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Abstract

This thesis proposes and evaluates different ways of performing generic named entity
recognition, that is the construction of a system capable of recognising names in free
text which is not specific to any particular domain or task.

The starting point is an implementation of a well known baseline system which is based
on maximum entropy models that utilise lexically-oriented features to recognised names
in text. Although this system achieves good levels of performance, both maximum
entropy models and lexically-oriented features have their limitations. Three alternative
ways in which this system can be extended to overcome these limitations are then
studied:

> more linguistically-oriented features are extracted from a generic lexical source,
namely WordNet®, and then added to the pool of features of the maximum en-

tropy model

> the maximum entropy model is bias towards training samples that are similar to
the piece of text being analysed

> a bootstrapping procedure is introduced to allow maximum entropy models to

collect new, valuable information from unlabelled text

Results in this thesis indicate that the maximum entropy model is a very strong approach
that accomplishes levels of performance that are very hard to improve on. However,
these results also suggest that these extensions of the baseline system could yield im-
provements, though some difficulties must be addressed and more research is needed to

obtain more assertive conclusions.

This thesis has nonetheless provided important contributions: a novel approach to
estimate the complexity of a named entity extraction task, a method for selecting the
features to be used by the maximum entropy model from a large pool of features and a

novel procedure to bootstrap maximum entropy models.
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Chapter 1

Introduction

1.1 Information extraction

Information Extraction (IE) is a relatively new discipline within the wider field of Nat-
ural Language Processing (NLP). In general, information extraction can be understood
as any process that selects, extracts and combines data from text in natural language
to produce structured information.

This discipline has emerged because there was a confluence of the necessity for auto-
matically processing information that exists only in natural language form, and the
ability to have a rough understanding of texts by using the current NLP technology
(Grishman 1997).

Although some IE systems are starting their commercial life, the technology is not
completely mature. There is a universal consensus that IE will be of great significance
to companies of all kinds, especially those that make intensive use of information such

as government institutions and finance enterprises (Cardie 1997, Grishman 1997).

Information extraction is quite intuitive for humans. Consider the following example

text from the Management Succession Domain, as used in (MUC 1995):

Topologix Inc. announced that Donald E. Martella, formerly vice president, operation,
was named president and chief executive officer of this maker of parallel processing
subsystems. He succeeds Jack Harper, a company founder who was named chairman.

The task for this domain is to identify succession events contained within the text and
represent them in structures that contain four pieces of information: the person who is
taking the new position, the person who is leaving the position, the position title, and the
organisation where the succession is happening. For the example text above, adapted
from Soderland, Fisher and Lehnert (1997), the resulting answer template would be:

17



CHAPTER 1. INTRODUCTION 18

Event 1 Event 2 Event 3
Person In Donald E. Martella Jack Harper
Person_ Out Jack Harper Donald E. Martella
Position president and chief vice president, chairman
executive officer operations
Organisation Topologix Inc. Topologix Inc. Topologix Inc.

However, this task is very complex from the NLP point of view. Firstly, any IE system
must apply a set of pre-processing tools to the text so that sentences, words, subjects,
verbs, objects and ultimately clauses can be identified. Then, it must recognise names of
people, organisations and positions in the text. Then it must recognise relations among
these named entities suggested by expressions like formerly and was named. Finally,
further processing is required to trim away odd words, to relate events reported in
different sentences and to instantiate generic references, which would involve a high

level of coreference resolution which is beyond the state-of-the-art (Cardie 1997).

The most important events in IE history were the ARPA-sponsored Message Under-
standing Conferences (MUCs) held between 1987 and 1997 (see for example (Lehnert,
Cardie, Fisher, McCarthy, Riloff and Soderland 1994, McCarthy 1996, Wilks 1997)).
These conferences introduced several technological challenges and a rigorous evaluation
for the participants, providing the right environment for the development and evolution
of a wide spectrum of approaches to information extraction, from traditional NLP —
i.e. full syntactic, semantic and discourse analyses— to keyword matching with little or
no linguistic analysis (Cowie and Lehnert 1996).

By the latest MUCs, there was a clear generic architecture and virtually all major
participant systems shared —in some form— the same modules (Hobbs 1993, Cardie
1997). This convergence happened because researchers faced the challenges imposed
by the MUGCs in similar ways: exploiting the power of shallow parsing — rather than
insisting on a full syntactic analysis, using shallow knowledge such as gazetteers and
small hierarchy lexicons, using the key answers for deriving more shallow knowledge and
using the target corpora for tuning some modules in the system (Cowie and Lehnert
1996, Cardie 1997, Wilks 1997).

This last two steps above have resulted in a shift of information extraction technol-
ogy towards empirical methods —also called corpus-based methods— which address
the current problems in IE systems — and NLP in general: accuracy, portability and
knowledge acquisition (Cardie 1997). However, the performance of these systems re-
mains poor. For example, in the last MUC the best corpus-based system could extract

just over half the events reported in the test corpus (MUC 1998).
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1.2 Named entity extraction

As mentioned above, named entity extraction (NEE) —the main problem with which
this thesis is concerned— is a subtask of IE and much simpler than the general extraction
procedure. In few words, NEE can be defined as the identification of expressions in free
text which are “unique identifiers” of entities and their classification as instances of a
finite set of categories. The first subtask is called named entity recognition (NER) and
the second one named entity classification (NEC). However, it is very common in the
literature to use named entity recognition for the whole process instead of named entity
extraction. An attempt at keeping this distinction in this document will be made.

There is a general consensus that named entity recognition is not only relevant for
information extraction, but also an important subtask for many other natural language
engineering applications, such as information retrieval, question/answer and machine

translation systems.

The latest Message Understanding Conferences (MUC) included a track for named
entity recognition, which has become a sort of implicit universal definition for this task.

The input for an NEE system is a text in free form such as the following:

Llennel Evangelista, a spokesman for Intelsat, a global satellite consortium based in
Washington, said the accident occurred at 2 p.m. EST Wednesday, or early Thursday
morning at the Xichang launch site in Sichuan Province in southwestern China.

The system is expected to produce a new version of the input text in which named
entities are marked with SGML tags according to their class. For the input above,
the following is the required output for the MUC competitions, which considered seven

categories: organisations, people, location, dates, time, money and percentages.

<PERSON>Llennel Evangelista</PERSON>, a spokesman for <ORGANISATION>
Intelsat</ORGANISATION>, a global satellite consortium based in <LOCATION>
Washington</LOCATION>, said the accident occurred at <TIME>2 p.m. EST
</TIME> <DATE>Wednesday</DATE>, or <TIME>early Thursday morning
</TIME> at the <LOCATION>Xichang</LOCATION> launch site in <LOCA-
TION>Sichuan Province</LOCATION> in southwestern <LOCATION>China</LO-
CATION>.

It is clear that this output text is much easier to process by a part-of-speech tagger or
a parser, and by higher-level NLP tasks. For example it is clear that for an Internet
retrieval engine or a question/answer machine, the latter text would help in a more

accurate and faster answer to the query where is Sichuan? than the former text.
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Figure 1.1: Definition of the evaluation metrics: recall and precision, in terms of correct named entities
(COR), missed named entities (MIS) and spurious named entities (SPU).

MUC competitions also gave a universally accepted method for evaluating the perfor-
mance of systems which attempt named entity extraction. Considering the accuracy of
the system, that is the percentage of pieces of text labelled correctly, is not an appro-
priate measure. For example, suppose that there are 10,000 phrases in a text of which
100 are named entity expressions. Suppose now that a named entity extractor marks 80
instances of which 60 are correct. Then, the system’s accuracy would be 99.4%, which

intuitively seems wrong.

Therefore, named entity extractors are evaluated in terms of recall and precision. Recall
is the ratio of the number of named entities that the system recognises correctly to the
total number of named entities in the text. Precision is the proportion of correct named
entities out of the pieces of text that the system labels as named entities. In the example,
the system’s recall is 60% (60 out of 100) and the system’s precision is 75% (60 out of
80). Clearly these measures are better indicators for the performance of the system.

Figure 1.1 presents a graphical definition and the mathematical definitions of these
metrics, which are based on the number of named entities correctly identified by the
system (COR), the number of named entities that the system misses (MIS) and the
number of spurious named entities in the system’s output (SPU) (Chinchor 1998b).

Although every system tries maximising both recall and precision, soon enough it was
evident that this was hard because a system that tries to maximise precision tends to
mark only entities which it knows for certain and therefore it misses those for which it

is not very sure. The vice versa effect is observed when the systems tries to maximise
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recall. As it is not very obvious which is more important, MUC competitions opted for
defining a third index called F-score or F-measure —borrowed from metrics designed
by van Rijsbergen (1979) for information retrieval-— which is the weighted harmonic
mean of recall and precision, following the formula

(6% +1) - Precision - Recall
F =
) B2 - Precision + Recall (1.1)

The parameter 3 controls the relative importance given to precision with respect to
recall. Throughout this thesis, the value 8 = 1 will be used, which assigns the same
importance to both indices.

Recently, this named entity extraction task has been extended in the ACE Program,
which has been defined as “a program to develop technology to extract and characterise
meaning from human language” (Sheffield NLP Group 2005). This program includes
Entity Detection and Tracking (EDT) tasks that are similar to the MUC NE task, but
in which text sources are of varying types and quality. In addition, more semantic
and more fine-grain information of named entities is required to fill the answer keys.
These characteristics make the ACE tasks more challenging than the MUC task and
are contrived to lead the development of extraction technology to support automatic
processing of text data (LDC 2005).

1.3 Difficulties in NEE

As in any NLP task, most difficulties in named entity extraction are generated by the
intrinsic ambiguity of natural languages and the amount of knowledge required to solve

this ambiguity.

Firstly, NLP tasks earlier in the pipeline need to solve some of this ambiguity and
determine —for example— sentence boundaries, token boundaries and their part-of-
speech tag. This will inevitably introduce errors in the input to the NEE system.

Secondly, proper names present the same structural ambiguities as common nouns
(Wacholder, Ravin and Choi 1997): compare Midwest Center for Computer Research (a
single name) versus Carnegie Hall for Irwin Berlin (two names); Victoria and Albert Museum (a
single name) versus /BM and Bell Laboratories (two names); Donoghue’s Money Fund Report

(a single name) versus Israel’s Shimon Peres (two names).

Thirdly, proper names also display semantic ambiguity. as a word —or sequence of
words— can be a name for entities of different nature. This is closely related to word-

sense disambiguation, another NLP task which could benefit from NEE. In the example
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text above, the word Washington might be seen with (at least) four senses: George
Washington (the person), U.S.S. Washington (the ship), Washington D.C. (the city)
and the State of Washington. This semantic ambiguity is quite common among proper
names because places are named after famous people and organisations are named after
their owners or locations (Wacholder et al. 1997).

Fourthly, proper names share ambiguity with common nouns: the word china refers to
the high-quality ceramic ware whereas the word China refers to the People’s Republic in
Asia. This type of ambiguity is usually disambiguated through capitalisation in English,
but this is not always the case. Consider the following beginnings of sentences: New
Coke drinkers and New Sears employees. The word New belongs to the name in the first
case, but it does not in the second case (Wacholder et al. 1997), a fact that can only be
determined by world knowledge.

Finally, there is a further level of ambiguity introduced by what humans and particular
applications may recognise as a name. For example, the MUC application required sys-
tems to make the distinction between organisations, people, locations, etc. and artifacts.
Thus, in this case the sentences Good news for Boeing shareholders and They will buy a new
Boeing are of different nature: the former contains an organisation entity whereas the
later refers to an artifact. However, this differentiation may not be required by another
application. In addition, the phrase early Thursday morning can be marked as a named
entity of class time, as in the sample text above. A different person/application can
perfectly consider this phrase as containing two named entities: the date Thursday and
the time morning. Similarly, someone may consider the words Sichuan Province as the
lexical form of a named entity of class location —again as in the text above— while
another person may only consider for this the word Sichuan. In fact, experiments con-
ducted during the MUC-7 competition have estimated that human annotators disagree
in about 3% of the entities they recognised (MUC 1998).

When an NEE system is able to manage all this ambiguity reasonably well for a particu-
lar application, it normally handles a large amount of knowledge in the form of lexicons,
gazetteers, grammars, patterns, ontologies, etc. This generates the second important

drawback of this technology: named entity extractors show poor portability.

Named entities vary significantly in type and form across domains and the knowledge
collected for one of them might become much less useful for another domain. Therefore,
this knowledge requires to be adapted for each application, a process which is gener-
ally time-consuming and error prone. Moreover, this adaptation might sometimes be

impossible due to the lack of experts.
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1.4 Main Goal

The main goal of this thesis —following the discussion above— is to explore methods
to capture the ambiguity of named entity extraction tasks, so that the extraction can

be done with a relatively good level of performance, but at the same time maintaining
a reasonable degree of portability.

There are several issues that these methods must deal with. First, it is indispensable to
find an appropriate approach to capture and represent the essence of the extraction task,
so that a person does not have to expend large amounts of time doing this. Secondly, it
is necessary to provide this approach with the linguistic and world knowledge required
for the interpretation of text, a difficult assignment that is specially not solved for
general domains. Finally, some mechanism for tuning this knowledge to the specific
task and domain, with little or no human support, must be found. This should include
the management of exceptions, that is pieces of text which are often considered named
entities by the task but in some occasions they are not considered so (or vice versa), as
with the above example for the word Boeing on the MUC-7 task.

These methods should make possible the implementation of an NEE system that is able
to perform generic named entity extraction which is not designed for any particular task

or domain.

A system with these characteristics could be applied to new domains more quickly and
without needing the many hours of work by experts, on both linguistics and the target

domain, that traditional approaches normally require.

In chapter 2, these ideas are developed further by analysing techniques reported in the
literature on how they could contribute towards more portable NEE systems. Several
bases for the research presented here are drawn from this review and three hypotheses

about how generic named entity extraction should be approached are proposed.

1.5 Document structure

Chapter 2 presents a review of previous work on named entity extraction. This review
is used to introduce the bases for this research, as well as the hypotheses which will
be assessed. In the second part of the chapter, the main approach used in this thesis,

namely the maximum entropy framework, is explained in detail.

Following the review of previous NEE systems, two baseline systems are selected and
evaluated in chapter 3. This chapter also expounds a detailed analysis of the named

entities contained in the corpora used in this work.
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Chapter 4 assesses the hypothesis that more linguistic information can be helpful in
extracting named entities. This is done by extending one of the baseline systems, which

is allowed to use domain-independent features derived from a shallow parser and a
general lexical resource.

Chapter 5 discusses the use of a memory-based approach to avoid overlooking exceptions

in the recognition of named entities and managing the lack of abundant training data.

In chapter 6, a study of how bootstrapping techniques may help the adaptation of the
proposed named entity extractor to new domains is presented.

Finally, several conclusions drawn from this work are presented in chapter 7. This
chapter also proposes future lines of research that might enrich the knowledge collected
by this thesis about the extraction of named entities.

In addition to the main text, this document also includes a set of appendices which
provide more detailed information on the analyses and implementations discussed in

the chapters above. All these appendices are correspondingly cited in the text.




Chapter 2

Previous work and hypotheses

This chapter discusses previous approaches to solving named entity extraction. This
review is used to introduce the bases that guide this research as well as the hypotheses
that this thesis aims to assess.

2.1 Initial approaches

The initial attempts made to solve named entity extraction followed the typical ap-
proaches in natural language processing at the time, that is building systems based
mainly on regular expression and dictionaries (also called gazetteers). In the following
paragraphs, three examples which in one way or another characterise the evolution of

these types of approaches are examined.

Fisher, Soderland, McCarthy, Feng and Lehnert (1995) presented a system at MUC-
6 competition, in which input texts were submitted serially to four string specialists
that recognised money/dates/percentages, organisations, people and location entities
respectively. These specialists were hand-coded pattern matching routines applied seri-
ally in the order given above and each component could claim strings in a non-negotiable
manner. The organisation, people and location specialists relied on dictionaries for the

recognition of these named entities.

Fisher et al. (1995) concluded —after the MUC formal evaluation— that the organi-
sation dictionary used in the competition was weak, and as a consequence the recall
obtained on this kind of entity was poor, as well as affecting the performance on person

and location names because missed organisations were normally claimed by one of the

specialist applied later.

The LaSIE system (Gaizauskas, Wakao, Humphreys, Cunningham and Wilks 1995) and
its descendant VIE (Humphreys, Gaizauskas, Cunningham and Azzam 1998) also rely
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on hand-coded rules, list of words and gazetteers. Nonetheless, they follow a cleverer
approach. For instance, in addition to a gazetteer of 2,600 organisation names, they also
use lists of trigger words such as company designators (e.g. Co., Ltd., PLC), words that
usually occur at the beginning or end of organisation names (e.g. Federal, International)

and words which can be use alone as nouns to refer to organisations (e.g. Association,
Agency, Ministry, etc.).

Using these resources in combination as a cascade set of finite-state recognisers, LaSIE
and VIE have better chances of detecting the organisations mentioned in free text.
Similar resources were used for the other named entity types.

The first people to seriously question the utility of gazetteers were Mikheev, Grover
and Moens (1998). They observed that some NEE systems did not degrade much
when their gazetteers were significantly reduced in size, and that by adding a few
especially selected names, a dramatic improvement could be obtained (Mikheev, Moens
and Grover 1999, Krupka and Hausman 1998).

Mikheev, Grover and Moens (1999) discussed the problems of using NEE systems relying
almost exclusively on looking up proper nouns in gazetteers, which may lead to this

behaviour:

b the availability of large and general gazetteers —specially for different languages—
is very limited, a fact which has been described as a bottleneck in the development
of NE extractors (Cucchiarelli, Luzi and Velardi 1998)

b even if they were available, they would have to be very large —it is estimated that
there are 1.5 million surnames just in the U.S.— and searching in them might be

infeasible

> it is not easy to keep gazetteers up-to-date; for example a list of all companies in
the European Union today would be enormous, and obsolete tomorrow as com-

panies are being created all the time

> named entities occur in variations; for example The Royal Bank of Scotland plc, The
Royal Bank, The Royal plc and simply The Royal, all refer to the same organisation

and gazetteers should contain all these variations

> gazetteers do not solve the problem of overlaps between lists; for example, the
word Washington could easily be found in a list of person names, organisation

names or location names

> language ambiguity and the inclusion of common words in names make the task
even more difficult; this is specially true when conjunctions are involved; for ex-
ample, it is very hard to recognise the organisation name in the sentence Daily and

Partners lost their court case
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Algorithm 2.1: The LTG named entity extraction algorithm. Adapted from Mikheev et al. (1998).
Input: a document C

Output: a new version of the document C’ in which recognised named entities
are annotated

1: Apply sure-fire rules based on reliable phrasal and contextual designators
(For example the rule Mr Xsoox+ is a person)

2: Apply a probabilistic partial match of the identified entities
(This allows the system to recognise variations in the name of entities; for
example, if Mr John Adams has been recognised as a possible person’s name,
then Mr Adams and J. Adams will be also marked as possible instances of
person’s names)

. Apply the rules again but using more relaxed contextual constraints by using
a grammar of names
(This step also includes conjunctions resolution and the recognition of known
named entities from gazetteers)

. Apply a second probabilistic partial match supported by a maximum entropy
model

w

oS

[9,]

. Apply partial matching and check against the maximum entropy model possible
named entities in titles
(This is done at the end because headlines provide little guidance for recog-

nising names, as they are normally in capital letters and contain almost no
contextual clues)

Mikheev et al. (1998) presented the LTG system which makes use of both internal
(phrasal) and external (contextual) evidence for recognising an entity and its class. This
terminology was introduced by McDonald (1996) and has been followed in most named
entity extraction approaches since then (Wakao, Gaizauskas and Wilks 1996, Wacholder
et al. 1997, Cucchiarelli et al. 1998, Zhou and Su 2002, to mention some). The idea
is very simple: consider the string Adam Kluver; it can be seen that this string has an
internal phrase structure (e.g. both words are capitalised and Adam is a common first
name) which suggests that this is a person name. However, somewhere in the text is
likely to exist some contextual information that should make clear what type of named
entity it is. For example, the string could be found in the phrase Mr. Adam Kluver which
would confirm that this string is a person name, Or it could be seen in the phrase
Adam Kluver Ltd. which would indicate that this string is actually an organisation name.
Following this idea, the LTG system only makes the decision of the class for a given

entity when clear contextual information that supports such a decision is found.

In addition, the LTG system assumes that —for example— once the string Adam Kluver
is identified as an organisation name, then any other less clear occurrence of this string
will refer to the same entity. If this string is also used for referring to an entity of

another type, then the LTG system assumes that clear contextual material would be

found to determine this new meaning.

Algorithm 2.1 presents the LTG extraction algorithm. This system reached an F-score
over 93% in the MUC-7 evaluation, the highest performance registered for the compe-
tition (Mikheev et al. 1998). Moreover, Mikheev, Moens and Grover (1999) conducted
a further evaluation of LTG which showed that even without using gazetteers, the al-

gorithm obtains levels of accuracy comparable to many other NEE systems competing
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in MUC-7.

Although the LTG system performs remarkably well, the rules and grammars it uses
were hand-coded for the MUC-7 application. Therefore, these resources need to be re-

coded to apply this system on a new domain, which seriously compromises the porta-
bility of the system.

2.2 Machine learning approaches

The portability limitation mentioned in section 2.1 has attracted the attention of re-
searchers towards machine learning techniques which can learn how to use both internal

and contextual information for identifying named entities.

The Message Understanding Conferences provided the appropriate environment for the
development of this type of NEE system. More recently, the shared tasks of the Con-
ferences on Computational Natural Language Learning (CoNLLs) have also created a

competitive environment which has boosted the research in this area.

The latest MUCs defined the standard way in which named entity extractors should
be developed. They release three corpora for each task: a training corpus which must
be used to develop the system, a dryrun test corpus so that systems can be tested

during the development phase, and a blind test corpus on which systems were formally
evaluated (MUC 1995, MUC 1998).

The MUC task involved the discrimination of seven named entity types —namely per-
son, organisation and location names; date and time expressions; and money and per-

centage expressions— from artifacts and normal text (Chinchor 1998a).

In MUC-7, a further problem was introduced: the training and dryrun texts were se-
lected from an aircraft accident domain, whereas the formal test corpus was a collection
of articles reporting the launching of aircrafts. This aimed to encourage the develop-
ment of NEE systems that could be easily adapted across different domains. Many
machine learning approaches were presented for these competitions, some of which are

described in the following paragraphs.

For example, Aberdeen, Burger, Day, Hirschman, Robinson and Vilain (1995) presented
the Alembic system, which uses a maximum error-reduction learning algorithm to con-
struct a list of transformation rules (based on Brill (1995)); this rules obtained an

F-score of 85%:.

! Although performance measures are given for these systems, it mu§t be kept ip mind that such
performance might be estimated on different testing corpora and by dlfferent scoring programs. In
addition, each system normally prepared its own extra training material as vivell as t.hex‘r own pre-
processing programs. Therefore, comparing systems based on these measures 15 unrealistic and they

must be considered as referential only.
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Cowie (1995) developed a system called AutoLearn, which constructs decision trees

using the ID3 algorithm (Quinlan 1983) for detecting the start and end points of named
entities; its performance was not very impressive: F-score 64%.

Bennett, Aone and Lovell (1997) presented RoboTag, which also uses decision trees to
classify words as being potential start /end of a named entity. However, this system uses
C4.5 (Quinlan 1993) for the induction and external lexical resources such as gazetteers;
RoboTag performed better: F-score 83.6%. Sekine (1998) presented a variation of this
approach for a Japanese task, which reached an F-score of 85%. Paliouras, Karkaletsis,
Petasis and Spyropoulos (2000) also evaluated C4.5 and external resources on the MUC

corpora —though they were not in the competition— and obtained a performance
around F-score 83%.

Bikel, Miller, Schwartz and Weischedel (1997) developed Nymble, a system that em-
ploys a hidden Markov model and a bigram language model for the task; this system
performed remarkably well for its simplicity: its F-score was 93%. This approach will
be discussed in more detail in the following chapter.

Borthwick, Sterling, Agichtein and Grishman (1998) use maximum entropy models for
predicting named entities in a system they named MENE. This system scored an F-
measure of 92%. This system will also be studied in more detail in the next chapter.

The CoNNL shared tasks introduced new challenges to the named entity extraction task,
as the organisers were interested in language independent NEE systems that could use
additional non-annotated training data (Tjong Kim Sang 2002b, Tjong Kim Sang and
De Meulder 2003). Named entity classes were reduced to four types: person, location,

organisation and miscellaneous names.

A wide range of methods and meta-methods from machine learning and natural lan-
guage processing were presented, including support vector machines, transformation-
based lists, learners cascade, boosting, Markov models and hidden Markov models,
maximum entropy models, character n-grams and tries, stacking, decision trees, vot-
ing, Winnow and SNoW, etc. plus some combinations of these methods. Examples of

systems presented in these conferences are discussed in the following paragraphs.

Carreras, Marquez and Padr6 (2002) presented an NEE system in which recognition
(NER) and classification (NEC) were performed sequentially and independently. Both
modules used binary AdaBoost classifiers to combine fixed-length decision trees. This
system scored best in two different languages: F-measure 81.39% for Spanish and 77.05%
for Dutch. They also reported that the pipeline scheme caused propagation of errors
and that additional knowledge sources —such as gazetteers and a list of trigger words—
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yield an improvement of just 2% in the NEC system, and were of no utility in a second
step to obtain the final labels.

Cucerzan and Yarowsky (2002) developed a system which used both word internal and
contextual clues as relatively independent evidence sources that drive a bootstrapping
algorithm from initial seed names. Internal clues refer to morphological structure such
as prefixes and suffixes, which is automatically learnt during the bootstrapping process.
Contextual clues refer to patterns (such as Mr., in, mayor of on the left) which are crucial
for names that do not follow a typical morphological pattern, are of foreign origin or
polysemous. Both types of information are modelled as four smoothed tries: two for
context (left and right) and two for internal morphological patterns (prefix and suffix

tries). This system scored third and fifth on Spanish (77.15%) and Dutch (72.31%)
respectively.

Florian, Ittycheriah, Jing and Zhang (2003) presented an NEE system which combines
four classifiers based on different machine learning approaches: the first system used
Robust Risk Minimisation (RRM), which is based on Zhang, Damerau and Johnson
(2002); the second one relies on a maximum entropy model, similar to MENE; the
third classifier utilises transformation-based learning; and the fourth system is a hid-
den Markov model classifier, similar to Nymble. They reported different performance
levels with different ways of combining these four classifiers, which show that an RRM
approach yielded better results. In the formal test, this system obtained the highest
overall performance on both English and German with F-scores 88.76% and 72.41% re-
spectively, which outperformed the best individual classifier by 17-21% for the English
task and less significantly for the German task.

Zhang and Johnson (2003) also presented a combination of classifiers in which the basic
units are characters and character n-grams, instead of words and word phrases. The
first model is a character-level hidden Markov model and the second one is a maximum
entropy model. This system was ranked third on English and second on German,
obtaining 86.31% and 71.90% respectively. They reported that when n-grams are not

used, their system shows a 25% error increment.

2.3 Bases and hypotheses

Following the discussion above, the first basis in this thesis is that a portable named
entity extractor must not use manually-built rules for the task. Hand-coded rules are
time-consuming and although there may be attempts at making the modification and
addition of rules as simple as possible, this facilitation is normally oriented to experts
at both linguistics and the architecture of the system, or in the best case to experts in
the extraction task, which automatically restricts the portability of such a system.
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Therefore, this thesis will focus on machine learning techniques which should allow the
acquisition of rules and knowledge with little or no human intervention.

By a simple examination of the machine learning methods employed by the systems
described in section 2.2, it is easy to see that statistical learning techniques are exten-
sively used and quite successful. For instance, Nymble and MENE both utilise statistical
methods and both report a performance over 90% for the MUC task.

This is not exclusive to named entity extraction tasks. Most NLP problems can be
seen as random processes for which it is necessary to find the probabilistic distributions
that model their behaviour. Many successful applications of these methods has been

reported, accomplishing levels of performance that are very hard to improve on (Mikheev
1998).

These observations lead to the second basis for this research: modelling NLP problems,
of which named entity extraction is just an instance, as statistical classification problems
has proved to be a successful approach.

Among many other statistical methods, both hidden Markov models and maximum
entropy models are popular choices. For example, out of the sixteen systems competing
at the CoNLL-2003 shared task, three systems used maximum entropy models, two
utilised hidden Markov models, and two other systems employed a combination of these

techniques (Daelemans and Osborne 2003).

However, maximum entropy models present some advantages over hidden Markov mod-
els (Mikheev 1998):

1. Hidden Markov models —and generative statistical methods in general— assume
that the different pieces of contextual information are independent, and the model
engineer must take care to avoid the inclusion of overlapping features. These
simplifications are not necessary for maximum entropy models which can deal
with both overlapping feature segments and overlapping feature functionality.

2. The above property allows maximum entropy models to use more information and
from different sources, resulting in more complex models which have improved the
performance of classifiers in a number of applications (for examples, see Rosenfeld
(1996) and Ratnaparkhi (1996)).

3. In many cases, hidden Markov models can be moved from one domain into another
by re-computing the probabilities associated to the features included in the model.
However, if these domains present significant differences, the knowledge engineer
must build a completely new model. On the other hand, maximum entropy models

normally need to re-estimate their weights to capture a shift in the domain, but
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less participation of an expert is needed if the available pool of features is general
enough.

Since this work started in 2000, there have been two important conferences on named
entity extraction, namely the shared tasks of CoONLL-2002 and CoNLL-2003, which have
provided more evidence in favour of maximum entropy models.

In the CoNLL-2002, Malouf (2002) applied three different statistical approaches to the
shared NEE task: a baseline statistical model, a hidden Markov model and a maximum
entropy model. He reports that even using the same information, the maximum entropy
approach widely outperforms the other two models. Moreover, when taking advantage
of a maximum entropy model’s ability to use more complex information and extra

features were added, it obtained a 67% increase in overall performance with respect to
the hidden Markov model.

Results of the CoNLL-2003 are even more relevant: the top two systems in the German
task and the top three systems in the English task utilised maximum entropy models, in
isolation or in combination with other approaches, which would confirm that “Maximum
Entropy Models seem to be a good choice for this kind of task” (Tjong Kim Sang and
De Meulder 2003).

These observations lead to the third basis of this thesis: maximum entropy models
perform well on named entity extraction tasks and they also provide natural ways of
introducing new knowledge to guide the extraction procedure, which makes them a good

approach for generic named entity extraction.

NEE systems based on maximum entropy models have used a wide variety of features
extracted from a context window of words around a focus word, whose named entity

class must be determined. Among the most common features are:

> lexical features, which are the strings —normally in a case insensitive mode— of
the tokens under consideration (Borthwick 1999, Malouf 2002, Bender, Och and
Ney 2003, Chieu and Ng 2003, Curran and Clark 2003b, Florian et al. 2003, Klein,
Smarr, Nguyen and Manning 2003)

> orthographic features, which provide information about the form of these tokens,
such as the type of lexeme (e.g. number, word, symbol) and capitalisation proper-
ties (e.g. lowercase, uppercase, capitalised) (Borthwick 1999, Malouf 2002, Bender
et al. 2003, Chieu and Ng 2003, Curran and Clark 2003b, Florian et al. 2003)
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> section features, which help discriminate between sections in the document (e.g. head-

lines, text) in which the context window is located (Borthwick 1999, Malouf 2002,
Chieu and Ng 2003)

> dictionary features, which indicate whether a word is contained in external dic-
tionaries of names (gazetteers) (Borthwick 1999, Malouf 2002, Bender et al. 2003,
Chieu and Ng 2003, Curran and Clark 2003b, Florian et al. 2003, Klein et al. 2003)

> PoS features, which give information on the part-of-speech that a word is playing
in the sentence (Curran and Clark 2003b, Florian et al. 2003, Klein et al. 2003)

> morphological features, which supply information about prefixes and suffixes of
tokens (Bender et al. 2003, Florian et al. 2003, Klein et al. 2003)

All these types of features are lexically oriented, and besides Curran and Clark (2003b)
and Florian et al. (2003), who included chunk features, there have been no attempts
to include linguistically richer information into maximum entropy models for named
entity extraction. The reason for this omission seems to be that getting rich linguistic
features —such as sentence structure, phrasal heads and semantic relations— can be
highly expensive and domain dependent, and it is not clear whether such information
could be useful. Nonetheless, it would be an important contribution to verify these

assumptions.

On the one hand, a good parser of general natural language text is still a matter of
research, but obtaining shallow phrase structure —such as noun and verb chunks, and
their head words— is not very difficult nowadays and a few systems are starting to
be available online. On the other hand, getting semantic and discourse-level informa-
tion is much harder. Acceptable solutions for structural attachment, sense ambiguity,
coreference and semantic relationships are very difficult to obtain, and only established
research groups have been able to attempt to solve these problems for information ex-
traction, after several years of dedicated work (Fisher et al. 1995, Wakao et al. 1996).
Thus, building these kinds of tools is realistically beyond the scope of this thesis.

The NLP Group at the University of Sheffield is probably the research body which has
paid most attention to these problems, resulting in the definition of a general archi-
tecture for text engineering (Cunningham 2000). Among their work, Gaizauskas and
Humphreys (1997) evaluated the use of semantic networks for information extraction.
Basically, they use a semantic network to have a world model prior to the processing of
the text. This network consists of an ontology and an associated attribute knowledge
base, which are manually built from the definition of the task. When a text is processed,
this semantic network is populated with the classes and instances mentioned in the text,
thus specialising the world model for that particular text. This specialised model allows

Gaizauskas and Humphreys (1997) to perform an analysis at discourse level.
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In the case of named entity extraction, the discourse model described above is utilised
to resolve coreferences of names and to classified ambiguous names by looking into the
semantic types of the arguments in certain relations (Wakao et al. 1996). For example,
the existence of the ambiguous name Ford can be classified by identifying that it refers
to the unambiguous name Ford Motor Co., also found in the discourse model; and by
identifying that the word stock is semantically related to organisations, the ambiguous
name Erickson in the phrase Erickson stocks can be classified as an organisation name.

Note however, that only NEC is performed and no new named entities are recognised
at this stage.

Gaizauskas and Humphreys’s (1997) approach is dominated by the view that more ac-
curate information extraction systems cannot be obtained without attempting a deeper
understanding of the text being processed. This thesis widely shares this view. How-
ever, getting this understanding from manually built resources —as Gaizauskas and
Humphreys (1997) have done— compromises portability and, therefore, this thesis will
avoid resorting to this solution.

Nevertheless, the idea of introducing ontologies to obtain certain amounts of semantic
information should not be discarded. Guarino (1997) clearly identifies a fundamental
role for ontological aspects for information extraction: the semantic matching between
the terms used to define the task and those appearing in the text. Thus, named entity
extraction can be seen as identifying semantic matches between pieces of text and entity
classes. Therefore, this task requires that the meanings of both the classes and the
names occurring in the text are clear in order to determine whether they match or not.
Unfortunately, the ontologies currently in use are normally built ad-hoc (Guarino 1997)
for both the domain and the task.

However, there exists a general purpose ontology which could be used: WordNet®
(Miller 1995). WordNet is a lexical reference system which organises English nouns,
verbs, adjectives and adverbs into synonym sets, each representing one underlying lexical
concept and their relations (Fellbaum 1998). This general resource might provide an
NEE system with “semantic” understanding of the text being processed as well as more
clues for identifying unseen named entities, and without affecting the portability of the
system as the knowledge it contains is not specific to any particular application, but for

the English language in general.

In fact, Gaizauskas and Humphreys (1997) made use of WordNet in an attempt to
produce a more general world model which could help their system to resolve more
coreferences. Although they conducted a very small experiment, they found that the
availability of more semantic classes in the extended ontology had little effect on the
number of anaphoras that are correctly identified. In this attempt, they also concluded

that because WordNet uses a different synset entry for each possible sense of the lexemes
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in the database, the problem of word sense disambiguation must be addressed. Their

solution was to manually select only one sense per word, based on a small set of training
documents.

Thus, in order to use WordNet as a source of semantic information for named entity
extraction, a better solution —with respect to the portability of the system— should
ideally be found. Although the construction of a general purpose word sense disam-
biguator is generating much research today (Kilgarriff and Rosenzweig 2000), it is still
a medium-term goal and, therefore, beyond the scope of this thesis.

Nonetheless, it can be argued here than using WordNet ontology, even without per-
forming any disambiguation, can be useful for the NEE system proposed here. This
is so because a trigger word —as proposed in Wakao et al. (1996)— identified in the
training documents can be extended to examples which are not seen in the corpus. For
example, suppose that the word chairman is frequently seen in collocation with a per-
son name. WordNet would inform the system that it should also consider its synonym
director. In this way, the maximum entropy model would give to a noun phrase which
starts with the word director a higher probability of containing a person name, even if
the pattern director <person name> was not seen during training, just because it hits the
same WordNet synset as the word chairman. This intuition is explained in more detail

in section 4.5.

All these last observations lead to the first hypothesis of this thesis:

Hypothesis 1

General, domain independent linguistic knowledge —such as the semantic

information provided by WordNet— is useful for extracting named entities.

The introduction of shallow parsing and general ontologies should not affect the porta-
bility of the system. Moreover, projects like EuroWordNet (Vossen 1998), which aims to
develop WordNet-like semantic networks for several European languages, might provide

the necessary resources to allow the approach to move to other languages.

The second hypothesis of this thesis follows from the observation that statistical learning
methods, such as maximum entropy models, heavily rely on the frequencies of the events
being learnt. In fact, this is a characteristic of all machine learning methods that build
general hypotheses: they try to capture the general and tend to overlook infrequent

events.
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Daelemans, van de Bosch and Savrel (1999) showed that not considering infrequent
training examples —exceptions in their terms— can negatively affect the performance
of learners when a natural language task is involved. More specifically, they provide em-
pirical evidence that by keeping training exceptions, a memory-based learner improves

its performance up to a level which allows this approach to outperform a decision tree
learner.

This conclusion might be perfectly valid for named entity extraction. For example, the
token Clinton is seen in the MUC-7 training corpus 52 times: 51 times as a person name
and once as a location name. Thus, the probability that the token Clinton is reporting a
person name is (.98, which will likely dominate the decisions that the maximum entropy
model makes for this example. This cannot be considered a mistake since statistical
methods assume that the same distribution observed in the training data will be found
in the decoding data.

There have been some attempts at overcoming this problem. A popular choice has
been applying Boosting (Schapire 1990). Boosting is a general method to produce very
accurate classifiers by combining rough and moderately inaccurate classifiers. Perhaps
the most used version of this technique is the AdaBoost algorithm —short for Adaptive
Boosting— which was introduced by Freund and Schapire (1996) with a strong theo-
retical framework based on PAC-learning. AdaBoost calls a weak learning algorithm
repeatedly —though they may be different learning methods— in a series of rounds, in
which a distribution of weights is defined over the set of training examples. Initially,
every instance has the same weight, but on each round, the algorithm increases the
weights of misclassified examples, so that the weak classifier will try harder on these
examples on the next round. Using the distribution of weights for the current round,
the algorithm obtains a weak hypothesis, its error and its global importance in inverse
proportion to that error. The final hypothesis is the weighted majority vote of all weak
hypotheses obtained. In this way, AdaBoost is able to identify exceptions —outliers in
Freund and Schapire’s (1996) terms— which are mislabelled or inherently ambiguous
and hard to classify.

This method has been successfully applied to several NLP tasks, such as part-of-speech
tagging /PP attachment (Abney, Schapire and Singer 1999) and text categorisation
(Escudero, Marquez and Rigau 2000), and more recently to the CoNLL-2002 named
entity extraction task in Carreras et al. (2002) and Wu, Ngai, Carpuat, Larsen and
Yang (2002). These latter works are particularly successful: Carreras et al’s (2002)
system obtained the best scores in both Spanish and Dutch and Wu et al.’s (2002) was

fourth for Spanish and second for Dutch.

Carreras et al. (2002) and Wu et al. (2002) both used very simple weak learners that

obtained (very) shallow decision trees. It is not clear whether boosting would have
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obtained the same results when a statistical method is used as the weak learner. For
these kinds of methods, a common practice is to perform boosting by re-sampling (rather
than boosting by re-weighting, as described above), in which a fixed number of training
examples are chosen with replacement according to the distribution defined by their
weights. But Freund and Schapire (1996) found that one of the requirements for ob-
taining a significant improvement in performance by boosting is that the weak learner
must be sensitive to changes in the training examples, so that the hypotheses generated
for the different training sets at each round are significantly different. This condition
might be difficult to meet with maximum entropy models and it would need a careful
re-sampling of the training examples with the explicit intention of producing different
constraints from one round to the next. In fact, Park and Zhang (2002) showed that
the effect of boosting is not significant when applied on a maximum entropy model for
shallow parsing.

The approach proposed here is based on the combination of memory-based methods
and maximum entropy models, so that the advantages of both types of techniques can
be united.

Memory-based reasoning solves new problems by adapting solutions that were used to
solve old problems (Burkhard 1998), but they do not learn a general hypothesis to
be applied later on. Instead, they use a retrieval engine which utilises the concept of
similarity to search among the past cases to obtain the most similar ones to a new case,
or query, that needs to be solved (i.e. classified, in this task). This way of reasoning
has many advantages: adaptation is not limited to any specific framework and therefore
cases and solutions are not restricted in structure; the similarity measures are not fixed
and frequencies can be considered but may not be the only factors; because adaptation
for a query can normally be performed from few cases retrieved, huge amounts of training
data are not essential; and the set of cases kept in memory can vary dynamically allowing

the deletion of useless cases and the insertion of new cases.

The idea is basically not to build a general maximum entropy model to be applied to all
decoding examples. Instead, a retrieve engine will be applied to obtain a set of training
examples that are similar to each decoding example. Only then will the maximum
entropy framework be utilised to adapt each set of retrieved training information in

order to decide a classification for the query text.

The intuition behind this idea is that by biasing the maximum entropy model in favour
of examples that are similar to the piece of text that needs to be classified, the model will
be able to capture exceptions and the contexts in which unseen named entities appear

in a better way. Chapter 5 gives more details of this expected effect. This discussion

leads to the second hypothesis to be assessed in this thesis.
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Hypothesis 2

Biasing the maximum entropy model towards the training examples that are
similar to the text under processing results in an increase in the performance
of the model on exceptions and unseen named entities

The third hypothesis is related to the fact that for natural language applications, the
annotation of training examples has been reported as a difficult, error-prone and time-
consuming task (Cardie 1997). This is an important problem, even for NEE systems
based on machine learning techniques that do not use hand-coded rules or gazetteers,
as they normally require a large number of labelled examples to obtain reasonable levels
of accuracy, limiting their portability across domains and languages.

There have been some attempts at overcoming this problem by obtaining new training
material from unlabelled text, mainly motivated by the work of Yarowsky (1995) and
Blum and Mitchell (1997), which showed that supervision could be significantly reduced
by exploiting the natural redundancy in textual data. They introduced two different
ways of performing semi-supervised learning, which the literature has generally called
bootstrapping and co-training, though a theoretical connection between these approaches

has been shown very recently (Abney 2004).

Semi-supervised learning works basically as an iterative process to estimate annotations
for unlabelled data, whose final objective is to provide annotated training data to im-
prove a learner. Yarowsky (1995) used his bootstrapping algorithm to solve word sense
disambiguation, obtaining better performance from an initial small set of seed colloca-
tions than a completely-supervised learning approach. Riloff and Jones (1999) used a
variation to extract a semantic lexicon (i.e. named entities) and extraction patterns for
an IE task, just from a few seed words. At about the same time, Collins and Singer
(1999) utilised co-training to induce rules for named entity classification from just seven

seed rules.

However, the above approaches have in common that they employ rule learners. It is not
clear whether bootstrapping would improve the performance of maximum entropy mod-
els, though Blum and Mitchell (1997) reported experiments with a statistical method,

namely the naive Bayes classifier, in which the semi-supervised version outperforms the

supervised one.

Nevertheless, it would be an important contribution to explore ways of doing semi-
supervised learning with maximum entropy models, which would increase the portability
of an NEE system that uses this machine learning approach. This interest underlies the

third hypothesis to be assessed in this thesis:
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Hypothesis 3

Bootstrapping techniques can help an NEE system based on maximum en-

tropy models to be more portable by obtaining information which is valuable
for the task from unlabelled text

However, recent studies by Clark, Curran and Osborne (2003) and Cui and Guthrie
(2004) on bootstrapping maximum entropy models are indicating that they pose some

challenges for semi-supervised learning. These studies will be discussed in detail in
chapter 6.

The rest of this document is dedicated to the the evaluation of the hypotheses discussed
in this section.

2.4 Maximum Entropy Models

2.4.1 NLP and classification

Many problems in natural language processing —such as part-of-speech tagging (Brill
1995), word-sense disambiguation (Gale, Church and Yarowsky 1992), propositional
phrase attachment (Aberdeen et al. 1995) and chunking (Cardie, Daelemans, Nédellec
and Tjong Kim Sang 2000)— have been formulated as classification problems and solved

with a variety of methods.

In particular, NLP problems can be modelled as a statistical classification task in which
the probability of a class y —from a set of classes Y — occurring with context x —from a
space of contexts X— is estimated. Classes and contexts depend on the particular NLP
problem being solved. For example, calculating the probability of a word w surrounded
by words w_1, w4, of being a noun, a verb or none, i.e. P(noun| < w_;,w,wy; >),
P(verb| < w_q,w,ws1 >) and P(none] < w-i,w, w41 >), a coarse part-of-speech
tagging can be obtained. In this example, {noun,verb, none} are the classes and <
w_1,w, w4, > for each word w constitute the contexts. In this way, it is expected that
P(noun| < the,model,is >) would be higher than both P(verb| < the, model,is >)
and P(none| < the,model,is >). Similarly, P(verb| < we, model,the >) should be
higher than both P(noun| < we, model,the >) and P(none| < we, model,the >), and
that the context < model, the, data > would yield to a higher probability with the class

none than for the other two classes.



CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 40

There are two major problems with this kind of formulation. Firstly, a relatively large
collection of annotated texts that might provide information about the occurrence of
a class y € Y with contexts x € X is needed. Normally, this information is not
enough for accurately estimating p(y|z) for all possible pairs (y, z) due to sparseness (a
good example of this problem can be found in Godfrey, Holliman and McDaniel (1999)).
Secondly, the different pieces of information considered within each context are generally
from different sources and some might be irrelevant, overlapping or probabilistically

dependent. These difficulties are to some extent overcome by Maximum Entropy Models
(MEMs).

In an MEM, problem-specific knowledge is represented as binary features? which test the
presence of pieces of information in a context. In this way, virtually any kind of knowl-

edge —even from different nature— can be introduced into the model (Ratnaparkhi
1998).

Once the set of features to be included by the model is decided, a general purpose
iterative algorithm can be used to estimate the parameters of the model (see section
2.4.3.1). Therefore, modellers need only focus their efforts on determining what set of
features to use and not how to use it (Ratnaparkhi 1998).

Features of an MEM do not need to be statistically independent or not overlapping.
Borthwick (1999) shows that:

> an MEM that includes two features fi(z,y) and fa(z,y) so that fi(z,y) =1 &
falz,y) = 1, is equivalent to an MEM that includes just one of them; and

> an MEM that includes features fi(z,v), f2(z,y) and f3(x,y) so that two of them
partition the other, ie. fi(z,y) =1 = faol(z,y) = 1 and fo(z,y) = 1 =
fi(z,y) = 1 and f3(x,y) =1 = fi(z,y) = 1V fa(z,y) = 1, is equivalent to
an MEM that includes just two of these features

Moreover, if the set of features do not overlap then there is no need for an itera-
tive algorithm and the probabilities can be estimated by a simple ratio of counts
(Ratnaparkhi 1998). Thus the true value of MEMs is obtained when features that do not
form a partition of the space of classes and contexts need to be combined robustly. This
is also important because determining the larger set of partitioning features from the
set of features that are subsets of a given feature f is NP-Complete (Borthwick 1999).
Furthermore, an MEM can account not only for overlapping segments in the set of
training samples, but also for overlapping functionality among features which might

not even be represented in terms of overlapping features (Mikheev 1998).

2Features do not need to be binary-valued, but using binary features only makes the estimation of
the parameters easier (Della Pietra, Della Pietra and Lafferty 1997).
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All these characteristics of MEMs significantly reduce the work of constructing sound
probabilistic models for any task. Successful examples are many, for instance the work of
Ratnaparkhi (1998), who applied the maximum entropy framework to sentence bound-
ary detection, part-of-speech tagging, prepositional phrase attachment, natural lan-

guage parsing and text categorisation. In all five problems, he obtained performance at
or near the state of the art.

2.4.2 The Maximum Entropy Framework

The maximum entropy modelling framework is introduced here, adapted from (Della Pietra,
Della Pietra and Lafferty 1995) and (Berger, Della Pietra and Della Pietra 1996). More
details can be obtain in these two excellent publications.

Consider a random process which produces an output value y from a finite set of classes
Y. The objective is to construct a stochastic model that accurately represents this
process by estimating p(y|z), that is the conditional probability that given a context
x, the process will output y. The model provides a conditional probability distribution
p(y|x), in which the placeholders x and y are instantiated to specific contexts in X and
classes in Y respectively. Let P be the set of all conditional probabilities. Then p(y|x)

is just one member of P.

In order to build this model, a number of samples (z1,v1), (z2,¥2),---, (ZN,yn) are
collected, which provides the model with information of the behaviour of the random

process. These observations are normally called training samples.

The set of training samples is summarised in terms of its empirical distribution p,
defined by

count({zx,y
plz,y) = —T(—)

where the function count(z,y) counts the number of times that the pair (z,y) occurs

in the set of training samples.

The task can now be seen as building a statistical model of the random process which

generated the training sample p(X,y).

The concept of features function needs to be introduced here. A feature function or
feature for short, is a binary-valued indicator which expresses a particular statistic of

the set of training samples. Following the example in 2.1.1, the following indicators
could be introduced:

1 if y = noun and w41 is a form of the verb ’to be’ in x

fl(xvy) = {

0 otherwise
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(x,y) = 1 ify= 1-)erb and w-; is a pronoun in x
0 otherwise

The training sample (< the, model, is >, noun) will fire f;, that is fi(< the, model,is >
,moun) = 1, but not f,. Similarly, the sample (< we, model, the >,verb) will fire fo,
but not f;. The interest is focused on the expected value of a feature f; with respect to
the empirical distribution p(x,y). This value is given by equation 2.1.

When a particular statistic is considered relevant for describing the random process, it
is included into the model by constraining the expected value that the model associates
to the corresponding feature. This expected value is calculated as

plfi] = Zp p(ylz) fi(z, y) (2.2)

where p(y|z) corresponds to the condltlonal probability of obtaining y given a context
z estimated by the model and p(x) is the empirical probability of seeing context z in
the training samples.

The obvious constraint is that the model should agree with the set of training samples
on how often the output of the random process exhibits a given feature fj. This is done
by requiring p[fij] = p[fi] which yields to the more explicit equation

Z p(z)p(ylz) fi(z, ) Zp z,y) fi(z,y)

z,y

which is known as a constraint equation or snnply a constraint.

Thus statistical phenomena on the training samples that are considered important can
be represented —through p[fi]— and the model for the random process is requested
to exhibit these phenomena by imposing constraints. Suppose that n features will be
included in the model, then a model whose distribution p is in the subset C C P, defined
by equation 2.3, must be found.

C={peP|plfi] =plfi] forie{l,2,...n}} (2.3)

That is, the space of conditional probability distribution whose expected values for the
n features agree with the empirical statistics. Unfortunately, these constraints do not

determine a unique distribution p. Moreover, C allows infinite models.

Thus, a criterion to select a probabilistic distribution from the space C is needed. For
this, the maximum entropy principle is used. This principle states that the model whose
distribution is most uniform should be selected, so that “it agrees with everything that

is known but carefully avoids assuming everything that is not known” (Jaynes 1991).
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For finding such a model, the entropy is used as a measure of the uniformity of a
conditional distribution p(y|x), given by

H(p) = - p(z)p(yle)log p(y|x) (2.4)
z,y
If a random process has m possible outputs —i.e. |Y'| = m— then the entropy of a con-

ditional distribution for that model can vary from zero —a model with no uncertainty—
and logm —the uniform distribution over yy, s, ..., Ym.-

Based on this definition, the principle of maximum entropy can be restated as follows:

From the set C of allowed probability distributions, select the model p. € C
with the maximum entropy H(p):

p» = argmax H(p) (2.5)
peC

It has been shown that there is a unique, well-defined model which is the solution to
equation 2.5 (Della Pietra et al. 1995, Berger et al. 1996). Furthermore, such a model
has the exponential form

1
_ 22 Aifilxy)
«Hy|x) = e~ 2.6
p«(¥|x) Z(X) (2.6)
Zx(x) = § :eE,- Xifi(x,y) (2.7)
y

in which each feature is associated with a parameter A\; and Z,(x) is a normalising
constant, determined by the requirement that the conditional probabilities for a given
context x add up to one over the classes y € Y. The reader is invited to see the
details of the derivation of this parametric form —with the constrained optimisation
method of Lagrange multipliers— in Della Pietra et al. (1995). Sometimes the equivalent

parametric from
1 (x
p-(v%) = 77 [ [ (2:8)
Z(x)=>_ [[afi®¥ (2.9)
Yy i

is used (Ratnaparkhi 1998, Borthwick 1999), where each parameter o; = e and Z(x)

is the appropriately modified normalising constant.

Interestingly, these exponential forms have been obtained from different points of view,
namely Information Theory and Constrained Optimisation Theory on probability dis-

tributions. Moreover, both approaches have shown that there exists a unique model q.

which solves

q. = argmax L(Q) (210)
qel
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where L(q) corresponds to the log-likelihood of a conditional probability distribution q
over the set of training samples

L(q) = ) _ p(z,y)log q(ylz) (2.11)

zly

In general, the maximum likelihood and the maximum entropy frameworks are two
different methods for statistical modelling. However, both analyses have found that in

this case q. also solves equation 2.5, and therefore q. = p..

The fact that a model obtained under the maximum entropy approach is the same as
the model obtained by —the more traditional technique of— maximising the probability
of the training samples, is a strong argument in favour of the validity of the method
(Ratnaparkhi 1998, Borthwick 1999).

2.4.3 Learning Maximum Entropy Models

Any statistical modelling problem requires a two step process:

1. finding the appropriate set of facts to describe the random process to model, and

2. incorporate these facts into the model.

The first step is related to determining the set of features that will describe the process
best.

The second step is partially solved by the discussion in the previous section. It is
just necessary to calculate the expected values of the selected features according to
the training samples and find a model which satisfies the constraints that these values

impose. What is not said is how this model can be found.

In this section, some ways in which these two steps can be addressed are discussed.

2.4.3.1 Parameter Estimation

There are two main algorithms for estimating the parameter of a model with the ex-
ponential forms shown above (Darroch and Ratcliff 1972, Della Pietra et al. 1995): the
Generalised Iterative Scaling Algorithm (GIS), and the Improved Iterative Scaling (I1S).
Actually IIS can be seen as an optimisation of GIS.

The GIS algorithm requires that the features sum to some constant K for any training

sample, that is
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Algorithm 2.2: Generalised lterative Scaling. Adapted from Ratnaparkhi (1998).

Input: a set of non-negative feature functions F = {f1, f2,..., fj,.-., fa}, their

empirical expected values {p[f;]}n, the empirical distribution p(z,y) and the
normalisation constant C

Output: the maximum entropy model p.
1: procedure GIS(F, {p[f;]}n,D(z),C)
Initialise parameters: a;o) —1
21
repeat
Define the current distribution p(*):

PO (ylz) Z(:c) HJ 1( (L))

6

7: Calculate the expected values of each feature f; from p®¥:
8

9

plfi]? — T, 8(x) T, p(yl2)D £i(z,v)

Update the parameters for the next iteration:

i(zy)

1
, (i+1) @) (_Blf)_\©
10: . o; o (——-Q—;p[fj] - )
11: je—J3+1
12: until p{¥ has converged

132 pe — pW(ylz)
14: end procedure

2 filmy) =K (2.12)

If this condition is not met, a correction feature is introduced into the model so that the
constraint 2.12 is satisfied. In theory, a correction constant for all (x,y) pairs should
be derived from the space of possible events X x Y. However, this is not practical and

correction constants are estimated from the training samples as

zGXyGYth Zz y)

which is accurate enough in practice when the set of training samples is large. In this

way, the following correction feature fi is added for each sample

filz,y) = K — Zflxy)

Algorithm 2.2 describe the GIS procedure. Darroch and Ratcliff (1972) showed that
the model built by this algorithm converges to pa.- This version of the algorithm is
for estimating the o; parameters of models with the exponential form of equation 2.8
(Borthwick 1999).

The key step in each iteration of the GIS algorithm is the calculation of the expectations
for the set of features. Suppose there are N training samples, m possible classes and
| feature functions, then the running time at each iteration is O(Nml) (Ratnaparkhi
1998).

The Improve Iterative Scaling algorithm follows the same basic steps as the GIS algo-
rithm. The improvement is related to the way in which the expected value of a feature

function is obtained.
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Algorithm 2.3: Improved Iterative Scaling. Adapted from Berger et al. (1996).

Input: a set of non-negative feature functions F = {f1, f2,..., fj,..., fa}, and
the empirical distribution p(z, y)
Output: the maximum entropy model p.

1: procedure IIS(F,p(z,y))

2 Initialise parameters: )\§0) —0

3: 11

4: repeat

5 Define the current distribution p(*):

6 P (yle) = Zige== X 13 (@w)

7 Find A); for each feature which is solution to:
5 plf;et0 ) = plf;) with f#(z,y) = p_, fulz,y)
9: Update the parameters for the next iteration:
10: AGTD A+ AN,

11: j—3+1

12: until p{* has converged

13: P« — p(l) (ylm)
14: end procedure

Algorithm 2.3 outlines the procedure as described in Berger et al. (1996), which deter-
mines the optimal values of the \; parameters of a model with the exponential form of
equation 2.6.

The key step of the Improved Iterative Scaling Algorithm is the calculation of each
increment A);. Unlike GIS, this algorithm does not require S(z,y) to be a constant;
it can compute these increments numerically by Newton’s method or other equivalent
techniques (Berger et al. 1996, Borthwick 1999). Della Pietra et al. (1995) showed that
p(x,y)(j) converges t0 p«(X,y)-

Tt should be noted that both algorithms terminate when convergence to the maximum
entropy model has been reached, that is when the change in the parameters estimated
in the iteration is zero or negligible. However, stopping the algorithm after a fixed
number of iterations works well generally and it is the most commonly used criterion in
practice. For example, Ratnaparkhi (1998) uses 100 iterations in all the four applications
of MEMs he presents.

2.4.3.2 Feature selection

As explained previously, building a maximum entropy model involves two steps. The
iterative scaling algorithms presented above provide a method for determining the op-

timal parameters of the model, once the set of feature functions has been defined.

The problem is that maximum entropy framework specifies how constraints should be
combined, but it does not stipulate directly what constraints should be included into

a model. Moreover —as discussed earlier— features which are overlapping each other
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and some that are even not relevant can be included, and the model should be able to
deal with them correctly.

Penrose (1979) complained about this deficiency of the maximum entropy framework.
Jaynes’s (1991) answer was rather strong:

“Well, we had thought it rather obvious that one should always take into
account all of the relevant information one has; and find it incredible that
anyone could have supposed differently.”

Risking Mr. Jaynes’s rage, it might be said that determining what information is relevant
1s not so obvious to everyone, specially if that person is not an expert on the random
process being modelled —but a simple computer science student, say— and such an
expert is not at hand to be consulted.

The view expressed in Jaynes (1991) is that the modeller has all the responsibility
for providing the framework with the features that describe the random process best.
However, computer scientists do not usually like this kind of answer and are always
looking for ways in which computers can help to solve any task with as little human

intervention as possible.

Help from a computer becomes more relevant when the target process is complex, since
it is not uncommon to find problems with thousands or even millions of possible features
—such NLP problems— from which only a small fraction are expected to be crucial for
modelling the process (Berger et al. 1996, Blum and Langley 1997). In these circum-
stances, feature selection is critical as the iterative algorithms of section 2.4.3.1 are
computationally costly, and their running times depend on the number of constraints
to be considered by the model. Moreover, there are two reasons which make feature

selection even more critical for maximum entropy models.

Firstly, the iterative algorithms for estimating parameters do not look for higher-order
interaction between features. This is consistent with the maximum entropy principle
in that no assumptions should be made other than the constraints to be met. On the
other hand, if there exists a special interaction between two features, their combination
in a more complex feature function should result in a more accurate model (Mikheev
1998). For example, a model for finding organisation names can combine the weights
of the features “this word is capitalised” and “the next word is plc” which are estimated
separately, but it can also use the complex feature that results from the conjunction of
these two features, i.e the feature “this word is capitalised and the next word is plc”,

whose weight is estimated from the training examples that fire both original featurcs

simultaneously.
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Mikheev (1998) states that if the conjoined features are not independent —as in the
above example— then the resulting complex feature should produce a better prediction.

However, as things are, this higher-order feature needs to be included explicitly as a
constraint by the modeller from the beginning.

Secondly, although an MEM can handle some irrelevant features by assigning the ap-
propriate near-zero weights (Rosenfeld 1996, Mikheev 1998), the introduction of many
irrelevant features can degrade the predictions of the model. Similarly, MEMs cope well
with overlapping features, but a high degree of overlap requires more iterations in the
1terative scaling algorithms (Borthwick 1999, Ristad 1998).

The two step task of deciding which features to use in describing a concept and then
deciding how to combine them, is not a property of maximum entropy models only
but present in most machine learning methods (Blum and Langley 1997). In all these
techniques —though they may significantly differ in the approach— there exist induction

algorithms which aim to scale well from domains with many irrelevant features.

Thus feature selection defines a two level process in which modellers are responsible for
establishing a set of initial features that they think might be useful in describing the
target concept, and then a refinement of this set is performed by an inductive algorithm.
This combination is very common in practice, including work with maximum entropy

models.

A good example of this combination can be found in Borthwick (1999). He presents a
basic feature selection method in which an algorithm collects a pool of features, and then
a cutoff filter is applied to discard all features that are not fired more than three times.
Both the features extracted by the algorithm and the cutoff threshold were defined
by Borthwick and were probably based on his intuition of the problem being solved.
Although this simple method worked well, he recognised the necessity of deviating from
it to solve some practical problems. He incremented the cutoff threshold for too frequent
features, which resulted in a reduction of the size of the model without a significant loss
in accuracy. He also excluded features which were fired by default in many contexts

and features which only predicted the default class of the process.

Ratnaparkhi (1998) also uses the frequency-based count cutoff to select the features
to be included in the model with success. He set the cutoff threshold to values five
and ten in most cases. For one task, Ratnaparkhi set this value to zero. He argues
that this value should be used when the initial feature set consists of only specific
features whose valuable information might be thrown away when discarded. On the
other hand, a threshold greater than zero is useful when the set of features includes
generalised features in addition to the specific ones. Thus, most of the disregarded
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features will be specific features which are unreliable sources of evidence —due to their
low counts among the training samples— and the model will be able to fall back on
—more reliable— generalised features for predictions. Ratnaparkhi also states that the
features used in solving the NLP problems presented in his thesis are knowledge-poor

—i.e. do not require linguistic expertise— by design, so that a computer is forced to
learn as much as possible from the training samples.

Despite the success of frequency cutoff, the modeller has the main responsibility for
determining which features are included into a model. Hence, this kind of selection

is still difficult to apply when the modeller has little idea of which features might be
useful.

Two kinds of features in this process can be distinguished: atomic features which cannot
be decomposed into simpler features, and compler features which are built by making
conjunctions of atomic features. The latter ones were also called higher-order features
earlier. In the terms of Ratnaparkhi (1998), a specific feature is a feature compounded
from many atomic features —and thus fired for a small number of training samples—
whereas generalised features involved few or just one atomic feature, being fired more

frequently.

Borthwick (1999) uses only atomic features for his model, but he describes an attempt
to include complex features. He realised that the cutoff method was not appropriate
for performing the selection when higher-order features were involved, and applied a

multi-stage process.

He first created a pool of complex features of the form fi; = fiA f; that satisfy # fi; > 3,
#fi — #fi; > 3 and #f; — #fi; > 3, where #[ is the number of times a feature f is
fired in the training samples. After this filtering by count, he obtained a pool of about
139,000 features. Unfortunately, this was too large to handle by the implementation of
the IIS algorithm he was using (Ristad 1998).

Therefore, he defined a second stage in which a selection method proposed by Ristad
(1997) is applied. In this method, features are selected by comparing the model’s
expectations of how often they should occur in the training samples against the empirical

expectations. Let dy, be this difference calculated as

dy, = |Y_ pl@)p(yle) filz,y) — > bz, y)filz,y)

where p(y|x) is a maximum entropy model which does not include the candidate fea-
tures. By the restrictions imposed by the framework, if a candidate feature f; were
added to the model, then dy, = 0. Hence, the higher the value of dy,, the bigger the

impact on the model if f; were included in the model.
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Algorithm 2.4: Basic Feature Selection. Adapted from Berger et al. (1996).

Input: a large pool of candidate features F' and the empirical distribution p(z, y)
Output: a set S of active features and the maximum entropy model pg that
includes these features

1: procedure BFS(F,p(z,y))

2 Initialise S «— @ and pg < the uniform distribution over Y

3 repeat

4 for each candidate feature f; € F' do

5: Compute the model psy(s,} using an iterative scaling algorithm
6 Compute the gain in log-likelihood from adding this feature:
7 AL(S, f;) « Lpsuisy) — Lps)

8 end for

9: Check the termination condition

10: fi — argmax AL(S, f;)

11: S—S U]f*

12: Compute the model ps using an iterative scaling algorithm

13: until convergence

14: end procedure

Although Borthwick (1999) does not explain exactly how he used this number to rule
out features, it can be guessed that he set another threshold quantity and discarded
any candidate feature which did not pass this threshold. Unfortunately, this method
was not sufficient for obtaining the final set of features.

Borthwick (1999) reports that there were features that fired too frequently, causing
numerical problems in the implementation of the IIS algorithm. Therefore, he had to
add a third stage in which features were eliminated from the pool manually. Unfor-
tunately, the resulting pool of features did not outperform the model obtained with

atomic features only.

Berger et al. (1996) suggested a different approach for the feature selection problem.
In this, the modeller is only responsible for providing as large a pool of features as
possible. Thus it may include both atomic and complex features, and they need not
be relevant or useful. This approach is presented in algorithm 2.4. Basically it builds
incrementally —with a strategy similar to the induction of decision trees— a set S of
features to be considered by the model, from a large pool of features F', by selecting
at each step the feature that provides the greatest improvement in log-likelihood of the

model with respect to the training samples.

One issue not specified in algorithm 2.4 1s the termination condition. Obviously, the
algorithm should ideally stop when all useful features are included in the set S. One
reasonable stopping criterion would be to subject f. to an increase of likelihood on held-
out training samples. If this feature does not satisfy this condition, then it is discarded

and the algorithm stops.

However, the biggest problem in algorithm 2.4 is that at each step the maximum en-
tropy model psu(f,} must be computed. Despite the efficiency of the iterative scaling
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algorithms presented in section 2.4.3.1, this is a computationally costly task that makes
the method impractical. For this reason, Della Pietra et al. (1995) and Berger et al.
(1996) make the algorithm greedy but more efficient. Instead of computing AL(S, f;),
the greedy version calculates its approximation ~AL(S, fi) by keeping all the param-
eters of the model pg fixed and determining only the new parameter required for the
constraint imposed by f;. After selecting the candidate feature which maximises this
approximated value, it is added to the set S and the parameters of the model are recom-
puted. This approach estimated good features relatively fast but it does not guarantee

to make the best selection at each step because adding a new feature to a model can
change all its parameters.

Ratnaparkhi (1998) conducted controlled experiments to evaluate the differences in the
frequency cutoff method he utilised and the Random Field Induction method explained
above. He allowed the induction algorithm to run a fixed number of iteration M, and
then selected the set S; with ¢ € {1,..., M} which yielded the highest log-likelihood
on held-out training samples. The aim of these experiment was to assess whether the
smaller set of features produced by the inductive algorithm resulted in better accuracy of
the final model. This set is clearly smaller because, unlike the frequency cutoff method,
non-informative features introduce negligible gains in likelihood and are consequently
discarded by the algorithm.

Ratnaparkhi (1998) found that both approaches —i.e. frequency cutoff and incremental
induction— obtained models that perform similarly. The main differences between the
methods are in the running time and the readability of the resulting set of features.
He concludes that if efficiency is the main issue, then frequency cutoff should be used
as it is much faster than the inductive algorithm. On the other hand, if the goal is to
obtain a readable set of features, then incremental induction should be used as it yields

a concise and understandable list of features.

Mikheev (1998) also conducted a study of feature selection and proposed a new method
based on the construction of a lattice of higher-order features, which he calls collocations.
The basic idea is to include collocations —i.e. complex features which are empirically
observed— and features which might provide significant generalisations over the ob-

served collocations into this lattice. Only then, important features are selected for the

model.

He starts by collecting training samples and representing them as configuration of atomic
features. Then he applies some sort of goal regression to identify configurations which

can safely be removed from the training sample space in order to reduce the dimension-

ality of the task.
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Figure 2.1: Example of a collocation lattice in which thick circles represent reference nodes and filled circles
represent possible hidden nodes that are not part of the lattice. Adapted from Mikheev (1998).

The resulting configurations are organised as cliques of features in a lattice. Observed
configurations are represented as reference nodes. For example, suppose the training
samples provide the configurations [ABC], [BCD], [CEF] and [CFG]. Figure 2.1 shows
the lattice that these configurations generate. In this figure, configurations are repre-
sented as reference nodes denoted by thick circles. Then, nodes which share part of
at least other two nodes in the lattice are added to support generalisations over the
domain. These kinds of nodes are called latent or hidden nodes, and are not normally
observed on their own but only as part of reference nodes. As shown in figure 2.1, the
hidden nodes representing the collocations [BC] and [CF] and the hidden node repre-
senting the atomic feature [C] are also considered in the lattice. All other hidden nodes
are discarded because they directly support only one node and thus they do not provide
any generalisation.

Each node has associated with it two frequency counts: the configuration frequency
counts (cf), which corresponds to the number of times the represented configuration
has been observed in the training samples, and the feature frequency count (ff), which
corresponds to the number of times that the represented feature —atomic or complex—

has been seen in all observed configurations.

Therefore, in reference nodes these counts normally have the same value, that is ¢f(fi) =
fF(f:). Hidden nodes normally have zero configuration frequencies (¢f(f;) = 0) but non-
zero feature frequencies (ff(f;) > 0). It might be the case that a reference node could also
be a hidden node for another higher-order reference node. In this case, its configuration
frequency count will not be zero and it might be different from its feature frequency

count.

Mikheev (1998) discussed two ways in which features from this lattice —which he calls
the empirical lattice— can be selected for the model. The first idea is to apply fre-
quency cutoff over all nodes in the lattice. This idea is easily implemented but if too

many features are selected, then both the estimation of the model’s parameters and the
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application of the model to new examples —which is linear in the number of features—
might become inefficient.

The second idea is to try determining which features contribute to the frequency distri-
bution on the reference nodes. This is done by creating an optimised lattice based on the
empirical lattice. The optimised lattice is initially empty and is built incrementally by
adding a node at each step, together with the nodes which are the minimal collocations
of this node and the nodes already included in the lattice. Thus, the optimised lattice
always contains non-overlapping feature cliques. In this way, there is no need to use
iterative scaling to account for overlaps among features.

For the example of figure 2.1, suppose the first node to be added to the optimised lattice
is the one representing the feature [A]. The configuration frequency in the optimised
lattice (Ef) of this node will concentrate all configuration frequencies of itself and the
higher-order related nodes, thus ¢f([A]) = cf([4]) + cf[AB]) + ¢f({AC)) + ¢f([ABC)).
Now suppose the feature [B] is selected to be included in the optimised lattice. This will
also require the node for [AB] being added and redistributing the frequencies among
these three nodes. The resulting frequency counts will be f([A]) = ff [4]) + cf([AC)),
cf(B]) = cf([B]) + cf([BC]) and cf([AB]) = cf[AB]) + c¢f([ABC]). If at some point
the node representing the feature [C] is added to the optimised lattice, then the whole
feature clique involving these features will be present and with identical frequency counts
to those in the empirical lattice.

In this selection method, the node to be added at each step is the one which makes the
greatest increment in log-likelihood of the optimised lattice with respect to the reference
nodes in the empirical lattice. For this, the probability of a node is considered to be the
probability of the highest related node in the optimised lattice, which could be the node
itself. It is also necessary to define a “lattice root” node which is used as default related
node for estimating the probabilities of reference nodes in cliques that are not yet con-
sidered in the optimised lattice. Finally, Mikheev (1998) also introduces a smoothing
scheme which does not affect frequent nodes, but considerably penalises sparse colloca-
tions. In this way, this method defines a greedy hill-climbing algorithm with maximum
likelihood evaluation function which adds a winning set of non-overlapping features at a

time, whose solution can be easily derived and re-calculated from observed frequencies.

It is not clear whether one of these two alternatives —i.e. the empirical lattice or the
optimised lattice— is better than the other. Mikheev (1998) points out that this is
an empirical matter which depends on the complexity of the task, because the time

needed for the feature selection can compensate for the time saved during parameter

estimation.
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Table 2.1: Comparison of lattice methods for feature selection and Random Field Induction in tasks with
different dimensionality. Adapted from Mikheev (1998).

Dimensionality 9
Empirical Lattice ] Optimised Lattice | Random Field Induction

size 195 148 44

time 00:29 00:30 33:26
training accuracy 85.04 85.04 84.85
test accuracy 83.99 83.99 84.27

Dimensionality 11
Empirical Lattice | Optimised Lattice I Random Field Induction

size 628 271 46
time 03:06 01:59 1:09:26
training accuracy 85.47 85.38 84.97
test accuracy 85.39 85.67 84.55

Dimensionality 13
Empirical Lattice | Optimised Lattice | Random Field Induction

size 1,530 449 54
time 10:55 08:15 2:23:48
training accuracy 86.04 85.37 85.88
test accuracy 85.67 87.64 85.99

Table 2.1 shows experiments —reported in Mikheev (1998)— with both methods on
tasks with different dimensionality, which confirm this observation. What is clearly
determined by these experiments is that the Random Field Induction discussed earlier

required much more training time with similar levels of performance.

The main advantage of the optimised lattice method is that it provides a much smaller
maximum entropy model than just using the empirical lattice. This is a very important
advantage when additional optimisation 1is applied over the features, which normally
does require iterative scaling. In Mikheev (1998), an approach to further pruning the
number of features considered for the final model is proposed. This method requires
a quarter of the time when working on the optimised lattice compared to working on
the empirical lattice. In addition, the resulting maximum entropy model after this
optimisation consistently showed better performance than both lattice methods and

the Random Field Induction approach.

The main problem with Mikheev’s (1998) method is that building the feature collocation
lattice can be prohibitive for tasks with many dimensions. Nonetheless, this approach
can provide a better model and in faster time than the inductive technique for many

practical tasks. For tasks with more than 25-30 dimensions, Mikheev suggests Random
Field Induction should be used.
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2.4.4 Modelling

The previous section has detailed methods for estimating the parameters of a maximum
entropy model and methods for selecting the features to be included in such a model.
However, all the discussed approaches for selecting the correct set of features —namely
frequency cutoff, Random Field Induction, empirical lattice and optimised lattice—

start from an initial set of atomic and higher-order features which must be provided by
the modeller.

This is not the case in other machine learning approaches, which automatically look for
the best conjunction of attributes (Blum and Langley 1997), in which the modeller is
required only to provide the initial set of atomic features.

It could be argued that this is all that is needed for the lattice methods. This is true
in general, but it is not clear that the method might be useful when the task being
modelled has many dimensions3. For example, suppose there are 18 non-valued atomic
features for each training sample of an NLP classification task, of which nine correspond
to tokens in a sequence within a context window*. Thus the number of valued atomic
features will normally be very large. It will be rather difficult if collocations of 17 valued
atomic features —which in the best case do not include one of the nine tokens in the
sequence— will support more than one observed configuration. Hence it is likely that
none of these hidden nodes should be present in the empirical lattice and thus the only

nodes to be considered for the model would be the observed conjunctions of 18 features.

The usefulness of the method cannot be completely disregarded because there are ap-
plications of the lattice method to NLP tasks in Mikheev (1998), though everything
suggests that in all of them the initial configurations were not so sparse. Moreover, in
an application for determining whether a period is marking the end of a sentence, only
the 238 most frequent atomic features are used, and no explanation for this reduction
is given. Furthermore, this set must correspond to 238 valued atomic features —and
only around six non-valued atomic features— as they only generate 8,245 nodes in the

empirical lattice.

This last point may require further discussion. If the contexts considered for modelling

a random process contain six non-valued atomic features, then the number of possible

features for each training sample j is given by

(1) (2)+()-(5)-(1)-(2)

3Dimensions is Mikheev’s (1998) term to refer to non-valued features. For exampl‘e,. “the part-of-
speech of the next word” can be included in the information provided for a §et of tra.lmpg examples.
This corresponds to one non-valued atomic feature. In the data, however, this fea.ture w111 be valued:
“the part-of-speech of the next word is Noun”, “the part-of-speech of the next yord is Verb”, etc. These
instantiations of the abstract feature are valued atomic features or just atomic features.

4Such a problem will be encountered in later chapters.
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that is, one conjunction of six features, six conjunctions of five features, 15 conjunctions
of four features, 20 conjunctions of three features, 15 conjunctions of two features and
six atomic features. Hence it is impossible that 238 non-value atomic could generate
only 8,245 possible feature collocations. Moreover, this number needs to be multiplied
by the possible values of each conjunction. For example if all six atomic features have
three possible values, then the theoretical number of possible conjunctions is

|F1=3°4+6-3°+15-3*+20-3°+15-32+6-3 = 4,095

which corresponds to the maximum size of the empirical lattice. In NLP tasks, atomic
features are rarely three-valued (e.g. part-of-speech tags) and frequently lexical forms —
i.e. tokens— are included. Thus the number of possible conjunctions is normally huge.
However, this theoretical number of feature collocations is almost never encountered in
practice, and the lattice method can be used even for tasks with moderate dimensionality
if common high-order collocations can be found. Nonetheless, the number of collocations
is still extremely high and considering all of them also makes the use of Random Field

Induction impractical.

Mikheev’s (1998) lattice methods can be seen as a filter approach to feature selection,
because it filters out irrelevant features before the induction occurs®. Filter approaches
are common in machine learning and the actual techniques employed vary enormously.
They have many advantages, but the most attractive characteristic is that they are
normally independent of the induction algorithm that will use their output and thus
can be combined with any such method (Blum and Langley 1997).

One approach successfully applied for filtering is the use of decision trees. For exam-
ple, Kubat and colleagues have used them to filter attributes for a Bayesian classifier
and initialise neural networks (Kubat, Flotzinger and Pfurtscheller 1993, Kubat 1998,
for example). Cardie (1993) used them to select the features to be included in a
k-nearest neighbour retrieval function for solving an NLP problem. She found that
this hybrid technique outperforms alternative systems that utilise only decision trees
or k-nearest neighbour, and also two other case-based systems that incorporated —

potentially expensive— expert knowledge.

More recently, Park and Zhang (2002) presented an approach in which decision trees
are used to generate higher-order features for a maximum entropy model to solve text
chunking. They showed that a decision tree can easily be represented as feature func-
tions for a maximum entropy modelling. For example, consider the decision tree of
figure 2.2, which makes predictions for the part-of-speech tagging task discussed in sec-
tion 2.4.1. Rules in this tree can be directly denoted with the if-then form used in

feature functions:

5Tn this context, the induction step would be the optimisation with iterative scaling or the estimation
of the parameters of the model.
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model

W_, is pronoun|

verb w,,is "to be’

other noun

Figure 2.2: Part of a decision tree for part-of-speech tagging. The rules are: if the current word is ‘model’
then (a) if the previous word is a pronoun, then predict current word is a verb; otherwise (b) if the next
word is a form of the verb ‘to be’, then predict current word is a noun: (c) otherwise predict the current
word is not a verb nor a noun.

1 if y =wverb and (wp is ‘model’ and w_; is a pronoun) in x
0 otherwise

f1 (X, y) = {

1 if y = noun and (wo is ‘model’ and w—, is not a pronoun and
f2(x,y) = w41 is a form of the verb ‘to be’) in x
0 otherwise

1 if y = other and (wo is ‘model’ and w_; is not a pronoun and
fa3(x,y) = w41 is not a form of the verb ‘to be’) in x
0 otherwise

Park and Zhang (2002) transcribe each path from the root to leaves of the decision
tree as feature functions. Then, they argue that because algorithms for the induction
of decision trees (Quinlan 1983, Quinlan 1993) try to partition the sample space into
non-overlapping regions, each feature —i.e. each path— can be considered to have
the same importance weight. They introduce these features into a maximum entropy
model which has to re-weight the complex features in order to optimise their predictive
power. This method obtained an improvement of 2.34% in accuracy with respect to the
performance of the decision tree. More importantly, the number of errors were reduced
by 41.64% from 2,663 to 1,554 on test data. This improvement is important as decision

trees are themselves strong classifiers.

However, the main contribution of Park and Zhang’s (2002) approach is that it auto-
matically selects features for a maximum entropy model starting from atomic features

only. Thus the linguistic knowledge required for modelling the task is considerably

reduced.

In the decision tree of figure 2.2, three non-valued atomic features are used: f;= “the
string of the current word is”, fo= “the previous word is a pronoun” and f3= “the next

word is a form of the verb to be”. Thus the set of possible features defined by these
features is {f1, fo, f3, 1 A fo, fu A f3, f2 A f3, fi A fa A f3}. Now suppose that w can
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take values from —a rather small— lexicon of 3,000 words. Because f2 and f3 are
binary valued, there are 12,000 possible configurations just of the form (f; A fa A f3)
and 27,008 possible valued features in total. If all 3,000 words in the lexicon are present
in the training corpus, from which the training samples are taken, then this potential
number of valued features will become the actual size of the feature space for both
Random Field Induction and the lattice methods.

A decision tree searches for the most informative combinations of features that split the
data. Therefore, the tree of figure 2.2 is indicating than the collocations fi(model) A fa
and fi(model) A fo A f3 are valuable in modelling the task. This tree also indicates
that there is no need to try more complex combinations with these features. This

automatically discards collocations such as fi(model) A faA f3A fq, fi(model) A faA fsA fe,
etc.

Thus, if only conjunctions considered by a decision tree are used as the initial set of
features, for both Random Field Induction and lattice methods, a significant reduction
in size of the task can be obtained making practical the use of feature selection tech-
niques in tasks with more dimensions. This is an interesting idea which deserves some

investigation.

Nonetheless, there is an important limitation for this idea to work: induction algorithms
for decision trees are computationally expensive. For example, both Ratnaparkhi (1998)
and Borthwick (1999) conducted experiments that aimed to compare the performance of
their maximum entropy approaches against known, commercial decision tree induction
algorithms. In addition to obtain results which suggest that maximum entropy models
outperform decision tree classifiers, neither of them could obtain decision trees for tasks

that included lexical features (strings) for moderate-size training corpora.

This last problem could be solved by using shallow decision trees or decision trees with
fixed depths, for which relatively efficient induction algorithms have been proposed
(Auer, Holte and Maass 1995, Dobkin, Fulton, Gunopulos, Kasif and Salzberg 2000).
Obviously, finding sub-optimal conjunctions only is a risk as the number of features
in each collocation would be restricted by the depth of these decision trees. Neverthe-
less, it would provide a set of initial higher-order features which should make practical
the induction methods discussed above, starting only from the specification of atomic

features.

2.4.5 Limitations

One of the limitations of using maximum entropy models has already been discussed:
their computational cost. Although building an MEM is a tractable problem, large tasks
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with thousands or millions of training samples and with many dimensions that cannot

be pruned without expert knowledge require a considerable amount of both memory
and CPU time.

A more important limitation is related to the convergence of the parameters when an
exact solution for equations 2.6 and 2.8 does not exist. This is the case with random
processes which require a model to predict p.(y|z) = 1 for some pair (z, y). In such

cases iterative scaling will always increase the parameter associated with the constraint
imposed by this pair.

A related problem is that the maximum entropy framework “gives infinite confidence to
contexts that are not ambiguous with respect to the predictions with which they occur,
regardless of their frequency” (Ratnaparkhi 1998). This fact produces an undesired
effect when parameters interact to make a prediction. Infrequent events tend to be
unambiguous and —as explained above— normally get higher parameters in the model.
Thus when combined with other evidence which might appear much more frequently in

the training samples, parameters for infrequent events will dominate the prediction.

However, these limitations are seldom encountered in NLP tasks (Ratnaparkhi 1998).
Moreover, the count cutoff used for feature selection normally discards these problematic
infrequent features. Another suggested solution for these problems is the application of
smoothing techniques and using soft constraints (Lau 1994).

A final observation is that only binary feature functions are considered in most —if not
all— applications and implementations of the maximum entropy model. However, this
is not a limitation of the framework itself (recall that the iterative scaling algorithm only
requires positive initial parameters). This limitation is not a problem, since a feature
of the form:

count(w) if y = verb and w occurs in x

fl(xvy) = {

0 otherwise

in which count(w) is the number of times that a word w is found in a document, can

be re-written as the following binary feature:

1 if y = verb and w occurs frequently in x

hlxy) = { 0 otherwise

Although they are not exactly the same feature, they provide similar evidence for the
prediction. In any case, binary features have proved to be sufficient to capture enough
information —at least at word or sentence level— for making accurate predictions
(Ratnaparkhi 1998).
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2.4.6 Maximum entropy tools

There are a number of tools that implement the maximum entropy framework. The
main advantages of using an existing implementation —rather than constructing one
from scratch— are that the significant time needed for programming and debugging can
be saved and any results obtained are supported by previous work with the same tool.

The most popular tools are The Maximum Entropy Modeling Toolkit (MEMT) (Ristad
1998) and the OpenNLP Maxent package (MaxEnt) (Baldrige and Bierner 2001). MEMT
supports the construction and application of maximum entropy models for discrete do-
mains. This tool effectively implements the IIS algorithm for estimating the parameters
of the model — in the C language. MaxEnt also supports maximum entropy models
for discrete domains, but it implements the GIS algorithm — in the Java language.

It is not clear that one tool is better than the other. Nonetheless, MaxEnt provides
more support: expected values calculation and the frequency cutoff algorithm, if that
is the feature selection mechanism to be used. In any case, both tools can be used for

parameter estimation only after doing the selection in a preprocessing step.

Borthwick (1999) reported some numerical problems with MEMT, which have not been
reported for MaxEnt so far. This might be considered as a reason for preferring the
latter package. Nevertheless, the main reason for using MaxEnt is that this tool is
free, whereas MEMT is nowadays part of PMT, a commercial product from Mnemonic

Technology Inc.

2.5 Summary and discussion

In this chapter, a literature review of previous approaches to named entity extraction

has been presented. This review has provided three important bases:

> manually-built extraction rules should be avoided by portable NEE systems and

machine learning techniques must be used instead

> among all machine learning paradigms, statistical methods have been shown to

be quite successful when applied on NLP tasks, and

> maximum entropy models have proved to be a good approach for extracting named

entities and they also show benefits for building generic systems

This review and the above bases have also been the foundations on which a number of
hypotheses have been proposed with the aim of developing methods that will contribute

towards the implementation of a portable, generic NEE system.
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The first hypothesis of this thesis is that the inclusion of general, more linguistically-
oriented features might help a maximum entropy model to capture useful clues for
identifying named entities which cannot be obtained from lexically-oriented features.
The main challenge here is obtaining and representing this linguistic knowledge without
affecting the portability of the approach. Chapter 4 discusses possible resources for this

information and also explains how it can be introduced into a generic named entity
extractor.

The second hypothesis propounded here is that a better treatment of exceptionality
can be provided to the system by biasing the maximum entropy model to consider
further the most similar training examples to the piece of text being analysed. Chapter

5 explains in more detail why this approach could work and surveys the validity of this
hypothesis.

The final hypothesis proffered is related to semi-supervised learning. It is evident that
the ability of making good use of unlabelled text would increase the portability of
any NLP system. However, it is not clear that maximum entropy models are suitable
for bootstrapping techniques. In chapter 6, this suitability is analysed and ways of
overcoming the difficulties they pose are discussed and tested.

This chapter has also provided a detailed overview of the maximum entropy frame-
work and how it can be applied to the formulation of named entity extraction tasks as
classification problems.



Chapter 3
Baseline systems

In this chapter, a new method for analysing target corpora is proposed. This method
offers some advantages over previous approaches in the literature such as more detailed
information on the performance of an NEE system.

This corpora analysis is then applied on new implementations of two known named

entity recognisers which will be used as baseline systems in later chapters.

3.1 Corpora analysis

The experience accumulated over the years on solving NLP tasks indicates that the
complexity of a particular application not only depends on how hard the task could
be, but also on the complexity posed by the corpus being targeted. Therefore, it is
not possible to determine whether an NEE system is obtaining an acceptable level of

performance if it is not known how intricate the target texts are.

A common way of getting round this problem is to use the performance of a (very) simple
baseline system as a minimum bound of effectiveness and against which other approaches
can be compared. Thus according to basis three (section 2.3), an NEE system based
on maximum entropy models should exhibit a performance that is significantly higher

than such a baseline system.

Palmer and Day (1997) conducted an effort to analyse the complexity of the MUC named
entity extraction task on several corpora in different languages. In this task there are
three types of phrases that report seven classes of named entities (Sundheim 1995):
TIMEX (dates and time expressions), NUMEX (money and percentage expressions)

and ENAMEX (names of people, locations and organisations).

62
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They found that almost all time and numerical expressions could be captured by a
small number of simple patterns, whereas ENAMEX phrases presented a much more
challenging job. However, they also discovered that TIMEX and NUMEX phrases
accounted for 20-30% of the named entities in the different corpora, thus NEE systems

had to be good at recognising names of people, locations and organisations in order to
perform well on the task.

A second important result of this analysis is that an NEE system cannot focus on one
ENAMEX class, because they significantly varied between languages. For example,
a system that optimises the recognition of location names would perform well on the
Chinese corpus under analysis, in which this category is a majority, but poorly on the

English MUC-6 corpus, in which this category only represents 14.5% of the ENAMEX
phrases.

But the most important result reported by Palmer and Day (1997) is that a small
number of ENAMEX entities occurred very frequently. In general, they observed that
10% of the named entities represented up to 50% of the ENAMEX phrases occurring
in the corpora. Thus, there is an important section of named entities that most likely

never occur in any amount of training data.

Following these findings, they conducted an experiment to determine how well a system
that memorises ENAMEX entities in the training data could identify named entities
in unseen text. The results indicate that the coverage of unseen named entities —as
more and more training data is provided— peaks rapidly, leaving a large percentage of

phrases uncovered.

Palmer and Day (1997) used these results to estimate a lower bound for the recall of a
baseline system which just memorised ENAMEX phrases and utilised simple patterns
for TIMEX and NUMEX phrases. They found that this number varied greatly between
languages —and possibly across domains— because they presented a different vocabulary
transfer rate, that corresponds to “the percentage of phrases [labelled as named entities]

occurring in the training corpus which also occurred in the test corpus”

Palmer and Day (1997) proposed an estimation for this lower bound of recall that
is given in equation 3.1, where NNuMEX, NTIMEX and NgnaMEXx are the proportion
of NUMEX, TIMEX and ENAMEX expressions in the text respectively — i.e. the
percentage of named entity phrases represented by each type; a is the percentage of
time and numerical expression that can be captured by simple patterns — which they
estimate at 0.95; and TgnaMEX is the vocabulary transfer rate of ENAMEX phrases.

((Nnumex + NTimex) * @) + (Nenamex * TENAMEX) (3.1)

Clearly, NNUMEX, NTIMEX, NENAMEX and TeNAMEX are corpus —or at least language—
dependent. As stated above, the first three parameters seem to be relatively constant
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across corpora, but the vocabulary transfer rate of ENAMEX phrases differs consider-
ably. For example, the Chinese corpus shows a very high rate of Tgnamex = 0.732,
whereas the French corpus presents a modest one with Tenamex = 0.236. Inter-
estingly, the English corpus turned out to be quite difficult: TenameEx = 0.212 and
NenaMex = 0.798, resulting in a lower bound of just 38.4%.

It would be quite interesting to establish whether these numbers are also found in the
MUC-7 corpus, which is the one used in this thesis. Some correlation can be expected as
both corpora are collections of news articles, though from different sources: the MUC-6

corpus collects Wall Street Journal articles whilst the MUC-7 corpus corresponds to
documents from the New York Times.

However, these ideas can be developed further to obtain an indicator of the portability
of an NEE system. In effect, Palmer and Day’s (1997) study suggests that it is very
difficult to provide an extractor with sufficient training examples to cover most of the
named entities that will be encountered in the target texts. Therefore if large amounts of
manually-labelled training examples are not available, an NEE system which performs
well only on seen phrases will not be able to recognise a significant portion of the named
entities present in the target texts.

Consequently, it is important that it could be determined whether a named entity
extractor is performing well on unseen named entities. The overall recall and precision,
or their F-score combination, does not give this information directly. It is necessary

then to obtain these indices separately on the basis of how familiar a named entity is.

In section 3.2, a new approach to analysing the complexity of an NEE task is proposed.
This approach allows both the estimation of task-independent lower bounds for the recall
and the precision of a named entity extractor, and the evaluation of its performance

individualised by the familiarity of the named entities to be extracted.

3.2 Analysis of the MUC-7 corpora

This section proposes a new approach to estimate the complexity that the target domain
of an NEE task poses. This complexity is reflected as lower bounds for the recall and
the precision that a baseline system that memorises the named entities seen during
training can obtain. This approach is then applied to the MUC-7 training, dryrun test

and formal test corpora.

Although this corpora analysis method is inspired by Palmer and Day’s (1997) work, it
can also be seen as an extension of the more recent analysis conducted by Whitelaw and
Patrick (2003), in which comparisons of different NEE systems were reported separately

for named entities that were seen and unseen during training.
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Table 3.1: Types of familiarity for named entities in test corpora.

Familiarity .
Description
type
Unseen Named entities whose text has not been seen in the training
data
Seen Named entities whose text has been seen in the training

data with the same class

Hard Named entities whose text has been seen in the training
but not with the decoding class

Named entities whose text has been seen in the training
Ambiguous | data with the same class, but has also been seen with other
class(es) or not marked as a named entity

In the approach proposed here decoding named entities, that is named entities in the
target texts, are classified into four categories according to the familiarity of their (case
insensitive) text and their decoding class. Table 3.1 presents the familiarity types for

decoding named entities considered in this approach.

Similarly, individual tokens that compose named entities —hereafter NE tokens— are
also classified into these categories. This follows the idea of raw output counting (Roth
and van den Bosch 2002, Daelemans and Osborne 2003), in which each token within a

named entity is considered as a whole named entity.

All systems evaluated in this thesis use a fine-grain tokenization scheme, in which most
tokens are sequences of symbols separated by spaces; however, there are a number of
exceptions: said.”, tonight's, London-based, etc. It is clear that these sequences need to be
divided because they might contain named entities, as the latter ones do for the MUC
task. Therefore, the above pieces of text are tokenized as: said . ", tonight 's and

London - based.

The token-level analysis provides a different insight into the performance of an NEE
system, as it considers partially identified named entities which are normally ignored
in the evaluations at phrase level. For instance, suppose that a system produces the

following wrong output.

<ORGANISATION>Western Co.</ORGANISATION> of <LOCATION>North Amer-
ica</LOCATION>.

This output is normally considered just wrong; however, the system has managed a par-

tial recognition of the organisation name. This is the kind of approximation that can
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Figure 3.1: Distribution of named entities in the MUC-7 test corpora according to their familiarity.

be captured by counting NE tokens. Moreover, this level of analysis focuses the evalu-
ation on the management of external evidence by the system, as the internal evidence
is reduced. For example, it would not be surprising than the phrase American Airlines
is always seen as an organisation name within a given corpus. However, the tokens
American and Airlines will probably be seen in other contexts as well and a named entity
recogniser will have problems in discriminating when these tokens must be extracted

from internal evidence only.

Figure 3.1 presents the distribution of named entities in the MUC-7 testing corpora
according to their familiarity with respect to the MUC-7 training corpus. In both
cases, most named entities are either seen or unseen, constituting around 90% of each
corpus. A further analysis of the other 10% suggests that many of them are actually
inconsistencies in the annotations, due to disagreement between annotators (e.g. earlier
yesterday tagged as time and as date) or mistakes (e.g. Miami tagged as a date, more
than once). This means that the number of actual hard and ambiguous named entities

would be even lower in a hypothetical noise-free corpus.

It can be expected that this distribution of named entities will be seen in other domains.
This is because an end-user will be interested in the best performance for the system.
This includes tuning the named entity extractor to the particular application by pro-
viding training data which is representative of the target documents. Therefore, many
of the named entities included for training will be seen during decoding. In addition,
it has been observed that human writers tend to avoid introducing ambiguity in text
(Gale et al. 1992, Mikheev, Moens and Grover 1999). Thus ambiguous or contradic-
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Figure 3.2: Distribution of NE tokens in the MUC-7 test corpora according to their familiarity.

tory named entities will rarely be encountered. On the other hand, training data is by
nature limited and target documents will contain named entities which have not been
seen during training.

In conclusion, good performance on seen and unseen named entities is a desirable
characteristic of NEE systems. This conclusion matches the observation that perfor-
mance on unseen words is a major factor in the success of an NEE system (Klein
et al. 2003, Whitelaw and Patrick 2003).

Figure 3.2 presents the distribution of NE tokens for the MUC-7 test corpora. These
results indicate that ambiguous NE tokens are the most frequent and they have to be
considered with the unseen and seen familiarities for obtaining good performance at
token level. This figure also suggests that an NEE system has to deal with a significant
amount of ambiguous tokens to obtain good performance at phrase level.

However, these numbers can be misleading because some named entities appear several
times in the text. For example, the named entity phrase ValuJet has 241 occurrences in
the training corpus: 239 times marked as an organisation name and two times marked
as not being part of a name. This named entity phrase is found 244 times in the
dryrun test corpus, 243 of them tagged as an organisation name. Thus 244 ambiguous
named entity occurrences are being counted just for this phrase. This realisation has
encouraged an analysis of named entity phrases —i.e. without considering repetitions—

in the corpora, whose results are shown in figure 3.3.
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Figure 3.3: Distribution of named entity phrases in the MUC-7 corpora according to their familiarity.

Obviously, in the training corpus there are only seen and ambiguous entities. Only five
ambiguous entities have different classes (e.g. Clinton is seen once as a location name
and 51 times as a person name) and the rest are —beside errors and inconsistencies—
one-token named entities which are also frequent common words (e.g. china, march, may,

turkey, American, brown, etc.).

Although only 66 out of 2,324 named entities are ambiguous, they exhibit a high repe-
tition rate (R,). Each ambiguous named entity appears on average R, = 10.44 times in
the corpus!, whereas the seen named entities appear just R, = 2.57 times on average.

Figures for the dryrun test corpus are different now: though unseen and seen named
entities still count for most of the corpus, unseen named entities are an absolute majority
constituting about 65%. The amount of unseen named entities is even higher for the
formal test corpus, but this could be explained by the slight change of domain introduced

in this collection of articles.

Some named entities present multiple familiarity types because they appear in the
corpus with different classes. For example, the text 8 p.m. is found in the dryrun test
documents with the class time and the class date; but in the training corpus this text
was seen tagged only as a time named entity. Thus, this phrase is considered seen
when the decoding class is time, but hard when the decoding class is date. In general,
most multiple familiarity type named entities are introduced by inconsistencies in the

annotation within the corpus, as this example has been.

1This rate does not consider the cases in which the word is not part of a name. Including these
occurrences the frequency ratio would rise to 23.56.
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Figure 3.4: Distribution of NE tokens as named entity phrases in the MUC-7 corpora according to their
familiarity.

Interestingly, the repetition rate of ambiguous named entity phrases in the dryrun test
corpus is consistent with the rate found in the training corpus. That is to say that
though only a fraction of named entities are ambiguous, they are encountered much more
frequently than seen entities (3:1 approximately). Remembering that many ambiguous
named entities are mainly introduced by noise in the annotations, it could be suggested
that highly frequent named entities are somehow attracting —if not generating— lapse
of concentration from the annotators. Taking care of these named entities during anno-
tation might result in a significant reduction in the noise in training corpora. Although
the trend of noise among seen named entities cannot be automatically analysed, they
seem to be much less frequent (R, = 2.6 approximately) and mis-annotations in this

category result in less damaging noise.

As mentioned above, with the change in domain introduced by the MUC-7 formal test
corpus, the number of unseen named entities rises to more than 80% of the cases, but the
repetition rate follows the same pattern, that is unseen named entities are less frequent
than seen ones, which in turn are less frequent than ambiguous named entities (2:5:16

approximately).

Although unseen events are repeated much less, their absolute numbers make them
important for an NEE system in both test corpora. This is again consistent with the
findings in Klein et al. (2003) that performance on unseen words is what makes the

difference between current NEE approaches.

Figure 3.4 presents the distribution of NE tokens when they are considered as named
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Table 3.2: Distribution of named entities in the MUC-7 test corpora according to their phrase type (TIMEX,
NUMEX & ENAMEX) and familiarity type (UNSEEN, SEEN, HARD & AMBIGUOUS). Figures are separated
for named entity phrases (NEP) and named entity occurrences (NEO).

MUC-7 dryrun test corpus

UNSEEN SEEN HARD AMBIGUOUS TOTAL
NEP NEO NEP NEO NEP NEO NEP NEO NEP NEO
TIMEX 439 499 190 791 10 11 10 59 649 | 1,360
NUMEX 62 71 25 37 0 0 0 0 87 108
ENAMEX | 1,087 | 1,657 466 | 2,536 34 74 27 499 1,614 | 4766
[ TOTAL | 15881 2227 681 3364]] 44] 8 [ 37] 558 | 2,350 | 6,234 |

MUC-7 formal test corpus

UNSEEN SEEN HARD AMBIGUOUS TOTAL
NEP NEO NEP NEO NEP NEO NEP NEO NEP NEO
TIMEX 635 812 154 602 14 24 10 41 813 | 1479
NUMEX 213 262 26 60 3 4 0 0 242 326
ENAMEX | 1,066 | 2,400 178 | 1,291 15 41 14 335 1273 | 4,067
[ TOTAL] 1914 3474 358 [ 1953 ][ 32] 69 ] 24 376 [ 2328 5872]

entity phrases — i.e. without considering different occurrences. It can be observed that
the proportions between familiarity types change. Although unseen tokens are still a
majority, ambiguous and hard NE tokens are not tiny fractions of the corpora now but
represent around a third of all NE tokens. Interestingly, the proportion of seen NE
tokens is relatively the same as that for seen named entities with 15-25%.

Despite this change, the trend of the repetition rate remains: unseen and hard tokens
are less frequent than seen tokens, which in turn are less frequent than ambiguous ones,

though the differences are also reduced slightly (1:3:5 approximately).

All this information collected for the MUC-7 corpora allows an estimate of the per-
formance of a baseline system similar to the one defined by Palmer and Day (1997).
Table 3.2 presents the distribution of named entities at phrase level on the MUC-7 test
corpora, in which named entities have also been classified according to their familiar-
ity with respect to the MUC-7 training corpus, with and without considering different
occurrences. There are actually 2,326 named entity phrases in the dryrun test corpus,
which form 2,350 (NE phrase, NE class) pairs that occur 6,234 times. In the formal test
corpus, there are 2,323 named entity phrases which form 2,328 (NE phrase, NE class)

pairs that occur 5,872 times in the documents.

In terms of Palmer and Day’s (1997) estimations, ENAMEX phrases represent 76.45%
of the total named entities in the dryrun test corpus, and the remaining 23.55% corre-
sponds to TIMEX and NUMEX phrases. Palmer and Day’s (1997) vocabulary transfer
rate can be obtained by adding the percentage of seen, hard and ambiguous ENAMEX
named entities of table 3.2. Thus, the vocabulary transfer rate for the dryrun test cor-
pus is 65.23%. Note that the proportion of phrases by type in this corpus follows the
observations of Palmer and Day (1997). However, the vocabulary transfer rate is much

higher here than in the MUC-6 corpus studied by Palmer and Day (1997), which was
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estimated in 21.2% only. This confirms that some corpora pose more difficulties than
others, even for the same extraction task and in the same language.

Similarly, it can be established that in the formal test corpus, 69.26% of the named
entities correspond to ENAMEX phrases and 30.74% to TIMEX and NUMEX phrases,
and that it presents an ENAMEX vocabulary transfer rate of 40.99%. Again, the

proportion of named entities by type corresponds with the results of Palmer and Day
(1997), but the transfer rate is higher.

With these figures, it is possible to determine lower bounds for a baseline system as
defined in equation 3.1 for both MUC-7 test corpora:

0.2355 % 0.95 4+ 0.7645 % 0.6523 = 72.24% (dryrun)
0.3074 % 0.95 + 0.6926 x 0.4099 = 57.59% (formal)

It must be noticed that these are bounds for recall only and that it assumes that 95%
of TIMEX and NUMEX expression can be captured by using simple regular patterns.
However, this approach to measuring complexity is for the extraction task as defined in
the MUC conferences only and it could be argued that assuming 95% recall on TIMEX
and NUMEX expression is overoptimistic and even unfair to systems that are committed

to using as little human intervention as possible.

Fortunately, the information provided in table 3.2 permits better estimates for a hy-
pothetical system that only memorises the named entities which it sees in the training
documents. Such a baseline system would extract all seen named entities correctly but,
supposing it would abstain from classifying ambiguous named entities, it would get

nevertheless hard named entities wrong. Thus, recall can be estimated as:

2—;3% = 53.96% (dryrun)
;—;%;’—2 = 33.26% (formal)

On the other hand, precision is limited by the portion of the named entities identified

in the decoding text which are classified with the correct class, which corresponds to:

rgé%g = 97.54% (dryrun)
,953 —
1_,;5—‘;*":@ = 96.59% (formal)

A lower bound for the F-score can also be given by applying formula 1.1 with parameter
B = 1: 69.48% for the dryrun test corpus and 49.48% for the formal test corpora
respectively. These bounds are quite high for such a simple baseline technique and
improving on this performance will probably present a difficult challenge. The main
room for improvement seems to be the low recall that the hypothetical system would
obtain. However, as explained in previous chapters, increasing recall has always been
followed by a drop in precision. The challenge then will be to increase recall in a greater

proportion than the corresponding fall in precision.
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Although a system that just memorises named entities has been used as reference (for
example in the CoONLL conferences, in which all participant systems outperformed such

a baseline system), it could be argued that the named entity extraction technology is
too developed now to consider such naive methods.

A more realistic approach would be to compare the performance of a new NEE system

with existing systems that are known to perform well. Unfortunately, it is not easy to
find good NEE systems freely available.

One alternative would be to use domains for which results are known, but these are
limited to very few domains. Moreover, it is difficult to compare results from a new
NEE system with previous works because even if the systems are using the same corpora
—and therefore the same domain— the pre-processing tools may vary and errors from
this stage do affect the overall performance of these systems. In addition, the exact

training resources which each system utilises are very difficult to replicate.

In conclusion, the best way of comparing new results against the state-of-the-art of
the technology is to implement one or more known systems and use them as baseline
systems. In this way, it can be ensured that both training data and early NLP steps
are shared and the same.

3.3 Baseline systems

Following the discussion in the previous section, two known good statistical approaches
have been selected and implemented as baseline systems. There are two additional

reasons for implementing these baseline systems:

> the performance obtained by the approaches proposed in this thesis will be individ-
ualised by familiarity type. This information cannot be obtained from published

results as they are made only in terms of overall recall and precision

> they can be used to confirm the basis that statistical machine learning methods

are successful for named entity extraction tasks

In the following sections, these systems are discussed in more detail.

3.3.1 Nymble

The first baseline system implemented is a version of Nymble (Bikel et al. 1997). This

approach has been chosen because:
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Figure 3.5: The conceptual Hidden Markov Model used in Nymble. Adapted from Bikel et al. (1997).

1. it uses a 100% learning approach (with no external lexical resources)

2. 1t is extremely simple
3. its performance is very good

4. the approach seems to be well explained in the literature

Nymble uses an ergodic Hidden Markov Model (Rabiner 1989) with eight regions —also
called name-classes—, one for every type of MUC named entity to recognise (Chinchor
1998a) plus a default not-a-name region for words which are not part of any entity name
(figure 3.5). Consequently, it identifies person names, organisation names, location
names, dates, time expressions, money expressions and percent expressions. In addition
to these, the model includes two special states which represent the beginnings and ends

of sentences.

Within each region, Nymble uses a statistical bigram language model in which every
state can emit one word. Therefore, each name-class has |V| states and |V|? transitions,
where V is the vocabulary recognised by the system. Unlike normal Hidden Markov

Models, the transition of states and emission of symbols follows a three-step procedure:

1. Select a name-class NC conditioned on the previous name-class and the previous
word, that is

Pr(NC|NC_1,w-1) (3.2)

2. Generate the first word within the current NC conditioned on the current and
previous name-classes, that is
Pr(<w,f> | NC, NC_1) (3.3)
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Table 3.3: Orthographic features as used in Nymble plus an example and intuition behind them. Adapted
from Bikel et al. (1997).

[ Word-feature

| Example text | Intuition
twoDigitNum 98 two-digit year
fourDigitNum 2002 four-digit year
containsDigitAndAlpha 12534-W code
containsDigit AndDash 20-01-02 date
containsDigit AndSlash 1/20/2002 date
containsDigitAndComma 5,000.00 monetary amount
containsDigit AndPeriod 1.00 monetary amount, percentage
otherNum 283845 other number
allCaps IBM organisation
capPeriod L. person name initial
first Word less useful capitalisation
initCap John possible name
lowerCase is possible not a name
other , all other words

. Generate all subsequent words inside the current name class conditioned on the

previous word, that is

Pr(<w,f>|<w,f>_;, NC) (3.4)

As can be seen from above, a word in Nymble is actually a pair: the lexeme and an
orthographic feature, which are denoted <w,f>. Nymble uses fourteen disjoint ortho-
graphic features (showed in table 3.3) which describe some lexical characteristics of
tokens that should help the model to recognise names. Only one feature is assigned to
each word, so there is a precedence scheme among the features (which can be seen in
this list). Thus a word which begins with a capital letter but is starting a sentence will
have associated the firstWord feature rather than the initCap feature. This precedence is
based on the intuitive fact that a capitalised word at the beginning of a sentence will

provide less evidence for being a name than in the middle of a sentence.

Nymble also introduces two magical words: <+begin+,other> to compute the likelihood
for a word being the first word of its class-name, and <-+end+,other> to compute the

probability for any word being the final word of its class-name.

As with any n-gram language model, it is unrealistic to expect that Nymble will be
provided with all possible bigrams from the training data. This is overcome by collecting
statistics for unknown words by manipulating the system’s vocabulary and backing off to

models based on incomplete information. Table 3.4 summarises the backing-off strategy

as used by Nymble.
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Table 3.4: Nymble's back-off/smoothing scheme. Adapted from Bikel et al. (1997).

‘ Name-class I First words | Subsequent words |
Pr(NCINC-1,w_y) Pr(<w, f >firet [INC,NC_,) Pri<w,f>|<w, f>_1,NC)
Pr(NC|NC_,) Pr(< w, f > | < +begin+,other, NC) Pr(< w,:f > |NC)
Pr(NC) Pr(<w,f>|NC) Pr(w|NC) - Pr(f|[NC)
1 . 1 1
number of name-classes Pr(w|NC) - Pr(f|NC) VI " number of word features

1, 1

V1 number of word features

In addition, Nymble uses the back-off models for smoothing the top-level model by

assigning the appropriate weight to each model and its immediate back-off model.

Appendix A presents a detailed analysis of Nymble and explains how it has been im-
plemented. Because this version includes only the main features of the original system
and has not been tuned to any specific task, it has been named siNymble (simple im-
plementation of Nymble). This appendix also includes a walk-through example with
siNymble.

3.3.2 MENE

The other baseline named entity extractor chosen is the MENE system (Borthwick
1999). This system utilises maximum entropy statistical modelling (Berger et al. 1996,
Della Pietra et al. 1997, Ratnaparkhi 1998) to capture relevant features in free text,
which are used later to predict occurrences of named entities. MENE was one of the
systems which participated in the latest MUC conference (MUC 1998) with good results.

The training information provided to MENE is a pool of features of different nature:

b lexical features (i.e. the lexemes) of surrounding words

> orthographic features, such as the type of lexeme (number, word, symbol) and

capitalisation properties

> section features, which discriminate between sections in the document (e.g. head-

lines, text)

> dictionary features, which indicate whether a lexeme is contained in external dic-

tionaries of first names, corporate names, etc.
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> reference resolution features, which relate different —including partial— occur-
rences of a sequence of lexemes

Thus, each token in a training document has associated —at least some of— these
features and a tag which indicates its named entity feature. If ¢ is one of the named
entity classes to identify, then any token could be associated with the tags c_ start,
c_continue, c_end, c_unique or not_ne indicating that the token is starting, contin-
uing or ending a named entity of class ¢, the token constitutes a one-word named entity
of class c or the token is not linked to any named entity. According to the MUC-7
definition of the named entity task (Chinchor 1998a), 29 tags are used to represent the

options for the seven target named entity classes and the not-a-named-entity case.

During decoding, MENE assigns each token with the probabilities of being associated
with one of these 29 tags. Taking the highest probability could result in invalid sequences
of tags. Therefore, Borthwick (1999) uses a Viterbi search to avoid incompatible as-
signments and obtaining instead the most probable valid sequence of tags.

The version of MENE presented here, named LexMENE, uses only the first three types
of features, that is lexical features, orthographic features and section features. Borth-
wick (1999) found that lexical and orthographic features, as well as the coreference
resolution features, make the most important contributions to the performance of the
approach. The other kinds of features, namely section and dictionary features, did not
change the accuracy of the system significantly.

MENE’s orthographic features are similar to Nymble’s, presented in table 3.3. There

are some differences, which can be summarised as

> the set of features is slightly different:

> the feature onlyDigits is added for numbers such as 4, 321, 2000, etc.

b the feature internalCapitalisation is added for tokens like EasyJet, McCarthy, etc.

> the feature otherNum is replaced by the feature validNumber

> features containsDigitAndDash, containsDigitAndSlash, capPeriod, firstWord and

other are not used
> MENE allows more than one orthographic feature to be fired for a given token
Consequently, LexMENE follows these features as well as the approach for unknown

words used by MENE: in both phases of the algorithm —namely training and decoding—
words that appear less than three times in the corpora are replaced by the token UNK.

The differences between MENE and LexMENE can be summarised with the following

points:
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Figure 3.6: A schematic view of the the Viterbi search for a given named entity class c.

> MENE’s dictionary features are not used by LexMENE

> the highly desirable coreference features of MENE are not present in LexMENE;:
this is because a reasonably good coreference resolution system is not cheap and
it would require a considerable investment of time and resources

> Borthwick (1999) used the Maximum Entropy Modelling Toolkit (Ristad 1998)
for his system, whereas LexMENE uses the opennlp.maxent package (Baldrige
and Bierner 2001). The former is implemented in C++ and the latter is imple-
mented in Java. There should be no significant impact from this variation, though
the Java package implements the Generalised Scaling Algorithm (GIS) (Darroch
and Ratcliff 1972, see algorithm 2.2) that is a special case of Improved Iterative
Scaling (Della Pietra et al. 1997, see algorithm 2.3), which is also the algorithm
implemented in the C++ toolkit used by MENE

Borthwick (1999) did an evaluation of MENE using only lexical, orthographic and sec-
tion features, obtaining F-score 91.71% for the dryrun test and F-score 83.38% for the
formal test corpora respectively. However, these figures were obtained with 350 training
documents (321,000 tokens) of which LexMENE only has a hundred (which are trans-
lated into 85,837 tokens). Consequently, significantly lower scores can be expected for
LexMENE.

As mentioned before, Borthwick (1999) identified the need for a Viterbi search among
the probabilities for named entity tags to avoid invalid sequences of named entity tags.
This search follows the model presented in figure 3.6 and determines the best sequence
of tags for each sentence of a document. Bubbles represent named entity tags and the
special start-of-sentence (SOS) and end-of-sentence (EOS) states. Edges represent valid
transitions with uniform probability from the source state. The probabilities for each

named entity tag are used as emission probabilities.
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Appendix B presents a walk-through example for LexMENE to help in putting all these
procedures into context.

3.4 Evaluation

In this section, both siNymble and LexMENE are evaluated and their performance is

compared with the results reported by their developers. All experiments use the Corpora
released for the MUC-7 conference.

Although some comparison in terms of recall and precision is included in this section for
the baseline systems, comparisons will normally be made in terms of their combining
F-score throughout this thesis, so that simple, but enlightening figures for each type of
named entity can be obtained.

3.4.1 The scoring program

Unlike Bikel et al. (1997) and Borthwick (1999), who utilised the MUC scoring program
(Douthat 1998), an adaptation of the scoring program from the CoNLL conferences is
used in this thesis. This is an important difference because the CoNLL scoring software
is less generous than the MUC scorer: the latter allows alternative classes and alternative
strings. Thus some named entities that are considered wrong by the scorer used here
would be counted as correct by the MUC software. For example, the named entity
Kennedy Space Center can be classified as both an organisation or a location name under
the MUC perspective, but only the category organisation is accepted by the CoNLL

scorer.

The selection of the CoNLL scorer is based entirely on practical reasons. This scorer,
being a script in Perl rather than a program of several modules in C as the MUC
scorer, is much easier to modify and is platform independent. Consequently, the CoNLL
scorer script was adapted so that it could provide the performance of an NEE system
detailed by the different familiarity type of the named entities, in addition to the existing

information by class.

3.4.2 Results for siNymble

SiNymble has been trained on the MUC-7 training corpus. Three versions of siNymble
have been tested resulting from slightly different interpretations of the description given
in Bikel et al. (1997).
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Figure 3.7: Experiments with three versions of siNymble. Corpora: MUC-7 training corpus and MUC-7
dryrun test corpus.

Version A follows the precedence of orthographic features —binary lexical features in
MENE’s terms— strictly as presented in table 3.3. Therefore, tokens with feature
initCap, lowerCase or other are changed to the feature firstWord when they are starting a

sentence.

Version B only makes this change when the token starting the sentence fires the or-
thographic feature initCap. In addition and for this purpose only, a sentence is not
considered started until a token which does not fire the feature other is found. For
example, in the text (Figure 1... the first token of the sentence is Figure —rather than
the parenthesis— and its orthographic feature will be changed from initCap to firstWord.

Finally a version C of the approach has also been evaluated. This version arises from
the way in which siNymble’s implementation manages words and tokens. SiNymble
separates multi-token words so that named entities occurring within this type of word
can be identified. Consider the word Atlanta-based, which naturally contains the location
Atlanta. The implementation used here presents these words as three different tokens:
Atlanta - based; consequently they will fire the orthographic features initCap, other and
lowerCase respectively. In version C, this does not happen and the orthographic feature
fired by the word as a whole is given to each token, resulting in the features initCap,

initCap and initCap being assigned instead.

Figure 3.7 presents the performance scored by each version. Although there are no sig-
nificant differences, version B obtained the best (overall) results, which is not surprising

as the modification intuitively makes sense.
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Figure 3.8: Experiments with siNymble (version B). Corpora: MUC-7 training corpus and MUC-7 formal
test corpus.

This performance is inferior to that reported by Nymble’s creators. However, much of
the difference is due to the change in the scorer program used. A similar version of
siNymble-B gets an F-score over 85% with the MUC scorer, which is consistent with
the results presented in Bikel et al. (1997) for the same amount of training material.

Now siNymble can be evaluated on the MUC-7 formal test corpus by fixing the version
to B. Figure 3.8 presents the performance of siNymble version B on this test corpus. It
can be seen that recall is always much worse than the precision obtained by the system,
and that the overall performance is much worse on this corpus than on the dryrun test

with a drop in F-score of about 15%.

The change in domain introduced by the formal test corpus does not degrade the per-
formance of siNymble much on hard and seen named entities —about 3% F-score—
but a significant decrease is observed for unseen and ambiguous named entities, with
F-scores 12% and 10% lower respectively. Because unseen named entities are far more
numerous than ambiguous ones, they are the main factor in the poor performance of

this baseline system for this corpus.

Analysing the mistakes that siNymble makes, the same conclusion reported by Bikel,
Schwartz and Weischedel (1999) can be reached. Consider the following sentence

The Turkish company, Birgen Air, was using the plane ...

SiNymble recognised Birgen Air as a location rather than an organisation as it is marked
in the corresponding key document. The reason is that the word Birgen is unknown and
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Figure 3.9: Experiments with two versions of LexMENE. Corpora: MUC-7 training corpus and MUC-7
dryrun test corpus.

the word Air has been seen within many airport names, which are normally tagged as
locations. The problem seems to be that because siNymble uses bigrams for modelling
the language, it is incapable of detecting the context word company —as the immediate
previous token is a comma— which suggests that the entity is actually an organisation.
Therefore, one way of improving this kind of approach would be to allow larger contexts
to be considered.

3.4.3 Results for LexMENE

LexMENE has also been trained on the MUC-7 training corpus for this evaluation.
As with siNymble, there is more than one possible implementation due to different

interpretations of Borthwick’s (1999) intentions.

Version A strictly follows the description presented in 3.3.2. Nonetheless, MENE does
not use the firstWord feature to distinguish the possibly irrelevant capitalisation of a
token starting a sentence, “believing that MENE could make these judgements from the
surrounding lexical context” (Borthwick 1999). However, with version A there is little
lexical context for determining that a token is starting a sentence, namely the absence
of features for surrounding tokens. This leads to version B, in which lexical features
explicitly indicate the non-existence of previous —or following— words by taken the

value NONE.

Figure 3.9 presents the performance of these two versions of LexMENE according to
the familiarity of the named entities in the MUC-7 dryrun test corpus. Version B
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Figure 3.10: Experiments with LexMENE (version B). Corpora: MUC-7 training corpus and MUC-7 formal
test corpus.

outperforms version A in every category (except on hard named entities, not shown in

this figure, in which they get the same results).

Once more, these figures are lower than the results reported by Borthwick (1999). Again
this difference can be explained by the change in the scorer program and the amount
of extra training material used in the original experiments. This confirms the idea
that comparing NEE systems is a tricky task unless exactly the same resources and

pre-processing are used.

Figure 3.10 presents the evaluation of LexMENE (version B) on the MUC-7 formal test
corpus. Interestingly LexMENE shows a similar behaviour to siNymble, that is a drop
in performance of about 15% with respect to the results on the dryrun test documents.
However, it is even more evident in this figure that recall is much worse than precision

and that it is this variable that is negatively affecting the F-score line.

Again the change in domain on the formal test corpus does not degrade results on hard
named entities, with a drop of less than 1% of the F-score. However, the performance
on seen named entities shows a more important drop than in siNymble of about 5%.
Nonetheless, the most significant decrease is observed for unseen and ambiguous named
entities too, with F-scores 12% and 7% lower respectively. Therefore, unseen named
entities are again responsible for most of the decline in performance of this system for

the formal test corpus.
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3.4.4 Comparison of the baseline approaches

The above experiments on the MUC-7 formal test corpus indicate that both baseline
systems perform similarly overall. However, this is the result of compensatory abilities:
siNymble is better at recognising seen named entities and LexMENE is better on am-
biguous named entities. In addition, neither of the systems seems to be particularly
good at recognising unseen name entities, though siNymble obtains a higher F-score.
LexMENE exhibits diparatedisparate performance on this type of named entity: it gets

relatively good precision, much higher than siNymble, but very low recall.

Moreover, these experiments have shown that both siNymble and LexMENE are nega-
tively affected by the introduction of unseen named entities in the target corpus. Their
performance drops around 15% F-score when moved from the MUC-7 dryrun test cor-
pus, where 36% of the named entities are unseen, to the MUC-7 formal test corpus, in
which 59% of the named entities are unseen.

Nonetheless, these results confirm that statistical approaches, such as the hidden Markov
model used by siNymble and the maximum entropy model —in combination with a
Viterbi algorithm for the final labelling— used by LexMENE, are powerful tools for
predicting named entities in free text. Both systems largely outperform the hypothetical
baseline system: 7-8% higher in the dryrun test and 10-12% higher in the formal test

respectively.

However, LexMENE has an important advantage over siNymble. In section 3.4.2, it was
suggested that siNymble’s bigrams can fail in capturing complex names and contexts
and, consequently, broader patterns might help it to recognise more unseen named
entities. But adding this information might not be trivial due to the generative nature

of the approach and the sparseness of the training data.

In fact, Bikel et al. (1997) recognise the running time speed of the system as a key
factor in the success of their approach, because it provided “a rapid code-compile-train-
test cycle” that allowed them to perform “numerous experiments” that were “key to
improving performance”. Adding new information to siNymble would require a similar
process of searching the right model for the task, which has evident disadvantages for
the portability of the system.

It would be much easier to extend LexMENE by making use of the ability of maximum
entropy models to manage information from different sources which might even be
overlapping or irrelevant, making this approach an ideal candidate for evaluating the
contribution of adding more linguistically oriented knowledge as well as the introduction
of other machine learning techniques. These ideas validate the third basis of this thesis

(see section 2.3).
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3.5 Summary and discussion

In this chapter a new approach for estimating the complexity of a named entity ex-
traction task has been proposed. This approach classifies named entities according
to their familiarity into seen, unseen, hard and ambiguous. Knowing the amount of
each of these types of named entities occurring in a given corpus allows the estimation
of lower bounds for the recall and the precision of a baseline system that memorises
named entities during training. This classification is also useful to obtain more detailed
information on the performance of an NEE system.

Two simple implementations of statistical approaches to named entity extraction were
also presented and evaluated following the familiarity classification of named entities.
They have shown that lexical and orthographic features provide useful information for
solving the MUC extraction task as they broadly outperform the hypothetical baseline
system on both test corpora.

Finally, a comparison of both baseline systems has determined that they perform sim-
jlarly overall but that the approach based on the maximum entropy framework has
advantages related to the portability of the system.



Chapter 4

More linguistically informed MENE

In this chapter a system named MOLI MENE (More Linguistically Informed MENE)
is presented. This system is an extension of the LexMENE system discussed in chapter
3, which uses the lexical characteristics that LexMENE utilises, but also includes in-
formation drawn from a general lexical reference resource, namely WordNet®  and the

syntactic structure of phrases.

4.1 MOLI MENE

Several NEE systems have shown that maximum entropy models are a good choice
for identifying named entities: the top three systems for English and the top two sys-
tems for German in the latest CoNLL used the maximum entropy framework (Tjong
Kim Sang and De Meulder 2003). Therefore, it makes sense to extend LexMENE —one
of the baseline systems— by introducing external lexical resources and syntactic infor-
mation that might provide new, useful features to the maximum entropy model for the
extraction task. This extension will be referred to as the “More Linguistically Informed

Maximum Entropy for Named Entities”, or MOLI MENE for short.

As a starting point, it is reasonable that MOLI MENE —being an extension of LexMENE—
would include the same of features of this later system as its basic features, that is lexical
features, orthographic features and the zone feature. However, it has been argued that
orthographic features are domain-dependent (Mikheev, Grover and Moens 1999), an

argument that can be extended to the zone feature.

But it could be argued that this is not exactly the case. It is true that orthographic
features —such as those presented in table 3.3— help LexMENE to identify named

85
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Table 4.1: The set of orthographic features in MOLI MENE. It also shows which of these features also exist
in LexMENE.

Description MENE | Example Text Intuition
2-digit number yes 96, 01 two-digit years
4-digit number yes 1999, 2001 four-digit years
only digits yes 5, 502, 1999 numbers
letters & numbers yes Fl14 codes
number with comma yes 2,000 money
number with period yes 4.5, 45.21 money; percentage
number with dash no 01-03-96 dates
number with slash no 1/4,01/03/96 fractions, dates
valid number yes -3.5, .12, 30 any number
all capitals yes IBM organisations
initial capital yes Jones, Intel part of a name
mixed capitalisation yes AirJetter organisations
uncapitalised yes the, cat, is not part of a name
symbol no %, 3, not a word
mixed characters no s, 'nt contractions
abbreviation no St., Mr., Sen. abbreviations

entities for the task defined in the MUC competitions. However, they might also help
with recognising other types of named entities which present similar patterns. For
example, a feature that indicates that a token is composed of numbers separated by
dashes would be useful to identify dates in the MUC extraction tasks, but this would
also help with recognising product codes in another application. Moreover, if no dates
or product codes are part of the task, orthographic features for identifying these types of

tokens might help in discriminating text which is unlikely to be relevant for extraction.

Therefore, if a set of orthographic features is sufficient to capture useful internal evidence
(McDonald 1996, discussed in section 2.1) of target named entities —or non-named
entities— it would be useful for many real-world domains. The same reasoning is valid
for the zone feature which —not restricted to a fixed set of sections in the domain’s
documents— can alert the NEE extractor of changes in the writing style, i.e. external

evidence in McDonald’s (1996) terms.

Considering these arguments, both orthographic features and the zone feature, in ad-
dition to the lexical features, are considered the basic, lexically-oriented features for
MOLI MENE. However, the set of orthographic features has been extended to provide
MOLI MENE with more generic information on the form of the tokens in an attempt
at increasing its portability. Table 4.1 summarises the orthographic features employed

in MOLI MENE and which of them are also utilised in LexMENE.



CHAPTER 4. MORE LINGUISTICALLY INFORMED MENE 87

The second modification in the new approach is related to the sizes of the context
windows used by the basic features. Both baseline systems, namely siNymble and
LexMENE, use a context window that is fixed in size. This restriction does not apply
in MOLI MENE, and context windows of different sizes could be used in different
applications to collect features for the maximum entropy model. Moreover, each type of
feature that MOLI MENE utilises —basic or not— can define its own context window
independently!. It is even possible for every type of feature to consider contextual

information from windows of different lengths on the left and on the right of a focus

token.

As a consequence of this flexibility of MOLI MENE, it is necessary to determine empir-
ically a good set of values for these parameters for a given extraction task. This search
could be done following traditional approaches for parameter selection, which generally
involve running the system repeatedly on a training subset with different parameters
and systematically evaluating their contribution on another subset of examples or using

cross-validation, leave-one-out, etc. Section 4.2 presents an example of this process for
the MUC-7 task.

4.2 Parameter setting

Although it is not possible to guarantee that a given set of parameters that work well
for a particular set of features will work as well with other sets of features, it is un-
likely that differences in performance will be substantial. In addition, the number of
parameters that need to be set for each experiment is considerable and trying even some

combinations can be very time consuming.

Therefore a set of initial experiments are conducted to determine a good set of parame-
ters which will be kept fixed in all later experiments. This might prevent MOLI MENE
from getting the best possible results, but it will be possible to outline the effect of

different sets of features under the same parameters.

In each experiment, MOLI MENE trains its maximum entropy model with all features
generated for a given set of parameters for all training examples in the MUC-7 training
corpus. The evaluation of each model is conducted on all examples of the MUC-7
dryrun and formal test corpora. Results are reported separately for unseen, seen and

ambiguous named entities, as well as the overall performance on all familiarity types.

1 This flexibility applies to features that make use of a context window.
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The experiments reported in this section aim to assess a number of options used by
the two baseline NEE systems, in order to determine a set of parameters for MOLI

MENE that yields good performance on the MUC-7 extraction task. More specifically,
the experiments should answer:

1. which of the two different alternatives for using orthographic features provide

more accurate predictions — i.e. considering all the features fired or just the one

with higher precedence

2. which of the two different annotation formats allows the system to obtain better
performance — i.e the BIO or the FMLU notation

3. how appropriate the sizes of the context windows used by the baseline systems

are

4. how many iterations of the GIS algorithm utilised for building MOLI MENE’s

maximum entropy model are required

For the first experiment, MOLI MENE includes the same features as LexMENE, that is,
for each focus token to be classified it considers the section of the document in which the
token is found (document zone feature), the strings —or lexical features— of the tokens
occurring within a fixed-length context window (hereafter the lexical window) and all
—i.e. without precedence— orthographic features of table 4.1 fired by tokens within a
fixed-length context window (hereafter the orthographic window). This configuration
of MOLI MENE will be referred to as version 1 (V1).

The experiment starts by evaluating the sizes of the context windows used in the baseline
systems. On the one hand, siNymble uses a lexical window of size [1,0], that is the
focus token and one token on the left. On the other hand, LexMENE considers a lexical

window of size [2,2], that is, a window of five tokens: the focus token and two tokens

on either side.

Thus, it makes sense to evaluate MOLI MENE V1 with lexical window sizes [1,0}, [1,1},
[2,1] and [2,2], as a transition from siNymble’s to LexMENE’s parameters. Figure 4.1

presents the results obtained in these initial experiments.

The best performance is achieved with parameters [1,1], which obtain a significant
improvement on seen named entities — though it shows a negative effect on ambiguous
named entities— with respect to the size used by siNymble. This is an interesting

result which indicates that although siNymble makes mistakes because of its lack of
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Figure 4.1: Experiments with MOLI MENE V1: size of the lexical window changing from [1,0] to [2,2] with
data represented in BIO and FMLU notations. Other parameters are set as in LexMENE. Corpora: MUC-7
training corpus and MUC-7 dryrun test corpus.

context information (see section 3.4.2), adding lexical features from a larger context
window might not provide the information needed for increasing its performance, unless

significant changes are introduced into its hidden Markov model.

Named Entity recognition can be seen —and modelled— as a chunking task (Tjong
Kim Sang 2002b, Tjong Kim Sang and De Meulder 2003). Chunking tasks can have
many representations which are known to affect the performance of classifiers. In par-
ticular, siNymble utilises a representation called BIO notation (sometimes called BIO1
to differentiate it from other variations) in which words contained within a chunk are
tagged 'I’ and words outside any chunk are tagged ’O’. When there are two consecutive
chunks of the same class, the first word of the second chunk is tagged 'B’. The following

is an example text in BIO notation.

Mr./O Jason/I-person Jones/I-person is/O currently/O in/O London/I-location England /B-
location until/O June/I-date ,/I-date 25/I-date ./O

In contrast, LexMENE employs the FMLU notation, which is a more fine-grain repre-
sentation in which a word is labelled 'F’ if it is the first word of a multi-word chunk,
'M’ if it is a word in the middle of a multi-word chunk, 'L’ if it is the last word of a

multi-word chunk and U’ if it corresponds to a one-word chunk. The following is the

example text in FMLU notation.
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Mr./O Jason /F-person Jones/L-person is/O currently/O in/O London/U-location England/U-
location until/O June/F-date ,/M-date 25/L-date ./O

Figure 4.1 reveals that the FMLU notation consistently yields better results than the
BIO notation.

Consequently, all future experiments will use FMLU notation and a lexical window of

size one token to the left and one token to the right.

It would be interesting to evaluate the reliability of the decisions taken regarding the
setting of MOLI MENE’s parameters based only on experiments with the MUC-7 dryrun
test corpus. This would be the normal situation in a real-world application. However,
a small set of the target decoding documents, namely the MUC-7 formal test corpus, is

also available in this case and this evaluation can be conducted here.

Figure 4.2 presents the same experiment but on the MUC-7 formal test corpus. Inter-
estingly, these results closely follow the trend observed for the dryrun test set. This is
specially significant considering that these corpora have been collected from different

domains and present different amounts of seen and unseen named entities, as seen in

section 3.1.

The next step then is to determine the best size for the orthographic window. This
experiment is very similar to the one described above, and MOLI MENE is run with
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Figure 4.3: Experiments with MOLI MENE V1 and MOLI MENE V2: size of the orthograpic window
changing from [1,0] to [2,2] with data represented in FMLU notation. Lexical window is set to [1,1] and
other parameters are set as in LexMENE. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

the size of the orthographic window varying from [1,0] —as used by siNymble— and
moving progressively towards a window of size [2,2] — as used by LexMENE.

In addition to the size of the orthographic window, there is another parameter considered
in this experiment which differentiates the baseline systems: siNymble uses only the top
orthographic feature —according to the precedence it defines for this kind of feature— of
each token in the context window, whereas LexMENE utilises all orthographic features
fired by these tokens.

Therefore, a second version of MOLI MENE has been prepared, namely MOLI MENE
V2, which follows siNymble’s strategy for this type of feature. Figure 4.3 shows the

results obtained for this experiment.

It can be seen from this figure that LexMENE makes a bad decision setting the size of the
orthographic window at [2,2], since the value [2,1] consistently gets better results with
the configuration used by MOLI MENE V1. SiNymble may also be losing performance
by fixing this window to size [1,0]. Increasing the orthographic window to sizes [2,1] or
[2,2] seems to be better options, as these values help the classification of unseen named

entities.

From these observations, henceforth experiments will employ the top orthographic fea-

ture —i.e. using the orthographic feature with higher precedence only— of tokens

within a context window of size [2,2].
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Figure 4.4: Experiments with MOLI MENE V1 and MOLI MENE V2: size of the orthographic window
changing from [1,0] to [2,2] with data represented in FMLU notation. Lexical window is set to [1,1] and
other parameters are set as in LexMENE. Corpora: MUC-7 training corpus and MUC-7 formal test corpus.

As previously, this experiment has been repeated with the MUC-7 formal test corpus.

Figure 4.4 shows the results on this set of documents.

Once more the parameters fixed by looking only at the results obtained with the dryrun
test corpus, are good parameters for the formal test corpus too. Moreover, both exper-

iments present essentially the same trends.

The next experiment aims to determine good parameters for the GIS algorithm used
to train the maximum entropy model used by MOLI MENE. In other NEE systems
that employ maximum entropy models, the cutoff parameter is normally set to 3 or
4 with good results (Roth and van den Bosch 2002, Daelemans and Osborne 2003).
Consequently, this parameter can be knowledgeably fixed to value 3, saving a potentially

large number of experiments.

In this experiment, nine different models have been trained by allowing the GIS algo-
rithm to run from 50 to 800 iterations. Figure 4.5 presents the performance of MOLI
MENE V2 with each number of iterations tested.

Interesting observations can be obtained from these results: the more GIS iterations
are permitted, the better the performance of the system on seen named entities; how-
ever, the performance of the system on unseen named entities stabilises at around 200

iterations. The same stabilisation is observed in term of the overall performance. This
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Figure 4.5: Experiments with MOLI MENE V2: the number of iterations for the GIS algorithm changing
from 0.5x100 to 8x100. Data is represented in FMLU notation, context windows are set to [1,1] and [2,2]
respectively and cutoff is set to 3. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus.

suggests that it is the recall on seen events that can be improved by allowing more
iterations, but, at the same time, more false positives are being generated, which keeps
the overall performance at the same l