of entity was poor, as well as affecting the performance on person

and location names because missed organisations were normally claimed by one of the

specialist applied later.

The LaSIE system (Gaizauskas, Wakao, Humphreys, Cunningham and \Yilks 1995) and

its descendant VIE (Humphreys, Gaizauskas, Cunningham and :\zzam 1998) also rely

25 ,.----, ... _....,
UNlVERS'''' {f

4
OF YOH" ~
LJBRARY i

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 26

on hand-coded rules, list of words and gazetteers. Nonetheless, they follow a cleverer

approach. For instance, in addition to a gazetteer of 2,600 organisation names, they also

use lists of trigger words such as company designators (e.g. Co., Ltd., PLC), words that

usually occur at the beginning or end of organisation names (e.g. Federal, International)

and words which can be use alone as nouns to refer to organisations (e.g. Association,

Agency, Ministry, etc.).

Using these resources in combination as a cascade set of finite-state recognisers, LaSIE

and VIE have better chances of detecting the organisations mentioned in free text.

Similar resources were used for the other named entity types.

The first people to seriously question the utility of gazetteers were Mikheev, Grover

and Moens (1998). They observed that some NEE systems did not degrade much

when their gazetteers were significantly reduced in size, and that by adding a few

especially selected names, a dramatic improvement could be obtained (Mikheev, Moens

and Grover 1999, Krupka and Hausman 1998).

Mikheev, Grover and Moens (1999) discussed the problems of using NEE systems relying

almost exclusively on looking up proper nouns in gazetteers, which may lead to this

behaviour:

t> the availability of large and general gazetteers -specially for different languages­

is very limited, a fact which has been described as a bottleneck in the development

of NE extractors (Cucchiarelli, Luzi and Velardi 1998)

t> even if they were available, they would have to be very large -it is estimated that

there are 1.5 million surnames just in the U.S.- and searching in them might be

infeasible

t> it is not easy to keep gazetteers up-to-date; for example a list of all companies in

the European Union today would be enormous, and obsolete tomorrow as com-

panies are being created all the time

t> named entities occur in variations; for example The Royal Bank of Scotland pic, The

Royal Bank, The Royal pic and simply The Royal, all refer to the same organisation

and gazetteers should contain all these variations

t> gazetteers do not solve the problem of overlaps between lists; for example, the

word Washington could easily be found in a list of person names, organisation

names or location names

t> language ambiguity and the inclusion of common words in names make the task
even more difficult; this is specially true when conjunctions are involved; for ex­
ample, it is very hard to recognise the organisation name in the sentence Daily and

Partners lost their court case

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES

Algorithm 2.1: The LTG named entity extraction algorithm. Adapted from Mikheev et al. (1998).

Input: a document C
Output: a new version of the document C' in which recognised named entities

are annotated
1: Apply sure-fire rules based on reliable phrasal and contextual designators

(For example the rule Mr Xxxx+ is a person)
2: Apply a probabilistic partial match of the identified entities

(This allows the system to recognise variations in the name of entities' for
example, if Mr John Adams has been recognised as a possible person's n~me,
then Mr Adams and J. Adams will be also marked as possible instances of
person's names)

3: Apply the rules again but using more relaxed contextual constraints by using
a grammar of names
(This step also includes conjunctions resolution and the recognition of known
named entities from gazetteers)

4: Apply a second probabilistic partial match supported by a maximum entropy
model

5: Apply partial matching and check against the maximum entropy model possible
named entities in titles
(This is done at the end because headlines provide little guidance for recog­
nising names, as they are normally in capital letters and contain almost no
contextual clues)

27

Mikheev et al. (1998) presented the LTG system which makes use of both internal

(phrasal) and external (contextual) evidence for recognising an entity and its class. This

terminology was introduced by McDonald (1996) and has been followed in most named

entity extraction approaches since then (Wakao, Gaizauskas and Wilks 1996, Wacholder

et al. 1997, Cucchiarelli et al. 1998, Zhou and Su 2002, to mention some). The idea

is very simple: consider the string Adam Kluver; it can be seen that this string has an

internal phrase structure (e.g. both words are capitalised and Adam is a common first

name) which suggests that this is a person name. However, somewhere in the text is

likely to exist some contextual information that should make clear what type of named

entity it is. For example, the string could be found in the phrase Mr. Adam Kluver which

would confirm that this string is a person name, or it could be seen in the phrase

Adam Kluver Ltd. which would indicate that this string is actually an organisation name.

Following this idea, the LTG system only makes the decision of the class for a given

entity when clear contextual information that supports such a decision is found.

In addition, the LTG system assumes that -for example-- once the string Adam Kluver

is identified as an organisation name, then any other less clear occurrence of this string

will refer to the same entity. If this string is also used for referring to an entity of

another type, then the LTG system assumes that clear contextual material would be

found to determine this new meaning.

Algorithm 2.1 presents the LTG extraction algorithm. This system reached an F-score

over 93% in the MUC-7 evaluation, the highest performance registered for the compe­

tition (Mikheev et al. 1998). Moreover, Mikheev, Moens and Grover (1999) conducted

a further evaluation of LTG which showed that even without using gazetteers, the al­

gorithm obtains levels of accuracy comparable to many other NEE systems competing

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 28

in MUC-7.

Although the LTG system performs remarkably well, the rules and grammars it uses

were hand-coded for the MUC-7 application. Therefore, these resources need to be re­

coded to apply this system on a new domain, which seriously compromises the porta­

bility of the system.

2.2 Machine learning approaches

The portability limitation mentioned in section 2.1 has attracted the attention of re­

searchers towards machine learning techniques which can learn how to use both internal

and contextual information for identifying named entities.

The Message Understanding Conferences provided the appropriate environment for the

development of this type of NEE system. More recently, the shared tasks of the Con­

ferences on Computational Natural Language Learning (CoNLLs) have also created a

competitive environment which has boosted the research in this area.

The latest MUCs defined the standard way in which named entity extractors should

be developed. They release three corpora for each task: a training corpus which must

be used to develop the system, a dryrun test corpus so that systems can be tested

during the development phase, and a blind test corpus on which systems were formally

evaluated (MUC 1995, MUC 1998).

The MUC task involved the discrimination of seven named entity types -namely per­

son, organisation and location names; date and time expressions; and money and per­

centage expressions- from artifacts and normal text (Chinchor 1998a).

In MUC-7, a further problem was introduced: the training and dry run texts were se­

lected from an aircraft accident domain, whereas the formal test corpus was a collection

of articles reporting the launching of aircrafts. This aimed to encourage the develop­

ment of NEE systems that could be easily adapted across different domains. Many

machine learning approaches were presented for these competitions, some of which are

described in the following paragraphs.

For example, Aberdeen, Burger, Day, Hirschman, Robinson and Vilain (1995) presented

the Alembic system, which uses a maximum error-reduction learning algorithm to con­

struct a list of transformation rules (based on Brill (1995)); this rules obtained an

F-score of 85%1.
1 Although performance measures are given for these systems, it must be kept in mind that such

performance might be estimated on different testing corpora and by different scoring pr?grams. In
addition each system normally prepared its own extra training material as well as thelr own pre­
processi~g programs. Therefore, comparing systems based on these measures is unrealistic and they

must be considered as referential only.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES
29

Cowie (1995) developed a system called AutoLearn, which constructs decision trees

using the ID3 algorithm (Quinlan 1983) for detecting the start and end points of named

entities; its performance was not very impressive: F-score 64%.

Bennett, Aone and Lovell (1997) presented RoboTag, which also uses decision trees to

classify words as being potential start/end of a named entity. However, this system uses

C4.5 (Quinlan 1993) for the induction and external lexical resources such as gazetteers;

RoboTag performed better: F-score 83.6%. Sekine (1998) presented a variation of this

approach for a Japanese task, which reached an F-score of 85%. Paliouras, Karkaletsis,

Petasis and Spyropoulos (2000) also evaluated C4.5 and external resources on the MUC

corpora -though they were not in the competition- and obtained a performance
around F-score 83%.

Bikel, Miller, Schwartz and Weischedel (1997) developed Nymble, a system that em­

ploys a hidden Markov model and a bigram language model for the task; this system

performed remarkably well for its simplicity: its F -score was 93%. This approach will

be discussed in more detail in the following chapter.

Borthwick, Sterling, Agichtein and Grishman (1998) use maximum entropy models for

predicting named entities in a system they named MENE. This system scored an F­

measure of 92%. This system will also be studied in more detail in the next chapter.

The CoNNL shared tasks introduced new challenges to the named entity extraction task,

as the organisers were interested in language independent NEE systems that could use

additional non-annotated training data (Tjong Kim Sang 2002b, Tjong Kim Sang and

De Meulder 2003). Named entity classes were reduced to four types: person, location,

organisation and miscellaneous names.

A wide range of methods and meta-methods from machine learning and natural lan­

guage processing were presented, including support vector machines, transformation­

based lists, learners cascade, boosting, Markov models and hidden Markov models,

maximum entropy models, character n-grams and tries, stacking, decision trees, vot­

ing, Winnow and SNoW, etc. plus some combinations of these methods. Examples of

systems presented in these conferences are discussed in the following paragraphs.

Carreras, Marquez and Padro (2002) presented an NEE system in which recognition

(NER) and classification (NEC) were performed sequentially and independently. Both

modules used binary AdaBoost classifiers to combine fixed-length decision trees. This

system scored best in two different languages: F-measure 81.39% for Spanish and 77.05%

for Dutch. They also reported that the pipeline scheme caused propagation of errors

and that additional knowledge sources -such as gazetteers and a list of trigger words-

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 30

yield an improvement of just 2% in the NEC system, and were of no utility in a second
step to obtain the final labels.

Cucerzan and Yarowsky (2002) developed a system which used both word internal and

contextual clues as relatively independent evidence sources that drive a bootstrapping

algorithm from initial seed names. Internal clues refer to morphological structure such

as prefixes and suffixes, which is automatically learnt during the bootstrapping process.

Contextual clues refer to patterns (such as Mr., in, mayor of on the left) which are crucial

for names that do not follow a typical morphological pattern, are of foreign origin or

polysemous. Both types of information are modelled as four smoothed tries: two for

context (left and right) and two for internal morphological patterns (prefix and suffix

tries). This system scored third and fifth on Spanish (77.15%) and Dutch (72.31%)

respecti vely.

Florian, Ittycheriah, Jing and Zhang (2003) presented an NEE system which combines

four classifiers based on different machine learning approaches: the first system used

Robust Risk Minimisation (RRM) , which is based on Zhang, Damerau and Johnson

(2002); the second one relies on a maximum entropy model, similar to MENE; the

third classifier utilises transformation-based learning; and the fourth system is a hid­

den Markov model classifier, similar to Nymble. They reported different performance

levels with different ways of combining these four classifiers, which show that an RRM

approach yielded better results. In the formal test, this system obtained the highest

overall performance on both English and German with F -scores 88.76% and 72.41% re­

spectively, which outperformed the best individual classifier by 17-21% for the English

task and less significantly for the German task.

Zhang and Johnson (2003) also presented a combination of classifiers in which the basic

units are characters and character n-grams, instead of words and word phrases. The

first model is a character-level hidden Markov model and the second one is a maximum

entropy model. This system was ranked third on English and second on German,

obtaining 86.31 % and 71.90% respectively. They reported that when n-grams are not

used, their system shows a 25% error increment.

2.3 Bases and hypotheses

Following the discussion above, the first basis in this thesis is that a portable named

entity extractor must not use manually-built rules for the task. Hand-coded rules are

time-consuming and although there may be attempts at making the modification and

addition of rules as simple as possible, this facilitation is normally oriented to experts

at both linguistics and the architecture of the system, or in the best case to experts in

the extraction task, which automatically restricts the portability of such a system.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 31

Therefore, this thesis will focus on machine learning techniques which should allow the

acquisition of rules and knowledge with little or no human intervention.

By a simple examination of the machine learning methods employed by the systems

described in section 2.2, it is easy to see that statistical learning techniques are exten­

sively used and quite successful. For instance, Nymble and MENE both utilise statistical

methods and both report a performance over 90% for the MUC task.

This is not exclusive to named entity extraction tasks. Most NLP problems can be

seen as random processes for which it is necessary to find the probabilistic distributions

that model their behaviour. Many successful applications of these methods has been

reported, accomplishing levels of performance that are very hard to improve on (Mikheev

1998).

These observations lead to the second basis for this research: modelling NLP problems,

of which named entity extraction is just an instance, as statistical classification problems

has proved to be a successful approach.

Among many other statistical methods, both hidden Markov models and maximum

entropy models are popular choices. For example, out of the sixteen systems competing

at the CoNLL-2003 shared task, three systems used maximum entropy models, two

utilised hidden Markov models, and two other systems employed a combination of these

techniques (Daelemans and Osborne 2003).

However, maximum entropy models present some advantages over hidden Markov mod­

els (Mikheev 1998):

1. Hidden Markov models -and generative statistical methods in general- assume

that the different pieces of contextual information are independent, and the model

engineer must take care to avoid the inclusion of overlapping features. These

simplifications are not necessary for maximum entropy models which can deal

with both overlapping feature segments and overlapping feature functionality.

2. The above property allows maximum entropy models to use more information and

from different sources, resulting in more complex models which have improved the

performance of classifiers in a number of applications (for examples, see Rosenfeld

(1996) and Ratnaparkhi (1996)).

3. In many cases, hidden Markov models can be moved from one domain into another

by re-computing the probabilities associated to the features included in the model.

However, if these domains present significant differences, the knowledge engineer

must build a completely new model. On the other hand, maximum entropy models

normally need to re-estimate their weights to capture a shift in the domain, but

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 32

less participation of an expert is needed if the available pool of features is general

enough.

Since this work started in 2000, there have been two important conferences on named

entity extraction, namely the shared tasks of CoNLL-2002 and CoNLL-2003 which have ,
provided more evidence in favour of maximum entropy models.

In the CoNLL-2002, Malouf (2002) applied three different statistical approaches to the

shared NEE task: a baseline statistical model, a hidden Markov model and a maximum

entropy model. He reports that even using the same information, the maximum entropy

approach widely outperforms the other two models. Moreover, when taking advantage

of a maximum entropy model's ability to use more complex information and extra

features were added, it obtained a 67% increase in overall performance with respect to

the hidden Markov model.

Results of the CoNLL-2003 are even more relevant: the top two systems in the German

task and the top three systems in the English task utilised maximum entropy models, in

isolation or in combination with other approaches, which would confirm that "Maximum

Entropy Models seem to be a good choice for this kind of task" (Tjong Kim Sang and

De Meulder 2003).

These observations lead to the third basis of this thesis: maximum entropy models

perform well on named entity extraction tasks and they also provide natural ways of

introducing new knowledge to guide the extraction procedure, which makes them a good

approach for generic named entity extraction.

NEE systems based on maximum entropy models have used a wide variety of features

extracted from a context window of words around a focus word, whose named entity

class must be determined. Among the most common features are:

c> lexical features, which are the strings -normally in a case insensitive mode-- of

the tokens under consideration (Borthwick 1999, Malouf 2002, Bender, Och and

Ney 2003, Chieu and Ng 2003, Curran and Clark 2003b, Florian et al. 2003, Klein,

Smarr, Nguyen and Manning 2003)

c> orthographic features, which provide information about the form of these tokens,

such as the type of lexeme (e.g. number, word, symbol) and capitalisation proper­

ties (e.g. lowercase, uppercase, capitalised) (Borthwick 1999, Malouf 2002, Bender

et al. 2003, Chieu and Ng 2003, Curran and Clark 2003b, Florian et al. 2003)

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 33

[> section features, which help discriminate between sections in the document (e.g. head­

lines, text) in which the context window is located (Borthwick 1999, Malouf 2002,

Chieu and N g 2003)

[> dictionary features, which indicate whether a word is contained in external dic­

tionaries of names (gazetteers) (Borthwick 1999, Malouf 2002, Bender et al. 2003,

Chieu and Ng 2003, Curran and Clark 2003b, Florian et al. 2003, Klein et al. 2003)

[> PoS features, which give information on the part-of-speech that a word is playing

in the sentence (Curran and Clark 2003b, Florian et al. 2003, Klein et al. 2003)

[> morphological features, which supply information about prefixes and suffixes of

tokens (Bender et al. 2003, Florian et al. 2003, Klein et al. 2003)

All these types of features are lexically oriented, and besides Curran and Clark (2003b)

and Florian et al. (2003), who included chunk features, there have been no attempts

to include linguistically richer information into maximum entropy models for named

entity extraction. The reason for this omission seems to be that getting rich linguistic

features -such as sentence structure, phrasal heads and semantic relations- can be

highly expensive and domain dependent, and it is not clear whether such information

could be useful. Nonetheless, it would be an important contribution to verify these

assumptions.

On the one hand, a good parser of general natural language text is still a matter of

research, but obtaining shallow phrase structure -such as noun and verb chunks, and

their head words- is not very difficult nowadays and a few systems are starting to

be available online. On the other hand, getting semantic and discourse-level informa­

tion is much harder. Acceptable solutions for structural attachment, sense ambiguity,

coreference and semantic relationships are very difficult to obtain, and only established

research groups have been able to attempt to solve these problems for information ex­

traction, after several years of dedicated work (Fisher et al. 1995, Wakao et al. 1996).

Thus, building these kinds of tools is realistically beyond the scope of this thesis.

The NLP Group at the University of Sheffield is probably the research body which has

paid most attention to these problems, resulting in the definition of a general archi­

tecture for text engineering (Cunningham 2000). Among their work, Gaizauskas and

Humphreys (1997) evaluated the use of semantic networks for information extraction.

Basically, they use a semantic network to have a world model prior to the processing of

the text. This network consists of an ontology and an associated attribute knowledge

base, which are manually built from the definition of the task. \Vhen a text is processed,

this semantic network is populated with the classes and instances mentioned in the text,

thus specialising the world model for that particular text. This specialised model allows

Gaizauskas and Humphreys (1997) to perform an analysis at discourse level.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 34

In the case of named entity extraction, the discourse model described above is utilised

to resolve coreferences of names and to classified ambiguous names by looking into the

semantic types of the arguments in certain relations (Wakao et al. 1996). For example,

the existence of the ambiguous name Ford can be classified by identifying that it refers

to the unambiguous name Ford Motor Co., also found in the discourse model; and by

identifying that the word stock is semantically related to organisations, the ambiguous

name Erickson in the phrase Erickson stocks can be classified as an organisation name.

Note however, that only NEC is performed and no new named entities are recognised

at this stage.

Gaizauskas and Humphreys's (1997) approach is dominated by the view that more ac­

curate information extraction systems cannot be obtained without attempting a deeper

understanding of the text being processed. This thesis widely shares this view. How­

ever, getting this understanding from manually built resources -as Gaizauskas and

Humphreys (1997) have done- compromises portability and, therefore, this thesis will

avoid resorting to this solution.

Nevertheless, the idea of introducing ontologies to obtain certain amounts of semantic

information should not be discarded. Guarino (1997) clearly identifies a fundamental

role for ontological aspects for information extraction: the semantic matching between

the terms used to define the task and those appearing in the text. Thus, named entity

extraction can be seen as identifying semantic matches between pieces of text and entity

classes. Therefore, this task requires that the meanings of both the classes and the

names occurring in the text are clear in order to determine whether they match or not.

Unfortunately, the ontologies currently in use are normally built ad-hoc (Guarino 1997)

for both the domain and the task.

However, there exists a general purpose ontology which could be used: WordNet®

(Miller 1995). WordNet is a lexical reference system which organises English nouns,

verbs, adjectives and adverbs into synonym sets, each representing one underlying lexical

concept and their relations (Fellbaum 1998). This general resource might provide an

NEE system with "semantic" understanding of the text being processed as well as more

clues for identifying unseen named entities, and without affecting the portability of the

system as the knowledge it contains is not specific to any particular application, but for

the English language in general.

In fact, Gaizauskas and Humphreys (1997) made use of WordNet in an attempt to

produce a more general world model which could help their system to resolve more

coreferences. Although they conducted a very small experiment, they found that the

availability of more semantic classes in the extended ontology had little effect on the

number of anaphoras that are correctly identified. In this attempt, they also concluded

that because WordNet uses a different synset entry for each possible sense of the lexemes

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 35

in the database, the problem of word sense disambiguation must be addressed. Their

solution was to manually select only one sense per word, based on a small set of training

documents.

Thus, in order to use WordNet as a source of semantic information for named entity

extraction, a better solution -with respect to the portability of the system- should

ideally be found. Although the construction of a general purpose word sense dis am­

biguator is generating much research today (Kilgarriff and Rosenzweig 2000), it is still

a medium-term goal and, therefore, beyond the scope of this thesis.

Nonetheless, it can be argued here than using WordNet ontology, even without per­

forming any disambiguation, can be useful for the NEE system proposed here. This

is so because a trigger word -as proposed in Wakao et al. (1996)- identified in the

training documents can be extended to examples which are not seen in the corpus. For

example, suppose that the word chairman is frequently seen in collocation with a per­

son name. WordNet would inform the system that it should also consider its synonym

director. In this way, the maximum entropy model would give to a noun phrase which

starts with the word director a higher probability of containing a person name, even if

the pattern director <person name> was not seen during training, just because it hits the

same WordNet synset as the word chairman. This intuition is explained in more detail

in section 4.5.

All these last observations lead to the first hypothesis of this thesis:

Hypothesis 1

General, domain independent linguistic knowledge -such as the semantic

information provided by WordNet- is useful for extracting named entities.

The introduction of shallow parsing and general ontologies should not affect the porta­

bility of the system. Moreover, projects like EuroWordNet (Vossen 1998), which aims to

develop WordNet-like semantic networks for several European languages, might provide

the necessary resources to allow the approach to move to other languages.

The second hypothesis of this thesis follows from the observation that statistical learning

methods, such as maximum entropy models, heavily rely on the frequencies of the events

being learnt. In fact, this is a characteristic of all machine learning methods that build

general hypotheses: they try to capture the general and tend to overlook infrequent

events.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 36

Daelemans, van de Bosch and Savrel (1999) showed that not considering infrequent

training examples -exceptions in their terms- can negatively affect the performance

of learners when a natural language task is involved. More specifically, they provide em­

pirical evidence that by keeping training exceptions, a memory-based learner improves

its performance up to a level which allows this approach to outperform a decision tree
learner.

This conclusion might be perfectly valid for named entity extraction. For example, the

token Clinton is seen in the MUC-7 training corpus 52 times: 51 times as a person name

and once as a location name. Thus, the probability that the token Clinton is reporting a

person name is 0.98, which will likely dominate the decisions that the maximum entropy

model makes for this example. This cannot be considered a mistake since statistical

methods assume that the same distribution observed in the training data will be found

in the decoding data.

There have been some attempts at overcoming this problem. A popular choice has

been applying Boosting (Schapire 1990). Boosting is a general method to produce very

accurate classifiers by combining rough and moderately inaccurate classifiers. Perhaps

the most used version of this technique is the AdaBoost algorithm -short for Adaptive

Boosting- which was introduced by Freund and Schapire (1996) with a strong theo­

retical framework based on PAC-learning. AdaBoost calls a weak learning algorithm

repeatedly -though they may be different learning methods- in a series of rounds, in

which a distribution of weights is defined over the set of training examples. Initially,

every instance has the same weight, but on each round, the algorithm increases the

weights of misclassified examples, so that the weak classifier will try harder on these

examples on the next round. Using the distribution of weights for the current round,

the algorithm obtains a weak hypothesis, its error and its global importance in inverse

proportion to that error. The final hypothesis is the weighted majority vote of all weak

hypotheses obtained. In this way, AdaBoost is able to identify exceptions -outliers in

Freund and Schapire's (1996) terms- which are mislabelled or inherently ambiguous

and hard to classify.

This method has been successfully applied to several NLP tasks, such as part-of-speech

tagging/PP attachment (Abney, Schapire and Singer 1999) and text categorisation

(Escudero, Marquez and Rigau 2000), and more recently to the CoNLL-2002 named

entity extraction task in Carreras et al. (2002) and Wu, Ngai, Carpuat, Larsen and

Yang (2002). These latter works are particularly successful: Carreras et al.'s (2002)

system obtained the best scores in both Spanish and Dutch and \Vu et al. 's (2002) was

fourth for Spanish and second for Dutch.

Carreras et al. (2002) and Wu et al. (2002) both used very simple weak learners that

obtained (very) shallow decision trees. It is not clear whether boosting would have

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 37

obtained the same results when a statistical method is used as the weak learner. For

these kinds of methods, a common practice is to perform boosting by re-sampling (rather

than boosting by re-weighting, as described above), in which a fixed number of training

examples are chosen with replacement according to the distribution defined by their

weights. But Freund and Schapire (1996) found that one of the requirements for ob­

taining a significant improvement in performance by boosting is that the weak learner

must be sensitive to changes in the training examples, so that the hypotheses generated

for the different training sets at each round are significantly different. This condition

might be difficult to meet with maximum entropy models and it would need a careful

re-sampling of the training examples with the explicit intention of producing different

constraints from one round to the next. In fact, Park and Zhang (2002) showed that

the effect of boosting is not significant when applied on a maximum entropy model for

shallow parsing.

The approach proposed here is based on the combination of memory-based methods

and maximum entropy models, so that the advantages of both types of techniques can

be united.

Memory-based reasoning solves new problems by adapting solutions that were used to

solve old problems (Burkhard 1998), but they do not learn a general hypothesis to

be applied later on. Instead, they use a retrieval engine which utilises the concept of

similarity to search among the past cases to obtain the most similar ones to a new case,

or query, that needs to be solved (i.e. classified, in this task). This way of reasoning

has many advantages: adaptation is not limited to any specific framework and therefore

cases and solutions are not restricted in structure; the similarity measures are not fixed

and frequencies can be considered but may not be the only factors; because adaptation

for a query can normally be performed from few cases retrieved, huge amounts of training

data are not essential; and the set of cases kept in memory can vary dynamically allowing

the deletion of useless cases and the insertion of new cases.

The idea is basically not to build a general maximum entropy model to be applied to all

decoding examples. Instead, a retrieve engine will be applied to obtain a set of training

examples that are similar to each decoding example. Only then will the maximum

entropy framework be utilised to adapt each set of retrieved training information in

order to decide a classification for the query text.

The intuition behind this idea is that by biasing the maximum entropy model in fayour

of examples that are similar to the piece of text that needs to be classified, the model will

be able to capture exceptions and the contexts in which unseen named entities appear

in a better way. Chapter 5 gives more details of this expected effect. This discussion

leads to the second hypothesis to be assessed in this thesis.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES

Hypothesis 2

Biasing the maximum entropy model towards the training examples that are

similar to the text under processing results in an increase in the performance

of the model on exceptions and unseen named entities

38

The third hypothesis is related to the fact that for natural language applications, the

annotation of training examples has been reported as a difficult, error-prone and time­

consuming task (Cardie 1997). This is an important problem, even for NEE systems

based on machine learning techniques that do not use hand-coded rules or gazetteers,

as they normally require a large number of labelled examples to obtain reasonable levels

of accuracy, limiting their portability across domains and languages.

There have been some attempts at overcoming this problem by obtaining new training

material from unlabelled text, mainly motivated by the work of Yarowsky (1995) and

Blum and Mitchell (1997), which showed that supervision could be significantly reduced

by exploiting the natural redundancy in textual data. They introduced two different

ways of performing semi-supervised learning, which the literature has generally called

bootstrapping and co-training, though a theoretical connection between these approaches

has been shown very recently (Abney 2004).

Semi-supervised learning works basically as an iterative process to estimate annotations

for unlabelled data, whose final objective is to provide annotated training data to im­

prove a learner. Yarowsky (1995) used his bootstrapping algorithm to solve word sense

disambiguation, obtaining better performance from an initial small set of seed colloca­

tions than a completely-supervised learning approach. Riloff and Jones (1999) used a

variation to extract a semantic lexicon (i.e. named entities) and extraction patterns for

an IE task, just from a few seed words. At about the same time, Collins and Singer

(1999) utilised co-training to induce rules for named entity classification from just seven

seed rules.

However, the above approaches have in common that they employ rule learners. It is not

clear whether bootstrapping would improve the performance of maximum entropy mod­

els, though Blum and Mitchell (1997) reported experiments with a statistical method,

namely the naIve Bayes classifier, in which the semi-supervised version outperforms the

supervised one.

Nevertheless, it would be an important contribution to explore ways of doing semi­

supervised learning with maximum entropy models, which would increase the portability

of an NEE system that uses this machine learning approach. This interest underlies the

third hypothesis to be assessed in this thesis:

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES

Hypothesis 3

Bootstrapping techniques can help an NEE system based on maximum en­

tropy models to be more portable by obtaining information which is valuable
for the task from unlabelled text

39

However, recent studies by Clark, Curran and Osborne (2003) and Cui and Guthrie

(2004) on bootstrapping maximum entropy models are indicating that they pose some

challenges for semi-supervised learning. These studies will be discussed in detail in
chapter 6.

The rest of this document is dedicated to the the evaluation of the hypotheses discussed
in this section.

2.4 Maximum Entropy Models

2.4.1 NLP and classification

Many problems in natural language processing -such as part-of-speech tagging (Brill

1995), word-sense disambiguation (Gale, Church and Yarowsky 1992), propositional

phrase attachment (Aberdeen et al. 1995) and chunking (Cardie, Daelemans, Nedellec

and Tjong Kim Sang 2000)- have been formulated as classification problems and solved

with a variety of methods.

In particular, NLP problems can be modelled as a statistical classification task in which

the probability of a class y -from a set of classes Y- occurring with context x -from a

space of contexts X- is estimated. Classes and contexts depend on the particular NLP

problem being solved. For example, calculating the probability of a word w surrounded

by words W-l, W+l of being a noun, a verb or none, i.e. P(nounl < W-l, W, W+l »,
P(verbl < W-l, W, W+l » and P(nonel < W-l, W, W+l », a coarse part-of-speech

tagging can be obtained. In this example, {noun, verb, none} are the classes and <
W-l, W, W+l > for each word W constitute the contexts. In this way, it is expected that

P(nounl < the, model, is » would be higher than both P(verbl < the, model, is »
and P(nonel < the,model,is ». Similarly, P(L'erbl < we,model,the » should be

higher than both P(nounl < we, model, the» and P(nonel < we, model, the», and

that the context < model, the, data> would yield to a higher probability with the class

none than for the other two classes.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 40

There are two major problems with this kind of formulation. Firstly, a relatively large

collection of annotated texts that might provide information about the occurrence of

a class y E Y with contexts x E X is needed. Normally, this information is not

enough for accurately estimating p(ylx) for all possible pairs (y, x) due to sparseness (a

good example of this problem can be found in Godfrey, Holliman and McDaniel (1999)).

Secondly, the different pieces of information considered within each context are generally

from different sources and some might be irrelevant, overlapping or probabilistically

dependent. These difficulties are to some extent overcome by Maximum Entropy Models

(MEMs).

In an MEM, problem-specific knowledge is represented as binary features2 which test the

presence of pieces of information in a context. In this way, virtually any kind of knowl­

edge -even from different nature- can be introduced into the model (Ratnaparkhi

1998).

Once the set of features to be included by the model is decided, a general purpose

iterative algorithm can be used to estimate the parameters of the model (see section

2.4.3.1). Therefore, modellers need only focus their efforts on determining what set of

features to use and not how to use it (Ratnaparkhi 1998).

Features of an MEM do not need to be statistically independent or not overlapping.

Borthwick (1999) shows that:

I> an MEM that includes two features h(x, y) and h(x, y) so that h(x, y) = 1 {:}

h(x, y) = 1, is equivalent to an MEM that includes just one of them; and

I> an MEM that includes features h (x, y), h (x, y) and 13 (x, y) so that two of them

partition the other, i.e. h(x,y) = 1 =? h(x,y) = 1 and h(x,y) = 1 =?

h(x, y) = 1 and 13(x, y) = 1 =? h(x, y) = 1 V h(x, y) = 1, is equivalent to

an MEM that includes just two of these features

Moreover if the set of features do not overlap then there is no need for an itera-,
tive algorithm and the probabilities can be estimated by a simple ratio of counts

(Ratnaparkhi 1998). Thus the true value ofMEMs is obtained when features that do not

form a partition of the space of classes and contexts need to be combined robustly. This

is also important because determining the larger set of partitioning features from the

set of features that are subsets of a given feature f is NP-Complete (Borthwick 1999).

Furthermore, an MEM can account not only for overlapping segments in the set of

training samples, but also for overlapping functionality among features which might

not even be represented in terms of overlapping features (Mikheev 1998).

2Features do not need to be binary-valued, but using binary features only makes the estimation of

the parameters easier (Della Pietra, Della Pietra and Lafferty 1997).

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES -41

All these characteristics of MEMs significantly reduce the work of constructing sound

probabilistic models for any task. Successful examples are many, for instance the work of

Ratnaparkhi (1998), who applied the maximum entropy framework to sentence bound­

ary detection, part-of-speech tagging, prepositional phrase attachment, natural lan­

guage parsing and text categorisation. In all five problems, he obtained performance at

or near the state of the art.

2.4.2 The Maximum Entropy Framework

The maximum entropy modelling framework is introduced here, adapted from (Della Pietra,

Della Pietra and Lafferty 1995) and (Berger, Della Pietra and Della Pietra 1996). More

details can be obtain in these two excellent publications.

Consider a random process which produces an output value y from a finite set of classes

Y. The objective is to construct a stochastic model that accurately represents this

process by estimating p(Ylx), that is the conditional probability that given a context

x, the process will output y. The model provides a conditional probability distribution

p(Ylx), in which the placeholders x and Y are instantiated to specific contexts in X and

classes in Y respectively. Let P be the set of all conditional probabilities. Then p(ylx)

is just one member of P.

In order to build this model, a number of samples (xl,yd,(X2,Y2), ... ,(XN,YN) are

collected, which provides the model with information of the behaviour of the random

process. These observations are normally called training samples.

The set of training samples is summarised in terms of its empirical distribution p,

defined by

_() _ count(x, y)
p x,y = N

where the function count(x, y) counts the number of times that the pair (x, y) occurs

in the set of training samples.

The task can now be seen as building a statistical model of the random process which

generated the training sample p(x, y).

The concept of features function needs to be introduced here. A feature function or

feature for short, is a binary-valued indicator which expresses a particular statistic of

the set of training samples. Following the example in 2.-1.1, the following indicators

could be introduced:

h(x,y) = { ~ if y = noun and W+l is a form of the verb 'to be' in x

otherwise

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES

f () - { 1 if y = verb and W-l is a pronoun in x
2 x,y -

o otherwise

42

The training sample « the, model, is >, noun) will fire h, that is II « the, model, is>

,noun) = 1, but not 12· Similarly, the sample « we, model, the >, verb) will fire 12,
but not h· The interest is focused on the expected value of a feature fi with respect to

the empirical distribution p(x, y). This value is given by equation 2.1.

p[fd == LP(x,Y)h(x,y) (2.1)
X,Y

When a particular statistic is considered relevant for describing the random process, it

is included into the model by constraining the expected value that the model associates

to the corresponding feature. This expected value is calculated as

(2.2)
X,Y

where p(ylx) corresponds to the conditional probability of obtaining y given a context

x estimated by the model and p(x) is the empirical probability of seeing context x in

the training samples.

The obvious constraint is that the model should agree with the set of training samples

on how often the output of the random process exhibits a given feature fi. This is done

by requiring p[fi] = p[fi] which yields to the more explicit equation

X,Y X,Y

which is known as a constraint equation or simply a constraint.

Thus statistical phenomena on the training samples that are considered important can

be represented -through p[fd- and the model for the random process is requested

to exhibit these phenomena by imposing constraints. Suppose that n features will be

included in the model, then a model whose distribution p is in the subset C c P, defined

by equation 2.3, must be found.

c == {p E Pip [fd = p[fd for i E {I, 2, ... n }} (2.3)

That is, the space of conditional probability distribution whose expected values for the

n features agree with the empirical statistics. Unfortunately, these constraints do not

determine a unique distribution p. Moreover, C allows infinite models.

Thus, a criterion to select a probabilistic distribution from the space C is needed. For

this, the maximum entropy principle is used. This principle states that the model whose

distribution is most uniform should be selected, so that "it agrees with everything that

is known but carefully avoids assuming everything that is not known" (Jaynes 1991).

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 43

For finding such a model, the entropy is used as a measure of the uniformity of a

conditional distribution p(Ylx), given by

H(p) == - LP(x)p(Ylx)logp(Ylx) (2.4)
x,y

If a random process has m possible outputs -i.e. IYI = m- then the entropy of a con­

ditional distribution for that model can vary from zero -a model with no uncertainty­

and log m -the uniform distribution over Yl, Y2, . .. ,Ym.

Based on this definition, the principle of maximum entropy can be restated as follows:

From the set C of allowed probability distributions, select the model p* E C

with the maximum entropy H(p):

p. = argmax H (p)
pEC

(2.5)

It has been shown that there is a unique, well-defined model which is the solution to

equation 2.5 (Della Pietra et al. 1995, Berger et al. 1996). Furthermore, such a model

has the exponential form

p. (ylx) = _I_eLi >'ifi(X,y)
Z>.(x)

Z>.(x) = L eLi >'if;(x,y)

y

(2.6)

(2.7)

in which each feature is associated with a parameter Ai and ZA(X) is a normalising

constant, determined by the requirement that the conditional probabilities for a given

context x add up to one over the classes Y E Y. The reader is invited to see the

details of the derivation of this parametric form -with the constrained optimisation

method of Lagrange multipliers- in Della Pietra et al. (1995). Sometimes the equivalent

parametric from

(I) 1 II fi(X,y)
p* Y x = Z(x) . O:i

l

(2.8)

Z(x) = L II o:t(x,y) (2.9)
y i

is used (Ratnaparkhi 1998, Borthwick 1999), where each parameter Qi eAi and Z(x)

is the appropriately modified normalising constant.

Interestingly, these exponential forms have been obtained from different points of view,

namely Information Theory and Constrained Optimisation Theory on probability dis­

tributions. Moreover, both approaches have shown that there exists a unique model q*

which solves

q. = argmaxL(q)
q",C

(2.10)

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 44

where L(q) corresponds to the log-likelihood of a conditional probability distribution q

over the set of training samples

L(q) = LP(x,y)logq(ylx) (2.11)
X,Y

In general, the maximum likelihood and the maximum entropy frameworks are two

different methods for statistical modelling. However, both analyses have found that in

this case q* also solves equation 2.5, and therefore q* = P*.

The fact that a model obtained under the maximum entropy approach is the same as

the model obtained by -the more traditional technique of- maximising the probability

of the training samples, is a strong argument in favour of the validity of the method

(Ratnaparkhi 1998, Borthwick 1999).

2.4.3 Learning Maximum Entropy Models

Any statistical modelling problem requires a two step process:

1. finding the appropriate set of facts to describe the random process to model, and

2. incorporate these facts into the model.

The first step is related to determining the set of features that will describe the process

best.

The second step is partially solved by the discussion in the previous section. It is

just necessary to calculate the expected values of the selected features according to

the training samples and find a model which satisfies the constraints that these values

impose. What is not said is how this model can be found.

In this section, some ways in which these two steps can be addressed are discussed.

2.4.3.1 Parameter Estimation

There are two main algorithms for estimating the parameter of a model with the ex­

ponential forms shown above (Darroch and Ratcliff 1972, Della Pietra et al. 1995): the

Generalised Iterative Scaling Algorithm (GIS), and the Improved Iterative Scaling (lIS).

Actually lIS can be seen as an optimisation of GIS.

The GIS algorithm requires that the features sum to some constant K for any training

sample, that is

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES

Algorithm 2.2: Generalised Iterative Scaling. Adapted from Ratnaparkhi (1998).

Input: ~.set of non-negative feature functions F = {h, 12,···, ij,.··, in}, their
empmc.al ~xpected values {p[fi]}n, the empirical distribution p(x, y) and the
normahsatlOn constant C

Output: the maximum entropy model P*

1: procedure GIS(F, {p[fi]}n,P(x), C)

2: Initialise parameters: a(O) t-- 1
. J

3: '/, t-- 1
4: repeat
5: Define the current distribution p(i):

6: (i)(Ix) t-- _1_ nn ((i»)fj(X,y)
p y Z(x) j=l a j

7: Calculate th~ expected values of each feature ij from p(i):
8: p[fil(t) t-- Lx p(x) Ly p(ylx)(i) ij(x, y)
9: Update the parameters for the next iteration:

1

10: a(H1) t-- a(.i) (P[fj(l)) C
J J p[fjl '

11: j t-- j + 1
12: until p(i) has converged
13: P* t-- p(i)(Ylx)
14: end procedure

45

(2.12)

If this condition is not met, a correction feature is introduced into the model so that the

constraint 2.12 is satisfied. In theory, a correction constant for all (x, y) pairs should

be derived from the space of possible events X x Y. However, this is not practical and

correction constants are estimated from the training samples as

which is accurate enough in practice when the set of training samples is large. In this

way, the following correction feature fl is added for each sample

Algorithm 2.2 describe the GIS procedure. Darroch and Ratcliff (1972) showed that

the model built by this algorithm converges to P*· This version of the algorithm is

for estimating the ai parameters of models with the exponential form of equation 2.8

(Borthwick 1999).

The key step in each iteration of the GIS algorithm is the calculation of the expectations

for the set of features. Suppose there are N training samples, m possible classes and

1 feature functions, then the running time at each iteration is O(Nml) (Ratnaparkhi

1998).

The Improve Iterative Scaling algorithm follows the same basic steps as the GIS algo­

rithm. The improvement is related to the way in which the expected value of a feature

function is obtained.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES

Algorithm 2.3: Improved Iterative Scaling. Adapted from Berger et al. (1996).

Input: a set of non-negative feature functions F = {h, 12,···, fj,.··, fn}, and
the empirical distribution p(x, y)

Output: the maximum entropy model P*
1: procedure IIS(F,p(x, y))
2: Initialise parameters:).(.0) ;- 0

. J
3: '/,;- 1
4: repeat
5: Define the current distribution p(i):

. ",n (i)

6: p(t)(Ylx) ;- Z),I(x) eL...j=l \ !;(x,y)

7: Find f}.).j for each feature which is solution to:

8: p[Jje~,\;f#](i) = P[fj] with f#(x, y) == 2:;=1 fk(X, y)
9: Update the parameters for the next iteration:

10:). (HI) ;-). \i) + f}.). .
J J J

11: j ;- j + 1
12: until p(i) has converged
13: p* ;- p(i)(Ylx)
14: end procedure

46

Algorithm 2.3 outlines the procedure as described in Berger et al. (1996), which deter­

mines the optimal values of the Ai parameters of a model with the exponential form of

equation 2.6.

The key step of the Improved Iterative Scaling Algorithm is the calculation of each

increment ~Ai. Unlike GIS, this algorithm does not require S(x, y) to be a constant;

it can compute these increments numerically by Newton's method or other equivalent

techniques (Berger et al. 1996, Borthwick 1999). Della Pietra et al. (1995) showed that

p(x, y)(j) converges to p*(x, y).

It should be noted that both algorithms terminate when convergence to the maximum

entropy model has been reached, that is when the change in the parameters estimated

in the iteration is zero or negligible. However, stopping the algorithm after a fixed

number of iterations works well generally and it is the most commonly used criterion in

practice. For example, Ratnaparkhi (1998) uses 100 iterations in all the four applications

of MEMs he presents.

2.4.3.2 Feature selection

As explained previously, building a maximum entropy model involves two steps. The

iterative scaling algorithms presented above provide a method for determining the op­

timal parameters of the model, once the set of feature functions has been defined.

The problem is that maximum entropy framework specifies how constraints should be

combined, but it does not stipulate directly what constraints should be included into

a model. Moreover -as discussed earlier- features which are overlapping each other

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 47

and some that are even not relevant can be included, and the model should be able to
deal with them correctly.

Penrose (1979) complained about this deficiency of the maximum entropy framework.

Jaynes's (1991) answer was rather strong:

"Well, we had thought it rather obvious that one should always take into

account all of the relevant information one has; and find it incredible that

anyone could have supposed differently."

Risking Mr. Jaynes's rage, it might be said that determining what information is relevant

is not so obvious to everyone, specially if that person is not an expert on the random

process being modelled -but a simple computer science student, say- and such an

expert is not at hand to be consulted.

The view expressed in Jaynes (1991) is that the modeller has all the responsibility

for providing the framework with the features that describe the random process best.

However, computer scientists do not usually like this kind of answer and are always

looking for ways in which computers can help to solve any task with as little human

intervention as possible.

Help from a computer becomes more relevant when the target process is complex, since

it is not uncommon to find problems with thousands or even millions of possible features

-such NLP problems- from which only a small fraction are expected to be crucial for

modelling the process (Berger et al. 1996, Blum and Langley 1997). In these circum­

stances, feature selection is critical as the iterative algorithms of section 2.4.3.1 are

computationally costly, and their running times depend on the number of constraints

to be considered by the model. Moreover, there are two reasons which make feature

selection even more critical for maximum entropy models.

Firstly, the iterative algorithms for estimating parameters do not look for higher-order

interaction between features. This is consistent with the maximum entropy principle

in that no assumptions should be made other than the constraints to be met. On the

other hand, if there exists a special interaction between two features, their combination

in a more complex feature function should result in a more accurate model (Mikheev

1998). For example, a model for finding organisation names can combine the weights

of the features "this word is capitalised" and "the next word is pIc" which are estimated

separately, but it can also use the complex feature that results from the conjunction of

these two features, i.e the feature "this word is capitalised and the next word is pIc",

whose weight is estimated from the training examples that fire both original features

simultaneously.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 48

Mikheev (1998) states that if the conjoined features are not independent -as in the

above example- then the resulting complex feature should produce a better prediction.

However, as things are, this higher-order feature needs to be included explicitly as a

constraint by the modeller from the beginning.

Secondly, although an MEM can handle some irrelevant features by assigning the ap­

propriate near-zero weights (Rosenfeld 1996, Mikheev 1998), the introduction of many

irrelevant features can degrade the predictions of the model. Similarly, MEMs cope well

with overlapping features, but a high degree of overlap requires more iterations in the

iterative scaling algorithms (Borthwick 1999, Ristad 1998).

The two step task of deciding which features to use in describing a concept and then

deciding how to combine them, is not a property of maximum entropy models only

but present in most machine learning methods (Blum and Langley 1997). In all these

techniques -though they may significantly differ in the approach- there exist induction

algorithms which aim to scale well from domains with many irrelevant features.

Thus feature selection defines a two level process in which modellers are responsible for

establishing a set of initial features that they think might be useful in describing the

target concept, and then a refinement of this set is performed by an inductive algorithm.

This combination is very common in practice, including work with maximum entropy

models.

A good example of this combination can be found in Borthwick (1999). He presents a

basic feature selection method in which an algorithm collects a pool of features, and then

a cutoff filter is applied to discard all features that are not fired more than three times.

Both the features extracted by the algorithm and the cutoff threshold were defined

by Borthwick and were probably based on his intuition of the problem being solved.

Although this simple method worked well, he recognised the necessity of deviating from

it to solve some practical problems. He incremented the cutoff threshold for too frequent

features which resulted in a reduction of the size of the model without a significant loss ,
in accuracy. He also excluded features which were fired by default in many contexts

and features which only predicted the default class of the process.

Ratnaparkhi (1998) also uses the frequency-based count cutoff to select the features

to be included in the model with success. He set the cutoff threshold to values five

and ten in most cases. For one task, Ratnaparkhi set this value to zero. He argues

that this value should be used when the initial feature set consists of only specific

features whose valuable information might be thrown away when discarded. On the

other hand, a threshold greater than zero is useful when the set of features includes

generalised features in addition to the specific ones. Thus, most of the disregarded

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 49

features will be specific features which are unreliable sources of evidence -due to their

low counts among the training samples- and the model will be able to fall back on

-more reliable- generalised features for predictions. Ratnaparkhi also states that the

features used in solving the NLP problems presented in his thesis are knowledge-poor

-i.e. do not require linguistic expertise- by design, so that a computer is forced to

learn as much as possible from the training samples.

Despite the success of frequency cutoff, the modeller has the main responsibility for

determining which features are included into a model. Hence, this kind of selection

is still difficult to apply when the modeller has little idea of which features might be

useful.

Two kinds of features in this process can be distinguished: atomic features which cannot

be decomposed into simpler features, and complex features which are built by making

conjunctions of atomic features. The latter ones were also called higher-order features

earlier. In the terms of Ratnaparkhi (1998), a specific feature is a feature compounded

from many atomic features -and thus fired for a small number of training samples­

whereas generalised features involved few or just one atomic feature, being fired more

frequently.

Borthwick (1999) uses only atomic features for his model, but he describes an attempt

to include complex features. He realised that the cutoff method was not appropriate

for performing the selection when higher-order features were involved, and applied a

multi-stage process.

He first created a pool of complex features of the form Iij = Ii 1\ Ij that satisfy # Iij > 3,

Ii - # Iij > 3 and # Ij - # Iij > 3, where #1 is the number of times a feature I is

fired in the training samples. After this filtering by count, he obtained a pool of about

139,000 features. Unfortunately, this was too large to handle by the implementation of

the IIS algorithm he was using (Ristad 1998).

Therefore, he defined a second stage in which a selection method proposed by Ristad

(1997) is applied. In this method, features are selected by comparing the model's

expectations of how often they should occur in the training samples against the empirical

expectations. Let d Ii be this difference calculated as

X,Y X,Y

where p(ylx) is a maximum entropy model which does not include the candidate fea­

tures. By the restrictions imposed by the framework, if a candidate feature Ii were

added to the model, then d Ii = O. Hence, the higher the value of d Ii, the bigger the

impact on the model if Ii were included in the model.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES

Algorithm 2.4: Basic Feature Selection. Adapted from Berger et al. (1996).

Input: a large pool of ca?didate features F and the empirical distribution p(x, y)
Ou~put: a set 8 of actIve features and the maximum entropy model Ps that

mcludes these features
1: procedure BFS(F,p(x, y))
2: Initialise 8 +-- 0 and Ps +-- the uniform distribution over Y
3: repeat
4: for each candidate feature fj E F do
5: Compute the model Psu{fj} using an iterative scaling algorithm
6: Compute the gain in log-likelihood from adding this feature:
7: b.£(8,fj) +-- £(pSU{fd) - £(Ps)
8: end for
9: Check the termination condition

10: f* +-- argmax b.£(8, fj)
j

11: 8 +-- 8 u f*
12: Compute the model PS using an iterative scaling algorithm
13: until convergence
14: end procedure

50

Although Borthwick (1999) does not explain exactly how he used this number to rule

out features, it can be guessed that he set another threshold quantity and discarded

any candidate feature which did not pass this threshold. Unfortunately, this method

was not sufficient for obtaining the final set of features.

Borthwick (1999) reports that there were features that fired too frequently, causmg

numerical problems in the implementation of the lIS algorithm. Therefore, he had to

add a third stage in which features were eliminated from the pool manually. Unfor­

tunately, the resulting pool of features did not outperform the model obtained with

atomic features only.

Berger et al. (1996) suggested a different approach for the feature selection problem.

In this, the modeller is only responsible for providing as large a pool of features as

possible. Thus it may include both atomic and complex features, and they need not

be relevant or useful. This approach is presented in algorithm 2.4. Basically it builds

incrementally -with a strategy similar to the induction of decision trees- a set S of

features to be considered by the model, from a large pool of features F, by selecting

at each step the feature that provides the greatest improvement in log-likelihood of the

model with respect to the training samples.

One issue not specified in algorithm 2.4 is the termination condition. Obviously, the

algorithm should ideally stop when all useful features are included in the set S. One

reasonable stopping criterion would be to subject f* to an increase of likelihood on held­

out training samples. If this feature does not satisfy this condition, then it is discarded

and the algorithm stops.

However, the biggest problem in algorithm 2.-1 is that at each step the maximum en­

tropy model PSu{f
l
} must be computed. Despite the efficiency of the iterative scaling

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 51

algorithms presented in section 2.4.3.1, this is a computationally costly task that makes

the method impractical. For this reason, Della Pietra et al. (1995) and Berger et al.

(1996) make the algorithm greedy but more efficient. Instead of computing ~£(S, fi),

the greedy version calculates its approximation ",b..£(S, fd by keeping all the param­

eters of the model Ps fixed and determining only the new parameter required for the

constraint imposed by Ii· After selecting the candidate feature which maximises this

approximated value, it is added to the set S and the parameters of the model are recom­

puted. This approach estimated good features relatively fast but it does not guarantee

to make the best selection at each step because adding a new feature to a model can

change all its parameters.

Ratnaparkhi (1998) conducted controlled experiments to evaluate the differences in the

frequency cutoff method he utilised and the Random Field Induction method explained

above. He allowed the induction algorithm to run a fixed number of iteration AI, and

then selected the set Si with i E {I, ... , M} which yielded the highest log-likelihood

on held-out training samples. The aim of these experiment was to assess whether the

smaller set of features produced by the inductive algorithm resulted in better accuracy of

the final model. This set is clearly smaller because, unlike the frequency cutoff method,

non-informative features introduce negligible gains in likelihood and are consequently

discarded by the algorithm.

Ratnaparkhi (1998) found that both approaches -i.e. frequency cutoff and incremental

induction- obtained models that perform similarly. The main differences between the

methods are in the running time and the readability of the resulting set of features.

He concludes that if efficiency is the main issue, then frequency cutoff should be used

as it is much faster than the inductive algorithm. On the other hand, if the goal is to

obtain a readable set of features, then incremental induction should be used as it yields

a concise and understandable list of features.

Mikheev (1998) also conducted a study of feature selection and proposed a new method

based on the construction of a lattice of higher-order features, which he calls collocations.

The basic idea is to include collocations -i.e. complex features which are empirically

observed- and features which might provide significant generalisations over the ob­

served collocations into this lattice. Only then, important features are selected for the

model.

He starts by collecting training samples and representing them as configuration of atomic

features. Then he applies some sort of goal regression to identify configurations which

can safely be removed from the training sample space in order to reduce the dimension-

ality of the task.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 52

Figure 2.1: Example of a collocation lattice in which thick circles represent reference nodes and filled circles
represent possible hidden nodes that are not part of the lattice. Adapted from Mikheev (1998).

The resulting configurations are organised as cliques of features in a lattice. Observed

configurations are represented as reference nodes. For example, suppose the training

samples provide the configurations [ABC], [BCD], [CEF] and [CFG]. Figure 2.1 shows

the lattice that these configurations generate. In this figure, configurations are repre­

sented as reference nodes denoted by thick circles. Then, nodes which share part of

at least other two nodes in the lattice are added to support generalisations over the

domain. These kinds of nodes are called latent or hidden nodes, and are not normally

observed on their own but only as part of reference nodes. As shown in figure 2.1, the

hidden nodes representing the collocations [BC] and [CF] and the hidden node repre­

senting the atomic feature [C] are also considered in the lattice. All other hidden nodes

are discarded because they directly support only one node and thus they do not provide

any generalisation.

Each node has associated with it two frequency counts: the configuration frequency

counts (cf), which corresponds to the number of times the represented configuration

has been observed in the training samples, and the feature frequency count (ff), which

corresponds to the number of times that the represented feature -atomic or complex­

has been seen in all observed configurations.

Therefore, in reference nodes these counts normally have the same value, that is cJ(Ji) =

JJ(Ji). Hidden nodes normally have zero configuration frequencies (cf(Ji) = 0) but non­

zero feature frequencies (JJ(fi) > 0). It might be the case that a reference node could also

be a hidden node for another higher-order reference node. In this case, its configuration

frequency count will not be zero and it might be different from its feature frequency

count.

Mikheev (1998) discussed two ways in which features from this lattice -which he calls

the empirical lattice- can be selected for the model. The first idea is to apply fre­

quency cutoff over all nodes in the lattice. This idea is easily implemented but if too

many features are selected, then both the estimation of the model 's parameters and the

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES
53

application of the model to new examples -which is linear in the number of features­
might become inefficient.

The second idea is to try determining which features contribute to the frequency distri­

bution on the reference nodes. This is done by creating an optimised lattice based on the

empirical lattice. The optimised lattice is initially empty and is built incrementally by

adding a node at each step, together with the nodes which are the minimal collocations

of this node and the nodes already included in the lattice. Thus, the optimised lattice

always contains non-overlapping feature cliques. In this way, there is no need to use

iterative scaling to account for overlaps among features.

For the example of figure 2.1, suppose the first node to be added to the optimised lattice

is the one representing the feature [A]. The configuration frequency in the optimised

lattice (~/) of this node will concentrate all configuration frequencies of itself and the

higher-order related nodes, thus ~f([A]) = cf([A]) + cf([AB]) + cf([AC]) + cf([ABC]).
Now suppose the feature [B] is selected to be included in the optimised lattice. This will

also require the node for [AB] being added and redistributing the frequencies among

these three nodes. The resulting frequency counts will be ~f([A]) = cf([A]) + cf([AC]),

~f([B]) = cf([B]) + cf([BC]) and d([AB]) = cf([AB]) + cf([ABC]). If at some point

the node representing the feature [C] is added to the optimised lattice, then the whole

feature clique involving these features will be present and with identical frequency counts

to those in the empirical lattice.

In this selection method, the node to be added at each step is the one which makes the

greatest increment in log-likelihood of the optimised lattice with respect to the reference

nodes in the empirical lattice. For this, the probability of a node is considered to be the

probability of the highest related node in the optimised lattice, which could be the node

itself. It is also necessary to define a "lattice root" node which is used as default related

node for estimating the probabilities of reference nodes in cliques that are not yet con­

sidered in the optimised lattice. Finally, Mikheev (1998) also introduces a smoothing

scheme which does not affect frequent nodes, but considerably penalises sparse colloca­

tions. In this way, this method defines a greedy hill-climbing algorithm with maximum

likelihood evaluation function which adds a winning set of non-overlapping features at a

time, whose solution can be easily derived and re-calculated from observed frequencies.

It is not clear whether one of these two alternatives -i.e. the empirical lattice or the

optimised lattice-- is better than the other. Mikheev (1998) points out that this is

an empirical matter which depends on the complexity of the task, because the time

needed for the feature selection can compensate for the time saved during parameter

estimation.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES

T~ble 2.1:. Com.paris?n of lattice methods for feature selection and Random Field Induction in tasks with
different dimensionality. Adapted from Mikheev (1998).

size
time

training accuracy
test accuracy

size
time
training accuracy

test accuracy

size
time
training accuracy
test accuracy

Dimensionality 9

Empirical Lattice I Optimised Lattice I Random Field Induction
195 148 44

00:29 00:30 33:26
85.04 85.04 84.85
83.99 83.99 84.27

Dimensionality 11

Empirical Lattice I Optimised Lattice I Random Field Induction
628 271 46

03:06 01:59 1:09:26
85.47 85.38 84.97
85.39 85.67 84.55

Dimensionality 13
Empirical Lattice I Optimised Lattice I Random Field Induction

1,530 449 54

10:55 08:15 2:23:48

86.04 85.37 85.88

85.67 87.64 85.99

Table 2.1 shows experiments -reported in Mikheev (1998)- with both methods on

tasks with different dimensionality, which confirm this observation. What is clearly

determined by these experiments is that the Random Field Induction discussed earlier

required much more training time with similar levels of performance.

The main advantage of the optimised lattice method is that it provides a much smaller

maximum entropy model than just using the empirical lattice. This is a very important

advantage when additional optimisation is applied over the features, which normally

does require iterative scaling. In Mikheev (1998), an approach to further pruning the

number of features considered for the final model is proposed. This method requires

a quarter of the time when working on the optimised lattice compared to working on

the empirical lattice. In addition, the resulting maximum entropy model after this

optimisation consistently showed better performance than both lattice methods and

the Random Field Induction approach.

The main problem with Mikheev's (1998) method is that building the feature collocation

lattice can be prohibitive for tasks with many dimensions. Nonetheless, this approach

can provide a better model and in faster time than the inductive technique for many

practical tasks. For tasks with more than 25-30 dimensions, Mikheev suggests Random

Field Induction should be used.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 55

2.4.4 Modelling

The previous section has detailed methods for estimating the parameters of a maximum

entropy model and methods for selecting the features to be included in such a model.

However, all the discussed approaches for selecting the correct set of features -namely

frequency cutoff, Random Field Induction, empirical lattice and optimised lattice­

start from an initial set of atomic and higher-order features which must be provided by

the modeller.

This is not the case in other machine learning approaches, which automatically look for

the best conjunction of attributes (Blum and Langley 1997), in which the modeller is

required only to provide the initial set of atomic features.

It could be argued that this is all that is needed for the lattice methods. This is true

in general, but it is not clear that the method might be useful when the task being

modelled has many dimensions3 . For example, suppose there are 18 non-valued atomic

features for each training sample of an NLP classification task, of which nine correspond

to tokens in a sequence within a context window4 . Thus the number of valued atomic

features will normally be very large. It will be rather difficult if collocations of 17 valued

atomic features -which in the best case do not include one of the nine tokens in the

sequence- will support more than one observed configuration. Hence it is likely that

none of these hidden nodes should be present in the empirical lattice and thus the only

nodes to be considered for the model would be the observed conjunctions of 18 features.

The usefulness of the method cannot be completely disregarded because there are ap­

plications of the lattice method to NLP tasks in Mikheev (1998), though everything

suggests that in all of them the initial configurations were not so sparse. Moreover, in

an application for determining whether a period is marking the end of a sentence, only

the 238 most frequent atomic features are used, and no explanation for this reduction

is given. Furthermore, this set must correspond to 238 valued atomic features -and

only around six non-valued atomic features- as they only generate 8,245 nodes in the

empirical lattice.

This last point may require further discussion. If the contexts considered for modelling

a random process contain six non-valued atomic features, then the number of possible

features for each training sample j is given by

IF; I = (:) + (:) + (~) + (:) + (~) + (~) = 63

3Dimensions is Mikheev's (1998) term to refer to non-valued features. For example, "the part-of­
speech of the next word" can be included in the information provided for a ~et of traini~g examples.
This corresponds to one non-valued atomic feature. In the data, however, thIS fea~ure wl,~l be valued:
''the part-of-speech of the next word is Noun", ''the part-of-speech of. the next .word IS Verb, etc. These
instantiations of the abstract feature are valued atomic features or Just atomIC features.

4 Such a problem will be encountered in later chapters.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 56

that is, one conjunction of six features, six conjunctions of five features, 15 conjunctions

of four features, 20 conjunctions of three features, 15 conjunctions of two features and

six atomic features. Hence it is impossible that 238 non-value atomic could generate

only 8,245 possible feature collocations. Moreover, this number needs to be multiplied

by the possible values of each conjunction. For example if all six atomic features have

three possible values, then the theoretical number of possible conjunctions is

IFI = 36 + 6.35 + 15 . 34 + 20.33 + 15 . 32 + 6·3 = 4,095

which corresponds to the maximum size of the empirical lattice. In NLP tasks, atomic

features are rarely three-valued (e.g. part-of-speech tags) and frequently lexical forms­

i.e. tokens- are included. Thus the number of possible conjunctions is normally huge.

However, this theoretical number of feature collocations is almost never encountered in

practice, and the lattice method can be used even for tasks with moderate dimensionality

if common high-order collocations can be found. Nonetheless, the number of collocations

is still extremely high and considering all of them also makes the use of Random Field

Induction impractical.

Mikheev's (1998) lattice methods can be seen as a filter approach to feature selection,

because it filters out irrelevant features before the induction occurs5 . Filter approaches

are common in machine learning and the actual techniques employed vary enormously.

They have many advantages, but the most attractive characteristic is that they are

normally independent of the induction algorithm that will use their output and thus

can be combined with any such method (Blum and Langley 1997).

One approach successfully applied for filtering is the use of decision trees. For exam­

ple, Kubat and colleagues have used them to filter attributes for a Bayesian classifier

and initialise neural networks (Kubat, Flotzinger and Pfurtscheller 1993, Kubat 1998,

for example). Cardie (1993) used them to select the features to be included in a

k-nearest neighbour retrieval function for solving an NLP problem. She found that

this hybrid technique outperforms alternative systems that utilise only decision trees

or k-nearest neighbour, and also two other case-based systems that incorporated -

potentially expensive- expert knowledge.

More recently, Park and Zhang (2002) presented an approach in which decision trees

are used to generate higher-order features for a maximum entropy model to solve text

chunking. They showed that a decision tree can easily be represented as feature func­

tions for a maximum entropy modelling. For example, consider the decision tree of

figure 2.2, which makes predictions for the part-of-speech tagging task discussed in sec­

tion 2.4.1. Rules in this tree can be directly denoted with the if-then form used in

feature functions:
SIn this context, the induction step would be the optimisation with iterative scaling or the estimation

of the parameters of the model.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 57

verb

yes

other noun

Figure 2.2: Part of a decision tree for part-of-speech tagging. The rules are: if the current word is 'model'
then ~a) if the previous word is a pronoun, then predict current word is a verb; otherwise (b) if the next
word ~s a form of the verb 'to be', then predict current word is a noun; (c) otherwise predict the current
word IS not a verb nor a noun.

fI(x,y) { 1 if y = verb and (wo is 'model' and W-l is a pronoun) in x
0 otherwise

{
1 if y = noun and (wo is 'model' and W-l is not a pronoun and

W+l is a form of the verb 'to be') in x

0 otherwise

{
1 if y = other and (wo is 'model' and W-l is not a pronoun and

W+l is not a form of the verb 'to be') in x

0 otherwise

Park and Zhang (2002) transcribe each path from the root to leaves of the decision

tree as feature functions. Then, they argue that because algorithms for the induction

of decision trees (Quinlan 1983, Quinlan 1993) try to partition the sample space into

non-overlapping regions, each feature -i.e. each path- can be considered to have

the same importance weight. They introduce these features into a maximum entropy

model which has to re-weight the complex features in order to optimise their predictive

power. This method obtained an improvement of 2.34% in accuracy with respect to the

performance of the decision tree. More importantly, the number of errors were reduced

by 41.64% from 2,663 to 1,554 on test data. This improvement is important as decision

trees are themselves strong classifiers.

However, the main contribution of Park and Zhang's (2002) approach is that it auto­

matically selects features for a maximum entropy model starting from atomic features

only. Thus the linguistic knowledge required for modelling the task is considerably

reduced.

In the decision tree of figure 2.2, three non-valued atomic features are used: h = "the

string of the current word is", 12= "the previous word is a pronoun" and h = "the next

word is a form of the verb to be". Thus the set of possible features defined by the

features is {h,h h h 1\ 12, h 1\ h 12 1\ h, h 1\ 12 1\ h}· Now suppose that w can

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 58

take values from -a rather small- lexicon of 3,000 words. Because f2 and 13 are

binary valued, there are 12,000 possible configurations just of the form (II 1\ f2 1\ h)

and 27,008 possible valued features in total. If all 3,000 words in the lexicon are present

in the training corpus, from which the training samples are taken, then this potential

number of valued features will become the actual size of the feature space for both

Random Field Induction and the lattice methods.

A decision tree searches for the most informative combinations of features that split the

data. Therefore, the tree of figure 2.2 is indicating than the collocations II (model) 1\ f2
and II (model) 1\ f2 1\ 13 are valuable in modelling the task. This tree also indicates

that there is no need to try more complex combinations with these features. This

automatically discards collocations such as II (model)I\f2l\hl\f4, II (model)I\f2l\fsl\f6,

etc.

Thus, if only conjunctions considered by a decision tree are used as the initial set of

features, for both Random Field Induction and lattice methods, a significant reduction

in size of the task can be obtained making practical the use of feature selection tech­

niques in tasks with more dimensions. This is an interesting idea which deserves some

investigation.

Nonetheless, there is an important limitation for this idea to work: induction algorithms

for decision trees are computationally expensive. For example, both Ratnaparkhi (1998)

and Borthwick (1999) conducted experiments that aimed to compare the performance of

their maximum entropy approaches against known, commercial decision tree induction

algorithms. In addition to obtain results which suggest that maximum entropy models

outperform decision tree classifiers, neither of them could obtain decision trees for tasks

that included lexical features (strings) for moderate-size training corpora.

This last problem could be solved by using shallow decision trees or decision trees with

fixed depths, for which relatively efficient induction algorithms have been proposed

(Auer, Holte and Maass 1995, Dobkin, Fulton, Gunopulos, Kasif and Salzberg 2000).

Obviously, finding sub-optimal conjunctions only is a risk as the number of features

in each collocation would be restricted by the depth of these decision trees. Neverthe­

less, it would provide a set of initial higher-order features which should make practical

the induction methods discussed above, starting only from the specification of atomic

features.

2.4.5 Limitations

One of the limitations of using maximum entropy models has already been discussed:

their computational cost. Although building an ME1'I is a tractable problem, large tasks

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 59

with thousands or millions of training samples and with many dimensions that cannot

be pruned without expert knowledge require a considerable amount of both memory
and CPU time.

A more important limitation is related to the convergence of the parameters when an

exact solution for equations 2.6 and 2.8 does not exist. This is the case with random

processes which require a model to predict p*(ylx) = 1 for some pair (x, y). In such

cases iterative scaling will always increase the parameter associated with the constraint

imposed by this pair.

A related problem is that the maximum entropy framework "gives infinite confidence to

contexts that are not ambiguous with respect to the predictions with which they occur,

regardless of their frequency" (Ratnaparkhi 1998). This fact produces an undesired

effect when parameters interact to make a prediction. Infrequent events tend to be

unambiguous and -as explained above- normally get higher parameters in the model.

Thus when combined with other evidence which might appear much more frequently in

the training samples, parameters for infrequent events will dominate the prediction.

However, these limitations are seldom encountered in NLP tasks (Ratnaparkhi 1998).

Moreover, the count cutoff used for feature selection normally discards these problematic

infrequent features. Another suggested solution for these problems is the application of

smoothing techniques and using soft constraints (Lau 1994).

A final observation is that only binary feature functions are considered in most -if not

all- applications and implementations of the maximum entropy model. However, this

is not a limitation of the framework itself (recall that the iterative scaling algorithm only

requires positive initial parameters). This limitation is not a problem, since a feature

of the form:

_ { count (w) if y = verb and w occurs in x
f 1 (x,y)- . o otherWIse

in which count(w) is the number of times that a word w is found in a document, can

be re-written as the following binary feature:

{
I if y = verb and w occurs frequently in x

fl(X,y) = . o otherWIse

Although they are not exactly the same feature, they provide similar evidence for the

prediction. In any case, binary features have proved to be sufficient to capture enough

information -at least at word or sentence level- for making accurate predictions

(Ratnaparkhi 1998).

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 60

2.4.6 Maximum entropy tools

There are a number of tools that implement the maximum entropy framework. The

main advantages of using an existing implementation -rather than constructing one

from scratch- are that the significant time needed for programming and debugging can

be saved and any results obtained are supported by previous work with the same tool.

The most popular tools are The Maximum Entropy Modeling Toolkit (MEMT) (Ristad

1998) and the OpenNLP Maxent package (MaxEnt) (Baldrige and Bierner 2001). MEMT

supports the construction and application of maximum entropy models for discrete do­

mains. This tool effectively implements the IIS algorithm for estimating the parameters

of the model - in the C language. MaxEnt also supports maximum entropy models

for discrete domains, but it implements the GIS algorithm - in the Java language.

It is not clear that one tool is better than the other. Nonetheless, MaxEnt provides

more support: expected values calculation and the frequency cutoff algorithm, if that

is the feature selection mechanism to be used. In any case, both tools can be used for

parameter estimation only after doing the selection in a preprocessing step.

Borthwick (1999) reported some numerical problems with MEMT, which have not been

reported for MaxEnt so far. This might be considered as a reason for preferring the

latter package. Nevertheless, the main reason for using MaxEnt is that this tool is

free, whereas MEMT is nowadays part of PMT, a commercial product from Mnemonic

Technology Inc.

2.5 Summary and discussion

In this chapter, a literature review of previous approaches to named entity extraction

has been presented. This review has provided three important bases:

I> manually-built extraction rules should be avoided by portable NEE systems and

machine learning techniques must be used instead

I> among all machine learning paradigms, statistical methods have been shown to

be quite successful when applied on NLP tasks, and

I> maximum entropy models have proved to be a good approach for extracting named

entities and they also show benefits for building generic systems

This review and the above bases have also been the foundations on which a number of

hypotheses have been proposed with the aim of developing methods that will contribute

towards the implementation of a portable, generic NEE system.

CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 61

The first hypothesis of this thesis is that the inclusion of general, more linguistically­

oriented features might help a maximum entropy model to capture useful clues for

identifying named entities which cannot be obtained from lexically-oriented features.

The main challenge here is obtaining and representing this linguistic knowledge without

affecting the portability of the approach. Chapter 4 discusses possible resources for this

information and also explains how it can be introduced into a generic named entity

extractor.

The second hypothesis propounded here is that a better treatment of exceptionality

can be provided to the system by biasing the maximum entropy model to consider

further the most similar training examples to the piece of text being analysed. Chapter

5 explains in more detail why this approach could work and surveys the validity of this

hypothesis.

The final hypothesis proffered is related to semi-supervised learning. It is evident that

the ability of making good use of unlabelled text would increase the portability of

any NLP system. However, it is not clear that maximum entropy models are suitable

for bootstrapping techniques. In chapter 6, this suitability is analysed and ways of

overcoming the difficulties they pose are discussed and tested.

This chapter has also provided a detailed overview of the maximum entropy frame­

work and how it can be applied to the formulation of named entity extraction tasks as

classification problems.

Chapter 3

Baseline systems

In this chapter, a new method for analysing target corpora is proposed. This method

offers some advantages over previous approaches in the literature such as more detailed

information on the performance of an NEE system.

This corpora analysis is then applied on new implementations of two known named

entity recognisers which will be used as baseline systems in later chapters.

3.1 Corpora analysis

The experience accumulated over the years on solving NLP tasks indicates that the

complexity of a particular application not only depends on how hard the task could

be, but also on the complexity posed by the corpus being targeted. Therefore, it is

not possible to determine whether an NEE system is obtaining an acceptable level of

performance if it is not known how intricate the target texts are.

A common way of getting round this problem is to use the performance of a (very) simple

baseline system as a minimum bound of effectiveness and against which other approaches

can be compared. Thus according to basis three (section 2.3), an NEE system based

on maximum entropy models should exhibit a performance that is significantly higher

than such a baseline system.

Palmer and Day (1997) conducted an effort to analyse the complexity of the MUC named

entity extraction task on several corpora in different languages. In this task there are

three types of phrases that report seven classes of named entities (Sundheim 1995):

TIMEX (dates and time expressions), NU:NIEX (money and percentage expressions)

and EN AMEX (names of people, locations and organisations).

62

CHAPTER 3. BASELINE SYSTEMS 63

They found that almost all time and numerical expressions could be captured by a

small number of simple patterns, whereas ENAMEX phrases presented a much more

challenging job. However, they also discovered that TIMEX and NUMEX phrases

accounted for 20-30% of the named entities in the different corpora, thus NEE systems

had to be good at recognising names of people, locations and organisations in order to

perform well on the task.

A second important result of this analysis is that an NEE system cannot focus on one

ENAMEX class, because they significantly varied between languages. For example,

a system that optimises the recognition of location names would perform well on the

Chinese corpus under analysis, in which this category is a majority, but poorly on the

English MUC-6 corpus, in which this category only represents 14.5% of the ENAMEX

phrases.

But the most important result reported by Palmer and Day (1997) is that a small

number of ENAMEX entities occurred very frequently. In general, they observed that

10% of the named entities represented up to 50% of the ENAMEX phrases occurring

in the corpora. Thus, there is an important section of named entities that most likely

never occur in any amount of training data.

Following these findings, they conducted an experiment to determine how well a system

that memorises EN AMEX entities in the training data could identify named entities

in unseen text. The results indicate that the coverage of unseen named entities -as

more and more training data is provided- peaks rapidly, leaving a large percentage of

phrases uncovered.

Palmer and Day (1997) used these results to estimate a lower bound for the recall of a

baseline system which just memorised ENAMEX phrases and utilised simple patterns

for TIMEX and NUMEX phrases. They found that this number varied greatly between

languages -and possibly across domains- because they presented a different vocabulary

transfer rate, that corresponds to "the percentage of phrases [labelled as named entities]

occurring in the training corpus which also occurred in the test corpus".

Palmer and Day (1997) proposed an estimation for this lower bound of recall that

is given in equation 3.1, where NNUMEX, NT1MEX and NENAMEX are the proportion

of NUMEX, TIMEX and ENAMEX expressions in the text respectively - i.e. the

percentage of named entity phrases represented by each type; a is the percentage of

time and numerical expression that can be captured by simple patterns - which they

estimate at 0.95; and TENAMEX is the vocabulary transfer rate of ENAMEX phrases.

«NNUMEX + NTIMEX) * 0') + (NENAMEX * TENAMEX)
(3.1)

Clearly, NNUMEX, NTIMEX, NENAMEX and TENAMEX are corpus -or at least language­

dependent. As stated above, the first three parameters seem to be relatively constant

CHAPTER 3. BASELINE SYSTEMS 64

across corpora, but the vocabulary transfer rate of ENAMEX phrases differs consider­

ably. For example, the Chinese corpus shows a very high rate of TENAMEX = 0.732,

whereas the French corpus presents a modest one with TENAMEX = 0.236. Inter­

estingly, the English corpus turned out to be quite difficult: TENAMEX = 0.212 and

NENAMEX = 0.798, resulting in a lower bound of just 38.4%.

It would be quite interesting to establish whether these numbers are also found in the

MUC-7 corpus, which is the one used in this thesis. Some correlation can be expected as

both corpora are collections of news articles, though from different sources: the MUC-6

corpus collects Wall Street Journal articles whilst the MUC-7 corpus corresponds to

documents from the New York Times.

However, these ideas can be developed further to obtain an indicator of the portability

of an NEE system. In effect, Palmer and Day's (1997) study suggests that it is very

difficult to provide an extractor with sufficient training examples to cover most of the

named entities that will be encountered in the target texts. Therefore if large amounts of

manually-labelled training examples are not available, an NEE system which performs

well only on seen phrases will not be able to recognise a significant portion of the named

entities present in the target texts.

Consequently, it is important that it could be determined whether a named entity

extractor is performing well on unseen named entities. The overall recall and precision,

or their F -score combination, does not give this information directly. It is necessary

then to obtain these indices separately on the basis of how familiar a named entity is.

In section 3.2, a new approach to analysing the complexity of an NEE task is proposed.

This approach allows both the estimation of task-independent lower bounds for the recall

and the precision of a named entity extractor, and the evaluation of its performance

individualised by the familiarity of the named entities to be extracted.

3.2 Analysis of the MUC-7 corpora

This section proposes a new approach to estimate the complexity that the target domain

of an NEE task poses. This complexity is reflected as lower bounds for the recall and

the precision that a baseline system that memorises the named entities seen during

training can obtain. This approach is then applied to the MUC-7 training, dry run test

and formal test corpora.

Although this corpora analysis method is inspired by Palmer and Day's (1997) work, it

can also be seen as an extension of the more recent analysis conducted by \Vhitelaw and

Patrick (2003), in which comparisons of different NEE systems were reported separately

for named entities that were seen and unseen during training.

CHAPTER 3. BASELINE SYSTEMS

Table 3.1: Types of familiarity for named entities in test corpora.

~GlIl1iliaurit)'

t)'pe

Unseen

Seen

Hard

Ambiguous

Description

Named entities whose text has not been seen in the training
data
Named entities whose text has been seen in the training
data with the same class
Named entities whose text has been seen in the training
but not with the decoding class
Named entities whose text has been seen in the training
data with the same class, but has also been seen with other
class (es) or not marked as a named entity

65

In the approach proposed here decoding named entities, that is named entities in the

target texts, are classified into four categories according to the familiarity of their (case

insensitive) text and their decoding class. Table 3.1 presents the familiarity types for

decoding named entities considered in this approach.

Similarly, individual tokens that compose named entities -hereafter NE tokens- are

also classified into these categories. This follows the idea of raw output counting (Roth

and van den Bosch 2002, Daelemans and Osborne 2003), in which each token within a

named entity is considered as a whole named entity.

All systems evaluated in this thesis use a fine-grain tokenization scheme, in which most

tokens are sequences of symbols separated by spaces; however, there are a number of

exceptions: said.", tonight's, London-based, etc. It is clear that these sequences need to be

divided because they might contain named entities, as the latter ones do for the MUC

task. Therefore, the above pieces of text are tokenized as: said. ", tonight's and

London - based.

The token-level analysis provides a different insight into the performance of an NEE

system, as it considers partially identified named entities which are normally ignored

in the evaluations at phrase level. For instance, suppose that a system produces the

following wrong output.

<ORGANISATION>Western Co.</ORGANISATION> of <LOCATION>North Amer­

ica</LOCATION>.

This output is normally considered just wrong; however, the system has managed a par­

tial recognition of the organisation name. This is the kind of approximation that can

CHAPTER 3. BASELINE SYSTEMS

4000

* 3000
c:
OJ

o 2000
1&
.0
E
::>
Z 1000

o

4000

ill 3000
.:::;
.:::;

~
o 2000
1&
.0
E
::>
Z 1000

o

53.96%

35.72%

1.36%

Unseen Seen Hard
Named entity familiarity type

59.16%

33,26%

1.18%

Unseen Seen Hard
Named entity familiarity type

MUC-7 dryrun test corpus

8.95% I

I I
Ambiguous

MUC-7 formal test corpus

6.40%
r I

Ambiguous

Figure 3.1: Distribution of named entities in the MUC-7 test corpora according to their familiarity.

66

be captured by counting NE tokens. Moreover, this level of analysis focuses the evalu­

ation on the management of external evidence by the system, as the internal evidence

is reduced. For example, it would not be surprising than the phrase American Airlines

is always seen as an organisation name within a given corpus. However, the tokens

American and Airlines will probably be seen in other contexts as well and a named entity

recogniser will have problems in discriminating when these tokens must be extracted

from internal evidence only.

Figure 3.1 presents the distribution of named entities in the MUC-7 testing corpora

according to their familiarity with respect to the MUC-7 training corpus. In both

cases, most named entities are either seen or unseen, constituting around 90% of each

corpus. A further analysis of the other 10% suggests that many of them are actually

inconsistencies in the annotations, due to disagreement between annotators (e.g. earlier

yesterday tagged as time and as date) or mistakes (e.g. Miami tagged as a date, more

than once). This means that the number of actual hard and ambiguous named entities

would be even lower in a hypothetical noise-free corpus.

It can be expected that this distribution of named entities will be seen in other domains.

This is because an end-user will be interested in the best performance for the system.

This includes tuning the named entity extractor to the particular application by pro­

viding training data which is representative of the target documents. Therefore, many

of the named entities included for training will be seen during decoding. In addition,

it has been observed that human writers tend to avoid introducing ambiguity in text

(Gale et al. 1992, Mikheev, Moens and Grover 1999). Thus ambiguous or contradic-

CHAPTER 3. BASELINE SYSTEMS

..
OJ
'-1:

sooo

4000

~ 3000

'0

~ 2000
E
::r
z

en
Q)

1000

o

5000

4000

.~ 3000 -o

~ 2000
E
::r z

1000

o

I

17.47%

-

Uns een

26.55%

Unseen

I

MUC·7 dryrun test corpus

34.22%

4.95%

L
Seen Hard

Named entity familiarity type

I I

MUC·7 formal test corpus

..
23.51%

8.51%

I
Seen Hard

Named emity familiarity type

4335%

-

~

J

J
J

Ambiguous

41 .82% I

1

I --'--~_-1..J
Ambiguous

Figure 3.2: Distribution of NE tokens in the MUC-7 test corpora according to their familiarity.

67

tory named entities will rarely be encountered. On the other hand, training data is by

nature limited and target documents will contain named entities which have not been
seen during training.

In conclusion, good performance on seen and unseen named entities is a desirable

characteristic of NEE systems. This conclusion matches the observation that perfor­

mance on unseen words is a major factor in the success of an NEE system (Klein

et al. 2003, Whitelaw and Patrick 2003).

Figure 3.2 presents the distribution of NE tokens for the MUC-7 test corpora. These

results indicate that ambiguous NE tokens are the most frequent and they have to be

considered with the unseen and seen familiarities for obtaining good performance at

token level. This figure also suggests that an NEE system has to deal with a significant

amount of ambiguous tokens to obtain good performance at phrase level.

However, these numbers can be misleading because some named entities appear several

times in the text. For example, the named entity phrase Va/uJet has 241 occurrences in

the training corpus: 239 times marked as an organisation name and two times marked

as not being part of a name. This named entity phrase is found 244 times in the

dryrun test corpus, 243 of them tagged as an organisation name. Thus 244 ambiguous

named entity occurrences are being counted just for this phrase. This realisation has

encouraged an analysis of named entity phrases - i.e. without considering repetitions­

in the corpora, whose results are shown in figure 3.3.

CHAPTER 3. BASELINE SYSTEMS

en
(1)

~ 2000
(1)

'0
.8 1000
E
::> z

o

en 2000
~
~ 1500
Q)

~ 1000
(l)

D
§ 500
z

o

~ 2000
C
(1) 1500
'0
Q; 1000
D

§ 500
z

o

Unseen

67.87%, R,=1.41

I
Unseen

82.32%, R=I .B2

I
Unseen

97.16%, R -2.56 MUC-7 training test corpus

2.84%, R = 11.23

Seen Hard Ambiguous
Named entity familiarity type

Mulhple

MUC-7 dryrun test corpus

30.10%, R,=4.45

1 1.25%, R,=2.24 1.46%, R,=15.29 0.60%, ~,=21 .93

Seen Hard Ambiguous Multiple
Named entity familiarity type

MUC-7 formal test corpus

15.35%, R =5.45

I 1,21 %, R =2.32 1.03%, R =15.67 0.09%, R . 9.00

Seen Hard Ambiguous Multiple
Named entity familiarity type

-I

Figure 3.3: Distribution of named entity phrases in the MUC-7 corpora according to their familiarity.

68

Obviously, in the training corpus there are only seen and ambiguous entities. Only five

ambiguous entities have different classes (e.g. Clinton is seen once as a location name

and 51 times as a person name) and the rest are -beside errors and inconsistencies­

one-token named entities which are also frequent common words (e.g. china, march, may,

turkey, American, brown, etc.).

Although only 66 out of 2,324 named entities are ambiguous, they exhibit a high repe­

tition rate (Rr). Each ambiguous named entity appears on average Rr = 10.44 times in

the corpus 1 , whereas the seen named entities appear just Rr = 2.57 times on average.

Figures for the dryrun test corpus are different now: though unseen and seen named

entities still count for most of the corpus, unseen named entities are an absolute majority

constituting about 65%. The amount of unseen named entities is even higher for the

formal test corpus, but this could be explained by the slight change of domain introduced

in this collection of articles.

Some named entities present multiple familiarity types because they appear in the

corpus with different classes. For example, the text 8 p.m. is found in the dryrun test

documents with the class time and the class date; but in the training corpus this text

was seen tagged only as a time named entity. Thus, this phrase is considered seen

when the decoding class is time, but hard when the decoding class is date. In general,

most multiple familiarity type named entities are introduced by inconsistencies in the

annotation within the corpus, as this example has been.

IThis rate does not consider the cases in which the word is not part of a name. Including the e
occurrences the frequency ratio would rise to 23.56.

CHAPTER 3. BASELINE SYSTEMS

~ 2000~---"--------'---------~--------.-------~--___
2 72.62%, R,=3.24 MUC 7 r-4 .~ 1500 - training test corpus
G>

~ 1000
<!l
D 27.38%, R,=9.23

-
E 500
~ o~~~~~~~I ___ l~~~

Unseen Seen Hard Ambiguous

'" 1500
~

~ 1000
o
.8 500
E
:::> z

o

46.20%, R,=1.73

Unseen

~ 1500
"E 55.68%, R,=2.39

~ 1000
o
'­
<!l

~ 500

I

Named enllty familiarity type
Muluple

MUC-7 dryrun test corpus

26.61%, R,=4.82

I . I 8.63%, R,=1.55
13.75%, R,=71.38

I I 4.81 %, R,= 16.63
I

Seen Hard Ambiguous
Named entity familiarity type

Multiple

MUC-7 formal test corpus

16.28%, R,=6.13

I I 1

11 .18%, R,=2.60 I 1 12.48%, R,='3.93

1
4.38%, R,=14.85

O UL~~--~~~--~~--____ -L-L ______ ~x=====~~
Unseen Seen Hard Ambiguous Multiple

Named entity familiarity type

69

Figure 3.4: Distribution of NE tokens as named entity phrases in the MUC-7 corpora according to their
familiarity.

Interestingly, the repetition rate of ambiguous named entity phrases in the dryrun test

corpus is consistent with the rate found in the training corpus. That is to say that

though only a fraction of named entities are ambiguous, they are encountered much more

frequently than seen entities (3:1 approximately). Remembering that many ambiguous

named entities are mainly introduced by noise in the annotations, it could be suggested

that highly frequent named entities are somehow attracting -if not generating- lapse

of concentration from the annotators. Taking care of these named entities during anno­

tation might result in a significant reduction in the noise in training corpora. Although

the trend of noise among seen named entities cannot be automatically analysed, they

seem to be much less frequent (£4. = 2.6 approximately) and mis-annotations in this

category result in less damaging noise.

As mentioned above, with the change in domain introduced by the MUC-7 formal test

corpus, the number of unseen named entities rises to more than 80% of the cases, but the

repetition rate follows the same pattern, that is unseen named entities are less frequent

than seen ones, which in turn are less frequent than ambiguous named entities (2:5:16

approximately) .

Although unseen events are repeated much less, their absolute numbers make them

important for an NEE system in both test corpora. This is again consistent with the

findings in Klein et al. (2003) that performance on unseen words is what makes the

difference between current NEE approaches.

Figure 3.4 presents the distribution of NE tokens when they are considered as named

CHAPTER 3. BASELINE SYSTEMS 70

Table 3.2: Distribution of named entities in the MUC-7 test corpora according to their phrase ty (TIMEX
NUMEX & ENAMEX) and familiarity type (UNSEEN SEEN HARD & AMBIGUOUS) F· pe ed' . ' , . Igures are separat
for named entity phrases (NEP) and named entity occurrences (NEO).

MUC-7 dryrun test corpus
UNSEEN SEEN HARD AMBIGUOUS TOTAL

NEP NEO NEP NEO NEP NEO NEP NEO NEP NEO
TIMEX 439 499 190 791 10 11 10 59 649 1,360

NUMEX 62 71 25 37 0 0 0 0 87 108
ENAMEX 1,087 1,657 466 2,536 34 74 27 499 1,614 4,766

TOTAL 1588 222 , 7 II 681 I 3,364 II 44 I 85 II 37 I 558 II 2,350 I 6,234 I

MUC-7 formal test corpus
UNSEEN SEEN HARD AMBIGUOUS TOTAL

NEP NEO NEP NEO NEP NEO NEP NEO NEP NEO
TIMEX 635 812 154 602 14 24 10 41 813 1,479

NUMEX 213 262 26 60 3 4 ° ° 242 326
ENAMEX 1,066 2,400 178 1,291 15 41 14 335 1,273 4,067

TOTAL I 1,914 I 3,474 II 358 I 1,953 II 32 I 69 II 24 I 376 2,328 I 5,872 I

entity phrases - i.e. without considering different occurrences. It can be observed that

the proportions between familiarity types change. Although unseen tokens are still a

majority, ambiguous and hard NE tokens are not tiny fractions of the corpora now but

represent around a third of all NE tokens. Interestingly, the proportion of seen NE

tokens is relatively the same as that for seen named entities with 15-25%.

Despite this change, the trend of the repetition rate remains: unseen and hard tokens

are less frequent than seen tokens, which in turn are less frequent than ambiguous ones,

though the differences are also reduced slightly (1:3:5 approximately).

All this information collected for the MUC-7 corpora allows an estimate of the per­

formance of a baseline system similar to the one defined by Palmer and Day (1997).

Table 3.2 presents the distribution of named entities at phrase level on the MUC-7 test

corpora, in which named entities have also been classified according to their familiar­

ity with respect to the MUC-7 training corpus, with and without considering different

occurrences. There are actually 2,326 named entity phrases in the dryrun test corpus,

which form 2,350 (NE phrase, NE class) pairs that occur 6,234 times. In the formal test

corpus, there are 2,323 named entity phrases which form 2,328 (NE phrase, NE class)

pairs that occur 5,872 times in the documents.

In terms of Palmer and Day's (1997) estimations, ENAMEX phrases represent 76.45%

of the total named entities in the dry run test corpus, and the remaining 23.55% corre­

sponds to TIMEX and NUMEX phrases. Palmer and Day's (1997) vocabulary transfer

rate can be obtained by adding the percentage of seen, hard and ambiguous ENAMEX

named entities of table 3.2. Thus, the vocabulary transfer rate for the dry run test cor­

pus is 65.23%. Note that the proportion of phrases by type in this corpus follows the

observations of Palmer and Day (1997). However, the vocabulary transfer rate is much

higher here than in the MUC-6 corpus studied by Palmer and Day (199/), which wa.<.;

CHAPTER 3. BASELINE SYSTEMS 71

estimated in 21.2% only. This confirms that some corpora pose more difficulties than

others, even for the same extraction task and in the same language.

Similarly, it can be established that in the formal test corpus, 69.26% of the named

entities correspond to ENAMEX phrases and 30.74% to TIMEX and NUMEX phrases,

and that it presents an ENAMEX vocabulary transfer rate of 40.99%. Again, the

proportion of named entities by type corresponds with the results of Palmer and Day

(1997), but the transfer rate is higher.

With these figures, it is possible to determine lower bounds for a baseline system as

defined in equation 3.1 for both MUC-7 test corpora:

0.2355 * 0.95 + 0.7645 * 0.6523

0.3074 * 0.95 + 0.6926 * 0.4099

72.24% (dryrun)

57.59% (formal)

It must be noticed that these are bounds for recall only and that it assumes that 95%

of TIMEX and NUMEX expression can be captured by using simple regular patterns.

However, this approach to measuring complexity is for the extraction task as defined in

the MUC conferences only and it could be argued that assuming 95% recall on TIMEX

and NUMEX expression is overoptimistic and even unfair to systems that are committed

to using as little human intervention as possible.

Fortunately, the information provided in table 3.2 permits better estimates for a hy­

pothetical system that only memorises the named entities which it sees in the training

documents. Such a baseline system would extract all seen named entities correctly but,

supposing it would abstain from classifying ambiguous named entities, it would get

nevertheless hard named entities wrong. Thus, recall can be estimated as:

3,364
6,234
1,953
5,872

53.96% (dryrun)

33.26% (formal)

On the other hand, precision is limited by the portion of the named entities identified

in the decoding text which are classified with the correct class, which corresponds to:

3,364
3,364+85

1,953
1,953+69

97.54% (dryrun)

96.59% (formal)

A lower bound for the F-score can also be given by applying formula 1.1 with parameter

(3 = 1: 69.48% for the dry run test corpus and 49.48% for the formal test corpora

respectively. These bounds are quite high for such a simple baseline technique and

improving on this performance will probably present a difficult challenge. The main

room for improvement seems to be the low recall that the hypothetical system would

obtain. However, as explained in previous chapters, increasing recall has always been

followed by a drop in precision. The challenge then will be to increase recall in a greater

proportion than the corresponding fall in precision.

CHAPTER 3. BASELINE SYSTEMS 72

Although a system that just memorises named entities has been used as reference (for

example in the CoNLL conferences, in which all participant systems outperformed such

a baseline system), it could be argued that the named entity extraction technology is

too developed now to consider such naIve methods.

A more realistic approach would be to compare the performance of a new NEE system

with existing systems that are known to perform well. Unfortunately, it is not easy to

find good NEE systems freely available.

One alternative would be to use domains for which results are known, but these are

limited to very few domains. Moreover, it is difficult to compare results from a new

NEE system with previous works because even if the systems are using the same corpora

-and therefore the same domain- the pre-processing tools may vary and errors from

this stage do affect the overall performance of these systems. In addition, the exact

training resources which each system utilises are very difficult to replicate.

In conclusion, the best way of comparing new results against the state-of-the-art of

the technology is to implement one or more known systems and use them as baseline

systems. In this way, it can be ensured that both training data and early NLP steps

are shared and the same.

3.3 Baseline systems

Following the discussion in the previous section, two known good statistical approaches

have been selected and implemented as baseline systems. There are two additional

reasons for implementing these baseline systems:

I> the performance obtained by the approaches proposed in this thesis will be individ­

ualised by familiarity type. This information cannot be obtained from published

results as they are made only in terms of overall recall and precision

I> they can be used to confirm the basis that statistical machine learning methods

are successful for named entity extraction tasks

In the following sections, these systems are discussed in more detail.

3.3.1 Nymble

The first baseline system implemented is a version of Nymble (Bikel et al. 1997). This

approach has been chosen because:

CHAPTER 3. BASELINE SYSTEMS

PERSON

I

\

\

(five other Dbe-classes) I

I

t

73

END-SENT

Figure 3.5: The conceptual Hidden Markov Model used in Nymble. Adapted from Bikel et al. (1997).

1. it uses a 100% learning approach (with no external lexical resources)

2. it is extremely simple

3. its performance is very good

4. the approach seems to be well explained in the literature

Nymble uses an ergodic Hidden Markov Model (Rabiner 1989) with eight regions -also

called name-classes-, one for every type of MUC named entity to recognise (Chinchor

1998a) plus a default not-a-name region for words which are not part of any entity name

(figure 3.5). Consequently, it identifies person names, organisation names, location

names, dates, time expressions, money expressions and percent expressions. In addition

to these, the model includes two special states which represent the beginnings and ends

of sentences.

Within each region, Nymble uses a statistical bigram language model in which every

state can emit one word. Therefore, each name-class has IVI states and IVI2
transitions,

where V is the vocabulary recognised by the system. Unlike normal Hidden Markov

Models, the transition of states and emission of symbols follows a three-step procedure:

1. Select a name-class NC conditioned on the previous name-class and the previous

word, that is

(3.2)

2. Generate the first word within the current NC conditioned on the current and

previous name-classes, that is

(3.3)

CHAPTER 3. BASELINE SYSTEMS 74

Table ~.3: Orthographic features as used in Nymble plus an example and intuition behind them. Adapted
from Blkel et al. (1997).

Word-feature I Example text I Intuition

twoDigitNurn 98 two-digit year
four DigitN urn 2002 four-digit year
containsDigitAndAlpha I2534-W code
containsDigitAndDash 20-01-02 date
containsDigitAndSlash 1/20/2002 date
containsDigitAndCornma 5,000.00 monetary amount
containsDigitAndPeriod 1.00 monetary amount, percentage
otherNum 283845 other number
allCaps IBM organisation
capPeriod L. person name initial
firstWord less useful capitalisation
initCap John possible name
lowerCase IS possible not a name
other , all other words

3. Generate all subsequent words inside the current name class conditioned on the

previous word, that is

Pr(<w,j> I <w,j> -1' NC) (3.4)

As can be seen from above, a word in Nymble is actually a pair: the lexeme and an

orthographic feature, which are denoted <w,j>. Nymble uses fourteen disjoint ortho­

graphic features (showed in table 3.3) which describe some lexical characteristics of

tokens that should help the model to recognise names. Only one feature is assigned to

each word, so there is a precedence scheme among the features (which can be seen in

this list). Thus a word which begins with a capital letter but is starting a sentence will

have associated the firstWord feature rather than the initCap feature. This precedence is

based on the intuitive fact that a capitalised word at the beginning of a sentence will

provide less evidence for being a name than in the middle of a sentence.

Nymble also introduces two magical words: <+begin+,other> to compute the likelihood

for a word being the first word of its class-name, and <+end+,other> to compute the

probability for any word being the final word of its class-name.

As with any n-gram language model, it is unrealistic to expect that Nymble will be

provided with all possible bigrams from the training data. This is overcome by collecting

statistics for unknown words by manipulating the system's vocabulary and backing off to

models based on incomplete information. Table 3.4 summarises the backing-off strategy

as used by Nymble.

CHAPTER 3. BASELINE SYSTEMS 75

Table 3.4: Nymble's back-off/smoothing scheme. Adapted from Bikel et al. (1997).

Name-class First words Subs t equen d wor s

Pr(NCINC-1,w-l) Pr« w,f >/irst INC,NC_1) Pr« w,f > I < w,f >_l,NC)

Pr(NCINC_1) Pr(< w, f > I < +begin+, other, NC) Pr« w, f > INC)

Pr(NC) Pr« w, f > INC) Pr(wINC) . Pr(fINC)

1 Pr(wINC) . Pr(fINC) 1 1

number of name-classes TVT . number of word features

1 1 WT . nmn1'\PrOf word

In addition, Nymble uses the back-off models for smoothing the top-level model by

assigning the appropriate weight to each model and its immediate back-off model.

Appendix A presents a detailed analysis of Nymble and explains how it has been im­

plemented. Because this version includes only the main features of the original system

and has not been tuned to any specific task, it has been named siNymble (simple im­

plementation of Nymble). This appendix also includes a walk-through example with

siNymble.

3.3.2 MENE

The other baseline named entity extractor chosen is the MENE system (Borthwick

1999). This system utilises maximum entropy statistical modelling (Berger et al. 1996,

Della Pietra et al. 1997, Ratnaparkhi 1998) to capture relevant features in free text,

which are used later to predict occurrences of named entities. MENE was one of the

systems which participated in the latest MUC conference (MUC 1998) with good results.

The training information provided to MENE is a pool of features of different nature:

t> lexical features (i.e. the lexemes) of surrounding words

t> orthographic features, such as the type of lexeme (number, word, symbol) and

capitalisation properties

t> section features, which discriminate between sections in the document (e.g. head­

lines, text)

t> dictionary features, which indicate whether a lexeme is contained in external dic­

tionaries of first names, corporate names, etc.

CHAPTER 3. BASELINE SYSTEMS 76

c> reference resolution features, which relate different -including partial- occur­

rences of a sequence of lexemes

Thus, each token in a training document has associated -at least some of- these

features and a tag which indicates its named entity feature. If c is one of the named

entity classes to identify, then any token could be associated with the tags c _ start,

c _ continue, c _ end, c _ unique or not _ ne indicating that the token is starting, contin­

uing or ending a named entity of class c, the token constitutes a one-word named entity

of class c or the token is not linked to any named entity. According to the MUC-7

definition of the named entity task (Chinchor 1998a), 29 tags are used to represent the

options for the seven target named entity classes and the not-a-named-entity case.

During decoding, MENE assigns each token with the probabilities of being associated

with one of these 29 tags. Taking the highest probability could result in invalid sequences

of tags. Therefore, Borthwick (1999) uses a Viterbi search to avoid incompatible as­

signments and obtaining instead the most probable valid sequence of tags.

The version of MENE presented here, named LexMENE, uses only the first three types

of features, that is lexical features, orthographic features and section features. Borth­

wick (1999) found that lexical and orthographic features, as well as the co reference

resolution features, make the most important contributions to the performance of the

approach. The other kinds of features, namely section and dictionary features, did not

change the accuracy of the system significantly.

MENE's orthographic features are similar to Nymble's, presented in table 3.3. There

are some differences, which can be summarised as

c> the set of features is slightly different:

c> the feature onlyDigits is added for numbers such as 5, 321, 2000, etc.

c> the feature internalCapitalisation is added for tokens like EasyJet, McCarthy, etc.

c> the feature otherNum is replaced by the feature validNumber

c> features containsDigitAndDash, con tainsDigitAndSlash , capPeriod, firstWord and

other are not used

c> MENE allows more than one orthographic feature to be fired for a given token

Consequently, LexMENE follows these features as well as the approach for unknown

words used by MENE: in both phases of the algorithm -namely training and decoding­

words that appear less than three times in the corpora are replaced by the token UNK.

The differences between MENE and LexMENE can be summarised with the following

points:

CHAPTER 3. BASELINE SYSTEMS 77

Figure 3.6: A schematic view of the the Viterbi search for a given named entity class c.

c> MENE's dictionary features are not used by LexMENE

c> the highly desirable coreference features of MENE are not present in LexMENE;

this is because a reasonably good coreference resolution system is not cheap and

it would require a considerable investment of time and resources

c> Borthwick (1999) used the Maximum Entropy Modelling Toolkit (Ristad 1998)

for his system, whereas LexMENE uses the opennlp.maxent package (Baldrige

and Bierner 2001). The former is implemented in C++ and the latter is imple­

mented in Java. There should be no significant impact from this variation, though

the Java package implements the Generalised Scaling Algorithm (GIS) (Darroch

and Ratcliff 1972, see algorithm 2.2) that is a special case of Improved Iterative

Scaling (Della Pietra et al. 1997, see algorithm 2.3), which is also the algorithm

implemented in the C++ toolkit used by MENE

Borthwick (1999) did an evaluation of MENE using only lexical, orthographic and sec­

tion features, obtaining F-score 91.71% for the dryrun test and F-score 83.38% for the

formal test corpora respectively. However, these figures were obtained with 350 training

documents (321,000 tokens) of which LexMENE only has a hundred (which are trans­

lated into 85,837 tokens). Consequently, significantly lower scores can be expected for

LexMENE.

As mentioned before, Borthwick (1999) identified the need for a Viterbi search among

the probabilities for named entity tags to avoid invalid sequences of named entity tags.

This search follows the model presented in figure 3.6 and determines the best sequence

of tags for each sentence of a document. Bubbles represent named entity tags and the

special start-of-sentence (SOS) and end-of-sentence (EOS) states. Edges represent valid

transitions with uniform probability from the source state. The probabilities for each

named entity tag are used as emission probabilities.

CHAPTER 3. BASELINE SYSTEMS 78

Appendix B presents a walk-through example for LexMENE to help in putting all these
procedures into context.

3.4 Evaluation

In this section, both siNymble and LexMENE are evaluated and their performance is

compared with the results reported by their developers. All experiments use the corpora

released for the MUC-7 conference.

Although some comparison in terms of recall and precision is included in this section for

the baseline systems, comparisons will normally be made in terms of their combining

F -score throughout this thesis, so that simple, but enlightening figures for each type of

named entity can be obtained.

3.4.1 The scoring program

Unlike Bikel et al. (1997) and Borthwick (1999), who utilised the MUC scoring program

(Douthat 1998), an adaptation of the scoring program from the CoNLL conferences is

used in this thesis. This is an important difference because the CoNLL scoring software

is less generous than the MUC scorer: the latter allows alternative classes and alternative

strings. Thus some named entities that are considered wrong by the scorer used here

would be counted as correct by the MUC software. For example, the named entity

Kennedy Space Center can be classified as both an organisation or a location name under

the MUC perspective, but only the category organisation is accepted by the CoNLL

scorer.

The selection of the CoNLL scorer is based entirely on practical reasons. This scorer,

being a script in Perl rather than a program of several modules in C as the MUC

scorer, is much easier to modify and is platform independent. Consequently, the CoNLL

scorer script was adapted so that it could provide the performance of an NEE system

detailed by the different familiarity type of the named entities, in addition to the existing

information by class.

3.4.2 Results for siNymble

SiNymble has been trained on the MUC-7 training corpus. Three versions of siNymble

have been tested resulting from slightly different interpretations of the description given

in Bikel et al. (1997).

CHAPTER 3. BASELINE SYSTEMS

-;:-
LL

70

69

UNSEEN

~

ABC
Nymble version

91 . . . AMBIGUOUS .

90

A BC
Nymble version

96 t

LL 95 r .

SEEN

~

ABC
Nymble version

ABC
Nymble version

79

Figure 3.7: Experiments with three versions of siNymble. Corpora: MUC-7 training corpus and MUC-7
dryrun test corpus.

Version A follows the precedence of orthographic features - binary lexical features in

MENE's terms- strictly as presented in table 3.3. Therefore, tokens with feature

initCap, lowerCase or other are changed to the feature firstWord when they are starting a

sentence.

Version B only makes this change when the token starting the sentence fires the or­

thographic feature initCap. In addition and for this purpose only, a sentence is not

considered started until a token which does not fire the feature other is found. For

example, in the text (Figure 1... the first token of the sentence is Figure -rather than

the parenthesis- and its orthographic feature will be changed from initCap to first Word.

Finally a version C of the approach has also been evaluated. This version arises from

the way in which siNymble's implementation manages words and tokens. SiNymble

separates multi-token words so that named entities occurring within this type of word

can be identified. Consider the word Atlanta-based, which naturally contains the location

Atlanta. The implementation used here presents these words as three different tokens:

Atlanta - based; consequently they will fire the orthographic features in it Cap , other and

lowerCase respectively. In version C, this does not happen and the orthographic feature

fired by the word as a whole is given to each token, resulting in the features initCap,

initCap and in it Cap being assigned instead.

Figure 3.7 presents the performance scored by each version. Although there are no sig­

nificant differences, version B obtained the best (overall) results , which is not surprising

as the modification intuitively makes sense.

CHAPTER 3. BASELINE SYSTEMS 80

100

90
/

80

70

60
Q)

~
iii
E 50
0

'I::
Cl>
a..

40

30

20

---e-- Recall
10 -a-- Precision

---+- F(1) formal test
- A - F(1) dryrun test

Hard Unseen Ambiguous Seen Overall
NE familiarity type

Figure 3.8: Experiments with siNymble (version B). Corpora: MUC-7 training corpus and MUC-7 formal
test corpus.

This performance is inferior to that reported by Nymble's creators. However, much of

the difference is due to the change in the scorer program used. A similar version of

siNymble-B gets an F-score over 85% with the MUC scorer, which is consistent with

the results presented in Bikel et al. (1997) for the same amount of training material.

Now siNymble can be evaluated on the MUC-7 formal test corpus by fixing the version

to B. Figure 3.8 presents the performance of siNymble version B on this test corpus. It

can be seen that recall is always much worse than the precision obtained by the system,

and that the overall performance is much worse on this corpus than on the dryrun test

with a drop in F-score of about 15%.

The change in domain introduced by the formal test corpus does not degrade the per­

formance of siNymble much on hard and seen named entities -about 3% F-score­

but a significant decrease is observed for unseen and ambiguous named entities, with

F-scores 12% and 10% lower respectively. Because unseen named entities are far more

numerous than ambiguous ones, they are the main factor in the poor performance of

this baseline system for this corpus.

Analysing the mistakes that siNymble makes, the same conclusion reported by Bikel,

Schwartz and Weischedel (1999) can be reached. Consider the following sentence

The Turkish company, Birgen Air, was using the plane ...

SiNymble recognised Birgen Air as a location rather than an organisation as it is marked

in the corresponding key document. The reason is that the word Birgen is unknown and

CHAPTER 3. BASELINE SYSTEMS

65
UNSEEN

64

63

62

A B
LexMENE version

91

AMBIGUOUS

i2 90

89

A B
LexMENE version

90l

I
:: 89 f
ll.

88 l
I
l

!

"I
~ 79 t
LL

I

78 ~
I

81

SEEN

A B
LexMENE verSIon

OVERALL

A B
LexMENE version

Figure 3.9: Experiments with two versions of LexMENE. Corpora: MUC-7 training corpus and MUC-7
dryrun test corpus.

the word Air has been seen within many airport names, which are normally tagged as

locations. The problem seems to be that because siNymble uses bigrams for modelling

the language, it is incapable of detecting the context word company -as the immediate

previous token is a comma- which suggests that the entity is actually an organisation.

Therefore, one way of improving this kind of approach would be to allow larger contexts

to be considered.

3.4.3 Results for LexMENE

LexMENE has also been trained on the MUC-7 training corpus for this evaluation.

As with siNymble, there is more than one possible implementation due to different

interpretations of Borthwick's (1999) intentions.

Version A strictly follows the description presented in 3.3.2. Nonetheless, MENE does

not use the firstWord feature to distinguish the possibly irrelevant capitalisation of a

token starting a sentence, ''believing that MENE could make these judgements from the

surrounding lexical context" (Borthwick 1999). However, with version A there is little

lexical context for determining that a token is starting a sentence, namely the absence

of features for surrounding tokens. This leads to version B, in which lexical features

explicitly indicate the non-existence of previous -or following- words by taken the

value NONE.

Figure 3.9 presents the performance of these two versions of Lexl\1ENE according to

the familiarity of the named entities in the MUC-7 dryrun test corpus. Version B

CHAPTER 3. BASELINE SYSTEMS

100

90

80

70

60
Q)

~
iii
E 50
0
't:
Q)

CL

40

30

20

10

Hard Unseen

A - - _ .- - --6.....
/ -

/

Ambiguous
NE familiarity type

Seen

-e-Recall
--e-- Precision
~ F(l) formal test
- A - F(l) dryrun test

Overall

82

Figure 3.10: Experiments with LexMENE (version B). Corpora: MUC-7 training corpus and MUC-7 formal
test corpus.

outperforms version A in every category (except on hard named entities, not shown in

this figure, in which they get the same results).

Once more, these figures are lower than the results reported by Borthwick (1999). Again

this difference can be explained by the change in the scorer program and the amount

of extra training material used in the original experiments. This confirms the idea

that comparing NEE systems is a tricky task unless exactly the same resources and

pre-processing are used.

Figure 3.10 presents the evaluation of LexMENE (version B) on the MUC-7 formal test

corpus. Interestingly LexMENE shows a similar behaviour to siNymble, that is a drop

in performance of about 15% with respect to the results on the dry run test documents.

However, it is even more evident in this figure that recall is much worse than precision

and that it is this variable that is negatively affecting the F -score line.

Again the change in domain on the formal test corpus does not degrade results on hard

named entities, with a drop of less than 1% of the F-score. However, the performance

on seen named entities shows a more important drop than in siNymble of about 5%.

Nonetheless, the most significant decrease is observed for unseen and ambiguous named

entities too, with F-scores 12% and 7% lower respectively. Therefore, unseen named

entities are again responsible for most of the decline in performance of this system for

the formal test corpus.

CHAPTER 3. BASELINE SYSTEMS 83

3.4.4 Comparison of the baseline approaches

The above experiments on the MUC-7 formal test corpus indicate that both baseline

systems perform similarly overall. However, this is the result of compensatory abilities:

siNymble is better at recognising seen named entities and LexMENE is better on am­

biguous named entities. In addition, neither of the systems seems to be particularly

good at recognising unseen name entities, though siNymble obtains a higher F-score.

LexMENE exhibits diparatedisparate performance on this type of named entity: it gets

relatively good precision, much higher than siNymble, but very low recall.

Moreover, these experiments have shown that both siNymble and LexMENE are nega­

tively affected by the introduction of unseen named entities in the target corpus. Their

performance drops around 15% F-score when moved from the MUC-7 dry run test cor­

pus, where 36% of the named entities are unseen, to the MUC-7 formal test corpus, in

which 59% of the named entities are unseen.

Nonetheless, these results confirm that statistical approaches, such as the hidden Markov

model used by siNymble and the maximum entropy model -in combination with a

Viterbi algorithm for the final labelling- used by LexMENE, are powerful tools for

predicting named entities in free text. Both systems largely outperform the hypothetical

baseline system: 7-8% higher in the dryrun test and 10-12% higher in the formal test

respectively.

However, LexMENE has an important advantage over siNymble. In section 3.4.2, it was

suggested that siNymble's bigrams can fail in capturing complex names and contexts

and, consequently, broader patterns might help it to recognise more unseen named

entities. But adding this information might not be trivial due to the generative nature

of the approach and the sparseness of the training data.

In fact, Bikel et al. (1997) recognise the running time speed of the system as a key

factor in the success of their approach, because it provided "a rapid code-compile-train­

test cycle" that allowed them to perform ''numerous experiments" that were ''key to

improving performance". Adding new information to siNymble would require a similar

process of searching the right model for the task, which has evident disadvantages for

the portability of the system.

I t would be much easier to extend LexMENE by making use of the ability of maximum

entropy models to manage information from different sources which might even be

overlapping or irrelevant, making this approach an ideal candidate for evaluating the

contribution of adding more linguistically oriented knowledge as well as the introduction

of other machine learning techniques. These ideas validate the third basis of this thesis

(see section 2.3).

CHAPTER 3. BASELINE SYSTEMS 84

3.5 Summary and discussion

In this chapter a new approach for estimating the complexity of a named entity ex­

traction task has been proposed. This approach classifies named entities according

to their familiarity into seen, unseen, hard and ambiguous. Knowing the amount of

each of these types of named entities occurring in a given corpus allows the estimation

of lower bounds for the recall and the precision of a baseline system that memorises

named entities during training. This classification is also useful to obtain more detailed

information on the performance of an NEE system.

Two simple implementations of statistical approaches to named entity extraction were

also presented and evaluated following the familiarity classification of named entities.

They have shown that lexical and orthographic features provide useful information for

solving the MUC extraction task as they broadly outperform the hypothetical baseline

system on both test corpora.

Finally, a comparison of both baseline systems has determined that they perform sim­

ilarly overall but that the approach based on the maximum entropy framework has

advantages related to the portability of the system.

Chapter 4

More linguistically informed MENE

In this chapter a system named MOLl MENE (More Linguistically Informed MENE)

is presented. This system is an extension of the LexMENE system discussed in chapter

3, which uses the lexical characteristics that LexMENE utilises, but also includes in­

formation drawn from a general lexical reference resource, namely WordNet®, and the

syntactic structure of phrases.

4.1 MOLl MENE

Several NEE systems have shown that maximum entropy models are a good choice

for identifying named entities: the top three systems for English and the top two sys­

tems for German in the latest CoNLL used the maximum entropy framework (Tjong

Kim Sang and De Meulder 2003). Therefore, it makes sense to extend LexMENE -one

of the baseline systems- by introducing external lexical resources and syntactic infor­

mation that might provide new, useful features to the maximum entropy model for the

extraction task. This extension will be referred to as the "More Linguistically Informed

Maximum Entropy for Named Entities", or MOLl MENE for short.

As a starting point, it is reasonable that MOLl MENE -being an extension of LexMENE­

would include the same of features of this later system as its basic features, that is lexical

features, orthographic features and the zone feature. However, it has been argued that

orthographic features are domain-dependent (Mikheev, Grover and Moens 1999), an

argument that can be extended to the zone feature.

But it could be argued that this is not exactly the case. It is true that orthographic

features -such as those presented in table 3.3- help LexMENE to identify named

85

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 86

:able 4.1: The set of orthographic features in MOll MENE. It also shows which of these features also exist
In LexMENE.

Description I MENE I Example Text I Intuition
2-digit number yes 96,01 two-digi t years
4-digit number yes 1999, 2001 four-digit years
only digits yes 5, 502, 1999 numbers
letters & numbers yes F14 codes
number with comma yes 2,000 money
number with period yes 4.5,45.21 money; percentage
number with dash no 01-03-96 dates
number with slash no 1/4, 01/03/96 fractions, dates
valid number yes -3.5, .12, 30 any number
all capitals yes IBM organisations
initial capital yes Jones, Intel part of a name
mixed capitalisation yes Air Jetter organisations
uncapitalised yes the, cat, is not part of a name
symbol no %, $,' not a word
mixed characters no 's 'nt , contractions
abbreviation no St., Mr., Sen. ab breviations

entities for the task defined in the MUC competitions. However, they might also help

with recognising other types of named entities which present similar patterns. For

example, a feature that indicates that a token is composed of numbers separated by

dashes would be useful to identify dates in the MUC extraction tasks, but this would

also help with recognising product codes in another application. Moreover, if no dates

or product codes are part of the task, orthographic features for identifying these types of

tokens might help in discriminating text which is unlikely to be relevant for extraction.

Therefore, if a set of orthographic features is sufficient to capture useful internal evidence

(McDonald 1996, discussed in section 2.1) of target named entities -or non-named

entities- it would be useful for many real-world domains. The same reasoning is valid

for the zone feature which -not restricted to a fixed set of sections in the domain's

documents- can alert the NEE extractor of changes in the writing style, i.e. external

evidence in McDonald's (1996) terms.

Considering these arguments, both orthographic features and the zone feature, in ad­

dition to the lexical features, are considered the basic, lexically-oriented features for

MOLl MENE. However, the set of orthographic features has been extended to provide

MOLl MENE with more generic information on the form of the tokens in an attempt

at increasing its portability. Table 4.1 summarises the orthographic features employed

in MOLl MENE and which of them are also utilised in LexMENE.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 87

The second modification in the new approach is related to the sizes of the context

windows used by the basic features. Both baseline systems, namely siN ymble and

LexMENE, use a context window that is fixed in size. This restriction does not apply

in MOLl MENE, and context windows of different sizes could be used in different

applications to collect features for the maximum entropy model. Moreover, each type of

feature that MOLl MENE utilises -basic or not- can define its own context window

independently!. It is even possible for every type of feature to consider contextual

information from windows of different lengths on the left and on the right of a focus

token.

As a consequence of this flexibility of MOLl MENE, it is necessary to determine empir­

ically a good set of values for these parameters for a given extraction task. This search

could be done following traditional approaches for parameter selection, which generally

involve running the system repeatedly on a training subset with different parameters

and systematically evaluating their contribution on another subset of examples or using

cross-validation, leave-one-out, etc. Section 4.2 presents an example of this process for

the MUC-7 task.

4.2 Parameter setting

Although it is not possible to guarantee that a given set of parameters that work well

for a particular set of features will work as well with other sets of features, it is un­

likely that differences in performance will be substantial. In addition, the number of

parameters that need to be set for each experiment is considerable and trying even some

combinations can be very time consuming.

Therefore a set of initial experiments are conducted to determine a good set of parame­

ters which will be kept fixed in all later experiments. This might prevent MOLl MENE

from getting the best possible results, but it will be possible to outline the effect of

different sets of features under the same parameters.

In each experiment, MOLl MENE trains its maximum entropy model with all features

generated for a given set of parameters for all training examples in the MUC-7 training

corpus. The evaluation of each model is conducted on all examples of the MUC-7

dry run and formal test corpora. Results are reported separately for unseen, seen and

ambiguous named entities, as well as the overall performance on all familiarity types.

1 This flexibility applies to features that make use of a context window.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 88

The experiments reported in this section aim to assess a number of options used by

the two baseline NEE systems, in order to determine a set of parameters for MOLl

MENE that yields good performance on the MUC-7 extraction task. More specifically,

the experiments should answer:

1. which of the two different alternatives for using orthographic features provide

more accurate predictions - i.e. considering all the features fired or just the one

with higher precedence

2. which of the two different annotation formats allows the system to obtain better

performance - i.e the BIO or the FMLU notation

3. how appropriate the sizes of the context windows used by the baseline systems

are

4. how many iterations of the GIS algorithm utilised for building MOLl MENE's

maximum entropy model are required

For the first experiment, MOLl MENE includes the same features as LexMENE, that is,

for each focus token to be classified it considers the section of the document in which the

token is found (document zone feature), the strings -or lexical features- of the tokens

occurring within a fixed-length context window (hereafter the lexical window) and all

-i.e. without precedence- orthographic features of table 4.1 fired by tokens within a

fixed-length context window (hereafter the orthographic window). This configuration

of MOLl MENE will be referred to as version 1 (VI).

The experiment starts by evaluating the sizes of the context windows used in the baseline

systems. On the one hand, siNymble uses a lexical window of size [1,0]' that is the

focus token and one token on the left. On the other hand, LexMENE considers a lexical

window of size [2,2], that is, a window of five tokens: the focus token and two tokens

on either side.

Thus it makes sense to evaluate MOLl MENE VI with lexical window sizes [1,0]' [1,1], ,
[2,1] and [2,2], as a transition from siNymble's to LexMENE's parameters. Figure 4.1

presents the results obtained in these initial experiments.

The best performance is achieved with parameters [1,1]' which obtain a significant

improvement on seen named entities - though it shows a negative effect on ambiguous

named entities- with respect to the size used by siNymble. This is an interesting

result which indicates that although siNymble makes mistakes because of its lack of

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE

68

66
64

_ 62

LL 60

58

56

54

~N
/Imlu .

bio

52~~ __ ~ ____ ~~~~
1-0 1-1 2-1 2-2

Lexical window size

AMBIGUOUS
96

94
Imlu

LL 92
bio

90

88

1-0 1- 1 2-1 2-2
Lexical window size

95r-~--~--~~--~...,....--.

94

93

;:- 92
LL

91

90

89

84

82

80

~ 78

SEEN

tmlu

bio

1-0 1-1 2-1 2-2
Lexical window size

. . OVERALL

~

~: .~
72

1-0 1-1 2-1 2-2
Lexical window size

89

Figure 4.1: Experiments with MOll MENE VI: size of the lexical window changing from [1,0] to [2,2] with
data represented in BIO and FMLU notations. Other parameters are set as in LexMENE. Corpora: MUC-7
training corpus and MUC-7 dryrun test corpus.

context information (see section 3.4.2), adding lexical features from a larger context

window might not provide the information needed for increasing its performance, unless

significant changes are introduced into its hidden Markov model.

Named Entity recognition can be seen -and modelled- as a chunking task (Tjong

Kim Sang 2002b, Tjong Kim Sang and De Meulder 2003). Chunking tasks can have

many representations which are known to affect the performance of classifiers. In par­

ticular, siNymble utilises a representation called BIO notation (sometimes called BIOI

to differentiate it from other variations) in which words contained within a chunk are

tagged 'I' and words outside any chunk are tagged '0'. When there are two consecutive

chunks of the same class, the first word of the second chunk is tagged 'B'. The following

is an example text in BIO notation.

Mr.jO Jason/I-person Jones/I-person is/O currently/O infO London/I-location England/B­
location until/O June/I-date ,/I-date 25/I-date .j0

In contrast, LexMENE employs the FMLU notation, which is a more fine-grain repre­

sentation in which a word is labelled 'F' if it is the first word of a multi-word chunk,

'M' if it is a word in the middle of a multi-word chunk, 'L' if it is the last word of a

multi-word chunk and 'U' if it corresponds to a one-word chunk. The following is the

example text in FML U notation.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 90

59 UNSEEN
57

~ 94
SEEN

55
92

53

f 51 :::- 90
i:L

49 88
47 bio ~ 86
45

43 84
1-0 1-1 2-1 2-2 1--0 1-1 2-1 2-2

Lexical window size Lexical WIndow size

92
AMBIGUOUS 72 OVERALL

90 70

~ 88 68

66
12 86 LL 64

84 62

~ 82 60

58
80 56 1-0 1-1 2-1 2-2 1-0 1-1 2-1 2-2

Lexical window size Lexical window size

Figure 4.2: Expe~iments with MOll MENE VI: size of the lexical window changing from [1.0] to [2.2] with
data represented In BIO and FMLU notations. Other parameters are set as in LexMENE. Corpora: MUC-7
training corpus and MUC-7 formal test corpus.

Mr./O Jason/F-person Jones/L-person is/O currently/O infO London/U-Iocation England/U­
location until/O June/F-date ./M-date 25/L-date ./0

Figure 4.1 reveals that the FMLU notation consistently yields better results than the

BIO notation.

Consequently, all future experiments will use FML U notation and a lexical window of

size one token to the left and one token to the right.

It would be interesting to evaluate the reliability of the decisions taken regarding the

setting of MOLl MENE's parameters based only on experiments with the MUC-7 dryrun

test corpus. This would be the normal situation in a real-world application. However,

a small set of the target decoding documents, namely the MUC-7 formal test corpus, is

also available in this case and this evaluation can be conducted here.

Figure 4.2 presents the same experiment but on the MUC-7 formal test corpus. Inter­

estingly, these results closely follow the trend observed for the dryrun test set. This is

specially significant considering that these corpora have been collected from different

domains and present different amounts of seen and unseen named entities, as seen in

section 3.1.

The next step then is to determine the best size for the orthographic window. This

experiment is very similar to the one described above, and MOLl lVIENE is run with

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 91

UNSEEN 96
69

V2 SEEN

68
Vl 95 V2

Ei: 67 i:L

66 94 Vl

65

1-0 1-1 2-1 2-2 1---{) 1-1 2-1 2-2
Orthographic window size Orthographic window size

95 AMBIGUOUS
OVERALL

94 84 V2

Ei: 93 V2 LL 83
Vl

Vl

92

82
91

1-0 1-1 2-1 2-2 1-0 1-1 2-1 2-2
Orthographic window size Orthographic window size

Figure 4.3: Experiments with MOll MENE VI and MOll MENE V2: size of the orthograpic window
changing from [1.0] to [2.2] with data represented in FMLU notation . Lexical window is set to [1,1] and
other parameters are set as in LexMENE. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

the size of the orthographic window varying from [1,0] -as used by siNymble- and

moving progressively towards a window of size [2,2] - as used by LexMENE.

In addition to the size of the orthographic window, there is another parameter considered

in this experiment which differentiates the baseline systems: siNymble uses only the top

orthographic feature -according to the precedence it defines for this kind of feature- of

each token in the context window, whereas LexMENE utilises all orthographic features

fired by these tokens.

Therefore, a second version of MOLl MENE has been prepared, namely MOLl MENE

V2, which follows siNymble's strategy for this type of feature. Figure 4.3 shows the

results obtained for this experiment.

It can be seen from this figure that LexMENE makes a bad decision setting the size of the

orthographic window at [2,2], since the value [2 ,1] consistently gets better results with

the configuration used by MOLl MENE VI. SiNymble may also be losing performance

by fixing this window to size [1 ,0]. Increasing the orthographic window to sizes [2 ,1] or

[2,2] seems to be better options, as these values help the classification of unseen named

entities.

From these observations, henceforth experiments will employ the top orthographic fea­

ture - i.e. using the orthographic feature with higher precedence only- of tokens

within a context window of size [2 ,2].

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 92

UNSEEN
96

59 SEEN
V2

95
58

Vl

LL
57

~ 94 V2

56 93
Vl

55 92
1-0 1-1 2-1 2-2 1-0 1-1 2-1 2-2

Orthographic window size Orthographic window size

91
AMBIGUOUS

90
72 OVERALL -

V2 V2

89 71
Vl

f 88
Vl

LL 70

87

86
69

1-0 1-1 2-1 2-2 1-0 1-1 2-1 2-2
Orthographic window size Orthographic window size

Figure 4.4: Experiments with MOll MENE VI and MOll MENE V2: size of the orthographic window
changing from [1,0] to [2,2] with data represented in FMLU notation. Lexical window is set to [1,1] and
other parameters are set as in LexMENE. Corpora: MUC-7 training corpU5 and MUC-7 formal test corpus.

As previously, this experiment has been repeated with the MUC-7 formal test corpus.

Figure 4.4 shows the results on this set of documents.

Once more the parameters fixed by looking only at the results obtained with the dryrun

test corpus, are good parameters for the formal test corpus too. Moreover, both exper­

iments present essentially the same trends.

The next experiment aims to determine good parameters for the GIS algorithm used

to train the maximum entropy model used by MOLl MENE. In other NEE systems

that employ maximum entropy models, the cutoff parameter is normally set to 3 or

4 with good results (Roth and van den Bosch 2002, Daelemans and Osborne 2003).

Consequently, this parameter can be knowledgeably fixed to value 3, saving a potentially

large number of experiments.

In this experiment, nine different models have been trained by allowing the GIS algo­

rithm to run from 50 to 800 iterations. Figure 4.5 presents the performance of MOLl

MENE V2 with each number of iterations tested.

Interesting observations can be obtained from these results: the more GIS iterations

are permitted, the better the performance of the system on seen named entities; how­

ever, the performance of the system on unseen named entities stabilises at around 200

iterations. The same stabilisation is observed in term of the overall performance. This

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 93

70

UNSEEN
96

69 SEEN

68 ~ 95 l
LL LL

94 '

65 93
5 1 2 3 4 5 6 7 8 .5 1 2 3 4 5 6 7 8

xl00 Iterations xl 00 Iterations

94 85

AMBIGUOUS OVERALL

93
84

ii- LL

92

.5 1 2 3 4 5 6 7 8 .5 1 2 3 4 5 6 7 8
xl00 iterations xl00 Ileralions

Figure 4.5: Experiments with MOll MENE V2: the number of iterations for the GIS algorithm changing
from O.5x100 to 8x100. Data is represented in FMLU notation, context windows are set to [1,1] and [2,2]
respectively and cutoff is set to 3. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

suggests that it is the recall on seen events that can be improved by allowing more

iterations, but, at the same time, more false positives are being generated, which keeps

the overall performance at the same level. A further analysis of the output given by

scorer program confirmed this hypothesis.

From figure 4.5, it can be concluded that 200 is the best value for this parameter, as

higher values do not contribute to this version's performance but significantly increase

the time required for training the models. Therefore, 200 GIS iterations will be used

for upcoming experiments.

As usual, these parameters - i.e. cutoff=3, iterations=200- are also tested on the

MUC-7 formal test corpus. Figure 4.6 presents the results for such experiments. This

figure indicates that 200 iterations was not a bad decision, though 300 would have been

a better overall option. It clearly shows that there is room for improvement with lower

numbers of iterations (under generalisation) and that higher values start to produce too

many spurious named entities (over generalisation).

Interestingly, the trends on this corpus follow the trend on the dryrun corpus with the

exception of ambiguous named entities, for which increasing the number of iterations

produces a rise of the performance that did not happen in the experiment with the

dry run test corpus.

The flexibility introduced by MOLl MENE has allowed it to outperform Lex11ENE

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 94

Figure 4.6: Experiments with MOll MENE V2: the number of iterations for the GIS algorithm changing
from O .. 5xl00 to 8xl00 .. Data is represented in FMLU notation, context windows are set to [1,1] and [2,2]
respectively and cutoff IS set to 3. Corpora: MUC-7 training corpus and MUC-7 formal test corpus.

100

90 -

80

70

60

LC 50

40

30

20

10

Hard Unseen Ambiguous
NE familiarity type

---B- LexMENE dryrun lesl
---B- LexMENE formal tesl
~ MOll MENE V2 dryrun test
---A- MOll MENE V2 formal test

Seen Overall

Figure 4.7: Comparison of LexMENE and MOll MENE V2: Best (overall) F-score obtained by each NEE
system. Corpora: MUC-7 training corpus and evaluation on both MUC-7 test corpora .

without adding new kinds of features. Figure 4.7 presents a comparison of the best

overall performance obtained with these features. It can be seen that NIOLl MENE

obtains a 4.5% higher F-score on the dryrun test corpus than LexMENE and - more

importantly- a 6.5% increase on the formal test corpus.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 95

4.3 Linguistically informed features

All the results presented in section 4.2 were obtained with version of MOLl MENE that

use the same types of features than LexMENE uses, but adding more flexibility and

alternative options for the treatment of these features.

These features are lexically oriented: the strings of tokens and indicators of the orthogra­

phy of tokens, such as whether the token contains digits or capital letters. These features

have proved to be effective (Borthwick 1999, Tjong Kim Sang 2002b, Tjong Kim Sang

and De Meulder 2003), and in combination with the maximum entropy framework, they

provide a strong classifier which is able to perform named entity extraction with high

levels of performance.

In this section, it will be studied whether it is possible to improve the effectiveness of the

approach by introducing other types of general features into MOLl MENE. For example,

it has been reported that by adding morphological features -such as 3-letter prefixes

and 3-letter suffixes of tokens- to the lexical features, the performance of an extractor

can be boosted (Tjong Kim Sang 2002b, Wu et al. 2002, Wu, Ngai and Carpuat 2003).

One of the hypotheses of this thesis (section 2.3) is that general linguistic information

may help in the recognition of named entities. Therefore, MOLl MENE also includes

a pool of features which are more linguistically related. The general idea is to add

generalisation over the lexemes that are used for the lexical features. In a way, this is

what morphological features do, but from a less organised perspective.

Generalisation over lexical features can be obtain in several ways. Four of these alterna­

tives will be examined for MOLl MENE. First, some generalisations can be obtained by

considering the lemmas of the tokens. In this way, variations introduced by inflection

can be captured by firing one single feature. The intuition behind this type of feature is

that if-for example- the tokens said and says are both recognised as weak (infrequent)

indicators of a person's name occurring nearby, then the lemma say will concentrate the

frequencies of these two lexemes and becomes a stronger indicator that the system can

make use of.

The second generalisation form is to consider the part-of-speech (PoS) of tokens. This

would allow MOLl MENE to identify certain kinds of words whose occurrence increases

the chances of finding a named entity in the vicinity. For example and specifically for

the MUC task, a preposition may help the system to identify locations in sentences like

they met at JFK Airport, he will be going to London next week, etc., and dates from texts like

in August 2002.

The third generalisation corresponds to the introduction of synonyms. It is quite intu­

itive for humans that the texts Jack Yami/i, chairman of FSFY and Yori Ugut, president of

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 96

FSFM are closely related, as both are reporting something about a person who occupies

an important position in an organisation. However, lexical features cannot capture this

kind of relation and, in the best case, the tokens chairman and president will be used

as indicators of person and organisation names separately. By introducing a feature of

the form syn(leader of an organisation) which would be fired by these tokens -and other

synonyms of these words- a more predictive indicator might be obtained.

As mentioned previously, one of the important advantages of maximum entropy models

is their ability to combine information from different sources. Making use of this advan­

tage, the fourth method for providing generalisation in MOLl MENE will be achieved

by introducing syntactic information about the structure of the phrases in which tokens

are found.

The intuition is that recognising syntactic patterns can yield good predictors of named

entities. In the example above, both texts have the same syntactic pattern: NP[Jack

Yamili} PUNCf,} NP[chairman} prof} NP[FSFY] and NPfYori Ugut} PUNCf,J NP[president} prof}

NP[FSFMj. Thus, noting that this syntactic pattern often contains a person and an

organisation name might help MOLl MENE to recognise more named entities embedded

in the text, even though they might be quite different in lexical terms.

4.4 Obtaining the new features

On the one hand, syntactic information can be obtained from a parser. There are

literally hundreds of parsers or parsing techniques that can be considered. However, a

detailed discussion of these alternatives is beyond the limits of this thesis. Nonetheless,

it must be mentioned that in order to exploit the portability of MOLl MENE, such

a parser should be based on machine learning methods. Furthermore, full parsing,

which is computationally expensive and normally with limited coverage, is unnecessary

and shallow parsers have become the common tool utilised for language engineering

(Stevenson 1998).

Even narrowing the appropriate parsers in this way, the number of options is still

very large. For example, several alternatives can be found in Cardie et al. (2000) and

Daelemans and Zajac (2001).

To collect syntactic information for MOLl MENE, the MBSP parser has been used

(Daelemans, Veenstra and Buchholz 1999). This decision was based on practical reasons,

rather than theoretical arguments. MBSP stands for Memory-Based Shallow Parser,

as it employs three memory-based learning modules applied in cascade. These modules

carry out part-of-speech tagging, text chunking and identification of basic syntactic

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 97

relations respectively. Each module is trained on the the Wall Street Journal section of

the Penn Treebank (Marcus, Santorini and Marcinkiewicz 1993).

Daelemans, Veenstra and Buchholz (1999) report remarkably good performances for

MBSP: 94.6% accuracy for the PoS tagger, around F-score 94% for chunking module

and about F-score 78% in subject/object detections. However, the main reason for

selecting this shallow parser is that it is freely available: an on-line demo of MBSP has

been applied to each document in the MUC-7 corpora and the syntactic information has

been appropriately annotated. This selection was validated later as it was this shallow

parser that was used to provide the corpora of the CoNLL-2002 and CoNLL-2003 shared

tasks with syntactic information.

On the other hand, obtaining lemmas and synonymic relations of words has normally

been addressed by building morphological analysers and ontologies. However, ontologies

are commonly oriented to capturing the most important concepts involved in a specific

extraction task (Gaizauskas and Humphreys 1997). This is so because the knowledge

required to construct a general-purpose ontology, which at the same time can be helpful

for a determined extraction process, is unmeasurably large.

Fortunately, the general-purpose lexical database WordNet®, developed at the Cogni­

tive Science Laboratory of Princeton University over several decades now, can be used

for this purpose.

WordNet has been described as a "lexical reference system whose design is inspired

by current psycholinguistic theories of human lexical memory" (CSL 2004). There are

important features of WordNet which MOLl MENE can make use of:

1. A morphological analyser is included for looking up inflected words

2. Nouns, verbs, adjectives and adverbs are organised into synonym sets -called

synsets- each representing one underlying lexical concept

3. Several relations are incorporated to link synonym sets, among which hyponyms,

hypernyms and coordinate terms might be particularly useful

Thus, WordNet provides all the necessary information for implementing the generalisa­

tions over the meaning of tokens described in section 4.3. Given the number of years

invested in the development of Wordnet, there exists a number of different versions of

the database. In all experiments with MOLl MENE, version 1.7.1 is used. This version

contains 146,350 nouns, verbs, adjectives and adverbs, which are organised into 111,223

synsets. The most important syntactic category are nouns, which account for 109,195

words divided into 75,804 synsets (CSL 2004).

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 98

4.5 Organising the new features

The more linguistically informed features will be organised in three different versions

of MOLl MENE for the experiments. These new versions follow the discussion in

section 4.3: version 3 (V3) will consider the syntactic structure around the focus token;

version 4 (V 4) will consider features that provide generalisations over inflection, namely

lemmalisation and PoS tags, and unstructured semantic information; finally, version 5

(V5) will consider semantic information but in a more organised approach. Note that

these versions of MOLl MENE do not accumulate feature sets, that is the only features

in common are the lexically-oriented ones inherited from LexMENE - i.e. lexical,

orthographic and zone features.

4.5.1 MOLl MENE V3: syntactic patterns

MOLl MENE V3 adds syntactic features to the basic lexically-oriented features. The

pool of new features corresponds to the tag of the chunks and the head word within

the chunks of the basic constituents occurring in a fixed-size context window around

the chunk that contains the focus token. This window will be referred to as the chunk

window. For example, consider the following sentence.

NP[He] VP[wili succeed] NP[Amilie Jackson] PUNC[,] NP[chairwoman] prof] NP[FSFY]
PUNC[,] NP[next October] PUNC[.]

Supposing that the size of the chunk window is fixed to two, the features fired by the

token Amilie would be

tag-2=NP, head-2=he, tag-l =VP, head- 1 =succeed, tago=NP, heado jackson,
tag+l =PUNC, head+l =',', tag+2=NP, head+2=chairwoman

As explained in section 4.3, these new features might provide valuable information about

patterns that are more likely to contain named entities.

The number of chunk features could be a free parameter of the system, but it has been

fixed for the initial experiments to the information gathered from the four chunks on each

side of the focus chunk. This number follows the intuition that most useful modifiers for

named entity extraction, such as appositive noun phrases, can be contained in a chunk

window of size [4,4].

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 99

4.5.2 MOLl MENE V4: lemmas, PoS tags and synonyms

MOLl MENE V 4 includes the generalisations over the tokens found in the lexical window

in the pool of features. It could be possible to use a different context window, but this

would increase the number of parameters for MOLl MENE that need to be set and

would not be a direct generalisation of the lexical features.

The new types of features include the lemma of a token, its part-of-speech tag and the

token's related synsets. There are several options for what can be included in the set

of synsets fired by a token. Here, the most general alternative has been adopted and

this set will consist of the synsets for the token, the synsets of its direct hyponyms, the

synsets of its direct hypernyms and the synsets of its coordinate terms.

WordNet's hierarchical organisation of words is straightforward. A synset is defined as

a synonym set, that is, a set of words that are interchangeable in some contexts. A

hyponym of a noun or a verb w corresponds to a member of the a class defined by w:

w' is a hyponym of w if w' is a (kind of) w. Similarly, a hypernym of a noun or a verb

w' describes a whole class of which w' is a specific instance: w is a hypernym of w' if

w' is a (kind of) w. Finally, coordinate terms are nouns or verbs that share the same

hypernym (CSL 2004, adapted from the Glossary of Terms).

It must be noticed from the definitions above that adjectives and adverbs can only be

generalised over synonyms. There are many details omitted here. For instance, the

hypernym relations between nouns are obtained by applying different criteria to those

for obtaining the hypernym relations between verbs. The reader is referred to Fellbaum

(1998) for an exhaustive discussion of the design and contents of WordNet and papers

reporting some pieces of research that utilise WordN et.

For example, consider the focus token chairman in the sentence Jack Yamili, chairman of

FSFY. WordN et finds the following synsets for this token2 :

noun-08577148: president, chairman, chairwoman, chair, chairperson - (the officer who
presides at the meetings of an organization; "address your remarks to the chairperson")

verb-01918094: chair, chairman - (act or preside as chair, as of an academic depart­
ment in a university; "She chaired the department for many years")

This token appears playing a noun's function: it is found inside a basic NP and is labelled

with the part-of-speech for common nouns. Therefore, MOLl MENE V -1 ignores the

synset verb-01918094 and only consider the synset noun-08577148 for further processing.

This works analogously for the case in which the token is functioning as a verb.

2 An attempt to maintain WordNet's answers literally will be made for these kinds of examples,
though some grammatical forms and words might be found peculiar. Some alterations have been made
in order to make the examples clearer.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 100

This is the only effort that MOLl MENE -in all versions that use semantic information­

makes to filter out synsets provided by WordNet. No explicit disambiguation of the

meanings of tokens is performed, as the maximum entropy model should be able to

capture the most relevant senses based on the frequency with which these they occur

in the contexts of named entities.

After the cleaned set of synsets is obtained, WordNet is asked for the hyponyms, hy­

pernyms and coordinate terms of each synset contained in this set. The following is the

information provide by WordNet for the sysnset noun-08577148:

Hyponyms
noun-08800476: vice chairman

Hypernyms
noun-08577370: presiding officer

Coordinate terms
noun-08467159: moderator; noun-08577148: president, chairman, chairwoman,

chair, chairperson; noun-08706865: Speaker

Thus, after trimming away repeated synsets -and repeated lemmas- MOLl MENE

would be supplied with the following features fired by the focus token chairman
3

:

lemmao=chairman, PoSo=NN, synseto=noun-08467159, synseto=noun-08577148,
synseto=08577370, synseto=noun-08706865, synseto=noun-08800476, lemma-l =' ,',

PoS+1=',',lemma+l=of, PoS+1=IN

The features fired by this example token can help MOLl MENE V 4 in the extraction

process. Indeed, if the token chairman is found to be a predictor of the occurrence

of a named entity nearby, the system will also be inclined to use this predictor when

the tokens president, chairwoman, chair, chairperson, vice chairman, moderator or speaker are

found.

4.5.3 MOLl MENE V5: trigger synsets

MOLl MENE V5 is inspired in a generalisation over the concept of trigger words.

Trigger words is a general term to designate words which co-occur with high frequency

with linguistic events in text (Rosenfeld 1996). They have been used extensively by

NEE systems (Gaizauskas et al. 1995, Carreras et al. 2002, Zhang, Shen, Zhou and

Tan 2004, for example). For the MUC task, trigger words commonly contain personal

3This assumes a lexical window of size [1,1]. The other tokens in the window, namely',' and of,
do not fire synsets because they are not included in WordNet's database. In these cases, the lemma is

assumed to be the lexical form.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 101

titles (e.g. Mr., PhD., MD.), organisation designators (e.g. Ltd., Corp., PLC), organisation

keywords (e.g. Bank, Services, Association), location keywords (e.g. mountain, lake, river,

city), job titles (e.g. chairman, president, executive officer, general, MP) and time keywords

(e.g. earlier, ago).

By providing the appropriate sets of trigger words, NEE systems can recognise -or at

least be more alert to- the presence of a named entity in the text. However, these

lists of words are highly domain dependent and normally handcrafted from the training

texts. Usually, an analysis of both the initial lists and the domain is conducted to add

other potentially helpful trigger words which do not occur in the training data.

MOLl MENE V5 attempts to overcome this portability limitation by replacing trigger

words by trigger WordN et synsets. The intuition behind this approach can be best

explained with an example. Consider the following (partial) sentences:

Senator Kelly criticised .. .

Reverend Smith denied .. .

Coach Johnson promised ...

It is clear that these sentences make use of a common pattern to report an action

executed by a person, which is identified by his/her name. Traditionally, the recognition

of this type of pattern would be approached by adding these words into a list of trigger

words for named entities of class person.

Because synsets are organised into hierarchies in WordNet, each synset is part of at

least one hierarchy which is headed by a root synset called a unique beginner. The

paths from each synset to unique beginners form a structure known as an hypernym

tree. For the candidates to trigger words in the running example, WordNet returns the

following hypernym trees4
:

noun-08663173: senator

=> noun-08409434: legislator
=> noun-08405572: lawgiver, lawmaker

=> noun-07904081: leader
=> noun-00005303: person, individual, someone, ...

=> noun-00003135: organism, being
=> noun-00002956: living thing, animate thing

=> noun-00013067: object, physical object
=> noun-00001742: entity, physical thing

=> noun-00004911: causal agent, cause, causal agency
=> noun-00001742: entity, physical thing

noun-08151518: clergyman, reverend, man of the cloth
=> noun-07801084: spiritual leader

40nly one sense (synset) per word is presented for this example.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE

=> noun-07904081: leader
=> noun-00005303: person, individual, someone, ...

=> noun-00003135: organism, being
=> noun-00002956: living thing, animate thing

=> noun-00013067: object, physical object
=> noun-00001742: entity, physical thing

=> noun-00004911: causal agent, cause, causal agency
=> noun-00001742: entity, physical thing

noun-08154623: coach, manager, handler
=> noun-08778227: trainer

=> noun-07904081: leader
=> noun-00005303: person, individual, someone, ...

=> noun-00003135: organism, being
=> noun-00002956: living thing, animate thing

=> noun-00013067: object, physical object
=> noun-00001742: entity, physical thing

=> noun-00004911: causal agent, cause, causal agency
=> noun-00001742: entity, physical thing

102

Thus, although the synsets for the tokens senator, reverend and coach might appear just

once in the training corpus, the synsets for the concepts leader, person, agent, etc. are

hit three times -not considering other senses for the tokens under consideration, the

other words in these example sentences nor other training sentences. These concepts

might be considered trigger synsets for the named entity class person.

Of course, not all synsets can be considered trigger synsets. They could be a source of

noise if they show affinity for more than one class of named entity or for words that are

not targeted by the extraction task. Moreover, concepts close to the top of hypernym

trees might be hit too many times to provide useful information. Synsets at the leaves

of the trees might be hit too seldom to be considered as reliable predictors, and their

frequency might not be much different from simply using the lexemes themselves.

This can immediately be seen as a machine learning task: high-level synsets are too gen­

eral hypotheses of what a relevant piece of text is; and low-level synsets are hypotheses

that are too specific to provide any useful learning. Therefore, it will be mainly the

job of the maximum entropy framework to recognise the most relevant trigger synsets

to be considered by the model. Nonetheless, some preprocessing over the synsets will

be applied in order to help the GIS algorithm in selecting those with more predictive

power.

The process starts by collecting all synsets hit by the tokens in the lexical window.

According to the settings fixed in section 4.2, this generates three lists of initial trigger

synsets: the first list contains synsets that might predict that the next token on the

right belongs to a given class; the second list gathers the synsets fired by focus tokens

which might predict that the current token is of a given class; and the third list stores

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 103

synsets which might predict that the previous word appertains to a given class. These

lists are referred to as the next-is list, the this-is list and the previous-is list respectively.

At the same time that these lists of synsets are being generated, counts of the fre­

quency they are seen with each named entity class -and the not-a-narne class- are

also compiled.

The first filtration of the synsets lists is applied at this stage, and corresponds to dis­

carding synsets that are hit less than three times, as they will be filtered out anyway

when the frequency cutoff is enforced.

But the counts collected can also be used to determine the predictive power of each

synset in the initial lists. For example, consider the following counts gathered for two

potential trigger synsets in the MUC extraction task:

[Synset not-a-name date location money organisation percent person time

[noun-12726340 5 0 1 0 5 0 0 0

I noun-11422319 37 1 0 0 1 0 0 0

Thus, the synset noun-12726340 was seen 45% of the time predicting the class not-a-name

and another 45% of the time predicting the class organisation. In contrast, the synset

noun-11422319 was seen 95% of the time predicting the class not-a-narne. Clearly, the

latter gives much more information than the former.

What is needed now is a way of capturing this intuitive idea of more informed or

more predictive synset. One possibility is to use the distance between the probability

distribution that a set of counts defined and the least informative distribution, that

is the uniform distribution. This is normally done using the Kullback-Leibler (KL)

distance5 -also called KL divergence, KL number and relative entropy (K ullback and

Leibler 1951, Cover and Thomas 1991). This number is usually denoted D and its

definition -for discrete distributions- is given in equation 4.1. KL distance measures

the difference between two probabilistic distributions p and q. Thus, if q is a true

distribution, the relative entropy can be used to measure how good an approximation

of q the distribution p is. Similarly, if q is the uniform distribution, the KL distance

can be used to determine how concentrated the probability mass is among the possible

outcomes of the distribution. The greater the relative entropy, the more concentrated

the mass distribution is - i.e. the more distant from the uniform distribution in which

the probability mass is equally divided among the possible outcomes.

p(x)
D(Pllq) - p(x) log q(x) (4.1)

5 Although this number is normally called a distance, it does not satisfy the triangle inequality and
is therefore not a true metric. Nonetheless, it satisfies important mathematical properties, such as that
it is is always nonnegative and equals to zero if and only if the distributions being compared are equal.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 104

71 .5 UNSEEN 98.8
SEEN 1

635 92.8

55.5 ;::-- 86.8
LL LL

47 5 80 .8

39.5 748

V2 V3 V4 V5 V2 V3 V4 V5
MOll MENE version MOll MENE version

AMBIGUOUS OVERALL 93.6 84.8

876 78 .8

:::: 81.6 2 72.8 u. u.

75 6 66 .8

696 60.8

V2 V3 V4 V5 V2 V3 V4 V5
MOll MENE version MOll MENE verSion

Figure 4.8: Comparison of the performances of version V2, V3, V4 and V5 of MOll MENE: data is
represented in FMLU notation, context windows are set to [1,1], [2,2] and [4,4] respectively, cutoff is set to
3 and GIS iterations to 200. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

Therefore, the second pre-processing step corresponds to filtering out synsets whose

counts define a probability distribution that has a relative entropy -with the corre­

sponding uniform distribution- which is less than 2.0. This bound coincides with

distributions that divide all their probability mass between at most two named entity

classes. Thus, the worst kind of trigger synsets that are accepted are those which predict

"the token is either of class Yl or of class Y2"·

Note that this value is for the MUC extraction task, which defines seven named entity

classes plus a not-a-name default class. However, this parameter can be easily calculated

automatically from the number of named entities to be identified and, therefore, it does

not reduce the portability of the approach.

4.6 A comparative experiment

Figure 4.8 presents a comparison of the performance obtained by versions V2, V3, V 4

and V5 of MOLl MENE described in section 4.5. For this experiment, parameters set for

MOLl MENE V2 are used; thus the lexical window size is set to [1,1], the orthographic

window size is set to [2,2] and precedence is applied, the unknown words threshold

has value three, the frequency cutoff is fixed to three and the GIS algorithm runs 200

iterations. MOLl MENE V3 is using a chunk window of size [4,4] as explained in section

4.5.1.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 105

UNSEEN

850l
SEEN 50.3

47.6 82.5

f 44 .9 f 79.9

42.2 77.4

39.5 74.8'

200 400 600 800 1000 200 400 600 800 1000
GIS Iterations GIS teratio'1s

AMBIGUOUS OVERALL
19.5 72.2

16.9 69.4

-
LL 14.4 f 66.5

11.9 63.7

9.3 60.8

200 400 600 800 1000 200 400 600 800 1000
GIS iterations GIS Iterations

Figure 4.9: Experiments with MOll MENE V4: the number of iterations for the GIS algorithm changing
from 2?0 to 1000. D~ta is represented in FMLU notation, context windows are set to [1,1] and [2 ,2]
respectively and cutoff IS set to 3. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

The main observation from figure 4.8 is that the most simple version, namely V2, obtains

the best results. However, this does not necessarily imply that the more linguistically

informed features are irrelevant. If that were the case, the maximum entropy model

would have set its weights to values that would simply ignore these features (Rosenfeld

1996, Mikheev 1998).

The negative effect of the newly added features on MOLl MENE's performance might

have more to do with the convergence of the parameters of the maximum entropy model.

Firstly, the size of the model has been dramatically increased and there are many more

weights that need to be calibrated by the GIS algorithm. Secondly, it can almost be said

for certain the new features are overlapping. For instance, all tokens considered in the

example of section 4.5.3 for V5 hit the concept leader, which invariably meant that they

also hit the concepts person, organism, living thing, etc. These hits are not independent

but due to the hierarchical organisation of WordNet. As a result, more iterations of the

GIS algorithm are needed (Ristad 1998, Borthwick 1999).

To check this hypothesis, a further experiment with MOLl MENE V 4 was conducted,

in which the iterative scaling algorithm is allowed to run for 400, 600, 800 and 1,000

iterations. Figure 4.9 shows the results for this experiment, in which the system obtains

significant increases in performance in all familiarity types when more iterations are

allowed. In this figure - although there are signs of stabilisation- the curve seems far

from convergence, which suggests that V4 could get benefits from allowing the iterative

scaling algorithm to run many more iterations.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 106

UNSEEN SEEN
V2 --------- - - - -- V2

65.2 916

LL 61.5
LL 881

577 84.6

54 .0 81.2

[11] [2,2] [3,3] [4.4] [11] [2,2] [3,3) [4.4)
Chunk window size Chunk window size

AMBIGUOUS OVERALL
-------------- V2 ----------- V2

91.0 809

LL 893 LL 77.8

87.6 74.8

85.8 71.7

[1.1) [2,2) [3 ,3] [4.4] [11] [2,2] [3,3) [4.4]
Chunk window size Chunk window size

Figur~ 4.10: Experi~ents with MOL.I MENE V3: the size of the chunk window changing from [1,1] to [4,4] .
Data IS represented In FMLU notation, the other context windows are set to [1 ,1] and [2,2] respectively,
cutoff is set to 3 and GIS iterations to 200. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

However, the improvement described above is very expensive: building the model with

1,000 iterations took two days and required a machine with several gigabytes of memory.

This is an unacceptable increase of computational resources considering that MOLl

MENE V2 obtains better performance with a model which only takes 15 minutes to be

built on a normal desk computer with 1GB of memory.

4.7 Reducing feature pools

One possible solution to this problem is to reduce the number of linguistically informed

features that arrive at the iterative scaling phase. Therefore, the following experiments

aim to determine whether by directly reducing the number of features, MOLl MENE

can obtain a better maximum entropy model.

In the first experiment, the chunk window used by MOLl MENE V3 is reduced to sizes

[3,3], [2,2] and [1,1]. Thus, instead of generating 18 chunk features per token, the GIS

algorithm will have to deal with 14, 10 and 6 features per token respectively, in addition

to the basic features used by MOLl MENE V2. Results for these experiments are shown

in figure 4.10.

The second experiment aims to determine whether better predictors can be obtained by

reducing the number of trigger synsets that MOLl MENE V5 considers. To do this, it

is necessary to rank the trigger synsets so that the best ones can be selected. However,

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 107

Table 4.2: Example of different, possible measures for ranking trigger synsets.

Synset 1 f 1 KLD 1 f * KLD 1 Split * KLD 1 log f * KLD 1 F(l)(l f KLD) I 2 og2 ,
noun-10371413 3 3.000 9.000 0.000 4.755 2.07·1
noun-11549024 9 3.000 27.000 0.000 9.510 3.083
noun-11513257 58 2.874 166.712 0.361 16.838 3.856

the KL distance from the uniform distribution -used for filtering out less relevant

synsets- is not an appropriate index for doing this ranking. Consider the following

counts:

Synset not-a-name date location money organisation percent person time

noun-10371413 3 0 0 0 0 0 0 0

noun-11549024 0 0 0 0 0 0 9 0

noun-11513257 57 0 1 0 0 0 0 0

The KL divergences for these synsets are 3.0, 3.0 and 2.874 respectively. However, if

decoding data presents approximately the same frequencies for trigger synsets as the

training data -which is also the assumption on which the application of a statistical

machine learning approach is based- then it makes sense to consider that the second

synset provides more information than the first one, and that the third synset is more

predictive than the other two. This is so because the first synset was only fired by the

minimum number of examples to be considered a trigger synset, whereas the second

and third synsets were fired three times and 20 times more often respectively.

Thus, the frequency with which a trigger synset is fired must be considered in the index

for ranking them. There are several alternatives for doing this, such as multiplying

the KL distance by the absolute frequency of the synset or using the Split Information

measure (Quinlan 1986). Table 4.2 summarises some of these alternatives for the sample

synsets above.

MOLl MENE uses a direct approach which was observed to produce the desired effect

on a small set of examples tested: the weighted harmonic mean -exactly like the F­

score used for measuring performance (van Rijsbergen 1979)- of the logarithm of the

synset's frequency and its KL divergence with respect to the uniform distribution (last

column of table 4.2).

Using this score, trigger synsets are ranked according to their predictive power. Then,

only the most important synsets can be selected to be considered by MOLl l\lENE.

With this strategy at hand, a new experiment with V5 was conducted in which the size

all three lists of trigger synsets was fixed to a value that varies from 1,000 to all synscts

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE

65.5

;:: 60.5 u:-
555

UNSEEN
-------------- V2

50.5 o~o~__oo-_e_o-~o~-o

1 2.5 5 7.5 10 12.5

length of trigger lists x 10J

AMBIGUOUS

----------------~

91.9

~ 91.0

90.1

89.2

1 2.5 5 75 10 12.5

length of tr igger lists x 103

SEEN
- - - - - - - - - - - - - - V2

92.8

~ 90.6

88.4

86.2 o----eo>-----oe----eo>----_o&---..o

1 2.5 5 7.5 10 12.5

length of tngger lists x 10J

OVERALL
- - - - - - - - - - - - V2

81.4

f2 78.8

76.2

73.7 0 0 0 0 0 o

1 25 5 7.5 10 12.5

length of trigger lists x 103

108

Figure 4.11: Experiments with MOll MENE V5: the size of the three lists of trigger synsets changing from
1,000 t? around 13,000: Data is represented in FMLU notation, context windows are set to [1,1] and [2,2]
respectively and cutoff IS set to 3. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

considered relevant (around 13,000 elements). The results of this experiment are shown

in figure 4.11.

Unfortunately, neither of these experiments exhibit an improvement over MOLl MENE

V2. On the one hand, the performance of V5 is fairly constant and much lower than the

one shown by V2, no matter what the size of the lists of trigger synsets is. On the other

hand, the performance of V3 seems to be affected by the size of the chunk window, but

the best results of figure 4.10 -obtained with the minimum size [1,1]- is not enough

to outperform V2 and this performance decreases as the chunk window grows in size.

In conclusion, directly reducing the number of features to be considered by the max­

imum entropy model of MOLl MENE does not solve the convergence problem, and a

more sophisticated approach is needed. Such an approach might consider a much more

careful selection of features, as well as the creation of complex features in which more

than one of the atomic features are combined. For example, firing a feature "previous

word is a trigger synset for the class person and the current token is Smith" might be

more informative than just firing the two features individually, reducing the number of

iterations required to introduce this information into the model.

Traditionally, it is the modeller's work to design and select features that will provide

the maximum entropy model the necessary information to perform the target task well.

This is normally done by trying a set of features, investigating where the system is

making mistakes and, based on this information, proposing new features that can cor­

rect these weaknesses. This process is repeated several times until a set of feature

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 109

seems impossible to improve on -or whose performance cannot be increased without

significantly compromising other issues, such as computational resources.

However, this method introduces limitations into the portability of the NEE system.

This is so because this task requires two types of expertise. On the one hand, the

modeller must know the domain in order to identify valid conjunctions of atomic features

that might provide useful information, as well as recognise what information is causing

mistakes and how these problems could be solved. On the other hand, the modeller has

to master the maximum entropy framework to check whether the intended effect of the

designed features is being reflected by the model. Moreover, designing and selecting

complex features is not a trivial task (see Borthwick (Chapter 6) for a good example,

briefly discussed in section 4.8).

4.8 Feature selection

From the above results, it has become necessary to utilise some method for selecting

features from the large pools of features managed by MOLl MENE V3, V4 and V5, in

order to facilitate the task to the underlying maximum entropy framework.

Selecting relevant features before applying an inductive method is a common practice

in machine learning (Blum and Langley 1997), and there have been few attempts to

perform this selection automatically for maximum entropy models (Berger et al. 1996,

Mikheev 1998). These methods aim to select the most relevant features from an initial

pool of features, as large as possible. However, the nature of the task studied here makes

these approaches impractical. Consider MOLl MENE V3 for example. When the chunk

window is set to [4,4], 18 atomic features are introduced into the framework in addition

to the atomic features used by MOLl MENE V2: the chunk tag and the head word of

the focus chunk, the four chunk tags and the four head words on the left of the focus

chunk, and the four chunk tags and the four head words on the right of the focus chunk.

Considering only these newly introduced atomic features, there are 262,143 possible

combinations. The tag features have around 13 different values and the word features

have around 2,900 distinct lexemes, which raises the theoretical number of valued com­

plex features to a staggering 211,322, 798,375,569,000,000,000,000,000,000,000,000,000.

Although only a fraction of this theoretical number of combinations will be seen during

training, the amount is still prohibitively large for trying all possible complex features.

These difficulties were already discussed in section 2.4.4, and one of the possibilities

suggested to overcome the problem was the use of decision trees to obtain complex

features from a pool of atomic features only, as proposed by Park and Zhang (2002).

However, as also stated in section 2.4.4, there have been reports that even powerful,

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 110

commercial decision tree induction algorithms are not able to cope with this sheer

number of attributes (Ratnaparkhi 1998, Borthwick 1999).

Considering these facts, MOLl MENE utilises an efficient rule learning algorithm: Rip­

per (Cohen 1995). Ripper is specially suitable for the purpose discussed above for
several reasons:

I> like many inductive algorithms, Ripper creates a lists of rules that try to use only

the most relevant valued attributes -i.e. features- from a potentially large set of

attributes, so that a general hypothesis to explain the observation can be formed

I> although the induction is greedy -based on Fiirnkranz and Widmer's (1994)

lREP- its performance is extremely competitive with the more developed, ex­
pensive C4.5 algorithm

I> due to this greediness, the algorithm is extremely efficient as it scales nearly

linearly with the number of training examples - actually n log2 n

I> the latest versions have been provided with an extended feature-vector representa­

tion which can manage, in addition to continuous and nominal features, set-valued

features (Cohen 1996); this characteristic is quite useful, especially for NLP tasks

in which it is not uncommon to find token features -as in the features used by

MOLl MENE- which may contain an arbitrary number of lexemes

The approach is quite simple and closely follows the idea of Park and Zhang (2002).

First, all atomic features are provided to Ripper, which induces a list of complex rules

- that is, conjunctions of valued, atomic features. Because one of the objectives of this

chapter is to determine the impact of more linguistically-informed features, the default

features used by MOLl MENE V2 are left out of this procedure. Then, each of the

resulting rules is considered a complex feature for the maximum entropy model, which

can be fired by any training example disregarding the class it predicts. In the next

step, these complex features are joined with the default features. Finally, a maximum

entropy model for MOLl MENE is obtained from this pool of atomic and complex

features, following an application of the cutoff selection.

In the decision list approach, rules are incrementally induced -one at a time- and

when each new rule is added to the list, all examples it covers -positive and negative­

are removed from the set of training examples. Thus, each rule aims to separate the

sample space into two sets: examples that belong to a particular class and examples that

cannot be safely classified at that time. However, when rules are used as features, they

might overlap and a training example can even fire two -or more- contradictory rules.

Figure 4.12 represents this situation graphically. It is the job of the maximum entropy

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 111

Figure 4.12: Situation when Ripper rules are used as complex features: rules might overlap.

framework to obtain the appropriate probabilities for overlapping rules, whether they

predict the same class or are contradictory, as well as combine this information with

the other (default) atomic features.

4.9 The new versions

Following the ideas presented in section 4.8, three new pools of features were obtained

-one for each MOLl MENE version presented in section 4.5- by applying the Ripper

rule inducer to the original pools of features. Ripper proved to be very efficient: none

of the new pools of features took more than 45 minutes to be built.

The new pools contain the linguistically-oriented features, both atomic and complex,

that Ripper considers most useful for performing the extraction task. Appendix C

presents the text representation for these hypotheses as given by the implementation of

Ripper in use (Cohen 1996).

For experimentation, three further versions of MOLl MENE have been created: versions

V6, V7 and V8, which use the new pools of features that result from applying Ripper

to the linguistically-oriented atomic features of versions V3, V 4 and V5 respectively.

It has been computationally infeasible to determine the exact reduction in the size of

the feature space obtained by this approach. An estimation for 10 training documents

was performed. Results indicate that 382,869,287 unique complex features -that occur

2572 661 588 times- were produced for MOLl MENE V3 from the atomic features , , ,
contained in these documents. Ripper, when considering all training documents, selects

just 16 complex features that use only 37 distinct valued atomic features. Therefore,

the reduction in the size of the problem is quite important.

4.10 Results of the new versions

Figure 4.13 presents the performance obtained by MOLl MENE V6 V7 and V8, as

defined in section 4.9, on the MUC-7 dryrun test corpus. All parameters have been

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 112

UNSEEN
SEEN 690 95.7

68.6 95.4

E2 68.2 E2 951

67.8 947

67.5 94.4

V2 V6 V7 V8 V2 V6 V7 V8
MOll MENE version MOll MENE verSion

AMBIGUOUS OVERALL 94.3 847 .

93.9 84.3

E2 93.5 E2 84.0

93.2 83.6

92.8 83.2

V2 V6 V7 V8 V2 V6 V7 V8
MOll MENE version MOll MENE verSion

Figure 4.13: Comparison of the performances of version V2, V6, V7 and V8 of MOll MENE: data is
represented in FMLU notation, context windows are set to [1,1], [2,2] and [4,4] respectively, cutoff is set to
3 and GIS iterations to 200. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

kept fixed to the values determined in section 4.2, V6 uses a chunk window of size [4,4]

and V8 considers all trigger synsets.

The first observation is that version V6 fails to outperform the simpler version V2

overall, but versions V7 and V8 do obtain slightly better overall performance.

The lack of contribution of chunk tags and head words has been somehow validated

by recent experiments (CoNLL-2002 and CoNLL-2003) in which several authors have

reported the same effect, though it could also be attributed to the noise introduced by

the MBSP parser which, after all, has been shown quite accurate in a different source

of text and no results are known for the MUC-7 documents (see section 4.4).

The key factor for the success of MOLl MENE V7 and V8 seems to be the improvement

in the performance of extracting ambiguous named entities. For this familiarity type,

Ripper appears to capture relevant information from the synsets provided by WordNet

which, even without applying any explicit effort for disambiguation, allows the system

to decide better whether an ambiguous phrase is acting as a named entity or not.

A second important observation is that Ripper seems to effectively reduce the size of

the set of training complex features, as the generalised iterative scaling algorithm is able

to estimate an appropriate set of weights for MOLl MENE's maximum entropy model

in just 200 iterations.

Comparing these results to versions V3, V 4 and V5 (figure 4.8) , a substantial improve­

ment in the performance can be observed. The performance obtained by V7 with 200

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 113

UNSEEN SEEN SO.7 95.0

59.9 945

ii- 59.1 ii- 94 1

58.3 93.7

57.5 93.2

V2 V6 V7 VB V2 VS V7 V8
MOll MENE version MOll MENE version

AMBIGUOUS OVERALL
93.2 72.7

92.0 72.1

ii- 90.9 ii- 71.S

89.7 711

88.6 70.S

V2 VS V7 V8 V2 VS V7 VB
MOll MENE version MOll MENE version

Figure 4.14: Comparison of the performances of version V2, V6, V7 and va of MOll MENE: data is
represented in FMLU notation, context windows are set to [1,1], [2,2] and [4,4] respectively, cutoff is set to
3 and GIS iterations to 200. Corpora: MUC-7 training corpus and MUC-7 formal test corpus.

GIS iterations is about 12 F-score points higher than its counterpart V4 when trained

with 1,000 GIS iterations. This is quite remarkable as both versions share the same

pool of atomic features. This confirms that Ripper is selecting the most relevant atomic

features and generating useful complex features.

Figure 4.14 shows the results obtained by repeating the above experiment on the MUC-7

formal test corpus. The overall performances follows the trend observed on the dryrun

test corpus. However, MOLl MENE V8 is not the overall best system, as on the

former corpus, and it is outperformed by version V7. This seems to be due to an

important increase in the performance of V7 on unseen named entities, which was not

observed in the dryrun test documents. Recall that the MUC-7 dry run test corpus

was selected from the same domain as the MUC-7 training corpus, whereas the MUC-7

formal test corpus is a collection of documents from a slightly different domain. These

facts suggest that gathering information about close synonyms might contribute with a

better generalisation for the identification of unseen named entities when they do not

follow exactly the patterns seen in the training text.

4.11 Adding generalisation of features

In section 4.8, a method for feature selection based on collocations of features -

proposed by Mikheev (1998)- was discussed. One of the most interesting charac­

teristics of this approach is that it provides a simple way of performing generalisation

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 114

I 'NP' E tago 1\ ' last ' E heado I I 'NP' E tago 1\ 'valujet' E head o I I 'NP ' E tago 1\ 'faa ' E heado I

I 'NP' E tago I

Figure 4.15: Example of the generalisation of complex features for MOll MENE V6.

of complex features: when two complex features share one or more atomic features in ,
conjunction with other atomic features, this common section is added to the pool as a

new feature. In this way, when the two complex features are not present in the decoding

data, the maximum entropy model can back-off to a less informed, but more general

feature. For example, consider the complex features used by MOLl MENE V6 that are

presented in figure 4.15. In this case, there are three complex features that have one

common atomic feature, namely that the focus chunk is labelled as a noun phrase. The

generalisation procedure will add this common atomic feature into the pool as a weaker

indicator, which can nevertheless be useful in the absence of the complex features.

This idea has been easily introduced into the MOLl MENE versions that obtain complex

features through Ripper. After the list of rules induced by Ripper has been transformed

into complex features, discarding the classes predicted, they are considered as observed

feature collocation nodes in a lattice. Then, a new process takes these collocations and

builds the next level in the lattice. This corresponds to creating new feature collocation

nodes from each original node by removing one of the features in the collocation, that is

one condition from the rule. Then, empty nodes, nodes that already exist in the lattice

and nodes that support only one node of the original level are removed from the new

level. This procedure is repeated until no new nodes can be obtained. The features

resulting of this generalisation procedure are also detailed in appendix C.

4.12 Results of generalisation

Applying the generalisation procedure described in section 4.11, three new versions of

MOLl MENE have been obtained: V9, VI0 and VII. These versions consider the

generalised pools of features of versions V6, V7 and V8 respectively.

The generalisation process turned out to be quite fast and only took a few seconds

for each list of rules. The main reason for this efficiency is the moderate size of these

lists: V6 uses only 16 complex features, which are extended to 18; V7 manages 221

Ripper rules, which are expanded to 252; and V8 utilises 193 conjunctions, which are

generalised to 211 features.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 115

UNSEEN SEEN 70.9 95.0

701 94.9

f 69.3 f 94 .8

68.5 94.6

677 94.5

V2 V9 V10 V11 V2 V9 V10 V11
MOll MENE verSion MOll MENE version

AMBIGUOUS OVERALL
94.2 84.4

93.7 84.1

f 93.2 f 83.9

92.7 83.6

92.3 83.4

V2 V9 V10 V11 V2 V9 Vl0 V11
MOll MENE version MOll MENE version

Figure 4.16: Comparison of the performances of version V2, V9, VI0 and Vll of MOll MENE: data is
represented in FMLU notation, context windows are set to [1,1], [2,2] and [4,4] respectively, cutoff is set to
3 and GIS iterations to 200. Corpora : MUC-7 training corpus and MUC-7 dryrun test corpus.

Figure 4.16 presents the performance obtained by MOLl MENE V9, VIO and V11

on the MUC-7 dry run test corpus. It can be seen that generalisation has had only a

marginal effect on the performance of MOLl MENE V6, V7 and V8 on this test corpus.

Versions V6 and V7 are helped slightly by the introduction of generalised rules, but V8

has decreased its performance a little.

Interestingly, the improvement in recognising unseen named entities obtained by features

that use close synonyms that was observed for the MUC-7 formal test corpus, has also

appeared here, at the cost of a slight decrease in the accuracy on ambiguous named

entities.

Figure 4.17 shows the results for this experiment when repeated with the MUC-7 formal

test corpus. It can be immediately noticed that there is a similarity between these

curves and those of the not-generalised versions. MOLl MENE VIO is even better at

identifying unseen named entities than V7, though a small decline in the performance

on ambiguous named entities can be observed.

Another interesting effect of this experiment is that MOLl MENE VII also presents a

decrease in the performance on ambiguous named entities with respect to the dryrun

corpus, but this time this fall is not enough to prevent this version outperforming the

other systems.

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 116

UNSEEN SEEN
61.8 946

60.6 942

~ 59.5 ~ 93.9

58.5 93.6

574 93.2

V2 V9 V10 V11
MOll MENE version

V2 V9 V10 V11
MOll MENE version

AMBIGUOUS
91.2

OVERALL
73.0

90.6 72.4

~ 90.1 if 71.8

89.6 71.2

891 70.6

V2 V9 V10 V11 V2 V9 V10 V11
MOll MENE version MOll MENE version

Figure 4.17: Comparison of the performances of version V2, V9, VI0 and Vll of MOll MENE: data is
represented in FMLU notation, context windows are set to [1,1], [2,2] and [4,4] respectively, cutoff is set to
3 and GIS iterations to 200. Corpora: MUC-7 training corpus and MUC-7 formal test corpus.

4.13 Ripper as a baseline system

Questions may have arisen from the discussion in the previous sections about whether

Ripper might be accounting for all the improvements observed in later approaches

of MOLl MENE, and whether this approach alone could obtain the same -or even

better- results for this task. These are reasonable questions as Ripper is itself a strong

classifier and it has been successfully applied to other NLP tasks (Cohen 1996).

Therefore, two NEE approaches based on Ripper have been designed to clarify these

open questions. Unfortunately, it is not possible to conduct these experiments with the

same data as used by MOLl MENE. Because Ripper's rules do not predict probability

distributions, but a single class for each token, MOLl MENE's training data cannot

be used as it is in FMLU notation which requires the application of a Viterbi search

in a post-processing step. Nevertheless, beside the difference in the notation of named

entities' classes, Ripper is provided with the same features and parameters as used by

MOLl MENE.

The first Ripper approach is named R(V2+ R(V5)) as it uses rules obtained from MOLl

MENE V2's lexically-oriented features in addition to rules induced from MOLl MENE

V5's linguistically-oriented features, that is mimicking the approach used for version V8

but replacing the maximum entropy model by a Ripper induction step.

The second Ripper approach is named R(V2+ V5) because it applies Ripper's rule in­

duction on the pool of atomic features that result from combining MOLl MENE V2's

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 117

74
UNSEEN 98 SEEN

68

62
93

~ 56 8a

LL 50 i:C 83

44 78

38 73

32
R(V2+R(V5)) R(V2+V5) V8

68
R(V2+R(V5j) R(V2+V5) va

NEE systems NEE systems

97 AMBIGUOUS ,
85

OVERALL

91
78

85
~ 71

LL 79 i:C 64

73 57

67 -&- dryrun test 50
-&- formal test

61 43
R(V2+R(V5)) R(V2+V5) V8 R(V2+R(V5)) R(V2+V5) va

NEE systems NEE systems

Figure 4.18: Comparison of the performances of R(V2+R(V5)) . R(V2+V5) and version va of MOll MENE.
Corpora: MUC-7 training corpus and MUC-7 test corpora.

and MOLl MENE V5's features.

Figure 4.18 presents a comparison of the above Ripper-based systems and MOLl MENE

V8. The latter utilises the abilities of both Ripper and the maximum entropy framework

on the same features used by the Ripper-based approaches.

The results are conclusive: the combination of Ripper and maximum entropy models

yields much better performance on the extraction in all familiarity types on both test

corpora.

4.14 Summary and discussion

Table 4.3 presents a summary of the best F-scores obtained in the experiments con­

ducted in this chapter. It also includes the results for the baseline systems reported in

sections 3.4.2 and 3.4.3. The training time included in this table for each system has

been obtained in a normal desktop computer, with the exception of MOLl MENE V4

(marked with an asterisk) which was trained in (a window of time of) a bigger machine

provided by the York White Rose Grid.

The first observation is that the more informed features seem not to have a great impact

in the performance of the system. Indeed, the best F-scores of MOLl MENE are just

0.70 and 1.56 higher for the dryrun test and formal test corpora respectively, with

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 118

Table 4.3: Summary of the performances obtained by the baseline systems, the approaches reported in this
chapter and two systems based on the Ripper inducer.

Version Pool of Training Performance
Name Features Time Dryrun test Formal test I

siNymble
lexicals (tokens) in a [1,0] window, binary lexicals

4m37s 81.20 with precedence in a [1,0] window 66.12

LexMENE
lexicals (tokens) in a [2,2] window, binary lexicals

19m55 79.54 without precedence in a [2,2] window, zone 64.51

V2
lexicals (tokens) in a [l,lJ window, binary lexicals

15m13 83.98
with precedence in a [2,2J window, zone 71.49

V3
V2's features plus chunk tags in a [4,4] window

50m51s 71.71 57.69 and head words of chunks in a [4,4J window
V2's features plus lemmas in a [1,1] window, PoS

V4 tags in a [2,2] window, close synonyms in a [l,lJ 9h48m18s' 60.81 51.98
window

V5
V2's features plus trigger synsets hit in a [2,2] win-

46m46s 73.81 61.64
dow

V6
V2's features plus Ripper rules induced from V3's

21m46s 83.22
new features

70.61

V7
V2's features plus Ripper rules induced from V4's

1h16m42s 84.09
new features

72.65

V8
V2's features plus Ripper rules induced from V5's

1h1m57s 84.68
new features

71.93

V9 V6's features but Ripper features are generalised 22m02s 83.36 70.64

V10 VTs features but Ripper features are generalised Ih18mlOs 84.54 72.60

Vll V8's features but Ripper features are generalised Ih02m52s 84.38 73.05

R(V2)+R(V5)
Ripper rules induced from V2's features plus Rip-

13m8s 60.02 49.68
per rules induced from V5's features

R(V2+V5) Ripper rules induced on V2's and V5's features 16m17s 70.22 55.68

respect to the performance obtained by V2 which uses only the uninformed pool of

feature of LexMENE. This represents about a 1% improvement.

The explanation of this result might lie in the great improvement obtained by just

re-arranging the lexical-based features from LexMENE to MOLl MENE V2. This

parametrisation meant a 6% and an 11% improvement respect to the maxImum en­

tropy baseline system, making the approach hard to improve on.

Although marginally, WordNet features seems to be contributing to the identification

of more unseen and ambiguous named entities. This fact deserves further investigation,

as a better parametrisation of the model or the Ripper algorithm could lead to more

significant improvements.

However, it might be the expected that the introduction of naive more-informed fea­

tures -which require no human intervention, though- will not be able to increase the

performance much. Thus, more elaborated features, or at least a better parametrisa­

tion, are needed in order to obtain greater improvements. For example, it is likely that

by applying even a simple word sense disambiguation algorithm, the trigger synsets

features could provide more valuable information; neither is it clear that a window of

[1,1] is the correct setting for this type of feature.

Moreover, it might be possible to boost the contribution of the more linguistically

informed features by combining them with other kinds of features which have been

CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 119

shown to be useful for named entity recognition, like those used in the maximum entropy

approaches presented in the CoNLLs (Roth and van den Bosch 2002, Daelemans and

Osborne 2003).

Nevertheless, this chapter has made an important contribution by introducing and em­

pirically testing a new way of selecting relevant complex features from a huge space of

possible constraints for the maximum entropy model. The 1 % increase in performance

discussed above could have not been possible without this selection method, as experi­

ments with MOLl MENE V3, V4 and V5 show. Version V4 was not near to being able

to rival the simpler version V2, even when the GIS algorithm was allowed to run 1,000

iterations.

This method is simple, general and fast, mainly because of the efficiency of the Rip­

per algorithm, and it may be suitable not just for maximum entropy models but for

other models too that have difficulties with large and sparse spaces of features, such as

memory-based algorithms.

Chapter 5

Biasing LexMENE

This chapter present a different approach to extending LexMENE than the one pre­

sented in the previous chapter, which aims to assess the validity of the second hypoth­

esis proposed in section 2.3. The idea is to bias LexMENE towards examples that are

similar to the piece of text being classified.

In this chapter, the reasons to believe that making this biasing might improve the perfor­

mance of LexMENE are discussed. Then, the strategies to represent and retrieve similar

pieces of text are presented. Finally, experiments with the approach are explained and

evaluated.

5.1 Why biasing LexMENE?

There are two main reasons to expect that LexMENE could benefit from considering

similar training examples when classifying new text:

I> it might help LexMENE to recognise exceptions -i.e. low-frequency named entity

occurrences- in the text

I> LexMENE could implicitly use the information utilised to obtain similar train­

ing examples, if this information is different from the one it considers for the

classification

These two arguments can be better explained with some examples. Consider the clas­

sification of the last noun phrase in the sentence we're going to Paris, in which a location

is found. It is very likely that there are many similar pieces of text in which the same

120

CHAPTER 5. BIASING LEXMENE 121

lexical features are present but not associated with any location: we're going to make a

study, we're going to the party, we're going to the NLP Conference, etc.

If this kind of irrelevant sentence is highly frequent in the training texts -or for that

matter in the decoding documents- LexMENE's approach, being a statistical one,

would be inclined to overlook the sample sentence and not consider the possibility of

the presence of a named entity in it.

Even if these irrelevant sentences are not frequent enough to dominate LexMENE's de­

cisions, they are nonetheless considered in the model. A human reader would recognise

the inappropriateness of considering these sentences just by realising that the modi­

fier/argument of the verb going in the sentence we're going to Paris is a noun phrase

whose head word is not preceded by a determiner and written in capitalised style,

whereas none of the irrelevant sentences meet all these conditions.

Therefore, although it would be rather difficult to include all this knowledge in Lex­

MENE, some of this information can be captured if the system takes into account more

examples that contain -for this particular piece of text-locations: she's going to London

tomorrow, they're flying to Washington, we're going to the City for a meeting, etc.; and fewer

example of similar texts which do not contain locations. In this manner, features in

LexMENE will be biased towards locations.

The example above will be used for its simplicity, but the same principles apply to

more complex examples. For instance, the word Clinton is very frequently seen as a

person name: President Clinton, who received a letter ... ; ... the foreign policy of the Clinton

administration ... ; etc. These are irrelevant pieces of text when the -much rarer- piece

of text ... spokesman for Foster Wheeler Corp. of Clinton, N.J., said ... -in which the word Clinton

acts as the name of a location- is submitted for the extraction of named entities. For

this rare example, text such as ... arrived into Port Newark, N.J., from ... ; ... Karen Harris of Irmo,

S.c., took a ... ; and ... by Aviation International of China; are more useful to obtain a correct

classification. It is clear that a statistical-based approach to named entity extraction

could easily be deceived by the disparity in the frequency of these two events.

There have been some attempts at forcing a classifier to consider infrequent training

examples through boosting (Freund and Schapire 1999). In the Shared Task of the

versions 2002 and 2003 of the CoNLL Conferences (Roth and van den Bosch 2002,

Daelemans and Osborne 2003), five NEE systems that utilised boosting were presented,

with different levels of success.

The boosting meta-learning method tries to produce accurate classifiers by combining

the predictions of several simple, moderately inaccurate classifiers. As such, the boosting

algorithms of the AdaBoost family train a set of weak classifiers sequentially in a series of

CHAPTER 5. BIASING LEXMENE
122

rounds. In each round, the weak learner focuses on the examples which were incorrectly
classified in the preceding round.

The problem with the boosted approaches above is that the final hypothesis is a weighted

majority vote of the weak predictions based on their global importance, which is esti­

mated in inverse proportion to the number of errors they make. Therefore, this linear

combination is fixed for all decoding examples, wasting the ability of certain classifiers

to perform better on particular exceptional examples.

The baseline system which will be extended here uses a maximum entropy model to

obtain its predictions and one previous work has shown that AdaBoost did not improve

the performance of this kind of classifier when applied to a shallow parsing (Park and
Zhang 2002).

These last observations are suggesting that a different approach should be used to

provide LexMENE with a better handling of exceptional named entities.

5.2 Formalisation

To formalise the basic idea behind Biased LexMENE, hereafter biLexMENE, some

vocabulary from memory-based learning methods will be utilised, in particular the

discussion and terms in Burkhard (1998) will be followed.

Given a decoding piece of text, hereafter a query, that contains a named entity of class

c, then the training examples, hereafter cases, considered by the system should contain

similar pieces of text that also contain named entities of class c. Unfortunately, this

would require to know a priori the named entities contained in the query, which is

exactly what the system is trying to determine.

Therefore, biLexMENE will be able to make only approximated biases for each query.

These approximations must be based on some sort of similarity which increases the

likelihood of retrieving cases with the same sort of named entities contained in the

query.

Memory-based approaches seem to fulfil these characteristics. In the CoNLLs, Tjong

Kim Sang (2002b), Hendrickx and van den Bosch (2003) and De Meulder and Daelemans

(2003) presented NEE systems which utilised instance-based techniques with moderate

success only, even when applied in combination with meta-learning methods -such as

stacking (Wolpert 1992)- that aim to correct errors originally made by the memory­

based classifier, or when using extra information derived from unannotated data.

The poor performance of the systems above could be related to the adaptation method

employed, that is the way in which similar cases are used to obtain the query's class. All

CHAPTER 5. BIASING LEXMENE 123

the above approaches utilise the k-nearest neighbours method, in which the classification

for the query is determined on the basis of the majority class of the cases found in a

vicinity of the query. It may be speculated that this adaptation can be affected by the

presence of many irrelevant, but similar, sentences that mislead the classifier.

This problem is not unknown for memory-based methods and some attempts at pruning

noisy instances from the training material have been studied (Zhang 1992). However,

Daelemans, van de Bosch and Savrel (1999) showed that removing apparently useless

instances -based on measures of their typicality and class prediction strength (Salzberg

1990)- normally decreases the performance of an instance-based learning method when

solving an NLP task. Moreover, they found that the decrease in performance is related

to the degree of deletion applied and the number of exceptions that are removed from

the data.

5.3 The proposed approach

The extension for the baseline system proposed here is based on the combination of

memory-based methods and statistical classification. The idea is to build a maximum

entropy model for each query considering cases which are similar to that query, in hope

that the selected training instances will contain the same kinds of named entities as the

ones contained by the query.

With this approach, there is no need for relying on a potentially inaccurate generalisa­

tion, but locally-biased hypotheses can be obtained. On the other hand, because the

adaptation is more complex than just considering the classes of neighbour training in­

stances -but also adding feature frequencies into consideration- it can be speculated

that there are more chances of escaping the misleading noisy cases.

The hypothesis is that this characteristic will help biLexMENE to face two important

problems. First, because feature frequencies are considered from a selected number of

training examples only, less training material is needed to obtain accurate classifica­

tion of infrequent events. And secondly, selecting similar cases might break the imbal­

ance of the data which is inherent in named entity extraction tasks -Coates-Stephens

(1992) found that only about 10% of newswire text consists of proper names- helping

biLexMENE to take better decisions on infrequent or unknown pieces of text.

5.4 Getting cases and queries

The first step in the new approach is to divide the training corpus into cases and the test

corpora into queries. Words -or even tokens- could be used as possible cases/queries

CHAPTER 5. BIASING LEXMENE 124

units. However, this would probably create too many cases/queries to be practical.

Windows of words would be more appropriate but they present a major difficulty:

deciding their boundaries. A fixed-length window does not seem applicable because a

named entity could become separated into two different windows, affecting its similarity

with other cases/queries. A variable-length window would again need to know the

named entities in the text, so that no boundaries are placed in the middle of them.

With this in mind, constituents -i.e. basic chunks identified by a shallow parser- will

be used as the basic unit for cases and queries. There are a number of reasons for this
decision:

I> a constituent has a better linguistic meaning than a random window of words

I> a shallow parser, namely the MBSP parser (Daelemans, Veenstra and Buchholz

1999), can be used by MOLl MENE to recognise boundaries between constituents
with relative confidence

I> although there are examples of named entities involving more than one basic con­

stituent, such as NP[the University] P[ofj NPfYork], most named entities are contained

within a single constituent, normally a basic noun phrase (Collins and Singer 1999)

Now the problem has been reduced to determining the number of units that will consti­

tute a case/query. Clearly, considering just one constituent as a case/query is of little

use because, as most named entities are contained within a noun phrase, it would pro­

vide trivial information for the determination of their similarity. Thus, it is necessary

to consider more than one constituent when looking for similar cases. Fortunately, now

that units are limited to constituents is much easy to define a fixed-size window.

The size of the context window could be a free parameter of the system, but this size has

been fixed in biLexMENE to four constituents on each side of the focus constituent l .

This number follows the intuition that most modifiers can be contained in a window of

this size. For example, appositive noun phrases -a complex common modifier in terms

of the number of constituents involved- are normally contained within such a window:

left context: NP[the president] P[o~ NP[Spain] CONJ[.]
focus: NP[Jose Maria Aznar]
right context: CONJ[,] VP[said] ...

left context: ... VP[said]
focus: NP[Patricia (lain]
right context: CONJ[,] NP[chairman] P[of] NP[the awarded airline]

1 This kind of decision will be frequent in this chapter because the number of parameters that
biLexMENE introduces is very large and they cannot be empirically parametrised in practice. See
section 5.6.1 for an explanation.

CHAPTER 5. BIASING LEXMENE 125

As a result of using a window of constituents as a case/query, new infonnation can be

gathered: the structure in which a named entity occurs. This new information can be

used as a part of the similarity measure between cases and queries that will drive the

bias in biLexMENE.

5.5 The similarity measure

One of the main advantages of the approach proposed here is that the characteristics

utilised to retrieved similar cases -i.e. the similarity measure- do not need to be

based on the same features utilised to perform the classification. Indeed, the similarity

function that biLexMENE uses includes information about the structure of the sentence

and close synonyms, which is not considered by the underlying maximum entropy model

to extract named entities.

In general terms, the context for cases and queries defined above allows the system to

recognise that all the following sentences exhibit the pattern NP VP P NP: she's going to

London tomorrow, they're flying to Washington, we're going to the City for a meeting, and they

might be considered similar to queries that contain the same constituent pattern, such

as we're going to Paris.

Although this pattern will differentiate sentences such as we're going to make a study, it

will still consider they'll fly at lOpm today, we're going to the party, and we're going to the

NLP Conference as close cases. Here is where the lexical and orthographic features of

LexMENE can help.

Examining the prepositions in the cases being compared, it can be seen that P[to] is

different from Plat). This information might help the system to determine that these

cases are less similar than those with the same preposition.

Analogously, it can be established that NP[Paris] is closer to NP[L on don] , NP[Washington]

and NP[the City] than to NP[lOpm] and NP[the party] by looking at the capitalisation of

the head words. Nonetheless, sentences like we're going to the NLP Conference will also be

retrieved for the example query.

BiLexMENE makes an effort to use the lexical database of WordNet®, in a similar way

in which MOLl MENE uses it (see section 4.5), to reduce the number of these occur­

rences. Thus, biLexMENE could discover that the words Paris, London and Washington

are semantically related2 . This will bring closer these cases and distance the query from

the irrelevant case about the conference.

2WordNet contains entries for these and many other locations. However, this type of semantic
relation will not always be available as WordNet does not attempt to be an exhaustive database of

proper names.

CHAPTER 5. BIASING LEXMENE 126

This seems to be an appropriate way of approximating a bias for LexMENE as the

similar cases that can be retrieved for a particular query are more likely of containing
the same type of named entity.

However, comparing windows of constituents properly is not a simple task. It requires

a large amount of linguistic knowledge and certainly requires looking much further

away at the surroundings. For example, the system should recognise constructions

such as appositives -among many other linguistic phenomena- that can move around

the focus constituent without changing the meaning, recognise and ignore irrelevant

constituent, such as adjectival phrases, and manage combinations of these. In other

words, biLexMENE should ideally be able to determine that the following pairs of texts
are very similar .

... said Olin Edwards, chairman of free.com .

... said the chairman of Pratter Inc., Stephen Daark .

... flying to Florida today for ...

... flying soon to Paris for ...

This degree of understanding could be quite expensive, in terms of both linguistic re­

sources and portability. Therefore, biLexMENE opts for a much more naive approxima­

tion: it compares the left and right contexts of two cases separately, trying to maximise

the match between them. This would solve many problems presented by the variabil­

ity of natural languages, in particular the use of adjectival and adverbial phrases that

should be ignored for named entity extraction purposes.

To get this maximum match, pairs of constituents need to be compared in the best

alignment of the contexts of the two cases. BiLexMENE utilises a classical dynamic

programming algorithm from bioinformatics to generate optimal alignments -originally

for sequences of bases or amino acids- namely the Needleman-Wunsch-Sellers (NWS)

algorithm (Needleman and Wunsch 1970, Sellers 1974). All adaptations of this algorithm

as used by biLexMENE do not consider gap penalties or negative mismatches -that

is unmatched elements do not contribute to the similarity between cases/queries but ,
they also do not affect it negatively- as these aspects of the general NWS algorithm

shown to have little impact on the list of cases retrieved. With the NWS algorithm, the

following alignment results for the last pair of sentences in the example above.

VP[flying]
VP[flying] ADVP[soon]

P[to]
P[to]

N P [Florida]
NP[Paris]

NP[today] P[for]
P[for]

The NWS algorithm requires a scoring function that estimates the similarity between

the elements in the sequences. BiLexMENE considers several levels of information for

these functions, which are explained in the following sections.

CHAPTER 5. BIASING LEXMENE 127

5.6 Case Retrieval Nets

The management of past cases in biLexMENE is inspired by the Case Retrieval Net

(CRN) framework, proposed by Lenz (1999). The key idea of CRNs is to store both the

case base and the similarity relationships among them in the same memory structure.

Two kinds of nodes can be found in a CRN: one for representing information entities

and the other to represent cases. Information entities are defined as atomic pieces

of knowledge, which in the simplest structure correspond to attribute-value pairs, but

they might well represent text, pictures or indeed any other type of data (Lenz and

Burkhard 1996). Cases, on the other hand, are defined as sets of information entities

associated with unique identifiers. This definition does not imposes any restriction on

the structure of a case and it seems flexible enough to capture all past events (Lenz and

Burkhard 1996). Moreover, it makes evident that a comparison between cases should

be based on their constituting information entities. Following these ideas:

1. information entity nodes are linked to other information entity nodes by arcs

which represent the similarity between them. This similarity is expressed as a

weight labelling each similarity arc, which is determined by a similarity function

a : E x E ---+ R, where E is the set of information entity nodes in the CRN; and

2. information entity nodes are linked to case nodes by arcs which represent the

relevance that the information entities have for the cases. This relevance is also

expressed as a weight labelling each relevance arc, which is determined by a rele­

vance function p : Ex C ---+ R, where E is as above and C is the set of case nodes

in the CRN

The main goal of CRNs is to find all relevant cases in memory which are, to some extent,

similar to a specific problem -i.e. a query- that can be used to extend the information

contained in the query. This approach for case retrieval -called case completion- is

quite appropriate for doing the kind of cased-based classification needed here
3

. Indeed,

the extraction task can be modelled so that each case contains a known special infor­

mation entity, namely the named entity class, which is not known for queries. Under

this view, a query is just a case whose named entity class is unknown. Therefore, CRN s

try to find sufficient similar cases, on the basis of the other known information entities,

to deduce the missing class of a query.

3Case completion is considered a different approach from cased-based classification (such us the
k-nearest neighbours method). The main difference is that in cased-based classification only a small
set of cases -Dr even just one case- is retrieved, which is then interpreted as containing the class of
the query; whereas in case completion the goal is to retrieve all relevant information in memory for the

query.

CHAPTER 5. BIASING LEXMENE 128

CRNs perform case retrieval in a bottom-up fashion re-constructing the cases from

memory in a process called activation. The activation procedure is performed in three

clear steps:

1. first, information entities which are present in the query are initially activated

2. then, this activation is propagated to other information entities following the

similarity arcs; a newly activated information entity obtains an activation value

which is proportional to the corresponding weight in the similarity arc

3. finally, these activation are collected in the associated case nodes according to the

weights in the relevance arcs

In this way, an activated case is assigned an activation value that is proportional to

the activation of the information entities that define it, whose activation values are

in accordance to the information entities that define the query. Thus, the higher the

activation value of a case, the more similar it is to the query.

Lenz (1999) showed that the theoretical complexity of the case retrieval procedure in

CRNs is not worse than the linear search through the case base. However, important

speed-ups are reported when activation is compared to linear search (Lenz and Burkhard

1996).

It might be noticed the similarity between the retrieval of cases with CRNs and the

retrieval of documents with Latent Semantic Indexing (LSI) (Deerwester, Dumais, Lan­

dauer and Harshman 1990): both approaches are three-step procedures which consist

of obtaining initial matches from a query, expanding these matches according to a sim­

ilarity criterion to finally gather the stored answers associated to these matches.

5.6.1 Unsolved issues

One of the main disadvantages of memory-based learning approaches is that the com­

putational cost of classifying new instances can be high, as most of the processing is

performed in decoding time (Mitchell 1997).

CRNs are a contribution in this sense because they normally provide a fast way of

gathering similar cases. However, two main difficulties in applying CRNs to generic

named entity extraction remain unsolved, and further study is required to overcome

them. The two problems are:

CHAPTER 5. BIASING LEXMENE 129

c> although CRNs are efficient, they still have complexity problems for domains

in which the attributes can take values from a large space (Lenz 1999) - such

as lexical features. Thus, biLexMENE requires great amounts of memory and

exhibits unsatisfactory run time for practical applications

c> CRNs introduce a large number of parameters to estimate the similarity and the

relevance weights, which cannot be empirically parametrised in practice

The first difficulty as been managed by dividing the CRN into different structures,

applying the storing and the activation procedures in sequential steps and providing

biLexMENE with powerful computational resources. More details can be found in

appendix D.

For the second issue, sensible choices that are based on intuitions have been applied.

When one of these decisions is not entirely clear, small experiments have been conducted

to confirm that the option selected has been correct. For example, it will be explained

later in the chapter that contextual constituents closer to the focus constituent have

more importance in the similarity measure between cases. An experiment in which all

contextual constituents had the same importance showed that this intuitive choice was

indeed correct.

5.7 Representing cases

Cases/ queries are represented as three different information entities that provide a de­

scription of their lexical structure, the lexical forms that compose them and the ortho­

graphic characteristics used for these lexemes.

5.7.1 Sentence struct ure

The lexical structure of a case/query is represented in the eRN as constituent pattern

information entities. A constituent pattern is the sequence of four chunk tags that

accompanies the focus constituent on either side. Therefore, each case/query has a left

constituent pattern and a right constituent pattern.

Constituent patterns from different contextual sides are considered unrelated and, con­

sequently, similarity arcs exist only between left constituent patterns and between right

constituent patterns, but not between a left constituent pattern and a right constituent

pattern.

The weight on a similarity arc that connects two constituent patterns corresponds to the

sum of the similarity of each chunk tag in the best alignment that the N\VS algorithm

CHAPTER 5. BIASING LEXMENE 130

VP[flying] P[to] NP[Paris] P[for]
VP[f1ew] P[to] NP[London] P[for] = 12

ADVP[soon] VP[flying] P[to] NP[Washington] 11
VP[arrived] ADVP[Monday] P[in] NP[York] = 11
VP[coming] P[to] NP[London] NP[today] 11
VP[prepared] P[to] NP[look] P[for] = 9.75
VP[come] ADVP[later] P[to] VP[propose] 8.75

Figur~ 5.1: An example of constituent pattern information entities and their similarity weights with the
constituent pattern produced by the text flying to Paris for.

can obtain. As explained above, this algorithm requires an estimation of the similarity

between the elements in the sequences, which in this occasion correspond to the chunk

tags in the patterns. This estimation is straightforward:

1. if the two tags are different, they have zero similarity

2. otherwise, a similarity weight is given depending on the minimum distance of the

matching tags from the focus tag; matches closer to the focus are considered more

relevant and are assigned higher weights

3. penalties are applied to this similarity weight when the tags are in different po­

sitions within the patterns and/or they are optional constituents (i.e. adjectival

phrases, adverbial phrases or verb particles).

Unfortunately, the number of similarity arcs produced in this way is too large to be

directly added to the eRN, as any two patterns that share at least one chunk tag in

the sequence are linked. Therefore, a heuristic restriction -in Lenz and Burkhard's

(1996) terms- has been applied and patterns whose closest constituents to the focus

do not match perfectly are discarded. This pruning has considerably reduced the num­

ber of arcs maintaining only the links between constituent patterns that have more

probabilities of being relevant.

Figure 5.1 presents an example to clarify the way in which this procedure operates. The

reference case -which can be a query- represents the text flying to Paris for. It can be

observed that less similar pieces of text are assigned to lower similarity weights than

the ones that look more alike the reference case. Notice that the maximum similarity

weight between two constituent patterns is 12. The eRN retrieval procedure, outlined

in section 5.6, manages any real value (Lenz 1999).

More details of this approach can be found in appendix D.

5.7.2 Orthographic pattern

The orthographic characteristics exhibited by a case/query is added to the eRN as

orthographic patterns information entities, which correspond to the sequences of ortho-

CHAPTER 5. BIASING LEXMENE 131

graphic features of the focus tokens -i.e. the tokens in the focus constituent- and

the tokens in a orthographic window of sizes [2,2] - as defined for MOLl MENE V2

(section 4.2). Thus, the length of this kind of pattern is not fixed but varies according

to the number of focus tokens contained in each case/query.

As with the constituent patterns, the weight that labels a similarity arc between two

orthographic patterns corresponds to the sum of the individual similarity weights of

each orthographic feature in the best alignment of those patterns, which is obtained by
the NWS algorithm.

Notice that in order to work with a single orthographic pattern per case/query, each

token is associated with a unique orthographic feature on the basis of their precedence

- also as defined for MOLl MENE V2 (see table 4.1).

The similarity function estimates the similarity between two orthographic features by

looking up the corresponding value in one of three tables of similarity weights according

to whether the features describe tokens that contain numbers, tokens for normal words

or other types of tokens - such as punctuation symbols.

The tables of similarity weights were built by hand, but little time was spent on this task

which consisted of analysing a small set of tokens with different orthographic features,

determining which of them were related and conjecturing in what proportion.

However, these tables have an important drawback: they are domain dependent. For

example, the feature number with dash is considered more similar to the feature number

with slash than to the feature only digits number in these tables, a fact that is exclusively

due to the observations that dates -one of the named entities to be extracted- are

written in these two styles: 05-03-2004 or 05/03/2004.

These tables were actually intended as a first approach to testing the system, but they

have remained an unsolved issue that will need to be addressed in future work.

The similarity function for orthographic features also applies penalties when matches are

less informative. There are two situations considered: matches between focus features

and contextual features have their similarity weight reduced; and matches between

contextual features from different sides of the focus constituent are re-assigned to value

zero.

Once more, the number of similarity arcs is too big to be manageable when any pair of

related orthographic features is considered relevant. Consequently, biLexMENE imposes

a new heuristic restriction and only orthographic patterns that have at least three

consecutive perfect matches keep their arcs.

CHAPTER 5. BIASING LEXMENE 132

ucp[flying] ucp[to] icp[Paris] ucp[for]
ucp[flew] ucp[to] icp[London] ucp[for] = 48

ucp[soon] ucp[flying] ucp[to] icp[Washi ngton] 36
ucp[arrived] icp[Monday] ucp[in] icp[York] 36

ucp[coming] ucp[to] icp[London] ucp[today] 48
ucp[prepared] ucp[to] ucp[look] ucp[for] 0
ucp[come] ucp[later] ucp[to] ucp[propose] 0

Figure 5.2:. An example of orthographic patt~rn information entities and their similarity weights with the
orthographiC pattern produced by the text flYing to Paris for.

Figure 5.2 shows the orthographic patterns generated by the texts of the running ex­

ample4
• Note that the links between the reference case and the most different sample

cases have been pruned by the heuristic restriction. Also notice that the maximum sim­

ilarity value for each pair of orthographic features is 12, but that the similarity value

between two orthographic patterns depends on the number of pairs of features that

could match. These weights will required further processing to obtain a similarity mea­

sure for cases/queries which is independent of the lengths of their respective patterns,

an issue that is discussed later in section 5.8.3.4.

For further details of this approach see appendix D.

5.7.3 Lexical pattern

Lexical information from cases/queries is introduced in the eRN as lexical patterns.

These information entities correspond to the sequence of lexemes of the tokens/words5

occurring in the focus constituent and in a lexical window. The lexical window is also

defined as for MOLl MENE V2 (section 4.2) of sizes [1,1] on either sides of the focus

constituent. As with orthographic patterns, lexical patterns may be of different lengths.

Once more, the similarity weight associated with each arc between lexical patterns

corresponds to the sum of the similarity of the lexical features in the best alignment

that the NWS algorithm can obtain for these patterns.

However, the similarity function for lexical features is more complex than for previous

information entities. The main source of information for comparing two lexical features

is their meaning. If meanings are not available for both lexical features, the similarity

function makes use of less informed, more lexically-oriented characteristics to estimate

their similarity.

41n this example, ucp stands for ''uncapitalised token" and icp stands for ''initially-capitalised token".
5 A word in this context is a compound lexical form of more than one token which is included in the

WordNet lexical database. Examples of words are Prime Minister, New York, executive-officer, etc.

See appendix D for details.

CHAPTER 5. BIASING LEXMENE 133

When WordNet meanings can be obtained for the two lexical features to be compared,

the similarity function applies the following criteria to estimate the strength of their

semantic relation:

1. if the lexical features are essentially the same word, that is they have the same

lemma, their match is considered perfect. For example, the pairs president/presidents

and says/said both produce perfect matches

2. if the lexical features are synonyms, that is to say they are found in the same

WordNet synset, their match is considered strong. For instance, the pairs presi­

dent / chairman and said/told both generate strong matches

3. if the lexical features are siblings, that is they are coordinate terms in Word­

Net's terminology, their match is considered moderate. For example, the pairs

president / prime_minister and said/proclaims are considered moderate matches

4. if the lexical features are found in a superordination or a subordination relation­

ship, which WordNet calls the hypernym and the hyponym relations respectively,

their match is considered weak. For example, the pairs presidents/ presiding_ officer

and say/announced are considered weak matches

5. otherwise they are considered semantically unrelated

Note that this procedure also follows a similar approach to LSI (Deerwester et al. 1990),

as matches are sought on concepts rather than on individual tokens.

When a comparison based on WordNet meanings cannot be undertaken, because at

least one of the lexical features being compared is a token not included in the lexical

database, the similarity function applies the following criteria to estimate a possible

connection:

1. if the lexical features exhibit the same text, their match is considered important

2. if the lexical features are found in a list of special matches, they are considered

related as defined in that list

3. if the lexical features are morphologically related, that is they have a common

prefix or a common suffix, their match is given a relevance in proportion to the

length of the common portion

4. if the lexical features are punctuation marks, their match is considered moderately

important

5. otherwise they are considered unconnected

CHAPTERS. BIASING LEXMENE 134

flying to Paris for
flew to London for 42

soon flying to Washington 30
arrived Monday In York 0

coming to London today 24
prepared to look for 24

come later to propose 18

Figure 5.3: An example of lexical pattern information entities and their similarity weights with the lexical
pattern produced by the text flying to Paris for.

The list of special matches mentioned in the procedure above includes:

c> tokens that are not included in WordNet but that are nonetheless related, such
as the word and and the & symbol,

c> tokens that are not included in WordNet but that can be considered to have the

same meaning as tokens that are included in WordNet, such as Ire and the verb

to be, the symbol % and the word percent, etc.; and

c> tokens whose similarity might be incorrectly estimated by the morphological anal­

yser, such as the fact that the numeric tokens DD-DD-DD is closer to the token

DD/DD/DD than to the token DD:DD:DD, because the former tokens are both used

to express dates, whereas the latter is used to express time

In this list, the similarity weight is explicitly given for each special match included, so

that the similarity function can use this weight directly. Although not intensively used

in the current implementation, this is a tool provided for specialising the retrieval of

similar cases to specific languages, named entity extraction tasks and domains.

Finally, as with the similarity function for orthographic features, matches between focus

lexical features and contextual lexical features have their similarity weight penalised,

and matches between lexical features from different contextual sides have their similarity

weight changed to zero.

Figure 5.3 presents the lexical patterns corresponding to the texts in the running ex­

ample. In this example, the tokens flew and flying obtain perfect matches, because they

have the same lemma as the reference token flying, as do the tokens to and for, be­

cause they present the same text as the reference lexical features. The tokens coming,

come, London and Washington are assigned moderate similarity weights as they are found

to be coordinate terms of the referential tokens fly and Paris respectively in WordNet

database. However, it can be noticed that the similar piece of text -for named entity

extraction purposes- arrived Monday in York is assigned a zero similarity because none

CHAPTER 5. BIASING LEXMENE
135

of its lexical features was found to be related to the reference text, even though it can

be argued that flying might be understood as arriving by plane to some place, and that

there exists a place named York. The former is a semantic relationship that is hard to

obtain from WordNet (de Boni 2004) and the latter is an omission of this sense for the
word York in WordNet.

For more details on this approach, appendix D can be consulted.

5.8 Case retrieval

Section 5.7 explained the approach followed to represent and store past cases in memory.

This section explains the procedures for obtaining an effective retrieval of cases from
the CRN.

5.B.1 Reducing the size of the problem

As stated earlier, the application of memory-based approaches can be costly. This is

specially true for biLexMENE that has to build a maximum entropy model -which

can be expensive per se- for each query.

Therefore, a heuristic was introduced in the approach to reduce the number of queries

that need to be processed. Basically, a query is processed when it contains a relevant

lexical feature, that is a token which might be part of a named entity.

The heuristic is applied to each focus lexical feature in the query sequentially. It first

analyses the frequency of the token and determines if it is very probable that the token

is relevant or if it is very probable that the token is not relevant. In both situation, the

heuristic stops with an answer ''process'' or ''no process" respectively.

When this decision cannot be safely obtained from frequencies, the heuristic utilises

a binary classifier which estimates the probability of the token being not relevant. If

this probability is very high, the heuristic answers ''no process". Otherwise it answers

''process''.

Despite applying this heuristic with conservative parameters, the number of queries

that biLexMENE processes is significantly reduced and with a tolerable loss of recall.

For the MUC-7 dryrun test corpus, this number drops from 53,829 to 14,489 queries,

which include 6,068 out of the 6,163 queries that contain named entities. Thus, the

application of the heuristic delimits the maximum recall for biLexMENE to 98.46%.

Further details of this heuristic can be found in appendix D.

CHAPTER 5. BIASING LEXMENE 136

5.8.2 Gathering similar cases

The first step to retrieve similar cases is to obtain a representation of each relevant query

in terms of the information entities presented in section 5.7. This is done with the same

algorithms used to transform training cases into information entities, as queries are just

incomplete cases from the CRN perspective.

The next step is to look up the information entities that represent the query in the

CRN and activate them. In the normal activation process of basic CRNs, this search

is enough to activate all the information entities that represent the query. This is so

because information entities are atomic -by definition- and it is assumed that the

values they can have are those contained in the CRN.

It is clear that these assumptions cannot be made in the approach discussed here,

especially in the case of lexical patterns as it is almost certain that some queries will

contain unseen lexemes that will unavoidably create unseen patterns.

The solution to this problem passes through separating information entities into micro­

features (Lenz and Burkhard 1996). This can be naturally applied to the information

entities defined previously as they are patterns of constituent, lexical and orthographic

features. The idea is that each microfeature in an information entity -i.e. a feature in

a pattern- can be individually activated and the activation of an information entity

corresponds to the weighted sum -in the straightest combination- of the microfeature­

level activations.

In this way, it is unlikely that a query does not activate any memorised pattern. When a

query's information entity is found in the CRN, the pattern is activated with maximum

value -which also corresponds to the weighted sum of the activation values of all of

its features- and then, the similarity arcs are followed to activate similar information

entities. On the other hand, if a query's information entity is not found in the CRN,

microfeatures are activated instead and all patterns that share some of these features

are activated.

The final step is to follow the relevance arcs and activate the cases that are linked to

activated information entities. Essentially, the activation value of a case corresponds

to the sum of the activation values of its information entities, though the approach

required for biLexMENE is slightly different as explained below.

5.8.3 Obtaining final similarities

The normal activation procedure in CRNs, which was presented in section 5.6, cannot

be directly applied on the cases/queries as defined previously. This is because the

CHAPTER 5. BIASING LEXMENE
137

activation of the features in the information entity patterns have considered up to now

disassociated information. This section explains the approaches to re-estimate and

combine these activation values into activation values for cases.

5.8.3.1 Activation of constituent patterns

The activation of constituent patterns cannot be made following the standard procedure,

as defined for basic CRNs, because that would only consider the chunk tags assigned

to each constituent in the case/query, which produces an undesired flatness of the
activation values.

For example, if the query's pattern contains the noun phrase NP[the President] and two

memorised patterns contain, in the same position, the phrases NP[the agenda] and NP[the

Prime Minister] respectively, then both information entities are activated with the same

value, though clearly the concept President is semantically closer to the concept Prime

Minister than the concept agenda.

To solve this discrepancy, the activation values of constituent patterns are re-calculated

to also consider the head word of the constituents. The comparison of head words is

similar to the calculation of the similarity between lexical features described in section

5.7.3. In appendix D, this algorithm and more details of this procedure can be found.

5.8.3.2 Activation of lexical patterns

The activation of lexical patterns cannot follow the standard procedure of basic eRN

either because when the most similar cases are selected for a query (section 5.8.4),

it can be possible that some lexical features in the query become uncovered for later

processing. This is specially problematic for uncommon tokens, which are often part of

named entities (recall the discussion in section 3.2), as they are directly responsible for

the activation of few cases only.

This problem is managed in biLexMENE by maintaining different rankings of similar

cases one for each lexical feature in the query. This requires the computation of tailored ,
activation values of all cases for every token in the query. Fortunately, this computation

is naturally performed by applying the lexical window.

Consider the example of figure 5.4, in which the similarities between the lexical fea­

tures of the cases flying to Paris for and flew to London for are re-computed. The lexical

window is initially centred at the first focus token flew. Then, this window is enforced

and the activation of the microfeature flew is estimated by adding the similarities of

h h . d (. e W'_I' flew and to), which were previously the microfeatures wit in t e WIll ow 1. .

CHAPTER 5. BIASING LEXMENE

______ lexical windO'N for 'London'

VP[flying) I P[to]
I

VP[flew] I P[to]
I

NP[Paris]
NP[London]

I

P[for] I W+l

P[for] : W~l
lexical window for 'flew'

L ________________ ~

138

Figure 5.4: An example of the computation of the final similarity between two match· I . 1ft .. . mg exlca ea ures: a
lexical window of size [1,1] moves from the first to the last focus token. The lexical windows applied for the
words flew and London are shown in this example.

calculated as described in section 5.7.3. Then the window is shifted to the next focus

lexical microfeature to and its activation value is re-computed. The process is repeated

for every focus token in the lexical pattern.

This approach is computationally more expensive, specially in terms of space resources,

but proved to be quite successful in retrieving cases for the majority of the tokens in a

query. Further explanation can be consulted in appendix D.

5.8.3.3 Activation of orthographic patterns

The approach described above also requires tailored activations of cases for the ortho­

graphic features, so that the real contribution for each focus token can be determined.

This process is analogous to the re-calculation procedure for lexical features explained

above, in which the orthographic window is enforced at each focus orthographic feature

in the query. See appendix D for a few more details.

5.8.3.4 Activation of cases

Following this approach, the final local activation of a case can be estimated for an

individual lexical feature in a query. This corresponds to the sum of the activation

values for its constituent pattern, the activation values of the focus features in its lexical

pattern and the activation values of the focus features in its orthographic pattern. This

creates a ranking of activated cases for each lexical feature in the query.

Nonetheless, a global activation is also estimated as shown in the equation 5.1, where

act,oca,(ftex) is the local activation calculated for a lexical feature hex and 1/ is the

number of focus lexical features contained in the case.

actglobal =

2:= act local (ftex)
huEcase

1/

(5.1)

CHAPTER 5. BIASING LEXMENE 139

This normalisation is necessary because longer cases obtain higher activation values.

Using the global activation, cases can be ranked according to the similarity with respect

to the whole query.

5.8.4 Selecting similar cases

The final stage in the retrieval procedure is the collection of the adaptation set, which

contains the similar cases that will be adapted for completing a query. One possibility

is to retrieve all cases activated, but this would be computationally costly and might

not contribute towards biasing LexMENE in the right direction. Therefore, under the

premise that similar cases have a higher probability of containing the same kinds of

named entities found in the reference query, only the most similar cases will be selected

to produce a stronger bias.

A direct approach to selecting the most similar cases is to define a threshold. However,

setting a suitable threshold value can be quite challenging because there are queries that

activates thousands of memorised cases, whilst others activate only a reduced number

of cases with low activation values. Applying a threshold to this latter types of queries

might result in the neglect of the little information available for their classification.

Therefore, biLexMENE utilises the next simplest way, which is retrieving only a fixed

number of similar cases. This requires the definition of a sampling size, which indicates

the number of similar cases to be selected from the top of each ranking.

This value is soft, in the sense that if a query activates too few cases, the adaptation

set will be incomplete; on the other hand, if the number of activated cases exceeds

the sampling size, the actual number of cases retrieved might be higher than this size

because all cases with the same activation value as the case that completes the set are

retrieved.

The sampling size can have an important influence in the performance of the system, and

there is not a clear method to define an appropriate value a priori for it. Consequently,

it has been left as one of the parameters of the system.

It should be made clear here that only one adaptation set is retrieved for each query.

The final size of this set depends of several variables -such as whether the query

managed to activates enough cases- but in general, if the sampling size is set to m

and a query contains n lexical features, then the adaptation set will have a maximum

size of (n + 1) . m examples. This is because biLexMENE will retrieve m cases from

each ranking created by the approach, that is to say from the rankings for each lexical

feature and from the global ranking. However, the number of cases is normally lower

because they tend to overlap.

CHAPTER 5. BIASING LEXMENE 140

5.9 Adaptation

As explained in section 5.8.4, for each query considered with probabilities of containing

a named entity, an adaptation set of similar cases is selected. Longer queries -in term

of numbers of lexical features- have more training material than shorter ones, and this

material is prepared so that it contains examples for each lexical feature in the query

as well as cases that are similar to the query as a whole.

The adaptation of past cases consists of creating a maximum entropy model using the

cases in the adaptation set as training examples. Because biLexMENE is an extension

of LexMENE, the entropy models correspond to a (new) version of this baseline system

which has expanded its set of orthographic features to the set utilised by MOLl MENE

(see section 4.1), which will be referred to as LexMENE-V2.

Thus, each maximum entropy model determines the probability for a lexical feature

of being starting, continuing, ending, constituting or not related to, a named entity

of one of the classes seen in the training examples - i.e. the FML U notation is used,

lexical and orthographic features are extracted from a context window of two tokens on

either side of the focus token, all orthographic features fired by these lexical features

are considered, the zone feature is also included, and lexical features that are not seen

at least three times in the documents are considered unknown.

Once the maximum entropy model is ready, it is applied to each focus lexical feature in

the query and a distribution over the classes seen in the adaptation set is assigned to

each one of them. For queries that contain only lexical features considered irrelevant,

that is to say it is unlikely that they contain a named entity (see section 5.8.1), the

default distribution P(not-a-name) = 1.0 is assigned.

As previously, a Viterbi search is applied to each sentence to determine the best se­

quence of named entity tags given the distribution associated with each lexical feature.

However, the probability distributions can be incomplete now, because the default dis­

tribution has been assigned or because the adaptation set did not contain all possible

named entity classes in the task.

To solve this problem, biLexMENE utilises a smoothing approach so that the probability

distribution of every lexical feature has a non-zero probability associated with each one

of the 29 possible classes. This smoothing function is controlled by three parameters,

namely (x, f3 and " which indicate how uniform the resulting distributions should be.

Appendix E gives more details and an example of how this function works. Because this

is a new element introduced in the approach, the parameters (x, f3 and , have been left

as free parameters and some experiments have been designed to look for good values

for them as well as to assess the impact that this smoothing approach might have in

the performance of the system.

CHAPTER 5. BIASING LEXMENE 141

70

cutoff=1
UNSEEN

SEEN
cutoff=1

88

66

25 50 75 100 200 25 50 75 100 200
selected cases per ranking selected cases per ranking

83
AMBIGUOUS 81

cutoff=2 OVERALL

82 cutoff=1

80
;::- 81
LL u:-

80
79 -cutoff=3

79 cutoff=1 78

25 50 75 100 200 25 50 75 100 200
selected cases per ranking selected cases per ranking

Figure 5.5: Comparison of the performances of biLexMENE for different cutoff thresholds and different
numbers of selected cases: data is represented in FMLU notation, context windows are both set to [2 ,2]
and 200 GIS iterations are performed . Cutoff varies from 1 to 3 and the number of cases selected from
each ranking varies from 25 to 200. For this experiment, the same initial smoothing function is applied with
values a: = 0.4, {3 = 0.4 and T = 0.001. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

5.10 Experiments

5.10.1 Parameters setting

As in earlier chapters, the initial experiments in this section aim to determine a good

set of parameters for building the biased versions of LexMENE-V2. In order to reduce

the number of experiments needed for setting these parameters, those which were fixed

for either LexMENE or MOLl MENE will be kept if there are no reasons to expect that

maintaining these values would negatively affect the performance of the new approach.

In this way, all experiments presented in this section utilise the FMLU notation, 200

GIS iterations, a lexical window of sizes [2 ,2], a orthographic window of sizes [2,2] from

which all fired features are considered, and the unknown words threshold set to three.

The first experiment aims to determine the cutoff threshold for the system. This pa­

rameter was not fixed for biLexMENE because, due to the limited training material

provided to the maximum entropy models, it is not clear than the usual value three

will retain the bias which is being introduced to the system. Figure 5.5 presents the

results obtained for this experiment, in which the performance of biLexMENE when

using cutoff thresholds at one, two and three is compared.

CHAPTER 5. BIASING LEXMENE 142

59
UNSEEN SEEN

cutoH=1

58
cutoH=2

i:L
57

~ e () ~
cutoH=3

56 81
cutoH=3

25 50 75 100 200 25 50 75 100 200
selected cases per ranking selected cases per ranking

74 AMBIGUOUS

72
66 OVERALL

cutoff=1

70
65

::- 68
i:L

66
i:L

64
64 cutoH=1

62 63
cutoH=3

60
25 50 75 100 200 25 50 75 100 200

selected cases per ranking selected cases per ranking

Figure 5.6: Comparison of the performances of biLexMENE for different cutoff thresholds and different
numbers of selected cases: data is represented in FMLU notation , context windows are both set to [2,2]
and 200 GIS iterations are performed. Cutoff varies from 1 to 3 and the number of cases selected from
each ranking varies from 25 to 200. For this experiment, the same initial smoothing function is applied with
values a = 0.4, f3 = 0.4 and , = 0.001. Corpora: MUC-7 training corpus and MUC-7 formal test corpus.

It can be seen from this figure that, with the exception of ambiguous named entities,

biLexMENE consistently obtains better performance when the cutoff threshold is set to

value one than when set to value two, which in turn produces better results than when

the cutoff is set to value three.

Figure 5.5 also shows that the fewer training cases are selected from each ranking, the

more significant is the difference in performance between the different cutoff values,

and that the best performance is obtained when 50 similar cases are selected from each

query's rankings.

These results suggest that the bias introduced by biLexMENE can be easily reduced

by ignoring infrequent events -i.e. increasing the cutoff parameter- or providing too

much training material for the maximum entropy models - i.e. increasing the number

of cases selected from each ranking. Therefore, the cutoff threshold is fixed to the

minimum possible value of one and the number of similar cases to be retrieved for each

query is set to the moderate value of 50.

As in previous chapters, each of the experiments presented in this section is repeated

on the MUC formal test corpus in order to established the reliability of the decisions,

made from the experiments on the MUC dryrun test corpus, about the parameters that

the system should use to obtain a good performance on unseen text.

Figure 5.6 presents the results obtained from this experiment. It can be observed that

CHAPTER 5. BIASING LEXMENE 143

71
UNSEEN 92 SEEN

- 91 -LL i:C

P;o

68 89
14 12 20 28 36 44 S2 60 1 4 12 20 28 36 44 52 60

ax 102
(1. /102

86
AMBIGUOUS

85 81
OVERALL

84

i:C 83 i:C 80

82 P;o

81
79

1 4 12 20 28 36 44 52 60 14 12 20 28 36 44 52 60
a x 102

U x 102

Figure 5.7: Comparison of the performances of biLexMENE for different smoothing functions: data is
represented in FMLU notation, context windows are both set to [2,2], 200 GIS iterations are performed,
cutoff is set to 1 and the number of selected cases is set to 50 . Smoothing functions use value , = 0.001,
parameter a varies from 0.01 to 0.60 and two values are tested for parameter {3: {3 = a and {3 = tao
Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

the influence of the cutoff parameter on biLexMENE's performance is less regular for

this corpus. However, the behaviour seen on the dryrun corpus is -in general- also

observed on this corpus, that is to say, the lower the cutoff threshold, the better the

performance, and this difference is reduced as more and more cases are selected for

training. Moreover, this last trend is much clearer here: selecting just 75 cases from

each ranking levels the performances obtained with cutoff values set to one and two,

and selecting 200 cases levels the performances obtained with all cutoff values tested.

Therefore, although a slightly better overall F-score can be obtained by reducing the

number of selected cases to 25, the parameters set considering the results of figure 5.5

seem to be good parameters for unseen texts.

The next two experiments aim to evaluate the influence of the smoothing function

introduced in biLexMENE: the first one is conducted to establish the effect that the

parameters a and /3 have in the performance of the system, whilst the second experiment

attempts to determine the effect of the 'Y parameter.

In the first experiment (figure 5.7) the parameter a varies from 0.01, 0.02 and then

from 0.04 to 0.60 in successive increments of 0.04. For the parameter /3, two values

are tested: {3 = a and /3 = ia. These values for this parameter follow the observation

that the probability associated with each named entity class is distributed between four

possible tags - namely F, M, L and U depending on whether the token might be the

first token a middle token or the last token of a multi-token named entity or a named ,

CHAPTER 5. BIASING LEXMENE 144

UNSEEN SEEN 60 . 86

- ;::- 85
LC LL

(3 = a
84

(3 = 0
57 .

83
1 4 12 20 28 36 44 52 60 1 4 12 20 28 36 44 52 60

(l x 102
(J./102

71 AMBIGUOLJS 67
OVERALL

69 .8 = to

::.. 67 ;::- 66
u. LL

=0

65

63

1 4 12 20 28 36 44 52 60 1 4 12 20 28 36 44 52 60
(l x 102

(J. X 102

Figure 5.8: Comparison of the performances of biLexMENE for different smoothing functions : data is
represented in FMLU notation, context windows are both set to [2 ,2]' 200 GIS iterations are performed ,
cutoff is set to 1 and the number of selected cases is set to 50 . Smoothing functions use value 'Y = 0.001,
parameter a varies from 0.01 to 0.60 and two values are tested for parameter {J: {J = a and {J = ia.
Corpora : MUC-7 training corpus and MUC-7 formal test corpus.

entity with a unique lexical feature- whereas the probability of the not-a-name class

is concentrated over just one possible tag - namely the outside tag O. Therefore, the

combined tag O-not-a-name can be considered equivalent to any of the other combined

tags - such as F-person, V-location, etc.- which is expressed by making (3 = ia. On the

other hand, the tag O-not-a-name can be considered equivalent to the other classes, such

as person, location, etc.- which is obtained by making (3 = a.

At first glance, the results presented in figure 5.7 might suggest that the former option

- i.e. making (3 = ~a- consistently yields better results. Indeed, this value for the

(3 parameter helps biLexMENE to recognise much more seen, unseen and ambiguous

named entities. However, on a closer look it seems that this value also drives the system

to extract more spurious named entities, which makes the overall improvement much

less significant.

Nevertheless, the combination a = 0.44 and {3 = ~a obtains the best performance

for the approach and, consequently, these are the values selected for these parameters.

These values are higher than expected, which suggests that the biased LexMENE models

have a certain degree of overfitting - recall than the 200 GIS iterations value was set

considering all training material- which the smoothing functions are to some extent

correcting.

When this experiment IS repeated on the MUC formal test corpus (figure 5.8), t he

CHAPTER 5. BIASING LEXMENE 145

UNSEEN j 91.5 SEEN
70.5

~ i:L i:L -
70 91

1
0.002 0.004 0.006 0.008 0.010 0.002 0004 0006 0008 0.010

'Y "(

81

AMBIGUOUS
OVERALL

84.5

~ - ;::- 80.5

~ i:L i:L

84

80 ~
0002 0.004 0.006 0.008 0.010 0002 0004 0.006 0.008 0.010

Y 'Y

Figure 5.9: Comparison of the performances of biLexMENE for different smoothing functions : data is
represented in FMLU notation, context windows are both set to [2,2], 200 GIS iterations are performed,
cutoff is set to 1 and the number of selected cases is set to 50. Smoothing functions use a = 0.44, {3 = 0.11,
while parameter I varies from 0.002 to 0.010. Corpora: MUC-7 training corpus and MUC-7 dryrun test
corpus.

convenience of setting the parameter f3 to value ~a is more evident. This figure also

indicates that the values 0.32 or 0.48 for the a parameter would have been slightly

better options. However, the improvement over the selected value 0.44 is marginal and

this value remains a good alternative.

The second smoothing experiment is conducted to determine the influence of the I

parameter as well as a good value for it. It should be noticed that the values of a and

f3 fixed above are used in this experiment. The results can be seen in figure 5.9.

These results indicate that, in general, the higher the value of I the lower the per­

formance of biLexMENE on unseen, seen and ambiguous named entities. However,

this negative effect is not significant for the values plotted in figure 5.9, and a slight

improvement in the recognition of hard named entities makes the overall behaviour al­

most constant. Nevertheless, it might be noticed than for the value I = 0.010 a more

considerable decrease in performance seems to be occurring. further experiments con­

firm this trend and higher values for this parameter indeed have a negative effect on

the approach.

Therefore, it can be concluded that the maximum entropy models used for adaptation

are capturing fairly well the characteristics that indicate when a lexical feature is start­

ing, continuing, ending or constituting a named entity. The performance of the system

peaks at value 0.005, and consequently, this is the value selected for this parameter.

CHAPTER 5. BIASING LEXMENE

LL

60

68

67.5

UNSEEN

0.002 0.004 0.006 0.008 0.010
Y

AMBIGUOUS

67 '--~-~~~~-~----'
0.002 0.004 0.006 0.008 0.010

Y

86

SEEN

f85.5~

85

66.5

66

0.002 0.004 0.006 0.008 0.010
Y

OVERALL

0002 0.004 0006 0.008 0.010
Y

146

Figure 5.10: Comparison of the performances of biLexMENE for different smoothing functions: data is
represented in FMLU notation, context windows are both set to [2,2] , 200 GIS iterations are performed ,
cutoff is set to 1 and the number of selected cases is set to 50. Smoothing functions use a = 0.44, {J = 0.11,
while parameter 'Y varies from 0.002 to 0.010. Corpora: MUC-7 training corpus and MUC-7 formal test
corpus.

As earlier, the experiment has been repeated on the MUC formal test corpus. Results

can be seen in figure 5.10. The effect of the T parameter observed for the MUC dryrun

test corpus is essentially the same effect shown in this figure. However, the curves seem

to indicate that the performance of the system might be starting an increasing trend

from the value 0.010. Further experiments discard this possibility and the improvement

observed rapidly declines as higher values are tested for T'

Therefore, the value 0.005 selected from the previous experiment is a good value for

preparing biLexMENE to process unseen texts.

5.10.2 Assessing the hypothesis

Recall that the main hypothesis guiding the study of biLexMENE is that because of

the bias introduced in the approach, less training material is needed to solve the task

with a given level of accuracy and better classification can be obtained on infrequent or

unseen named entities.

To assess this hypothesis empirically, an experiment has been set up in which the size

of the training corpus is varied, so that the effect of the amount of the training material

CHAPTER 5. BIASING LEXMENE 147

73 95 UNSEEN

~ 70

~! .~
91 ~ : t 67 87 S t t t~ 64 83 ~

::: 61 79 0 8 8 8~
LL 58 f 75

55 ~ 10 documents 71
-e- 25 documents 67

52 ==i::== 40 documents
50 documents 63

49 ~ 75 documents 59 ----$-- 100 documents 46 55
25 50 75 100 LV2S LV2 25 50 75 100 LV2S LV2

selection of cases selection of cases

97

~.
84

89
. OVERALL

81 t= ! ~
80

73
76 6 • • • ~

65
72

f 57
::: 68 ~ LL 64

49
~ a ---:-0. 8 -El 60 41

33 G- 8 '

~
56

8 8
25 52

17 48
25 50 75 100 LV2S LV2 25 50 75 100 LV2S LV2

selection of cases selection of cases

Figure 5.11: Comparison of the performances of biLexMENE for different sizes of the training corpus: data
is represented in FMLU notation, context windows are both set to [2,2], 200 GIS iterations are performed ,
cutoff is set to 1 and the smoothing function uses a = 0.44, {3 = 0.11 and 'Y = 0.005. The number of
selected cases varies from 50 to 100. The performance of LexMENE-V2 is also included in the comparison ,
with and without smoothing. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

available could be observed, as well as the behaviour of the system on different numbers

of unseen named entities.

Initially, the sizes 25, 50, 75 and 100 documents were tested with the parameters set in

the previous section. This experiment indicated that biLexMENE could obtain almost

the same performance it shows when using the whole MUC training corpus with half of

the training material, and that only three points of F -score are lost if the training corpus

is reduced to just a quarter of its size. This motivated an extension of the experiment

in to ways:

1. firstly, two new sizes for the training corpus were tested, namely 10 and 40 doc­

uments, to investigate whether the slow decrease in performance is maintained ,

and

2. the number of cases selected form each ranking was allowed to vary from 25 to

100 to determine whether this parameter has some incidence on these results

Table 5.1 on page 152 presents the outcome of this extended experiment in detail, whilst

figure 5.11 shows a pictorial summary of it. In these results, the performance of Lex­

MENE-V2 is also included, so that a comparison with t he unbiased approach could

CHAPTER 5. BIASING LEXMENE 148

be established. Because a sensibility of LexMENE-V2 to the smoothing function was

observed, its performance is reported in both ways, smoothed (LV2S) with the same

function used by biLexMENE, and not smoothed (LV2) - as the approach would be
normally used.

Several interesting observations can be made from the results presented in figure 5.11.

For example, biLexMENE seems not to be affected much by the number of cases se­

lected and brings out more clearly that the difference in performance introduced by this

parameter is only marginal. However, with the introduction of the value 0.005 for the

, parameter, selecting the 75 most similar cases might yield a slight improvement in

the extraction. This is suggesting that the set of similar cases been retrieved for each

query, without considering repetitions, is maintained almost the same no matter how

much its absolute size is. Only when 50 or more training documents are supplied for

training, selecting more than 50 similar cases might introduce a few useful new cases in

the set which could allow biLexMENE to slightly improve its performance.

The main observation however, is that biLexMENE is always able to obtain an overall

performance that is higher than the one achieved by the unbiased approach, though

the smoothing scheme makes this difference less significant. The same effect is observed

when more training material is provided to the system: the improvement is quite impor­

tant when only 10 training documents are available, less relevant when 25 documents

are provided and no significant improvement is obtained when 40 or more training doc­

uments are considered. Therefore, the less the training material, the more important is

to used the biased version to obtain a more accurate extraction.

This superiority of biLexMENE is more evident when only unseen6 named entities are

considered. No matter the size of the training corpus, biLexMENE is able to recognise

much more unseen named entities than the unbiased version of the system, though this

number -as stated above- is reduced as more training material is supplied. More­

over, biLexMENE also shows consistently better performance than LexMENE-V2 for

ambiguous named entities when half or less of the training material is available. How­

ever LexMENE-V2 obtains better results on the seen named entities, more significantly ,
when smoothing is applied, which to some extent balances the overall performance of

the smoothed approaches.

Table 5.2 on page 153 and figure 5.12 present the outcome of this experiment when

repeated on the MUC formal test corpus.

6 Clearly, when only a fraction of the training material i~ used the ~~mber of.~ns~en named enti~~es
found in the test corpora rises. However, these results consIder the orIgInal famIharIty of the dec~di g
named entities so that a better comparison with LexMENE-V2 and previous reports can be estabhshed.
Nevertheless, the performance on this type of familiarity is even m~re rele:ra..nt because many of the
entities counted as seen or ambiguous were actually not included durmg trammg.

CHAPTER 5. BIASING LEXMENE 149

61

t2!:!
UNSEEN SEEN

58

~
90

~
I

55
86

52 82

;=- 49 ~ 78
i:L 46 LL 74

43 ~ 10documents. 70 -e--- 25 documents

40 =:t== 40 documents 66

~ 50 documents
37 ----*- 75 documonts 62
34 --<>-- 100 documents

58
25 50 75 100 LV2S LV2 25 50 75 100 LV2S LV2

selection of cases selection of cases

86 69 OVERALL

79 66
72 63 • • • • ~ 65 60 0 8 8 8

~ 58 ~ 57 ~
u. u.

51 54
44 51

~ 37 48
30 45
23 42

25 50 75 100 LV2S LV2 25 50 75 100 LV2S LV2
selection of cases selection of cases

Figure 5.12: Comparison of the performances of biLexMENE for different sizes of the training corpus: data
is represented in FMLU notation, context windows are both set to [2,2], 200 GIS iterations are performed ,
cutoff is set to 1 and the smoothing function uses a = 0.44, {3 = 0.11 and "1 = 0.005. The number of
selected cases varies from 50 to 100. The performance of LexMENE is also included in the comparison, with
and without smoothing. Corpora : MUC-7 training corpus and MUC-7 formal test corpus.

These results closely follow the trends observed on the MUC dryrun test corpus, with

the exception of the ambiguous named entities, for which LexMENE-V2 obtains better

performance than the biased version when as few as 25 training documents are provided.

In addition, the advantage of LexMENE-V2 on seen named entities is less steep than

in the previous case.

Note that an experiment with a baseline system based on CRN s only, in the same fashion

that the one presented in section 4.13, is not possible. In effect, a CRN is not a machine

learning algorithm and they can just be used to store past cases and retrieve the most

similar cases for a given query. As they do not attempt to perform any classification,

an adaptation step is still needed and any comparison would be constrasting the two

different adaptation approaches.

5.11 Summary and discussion

This chapter has presented an approach to biasing (a new version of) the ma:cimum

entropy baseline system towards pieces of texts that are similar to the text being anal­

ysed. This approach uses Case Retrieval Nets (CRNs) , which is a successful framework

for memory-based learning algorithm (Lenz and Burkhard 1996).

CHAPTER 5. BIASING LEXMENE 150

The formulation of the named entity task as past cases and new cases (i.e. queries) have

been also discussed. Furthermore, the appropriate representation of these cases for the

eRN framework has been described, as well as the storage and retrieval procedures

utilised.

This approach has then been evaluated to survey the validity of hypothesis 2 proposed

in this thesis, namely that introducing this bias to the baseline system based on the

maximum entropy framework could help it to recognise better exceptions and unseen

named entities.

Results obtained in this chapter indicate that it might be beneficial to use biased ap­

proaches to named entity extraction when the training material is limited. It would be

interesting to assess this result with other methods of biasing a classifier. One possibil­

ity might be to use Boosting (Freund and Schapire 1999). However, it was claimed that

the linear function this algorithm utilises to combine the classifications might waste the

ability of some of these classifiers to perform better on certain named entities. This

hypothesis deserves some exploration as well as the idea of creating a new approach

in which the combination of the resulting classifiers should be based on the similarity

between the query in process and the training examples that are correctly classified by

them.

It was also determined in this chapter that the bias introduced in LexMENE-V2 does

help to recognised infrequent named entities. However, the success obtained for unseen

named entities is not equally repeated on ambiguous named entities. This suggests

that the extraction of this type of named entity is quite difficult and that more world

knowledge -perhaps in the form of word sense disambiguation- might be required.

The almost constant performance obtained by biLexMENE with different numbers of

similar cases retrieved suggests that there is a reduced number of key examples for each

query which might guide the extraction process. It could be worth looking for ways in

which these key cases could be recognised and used in a method less expensive than

the one described in this chapter. If this is achieved, further studies can be carried

out to determine how these examples can be enriched to break the learning bound that

biLexMENE seems to reach.

In this relation, the amount of computational resources that the biLexMENE requires

to work is a remaining disadvantage. Several approaches could be studied to mitigate

this limitation, but investigating other ways of detecting similarity between training

and decoding texts would probably be the most relevant.

Another limitation which needs to be addressed is the manually coded similarity func­

tion for orthographic features. It might be possible to determine this similarity function

CHAPTER 5. BIASING LEXMENE 151

automatically on the basis of the features fired by lexical features in named entities of

the same class, but further research is needed to test this possibility.

Finally, there is a large number of parameters to control the similarity between the

information entities utilised in biLexMENE and their relevance for the cases defined.

Although sensible decisions have been made to fix most of their values, an empirical

study could contribute to locate better options. This study should be oriented to

determine how to set these parameters so that the CRN approach retrieves the most

relevant cases for each query. Of course, this relevance may not be easy to establish,

but the activation of cases that contain named entities of the same class as the query,

could be an initial useful approximation.

CHAPTER 5. BIASING LEXMENE 152

Table 5.1: Details of the performances of biLexMENE for different sizes of the training corpus: parameters
are set as described in section 5.10.1, with the exception of the number of selected cases which varies from
50 to 100. The performance of LexMENE-V2 is also included in the comparison, with (LV2S) and without
smoothing (LV2). Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

biLexMENE LexMENE
Selection: 25 50 75 100 LV2S LV2

10 training documents
UNSEEN 59.57 60.02 59.94 60.99 52.59 48.23

SEEN 68.67 67.41 67.22 67.38 61.90 58.31
HARD 30.40 26.02 26.45 28.10 21.36 12.77

AMBIGUOUS 33.61 32.23 30.62 30.54 30.24 24.71
OVERALL 60.18 59.67 59.42 59.96 54.31 51.03

25 training documents
UNSEEN 59.57 60.02 59.94 60.99 52.59 48.23

SEEN 68.67 67.41 67.22 67.38 61.90 58.31
HARD 30.40 26.02 26.45 28.10 21.36 12.77

AMBIGUOUS 33.61 32.23 30.62 30.54 30.24 24.71
OVERALL 60.18 59.67 59.42 59.96 54.31 51.03

40 training documents
UNSEEN 67.34 66.67 67.38 68.31 63.45 61.60

SEEN 84.33 84.58 84.50 84.47 86.15 83.19
HARD 36.23 35.97 37.41 35.29 10.39 10.96

AMBIGUOUS 77.00 75.23 74.47 74.57 84.22 81.52
OVERALL 74.73 74.66 74.96 75.28 75.39 73.71

50 training documents
UNSEEN 68.18 68.58 69.20 69.09 65.66 62.47

SEEN 86.26 86.47 86.47 86.78 87.99 84.88
HARD 36.50 36.88 34.29 37.68 19.47 15.09

AMBIGUOUS 81.68 80.47 80.04 78.56 86.83 85.17
OVERALL 76.63 76.90 77.11 77.23 77.79 75.75

75 training documents
UNSEEN 68.84 69.16 68.88 68.82 67.22 64.08

SEEN 89.42 89.36 89.37 89.25 90.54 88.37

HARD 30.66 32.35 31.88 33.58 18.64 18.18

AMBIGUOUS 82.64 81.21 81.29 80.51 90.79 90.63

OVERALL 78.73 78.81 78.81 78.71 80.27 78.98

100 training documents
UNSEEN 69.74 70.39 69.87 69.78 69.12 66.54

SEEN 91.00 91.27 90.70 90.57 92.43 90.31

HARD 31.11 27.27 32.12 31.11 24.39 21.24

AMBIGUOUS 84.36 84.34 82.90 82.06 90.50 90.08

OVERALL 80.08 80.51 79.95 79.87 81.86 80.79

CHAPTER 5. BIASING LEXMENE 153

Table 5.2: Details of the performances of biLexMENE for different sizes of the training corpus: parameters
are set as described in section 5.10.1, with the exception of the number of selected cases which varies from
50 to 100. The performance of LexMENE-V2 is also included in the comparison, with (LV2S) and without
smoothing (LV2). Corpora: MUC-7 training corpus and MUC-7 formal test corpus.

biLexMENE LexMENE
Selection: 25 50 75 100 LV2S LV2

10 training documents
UNSEEN 46.10 46.37 45.62 46.44 40.21 36.08

SEEN 66.06 64.79 65.39 64.73 66.62 61.80
HARD 23.53 23.26 23.81 21.18 18.18 18.42

AMBIGUOUS 49.92 54.07 54.55 54.10 036.48 29.14
OVERALL 50.65 50.75 50.72 50.95 48.21 44.43

25 training documents
UNSEEN 54.38 53.57 52.87 53.02 50.15 47.21

SEEN 76.65 76.84 77.63 77.12 79.89 76.32
HARD 22.73 25.00 25.29 25.58 19.51 17.72

AMBIGUOUS 60.13 63.58 65.59 67.85 58.03 53.44
OVERALL 59.53 59.56 59.59 59.74 59.13 57.03

40 training documents
UNSEEN 57.08 56.75 57.30 57.21 54.42 50.70

SEEN 80.53 80.52 81.21 81.82 84.89 81.25
HARD 22.73 22.99 25.29 27.59 17.28 17.95

AMBIGUOUS 64.36 67.40 69.19 70.05 64.24 59.56
OVERALL 62.70 62.82 63.66 63.86 63.65 61.16

50 training documents
UNSEEN 58.83 58.51 58.45 58.04 55.16 52.17

SEEN 81.78 81.78 81.68 82.08 86.52 83.39

HARD 27.27 22.73 22.99 25.29 19.75 17.95

AMBIGUOUS 62.33 63.41 66.98 65.62 63.27 58.50

OVERALL 64.06 64.06 64.10 64.18 64.63 62.71

75 training documents
UNSEEN 59.28 59.44 59.04 58.82 56.89 53.63

SEEN 82.69 83.46 82.81 83.46 87.64 85.08

HARD 25.00 27.27 24.72 25.00 24.39 17.72

AMBIGUOUS 59.53 64.16 65.83 68.76 79.63 72.67

OVERALL 64.47 65.23 65.09 65.25 66.88 64.87

100 training documents
UNSEEN 59.91 59.75 59.83 59.79 58.06 54.74

SEEN 85.18 85.57 85.34 84.95 89.38 85.98

HARD 25.00 24.72 26.97 25.00 19.51 17.72

AMBIGUOUS 63.52 67.71 70.39 69.48 84.76 82.32

OVERALL 65.92 66.38 66.72 66.64 68.44 66,41

Chapter 6

Bootstrapping LexMENE

As was stated in chapter 2, preparing training material for an NEE task -and for NLP

problems in general- can be expensive in terms of both time and expert resources.

On the other hand, there is an unmeasurable abundance of (unlabelled) text in natural

language. This disparity has made bootstrapping, or semi-supervised learning, a research

topic of great interest to computational linguistics (Abney 2004). In this sense, here

the term bootstrapping will refer to the techniques that aim to improve a classifier

obtained from a small set of labelled training examples, by utilising a larger set of

unlabelled examples.

In section 2.3, it was hypothesised that a NEE system based on the maximum entropy

framework might take the advantages of semi-supervised learning, namely hypothesis

3, though some doubts were raised. This chapter will show that these concerns were

justified and look into ways of overcoming these difficulties.

6.1 Why bootstrapping could or could not work for Lex­

MENE?

On the one hand, named entity extraction is a task particularly compatible with boot­

strapping concepts due to the existence of internal and external evidence for recognising

names (McDonald 1996), as discussed in chapter 2.

Consider the following example, adapted from Riloff and Jones (1999): suppose that

in a small set of annotated examples, the word Spain is seen several times annotated

as a location name. This fact should be captured by the classifier which will both

predict a high probability of finding a location name every time the word Spain is seen

in an unlabelled sentence, and annotate them accordingly. Suppose also that among

154

CHAPTER 6. BOOTSTRAPPING LEXMENE 155

these newly labelled sentences, there are several instances which contain the pattern the

president of Spain... Then, by considering these examples as the training material for a

new classifier, other location names can be captured from sentences like the president of

Venezuela, the president of France, etc. These new location names could subsequently help

to identify other contextual patterns, which in turn might assist in finding new location

names. Riloff and Jones (1999) called this process mutual bootstrapping.

Although this mutual bootstrapping works well in principle, its performance can rapidly

deteriorate with patterns which have affinity for more than one type of name (Riloff

and Jones 1999, Pierce and Cardie 2001). For example, the context the president of may

indicate the presence of a country name, as exemplified above, but it can also be found

around names, or generic references, of organisations such as in the president of Manchester

United Fe, the president of the committee, etc.

Therefore, this kind of approach requires a filter for the bootstrapped instances of one

iteration that will be considered in the training of the classifier on the next iteration.

Riloff and Jones (1999) used an approach based on rules and make the system more

robust by adding a second level of bootstrapping in which the five most reliable noun

phrases produced after a number of iterations, based on the number of different rules

that extract them, are selected and permanently added to the training material. Most

researchers, however, utilised a more direct ranking approach (Blum and Mitchell 1997,

Steedman, Sarkar, Osborne, Hwa, Clark, Hockenmaier, Ruhlen, Baker and Crim 2003,

N g and Cardie 2003).

Nonetheless, the main risk of bootstrapping LexMENE comes from the maximum en­

tropy model it uses as the learning paradigm. It is not clear that this type of approach is

suitable for bootstrapping methods since the maximum entropy framework obliges the

learner not to make any assumption other than the constraints imposed by the training

data. Therefore, it might be the case that the annotations made by a maximum en­

tropy classifier would only reflect these constraints, and considering subsequently these

annotations for training another classifier could make little or no contribution to the

learning process.

However, experiments in previous chapters have shown that different variants of Lex­

MENE are able to identify unseen named entities. The work in this chapter aims to

assess whether this ability of LexMENE is enough to support a bootstrapping procedure.

There is another potential problem with bootstrapping LexMENE. Ng and Cardie

(2003) identified and explained it quite well: there are feature-value pairs which alone

can recognise and determine the class of a named entity. Probabilistic methods, unlike

rule-based approaches, cannot take advantage of these pairs directly because they make

CHAPTER 6. BOOTSTRAPPING LEXMENE

Algorithm 6.1: The original Co-training algorithm. Adapted from Blum and Mitchell (1997).

Input: a set L of labelled examples and a set U of unlabelled examples
1: procedure CO-TRAINING(L, U)
2: Create a pool U' of examples by choosing u examples at random from U
3: repeat
4: Use L to train a classifier hI that considers only the Xl portion of X

5: Use L to train a classifier h2 that considers only the X2 portion of X

6: Allow hI to label p positive and n negative examples from U'
7: Allow h2 to label p positive and n negative examples from U'
8: Add these self-labelled examples to L
9: Randomly choose 2p + 2n examples from U to replenish U'

10: until k iterations are completed
11: end procedure

156

decisions based on a combination of features. Nevertheless, they also recognise that

these methods had the advantage of being resistant to class skewness, a characteristic

easily found on the data of many NLP problems -and NEE is not the exception- in

which the number of negative examples utterly outnumber the number of positive ones.

When this research started in 2000-2001, there were no reports of attempts at boot­

strapping maximum entropy models, perhaps for the reasons mentioned above, but

two works which consider this learning approach have been recently published (Clark

et al. 2003, Cui and Guthrie 2004). This research will be discussed later on this chapter.

6.2 Main bootstrapping approaches

Most of the previous work on bootstrapping in NLP problems are based on two tech­

niques: Yarowsky algorithm (Yarowsky 1995) and co-training (Blum and Mitchell 1997).

Co-training has somehow become more popular, perhaps because there have been some

theoretical work on the approach (Dasgupta, Littman and McAllester 2002, Abney

2002), and several variants are reported in the literature. Essentially, co-training ex­

ploits the redundancy in natural language texts by considering two independent views

of the data. The method can be applied on an instance space X = Xl X X 2 , where

Xl and X
2

are the two different views of an example which are not tightly correlated,

and each view in itself is sufficient to correctly classify any instance x. Therefore, if f
denotes the target function for any example x = (Xll X2) associated with labell, there

must exist the functions h and h so that f(x) = h(XI) = h(X2) = l. By using the

small set of labelled examples, two weak predictors for h and h. can be found, which

then can be used to bootstrap the unlabelled examples following the procedure shown

in algorithm 6.1 (Blum and Mitchell 1997).

Blum and Mitchell (1997) provided an analysis of why the co-training algorithm works

CHAPTER 6. BOOTSTRAPPING LEXMENE 157

that is based on the independence between the different views of the data and the max­

imisation of the number of labels in which the classifiers agree. However, Abney (2002)

argues that this analysis is flawed, because the co-training algorithm does not directly

seek the agreement between the classifiers and because the independence assumption is

very strong and normally violated by the data.

Nonetheless, the co-training method has proved to work in practice and successful appli­

cations have been obtained in NLP problems that have a natural view separation, such as

document classification, studied in the original work (Blum and Mitchell 1997), named

entity recognition (Collins and Singer 1999) and NP chunking (Pierce and Cardie 2001).

However, the sensitivity of the Blum and Mitchell's (1997) algorithm to the assumptions

of independence and self-sufficiency of the two views has been shown to be an important

limitation on NLP problems that do not have this clear separation. Muslea, Minton

and Knoblock (2002) has shown that co-training is not very effective in classifying

documents when the data does not allow uncorrelated views; Miiller, Rapp and Strube

(2002) found mostly negative results when applying co-training to coreference resolution,

a result confirmed later by Ng and Cardie (2003).

These limitations have spurred researchers to investigate alternative co-training methods

which do not require these views. The resulting variations have converged on replacing

the two different views in a learner with two different learning algorithms. Goldman

and Zhou (2000) studied the interaction of a decision list learner and a decision graph

learner on several benchmark problems; Sarkar (2001) utilises two probabilistic models

that form parts of a statistical parser to co-train each other; Steedman et al. (2003)

also worked on parsing, but they used two completely different parsers; similarly, Clark

et al. (2003) co-train two well-known probabilistic part-of-speech taggers; Ng and Cardie

(2003) mixed decision lists and a NaIve Bayes classifier for coreference resolution. All

these studies report successful results, some of them remarkably good. Hereafter, this

variant approach of co-training will be referred to as co-learning.

Unfortunately, only Clark et al. (2003) studied co-learning using maximum entropy

models, as they applied the technique to the TnT tagger based on a trigram HMM

(Brants 2000), and the C&C tagger based on the maximum entropy framework (Curran

and Clark 2003a). The approach is described in algorithm 6.2. Initially, the taggers are

trained on a small set of seed labelled sentences. At each iteration, a fixed-size cache is

selected from the set of unlabelled sentences. Each tagger is then applied independently

to this set. The resulting sentences labelled by the TnT tagger is added to the training

CHAPTER 6. BOOTSTRAPPING LEXMENE 158

Algorithm 6.2: The Na·ive Co-learning algorithm for the TnT and C&C taggers. Adapted f CI k I
(2003). rom ar et a .

Input: a set S of labelled sentences and a set U of unlabelled sentences
1: procedure NAIVE-CO-LEARNING-TNT-C&C(S, U)
2: LTra' f- S
3: Train the TnT tagger on LTra'
4: LCM:; f- S
5: Train the C&C tagger on LCM:;
6: repeat
7: Partition U into the disjoint sets C and U'
8: CTra' f- application of TnT on C
9: CCM:; f- application of C&C on C

10: LTra' f- LTra' U CCM:;
11: Train the TnT tagger on LTra'
12: LCM:; f- LC&£: U CTra'
13: Train the C&C tagger on LC&£:
14: U f- U'
15: until U is empty
16: end procedure

data for the C&C t agger , and vice versa!. At the end of the iteration, the cache is

cleared and those sentences are removed from the total pool of unlabelled sentences.

The algorithm stops when all unlabelled sentences have been used.

There are important findings in this work that should be considered here. Firstly, the

co-learning approach was very successful and, with just 50 seed sentences and a cache of

500 sentences, is able to boost the performance of the C&C tagger from F -score 73.2% to

F-score 85.1 after 50 iterations. Moreover, the experiments showed that the performance

of both taggers gets better as the cache size increases. Secondly, the improvement is

less impressive if the number of the labelled sentences (seeds) is incremented, making

the co-learning approach ineffective when the taggers are initially trained with a large

amount of manually annotated training examples.

However, the most relevant observation comes from a set of experiments which Clark

et al. (2003) called self-training. They modified algorithm 6.2 so that each tagger is

retrained on its own labelled cache at each iteration. They reported that the perfor­

mance of the C&C remains constant under these settings, no matter the number of

seed sentences provided. This finding could be indicating that the maximum entropy

framework, discussed in section 6.1, is not suitable for bootstrapping.

One explanation for this disappointing result is given III Abney (2004), who in an

attempt at understanding the Yarowsky algorithm from a theoretical point of view,

proposed several bootstrapping algorithms which, under certain conditions, have been

IThis is the naive version of the algorithm. Clark et al. (2003) also studie~ ~ agreem.ent-based
co-training in which only a subset of the cache is selected to be added to the trammg matenal for the

next iteration.

CHAPTER 6. BOOTSTRAPPING LEXMENE 159

proven to optimise the negative log likelihood of a classifier -at least to a local minimum­

with respect to the target labelling function.

To understand Abney's (2004) work, the following notation is needed. A bootstrapping

approach considers a set of examples X = A u V, where A represents the portion of

examples that are labelled and V the portion of unlabelled examples. Whilst X remains

the same during the bootstrapping procedure, its components vary in time. Therefore,

at a given iteration t, X is composed by the current sets of labelled and unlabelled

examples A (t) and V(t) respectively. In this way, an example x is associated to a label

yY) at iteration t, which takes a value y = 1, ... ,L -i.e. there are L possible classes­

for labelled examples and the undefined value 1.. for unlabelled examples. Considering

these associations, a labelling distribution ¢~t) (y) is defined for an example x E X and

label y that takes the following possible values

if x E A (t) and y = y}t)

if x E A(t) and y =I y;t)

if x E vet)
(6.1)

Finally, in each iteration t, the bootstrapping process uses a base learning algorithm to

draw a classifier C(t+l) from the space of supervised classifiers that can be obtained

from the training data (A (t), y(t))2.

Abney (2004) proposes a bootstrapping algorithm, named Y-1, that is remarkably sim­

ilar to Clark et al. 's (2003) self-training (CST) algorithm. Indeed, the differences are

not very significant:

I> while CST uses a cache of unlabelled examples, Y-1 considers all of them. This

can be seen as using a large cache in CST approach

I> Y-1 transfers to the next-iteration training material only those examples for which

the base classifier has declared itself. But using the C&C tagger as base learner, it

is unlikely that Y-1 would predict uniform probabilities on many examples. Thus,

the final results of both approaches would be quite similar.

I> the main difference is that CST clears its cache after each iteration, while Y-l

considers the same training data

2In this notation when an index is not specified, the concept refers to(al) 1 t~e examples
h

in\ tbhell~et.
, . "\' S' '1 1 A. t WIll denote tea e mg

Thus, yet) denotes the set of labels for all examples m -,. lIDl ar y, '+'

distribution as a function over all examples and labels.

CHAPTER 6. BOOTSTRAPPING LEXMENE 160

Algorithm 6.3: Abney's (2004) Y-I bootstrapping algorithm.

Input: a set X of examples and their initial labels y(O)

1: procedure MODIFIED-GENERIC-YAROWSKY-BOOTSTRAPPING(X, y(O»

2: for t E {O, 1, ... } do
3: Train a classifier C(t+l) on (A(t) , y(t»

4: for each example x E X do
5: i) f-- argmax C~t+l\y)

y

6: if x E A(O) then
7: yx(t+1) f-- y~O)

8: else if x E A (t) or C~t+l) (i) > i then
9: yx(t+l) f-- Y

10: else
11: yx(t+l) f-- ..l.

12: end if
13: if y(t+1) = y(t) then
14: stop
15: end if
16: end for
17: end for
18: end procedure

Algorithm 6.3 sketches Y-1's procedure. Abney (2004) proved that Y-1 maximises the

likelihood of the probability of the full data set according to the classifier's model when

the base learning algorithm satisfies inequality 6.2, with equality only if there is no

classifier Cit+l) that makes ~DA < o.

(t) (
A _ ~ ~ (t)() Cx Y)
l..l.DA = ~ ~ cPx y log (HI)

xEA (t) yEY Cx (y)
< 0 (6.2)

In other words, the base learner must reduce the divergence, measured in term of the

Kullback-Leibler distance (Kullback and Leibler 1951, Cover and Thomas 1991), with

the labelling function at each iteration.

On the other hand, recall from section 2.4 that the maximum entropy framework pro­

vides a model which coincides with the one that maximises log-likelihood (£) with the

training examples. Therefore, if C(t+l) is a maximum entropy model trained over the

examples x E A (t), its log-likelihood with respect to this set of examples will be higher

than any other model drawn from the same space, such as C Ct). Therefore, the following

analysis can be written, where p~) (y) corresponds to the empirical distribution at time

t. Note the similarity of equations 6.2 and 6.3.

CHAPTER 6. BOOTSTRAPPING LEXMENE 161

This makes evident that maximum entropy models try to reduce the divergence with

respect to the empirical distribution 't/xt
) (y) which, unfortunately, is normally different

from the labelling distribution ¢~t) (y) in unrestricted sets of training examples.

Therefore, Y-1 is not guaranteed to converge when used with a maximum entropy

model as base learner and, given the close correspondence between this algorithm and

the CST algorithm, the unsatisfactory results reported in Clark et al. (2003) should not

be surprising. In fact, preliminary experiments with the combination Y-1+LexMENE

showed an oscillatory curve of performance from which it seems unable to escape.

The Y-1 algorithm is very close to the original Yarowsky algorithm, or the Y-O algorithm

in Abney's (2004) terms. There are only two differences:

[> Y-O allows non-hand annotated examples to become unlabelled again, whilst in

Y-1 an example once labelled remains labelled, though the label may change

[> at the end of each iteration, Y-1 labels all examples for which the basic learner

predicts a non-uniform distribution among the classes, while Y-O labels only ex­

amples for which the best probability exceeds a given threshold. In this respect,

Y-1 can be seen as Y-O with a threshold fixed to t where L is the number of

classes.

Thus, it might be possible that by selecting for the next iteration's training material

only examples for which there is a high confidence on their predicted classifications, the

algorithm could be able to learn new patterns without falling into the cycles observed

in the preliminary experiments. Therefore, the initial experiments in this chapter aim

to test whether the Y-O bootstrapping approach can help LexMENE to obtain valuable

information from unlabelled examples.

6.3 Experiment settings

In order to test Yarowsky approach applied to LexMENE, hereafter boLexMENE, it

is essential that a confidence measure is provided with each prediction. It is relatively

simple to obtain such a measure for each token from the distribution over the classes

predicted by LexMENE's maximum entropy model. However, the class of a token is

not (exclusively) decided based on these probabilities. LexMENE utilises the F~lLU

notation, which was found to produce better results than the BIO notation in chapter 4.

As a result these distributions cannot be used directly and the algorithm requires the ,
application of a Viterbi search to annotate complete sentences with a valid sequence of

labels. Thus, a confidence measure for the predicted sequence of labels is needed here.

CHAPTER 6. BOOTSTRAPPING LEXMENE 162

Algorithm 6.4: The Viterbi Forward Backward Search algorithm (presented with Rabiner's (1989) notation).
Adapted from Brushe, Mahony and Moore (1996).

Input: a state transition distribution a that represents the valid transitions among
classes and that includes the special states start-oj-sentence (SOS) and end­
oj-sentence (EOS); class distributions {b(i)}T given by LexMENE's maximum
entropy model for each token Ot, 1 ::; t ::; T, over every NE class i

Output: a normalised a posteriori distribution 'Y over the classes and the most
likely sequence of classes q* according to this distribution

1: procedure VFBS(a, {b(i)}T)
2: Initialisation:
3: (h(i)=asOS->ib1(i) l::;i::;N
4: !3r(i) = ai->EOS 1::; i ::; N
5: Recursion:
6: bt(j) = max [bt-l(i)ai->j]bt(j)

l:::;i:::;N
l::;j::;N
25ot5oT

7: (3t(i) = max [{3Hl (j)ai->jbH1 (j)] 1::; i ::; N
l:::;j:::;N

T-l~t~l
8: Termination:
9: 'Yt(i) = bt(i){3t(i) 1::; j 50 N

l::;t::;T
10: Normalise 'Y
11: Best sequence:
12: q; = argmax [,t(i)] 1::; t ::; T

l:::;i:::;N

13: end procedure

Clearly, the product of the best probability of each token distribution is not an appro­

priate measure as longer sentences will be unfairly penalised with respect to the shorter

ones. A normalisation step could be attempted but this is not directly applicable and

there are novel, better ways of obtaining a confidence measure for the sequence of labels

in which its length has little or no impact.

Several of these approaches originated from spoken language processing (Forney 1972,

Hagenauer and Hoeher 1989, Junkawitsch, Neubauer, Hage and Ruske 1996, Morguet

and Lang 1998, Li, Malkin and Bilmes 2004); others have been recently proposed for

handwritten text recognition (Schlapbach and Bunke 2004) and information extraction

(Culotta and McCallum 2004). Most of these methods can be adapted to work for

boLexMENE with minor modifications.

However, boLexMENE utilises the Viterbi Forward Backward Search (VFBS) given in

algorithm 6.4, which is an adaptation of the algorithm proposed by Brushe et al. (1996)

and further developed in Brushe, Mahony and Moore (1998). VFBS computes an a

posteriori probability measure for each class at each token which is maximised over all

valid paths that consider that (token, class) pair. Although VFBS is computationally

more expensive than a normal Viterbi search, it finds the same maximum likelihood

sequence and also provides a distribution over the classes which can then be normalised

in the standard way.

Now it is easy to obtain a confidence measure for the sequence of named entity classes as­

signed to a sentence: boLexMENE considers the Kullback-Leibler divergence (Kullback

and Leibler 1951, Cover and Thomas 1991) of the distribution, returned by the YFBS

CHAPTER 6. BOOTSTRAPPING LEXMENE

55 .

54

::- 53
LC

52

51

---e-- boLoxMENE 95

---e--- boLoxMENE 90

~ boLoxMENE 85

~ boL .. MENE 80

--*- boLoxMENE 75

UNSEEN
50~----~~ __ ~~ __ ~

5 10 15
bootstrapping Iterations

AMBIGUOUS

85

84

LC
83

82

81~ ____ ~ ____ ~ ____ ~

5 10 15
bootstrapping iterations

SEEN

" \
f85~

84

5 10 15
bootstrapPing rteratlons

67 OVERALL

64

5 10 15
bootstrapping iterations

163

Figure 6.1: Comparison of the performances of boLexMENE with different thresholds: features as used by
LexMENE-V2. cutoff is set to 3 and GIS iterations to 200. Bootstrapping: Y-O with thresholds varying from
75% to 95% . Labelled examples: MUC-7 training corpus; unlabelled examples: MUC-7 dryrun test corpus;
test examples: MUC-7 formal test corpus.

and the appropriate uniform distribution for that sentence. This measure also makes

the definition of thresholds simple. For example, suppose that a probability distribution

is defined - with the same number of outcomes as considered by boLexMENE- so that

90% of its mass is concentrated in one class and the rest shared out among the other

classes. By telling Y-O to use as threshold the distance between this distribution and

the uniform distribution, only sentences labelled with at least 90% confidence will be

selected.

6.4 Experiments

As in the previous chapter, in order to avoid a number of experiments for setting the

parameters of boLexMENE, those fixed for either LexMENE or MOLl MENE will be

used, as there are no reasons to believe that maintaining these values would unfairly

affect their comparison. Thus, all experiments presented in this section utilise the

FMLU notation a cutoff set to three 200 GIS iterations, a lexical window of sizes [2 ,2] , , ,
a orthographic window of sizes [2 ,2] from which all fired features are considered, and

the unknown words threshold set to three.

The first experiment aims to test the first approach to boLexMENE, which consists of

the Y-O algorithm with LexMENE-V2 as base learner, with different threshold values:

75%, 80%, 85%, 90% and 95% confidence. Figure 6.1 presents the performance of

CHAPTER 6. BOOTSTRAPPING LEXMENE 164

boLexMENE on the MUC-7 formal test corpus for the first 15 iterations of the Y-O

algorithm.

At iteration one, only hand-annotated examples -which in this case corresponds to the

MUC-7 training corpus- are utilised by boLexMENE to train its maximum entropy

model. This model is then applied on the set of unlabelled examples, which in these

experiments corresponds to the MUC-7 dryrun test corpus. Then the threshold is

applied and those sentences whose labels have been assigned with a confidence higher

than the value required are selected to be added to the set of training examples in the

next iteration.

It can clearly be seen in this figure that the bootstrapping approach does not contribute

but damages LexMENE's performance. There is some gain for ambiguous named en­

tities, specially for modest threshold values, but this is not enough to compensate for

the loss on the other familiarities and the overall performance declines. Moreover, no

matter the threshold, boLexMENE also falls into oscillatory curves of performance -

as happened in preliminary experiments with Y-l- which means that Y-O does not

converge as its stop condition is never satisfied.

There are two possible scenarios which might explain these results. The first one is

that maximum entropy models have intrinsic difficulties to learn from themselves and

thus are not appropriate for direct bootstrapping. To some extent, the experiments in

Clark et al. (2003) suggest this as the performance of the maximum entropy tagger they

use remains constant when retrained on its own output, but considerably improves in

co-learning with another tagger.

The second option was also observed by Clark et al. (2003): their co-learning algo­

rithm ''was unable to improve the performance of the taggers when they had already

been trained on large amounts of manually annotated data". Surprisingly, what Clark

et al. (2003) call a large amount of manually annotated data seems to be just 500 sen­

tences. The MUC-7 training corpus -used as the hand-labelled data here- contains

100 documents which sum up to 4,377 sentences.

The second scenario can be proved -or disproved- by repeating the experiment of

above with a smaller set of manually annotated examples. Figure 6.2 shows the re­

sults of boLexMENE on the MUC-7 formal test corpus when using only the first 10

documents from the MUC-7 training corpus as hand-labelled examples. The other 90

documents and the 100 documents from the MUC-7 dryrun test corpus are provided

for bootstrapping.

CHAPTER 6. BOOTSTRAPPING LEXMENE 165

41 ---e--- boLexMENE 95 SEEN
---e-- boLexMENE 90

'j
63'~

---+- boLexMENE 85 61
---A-- boLexMENE 80

--+-- boLexMENE 75 ~ 59
u:-

57

31 55 ~ --..
~ . ~

UNSEEN
29 53

5 10 15 20 25 5 10 15 20 25
boolstrapping iterations bootstrapping iterations

25 ... AMBIGUOUS 47 OVERALL

24 45

~ 23 ~ 43
u:- u:-

22 41

21 39

20 37
5 10 15 20 25 5 10 15 20 25

bootstrapping iterations bootstrapping iterations

Figure 6.2: Comparison of the performances of boLexMENE with different thresholds: features as used by
LexMENE-V2, cutoff is set to 3 and GIS iterations to 200. Bootstrapping: Y-O with thresholds varying from
75% to 95%. Labelled examples: 10 documents from the MUC-7 training corpus; unlabelled examples: 90
documents from the MUC-7 training corpus + MUC-7 dryrun test corpus; test examples: MUC-7 formal
test corpus.

It can be seen once again that boLexMENE would run indefinitely if not stopped after

25 iterations. Even worse, these results suggest that the amount of initial training

material is not the main problem of the approach, but that there is some deeper issue

that is responsible for the poor performance of the system.

These difficulties might be inherent to maximum entropy models, due to the maximum

entropy principle, or even to probabilistic machine learning methods, as suggested in

Ng and Cardie (2003), because they fail in capturing relevant clues that are nevertheless

infrequent.

6.5 Lighting the way

In a recent work, Cui and Guthrie (2004) proposed a bootstrapping framework with a

maximum entropy model as the learning component to perform semantic tagging, an

NLP task that is similar to - but more general than- named entity extraction. They

argue that if the following three conditions are satisfied:

1. feature frequencies are not smoothed

2. the set of features remains the same during the bootstrapping process

CHAPTER 6. BOOTSTRAPPING LEXMENE 166

3. the confidence of an (example, label) pair at iteration t + 1 corresponds to the

probability predicted by the maximum entropy model generated at iteration t

then machine-labelled examples ''make no contribution to the constraint set". Because

this is counter-intuitive, Cui and Guthrie (2004) called this effect the MaxEnt Puzzle.

The MaxEnt Puzzle explains the self-training results reported in Clark et al. (2003), as

it seems that all three conditions are met by their approach. BoLexMENE satisfies the

first two conditions but not the third one. Nevertheless, it seems that using a confidence

measure that is just based on the predicted probabilities is not enough to solve the

puzzle. The experiments in the previous section suggest that feature expectations are

changing, affecting slightly the performance, but that they remain largely unchanged.

Cui and Guthrie (2004) recommend to break the restrictions by re-selecting the feature

set after each iteration or adjust the labels assigned by the model. They conducted

experiments in which both recommendations are followed. First, they re-select features

based on the Association Rule's principles of support and confidence. And secondly,

they permanently correct some of the predictions produced by their model in two ways:

adjusting the probabilities given by the model, such as setting to probability zero the

least probable label, setting to probability one the most probable label and removing

instances with flat distributions; and pruning illegal labels by using information from an

external dictionary. Cui and Guthrie (2004) reported that the new approach reduced

the error rate of the system, but the improvement was not impressive.

BoLexMENE is already correcting the maximum entropy's predictions by applying a

Viterbi search. This effect was observed in chapter 4, in which the performance of the

approach is considerably boosted by using the FML U notation and the correspond­

ing Viterbi algorithm. However, this corrective approach seems not to be enough to

overcome the MaxEnt Puzzle, as observed in previous experiments. Adding external

sources of correction, such as gazetteers, would necessarily compromise the portability

of the system. Therefore, it seems necessary for bootstrapping LexMENE to introduce

a re-selection of features procedure.

In chapter 5, the Ripper rule inductor (Cohen 1995) was found to be good at generating

features for maximum entropy models. Thus, it seems a reasonable idea to use this

learning algorithm to inform LexMENE of a set of potentially good features present

in the training data. Then, LexMENE could inform Ripper of the classes of a set of

examples for which they were previously unknown. Then, Ripper will inform back of a

new set of good features to describe the new examples. This co-informing process may

continue until no new rules are necessary to describe newly labelled examples or there

are no more examples to bootstrap on.

CHAPTER 6. BOOTSTRAPPING LEXMENE

Algorithm 6.5: LexMENERipper: the co-informing approach applied to LexMENE-V2 and Ripper.

Input: a set L of labelled sentences, a set U of unlabelled sentences and a cache
size n

Output: a LexMENE-V2 model trained on L U U
1: procedure CO-INFORMING-LEXMEME-V2(L, U, n)
2: rules(O) f- Ripper(L)
3: t +- 1
4:

5:

6:

7:

8:

9:

10:

11:
12:

13:

14:

repeat
Train LexMENE-V2(t) with rules(t-l) as features
Apply LexMENE-V2(t) on U

Sf-the n most confidently labelled sentences in U (selected with care)
R +- Ripper(S)
rules(t) +- rules(t-l) U R
if rules(t) = rules(t-l) then

Stop
end if
U+-U-S
t+-t+l

15: until U is empty
16: end procedure

6.6 LexMENERipper

167

Following the discussion above, a new named entity extractor has been designed which

is based on co-informing LexMENE-V2 and Ripper. This system has been named Lex­
MENERipper.

Algorithm 6.5 describes the co-informing approach applied to LexMENE-V2 and Ripper.

Initially, the training sample -i.e. manually-annotated sentences- is handed to Ripper

which obtains an initial set of rules from them. Then, an iterative procedure starts

by training LexMENE-V2 on this set of rules and then applying it to all unlabelled

sentences. The next step is the selection of a fixed number of newly labelled sentences

from the pool of unlabelled sentences. This idea combines Riloff and Jones's (1999) and

Clark et al. 's (2003) approaches. This corresponds to a cache of unlabelled sentences,

which is cleared at the end of each iteration. However, the sentences selected to fill this

cache are not selected randomly before labelling, but with the most reliably annotated

sentences.

It is important to mention here that the approach always tries to obtain new information

from the unlabelled examples. Consequently, the selection of the sentences for the cache

is performed with the due care. For example, if only negative sentences are selected,

Ripper would come out with an empty set of rules and the instruction of predicting

the class 0 for every token. Another possible situation is that only sentences with

information of the document, such as sentences describing the author or the date of

the document, are selected. This kind of sentence normally shows little variability and

Ripper could produced a set of rules which are already known. Both situations lead to

a premature stop of the algorithm. Therefore, the selection of sentences for the cache

CHAPTER 6. BOOTSTRAPPING LEXMENE 168

tries to maintain as much as possible the same number of sentences with each of these
characteristics.

When a cache of newly labelled sentences has been selected, it is handed to Ripper

with the mission of generating a new set of rules to classify them. These rules are then

added to the current set of rules. If no new rules can be added, the algorithm assumes

convergency and stops. Otherwise the process is repeated until all unlabelled sentences

have been added into the cache.

It could be also possible to set a minimum confidence threshold for selecting newly

labelled sentences, so that the bootstrapping process halts when there are no reliable

sentences from which information can be drawn. Or alternatively, the size of the cache

could be reduced after each iteration so that sentences labelled with low confidence are

not considered in the feature production. These, and other more common, stopping

cri teria can be the subject of further research.

6.7 An experiment with LexMENERipper

An experiment with LexMENERipper is conducted here to determine whether a maxi­

mum entropy-based NEE system can benefit from semi-supervised learning.

As explained in section 6.6, the initial extractor corresponds to a maximum entropy

model that uses as features the rules generated by Ripper from the training sentences,

that is sentences that have been hand-annotated, which in this case corresponds to the

MUC-7 training corpus.

After that, the bootstrapping procedure begins. The maximum entropy extractor is

applied to unlabelled sentences, in this case the MUC-7 dryrun corpus, and the most

reliable annotations made by the system are selected. Then, Ripper is applied on this

cache of sentences and the resulting rules are added to the pool of features for the next

maximum entropy extractor. Different cache sizes have been tested in this experiment,

namely 50, 100, 200, 400 and 800 sentences.

This procedure continues until Ripper does not generate any new rule to be added to

the pool of features or all unlabelled sentences have been used in the process. Note

that this last condition implies that the maximum number of bootstrapping iterations

depends on the cache size utilised - as each sentence is included into the cache just

once. For example, as the MUC-7 dryrun corpus contains 4,113 sentences, with a cache

of size 800 there can be at most six iterations while a with a cache of size 50 sentences

more than 80 iterations could be run.

CHAPTER 6. BOOTSTRAPPING LEXMENE 169

Figure 6.3: Comparison of the performances of co-informing LexMENE-V2 and Ripper for different cache
sizes: features as used by LexMENE-V2. cutoff is set to 3 and GIS iterations to 200. Labelled examples:
MUC-7 training corpus; unlabelled examples: MUC-7 dryrun test corpus; test examples: MUC-7 formal test
corpus.

Figure 6.3 presents the performance of LexMENERipper for the different cache sizes

tested. It is interesting noticing that only with the cache of size 50 LexMENERipper

reaches convergence -i.e. no new rules can be obtained from the sentences in the

cache- and for all other sizes the algorithm stops because the complete unlabelled

material has been processed.

Figure 6.3 shows that LexMENERipper is able to improved its initial overall performance

- i.e. the one obtained with hand-labelled training data only- for all cache sizes tested.

However, this experiment suggests that the approach is sensitive to the cache size pa­

rameter, an undesired characteristic which has also been reported for co-training (Pierce

and Cardie 2001). In effect, versions with larger caches clearly outperform the versions

with cache sizes of 200 sentences or less.

Moreover, the results shown when using caches of sizes 400 and 800 sentences follow a

similar overall trend. Both start with a sharp increase during the initial bootstrapping

iterations. Then the performance falls and then recovers to adopt a smoother, but rising

path.

However, it is the cache of size 800 sentences the one that yields the best results ob­

taining increments of performance for all familiarity types of named entities, which

is reflected in a 4% F-score overall improvement. Note however that Lex1,fENE-V2

trained with the original lexical features, rather than the rules produced by Ripper 1

obtains better performance on this corpus.

CHAPTER 6. BOOTSTRAPPING LEXMENE 170

Interestingly, co-informing does help LexMENE to recognise more unseen named enti­

ties as all cache sizes obtained a clear improvement on this familiarity type. However,

results are mixed on seen named entities for which large cache sizes achieve improve­

ments but smaller cache sizes actually led to a drop in performance. Although gains in

performance are observed on ambiguous named entities for all cache sizes at the end of

the bootstrapping process, the curves are oscillating with sharp increases and drops.

6.8 Discussion

In this chapter, several attempts to bootstrap a maximum entropy named entity ex­

tractor, namely LexMENE, have been presented. It has been explained that a MaxEnt

Puzzle had been identified in the sense that providing large amounts of unlabelled ex­

amples to maximum entropy models could have no effect on their performance if used

in the common way.

However, a new bootstrapping approach, named co-informing, has been proposed and

tested. An experiment with co-informing shows a significant improvement of Lex­

MENE's performance, though it also poses several questions. For example, it is rea­

sonable to wonder whether this positive result would have been obtained if the initial

rules produces by Ripper had maintained the performance of the uninformed version of

LexMENE. Another interesting issue comes from the observation that figure 6.3 sug­

gests that the bigger the cache, the better. Thus, it could be worth testing whether

better results can be obtained from performing just one co-informing iteration with all

unlabelled data. Different amounts of unlabelled data and cache sizes should be tested.

The main question, nevertheless, is that co-informing has introduced a new puzzle. It

is normally expected that the performance of a learner deteriorates as bootstrapping

progresses, as noise is unavoidably added to newly labelled data. This effect has indeed

been observed in different bootstrapping experiments (Ng and Cardie 2003). In fact,

co-informing seems to behave in this way in the initial iterations for all the different

cache sizes after obtaining a peak in performance. However, and particularly for the

versions with larger caches, this trend is reversed and the performance of LexMENE

tends to rise.

There are two possible explanations for this phenomenon - or perhaps the combination

of both. The first one, though unlikely, is that the rules produced by Ripper to classify

the noisy sentences in later iterations, are complementing previous rules and, in this

way, helping LexMENE to refine its maximum entropy model despite the occurrence

of wrong labels. The second alternative is more plausible and is related to overfitting.

Clearly larger caches lead to large sets of rules to represent the underlying classification

task. Thus, the pool of features for the maximum entropy approach grows significantly

after each iteration. But, because the number of GIS iterations has been kept constant,

CHAPTER 6. BOOTSTRAPPING LEXMENE 171

the framework has to produce increasingly more general hypotheses which, in the end,

bring about better results.

These open questions make difficult to declare hypothesis 3 valid -or invalid- as

further exploration of the approach proposed here is required.

Chapter 7

Conclusions and future work

This chapter sums up the work conducted in this thesis and re-assesses the hypotheses

that originated it. It also presents proposals for future research that aims to find solu­

tions to unsolved issues, elucidate unanswered questions and extend the study presented

here.

7.1 Conclusions

The main argument in this thesis is that it is possible to perform relatively accurate

generic named entity extraction by combining the robustness of statistical learning

methods, an appropriate management of exceptions and the utilisation of large amounts

of unlabelled data. Such a system would be portable across named entity extraction

tasks and, if the resources exist, across languages. However, this thesis has shown that

several issues ought to be solved before this approach can be realised.

The maximum entropy framework has proved to be a strong classifier that is able to

obtain good levels of performance by capturing relevant information from lexical data

only, which demonstrates it is a suitable method for named entity extraction (basis

3). All the attempts presented in this work to improve this baseline approach have

shown how challenging this might be and, though successful, most of the improvements

obtained were not impressive.

Table 7.1 presents a summary of the best performance (F -score) of each approach studied

for both MUC-7 test corpora. The first row corresponds to the performance obtained by

version B of LexMENE which is the baseline system extended here. Row two presents

the performance obtained by MOLl MENE V2 which uses exactly the same lexically­

oriented features as LexMENE, but with different context windows. The third row

shows the best performance achieved by MOLl MENE for the dryrun test corpus and

for the formal test corpus. The former was obtained by MOLl ~IENE V8 and the latter

172

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 173

Table 7.1: Summary ofthe best performance (F-score) obtained by the named ent"lty ext ct" h " " " ra Ion approac es
presented In this thesIs"

(1)

(2)

(3)

(4)

(5)

Approach
name

LexMENE
MOLl MENE V2

MOLl MENE
biLexMENE

LexMENEJt~pper

Best Performance
Dryrun test Formal test

79.54 64.51
83.98 71.49
84.68 73.05
80.51 66.72
78.18 63.06

by MOLl MENE VII. Both versions utilise, in addition to the features used by MOLl

MENE V2, linguistically-oriented features -namely trigger synsets- extracted from

WordNet®. Row four indicates the best results accomplished by biLexMENE. In both

situations, the system is trained with all documents from the MUC-7 training corpus,

but the highest F-score for the dry run test corpus is obtained selecting 50 similar cases,

whereas selecting 75 similar cases yielded the best result for the formal test corpus.

Finally, the fifth row corresponds to the performance achieved by LexMENERipper when

using a cache of 800 sentences. However, it must be noticed that the dry run test corpus

was not the target corpus for this NEE system. The F -score reported here corresponds

to the labels introduced by LexMENERipper after six co-informing iterations on the

dryrun documents when used as a source of unlabelled text.

It can be observed that the most significant increment in performance was obtained

by re-arranging the context windows for the lexically-oriented features. Linguistically­

oriented features do lead to better F -scores on both test corpora, but these improvements

are not as important as expected: just around 1 %. This makes difficult to decide on the

validity of hypothesis 1, as these results were obtained using parameters estimated for

MOLl MENE V2 and more significant improvements could be achieved with a different

set of parameters. Thus, more research is needed to have more definitive evidence.

The source of linguistic information has been WordNet, which is general enough to

not affect the portability of the approach. However, it might be possible that other

sources could be more appropriate for this because WordN et does not explicitly make

differences between concepts and instances of these concepts. For example, consider

the word president. WordNet considers the texts ex-president and Franklin Delano Roosevelt

as hyponyms of this word. This mix of conceptual levels makes difficult the estimation

of both semantic distances and the identification of irrelevant senses (de Boni 2004),

which might be valuable information to identify named entities.

The sheer amount of linguistic information collected from WordNet was another chal­

lenge to be faced. This problem was solved by using an efficient rule learning algorithm

with the ability to manage set-valued attributes, namely Ripper (Cohen 1995, Cohen

1996), to select the most important features from the new data which are then fed into

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 17 -t

the maximum entropy model. This approach was the most successful in increasing the

performance of the NEE system.

Managing exceptions was less successful. Biasing the maximum entropy model, towards

training material that is similar to the text being classified, obtained only marginal in­

crements in performance which are not clearly related to a better handling of exceptions.

However, this material was retrieved by using a successful approach in the memory­

based learning field, namely the Case Retrieval Nets (Lenz 1999), that turned out to

be an unfortunate choice as the efficiency of the algorithm is affected when cases are

pieces of free text. This remains the main unsolved issue of this idea, which discouraged

testing the approach further with other ways of measuring similarity. As a consequence,

it has not been possible to determine the validity of hypothesis 2.

Bootstrapping the maximum entropy approach was also intricate because of the so called

MaxEnt Puzzle (Cui and Guthrie 2004). This puzzle states that unlabelled material

could have no effect on the classifications made by a maximum entropy model, unless

its output is externally processed before being added to the new, larger pool of training

examples. Ripper was once again used for this task and a new bootstrapping framework

was proposed, which was named co-informing. In the co-informing approach, Ripper

informs the maximum entropy model of the most important features for classifying the

new training material, which initially corresponds to hand-annotated examples. The

maximum entropy NE extractor takes into account this information, obtains the classes

for unlabelled sentences and informs Ripper of its finding.

Co-informing proved to be successful in overcoming the MaxEnt Puzzle and the per­

formance increases as more and more unlabelled sentences are processed. Moreover,

experiments in which larger number of sentences are processed at each iteration ob­

tained better results and do not show signs of convergence, which could indicate that

the performance of the approach might be increased further if more unlabelled material

were available.

However, the overall performance reached by co-informing is below the one obtained

by the baseline system. This was a consequence of lexical features being replaced with

Ripper rules, rather than being added to - as above, which had a significant negative

impact on the performance of the approach, degrading it in more than 7% F -score, at

iteration one.

Once more, these findings do not allow a conclusive decision on the validity of hypothesis

3: on the one hand, LexMENERipper improves by extracting new information from

unlabelled text; on the other hand, this new information was not enough to outperform

the baseline system that uses hand-labelled text only. Again, this could be related to

the fixed parameters used in the experiment and further research is needed in order to

obtain an assertive conclusion.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 175

Nevertheless, the inital idea of combining these techniques remains valid. Bootstrapped

examples can be easily added to the instance-based memory to be considered in the

biasing process, and the co-informing framework could be applied to the pool of lexical

features enriched with linguistical information drawn from WordNet. Further research

is required on how to solve the issues that prevented this integretation here.

7.2 FUture work

Future work has been divided into four areas depending on whether they will contribute

to answer pending questions of the research conducted in previous chapters, as exten­

sions of the approaches proposed, to improve the methods proffered to obtain NLP

technology or to extend the research of the techniques used in this thesis.

7.2.1 Answering open questions

There are a number of questions that has been left open about the methods proposed in

this thesis, which require further hypotheses and empirical work in order to be answered.

For example, the differences between the best performance obtained by each NEE sys­

tem studied in this thesis are quite small. In particular, only a 1% improvement has

been observed when linguistically-oriented features are added to MOLl MENE. It re­

mains answered whether these differences have statistical significance, mainly because

the procedure used for the MUC and CoNLL competitions was followed here, in which

this consideration was not included.

In addition, the above marginal improvement was obtained by including linguistically­

oriented features provided by WordN et® in the baseline maximum entropy NEE system,

despite the fact that these features can be disorganised and noisy. Therefore, it also

remains unanswered whether the application of word sense disambiguation approaches

could produce a more helpful set of linguistically-oriented features that could further

boost the performance of the baseline system.

In chapter 5, it was found that biasing a maximum entropy NEE system by applying

memory-based techniques is only beneficial when little training material is available.

However, these results are observed for the specific application discussed in this thesis

which is based on Case Retrieval Nets (CRNs) (Lenz 1999). Although CRNs normally

provide a fast case retrieval process, they show efficiency problems when managing

attributes with a large range of values, as are normally found in NLP tasks. This

prevented further parameterisation and experimentation with the approach. Thus, it is

possible that other similarity functions or the use of sentences as cases --rather than

fixed windows of tokens- could yield better improvements of a biased NEE system, but

this would necessarily require abandoning CRNs and looking for an alternatiw method

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 176

for retrieving similar cases. One possibility to be explored is the TiMBL memory-based

leamer, which has been successfully applied to many NLP applications (Daelemans,

Zavrel, van der Sloot and van den Bosch 2003).

It could be argued that it is not clear that by biasing a maximum entropy NEE

system, a better management of exceptions is obtained. This ability was measured

here by looking at improvements in recognising ambiguous named entities which pre­

sented a disparate occurrence between classes. A more objective evaluation could be

made by studying indices designed specifically for measuring exceptionality such as

class prediction strength, typicality and local typicality (Daelemans, van de Bosch and

Savrel 1999, Salzberg 1990, Rotaru and Litman 2003).

Another open question is whether the co-informing bootstrapping approach proposed

in chapter 6 is useful. Results indicate that it is indeed helping the underlying max­

imum entropy model to learn new features from unlabelled examples. However, the

performance obtained by the resulting model is below the one obtained by the baseline

system. Thus, it is not clear that this improvement could be observed if both algorithms

start from the same level of accuracy.

Co-informing also posed a new puzzle: experiments with large cache sizes do not show

the expected effect of noise being added to the training data. On the contrary, they

indicate that if more unlabelled training material were available then the approach

would be able to continue the learning process.

These two questions require further analysis and more experimentation, ideally on more

than one classification problem and with larger amounts of unlabelled data.

7.2.2 Extensions of the proposed approaches

The corpora analysis presented in section 3.2 can be extended to include tokens and

phrases that are not labelled as named entities in the target texts, but that have been

seen as such during the training. This would provide information of the number of

spurious named entities that a NEE system could wrongly recognise, which will improve

the estimations of the complexity of the task and supply extra information of its ability

to handle exceptions in the texts.

It could be possible to use the familiarity information of named entities to develop a NEE

system with several components that are specialised on an individual type. Moreover,

by adding the class "actually not a name", these specialised NEE components could

be applied after an initial NEE extractor which aims to identify in the texts as many

named entities as possible. Such an approach might provide evident benefits for the

recall and the precision of the system that are optimised separately.

It must be observed that the approaches developed in this thesis complement each

other. Thus, linguistically-oriented features can be included into both the biased and

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 177

bootstrapped approaches. Moreover, instance-based methods have the ability to easily

include new examples to the case database and need no modification to be integrated

with the bootstrapping method presented here. Therefore, once the efficiency problem

of the biased system and the difficulties of the bootstrapping method are solved, all

three NEE approaches can be combined into a single system.

Finally, in the co-informing settings presented here, Ripper provides the maximum

entropy model with new features obtained from a cache of machine-labelled examples.

There are a number of slightly different approaches which could be worth testing. For

example:

I> provide Ripper with only a subset of selected sentences from the cache

I> let Ripper to get relevant features not only from the sentences in the iteration's

cache but from all sentences selected so far

I> apply Ripper to linguistically-oriented features only and then combine the result­

ing features with the lexically-oriented features

7.2.3 A end-user named entity extractor

Although obtaining high performance has not been the goal guiding this thesis, there

are a number of simpler modifications which could contribute to obtaining a better

end-user named entity extractor.

For example, the successful system MOLl MENE V2 presented in chapter 4 was em­

pirically parametrised considering only lexically-oriented features. It was found that

looking at the token on the left and the token on the right for lexical information

yielded the best results. However, it was discussed in section 3.4.2 that such a limited

contextual information could deprive NEE systems of important clues for identifying

named entities.

Nevertheless, these facts are not completely contradictory as considering broader con­

texts for gathering lexical information could indeed make no contributions, but it could

be possible that other types of information might benefit by more contextual material.

On the other hand, this will increase the size of the pool of features and the application

of Ripper will be necessary. Therefore, a better approach could be obtained by combin­

ing the selection method based on Ripper on both lexical and the "semantic" features

and then performing an exhautive search of good parameters.

In addition, there is a large number of further features that could be added. For instance,

both simple morphological features (Cucerzan and Yarowsky 2002, Tjong Kim Sang

2002b, Wu et al. 2002, Bender et al. 2003, Chieu and Ng 2003, Florian et al. 2003, Klein

et al. 2003, Wu et al. 2003) and global features (\Vu et al. 2003) -that relate different

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 178

occurrences of a candidate named entity- have been intensively used for extracting
named entities.

Furthermore, a post-processing procedure could be included to identify and repair incon­

sistences in the labels that are output by the NEE system. The approach of retaining the

boundaries of the named entities identified but then relabelling them showed improve­

ments in 11 out of the 12 systems participating in CoNLL-2002 (Tjong Kim Sang 2002a).

Also, the approach of partial matching (Mikheev, Moens and Grover 1999) can be

applied so that the classifications of named entities that occur more than once in a

document are based on the appearance with the best contextual information.

7.2.4 Future research

This thesis has established that WordNet could be a source of general information

that contributes to the extraction of named entities. However, WordNet has been

criticised because it is not consistent in the way it handles knowledge (de Boni 2004)

which makes the extraction of useful semantic relationships difficult. Moreover, several

ways of extending the knowledge of WordNet and ways in which this could be used to

determine the semantic similarity between sentences have been proposed (Budanitsky

and Hirst 2001, de Boni 2004). These approaches could be used to define more organised

semantic features that might be more useful for a named entity extractor.

Moreover, these semantic relations could make sentences a more approapriate level of

granularity for defining cases and queries in a memory-based biasing approach. Fur­

thermore, the semantic distance between two sentences could be used as the similarity

measure to identify relevant cases for a given query.

However, it has recently been suggested that a good treatment of exceptions in natural

language applications is not only a property of instance-based methods. In fact, Ripper

has been found to be quite good at this (Rotaru and Litman 2003). Although Ripper has

been shown here to complement the statistical paradigm of maximum entropy models,

it could be providing rules designed for exceptions rather than for regularity and it

might turn out to be not an appropriate method for selecting features.

Therefore, an interesting source for further research is looking for ways in which the

efficient induction used by Ripper can be modified to specifically obtain a robust method

for selecting features for maximum entropy models. For instance, it is not clear than

the pruning and deletion of rules applied by Ripper is appropriate for selecting features

(Cohen 1995). Nor is the stopping criterion -based on the description length principle

(Mitchell 1997)- that it uses. These techniques are included into the inducer as an

attempt to increase generalisation and avoid overfitting. Thus, Ripper does not output

all the rules and conditions it finds useful to undertake the extraction task.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 179

But the maximum entropy framework deals with these issues and, when applied as

a second learning step, it might be not necessary for Ripper to be concerned about

overfitting the training data or creating irrelevant rules which could be managed by the

generalisation of features described in section 4.11 and the appropriate estimation of

the model's parameters.

Appendix A

N YIllble iIll pleIllentation

As it might be expected, although Nymble's approach is well explained in Bikel et al.

(1997) -and in some extent in Bikel et al. (1999)1- some of the details necessary for

actually implementing the algorithm are missing and sensible guesses are required to fill

the gaps. In the rest of this section, the implementation of siNymble version is discussed

in detail.

A.I Top-level model

The estimation of the probabilities for Nymble's top-level model is a simple procedure

base in the function c(e), which counts the number of times the event e occurs in the

training data:

Pr(NC]NC- 1 , W-l)

Pr(<w,j>jir.tI NC, NC-d

Pr(<w,J> I <W,J> -1' NC)

c(NC,NC- 1 ,w-l)
c(NC- 1 ,w-d

c(<w,j>jir.t' NC, NC-d
c(NC,NC-d

c(<w,J>, <w,j> -1' NC)
c(<W,j>_I' NC)

(A.l)

(A.2)

(A.3)

Bikel et al. clarifies that the model for name-classes (equation A.l) is conditioned on

the previous real word of the previous name-class, unless the previous state is the start

of a sentence in which case it would "be conditioned on the +end+ word".

In the interpretation given here, siNymble contains actually two completes models only,

which generate the top-level model and the backing-off/smoothing models (see table

3.4) by a full or a partial instantiation of their variables.

The first complete model is for generating probabilities for name-classes and contains

three variables: the current name-class, the previous name-class and the previous word.

IThis article describes IndentiFinderTM, which seems to be remarkable similar to :\ymble though a

better performance is reported for this name entity recogniser.

180

APPENDIX A. NYMBLE IMPLEMENTATION 181

(NC = alNC- l = b, W-l = c) (A.4)

The second complete model is for generating probabilities for words and contains six

variables: the current word and feature, the previous word and feature, the current

name-class and the previous name-class.

(W=p,!=qIW-l =r,!-l =s,NC=t,NC_l =u) (A.5)

Thus, Pr(NC = aINC_1 = b) is interpreted as the sample probability of finding in the

name-class complete model an event whose first variable has value a and second variable

value b, considering all possible values for the third variable.

In general, a model Pr(xIY) is interpreted as the sample probability in the corresponding

complete model, partially or fully instantiated with the values x and y. It will be written

Pr(xly) = Pr(X 1= xlY 1= y) to denote this operation. If the instantiation is partial,

the count function will consider all possible values for all free variables. Formally, if a

model M = Pr(x = {Xl, ... ,xn}ly = {Yl, ... ,Ym}) leaves k free variables ih, . .. ,Vk in

the corresponding complete model, then the real estimation of M in these terms is

=

Pr(X F xIY F Y)

c(X F xlY F Y)

c(X F *IY F Y)
C(il = Xl,··· ,in = xn,fh = Yl,·.· ,Yrn = Yrn,ih = *, ... ,ilk = *)

C(XI = *, ... ,Xn = *,Yl = Yl, ... ,Yrn = Yrn,Vl = *, ... ,Vk = *)

L ... L C(Xl, ... ,Xn,Yl,···,Yrn,Vl, ... ,Vk)
VI E'DvI vk E'Dvk

L ... L L'" L C(Xl, ... ,Xn,Yl, ... ,Yrn,Vl, ... ,Vk)
xIE'DxI xnE'DxI vIE'DvI VkE'Dvk

where Vv is the set of possibles values for the variable Vj.
J

(A.6)

For example, the model Pr(NC = aINC-1 = b) will instantiate the name-class complete

model (equation AA) resulting in the following estimation

Pr(NC = alNC- l = b) Pr(X F aIY F b)

c(X F alY F b)

c(X F *IY F b)

-

c(NC= a, NC- l = b,W-l = *)
c(NC = *, NC- l = b, W-l = *)

LCE'D
w

_
I

c(a, b, c)

L LCE'D
w

_
I

c(ii, b, c)
a.E'DNC

similarly when siNymble requires Pr(<w,J> = <p,q>INC = t), it is estimated as

" "- L- 'D c(p,q,f,s,t,u)
L..-rE'Dw 1 L..-SE'Df I uE NC I

APPENDIX A. NYMBLE IMPLEMENTATION 182

Note that DNC, DNC_1 and DW_1 are not the same sets in both complete models, as

one is collecting statistics for changes of name-class (i.e. state transitions) while the

other for the generation of words (i.e. emission probabilities).

This strategy of complete models works for all models used by siNymble -including

the back-off and smoothing models discussed later- but two observations need to be

considered: the meaning of the subscript first in equation A.2 and the values of <w,j>_1

in equation A.3. These top-level components collect probabilities for first words in a

name-class and subsequent word in a name-class respectively, and they must exclude

counts for the other type. Therefore, the subscript first in the former implies that the

value of the previous word in the complete model is restricted to <+begin+,otw>, and

that the values of <W,j>-l in the latter cannot be instantiated with <+begin+,otw>.

This last rectriction is automatic as subsequent words will never be seen after the

magical word <+begin+,otw>.

With this discussion in mind, the equations for estimating the probabilities of the top­

level model can be re-written as follows

Pr(NC = aINC- 1 = b, W-l = c)

Pr(<w,J>first = <p,q>INC = t, NC- 1 = u)

Pr(<w,J> = <p,q>1 <w,J> -1 = <r,s>, NC = t)

A.2 Training sequence

Pr(X 1== alY 1== b, c)

Pr(X 1== p, qlY 1== +begin+, otw, t, u)

Pr(X 1== p, qIY 1== r, s, t)

Given this top-level model, it can be determined how input training sentences are trans­

formed into a sequence of training events for the system. Consider the following input

sentences.

Mr. <PERSON> T. Jones</PERSON> eats in <ORGANISATION>Mcdoneld's</OR­
GANISATION>. Mr. <PERSON>Jones</PERSON> is eating apples.

Table A.l shows the training events which these two simple sentences produce. Note

that actually shorter names are used in the implementation of siNymble. For example,

Not-A-Name=NAN, first-word=fwd, Start-Of-Sent=SOS, etc. These shorter names will

be used hereafter.

A.3 Decoding sequence

Now it can be determined how new sentences are transformed into a sequence of decod­

ing events to be presented to siNymble's hidden Markov model. Consider the following

input sentence.

APPENDIX A. NYMBLE IMPLEMENTATION 183

Table A.I: Training events for siNymble's hidden Markov model.

I NC I w I F I w 1 I F 1 I NC - 1

NAN mr. fwd +begin+ otw SOS
NAN +end+ otw mr. fwd NAN
PER t. cpp +begin+ otw NAN
PER jones icp t. cpp PER
PER +end+ otw jones icp PER
NAN eats ucp +begin+ otw PER
NAN in ucp eats ucp NAl\"
NAN +end+ otw in ucp NA;';:
ORG mcdoneld icp +begin+ otw NAT\"
ORG 's otw mcdoneld icp ORG
ORG +end+ otw 's otw ORG
NAN otw +begin+ otw ORG
NAN +end+ otw otw NA:,\
NAN mr. fwd +begin+ otw SOS
NAN +end+ otw mr. fwd ::\A::\
PER jones icp +begin+ otw ::\A::\
PER +end+ otw jones icp PER
NAN is ucp +begin+ otw PER
NAN eating ucp is ucp NAN
NAN apples ucp eating ucp ~A:\T

NAN otw apples ucp :,\A::\
NAN +end+ otw otw ::\A:\"

Table A.2: Decoding events for siNymble's hidden Markov model.

- -
mr. fwd +end+ otw

jones icp mr. fwd
eats ucp jones icp

+UNK+ ucp eats ucp

in ucp +UNK+ ucp

+UNK+ icp III ucp
otw +UNK+ icp

Mr. Jones eats bananas in Starebucks.

Table A.2 shows the decoding sequence for this sentence. The token +UNK+ is an special

token used by siNymble when managing words which are not seen during training.

Section A.4 discusses this cases in more detail. Given the training events in table A.l,

Nymble finds that the most likely word/name-class sequence for these events is

APPENDIX A. NYMBLE IMPLEMENTATION

Pr(NANj808, +end+) . Pr(<mr·,fwd>INAN, 80S).

Pr(<+end+,otw>1 <mr.,fwd>, NAN).

Pr(PERINAN, mr.) . Pr(<mr·,fwd>IPER, NAN).

Pr(<+end+,otw>1 <jones,icp>, PER).

Pr(NANjPER,jones) . Pr(<eats,ucp> I NAN, PER).

Pr(<+ UNK +,ucp>1 <eats, ucp> , NAN).

Pr(<in,ucp>I <+ UNK +,ucp>, NAN).

Pr(<+end+,otw>1 <in,ucp>, NAN).

Pr(ORGINAN, in)· Pr(<+ UNK+,icp>IORG, NAN).

Pr(<+end+,otw>I<+ UNK+,icp>, ORG).

Pr(PERINAN, mr.) . Pr(<jones, icp> I PER, NAN).

Pr(<+end+,otw>1 <.,otw>, NAN).
Pr(E08INAN, .)

which corresponds to the correct sequence of named entity tags.

A.4 Unknown words

184

As any corpus-trained learner, siN ymble will encounter unknown words -words which

have not been seen in the training data- during decoding. The approach for handling

unknown words is quite simple though the exact procedure is not very clear. Bikel et al.
say

" ... we hold up 50% of our data to train the unknown word model (the vo­

cabulary is built up on the first 50%), save these counts in training data file,

then hold out the other 50% and concatenate these bigrams counts with the

first unknown word-training file."

The interpretation of this approach given here is the following: using a vocabulary built

up on the first half of the training data, counts are collected for all training bigram; when

a bigram contains unknown words, they are replaced by the speciallexeme +UNK+ so

that statistics for this token can be accumulated; then, the process is repeated but using

a vocabulary built up from the other half of the training data. The frequencies obtained

are then added together, which results in a model of ''unknown words occurring in the

midst of known words" (Bikel et al. 1997). Later when a bigram is found to contain

unknown words during decoding, this model is used to estimated the equations which

defines the top-level model.

A.5 Estimating top-level and back-off models

As with any n-gram language model, Nymble's top-level model also requires less in­

formed models in which rely when a particular bigram has not been seen in the training

APPENDIX A. NYMBLE IMPLEMENTATION 185

set. In this section, these schema is looked in detail and re-formulated in terms of the

complete models. Table 3.4 presents these models as defined in Bikel et al. (1997).

The top-level model estimation for name-class generation can be re-written as

Pr(NC = aINC_ 1 = b, W-1 = c) Pr(X F alY F b, c)
c(X F aIY F b,c)

c(X F *IY F b,c)

(A.7)

During decoding, if the event e = (NC = aINC_1 = b, W-1 = c) has not been seen

during training, siNymble will resort to the event e = (NC = aINC_1 = b), whose

estimation can be written as

Pr(NC = aINC- 1 = b) Pr(X F aIY F b)

c(X F aIY F b)

c(X F *IY F b)

(A.8)

If this event has also not been seen during training, the system will back off further to

the event e = (N C = a), which is re-formulated to

Pr(NC= a) Pr(X F aIY F *)

c(X F aIY F *)

c(X F *IY F *)

(A.9)

Finally, if this event is also unknown for the system, it will be backed off to a default

constant probability given by

(A.I0)

where IDNCI is the number of name-class values seen for the variable NC in the name­

class complete model (which is the same number as IDNC_1lthough the actual sets are

different as the former contains the special state EOS in addition to the name-class

regions, whereas the latter contains the special state SOS instead).

From section A.l, the top-level model estimation for first words of a name-class can be

written as

Pr(<w,!>jirst = <p,q>INC = t, NC- 1 = u)

=

Pr(X F p, qIY F +begin+,otw, t, u) (A.11)

c(X F p, qIY F +begin+,otw, t, u)

c(X F *IY F +begin+,otw, t, u)

The back-off event for this top-level component is «w,f>= <p,q>1 <w,f> -1 = <+begin+,

otw>, NC=t), whose sample probability is estimated by

Pr(<w,J> = <p,q>1 <w,J> -1 = <+begin+,otw>, NC=t) = PrCY F p, qIY F +begin+,otw, t) (A.12)

_ c(X F p, qIY F + begin+,otw, t)

- c(X F *IY F +begin+,otw, t)

APPENDIX A. NYMBLE IMPLEMENTATION 186

When there has been no such event in the training data, siNymble resorts to the event

«w,j> = <p,q>ING = t), which is estimated as

Pr{ <w,J> = <p,q>ING = t) - Pr{X FP,qIY F t)
c{X F p,qlY F t)
c{X F *IY F t)

(A.13)

If this event is also unknown, the system backs off to the multiplication of the proba­

bilities of the events (w = piNG = t) and (f = qlNG = t), thus

Pr{w = piNG = t) . Pr(J = qlNG = t) Pr{X F plY F t) . Pr(X F qlY F t) (A.I4)

= c(X F plY F t) . c(X F qIY F t)
c{X F *IY F t) c(X F *IY F t)

If at least one of this events has not been seen during training, siNymble backs off to a

default constant probability given by
1

(A.I5)

where IVwl is the number of different words seen for the variable w, IVfl is the number

of different lexical features seen for the variable f in the word complete model. Once

more, these numbers are the same as IVw-11 and IVf-11 (though Vw i= V W _ I , as the

first domain contains the magic word +end+ whereas the second one contains the magic

word +begin+ instead).

Finally, the estimation for the top-level component to generate subsequent words of a

name-class can be written as

Pr{ <w,J> = <p,q>1 <w,J> -1 = <r,s>, NG = t) - Pr(X F p, qIY F r, s, t) (A.16)

=
c{X F p, qIY F r, s, t)
c(X F *IY F r,s, t)

remembering that the previous word will never be instantiated with the magic word

<+begin+,otw>.

When this estimation is not possible, siNymble follows the backing-off sequence to the

models given in equations A.13, A.14 and A.15, until a result is obtained.

A.6 The backing-off and smoothing strategy

Another important aspect of n-gram language model is that they normarly require an

smoothing procedure of the probabilities obtained from training. Bikel et al. (1997)

defined an interesting smoothing strategy which automatically performs backing off

w hen necessary.

This is achieved by assigning the appropriate weights to each model and its immediate

back-off model. When both models are relevant, an smoothed estimation for the main

APPENDIX A. NYMBLE IMPLEMENTATION 187

model is obtained. When there is no information available for a main event, a backed

off estimation is attained by making the weight for the main model zero and one for

the secondary one. The procedure to calculate a model's weight is again rather simple

though important details that were missing had to be filled:

"If computing Pr(XIY), assign weight A to the direct computation... and

weight (1 - A) to the back-off model, where

A = (1 _ old c(Y)) 1
c(Y) 1 + unique outcomes of Y

c(Y)

(A.17)

where 'old c(Y)' is the sample size of the model from which we are backing

off ...

This method ... overcomes the problem when a back-off model has roughly

the same amount of training as the current model, via the first factor. ..

which essentially ignores the back-off model and puts all the weight on the

primary model in such an equi-trained situation ... " (Bikel et al. 1997)

"The second factor... is based on the notion that the number of unique

outcomes over the sample size is a crude measure of the certainty of the

modeL." (Bikel et al. 1999)

From this, it can be interpreted that the computation of the probability of a top-model

M with back-off models B l , B2, .. ·, Bk has the form

Pr (M) = AM Pr (M) + (1 - AM)'

(AB1 Pr (Bl) + (1- AB1)·

(AB2 Pr (B2) + (1 - AB2)'

which is formulated by the recursive expression of equation A.18 in which m is a primary

model and b is the immediate back-off model for m.

_ _ { Am Pr (m) + (1 - Am) Pr (b) if a back-off model exists (A.I8)
Pr (m) - Pr (m) otherwise

The hard work here is to determine what exactly 'old c(Y)' means and how 'unique

outcomes of Y' are counted for each model.

First it must be noted that c(Y) in equation A.17 is equivalent to c(X F *IY F y) in the

complete model notation used here. So, 'old c(Y)' must correspond to c(X F *Ir F y)

for the model being backed off. Because top-level components are never secondary

models, it can be assumed that 'old c(Y) = 0' for them, that is, the first term of A is

always one for top-level models.

APPENDIX A. NYMBLE IMPLEMENTATION 188

For name-class models, 'old c(Y)' is straighforward as it can clearly be seen that each

secondary model frees one variable with respect to the primary one. Thus, 'old c(X F
*IY F b)' is c(X F *IY F b, c) and 'old c(X F *IY F *)' is c(X F *IY F b).

Word models are more tricky though, as some transformations are needed. At the

beginning, things are quite straight as 'old c(X F p, qlY F + begin+,otw, t)' is the

previous c(X F p, qlY F +begin+,otw, t, u) and 'old c(X F p, qlY F, t)' is c(X F
p, qlY F r, s, t) whether <r,s> is the magical begin word (as for first word generation)

or not (as for subsequent word generation) respectively.

Problems arise for the model M = Pr(X F plY F t) . Pr(X F qlY F t). Each factor

in this model is treated as an independent ~odel, so that wha! it is multiplied are the

estimations after smoothing. That is M = Pr(X F plY F t)· Pr(X F qlY F t). Then,

it must be solved the problem that free variables in the Y part in M has the same free

variables than the Y part in the primary model c(X F p, qlY F t), which would always

make the first term of A equals to zero for these submodels. This is done by defining

'old c(X F plY F t)' and 'old c(X F qlY F t)' as c(X F p, qlY F t), which makes

perfect sense with the equi-trained situation explained in Bikel et al. (1997), though

variables belonging to the X are used.

For determining 'unique outcomes of Y', Bikel et al. give further clues with the following

example.

"As an example-disregarding the first factor-if we saw the bigram 'come

hither' once in training and we saw 'come here' three times, and nowhere

else did we see the word 'come' in NOT-A-NAME class, when computing

Pr('hither'l 'come', NO T-A-NAME) , we would back off to the unigram prob­

ability Pr('hither'l NO T-A-NAME) with a weight of ~, since the number of

unique outcomes for the word-state for 'come' would be two, and the total

number of times 'come' had been the preceding word in a bigram would be

four (a 1/ (1 + i) = ~ weight for the bigram probability, a 1- ~ = ~ weight

for the back-off model)."

Analising this example, it can be noticed that 'unique outcomes of Y' follows the same

considerations than for 'old c(Y)' by replacing the function c(X F xlY F y) by the

function u(X F xlY F y) define as

u(X F= xIY F= y) -- {01 if c(X F= xIY F= y) > 0

otherwise

Table A.3 shows the formulation of the A-weight for each model used by siNymble.

APPENDIX A. NYMBLE IMPLEMENTATION 189

Table A.3: The A-weight for each model used by siNymble.

Model ,X-weight

1

Pr(X F alY F b, c) 1+ u(~pal:Pb,c)
c(XP*lypb,c)

Pr(X F aIY F b)
(1 _ C(XF*IYpb,c)) . 1

'(XF IYFb) 1+ u(XP*lypb) c * c(XP*lypb)

Pr(X F alY F *)
(1 _ C(XP*IYPb)) .. 1.

'(XF IYF) 1+ u(XP*IYP*) c * * c(XP*IYP*)

1

Pr(X F p,qIY F+begin+, otw, t,u) 1 + ~(Xpp,qlfP+begin+,otw,t,u)
c(XPp,qIYp+begin+,otw,t,u)

Pr(X F p, qIY F +begin+, otw, t)
(1 _ C(XFP,qIYP+begin+,otw,t,U)). 1

, A '. 1 u(XPp,qIYp+begin+,otw,t)
c(XFP,qIYF+begm+,otw,t) + c(XPp,qIYp+begin+,otw,t)

1

Pr(X F P, qIY F r, s, t) 1+ u(~Pp,qlypr,s,t)
c(XPp,qIYpr,s,t)

Pr(X F P, qIY F t)
(1 c(Xep qIYer s t)) 1 -, ' " 1 u(XPp,qIYpt)

c(XFP,qIYH) + c(XPp,qlypt)

Pr(X F PlY F t)
(C(XFP qIYH)) , 1 1 - ;: x ' " u(XppIYpt)

c(XFPIYH) 1+ c(XPpIYPt)

Pr(X F qIY F t) 1 - " " u(XPqIYPt) (C(XFP qIYH)) 1
c(XFqIYH) 1+ c(XPqIYPt)

Table A.4: Training events for the name-class complete model.

NAN SOS +end+
PER NAN mr.
NAN PER jones
ORG KAN in
:\"AN ORG 's
EOS :\"AN
:\"Al\" SOS +end+
PER l\AN mr.
:\"A:\, PER jones

EOS :\,A:\"

A.7 Training: a walk-through example

The first step is to generate the actual training events for each of the complete models

in use. Table A.4 shows the training events for the name-class complete model given the

training input of table A.l on page 183. Note how only transitions between name-classes

APPENDIX A. NYMBLE IMPLEMENTATION 190

Table A.S: Training events for the word complete model.

w I f I w 1 I f 1 I NC I NC 1 I - -

mr. fwd +begin+ otw NAN SOS
+end+ otw mr. fwd NAN ~A~

t. cpp +begin+ otw PER NAN
jones icp t. cpp PER PER

+end+ otw jones icp PER PER
eats ucp +begin+ otw NAN PER
ill ucp eats ucp NAN NAN

+end+ otw in ucp NAN NAN
mcdoneld icp +begin+ otw ORG ~AN

's otw mcdonald icp ORG ORG
+end+ otw 's otw ORG ORG

otw +begin+ otw NA~ ORG
+end+ otw otw j',"A~ ~A~

mr. fwd +begin+ otw ~A~ SOS
+end+ otw mr. fwd :\,A~ NA~

jones icp +begin+ otw PER ~A~

+end+ otw jones icp PER PER
is ucp +begin+ otw :\"AN PER

eating ucp is ucp XAN NAN
apples ucp eating ucp ~AN NAN

otw apples ucp NAN NAN
+end+ otw otw NAN NA~

are considered and that transitions to the special state EOS has been included.

Table A.5 presents the training events for the word complete model which closely follows

the training input in table A.L

Now, it is necessary to apply the procedure for generating statistics about unknown

word as explained in section A.4. Tables A.6 and A.7 show the resulting training events

for the example input. Note how these tables has twice the original amount of training.

The first step of the training is the counting of events. Tables A.8 and A.9 detail the

resulting figures for all required counts.

APPENDIX A. NYMBLE IMPLEMENTATION 191

Table A.6: Training events for
the name-class complete model.

I NC I NC_1 I W-1

NAN SOS +end+
PER NAN mr.
NAN PER jones
ORG NAN in
NAN ORG 's
EOS NAN +UNK+
NAN SOS +end+
PER NAN mr.
NAN PER jones
EOS NAN +UNK+
NAN SOS +end+
PER NAN mr.
NAN PER jones
ORG NAN +UNK+
NAN ORG +UNK+
EOS NAN
NAN SOS +end+
PER NAN mr.
NAN PER jones
EOS NAN

Table A.7: Training events for the word complete model.

w I f I w 1 I f 1 I NC I NC - 1

mr. fwd +begin+ otw NAX SOS
+end+ otw mr. fwd XAX :\"A~

t. epp +begin+ otw PER NAX
jones icp t. epp PER PER

+end+ otw jones iep PER PER
eats uep +begin+ otw NA~ PER

III uep eats uep XAN ~AX

+end+ otw in uep XAX XAX
mcdonald icp +begin+ otw ORG XAX

's otw mcdonald icp ORG ORG
+end+ otw 's otw ORG ORG

+UNK+ otw +begin+ otw NAN ORG
+end+ otw +UNK+ otw NAN XAX

mr. fwd +begin+ otw NAN SOS
+end+ otw mr. fwd NAN XAX
jones icp +begin+ otw PER XAX

+end+ otw Jones iep PER PER
+UNK+ uep +begin+ otw NAN PER
+UNK+ uep +UNK+ uep NAN XAX

+UNK+ uep +"cXK+ uep NAX XAX

+UNK+ otw +"Cl\K+ uep NAX XAX

+end+ otw +UNK+ otw XAX XAX
mr. fwd +begin+ otw XAN SOS

+end+ otw mr. fwd XAX XAX

+UNK+ epp +begin+ otw PER XAX

jones iep +UNK+ epp PER PER
+end+ otw jones icp PER PER

+UNK+ uep +begin+ otw XAX PER
+UNK+ uep +UNK+ uep NAX XAX

+end+ otw +UNK+ uep XAX NAX

+UNK+ icp +begin+ otw ORG XAX

+"cNK+ otw +UNK+ icp ORG ORG
+end+ otw +UNK+ otw ORG ORG

otw +begin+ otw NAN ORG
+end+ otw otw NAX XAX :

mr. fwd +begin+ otw NAN SOS !

+end+ otw mr. fwd NAX XA~

jones icp +begin+ otw PER X AX I

+end+ otw jones iep PER PER 1
is uep +begin+ otw l\AX PER l

APPENDIX A. NYMBLE IMPLEMENTATION 192

Table A.8: The counting function applied to the events for the name-class complete model.

EOS NAN 2 2
NAN ORG 's 1 1
NAN PER jones 2 2
NAN SOS +end+ 2 2
ORG NAN in 1 1
PER NAN mr. 2 2

EOS NAN 2 5
NAN ORG 's 1 1
NAN PER jones 2 2

NAN SOS +end+ 2 2

ORG NAN in 1 5
PER NAN mr. 2 5

I NC - a I NC 1 = b I w 1 I cCX 1= alY 1= *) I c(X 1= *IY 1= *) I - - -

EOS NAN 2 10
NAN ORG 's 5 10
NAN PER jones 5 10
~A~ SOS +end+ 5 10
ORG NAN in 1 10
PER NAN mr. 2 10

APPENDIX A. NYMBLE IMPLEMENTATION 193

Table A.9: The counting function applied to the events for the word complete model.

w=p f= q NC=t NC_ 1 = u c(X F= p,ql c(X F= *1 I
Y F= +begin+, otw, t, u) Y F= +begin+, otw, t. u)

otw NAN ORG 1 1
eats ucp NAN PER 1 2

is ucp NAN PER 1 2
mr. fwd NAN SOS 2 2

mcdonald icp ORG NAN 1 1
jones icp PER NAN 1 2

t. cpp PER NAN 1 2

w=p f=q NC=t NC_ 1
c(X po p,ql c(X po *1

Y po +begin+, otw, t) Y po +begin+, otw, t)
otw NAN ORG 1 5

eats ucp NAN PER 1 5
is ucp NAN PER 1 5

mr. fwd NAN SOS 2 5
mcdonald icp ORG NAN 1 1

jones icp PER NAN 1 2
t. cpp PER NAN 1 2

W=p f= q W-l = r f-l = s NC=t NC_ 1
c(X F p,ql c(X F *1

YFr,s,t) Ypor,s,t)

's otw mcdonald icp ORG ORG 1 1
+end+ otw 's otw ORG ORG 1 1
+end+ otw otw NAN NAN 2 2
+end+ otw in ucp NAN NAN 1 1
+cnd+ otw jones icp PER PER 2 2
+end+ otw mr. fwd NAN NAN 2 2

otw apples ucp NAN NAN 1 1
apples ucp eating ucp NAN NAN 1 1

eating ucp is ucp NAN NAN 1 1

III ucp eats ucp NAN NAN 1 1

jones icp t. cpp PER PER 1 1

w=p f= q W-l Ll NC=t NC_ 1
c(X F= p,ql c(X F= pi c(X F ql c(X F= *1

Y F= t) Y F= t) Y F= t) Y F t)

's otw mcdonald icp ORG ORG 1 1 2 3

+end+ otw 's otw ORG ORG 1 1 2 3

I end + otw otw NAN NAN 5 5 7 14

. end T otw in ucp NAN NAN 5 5 7 14

fend f- otw jones icp PER PER 2 2 2 5

+end+ otw mr. fwd NAN NAN 5 5 '7 1..t

otw +begin+ otw NAN ORG 2 2 7 11

otw apples ucp NAN NAN 2 2 7 11

apples ucp eating ucp NAN NAN 1 1 5 11

eating ucp is ucp NAN NAN 1 1 5 14

eats ucp +begin+ otw NAN PER 1 1 5 14

in ucp eats ucp NAN NAN 1 1 5 1..t

is ucp +begin+ otw NAN PER 1 1 5 1-1

jones icp + begin + otw PER NAN 2 2 2 .J ,

jones icp t. cpp PER PER 2 2 2 .J -!
mcdonald icp +begin+ otw ORG NAN 1 1 1 :l

mr. fwd -I begin+ otw NAN SOS 2 2 2 11

t. cpp f- begin+ otw PER NAN 1 1 1 v J

APPENDIX A. NYMBLE IMPLEMENTATION 194

Table A.10: Sample probabilities for the name-class complete model.

NC=a NC_ 1 = b W-l =c Pr(X F al Pr(X F al Pr(X F al 1
Y F b,c) Y Fb) Y F *) IDNCr

EOS NAN 1.0 0.4 0.2 0.25
NAN ORG 's 1.0 1.0 0.5 0.25
NAN PER jones 1.0 1.0 0.5 0.25
NAN SOS +end+ 1.0 1.0 0.5 0.25
ORG NAN in 1.0 0.2 0.1 0.25
PER NAN mr. 1.0 0.4 0.2 0.25

Table A.ll: Sample probabilities for the word complete model.

w=p f=q NC=t NC_1 = u Pr(X ~ p,ql Pr(X ~ p,ql
Y ~ +begin+, otw, t, u) Y ~ +begin+,otw, t)

otw NAN URG 1.0 0.2
eats ucp NAN PER 0.5 0.2

is ucp NAN PER 0.5 0.2
mr. fwd NAN SUS 0.5 0.5

mcdonald icp ORG NAN 1.0 1.0
jones icp PER NAN 1.0 0.4

t. cpp PER NAN 0.5 0.5

I w - p I f - q I w 1 - r f 1 - s I NC - t I NC 1 I Pr(X F p qlY F t) - - - - r, s. ,
's otw mcdonald icp ORG ORG 1.0

+end+ otw 's otw ORG ORG 1.0
+end+ otw otw NAN NAN 1.0
+end+ otw m ucp NAN NAN 1.0
+end+ otw jones lCP PER PER 1.0
+end+ otw mr. fwd NAN NAN 1.0

otw apples ucp NAN NAN 1.0
apples ucp eating ucp NAN NAN 1.0
eating ucp IS ucp NAN NAN 1.0

m ucp eats ucp NAN NAN 1.0
jones lCP t. cpp PER PER 1.0

w=p f=q W-l Ll NC=t NC_1
Pr(X F p,ql Pr(X F pi Pr(X F ql

IDwllDfl1 Y Ft) Y Ft) Y Ft)
's otw mcdonald icp ORG ORG 0.33333 0.33333 0.66667 0.01667

+end+ otw 's otw ORG ORG 0.33333 0.33333 0.66667 0.01667

Tend+ otw otw NAN NAN 0.35714 0.35714 0.5 0.01667

+end+ otw in ucp NAN N-AN 0.35714 0.35714 0.5 0.01667

+end+ otw jones icp PER PER 0.4 0.4 0.4 0.01667

+end+ otw mr. Twd NAN NAN 0.35714 0.35714 0.5 0.01667

otw +begin+ otw NAN ORG 0.14286 0.14286 0.5 0.01667

otw apples ucp NAN NAN 0.14286 0.14286 0.5 0.01667

apples ucp eating ucp NAN NAN 0.07143 0.07143 0.35714 0.01667

eating ucp is ucp NAN NAN 0.07143 0.07143 0.35714 0.01667

eats ucp +begin+ otw NAN PER 0.07143 0.07143 0.35714 0.01667

in ucp eats ucp NAN NAN 0.07143 0.07143 0.35714 0.01667

IS ucp +begin+ otw NAN PEl{ 0.07143 0.07143 0.35714 0.01667

jones icp +begin+ otw PER l'>A~ 0.4 0.4 0.4 0.01667

jones icp t. cpp PER PER 0.4 0.4 0.4 0.01667

mcdonald icp +begin+ otw ORG NAN 0.33333 0.33333 0.33333 0.01667

mr. fwd +begin+ otw NAN SOS 0.14286 0.14286 0.14286 0.01667

t. cpp +begin+ otw PER NAN 0.2 0.2 0.2 0.01667

The probability of each model for every event in the training can be calculated now.

Tables A.I0 and A.ll list the probabilities of each complete model for every training

event. Note that these probabilities are not the final smoothed probabilities which are

actually used.

APPENDIX A. NYMBLE IMPLEMENTATION 195

Table A.12: The unique function applied to the events for the name-class complete model.

! NC ! NC 1 b! w 1 c! u(X F *IY F b c) I u(X F *IY F b) I A(X F I A

EOS
, u * Y F *) NAN 1 3 6 NAN ORG s 1 1 6

l'JAN PER jones 1 1
NAN sus +end+

6
1 1 6 ORC; NAN in 1 3 6 PEl{ NAN mr. 1 3 6

Table A.13: The unique function applied to the events for the word complete model.

w f NC=t NC_ 1 = U f1(X F *1 f1(X F *1
Y F +begin+, otw, t, u) Y F +begin+,otw, t)

otw NAN ORG 1 4
eats ucp NAN PER 2 4

is ucp NAN PER 2 4
mr. I fwd NAN l'OS 1 4

mcdonald icp ORG NAN 1 1
jones icp PER NAN 2 2

t. cpp PER NAN 2 2

w f f 1 = s NC - t NC 1 u(X F *IY Frs t) I - - , ,
's otw mcdonald icp -URU URC; 1

+end+ otw 's otw ORC ORC 1
+end+ otw otw NAN NAN 1
+end+ otw in ucp NAN NAN 1
+end+ otw jones icp PER PER 1
+end+ otw mr. fwd NAN NAN 1

otw apples ucp NAN NAN 1
apples ucp eating ucp NAN NAN 1
eating ucp is ucp NAN NAN 1

in ucp eats ucp NAN NAN 1
jones icp t. cpp PER PER 1

W=p f=q W-l Ll NC=t NC_ 1
u(X ~ pi u(X ~ ql u(X ~ *1

Y ~t) Y ~ t) Y ~ t)
's otw mcdonald lCP ORG ORU 1 2 3

+end+ otw 's otw ORG ORG 1 2 3
+end+ otw otw NAN NAN 3 5 11
+end+ otw in ucp NAN NA1~ 3 5 11
+end+ otw jones lCP PER PER 1 1 4

+end+ otw mr. I fwd NAN ~A~ 3 5 11
otw +begin+ otw NAN ORG 2 5 11
otw apples Ucp NAN NA~ 2 5 11

apples ucp eating Ucp NAN ~A~ 1 5 11
eating ucp IS ucp NAN ~A~ 1 5 11
eats Ucp + begin + otw NAN PER 1 5 11
III Ucp eats Ucp NAN NAN 1 5 11
IS ucp +begin+ otw NAN PER 1 5 11

Jones icp +begin+ otw PER NAN 2 2 4

jones icp t. cpp PER PER 2 2 4

mcdonald lCP +begin+ otw ORG NAN 1 1 3

mr. fwd + begin + otw NAN SOS 1 1 11

t. cpp +begin+ otw PER NAN 1 1 4

Therefore, the next step is to calculate the A-weights for each model. For that, first it

is needed the unique counts for each primary model. These are shown in Tables A.12

and A.13.

APPENDIX A. NYMBLE IMPLEMENTATION 196

Table A.14: A-weights for the name-class complete model.

NC-a NC_ 1 - b W-l - C Pr(X F ali: F b, c) Pr(X F ali: F b) Pr(X F ali: F *)
),0),0), AO A

EOS NAN 0.66667 0.625 0.375 0.625 0.3125

NAN ORG 's 0.5 0.5 0 0.625 0.5625

NAN PER jones 0.66667 0.66667 0 0.625 0.5

NAN SOS +end+ 0.66667 0.66667 0 0.625 0.5

ORG NAN in 0.5 0.625 0.5 0.625 0.3125

PER NAN mr. 0.66667 0.625 0.375 0.625 0.3125

Now the A-weights can be computed for each model, though there is an important

observation that needs to be made here. For each model in the middle of the backing­

off/smoothing strategy -i.e. not a top-level component nor a final constant, default

model- two A-weights are actually calculated: one for smoothing a higher-level model

(which considers 'old c(Y)') and one for backing off a higher-level model (which fixes

'old c(Y)' to zero). It will be written A 0 for the latter weight to differentiate it

from the former. Moreover, the model Pr(<wJ>JNC) smoothes two different models

-namely Pr(<wJ>J <+begin+,otw>, NC) and Pr(<wJ>J <wJ> -1' NC)- and conse­

quently it has two smoothing A-weights. For this model, A f will be written to denote

the weight for the first word model and As to denote the weight for the top-level com­

ponent for subsequent words. Tables A.14 and A.15 present the resulting weights for

each model/event.

Finally, the conditions to calculate the final sample probabilities are met. Here the

word complete model is separated into the original two models for first and subsequent

words in a name-class. These figures are compute by applying equation A.18, but

considering that A must be used when doing smoothing and AD when estimating a

back-off probability. Tables A.16, A.17 and A.18 present the final probabilities for the

top-level model and their back-off models.

This same procedure is applied to the events with unknwon words. Tables A.19, A.20

and A.21 show the final probabilities for the top-level model and their back-off models

considering unknown words.

APPENDIX A. NYMBLE IMPLEMENTATION 197

Table A.IS: A-weights for the word complete model.

w=p f = q NC = t NC_ 1 = u Pr(X F p,ql
Y +begin+, otw, t

W = p f = q W-l = r Ll = s NC = t NC_ 1 Pr(X F p, <tJy F r, s, t)
A

s otw mc lCP
+en + otw otw
+en + otw otw
+en + otw m
+en + otw Jones
+en + otw mr.

otw app es
ucp eatmg
UCp IS

m UCp eats
Jones lCP t.

W=p f=q Pr(X F p, qlY F t)

s otw
+en + otw
+en + otw
+en + otw

+ otw
+ otw

otw

app es
eatmg IS

eats + egm+
eats

+ egm+
+ egm+ otw

t. cpp
egm+ otw
egm+ otw
egm+ otw

otw
otw
otw
otw
otw
otw

app es Ucp
eatmg Ucp IS

eats Ucp - egm+
m Ucp eats
IS Ucp egm+

Jones lCP egm+ otw
lCP t. cpp

egm...l... otw
egm-r otw
egm+ otw

APPENDIX A. NYMBLE IMPLEMENTATION 198

Table A.t6: Final sample probabilities for name-class generation.

NC NC_ 1 W-l Pr(NCINC_1 , W-l) Pr(NqNC d Pr(NC) 1
IDNCI

EOS NAN 0.76549 0.33789 0.21875 0.25
NAN ORG 's 0.69531 0.69531 0.40625 0.25
NAN PER jones 0.79167 0.79167 0.40625 0.25
NAN SOS +end+ 0.79167 0.79167 0.40625 0.25
ORG NAN in 0.60078 0.20117 0.15625 0.25
PER NAN mr. 0.76549 0.33789 0.21875 0.25

Table A.17: Final sample probabilities for first words generation.

w f W-l Ll NC NC_1
Pr(<w, f>first I Pr«w,f> I Pr«w,f>INC) ~r(wINq. 1

NC,NC_ 1) <+begin+, otw>, NC) Pr(fINC)
I'D_II'D,I

's otw mcdonald icp ORG ORG 0.16816 0.16816 0.16816 0.05979 0.01667
T end I otw 's otw ORG ORG 0.16816 0.16816 0.16816 0.05979 0.01667
! end! otw otw NAN NAN 0.20071 0.20071 0.20071 0.06852 0.01667
I end I~ otw in ucp NAN NAN 0.22235 0.22235 0.22235 0.07410 0.01667
'end, otw jones icp PER PER 0.55938 0.13500 0.0816 0.02382 0.01667
I end I otw mr. fwd NAN NAN 0.0816 0.0816 0.0816 0.02382 0.01667

otw +begin+ otw NAN ORG 0.04112 0.04112 0.04112 0.00823 0.01667
otw apples ucp NAN NAN 0.04112 0.04112 0.04112 0.00823 0.01667

apples ucp eating ucp NAN NAN 0.29245 0.12326 0.04112 0.00823 0.01667
eating ucp is ucp NAN NAN 0.04112 0.04112 0.04112 0.00823 0.01667
eats ucp +begin+ otw NAN PER 0.29245 0.12326 0.04112 0.00823 0.01667
in ucp eats ucp NAN NAN 0.31676 0.31676 0.22235 0.04340 0.01667
is ucp +begin+ otw NAN PER 0.22235 0.22235 0.22235 0.04340 0.01667

jones icp + begin + otw PER NAN 0.55565 0.55565 0.16681 0.03063 0.01667
jones icp t. cpp PER PER 0.72258 0.24516 0.08012 0.01016 0.01667

mcdonald icp +begin+ otw ORG NAN 0.28343 0.28343 0.11123 0.01174 0.01667

mr. fwd +begin+ otw NAN SOS 0.08012 0.08012 0.10079 0.10079 0.01667

t. cpp +begin+ otw PER NAN 0.11123 0.11123 0.10833 0.10833 0.01667

Table A.tS: Final sample probabilities for subsequent words generation.

Pr«w,f> I Pr(<w, f>INC)
Pr(wINC) 1

w f W-l Ll NC NC_ 1 <W,f>_l,NC) Pr(fINC)
Iv_lIv,1

's otw mcdonald icp ORG ORG 0.55655 0.16816 0.05979 0.01667

+end+ otw 's otw ORG ORG 0.55655 0.16816 0.05979 0.01667

+end+ otw otw NAN NAN 0.72409 0.20071 0.06852 0.01667

+end+ otw in ucp NAN NAN 0.59325 0.20071 0.06852 0.01667

+end+ otw jones icp PER PER 0.71117 0.22235 0.07410 0.01667

+end+ otw mr. fwd NAN NAN 0.72409 0.20071 0.06852 0.01667

otw +begin+ otw NAN ORG 0.0816 0.0816 0.02382 0.01667

otw apples ucp NAN NAN 0.53802 0.0816 0.02382 0.01667

apples ucp eating ucp NAN NAN 0.51918 0.04112 0.00823 0.01667

eating ucp is ucp NAN NAN 0.51918 0.04112 0.00823 0.01667

eats ucp +begin+ otw NAN PER 0.04112 0.04112 0.00823 0.01667

in ucp eats ucp NAN NAN 0.51918 0.04112 0.00823 0.01667

is +begin+ otw NAN PER 0.04112 0.04112 0.00823 0.01667
ucp

jones icp +begin+ otw PER NAN 0.22235 0.22235 0.04340 0.01667

jones icp t. PER PER 0.58897 0.22235 0.04340 0.01667
cpp

mcdonald icp +begin+ otw ORG NAN 0.16681 0.16681 0.03063 0.01667

fwd +begin+ otw NAN SOS 0.08012 0.08012 0.01016 0.01667
IDr.

t. +begin+ otw PER NAN 0.11123 0.11123 0.01l7~ 0.01667
cpp

APPENDIX A. NYMBLE IMPLEMENTATION

Table A.19: Final sample probabilities for nam~class generation considering unknown words.

Table A.20: Final sample probabilities for first words generation considering unknown words.

w f NC NC_1

s
+end+
+end+
+end+

+UNK+
+UNK+
+UNK+
+UNK+
+UNK+
+UNK+
+UNK+

otw 1 UlllJ UIlG
otw ! UlllJ UIlG
otwlNAN NAN
otw 1 P.ti1l P.ti1l
Cp): 1 P.ti1l NAN
lcp ORG NAN
otw ,NA1'1 UlllJ
otw ,ORG UR{j
otwiNAN ~
ucplNAN PElf
ucplNAN NAN
otw NAN ORG
otw NAN NAN

apples ucp NAN NAN
eatmlf ucp NAN NAN
eats ucp NAN PER
m ucp NAN NAN
18 ucp NAN PJ:;J:(.

jones lcp 1 P.ti1l NAN
jones lcp 1 P.ti1l PJ:;H.

mcdonald lCO 1 UlllJ NAN
mr. 1 twa 1 NAN ::;U::;
t. I co): 1 P.ti1l NAN

Pr(<w, f>flrst I
NC,NC_1)

U.08533
U.16804
U.2228U
U.250U9
0.15918
0.28078
0.28705
0.09565
0.05681
0.33807
0.11365
0.28276

0.046
U.02336
U.02336
uJ:6324
U.U233ti
U~4
U.35UUti
0.25009
0.27826
0.83716
0.15918

Pr«w,f> I
<+begin+, otw>, NC)

0.08533
0.16804
0.22280
0.25009
0.15918
U.28U78
U.08058
O:OO56S-
O:u5ff!IT
0.1533
0.11365
0.07414
0.04600
U.02336
U.02336
0JJ6854
O~
0.0685;r
0.35006
0.25009
0.2'r826
0.27148
0.15918

Pr« w,f >INC)

0.08533
IT.I01SU4
1T.22280
1T.~50U9
O . .16286
O.)8783
O.)t>titi.

o.J:JO!!l
0.1365
0.1l365
U. J4tiUl
O. J4tiUU
O. J~33ti
O.O~;:s;:so

0.02336
--U:02336
-o.U2336

0.D!!4UO

Pr(wINC)·
~r(fINC)

0.03104
0.05946

U.1043!!
--U:00621
0.U3040
O.us. .11
0.Ut>946
O.U:Jl11
0.035ti4

-U.03564
If.UI347
O.OIID
0.00553
0.00553

lr.OO553
0.00553

0.0553l
0.U:J:J3U
0.Ql !7
0.01377

--U:00621

1
1D.1WrT

0.01538
10.0I538
10.01538
1 U.01538
1 U.01538
10.~
10.0l538
10.01538
1 U.UI538
1 U.UI538
10]JI538
0.Ql538
0.01538
U.01538
U.01538
OJJI538
O.UI538
0.01538

10.01538
1 U.01538
10.01538
1 U.U1538
10.01538

199

Table A.21: Final sample probabilities for subsequent words generation considering unknown words.

w f W-l Ll NC Pr«w,f> I Pr(<w, f>INC)
~r(wINC). 1

<W,f>_l,NC) Pr(fINC)
Ivwllv,1

's otw mcdonald icp ORG 0.53589 0.08533 0.03104 0.01538

+end+ otw 's otw ORG 0.57024 0.16804 0.05946 0.01538

+end+ otw +UNK+ otw NAN 0.73567 0.2228 0.07549 0.01538

+end+ otw +UNK+ otw ORG 0.57024 0.16804 0.05946 0.01538

+end+ otw +UNK+ ucp NAN 0.19373 0.2228 0.07549 0.01538

+end+ otw otw NAN 0.73567 0.2228 0.07549 0.01538

+end+ otw in ucp NAN 0.60745 0.2228 0.07549 0.01538

+end+ otw jones icp PER 0.83003 0.25009 0.10438 0.01538

+end+ otw mr. fwd NAN 0.83824 0.2228 0.07549 0.01538

+UNK+ cpp +begin+ otw PER 0.06286 0.06286 0.00621 0.01538

+UNK+ icp +begin+ otw ORG 0.08783 0.08783 0.0304 0.01538

+UNK+ otw +begin+ otw NAN 0.05681 0.05681 0.05111 0.01538

+UNK+ otw +UNK+ icp ORG 0.54191 0.09565 0.05946 0.01538

+UNK+ otw +UNK+ ucp NAN 0.14469 0.05681 0.05111 0.01538

+UNK+ ucp +begin+ otw NAN 0.11365 0.11365 0.03564 0.01538

+UNK+ ucp +UNK+ ucp NAN 0.41046 0.11365 0.03564 0.01538

otw +begin+ otw NAN 0.046 0.046 0.01347 0.01538

otw apples ucp NAN 0.52225 0.046 0.01347 0.01538

apples ucp eating ucp NAN 0.51132 0.02336 0.00553 0.01538

eating ucp is ucp NAN 0.51132 0.02336 0.00553 0.01538

eats ucp +begin+ otw NAN 0.02336 0.02336 0.00553 0.01538

in ucp eats ucp NAN 0.51132 0.02336 0.00553 0.01538

is ucp +begin+ otw NAN 0.02336 0.02336 0.00553 0.01538

jones icp +begin+ otw PER 0.25009 0.25009 0.0553 0.01538

jones icp +UNK+ cpp PER 0.61255 0.25009 0.0553 0.01538

jones icp t. cpp PER 0.61255 0.25009 0.0553 0.01538

mcdonald icp +begin+ otw ORG 0.08406 0.08406 0.01587 0.01538

mr. fwd +begin+ otw NAN 0.08898 0.08898 0.01377 0.01538

t. cpp +begin+ otw PER 0.06286 0.06286 0.00621 0.01538

APPENDIX A. NYMBLE IMPLEMENTATION 200

A.8 Decoding: a walk-thorugh example

The first step for applying siNymble is to prepare the sequences of decoding events _

representing sentences- to be presented to the HMM. The example sequence is shown

in table A.2 on page 183.

Bikel et al. (1997) state they use the Viterbi algorithm (Viterbi 1967, Rabiner 1989,

Durbin, Eddy, Krogh and Mitchison 1998) for decoding, though they do not provide

any detail of how this was done. It is evident that the standard Viterbi algorithm is

not applicable as probabilities for transitions and emissions are mixed in the n-gram

language model.

An appropriate version of this algorithm has been created for siNymble. Basically, the

program keeps one possible path which finalises in a given state NC after the emission of

the k-th event <w,f>k in the input sentence. That is, \'DNC - {EOS} \ -the number of

name-classes- different paths are kept at any step. Each of them has associated a prob­

ability 8k(j) where j iterates over the name-classes. When all the words in the sequence

has been emitted, the highest 8 determines the most likely path for that sequence. Al­

gorithm A.l illustrates this procedure in detail. For a complete understanding of this

algorithm, the following clarifications are needed:

l> the special states for the beginning and end of sentences are not considered as

name-classes because it is known a priori that the probability of making a tran­

sition to these states in the middle of the sentence is zero; they are consequently

considered during the initialisation and termination of the algorithm

l> Wk denotes the word only -ignoring the lexical feature f- of the k-th event;

thus W-l in siNymble models becomes W(k-l) for this event

l> the function model(w, W-l) determines whether the algorithm should use the un­

known words model or the model from normal training; that is

{

normal training top-level model if w = +UNK+ or W-l = +UNK+
model(w, W-l) = I d I 'f b th d kn unknown words top-Ieve mo e 1 0 wor s are own

l> Pr ~denotes the final sample probabilities of a top-level component C given the

modality M determined by the function model(w, W-l)

The following is the ouput produced by algorithm A.l for the sample decoding sentence.

INITIALISATION

<mr.,fwd>

APPENDIX A. NYMBLE IMPLEMENTATION

Algorithm A.I: The Viterbi algorithm used by siNymble.

Input: E {<w, 1>0, <W, 1>1, ... , <W, I>n}, the events for a sentence
Output: q*, the indices for the most likely name-class path {NCq*, NC

q
., .•. , NC • }

1: procedure VITERBI(E) 1 2 qn

2: Initialisation:
3: M+-model(wo,+begin+)
4: for each name-class j = 1,2, ... , IDNC - {EOS}I do

1: (.) p" NC(I " FW
5: UO J +- rM NC j SOS, +begin+) . PrM «w, 1>0 INC· SOS)
6: 'l/Jo(j) +- j],

7: end for each
8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

Recursion:

for each event <w, l>kE E, k = 1,2, ... , n do
M +- model(wk,w(k_l))
for each name-class j = 1,2, ... , IDNC - {EOS}I do

for each name-class i = 1,2, ... , IDNC - {EOS}I do
if j = i then

else

"sw
p +- PrM «W,I>k I <W,I>(k_1),NC j)

" sw
p' +- PrM «+end+,otw> I <w, 1>(k-1), NC j)·

" NC
PrM (NC j INC j ,W(k_1»)·

" FW
PrM «w, I>k INC j , NC j)

Pi +- max(p,p')

end if
end for each
'l/Jk (j) +- argrnax Pi

i

6k(j) +- 6(k-1)(j) . PWk(j)
end for each

end for each
Termination:

M +- model(+end+,wn)
for each name-class j = 1,2, ... , IDNC - {EOS}I do

" sw
PI(j) +- PrM «+end+,otw> I <w,l>n,NCj)·

" NC
PrM (EOSINC], Wn)

end for each
q~ +- argrnax PI (j)

J
31: Best sequence:
32: q'k +-'l/Jk+1(q(k+1))' k = n - 1, n - 2, ... ,1
33: end procedure

[ncModel] Pr(NC=NANlpre-NC=505,pre-w=+end+)=0.791666666666667

[fwModel] Pr(<w,f>=<mr. ,fwd> I NC=NAN ,pre-NC=505) =0.722579188712522

log Delta(O, 50S, NAN)=0.5720418577307468

[ncModel] Pr(NC=ORGlpre-NC=505,pre-w=+end+) - Pr(NC=ORG)=0.15625

201

[fwModel] Pr(<w,f>=<mr.,fwd>INC=ORG,pre-NC=505) - Pr(default)=0.0166666666666667

log Delta(O, 50S, ORG)=0.0026041666666666713

[ncModel] Pr(NC=PERlpre-NC=505,pre-w=+end+) - Pr(NC=PER)=0.21875

[fwModel] Pr(<w,f>=<mr.,fwd>INC=PER,pre-NC=505) - Pr(default)=0.0166666666666667

log Delta(O, 50S, PER)=0.00364583333333334

log Delta(O, NAN)=0.5720418577307468

log Delta(O, ORG)=0.0026041666666666713

log Delta(O, PER)=0.00364583333333334

ITERATION

APPENDIX A. NYMBLE IMPLEMENTATION 202

<jones.icp>

[swModel] Pre <w.f>=<jones.icp>lpre-<w.f>=<mr .. fwd>.NC=NAN) - Pr(default)=0.0166666666666667
[swModel] Pr«w.f>=<+end+.otw>lpre-<w.f>=<mr .. fwd>.NC=NAN)=0.724090388007055
[ncModel] Pr(NC=NANlpre-NC=NAN.pre-w=mr.) - Pr(NC=NAN)=0.40625

[fwModel] Pre <w.f>=<jones.icp>INC=NAN.pre-NC=NAN) - Pr(default)=0.0166666666666667
log Delta(1.NAN.NAN)=0.00953403096217913

[swModel] Pre <w.f>=<+end+.otw>lpre-<w.f>=<mr..fwd>.NC=ORG) - Pre <w.f>=<+end+.otw>1
N C=ORG) =0.168159722222222

[ncModel] Pr(N C= NAN I pre-NC=ORG .pre-w=m r.) - Pre N C= NAN I pre-NC=ORG) =0.6953125

[fwModel] Pre <w.f>=<jones.icp>INC=NAN.pre-NC=ORG) - Pr(default)=0.0166666666666667
log Delta(1.0RG.NAN)=5.0748071552794776E-6

[swModel] Pre <w.f>=<+end+.otw>lpre-<w.f>=<mr .. fwd>.NC=PER) - Pre <w.f>=<+end+.otw>1
NC=PER)=0.222345679012346

[ncModel] Pr(NC=NAN Ipre-NC=PER,pre-w=mr.) - Pr(NC=NANlpre-NC=PER)=0.791666666666667

[fwModel] Pre <w.f>=<jones.icp>INC=NAN.pre-NC=PER) - Pr(default)=0.0166666666666667
log Delta(1.PER.NAN)=1.0695882273091053E-5

log Delta(l.NAN) = log Delta(l.NAN.NAN) = 0.00953403096217913

[swModel] Pr«w.f>=<+end+.otw>lpre-<w.f>=<mr..fwd>.NC=NAN)=0.724090388007055
[ncModel] Pr(NC=ORGlpre-NC=NAN.pre-w=mr.) - Pr(NC=ORGlpre-NC=NAN)=0.201171875

[fwModel] Pre <w.f>=<jones.icp>INC=ORG.pre-NC=NAN) - Pr(default)=0.0166666666666667
log Delta(l. NAN. ORG)=0.0013887900750069976

[swModel] Pr«w.f>=<jones.icp>lpre-<w.f>=<mr..fwd>.NC=ORG) - Pr(default)=0.0166666666666667

[swModel] Pre <w.f>=< +end+.otw>lpre-<w.f>=<mr .. fwd>.NC=ORG) - Pre <w.f>=<+end+.otw>1
NC=ORG)=0.168159722222222

[ncModel] Pr(NC=ORGlpre-NC=ORG.pre-w=mr.) - Pr(NC=ORG)=0.15625
[fwModel] Pre <w.f>=<jones.icp>INC=ORG.pre-NC=ORG) - Pr(default)=0.0166666666666667

log Delta(1.0RG.ORG)=4.34027777777779E-5 (I tag)

[swModel] Pre <w.f>=<+end+.otw>lpre-<w.f>=<mr .. fwd>.NC=PER) - Pre <w.f>=<+end+.otw>1

NC=PER)=0.222345679012346
[ncModel] Pr(NC=ORGlpre-NC=PER.pre-w=mr.) - Pr(NC=ORG)=0.15625
[fwModel] Pre <w.f>=<jones.icp>INC=ORG.pre-NC=PER) - Pr(default)=0.0166666666666667

log Delta(1.PER,ORG)=2.1110293960048104E-6

log Delta(1.0RG) = log Delta(l.NAN.ORG) = 0.0013887900750069976

[swModel] Pre <w.f>=< +end+.otw> Ipre-<w.f>=<mr .. fwd> .NC=NAN)=O. 724090388007055

[ncModel] Pr(NC=PERlpre-NC=NAN.pre-w=mr.)=0.765494791666667

[fwModel] Pre <w. f>=<jones. icp> I NC=PER,pre-NC=NAN)=0.316759259259259

log Delta(1.NAN.PER)=0.10043663404226938

[swModel] Pre <w.f>=<+end+.otw> Ipre-<w.f>=<mr..fwd>.NC=ORG) - Pre <w.f>=<+end+,otw>1

NC=ORG)=0.168159722222222
[ncModel] Pr(NC=PERlpre-NC=ORG.pre-w=mr.) - Pr(NC=PER)=0.21875

[fwModel] Pre <w.f>=<jones,icp>INC=PER,pre-NC=ORG) - Pre <w.f>=<jones,icp>1

APPENDIX A. NYMBLE IMPLEMENTATION

pre-<w,f>=<+begin+,otw>,NC=PER)=0.316759259259259

log Delta(l,ORG,PER)=3.0343672146685987E-5

203

[swModel] Pr(<w,f>=<jones,icp>lpre-<w,f>=<mr.,fwd>,NC=PER) - Pr(<w,f>=<jones,icp>I
NC=PER)=0.222345679012346

[swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<mr.,fwd>,NC=PER) - Pr(<w,f>=<+end+,otw>1
NC=PER)=0.222345679012346

[ncModel] Pr(NC=PERlpre-NC=PER,pre-w=mr.) - Pr(NC=PER)=0.21875

[fwModel] Pr(<w,f>=<jones,icp> I NC=PER,pre-NC=PER)=0.222345679012346

log Delta(l,PER,PER)=8.106352880658458E-4 (I tag)

log Delta(l,PER) = log Delta(l,NAN,PER) = 0.10043663404226938

log Delta(l, NAN)=0.00953403096217913

log Delta(l, ORG)=0.0013887900750069976

log Delta(l, PER)=0.10043663404226938

<eats,ucp>

[swModel] Pr(<w,f>=<eats,ucp>lpre-<w,f>=<jones,icp>,NC=NAN) - Pr(<w,f>=<eats,ucp>1

NC=NAN)=0.0411209523809524

[swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<jones,icp>,NC=NAN) - Pr(<w.f>=<+end+,otw>1

NC=NAN)=0.200712962962963

[ncModel] Pr(NC=NAN Ipre-NC=NAN,pre-w jones) - Pr(NC=NAN)=0.40625

[fwModel] Pr(<w,f>=<eats,ucp>INC=NAN,pre-NC=NAN) - Pr(<w,f>=<eats,ucp>I

pre-<w,f>=<+begin+,otw>,NC=NAN)=0.123264338624339

log Delta(2,NAN,NAN)=3.920484331942936E-4

[swModel] Pr(<w,f>=<+end+,otw>lpre-<w.f>=<jones,icp>,NC=ORG) - Pr(<w,f>=<+end+,otw>1

N C=ORG)=0.168159722222222

[ncModel] Pr(NC=NANlpre-NC=ORG,pre-w=jones) - Pr(NC=NANlpre-NC=ORG)=0.6953125

[fwModel] Pr(<w,f>=<eats,ucp>INC=NAN,pre-NC=ORG) - Pr(<w.f>=<eats,ucp>1

pre-<w,f>=<+begin+,otw>,NC=NAN)=0.123264338624339

log Delta(2,ORG,NAN)=2.001594376897324E-5

[swModel] Pr(<w,f>=< +end+,otw> Ipre-<w,f>=<jones,icp>,NC=PER)=0.711172839506173

[ncModel] Pr(NC=NAN I pre-NC=PER,pre-w= jones)=O. 791666666666667

[fwModel] Pr«w,f>=<eats,ucp>INC=NAN,pre-NC=PER)=0.292448253968254

log Delta(2,PER,NAN)=0.01653707529480418

log Delta(2,NAN) = log Delta(2,PER,NAN) = 0.01653707529480418

[swModel] Pr(<w,f>=< +end+,otw>lpre-<w,f>=<jones,icp>,NC=NAN) - Pr(<w,f>=< +end+,otw>1

NC=NAN)=0.200712962962963

[ncModel] Pr(NC=ORGlpre-NC=NAN,pre-w jones) - Pr(NC=ORGlpre-NC=NAN)=0.201171875

[fwModel] Pr(<w,f>=<eats,ucp>INC=ORG,pre-NC=NAN) - Pr(default)=0.0166666666666667

log Delta(2,NAN,ORG)=6.416053748377586E-6

[swModel] Pr(<w,f>=<eats,ucp>lpre-<w,f>=<jones,icp>,NC=ORG) - Pr(default)=0.0166666666666667

[swModel] Pr(<w.f>=< +end+,otw>lpre-<w,f>=<jones,icp>,NC=ORG) - Pr(<w,f>=< +end+,otw>1

NC=ORG)=0.168159722222222

[ncModel] Pr(NC=ORGlpre-NC=ORG,pre-w jones) - Pr(NC=ORG)=0.15625

APPENDIX A. NYMBLE IMPLEMENTATION 204

[fwModel] Pr(<w,f>=<eats,ucp>INC=ORG,pre-NC=ORG) - Pr(default)=0.0166666666666667
log Delta(2,ORG,ORG)=2.3146501250116655E-5 (I tag)

[swModel] Pr(<w,f>=< +end+,otw> Ipre-<w,f>=<jones,icp>,NC=PER)=0.711172839506173

[ncModel] Pr(NC=ORGlpre-NC=PER,pre-w jones) - Pr(NC=ORG)=0.15625

[fwModel] Pr(<w,f>=<eats,ucp>INC=ORG,pre-NC=PER) - Pr(default)=0.0166666666666667

log Delta(2,PER,ORG)=1.8600991203719593E-4

log Delta(2,ORG) = log Delta(2,PER,ORG) = 1.8600991203719593E-4

[swModel] Pr(<w,f>=< +end+,otw>lpre-<w,f>=<jones,icp>,NC=NAN) - Pr(<w.f>=<+end+,otw>1
NC=NAN)=0.200712962962963

[ncModel] Pr(NC=PERlpre-NC=NAN,pre-w jones) - Pr(NC=PERlpre-NC=NAN)=0.337890625

[fwModel] Pr(<w,f>=<eats,ucp>INC=PER,pre-NC=NAN) - Pr(default)=0.0166666666666667

log Delta(2,NAN,PER)=1.0776478625915744E-5

[swModel] Pr(<w,f>=< +end+,otw>lpre-<w,f>=<jones,icp>,NC=ORG) - Pr(<w.f>=<+end+,otw>1

NC=ORG)=0.168159722222222

[ncModel] Pr(NC=PERlpre-NC=ORG,pre-w jones) - Pr(NC=PER)=0.21875

[fwModel] Pr(<w,f>=<eats,ucp>INC=PER,pre-NC=ORG) - Pr(default)=0.0166666666666667

log Delta(2,ORG,PER)=8.514426420141109E-7

[swModel] Pr(<w,f>=<eats,ucp>lpre-<w,f>=<jones,icp>,NC=PER) - Pr(default)=0.0166666666666667

[swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<jones,icp>,NC=PER)=0.711172839506173

[ncModel] Pr(NC=PERlpre-NC=PER,pre-w=jones) - Pr(NC=PER)=0.21875

[fwModel] Pr(<w,f>=<eats,ucp>INC=PER,pre-NC=PER) - Pr(default)=0.0166666666666667

log Delta(2,PER,PER)=0.0016739439007044932 (I tag)

log Delta(2,PER) = log Delta(2,PER,PER) = 0.0016739439007044932

log Delta(2, NAN)=0.01653707529480418

log Delta(2, ORG)=1.8600991203719593E-4

log Delta(2, PER)=0.0016739439007044932

<+UNK+,ucp> (bananas)

[unk_swModel] Pr(<w,f>=<+UNK+,ucp>lpre-<w,f>=<eats,ucp>,NC=NAN) -

Pr«w,f>=<+UNK+,ucp>INC=NAN)=0.113652484267869

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=NAN) -

Pr(<w,f>=< +end+,otw> I NC=NAN)=0.222801475002144

[unk _ ncModel] Pr(NC=NANlpre-NC=NAN,pre-w=eats) - Pr(NC=NAN)=0.422413793103448

[unk_fwModel] Pr(<w,f>=<+UNK+,ucp>INC=NAN,pre-NC=NAN)=0.113652484267869

log Delta(3,NAN,NAN)=0.001879479689779297

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w.f>=<eats,ucp>,NC=ORG) -

Pr(<w.f>=< +end+,otw> INC=ORG)=0.168037475345168

[unk_ncModel] Pr(NC=NANlpre-NC=ORG,pre-w=eats) - Pr(NC=NANlpre-NC=ORG)=0.702586206896552

[unk _fwModel] Pr(<w,f>=< +UNK+,ucp>INC=NAN,pre-NC=ORG) - Pr(<w.f>=< +UNK+,ucp>lpre­

<w.f>=<+begin+,otw>,NC=NAN)=0.153299326239371

log Delta(3,ORG,NAN)=3.3665269922629046E-6

[unk_swModel] Pr(<w.f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=PER) -

Pr(<w.f>=< +end+,otw>INC=PER)=0.25008875739645

APPENDIX A. NYMBLE IMPLEMENTATION 205

[unk_ncModel] Pr(NC=NANlpre-NC=PER,pre-w=eats) - Pr(NC=NANlpre-NC=PER)=0.877586206896552

[unk_fwModel] Pr(<w,f>=<+UNK+,ucp>INC=NAN,pre-NC=PER)=0.338070947313837
log Delta(3,PER,NAN)=1.2420317771032666E-4

log Delta(3,NAN) = log Delta(3,NAN,NAN) = 0.001879479689779297

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=NAN) -

Pr(<w,f>=< +end+ ,otw> I NC=NAN)=0.222801475002144

[unk_ncModel] Pr(NC=ORGlpre-NC=NAN,pre-w=eats) - Pr(NC=ORGlpre-NC=NAN)=0.199425287356322

[unk_fwModel] Pr«w,f>=<+UNK+,ucp>INC=ORG,pre-NC=NAN) - Pr(default)=0.0153846153846154
log Delta(3,NAN,ORG)=1.1304298978449625E-5

[unk_swModel] Pr(<w,f>=<+UNK+,ucp>lpre-<w,f>=<eats,ucp>,NC=ORG) -

Pr(default)=0.0153846153846154

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=ORG) -

Pr«w,f>=<+end+,otw>INC=ORG)=0.168037475345168

[unk_ncModel] Pr(NC=ORGlpre-NC=ORG,pre-w=eats) - Pr(NC=ORG)=0.146551724137931

[unk_fwModel] Pr«w,f>=<+UNK+,ucp>INC=ORG,pre-NC=ORG) - Pr(default)=0.0153846153846154

log Delta(3,ORG,ORG)=2.861690954418402E-6 (I tag)

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=PER) -

Pr(<w,f>=< +end+,otw> I NC=PER)=0.25008875739645

[unk _ ncModel] Pr(NC=ORGlpre-NC=PER,pre-w=eats) - Pr(NC=ORG)=0.146551724137931

[unk_fwModel] Pr«w,f>=<+UNK+,ucp>INC=ORG,pre-NC=PER) - Pr(default)=0.0153846153846154

log Delta(3,PER,ORG)=9.438710015033703E-7

log Delta(3,ORG) = log Delta(3,NAN,ORG) = 1.1304298978449625E-5

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=NAN) -

Pr(<w,f>=< +end+,otw> I NC=NAN)=0.222801475002144

[unk _ ncModel] Pr(NC=PERlpre-NC=NAN,pre-w=eats) - Pr(NC=PERlpre-NC=NAN)=0.344252873563218

[unk_fwModel] Pr(<w,f>=<+UNK+,ucp>INC=PER,pre-NC=NAN) - Pr(default)=0.0153846153846154

log Delta(3,NAN,PER)=1.9513761060781844E-5

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=ORG) -

Pr«w,f>=<+end+,otw>INC=ORG)=0.168037475345168

[unk _ ncModel] Pr(NC=PERlpre-NC=ORG,pre-w=eats) - Pr(NC=PER)=0.21551724137931

[unk_fwModel] Pr«w,f>=<+UNK+,ucp>INC=PER,pre-NC=ORG) - Pr(default)=0.0153846153846154

log Delta(3,ORG,PER)=1.0363606103417495E-7

[unk_swModel] Pr(<w,f>=<+UNK+,ucp>lpre-<w,f>=<eats,ucp>,NC=PER) -

Pr(default)=0.0153846153846154

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=PER) -

Pr(<w,f>=< +end+,otw> INC=PER)=0.25008875739645

[unk_ ncModel] Pr(NC=PERlpre-NC=PER,pre-w=eats) - Pr(NC=PER)=0.21551724137931

[unk_fwModel] Pr(<w,f>=<+UNK+,ucp>INC=PER,pre-NC=PER) - Pr(default)=0.0153846153846154

log Delta(3,PER,PER)=2.5752983087761442E-5 (I tag)

log Delta(3,PER) = log Delta(3,PER,PER) = 2.5752983087761442E-5

log Delta(3, NAN)=0.001879479689779297

log Delta(3, ORG)=1.1304298978449625E-5

log Delta(3, PER)=2.5752983087761442E-5

APPENDIX A. NYMBLE IMPLEMENTATION 206

<in,ucp>

[unk_swModel] Pr(<w,f>=<in,ucp>!pre-<w,f>=<+UNK+,ucp>,NC=NAN) -
Pr(<w,f>=<in,ucp>!NC=NAN)=0.0233632009016624

[unk_swModel] Pr«w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=NAN)=0.193733488919108
[unk_ncModel] Pr(NC=NAN!pre-NC=NAN,pre-w=+UNK+) - Pr(NC=NAN)=0.422413793103448

[unk_fwModel] Pr(<w,f>=<in,ucp>!NC=NAN,pre-NC=NAN)=0.0233632009016624
log Delta(4,NAN,NAN)=4.391066158290782E-5

[unk_swModel] Pr(<w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=ORG) -

Pr«w,f>=<+end+,otw>!NC=ORG)=0.168037475345168

[unk_ncModel] Pr(NC=NAN!pre-NC=ORG,pre-w=+UNK+)=0.776939655172414

[unk_fwModel] Pr(<w,f>=<in,ucp>!NC=NAN,pre-NC=ORG) - Pr(<w,f>=<in,ucp>!
NC=NAN)=0.0233632009016624

log Delta(4,ORG,NAN)=3.448017133816848E-8

[unk_swModel] Pr(<w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=PER) -
Pr(<w,f>=< +end+,otw>! NC=PER)=0.25008875739645

[unk _ ncModel] Pr(NC=NAN!pre-NC=PER,pre-w=+UNK+) - Pr(NC=NAN!
pre-NC=PER)=0.877586206896552

[unk _ fwModel] Pr(<w,f>=<in,ucp>! NC=NAN ,pre-NC=PER) -

Pr(<w,f>=<in,ucp>!NC=NAN)=0.0233632009016624
log Delta(4,PER,NAN)=1.32051653496337E-7

log Delta(4,NAN) = log Delta(4,NAN,NAN) = 4.391066158290782E-5

[unk_swModel] Pr«w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=NAN)=0.193733488919108
[unk_ncModel] Pr(NC=ORG!pre-NC=NAN,pre-w=+UNK+)=0.279632183908046

[unk_fwModel] Pr«w,f>=<in,ucp>!NC=ORG,pre-NC=NAN) - Pr(default)=0.0153846153846154

log Delta(4,NAN,ORG)=1.566448548080543E-6

[unk_swModel] Pr(<w,f>=<in,ucp>!pre-<w,f>=<+UNK+,ucp>,NC=ORG) -

Pr(default)=0.0153846153846154
[unk_swModel] Pr(<w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=ORG) -

Pr«w,f>=<+end+,otw>!NC=ORG)=0.168037475345168
[unk_ ncModel] Pr(NC=ORG!pre-NC=ORG,pre-w=+UNK+) - Pr(NC=ORG)=0.146551724137931

[unk_fwModel] Pr(<w,f>=<in,ucp>!NC=ORG,pre-NC=ORG) - Pr(default)=0.0153846153846154

log Delta(4,ORG,ORG)=1.739122919761483E-7 (I tag)

[unk _swModel] Pr(<w,f>=<+end+,otw>!pre-<w,f>=< +UNK+,ucp>,NC=PER) -

Pr(<w,f>=< +end+,otw> !NC=PER)=0.25008875739645
[unk _ncModel] Pr(NC=ORG!pre-NC=PER,pre-w=+UNK+) - Pr(NC=ORG)=0.146551724137931

[unk _fwModel] Pr(<w,f>=<in,ucp>!NC=ORG,pre-NC=PER) - Pr(default)=0.0153846153846154

log Delta(4,PER,ORG)=1.4521092330821073E-8

log Delta(4,ORG) = log Delta(4,NAN,ORG) = 1.566448548080543E-6

[unk _ swModel] Pr(<w,f>=< +end+,otw>!pre-<w,f>=< +UNK+,ucp>,NC=NAN)=0.193733488919108

[unk _ ncModel] Pr(NC=PER!pre-NC=NAN,pre-w=+UNK+) - Pr(NC=PER!

pre-NC=NAN)=0.344252873563218
[unk _fwModel] Pr(<w,f>=<in,ucp>!NC=PER,pre-NC=NAN) - Pr(default)=0.0153846153846154

log Delta(4,NAN,PER)=1.9284418782888972E-6

APPENDIX A. NYMBLE IMPLEMENTATION 207

[unk_swModel] Pr(<w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=ORG) -
Pr«w,f>=<+end+,otw>!NC=ORG)=0.168037475345168

[unk_ncModel] Pr(NC=PER!pre-NC=ORG,pre-w=+UNK+) - Pr(NC=PER)=0.21551724137931

[unk_fwModel] Pr(<w,f>=<in,ucp>!NC=PER,pre-NC=ORG) - Pr(default)=0.0153846153846154
log Delta(4,ORG,PER)=6.2982289817163E-9

[unk_swModel] Pr(<w,f>=<in,ucp>!pre-<w,f>=<+UNK+,ucp>,NC=PER) -
Pr(default)=0.0153846153846154

[unk_swModel] Pr«w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=PER) -
Pr(<w,f>=< +end+ ,otw>! NC=PER)=0.25008875739645

[unk_ ncModel] Pr(NC=PER!pre-NC=PER,pre-w=+UNK+) - Pr(NC=PER)=0.21551724137931

[unk_fwModel] Pr(<w,f>=<in,ucp>!NC=PER,pre-NC=PER) - Pr(default)=0.0153846153846154
log Delta(4,PER,PER)=3.96199739811715E-7 (I tag)

log Delta(4,PER) = log Delta(4,NAN,PER) = 1.9284418782888972E-6

log Delta(4, NAN)=4.391066158290782E-5

log Delta(4, ORG)=1.566448548080543E-6

log Delta(4, PER)=1.9284418782888972E-6

<+UNK+,icp> (starebucks)

[unk_swModel] Pr(<w,f>=<+UNK+,icp>!pre-<w,f>=<in,ucp>,NC=NAN) -
Pr(default)=0.0153846153846154

[unk_swModel] Pr«w,f>=<+end+,otw>!pre-<w,f>=<in,ucp>,NC=NAN)=0.607449520379286
[unk_ncModel] Pr(NC=NAN!pre-NC=NAN,pre-w=in) - Pr(NC=NAN)=0.422413793103448

[unk_fwModel] Pr«w,f>=<+UNK+,icp>!NC=NAN,pre-NC=NAN) - Pr(default)=0.0153846153846154

log Delta(5,NAN,NAN)=6.755486397370441E-7

[unk_swModel] Pr(<w,f>=<+end+,otw>!pre-<w,f>=<in,ucp>,NC=ORG) -

Pr«w,f>=<+end+,otw>!NC=ORG)=0.168037475345168
[unk_ncModel] Pr(NC=NAN!pre-NC=ORG,pre-w=in) - Pr(NC=NAN!pre-NC=ORG)=0.702586206896552
funk _fwModel] Pr(<w,f>=< +UNK+,icp>!NC=NAN,pre-NC=ORG) - Pr(default)=0.0153846153846154

log Delta(5,ORG,NAN)=2.8451721261433814E-9

[unk _swModel] Pr(<w,f>=<+end+,otw>!pre-<w,f>=<in,ucp>,NC=PER) -

Pr«w,f>=<+end+,otw>!NC=PER)=0.25008875739645
[unk_ncModel] Pr(NC=NAN!pre-NC=PER,pre-w=in) - Pr(NC=NAN!pre-NC=PER)=0.877586206896552

[unk_fwModel] Pr«w,f>=<+UNK+,icp>!NC=NAN,pre-NC=PER) - Pr(default)=0.0153846153846154

log Delta(5,PER,NAN)=6.511441677022464E-9

log Delta(5,NAN) = log Delta(5,NAN,NAN) = 6.755486397370441E-7

[unk _ swModel] Pr(<w,f>=< +end+,otw> !pre-<w,f>=<in,ucp>,NC=NAN)=0.607449520379286

[unk_ncModel] Pr(NC=ORG!pre-NC=NAN,pre-w=in)=0.599655172413793

[unk_ fwModel] Pr(<w,f>=< +UNK+,icp>! NC=ORG,pre-NC=NAN)=0.280777996931843

log Delta(5,NAN,ORG)=4.491018349709104E-6

[unk_swModel] Pr«w,f>=<+UNK+,icp>!pre-<w,f>=<in,ucp>,NC=ORG) - Pr(<w,f>=<+UNK+,icp>!

NC=ORG)=O.0878336620644313
[unk_swModel] Pr(<w,f>=<+end+,otw>!pre-<w,f>=<in,ucp>,NC=ORG) - Pr(<w,f>=< +end+,otw>!

NC=ORG)=0.168037475345168

APPENDIX A. NYMBLE IMPLEMENTATION 208

[unk _ncModel] Pr(NC=ORGlpre-NC=ORG,pre-w=in) - Pr(NC=ORG)=0.146551724137931

[unk_fwModel] Pr«w,f>=<+UNK+,icp>INC=ORG,pre-NC=ORG) - Pr«w,f>=<+UNK+,icp>1

pre-<w,f>=<+begin+,otw>,NC=ORG)=0.280777996931843

log Delta(5,ORG,ORG)=1.375869124134256E-7 (I tag)

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<in,ucp>,NC=PER) - Pr«w,f>=<+end+,otw>1
NC=PER)=0.25008875739645

[unk _ ncModel] Pr(NC=ORGlpre-NC=PER,pre-w=in) - Pr(NC=ORG)=0.146551724137931

[unk_fwModel] Pr«w,f>=<+UNK+,icp>INC=ORG,pre-NC=PER) - Pr«w.f>=<+UNK+,icp>1

pre-<w,f>=<+begin+,otw>,NC=ORG)=0.280777996931843

log Delta(5,PER,ORG)=1.98451655608078E-8

log Delta(5,ORG) = log Delta(5,NAN,ORG) = 4.491018349709104E-6

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<in,ucp>,NC=NAN)=0.607449520379286

[unk_ncModel] Pr(NC=PERlpre-NC=NAN,pre-w=in) - Pr(NC=PERlpre-NC=NAN)=O.344252873563218

[unk _fwModel] Pr(<w,f>=< +UNK+,icp>INC=PER,pre-NC=NAN) - Pr(w=+UNK+INC=PER)*Pr(f=icpl

NC=PER)=0.013567202028740483

log Delta(5,NAN,PER)=1.2457991786051997E-7

[unk _swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<in,ucp>,NC=ORG) - Pr(<w,f>=< +end+,otw>1

NC=ORG)=0.168037475345168

[unk_ncModel] Pr(NC=PERlpre-NC=ORG,pre-w=in) - Pr(NC=PER)=0.21551724137931

[unk_fwModel] Pr«w,f>=<+UNK+,icp>INC=PER,pre-NC=ORG) - Pr(w=+UNK+INC=PER)*

Pr(f=icpINC=PER)=0.013567202028740483

log Delta(5,ORG,PER)=7.696523397930446E-10

[unk_swModel] Pr«w,f>=<+UNK+,icp>lpre-<w,f>=<in,ucp>,NC=PER) - Pr(w=+UNK+INC=PER)*

Pr(f=icpINC=PER)=0.013567202028740483

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<in,ucp>,NC=PER) - Pr«w,f>=<+end+,otw>1

NC=PER)=0.25008875739645

[unk_ncModel] Pr(NC=PERlpre-NC=PER,pre-w=in) - Pr(NC=PER)=0.21551724137931

[unk _fwModel] Pr(<w,f>=<+UNK+,icp>INC=PER,pre-NC=PER) - Pr(w=+UNK+INC=PER)*

Pr(f=icpINC=PER)=0.013567202028740483

log Delta(5,PER,PER)=2.6163560563429185E-8 (I tag)

log Delta(5,PER) = log Delta(5,NAN,PER) = 1.2457991786051997E-7

log Delta(5, NAN)=6.755486397370441E-7

log Delta(5, ORG)=4.491018349709104E-6

log Delta(5, PER)=1.2457991786051997E-7

<.,otw>

[unk_swModel] Pr(<w,f>=<.,otw>lpre-<w,f>=< +UNK+,icp>,NC=NAN) - Pr(<w,f>=<.,otw>1

NC=NAN)=0.0460033730669182

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=NAN) -

Pr«w,f>=<+end+,otw>INC=NAN)=0.222801475002144
[unk _ ncModel] Pr(NC=NANlpre-NC=NAN,pre-w=+UNK+) - Pr(NC=NAN)=0.422413793103448

[unk_fwModel] Pr(<w,f>=<.,otw>INC=NAN,pre-NC=NAN)=0.0460033730669182

log Delta(6,NAN,NAN)=3.107751609867233E-8

APPENDIX A. NYMBLE IMPLEMENTATION

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=ORG) -
Pr«w,f>=<+end+,otw>INC=ORG)=0.168037475345168

[unk_ncModel] Pr(NC=NANlpre-NC=ORG,pre-w=+UNK+)=0.776939655172414

[unk _ fwModel] Pr(<w,f>=<.,otw>INC=NAN,pre-NC=ORG)=0.282761843507663
log Delta (6,0 RG, NAN) = 1. 657902820550323E-7

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=PER) -
Pr(<w,f>=< +end+ ,otw> I NC=PER)=0.25008875739645

[unk_ncModel] Pr(NC=NANI

pre-NC=PER,pre-w=+UN K+) - Pr(NC=NAN Ipre-NC=PER)=0.877586206896552

[unk_fwModel] Pr«w,f>=<.,otw>INC=NAN,pre-NC=PER) - Pr«w,f>=<.,otw>1
pre-<w,f>=<+begin+,otw>,NC=NAN)=0.0741427652614944

log Delta(6,PER,NAN)=2.0272195103891604E-9

log Delta(6,NAN) = log Delta(6,ORG,NAN) = 1.657902820550323E-7

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=NAN) -
Pr(<w,f>=< +end+,otw> I NC=NAN)=0.222801475002144

[unk _ ncModel] Pr(NC=ORGlpre-NC=NAN,pre-w=+UNK+)=0.279632183908046

209

[unk _fwModel] Pr(<w,f>=<.,otw>INC=ORG,pre-NC=NAN) - Pr(default)=0.0153846153846154
log Delta(6,NAN,ORG)=6.475129869856067E-10

[unk_swModel] Pr(<w,f>=<.,otw>lpre-<w,f>=<+UNK+,icp>,NC=ORG) -
Pr(default)=0.0153846153846154

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=ORG) -

Pr«w,f>=<+end+,otw>INC=ORG)=0.168037475345168

[unk_ncModel] Pr(NC=ORGlpre-NC=ORG,pre-w=+UNK+) - Pr(NC=ORG)=0.146551724137931
[unk_fwModel] Pr(<w,f>=<.,otw>INC=ORG,pre-NC=ORG) - Pr(default)=0.0153846153846154

log Delta(6,ORG,ORG)=6.909258999552476E-8 (I tag)

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=PER) -

Pr(<w,f>=< +end+,otw> I NC=PER)=0.25008875739645
[unk_ncModel] Pr(NC=ORGlpre-NC=PER,pre-w=+UNK+) - Pr(NC=ORG)=0.146551724137931
[unk_fwModel] Pr(<w,f>=<.,otw>INC=ORG,pre-NC=PER) - Pr(default)=0.0153846153846154

log Delta(6,PER,ORG)=7.024570643540017E-ll

log Delta(6,ORG) = log Delta(6,ORG,ORG) = 6.909258999552476E-8

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=NAN) -

Pr(<w,f>=< +end+,otw>1 NC=NAN)=0.222801475002144
[unk _ncModel] Pr(NC=PERlpre-NC=NAN,pre-w=+UNK+) - Pr(NC=PERI

pre-NC=NAN)=0.344252873563218
[unk_fwModel] Pr«w,f>=<.,otw>INC=PER,pre-NC=NAN) - Pr(default)=0.0153846153846154

log Delta(6,NAN,PER)=7.971478937939354E-10

[unk_swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=ORG) -

Pr«w,f>=<+end+,otw>INC=ORG)=0.168037475345168
[unk _ncModel] Pr(NC=PERlpre-NC=ORG,pre-w=+UNK+) - Pr(NC=PER)=0.21551724137931

[unk_fwModel] Pr(<w,f>=<.,otw>INC=PER,pre-NC=ORG) - Pr(default)=0.0153846153846154

log Delta(6,ORG,PER)=2.5021862904971494E-9

APPENDIX A. NYMBLE IMPLEMENTATION

[unk_swModel] Pr«w,f>=<.,otw>lpre-<w,f>=<+UNK+,icp>,NC=PER) -
Pr(default)=O.0153846153846154

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=PER) -
Pr(<w,f>=< +end+ ,otw> I NC=PER)=O.25008875739645

210

[unk_ncModel] Pr(NC=PERlpre-NC=PER,pre-w=+UNK+) - Pr(NC=PER)=O.21551724137931

[unk_fwModel] Pr(<w,f>=<.,otw>INC=PER,pre-NC=PER) - Pr(default)=O.0153846153846154
log Delta(6,PER,PER)=1.916614120931079E-9 (I tag)

log Delta(6,PER) = log Delta(6,ORG,PER) = 2.5021862904971494E-9

log Delta(6, NAN)=1.657902820550323E-7

log Delta(6, ORG)=6.909258999552476E-8

log Delta(6, PER)=2.5021862904971494E-9

FINALISATION

[swModel] Pr(<w, f>=< +end+,otw> Ipre-<w, f>=<.,otw>, NC=NAN)=O. 724090388007055
[ncModel] Pr(NC=EOSlpre-NC=NAN,pre-w=.)=0.765494791666667
log Delta(7,EOS,NAN)=9.189546781994543E-8

[swModel] Pr(<w,f>=< +end+,otw>lpre-<w,f>=<.,otw>,NC=ORG) - Pr(<w,f>=<+end+,otw>1
NC=ORG)=0.168159722222222

[ncModel] Pr(NC=EOSlpre-NC=ORG,pre-w=.) - Pr(NC=EOS)=0.21875
log Delta(7,EOS,ORG)=2.541566724650912E-9

[swModel] Pr(<w,f>=<+end+,otw>lpre-<w,f>=<.,otw>,NC=PER) - Pr(<w,f>=<+end+,otw>I
NC=PER)=O.222345679012346

[ncModel] Pr(NC=EOSlpre-NC=PER,pre-w=.) - Pr(NC=EOS)=O.21875
log Delta(7,EOS,PER)=1.217016302634939E-10

log P(SOS NAN PER NAN NAN NAN ORG NAN EOS)=9.189546781994543E-8 [*BEST*]

log P(SOS NAN PER NAN NAN NAN ORG ORG EOS)=2.541566724650912E-9

log P(SOS NAN PER NAN NAN NAN PER PER EOS)=1.217016302634939E-I0

A.9 Implementation

The baseline system presented in this appendix is fully implemented in Java TM. SiNymble

models are stored in a relational database which allows an efficient way of searching

probabilities during decoding -with full or partial information- given that the appro­

priate indexes on the tables have been set. Moreover, a relational database provides

elegant implementations for the cO and uO function as queries of the form SELECT

COUNT ... GROUP BY from a table that contains all training events or DISTINCT

events only.

Appendix B

A walk-through example for

LexMENE

In this appendix, a walk-through example is presented to show how LexMENE is trained

and applied on unseen documents. This examples are taken from the MUC-7 training

and dryrun test corpora.

B.l Training

Consider the following sentence which is part of the training input for LexMENE.

<TIME>Last night</TIME>'s crash came just hours after <LOCATION>St. Louis</LO­
CATION>-based <ORGANISATION> TWA</ORGANISATION> reported a fivefold
increase in <DATE>second-quarter</DATE> profit.

The sentence must be tokenized first. This tokenization needs to be fine-grain because

words can partially be part of a named entity. In this scheme, a word contains tokens

which may atomically belong to a particular named entity class. In the text above,

the words tonight's and Louis-based are example of multi-token words. In both cases,

only the first token has a named entity class associated (namely time and organisation

respectively). Consequently, each token is marked %FT, %MT and %LT when they

are the first, a middle and the last token in a multi-token word respectively, and %UT

when the token is actually a (unique token) word in the terms used here. Note that

possessives are considerer a completely new token, whereas tokens linked by hyphens

are considered as part of a multi-token word.

During this procedure, paragraphs and sentences are also identified and marked in

the text. The beginning of a paragraph is marked with a label %BP followed by the

paragraph identifier and the text zone in which it is found. Valid text zones are p

211

APPENDIX B. A WALK-THROUGH EXAMPLE FOR LEXMENE 212

(paragraph of text), SLUG, DATE, NWORD5, PREAMBLE and TRAILER, in accordance

with the sections contained in the New York Time documents compiled for the corpora.

This text zone is also made explicit in tokens by adding a feature (labelled %ZN) with

the corresponding value to each one of them. The labels % %505 and % %E05 are used

to mark the start and the end of sentences respectively.

The second step is submitting these tokenized sentences to the MBSP parser (Daelemans,

Veenstra and Buchholz 1999). This parser assigns a part-of-speech tag to each token

and identifies the chunks in the sentence. This information is marked by adding a label

%Po5 to each token and indicating the beginning of each phrase with the label %CT.

In the third step, orthographic features are associated to each token by adding one or

more word features (labelled %WF) that indicate the orthographic features presented

by the word to which the token belongs. Tokens in multi-token words also have token

features (labelled %TF) which give information about the orthographic features of the

particular token.

The following is the output of these pre-processing steps applied to the example sentence.

The mark %NE identifies the named entity class in BIO notation.

% BP 16 p
%% 50S
%CT=NP
%UT =Last %WF=icp %NE=ltime %PoS=JJ %ZN=p
%UT =night %WF=ucp %NE=ltime %PoS=NN %ZN=p
%UT ='5 %WF=mix %WF=ucp %NE=O %PoS=POS %ZN=p
%UT =crash %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p
%CT=VP
%UT =came %WF=ucp %NE=O %PoS=VBD %ZN=p
%UT just %WF=ucp %NE=O %PoS=RB %ZN=p
%UT =hours %WF=ucp %NE=O %PoS=VBZ %HD=true %ZN=p
%CT=P
%UT =after %WF=ucp %NE=O %PoS=IN %ZN=p
%CT=NP
%UT =St. %WF=icp %WF=abb %NE=lIocation %PoS=NNP %ZN=p
%FT =Louis %WF=icp %TF=icp %NE=lIocation %PoS=JJ %ZN=p
%MT =- %WF=icp %TF=ncp %NE=O %PoS=JJ %ZN=p
%LT =based %WF=icp %TF=ucp %NE=O %PoS=JJ %ZN=p
%UT = TWA %WF=acp %WF=icp %NE=lorganisation %PoS=NNP %HD=true %ZN=p

%CT=VP
%UT=reported %WF=ucp %NE=O %PoS=VBD %HD=true %ZN=p

%CT=NP
%UT =a %WF=ucp %NE=O %PoS=DT %ZN=p
%UT=fivefold %WF=ucp %NE=O %PoS=JJ %ZN=p
%UT =increase %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p

%CT=P
%UT =in %WF=ucp %NE=O %PoS=IN %ZN=p
%CT=NP
%FT=second %WF=ucp %TF=ucp %NE=ldate %PoS=JJ %ZN=p
%MT =- %WF=ucp %TF=ncp %NE=ldate %PoS=JJ %ZN=p
%LT=quarter %WF=ucp %TF=ucp %NE=ldate %PoS=JJ %ZN=p

APPENDIX B. A WALK-THROUGH EXAMPLE FOR LEXMENE

%UT = profit %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p
%CT=CONJ
%UT =. %WF=ncp %NE=O %PoS=. %ZN=p
%% EOS
%% BP 17 p

213

The text is then processed further to obtain the input for the training algorithm of the

maximum entropy model. In the case of LexMENE, the information provided by the

parser is completely ignored. In the resulting text, the first line indicates the features

-all atomic in this case-- given in each line. The feature tokO represents the (token)

lexical feature of the focus token, and tkfO its orthographic feature. Note how some

orthographic features identified in the text are actually not provided to the maximum

entropy model, as they were not defined in MENE's configuration. In addition, named

entity tags are translated into the FMLU notation. In this notation, tokens are marked

as the first, a middle or the last token of a multi-token named entity or the unique token

in a one-token named entity. This information is kept by the prefix of the tag: F-, M-,

L- or U- respectively. The second part of a named entity tag indicates the actual named

entity class of the token. When a token is not part of any target named entity, the tag

o is assigned. The following is the example text after these processing, in which every

line -except the first one-- represent a training event for the GIS algorithm in used

implemented in the maxent package version 2.1.0.

%% FEATURES tkf+1 tkf+2 tkf-1 tkf-2 tkfO tok+1 tok+2 tok-1 tok-2 tokO znf FMLU

ucp ucp * * icp night's NONE NONE last p F-time
ucp ucp icp * ucp 's crash last NONE night p L-time
ucp ucp ucp icp ucp crash came night last's p 0
ucp ucp ucp ucp ucp came just's night crash p 0
ucp ucp ucp ucp ucp just hours crash's came p 0
ucp ucp ucp ucp ucp hours after came crash just p 0
ucp icp ucp ucp ucp after st. just came hours p 0
icp icp ucp ucp ucp st. louis hours just after p 0
icp * ucp ucp icp louis - after hours st. p F-Iocation
* ucp icp ucp icp - based st. after louis p L-Iocation
ucp acp#icp icp icp * based twa louis st. - p 0
acp#icp ucp * icp ucp twa reported - louis based p 0
ucp ucp ucp * acp#icp reported a based - twa p U-organisation
ucp ucp acp#icp ucp ucp a fivefold twa based reported p 0
ucp ucp ucp acp#icp ucp fivefold increase reported twa a p 0
ucp ucp ucp ucp ucp increase in a reported fivefold p 0
ucp ucp ucp ucp ucp in second fivefold a increase p 0
ucp * ucp ucp ucp second - increase fivefold in p 0
* ucp ucp ucp ucp - quarter in increase second p F-date
ucp ucp ucp ucp * quarter profit second in - pM-date
ucp * * ucp ucp profit. - second quarter p L-date
* * ucp * ucp . NONE quarter - profit p 0
* * ucp ucp * NONE NONE profit quarter. p 0

APPENDIX B. A WALK-THROUGH EXAMPLE FOR LEXMENE 214

Note also that none of the tokens in this sentence is considered unknown for the training

process. This is because all of them have been seen more than three times in the training

documents, according to Borthwick's (1999) definitions.

B.2 Decoding

For decoding, input texts have a similar pre-processing than training documents: the

text is first tokenized; then subjected to the parser; then each token is associated with

lexical, orthographic features, the zone feature and its named entity class; and finally

the features of context tokens are gathered. Considerer the following (key) input text

from the dryrun corpus.

<ORGANISATION>Valujet Airlines</ORGANISATION> stock dropped sharply
<DATE>Monday</DATE>, the first day of trading since the crash and also the first
day of intensified federal scrutiny ofthe <LOCATION>Atlanta</LOCATION>-based
carrier.

The following is the text resulting of pre-processing this sentence.

%% BP 23 p
%% 50S
%CT=NP
%UT =ValuJet %WF=icp %WF=mcp %NE=lorganisation %PoS=NNP %ZN=p
%UT =Airlines %WF=icp %NE=lorganisation %PoS=NNPS %ZN=p
%UT =stock %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p
%CT=VP
%UT =dropped %WF=ucp %NE=O %PoS=VBD %HD=true %ZN=p
%CT=ADVP
%UT =sharply %WF=ucp %NE=O %PoS=RB %ZN=p
%CT=NP
%UT=Monday %WF=icp %NE=ldate %PoS=NNP %HD=true %ZN=p
%CT=CONJ
%UT =, %WF=ncp %NE=O %PoS=, %ZN=p
%CT=NP
%UT =the %WF=ucp %NE=O %PoS=DT %ZN=p
%UT =first %WF=ucp %NE=O %PoS=JJ %ZN=p
%UT =day %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p
%CT=P
%UT =of %WF=ucp %NE=O %PoS=IN %ZN=p
%CT=VP
%UT =trading %WF=ucp %NE=O %PoS=VBG %HD=true %ZN=p

%CT=P
%UT =since %WF=ucp %NE=O %PoS=IN %ZN=p
%CT=NP
%UT =the %WF=ucp %NE=O %PoS=DT %ZN=p
%UT =crash %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p

%CT=CONJ
%UT =and %WF=ucp %NE=O %PoS=CC %ZN=p
%CT=ADVP

APPENDIX B. A WALK-THROUGH EXAMPLE FOR LEXMENE

%UT =also %WF=ucp %NE=O %PoS=RB %ZN=p
%CT=NP
%UT =the %WF=ucp %NE=O %PoS=DT %ZN=p
%UT =first %WF=ucp %NE=O %PoS=JJ %ZN=p
%UT =day %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p
%CT=P
%UT =of %WF=ucp %NE=O %PoS=IN %ZN=p
%CT=NP
%UT=intensified %WF=ucp %NE=O %PoS=JJ %ZN=p
%UT =federal %WF=ucp %NE=O %PoS=JJ %ZN=p
%UT =scrutiny %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p
%CT=P
%UT =of %WF=ucp %NE=O %PoS=IN %ZN=p
%CT=NP
%UT =the %WF=ucp %NE=O %PoS=DT %ZN=p
%FT=Atlanta %WF=icp %TF=icp %NE=llocation %PoS=JJ %ZN=p
%MT =- %WF=icp %TF=ncp %NE=O %PoS=JJ %ZN=p
%LT=based %WF=icp %TF=ucp %NE=O %PoS=JJ %ZN=p
%UT =carrier %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p
%CT=CONJ
%UT =. %WF=ncp %NE=O %PoS=. %ZN=p
%% EOS
%% 50S

215

The following text is the piece of the decoding events file provided to the maximum

entropy model for classification corresponding to the example sentence. Although is

basicaly identical to the training events file, there are three considerations which should

be noticed. Firstly, the decoding process ignores the annotated named entities at the

end of each line. These annotations are included in order to performed the comparison

with the predicted classes by the scoring algorithm. Secondly, sentence boundaries are

kept because they are necessary to applied the Viterbi algorithm, which estimates the

most probable sequence of labels (named entity classes) for the whole sentence, and

ultimately to translate the annotation and predictions back to the BIO notation, which

is the notation used by the scoring program. Finally, each line starts with the token

producing the event. This is also ignored during the maximum entropy application, and

is kept in this file to make more human readable the report of the scoring program.

%% FEATURES tkf+l tkf+2 tkf-l tkf-2 tkfO tok+l tok+2 tok-l tok-2 tokO znf FMLU

%% 50S
valujet icp ucp * * icp#mcp airlines stock NONE NONE valujet p F-organisation
airlines ucp ucp icp#mcp * icp stock dropped valujet NONE airlines p L-organisation
stock ucp ucp icp icp#mcp ucp dropped UNK airlines valujet stock p 0
dropped ucp icp ucp icp ucp UNK monday stock airlines dropped p 0
sharply icp * ucp ucp ucp monday I dropped stock UNK p 0
monday * ucp ucp ucp icp I the UNK dropped monday p U-date
I ucp ucp icp ucp * the first monday UNK I P 0
the ucp ucp * icp ucp first day I monday the p 0
first ucp ucp ucp * ucp day of the I first p 0

APPENDIX B. A WALK-THROUGH EXAMPLE FOR LEXMENE

day ucp ucp ucp ucp ucp of trading first the day p 0
of ucp ucp ucp ucp ucp trading since day first of p 0
trading ucp ucp ucp ucp ucp since the of day trading p 0
since ucp ucp ucp ucp ucp the crash trading of since p 0
the ucp ucp ucp ucp ucp crash and since trading the p 0
crash ucp ucp ucp ucp ucp and also the since crash p 0
and ucp ucp ucp ucp ucp also the crash the and p 0
also ucp ucp ucp ucp ucp the first and crash also p 0
the ucp ucp ucp ucp ucp first day also and the p 0
first ucp ucp ucp ucp ucp day of the also first p 0
day ucp ucp ucp ucp ucp of UN K first the day p 0
of ucp ucp ucp ucp ucp UNK federal day first of p 0
intensified ucp ucp ucp ucp ucp federal scrutiny of day UNK p 0
federal ucp ucp ucp ucp ucp scrutiny of UNK of federal p 0
scrutiny ucp ucp ucp ucp ucp of the federal UNK scrutiny p 0
of ucp icp ucp ucp ucp the atlanta scrutiny federal of p 0
the icp * ucp ucp ucp atlanta - of scrutiny the p 0
atlanta * ucp ucp ucp icp - based the of atlanta p U-Iocation
- ucp ucp icp ucp * based carrier atlanta the - p 0
based ucp * * icp ucp carrier. - atlanta based p 0
carrier * * ucp * ucp . NONE based - carrier p 0
. * * ucp ucp * NONE NONE carrier based. p 0
%% EOS

216

The output to this input is the probability of every token of being associated with all 29

named entity tags. For example, the following is the output for the word Atlanta-based.

atlanta U-Iocation
F-date 2.3582254497589891E-4
F-Iocation 0.0056284907665606985
F-money 5.8084742966748794E-5
F-orga n isation 0.003972190320722765
F-percent 3.8034777646051736E-6
F-person 2.749348552523396E-5
F-time 1. 732437548339911E-5
L-date 4.78912617717637 4E-6
L-Iocation 8.880591606821247E-4
L-money 7.464585779427727E-9
L-organisation 3.538716311993472E-5
L-percent 1.1149902005758877E-5
L-person 3.919547376509764E-7
L-time 5.908821429276911E-5
M-date 5.674433920287156E-6
M-Iocation 1.572481606027267E-5
M-money 3.0283646902420904E-5
M-orga n isation 1.020023235271163E-4
M-percent 3.338873085558022E-8
M-person 5.601148139433899E-6
M-time 4.29918584804938E-6
o 0.03622207086611734
U-date 2.523912498607799E-4
U-Iocation 0.9454951129329978
U-orga nisation 0.006762640356509325

APPENDIX B. A WALK-THROUGH EXAMPLE FOR LEXMENE

U-person 1.6120473375125032E-4
U-time 8.782180344493859E-7

-0

F-date 2.2427269407620365E-4
F-Iocation 9.761312465862E-7
F-money 1.98000802195393E-6
F-organisation 1.0099160338869072E-5
F-percent 6.436769989325952E-7
F-person 1.5565573843853617E-7
F-time 0.001454113467014768
L-date 1.5315163103567881E-4
L-Iocation 0.0029026916121269344
L-money 1.0655820638683854E-5
L-orga n isation 0.0035994135656187585
L-percent 2.895073508629643E-6
L-person 1.3034007607261184E-4
L-time 3.636429566865979E-6
M-date 1.0473197292275692E-4
M-Iocation 8.115132644627172E-5
M-money 1.0214220922467269E-4
M-organisation 6.306883913024113E-4
M-percent 3.9878955612484467E-8
M-person 4.4994337643814996E-7
M-time 2.452453201441192E-5
o 0.9902344229398096
U-date 7.953225159614118E-5
U-Iocation 6.121161821338814E-6
U-orga n isation 1.9101024534620337 E-4
U-person 1.7384016768339187E-5
U-time 3.277612841174649E-5

based 0
F-date 0.0010599138066777003
F-Iocation 2.3339245958880563E-5
F-money 1.579078437197117E-6
F-organisation 1.2458725322157061 E-6
F-percent 5.902656497025372E-6
F-person 2.7884670045230972E-5
F-time 2.4540518125800207E-4
L-date 6.232198488898867E-5
L-Iocation 9.21150184764415E-6
L-money 4.305207280045616E-6
L-organisation 2.6005054949159107E-4
L-percent 2.568766574996694E-6
L-person 2.0963634223038765E-6
L-time 2.394891056400395E-5
M-date 1.5180629034018936E-5
M-Iocation 4.098018079674603E-5
M-money 5.0642669272570075E-6
M-organisation 0.0011839996710339387
M-percent 7.884049038543913E-7
M-person 4.062421773683823E-6
M-time 0.0030214750319969372
o 0.993220056089924
U-date 6.5426657607175796E-6
U-Iocation 5.350868941303706E-4

217

APPENDIX B. A WALK-THROUGH EXAMPLE FOR LEXMENE

U-organisation 1.3260809718281386E-6
U-person 1.8431244086216143E-4
U-time 5.135142640852881E-5

218

These probabilities correspond to the input for the Viterbi search explained in section

3.3.2. The output of this search is a file in which each token is associated with a unique

named entity class. The following is the output resulting for the example input. It can

be noted that LexMENE misclassifies the token Monday in this example.

%% 50S
valujet F-organisation F-organisation
airlines L-organisation L-organisation
stock 0 0
dropped 0 0
sharply 0 0
monday U-date 0
,0 0
the 0 0
first 0 0
day 0 0
of 00
trading 0 0
since 0 0
the 00
crash 0 0
and 0 0
also 0 0
the 00
first 0 0
day 00
of 00
intensified 0 0
federal 0 0
scrutiny 0 0
of 00
the 0 0
atlanta U-Iocation U-Iocation
- 0 0
based 0 0
carrier 0 0
.00
%% EOS

In the final step, sentence delimiters are replaced by empty lines and the familiarity

types are added to enable the scoring program to produce the performance report.

Appendix C

Decision lists

In this appendix, the hypotheses built by the Ripper algorithm are presented. In each

MOLl MENE version that utilises this algorithm, the real name of the features are re­

placed by the simpler names £1, f2, etc., so that the process that checks which rules are

fired by each example can do so very efficiently by just looking up into a table. Conse­

quently, each decision list presented here is preceded by a table with the interpretation

of each feature reported in the final hypothesis outputted by the Ripper algorithm.

C.I MOLl MENE V6

Recall that MOLl MENE V6 introduces features which inform the algorithm of the

chunk tags and the head words of these chunks in a window of sizes [4,4]. Therefore,

there are 18 new features per token, whose relation with the names as used by Ripper

can be seen in table C.l.

It should be remarked that the atomic features are considered set-valued, that is their

value is a set of strings (Cohen 1996). This is not really necessary for the features

employed here, as they could be transformed into nominal features - though it would

be a bit unnatural for the head word feature. Nevertheless, this kind of features are

necessary for the next versions of MOLl MENE and consequently also used in this

version for the sake of standarisation.

The following is the outputted final hypothesis given by the Ripper algorithm. In the

format utilised in this implementation by Cohen (1995), each line contains the class

predicted followed by the conditions of the rule. The symbols - and ! - represent the

symbols E and ~ respectively, so that the condition is met if the value of the feature

-a set- contains or not a given string. At the end of each rule, the Ripper algorithm

reports the number of positive and negative examples covered by the rule.

219

APPENDIX C. DECISION LISTS 220

Table C.1: Relation between the names of the features as used by Ripper and the r·· II . ~ ed
features in MOll MENE V3jV6jV9. more IngUlstlca yin orm

I Ripper's name I MOLl MENE V3jV6jV9 feature

fl chunk_4 's tag
f2 chunk_4 's head word
f3 chunk_3 's tag
f4 chunk_3 's head word
f5 chunk_ 2 's tag
f6 chunk_2 's head word
IT chunk_1's tag
f8 chunk_1's head word
f9 focus chunk's tag
flO focus chunk's head word
fl1 chunk+1 's tag
fl2 chunk+1's head word
fl3 chunk+2 's tag
fl4 chunk+2 's head word
fl5 chunk+3 's tag
fl6 chunk+3 's head word
fl7 chunkH's tag
fl8 chunkH's head word

Utime :- flO ~ night, f5 ~ NP, fl5 ~ VP (5/4).
Mmoney :- flO ~ million, fl3 ~ CONJ, fl ~ CONJ (5/2).
Mdate :- flO ~ years, f11 ~ ADVP, f7 ~ NP (12/0).
Mdate :- flO ~ years, f6 ~ UNK, fl5 ~ CONJ (6/5).
Fdate :- f9 ~ NP, flO ~ last (36/6).
Ldate :- f11 ~ CONJ, flO ~ ago (20/1).
Ldate :- f11 ~ CONJ, f8 ~ last (19/4).

s

Uperson :- fl2 ~ said, f8 ~ P _COMMA, flO !~ he, fl3 ~ CONJ, f3 - VP, flO !~

official, flO !~ she (33/14).
Uperson :- fl2 ~ said, f8 ~ P _COMMA, fl3 ~ CONJ, flO !- he, flO - UNK (10/1).
Ulocation :- f11 ~ CONJ, f3 ~ P, f8 ~ in, fl2 ~ P COMMA, fl5 - CONJ, fl !­
CONJ, fl8 !~ UNK, f2 !~ bombed (16/0).
Ulocation :- f9 ~ NP, f11 ~ CONJ, f8 - P COMMA, f3 ~ P, fl5 - NP, flO !- UNK

(36/28).
Ulocation :- f11 ~ CONJ, f8 ~ in, f3 ~ P, flO ~ atlanta (8/0).
Ulocation :- f9 ~ NP, f11 ~ CONJ, flO ~ washington (37/0).
Uorganisation :- f9 ~ NP, flO ~ valujet (109/30).
Uorganisation :- f9 ~ NP, flO ~ faa (105/103).
Uorganisation :- f9 ~ NP, flO ~ twa, f8 !- after (54/14).
default 0 (80755/10148).

================ summary ================
Train error rate: 11.31% +/- 0.10% (91626 data points) < <
Hypothesis size: 16 rules, 74 conditions
Learning time: 247.31 sec

In this example, the first rule states that if the focus head word is night and the third

and the eighth chunks in the context are a noun phrase and a verb phrase respectively,

then the token must be classified as a one-token time expression. This rules covers nine

APPENDIX C. DECISION LISTS 221

examples: five of them are classified correctly and four incorrectly.

C.2 MOLl MENE V7

MOLl MENE V7 cosideres features which include the lemmas of the tokens in a window

of sizes [1,1], their part-of-speech tags and the WordNet® synsets of their close syn­

onyms. In other words, there are nine new features per token. Because there is not any

kind of word sense disambiguation applied, all this features are of type set (Cohen 1996).

In this way, a word can be -for example- both a noun and an adjective having both

part-of-speech tags, the corresponding lemmas and all the close synonyms synsets for

every sense in each lexical category.

Table C.2: Relation between the names of the features as used by Ripper and the more linguistically informed
features in MOll MENE V4/V7/VIO.

I Ripper's nallle I MOLl MENE V 4/V7 /VIO features I
f1 token_l's lemmas
f2 token_l's PoS tag
f3 token_l's close synonyms synsets
f4 focus token's tag
f5 focus token's PoS tag
f6 focus token's close synonyms synsets
f7 token+l's lemmas
f8 token+l's PoS tag
f9 token+l's close synonyms synsets

Table C.2 presents the names used by Ripper in building the following decision list

hypothesis with the more informed features of MOLl MENE V7. As an example, the

fourth rule indicates that if the token that follows the focus token is a synonym of the

meaning n12793745 (e.g. day, space-age), and the token that preceeds the focus token

is a form of the word late, then the focus token must be classified a token in the middle

of a time expression. This rules correctly classifies three examples.

Lpercent :- f4 - percent (34/0).
Fpercent :- f7 - percent (33/1).
Mtime :- f7 - local time (16/0).
Mtime :- f9 - n 12793745 , f1 - late (3/0).
Mtime :- f9 - n12896567, f2 - ee, f7 - second (4/0).
Utime :- f6 - n12832221, f3 - n12831744 (41/4).
Utime :- f6 - n12836480, f1 - sunday (2/0).
Utime :- f6 - n12836480, f8 - NN, f6 ,- n12823670 (4/0).
Uti me :- f6 - n12833627, f4 ,- day (11/4).
Utime :- f4 - tonight (2/0).
Mmoney :- f2 - '$', f8 - CD, f2 ,- PRP (64/0).
Mmoney :- f9 - n11302011, f9 ,- n11293334 (6/1).
Mlocation :- f8 - NNP, f9 - n7498246, f2 - NNP (35/6).

APPENDIX C. DECISION LISTS

Mlocation ;- f8 - NNP, f9 - n2336754 (11/3).
Mlocation ;- f8 - NNP, f2 - NNP, f7 - international (6/0).
Mlocation :- f8 - NNP, f1 - new _york_ city (6/0).
Mlocation :- f8 - NNP, f2 - NNP, f3 - n7574159 (4/3).
Lmoney ;- f2 - CD, f5 - CD, f8 - IN (19/7).
Lmoney :- f5 - CD, f2 - CD, f8 - DT (8/0).
Lmoney ;- f5 - CD, f2 - '$', f2 ,- PRP (23/2).
Lmoney ;- f2 - CD, f5 - CD, f8 - P _COMMA (10/6).
Lmoney :- f2 - CD, f6 - n11524771 (14/0).
Lmoney :- f2 - CD, f5 - CD, f8 - NN, f7 ,- flight, f7 ,- plane (7/1).
Lmoney ;- f2 - CD, f5 - CD, f8 - P _COLON (3/0).
Fmoney ;- f5 - '$', f8 - CD, f5 ,- PRP (85/5).
Fmoney :- f7 - cent (12/0).
Fmoney :- f1 - donate (1/0).
Mperson :- f6 - n5710086, f2 - NNP, f8 - NNP, f1 ,- be, f3 ,- n6790797, f3 ,­
n11594993 (49/4).
Mperson :- f2 - NNP, f3 - n5408511, f8 - NNP (5/0).
Mperson :- f5 - NNP, f3 - n8049747, f6 - n5938672 (12/0).
Mperson :- f2 - NNP, f8 - NNP, f7 - jr (4/0).
Mperson :- f2 - NNP, f8 - NNP, f1 - hillary (3/0).
Ftime ;- f5 - CD, f8 - CD, f2 - NNP (101/1).
Ftime :- f9 - n5294032, f4 ,- pan (23/0).
Ftime :- f7 - pP _PERIODmP _PERIOD (9/0).
Ftime :- f9 - n12836480, f4 - last (9/1).
Ftime :- f7 - aP _PERIODmP _PERIOD (8/0).
Ltime :- f2 - CD, f5 - CD, f8 ,- CD, f8 ,- NNS, f8 ,- P PERIOD, f8 ,- TO, f8 ,­
CC, f8 ,- NNP, f8 ,- JJ, f8 ,- NN (101/8).
Ltime :- f6 - n12824116, f4 - night, f2 - JJ (11/3).
Ltime :- f6 - n5294032, f1 ,- pan, f8 ,- NNP (20/0).
Ltime :- f6 - n12803990 (9/0).
Ltime :- f4 - pP _PERIODmP _PERIOD (6/0).
Ltime :- f4 - aP _PERIODmP _PERIOD (4/0).
Mdate :- f9 - n12811110, f2 - JJ, f5 - CD (21/1).
Mdate :- f6 - n12811110, f8 - RB (33/14).
Mdate :- f9 - n12846772, f1 - earlier (9/0).
Mdate :- f3 - n12877042, f8 - P _COMMA, f1 - sept (4/0).
Mdate :- f2 - CD, f8 - CD, f5 - P _COMMA (23/9).
Fdate ;- f6 - n12873180, f8 - CD (127/3).
Fdate :- f9 - n12896721, f4 - last (54/2).
Fdate :- f9 - n12811110, f7 - week, f8 - NN (18/7).
Fdate :- f9 - n12811110, f7 - year, f5 - DT, f2 ,- IN (14/11).
Fdate :- f6 - a1370871, f8 - NNP (22/0).
Fdate ;- f9 - n12811110, f5 - CD, f2 ,- IN, f7 - years, f1 ,- be, f2 ,- RB, f2 ,- VBG,

f2 ,- TO, f2 ,- CC (15/5).
Ldate :- f6 - n12896721, f1 - last (54/2).
Ldate :- f3 - n12872860, f5 - CD (104/21).
Ldate :- f6 - n12811110, f4 - week, f5 - NN (18/6).
Ldate :- f6 - n12811110, f4 - year, f2 - DT, f8 ,- IN, f7 ,- earlier (13/9).
Ldate :- f6 - n12811110, f4 - month, f5 - NN (9/2).
Ldate :- f8 - P COMMA, f3 - n12811110, f4 - ago (13/0).
Ldate :- f6 - n12811110, f6 - n11598583, f8 - P _COMMA (4/1).
Flocation :- f5 - NNP, f8 - NNP, f2 - IN, f9 - n7533497, f9 ,- n7430143 (43/1).
Flocation :- f5 - NNP, f8 - NNP, f2 !- NNP, f9 - n7130825, f2 !- IN (70/21).
Flocation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f9 - n7653466 (47/9).
Flocation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f9 - n976162, f2 !- IN, f2 ,- DT, f2 !-
CD, f6 - n976162 (13/1).

222

APPENDIX C. DECISION LISTS 223

Flocat~on :- f5 - NNP, f8 - NNP, f2 - IN, f4 - pearl_harbor (6/0).
Flocat~on :- f5 _- NNP, f~ - NNP, f:' - IN, f6 - n7430143, f4 ,- new_york (13/0).
Flocatlon :- f5 NNP, f8 NNP, f2' NNP, f9 - n7700297, f4 ,- uP PERIODsP PERIOD
(17/3). - -

Flocation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f6 - n7430143, f9 - n6993235 (8/1).
Flocat~on :- f5 - NNP, f8 - NNP, f2 ,- NNP, f7 - airport (14/2).
L1ocat~on :- f2 ~ NNP, f5:: NNP, f8 ,- NNP, f6 - n7170582, f3 - n7170582 (102/1).
L1ocat~on :- f2 _ NNP, f5 _NNP, f8 ,- NNP, f6 - n7130825, f6 ,- n12345618 (50/11).
L1ocatlon :- f2 NNP, f5 NNP, f6 - n7653466, f3 - n7172103 (32/1).
L1ocation :- f2 - NNP, f6 - n2342336 (50/18).
L1ocation :- f2 - NNP, f6 - n7158145, f3 - n7144938 (21/0).
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n7700297 (17/4).
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n7710579 (12/0).
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n7745910 (12/1).
L1ocation :- f2 - NNP, f5 - NNP, f6 - n7034213, f4 - county (11/3).
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n7164229, f3 - n7164229 (8/0).
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f4 - pearl_harbor (10/0).
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n3573798 (6/1).
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f1 - persian_gulf (6/0).
L1ocation :- f2 - NNP, f5 - NNP, f4 - york (5/1).
L1ocation :- f2 - NNP, f4 - everglades (9/0).
L1ocation :- f2 - NNP, f5 - NNP, f6 - n7552184 (5/2).
L1ocation :- f5 - NNP, f2 - NNP, f6 - n7457534 (9/8).
L1ocation :- f2 - NNP, f5 - NNP, f6 - n7740659 (5/1).
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f3 - n7003112 (7/6).
L1ocation :- f2 - NNP, f6 - n7130825, f5 - NNPS (4/0).
L1ocation :- f2 - NNP, f5 - JJ, f8 - JJ (9/6).
L1ocation :- f5 - NNP, f2 - NNP, f3 - n7533173, f6 - n7533173 (5/1).
L1ocation :- f5 - NNP, f6 - n11834397 (4/1).
L1ocation :- f5 - NNP, f6 - n7758560, f2 - NNP (3/0).
L1ocation :- f5 - NNP, f1 - camp (3/0).
Fperson :- f5 - NNP, f8 - NNP, f2 - NN, f3 - n8041449 (33/1).
Fperson :- f5 - NNP, f8 - NNP, f2 - VBD, f1 - say (68/17).
Fperson :- f5 - NNP, f8 - NNP, f6 - n9160375 (41/7).
Fperson :- f5 - NNP, f8 - NNP, f9 - n5710086, f6 ,- n11594993, f9 !- n6737514
(41/15).
Fperson :- f5 - NNP, f8 - NNP, f3 - n8655657, f6 ,- n8788729 (30/1).
Fperson :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 ,- DT, f9 - n9184552, f7 !- service,
f9 ,- n8307222 (18/2).
Fperson :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 ,- DT, f4 - robert (11/0).
Fperson :- f5 - NNP, f8 - NNP, f2 ,- DT, f2 ,- NNP, f6 ,- n7130825, f4 ,- bc, f6 -

n8923881 (10/1).
Lperson ;- f2 - NNP, f8 - P _COMMA, f5 - NNP, f3 - n5708379 (32/2).
Lperson :- f2 - NNP, f8 - P _COMMA, f5 - NNP, f3 ,- n2771586 (239/132).
Lperson :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n9296454, f4 ,- service (45/2).
Lperson :- f2 - NNP, f5 - NNP, f8 ,- NNP, f8 - VBD, f9 - v648722, f3 ,- n3977588,
f6 ,- n2847188, f3 ,- n6748862, f1 ,- air force 26/12}.
Uperson :- f5 - NNP, f8 - VBD, f9 - v648722, f2 - P _ SINGLEQUOTEP _ SINGLEQUOTE

(70/0) .
Uperson :- f5 - NNP, f8 - VBD, f9 - v734519, f2 ,- NNP, f2 ,- DT, f2 ,- IN (99/9).
Uperson :- f5 - NNP, f8 - VBD, f2 - P _COMMA (31/14).
Uperson :- f5 - NNP, f8 ,- NNP, f2 ,- NNP, f6 - n8908571 (32/0).
Uperson ;- f5 - NNP, f8 ,- NNP, f8 - VBD, f6 - n9360060, f6 ,- n9067642 (11/0).
Uperson :- f5 - NNP, f8 ,- NNP, f3 - v734519, f6 ,- n12831744, f8 - P _PERIOD

(12/4).
Uperson :- f5 - NNP, f8 ,- NNP, f2 ! - NNP, f6 - n8696598, f4 ,- houston (33/3).

APPENDIX C. DECISION LISTS

Uperson :- f5 - NNP, f8 ,- NNP, f2 ,- NNP, f6 - n9351365 (18/6).
Uperson :- f5 - NNP, f8 ,- NNP, f2 ,- NNP, f3 - v600025, f8 - P COMMA (9/2).
Udate :- f5 - CD, f1 - c (90/0). -
Udate :- f6 - n12831744, f2 ,- JJ, f4 !- th (200/1).
Udate :- f5 - CD, f8 ,- NNS, f2 - IN, f8 - P _COMMA (43/8).
Udate :- f5 - CD, f8 !- NNS, f2 ,- NNP, f8 !- IN, f2 ,- P COMMA f8 ,- JJ
f8 ,- CD, f8 !- NN, f2 ,- NN, f3 ,- v50921, f2 ,- CC, f2 '--CD, f8 ,-' CC, f8 ,..:
P _COMMA, f8 !- NNP, f8 !- P _PERIOD, f8 !- TO, f2 ,- NNPS, f2 ,- P COLON,
f8 ,- JJR, f8 ,- VBN, f9 ,- v50921 (111/83). -
Udate :- f5 - NNP, f8 - CD, f2 - NNP, f6 ,- n6790295, f1 ,- bound, f3 !- n12425532,
f4 ,- world, f1 ,- honeymoon, f1 ,- delta, f1 ,- district, f4 ,- bound (101/6).
Udate :- f5 - CD, f2 - IN, f8 - P _PERIOD (25/24).
Udate :- f5 - CD, f2 - DT, f8 - NN (21/7).
Udate :- f6 - n12824724, f6 !- n12846772 (30/3).
Udate :- f6 - n12877042, f2 - IN (28/5).
Udate :- f4 - sunday (28/0).
Morganisation :- f2 - NNP, f8 - NNP, f5 - NNP, f3 - n7130825, f4 - times (84/0).
Morganisation :- f2 - NNP, f8 - NNP, f5 - NNP, f6 - n5590116, f1 ,- crash (95/0).
Morganisation :- f5 - NNP, f2 - NNP, f8 - NNP, f9 - n2847188, f1 - national (41/0).
Morganisation :- f2 - NNP, f8 - NNP, f6 - n976162 (73/9).
Morganisation :- f2 - NNP, f8 - NNP, f9 - n6882991 (61/1).
Morganisation :- f2 - NNP, f8 - NNP, f9 - n6769589 (44/2).
Morganisation :- f2 - NNP, f8 - NNP, f3 - n5272695 (25/10).
Morganisation :- f2 - NNP, f8 - NNP, f6 - n3977588, f9 ,- n7528713, f1 ,- crash
(18/2).
Morganisation :- f2 - NNP, f8 - NNP, f9 - n6748862 (14/2).
Morganisation :- f2 - NNP, f8 - NNP, f1 - uP _PERIODsP _PERIOD (12/5).
Morganisation :- f2 - NNP, f8 - NNP, f9 - n12475555, f7 - co (8/0).
Morganisation :- f5 - NNP, f2 - NNP, f8 - NNPS (26/0).
Morganisation :- f2 - NNP, f8 - NNP, f9 - n6895143 (8/0).
Morganisation :- f2 - NNP, f8 - NNP, f6 - n7593134 (5/0).
Morganisation :- f2 - NNP, f8 - NNP, f9 - n3085921, f1 ,- world, f7 ,- hall (9/0).
Morganisation :- f5 - NNP, f8 - NNP, f9 - n3725783 (16/2).
Morganisation :- f2 - NNP, f8 - NNP, f4 - rent (8/0).
Morganisation :- f2 - NNP, f8 - NNP, f9 - n6693458 (7/0).
Morganisation :- f2 - NNP, f8 - NNP, f3 - n7593134, f9 !- n6987833 (6/0).
Morganisation :- f2 - NNP, f8 - NNP, f9 - n717997 (5/0).
Morganisation :- f5 - NNP, f2 - NNP, f3 - n7909591, f8 ,- NNP (8/1).
Morganisation :- f5 - NNP, f2 - NNP, f6 - n5975532 (7/1).
Morganisation :- f5 - NNP, f8 - NNP, f9 - n438352, f9 - n207743 (8/1).
Morganisation :- f2 - NNP, f8 - NNP, f7 - police_department (4/0).
Morganisation :- f2 - NNP, f8 - NNP, f3 - n6879976 (5/2).
Morganisation :- f2 - NNP, f8 - NNP, f9 - n9287812 (5/2).
Morganisation :- f5 - NNP, f8 - NNP, f9 - n5282591 (10/8).
Forganisation :- f5 - NNP, f8 - NNP, f2 - DT, f9 - n6757947 (60/0).
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - DT, f9 - n226730 (32/0).
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT, f9 - n6788854 (34/0).
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - DT, f6 ,- n5708379, f6 -

n7676970 (17/0).
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - CD, f4 - ny (28/0).
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - IN, f6 - n7431482, f4 ,- la

(65/25).
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f6 - n7474210, f: - CD (14/0). _
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - DT, f6! n5938672, f9

n3756403 (12/0). _
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - DT, f6 ,- n5938672, f9

224

APPENDIX C. DECISION LISTS

n8083876 (12/0).

Forgan~sat~on :- f5 = NNP, f8 = NNP, f2 !- NNP, f9 - n5592130 (25/1).
Forgan~sat~on :- f5 _ NNP, f8 _ NNP, f2 !- NNP, f2 - IN, f6 - n2792013 (12/0).
Forganlsatlon :- f5 NNP, f8 NNP, f2 !- NNP, f2 - DT, f6 !- n5708379, f9 !-
n7041023, f9 - n6686439 (10/0).

Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT, f6 !- n5938672, f4 -
uP _PERIODsP _PERIOD (10/2).
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - IN, f9 - n6643594, f7 !- europe
(20/2).

Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT, f9 - n6895143 (9/0).
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f6 - n7902212 (19/0).
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f9 - n218158 (17/0).
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f6 - n6757947 (28/3).
Forganisation :- f5 - NNP, f7 - airline, f8 - NNPS (32/0).
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - IN, f9 - n6788854 (7/0).
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT, f9 - n6637680 (6/0).
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f6 - n6790797 (128/1).
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f6 - n6882991, f4 !- bureau (62/1).
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f6 - n6769589, f1 !- army (41/0).
Lorganisation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f3 - n6757947 (41/1).
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f6 - n3756403 (26/0).
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f3 - n7457534 (25/4).
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f8 - NN, f9 - n2341562 (10/5).
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f3 - n2692952 (17/2).
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f6 - n549894, f1 !- trade (20/0).
Lorganisation :- f2 - NNP, f5 - NNPS, f6 - n3898137 (46/1).
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f6 - n5592130 (17 /2).
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f3 - n7170582 (13/2).
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f6 - n5279815 (11/2).
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f3 - n5272695 (6/1).
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f6 - n6686439 (11/6).
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f1 - national_guard (6/0).
Lorganisation :- f5 - NNP, f2 - NNP, f9 - n6790295 (15/6).
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f6 - n12475555 (6/1).
Lorganisation :- f5 - NNP, f2 - NNP, f7 - dc (6/1).
Lorganisation :- f5 - NNP, f2 - NNPS, f8 !- NNP, f8 !- CD (12/3).
Lorganisation :- f2 - NNP, f1 - pan (16/1).
Lorganisation :- f5 - NNP, f6 - n6751988, f2 - IN (10/2).
Lorganisation :- f5 - NNP, f2 - NNP, f6 - n6788854, f1 - air_force (6/0).
Lorganisation :- f2 - NNP, f3 - n6789709, f1 - squadron (9/0).
Ulocation ;- f5 - NNP, f2 - IN, f8 !- NNP, f8 - P _ COMMA (153/49).
Ulocation :- f5 - NNP, f6 - n7424046 (175/7).
Ulocation :- f5 - NNP, f8 !- NNP, f2 - IN, f6 - n7172103 (31/2).
Ulocation ;- f5 - NNP, f8 ,- NNP, f2 - P COMMA, f6 - n7431482 (48/0).
Ulocation ;- f5 - NNP, f6 - n7168879, f8 T- NNP (96/5).
Ulocation ;- f5 - NNP, f8 ! - NNP, f2 - IN, f6 - n7474210 (27/3).
Ulocation ;- f5 - NNP, f8 ,- NNP, f2 - P COMMA, f6 - n7165212 (30/0).
Ulocation :- f5 - NNP, f8 !- NNP, f6 - n747421O, f4 !- independence, f2 !- NNP, f4

,- troy (35/2).
Ulocation ;- f5 - NNP, f8 ,- NNP, f2 !- NNP, f6 - n7168503 (33/0).
Ulocation :- f5 - NNP, f8 ,- NNP, f6 - n7529345 (52/1).
Ulocation :- f5 - NNP, f6 - n7166963, f9 ,- n7166963, f4 ,- jordan (40/5).
Ulocation :- f5 - NNP, f8 ,- NNP, f2 - IN, f6 - n7130825 (15/2).
Ulocation :- f5 - NNP, f8 ,- NNP, f6 - n7165019 (22/1).
Uorganisation :- f5 - NNP, f2 - DT, f8 !- NNP (412/228).
organisation :- f5 - NNP, f8 !- NNP, f2 ! - NNP, f8 - POS (71/53).

225

APPENDIX C. DECISION LISTS

Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f8 - NNS, f9 - n8686103 (27/5).
Uorganisation :- f5 - NNP, f8 !- NNP, f2 !- NNP, f8 - VBZ (46/40).
Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f6 !- n12345618, f8 - NNS, f2 -
JJ (10/2).

Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f8 - NN, f9 - n231407 (1O/0).
Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f8 - NN, f2 - JJ (23/1O).
Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f6 !- n12345618, f8 - ')', f2 - '('
(18/7).

Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f6 !- n12345618, f2 - CD, f8 !­
NNS (11/4).

Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f6 !- n12345618, f6 - n6788854
(11/2).
default 0 (80388/3411).

================ summary ================
Train error rate: 5.01% +/- 0.07% (91626 data points) < <
Hypothesis size: 221 rules, 1065 conditions
Learning time: 2533.86 sec

C.3 MOLl MENE VB

226

MOLl MENE V8 uses trigger synsets as linguistically informed features. As there are

three lists of trigger synsets (the next-is list, the this-is list and the previous-is list),

there are three new features per token with the synsets hit by the tokens in a window

of sizes [1,1]. Table C.3 shows the relation between these features and the names that

Ripper utilises.

Table C.3: Relation between the names of the features as used by Ripper and the more linguistically informed
features in MOll MENE V5jV8jVl1.

I Ripper's name I MOLl MENE V5/V8/Vll features

f1 synsets in the next-is list hit by token_l
f2 synsets in the this-is list hit by the focus token
f3 synsets in the previous-is list by token+l

The following is the final hypothesis as given by the Ripper algorithm.

Lpercent :- f2 - n11658514 (34/1).
Fpercent :- f3 - n11658514 (33/2).
Mtime :- f3 - n19843, f2 - n16993, f3 !- n24936 (10/5).
Mtime :- f3 - n19843, f2 - r250909 (4/0).
Uti me :- f2 - n12889670, f1 - n24936 (30/2).
Utime ;- f2 - n12832221, f2 ! - n8944134 (24/6).
Utime ;- f2 - n12889670, f2 - n12832754 (4/0).
Mmoney :- f3 - n11302011 (6/1).
Mlocation ;- f3 - n2888347, f1 - n1742, f2 - n22634 (21/4).
Mlocation ;- f3 - n2888347, f3 - n2336754 (1O/4).
Mlocation :- f3 - n2342336, f1 - n1742, f2 - n13067 (11/2).

APPENDIX C. DECISION LISTS

Mlocat~on :- f1 = n19046, f3 - n6992023, f2 - n19046 (7/0).
Mlocatlon :- f3 n6905978, f2 - n7147136, f2 ,- n7937305 (4/0).
Lmoney :- f2 - n11295091, f2 - n11474780 (17/1).
Fmoney :- f3 - n11562705 (12/0).
Mperson :- f2 - n5708379, f1 - n13067 (38/7).
Mperson :- f2 - n5708379, f2 - n11603699 (4/1).
Mperson :- f2 - n5708379, f3 - n5303, f1 ,- n11455258 (6/2).
Mperson :- f2 - n5708379, f2 - n12366980 (2/0).
Mperson :- f1 - n5303, f1 - n8152966 (3/0).
Mperson :- f3 - n8388313 (4/0).
Mperson :- f2 - n11667742, f2 - n11586299, f1 ,- n24936 (3/0).
Mperson :- f1 - n8391286, f2 - n8338222 (2/0).
Ftime :- f3 - n5293770, f2 ,- n7856852 (23/0).
Ftime :- f3 - n12889670, f2 - a1370871 (9/2).
Ftime :- f3 - r250909 (8/0).
Ltime :- f3 - NoWordKey, f1 ,- n1742, f1 ,- n16993, f2 - n5293770 (4/0).
Mdate :- f3 - n12786206, f1 - a1370871 (11/1).
Mdate :- f3 - n12786206, f1 - r60367 (9/2).
Mdate :- f2 - n12786206, f3 - r73272 (23/1).
Mdate :- f1 - n12786206, f1 - n12872860, f1 - n6729321 (4/1).
Mdate :- f3 - n12786206, f3 - n12811259, f1 - a421470 (5/1).
Mdate :- f3 - n12786206, f1 - a2922382 (5/2).
Mdate :- f3 - n12786206, f1 - n12786206, f2 - n24936 (4/2).
Fdate :- f2 - n12872860, f1 ,- a1370871 (132/46).
Fdate :- f3 - n12786206, f2 - a1370871, f3 ,- n6067926 (76/2).
Fdate :- f3 - n12786206, f3 - n12811259, f1 - n1742 (9/6).
Fdate :- f3 - n12786206, f3 - n12806554, f1 - n1742 (7/0).
Fdate :- f3 - n12786206, f2 - n12826002 (8/3).
Fdate :- f3 - n12786206, f2 - a790152 (7/2).
Ldate :- f2 - n12786206, f1 - a1370871, f2 ,- n16840 (76/2).
Ldate :- f1 - n12872860, f3 ,- NoWordKey (106/68).
Flocation :- f3 - n7111224, f2 - n7111224, f2 ,- n7492354, f2 - n7058546 (104/23).
Flocation :- f3 - n1742, f2 - n1742, f3 ,- n13067, f2 ,- n13067, f3 ,- n14223, f2 -
n7582157 (27/9).
Flocation :- f3 - n1742, f2 - n19046, f3 - n19046, f2 ,- n13067, f2 - n7117259
(13/0).
Flocation :- f3 - n7111224, f2 - n7111224, f3 ,- n7058546, f2 ,- n22634, f2 ,- n24503
(25/5).
Flocation :- f3 - n1742, f3 - n7130102, f3 - n9377530, f2 ,- n1742, f1 ,- n13067
(29/10).
Flocation :- f3 - n7111224, f2 - n7062038, f1 - NoWordKey (12/2).
Flocation :- f3 - n1742, f2 - n1742, f3 - n7667106, f2 - n7497888 (31/0).
Flocation :- f3 - n1742, f2 - n7130825, f3 - n7623806 (9/0).
Flocation :- f3 - n1742, f2 - n7130825, f3 - n7101501, f2 - n7758560 (6/0).
Llocation :- f2 - n7111224, f1 - n7111224, f3 ,- n22113, f2 ,- n16840, f2 - n7130102
(72/2).
Llocation :- f2 - n1742, f1 - n1742, f2 ,- n13067, f1 ,- n13067, f3 ,- n16993, f1 -
n7058546 (77/12).
Llocation :- f2 - n1742, f1 - n1742, f2 - n7667106, f1 - n7497888 (30/1).
Llocation :- f2 - n1742, f1 - n1742, f2 ,- n13067, f2 - n7582157, f1 - n7582157

(24/3).
Llocation :- f2 - n1742, f2 - n2338751, f1 - n6961162 (16/0).
Llocation :- f2 - n1742, f1 - n1742, f2 ,- n13067, f1 - n7034213, f1 ,- n22634, f2
,- n1l800524, f1 ,- n7184130 (21/2).
Llocation :- f2 - n1742, f1 - n1742, f2 - n2338751, f1 - n5303 (16/0).
Llocation :- f2 - n1742, f1 - n19046, f2 - n7459488 (13/0).

APPENDIX C. DECISION LISTS

Llocation ;- f2 - n1742, f2 - n6778253, f1 ,- n1742 (28/15).

Llocat~on :- f2 = n1742, f1 = n1742, f1 ,- n13067, f2 - n7623806 (9/0).
Llocatlon ;- f2 n1742, f1 n1742, f2 - n7058546, f2 - n7653466 (6/0).
Llocation ;- f2 - n1742, f1 - n19046, f1 - n7505383 (6/1).
Llocation ;- f2 - n1742, f1 - n1742, f2 - n2342336, f1 !- n7111224 (6/2).
Llocation :- f2 - n1742, f2 - n7036073 (11/5).
Llocation :- f2 - n1742, f1 - n1742, f2 - n12897329 (6/0).
Llocation :- f2 - n1742, f1 - n1742, f2 - n7582157, f1 - n7653466 (4/0).
Llocation :- f2 - n1742, f1 - n1742, f1 - n3277837 (7/6).
Llocation :- f2 - n1742, f2 - n7575544 (6/5).
Llocation :- f2 - n1742, f2 - n7582157, f2 - n3783785 (4/3).
Fperson :- f2 - n2956, f2 - n7953417, f2 !- n8032285 (77/20).
Fperson :- f2 - n2956, f3 - n5708379, f3 !- n12599031 (21/1).
Fperson :- f2 - n3135, f2 - n8523465 (19/0).
Fperson :- f1 - n5303, f1 - n8337045, f1 - n8655657, f2 !- n8655657, f1 - n22113
(25/3).
Fperson :- f2 - n2956, f2 - n7801312 (18/4).
Fperson :- f2 - n2956, f2 - n8536242, f3 - n6992023 (7/0).
Fperson :- f1 - n5303, f1 - n8712722, f3 - n13067 (21/5).
Fperson :- f2 - n3135, f2 - n8056193, f2 - n8580113 (10/0).
Fperson :- f2 - n2956, f2 - n8045071, f2 - n8528433 (7/0).
Fperson ;- f2 - n3135, f2 - n7956863 (10/1).
Fperson :- f3 - n3135, f1 - v2154903, f3 - n7902627 (8/0).
Fperson :- f2 - n3135, f2 - n8536242, f2 - n7904081, f2 !- n8477015 (8/4).
Fperson :- f3 - n3135, f3 - n8536242, f2 - n2847188 (4/0).
Fperson ;- f1 - v730155, f3 - n7893547 (7/4).
Fperson :- f3 - n2956, f3 - n8648356, f3 !- n8619573, f2 - n5294998 (5/0).
Fperson :- f2 - n7832025 (16/1).
Fperson :- f2 - n2956, f2 - n7960124, f2 - n7961997 (6/0).
Fperson :- f2 - n3135, f2 - n8853746 (6/0).
Fperson :- f2 - n3135, f2 - n3272277 (6/0).
Fperson :- f1 - n5303, f1 - n7904081, f1 - n2883498 (5/0).
Fperson :- f1 - v730155, f2 - n8163608 (3/0).
Fperson :- f1 - n5555437 (11/0).
Lperson :- f1 - n2956, f1 - n7953417, f1 !- n8032285 (55/14).
Lperson :- f2 - n3135, f2 - n7902627, f2 !- n7899836, f1 - n23704 (16/2).
Lperson :- f1 - n2956, f1 - n8523465 (19/0).
Lperson :- f1 - n2956, f1 - n8704783, f1 - n16840 (14/1).
Lperson :- f1 - n2956, f2 - n2956, f2 - n8563620 (10/4).
Lperson :- f2 - n3135, f2 - n8833984, f2 !- n25413, f2 !- n24936, f2 - n2656025

(11/0).
Lperson :- f1 - n5708379, f3 - NoWordKey (15/3).
Lperson :- f1 - n2956, f1 - n8056193, f1 - n8580113 (8/0).
Lperson :- f2 - n2956, f1 - n1742, f2 - n8833984, f2 !- n22634 (18/8).
Lperson ;- f1 - n2956, f1 !- n2664, f1 - n8391286 (6/2).
Lperson :- f1 - n2956, f1 - n8536242, f1 - n8629644, f1 !- n8024371 (7/1).
Lperson ;- f1 - n5708379, f1 !- n11478129, f1 - n11455258, f1 - n11474597 (6/2).
Lperson :- f2 - n3135, f2 - n7902627, f2 !- n8619573, f2 !- n8105326, f1 - n1742,

f2 ,- n11413 (8/2).
Lperson :- f2 - n3135, f2 - n8536242, f2 - n8200333, f3 !- v1454310 (5/0).

Lperson :- f1 - n7832025 (15/2).
Lperson :- f1 - n3135, f1 - n3272277 (6/0).
Uperson :- f3 - v599108, f1 - NoWordKey, f2 !- n7899836, f2 - n1742, f2 !- n7911996

(17/1).
Uperson :- f3 - v594545, f2 - n7893547, f2 !- n16993 (25/8).
Uperson :- f3 - v730155, f1 - NoWordKey, f2 !- n13067 (32/26).

228

APPENDIX C. DECISION LISTS

Uperson :- f3 - v1868026, f3 - v802014, f1 !- n1742, f2 - n7898963 (6/1).
Uperson :- f2 - n2956, f2 - n8094623 (51/8).
Udate :- f2 - n12830667, f2 !- n1742, f1 !- a790152 (233/3).
Udate :- f1 - n11497797 (90/6).
Udate :- f1 - NoWordKey, f3 - NoWordKey (100/80).
Udate :- f2 - n12824116, f2 !- n12786206 (30/3).

Morgan~sat~on :- f3 = n6643140, f1 - n22113, f2 - n21905 (77/1).
Morgan~sat~on :- f1 _ n1742, f2 - n22113, f3 - n16993, f1 - n7491601 (80/0).
Morgamsatlon :- f1 n1742, f3 - n22113, f2 - n1742, f1 !- n2664, f1 - n7116686
(67/3).
Morganisation :- f3 - n6643140, f1 - n1742, f2 - n27447 (88/6).
Morganisation :- f1 - n1742, f2 - n22634, f2 - n241678, f1 - n7905970 (41/0).
Morganisation :- f3 - n6643140, f1 - n1742, f2 - n1742, f3 !- n148506, f1 - n19046,
f1 !- n7058546 (15/2).
Morganisation :- f3 - n22634, f1 - n1742, f2 - n16993, f3 !- n6636576 (18/7).
Morganisation :- f3 - n6643140, f2 - n22634, f1 - n6643140, f1 - n6893418 (7/0).
Morganisation :- f3 - n22634, f2 - n22634, f2 - n7782241, f3 - n6696044 (17/1).
Morganisation :- f3 - n22634, f1 - n1742, f2 - n6790797 (6/0).
Morganisation :- f3 - n22634, f1 - n13067, f2 - n6791040 (8/2).
Morganisation :- f3 - n22634, f1 - n13067, f3 - n6686439, f3 !- n8395191 (7/3).
Morganisation :- f1 - n1742, f2 - n19046, f2 - n5270807, f1 - n7062038 (7/0).
Morganisation :- f3 - n22634, f1 - n22634, f3 - n6746043 (19/5).
Morganisation :- f2 - n1742, f1 - n19046, f1 - n7516129 (6/1).
Morganisation :- f3 - n22634, f2 - n1742, f3 - n6694803 (6/1).
Morganisation :- f3 - n16993, f3 - n7593134, f2 - n1742 (17/1).
Morganisation :- f1 - n8501671, f2 - n22634 (3/0).
Morganisation :- f3 - n22634, f3 - n310023, f2 - n4099891, f3 - n11340514 (5/0).
Forganisation :- f3 - n6683510, f2 - n1742, f3 - n6741150, f3 !- n16840 (62/1).
Forganisation :- f3 - n22634, f2 - n6683510, f2 - n6748862 (32/5).
Forganisation :- f3 - n22634, f2 - n1742, f3 - n3197306, f2 !- n22634 (36/5).
Forganisation :- f3 - n22634, f2 - n1742, f3 - n8416837 (21/2).
Forganisation :- f3 - n22634, f2 - n6683510, f3 - n6790797, f1 !- a2650604 (50/3).
Forganisation :- f2 - n1742, f3 - n1742, f3 !- n13067, f2 - n6671151 (23/1).
Forganisation :- f2 - n7491601, f3 - n12792491 (31/0).
Forganisation :- f3 - n1742, f2 - n6992023, f3 - n19046, f2 !- n7130102, f3 - n22634
(10/0).
Forganisation :- f2 - n1742, f3 - n19046, f2 - n7430143 (64/43).
Forganisation :- f3 - n22634, f2 - n3135, f3 - n6683510, f3 !- n25413, f3 !- n16993,
f1 !- n5303, f2 !- n7895781 (61/12).
Forganisation :- f3 - n1742, f2 - n1742, f3 - n12543232, f1 !- n24936 (11/4).
Lorganisation :- f2 - n6643140, f1 - n22634, f3 - n1742 (68/18).
Lorganisation :- f2 - n6643140, f1 - n1742, f2 - n6710350, f1 - n6802831 (24/2).
Lorganisation :- f2 - n6643140, f1 - n1742, f2 - n2771586, f2 - n8575577 (16/0).
Lorganisation :- f2 - n6643140, f1 - n1742, f2 - n6882991 (49/24).
Lorganisation :- f2 - n6643140, f1 - n1742, f2 - n3197306, f1 !- n22634, f2 !-
n11246282 (36/5).
Lorganisation :- f2 - n22634, f1 - n6683510, f1 !- n1742, f2 - n12786206 (26/0).
Lorganisation :- f2 - n22634, f1 - n5540028 (86/2).
Lorganisation :- f2 - n22634, f1 - n6683510, f2 - n6790797 (27/7).
Lorganisation :- f2 - n6643140, f2 - n6746043, f1 - n6710350 (15/1).
Lorganisation :- f2 - n22634, f1 - n1742, f2 - n6850179 (10/2).
Lorganisation :- f2 - n6683510, f2 - n6746043, f2 - n833292 (11/5).
Lorganisation :- f2 - n22634, f1 - n1742, f2 - n2533363 (16/4).
Lorganisation :- f2 - n22634, f2 - n6696044, f1 - n13067, f2 !- n2956, f1 !- n15787

(13/6).
Lorganisation :- f2 - n1742, f1 - n1742, f2 - n12345618, f3 !- n310023 (26/2).

229

APPENDIX C. DECISION LISTS

Lorganisation :- f2 - n22634, f1 - n16993, f2 - n310023, f1 - n4099891 (8/4).
Lorganisation :- f2 - n22634, f2 - n6694803 (8/0).
Lorganisation :- f2 - n1742, f1 - n1742, f1 - n7162964, f2 - n15787 (19/1).
Lorganisation :- f2 - n1742, f1 - n1742, f2 - n1290467 (8/0).
Lorganisation :- f2 - n22634, f2 - n85621 (7/4).
Lorganisation :- f2 - n22634, f1 - n22113, f2 - n6686439 (6/2).
Ulocation :- f2 - n7111224, f2 - n6992023, f2 - n7159610 (103/3).
Ulocation :- f2 - n7111224, f2 - n7013143, f3 ,- n22634, f3 ,- n3252432, f1 1-

n13067 (130/5).

Ulocation :- f2 - n6992023, f2 - n6899919, f3 ,- n7582157, f3 ,- n16840 (64/3).
Ulocation :- f2 - n6992023, f2 - n7062038, f3 ,- n1742 (63/5).
Ulocation :- f2 - n6992023, f2 - n7130825, f2 ,- n14223 (110/24).
Ulocation :- f2 - n6992023, f2 - n15787 (41/8).
Ulocation :- f2 - n6992023, f2 - n7017569, f1 ,- n1742, f2 ,- n7030738, f2 ,- n20595,
f2 ,- n7524388, f2 ,- n16993, f2 ,- n7341405 (54/11).
Ulocation :- f2 - n1742, f2 - n6992023, f2 - n7034213, f2 !- n6772247, f3 !- n1742,
f1 !- n1742, f3 ,- n11800524, f2 ,- n7758560 (189/13).
Ulocation :- f2 - n7667106, f2 - n7188766 (20/3).
Ulocation :- f2 - n1742, f2 !- n2664, f2 !- n4911, f2 - n7623806 (18/1).
Ulocation :- f2 - n7040158, f2 - n7138810, f2 !- n5303, f2 !- n7143957 (13/4).
Ulocation :- f2 - n1742, f2 !- n13067, f2 - n7700297, f2 !- n11450705 (18/2).
Ulocation :- f2 - n1742, f2 - n7673764, f3 ,- n6961162, f3 !- n2338751 (18/0).
Ulocation :- f2 - n7040158, f2 - n12363793 (4/0).
Ulocation :- f2 - n1742, f2 - n7667106, f2 - n7622212 (5/4).
Ulocation :- f2 - n9100610, f3 !- n13067 (6/0).
Ulocation :- f2 - n793354 (5/1).
Ulocation :- f1 !- n1742, f2 - n1818808 (3/0).
Ulocation :- f2 - n6899919, f3 - n22634 (6/0).
Ulocation :- f2 - n3176620 (4/0).
Ulocation :- f2 - a2796035 (4/0).
Ulocation :- f1 !- n1742, f2 - n8120742 (3/0).
Ulocation :- f2 - n7667106, f2 - n7552184 (3/1).
Uorganisation :- f2 - n6789273 (80/4).
Uorganisation :- f1 - n12829061, f3 - n21905, f2 ,- n13067 (43/2).
Uorganisation :- f3 - n13067, f3 - n8337045, f2 - n8655657 (23/5).
default 0 (80480/5404).

================ summary ================
Train error rate: 6.77% +/- 0.08% (91626 datapoints) < <
Hypothesis size: 193 rules, 793 conditions
Learning time: 2710.72 sec

C.4 MOLl MENE V9

230

Recall that the complex features used for the maximum entropy model of MOLl MENE

V9 are the same than V6 uses, plus the generalisation of these features into less complex

features according to the procedure presented in Mikheev (1998). Therefore, this new

''rules'' do not predict a class. Table C.1 on page 220 can be consulted for the meaning

of the features mentioned in the following short extension.

Rule 17:- f9 - NP.
Rule 18:- f11 - CONJ.

APPENDIX C. DECISION LISTS 231

C.5 MOLl MENE VIO

The generalisation of the complex features of MOLl MENE V7 produces the features

considered by MOLl MENE VI0. Table C.2 on page 221 shows the relation between

the actual features and the names used in the following added features.

Rule 222:- f2 - $, f2 ,- PRP.
Rule 223:- f8 - NNP, f2 - NNP.
Rule 224:- f8 - NNP.
Rule 225:- f2 - CD, f5 - CD.
Rule 226:- f2 - NNP, f8 - NNP.
Rule 227:- f4 - last.
Rule 228:- f5 - CD.
Rule 229:- f6 - n12811110, f5 - NN.
Rule 230:- f5 - NNP, f8 - NNP, f2 !- NNP.
Rule 231:- f2 - NNP.
Rule 232:- f2 - NNP, f5 - NNP, f8 ,- NNP.
Rule 233:- f2 - NNP, f5 - NNP.
Rule 234:- f5 - NNP, f2 - NNP.
Rule 235:- f2 - NNP, f5 - NNPS.
Rule 236:- f5 - NNP.
Rule 237:- f5 - NNP, f8 - NNP.
Rule 238:- f2 - NNP, f8 - P _COMMA, f5 - NNP.
Rule 239:- f5 - NNP, f8 ,- NNP, f2 !- NNP.
Rule 240:- f5 - NNP, f8 - NNPS.
Rule 241:- f5 - NNP, f2 - NNP, f8 ,- NNP.
Rule 242:- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT.
Rule 243:- f5 - NNP, f8 - NNP, f2 !- NNP, f9 - n6788854.
Rule 244:- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - CD.
Rule 245:- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT, f6 !- n5938672.
Rule 246:- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - IN.
Rule 247:- f5 - NNP, f8 - NNP, f2 - IN.
Rule 248:- f5 - NNP, f8 - NNP, f2 - P _ COMMA.
Rule 249:- f5 - NNP, f8 - NNP.
Rule 250:- f5 - NNP, f2 - NNP, f8 !- NNP, f8 - NN.
Rule 251:- f5 - NNP, f2 - NNP.
Rule 252:- f2 - NNP, f8 - NNP.

C.6 MOLl MENE VII

Applying Mikheev's (1998) generalisation to MOLl MENE V8 features, Vll is obtained.

Table C.3 on page 226 presents the names used by the Ripper algorithm for each atomic

feature mentioned in the following list of complex features added.

Rule 194:- f2 - n12889670.
Rule 195:- f2 - n5708379.
Rule 196:- f3 - n12786206.
Rule 197:- f3 - n12786206, f3 - n12811259.
Rule 198:- f3 - n12786206, f1 - n1742.
Rule 199:- f2 - n1742, f1 - n19046.

APPENDIX C. DECISION LISTS

Rule 200:- f2 - n1742.
Rule 201:- f2 - n1742, f1 - n1742.
Rule 202:- f2 - n3135.
Rule 203:- f2 - n2956.
Rule 204:- f1 - v730155.
Rule 205:- f3 - NoWordKey.
Rule 206:- f3 - n22634, f2 - n1742.
Rule 207:- f2 - n22634.
Rule 208:- f2 - n22634, f1 - n1742.
Rule 209:- f2 - n7667106.
Rule 210:- f1 !- n1742.
Rule 211:- f1 - n1742.

232

Appendix D

Biasing LexMENE: details

D.I The constituent pattern information entity

The weight on a similarity arc that connects two constituent patterns corresponds to

the sum of the estimated similarity of each chunk tag in the best alignment that the

Needleman-Wunsch-Sellers (NWS) algorithm (Needleman and Wunsch 1970, Sellers

1974) can obtain. Algorithm D.1 presents the similarity function for calculating the

similarity between two chunk tags in the patterns.

Basically, the similarity is zero if the chunk tags are different. Otherwise, the position of

the closest constituent to the focus is determined and a similarity is assigned according

to this distance. BiLexMENE consider two patterns more similar if they share a chunk

tag closer to the focus. Accordingly, the score 5.50 is assigned to the position next to

the focus, then 3.25, then 2.25 and finally 1.00 to the position farthest from the focus

on either extremity. These weights have been selected so that the maximum similarity

between two constituent patterns is 12.

If the chunk tags being scored are not in the same position, a penalty (Penalty 1) is

applied in function of the distance between the different positions. In addition to this,

a second penalty is applied (Penalty 2) to acknowledge this difference. Thus, a match

between constituents in the same position gets a higher score than a match between

constituents in contiguous positions, which in turn is higher than the score assigned to

a match between -for example- the closest and farthest constituents from the focus.

In addition to this, if the matched constituents are optional, the score is further penalised

(Penalty 3) as this can be thought as a less important match. BiLexMENE considers as

optional constituents marked as adjectival phrases (ADJP) , adverbial phrases (ADVP)

and verb particles (PTR).

There is one observation that should be commented here. When one of the constituents

is null -at a sentence's boundary- it matches constituents tagged as CONJ, a tag used

233

APPENDIX D. BIASING LEXMENE: DETAILS 234

Algorithm 0.1: Calculation of the similarity between two constituents for the alignment of two t't t Th ... I . h cons I uen
patte~ns. e Inltla welg ts are: 5.50, 3.25, 2.25 and 1.00, according to the distance from the focus
constituent. By default, CPPenaltyl = 1.0, CPPenalty2 = 0.5, CPPenalty3 = 0.5 and CPPenalty4 =
0.5.

Input: consh and const2, the two constituents to be compared
Output: a score of the similarity between the two constituents

1: procedure GET-SIMILARITY-TWO-CONSTITUENT-LABELs(consh, const)
2: if the constituents' labels are the same then 2

3: sim = the weight corresponding to the closer position to the focus
4: if the constituents are not in the same position then
5: sim = max(O, sim - CPPenaltyl . distance)
6: sim = sim· CPPenalty2
7: end if
8:

9:

10:

if the constituents are optional then
sim = sim· CPPenalty3

end if
11: return sim
12: end if

[> i.e. ADJP, ADVP or PTR

13: if one of the constituents is null and the other one is labelled CON J then
14: sim = the weight corresponding to the closer position to the focus
15: sim = sim . CP Penalty4
16: if the constituents are not in the same position then
17: sim = max(O, sim - CPPenaltyl . distance)
18: sim = sim . CPPenalty2
19: end if
20: return sim
21: end if
22: return 0.0
23: end procedure

by the MBSP parser to recognise conjunctions -such as the words and, but and 0(­

but that has been extended here to manage also punctuation marks -such as periods,

commas, semicolons, quotes, etc.- that link two pieces of text. In this case however,

the score is penalised (Penalty 4) in addition to the penalties mentioned above - except

Penalty 3, of course.
Although the penalty values used by biLexMENE could be free parameters, in the

implementation discussed here they have been fixed to the values 1.0, 0.5, 0.5 and

0.5 respectively on both left and right constituent patterns. These values showed to

produced the desired effects when tested with a small number of examples.

D.2 The binary lexical pattern information entity

The similarity weight that labels an arc between two binary lexical patterns corresponds

to the sum of the similarity of each binary lexical feature in the best alignment of

those patterns (obtained by the NWS algorithm). The similarity function to obtain the

individual similarity scores between two binary lexical features is presented in algorithm

D.2. In few words, the algorithm gets the similarity of the features on the basis of the

corresponding value in one of three tables of similarity weights, according to the type

of both binary lexical features.

APPENDIX D. BIASING LEXMENE: DETAILS 235

A.lgorith~ 0.2: Calculation of the similarity between two orthographic features for the alignment of two

binary lexical patterns. By default. BLPPenaltyl = ~.
Input: bit 1 and bit 2, the two binary lexical features to be compared
Output: a score of the similarity between the two features

1: procedW"e GET-SIMILARITY-TWO-BINARY-LEXICAL-FEATURES(bll b11) of £ . :f 1, oj 2
2: lone eature IS left context and the other is right context then
3: retW"n 0.0
4: end if
5: weight +- 1.0
6: if either bit 1 or bit 2 is a context feature then
7: weight +- BLPPenaltyl
8: end if
9: if both bit 1 and bit 2 are number-type then

10: sim +- the corresponding similarity score from the following table
I II ,dg I -dg I .dg I / dg I 2dg I 4dg I ·dg I adg I odg I vdg I

,dg 12.0 4.0 8.0 4.0 8.0 8.0 4.0 2.0 8.0 3.0
-dg 4.0 12.0 4.0 8.0 4.0 4.0 4.0 2.0 4.0 3.0
.dg 8.0 4.0 12.0 4.0 4.0 4.0 4.0 2.0 4.0 3.0
/dg 4.0 8.0 4.0 12.0 4.0 4.0 4.0 2.0 4.0 3.0
2dg 8.0 4.0 4.0 4.0 12.0 8.0 4.0 2.0 8.0 3.0
4dg 8.0 4.0 4.0 4.0 8.0 12.0 4.0 2.0 8.0 3.0
:dg 4.0 4.0 4.0 4.0 4.0 4.0 12.0 2.0 4.0 3.0
adg 2.0 2.0 2.0 2.0 2.0 2.0 2.0 12.0 2.0 2.0
odg 8.0 4.0 4.0 4.0 8.0 8.0 4.0 2.0 12.0 3.0
vdg 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 12.0

11: return we~ght . s~m
12: end if
13: if both bit 1 and blt 2 are word-type then
14: sim +- the corresponding similarity score from the following table

I II acp I adg I cpp I icp I mcp I ucp I
acp 12.0 2.0 6.0 4.0 8.0 4.0

adg 2.0 12.0 2.0 2.0 2.0 2.0

cpp 6.0 2.0 12.0 6.0 6.0 6.0

icp 4.0 8.0 4.0 12.0 4.0 4.0

mcp 8.0 4.0 4.0 4.0 12.0 8.0

ucp 8.0 4.0 4.0 4.0 8.0 12.0
15: return we'tght . s'tm
16: end if
17: if both bit 1 and bit 2 are other-type then
18: sim +- the corresponding similarity score from the following table

I II null I adg I mix I ncp I
null 12.0 0.0 0.0 6.0

adg 0.0 12.0 8.0 0.0

mix 0.0 8.0 12.0 4.0

ncp 6.0 0.0 4.0 12.0

19: retW"n we'tght . s'tm
20: end if
21: retW"n 0.0
22: end procedW"e

For this effect, three types have been defined: the number-type, which gathers binary

lexical features shown by numeric tokens, such as digits with commas (,dg) , two-digits

number (2dg), etc.; the word-type, which groups binary lexical features that are pre­

sented by words, such as all capitals (acp) , mixed capitalisation (mcp) or uncapitalised

APPENDIX D. BIASING LEXMENE: DETAILS 236

(ucp); and the other-type for any other binary lexical feature in use, such as symbols

(ncp) and mixed characters (mix).

Algorithm D.2 changes the score retrieved from the similarity tables in two ways. First,

if at least one of the binary lexical features is not from a focus token, then the similarity

weight is penalised. And secondly, if both binary lexical features are contextual, and one

is from the left of the focus and the other is from the right side of the focus constituent,
then the similarity is reduced to zero.

As earlier, the penalty applied was determined on the basis of testing different values

on a selected set of examples until the scores obtained were considered sensible. In this

case, this penalty was fixed to one eighth of the value in the tables.

D.3 The lexical pattern information entity

The similarity weight associated with each arc between lexical patterns corresponds to

the sum of the similarity of the lexical features -i.e. words or tokens- in the best

alignment that the NWS algorithm can obtain for the patterns. The similarity function

to obtain the similarity score between two lexical features in the patterns is presented

in algorithms D.3 through D.7.

Algorithm 0.3: Calculation of the similarity between two lexical features (words/tokens). By default,
LPPenaltyl = ~.

Input: If 1 and If 21 the two lexical features to be compared
Output: a score of the similarity between the two features

1: procedure GET-SIMILARITY-LEXICAL-FEATURES(lfll If2)
2: if one feature is left context and the other is right context then
3: return 0.0
4: end if
5: weight +-- 1.0
6: if either If 1 or If 2 is a context feature then
7: weight +-- LPPenaltyl
8: end if
9: if either If 1 or If 2 is null then

10: return weight· G ET- SIMILARITY - NULL- LEXICAL- FEATURES (If 11 If 2)

11: end if
12: if both If 1 and If 2 have known meanings then
13: return weight· GET-SIMILARITY-LEXICAL-FEATURES-WITH MEANINGS(lfll lf2)
14: end if
15: if both If 1 and If 2 are tokens without known meaning then
16: return weight· GET-SIMILARITY-TOKENS-WITHOUT-MEANINGS(lf 1 1 If 2)
17: end if
18: return 0.0
19: end procedure

In few words, the main source of information for comparing two lexical features is their

meaning. However, sometimes a comparison based on meanings is not possible: when

APPENDIX D. BIASING LEXMENE: DETAILS 237

(at least) one of the lexical features is from the context of the beginning or ending of

a sentence, in which case the feature is null; or when the features are tokens without
known meanings.

This last case occurs because WordNet manages information on open class lexemes

only (i.e. nouns, verbs, adjectives and adverbs), leaving automatically out determiners,

prepositions, conjunctions, etc. In addition to this, it is unrealistic to expect that

WordNet's lexical database is complete, specially nouns, and in particular proper nouns.

When meanings are not available, the similarity function makes use of less informed,

more lexically-oriented characteristics to estimates their similarity.

Algorithm D.3 changes this normal calculation in two occasions: if the two lexical

features are from the context of a focus constituent, but one is from the left context

and the other is from the right context, then their similarity is reduced to zero; and

when the matching is occurring between a context lexical feature and a focus one, their

similarity is penalised. As earlier, this penalty has been fixed on the basis of trying

different values in a small set of selected examples and choosing the value that produces

the desired effect best. In this case, this penalty has been fixed to 0.125.

Algorithm 0.4: Calculation of the similarity between two lexical features (words/tokens) when at least one
of them is null. By default, LPBothNullFeatureSim = 12.0, LPNullFeatureStopSymbolSim = ~ LPBoth­
NullFeatureSim and LPNullFeatureSemistopSymbolSim = ~ LPBothNullFeatureSim.

Input: 1f 1 and 1f 2, the two lexical features to be compared,
of which at least one is null

Output: a score of the similarity between the two features
1: procedure GET-SIMILARITY-NULL-LEXICAL-FEATURES(lfl, 1f2)
2: if both 1f 1 and 1f 2 are null then
3: return LPBothNullFeaturesSim
4: end if
5: if the not-null feature occurs in a constituent labelled CON) then
6: if the not-null feature is a stop symbol then t> i.e .. , ; : ?
7: return LP NullFeatureStopSymbolSim
8:

9:

10:

11:

end if
if the not-null feature is a semi-stop symbol then

return LP NullFeatureSemistopSymbolSim
end if

12: end if
13: return 0.0
14: end procedure

. """() t> l.e.

When one or both of the lexical features are null, their similarity is estimated as pre­

sented in algorithm D.4. Essentially, three cases are considered as valid matches and

each one of them is associated with a fixed similarity value. The matches considered

include: both lexical features are nuli, which at this stage are known to come from the

same contextual side; one of the features is null and the other is a punctuation mark

that indicates the beginning of a new idea in the text; and one of the features is null and

APPENDIX D. BIASING LEXMENE: DETAILS 238

the other is a token that (more weakly) suggests a possible change in the discussion.

In the version of biLexMENE presented here, the symbols considered as strong indica­

tors of change in the discourse are periods, commas, semicolons, colons, question marks

and exclamation marks. These symbols are referred to as stop symbols. Similarly, sim­

ple and double quotes and parentheses are considered as weak indicators of change in

the discourse and, consequently, called semi-stop symbols. Note that these symbols are

normally found in constituents labelled CON).

The similarity values has been fixed as previously. The best combination of values

found is to consider the match of two null lexical features as a perfect match -i.e

LPBothNullFeatureSim = 12.0- and matches with stop and semi-stop symbols as half­

good matches, that is setting LPNullFeatureStopSymbolSim = 6.0 and LPNullFeature­

SemistopSymbolSim = 6.0.

Algorithm 0.5: Calculation of the similarity between two lexical features (words/tokens) with known mean­
ings. By default, WordNetSameLemmaSim = 12.0, WordNetSynonymsSim = % WordNetSameLemmaSim,
WordNetSiblingsSim = ~ WordNetSameLemmaSim and WordNetParentChildSim = ~ WordNetSame­
LemmaSim.

Input: If 1 and If 2' the two lexical features with known meanings to be compared
Output: a score of the similarity between the two features

1: procedure GET-SIMILARITY-LEXICAL-FEATURES-WITH-MEANINGS(lf l' If2)
[> Searches in this algorithm are for every sense in the same lexical category

2: if If 1 or If 2 does not have a WordNet entry then
3: get special meanings for the features with unknown meaning

[> e.g. % means 'percent', 's in a VP means 'is' or 'has'
4: end if
5: if If 1 and If 2 have the same WordN et lemma then
6: return WordNetSameLemmaSim
7: end if
8: if If 1 is a WordNet synonym of If 2 then
9: return WordNetSynonymsSim

10: end if
11: simI +- 0.0
12: if If 1 is a WordNet coordinate term of If 2 then
13: simI +- W ordN etSiblingsSim
14: end if
15: sim2 +- 0.0
16: if one of the features is a WordNet direct hypernym of the other then
17: sim2 +- W ordN etParentChildSim
18: end if
19: return max(siml' sim2)
20: end procedure

Algorithm D.5 shows the procedure to estimate the similarity between lexical features

with known meanings, which considers four cases: the features have the same lemma­

i.e. they are the same word or differ in their inflections, the features are synonyms, the

features are coordinate terms, and the features have a hyponymjhypernym relationship.

As above each case is associated with fixed values that represent the strength of these ,
semantic relations. These values were selected following a sensible order. Thus, if

APPENDIX D. BIASING LEXMENE: DETAILS 239

two lexical features are essentially the same word, their match is considered perfect

(WordNetSameLemmaSim = 12.0). Then, the slightly less strong relation of synonymity

is set accordingly to a slightly lower value (WordNetSynonymsSim = 9.0). The next

relation in strength is the sibling relation, which in WordNet's terminology corresponds

to coordinate terms. The similarity value for this relation has been defined has half of

the perfect match (WordNetSiblingsSim = 6.0). Finally, the weakest semantic relations

are the superordination and subordination, which in WordNet are called the hypernym

and hyponym relations respectively, for which the lowest similarity value is defined

(WordNetParentChildSim = 3.0).

Two observations about algorithm D.5 should be noticed. First, the similarity function

always tries to determine the highest similarity value. Thus, before checking whether the

lexical features match in a weaker semantic relationship, it exhausts the possibilities for

a stronger relationship with every sense of each feature. And secondly, some extension

of WordNet is performed before the comparison starts. This extension allows lexemes

that do not have explicit entries in the lexical database to be associated with known

meaning. For example, the symbol % is associated with the meanings that the word

percent has in WordNet. This extension can manage several conditions, such as that

the lexical feature occurs in a particular type of constituent. The list of lexemes added

to lexical features with known meaning is mainly language dependent. Although, task

specific entries might be included in this list, this has not been necessary in the version

of biLexMENE presented here.

The last possibility for a match is that both lexical features are tokens with no known

meanings. Words are discarded here because biLexMENE maintains as words only

lexemes that consists of more than one token and have an entry in WordN et 's lexi­

cal database. Thus, there are no words without known meaning. Example of words

are prime minister, executive_ officer, pearl_ harbor, etc. - for which valuable semantic

information would be lost if analysed from the component tokens individually.

Algorithm D.6 describes the estimation of the similarity between tokens without known

meanings. The first step is an attempt at making strings that contain numbers less

variable. This process consists of replacing each digit in the token for the character 'D',

and then replacing ordinal endings for the generic string 'TH'. For example, the strings

530, 10/31/97, 221, 21st and 8/12/98 will become DDD, DD/DD/DD, DDD, DDTH and

D/DD/DD respectively. The resulting strings, called texts in the algorithm, are the ones

considered in the following comparisons.

The highest match possible is that the two texts are the same. If this happens, algorithm

D.6 returns the constant LPSameTextSim, which has been set to the maximum value

of 12 in this initial version of biLexMENE. Otherwise, the algorithm checks whether

there are defined special matches for the texts. Special matches include both tokens

that are related to tokens that do not have an entry in WordNet's lexical database

APPENDIX D. BIASING LEXMENE: DETAILS 240

Algorithm 0.6: Calculation of the similarity between two lexical features that are tok ·th .
(d I h . ens WI out meanings
wor ~ a ways ave me~nlngs). By de!ault, LPSameTextSim = 12.0, LPBothStopSymbolsSim = !. LPSame-
TextS/m, LPBothSem/stopSymbolsS/m = ~ LPSameTextSim and LPStopAndSemistopSymbolsSim 0.0.

Input: tokenl and token~, ~he.two tokens without known meanings to be compared
Output: a score of the slImlanty between the two tokens

1: procedure GET-SIMILARITY-TOKENS-WITHOUT-MEANINGS(tokenl, token2)
2: textl t- GET-TEXT-NUMBER-PATTERN(td

3: text2 t- GET-TEXT-NUMBER-PATTERN(~)

4:

5:
6:

7:

8:

9:
10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

I> e.g. 'nuts4nuts' =? 'nutsDnuts', '3-11-04' =? 'D-DD-DD'
if texh = text2 then

return LPSameTextSim
end if
if textl and text2 have an special match then

return the similarity defined for the special match

end if
I> e.g. '&' '" 'and', 'DD-DD' '" 'DD/DD'

sim t- GET-MORPHOLOGICAL-SIMILARITY(textl, text2)
if sim > 0.0 then

return sim

I> e.g. 'Jackson' '" 'Johnson', 'D,DDD' '" 'DD,DDD'
end if
if both tokens are stop symbols then

return LP BothStopSymbolsSim
end if
if both tokens are semi-stop symbols then

return LP BothSemistopSymbolsSim
end if
if one token is a stop symbol and the other is a semi-stop symbol then

return LP StopA ndS emistopSymbolsSim
end if
return 0.0

24: end procedure

-e.g. the word and and the & symbol- and language-dependent/domain-dependent

relations which might be missed or incorrectly estimated by a morphological analyser

- such as the texts DD-DD-DD, DD/DD/DD and DD:DD:DD, which would be considered

to have the same morphological similarity even though the former two patterns could

be thought closer as both are used to express dates, whereas the latter is used to express

time. These special matches -which are introduced in biLexMENE as a list that can

be easily adapted to other languages and domains- include the similarity score in their

definition, which are the scores returned by the algorithm in these cases.

When the texts being compared are not equal and algorithm D.6 cannot find special

matches for them, their similarity is estimated by applying a morphological analysis as

presented in algorithm D.7. This algorithm starts by ensuring that the morphological

analysis has a high probability of being significant. This involves checking that the texts

are long enough to show some meaningful prefix or suffix -which in this implementation

corresponds to four or more characters- and that a common prefix or suffix might be

indicating the same linguistic phenomenon - i.c. the texts' lengths suggest that a

APPENDIX D. BIASING LEXMENE: DETAILS 241

Algorithm 0.7: Calculation of the similarity between two texts according to the lengths of their common
prefixes a nd com mon suffixes.

Input: text! and text2, the texts to be compared
Output: a score of the similarity between the two texts

1: procedure GET-MORPHOLOGICAL-SIMILARITY(text text)
of I (!, 2

2: 1 ength textd < 4 and length(text2) < 4 then
3: return 0.0
4: end if
5:

6:

7:
8:
9:

10:

11:

12:

13:

14:

15:

if one text is twice as long as the other then
return 0.0

end if
leftsim +- length(common prefix)/length(longest text)
rightsim +- length(common suffix)/length(longest text)
if length (common prefix) < 3 then

leftsim +- 0.0
end if
if length(common suffix) < 3 then

rightsim +- 0.0
end if

16: if the common prefix and the common suffix overlap then
17: min(leftsim, rightsim) +- 0.0
18: end if
19: return leftsim + rightsim
20: end procedure

common prefix or suffix is indeed a common prefix or suffix rather than a coincidence,

which is determined by checking that one text is not twice as long as the other one.

If this conditions are complied, the algorithm determines whether the texts have a

common prefix or/and a common suffix. These common bits are ignored if they do not

have a length higher than two characters. In addition to this, if the texts have both a

common prefix and a common suffix that overlaps, algorithm D.7 considers only one of

them. These heuristics and fixed values -as well as the ones explained below- have

been obtained following the procedure applied earlier, thus analysing a reduced number

of examples until the desired output -i.e. obtaining similarity values mostly when the

tokens are morphologically related- was observed.

The morphological similarity corresponds to the sum of the lengths of the common

prefix and common suffix found, divided by the length of the longest text in analysis.

When the morphological analysis yields null similarity, algorithm D.6 makes a last

attempt at finding a relation: it checks whether the texts in analysis are a combination of

stop and semi-stop symbols. According to this, the procedure returns a fixed similarity

value for matches between two stop symbols (LPBothStopSymbolsSim = 6.0), two semi­

stop symbols (LPBothSemistopSymbolsSim = 6.0) and a stop and a semi-stop symbol

(LPStopAndSemistopSymbolsSim = 0.0).

APPENDIX D. BIASING LEXMENE: DETAILS 242

D.4 Reducing the size of the problem

Because of the computational costs of retrieving similar cases, an attempt to reduce

the number of queries that need to be processed was introduced in biLexMENE. The

initial idea was to train a binary classifier to decide whether a query is relevant or

irrelevant, which should try to maximise recall but keeping, at the same time, a low

number of spuriously checked queries - i.e. irrelevant queries classified as relevant.

However, the parametrisation of such classifier became difficult and soon was clear that

a heuristic to filter the classifier's decisions was needed. Algorithm D.8 presents this

heuristic procedure.

Basically, a query should be processed when it contains a token which might be part of a

named entity. The first approach is to look at the frequency of the token and its binary

lexical feature with respect to the named entity classes with which they occur. When

this pair is not seen or seldom seen, the decision is left to biLexMENE. If the token has

a moderate to high frequency, but every single time it occurs outside a named entity,

the token is a priori ruled out. Otherwise, that is the pair has been seen within named

entities, and its frequency is only moderate, it is consider safer to leave the classification

to biLexMENE. When a pair is frequent and has been seen as part of named entities

in at least 30% of the time, the token -and consequently, the query- is passed on

to biLexMENE. Finally, if the frequent pair is mostly seen outside named entities, a

classifier is applied and the token is discarded only if this classifier determines that its

probability of being part of a named entity is less than 5%.

This heuristic introduces several parameters which were adjusted following a similar

approach to estimating the other parameters of biLexMENE: some values were fixed

to apply the heuristic on a small set of examples, then the results were analysed to

identify mistakes and new values were obtained in an attempt to reduce these errors.

After some iterations, a final set of values was obtained which showed to produce the

effect sought.

For this implementation, too little frequency was set to less than three times and high

frequency to more than 15 events (thus, pairs occurring three to 15 times with a class

are considered to have moderate frequency). The above parameters were also set in this

way and the values 30% and 5% used above resulted from the best trade off obtained

between a high recall and a low number of spurious checks.

The classifier used in algorithm D.8 is not restricted to any particular approach. The

only condition that this classifier must meet is that it should estimate the probability

that a token is not part of a named entity. Several algorithms were tested for the current

implementation of biLexMENE and the one selected corresponds to a PART decision list

learner, freely available in the Weikato Environment for Knowledge Analysis (\YEKA.)

(Witten and Frank 2000), which builds partial decision trees in a series of iterations,

transforming into a rule the best leaf of each partial tree (Frank and \Vitten 1998).

APPENDIX D. BIASING LEXMENE: DETAILS

Algorithm 0.8: The heuristic used to reduce the number of queries to be processed by biLexMENE.
Input: a query

Output: true if it is considered likely that the query contains tokens which are part
of a named entity; false otherwise

1: procedure SHOULD-BE-CHECKED(query)
2: for each token E query do
3: if SHouLD-BE-CHEcKED(token) then
4: return true
5: end if
6: end for
7: return false
8: end procedure

Input: a token

Output: true if it is considered likely that the token is part of a named entity; false
otherwise

9: procedure SHOULD-BE-CHECKED(token)
10: answer f- TRY-DECISION-BASED-ON-FREQUENClEs(token)
11: if answer oj:. Maybe then
12: return answer
13: end if

14: features f- Create features for the token with context window of [-2,2]
15: Apply a classifier on features
16: if the classifier determines P(not in a named entity I features) > 0.95 then
17: return No
18: end if
19: return Yes
20: end procedure

Input: a token
Output: Yes, No or Maybe to whether it is likely that the token is part of a named

entity, according to the frequency of the events in which the token takes part
21: procedure TRY-DECISION-BASED-ON-FREQUENCIEs(token)

22: blf f- the main binary lexical feature of token
23: counts f- the number of times that the pair (token, blf) has been seen
24: if counts < 3 then
25: return Yes I> The pair has been seen too few times to ignore it
26: end if
27: if all counts are registered outside named entities then
28: return No I> The pair will probably not be part of named entities
29: end if

I> Therefore the pair has been seen as part of named entities
30: if counts:::; 15 then
31: return Yes I> Too few times to safely discard the token
32: end if
33: if less than 70% of the counts are registered outside named entities then
34: return Yes I> The pair has often been seen as part of named entities
35: end if

I> Most of the time the pair has been seen outside named entities
36: return Maybe
37: end procedure

243

APPENDIX D. BIASING LEXMENE: DETAILS 244

The features provided to this classifier for a given token are five: lexical, binary lexical

at word and token level, composition type and not-a-name features.

The lexical feature corresponds, as in earlier chapters, to the string of the token in
lowercase.

The binary lexical features are the values defined in table 4.1 to indicates the writing

style used for the lexical feature. Two binary lexical features are used: one indicates

the style of the token itself and the other indicates the style used for the word to which

the token belongs. For example, the word Atlanta-based is composed of three tokens.

At token-level, these lexemes fire the binary lexical features icp (capitalised token), ncp

(symbol token) and ucp (uncapitalised token), but all of them fire the feature icp (i.e. a

capitalised word) at word-level.

The next feature is also related to this phenomenon, as the composition type feature

indicates the place that a token occupies in a composed word. This feature can take

four different values: FT when the token is starting a composed word, MT when the

token is in the middle of a composed word, L T when the token is ending a composed

word or UT when the token is the only lexeme in a one-token word.

Finally, the feature not-a-name is added to a token when the pair (lexical feature,

token-level binary lexical feature) has been seen outside named entities in three or more

occasIOns.

All these features are obtained from a context window which includes the focus token,

the two tokens on the left and the two tokens on the right if they exists. It should be

clarified that the classifier is trained with context windows obtained for all tokens in the

training documents, but applied only on context windows for tokens in the decoding

texts that cannot be decided with the most direct approach based on frequencies, as

stipulated by algorithm D.8.

D.5 Obtaining final similarities

As explained in section 5.8.3.1, the activation values of constituent patterns are re-cal­

culated to also consider the head word of the constituents. The comparison of head

words, described in algorithm D.9, is similar to the calculation of the similarity between

lexical features. The main difference is that algorithm D.9 returns activation values in

the range [0, 1]. Each of these activation values is multiplied by the similarity score

calculated for each tag according to their positions in the pattern. In this way, the final

activation values of a constituent pattern range from (approximately) 1.3 to 12.

Activation values for lexical patterns also need to be re-calculated. The problem arises

when the memorised cases are selected. If this selection is guided only by the global

APPENDIX D. BIASING LEXMENE: DETAILS 245

Algorith~ 0.9: 1 Cal:ulation. of th~ similarity between two head lexical features. By default, Chunk­
Labe/Welght = 4' BmaryLexlca/Welght = ~ and LexicalWeight = ~.

Input: hI and h2' the two constituent heads to be compared
Output: a score of the similarity of the two heads between 0.0 and 1.0

1: pro.cedure GET-SIMILARITY-LEXICAL-FEATURES(hl , h2)

2: If both hI and ~ are null then
3: return 1.0
4: end if
5: if either hI or ~ is null then
6: if the not-null head is a stop symbol then
7: return 1.0
8: end if
9: return 0.0

10: end if
11: 1f t- GET-SIMILARITY-LEXICAL-FEATURES(hl.LF, h2 .LF)
12: normalise 1f in the range [0,1]
13: b1f t- GET-SIMILARITY-TWO-BINARY-LEXICAL-FEATURES(hl.BLF, h2 .BLF)

14: normalise b1f in the range [0, 1]
15: cp t- 1.0

ChunkLabelWeight . cp+
16: score t- BinaryLexica1Weight· b1f +

Lexica1Weight·1f
17: return score
18: end procedure

activation of a case, which combines the individual activation of all its information

entities, there is a high risk of obtaining a set of cases that would not cover every lexical

feature in the query. In other words, there would not be examples for some tokens in

the query to be used in the adaptation phase.

This problem was expected and the original idea to manage it was to use elements

available in the eRN models to control the importance of an information entity, namely

the relevance weights, in the global activation of a case. Thus, the relevance of the

lexical information entity was increased to three times the relevance of the constituent

patterns. Nonetheless, and although the problem was slightly reduced, this approach

was unsuccessful and it was clear that a more radical solution was needed.

To solved this problem, biLexMENE manages a different ranking of similar cases for

each lexical feature in a query. In each ranking, the final activation value of a case is

re-estimated by applying the lexical window on the corresponding focus token.

In this way, if a focus token in a case is aligned with a focus token in the query, the

strength of both the focus match and the matches of immediately surrounding tokens

will be considered in the activation. On the other hand, if a focus token in a case does

not match any of the focus token in the query, the activation value of the case will only

consider contextual matches for that token.

This approach proved to be quite successful in retrieving training examples for most

of the tokens in a query. The activation weights for the context window were homo-

APPENDIX D. BIASING LEXMENE: DETAILS 246

geneously fixed to 1.0. Thus, the relevance of lexical patterns was kept at three times

the relevance of constituent patterns, mainly because lexical features have proved -in

the previous chapters as well as in the literature--- to be strong predictors of named

entities. Therefore, a perfect lexical match will have a final activation value of 36.

In order to reduce the size of the sets of cases maintained for each lexical feature of

a query, a heuristic restriction is applied to discard cases whose activation values are

under 1.5. This value showed to filter out cases that contribute little or nothing towards

the classification of individual tokens.

The approach described above also requires individual activation values for binary lexical

features. Therefore, an analogous calculation process is performed by applying the

binary window to each focus token in a case.

The weights for the binary window were fixed to values 1/3 for features on the left

context, 1/2 to features on the right context and 5/6 for the focus feature. This values

were determined so that the maximum activation value for a focus feature is 30, which

seems to be an appropriate relevance weight for this information entity.

Once more, a heuristic restriction was imposed to ignore cases that fail in obtaining

an activation value of at least 1.5, because they were found to contribute too little

information for the classification of a specific token.

D.6 Messy details

The description of biLexMENE given in chapter 5 depicts the conceptual modelling of

the system. However, the system was quite challenging to build in reality.

The main problem was that the sheer number of information entities, microfeatures,

cases, similarity and relevance arcs, etc. made impossible to construct and maintain a

CRN structure in the memory of a normal desk computer.

Therefore, the CRN was stored in fragments and processed by a sequence of programs.

For instance, there is one program that builds and stores the left constituent pattern

of each case· another one that activates the left constituent patterns for each query to ,
be checked· another one that combines these activations with the ones coming from the ,
right pattern, and so on.

However, even after this separation into individual steps, it was not possible to keep

in primary memory a sufficiently large portion of the CRN and the set of activated

elements -i.e. microfeatures, information entities and cases- for all the queries in a

document. Secondary memory -i.e. databases- could not solve the problem either

because it turned the system too slow.

APPENDIX D. BIASING LEXMENE: DETAILS 247

Fortunately, the University of York is part of The White Rose Grid (WRG) , which is

a multi-site computing system that aims to provide high performance computing to its

users. In this system, there are available machines with several gigabytes of primary

memory - see (WRG 2004) for more details. BiLexMENE, operating in sequential

steps, manages to run on the WRG machines using up to 8GB of primary memory.

As expected, running time was a problem too. BiLexMENE needs from six to ten

days of continuing processing, depending of the size of the training and the parameters

used. Surprisingly, most of this time is consumed in retrieving the similar cases, and the

adaptation phase -i.e. the construction of a maximum entropy model for each query­

rarely needs more than 20% of the total running time.

Appendix E

Sllloothing function

The smoothing function used by BiLexMENE employs three parameters for re-allocating

the probabilities to a more uniform distribution, so that every possible tag has a non­

zero probability associated. These parameters are:

0: which establishes the importance of each named entity class

(3 which indicates the importance of the not-a-name tag

which assign the importance of each tag withing a named entity class

The smoothing parameters controls the uniformity of the resulting distribution: the

greater and the more similar the values, the more uniform the resulting distribution

will be. The process is straightforward and it is probably easier to be understood with

an example.

Suppose there are three named entity classes: location names, organisation names and

person names; and the not-a-name class for words which are not part of these named

entities.

Now suppose a maximum entropy model gives the following probability distribution

in BIO notation: [I-organisation=O. 2, l-person=0.3, not-a-name=0.5), which needs to be

smoothed with parameters 0: = 0.25, (3 = 0.25 and '"'(= 0.5.

The first step is to smooth the distribution among tags. The original distributions are:

[location: 8=0, 1=0; organisation: 8=0, 1=0.2; person: 8=0, 1=0.3). Now the function adds

the '"'(parameter to each probability and then normalises them by named entity class.

The resulting distributions are: [location: 8=0.5, 1=0.5; organisation: 8=0.41667,1=0.58333;

person: 8=0.38461, 1=0. 61539}.

248

APPENDIX E. SMOOTHING FUNCTION 249

The second step is to smooth the distribution among named entity classes. The original

distribution is: {location=O.O, organisation=O.2, person=O.3, not-a-name=O.5}. The smooth­

ing function adds the parameter (3 to the probability of the not-a-name class and the pa­

rameter 0: to each named entity class probability. Then it normalises them. The result­

ing distribution is: {location=O.125, organisation=O.225, person=O.275, not-a-name=O.375}.

The final step is the combination of the two distributions by re-allocating the smoothed

probabilities of each named-entity class to the smoothed tag distribution. The resulting

distribution is: {B-location=O.0625, 1-location=O.0625, B-organisation=O.09375, l-organisation=O.13125,

B-person=O.10577, l-person=O.16923, not-a-name=O.375}.

Bibliography

Aberdeen, J., Burger, J., Day, D., Hirschman, L., Robinson, P. and Vilain, M.: 1995,

MITRE: Description of the Alembic system as used for MUC-6, in MUC (1995),

pp. 141-155.

Abney, S.: 2002, Bootstrapping, in ACL (2002), pp. 360-367.

Abney, S.: 2004, Understanding the Yarowsky algorithm, Computational Linguistics

30(3) .

Abney, S., Schapire, R. E. and Singer, Y.: 1999, Boosting applied to tagging and PP

attachment, in EMNLP-VLC (1999), pp. 38-45.

ACL: 2002, Proceedings of the 40th Annual Meeting of the Association for Computa­

tional Linguistics (A CL2003), Philadelphia, PA, USA.

ANLP: 1997, Proceedings of the Fifth Conference on Applied Natural Language Process­

ing (ANLP-97), Washington, DC, USA.

Auer, P., Holte, R. C. and Maass, W.: 1995, Theory and applications of agnostic PAC­

learning with small decision trees, in Prieditis and Russell (1995).

Baldrige, J. M. and Bierner, G.: 2001, OpenNLP MAXENT.

URL: http://maxent.sourceforge. net

Bender, 0., Och, F. J. and Ney, H.: 2003, Maximum entropy models for named entity

recogintion, in Daelemans and Osborne (2003).

URL: http://cnts. uia. ac. bel con1l2003

Bennett, S. W., Aone, C. and Lovell, C.: 1997, Learning to tag multilingual texts

through observation, in C. Cardie and R. Weischedel (eds) , Proceedings of

the Second Conference on Empirical Methods in Natural Language Processing

(EMNLP'97), Association for Computational Linguistics, Somerset, NJ, USA,

pp. 109-116.

Berger, A. L., Della Pietra, S. A. and Della Pietra, V. J.: 1996, A maximum entropy

approach to natural language processing, Computational Linguistics 22(1).

250

BIBLIOGRAPHY 251

Bikel, D., Miller, S., Schwartz, R. and Weischedel, R.: 1997, Nymble: a high­

performance learning name-finder, in ANLP (1997), pp. 194-201.

Bikel, D., Schwartz, R. and Weischedel, R. M.: 1999, An algorithm that learns what's

in a name, Machine Learning 34(1-3).

Blum, A. L. and Langley, P.: 1997, Selection of relevant features and examples in

machine learning, Artificial Intelligence 97(1-2), 245-271.

Blum, A. L. and Mitchell, T.: 1997, Combining labeled and unlabeled data with Co­

training, in ANLP (1997), pp. 92-100.

Borthwick, A.: 1999, A Maximum Entropy Approach to Named Entity Recognition, PhD

thesis, Computer Science Department, New York University.

Borthwick, A., Sterling, J., Agichtein, E. and Grishman, R.: 1998, NYU: Description

of the MENE named entity system as used in MUC-7, in MUC (1998).

URL: http://www. itt. nist.gov/iad/894. 02/related _projects/muc

Brants, T.: 2000, TnT - a statistical part-of-speech tagger, Proceedings of the Sixth

Applied Natural Language Processing Conference (ANLP-2000), Seattle, WA, USA,

pp. 224-231.

Brill, E.: 1995, Transformation-based error-driven learning and natural language

processing: A case study in part-of-speech tagging, Computational Linguistics

21(4),543-565.

Brushe, G. D., Mahony, R. E. and Moore, J. B.: 1996, A forward backward algorithm

for ML state and sequence estimation, Proceedings of the Fourth International

Symposiumon Signal Processing and Its Applications (ISSPA '96), Gold Coast,

Australia.

Brushe, G. D., Mahony, R. E. and Moore, J. B.: 1998, A soft output hybrid algo­

rithm for ML /MAP sequence estimation, IEEE Transactions on Information The­

ory 44(7), 3129-3134.

Budanitsky, A. and Hirst, G.: 2001, Semantic distance in WordNet: An experimental,

application-oriented evaluation of five measures, in NAACL (2001).

Burkhard, H. D.: 1998, Extending some concepts of CBR - foundations of case retrieval

nets, in M. Lenz, B. Bartsch-Sporl, H. D. Burkhard and S. Wess (eds), Case-Based

Reasoning Technology: From Foundations to Applications, Vol. 1400 of Lecture

Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science,

Springer-Verlag, Berlin, Germany, pp. 17-50.

BIBLIOGRAPHY
252

Cardie, C.: 1993, Using decision trees to improve case-based learning, Proceedings of

the Tenth International Conference on Machine Learning (ICML-1993), Morgan
Kaufmann, Amherst, MA, USA.

Cardie, C.: 1997, Empirical methods in information extraction, AI Magazine 18(4), 65-

80. Special Issue on Empirical Natural Language Processing.

Cardie, C., Daelemans, W., Nedellec, C. and Tjong Kim Sang, E. (eds): 2000, Proceed­

ings of Fourth Conference on Computational Natural Language Learning (CoNLL-

2000) and of the Second Learning Language in Logic Workshop (LLL-2000), Lisbon,
Portugal.

URL: http://cnts. uia. ac. bel con1l2000

Carreras, X., Marquez, L. and Padr6, L.: 2002, Named entity extraction using adaboost,

in Roth and van den Bosch (2002).

URL: http://cnts.uia.ac.be/con1l2002

Chieu, H. L. and Ng, H. T.: 2003, Named entity recogintion with a maximum entropy

approach, in Daelemans and Osborne (2003).

URL: http://cnts. uia. ac. bel con1l2003

Chinchor, N.: 1998a, MUC-7 information extraction task definition, in MUC (1998).

Version 3.5.

URL: http://www. itl. nist.gov/iad/894. 02/related _projects/muc

Chinchor, N.: 1998b, MUC-7 test scores, in MUC (1998).

URL: http://www. itl. nist.gov/iad/894. 02/related _projects/muc

Clark, S., Curran, J. R. and Osborne, M.: 2003, Bootstrapping POS taggers using

unlabelled data, in Daelemans and Osborne (2003), pp. 49-55.

URL: http://cnts.uia.ac.be/con1l2003

Coates-Stephens, S.: 1992, The Analysis and Acquisition of Proper Names for Robust

Text Understanding, PhD thesis, Department of Computer Science, City University,

London.

Cohen, W. W.: 1995, Fast effective rule induction, in Prieditis and Russell (1995).

Cohen, W. W.: 1996, Learning trees and rules with set-valued features, Proceedings of

the Thirteenth National Conference on Artificial Intelligence (AAAI-1996), AAAI

Press, Portland, OR, USA.

Collins, M. and Singer, Y.: 1999, Unsupervised models for named entity classification,

in EMNLP-VLC (1999), pp. 189-196.

Cover, T. M. and Thomas, J. A.: 1991, Elements of Information Theory, \Viley, New

York.

BIBLIOGRAPHY 253

Cowie, J.: 1995, Description of the CRL/NMSU system used for MUC-6, in MUC
(1995) .

Cowie, J. and Lehnert, W.: 1996, Information extraction, Special NLP Issue of the

Communications of the ACM 39(1),80-91.

CSL: 2004, Wordnet: a lexical database for the English language. Web page devel­

oped by the Cognitive Science Laboratory at Princeton University. Accessed last
in February 2004.

URL: http://www.cogsci.princeton. edu/'-,wnl

Cucchiarelli, A., Luzi, D. and Velardi, P.: 1998, Automatic semantic tagging of un­

known proper names, Proceedings of the Seventeenth International Conference on

Computational linguistics, COLING-98, Association for Computational Linguis­

tics, Morristown, NJ, USA, pp. 286-292.

Cucerzan, S. and Yarowsky, D.: 2002, Language independent NER using a unified model

of internal and contextual evidence, in Roth and van den Bosch (2002).

URL: http://cnts. uia. ac. bel conll2002

Cui, J. and Guthrie, D.: 2004, Maximum entropy modeling in sparse semantic tagging,

in S. Dumais, D. Marcu and S. Roukos (eds), Proceedings of the HLT-NAACL 2004:

Student Research Workshop, Association for Computational Linguistics, Boston,

MA, USA, pp. 13-18.

Culotta, A. and McCallum, A.: 2004, Confidence estimation for information extraction,

in S. Dumais, D. Marcu and S. Roukos (eds), Proceedings of the HLT-NAACL

2004: Short Papers, Association for Computational Linguistics, Boston, MA, USA,

pp. 109-112. (Short paper).

Cunningham, H.: 2000, Software Architecture for Language Engineering, PhD thesis,

Computer Science Department, University of Sheffield.

Curran, J. R. and Clark, S.: 2003a, Investigating GIS and smoothing for maximum

entropy taggers, in EACL (2003), pp. 91-98.

Curran, J. R. and Clark, S.: 2003b, Language independent NER using a maximum

entropy t agger , in Daelemans and Osborne (2003).

URL: http://cnts. uia. ac. bel conll2003

Daelemans, W. and Osborne, M. (eds): 2003, Proceedings of Seventh Conference on

Natural Language Learning CoNLL-2003, Edmonton, Alberta, Canada.

URL: http://cnts. uia. ac. bel co nll20 03

Daelemans, W., van de Bosch, A. and Savrel, J.: 1999, Forgetting exceptions is harmful

in language learning, Machine Learning 34, 11-43.

BIBLIOGRAPHY 254

Daelemans, W., Veenstra, J. and Buchholz, S.: 1999, Memory-based shallow parsing,

in M. Osborne and E. Tjong Kim Sang (eds) , Proceedings of the Workshop on

Computational Language Learning (CoNLL-99), Bergen, Norway.

URL: http://ilk.uvt.nljcgi-bin/tstchunk/demo.pl

Daelemans, W. and Zajac, R. (eds): 2001, Proceedings of the Fifth Workshop on Com­

putational Language Learning (CoNLL-2001), Toulouse, France.

URL: http://cnts.uia.ac.be/conIl2001

Daelemans, W., Zavrel, Z., van der Sloot, K. and van den Bosch, A.: 2003, Tirnbl:

Tilburg memory based learner, version 5.0, reference guide, Technical Report ILK-

0310, ILK Research Group, Tilburg University, Tilburg, The Netherlands.

Darroch, J. N. and Ratcliff, D.: 1972, Generalized iterative scaling for log-linear models,

The Annals of Mathematical Statistics 43(5), 1470-1480.

Dasgupta, S., Littman, M. L. and McAllester, D. A.: 2002, PAC generalization bounds

for Co-training, in T. G. Dietterich, S. Becker and Z. Ghahramani (eds), Advances

in Neural Information Processing Systems 14 [Neural Information Processing Sys­

tems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British

Columbia, Canada], MIT Press, Cambridge, MA, USA, pp. 375-382.

de Boni, M.: 2004, Relevance In Open Domain Question Answering: Theoretical Frame­

work and Application, PhD thesis, Department of Computer Science, University of

York.

De Meulder, F. and Daelemans, W.: 2003, Memory-based named entity recognition

using unannotated data, in Daelemans and Osborne (2003).

URL: http://cnts.uia.ac.be/conll2003

Deerwester, S. C., Dumais, S. T., Landauer, Thomas K. andFurnas, G. W. and Harsh­

man, R. A.: 1990, Indexing by latent semantic analysis, Journal of the American

Society of Information Science 41(6).

Della Pietra, S., Della Pietra, V. and Lafferty, J.: 1995, Inducing features of random

fields, Technical report, School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213.

Della Pietra, S., Della Pietra, V. and Lafferty, J.: 1997, Inducing features of random

fields IEEE Transactions Pattern Analysis and Machine Intelligence 19(4). ,

Dobkin, D., Fulton, T., G uno pulos , D., Kasif, S. and Salzberg, S.: 2000, Induction of

shallow decision trees. Submitted to the IEEE Transactions on Pattern Analysis

and Machine Intelligence.

BIBLIOGRAPHY 255

Douthat, A.: 1998, The message understanding conference scoring software user's man­

ual, in MUC (1998).

URL: http://www.itl.nist.gov/iad/891,.02/related_projects/muc

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G.: 1998, Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press.

EACL: 2003, Proceedings of the Eleventh Conference of the European Chapter of the

Association for Computational Linguistics (EA CL 2003), Budapest, Hungary.

EMNLP-VLC: 1999, Proceedings of the Joint SIGDAT Conference on Empirical Meth­

ods in Natural Language Processing and Very Large Corpora (EMNLP- VLC), Col­

lege Park, MD, USA.

Escudero, G., Marquez, L. and Rigau, G.: 2000, Boosting applied to word sense disam­

biguation, Proceedings of the Twelfth European Conference on Machine Learning

(ECML-2000), Barcelona, Spain, pp. 129-141.

Fellbaum, C. (ed.): 1998, WordNet: An Electronic Lexical Database, MIT Press.

Fisher, D., Soderland, S., McCarthy, J., Feng, F. and Lehnert, W.: 1995, Description

of the UMass system as used for MUC-6, in MUC (1995).

Florian, R., Ittycheriah, A., Jing, H. and Zhang, T.: 2003, Named entity recogintion

through classifier combination, in Daelemans and Osborne (2003).

URL: http://cnts.uia.ac.be/conll2003

Forney, G. D.: 1972, The Viterbi algorithm, Proceedings of the IEEE 61, 268-278.

Frank, E. and Witten, 1. H.: 1998, Generating accurate rule sets without global opti­

mization, in J. Shavlik (ed.), Proceedings of the Fifteenth International Conference

on Machine Learning (ICML'98), Morgan Kaufmann, pp. 144-151.

Freund, Y. and Schapire, R. E.: 1996, Experiments with a new boosting algorithm, in

L. Saitta (ed.), Proceedings of the Thirteenth International Conference on Machine

Learning (ICML '96), Morgan Kaufmann, Bari, Italy, pp. 148-156.

Freund, Y. and Schapire, R. E.: 1999, A short introduction to boosting, Journal of

Japanese Society for Artifical Intelligence 15(5),771-780. In Japanese, translation

by Noaki Abe.

Fiirnkranz, J. and Widmer, G.: 1994, Incremental reduced error pruning, in W. W.

Cohen and H. Hirsh (eds) , Proceedings the Eleventh International Conference on

Machine Learning (ICML-1991,), Morgan Kaufmann, New Brunswick, NJ, USA,

pp.70-77.

BIBLIOGRAPHY 256

Gaizauskas, R. and Humphreys, K.: 1997, Using a semantic network for informa­

tion extraction, Technical report, Department of Computer Science, University of
Sheffield, Sheffield, UK.

Gaizauskas, R., Wakao, T., Humphreys, K., Cunningham, H. and Wilks, Y.: 1995,

University of Sheffield: Description of the LaSIE system as used for MUC-6, in

MUC (1995).

Gale, W. A., Church, K. W. and Yarowsky, D.: 1992, A method for disambiguating

word senses in a large corpus, Computers and the Humanities 26, 415-439.

Godfrey, J., Holliman, E. and McDaniel, J.: 1999, SWITCHBOARD: Telephone speech

corpus for research and development, Proceedings of the IEEE International Con­

ference on Acoustics, Speech and Signal Processing (ICASSP '99), San Francisco,

CA, USA, pp. 517-520.

Goldman, S. A. and Zhou, Y.: 2000, Enhancing supervised learning with unlabeled data,

in P. Langley (ed.), Proceedings of the Seventeenth International Conference on

Machine Learning (ICML 2000), Morgan Kaufmann, Standord, CA, USA, pp. 327-

334.

Grishman, R.: 1997, Information extraction: techniques and challenges, in Pazienza

(1997), pp. 10-27.

Guarino, N.: 1997, Semantic matching: Formal ontological distinctions for information

organization, extraction, and integration, in Pazienza (1997), pp. 139-170.

Hagenauer, J. and Hoeher, P.: 1989, A Viterbi algorithm with soft-decision outputs

and its applications, Proceedings of the IEEE GLOBECOM '89, Dallas, TX, USA,

pp. 1680-1686.

Hendrickx, 1. and van den Bosch, A.: 2003, Memory-based one-step named-entity recog­

nition: Effects of seed list features, classifier stacking, and unannotated data, in

Daelemans and Osborne (2003).

URL: http://cnts. uia. ac. bel conll2003

Hobbs, J. R.: 1993, The generic information extraction system, Proceedings of the Fifth

Message Understanding Conference (MUC-5), Morgan Kaufmann, Baltimore, MD,

USA, pp. 87-91.

Humphreys, K., Gaizauskas, R., Cunningham, H. and Azzam, S.: 1998, VIE technical

specifications, Technical report, Department of Computer Science and Institute for

Language, Speech and Hearing (ILASH), University of Sheffield, Sheffield, UK.

Jaynes, E. T.: 1991, Notes on present status and future prospects, in W. T. Grandy, Jr.

and L. H. Shick (eds), Maximum Entropy and Bayesian Methods, Kluwer Academic,

Dordrecht, pp. 1-13.

BIBLIOGRAPHY 257

Junkawitsch, J., Neubauer, L., Hoge, H. and Ruske, G.: 1996, A new keyword spotting

algorithm with pre-calculated optimal thresholds, Proceedings of the Fourth Inter­

national Conference on Spoken Language Processing (ICSLP '96), Philadelphia,
PA, USA, pp. 2067-2070.

Kilgarriff, A. and Rosenzweig, J.: 2000, English SENSEVAL: Report and results, Pro­

ceedings of the Second International Conference on Language Resources and Eval­

uation (LREC-2000), Athens, Greece.

Klein, D., Smarr, J., Nguyen, H. and Manning, C. D.: 2003, Named entity recognition

with character-level models, in Daelemans and Osborne (2003), pp. 180-183.

URL: http://cnts.uia.ac.be/conll2003

Krupka, G. R. and Hausman, K.: 1998, Description of the NetOwl™ extractor system

as used for MUC-7, in MUC (1998).

URL: http://www. itl. nist.gov/iad/894. 02/related _projects/muc

Kubat, M.: 1998, Decision trees can initialize radial-basis-function networks, IEEE

Transactions on Neural Networks 9, 813-821.

Kubat, M., Flotzinger, D. and Pfurtscheller, G.: 1993, Discovering patterns in EEG­

signals: Comparative study of a few methods, in P. Brazdil (ed.), Proceedings of

the Sixth European Conference on Machine Learning, Vol. 667 of Lecture Notes in

Artificial Intelligence. Subseries of Lecture Notes in Computer Science, Springer­

Verlag, London, UK, pp. 366-371.

Kullback, S. and Leibler, R. A.: 1951, On information and sufficiency, Annals of Math­

ematical Statistics 22, 76-86.

Lau, R.: 1994, Adaptive statistical language modelling, Master's thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of Technol­

ogy.

LDC: 2005, ACE. Linguistic Data Consortium, University of Pennsylvania. Accessed

last in December 2005.

URL: http://projects.ldc. upenn. edu/ace/intro.html

Lehnert, W., Cardie, C., Fisher, D., McCarthy, J., Riloff, E. and Soderland, S.: 1994,

Evaluating an information extraction system, Journal of Integrated Computer­

A ided Engineering 1 (6).

Lenz, M.: 1999, Case Retrieval Nets as Model for Building Flexible Information Systems,

PhD thesis, Department of Computer Science, Humboldt University.

Lenz, M. and Burkhard, H. D.: 1996, Case retrieval nets: Foundations, properties,

implementation, and results, Technical report, Department of Computer Science,

Humboldt University, Lindenstr. 54a, 10117 Berlin, Germany.

BIBLIOGRAPHY 258

Li, X., Malkin, J. and Bilmes, J.: 2004, Codebook design for ASR systems using cus­

tom arithmetic units, Proceedings of the 2004 IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP 2004), Vol. 1, Montreal, Que­

bec, Canada, pp. 845-848.

Malouf, R.: 2002, Markov models for language-independent named entity recognition,

in Roth and van den Bosch (2002).

URL: http://cnts.uia.ac.be/conll2002

Marcus, M. P., Santorini, B. and Marcinkiewicz, M. A.: 1993, Building a large annotated

corpus of English: The Penn treebank, Computational Linguistics 19, 313-330.

McCarthy, J. F.: 1996, A Trainable Approach To Coreference Resolution For Infor­

mation Extraction, PhD thesis, Department of Computer Science, University of

Massachusetts Amherst.

McDonald, D.: 1996, Internal and external evidence in the identification of proper

names, The MIT Press, Cambridge, MA, USA, chapter 2, pp. 21-39.

Mikheev, A.: 1998, Feature lattices and maximum entropy models. Submitted to the

Journal of Natural Language Engineering.

URL: http://www.ltg.ed.ac.uk/rvmikheev

Mikheev, A., Grover, C. and Moens, M.: 1998, Description of the LTG system used for

MUC-7, in MUC (1998).

URL: http://www. itl. nist.gov/iad/894. 02/related _projects/muc

Mikheev, A., Grover, C. and Moens, M.: 1999, XML tools and architecture for named

entity recognition, Markup Languages 1(3),89-113.

Mikheev, A., Moens, M. and Grover, C.: 1999, Named entity recognition without

gazetteers, Proceedings of the 10th Conference of the European Chapter of the As­

sociation for Computational Linguistics (EACL'99), Bergen, Norway, pp. 1-8.

Miller, G. A.: 1995, WordNet: A lexical database, Communications of the ACM

38(11), 39-41.

Mitchell, T. M. (ed.): 1997, Machine Learning, McGraw-Hill.

Morguet, P. and Lang, M.: 1998, An integral stochastic approach to image sequence

segmentation and classification, Proceedings of the 1998 IEEE International Con­

ference on Acoustics, Speech, and Signal Processing (ICASSP '98), Vol. 5, Seattle,

WA, USA, pp. 2705-2708.

MUC: 1995, Proceedings of the Sixth Message Understanding Conference (MUC-6), ~Ior­

gan Kaufmann, San Francisco, CA, USA.

BIBLIOGRAPHY 259

MUC: 1998, Proceedings of the Seventh Message Understanding Conference (MUC-7).

URL: http://www.itl.nist.gov/iad/894.02/related_projects/muc

Muller, C., Rapp, S. and Strube, M.: 2002, Applying Co-training to reference resolution,
in ACL (2002), pp. 352-359.

Muslea, I., Minton, S. and Knoblock, C.: 2002, Active + semi-supervised learning =

robust multi-view learning, in Sammut and Hoffmann (2002), pp. 435-442.

NAACL: 2001, Proceedings of the Second Meeting of the North American Chapter of the

Association for Computational Linguistics (NAACL 2001), Pittsburgh, PA, USA.

Needleman, S. B. and Wunsch, C. D.: 1970, A general method applicable to the search

for similarities in amino acid sequences of two proteins, Journal of Molecular Bi­

ology 48(3), 443-453.

Ng, V. and Cardie, C.: 2003, Bootstrapping coreference classifiers with multiple machine

learning algorithms, Proceedings of the 2003 Conference on Empirical Methods

in Natural Language Processing (EMNLP 2003), Association for Computational

Linguistics, Sapporo, Japan, pp. 113-120.

Paliouras, G., Karkaletsis, V., Petasis, G. and Spyropoulos, C. D.: 2000, Learning

decision trees for named-entity recognition and classification, Proceedings of the

Fourteenth European Conference on Artificial Intelligence (ECAI 2000), Berlin,

Germany.

Palmer, D. D. and Day, D. S.: 1997, A statistical profile of the named entity task, in

ANLP (1997), pp. 190-193.

Park, S.-B. and Zhang, B.-T.: 2002, A boosted maximum entropy model for learning

text chuncking, in Sammut and Hoffmann (2002).

Pazienza, M. T. (ed.): 1997, Information Extraction: A Multidisciplinary Approach to

an Emerging Information Technology, Vol. 1299 of Lecture Notes in Artificial Intel­

ligence. Subseries of Lecture Notes in Computer Science, Springer-Verlag, Berlin,

Germany.

Penrose, 0.: 1979, Foundations of statistical mechanics, Reports on Progress in Physics

42, 1937-2006.

Pierce, D. and Cardie, C.: 2001, Limitations of Co-training for natural language learn­

ing from large datasets, in L. Lee and D. Harman (eds) , Proceedings of the 2001

Conference on Empirical Methods in Natural Language Processing (EMNLP 2001),

Pittsburgh, PA, USA, pp. 1-9.

BIBLIOGRAPHY 260

Prieditis, A. and Russell, S. J. (eds): 1995, Proceedings of the Twelfth International

Conference on Machine Learning (ICML-1995), Morgan Kaufmann, Tahoe City,
CA, USA.

Quinlan, J. R.: 1983, Learning efficient classification procedures and their application

to chess end games, in R. S. Michalski, J. G. Carbonell and T. M. Mitchell (eds) ,

Machine Learning. An Artificial Intelligence Approach, Tioga Press, Palo Alto,
CA, USA, pp. 463-482.

Quinlan, J. R.: 1986, Induction of decision trees, Machine Learning 1(1),81-106.

Quinlan, J. R.: 1993, C4.5: Programs For Machine Learning, Morgan Kaufmann.

Rabiner, L. R.: 1989, A tutorial on hidden markov models and selected applications in

speech recognition, Proceedings of the IEEE 77(2), 257-286.

Ratnaparkhi, A.: 1996, A maximum entropy part-of-speech tagger, Proceedings of the

Conference on Empirical Methods in Natural Language Processing (EMNLP'96),

University of Pennsylvania.

Ratnaparkhi, A.: 1998, Maximum Entropy Models for Natural Language Ambiguity

Resolution, PhD thesis, University of Pennsylvania.

Riloff, E. and Jones, R.: 1999, Learning dictionaries for information extraction by multi­

level bootstrapping, Proceedings of the Sixteenth National Conference on Artificial

Intelligence (AAAI-1999), AAAI Press, Orlando, FL, USA, pp. 474-479.

Ristad, E. S.: 1997, Maximum entropy modeling for discrete domains, Thtorial given

at the Workshop on Mathematical Techniques to Mine Massive Data Set.

Ristad, E. S.: 1998, Maximum entropy modeling toolkit. Version 1.6 Beta. Now a

product of Mnemonic Technology Inc.

Rosenfeld, R.: 1996, A maximum entropy approach to adaptive statistical language

modeling, Computer Speech and Language 10(3), 197-228.

Rotaru, M. and Litman, D. J.: 2003, Exceptionality and natural language learning, in

Daelemans and Osborne (2003), pp. 63-70.

URL: http://cnts. uia. ac. bel conll2003

Roth, D. and van den Bosch, A. (eds): 2002, Proceedings of Sixth Workshop on Com­

putational Language Learning CoNLL-2002, Taipei, Taiwan.

URL: http://cnts. uia. ac. bel conll2002

Salzberg, S. L.: 1990, Learning with Nested Generalized Exemplars, Kluwer Academic,

Norwell, MA, USA.

BIBLIOGRAPHY 261

Sammut, C. and Hoffmann, A. G. (eds): 2002, Proceedings of the Nineteenth Interna­

tional Conference on Machine Learning (ICML-2002), Morgan Kaufmann, Sydney,
Australia.

Sarkar, A.: 2001, Applying Co-training methods to statistical parsing, in NAACL
(2001), pp. 95-102.

Schapire, R. E.: 1990, The strength of weak learnability, Machine Learning 5(2), 197-
227.

Schlapbach, A. and Bunke, H.: 2004, Using HMM based recognizers for writer iden­

tification and verification, Proceedings of the Nineth International Workshop on

Frontiers in Handwritting Recognition (IWFHR-9 2004), Tokyo, Japan, pp. 167-
172.

Sekine, S.: 1998, NYU: Description of the japanese NE system used for MET-2, m

MUC (1998).

URL: http://www.itl.nist.gov/iad/894- 02/related_projects/muc

Sellers, P. H.: 1974, Theory and computation of evolutionary distances, SIAM Journal

of Applied Math 26, 787-793.

Sheffield NLP Group: 2005, The ACE system. The Natural Language Processing Re­

search Group, Department of Computer Science, University of Sheffield. Accessed

last in December 2005.

URL: http://www.dcs.shef.ac.uk/nlp/muse/ace.html

Soderland, S., Fisher, D. and Lehnert, W.: 1997, Automatically learned vs. hand­

crafted text analysis rules, Technical Report TE-44, National Centre for Intelligent

Information Retrieval, University of Massachusetts, Amherst MA.

Steedman, M., Sarkar, A., Osborne, M., Hwa, R., Clark, S., Hockenmaier, J., Ruhlen,

P., Baker, S. and Crim, J.: 2003, Bootstrapping statistical parsers from small

datasets, in EACL (2003), pp. 331-338.

Stevenson, M.: 1998, Extracting syntactic relations using heuristics, Proceedings of the

Tenth European Summer School in Logic, Language and Information (ESSLLI '98),

Saarbrucken, Germany.

Sundheim, B. M.: 1995, MUC6 named entity task definition, version 2.1, in MUC

(1995).

Tjong Kim Sang, E. F.: 2002a, Introduction to the CoNLL-2002 shared task: Language­

independent named entity recognition, in Roth and van den Bosch (2002).

URL: http://cnts.uia.ac.be/conll2002

BIBLIOGRAPHY 262

Tjong Kim Sang, E. F.: 2002b, Memory-based named entity recognition, in Roth and

van den Bosch (2002).

URL: http://cnts. uia. ac. bel con1l2002

Tjong Kim Sang, E. F. and De Meulder, F.: 2003, Introduction to the CoNLL-2003

shared task: Language-independent named entity recognition, in Daelemans and

Osborne (2003).

URL: http://cnts.uia.ac.be/conll2003

van Rijsbergen, C. J.: 1979, Information Retrieval. Online version available.

URL: http://www.dcs.gla.ac.uk/Keith/Preface.html

Viterbi, A. J.: 1967, Error bounds for convolutional codes and an asymptotically opti­

mum decoding algorithm, IEEE Transactions on Information Theory IT-13, 260-

269.

Vossen, P. (ed.): 1998, Euro WordNet: A Multilingual Database with Lexical Semantic

Networks, Kluwer Academic.

Wacholder, N., Ravin, Y. and Choi, M.: 1997, Disambiguation of proper names in text,

in ANLP (1997), pp. 202-208.

Wakao, T., Gaizauskas, R. and Wilks, Y.: 1996, Evaluation of an algorithm for the

recognition and classification of proper names, Proceedings of the Sixteenth Inter­

national Conference on Computational Linguistics (COLING-96), Morgan Kauf­

mann, Copenhagen, Denmark, pp. 418-423.

Whitelaw, C. and Patrick, J.: 2003, Evaluating corpora for named entity recognition

using character-level features, Proceedings of Sixteenth Australian Joint Conference

on Artificial Intelligence AI'03, Perth, Western Australia, pp. 910-921.

Wilks, Y.: 1997, Information extraction as a core language technology, in Pazienza

(1997), pp. 1-9.

Witten, I. H. and Frank, E.: 2000, Data Mining: Practical Machine Learning Tools with

Java Implementations, Morgan Kaufmann, San Francisco, CA, USA.

Wolpert, D. H.: 1992, On overfitting avoidance as bias, Technical Report SFI TR 92-

03-5001, The Santa Fe Institute.

WRG: 2004, White Rose Grid At York. Accessed last in September 2004.

URL: http://www.wrg.york.ac. uklWhiteRoseGridYorkl

Wu, D., Ngai, G. and Carpuat, M.: 2003, A stacked, voted, stacked model for named

entity recognition, in Daelemans and Osborne (2003).

URL: http://cnts. uia. ac. bel conll2003

BIBLIOGRAPHY 263

Wu, D., Ngai, G., Carpuat, M., Larsen, J. and Yang, Y.: 2002, Boosting for named

entity recognition, in Roth and van den Bosch (2002).

URL: http://cnts.uia.ac.be/conll2002

Yarowsky, D.: 1995, Unsupervised word sense disambiguation rivaling supervised meth­

ods, Proceedings of the 33rd A nnual Meeting of the Association for Computational

Linguistics A CL '95, Cambridge, MA, USA, pp. 189-196.

Zhang, J.: 1992, Selecting typical instances in instance-based learning, in D. H. Sleeman

and P. Edwards (eds) , Proceedings of the Ninth International Workshop on Machine

Learning (ML 1992), Morgan Kaufmann, Aberdeen, Scotland, pp. 470-479.

Zhang, J., Shen, D., Zhou, Guodong andSu, J. and Tan, C.-L.: 2004, Enhancing HMM­

based biomdical named entity recognition by studying special phenomena, Journal

of Biomedical Information To Appear. Special Issue on Natural Language Pro­

cessing in Biomedicine: Aims, Achievements and Challenges.

Zhang, T., Damerau, F. and Johnson, D. E.: 2002, Text chunking based on a general­

ization of Winnow, Journal of Machine Learning Research 2, 615-637.

Zhang, T. and Johnson, D.: 2003, A robust risk minimization based named entity

recogintion system, in Daelemans and Osborne (2003).

URL: http://cnts. uia. ac. bel conll2003

Zhou, G. and Su, J.: 2002, Named entity recogintion using an HMM-based chunk tagger,

in ACL (2002).

	428396_0001
	428396_0002
	428396_0003
	428396_0004
	428396_0005
	428396_0006
	428396_0007
	428396_0008
	428396_0009
	428396_0010
	428396_0011
	428396_0012
	428396_0013
	428396_0014
	428396_0015
	428396_0016
	428396_0017
	428396_0018
	428396_0019
	428396_0020
	428396_0021
	428396_0022
	428396_0023
	428396_0024
	428396_0025
	428396_0026
	428396_0027
	428396_0028
	428396_0029
	428396_0030
	428396_0031
	428396_0032
	428396_0033
	428396_0034
	428396_0035
	428396_0036
	428396_0037
	428396_0038
	428396_0039
	428396_0040
	428396_0041
	428396_0042
	428396_0043
	428396_0044
	428396_0045
	428396_0046
	428396_0047
	428396_0048
	428396_0049
	428396_0050
	428396_0051
	428396_0052
	428396_0053
	428396_0054
	428396_0055
	428396_0056
	428396_0057
	428396_0058
	428396_0059
	428396_0060
	428396_0061
	428396_0062
	428396_0063
	428396_0064
	428396_0065
	428396_0066
	428396_0067
	428396_0068
	428396_0069
	428396_0070
	428396_0071
	428396_0072
	428396_0073
	428396_0074
	428396_0075
	428396_0076
	428396_0077
	428396_0078
	428396_0079
	428396_0080
	428396_0081
	428396_0082
	428396_0083
	428396_0084
	428396_0085
	428396_0086
	428396_0087
	428396_0088
	428396_0089
	428396_0090
	428396_0091
	428396_0092
	428396_0093
	428396_0094
	428396_0095
	428396_0096
	428396_0097
	428396_0098
	428396_0099
	428396_0100
	428396_0101
	428396_0102
	428396_0103
	428396_0104
	428396_0105
	428396_0106
	428396_0107
	428396_0108
	428396_0109
	428396_0110
	428396_0111
	428396_0112
	428396_0113
	428396_0114
	428396_0115
	428396_0116
	428396_0117
	428396_0118
	428396_0119
	428396_0120
	428396_0121
	428396_0122
	428396_0123
	428396_0124
	428396_0125
	428396_0126
	428396_0127
	428396_0128
	428396_0129
	428396_0130
	428396_0131
	428396_0132
	428396_0133
	428396_0134
	428396_0135
	428396_0136
	428396_0137
	428396_0138
	428396_0139
	428396_0140
	428396_0141
	428396_0142
	428396_0143
	428396_0144
	428396_0145
	428396_0146
	428396_0147
	428396_0148
	428396_0149
	428396_0150
	428396_0151
	428396_0152
	428396_0153
	428396_0154
	428396_0155
	428396_0156
	428396_0157
	428396_0158
	428396_0159
	428396_0160
	428396_0161
	428396_0162
	428396_0163
	428396_0164
	428396_0165
	428396_0166
	428396_0167
	428396_0168
	428396_0169
	428396_0170
	428396_0171
	428396_0172
	428396_0173
	428396_0174
	428396_0175
	428396_0176
	428396_0177
	428396_0178
	428396_0179
	428396_0180
	428396_0181
	428396_0182
	428396_0183
	428396_0184
	428396_0185
	428396_0186
	428396_0187
	428396_0188
	428396_0189
	428396_0190
	428396_0191
	428396_0192
	428396_0193
	428396_0194
	428396_0195
	428396_0196
	428396_0197
	428396_0198
	428396_0199
	428396_0200
	428396_0201
	428396_0202
	428396_0203
	428396_0204
	428396_0205
	428396_0206
	428396_0207
	428396_0208
	428396_0209
	428396_0210
	428396_0211
	428396_0212
	428396_0213
	428396_0214
	428396_0215
	428396_0216
	428396_0217
	428396_0218
	428396_0219
	428396_0220
	428396_0221
	428396_0222
	428396_0223
	428396_0224
	428396_0225
	428396_0226
	428396_0227
	428396_0228
	428396_0229
	428396_0230
	428396_0231
	428396_0232
	428396_0233
	428396_0234
	428396_0235
	428396_0236
	428396_0237
	428396_0238
	428396_0239
	428396_0240
	428396_0241
	428396_0242
	428396_0243
	428396_0244
	428396_0245
	428396_0246
	428396_0247
	428396_0248
	428396_0249
	428396_0250
	428396_0251
	428396_0252
	428396_0253
	428396_0254
	428396_0255
	428396_0256
	428396_0257
	428396_0258
	428396_0259
	428396_0260
	428396_0261
	428396_0262
	428396_0263

