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Abstract 

This thesis proposes and evaluates different ways of performing generic named entity 

recognition, that is the construction of a system capable of recognising names in free 

text which is not specific to any particular domain or task. 

The starting point is an implementation of a well known baseline system which is based 

on maximum entropy models that utilise lexically-oriented features to recognised names 

in text. Although this system achieves good levels of performance, both maximum 

entropy models and lexically-oriented features have their limitations. Three alternative 

ways in which this system can be extended to overcome these limitations are then 

studied: 

[> more linguistically-oriented features are extracted from a generic lexical source, 

namely WordNet®, and then added to the pool of features of the maximum en­

tropy model 

[> the maximum entropy model is bias towards training samples that are similar to 

the piece of text being analysed 

[> a bootstrapping procedure is introduced to allow maximum entropy models to 

collect new, valuable information from unlabelled text 

Results in this thesis indicate that the maximum entropy model is a very strong approach 

that accomplishes levels of performance that are very hard to improve on. However, 

these results also suggest that these extensions of the baseline system could yield im­

provements, though some difficulties must be addressed and more research is needed to 

obtain more assertive conclusions. 

This thesis has nonetheless provided important contributions: a novel approach to 

estimate the complexity of a named entity extraction task, a method for selecting the 

features to be used by the maximum entropy model from a large pool of features and a 

novel procedure to bootstrap maximum entropy models. 
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Chapter 1 

Introduction 

1.1 Information extraction 

Information Extraction (IE) is a relatively new discipline within the wider field of N at­

ural Language Processing (NLP). In general, information extraction can be understood 

as any process that selects, extracts and combines data from text in natural language 

to produce structured information. 

This discipline has emerged because there was a confluence of the necessity for auto­

matically processing information that exists only in natural language form, and the 

ability to have a rough understanding of texts by using the current NLP technology 

(Grishman 1997). 

Although some IE systems are starting their commercial life, the technology is not 

completely mature. There is a universal consensus that IE will be of great significance 

to companies of all kinds, especially those that make intensive use of information such 

as government institutions and finance enterprises (Cardie 1997, Grishman 1997). 

Information extraction is quite intuitive for humans. Consider the following example 

text from the Management Succession Domain, as used in (MUC 1995): 

Topologix Inc. announced that Donald E. Martella, formerly vice president, operation, 
was named president and chief executive officer of this maker of parallel processing 
subsystems. He succeeds Jack Harper, a company founder who was named chairman. 

The task for this domain is to identify succession events contained within the text and 

represent them in structures that contain four pieces of information: the person who is 

taking the new position, the person who is leaving the position, the position title, and the 

organisation where the succession is happening. For the example text above, adapted 

from Soderland, Fisher and Lehnert (1997), the resulting answer template would be: 

17 
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Event 1 I I Event 2 I I Event 3 

Donald E. Martella Jack Harper Person In 
-

Jack Harper Donald E. Martella Person Out -

Position president and chief vice president, chairman 

executive officer operations 

Organisation T opologix Inc. T opologix Inc. T opologix Inc. 

However, this task is very complex from the NLP point of view. Firstly, any IE system 

must apply a set of pre-processing tools to the text so that sentences, words, subjects, 

verbs, objects and ultimately clauses can be identified. Then, it must recognise names of 

people, organisations and positions in the text. Then it must recognise relations among 

these named entities suggested by expressions like formerly and was named. Finally, 

further processing is required to trim away odd words, to relate events reported in 

different sentences and to instantiate generic references, which would involve a high 

level of coreference resolution which is beyond the state-of-the-art (Cardie 1997). 

The most important events in IE history were the ARPA-sponsored Message Under­

standing Conferences (MUCs) held between 1987 and 1997 (see for example (Lehnert, 

Cardie, Fisher, McCarthy, Riloff and Soderland 1994, McCarthy 1996, Wilks 1997)). 

These conferences introduced several technological challenges and a rigorous evaluation 

for the participants, providing the right environment for the development and evolution 

of a wide spectrum of approaches to information extraction, from traditional NLP -

i.e. full syntactic, semantic and discourse analyses- to keyword matching with little or 

no linguistic analysis (Cowie and Lehnert 1996). 

By the latest MUCs, there was a clear generic architecture and virtually all major 

participant systems shared -in some form- the same modules (Hobbs 1993, Cardie 

1997). This convergence happened because researchers faced the challenges imposed 

by the MUCs in similar ways: exploiting the power of shallow parsing - rather than 

insisting on a full syntactic analysis, using shallow knowledge such as gazetteers and 

small hierarchy lexicons, using the key answers for deriving more shallow knowledge and 

using the target corpora for tuning some modules in the system (Cowie and Lehnert 

1996, Cardie 1997, Wilks 1997). 

This last two steps above have resulted in a shift of information extraction technol­

ogy towards empirical methods -also called corpus-based methods- which address 

the current problems in IE systems - and NLP in general: accuracy, portability and 

knowledge acquisition (Cardie 1997). However, the performance of these systems re­

mains poor. For example, in the last MUC the best corpus-based system could extract 

just over half the events reported in the test corpus (~IUC 1998). 
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1.2 Named entity extraction 

As mentioned above, named entity extraction (NEE) -the main problem with which 

this thesis is concerned- is a subtask of IE and much simpler than the general extraction 

procedure. In few words, NEE can be defined as the identification of expressions in free 

text which are "unique identifiers" of entities and their classification as instances of a 

finite set of categories. The first subtask is called named entity recognition (NER) and 

the second one named entity classification (NEC). However, it is very common in the 

literature to use named entity recognition for the whole process instead of named entity 

extraction. An attempt at keeping this distinction in this document will be made. 

There is a general consensus that named entity recognition is not only relevant for 

information extraction, but also an important subtask for many other natural language 

engineering applications, such as information retrieval, question/answer and machine 

translation systems. 

The latest Message Understanding Conferences (MUC) included a track for named 

entity recognition, which has become a sort of implicit universal definition for this task. 

The input for an NEE system is a text in free form such as the following: 

Llennel Evangelista, a spokesman for Intelsat, a global satellite consortium based in 
Washington, said the accident occurred at 2 p.m. EST Wednesday, or early Thursday 
morning at the Xichang launch site in Sichuan Province in southwestern China. 

The system is expected to produce a new version of the input text in which named 

entities are marked with SGML tags according to their class. For the input above, 

the following is the required output for the MUC competitions, which considered seven 

categories: organisations, people, location, dates, time, money and percentages. 

<PERSON>Llennel Evangelista</PERSON>, a spokesman for <ORGANISATION> 
Intelsat</ORGANISATION>, a global satellite consortium based in <LOCATION> 
Washington</LOCATION>, said the accident occurred at <TIME>2 p.m. EST 
</TIME> <DATE>Wednesday</DATE>, or <TIME>early Thursday morning 
</TIME> at the <LOCATION>Xichang</LOCATION> launch site in <LOCA­
TION>Sichuan Province</LOCATION> in southwestern <LOCATION>China</LO­
CATION>. 

It is clear that this output text is much easier to process by a part-of-speech tagger or 

a parser, and by higher-level NLP tasks. For example it is clear that for an Internet 

retrieval engine or a question/answer machine, the latter text would help in a more 

accurate and faster answer to the query where is Sichuan? than the former text. 
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Pieces of text that are 
named entities 

Pieces of text that the system 
labels as named entities 

Set of all pieces of text 

Recall 

Precision 

COR 00 
COR+MIS x 1 

COR 
COR+SPU x 100 

Named entities incorrectly 
ignored (MIS) 

Named entities recognised 
correctly (COR) 

20 

Named entities recogni ed 
correctly (COR) 

Named entities incorrectly 
labelled (SPU) 

Figure 1.1: Definition of the evaluation metrics: recall and precision . in terms of correct named entities 
(COR). missed named entities (MIS) and spurious named entities (SPU). 

MUC competitions also gave a universally accepted method for evaluating the perfor­

mance of systems which attempt named entity extraction. Considering the accuracy of 

the system, that is the percentage of pieces of text labelled correctly, is not an appro­

priate measure. For example, suppose that there are 10,000 phrases in a text of which 

100 are named entity expressions. Suppose now that a named entity extractor marks 80 

instances of which 60 are correct. Then, the system's accuracy would be 99.4%, which 

intuitively seems wrong. 

Therefore, named entity extractors are evaluated in terms of recall and precision. Recall 

is the ratio of the number of named entities that the system recognises correctly to the 

total number of named entities in the text. Precision is the proportion of correct named 

entities out of the pieces of text that the system labels as named entities. In the example, 

the system's recall is 60% (60 out of 100) and the system's precision is 75% (60 out of 

80). Clearly these measures are better indicators for the performance of the system. 

Figure 1.1 presents a graphical definition and the mathematical definitions of these 

metrics, which are based on the number of named entities correctly identified by the 

system (COR) , the number of named entities that the system misses (MIS) and the 

number of spurious named entities in the system's output (SPU) (Chinchor 199 b). 

Although every system tries maximising both recall and precision, soon enough it was 

evident that this was hard because a system that tries to maximise precision tends to 

mark only entities which it knows for certain and therefore it misses those for which it 

is not very sure. The vice versa effect is observed when the systems tries to maximise 
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recall. As it is not very obvious which is more important, MUC competitions opted for 

defining a third index called F-score or F-measure -borrowed from metrics designed 

by van Rijsbergen (1979) for information retrieval- which is the weighted harmonic 

mean of recall and precision, following the formula 

F((3) = ((32 + 1) . Precision· Recall 
(32 . Precision + Recall 

(1.1 ) 

The parameter {3 controls the relative importance given to precision with respect to 

recall. Throughout this thesis, the value {3 = 1 will be used, which assigns the same 

importance to both indices. 

Recently, this named entity extraction task has been extended in the ACE Program, 

which has been defined as "a program to develop technology to extract and characterise 

meaning from human language" (Sheffield NLP Group 2005). This program includes 

Entity Detection and Tracking (EDT) tasks that are similar to the MUC NE task, but 

in which text sources are of varying types and quality. In addition, more semantic 

and more fine-grain information of named entities is required to fill the answer keys. 

These characteristics make the ACE tasks more challenging than the MUC task and 

are contrived to lead the development of extraction technology to support automatic 

processing of text data (LDC 2005). 

1.3 Difficulties in NEE 

As in any NLP task, most difficulties in named entity extraction are generated by the 

intrinsic ambiguity of natural languages and the amount of knowledge required to solve 

this ambiguity. 

Firstly, NLP tasks earlier in the pipeline need to solve some of this ambiguity and 

determine -for example- sentence boundaries, token boundaries and their part-of­

speech tag. This will inevitably introduce errors in the input to the NEE system. 

Secondly, proper names present the same structural ambiguities as common nouns 

(Wacholder, Ravin and Choi 1997): compare Midwest Center for Computer Research (a 

single name) versus Carnegie Hall for Irwin Berlin (two names); Victoria and Albert Museum (a 

single name) versus IBM and Bell Laboratories (two names); Donoghue's Money Fund Report 

(a single name) versus Israel's Shimon Peres (two names). 

Thirdly, proper names also display semantic ambiguity. as a word -or sequence of 

words- can be a name for entities of different nature. This is closely related to word­

sense disambiguation, another NLP task which could benefit from NEE. In the examplc 
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text above, the word Washington might be seen with (at least) four senses: George 

Washington (the person), U.S.S. Washington (the ship), Washington D.C. (the city) 

and the State of Washington. This semantic ambiguity is quite common among proper 

names because places are named after famous people and organisations are named after 

their owners or locations (Wacholder et al. 1997). 

Fourthly, proper names share ambiguity with common nouns: the word china refers to 

the high-quality ceramic ware whereas the word China refers to the People's Republic in 

Asia. This type of ambiguity is usually disambiguated through capitalisation in English, 

but this is not always the case. Consider the following beginnings of sentences: New 

Coke drinkers and New Sears employees. The word New belongs to the name in the first 

case, but it does not in the second case (Wacholder et al. 1997), a fact that can only be 

determined by world knowledge. 

Finally, there is a further level of ambiguity introduced by what humans and particular 

applications may recognise as a name. For example, the MUC application required sys­

tems to make the distinction between organisations, people, locations, etc. and artifacts. 

Thus, in this case the sentences Good news for Boeing shareholders and They will buy a new 

Boeing are of different nature: the former contains an organisation entity whereas the 

later refers to an artifact. However, this differentiation may not be required by another 

application. In addition, the phrase early Thursday morning can be marked as a named 

entity of class time, as in the sample text above. A different person/application can 

perfectly consider this phrase as containing two named entities: the date Thursday and 

the time morning. Similarly, someone may consider the words Sichuan Province as the 

lexical form of a named entity of class location -again as in the text above- while 

another person may only consider for this the word Sichuan. In fact, experiments con­

ducted during the MUC-7 competition have estimated that human annotators disagree 

in about 3% of the entities they recognised (MUC 1998). 

When an NEE system is able to manage all this ambiguity reasonably well for a particu­

lar application, it normally handles a large amount of knowledge in the form of lexicons, 

gazetteers, grammars, patterns, ontologies, etc. This generates the second important 

drawback of this technology: named entity extractors show poor portability. 

Named entities vary significantly in type and form across domains and the knowledge 

collected for one of them might become much less useful for another domain. Therefore, 

this knowledge requires to be adapted for each application, a process which is gener­

ally time-consuming and error prone. Moreover, this adaptation might sometimes be 

impossible due to the lack of experts. 
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1.4 Main Goal 

The main goal of this thesis -following the discussion above- is to explore methods 

to capture the ambiguity of named entity extraction tasks, so that the extraction can 

be done with a relatively good level of performance, but at the same time maintaining 

a reasonable degree of portability. 

There are several issues that these methods must deal with. First, it is indispensable to 

find an appropriate approach to capture and represent the essence of the extraction task, 

so that a person does not have to expend large amounts of time doing this. Secondly, it 

is necessary to provide this approach with the linguistic and world knowledge required 

for the interpretation of text, a difficult assignment that is specially not solved for 

general domains. Finally, some mechanism for tuning this knowledge to the specific 

task and domain, with little or no human support, must be found. This should include 

the management of exceptions, that is pieces of text which are often considered named 

entities by the task but in some occasions they are not considered so (or vice versa), as 

with the above example for the word Boeing on the MUC-7 task. 

These methods should make possible the implementation of an NEE system that is able 

to perform generic named entity extraction which is not designed for any particular task 

or domain. 

A system with these characteristics could be applied to new domains more quickly and 

without needing the many hours of work by experts, on both linguistics and the target 

domain, that traditional approaches normally require. 

In chapter 2, these ideas are developed further by analysing techniques reported in the 

literature on how they could contribute towards more portable NEE systems. Several 

bases for the research presented here are drawn from this review and three hypotheses 

about how generic named entity extraction should be approached are proposed. 

1.5 Document structure 

Chapter 2 presents a review of previous work on named entity extraction. This review 

is used to introduce the bases for this research, as well as the hypotheses which will 

be assessed. In the second part of the chapter, the main approach used in this thesis, 

namely the maximum entropy framework, is explained in detail. 

Following the review of previous NEE systems, two baseline systems are selected and 

evaluated in chapter 3. This chapter also expounds a detailed analysis of the Hamed 

entities contained in the corpora used in this work. 
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Chapter 4 assesses the hypothesis that more linguistic information can be helpful in 

extracting named entities. This is done by extending one of the baseline systems, which 

is allowed to use domain-independent features derived from a shallow parser and a 

general lexical resource. 

Chapter 5 discusses the use of a memory-based approach to avoid overlooking exceptions 

in the recognition of named entities and managing the lack of abundant training data. 

In chapter 6, a study of how bootstrapping techniques may help the adaptation of the 

proposed named entity extractor to new domains is presented. 

Finally, several conclusions drawn from this work are presented in chapter 7. This 

chapter also proposes future lines of research that might enrich the knowledge collected 

by this thesis about the extraction of named entities. 

In addition to the main text, this document also includes a set of appendices which 

provide more detailed information on the analyses and implementations discussed in 

the chapters above. All these appendices are correspondingly cited in the text. 



Chapter 2 

Previous work and hypotheses 

This chapter discusses previous approaches to solving named entity extraction. This 

review is used to introduce the bases that guide this research as well as the hypotheses 
that this thesis aims to assess. 

2.1 Initial approaches 

The initial attempts made to solve named entity extraction followed the typical ap­

proaches in natural language processing at the time, that is building systems based 

mainly on regular expression and dictionaries (also called gazetteers). In the following 

paragraphs, three examples which in one way or another characterise the evolution of 

these types of approaches are examined. 

Fisher, Soderland, McCarthy, Feng and Lehnert (1995) presented a system at MUC-

6 competition, in which input texts were submitted serially to four string specialists 

that recognised money/dates/percentages, organisations, people and location entities 

respectively. These specialists were hand-coded pattern matching routines applied seri­

ally in the order given above and each component could claim strings in a non-negotiable 

manner. The organisation, people and location specialists relied on dictionaries for the 

recognition of these named entities. 

Fisher et al. (1995) concluded -after the MUC formal evaluation- that the organi­

sation dictionary used in the competition was weak, and as a consequence the recall 

obtained on this kind of entity was poor, as well as affecting the performance on person 

and location names because missed organisations were normally claimed by one of the 

specialist applied later. 

The LaSIE system (Gaizauskas, Wakao, Humphreys, Cunningham and \Yilks 1995) and 

its descendant VIE (Humphreys, Gaizauskas, Cunningham and :\zzam 1998) also rely 
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on hand-coded rules, list of words and gazetteers. Nonetheless, they follow a cleverer 

approach. For instance, in addition to a gazetteer of 2,600 organisation names, they also 

use lists of trigger words such as company designators (e.g. Co., Ltd., PLC), words that 

usually occur at the beginning or end of organisation names (e.g. Federal, International) 

and words which can be use alone as nouns to refer to organisations (e.g. Association, 

Agency, Ministry, etc.). 

Using these resources in combination as a cascade set of finite-state recognisers, LaSIE 

and VIE have better chances of detecting the organisations mentioned in free text. 

Similar resources were used for the other named entity types. 

The first people to seriously question the utility of gazetteers were Mikheev, Grover 

and Moens (1998). They observed that some NEE systems did not degrade much 

when their gazetteers were significantly reduced in size, and that by adding a few 

especially selected names, a dramatic improvement could be obtained (Mikheev, Moens 

and Grover 1999, Krupka and Hausman 1998). 

Mikheev, Grover and Moens (1999) discussed the problems of using NEE systems relying 

almost exclusively on looking up proper nouns in gazetteers, which may lead to this 

behaviour: 

t> the availability of large and general gazetteers -specially for different languages­

is very limited, a fact which has been described as a bottleneck in the development 

of NE extractors (Cucchiarelli, Luzi and Velardi 1998) 

t> even if they were available, they would have to be very large -it is estimated that 

there are 1.5 million surnames just in the U.S.- and searching in them might be 

infeasible 

t> it is not easy to keep gazetteers up-to-date; for example a list of all companies in 

the European Union today would be enormous, and obsolete tomorrow as com-

panies are being created all the time 

t> named entities occur in variations; for example The Royal Bank of Scotland pic, The 

Royal Bank, The Royal pic and simply The Royal, all refer to the same organisation 

and gazetteers should contain all these variations 

t> gazetteers do not solve the problem of overlaps between lists; for example, the 

word Washington could easily be found in a list of person names, organisation 

names or location names 

t> language ambiguity and the inclusion of common words in names make the task 
even more difficult; this is specially true when conjunctions are involved; for ex­
ample, it is very hard to recognise the organisation name in the sentence Daily and 

Partners lost their court case 
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Algorithm 2.1: The LTG named entity extraction algorithm. Adapted from Mikheev et al. (1998). 

Input: a document C 
Output: a new version of the document C' in which recognised named entities 

are annotated 
1: Apply sure-fire rules based on reliable phrasal and contextual designators 

(For example the rule Mr Xxxx+ is a person) 
2: Apply a probabilistic partial match of the identified entities 

(This allows the system to recognise variations in the name of entities' for 
example, if Mr John Adams has been recognised as a possible person's n~me, 
then Mr Adams and J. Adams will be also marked as possible instances of 
person's names) 

3: Apply the rules again but using more relaxed contextual constraints by using 
a grammar of names 
(This step also includes conjunctions resolution and the recognition of known 
named entities from gazetteers) 

4: Apply a second probabilistic partial match supported by a maximum entropy 
model 

5: Apply partial matching and check against the maximum entropy model possible 
named entities in titles 
(This is done at the end because headlines provide little guidance for recog­
nising names, as they are normally in capital letters and contain almost no 
contextual clues) 

27 

Mikheev et al. (1998) presented the LTG system which makes use of both internal 

(phrasal) and external (contextual) evidence for recognising an entity and its class. This 

terminology was introduced by McDonald (1996) and has been followed in most named 

entity extraction approaches since then (Wakao, Gaizauskas and Wilks 1996, Wacholder 

et al. 1997, Cucchiarelli et al. 1998, Zhou and Su 2002, to mention some). The idea 

is very simple: consider the string Adam Kluver; it can be seen that this string has an 

internal phrase structure (e.g. both words are capitalised and Adam is a common first 

name) which suggests that this is a person name. However, somewhere in the text is 

likely to exist some contextual information that should make clear what type of named 

entity it is. For example, the string could be found in the phrase Mr. Adam Kluver which 

would confirm that this string is a person name, or it could be seen in the phrase 

Adam Kluver Ltd. which would indicate that this string is actually an organisation name. 

Following this idea, the LTG system only makes the decision of the class for a given 

entity when clear contextual information that supports such a decision is found. 

In addition, the LTG system assumes that -for example-- once the string Adam Kluver 

is identified as an organisation name, then any other less clear occurrence of this string 

will refer to the same entity. If this string is also used for referring to an entity of 

another type, then the LTG system assumes that clear contextual material would be 

found to determine this new meaning. 

Algorithm 2.1 presents the LTG extraction algorithm. This system reached an F-score 

over 93% in the MUC-7 evaluation, the highest performance registered for the compe­

tition (Mikheev et al. 1998). Moreover, Mikheev, Moens and Grover (1999) conducted 

a further evaluation of LTG which showed that even without using gazetteers, the al­

gorithm obtains levels of accuracy comparable to many other NEE systems competing 
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in MUC-7. 

Although the LTG system performs remarkably well, the rules and grammars it uses 

were hand-coded for the MUC-7 application. Therefore, these resources need to be re­

coded to apply this system on a new domain, which seriously compromises the porta­

bility of the system. 

2.2 Machine learning approaches 

The portability limitation mentioned in section 2.1 has attracted the attention of re­

searchers towards machine learning techniques which can learn how to use both internal 

and contextual information for identifying named entities. 

The Message Understanding Conferences provided the appropriate environment for the 

development of this type of NEE system. More recently, the shared tasks of the Con­

ferences on Computational Natural Language Learning (CoNLLs) have also created a 

competitive environment which has boosted the research in this area. 

The latest MUCs defined the standard way in which named entity extractors should 

be developed. They release three corpora for each task: a training corpus which must 

be used to develop the system, a dryrun test corpus so that systems can be tested 

during the development phase, and a blind test corpus on which systems were formally 

evaluated (MUC 1995, MUC 1998). 

The MUC task involved the discrimination of seven named entity types -namely per­

son, organisation and location names; date and time expressions; and money and per­

centage expressions- from artifacts and normal text (Chinchor 1998a). 

In MUC-7, a further problem was introduced: the training and dry run texts were se­

lected from an aircraft accident domain, whereas the formal test corpus was a collection 

of articles reporting the launching of aircrafts. This aimed to encourage the develop­

ment of NEE systems that could be easily adapted across different domains. Many 

machine learning approaches were presented for these competitions, some of which are 

described in the following paragraphs. 

For example, Aberdeen, Burger, Day, Hirschman, Robinson and Vilain (1995) presented 

the Alembic system, which uses a maximum error-reduction learning algorithm to con­

struct a list of transformation rules (based on Brill (1995)); this rules obtained an 

F-score of 85%1. 
1 Although performance measures are given for these systems, it must be kept in mind that such 

performance might be estimated on different testing corpora and by different scoring pr?grams. In 
addition each system normally prepared its own extra training material as well as thelr own pre­
processi~g programs. Therefore, comparing systems based on these measures is unrealistic and they 

must be considered as referential only. 
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Cowie (1995) developed a system called AutoLearn, which constructs decision trees 

using the ID3 algorithm (Quinlan 1983) for detecting the start and end points of named 

entities; its performance was not very impressive: F-score 64%. 

Bennett, Aone and Lovell (1997) presented RoboTag, which also uses decision trees to 

classify words as being potential start/end of a named entity. However, this system uses 

C4.5 (Quinlan 1993) for the induction and external lexical resources such as gazetteers; 

RoboTag performed better: F-score 83.6%. Sekine (1998) presented a variation of this 

approach for a Japanese task, which reached an F-score of 85%. Paliouras, Karkaletsis, 

Petasis and Spyropoulos (2000) also evaluated C4.5 and external resources on the MUC 

corpora -though they were not in the competition- and obtained a performance 
around F-score 83%. 

Bikel, Miller, Schwartz and Weischedel (1997) developed Nymble, a system that em­

ploys a hidden Markov model and a bigram language model for the task; this system 

performed remarkably well for its simplicity: its F -score was 93%. This approach will 

be discussed in more detail in the following chapter. 

Borthwick, Sterling, Agichtein and Grishman (1998) use maximum entropy models for 

predicting named entities in a system they named MENE. This system scored an F­

measure of 92%. This system will also be studied in more detail in the next chapter. 

The CoNNL shared tasks introduced new challenges to the named entity extraction task, 

as the organisers were interested in language independent NEE systems that could use 

additional non-annotated training data (Tjong Kim Sang 2002b, Tjong Kim Sang and 

De Meulder 2003). Named entity classes were reduced to four types: person, location, 

organisation and miscellaneous names. 

A wide range of methods and meta-methods from machine learning and natural lan­

guage processing were presented, including support vector machines, transformation­

based lists, learners cascade, boosting, Markov models and hidden Markov models, 

maximum entropy models, character n-grams and tries, stacking, decision trees, vot­

ing, Winnow and SNoW, etc. plus some combinations of these methods. Examples of 

systems presented in these conferences are discussed in the following paragraphs. 

Carreras, Marquez and Padro (2002) presented an NEE system in which recognition 

(NER) and classification (NEC) were performed sequentially and independently. Both 

modules used binary AdaBoost classifiers to combine fixed-length decision trees. This 

system scored best in two different languages: F-measure 81.39% for Spanish and 77.05% 

for Dutch. They also reported that the pipeline scheme caused propagation of errors 

and that additional knowledge sources -such as gazetteers and a list of trigger words-
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yield an improvement of just 2% in the NEC system, and were of no utility in a second 
step to obtain the final labels. 

Cucerzan and Yarowsky (2002) developed a system which used both word internal and 

contextual clues as relatively independent evidence sources that drive a bootstrapping 

algorithm from initial seed names. Internal clues refer to morphological structure such 

as prefixes and suffixes, which is automatically learnt during the bootstrapping process. 

Contextual clues refer to patterns (such as Mr., in, mayor of on the left) which are crucial 

for names that do not follow a typical morphological pattern, are of foreign origin or 

polysemous. Both types of information are modelled as four smoothed tries: two for 

context (left and right) and two for internal morphological patterns (prefix and suffix 

tries). This system scored third and fifth on Spanish (77.15%) and Dutch (72.31%) 

respecti vely. 

Florian, Ittycheriah, Jing and Zhang (2003) presented an NEE system which combines 

four classifiers based on different machine learning approaches: the first system used 

Robust Risk Minimisation (RRM) , which is based on Zhang, Damerau and Johnson 

(2002); the second one relies on a maximum entropy model, similar to MENE; the 

third classifier utilises transformation-based learning; and the fourth system is a hid­

den Markov model classifier, similar to Nymble. They reported different performance 

levels with different ways of combining these four classifiers, which show that an RRM 

approach yielded better results. In the formal test, this system obtained the highest 

overall performance on both English and German with F -scores 88.76% and 72.41% re­

spectively, which outperformed the best individual classifier by 17-21% for the English 

task and less significantly for the German task. 

Zhang and Johnson (2003) also presented a combination of classifiers in which the basic 

units are characters and character n-grams, instead of words and word phrases. The 

first model is a character-level hidden Markov model and the second one is a maximum 

entropy model. This system was ranked third on English and second on German, 

obtaining 86.31 % and 71.90% respectively. They reported that when n-grams are not 

used, their system shows a 25% error increment. 

2.3 Bases and hypotheses 

Following the discussion above, the first basis in this thesis is that a portable named 

entity extractor must not use manually-built rules for the task. Hand-coded rules are 

time-consuming and although there may be attempts at making the modification and 

addition of rules as simple as possible, this facilitation is normally oriented to experts 

at both linguistics and the architecture of the system, or in the best case to experts in 

the extraction task, which automatically restricts the portability of such a system. 
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Therefore, this thesis will focus on machine learning techniques which should allow the 

acquisition of rules and knowledge with little or no human intervention. 

By a simple examination of the machine learning methods employed by the systems 

described in section 2.2, it is easy to see that statistical learning techniques are exten­

sively used and quite successful. For instance, Nymble and MENE both utilise statistical 

methods and both report a performance over 90% for the MUC task. 

This is not exclusive to named entity extraction tasks. Most NLP problems can be 

seen as random processes for which it is necessary to find the probabilistic distributions 

that model their behaviour. Many successful applications of these methods has been 

reported, accomplishing levels of performance that are very hard to improve on (Mikheev 

1998). 

These observations lead to the second basis for this research: modelling NLP problems, 

of which named entity extraction is just an instance, as statistical classification problems 

has proved to be a successful approach. 

Among many other statistical methods, both hidden Markov models and maximum 

entropy models are popular choices. For example, out of the sixteen systems competing 

at the CoNLL-2003 shared task, three systems used maximum entropy models, two 

utilised hidden Markov models, and two other systems employed a combination of these 

techniques (Daelemans and Osborne 2003). 

However, maximum entropy models present some advantages over hidden Markov mod­

els (Mikheev 1998): 

1. Hidden Markov models -and generative statistical methods in general- assume 

that the different pieces of contextual information are independent, and the model 

engineer must take care to avoid the inclusion of overlapping features. These 

simplifications are not necessary for maximum entropy models which can deal 

with both overlapping feature segments and overlapping feature functionality. 

2. The above property allows maximum entropy models to use more information and 

from different sources, resulting in more complex models which have improved the 

performance of classifiers in a number of applications (for examples, see Rosenfeld 

(1996) and Ratnaparkhi (1996)). 

3. In many cases, hidden Markov models can be moved from one domain into another 

by re-computing the probabilities associated to the features included in the model. 

However, if these domains present significant differences, the knowledge engineer 

must build a completely new model. On the other hand, maximum entropy models 

normally need to re-estimate their weights to capture a shift in the domain, but 
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less participation of an expert is needed if the available pool of features is general 

enough. 

Since this work started in 2000, there have been two important conferences on named 

entity extraction, namely the shared tasks of CoNLL-2002 and CoNLL-2003 which have , 
provided more evidence in favour of maximum entropy models. 

In the CoNLL-2002, Malouf (2002) applied three different statistical approaches to the 

shared NEE task: a baseline statistical model, a hidden Markov model and a maximum 

entropy model. He reports that even using the same information, the maximum entropy 

approach widely outperforms the other two models. Moreover, when taking advantage 

of a maximum entropy model's ability to use more complex information and extra 

features were added, it obtained a 67% increase in overall performance with respect to 

the hidden Markov model. 

Results of the CoNLL-2003 are even more relevant: the top two systems in the German 

task and the top three systems in the English task utilised maximum entropy models, in 

isolation or in combination with other approaches, which would confirm that "Maximum 

Entropy Models seem to be a good choice for this kind of task" (Tjong Kim Sang and 

De Meulder 2003). 

These observations lead to the third basis of this thesis: maximum entropy models 

perform well on named entity extraction tasks and they also provide natural ways of 

introducing new knowledge to guide the extraction procedure, which makes them a good 

approach for generic named entity extraction. 

NEE systems based on maximum entropy models have used a wide variety of features 

extracted from a context window of words around a focus word, whose named entity 

class must be determined. Among the most common features are: 

c> lexical features, which are the strings -normally in a case insensitive mode-- of 

the tokens under consideration (Borthwick 1999, Malouf 2002, Bender, Och and 

Ney 2003, Chieu and Ng 2003, Curran and Clark 2003b, Florian et al. 2003, Klein, 

Smarr, Nguyen and Manning 2003) 

c> orthographic features, which provide information about the form of these tokens, 

such as the type of lexeme (e.g. number, word, symbol) and capitalisation proper­

ties (e.g. lowercase, uppercase, capitalised) (Borthwick 1999, Malouf 2002, Bender 

et al. 2003, Chieu and Ng 2003, Curran and Clark 2003b, Florian et al. 2003) 
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[> section features, which help discriminate between sections in the document (e.g. head­

lines, text) in which the context window is located (Borthwick 1999, Malouf 2002, 

Chieu and N g 2003) 

[> dictionary features, which indicate whether a word is contained in external dic­

tionaries of names (gazetteers) (Borthwick 1999, Malouf 2002, Bender et al. 2003, 

Chieu and Ng 2003, Curran and Clark 2003b, Florian et al. 2003, Klein et al. 2003) 

[> PoS features, which give information on the part-of-speech that a word is playing 

in the sentence (Curran and Clark 2003b, Florian et al. 2003, Klein et al. 2003) 

[> morphological features, which supply information about prefixes and suffixes of 

tokens (Bender et al. 2003, Florian et al. 2003, Klein et al. 2003) 

All these types of features are lexically oriented, and besides Curran and Clark (2003b) 

and Florian et al. (2003), who included chunk features, there have been no attempts 

to include linguistically richer information into maximum entropy models for named 

entity extraction. The reason for this omission seems to be that getting rich linguistic 

features -such as sentence structure, phrasal heads and semantic relations- can be 

highly expensive and domain dependent, and it is not clear whether such information 

could be useful. Nonetheless, it would be an important contribution to verify these 

assumptions. 

On the one hand, a good parser of general natural language text is still a matter of 

research, but obtaining shallow phrase structure -such as noun and verb chunks, and 

their head words- is not very difficult nowadays and a few systems are starting to 

be available online. On the other hand, getting semantic and discourse-level informa­

tion is much harder. Acceptable solutions for structural attachment, sense ambiguity, 

coreference and semantic relationships are very difficult to obtain, and only established 

research groups have been able to attempt to solve these problems for information ex­

traction, after several years of dedicated work (Fisher et al. 1995, Wakao et al. 1996). 

Thus, building these kinds of tools is realistically beyond the scope of this thesis. 

The NLP Group at the University of Sheffield is probably the research body which has 

paid most attention to these problems, resulting in the definition of a general archi­

tecture for text engineering (Cunningham 2000). Among their work, Gaizauskas and 

Humphreys (1997) evaluated the use of semantic networks for information extraction. 

Basically, they use a semantic network to have a world model prior to the processing of 

the text. This network consists of an ontology and an associated attribute knowledge 

base, which are manually built from the definition of the task. \Vhen a text is processed, 

this semantic network is populated with the classes and instances mentioned in the text, 

thus specialising the world model for that particular text. This specialised model allows 

Gaizauskas and Humphreys (1997) to perform an analysis at discourse level. 
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In the case of named entity extraction, the discourse model described above is utilised 

to resolve coreferences of names and to classified ambiguous names by looking into the 

semantic types of the arguments in certain relations (Wakao et al. 1996). For example, 

the existence of the ambiguous name Ford can be classified by identifying that it refers 

to the unambiguous name Ford Motor Co., also found in the discourse model; and by 

identifying that the word stock is semantically related to organisations, the ambiguous 

name Erickson in the phrase Erickson stocks can be classified as an organisation name. 

Note however, that only NEC is performed and no new named entities are recognised 

at this stage. 

Gaizauskas and Humphreys's (1997) approach is dominated by the view that more ac­

curate information extraction systems cannot be obtained without attempting a deeper 

understanding of the text being processed. This thesis widely shares this view. How­

ever, getting this understanding from manually built resources -as Gaizauskas and 

Humphreys (1997) have done- compromises portability and, therefore, this thesis will 

avoid resorting to this solution. 

Nevertheless, the idea of introducing ontologies to obtain certain amounts of semantic 

information should not be discarded. Guarino (1997) clearly identifies a fundamental 

role for ontological aspects for information extraction: the semantic matching between 

the terms used to define the task and those appearing in the text. Thus, named entity 

extraction can be seen as identifying semantic matches between pieces of text and entity 

classes. Therefore, this task requires that the meanings of both the classes and the 

names occurring in the text are clear in order to determine whether they match or not. 

Unfortunately, the ontologies currently in use are normally built ad-hoc (Guarino 1997) 

for both the domain and the task. 

However, there exists a general purpose ontology which could be used: WordNet® 

(Miller 1995). WordNet is a lexical reference system which organises English nouns, 

verbs, adjectives and adverbs into synonym sets, each representing one underlying lexical 

concept and their relations (Fellbaum 1998). This general resource might provide an 

NEE system with "semantic" understanding of the text being processed as well as more 

clues for identifying unseen named entities, and without affecting the portability of the 

system as the knowledge it contains is not specific to any particular application, but for 

the English language in general. 

In fact, Gaizauskas and Humphreys (1997) made use of WordNet in an attempt to 

produce a more general world model which could help their system to resolve more 

coreferences. Although they conducted a very small experiment, they found that the 

availability of more semantic classes in the extended ontology had little effect on the 

number of anaphoras that are correctly identified. In this attempt, they also concluded 

that because WordNet uses a different synset entry for each possible sense of the lexemes 
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in the database, the problem of word sense disambiguation must be addressed. Their 

solution was to manually select only one sense per word, based on a small set of training 

documents. 

Thus, in order to use WordNet as a source of semantic information for named entity 

extraction, a better solution -with respect to the portability of the system- should 

ideally be found. Although the construction of a general purpose word sense dis am­

biguator is generating much research today (Kilgarriff and Rosenzweig 2000), it is still 

a medium-term goal and, therefore, beyond the scope of this thesis. 

Nonetheless, it can be argued here than using WordNet ontology, even without per­

forming any disambiguation, can be useful for the NEE system proposed here. This 

is so because a trigger word -as proposed in Wakao et al. (1996)- identified in the 

training documents can be extended to examples which are not seen in the corpus. For 

example, suppose that the word chairman is frequently seen in collocation with a per­

son name. WordNet would inform the system that it should also consider its synonym 

director. In this way, the maximum entropy model would give to a noun phrase which 

starts with the word director a higher probability of containing a person name, even if 

the pattern director <person name> was not seen during training, just because it hits the 

same WordNet synset as the word chairman. This intuition is explained in more detail 

in section 4.5. 

All these last observations lead to the first hypothesis of this thesis: 

Hypothesis 1 

General, domain independent linguistic knowledge -such as the semantic 

information provided by WordNet- is useful for extracting named entities. 

The introduction of shallow parsing and general ontologies should not affect the porta­

bility of the system. Moreover, projects like EuroWordNet (Vossen 1998), which aims to 

develop WordNet-like semantic networks for several European languages, might provide 

the necessary resources to allow the approach to move to other languages. 

The second hypothesis of this thesis follows from the observation that statistical learning 

methods, such as maximum entropy models, heavily rely on the frequencies of the events 

being learnt. In fact, this is a characteristic of all machine learning methods that build 

general hypotheses: they try to capture the general and tend to overlook infrequent 

events. 
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Daelemans, van de Bosch and Savrel (1999) showed that not considering infrequent 

training examples -exceptions in their terms- can negatively affect the performance 

of learners when a natural language task is involved. More specifically, they provide em­

pirical evidence that by keeping training exceptions, a memory-based learner improves 

its performance up to a level which allows this approach to outperform a decision tree 
learner. 

This conclusion might be perfectly valid for named entity extraction. For example, the 

token Clinton is seen in the MUC-7 training corpus 52 times: 51 times as a person name 

and once as a location name. Thus, the probability that the token Clinton is reporting a 

person name is 0.98, which will likely dominate the decisions that the maximum entropy 

model makes for this example. This cannot be considered a mistake since statistical 

methods assume that the same distribution observed in the training data will be found 

in the decoding data. 

There have been some attempts at overcoming this problem. A popular choice has 

been applying Boosting (Schapire 1990). Boosting is a general method to produce very 

accurate classifiers by combining rough and moderately inaccurate classifiers. Perhaps 

the most used version of this technique is the AdaBoost algorithm -short for Adaptive 

Boosting- which was introduced by Freund and Schapire (1996) with a strong theo­

retical framework based on PAC-learning. AdaBoost calls a weak learning algorithm 

repeatedly -though they may be different learning methods- in a series of rounds, in 

which a distribution of weights is defined over the set of training examples. Initially, 

every instance has the same weight, but on each round, the algorithm increases the 

weights of misclassified examples, so that the weak classifier will try harder on these 

examples on the next round. Using the distribution of weights for the current round, 

the algorithm obtains a weak hypothesis, its error and its global importance in inverse 

proportion to that error. The final hypothesis is the weighted majority vote of all weak 

hypotheses obtained. In this way, AdaBoost is able to identify exceptions -outliers in 

Freund and Schapire's (1996) terms- which are mislabelled or inherently ambiguous 

and hard to classify. 

This method has been successfully applied to several NLP tasks, such as part-of-speech 

tagging/PP attachment (Abney, Schapire and Singer 1999) and text categorisation 

(Escudero, Marquez and Rigau 2000), and more recently to the CoNLL-2002 named 

entity extraction task in Carreras et al. (2002) and Wu, Ngai, Carpuat, Larsen and 

Yang (2002). These latter works are particularly successful: Carreras et al.'s (2002) 

system obtained the best scores in both Spanish and Dutch and \Vu et al. 's (2002) was 

fourth for Spanish and second for Dutch. 

Carreras et al. (2002) and Wu et al. (2002) both used very simple weak learners that 

obtained (very) shallow decision trees. It is not clear whether boosting would have 
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obtained the same results when a statistical method is used as the weak learner. For 

these kinds of methods, a common practice is to perform boosting by re-sampling (rather 

than boosting by re-weighting, as described above), in which a fixed number of training 

examples are chosen with replacement according to the distribution defined by their 

weights. But Freund and Schapire (1996) found that one of the requirements for ob­

taining a significant improvement in performance by boosting is that the weak learner 

must be sensitive to changes in the training examples, so that the hypotheses generated 

for the different training sets at each round are significantly different. This condition 

might be difficult to meet with maximum entropy models and it would need a careful 

re-sampling of the training examples with the explicit intention of producing different 

constraints from one round to the next. In fact, Park and Zhang (2002) showed that 

the effect of boosting is not significant when applied on a maximum entropy model for 

shallow parsing. 

The approach proposed here is based on the combination of memory-based methods 

and maximum entropy models, so that the advantages of both types of techniques can 

be united. 

Memory-based reasoning solves new problems by adapting solutions that were used to 

solve old problems (Burkhard 1998), but they do not learn a general hypothesis to 

be applied later on. Instead, they use a retrieval engine which utilises the concept of 

similarity to search among the past cases to obtain the most similar ones to a new case, 

or query, that needs to be solved (i.e. classified, in this task). This way of reasoning 

has many advantages: adaptation is not limited to any specific framework and therefore 

cases and solutions are not restricted in structure; the similarity measures are not fixed 

and frequencies can be considered but may not be the only factors; because adaptation 

for a query can normally be performed from few cases retrieved, huge amounts of training 

data are not essential; and the set of cases kept in memory can vary dynamically allowing 

the deletion of useless cases and the insertion of new cases. 

The idea is basically not to build a general maximum entropy model to be applied to all 

decoding examples. Instead, a retrieve engine will be applied to obtain a set of training 

examples that are similar to each decoding example. Only then will the maximum 

entropy framework be utilised to adapt each set of retrieved training information in 

order to decide a classification for the query text. 

The intuition behind this idea is that by biasing the maximum entropy model in fayour 

of examples that are similar to the piece of text that needs to be classified, the model will 

be able to capture exceptions and the contexts in which unseen named entities appear 

in a better way. Chapter 5 gives more details of this expected effect. This discussion 

leads to the second hypothesis to be assessed in this thesis. 
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Hypothesis 2 

Biasing the maximum entropy model towards the training examples that are 

similar to the text under processing results in an increase in the performance 

of the model on exceptions and unseen named entities 
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The third hypothesis is related to the fact that for natural language applications, the 

annotation of training examples has been reported as a difficult, error-prone and time­

consuming task (Cardie 1997). This is an important problem, even for NEE systems 

based on machine learning techniques that do not use hand-coded rules or gazetteers, 

as they normally require a large number of labelled examples to obtain reasonable levels 

of accuracy, limiting their portability across domains and languages. 

There have been some attempts at overcoming this problem by obtaining new training 

material from unlabelled text, mainly motivated by the work of Yarowsky (1995) and 

Blum and Mitchell (1997), which showed that supervision could be significantly reduced 

by exploiting the natural redundancy in textual data. They introduced two different 

ways of performing semi-supervised learning, which the literature has generally called 

bootstrapping and co-training, though a theoretical connection between these approaches 

has been shown very recently (Abney 2004). 

Semi-supervised learning works basically as an iterative process to estimate annotations 

for unlabelled data, whose final objective is to provide annotated training data to im­

prove a learner. Yarowsky (1995) used his bootstrapping algorithm to solve word sense 

disambiguation, obtaining better performance from an initial small set of seed colloca­

tions than a completely-supervised learning approach. Riloff and Jones (1999) used a 

variation to extract a semantic lexicon (i.e. named entities) and extraction patterns for 

an IE task, just from a few seed words. At about the same time, Collins and Singer 

(1999) utilised co-training to induce rules for named entity classification from just seven 

seed rules. 

However, the above approaches have in common that they employ rule learners. It is not 

clear whether bootstrapping would improve the performance of maximum entropy mod­

els, though Blum and Mitchell (1997) reported experiments with a statistical method, 

namely the naIve Bayes classifier, in which the semi-supervised version outperforms the 

supervised one. 

Nevertheless, it would be an important contribution to explore ways of doing semi­

supervised learning with maximum entropy models, which would increase the portability 

of an NEE system that uses this machine learning approach. This interest underlies the 

third hypothesis to be assessed in this thesis: 
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Hypothesis 3 

Bootstrapping techniques can help an NEE system based on maximum en­

tropy models to be more portable by obtaining information which is valuable 
for the task from unlabelled text 
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However, recent studies by Clark, Curran and Osborne (2003) and Cui and Guthrie 

(2004) on bootstrapping maximum entropy models are indicating that they pose some 

challenges for semi-supervised learning. These studies will be discussed in detail in 
chapter 6. 

The rest of this document is dedicated to the the evaluation of the hypotheses discussed 
in this section. 

2.4 Maximum Entropy Models 

2.4.1 NLP and classification 

Many problems in natural language processing -such as part-of-speech tagging (Brill 

1995), word-sense disambiguation (Gale, Church and Yarowsky 1992), propositional 

phrase attachment (Aberdeen et al. 1995) and chunking (Cardie, Daelemans, Nedellec 

and Tjong Kim Sang 2000)- have been formulated as classification problems and solved 

with a variety of methods. 

In particular, NLP problems can be modelled as a statistical classification task in which 

the probability of a class y -from a set of classes Y- occurring with context x -from a 

space of contexts X- is estimated. Classes and contexts depend on the particular NLP 

problem being solved. For example, calculating the probability of a word w surrounded 

by words W-l, W+l of being a noun, a verb or none, i.e. P(nounl < W-l, W, W+l », 
P(verbl < W-l, W, W+l » and P(nonel < W-l, W, W+l », a coarse part-of-speech 

tagging can be obtained. In this example, {noun, verb, none} are the classes and < 
W-l, W, W+l > for each word W constitute the contexts. In this way, it is expected that 

P(nounl < the, model, is » would be higher than both P(verbl < the, model, is » 
and P(nonel < the,model,is ». Similarly, P(L'erbl < we,model,the » should be 

higher than both P(nounl < we, model, the» and P(nonel < we, model, the», and 

that the context < model, the, data> would yield to a higher probability with the class 

none than for the other two classes. 
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There are two major problems with this kind of formulation. Firstly, a relatively large 

collection of annotated texts that might provide information about the occurrence of 

a class y E Y with contexts x E X is needed. Normally, this information is not 

enough for accurately estimating p(ylx) for all possible pairs (y, x) due to sparseness (a 

good example of this problem can be found in Godfrey, Holliman and McDaniel (1999)). 

Secondly, the different pieces of information considered within each context are generally 

from different sources and some might be irrelevant, overlapping or probabilistically 

dependent. These difficulties are to some extent overcome by Maximum Entropy Models 

(MEMs). 

In an MEM, problem-specific knowledge is represented as binary features2 which test the 

presence of pieces of information in a context. In this way, virtually any kind of knowl­

edge -even from different nature- can be introduced into the model (Ratnaparkhi 

1998). 

Once the set of features to be included by the model is decided, a general purpose 

iterative algorithm can be used to estimate the parameters of the model (see section 

2.4.3.1). Therefore, modellers need only focus their efforts on determining what set of 

features to use and not how to use it (Ratnaparkhi 1998). 

Features of an MEM do not need to be statistically independent or not overlapping. 

Borthwick (1999) shows that: 

I> an MEM that includes two features h(x, y) and h(x, y) so that h(x, y) = 1 {:} 

h(x, y) = 1, is equivalent to an MEM that includes just one of them; and 

I> an MEM that includes features h (x, y), h (x, y) and 13 (x, y) so that two of them 

partition the other, i.e. h(x,y) = 1 =? h(x,y) = 1 and h(x,y) = 1 =? 

h(x, y) = 1 and 13(x, y) = 1 =? h(x, y) = 1 V h(x, y) = 1, is equivalent to 

an MEM that includes just two of these features 

Moreover if the set of features do not overlap then there is no need for an itera-, 
tive algorithm and the probabilities can be estimated by a simple ratio of counts 

(Ratnaparkhi 1998). Thus the true value ofMEMs is obtained when features that do not 

form a partition of the space of classes and contexts need to be combined robustly. This 

is also important because determining the larger set of partitioning features from the 

set of features that are subsets of a given feature f is NP-Complete (Borthwick 1999). 

Furthermore, an MEM can account not only for overlapping segments in the set of 

training samples, but also for overlapping functionality among features which might 

not even be represented in terms of overlapping features (Mikheev 1998). 

2Features do not need to be binary-valued, but using binary features only makes the estimation of 

the parameters easier (Della Pietra, Della Pietra and Lafferty 1997). 
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All these characteristics of MEMs significantly reduce the work of constructing sound 

probabilistic models for any task. Successful examples are many, for instance the work of 

Ratnaparkhi (1998), who applied the maximum entropy framework to sentence bound­

ary detection, part-of-speech tagging, prepositional phrase attachment, natural lan­

guage parsing and text categorisation. In all five problems, he obtained performance at 

or near the state of the art. 

2.4.2 The Maximum Entropy Framework 

The maximum entropy modelling framework is introduced here, adapted from (Della Pietra, 

Della Pietra and Lafferty 1995) and (Berger, Della Pietra and Della Pietra 1996). More 

details can be obtain in these two excellent publications. 

Consider a random process which produces an output value y from a finite set of classes 

Y. The objective is to construct a stochastic model that accurately represents this 

process by estimating p(Ylx), that is the conditional probability that given a context 

x, the process will output y. The model provides a conditional probability distribution 

p(Ylx), in which the placeholders x and Y are instantiated to specific contexts in X and 

classes in Y respectively. Let P be the set of all conditional probabilities. Then p(ylx) 

is just one member of P. 

In order to build this model, a number of samples (xl,yd,(X2,Y2), ... ,(XN,YN) are 

collected, which provides the model with information of the behaviour of the random 

process. These observations are normally called training samples. 

The set of training samples is summarised in terms of its empirical distribution p, 

defined by 

_( ) _ count(x, y) 
p x,y = N 

where the function count(x, y) counts the number of times that the pair (x, y) occurs 

in the set of training samples. 

The task can now be seen as building a statistical model of the random process which 

generated the training sample p(x, y). 

The concept of features function needs to be introduced here. A feature function or 

feature for short, is a binary-valued indicator which expresses a particular statistic of 

the set of training samples. Following the example in 2.-1.1, the following indicators 

could be introduced: 

h(x,y) = { ~ if y = noun and W+l is a form of the verb 'to be' in x 

otherwise 
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f ( ) - { 1 if y = verb and W-l is a pronoun in x 
2 x,y -

o otherwise 
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The training sample « the, model, is >, noun) will fire h, that is II « the, model, is> 

,noun) = 1, but not 12· Similarly, the sample « we, model, the >, verb) will fire 12, 
but not h· The interest is focused on the expected value of a feature fi with respect to 

the empirical distribution p(x, y). This value is given by equation 2.1. 

p[fd == LP(x,Y)h(x,y) (2.1) 
X,Y 

When a particular statistic is considered relevant for describing the random process, it 

is included into the model by constraining the expected value that the model associates 

to the corresponding feature. This expected value is calculated as 

(2.2) 
X,Y 

where p(ylx) corresponds to the conditional probability of obtaining y given a context 

x estimated by the model and p(x) is the empirical probability of seeing context x in 

the training samples. 

The obvious constraint is that the model should agree with the set of training samples 

on how often the output of the random process exhibits a given feature fi. This is done 

by requiring p[fi] = p[fi] which yields to the more explicit equation 

X,Y X,Y 

which is known as a constraint equation or simply a constraint. 

Thus statistical phenomena on the training samples that are considered important can 

be represented -through p[fd- and the model for the random process is requested 

to exhibit these phenomena by imposing constraints. Suppose that n features will be 

included in the model, then a model whose distribution p is in the subset C c P, defined 

by equation 2.3, must be found. 

c == {p E Pip [fd = p[ fd for i E {I, 2, ... n }} (2.3) 

That is, the space of conditional probability distribution whose expected values for the 

n features agree with the empirical statistics. Unfortunately, these constraints do not 

determine a unique distribution p. Moreover, C allows infinite models. 

Thus, a criterion to select a probabilistic distribution from the space C is needed. For 

this, the maximum entropy principle is used. This principle states that the model whose 

distribution is most uniform should be selected, so that "it agrees with everything that 

is known but carefully avoids assuming everything that is not known" (Jaynes 1991). 
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For finding such a model, the entropy is used as a measure of the uniformity of a 

conditional distribution p(Ylx), given by 

H(p) == - LP(x)p(Ylx)logp(Ylx) (2.4) 
x,y 

If a random process has m possible outputs -i.e. IYI = m- then the entropy of a con­

ditional distribution for that model can vary from zero -a model with no uncertainty­

and log m -the uniform distribution over Yl, Y2, . .. ,Ym. 

Based on this definition, the principle of maximum entropy can be restated as follows: 

From the set C of allowed probability distributions, select the model p* E C 

with the maximum entropy H(p): 

p. = argmax H (p ) 
pEC 

(2.5) 

It has been shown that there is a unique, well-defined model which is the solution to 

equation 2.5 (Della Pietra et al. 1995, Berger et al. 1996). Furthermore, such a model 

has the exponential form 

p. (ylx) = _I_eLi >'ifi(X,y) 
Z>.(x) 

Z>.(x) = L eLi >'if;(x,y) 

y 

(2.6) 

(2.7) 

in which each feature is associated with a parameter Ai and ZA(X) is a normalising 

constant, determined by the requirement that the conditional probabilities for a given 

context x add up to one over the classes Y E Y. The reader is invited to see the 

details of the derivation of this parametric form -with the constrained optimisation 

method of Lagrange multipliers- in Della Pietra et al. (1995). Sometimes the equivalent 

parametric from 

( I) 1 II fi(X,y) 
p* Y x = Z(x) . O:i 

l 

(2.8) 

Z(x) = L II o:t(x,y) (2.9) 
y i 

is used (Ratnaparkhi 1998, Borthwick 1999), where each parameter Qi eAi and Z(x) 

is the appropriately modified normalising constant. 

Interestingly, these exponential forms have been obtained from different points of view, 

namely Information Theory and Constrained Optimisation Theory on probability dis­

tributions. Moreover, both approaches have shown that there exists a unique model q* 

which solves 

q. = argmaxL(q) 
q",C 

(2.10) 
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where L( q) corresponds to the log-likelihood of a conditional probability distribution q 

over the set of training samples 

L(q) = LP(x,y)logq(ylx) (2.11) 
X,Y 

In general, the maximum likelihood and the maximum entropy frameworks are two 

different methods for statistical modelling. However, both analyses have found that in 

this case q* also solves equation 2.5, and therefore q* = P*. 

The fact that a model obtained under the maximum entropy approach is the same as 

the model obtained by -the more traditional technique of- maximising the probability 

of the training samples, is a strong argument in favour of the validity of the method 

(Ratnaparkhi 1998, Borthwick 1999). 

2.4.3 Learning Maximum Entropy Models 

Any statistical modelling problem requires a two step process: 

1. finding the appropriate set of facts to describe the random process to model, and 

2. incorporate these facts into the model. 

The first step is related to determining the set of features that will describe the process 

best. 

The second step is partially solved by the discussion in the previous section. It is 

just necessary to calculate the expected values of the selected features according to 

the training samples and find a model which satisfies the constraints that these values 

impose. What is not said is how this model can be found. 

In this section, some ways in which these two steps can be addressed are discussed. 

2.4.3.1 Parameter Estimation 

There are two main algorithms for estimating the parameter of a model with the ex­

ponential forms shown above (Darroch and Ratcliff 1972, Della Pietra et al. 1995): the 

Generalised Iterative Scaling Algorithm (GIS), and the Improved Iterative Scaling (lIS). 

Actually lIS can be seen as an optimisation of GIS. 

The GIS algorithm requires that the features sum to some constant K for any training 

sample, that is 
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Algorithm 2.2: Generalised Iterative Scaling. Adapted from Ratnaparkhi (1998). 

Input: ~.set of non-negative feature functions F = {h, 12,···, ij,.··, in}, their 
empmc.al ~xpected values {p[fi]}n, the empirical distribution p(x, y) and the 
normahsatlOn constant C 

Output: the maximum entropy model P* 

1: procedure GIS(F, {p[fi]}n,P(x), C) 

2: Initialise parameters: a(O) t-- 1 
. J 

3: '/, t-- 1 
4: repeat 
5: Define the current distribution p( i): 

6: (i)( Ix) t-- _1_ nn ((i»)fj(X,y) 
p y Z(x) j=l a j 

7: Calculate th~ expected values of each feature ij from p(i): 
8: p[fil(t) t-- Lx p(x) Ly p(ylx)(i) ij(x, y) 
9: Update the parameters for the next iteration: 

1 

10: a(H1) t-- a(.i) ( P[fj(l)) C 
J J p[fjl ' 

11: j t-- j + 1 
12: until p(i) has converged 
13: P* t-- p(i)(Ylx) 
14: end procedure 
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(2.12) 

If this condition is not met, a correction feature is introduced into the model so that the 

constraint 2.12 is satisfied. In theory, a correction constant for all (x, y) pairs should 

be derived from the space of possible events X x Y. However, this is not practical and 

correction constants are estimated from the training samples as 

which is accurate enough in practice when the set of training samples is large. In this 

way, the following correction feature fl is added for each sample 

Algorithm 2.2 describe the GIS procedure. Darroch and Ratcliff (1972) showed that 

the model built by this algorithm converges to P*· This version of the algorithm is 

for estimating the ai parameters of models with the exponential form of equation 2.8 

(Borthwick 1999). 

The key step in each iteration of the GIS algorithm is the calculation of the expectations 

for the set of features. Suppose there are N training samples, m possible classes and 

1 feature functions, then the running time at each iteration is O(Nml) (Ratnaparkhi 

1998). 

The Improve Iterative Scaling algorithm follows the same basic steps as the GIS algo­

rithm. The improvement is related to the way in which the expected value of a feature 

function is obtained. 
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Algorithm 2.3: Improved Iterative Scaling. Adapted from Berger et al. (1996). 

Input: a set of non-negative feature functions F = {h, 12,···, fj,.··, fn}, and 
the empirical distribution p(x, y) 

Output: the maximum entropy model P* 
1: procedure IIS(F,p(x, y)) 
2: Initialise parameters: ).(.0) ;- 0 

. J 
3: '/,;- 1 
4: repeat 
5: Define the current distribution p(i): 

. ",n (i) 

6: p(t)(Ylx) ;- Z),I(x) eL...j=l \ !;(x,y) 

7: Find f}.).j for each feature which is solution to: 

8: p[Jje~,\;f#](i) = P[fj] with f#(x, y) == 2:;=1 fk(X, y) 
9: Update the parameters for the next iteration: 

10: ). (HI) ;- ). \i) + f}.). . 
J J J 

11: j ;- j + 1 
12: until p(i) has converged 
13: p* ;- p(i)(Ylx) 
14: end procedure 
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Algorithm 2.3 outlines the procedure as described in Berger et al. (1996), which deter­

mines the optimal values of the Ai parameters of a model with the exponential form of 

equation 2.6. 

The key step of the Improved Iterative Scaling Algorithm is the calculation of each 

increment ~Ai. Unlike GIS, this algorithm does not require S(x, y) to be a constant; 

it can compute these increments numerically by Newton's method or other equivalent 

techniques (Berger et al. 1996, Borthwick 1999). Della Pietra et al. (1995) showed that 

p(x, y)(j) converges to p*(x, y). 

It should be noted that both algorithms terminate when convergence to the maximum 

entropy model has been reached, that is when the change in the parameters estimated 

in the iteration is zero or negligible. However, stopping the algorithm after a fixed 

number of iterations works well generally and it is the most commonly used criterion in 

practice. For example, Ratnaparkhi (1998) uses 100 iterations in all the four applications 

of MEMs he presents. 

2.4.3.2 Feature selection 

As explained previously, building a maximum entropy model involves two steps. The 

iterative scaling algorithms presented above provide a method for determining the op­

timal parameters of the model, once the set of feature functions has been defined. 

The problem is that maximum entropy framework specifies how constraints should be 

combined, but it does not stipulate directly what constraints should be included into 

a model. Moreover -as discussed earlier- features which are overlapping each other 
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and some that are even not relevant can be included, and the model should be able to 
deal with them correctly. 

Penrose (1979) complained about this deficiency of the maximum entropy framework. 

Jaynes's (1991) answer was rather strong: 

"Well, we had thought it rather obvious that one should always take into 

account all of the relevant information one has; and find it incredible that 

anyone could have supposed differently." 

Risking Mr. Jaynes's rage, it might be said that determining what information is relevant 

is not so obvious to everyone, specially if that person is not an expert on the random 

process being modelled -but a simple computer science student, say- and such an 

expert is not at hand to be consulted. 

The view expressed in Jaynes (1991) is that the modeller has all the responsibility 

for providing the framework with the features that describe the random process best. 

However, computer scientists do not usually like this kind of answer and are always 

looking for ways in which computers can help to solve any task with as little human 

intervention as possible. 

Help from a computer becomes more relevant when the target process is complex, since 

it is not uncommon to find problems with thousands or even millions of possible features 

-such NLP problems- from which only a small fraction are expected to be crucial for 

modelling the process (Berger et al. 1996, Blum and Langley 1997). In these circum­

stances, feature selection is critical as the iterative algorithms of section 2.4.3.1 are 

computationally costly, and their running times depend on the number of constraints 

to be considered by the model. Moreover, there are two reasons which make feature 

selection even more critical for maximum entropy models. 

Firstly, the iterative algorithms for estimating parameters do not look for higher-order 

interaction between features. This is consistent with the maximum entropy principle 

in that no assumptions should be made other than the constraints to be met. On the 

other hand, if there exists a special interaction between two features, their combination 

in a more complex feature function should result in a more accurate model (Mikheev 

1998). For example, a model for finding organisation names can combine the weights 

of the features "this word is capitalised" and "the next word is pIc" which are estimated 

separately, but it can also use the complex feature that results from the conjunction of 

these two features, i.e the feature "this word is capitalised and the next word is pIc", 

whose weight is estimated from the training examples that fire both original features 

simultaneously. 
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Mikheev (1998) states that if the conjoined features are not independent -as in the 

above example- then the resulting complex feature should produce a better prediction. 

However, as things are, this higher-order feature needs to be included explicitly as a 

constraint by the modeller from the beginning. 

Secondly, although an MEM can handle some irrelevant features by assigning the ap­

propriate near-zero weights (Rosenfeld 1996, Mikheev 1998), the introduction of many 

irrelevant features can degrade the predictions of the model. Similarly, MEMs cope well 

with overlapping features, but a high degree of overlap requires more iterations in the 

iterative scaling algorithms (Borthwick 1999, Ristad 1998). 

The two step task of deciding which features to use in describing a concept and then 

deciding how to combine them, is not a property of maximum entropy models only 

but present in most machine learning methods (Blum and Langley 1997). In all these 

techniques -though they may significantly differ in the approach- there exist induction 

algorithms which aim to scale well from domains with many irrelevant features. 

Thus feature selection defines a two level process in which modellers are responsible for 

establishing a set of initial features that they think might be useful in describing the 

target concept, and then a refinement of this set is performed by an inductive algorithm. 

This combination is very common in practice, including work with maximum entropy 

models. 

A good example of this combination can be found in Borthwick (1999). He presents a 

basic feature selection method in which an algorithm collects a pool of features, and then 

a cutoff filter is applied to discard all features that are not fired more than three times. 

Both the features extracted by the algorithm and the cutoff threshold were defined 

by Borthwick and were probably based on his intuition of the problem being solved. 

Although this simple method worked well, he recognised the necessity of deviating from 

it to solve some practical problems. He incremented the cutoff threshold for too frequent 

features which resulted in a reduction of the size of the model without a significant loss , 
in accuracy. He also excluded features which were fired by default in many contexts 

and features which only predicted the default class of the process. 

Ratnaparkhi (1998) also uses the frequency-based count cutoff to select the features 

to be included in the model with success. He set the cutoff threshold to values five 

and ten in most cases. For one task, Ratnaparkhi set this value to zero. He argues 

that this value should be used when the initial feature set consists of only specific 

features whose valuable information might be thrown away when discarded. On the 

other hand, a threshold greater than zero is useful when the set of features includes 

generalised features in addition to the specific ones. Thus, most of the disregarded 



CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 49 

features will be specific features which are unreliable sources of evidence -due to their 

low counts among the training samples- and the model will be able to fall back on 

-more reliable- generalised features for predictions. Ratnaparkhi also states that the 

features used in solving the NLP problems presented in his thesis are knowledge-poor 

-i.e. do not require linguistic expertise- by design, so that a computer is forced to 

learn as much as possible from the training samples. 

Despite the success of frequency cutoff, the modeller has the main responsibility for 

determining which features are included into a model. Hence, this kind of selection 

is still difficult to apply when the modeller has little idea of which features might be 

useful. 

Two kinds of features in this process can be distinguished: atomic features which cannot 

be decomposed into simpler features, and complex features which are built by making 

conjunctions of atomic features. The latter ones were also called higher-order features 

earlier. In the terms of Ratnaparkhi (1998), a specific feature is a feature compounded 

from many atomic features -and thus fired for a small number of training samples­

whereas generalised features involved few or just one atomic feature, being fired more 

frequently. 

Borthwick (1999) uses only atomic features for his model, but he describes an attempt 

to include complex features. He realised that the cutoff method was not appropriate 

for performing the selection when higher-order features were involved, and applied a 

multi-stage process. 

He first created a pool of complex features of the form Iij = Ii 1\ Ij that satisfy # Iij > 3, 

# Ii - # Iij > 3 and # Ij - # Iij > 3, where #1 is the number of times a feature I is 

fired in the training samples. After this filtering by count, he obtained a pool of about 

139,000 features. Unfortunately, this was too large to handle by the implementation of 

the IIS algorithm he was using (Ristad 1998). 

Therefore, he defined a second stage in which a selection method proposed by Ristad 

(1997) is applied. In this method, features are selected by comparing the model's 

expectations of how often they should occur in the training samples against the empirical 

expectations. Let d Ii be this difference calculated as 

X,Y X,Y 

where p(ylx) is a maximum entropy model which does not include the candidate fea­

tures. By the restrictions imposed by the framework, if a candidate feature Ii were 

added to the model, then d Ii = O. Hence, the higher the value of d Ii, the bigger the 

impact on the model if Ii were included in the model. 
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Algorithm 2.4: Basic Feature Selection. Adapted from Berger et al. (1996). 

Input: a large pool of ca?didate features F and the empirical distribution p(x, y) 
Ou~put: a set 8 of actIve features and the maximum entropy model Ps that 

mcludes these features 
1: procedure BFS(F,p(x, y)) 
2: Initialise 8 +-- 0 and Ps +-- the uniform distribution over Y 
3: repeat 
4: for each candidate feature fj E F do 
5: Compute the model Psu{fj} using an iterative scaling algorithm 
6: Compute the gain in log-likelihood from adding this feature: 
7: b.£(8,fj) +-- £(pSU{fd) - £(Ps) 
8: end for 
9: Check the termination condition 

10: f* +-- argmax b.£(8, fj) 
j 

11: 8 +-- 8 u f* 
12: Compute the model PS using an iterative scaling algorithm 
13: until convergence 
14: end procedure 

50 

Although Borthwick (1999) does not explain exactly how he used this number to rule 

out features, it can be guessed that he set another threshold quantity and discarded 

any candidate feature which did not pass this threshold. Unfortunately, this method 

was not sufficient for obtaining the final set of features. 

Borthwick (1999) reports that there were features that fired too frequently, causmg 

numerical problems in the implementation of the lIS algorithm. Therefore, he had to 

add a third stage in which features were eliminated from the pool manually. Unfor­

tunately, the resulting pool of features did not outperform the model obtained with 

atomic features only. 

Berger et al. (1996) suggested a different approach for the feature selection problem. 

In this, the modeller is only responsible for providing as large a pool of features as 

possible. Thus it may include both atomic and complex features, and they need not 

be relevant or useful. This approach is presented in algorithm 2.4. Basically it builds 

incrementally -with a strategy similar to the induction of decision trees- a set S of 

features to be considered by the model, from a large pool of features F, by selecting 

at each step the feature that provides the greatest improvement in log-likelihood of the 

model with respect to the training samples. 

One issue not specified in algorithm 2.4 is the termination condition. Obviously, the 

algorithm should ideally stop when all useful features are included in the set S. One 

reasonable stopping criterion would be to subject f* to an increase of likelihood on held­

out training samples. If this feature does not satisfy this condition, then it is discarded 

and the algorithm stops. 

However, the biggest problem in algorithm 2.-1 is that at each step the maximum en­

tropy model PSu{f
l
} must be computed. Despite the efficiency of the iterative scaling 



CHAPTER 2. PREVIOUS WORK AND HYPOTHESES 51 

algorithms presented in section 2.4.3.1, this is a computationally costly task that makes 

the method impractical. For this reason, Della Pietra et al. (1995) and Berger et al. 

(1996) make the algorithm greedy but more efficient. Instead of computing ~£(S, fi), 

the greedy version calculates its approximation ",b..£(S, fd by keeping all the param­

eters of the model Ps fixed and determining only the new parameter required for the 

constraint imposed by Ii· After selecting the candidate feature which maximises this 

approximated value, it is added to the set S and the parameters of the model are recom­

puted. This approach estimated good features relatively fast but it does not guarantee 

to make the best selection at each step because adding a new feature to a model can 

change all its parameters. 

Ratnaparkhi (1998) conducted controlled experiments to evaluate the differences in the 

frequency cutoff method he utilised and the Random Field Induction method explained 

above. He allowed the induction algorithm to run a fixed number of iteration AI, and 

then selected the set Si with i E {I, ... , M} which yielded the highest log-likelihood 

on held-out training samples. The aim of these experiment was to assess whether the 

smaller set of features produced by the inductive algorithm resulted in better accuracy of 

the final model. This set is clearly smaller because, unlike the frequency cutoff method, 

non-informative features introduce negligible gains in likelihood and are consequently 

discarded by the algorithm. 

Ratnaparkhi (1998) found that both approaches -i.e. frequency cutoff and incremental 

induction- obtained models that perform similarly. The main differences between the 

methods are in the running time and the readability of the resulting set of features. 

He concludes that if efficiency is the main issue, then frequency cutoff should be used 

as it is much faster than the inductive algorithm. On the other hand, if the goal is to 

obtain a readable set of features, then incremental induction should be used as it yields 

a concise and understandable list of features. 

Mikheev (1998) also conducted a study of feature selection and proposed a new method 

based on the construction of a lattice of higher-order features, which he calls collocations. 

The basic idea is to include collocations -i.e. complex features which are empirically 

observed- and features which might provide significant generalisations over the ob­

served collocations into this lattice. Only then, important features are selected for the 

model. 

He starts by collecting training samples and representing them as configuration of atomic 

features. Then he applies some sort of goal regression to identify configurations which 

can safely be removed from the training sample space in order to reduce the dimension-

ality of the task. 
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Figure 2.1: Example of a collocation lattice in which thick circles represent reference nodes and filled circles 
represent possible hidden nodes that are not part of the lattice. Adapted from Mikheev (1998). 

The resulting configurations are organised as cliques of features in a lattice. Observed 

configurations are represented as reference nodes. For example, suppose the training 

samples provide the configurations [ABC], [BCD], [CEF] and [CFG]. Figure 2.1 shows 

the lattice that these configurations generate. In this figure, configurations are repre­

sented as reference nodes denoted by thick circles. Then, nodes which share part of 

at least other two nodes in the lattice are added to support generalisations over the 

domain. These kinds of nodes are called latent or hidden nodes, and are not normally 

observed on their own but only as part of reference nodes. As shown in figure 2.1, the 

hidden nodes representing the collocations [BC] and [CF] and the hidden node repre­

senting the atomic feature [C] are also considered in the lattice. All other hidden nodes 

are discarded because they directly support only one node and thus they do not provide 

any generalisation. 

Each node has associated with it two frequency counts: the configuration frequency 

counts (cf), which corresponds to the number of times the represented configuration 

has been observed in the training samples, and the feature frequency count (ff), which 

corresponds to the number of times that the represented feature -atomic or complex­

has been seen in all observed configurations. 

Therefore, in reference nodes these counts normally have the same value, that is cJ(Ji) = 

JJ(Ji). Hidden nodes normally have zero configuration frequencies (cf(Ji) = 0) but non­

zero feature frequencies (JJ(fi) > 0). It might be the case that a reference node could also 

be a hidden node for another higher-order reference node. In this case, its configuration 

frequency count will not be zero and it might be different from its feature frequency 

count. 

Mikheev (1998) discussed two ways in which features from this lattice -which he calls 

the empirical lattice- can be selected for the model. The first idea is to apply fre­

quency cutoff over all nodes in the lattice. This idea is easily implemented but if too 

many features are selected, then both the estimation of the model 's parameters and the 
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application of the model to new examples -which is linear in the number of features­
might become inefficient. 

The second idea is to try determining which features contribute to the frequency distri­

bution on the reference nodes. This is done by creating an optimised lattice based on the 

empirical lattice. The optimised lattice is initially empty and is built incrementally by 

adding a node at each step, together with the nodes which are the minimal collocations 

of this node and the nodes already included in the lattice. Thus, the optimised lattice 

always contains non-overlapping feature cliques. In this way, there is no need to use 

iterative scaling to account for overlaps among features. 

For the example of figure 2.1, suppose the first node to be added to the optimised lattice 

is the one representing the feature [A]. The configuration frequency in the optimised 

lattice (~/) of this node will concentrate all configuration frequencies of itself and the 

higher-order related nodes, thus ~f([A]) = cf([A]) + cf([AB]) + cf([AC]) + cf([ABC]). 
Now suppose the feature [B] is selected to be included in the optimised lattice. This will 

also require the node for [AB] being added and redistributing the frequencies among 

these three nodes. The resulting frequency counts will be ~f([A]) = cf([A]) + cf([AC]), 

~f([B]) = cf([B]) + cf([BC]) and d([AB]) = cf([AB]) + cf([ABC]). If at some point 

the node representing the feature [C] is added to the optimised lattice, then the whole 

feature clique involving these features will be present and with identical frequency counts 

to those in the empirical lattice. 

In this selection method, the node to be added at each step is the one which makes the 

greatest increment in log-likelihood of the optimised lattice with respect to the reference 

nodes in the empirical lattice. For this, the probability of a node is considered to be the 

probability of the highest related node in the optimised lattice, which could be the node 

itself. It is also necessary to define a "lattice root" node which is used as default related 

node for estimating the probabilities of reference nodes in cliques that are not yet con­

sidered in the optimised lattice. Finally, Mikheev (1998) also introduces a smoothing 

scheme which does not affect frequent nodes, but considerably penalises sparse colloca­

tions. In this way, this method defines a greedy hill-climbing algorithm with maximum 

likelihood evaluation function which adds a winning set of non-overlapping features at a 

time, whose solution can be easily derived and re-calculated from observed frequencies. 

It is not clear whether one of these two alternatives -i.e. the empirical lattice or the 

optimised lattice-- is better than the other. Mikheev (1998) points out that this is 

an empirical matter which depends on the complexity of the task, because the time 

needed for the feature selection can compensate for the time saved during parameter 

estimation. 
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T~ble 2.1:. Com.paris?n of lattice methods for feature selection and Random Field Induction in tasks with 
different dimensionality. Adapted from Mikheev (1998). 

size 
time 

training accuracy 
test accuracy 

size 
time 
training accuracy 

test accuracy 

size 
time 
training accuracy 
test accuracy 

Dimensionality 9 

Empirical Lattice I Optimised Lattice I Random Field Induction 
195 148 44 

00:29 00:30 33:26 
85.04 85.04 84.85 
83.99 83.99 84.27 

Dimensionality 11 

Empirical Lattice I Optimised Lattice I Random Field Induction 
628 271 46 

03:06 01:59 1:09:26 
85.47 85.38 84.97 
85.39 85.67 84.55 

Dimensionality 13 
Empirical Lattice I Optimised Lattice I Random Field Induction 

1,530 449 54 

10:55 08:15 2:23:48 

86.04 85.37 85.88 

85.67 87.64 85.99 

Table 2.1 shows experiments -reported in Mikheev (1998)- with both methods on 

tasks with different dimensionality, which confirm this observation. What is clearly 

determined by these experiments is that the Random Field Induction discussed earlier 

required much more training time with similar levels of performance. 

The main advantage of the optimised lattice method is that it provides a much smaller 

maximum entropy model than just using the empirical lattice. This is a very important 

advantage when additional optimisation is applied over the features, which normally 

does require iterative scaling. In Mikheev (1998), an approach to further pruning the 

number of features considered for the final model is proposed. This method requires 

a quarter of the time when working on the optimised lattice compared to working on 

the empirical lattice. In addition, the resulting maximum entropy model after this 

optimisation consistently showed better performance than both lattice methods and 

the Random Field Induction approach. 

The main problem with Mikheev's (1998) method is that building the feature collocation 

lattice can be prohibitive for tasks with many dimensions. Nonetheless, this approach 

can provide a better model and in faster time than the inductive technique for many 

practical tasks. For tasks with more than 25-30 dimensions, Mikheev suggests Random 

Field Induction should be used. 
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2.4.4 Modelling 

The previous section has detailed methods for estimating the parameters of a maximum 

entropy model and methods for selecting the features to be included in such a model. 

However, all the discussed approaches for selecting the correct set of features -namely 

frequency cutoff, Random Field Induction, empirical lattice and optimised lattice­

start from an initial set of atomic and higher-order features which must be provided by 

the modeller. 

This is not the case in other machine learning approaches, which automatically look for 

the best conjunction of attributes (Blum and Langley 1997), in which the modeller is 

required only to provide the initial set of atomic features. 

It could be argued that this is all that is needed for the lattice methods. This is true 

in general, but it is not clear that the method might be useful when the task being 

modelled has many dimensions3 . For example, suppose there are 18 non-valued atomic 

features for each training sample of an NLP classification task, of which nine correspond 

to tokens in a sequence within a context window4 . Thus the number of valued atomic 

features will normally be very large. It will be rather difficult if collocations of 17 valued 

atomic features -which in the best case do not include one of the nine tokens in the 

sequence- will support more than one observed configuration. Hence it is likely that 

none of these hidden nodes should be present in the empirical lattice and thus the only 

nodes to be considered for the model would be the observed conjunctions of 18 features. 

The usefulness of the method cannot be completely disregarded because there are ap­

plications of the lattice method to NLP tasks in Mikheev (1998), though everything 

suggests that in all of them the initial configurations were not so sparse. Moreover, in 

an application for determining whether a period is marking the end of a sentence, only 

the 238 most frequent atomic features are used, and no explanation for this reduction 

is given. Furthermore, this set must correspond to 238 valued atomic features -and 

only around six non-valued atomic features- as they only generate 8,245 nodes in the 

empirical lattice. 

This last point may require further discussion. If the contexts considered for modelling 

a random process contain six non-valued atomic features, then the number of possible 

features for each training sample j is given by 

IF; I = ( : ) + ( : ) + ( ~ ) + ( : ) + ( ~ ) + ( ~ ) = 63 

3Dimensions is Mikheev's (1998) term to refer to non-valued features. For example, "the part-of­
speech of the next word" can be included in the information provided for a ~et of traini~g examples. 
This corresponds to one non-valued atomic feature. In the data, however, thIS fea~ure wl,~l be valued: 
''the part-of-speech of the next word is Noun", ''the part-of-speech of. the next .word IS Verb, etc. These 
instantiations of the abstract feature are valued atomic features or Just atomIC features. 

4 Such a problem will be encountered in later chapters. 
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that is, one conjunction of six features, six conjunctions of five features, 15 conjunctions 

of four features, 20 conjunctions of three features, 15 conjunctions of two features and 

six atomic features. Hence it is impossible that 238 non-value atomic could generate 

only 8,245 possible feature collocations. Moreover, this number needs to be multiplied 

by the possible values of each conjunction. For example if all six atomic features have 

three possible values, then the theoretical number of possible conjunctions is 

IFI = 36 + 6.35 + 15 . 34 + 20.33 + 15 . 32 + 6·3 = 4,095 

which corresponds to the maximum size of the empirical lattice. In NLP tasks, atomic 

features are rarely three-valued (e.g. part-of-speech tags) and frequently lexical forms­

i.e. tokens- are included. Thus the number of possible conjunctions is normally huge. 

However, this theoretical number of feature collocations is almost never encountered in 

practice, and the lattice method can be used even for tasks with moderate dimensionality 

if common high-order collocations can be found. Nonetheless, the number of collocations 

is still extremely high and considering all of them also makes the use of Random Field 

Induction impractical. 

Mikheev's (1998) lattice methods can be seen as a filter approach to feature selection, 

because it filters out irrelevant features before the induction occurs5 . Filter approaches 

are common in machine learning and the actual techniques employed vary enormously. 

They have many advantages, but the most attractive characteristic is that they are 

normally independent of the induction algorithm that will use their output and thus 

can be combined with any such method (Blum and Langley 1997). 

One approach successfully applied for filtering is the use of decision trees. For exam­

ple, Kubat and colleagues have used them to filter attributes for a Bayesian classifier 

and initialise neural networks (Kubat, Flotzinger and Pfurtscheller 1993, Kubat 1998, 

for example). Cardie (1993) used them to select the features to be included in a 

k-nearest neighbour retrieval function for solving an NLP problem. She found that 

this hybrid technique outperforms alternative systems that utilise only decision trees 

or k-nearest neighbour, and also two other case-based systems that incorporated -

potentially expensive- expert knowledge. 

More recently, Park and Zhang (2002) presented an approach in which decision trees 

are used to generate higher-order features for a maximum entropy model to solve text 

chunking. They showed that a decision tree can easily be represented as feature func­

tions for a maximum entropy modelling. For example, consider the decision tree of 

figure 2.2, which makes predictions for the part-of-speech tagging task discussed in sec­

tion 2.4.1. Rules in this tree can be directly denoted with the if-then form used in 

feature functions: 
SIn this context, the induction step would be the optimisation with iterative scaling or the estimation 

of the parameters of the model. 
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verb 

yes 

other noun 

Figure 2.2: Part of a decision tree for part-of-speech tagging. The rules are: if the current word is 'model' 
then ~a) if the previous word is a pronoun, then predict current word is a verb; otherwise (b) if the next 
word ~s a form of the verb 'to be', then predict current word is a noun; (c) otherwise predict the current 
word IS not a verb nor a noun. 

fI(x,y) { 1 if y = verb and (wo is 'model' and W-l is a pronoun) in x 
0 otherwise 

{ 
1 if y = noun and (wo is 'model' and W-l is not a pronoun and 

W+l is a form of the verb 'to be') in x 

0 otherwise 

{ 
1 if y = other and (wo is 'model' and W-l is not a pronoun and 

W+l is not a form of the verb 'to be') in x 

0 otherwise 

Park and Zhang (2002) transcribe each path from the root to leaves of the decision 

tree as feature functions. Then, they argue that because algorithms for the induction 

of decision trees (Quinlan 1983, Quinlan 1993) try to partition the sample space into 

non-overlapping regions, each feature -i.e. each path- can be considered to have 

the same importance weight. They introduce these features into a maximum entropy 

model which has to re-weight the complex features in order to optimise their predictive 

power. This method obtained an improvement of 2.34% in accuracy with respect to the 

performance of the decision tree. More importantly, the number of errors were reduced 

by 41.64% from 2,663 to 1,554 on test data. This improvement is important as decision 

trees are themselves strong classifiers. 

However, the main contribution of Park and Zhang's (2002) approach is that it auto­

matically selects features for a maximum entropy model starting from atomic features 

only. Thus the linguistic knowledge required for modelling the task is considerably 

reduced. 

In the decision tree of figure 2.2, three non-valued atomic features are used: h = "the 

string of the current word is", 12= "the previous word is a pronoun" and h = "the next 

word is a form of the verb to be". Thus the set of possible features defined by the 

features is {h,h h h 1\ 12, h 1\ h 12 1\ h, h 1\ 12 1\ h}· Now suppose that w can 
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take values from -a rather small- lexicon of 3,000 words. Because f2 and 13 are 

binary valued, there are 12,000 possible configurations just of the form (II 1\ f2 1\ h) 

and 27,008 possible valued features in total. If all 3,000 words in the lexicon are present 

in the training corpus, from which the training samples are taken, then this potential 

number of valued features will become the actual size of the feature space for both 

Random Field Induction and the lattice methods. 

A decision tree searches for the most informative combinations of features that split the 

data. Therefore, the tree of figure 2.2 is indicating than the collocations II (model) 1\ f2 
and II (model) 1\ f2 1\ 13 are valuable in modelling the task. This tree also indicates 

that there is no need to try more complex combinations with these features. This 

automatically discards collocations such as II (model)I\f2l\hl\f4, II (model)I\f2l\fsl\f6, 

etc. 

Thus, if only conjunctions considered by a decision tree are used as the initial set of 

features, for both Random Field Induction and lattice methods, a significant reduction 

in size of the task can be obtained making practical the use of feature selection tech­

niques in tasks with more dimensions. This is an interesting idea which deserves some 

investigation. 

Nonetheless, there is an important limitation for this idea to work: induction algorithms 

for decision trees are computationally expensive. For example, both Ratnaparkhi (1998) 

and Borthwick (1999) conducted experiments that aimed to compare the performance of 

their maximum entropy approaches against known, commercial decision tree induction 

algorithms. In addition to obtain results which suggest that maximum entropy models 

outperform decision tree classifiers, neither of them could obtain decision trees for tasks 

that included lexical features (strings) for moderate-size training corpora. 

This last problem could be solved by using shallow decision trees or decision trees with 

fixed depths, for which relatively efficient induction algorithms have been proposed 

(Auer, Holte and Maass 1995, Dobkin, Fulton, Gunopulos, Kasif and Salzberg 2000). 

Obviously, finding sub-optimal conjunctions only is a risk as the number of features 

in each collocation would be restricted by the depth of these decision trees. Neverthe­

less, it would provide a set of initial higher-order features which should make practical 

the induction methods discussed above, starting only from the specification of atomic 

features. 

2.4.5 Limitations 

One of the limitations of using maximum entropy models has already been discussed: 

their computational cost. Although building an ME1'I is a tractable problem, large tasks 
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with thousands or millions of training samples and with many dimensions that cannot 

be pruned without expert knowledge require a considerable amount of both memory 
and CPU time. 

A more important limitation is related to the convergence of the parameters when an 

exact solution for equations 2.6 and 2.8 does not exist. This is the case with random 

processes which require a model to predict p*(ylx) = 1 for some pair (x, y). In such 

cases iterative scaling will always increase the parameter associated with the constraint 

imposed by this pair. 

A related problem is that the maximum entropy framework "gives infinite confidence to 

contexts that are not ambiguous with respect to the predictions with which they occur, 

regardless of their frequency" (Ratnaparkhi 1998). This fact produces an undesired 

effect when parameters interact to make a prediction. Infrequent events tend to be 

unambiguous and -as explained above- normally get higher parameters in the model. 

Thus when combined with other evidence which might appear much more frequently in 

the training samples, parameters for infrequent events will dominate the prediction. 

However, these limitations are seldom encountered in NLP tasks (Ratnaparkhi 1998). 

Moreover, the count cutoff used for feature selection normally discards these problematic 

infrequent features. Another suggested solution for these problems is the application of 

smoothing techniques and using soft constraints (Lau 1994). 

A final observation is that only binary feature functions are considered in most -if not 

all- applications and implementations of the maximum entropy model. However, this 

is not a limitation of the framework itself (recall that the iterative scaling algorithm only 

requires positive initial parameters). This limitation is not a problem, since a feature 

of the form: 

_ { count ( w) if y = verb and w occurs in x 
f 1 (x,y)- . o otherWIse 

in which count(w) is the number of times that a word w is found in a document, can 

be re-written as the following binary feature: 

{
I if y = verb and w occurs frequently in x 

fl(X,y) = . o otherWIse 

Although they are not exactly the same feature, they provide similar evidence for the 

prediction. In any case, binary features have proved to be sufficient to capture enough 

information -at least at word or sentence level- for making accurate predictions 

(Ratnaparkhi 1998). 
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2.4.6 Maximum entropy tools 

There are a number of tools that implement the maximum entropy framework. The 

main advantages of using an existing implementation -rather than constructing one 

from scratch- are that the significant time needed for programming and debugging can 

be saved and any results obtained are supported by previous work with the same tool. 

The most popular tools are The Maximum Entropy Modeling Toolkit (MEMT) (Ristad 

1998) and the OpenNLP Maxent package (MaxEnt) (Baldrige and Bierner 2001). MEMT 

supports the construction and application of maximum entropy models for discrete do­

mains. This tool effectively implements the IIS algorithm for estimating the parameters 

of the model - in the C language. MaxEnt also supports maximum entropy models 

for discrete domains, but it implements the GIS algorithm - in the Java language. 

It is not clear that one tool is better than the other. Nonetheless, MaxEnt provides 

more support: expected values calculation and the frequency cutoff algorithm, if that 

is the feature selection mechanism to be used. In any case, both tools can be used for 

parameter estimation only after doing the selection in a preprocessing step. 

Borthwick (1999) reported some numerical problems with MEMT, which have not been 

reported for MaxEnt so far. This might be considered as a reason for preferring the 

latter package. Nevertheless, the main reason for using MaxEnt is that this tool is 

free, whereas MEMT is nowadays part of PMT, a commercial product from Mnemonic 

Technology Inc. 

2.5 Summary and discussion 

In this chapter, a literature review of previous approaches to named entity extraction 

has been presented. This review has provided three important bases: 

I> manually-built extraction rules should be avoided by portable NEE systems and 

machine learning techniques must be used instead 

I> among all machine learning paradigms, statistical methods have been shown to 

be quite successful when applied on NLP tasks, and 

I> maximum entropy models have proved to be a good approach for extracting named 

entities and they also show benefits for building generic systems 

This review and the above bases have also been the foundations on which a number of 

hypotheses have been proposed with the aim of developing methods that will contribute 

towards the implementation of a portable, generic NEE system. 
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The first hypothesis of this thesis is that the inclusion of general, more linguistically­

oriented features might help a maximum entropy model to capture useful clues for 

identifying named entities which cannot be obtained from lexically-oriented features. 

The main challenge here is obtaining and representing this linguistic knowledge without 

affecting the portability of the approach. Chapter 4 discusses possible resources for this 

information and also explains how it can be introduced into a generic named entity 

extractor. 

The second hypothesis propounded here is that a better treatment of exceptionality 

can be provided to the system by biasing the maximum entropy model to consider 

further the most similar training examples to the piece of text being analysed. Chapter 

5 explains in more detail why this approach could work and surveys the validity of this 

hypothesis. 

The final hypothesis proffered is related to semi-supervised learning. It is evident that 

the ability of making good use of unlabelled text would increase the portability of 

any NLP system. However, it is not clear that maximum entropy models are suitable 

for bootstrapping techniques. In chapter 6, this suitability is analysed and ways of 

overcoming the difficulties they pose are discussed and tested. 

This chapter has also provided a detailed overview of the maximum entropy frame­

work and how it can be applied to the formulation of named entity extraction tasks as 

classification problems. 



Chapter 3 

Baseline systems 

In this chapter, a new method for analysing target corpora is proposed. This method 

offers some advantages over previous approaches in the literature such as more detailed 

information on the performance of an NEE system. 

This corpora analysis is then applied on new implementations of two known named 

entity recognisers which will be used as baseline systems in later chapters. 

3.1 Corpora analysis 

The experience accumulated over the years on solving NLP tasks indicates that the 

complexity of a particular application not only depends on how hard the task could 

be, but also on the complexity posed by the corpus being targeted. Therefore, it is 

not possible to determine whether an NEE system is obtaining an acceptable level of 

performance if it is not known how intricate the target texts are. 

A common way of getting round this problem is to use the performance of a (very) simple 

baseline system as a minimum bound of effectiveness and against which other approaches 

can be compared. Thus according to basis three (section 2.3), an NEE system based 

on maximum entropy models should exhibit a performance that is significantly higher 

than such a baseline system. 

Palmer and Day (1997) conducted an effort to analyse the complexity of the MUC named 

entity extraction task on several corpora in different languages. In this task there are 

three types of phrases that report seven classes of named entities (Sundheim 1995): 

TIMEX (dates and time expressions), NU:NIEX (money and percentage expressions) 

and EN AMEX (names of people, locations and organisations). 
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They found that almost all time and numerical expressions could be captured by a 

small number of simple patterns, whereas ENAMEX phrases presented a much more 

challenging job. However, they also discovered that TIMEX and NUMEX phrases 

accounted for 20-30% of the named entities in the different corpora, thus NEE systems 

had to be good at recognising names of people, locations and organisations in order to 

perform well on the task. 

A second important result of this analysis is that an NEE system cannot focus on one 

ENAMEX class, because they significantly varied between languages. For example, 

a system that optimises the recognition of location names would perform well on the 

Chinese corpus under analysis, in which this category is a majority, but poorly on the 

English MUC-6 corpus, in which this category only represents 14.5% of the ENAMEX 

phrases. 

But the most important result reported by Palmer and Day (1997) is that a small 

number of ENAMEX entities occurred very frequently. In general, they observed that 

10% of the named entities represented up to 50% of the ENAMEX phrases occurring 

in the corpora. Thus, there is an important section of named entities that most likely 

never occur in any amount of training data. 

Following these findings, they conducted an experiment to determine how well a system 

that memorises EN AMEX entities in the training data could identify named entities 

in unseen text. The results indicate that the coverage of unseen named entities -as 

more and more training data is provided- peaks rapidly, leaving a large percentage of 

phrases uncovered. 

Palmer and Day (1997) used these results to estimate a lower bound for the recall of a 

baseline system which just memorised ENAMEX phrases and utilised simple patterns 

for TIMEX and NUMEX phrases. They found that this number varied greatly between 

languages -and possibly across domains- because they presented a different vocabulary 

transfer rate, that corresponds to "the percentage of phrases [labelled as named entities] 

occurring in the training corpus which also occurred in the test corpus". 

Palmer and Day (1997) proposed an estimation for this lower bound of recall that 

is given in equation 3.1, where NNUMEX, NT1MEX and NENAMEX are the proportion 

of NUMEX, TIMEX and ENAMEX expressions in the text respectively - i.e. the 

percentage of named entity phrases represented by each type; a is the percentage of 

time and numerical expression that can be captured by simple patterns - which they 

estimate at 0.95; and TENAMEX is the vocabulary transfer rate of ENAMEX phrases. 

«NNUMEX + NTIMEX) * 0') + (NENAMEX * TENAMEX) 
(3.1) 

Clearly, NNUMEX, NTIMEX, NENAMEX and TENAMEX are corpus -or at least language­

dependent. As stated above, the first three parameters seem to be relatively constant 
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across corpora, but the vocabulary transfer rate of ENAMEX phrases differs consider­

ably. For example, the Chinese corpus shows a very high rate of TENAMEX = 0.732, 

whereas the French corpus presents a modest one with TENAMEX = 0.236. Inter­

estingly, the English corpus turned out to be quite difficult: TENAMEX = 0.212 and 

NENAMEX = 0.798, resulting in a lower bound of just 38.4%. 

It would be quite interesting to establish whether these numbers are also found in the 

MUC-7 corpus, which is the one used in this thesis. Some correlation can be expected as 

both corpora are collections of news articles, though from different sources: the MUC-6 

corpus collects Wall Street Journal articles whilst the MUC-7 corpus corresponds to 

documents from the New York Times. 

However, these ideas can be developed further to obtain an indicator of the portability 

of an NEE system. In effect, Palmer and Day's (1997) study suggests that it is very 

difficult to provide an extractor with sufficient training examples to cover most of the 

named entities that will be encountered in the target texts. Therefore if large amounts of 

manually-labelled training examples are not available, an NEE system which performs 

well only on seen phrases will not be able to recognise a significant portion of the named 

entities present in the target texts. 

Consequently, it is important that it could be determined whether a named entity 

extractor is performing well on unseen named entities. The overall recall and precision, 

or their F -score combination, does not give this information directly. It is necessary 

then to obtain these indices separately on the basis of how familiar a named entity is. 

In section 3.2, a new approach to analysing the complexity of an NEE task is proposed. 

This approach allows both the estimation of task-independent lower bounds for the recall 

and the precision of a named entity extractor, and the evaluation of its performance 

individualised by the familiarity of the named entities to be extracted. 

3.2 Analysis of the MUC-7 corpora 

This section proposes a new approach to estimate the complexity that the target domain 

of an NEE task poses. This complexity is reflected as lower bounds for the recall and 

the precision that a baseline system that memorises the named entities seen during 

training can obtain. This approach is then applied to the MUC-7 training, dry run test 

and formal test corpora. 

Although this corpora analysis method is inspired by Palmer and Day's (1997) work, it 

can also be seen as an extension of the more recent analysis conducted by \Vhitelaw and 

Patrick (2003), in which comparisons of different NEE systems were reported separately 

for named entities that were seen and unseen during training. 
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Table 3.1: Types of familiarity for named entities in test corpora. 

~GlIl1iliaurit)' 

t)'pe 

Unseen 

Seen 

Hard 

Ambiguous 

Description 

Named entities whose text has not been seen in the training 
data 
Named entities whose text has been seen in the training 
data with the same class 
Named entities whose text has been seen in the training 
but not with the decoding class 
Named entities whose text has been seen in the training 
data with the same class, but has also been seen with other 
class ( es) or not marked as a named entity 
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In the approach proposed here decoding named entities, that is named entities in the 

target texts, are classified into four categories according to the familiarity of their (case 

insensitive) text and their decoding class. Table 3.1 presents the familiarity types for 

decoding named entities considered in this approach. 

Similarly, individual tokens that compose named entities -hereafter NE tokens- are 

also classified into these categories. This follows the idea of raw output counting (Roth 

and van den Bosch 2002, Daelemans and Osborne 2003), in which each token within a 

named entity is considered as a whole named entity. 

All systems evaluated in this thesis use a fine-grain tokenization scheme, in which most 

tokens are sequences of symbols separated by spaces; however, there are a number of 

exceptions: said.", tonight's, London-based, etc. It is clear that these sequences need to be 

divided because they might contain named entities, as the latter ones do for the MUC 

task. Therefore, the above pieces of text are tokenized as: said. ", tonight's and 

London - based. 

The token-level analysis provides a different insight into the performance of an NEE 

system, as it considers partially identified named entities which are normally ignored 

in the evaluations at phrase level. For instance, suppose that a system produces the 

following wrong output. 

<ORGANISATION>Western Co.</ORGANISATION> of <LOCATION>North Amer­

ica</LOCATION>. 

This output is normally considered just wrong; however, the system has managed a par­

tial recognition of the organisation name. This is the kind of approximation that can 
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be captured by counting NE tokens. Moreover, this level of analysis focuses the evalu­

ation on the management of external evidence by the system, as the internal evidence 

is reduced. For example, it would not be surprising than the phrase American Airlines 

is always seen as an organisation name within a given corpus. However, the tokens 

American and Airlines will probably be seen in other contexts as well and a named entity 

recogniser will have problems in discriminating when these tokens must be extracted 

from internal evidence only. 

Figure 3.1 presents the distribution of named entities in the MUC-7 testing corpora 

according to their familiarity with respect to the MUC-7 training corpus. In both 

cases, most named entities are either seen or unseen, constituting around 90% of each 

corpus. A further analysis of the other 10% suggests that many of them are actually 

inconsistencies in the annotations, due to disagreement between annotators (e.g. earlier 

yesterday tagged as time and as date) or mistakes (e.g. Miami tagged as a date, more 

than once). This means that the number of actual hard and ambiguous named entities 

would be even lower in a hypothetical noise-free corpus. 

It can be expected that this distribution of named entities will be seen in other domains. 

This is because an end-user will be interested in the best performance for the system. 

This includes tuning the named entity extractor to the particular application by pro­

viding training data which is representative of the target documents. Therefore, many 

of the named entities included for training will be seen during decoding. In addition, 

it has been observed that human writers tend to avoid introducing ambiguity in text 

(Gale et al. 1992, Mikheev, Moens and Grover 1999). Thus ambiguous or contradic-
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tory named entities will rarely be encountered. On the other hand, training data is by 

nature limited and target documents will contain named entities which have not been 
seen during training. 

In conclusion, good performance on seen and unseen named entities is a desirable 

characteristic of NEE systems. This conclusion matches the observation that perfor­

mance on unseen words is a major factor in the success of an NEE system (Klein 

et al. 2003, Whitelaw and Patrick 2003). 

Figure 3.2 presents the distribution of NE tokens for the MUC-7 test corpora. These 

results indicate that ambiguous NE tokens are the most frequent and they have to be 

considered with the unseen and seen familiarities for obtaining good performance at 

token level. This figure also suggests that an NEE system has to deal with a significant 

amount of ambiguous tokens to obtain good performance at phrase level. 

However, these numbers can be misleading because some named entities appear several 

times in the text. For example, the named entity phrase Va/uJet has 241 occurrences in 

the training corpus: 239 times marked as an organisation name and two times marked 

as not being part of a name. This named entity phrase is found 244 times in the 

dryrun test corpus, 243 of them tagged as an organisation name. Thus 244 ambiguous 

named entity occurrences are being counted just for this phrase. This realisation has 

encouraged an analysis of named entity phrases - i.e. without considering repetitions­

in the corpora, whose results are shown in figure 3.3. 
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Obviously, in the training corpus there are only seen and ambiguous entities. Only five 

ambiguous entities have different classes (e.g. Clinton is seen once as a location name 

and 51 times as a person name) and the rest are -beside errors and inconsistencies­

one-token named entities which are also frequent common words (e.g. china, march, may, 

turkey, American, brown, etc.). 

Although only 66 out of 2,324 named entities are ambiguous, they exhibit a high repe­

tition rate (Rr). Each ambiguous named entity appears on average Rr = 10.44 times in 

the corpus 1 , whereas the seen named entities appear just Rr = 2.57 times on average. 

Figures for the dryrun test corpus are different now: though unseen and seen named 

entities still count for most of the corpus, unseen named entities are an absolute majority 

constituting about 65%. The amount of unseen named entities is even higher for the 

formal test corpus, but this could be explained by the slight change of domain introduced 

in this collection of articles. 

Some named entities present multiple familiarity types because they appear in the 

corpus with different classes. For example, the text 8 p.m. is found in the dryrun test 

documents with the class time and the class date; but in the training corpus this text 

was seen tagged only as a time named entity. Thus, this phrase is considered seen 

when the decoding class is time, but hard when the decoding class is date. In general, 

most multiple familiarity type named entities are introduced by inconsistencies in the 

annotation within the corpus, as this example has been. 

IThis rate does not consider the cases in which the word is not part of a name. Including the e 
occurrences the frequency ratio would rise to 23.56. 
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Figure 3.4: Distribution of NE tokens as named entity phrases in the MUC-7 corpora according to their 
familiarity. 

Interestingly, the repetition rate of ambiguous named entity phrases in the dryrun test 

corpus is consistent with the rate found in the training corpus. That is to say that 

though only a fraction of named entities are ambiguous, they are encountered much more 

frequently than seen entities (3:1 approximately). Remembering that many ambiguous 

named entities are mainly introduced by noise in the annotations, it could be suggested 

that highly frequent named entities are somehow attracting -if not generating- lapse 

of concentration from the annotators. Taking care of these named entities during anno­

tation might result in a significant reduction in the noise in training corpora. Although 

the trend of noise among seen named entities cannot be automatically analysed, they 

seem to be much less frequent (£4. = 2.6 approximately) and mis-annotations in this 

category result in less damaging noise. 

As mentioned above, with the change in domain introduced by the MUC-7 formal test 

corpus, the number of unseen named entities rises to more than 80% of the cases, but the 

repetition rate follows the same pattern, that is unseen named entities are less frequent 

than seen ones, which in turn are less frequent than ambiguous named entities (2:5:16 

approximately) . 

Although unseen events are repeated much less, their absolute numbers make them 

important for an NEE system in both test corpora. This is again consistent with the 

findings in Klein et al. (2003) that performance on unseen words is what makes the 

difference between current NEE approaches. 

Figure 3.4 presents the distribution of NE tokens when they are considered as named 
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Table 3.2: Distribution of named entities in the MUC-7 test corpora according to their phrase ty (TIMEX 
NUMEX & ENAMEX) and familiarity type (UNSEEN SEEN HARD & AMBIGUOUS) F· pe ed' . ' , . Igures are separat 
for named entity phrases (NEP) and named entity occurrences (NEO). 

MUC-7 dryrun test corpus 
UNSEEN SEEN HARD AMBIGUOUS TOTAL 

NEP NEO NEP NEO NEP NEO NEP NEO NEP NEO 
TIMEX 439 499 190 791 10 11 10 59 649 1,360 

NUMEX 62 71 25 37 0 0 0 0 87 108 
ENAMEX 1,087 1,657 466 2,536 34 74 27 499 1,614 4,766 

TOTAL 1588 222 , 7 II 681 I 3,364 II 44 I 85 II 37 I 558 II 2,350 I 6,234 I 

MUC-7 formal test corpus 
UNSEEN SEEN HARD AMBIGUOUS TOTAL 

NEP NEO NEP NEO NEP NEO NEP NEO NEP NEO 
TIMEX 635 812 154 602 14 24 10 41 813 1,479 

NUMEX 213 262 26 60 3 4 ° ° 242 326 
ENAMEX 1,066 2,400 178 1,291 15 41 14 335 1,273 4,067 

TOTAL I 1,914 I 3,474 II 358 I 1,953 II 32 I 69 II 24 I 376 2,328 I 5,872 I 

entity phrases - i.e. without considering different occurrences. It can be observed that 

the proportions between familiarity types change. Although unseen tokens are still a 

majority, ambiguous and hard NE tokens are not tiny fractions of the corpora now but 

represent around a third of all NE tokens. Interestingly, the proportion of seen NE 

tokens is relatively the same as that for seen named entities with 15-25%. 

Despite this change, the trend of the repetition rate remains: unseen and hard tokens 

are less frequent than seen tokens, which in turn are less frequent than ambiguous ones, 

though the differences are also reduced slightly (1:3:5 approximately). 

All this information collected for the MUC-7 corpora allows an estimate of the per­

formance of a baseline system similar to the one defined by Palmer and Day (1997). 

Table 3.2 presents the distribution of named entities at phrase level on the MUC-7 test 

corpora, in which named entities have also been classified according to their familiar­

ity with respect to the MUC-7 training corpus, with and without considering different 

occurrences. There are actually 2,326 named entity phrases in the dryrun test corpus, 

which form 2,350 (NE phrase, NE class) pairs that occur 6,234 times. In the formal test 

corpus, there are 2,323 named entity phrases which form 2,328 (NE phrase, NE class) 

pairs that occur 5,872 times in the documents. 

In terms of Palmer and Day's (1997) estimations, ENAMEX phrases represent 76.45% 

of the total named entities in the dry run test corpus, and the remaining 23.55% corre­

sponds to TIMEX and NUMEX phrases. Palmer and Day's (1997) vocabulary transfer 

rate can be obtained by adding the percentage of seen, hard and ambiguous ENAMEX 

named entities of table 3.2. Thus, the vocabulary transfer rate for the dry run test cor­

pus is 65.23%. Note that the proportion of phrases by type in this corpus follows the 

observations of Palmer and Day (1997). However, the vocabulary transfer rate is much 

higher here than in the MUC-6 corpus studied by Palmer and Day (199/), which wa.<.; 
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estimated in 21.2% only. This confirms that some corpora pose more difficulties than 

others, even for the same extraction task and in the same language. 

Similarly, it can be established that in the formal test corpus, 69.26% of the named 

entities correspond to ENAMEX phrases and 30.74% to TIMEX and NUMEX phrases, 

and that it presents an ENAMEX vocabulary transfer rate of 40.99%. Again, the 

proportion of named entities by type corresponds with the results of Palmer and Day 

(1997), but the transfer rate is higher. 

With these figures, it is possible to determine lower bounds for a baseline system as 

defined in equation 3.1 for both MUC-7 test corpora: 

0.2355 * 0.95 + 0.7645 * 0.6523 

0.3074 * 0.95 + 0.6926 * 0.4099 

72.24% (dryrun) 

57.59% (formal) 

It must be noticed that these are bounds for recall only and that it assumes that 95% 

of TIMEX and NUMEX expression can be captured by using simple regular patterns. 

However, this approach to measuring complexity is for the extraction task as defined in 

the MUC conferences only and it could be argued that assuming 95% recall on TIMEX 

and NUMEX expression is overoptimistic and even unfair to systems that are committed 

to using as little human intervention as possible. 

Fortunately, the information provided in table 3.2 permits better estimates for a hy­

pothetical system that only memorises the named entities which it sees in the training 

documents. Such a baseline system would extract all seen named entities correctly but, 

supposing it would abstain from classifying ambiguous named entities, it would get 

nevertheless hard named entities wrong. Thus, recall can be estimated as: 

3,364 
6,234 
1,953 
5,872 

53.96% (dryrun) 

33.26% (formal) 

On the other hand, precision is limited by the portion of the named entities identified 

in the decoding text which are classified with the correct class, which corresponds to: 

3,364 
3,364+85 

1,953 
1,953+69 

97.54% (dryrun) 

96.59% (formal) 

A lower bound for the F-score can also be given by applying formula 1.1 with parameter 

(3 = 1: 69.48% for the dry run test corpus and 49.48% for the formal test corpora 

respectively. These bounds are quite high for such a simple baseline technique and 

improving on this performance will probably present a difficult challenge. The main 

room for improvement seems to be the low recall that the hypothetical system would 

obtain. However, as explained in previous chapters, increasing recall has always been 

followed by a drop in precision. The challenge then will be to increase recall in a greater 

proportion than the corresponding fall in precision. 
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Although a system that just memorises named entities has been used as reference (for 

example in the CoNLL conferences, in which all participant systems outperformed such 

a baseline system), it could be argued that the named entity extraction technology is 

too developed now to consider such naIve methods. 

A more realistic approach would be to compare the performance of a new NEE system 

with existing systems that are known to perform well. Unfortunately, it is not easy to 

find good NEE systems freely available. 

One alternative would be to use domains for which results are known, but these are 

limited to very few domains. Moreover, it is difficult to compare results from a new 

NEE system with previous works because even if the systems are using the same corpora 

-and therefore the same domain- the pre-processing tools may vary and errors from 

this stage do affect the overall performance of these systems. In addition, the exact 

training resources which each system utilises are very difficult to replicate. 

In conclusion, the best way of comparing new results against the state-of-the-art of 

the technology is to implement one or more known systems and use them as baseline 

systems. In this way, it can be ensured that both training data and early NLP steps 

are shared and the same. 

3.3 Baseline systems 

Following the discussion in the previous section, two known good statistical approaches 

have been selected and implemented as baseline systems. There are two additional 

reasons for implementing these baseline systems: 

I> the performance obtained by the approaches proposed in this thesis will be individ­

ualised by familiarity type. This information cannot be obtained from published 

results as they are made only in terms of overall recall and precision 

I> they can be used to confirm the basis that statistical machine learning methods 

are successful for named entity extraction tasks 

In the following sections, these systems are discussed in more detail. 

3.3.1 Nymble 

The first baseline system implemented is a version of Nymble (Bikel et al. 1997). This 

approach has been chosen because: 
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Figure 3.5: The conceptual Hidden Markov Model used in Nymble. Adapted from Bikel et al. (1997). 

1. it uses a 100% learning approach (with no external lexical resources) 

2. it is extremely simple 

3. its performance is very good 

4. the approach seems to be well explained in the literature 

Nymble uses an ergodic Hidden Markov Model (Rabiner 1989) with eight regions -also 

called name-classes-, one for every type of MUC named entity to recognise (Chinchor 

1998a) plus a default not-a-name region for words which are not part of any entity name 

(figure 3.5). Consequently, it identifies person names, organisation names, location 

names, dates, time expressions, money expressions and percent expressions. In addition 

to these, the model includes two special states which represent the beginnings and ends 

of sentences. 

Within each region, Nymble uses a statistical bigram language model in which every 

state can emit one word. Therefore, each name-class has IVI states and IVI2 
transitions, 

where V is the vocabulary recognised by the system. Unlike normal Hidden Markov 

Models, the transition of states and emission of symbols follows a three-step procedure: 

1. Select a name-class NC conditioned on the previous name-class and the previous 

word, that is 

(3.2) 

2. Generate the first word within the current NC conditioned on the current and 

previous name-classes, that is 

(3.3) 
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Table ~.3: Orthographic features as used in Nymble plus an example and intuition behind them. Adapted 
from Blkel et al. (1997). 

Word-feature I Example text I Intuition 

twoDigitNurn 98 two-digit year 
four DigitN urn 2002 four-digit year 
containsDigitAndAlpha I2534-W code 
containsDigitAndDash 20-01-02 date 
containsDigitAndSlash 1/20/2002 date 
containsDigitAndCornma 5,000.00 monetary amount 
containsDigitAndPeriod 1.00 monetary amount, percentage 
otherNum 283845 other number 
allCaps IBM organisation 
capPeriod L. person name initial 
firstWord less useful capitalisation 
initCap John possible name 
lowerCase IS possible not a name 
other , all other words 

3. Generate all subsequent words inside the current name class conditioned on the 

previous word, that is 

Pr( <w,j> I <w,j> -1' NC) (3.4) 

As can be seen from above, a word in Nymble is actually a pair: the lexeme and an 

orthographic feature, which are denoted <w,j>. Nymble uses fourteen disjoint ortho­

graphic features (showed in table 3.3) which describe some lexical characteristics of 

tokens that should help the model to recognise names. Only one feature is assigned to 

each word, so there is a precedence scheme among the features (which can be seen in 

this list). Thus a word which begins with a capital letter but is starting a sentence will 

have associated the firstWord feature rather than the initCap feature. This precedence is 

based on the intuitive fact that a capitalised word at the beginning of a sentence will 

provide less evidence for being a name than in the middle of a sentence. 

Nymble also introduces two magical words: <+begin+,other> to compute the likelihood 

for a word being the first word of its class-name, and <+end+,other> to compute the 

probability for any word being the final word of its class-name. 

As with any n-gram language model, it is unrealistic to expect that Nymble will be 

provided with all possible bigrams from the training data. This is overcome by collecting 

statistics for unknown words by manipulating the system's vocabulary and backing off to 

models based on incomplete information. Table 3.4 summarises the backing-off strategy 

as used by Nymble. 
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Table 3.4: Nymble's back-off/smoothing scheme. Adapted from Bikel et al. (1997). 

Name-class First words Subs t equen d wor s 

Pr(NCINC-1,w-l) Pr« w,f >/irst INC,NC_1) Pr« w,f > I < w,f >_l,NC) 

Pr(NCINC_1) Pr( < w, f > I < +begin+, other, NC) Pr« w, f > INC) 

Pr(NC) Pr« w, f > INC) Pr(wINC) . Pr(fINC) 

1 Pr(wINC) . Pr(fINC) 1 1 

number of name-classes TVT . number of word features 

1 1 WT . nmn1'\PrOf word 

In addition, Nymble uses the back-off models for smoothing the top-level model by 

assigning the appropriate weight to each model and its immediate back-off model. 

Appendix A presents a detailed analysis of Nymble and explains how it has been im­

plemented. Because this version includes only the main features of the original system 

and has not been tuned to any specific task, it has been named siNymble (simple im­

plementation of Nymble). This appendix also includes a walk-through example with 

siNymble. 

3.3.2 MENE 

The other baseline named entity extractor chosen is the MENE system (Borthwick 

1999). This system utilises maximum entropy statistical modelling (Berger et al. 1996, 

Della Pietra et al. 1997, Ratnaparkhi 1998) to capture relevant features in free text, 

which are used later to predict occurrences of named entities. MENE was one of the 

systems which participated in the latest MUC conference (MUC 1998) with good results. 

The training information provided to MENE is a pool of features of different nature: 

t> lexical features (i.e. the lexemes) of surrounding words 

t> orthographic features, such as the type of lexeme (number, word, symbol) and 

capitalisation properties 

t> section features, which discriminate between sections in the document (e.g. head­

lines, text) 

t> dictionary features, which indicate whether a lexeme is contained in external dic­

tionaries of first names, corporate names, etc. 
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c> reference resolution features, which relate different -including partial- occur­

rences of a sequence of lexemes 

Thus, each token in a training document has associated -at least some of- these 

features and a tag which indicates its named entity feature. If c is one of the named 

entity classes to identify, then any token could be associated with the tags c _ start, 

c _ continue, c _ end, c _ unique or not _ ne indicating that the token is starting, contin­

uing or ending a named entity of class c, the token constitutes a one-word named entity 

of class c or the token is not linked to any named entity. According to the MUC-7 

definition of the named entity task (Chinchor 1998a), 29 tags are used to represent the 

options for the seven target named entity classes and the not-a-named-entity case. 

During decoding, MENE assigns each token with the probabilities of being associated 

with one of these 29 tags. Taking the highest probability could result in invalid sequences 

of tags. Therefore, Borthwick (1999) uses a Viterbi search to avoid incompatible as­

signments and obtaining instead the most probable valid sequence of tags. 

The version of MENE presented here, named LexMENE, uses only the first three types 

of features, that is lexical features, orthographic features and section features. Borth­

wick (1999) found that lexical and orthographic features, as well as the co reference 

resolution features, make the most important contributions to the performance of the 

approach. The other kinds of features, namely section and dictionary features, did not 

change the accuracy of the system significantly. 

MENE's orthographic features are similar to Nymble's, presented in table 3.3. There 

are some differences, which can be summarised as 

c> the set of features is slightly different: 

c> the feature onlyDigits is added for numbers such as 5, 321, 2000, etc. 

c> the feature internalCapitalisation is added for tokens like EasyJet, McCarthy, etc. 

c> the feature otherNum is replaced by the feature validNumber 

c> features containsDigitAndDash, con tainsDigitAndSlash , capPeriod, firstWord and 

other are not used 

c> MENE allows more than one orthographic feature to be fired for a given token 

Consequently, LexMENE follows these features as well as the approach for unknown 

words used by MENE: in both phases of the algorithm -namely training and decoding­

words that appear less than three times in the corpora are replaced by the token UNK. 

The differences between MENE and LexMENE can be summarised with the following 

points: 
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Figure 3.6: A schematic view of the the Viterbi search for a given named entity class c. 

c> MENE's dictionary features are not used by LexMENE 

c> the highly desirable coreference features of MENE are not present in LexMENE; 

this is because a reasonably good coreference resolution system is not cheap and 

it would require a considerable investment of time and resources 

c> Borthwick (1999) used the Maximum Entropy Modelling Toolkit (Ristad 1998) 

for his system, whereas LexMENE uses the opennlp.maxent package (Baldrige 

and Bierner 2001). The former is implemented in C++ and the latter is imple­

mented in Java. There should be no significant impact from this variation, though 

the Java package implements the Generalised Scaling Algorithm (GIS) (Darroch 

and Ratcliff 1972, see algorithm 2.2) that is a special case of Improved Iterative 

Scaling (Della Pietra et al. 1997, see algorithm 2.3), which is also the algorithm 

implemented in the C++ toolkit used by MENE 

Borthwick (1999) did an evaluation of MENE using only lexical, orthographic and sec­

tion features, obtaining F-score 91.71% for the dryrun test and F-score 83.38% for the 

formal test corpora respectively. However, these figures were obtained with 350 training 

documents (321,000 tokens) of which LexMENE only has a hundred (which are trans­

lated into 85,837 tokens). Consequently, significantly lower scores can be expected for 

LexMENE. 

As mentioned before, Borthwick (1999) identified the need for a Viterbi search among 

the probabilities for named entity tags to avoid invalid sequences of named entity tags. 

This search follows the model presented in figure 3.6 and determines the best sequence 

of tags for each sentence of a document. Bubbles represent named entity tags and the 

special start-of-sentence (SOS) and end-of-sentence (EOS) states. Edges represent valid 

transitions with uniform probability from the source state. The probabilities for each 

named entity tag are used as emission probabilities. 
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Appendix B presents a walk-through example for LexMENE to help in putting all these 
procedures into context. 

3.4 Evaluation 

In this section, both siNymble and LexMENE are evaluated and their performance is 

compared with the results reported by their developers. All experiments use the corpora 

released for the MUC-7 conference. 

Although some comparison in terms of recall and precision is included in this section for 

the baseline systems, comparisons will normally be made in terms of their combining 

F -score throughout this thesis, so that simple, but enlightening figures for each type of 

named entity can be obtained. 

3.4.1 The scoring program 

Unlike Bikel et al. (1997) and Borthwick (1999), who utilised the MUC scoring program 

(Douthat 1998), an adaptation of the scoring program from the CoNLL conferences is 

used in this thesis. This is an important difference because the CoNLL scoring software 

is less generous than the MUC scorer: the latter allows alternative classes and alternative 

strings. Thus some named entities that are considered wrong by the scorer used here 

would be counted as correct by the MUC software. For example, the named entity 

Kennedy Space Center can be classified as both an organisation or a location name under 

the MUC perspective, but only the category organisation is accepted by the CoNLL 

scorer. 

The selection of the CoNLL scorer is based entirely on practical reasons. This scorer, 

being a script in Perl rather than a program of several modules in C as the MUC 

scorer, is much easier to modify and is platform independent. Consequently, the CoNLL 

scorer script was adapted so that it could provide the performance of an NEE system 

detailed by the different familiarity type of the named entities, in addition to the existing 

information by class. 

3.4.2 Results for siNymble 

SiNymble has been trained on the MUC-7 training corpus. Three versions of siNymble 

have been tested resulting from slightly different interpretations of the description given 

in Bikel et al. (1997). 
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Figure 3.7: Experiments with three versions of siNymble. Corpora: MUC-7 training corpus and MUC-7 
dryrun test corpus. 

Version A follows the precedence of orthographic features - binary lexical features in 

MENE's terms- strictly as presented in table 3.3. Therefore, tokens with feature 

initCap, lowerCase or other are changed to the feature firstWord when they are starting a 

sentence. 

Version B only makes this change when the token starting the sentence fires the or­

thographic feature initCap. In addition and for this purpose only, a sentence is not 

considered started until a token which does not fire the feature other is found. For 

example, in the text (Figure 1... the first token of the sentence is Figure -rather than 

the parenthesis- and its orthographic feature will be changed from initCap to first Word. 

Finally a version C of the approach has also been evaluated. This version arises from 

the way in which siNymble's implementation manages words and tokens. SiNymble 

separates multi-token words so that named entities occurring within this type of word 

can be identified. Consider the word Atlanta-based, which naturally contains the location 

Atlanta. The implementation used here presents these words as three different tokens: 

Atlanta - based; consequently they will fire the orthographic features in it Cap , other and 

lowerCase respectively. In version C, this does not happen and the orthographic feature 

fired by the word as a whole is given to each token, resulting in the features initCap, 

initCap and in it Cap being assigned instead. 

Figure 3.7 presents the performance scored by each version. Although there are no sig­

nificant differences, version B obtained the best (overall) results , which is not surprising 

as the modification intuitively makes sense. 
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Figure 3.8: Experiments with siNymble (version B). Corpora: MUC-7 training corpus and MUC-7 formal 
test corpus. 

This performance is inferior to that reported by Nymble's creators. However, much of 

the difference is due to the change in the scorer program used. A similar version of 

siNymble-B gets an F-score over 85% with the MUC scorer, which is consistent with 

the results presented in Bikel et al. (1997) for the same amount of training material. 

Now siNymble can be evaluated on the MUC-7 formal test corpus by fixing the version 

to B. Figure 3.8 presents the performance of siNymble version B on this test corpus. It 

can be seen that recall is always much worse than the precision obtained by the system, 

and that the overall performance is much worse on this corpus than on the dryrun test 

with a drop in F-score of about 15%. 

The change in domain introduced by the formal test corpus does not degrade the per­

formance of siNymble much on hard and seen named entities -about 3% F-score­

but a significant decrease is observed for unseen and ambiguous named entities, with 

F-scores 12% and 10% lower respectively. Because unseen named entities are far more 

numerous than ambiguous ones, they are the main factor in the poor performance of 

this baseline system for this corpus. 

Analysing the mistakes that siNymble makes, the same conclusion reported by Bikel, 

Schwartz and Weischedel (1999) can be reached. Consider the following sentence 

The Turkish company, Birgen Air, was using the plane ... 

SiNymble recognised Birgen Air as a location rather than an organisation as it is marked 

in the corresponding key document. The reason is that the word Birgen is unknown and 
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Figure 3.9: Experiments with two versions of LexMENE. Corpora: MUC-7 training corpus and MUC-7 
dryrun test corpus. 

the word Air has been seen within many airport names, which are normally tagged as 

locations. The problem seems to be that because siNymble uses bigrams for modelling 

the language, it is incapable of detecting the context word company -as the immediate 

previous token is a comma- which suggests that the entity is actually an organisation. 

Therefore, one way of improving this kind of approach would be to allow larger contexts 

to be considered. 

3.4.3 Results for LexMENE 

LexMENE has also been trained on the MUC-7 training corpus for this evaluation. 

As with siNymble, there is more than one possible implementation due to different 

interpretations of Borthwick's (1999) intentions. 

Version A strictly follows the description presented in 3.3.2. Nonetheless, MENE does 

not use the firstWord feature to distinguish the possibly irrelevant capitalisation of a 

token starting a sentence, ''believing that MENE could make these judgements from the 

surrounding lexical context" (Borthwick 1999). However, with version A there is little 

lexical context for determining that a token is starting a sentence, namely the absence 

of features for surrounding tokens. This leads to version B, in which lexical features 

explicitly indicate the non-existence of previous -or following- words by taken the 

value NONE. 

Figure 3.9 presents the performance of these two versions of Lexl\1ENE according to 

the familiarity of the named entities in the MUC-7 dryrun test corpus. Version B 



CHAPTER 3. BASELINE SYSTEMS 

100 

90 

80 

70 

60 
Q) 

~ 
iii 
E 50 
0 
't: 
Q) 

CL 

40 

30 

20 

10 

Hard Unseen 

A - - _ .- - --6..... 
/ -

/ 

Ambiguous 
NE familiarity type 

Seen 

-e-Recall 
--e-- Precision 
~ F(l) formal test 
- A - F(l) dryrun test 

Overall 

82 

Figure 3.10: Experiments with LexMENE (version B). Corpora: MUC-7 training corpus and MUC-7 formal 
test corpus. 

outperforms version A in every category (except on hard named entities, not shown in 

this figure, in which they get the same results). 

Once more, these figures are lower than the results reported by Borthwick (1999). Again 

this difference can be explained by the change in the scorer program and the amount 

of extra training material used in the original experiments. This confirms the idea 

that comparing NEE systems is a tricky task unless exactly the same resources and 

pre-processing are used. 

Figure 3.10 presents the evaluation of LexMENE (version B) on the MUC-7 formal test 

corpus. Interestingly LexMENE shows a similar behaviour to siNymble, that is a drop 

in performance of about 15% with respect to the results on the dry run test documents. 

However, it is even more evident in this figure that recall is much worse than precision 

and that it is this variable that is negatively affecting the F -score line. 

Again the change in domain on the formal test corpus does not degrade results on hard 

named entities, with a drop of less than 1% of the F-score. However, the performance 

on seen named entities shows a more important drop than in siNymble of about 5%. 

Nonetheless, the most significant decrease is observed for unseen and ambiguous named 

entities too, with F-scores 12% and 7% lower respectively. Therefore, unseen named 

entities are again responsible for most of the decline in performance of this system for 

the formal test corpus. 
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3.4.4 Comparison of the baseline approaches 

The above experiments on the MUC-7 formal test corpus indicate that both baseline 

systems perform similarly overall. However, this is the result of compensatory abilities: 

siNymble is better at recognising seen named entities and LexMENE is better on am­

biguous named entities. In addition, neither of the systems seems to be particularly 

good at recognising unseen name entities, though siNymble obtains a higher F-score. 

LexMENE exhibits diparatedisparate performance on this type of named entity: it gets 

relatively good precision, much higher than siNymble, but very low recall. 

Moreover, these experiments have shown that both siNymble and LexMENE are nega­

tively affected by the introduction of unseen named entities in the target corpus. Their 

performance drops around 15% F-score when moved from the MUC-7 dry run test cor­

pus, where 36% of the named entities are unseen, to the MUC-7 formal test corpus, in 

which 59% of the named entities are unseen. 

Nonetheless, these results confirm that statistical approaches, such as the hidden Markov 

model used by siNymble and the maximum entropy model -in combination with a 

Viterbi algorithm for the final labelling- used by LexMENE, are powerful tools for 

predicting named entities in free text. Both systems largely outperform the hypothetical 

baseline system: 7-8% higher in the dryrun test and 10-12% higher in the formal test 

respectively. 

However, LexMENE has an important advantage over siNymble. In section 3.4.2, it was 

suggested that siNymble's bigrams can fail in capturing complex names and contexts 

and, consequently, broader patterns might help it to recognise more unseen named 

entities. But adding this information might not be trivial due to the generative nature 

of the approach and the sparseness of the training data. 

In fact, Bikel et al. (1997) recognise the running time speed of the system as a key 

factor in the success of their approach, because it provided "a rapid code-compile-train­

test cycle" that allowed them to perform ''numerous experiments" that were ''key to 

improving performance". Adding new information to siNymble would require a similar 

process of searching the right model for the task, which has evident disadvantages for 

the portability of the system. 

I t would be much easier to extend LexMENE by making use of the ability of maximum 

entropy models to manage information from different sources which might even be 

overlapping or irrelevant, making this approach an ideal candidate for evaluating the 

contribution of adding more linguistically oriented knowledge as well as the introduction 

of other machine learning techniques. These ideas validate the third basis of this thesis 

(see section 2.3). 
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3.5 Summary and discussion 

In this chapter a new approach for estimating the complexity of a named entity ex­

traction task has been proposed. This approach classifies named entities according 

to their familiarity into seen, unseen, hard and ambiguous. Knowing the amount of 

each of these types of named entities occurring in a given corpus allows the estimation 

of lower bounds for the recall and the precision of a baseline system that memorises 

named entities during training. This classification is also useful to obtain more detailed 

information on the performance of an NEE system. 

Two simple implementations of statistical approaches to named entity extraction were 

also presented and evaluated following the familiarity classification of named entities. 

They have shown that lexical and orthographic features provide useful information for 

solving the MUC extraction task as they broadly outperform the hypothetical baseline 

system on both test corpora. 

Finally, a comparison of both baseline systems has determined that they perform sim­

ilarly overall but that the approach based on the maximum entropy framework has 

advantages related to the portability of the system. 



Chapter 4 

More linguistically informed MENE 

In this chapter a system named MOLl MENE (More Linguistically Informed MENE) 

is presented. This system is an extension of the LexMENE system discussed in chapter 

3, which uses the lexical characteristics that LexMENE utilises, but also includes in­

formation drawn from a general lexical reference resource, namely WordNet®, and the 

syntactic structure of phrases. 

4.1 MOLl MENE 

Several NEE systems have shown that maximum entropy models are a good choice 

for identifying named entities: the top three systems for English and the top two sys­

tems for German in the latest CoNLL used the maximum entropy framework (Tjong 

Kim Sang and De Meulder 2003). Therefore, it makes sense to extend LexMENE -one 

of the baseline systems- by introducing external lexical resources and syntactic infor­

mation that might provide new, useful features to the maximum entropy model for the 

extraction task. This extension will be referred to as the "More Linguistically Informed 

Maximum Entropy for Named Entities", or MOLl MENE for short. 

As a starting point, it is reasonable that MOLl MENE -being an extension of LexMENE­

would include the same of features of this later system as its basic features, that is lexical 

features, orthographic features and the zone feature. However, it has been argued that 

orthographic features are domain-dependent (Mikheev, Grover and Moens 1999), an 

argument that can be extended to the zone feature. 

But it could be argued that this is not exactly the case. It is true that orthographic 

features -such as those presented in table 3.3- help LexMENE to identify named 

85 
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:able 4.1: The set of orthographic features in MOll MENE. It also shows which of these features also exist 
In LexMENE. 

Description I MENE I Example Text I Intuition 
2-digit number yes 96,01 two-digi t years 
4-digit number yes 1999, 2001 four-digit years 
only digits yes 5, 502, 1999 numbers 
letters & numbers yes F14 codes 
number with comma yes 2,000 money 
number with period yes 4.5,45.21 money; percentage 
number with dash no 01-03-96 dates 
number with slash no 1/4, 01/03/96 fractions, dates 
valid number yes -3.5, .12, 30 any number 
all capitals yes IBM organisations 
initial capital yes Jones, Intel part of a name 
mixed capitalisation yes Air Jetter organisations 
uncapitalised yes the, cat, is not part of a name 
symbol no %, $,' not a word 
mixed characters no 's 'nt , contractions 
abbreviation no St., Mr., Sen. ab breviations 

entities for the task defined in the MUC competitions. However, they might also help 

with recognising other types of named entities which present similar patterns. For 

example, a feature that indicates that a token is composed of numbers separated by 

dashes would be useful to identify dates in the MUC extraction tasks, but this would 

also help with recognising product codes in another application. Moreover, if no dates 

or product codes are part of the task, orthographic features for identifying these types of 

tokens might help in discriminating text which is unlikely to be relevant for extraction. 

Therefore, if a set of orthographic features is sufficient to capture useful internal evidence 

(McDonald 1996, discussed in section 2.1) of target named entities -or non-named 

entities- it would be useful for many real-world domains. The same reasoning is valid 

for the zone feature which -not restricted to a fixed set of sections in the domain's 

documents- can alert the NEE extractor of changes in the writing style, i.e. external 

evidence in McDonald's (1996) terms. 

Considering these arguments, both orthographic features and the zone feature, in ad­

dition to the lexical features, are considered the basic, lexically-oriented features for 

MOLl MENE. However, the set of orthographic features has been extended to provide 

MOLl MENE with more generic information on the form of the tokens in an attempt 

at increasing its portability. Table 4.1 summarises the orthographic features employed 

in MOLl MENE and which of them are also utilised in LexMENE. 
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The second modification in the new approach is related to the sizes of the context 

windows used by the basic features. Both baseline systems, namely siN ymble and 

LexMENE, use a context window that is fixed in size. This restriction does not apply 

in MOLl MENE, and context windows of different sizes could be used in different 

applications to collect features for the maximum entropy model. Moreover, each type of 

feature that MOLl MENE utilises -basic or not- can define its own context window 

independently!. It is even possible for every type of feature to consider contextual 

information from windows of different lengths on the left and on the right of a focus 

token. 

As a consequence of this flexibility of MOLl MENE, it is necessary to determine empir­

ically a good set of values for these parameters for a given extraction task. This search 

could be done following traditional approaches for parameter selection, which generally 

involve running the system repeatedly on a training subset with different parameters 

and systematically evaluating their contribution on another subset of examples or using 

cross-validation, leave-one-out, etc. Section 4.2 presents an example of this process for 

the MUC-7 task. 

4.2 Parameter setting 

Although it is not possible to guarantee that a given set of parameters that work well 

for a particular set of features will work as well with other sets of features, it is un­

likely that differences in performance will be substantial. In addition, the number of 

parameters that need to be set for each experiment is considerable and trying even some 

combinations can be very time consuming. 

Therefore a set of initial experiments are conducted to determine a good set of parame­

ters which will be kept fixed in all later experiments. This might prevent MOLl MENE 

from getting the best possible results, but it will be possible to outline the effect of 

different sets of features under the same parameters. 

In each experiment, MOLl MENE trains its maximum entropy model with all features 

generated for a given set of parameters for all training examples in the MUC-7 training 

corpus. The evaluation of each model is conducted on all examples of the MUC-7 

dry run and formal test corpora. Results are reported separately for unseen, seen and 

ambiguous named entities, as well as the overall performance on all familiarity types. 

1 This flexibility applies to features that make use of a context window. 
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The experiments reported in this section aim to assess a number of options used by 

the two baseline NEE systems, in order to determine a set of parameters for MOLl 

MENE that yields good performance on the MUC-7 extraction task. More specifically, 

the experiments should answer: 

1. which of the two different alternatives for using orthographic features provide 

more accurate predictions - i.e. considering all the features fired or just the one 

with higher precedence 

2. which of the two different annotation formats allows the system to obtain better 

performance - i.e the BIO or the FMLU notation 

3. how appropriate the sizes of the context windows used by the baseline systems 

are 

4. how many iterations of the GIS algorithm utilised for building MOLl MENE's 

maximum entropy model are required 

For the first experiment, MOLl MENE includes the same features as LexMENE, that is, 

for each focus token to be classified it considers the section of the document in which the 

token is found (document zone feature), the strings -or lexical features- of the tokens 

occurring within a fixed-length context window (hereafter the lexical window) and all 

-i.e. without precedence- orthographic features of table 4.1 fired by tokens within a 

fixed-length context window (hereafter the orthographic window). This configuration 

of MOLl MENE will be referred to as version 1 (VI). 

The experiment starts by evaluating the sizes of the context windows used in the baseline 

systems. On the one hand, siNymble uses a lexical window of size [1,0]' that is the 

focus token and one token on the left. On the other hand, LexMENE considers a lexical 

window of size [2,2], that is, a window of five tokens: the focus token and two tokens 

on either side. 

Thus it makes sense to evaluate MOLl MENE VI with lexical window sizes [1,0]' [1,1], , 
[2,1] and [2,2], as a transition from siNymble's to LexMENE's parameters. Figure 4.1 

presents the results obtained in these initial experiments. 

The best performance is achieved with parameters [1,1]' which obtain a significant 

improvement on seen named entities - though it shows a negative effect on ambiguous 

named entities- with respect to the size used by siNymble. This is an interesting 

result which indicates that although siNymble makes mistakes because of its lack of 
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Figure 4.1: Experiments with MOll MENE VI: size of the lexical window changing from [1,0] to [2,2] with 
data represented in BIO and FMLU notations. Other parameters are set as in LexMENE. Corpora: MUC-7 
training corpus and MUC-7 dryrun test corpus. 

context information (see section 3.4.2), adding lexical features from a larger context 

window might not provide the information needed for increasing its performance, unless 

significant changes are introduced into its hidden Markov model. 

Named Entity recognition can be seen -and modelled- as a chunking task (Tjong 

Kim Sang 2002b, Tjong Kim Sang and De Meulder 2003). Chunking tasks can have 

many representations which are known to affect the performance of classifiers. In par­

ticular, siNymble utilises a representation called BIO notation (sometimes called BIOI 

to differentiate it from other variations) in which words contained within a chunk are 

tagged 'I' and words outside any chunk are tagged '0'. When there are two consecutive 

chunks of the same class, the first word of the second chunk is tagged 'B'. The following 

is an example text in BIO notation. 

Mr.jO Jason/I-person Jones/I-person is/O currently/O infO London/I-location England/B­
location until/O June/I-date ,/I-date 25/I-date .j0 

In contrast, LexMENE employs the FMLU notation, which is a more fine-grain repre­

sentation in which a word is labelled 'F' if it is the first word of a multi-word chunk, 

'M' if it is a word in the middle of a multi-word chunk, 'L' if it is the last word of a 

multi-word chunk and 'U' if it corresponds to a one-word chunk. The following is the 

example text in FML U notation. 
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data represented In BIO and FMLU notations. Other parameters are set as in LexMENE. Corpora: MUC-7 
training corpus and MUC-7 formal test corpus. 

Mr./O Jason/F-person Jones/L-person is/O currently/O infO London/U-Iocation England/U­
location until/O June/F-date ./M-date 25/L-date ./0 

Figure 4.1 reveals that the FMLU notation consistently yields better results than the 

BIO notation. 

Consequently, all future experiments will use FML U notation and a lexical window of 

size one token to the left and one token to the right. 

It would be interesting to evaluate the reliability of the decisions taken regarding the 

setting of MOLl MENE's parameters based only on experiments with the MUC-7 dryrun 

test corpus. This would be the normal situation in a real-world application. However, 

a small set of the target decoding documents, namely the MUC-7 formal test corpus, is 

also available in this case and this evaluation can be conducted here. 

Figure 4.2 presents the same experiment but on the MUC-7 formal test corpus. Inter­

estingly, these results closely follow the trend observed for the dryrun test set. This is 

specially significant considering that these corpora have been collected from different 

domains and present different amounts of seen and unseen named entities, as seen in 

section 3.1. 

The next step then is to determine the best size for the orthographic window. This 

experiment is very similar to the one described above, and MOLl lVIENE is run with 
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other parameters are set as in LexMENE. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

the size of the orthographic window varying from [1,0] -as used by siNymble- and 

moving progressively towards a window of size [2,2] - as used by LexMENE. 

In addition to the size of the orthographic window, there is another parameter considered 

in this experiment which differentiates the baseline systems: siNymble uses only the top 

orthographic feature -according to the precedence it defines for this kind of feature- of 

each token in the context window, whereas LexMENE utilises all orthographic features 

fired by these tokens. 

Therefore, a second version of MOLl MENE has been prepared, namely MOLl MENE 

V2, which follows siNymble's strategy for this type of feature. Figure 4.3 shows the 

results obtained for this experiment. 

It can be seen from this figure that LexMENE makes a bad decision setting the size of the 

orthographic window at [2,2], since the value [2 ,1] consistently gets better results with 

the configuration used by MOLl MENE VI. SiNymble may also be losing performance 

by fixing this window to size [1 ,0]. Increasing the orthographic window to sizes [2 ,1] or 

[2,2] seems to be better options, as these values help the classification of unseen named 

entities. 

From these observations, henceforth experiments will employ the top orthographic fea­

ture - i.e. using the orthographic feature with higher precedence only- of tokens 

within a context window of size [2 ,2]. 
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Figure 4.4: Experiments with MOll MENE VI and MOll MENE V2: size of the orthographic window 
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other parameters are set as in LexMENE. Corpora: MUC-7 training corpU5 and MUC-7 formal test corpus. 

As previously, this experiment has been repeated with the MUC-7 formal test corpus. 

Figure 4.4 shows the results on this set of documents. 

Once more the parameters fixed by looking only at the results obtained with the dryrun 

test corpus, are good parameters for the formal test corpus too. Moreover, both exper­

iments present essentially the same trends. 

The next experiment aims to determine good parameters for the GIS algorithm used 

to train the maximum entropy model used by MOLl MENE. In other NEE systems 

that employ maximum entropy models, the cutoff parameter is normally set to 3 or 

4 with good results (Roth and van den Bosch 2002, Daelemans and Osborne 2003). 

Consequently, this parameter can be knowledgeably fixed to value 3, saving a potentially 

large number of experiments. 

In this experiment, nine different models have been trained by allowing the GIS algo­

rithm to run from 50 to 800 iterations. Figure 4.5 presents the performance of MOLl 

MENE V2 with each number of iterations tested. 

Interesting observations can be obtained from these results: the more GIS iterations 

are permitted, the better the performance of the system on seen named entities; how­

ever, the performance of the system on unseen named entities stabilises at around 200 

iterations. The same stabilisation is observed in term of the overall performance. This 
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Figure 4.5: Experiments with MOll MENE V2: the number of iterations for the GIS algorithm changing 
from O.5x100 to 8x100. Data is represented in FMLU notation, context windows are set to [1,1] and [2,2] 
respectively and cutoff is set to 3. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

suggests that it is the recall on seen events that can be improved by allowing more 

iterations, but, at the same time, more false positives are being generated, which keeps 

the overall performance at the same level. A further analysis of the output given by 

scorer program confirmed this hypothesis. 

From figure 4.5, it can be concluded that 200 is the best value for this parameter, as 

higher values do not contribute to this version's performance but significantly increase 

the time required for training the models. Therefore, 200 GIS iterations will be used 

for upcoming experiments. 

As usual, these parameters - i.e. cutoff=3, iterations=200- are also tested on the 

MUC-7 formal test corpus. Figure 4.6 presents the results for such experiments. This 

figure indicates that 200 iterations was not a bad decision, though 300 would have been 

a better overall option. It clearly shows that there is room for improvement with lower 

numbers of iterations (under generalisation) and that higher values start to produce too 

many spurious named entities (over generalisation). 

Interestingly, the trends on this corpus follow the trend on the dryrun corpus with the 

exception of ambiguous named entities, for which increasing the number of iterations 

produces a rise of the performance that did not happen in the experiment with the 

dry run test corpus. 

The flexibility introduced by MOLl MENE has allowed it to outperform Lex11ENE 
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Figure 4.6: Experiments with MOll MENE V2: the number of iterations for the GIS algorithm changing 
from O .. 5xl00 to 8xl00 .. Data is represented in FMLU notation, context windows are set to [1,1] and [2,2] 
respectively and cutoff IS set to 3. Corpora: MUC-7 training corpus and MUC-7 formal test corpus. 

100 

90 -

80 

70 

60 

LC 50 

40 

30 

20 

10 

Hard Unseen Ambiguous 
NE familiarity type 

---B- LexMENE dryrun lesl 
---B- LexMENE formal tesl 
~ MOll MENE V2 dryrun test 
---A- MOll MENE V2 formal test 

Seen Overall 

Figure 4.7: Comparison of LexMENE and MOll MENE V2: Best (overall) F-score obtained by each NEE 
system. Corpora: MUC-7 training corpus and evaluation on both MUC-7 test corpora . 

without adding new kinds of features. Figure 4.7 presents a comparison of the best 

overall performance obtained with these features. It can be seen that NIOLl MENE 

obtains a 4.5% higher F-score on the dryrun test corpus than LexMENE and - more 

importantly- a 6.5% increase on the formal test corpus. 
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4.3 Linguistically informed features 

All the results presented in section 4.2 were obtained with version of MOLl MENE that 

use the same types of features than LexMENE uses, but adding more flexibility and 

alternative options for the treatment of these features. 

These features are lexically oriented: the strings of tokens and indicators of the orthogra­

phy of tokens, such as whether the token contains digits or capital letters. These features 

have proved to be effective (Borthwick 1999, Tjong Kim Sang 2002b, Tjong Kim Sang 

and De Meulder 2003), and in combination with the maximum entropy framework, they 

provide a strong classifier which is able to perform named entity extraction with high 

levels of performance. 

In this section, it will be studied whether it is possible to improve the effectiveness of the 

approach by introducing other types of general features into MOLl MENE. For example, 

it has been reported that by adding morphological features -such as 3-letter prefixes 

and 3-letter suffixes of tokens- to the lexical features, the performance of an extractor 

can be boosted (Tjong Kim Sang 2002b, Wu et al. 2002, Wu, Ngai and Carpuat 2003). 

One of the hypotheses of this thesis (section 2.3) is that general linguistic information 

may help in the recognition of named entities. Therefore, MOLl MENE also includes 

a pool of features which are more linguistically related. The general idea is to add 

generalisation over the lexemes that are used for the lexical features. In a way, this is 

what morphological features do, but from a less organised perspective. 

Generalisation over lexical features can be obtain in several ways. Four of these alterna­

tives will be examined for MOLl MENE. First, some generalisations can be obtained by 

considering the lemmas of the tokens. In this way, variations introduced by inflection 

can be captured by firing one single feature. The intuition behind this type of feature is 

that if-for example- the tokens said and says are both recognised as weak (infrequent) 

indicators of a person's name occurring nearby, then the lemma say will concentrate the 

frequencies of these two lexemes and becomes a stronger indicator that the system can 

make use of. 

The second generalisation form is to consider the part-of-speech (PoS) of tokens. This 

would allow MOLl MENE to identify certain kinds of words whose occurrence increases 

the chances of finding a named entity in the vicinity. For example and specifically for 

the MUC task, a preposition may help the system to identify locations in sentences like 

they met at JFK Airport, he will be going to London next week, etc., and dates from texts like 

in August 2002. 

The third generalisation corresponds to the introduction of synonyms. It is quite intu­

itive for humans that the texts Jack Yami/i, chairman of FSFY and Yori Ugut, president of 
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FSFM are closely related, as both are reporting something about a person who occupies 

an important position in an organisation. However, lexical features cannot capture this 

kind of relation and, in the best case, the tokens chairman and president will be used 

as indicators of person and organisation names separately. By introducing a feature of 

the form syn(leader of an organisation) which would be fired by these tokens -and other 

synonyms of these words- a more predictive indicator might be obtained. 

As mentioned previously, one of the important advantages of maximum entropy models 

is their ability to combine information from different sources. Making use of this advan­

tage, the fourth method for providing generalisation in MOLl MENE will be achieved 

by introducing syntactic information about the structure of the phrases in which tokens 

are found. 

The intuition is that recognising syntactic patterns can yield good predictors of named 

entities. In the example above, both texts have the same syntactic pattern: NP[Jack 

Yamili} PUNCf,} NP[chairman} prof} NP[FSFY] and NPfYori Ugut} PUNCf,J NP[president} prof} 

NP[FSFMj. Thus, noting that this syntactic pattern often contains a person and an 

organisation name might help MOLl MENE to recognise more named entities embedded 

in the text, even though they might be quite different in lexical terms. 

4.4 Obtaining the new features 

On the one hand, syntactic information can be obtained from a parser. There are 

literally hundreds of parsers or parsing techniques that can be considered. However, a 

detailed discussion of these alternatives is beyond the limits of this thesis. Nonetheless, 

it must be mentioned that in order to exploit the portability of MOLl MENE, such 

a parser should be based on machine learning methods. Furthermore, full parsing, 

which is computationally expensive and normally with limited coverage, is unnecessary 

and shallow parsers have become the common tool utilised for language engineering 

(Stevenson 1998). 

Even narrowing the appropriate parsers in this way, the number of options is still 

very large. For example, several alternatives can be found in Cardie et al. (2000) and 

Daelemans and Zajac (2001). 

To collect syntactic information for MOLl MENE, the MBSP parser has been used 

(Daelemans, Veenstra and Buchholz 1999). This decision was based on practical reasons, 

rather than theoretical arguments. MBSP stands for Memory-Based Shallow Parser, 

as it employs three memory-based learning modules applied in cascade. These modules 

carry out part-of-speech tagging, text chunking and identification of basic syntactic 
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relations respectively. Each module is trained on the the Wall Street Journal section of 

the Penn Treebank (Marcus, Santorini and Marcinkiewicz 1993). 

Daelemans, Veenstra and Buchholz (1999) report remarkably good performances for 

MBSP: 94.6% accuracy for the PoS tagger, around F-score 94% for chunking module 

and about F-score 78% in subject/object detections. However, the main reason for 

selecting this shallow parser is that it is freely available: an on-line demo of MBSP has 

been applied to each document in the MUC-7 corpora and the syntactic information has 

been appropriately annotated. This selection was validated later as it was this shallow 

parser that was used to provide the corpora of the CoNLL-2002 and CoNLL-2003 shared 

tasks with syntactic information. 

On the other hand, obtaining lemmas and synonymic relations of words has normally 

been addressed by building morphological analysers and ontologies. However, ontologies 

are commonly oriented to capturing the most important concepts involved in a specific 

extraction task (Gaizauskas and Humphreys 1997). This is so because the knowledge 

required to construct a general-purpose ontology, which at the same time can be helpful 

for a determined extraction process, is unmeasurably large. 

Fortunately, the general-purpose lexical database WordNet®, developed at the Cogni­

tive Science Laboratory of Princeton University over several decades now, can be used 

for this purpose. 

WordNet has been described as a "lexical reference system whose design is inspired 

by current psycholinguistic theories of human lexical memory" (CSL 2004). There are 

important features of WordNet which MOLl MENE can make use of: 

1. A morphological analyser is included for looking up inflected words 

2. Nouns, verbs, adjectives and adverbs are organised into synonym sets -called 

synsets- each representing one underlying lexical concept 

3. Several relations are incorporated to link synonym sets, among which hyponyms, 

hypernyms and coordinate terms might be particularly useful 

Thus, WordNet provides all the necessary information for implementing the generalisa­

tions over the meaning of tokens described in section 4.3. Given the number of years 

invested in the development of Wordnet, there exists a number of different versions of 

the database. In all experiments with MOLl MENE, version 1.7.1 is used. This version 

contains 146,350 nouns, verbs, adjectives and adverbs, which are organised into 111,223 

synsets. The most important syntactic category are nouns, which account for 109,195 

words divided into 75,804 synsets (CSL 2004). 
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4.5 Organising the new features 

The more linguistically informed features will be organised in three different versions 

of MOLl MENE for the experiments. These new versions follow the discussion in 

section 4.3: version 3 (V3) will consider the syntactic structure around the focus token; 

version 4 (V 4) will consider features that provide generalisations over inflection, namely 

lemmalisation and PoS tags, and unstructured semantic information; finally, version 5 

(V5) will consider semantic information but in a more organised approach. Note that 

these versions of MOLl MENE do not accumulate feature sets, that is the only features 

in common are the lexically-oriented ones inherited from LexMENE - i.e. lexical, 

orthographic and zone features. 

4.5.1 MOLl MENE V3: syntactic patterns 

MOLl MENE V3 adds syntactic features to the basic lexically-oriented features. The 

pool of new features corresponds to the tag of the chunks and the head word within 

the chunks of the basic constituents occurring in a fixed-size context window around 

the chunk that contains the focus token. This window will be referred to as the chunk 

window. For example, consider the following sentence. 

NP[He] VP[wili succeed] NP[Amilie Jackson] PUNC[,] NP[chairwoman] prof] NP[FSFY] 
PUNC[,] NP[next October] PUNC[.] 

Supposing that the size of the chunk window is fixed to two, the features fired by the 

token Amilie would be 

tag-2=NP, head-2=he, tag-l =VP, head- 1 =succeed, tago=NP, heado jackson, 
tag+l =PUNC, head+l =',', tag+2=NP, head+2=chairwoman 

As explained in section 4.3, these new features might provide valuable information about 

patterns that are more likely to contain named entities. 

The number of chunk features could be a free parameter of the system, but it has been 

fixed for the initial experiments to the information gathered from the four chunks on each 

side of the focus chunk. This number follows the intuition that most useful modifiers for 

named entity extraction, such as appositive noun phrases, can be contained in a chunk 

window of size [4,4]. 
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4.5.2 MOLl MENE V4: lemmas, PoS tags and synonyms 

MOLl MENE V 4 includes the generalisations over the tokens found in the lexical window 

in the pool of features. It could be possible to use a different context window, but this 

would increase the number of parameters for MOLl MENE that need to be set and 

would not be a direct generalisation of the lexical features. 

The new types of features include the lemma of a token, its part-of-speech tag and the 

token's related synsets. There are several options for what can be included in the set 

of synsets fired by a token. Here, the most general alternative has been adopted and 

this set will consist of the synsets for the token, the synsets of its direct hyponyms, the 

synsets of its direct hypernyms and the synsets of its coordinate terms. 

WordNet's hierarchical organisation of words is straightforward. A synset is defined as 

a synonym set, that is, a set of words that are interchangeable in some contexts. A 

hyponym of a noun or a verb w corresponds to a member of the a class defined by w: 

w' is a hyponym of w if w' is a (kind of) w. Similarly, a hypernym of a noun or a verb 

w' describes a whole class of which w' is a specific instance: w is a hypernym of w' if 

w' is a (kind of) w. Finally, coordinate terms are nouns or verbs that share the same 

hypernym (CSL 2004, adapted from the Glossary of Terms). 

It must be noticed from the definitions above that adjectives and adverbs can only be 

generalised over synonyms. There are many details omitted here. For instance, the 

hypernym relations between nouns are obtained by applying different criteria to those 

for obtaining the hypernym relations between verbs. The reader is referred to Fellbaum 

(1998) for an exhaustive discussion of the design and contents of WordNet and papers 

reporting some pieces of research that utilise WordN et. 

For example, consider the focus token chairman in the sentence Jack Yamili, chairman of 

FSFY. WordN et finds the following synsets for this token2 : 

noun-08577148: president, chairman, chairwoman, chair, chairperson - (the officer who 
presides at the meetings of an organization; "address your remarks to the chairperson") 

verb-01918094: chair, chairman - (act or preside as chair, as of an academic depart­
ment in a university; "She chaired the department for many years") 

This token appears playing a noun's function: it is found inside a basic NP and is labelled 

with the part-of-speech for common nouns. Therefore, MOLl MENE V -1 ignores the 

synset verb-01918094 and only consider the synset noun-08577148 for further processing. 

This works analogously for the case in which the token is functioning as a verb. 

2 An attempt to maintain WordNet's answers literally will be made for these kinds of examples, 
though some grammatical forms and words might be found peculiar. Some alterations have been made 
in order to make the examples clearer. 
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This is the only effort that MOLl MENE -in all versions that use semantic information­

makes to filter out synsets provided by WordNet. No explicit disambiguation of the 

meanings of tokens is performed, as the maximum entropy model should be able to 

capture the most relevant senses based on the frequency with which these they occur 

in the contexts of named entities. 

After the cleaned set of synsets is obtained, WordNet is asked for the hyponyms, hy­

pernyms and coordinate terms of each synset contained in this set. The following is the 

information provide by WordNet for the sysnset noun-08577148: 

Hyponyms 
noun-08800476: vice chairman 

Hypernyms 
noun-08577370: presiding officer 

Coordinate terms 
noun-08467159: moderator; noun-08577148: president, chairman, chairwoman, 

chair, chairperson; noun-08706865: Speaker 

Thus, after trimming away repeated synsets -and repeated lemmas- MOLl MENE 

would be supplied with the following features fired by the focus token chairman
3

: 

lemmao=chairman, PoSo=NN, synseto=noun-08467159, synseto=noun-08577148, 
synseto=08577370, synseto=noun-08706865, synseto=noun-08800476, lemma-l =' ,', 

PoS+1=',',lemma+l=of, PoS+1=IN 

The features fired by this example token can help MOLl MENE V 4 in the extraction 

process. Indeed, if the token chairman is found to be a predictor of the occurrence 

of a named entity nearby, the system will also be inclined to use this predictor when 

the tokens president, chairwoman, chair, chairperson, vice chairman, moderator or speaker are 

found. 

4.5.3 MOLl MENE V5: trigger synsets 

MOLl MENE V5 is inspired in a generalisation over the concept of trigger words. 

Trigger words is a general term to designate words which co-occur with high frequency 

with linguistic events in text (Rosenfeld 1996). They have been used extensively by 

NEE systems (Gaizauskas et al. 1995, Carreras et al. 2002, Zhang, Shen, Zhou and 

Tan 2004, for example). For the MUC task, trigger words commonly contain personal 

3This assumes a lexical window of size [1,1]. The other tokens in the window, namely',' and of, 
do not fire synsets because they are not included in WordNet's database. In these cases, the lemma is 

assumed to be the lexical form. 
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titles (e.g. Mr., PhD., MD.), organisation designators (e.g. Ltd., Corp., PLC), organisation 

keywords (e.g. Bank, Services, Association), location keywords (e.g. mountain, lake, river, 

city), job titles (e.g. chairman, president, executive officer, general, MP) and time keywords 

(e.g. earlier, ago). 

By providing the appropriate sets of trigger words, NEE systems can recognise -or at 

least be more alert to- the presence of a named entity in the text. However, these 

lists of words are highly domain dependent and normally handcrafted from the training 

texts. Usually, an analysis of both the initial lists and the domain is conducted to add 

other potentially helpful trigger words which do not occur in the training data. 

MOLl MENE V5 attempts to overcome this portability limitation by replacing trigger 

words by trigger WordN et synsets. The intuition behind this approach can be best 

explained with an example. Consider the following (partial) sentences: 

Senator Kelly criticised .. . 

Reverend Smith denied .. . 

Coach Johnson promised ... 

It is clear that these sentences make use of a common pattern to report an action 

executed by a person, which is identified by his/her name. Traditionally, the recognition 

of this type of pattern would be approached by adding these words into a list of trigger 

words for named entities of class person. 

Because synsets are organised into hierarchies in WordNet, each synset is part of at 

least one hierarchy which is headed by a root synset called a unique beginner. The 

paths from each synset to unique beginners form a structure known as an hypernym 

tree. For the candidates to trigger words in the running example, WordNet returns the 

following hypernym trees4
: 

noun-08663173: senator 

=> noun-08409434: legislator 
=> noun-08405572: lawgiver, lawmaker 

=> noun-07904081: leader 
=> noun-00005303: person, individual, someone, ... 

=> noun-00003135: organism, being 
=> noun-00002956: living thing, animate thing 

=> noun-00013067: object, physical object 
=> noun-00001742: entity, physical thing 

=> noun-00004911: causal agent, cause, causal agency 
=> noun-00001742: entity, physical thing 

noun-08151518: clergyman, reverend, man of the cloth 
=> noun-07801084: spiritual leader 

40nly one sense (synset) per word is presented for this example. 
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=> noun-07904081: leader 
=> noun-00005303: person, individual, someone, ... 

=> noun-00003135: organism, being 
=> noun-00002956: living thing, animate thing 

=> noun-00013067: object, physical object 
=> noun-00001742: entity, physical thing 

=> noun-00004911: causal agent, cause, causal agency 
=> noun-00001742: entity, physical thing 

noun-08154623: coach, manager, handler 
=> noun-08778227: trainer 

=> noun-07904081: leader 
=> noun-00005303: person, individual, someone, ... 

=> noun-00003135: organism, being 
=> noun-00002956: living thing, animate thing 

=> noun-00013067: object, physical object 
=> noun-00001742: entity, physical thing 

=> noun-00004911: causal agent, cause, causal agency 
=> noun-00001742: entity, physical thing 

102 

Thus, although the synsets for the tokens senator, reverend and coach might appear just 

once in the training corpus, the synsets for the concepts leader, person, agent, etc. are 

hit three times -not considering other senses for the tokens under consideration, the 

other words in these example sentences nor other training sentences. These concepts 

might be considered trigger synsets for the named entity class person. 

Of course, not all synsets can be considered trigger synsets. They could be a source of 

noise if they show affinity for more than one class of named entity or for words that are 

not targeted by the extraction task. Moreover, concepts close to the top of hypernym 

trees might be hit too many times to provide useful information. Synsets at the leaves 

of the trees might be hit too seldom to be considered as reliable predictors, and their 

frequency might not be much different from simply using the lexemes themselves. 

This can immediately be seen as a machine learning task: high-level synsets are too gen­

eral hypotheses of what a relevant piece of text is; and low-level synsets are hypotheses 

that are too specific to provide any useful learning. Therefore, it will be mainly the 

job of the maximum entropy framework to recognise the most relevant trigger synsets 

to be considered by the model. Nonetheless, some preprocessing over the synsets will 

be applied in order to help the GIS algorithm in selecting those with more predictive 

power. 

The process starts by collecting all synsets hit by the tokens in the lexical window. 

According to the settings fixed in section 4.2, this generates three lists of initial trigger 

synsets: the first list contains synsets that might predict that the next token on the 

right belongs to a given class; the second list gathers the synsets fired by focus tokens 

which might predict that the current token is of a given class; and the third list stores 
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synsets which might predict that the previous word appertains to a given class. These 

lists are referred to as the next-is list, the this-is list and the previous-is list respectively. 

At the same time that these lists of synsets are being generated, counts of the fre­

quency they are seen with each named entity class -and the not-a-narne class- are 

also compiled. 

The first filtration of the synsets lists is applied at this stage, and corresponds to dis­

carding synsets that are hit less than three times, as they will be filtered out anyway 

when the frequency cutoff is enforced. 

But the counts collected can also be used to determine the predictive power of each 

synset in the initial lists. For example, consider the following counts gathered for two 

potential trigger synsets in the MUC extraction task: 

[ Synset not-a-name date location money organisation percent person time 

[ noun-12726340 5 0 1 0 5 0 0 0 

I noun-11422319 37 1 0 0 1 0 0 0 

Thus, the synset noun-12726340 was seen 45% of the time predicting the class not-a-name 

and another 45% of the time predicting the class organisation. In contrast, the synset 

noun-11422319 was seen 95% of the time predicting the class not-a-narne. Clearly, the 

latter gives much more information than the former. 

What is needed now is a way of capturing this intuitive idea of more informed or 

more predictive synset. One possibility is to use the distance between the probability 

distribution that a set of counts defined and the least informative distribution, that 

is the uniform distribution. This is normally done using the Kullback-Leibler (KL) 

distance5 -also called KL divergence, KL number and relative entropy (K ullback and 

Leibler 1951, Cover and Thomas 1991). This number is usually denoted D and its 

definition -for discrete distributions- is given in equation 4.1. KL distance measures 

the difference between two probabilistic distributions p and q. Thus, if q is a true 

distribution, the relative entropy can be used to measure how good an approximation 

of q the distribution p is. Similarly, if q is the uniform distribution, the KL distance 

can be used to determine how concentrated the probability mass is among the possible 

outcomes of the distribution. The greater the relative entropy, the more concentrated 

the mass distribution is - i.e. the more distant from the uniform distribution in which 

the probability mass is equally divided among the possible outcomes. 

p(x) 
D(Pllq) - p(x) log q(x) (4.1) 

5 Although this number is normally called a distance, it does not satisfy the triangle inequality and 
is therefore not a true metric. Nonetheless, it satisfies important mathematical properties, such as that 
it is is always nonnegative and equals to zero if and only if the distributions being compared are equal. 
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Figure 4.8: Comparison of the performances of version V2, V3, V4 and V5 of MOll MENE: data is 
represented in FMLU notation, context windows are set to [1,1], [2,2] and [4,4] respectively, cutoff is set to 
3 and GIS iterations to 200. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

Therefore, the second pre-processing step corresponds to filtering out synsets whose 

counts define a probability distribution that has a relative entropy -with the corre­

sponding uniform distribution- which is less than 2.0. This bound coincides with 

distributions that divide all their probability mass between at most two named entity 

classes. Thus, the worst kind of trigger synsets that are accepted are those which predict 

"the token is either of class Yl or of class Y2"· 

Note that this value is for the MUC extraction task, which defines seven named entity 

classes plus a not-a-name default class. However, this parameter can be easily calculated 

automatically from the number of named entities to be identified and, therefore, it does 

not reduce the portability of the approach. 

4.6 A comparative experiment 

Figure 4.8 presents a comparison of the performance obtained by versions V2, V3, V 4 

and V5 of MOLl MENE described in section 4.5. For this experiment, parameters set for 

MOLl MENE V2 are used; thus the lexical window size is set to [1,1], the orthographic 

window size is set to [2,2] and precedence is applied, the unknown words threshold 

has value three, the frequency cutoff is fixed to three and the GIS algorithm runs 200 

iterations. MOLl MENE V3 is using a chunk window of size [4,4] as explained in section 

4.5.1. 
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Figure 4.9: Experiments with MOll MENE V4: the number of iterations for the GIS algorithm changing 
from 2?0 to 1000. D~ta is represented in FMLU notation, context windows are set to [1,1] and [2 ,2] 
respectively and cutoff IS set to 3. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

The main observation from figure 4.8 is that the most simple version, namely V2, obtains 

the best results. However, this does not necessarily imply that the more linguistically 

informed features are irrelevant. If that were the case, the maximum entropy model 

would have set its weights to values that would simply ignore these features (Rosenfeld 

1996, Mikheev 1998). 

The negative effect of the newly added features on MOLl MENE's performance might 

have more to do with the convergence of the parameters of the maximum entropy model. 

Firstly, the size of the model has been dramatically increased and there are many more 

weights that need to be calibrated by the GIS algorithm. Secondly, it can almost be said 

for certain the new features are overlapping. For instance, all tokens considered in the 

example of section 4.5.3 for V5 hit the concept leader, which invariably meant that they 

also hit the concepts person, organism, living thing, etc. These hits are not independent 

but due to the hierarchical organisation of WordNet. As a result, more iterations of the 

GIS algorithm are needed (Ristad 1998, Borthwick 1999). 

To check this hypothesis, a further experiment with MOLl MENE V 4 was conducted, 

in which the iterative scaling algorithm is allowed to run for 400, 600, 800 and 1,000 

iterations. Figure 4.9 shows the results for this experiment, in which the system obtains 

significant increases in performance in all familiarity types when more iterations are 

allowed. In this figure - although there are signs of stabilisation- the curve seems far 

from convergence, which suggests that V4 could get benefits from allowing the iterative 

scaling algorithm to run many more iterations. 
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cutoff is set to 3 and GIS iterations to 200. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

However, the improvement described above is very expensive: building the model with 

1,000 iterations took two days and required a machine with several gigabytes of memory. 

This is an unacceptable increase of computational resources considering that MOLl 

MENE V2 obtains better performance with a model which only takes 15 minutes to be 

built on a normal desk computer with 1GB of memory. 

4.7 Reducing feature pools 

One possible solution to this problem is to reduce the number of linguistically informed 

features that arrive at the iterative scaling phase. Therefore, the following experiments 

aim to determine whether by directly reducing the number of features, MOLl MENE 

can obtain a better maximum entropy model. 

In the first experiment, the chunk window used by MOLl MENE V3 is reduced to sizes 

[3,3], [2,2] and [1,1]. Thus, instead of generating 18 chunk features per token, the GIS 

algorithm will have to deal with 14, 10 and 6 features per token respectively, in addition 

to the basic features used by MOLl MENE V2. Results for these experiments are shown 

in figure 4.10. 

The second experiment aims to determine whether better predictors can be obtained by 

reducing the number of trigger synsets that MOLl MENE V5 considers. To do this, it 

is necessary to rank the trigger synsets so that the best ones can be selected. However, 
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Table 4.2: Example of different, possible measures for ranking trigger synsets. 

Synset 1 f 1 KLD 1 f * KLD 1 Split * KLD 1 log f * KLD 1 F(l)(l f KLD) I 2 og2 , 
noun-10371413 3 3.000 9.000 0.000 4.755 2.07·1 
noun-11549024 9 3.000 27.000 0.000 9.510 3.083 
noun-11513257 58 2.874 166.712 0.361 16.838 3.856 

the KL distance from the uniform distribution -used for filtering out less relevant 

synsets- is not an appropriate index for doing this ranking. Consider the following 

counts: 

Synset not-a-name date location money organisation percent person time 

noun-10371413 3 0 0 0 0 0 0 0 

noun-11549024 0 0 0 0 0 0 9 0 

noun-11513257 57 0 1 0 0 0 0 0 

The KL divergences for these synsets are 3.0, 3.0 and 2.874 respectively. However, if 

decoding data presents approximately the same frequencies for trigger synsets as the 

training data -which is also the assumption on which the application of a statistical 

machine learning approach is based- then it makes sense to consider that the second 

synset provides more information than the first one, and that the third synset is more 

predictive than the other two. This is so because the first synset was only fired by the 

minimum number of examples to be considered a trigger synset, whereas the second 

and third synsets were fired three times and 20 times more often respectively. 

Thus, the frequency with which a trigger synset is fired must be considered in the index 

for ranking them. There are several alternatives for doing this, such as multiplying 

the KL distance by the absolute frequency of the synset or using the Split Information 

measure (Quinlan 1986). Table 4.2 summarises some of these alternatives for the sample 

synsets above. 

MOLl MENE uses a direct approach which was observed to produce the desired effect 

on a small set of examples tested: the weighted harmonic mean -exactly like the F­

score used for measuring performance (van Rijsbergen 1979)- of the logarithm of the 

synset's frequency and its KL divergence with respect to the uniform distribution (last 

column of table 4.2). 

Using this score, trigger synsets are ranked according to their predictive power. Then, 

only the most important synsets can be selected to be considered by MOLl l\lENE. 

With this strategy at hand, a new experiment with V5 was conducted in which the size 

all three lists of trigger synsets was fixed to a value that varies from 1,000 to all synscts 
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Figure 4.11: Experiments with MOll MENE V5: the size of the three lists of trigger synsets changing from 
1,000 t? around 13,000: Data is represented in FMLU notation, context windows are set to [1,1] and [2,2] 
respectively and cutoff IS set to 3. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

considered relevant (around 13,000 elements). The results of this experiment are shown 

in figure 4.11. 

Unfortunately, neither of these experiments exhibit an improvement over MOLl MENE 

V2. On the one hand, the performance of V5 is fairly constant and much lower than the 

one shown by V2, no matter what the size of the lists of trigger synsets is. On the other 

hand, the performance of V3 seems to be affected by the size of the chunk window, but 

the best results of figure 4.10 -obtained with the minimum size [1,1]- is not enough 

to outperform V2 and this performance decreases as the chunk window grows in size. 

In conclusion, directly reducing the number of features to be considered by the max­

imum entropy model of MOLl MENE does not solve the convergence problem, and a 

more sophisticated approach is needed. Such an approach might consider a much more 

careful selection of features, as well as the creation of complex features in which more 

than one of the atomic features are combined. For example, firing a feature "previous 

word is a trigger synset for the class person and the current token is Smith" might be 

more informative than just firing the two features individually, reducing the number of 

iterations required to introduce this information into the model. 

Traditionally, it is the modeller's work to design and select features that will provide 

the maximum entropy model the necessary information to perform the target task well. 

This is normally done by trying a set of features, investigating where the system is 

making mistakes and, based on this information, proposing new features that can cor­

rect these weaknesses. This process is repeated several times until a set of feature 
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seems impossible to improve on -or whose performance cannot be increased without 

significantly compromising other issues, such as computational resources. 

However, this method introduces limitations into the portability of the NEE system. 

This is so because this task requires two types of expertise. On the one hand, the 

modeller must know the domain in order to identify valid conjunctions of atomic features 

that might provide useful information, as well as recognise what information is causing 

mistakes and how these problems could be solved. On the other hand, the modeller has 

to master the maximum entropy framework to check whether the intended effect of the 

designed features is being reflected by the model. Moreover, designing and selecting 

complex features is not a trivial task (see Borthwick (Chapter 6) for a good example, 

briefly discussed in section 4.8). 

4.8 Feature selection 

From the above results, it has become necessary to utilise some method for selecting 

features from the large pools of features managed by MOLl MENE V3, V4 and V5, in 

order to facilitate the task to the underlying maximum entropy framework. 

Selecting relevant features before applying an inductive method is a common practice 

in machine learning (Blum and Langley 1997), and there have been few attempts to 

perform this selection automatically for maximum entropy models (Berger et al. 1996, 

Mikheev 1998). These methods aim to select the most relevant features from an initial 

pool of features, as large as possible. However, the nature of the task studied here makes 

these approaches impractical. Consider MOLl MENE V3 for example. When the chunk 

window is set to [4,4], 18 atomic features are introduced into the framework in addition 

to the atomic features used by MOLl MENE V2: the chunk tag and the head word of 

the focus chunk, the four chunk tags and the four head words on the left of the focus 

chunk, and the four chunk tags and the four head words on the right of the focus chunk. 

Considering only these newly introduced atomic features, there are 262,143 possible 

combinations. The tag features have around 13 different values and the word features 

have around 2,900 distinct lexemes, which raises the theoretical number of valued com­

plex features to a staggering 211,322, 798,375,569,000,000,000,000,000,000,000,000,000. 

Although only a fraction of this theoretical number of combinations will be seen during 

training, the amount is still prohibitively large for trying all possible complex features. 

These difficulties were already discussed in section 2.4.4, and one of the possibilities 

suggested to overcome the problem was the use of decision trees to obtain complex 

features from a pool of atomic features only, as proposed by Park and Zhang (2002). 

However, as also stated in section 2.4.4, there have been reports that even powerful, 
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commercial decision tree induction algorithms are not able to cope with this sheer 

number of attributes (Ratnaparkhi 1998, Borthwick 1999). 

Considering these facts, MOLl MENE utilises an efficient rule learning algorithm: Rip­

per (Cohen 1995). Ripper is specially suitable for the purpose discussed above for 
several reasons: 

I> like many inductive algorithms, Ripper creates a lists of rules that try to use only 

the most relevant valued attributes -i.e. features- from a potentially large set of 

attributes, so that a general hypothesis to explain the observation can be formed 

I> although the induction is greedy -based on Fiirnkranz and Widmer's (1994) 

lREP- its performance is extremely competitive with the more developed, ex­
pensive C4.5 algorithm 

I> due to this greediness, the algorithm is extremely efficient as it scales nearly 

linearly with the number of training examples - actually n log2 n 

I> the latest versions have been provided with an extended feature-vector representa­

tion which can manage, in addition to continuous and nominal features, set-valued 

features (Cohen 1996); this characteristic is quite useful, especially for NLP tasks 

in which it is not uncommon to find token features -as in the features used by 

MOLl MENE- which may contain an arbitrary number of lexemes 

The approach is quite simple and closely follows the idea of Park and Zhang (2002). 

First, all atomic features are provided to Ripper, which induces a list of complex rules 

- that is, conjunctions of valued, atomic features. Because one of the objectives of this 

chapter is to determine the impact of more linguistically-informed features, the default 

features used by MOLl MENE V2 are left out of this procedure. Then, each of the 

resulting rules is considered a complex feature for the maximum entropy model, which 

can be fired by any training example disregarding the class it predicts. In the next 

step, these complex features are joined with the default features. Finally, a maximum 

entropy model for MOLl MENE is obtained from this pool of atomic and complex 

features, following an application of the cutoff selection. 

In the decision list approach, rules are incrementally induced -one at a time- and 

when each new rule is added to the list, all examples it covers -positive and negative­

are removed from the set of training examples. Thus, each rule aims to separate the 

sample space into two sets: examples that belong to a particular class and examples that 

cannot be safely classified at that time. However, when rules are used as features, they 

might overlap and a training example can even fire two -or more- contradictory rules. 

Figure 4.12 represents this situation graphically. It is the job of the maximum entropy 
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Figure 4.12: Situation when Ripper rules are used as complex features: rules might overlap. 

framework to obtain the appropriate probabilities for overlapping rules, whether they 

predict the same class or are contradictory, as well as combine this information with 

the other (default) atomic features. 

4.9 The new versions 

Following the ideas presented in section 4.8, three new pools of features were obtained 

-one for each MOLl MENE version presented in section 4.5- by applying the Ripper 

rule inducer to the original pools of features. Ripper proved to be very efficient: none 

of the new pools of features took more than 45 minutes to be built. 

The new pools contain the linguistically-oriented features, both atomic and complex, 

that Ripper considers most useful for performing the extraction task. Appendix C 

presents the text representation for these hypotheses as given by the implementation of 

Ripper in use (Cohen 1996). 

For experimentation, three further versions of MOLl MENE have been created: versions 

V6, V7 and V8, which use the new pools of features that result from applying Ripper 

to the linguistically-oriented atomic features of versions V3, V 4 and V5 respectively. 

It has been computationally infeasible to determine the exact reduction in the size of 

the feature space obtained by this approach. An estimation for 10 training documents 

was performed. Results indicate that 382,869,287 unique complex features -that occur 

2572 661 588 times- were produced for MOLl MENE V3 from the atomic features , , , 
contained in these documents. Ripper, when considering all training documents, selects 

just 16 complex features that use only 37 distinct valued atomic features. Therefore, 

the reduction in the size of the problem is quite important. 

4.10 Results of the new versions 

Figure 4.13 presents the performance obtained by MOLl MENE V6 V7 and V8, as 

defined in section 4.9, on the MUC-7 dryrun test corpus. All parameters have been 
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Figure 4.13: Comparison of the performances of version V2, V6, V7 and V8 of MOll MENE: data is 
represented in FMLU notation, context windows are set to [1,1], [2,2] and [4,4] respectively, cutoff is set to 
3 and GIS iterations to 200. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

kept fixed to the values determined in section 4.2, V6 uses a chunk window of size [4,4] 

and V8 considers all trigger synsets. 

The first observation is that version V6 fails to outperform the simpler version V2 

overall, but versions V7 and V8 do obtain slightly better overall performance. 

The lack of contribution of chunk tags and head words has been somehow validated 

by recent experiments (CoNLL-2002 and CoNLL-2003) in which several authors have 

reported the same effect, though it could also be attributed to the noise introduced by 

the MBSP parser which, after all, has been shown quite accurate in a different source 

of text and no results are known for the MUC-7 documents (see section 4.4). 

The key factor for the success of MOLl MENE V7 and V8 seems to be the improvement 

in the performance of extracting ambiguous named entities. For this familiarity type, 

Ripper appears to capture relevant information from the synsets provided by WordNet 

which, even without applying any explicit effort for disambiguation, allows the system 

to decide better whether an ambiguous phrase is acting as a named entity or not. 

A second important observation is that Ripper seems to effectively reduce the size of 

the set of training complex features, as the generalised iterative scaling algorithm is able 

to estimate an appropriate set of weights for MOLl MENE's maximum entropy model 

in just 200 iterations. 

Comparing these results to versions V3, V 4 and V5 (figure 4.8) , a substantial improve­

ment in the performance can be observed. The performance obtained by V7 with 200 
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Figure 4.14: Comparison of the performances of version V2, V6, V7 and va of MOll MENE: data is 
represented in FMLU notation, context windows are set to [1,1], [2,2] and [4,4] respectively, cutoff is set to 
3 and GIS iterations to 200. Corpora: MUC-7 training corpus and MUC-7 formal test corpus. 

GIS iterations is about 12 F-score points higher than its counterpart V4 when trained 

with 1,000 GIS iterations. This is quite remarkable as both versions share the same 

pool of atomic features. This confirms that Ripper is selecting the most relevant atomic 

features and generating useful complex features. 

Figure 4.14 shows the results obtained by repeating the above experiment on the MUC-7 

formal test corpus. The overall performances follows the trend observed on the dryrun 

test corpus. However, MOLl MENE V8 is not the overall best system, as on the 

former corpus, and it is outperformed by version V7. This seems to be due to an 

important increase in the performance of V7 on unseen named entities, which was not 

observed in the dryrun test documents. Recall that the MUC-7 dry run test corpus 

was selected from the same domain as the MUC-7 training corpus, whereas the MUC-7 

formal test corpus is a collection of documents from a slightly different domain. These 

facts suggest that gathering information about close synonyms might contribute with a 

better generalisation for the identification of unseen named entities when they do not 

follow exactly the patterns seen in the training text. 

4.11 Adding generalisation of features 

In section 4.8, a method for feature selection based on collocations of features -

proposed by Mikheev (1998)- was discussed. One of the most interesting charac­

teristics of this approach is that it provides a simple way of performing generalisation 
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Figure 4.15: Example of the generalisation of complex features for MOll MENE V6. 

of complex features: when two complex features share one or more atomic features in , 
conjunction with other atomic features, this common section is added to the pool as a 

new feature. In this way, when the two complex features are not present in the decoding 

data, the maximum entropy model can back-off to a less informed, but more general 

feature. For example, consider the complex features used by MOLl MENE V6 that are 

presented in figure 4.15. In this case, there are three complex features that have one 

common atomic feature, namely that the focus chunk is labelled as a noun phrase. The 

generalisation procedure will add this common atomic feature into the pool as a weaker 

indicator, which can nevertheless be useful in the absence of the complex features. 

This idea has been easily introduced into the MOLl MENE versions that obtain complex 

features through Ripper. After the list of rules induced by Ripper has been transformed 

into complex features, discarding the classes predicted, they are considered as observed 

feature collocation nodes in a lattice. Then, a new process takes these collocations and 

builds the next level in the lattice. This corresponds to creating new feature collocation 

nodes from each original node by removing one of the features in the collocation, that is 

one condition from the rule. Then, empty nodes, nodes that already exist in the lattice 

and nodes that support only one node of the original level are removed from the new 

level. This procedure is repeated until no new nodes can be obtained. The features 

resulting of this generalisation procedure are also detailed in appendix C. 

4.12 Results of generalisation 

Applying the generalisation procedure described in section 4.11, three new versions of 

MOLl MENE have been obtained: V9, VI0 and VII. These versions consider the 

generalised pools of features of versions V6, V7 and V8 respectively. 

The generalisation process turned out to be quite fast and only took a few seconds 

for each list of rules. The main reason for this efficiency is the moderate size of these 

lists: V6 uses only 16 complex features, which are extended to 18; V7 manages 221 

Ripper rules, which are expanded to 252; and V8 utilises 193 conjunctions, which are 

generalised to 211 features. 
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Figure 4.16: Comparison of the performances of version V2, V9, VI0 and Vll of MOll MENE: data is 
represented in FMLU notation, context windows are set to [1,1], [2,2] and [4,4] respectively, cutoff is set to 
3 and GIS iterations to 200. Corpora : MUC-7 training corpus and MUC-7 dryrun test corpus. 

Figure 4.16 presents the performance obtained by MOLl MENE V9, VIO and V11 

on the MUC-7 dry run test corpus. It can be seen that generalisation has had only a 

marginal effect on the performance of MOLl MENE V6, V7 and V8 on this test corpus. 

Versions V6 and V7 are helped slightly by the introduction of generalised rules, but V8 

has decreased its performance a little. 

Interestingly, the improvement in recognising unseen named entities obtained by features 

that use close synonyms that was observed for the MUC-7 formal test corpus, has also 

appeared here, at the cost of a slight decrease in the accuracy on ambiguous named 

entities. 

Figure 4.17 shows the results for this experiment when repeated with the MUC-7 formal 

test corpus. It can be immediately noticed that there is a similarity between these 

curves and those of the not-generalised versions. MOLl MENE VIO is even better at 

identifying unseen named entities than V7, though a small decline in the performance 

on ambiguous named entities can be observed. 

Another interesting effect of this experiment is that MOLl MENE VII also presents a 

decrease in the performance on ambiguous named entities with respect to the dryrun 

corpus, but this time this fall is not enough to prevent this version outperforming the 

other systems. 
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Figure 4.17: Comparison of the performances of version V2, V9, VI0 and Vll of MOll MENE: data is 
represented in FMLU notation, context windows are set to [1,1], [2,2] and [4,4] respectively, cutoff is set to 
3 and GIS iterations to 200. Corpora: MUC-7 training corpus and MUC-7 formal test corpus. 

4.13 Ripper as a baseline system 

Questions may have arisen from the discussion in the previous sections about whether 

Ripper might be accounting for all the improvements observed in later approaches 

of MOLl MENE, and whether this approach alone could obtain the same -or even 

better- results for this task. These are reasonable questions as Ripper is itself a strong 

classifier and it has been successfully applied to other NLP tasks (Cohen 1996). 

Therefore, two NEE approaches based on Ripper have been designed to clarify these 

open questions. Unfortunately, it is not possible to conduct these experiments with the 

same data as used by MOLl MENE. Because Ripper's rules do not predict probability 

distributions, but a single class for each token, MOLl MENE's training data cannot 

be used as it is in FMLU notation which requires the application of a Viterbi search 

in a post-processing step. Nevertheless, beside the difference in the notation of named 

entities' classes, Ripper is provided with the same features and parameters as used by 

MOLl MENE. 

The first Ripper approach is named R(V2+ R(V5)) as it uses rules obtained from MOLl 

MENE V2's lexically-oriented features in addition to rules induced from MOLl MENE 

V5's linguistically-oriented features, that is mimicking the approach used for version V8 

but replacing the maximum entropy model by a Ripper induction step. 

The second Ripper approach is named R(V2+ V5) because it applies Ripper's rule in­

duction on the pool of atomic features that result from combining MOLl MENE V2's 
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Figure 4.18: Comparison of the performances of R(V2+R(V5)) . R(V2+V5) and version va of MOll MENE. 
Corpora: MUC-7 training corpus and MUC-7 test corpora. 

and MOLl MENE V5's features. 

Figure 4.18 presents a comparison of the above Ripper-based systems and MOLl MENE 

V8. The latter utilises the abilities of both Ripper and the maximum entropy framework 

on the same features used by the Ripper-based approaches. 

The results are conclusive: the combination of Ripper and maximum entropy models 

yields much better performance on the extraction in all familiarity types on both test 

corpora. 

4.14 Summary and discussion 

Table 4.3 presents a summary of the best F-scores obtained in the experiments con­

ducted in this chapter. It also includes the results for the baseline systems reported in 

sections 3.4.2 and 3.4.3. The training time included in this table for each system has 

been obtained in a normal desktop computer, with the exception of MOLl MENE V4 

(marked with an asterisk) which was trained in (a window of time of) a bigger machine 

provided by the York White Rose Grid. 

The first observation is that the more informed features seem not to have a great impact 

in the performance of the system. Indeed, the best F-scores of MOLl MENE are just 

0.70 and 1.56 higher for the dryrun test and formal test corpora respectively, with 
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Table 4.3: Summary of the performances obtained by the baseline systems, the approaches reported in this 
chapter and two systems based on the Ripper inducer. 

Version Pool of Training Performance 
Name Features Time Dryrun test Formal test I 

siNymble 
lexicals (tokens) in a [1,0] window, binary lexicals 

4m37s 81.20 with precedence in a [1,0] window 66.12 

LexMENE 
lexicals (tokens) in a [2,2] window, binary lexicals 

19m55 79.54 without precedence in a [2,2] window, zone 64.51 

V2 
lexicals (tokens) in a [l,lJ window, binary lexicals 

15m13 83.98 
with precedence in a [2,2J window, zone 71.49 

V3 
V2's features plus chunk tags in a [4,4] window 

50m51s 71.71 57.69 and head words of chunks in a [4,4J window 
V2's features plus lemmas in a [1,1] window, PoS 

V4 tags in a [2,2] window, close synonyms in a [l,lJ 9h48m18s' 60.81 51.98 
window 

V5 
V2's features plus trigger synsets hit in a [2,2] win-

46m46s 73.81 61.64 
dow 

V6 
V2's features plus Ripper rules induced from V3's 

21m46s 83.22 
new features 

70.61 

V7 
V2's features plus Ripper rules induced from V4's 

1h16m42s 84.09 
new features 

72.65 

V8 
V2's features plus Ripper rules induced from V5's 

1h1m57s 84.68 
new features 

71.93 

V9 V6's features but Ripper features are generalised 22m02s 83.36 70.64 

V10 VTs features but Ripper features are generalised Ih18mlOs 84.54 72.60 

Vll V8's features but Ripper features are generalised Ih02m52s 84.38 73.05 

R(V2)+R(V5) 
Ripper rules induced from V2's features plus Rip-

13m8s 60.02 49.68 
per rules induced from V5's features 

R(V2+V5) Ripper rules induced on V2's and V5's features 16m17s 70.22 55.68 

respect to the performance obtained by V2 which uses only the uninformed pool of 

feature of LexMENE. This represents about a 1% improvement. 

The explanation of this result might lie in the great improvement obtained by just 

re-arranging the lexical-based features from LexMENE to MOLl MENE V2. This 

parametrisation meant a 6% and an 11% improvement respect to the maxImum en­

tropy baseline system, making the approach hard to improve on. 

Although marginally, WordNet features seems to be contributing to the identification 

of more unseen and ambiguous named entities. This fact deserves further investigation, 

as a better parametrisation of the model or the Ripper algorithm could lead to more 

significant improvements. 

However, it might be the expected that the introduction of naive more-informed fea­

tures -which require no human intervention, though- will not be able to increase the 

performance much. Thus, more elaborated features, or at least a better parametrisa­

tion, are needed in order to obtain greater improvements. For example, it is likely that 

by applying even a simple word sense disambiguation algorithm, the trigger synsets 

features could provide more valuable information; neither is it clear that a window of 

[1,1] is the correct setting for this type of feature. 

Moreover, it might be possible to boost the contribution of the more linguistically 

informed features by combining them with other kinds of features which have been 
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shown to be useful for named entity recognition, like those used in the maximum entropy 

approaches presented in the CoNLLs (Roth and van den Bosch 2002, Daelemans and 

Osborne 2003). 

Nevertheless, this chapter has made an important contribution by introducing and em­

pirically testing a new way of selecting relevant complex features from a huge space of 

possible constraints for the maximum entropy model. The 1 % increase in performance 

discussed above could have not been possible without this selection method, as experi­

ments with MOLl MENE V3, V4 and V5 show. Version V4 was not near to being able 

to rival the simpler version V2, even when the GIS algorithm was allowed to run 1,000 

iterations. 

This method is simple, general and fast, mainly because of the efficiency of the Rip­

per algorithm, and it may be suitable not just for maximum entropy models but for 

other models too that have difficulties with large and sparse spaces of features, such as 

memory-based algorithms. 



Chapter 5 

Biasing LexMENE 

This chapter present a different approach to extending LexMENE than the one pre­

sented in the previous chapter, which aims to assess the validity of the second hypoth­

esis proposed in section 2.3. The idea is to bias LexMENE towards examples that are 

similar to the piece of text being classified. 

In this chapter, the reasons to believe that making this biasing might improve the perfor­

mance of LexMENE are discussed. Then, the strategies to represent and retrieve similar 

pieces of text are presented. Finally, experiments with the approach are explained and 

evaluated. 

5.1 Why biasing LexMENE? 

There are two main reasons to expect that LexMENE could benefit from considering 

similar training examples when classifying new text: 

I> it might help LexMENE to recognise exceptions -i.e. low-frequency named entity 

occurrences- in the text 

I> LexMENE could implicitly use the information utilised to obtain similar train­

ing examples, if this information is different from the one it considers for the 

classification 

These two arguments can be better explained with some examples. Consider the clas­

sification of the last noun phrase in the sentence we're going to Paris, in which a location 

is found. It is very likely that there are many similar pieces of text in which the same 

120 



CHAPTER 5. BIASING LEXMENE 121 

lexical features are present but not associated with any location: we're going to make a 

study, we're going to the party, we're going to the NLP Conference, etc. 

If this kind of irrelevant sentence is highly frequent in the training texts -or for that 

matter in the decoding documents- LexMENE's approach, being a statistical one, 

would be inclined to overlook the sample sentence and not consider the possibility of 

the presence of a named entity in it. 

Even if these irrelevant sentences are not frequent enough to dominate LexMENE's de­

cisions, they are nonetheless considered in the model. A human reader would recognise 

the inappropriateness of considering these sentences just by realising that the modi­

fier/argument of the verb going in the sentence we're going to Paris is a noun phrase 

whose head word is not preceded by a determiner and written in capitalised style, 

whereas none of the irrelevant sentences meet all these conditions. 

Therefore, although it would be rather difficult to include all this knowledge in Lex­

MENE, some of this information can be captured if the system takes into account more 

examples that contain -for this particular piece of text-locations: she's going to London 

tomorrow, they're flying to Washington, we're going to the City for a meeting, etc.; and fewer 

example of similar texts which do not contain locations. In this manner, features in 

LexMENE will be biased towards locations. 

The example above will be used for its simplicity, but the same principles apply to 

more complex examples. For instance, the word Clinton is very frequently seen as a 

person name: President Clinton, who received a letter ... ; ... the foreign policy of the Clinton 

administration ... ; etc. These are irrelevant pieces of text when the -much rarer- piece 

of text ... spokesman for Foster Wheeler Corp. of Clinton, N.J., said ... -in which the word Clinton 

acts as the name of a location- is submitted for the extraction of named entities. For 

this rare example, text such as ... arrived into Port Newark, N.J., from ... ; ... Karen Harris of Irmo, 

S.c., took a ... ; and ... by Aviation International of China; are more useful to obtain a correct 

classification. It is clear that a statistical-based approach to named entity extraction 

could easily be deceived by the disparity in the frequency of these two events. 

There have been some attempts at forcing a classifier to consider infrequent training 

examples through boosting (Freund and Schapire 1999). In the Shared Task of the 

versions 2002 and 2003 of the CoNLL Conferences (Roth and van den Bosch 2002, 

Daelemans and Osborne 2003), five NEE systems that utilised boosting were presented, 

with different levels of success. 

The boosting meta-learning method tries to produce accurate classifiers by combining 

the predictions of several simple, moderately inaccurate classifiers. As such, the boosting 

algorithms of the AdaBoost family train a set of weak classifiers sequentially in a series of 
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rounds. In each round, the weak learner focuses on the examples which were incorrectly 
classified in the preceding round. 

The problem with the boosted approaches above is that the final hypothesis is a weighted 

majority vote of the weak predictions based on their global importance, which is esti­

mated in inverse proportion to the number of errors they make. Therefore, this linear 

combination is fixed for all decoding examples, wasting the ability of certain classifiers 

to perform better on particular exceptional examples. 

The baseline system which will be extended here uses a maximum entropy model to 

obtain its predictions and one previous work has shown that AdaBoost did not improve 

the performance of this kind of classifier when applied to a shallow parsing (Park and 
Zhang 2002). 

These last observations are suggesting that a different approach should be used to 

provide LexMENE with a better handling of exceptional named entities. 

5.2 Formalisation 

To formalise the basic idea behind Biased LexMENE, hereafter biLexMENE, some 

vocabulary from memory-based learning methods will be utilised, in particular the 

discussion and terms in Burkhard (1998) will be followed. 

Given a decoding piece of text, hereafter a query, that contains a named entity of class 

c, then the training examples, hereafter cases, considered by the system should contain 

similar pieces of text that also contain named entities of class c. Unfortunately, this 

would require to know a priori the named entities contained in the query, which is 

exactly what the system is trying to determine. 

Therefore, biLexMENE will be able to make only approximated biases for each query. 

These approximations must be based on some sort of similarity which increases the 

likelihood of retrieving cases with the same sort of named entities contained in the 

query. 

Memory-based approaches seem to fulfil these characteristics. In the CoNLLs, Tjong 

Kim Sang (2002b), Hendrickx and van den Bosch (2003) and De Meulder and Daelemans 

(2003) presented NEE systems which utilised instance-based techniques with moderate 

success only, even when applied in combination with meta-learning methods -such as 

stacking (Wolpert 1992)- that aim to correct errors originally made by the memory­

based classifier, or when using extra information derived from unannotated data. 

The poor performance of the systems above could be related to the adaptation method 

employed, that is the way in which similar cases are used to obtain the query's class. All 
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the above approaches utilise the k-nearest neighbours method, in which the classification 

for the query is determined on the basis of the majority class of the cases found in a 

vicinity of the query. It may be speculated that this adaptation can be affected by the 

presence of many irrelevant, but similar, sentences that mislead the classifier. 

This problem is not unknown for memory-based methods and some attempts at pruning 

noisy instances from the training material have been studied (Zhang 1992). However, 

Daelemans, van de Bosch and Savrel (1999) showed that removing apparently useless 

instances -based on measures of their typicality and class prediction strength (Salzberg 

1990)- normally decreases the performance of an instance-based learning method when 

solving an NLP task. Moreover, they found that the decrease in performance is related 

to the degree of deletion applied and the number of exceptions that are removed from 

the data. 

5.3 The proposed approach 

The extension for the baseline system proposed here is based on the combination of 

memory-based methods and statistical classification. The idea is to build a maximum 

entropy model for each query considering cases which are similar to that query, in hope 

that the selected training instances will contain the same kinds of named entities as the 

ones contained by the query. 

With this approach, there is no need for relying on a potentially inaccurate generalisa­

tion, but locally-biased hypotheses can be obtained. On the other hand, because the 

adaptation is more complex than just considering the classes of neighbour training in­

stances -but also adding feature frequencies into consideration- it can be speculated 

that there are more chances of escaping the misleading noisy cases. 

The hypothesis is that this characteristic will help biLexMENE to face two important 

problems. First, because feature frequencies are considered from a selected number of 

training examples only, less training material is needed to obtain accurate classifica­

tion of infrequent events. And secondly, selecting similar cases might break the imbal­

ance of the data which is inherent in named entity extraction tasks -Coates-Stephens 

(1992) found that only about 10% of newswire text consists of proper names- helping 

biLexMENE to take better decisions on infrequent or unknown pieces of text. 

5.4 Getting cases and queries 

The first step in the new approach is to divide the training corpus into cases and the test 

corpora into queries. Words -or even tokens- could be used as possible cases/queries 
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units. However, this would probably create too many cases/queries to be practical. 

Windows of words would be more appropriate but they present a major difficulty: 

deciding their boundaries. A fixed-length window does not seem applicable because a 

named entity could become separated into two different windows, affecting its similarity 

with other cases/queries. A variable-length window would again need to know the 

named entities in the text, so that no boundaries are placed in the middle of them. 

With this in mind, constituents -i.e. basic chunks identified by a shallow parser- will 

be used as the basic unit for cases and queries. There are a number of reasons for this 
decision: 

I> a constituent has a better linguistic meaning than a random window of words 

I> a shallow parser, namely the MBSP parser (Daelemans, Veenstra and Buchholz 

1999), can be used by MOLl MENE to recognise boundaries between constituents 
with relative confidence 

I> although there are examples of named entities involving more than one basic con­

stituent, such as NP[the University] P[ofj NPfYork], most named entities are contained 

within a single constituent, normally a basic noun phrase (Collins and Singer 1999) 

Now the problem has been reduced to determining the number of units that will consti­

tute a case/query. Clearly, considering just one constituent as a case/query is of little 

use because, as most named entities are contained within a noun phrase, it would pro­

vide trivial information for the determination of their similarity. Thus, it is necessary 

to consider more than one constituent when looking for similar cases. Fortunately, now 

that units are limited to constituents is much easy to define a fixed-size window. 

The size of the context window could be a free parameter of the system, but this size has 

been fixed in biLexMENE to four constituents on each side of the focus constituent l . 

This number follows the intuition that most modifiers can be contained in a window of 

this size. For example, appositive noun phrases -a complex common modifier in terms 

of the number of constituents involved- are normally contained within such a window: 

left context: NP[the president] P[o~ NP[Spain] CONJ[.] 
focus: NP[Jose Maria Aznar] 
right context: CONJ[,] VP[said] ... 

left context: ... VP[said] 
focus: NP[Patricia (lain] 
right context: CONJ[,] NP[chairman] P[of] NP[the awarded airline] 

1 This kind of decision will be frequent in this chapter because the number of parameters that 
biLexMENE introduces is very large and they cannot be empirically parametrised in practice. See 
section 5.6.1 for an explanation. 
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As a result of using a window of constituents as a case/query, new infonnation can be 

gathered: the structure in which a named entity occurs. This new information can be 

used as a part of the similarity measure between cases and queries that will drive the 

bias in biLexMENE. 

5.5 The similarity measure 

One of the main advantages of the approach proposed here is that the characteristics 

utilised to retrieved similar cases -i.e. the similarity measure- do not need to be 

based on the same features utilised to perform the classification. Indeed, the similarity 

function that biLexMENE uses includes information about the structure of the sentence 

and close synonyms, which is not considered by the underlying maximum entropy model 

to extract named entities. 

In general terms, the context for cases and queries defined above allows the system to 

recognise that all the following sentences exhibit the pattern NP VP P NP: she's going to 

London tomorrow, they're flying to Washington, we're going to the City for a meeting, and they 

might be considered similar to queries that contain the same constituent pattern, such 

as we're going to Paris. 

Although this pattern will differentiate sentences such as we're going to make a study, it 

will still consider they'll fly at lOpm today, we're going to the party, and we're going to the 

NLP Conference as close cases. Here is where the lexical and orthographic features of 

LexMENE can help. 

Examining the prepositions in the cases being compared, it can be seen that P[to] is 

different from Plat). This information might help the system to determine that these 

cases are less similar than those with the same preposition. 

Analogously, it can be established that NP[Paris] is closer to NP[L on don] , NP[Washington] 

and NP[the City] than to NP[lOpm] and NP[the party] by looking at the capitalisation of 

the head words. Nonetheless, sentences like we're going to the NLP Conference will also be 

retrieved for the example query. 

BiLexMENE makes an effort to use the lexical database of WordNet®, in a similar way 

in which MOLl MENE uses it (see section 4.5), to reduce the number of these occur­

rences. Thus, biLexMENE could discover that the words Paris, London and Washington 

are semantically related2 . This will bring closer these cases and distance the query from 

the irrelevant case about the conference. 

2WordNet contains entries for these and many other locations. However, this type of semantic 
relation will not always be available as WordNet does not attempt to be an exhaustive database of 

proper names. 
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This seems to be an appropriate way of approximating a bias for LexMENE as the 

similar cases that can be retrieved for a particular query are more likely of containing 
the same type of named entity. 

However, comparing windows of constituents properly is not a simple task. It requires 

a large amount of linguistic knowledge and certainly requires looking much further 

away at the surroundings. For example, the system should recognise constructions 

such as appositives -among many other linguistic phenomena- that can move around 

the focus constituent without changing the meaning, recognise and ignore irrelevant 

constituent, such as adjectival phrases, and manage combinations of these. In other 

words, biLexMENE should ideally be able to determine that the following pairs of texts 
are very similar . 

... said Olin Edwards, chairman of free.com . 

... said the chairman of Pratter Inc., Stephen Daark . 

... flying to Florida today for ... 

... flying soon to Paris for ... 

This degree of understanding could be quite expensive, in terms of both linguistic re­

sources and portability. Therefore, biLexMENE opts for a much more naive approxima­

tion: it compares the left and right contexts of two cases separately, trying to maximise 

the match between them. This would solve many problems presented by the variabil­

ity of natural languages, in particular the use of adjectival and adverbial phrases that 

should be ignored for named entity extraction purposes. 

To get this maximum match, pairs of constituents need to be compared in the best 

alignment of the contexts of the two cases. BiLexMENE utilises a classical dynamic 

programming algorithm from bioinformatics to generate optimal alignments -originally 

for sequences of bases or amino acids- namely the Needleman-Wunsch-Sellers (NWS) 

algorithm (Needleman and Wunsch 1970, Sellers 1974). All adaptations of this algorithm 

as used by biLexMENE do not consider gap penalties or negative mismatches -that 

is unmatched elements do not contribute to the similarity between cases/queries but , 
they also do not affect it negatively- as these aspects of the general NWS algorithm 

shown to have little impact on the list of cases retrieved. With the NWS algorithm, the 

following alignment results for the last pair of sentences in the example above. 

VP[flying] 
VP[flying] ADVP[soon] 

P[to] 
P[to] 

N P [Florida] 
NP[Paris] 

NP[today] P[for] 
P[for] 

The NWS algorithm requires a scoring function that estimates the similarity between 

the elements in the sequences. BiLexMENE considers several levels of information for 

these functions, which are explained in the following sections. 
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5.6 Case Retrieval Nets 

The management of past cases in biLexMENE is inspired by the Case Retrieval Net 

(CRN) framework, proposed by Lenz (1999). The key idea of CRNs is to store both the 

case base and the similarity relationships among them in the same memory structure. 

Two kinds of nodes can be found in a CRN: one for representing information entities 

and the other to represent cases. Information entities are defined as atomic pieces 

of knowledge, which in the simplest structure correspond to attribute-value pairs, but 

they might well represent text, pictures or indeed any other type of data (Lenz and 

Burkhard 1996). Cases, on the other hand, are defined as sets of information entities 

associated with unique identifiers. This definition does not imposes any restriction on 

the structure of a case and it seems flexible enough to capture all past events (Lenz and 

Burkhard 1996). Moreover, it makes evident that a comparison between cases should 

be based on their constituting information entities. Following these ideas: 

1. information entity nodes are linked to other information entity nodes by arcs 

which represent the similarity between them. This similarity is expressed as a 

weight labelling each similarity arc, which is determined by a similarity function 

a : E x E ---+ R, where E is the set of information entity nodes in the CRN; and 

2. information entity nodes are linked to case nodes by arcs which represent the 

relevance that the information entities have for the cases. This relevance is also 

expressed as a weight labelling each relevance arc, which is determined by a rele­

vance function p : Ex C ---+ R, where E is as above and C is the set of case nodes 

in the CRN 

The main goal of CRNs is to find all relevant cases in memory which are, to some extent, 

similar to a specific problem -i.e. a query- that can be used to extend the information 

contained in the query. This approach for case retrieval -called case completion- is 

quite appropriate for doing the kind of cased-based classification needed here
3

. Indeed, 

the extraction task can be modelled so that each case contains a known special infor­

mation entity, namely the named entity class, which is not known for queries. Under 

this view, a query is just a case whose named entity class is unknown. Therefore, CRN s 

try to find sufficient similar cases, on the basis of the other known information entities, 

to deduce the missing class of a query. 

3Case completion is considered a different approach from cased-based classification (such us the 
k-nearest neighbours method). The main difference is that in cased-based classification only a small 
set of cases -Dr even just one case- is retrieved, which is then interpreted as containing the class of 
the query; whereas in case completion the goal is to retrieve all relevant information in memory for the 

query. 
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CRNs perform case retrieval in a bottom-up fashion re-constructing the cases from 

memory in a process called activation. The activation procedure is performed in three 

clear steps: 

1. first, information entities which are present in the query are initially activated 

2. then, this activation is propagated to other information entities following the 

similarity arcs; a newly activated information entity obtains an activation value 

which is proportional to the corresponding weight in the similarity arc 

3. finally, these activation are collected in the associated case nodes according to the 

weights in the relevance arcs 

In this way, an activated case is assigned an activation value that is proportional to 

the activation of the information entities that define it, whose activation values are 

in accordance to the information entities that define the query. Thus, the higher the 

activation value of a case, the more similar it is to the query. 

Lenz (1999) showed that the theoretical complexity of the case retrieval procedure in 

CRNs is not worse than the linear search through the case base. However, important 

speed-ups are reported when activation is compared to linear search (Lenz and Burkhard 

1996). 

It might be noticed the similarity between the retrieval of cases with CRNs and the 

retrieval of documents with Latent Semantic Indexing (LSI) (Deerwester, Dumais, Lan­

dauer and Harshman 1990): both approaches are three-step procedures which consist 

of obtaining initial matches from a query, expanding these matches according to a sim­

ilarity criterion to finally gather the stored answers associated to these matches. 

5.6.1 Unsolved issues 

One of the main disadvantages of memory-based learning approaches is that the com­

putational cost of classifying new instances can be high, as most of the processing is 

performed in decoding time (Mitchell 1997). 

CRNs are a contribution in this sense because they normally provide a fast way of 

gathering similar cases. However, two main difficulties in applying CRNs to generic 

named entity extraction remain unsolved, and further study is required to overcome 

them. The two problems are: 
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c> although CRNs are efficient, they still have complexity problems for domains 

in which the attributes can take values from a large space (Lenz 1999) - such 

as lexical features. Thus, biLexMENE requires great amounts of memory and 

exhibits unsatisfactory run time for practical applications 

c> CRNs introduce a large number of parameters to estimate the similarity and the 

relevance weights, which cannot be empirically parametrised in practice 

The first difficulty as been managed by dividing the CRN into different structures, 

applying the storing and the activation procedures in sequential steps and providing 

biLexMENE with powerful computational resources. More details can be found in 

appendix D. 

For the second issue, sensible choices that are based on intuitions have been applied. 

When one of these decisions is not entirely clear, small experiments have been conducted 

to confirm that the option selected has been correct. For example, it will be explained 

later in the chapter that contextual constituents closer to the focus constituent have 

more importance in the similarity measure between cases. An experiment in which all 

contextual constituents had the same importance showed that this intuitive choice was 

indeed correct. 

5.7 Representing cases 

Cases/ queries are represented as three different information entities that provide a de­

scription of their lexical structure, the lexical forms that compose them and the ortho­

graphic characteristics used for these lexemes. 

5.7.1 Sentence struct ure 

The lexical structure of a case/query is represented in the eRN as constituent pattern 

information entities. A constituent pattern is the sequence of four chunk tags that 

accompanies the focus constituent on either side. Therefore, each case/query has a left 

constituent pattern and a right constituent pattern. 

Constituent patterns from different contextual sides are considered unrelated and, con­

sequently, similarity arcs exist only between left constituent patterns and between right 

constituent patterns, but not between a left constituent pattern and a right constituent 

pattern. 

The weight on a similarity arc that connects two constituent patterns corresponds to the 

sum of the similarity of each chunk tag in the best alignment that the N\VS algorithm 



CHAPTER 5. BIASING LEXMENE 130 

VP[flying] P[to] NP[Paris] P[for] 
VP[f1ew] P[to] NP[London] P[for] = 12 

ADVP[soon] VP[flying] P[to] NP[Washington] 11 
VP[arrived] ADVP[Monday] P[in] NP[York] = 11 
VP[coming] P[to] NP[London] NP[today] 11 
VP[prepared] P[to] NP[look] P[for] = 9.75 
VP[come] ADVP[later] P[to] VP[propose] 8.75 

Figur~ 5.1: An example of constituent pattern information entities and their similarity weights with the 
constituent pattern produced by the text flying to Paris for. 

can obtain. As explained above, this algorithm requires an estimation of the similarity 

between the elements in the sequences, which in this occasion correspond to the chunk 

tags in the patterns. This estimation is straightforward: 

1. if the two tags are different, they have zero similarity 

2. otherwise, a similarity weight is given depending on the minimum distance of the 

matching tags from the focus tag; matches closer to the focus are considered more 

relevant and are assigned higher weights 

3. penalties are applied to this similarity weight when the tags are in different po­

sitions within the patterns and/or they are optional constituents (i.e. adjectival 

phrases, adverbial phrases or verb particles). 

Unfortunately, the number of similarity arcs produced in this way is too large to be 

directly added to the eRN, as any two patterns that share at least one chunk tag in 

the sequence are linked. Therefore, a heuristic restriction -in Lenz and Burkhard's 

(1996) terms- has been applied and patterns whose closest constituents to the focus 

do not match perfectly are discarded. This pruning has considerably reduced the num­

ber of arcs maintaining only the links between constituent patterns that have more 

probabilities of being relevant. 

Figure 5.1 presents an example to clarify the way in which this procedure operates. The 

reference case -which can be a query- represents the text flying to Paris for. It can be 

observed that less similar pieces of text are assigned to lower similarity weights than 

the ones that look more alike the reference case. Notice that the maximum similarity 

weight between two constituent patterns is 12. The eRN retrieval procedure, outlined 

in section 5.6, manages any real value (Lenz 1999). 

More details of this approach can be found in appendix D. 

5.7.2 Orthographic pattern 

The orthographic characteristics exhibited by a case/query is added to the eRN as 

orthographic patterns information entities, which correspond to the sequences of ortho-
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graphic features of the focus tokens -i.e. the tokens in the focus constituent- and 

the tokens in a orthographic window of sizes [2,2] - as defined for MOLl MENE V2 

(section 4.2). Thus, the length of this kind of pattern is not fixed but varies according 

to the number of focus tokens contained in each case/query. 

As with the constituent patterns, the weight that labels a similarity arc between two 

orthographic patterns corresponds to the sum of the individual similarity weights of 

each orthographic feature in the best alignment of those patterns, which is obtained by 
the NWS algorithm. 

Notice that in order to work with a single orthographic pattern per case/query, each 

token is associated with a unique orthographic feature on the basis of their precedence 

- also as defined for MOLl MENE V2 (see table 4.1). 

The similarity function estimates the similarity between two orthographic features by 

looking up the corresponding value in one of three tables of similarity weights according 

to whether the features describe tokens that contain numbers, tokens for normal words 

or other types of tokens - such as punctuation symbols. 

The tables of similarity weights were built by hand, but little time was spent on this task 

which consisted of analysing a small set of tokens with different orthographic features, 

determining which of them were related and conjecturing in what proportion. 

However, these tables have an important drawback: they are domain dependent. For 

example, the feature number with dash is considered more similar to the feature number 

with slash than to the feature only digits number in these tables, a fact that is exclusively 

due to the observations that dates -one of the named entities to be extracted- are 

written in these two styles: 05-03-2004 or 05/03/2004. 

These tables were actually intended as a first approach to testing the system, but they 

have remained an unsolved issue that will need to be addressed in future work. 

The similarity function for orthographic features also applies penalties when matches are 

less informative. There are two situations considered: matches between focus features 

and contextual features have their similarity weight reduced; and matches between 

contextual features from different sides of the focus constituent are re-assigned to value 

zero. 

Once more, the number of similarity arcs is too big to be manageable when any pair of 

related orthographic features is considered relevant. Consequently, biLexMENE imposes 

a new heuristic restriction and only orthographic patterns that have at least three 

consecutive perfect matches keep their arcs. 
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ucp[flying] ucp[to] icp[Paris] ucp[for] 
ucp[flew] ucp[to] icp[London] ucp[for] = 48 

ucp[soon] ucp[flying] ucp[to] icp[Washi ngton] 36 
ucp[arrived] icp[Monday] ucp[in] icp[York] 36 

ucp[coming] ucp[to] icp[London] ucp[today] 48 
ucp[prepared] ucp[to] ucp[look] ucp[for] 0 
ucp[come] ucp[later] ucp[to] ucp[propose] 0 

Figure 5.2:. An example of orthographic patt~rn information entities and their similarity weights with the 
orthographiC pattern produced by the text flYing to Paris for. 

Figure 5.2 shows the orthographic patterns generated by the texts of the running ex­

ample4
• Note that the links between the reference case and the most different sample 

cases have been pruned by the heuristic restriction. Also notice that the maximum sim­

ilarity value for each pair of orthographic features is 12, but that the similarity value 

between two orthographic patterns depends on the number of pairs of features that 

could match. These weights will required further processing to obtain a similarity mea­

sure for cases/queries which is independent of the lengths of their respective patterns, 

an issue that is discussed later in section 5.8.3.4. 

For further details of this approach see appendix D. 

5.7.3 Lexical pattern 

Lexical information from cases/queries is introduced in the eRN as lexical patterns. 

These information entities correspond to the sequence of lexemes of the tokens/words5 

occurring in the focus constituent and in a lexical window. The lexical window is also 

defined as for MOLl MENE V2 (section 4.2) of sizes [1,1] on either sides of the focus 

constituent. As with orthographic patterns, lexical patterns may be of different lengths. 

Once more, the similarity weight associated with each arc between lexical patterns 

corresponds to the sum of the similarity of the lexical features in the best alignment 

that the NWS algorithm can obtain for these patterns. 

However, the similarity function for lexical features is more complex than for previous 

information entities. The main source of information for comparing two lexical features 

is their meaning. If meanings are not available for both lexical features, the similarity 

function makes use of less informed, more lexically-oriented characteristics to estimate 

their similarity. 

41n this example, ucp stands for ''uncapitalised token" and icp stands for ''initially-capitalised token". 
5 A word in this context is a compound lexical form of more than one token which is included in the 

WordNet lexical database. Examples of words are Prime Minister, New York, executive-officer, etc. 

See appendix D for details. 
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When WordNet meanings can be obtained for the two lexical features to be compared, 

the similarity function applies the following criteria to estimate the strength of their 

semantic relation: 

1. if the lexical features are essentially the same word, that is they have the same 

lemma, their match is considered perfect. For example, the pairs president/presidents 

and says/said both produce perfect matches 

2. if the lexical features are synonyms, that is to say they are found in the same 

WordNet synset, their match is considered strong. For instance, the pairs presi­

dent / chairman and said/told both generate strong matches 

3. if the lexical features are siblings, that is they are coordinate terms in Word­

Net's terminology, their match is considered moderate. For example, the pairs 

president / prime_minister and said/proclaims are considered moderate matches 

4. if the lexical features are found in a superordination or a subordination relation­

ship, which WordNet calls the hypernym and the hyponym relations respectively, 

their match is considered weak. For example, the pairs presidents/ presiding_ officer 

and say/announced are considered weak matches 

5. otherwise they are considered semantically unrelated 

Note that this procedure also follows a similar approach to LSI (Deerwester et al. 1990), 

as matches are sought on concepts rather than on individual tokens. 

When a comparison based on WordNet meanings cannot be undertaken, because at 

least one of the lexical features being compared is a token not included in the lexical 

database, the similarity function applies the following criteria to estimate a possible 

connection: 

1. if the lexical features exhibit the same text, their match is considered important 

2. if the lexical features are found in a list of special matches, they are considered 

related as defined in that list 

3. if the lexical features are morphologically related, that is they have a common 

prefix or a common suffix, their match is given a relevance in proportion to the 

length of the common portion 

4. if the lexical features are punctuation marks, their match is considered moderately 

important 

5. otherwise they are considered unconnected 
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flying to Paris for 
flew to London for 42 

soon flying to Washington 30 
arrived Monday In York 0 

coming to London today 24 
prepared to look for 24 

come later to propose 18 

Figure 5.3: An example of lexical pattern information entities and their similarity weights with the lexical 
pattern produced by the text flying to Paris for. 

The list of special matches mentioned in the procedure above includes: 

c> tokens that are not included in WordNet but that are nonetheless related, such 
as the word and and the & symbol, 

c> tokens that are not included in WordNet but that can be considered to have the 

same meaning as tokens that are included in WordNet, such as Ire and the verb 

to be, the symbol % and the word percent, etc.; and 

c> tokens whose similarity might be incorrectly estimated by the morphological anal­

yser, such as the fact that the numeric tokens DD-DD-DD is closer to the token 

DD/DD/DD than to the token DD:DD:DD, because the former tokens are both used 

to express dates, whereas the latter is used to express time 

In this list, the similarity weight is explicitly given for each special match included, so 

that the similarity function can use this weight directly. Although not intensively used 

in the current implementation, this is a tool provided for specialising the retrieval of 

similar cases to specific languages, named entity extraction tasks and domains. 

Finally, as with the similarity function for orthographic features, matches between focus 

lexical features and contextual lexical features have their similarity weight penalised, 

and matches between lexical features from different contextual sides have their similarity 

weight changed to zero. 

Figure 5.3 presents the lexical patterns corresponding to the texts in the running ex­

ample. In this example, the tokens flew and flying obtain perfect matches, because they 

have the same lemma as the reference token flying, as do the tokens to and for, be­

cause they present the same text as the reference lexical features. The tokens coming, 

come, London and Washington are assigned moderate similarity weights as they are found 

to be coordinate terms of the referential tokens fly and Paris respectively in WordNet 

database. However, it can be noticed that the similar piece of text -for named entity 

extraction purposes- arrived Monday in York is assigned a zero similarity because none 
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of its lexical features was found to be related to the reference text, even though it can 

be argued that flying might be understood as arriving by plane to some place, and that 

there exists a place named York. The former is a semantic relationship that is hard to 

obtain from WordNet (de Boni 2004) and the latter is an omission of this sense for the 
word York in WordNet. 

For more details on this approach, appendix D can be consulted. 

5.8 Case retrieval 

Section 5.7 explained the approach followed to represent and store past cases in memory. 

This section explains the procedures for obtaining an effective retrieval of cases from 
the CRN. 

5.B.1 Reducing the size of the problem 

As stated earlier, the application of memory-based approaches can be costly. This is 

specially true for biLexMENE that has to build a maximum entropy model -which 

can be expensive per se- for each query. 

Therefore, a heuristic was introduced in the approach to reduce the number of queries 

that need to be processed. Basically, a query is processed when it contains a relevant 

lexical feature, that is a token which might be part of a named entity. 

The heuristic is applied to each focus lexical feature in the query sequentially. It first 

analyses the frequency of the token and determines if it is very probable that the token 

is relevant or if it is very probable that the token is not relevant. In both situation, the 

heuristic stops with an answer ''process'' or ''no process" respectively. 

When this decision cannot be safely obtained from frequencies, the heuristic utilises 

a binary classifier which estimates the probability of the token being not relevant. If 

this probability is very high, the heuristic answers ''no process". Otherwise it answers 

''process''. 

Despite applying this heuristic with conservative parameters, the number of queries 

that biLexMENE processes is significantly reduced and with a tolerable loss of recall. 

For the MUC-7 dryrun test corpus, this number drops from 53,829 to 14,489 queries, 

which include 6,068 out of the 6,163 queries that contain named entities. Thus, the 

application of the heuristic delimits the maximum recall for biLexMENE to 98.46%. 

Further details of this heuristic can be found in appendix D. 
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5.8.2 Gathering similar cases 

The first step to retrieve similar cases is to obtain a representation of each relevant query 

in terms of the information entities presented in section 5.7. This is done with the same 

algorithms used to transform training cases into information entities, as queries are just 

incomplete cases from the CRN perspective. 

The next step is to look up the information entities that represent the query in the 

CRN and activate them. In the normal activation process of basic CRNs, this search 

is enough to activate all the information entities that represent the query. This is so 

because information entities are atomic -by definition- and it is assumed that the 

values they can have are those contained in the CRN. 

It is clear that these assumptions cannot be made in the approach discussed here, 

especially in the case of lexical patterns as it is almost certain that some queries will 

contain unseen lexemes that will unavoidably create unseen patterns. 

The solution to this problem passes through separating information entities into micro­

features (Lenz and Burkhard 1996). This can be naturally applied to the information 

entities defined previously as they are patterns of constituent, lexical and orthographic 

features. The idea is that each microfeature in an information entity -i.e. a feature in 

a pattern- can be individually activated and the activation of an information entity 

corresponds to the weighted sum -in the straightest combination- of the microfeature­

level activations. 

In this way, it is unlikely that a query does not activate any memorised pattern. When a 

query's information entity is found in the CRN, the pattern is activated with maximum 

value -which also corresponds to the weighted sum of the activation values of all of 

its features- and then, the similarity arcs are followed to activate similar information 

entities. On the other hand, if a query's information entity is not found in the CRN, 

microfeatures are activated instead and all patterns that share some of these features 

are activated. 

The final step is to follow the relevance arcs and activate the cases that are linked to 

activated information entities. Essentially, the activation value of a case corresponds 

to the sum of the activation values of its information entities, though the approach 

required for biLexMENE is slightly different as explained below. 

5.8.3 Obtaining final similarities 

The normal activation procedure in CRNs, which was presented in section 5.6, cannot 

be directly applied on the cases/queries as defined previously. This is because the 
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activation of the features in the information entity patterns have considered up to now 

disassociated information. This section explains the approaches to re-estimate and 

combine these activation values into activation values for cases. 

5.8.3.1 Activation of constituent patterns 

The activation of constituent patterns cannot be made following the standard procedure, 

as defined for basic CRNs, because that would only consider the chunk tags assigned 

to each constituent in the case/query, which produces an undesired flatness of the 
activation values. 

For example, if the query's pattern contains the noun phrase NP[the President] and two 

memorised patterns contain, in the same position, the phrases NP[the agenda] and NP[the 

Prime Minister] respectively, then both information entities are activated with the same 

value, though clearly the concept President is semantically closer to the concept Prime 

Minister than the concept agenda. 

To solve this discrepancy, the activation values of constituent patterns are re-calculated 

to also consider the head word of the constituents. The comparison of head words is 

similar to the calculation of the similarity between lexical features described in section 

5.7.3. In appendix D, this algorithm and more details of this procedure can be found. 

5.8.3.2 Activation of lexical patterns 

The activation of lexical patterns cannot follow the standard procedure of basic eRN 

either because when the most similar cases are selected for a query (section 5.8.4), 

it can be possible that some lexical features in the query become uncovered for later 

processing. This is specially problematic for uncommon tokens, which are often part of 

named entities (recall the discussion in section 3.2), as they are directly responsible for 

the activation of few cases only. 

This problem is managed in biLexMENE by maintaining different rankings of similar 

cases one for each lexical feature in the query. This requires the computation of tailored , 
activation values of all cases for every token in the query. Fortunately, this computation 

is naturally performed by applying the lexical window. 

Consider the example of figure 5.4, in which the similarities between the lexical fea­

tures of the cases flying to Paris for and flew to London for are re-computed. The lexical 

window is initially centred at the first focus token flew. Then, this window is enforced 

and the activation of the microfeature flew is estimated by adding the similarities of 

h h . d (. e W'_I' flew and to), which were previously the microfeatures wit in t e WIll ow 1. . 
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______ lexical windO'N for 'London' 
------------

VP[flying) I P[to] 
I 

VP[flew] I P[to] 
I 

NP[Paris] 
NP[London] 

I 

P[for] I W+l 

P[for] : W~l 
lexical window for 'flew' 

L ________________ ~ 

138 

Figure 5.4: An example of the computation of the final similarity between two match· I . 1ft .. . mg exlca ea ures: a 
lexical window of size [1,1] moves from the first to the last focus token. The lexical windows applied for the 
words flew and London are shown in this example. 

calculated as described in section 5.7.3. Then the window is shifted to the next focus 

lexical microfeature to and its activation value is re-computed. The process is repeated 

for every focus token in the lexical pattern. 

This approach is computationally more expensive, specially in terms of space resources, 

but proved to be quite successful in retrieving cases for the majority of the tokens in a 

query. Further explanation can be consulted in appendix D. 

5.8.3.3 Activation of orthographic patterns 

The approach described above also requires tailored activations of cases for the ortho­

graphic features, so that the real contribution for each focus token can be determined. 

This process is analogous to the re-calculation procedure for lexical features explained 

above, in which the orthographic window is enforced at each focus orthographic feature 

in the query. See appendix D for a few more details. 

5.8.3.4 Activation of cases 

Following this approach, the final local activation of a case can be estimated for an 

individual lexical feature in a query. This corresponds to the sum of the activation 

values for its constituent pattern, the activation values of the focus features in its lexical 

pattern and the activation values of the focus features in its orthographic pattern. This 

creates a ranking of activated cases for each lexical feature in the query. 

Nonetheless, a global activation is also estimated as shown in the equation 5.1, where 

act,oca,(ftex) is the local activation calculated for a lexical feature hex and 1/ is the 

number of focus lexical features contained in the case. 

actglobal = 

2:= act local (ftex) 
huEcase 

1/ 

(5.1 ) 



CHAPTER 5. BIASING LEXMENE 139 

This normalisation is necessary because longer cases obtain higher activation values. 

Using the global activation, cases can be ranked according to the similarity with respect 

to the whole query. 

5.8.4 Selecting similar cases 

The final stage in the retrieval procedure is the collection of the adaptation set, which 

contains the similar cases that will be adapted for completing a query. One possibility 

is to retrieve all cases activated, but this would be computationally costly and might 

not contribute towards biasing LexMENE in the right direction. Therefore, under the 

premise that similar cases have a higher probability of containing the same kinds of 

named entities found in the reference query, only the most similar cases will be selected 

to produce a stronger bias. 

A direct approach to selecting the most similar cases is to define a threshold. However, 

setting a suitable threshold value can be quite challenging because there are queries that 

activates thousands of memorised cases, whilst others activate only a reduced number 

of cases with low activation values. Applying a threshold to this latter types of queries 

might result in the neglect of the little information available for their classification. 

Therefore, biLexMENE utilises the next simplest way, which is retrieving only a fixed 

number of similar cases. This requires the definition of a sampling size, which indicates 

the number of similar cases to be selected from the top of each ranking. 

This value is soft, in the sense that if a query activates too few cases, the adaptation 

set will be incomplete; on the other hand, if the number of activated cases exceeds 

the sampling size, the actual number of cases retrieved might be higher than this size 

because all cases with the same activation value as the case that completes the set are 

retrieved. 

The sampling size can have an important influence in the performance of the system, and 

there is not a clear method to define an appropriate value a priori for it. Consequently, 

it has been left as one of the parameters of the system. 

It should be made clear here that only one adaptation set is retrieved for each query. 

The final size of this set depends of several variables -such as whether the query 

managed to activates enough cases- but in general, if the sampling size is set to m 

and a query contains n lexical features, then the adaptation set will have a maximum 

size of (n + 1) . m examples. This is because biLexMENE will retrieve m cases from 

each ranking created by the approach, that is to say from the rankings for each lexical 

feature and from the global ranking. However, the number of cases is normally lower 

because they tend to overlap. 
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5.9 Adaptation 

As explained in section 5.8.4, for each query considered with probabilities of containing 

a named entity, an adaptation set of similar cases is selected. Longer queries -in term 

of numbers of lexical features- have more training material than shorter ones, and this 

material is prepared so that it contains examples for each lexical feature in the query 

as well as cases that are similar to the query as a whole. 

The adaptation of past cases consists of creating a maximum entropy model using the 

cases in the adaptation set as training examples. Because biLexMENE is an extension 

of LexMENE, the entropy models correspond to a (new) version of this baseline system 

which has expanded its set of orthographic features to the set utilised by MOLl MENE 

(see section 4.1), which will be referred to as LexMENE-V2. 

Thus, each maximum entropy model determines the probability for a lexical feature 

of being starting, continuing, ending, constituting or not related to, a named entity 

of one of the classes seen in the training examples - i.e. the FML U notation is used, 

lexical and orthographic features are extracted from a context window of two tokens on 

either side of the focus token, all orthographic features fired by these lexical features 

are considered, the zone feature is also included, and lexical features that are not seen 

at least three times in the documents are considered unknown. 

Once the maximum entropy model is ready, it is applied to each focus lexical feature in 

the query and a distribution over the classes seen in the adaptation set is assigned to 

each one of them. For queries that contain only lexical features considered irrelevant, 

that is to say it is unlikely that they contain a named entity (see section 5.8.1), the 

default distribution P(not-a-name) = 1.0 is assigned. 

As previously, a Viterbi search is applied to each sentence to determine the best se­

quence of named entity tags given the distribution associated with each lexical feature. 

However, the probability distributions can be incomplete now, because the default dis­

tribution has been assigned or because the adaptation set did not contain all possible 

named entity classes in the task. 

To solve this problem, biLexMENE utilises a smoothing approach so that the probability 

distribution of every lexical feature has a non-zero probability associated with each one 

of the 29 possible classes. This smoothing function is controlled by three parameters, 

namely (x, f3 and " which indicate how uniform the resulting distributions should be. 

Appendix E gives more details and an example of how this function works. Because this 

is a new element introduced in the approach, the parameters (x, f3 and , have been left 

as free parameters and some experiments have been designed to look for good values 

for them as well as to assess the impact that this smoothing approach might have in 

the performance of the system. 
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Figure 5.5: Comparison of the performances of biLexMENE for different cutoff thresholds and different 
numbers of selected cases: data is represented in FMLU notation, context windows are both set to [2 ,2] 
and 200 GIS iterations are performed . Cutoff varies from 1 to 3 and the number of cases selected from 
each ranking varies from 25 to 200. For this experiment, the same initial smoothing function is applied with 
values a: = 0.4, {3 = 0.4 and T = 0.001. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

5.10 Experiments 

5.10.1 Parameters setting 

As in earlier chapters, the initial experiments in this section aim to determine a good 

set of parameters for building the biased versions of LexMENE-V2. In order to reduce 

the number of experiments needed for setting these parameters, those which were fixed 

for either LexMENE or MOLl MENE will be kept if there are no reasons to expect that 

maintaining these values would negatively affect the performance of the new approach. 

In this way, all experiments presented in this section utilise the FMLU notation, 200 

GIS iterations, a lexical window of sizes [2 ,2], a orthographic window of sizes [2,2] from 

which all fired features are considered, and the unknown words threshold set to three. 

The first experiment aims to determine the cutoff threshold for the system. This pa­

rameter was not fixed for biLexMENE because, due to the limited training material 

provided to the maximum entropy models, it is not clear than the usual value three 

will retain the bias which is being introduced to the system. Figure 5.5 presents the 

results obtained for this experiment, in which the performance of biLexMENE when 

using cutoff thresholds at one, two and three is compared. 
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Figure 5.6: Comparison of the performances of biLexMENE for different cutoff thresholds and different 
numbers of selected cases: data is represented in FMLU notation , context windows are both set to [2,2] 
and 200 GIS iterations are performed. Cutoff varies from 1 to 3 and the number of cases selected from 
each ranking varies from 25 to 200. For this experiment, the same initial smoothing function is applied with 
values a = 0.4, f3 = 0.4 and , = 0.001. Corpora: MUC-7 training corpus and MUC-7 formal test corpus. 

It can be seen from this figure that, with the exception of ambiguous named entities, 

biLexMENE consistently obtains better performance when the cutoff threshold is set to 

value one than when set to value two, which in turn produces better results than when 

the cutoff is set to value three. 

Figure 5.5 also shows that the fewer training cases are selected from each ranking, the 

more significant is the difference in performance between the different cutoff values, 

and that the best performance is obtained when 50 similar cases are selected from each 

query's rankings. 

These results suggest that the bias introduced by biLexMENE can be easily reduced 

by ignoring infrequent events -i.e. increasing the cutoff parameter- or providing too 

much training material for the maximum entropy models - i.e. increasing the number 

of cases selected from each ranking. Therefore, the cutoff threshold is fixed to the 

minimum possible value of one and the number of similar cases to be retrieved for each 

query is set to the moderate value of 50. 

As in previous chapters, each of the experiments presented in this section is repeated 

on the MUC formal test corpus in order to established the reliability of the decisions, 

made from the experiments on the MUC dryrun test corpus, about the parameters that 

the system should use to obtain a good performance on unseen text. 

Figure 5.6 presents the results obtained from this experiment. It can be observed that 
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Figure 5.7: Comparison of the performances of biLexMENE for different smoothing functions: data is 
represented in FMLU notation, context windows are both set to [2,2], 200 GIS iterations are performed, 
cutoff is set to 1 and the number of selected cases is set to 50 . Smoothing functions use value , = 0.001, 
parameter a varies from 0.01 to 0.60 and two values are tested for parameter {3: {3 = a and {3 = tao 
Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

the influence of the cutoff parameter on biLexMENE's performance is less regular for 

this corpus. However, the behaviour seen on the dryrun corpus is -in general- also 

observed on this corpus, that is to say, the lower the cutoff threshold, the better the 

performance, and this difference is reduced as more and more cases are selected for 

training. Moreover, this last trend is much clearer here: selecting just 75 cases from 

each ranking levels the performances obtained with cutoff values set to one and two, 

and selecting 200 cases levels the performances obtained with all cutoff values tested. 

Therefore, although a slightly better overall F-score can be obtained by reducing the 

number of selected cases to 25, the parameters set considering the results of figure 5.5 

seem to be good parameters for unseen texts. 

The next two experiments aim to evaluate the influence of the smoothing function 

introduced in biLexMENE: the first one is conducted to establish the effect that the 

parameters a and /3 have in the performance of the system, whilst the second experiment 

attempts to determine the effect of the 'Y parameter. 

In the first experiment (figure 5.7) the parameter a varies from 0.01, 0.02 and then 

from 0.04 to 0.60 in successive increments of 0.04. For the parameter /3, two values 

are tested: {3 = a and /3 = ia. These values for this parameter follow the observation 

that the probability associated with each named entity class is distributed between four 

possible tags - namely F, M, L and U depending on whether the token might be the 

first token a middle token or the last token of a multi-token named entity or a named , 
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Figure 5.8: Comparison of the performances of biLexMENE for different smoothing functions : data is 
represented in FMLU notation, context windows are both set to [2 ,2]' 200 GIS iterations are performed , 
cutoff is set to 1 and the number of selected cases is set to 50 . Smoothing functions use value 'Y = 0.001, 
parameter a varies from 0.01 to 0.60 and two values are tested for parameter {J: {J = a and {J = ia. 
Corpora : MUC-7 training corpus and MUC-7 formal test corpus. 

entity with a unique lexical feature- whereas the probability of the not-a-name class 

is concentrated over just one possible tag - namely the outside tag O. Therefore, the 

combined tag O-not-a-name can be considered equivalent to any of the other combined 

tags - such as F-person, V-location, etc.- which is expressed by making (3 = ia. On the 

other hand, the tag O-not-a-name can be considered equivalent to the other classes, such 

as person, location, etc.- which is obtained by making (3 = a. 

At first glance, the results presented in figure 5.7 might suggest that the former option 

- i.e. making (3 = ~a- consistently yields better results. Indeed, this value for the 

(3 parameter helps biLexMENE to recognise much more seen, unseen and ambiguous 

named entities. However, on a closer look it seems that this value also drives the system 

to extract more spurious named entities, which makes the overall improvement much 

less significant. 

Nevertheless, the combination a = 0.44 and {3 = ~a obtains the best performance 

for the approach and, consequently, these are the values selected for these parameters. 

These values are higher than expected, which suggests that the biased LexMENE models 

have a certain degree of overfitting - recall than the 200 GIS iterations value was set 

considering all training material- which the smoothing functions are to some extent 

correcting. 

When this experiment IS repeated on the MUC formal test corpus (figure 5.8), t he 



CHAPTER 5. BIASING LEXMENE 145 

UNSEEN j 91.5 SEEN 
70.5 

~ i:L i:L -
70 91 

1 
0.002 0.004 0.006 0.008 0.010 0.002 0004 0006 0008 0.010 

'Y "( 

81 

AMBIGUOUS 
OVERALL 

84.5 

~ - ;::- 80.5 

~ i:L i:L 

84 

80 ~ 
0002 0.004 0.006 0.008 0.010 0002 0004 0.006 0.008 0.010 

Y 'Y 

Figure 5.9: Comparison of the performances of biLexMENE for different smoothing functions : data is 
represented in FMLU notation, context windows are both set to [2,2], 200 GIS iterations are performed, 
cutoff is set to 1 and the number of selected cases is set to 50. Smoothing functions use a = 0.44, {3 = 0.11, 
while parameter I varies from 0.002 to 0.010. Corpora: MUC-7 training corpus and MUC-7 dryrun test 
corpus. 

convenience of setting the parameter f3 to value ~a is more evident. This figure also 

indicates that the values 0.32 or 0.48 for the a parameter would have been slightly 

better options. However, the improvement over the selected value 0.44 is marginal and 

this value remains a good alternative. 

The second smoothing experiment is conducted to determine the influence of the I 

parameter as well as a good value for it. It should be noticed that the values of a and 

f3 fixed above are used in this experiment. The results can be seen in figure 5.9. 

These results indicate that, in general, the higher the value of I the lower the per­

formance of biLexMENE on unseen, seen and ambiguous named entities. However, 

this negative effect is not significant for the values plotted in figure 5.9, and a slight 

improvement in the recognition of hard named entities makes the overall behaviour al­

most constant. Nevertheless, it might be noticed than for the value I = 0.010 a more 

considerable decrease in performance seems to be occurring. further experiments con­

firm this trend and higher values for this parameter indeed have a negative effect on 

the approach. 

Therefore, it can be concluded that the maximum entropy models used for adaptation 

are capturing fairly well the characteristics that indicate when a lexical feature is start­

ing, continuing, ending or constituting a named entity. The performance of the system 

peaks at value 0.005, and consequently, this is the value selected for this parameter. 
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Figure 5.10: Comparison of the performances of biLexMENE for different smoothing functions: data is 
represented in FMLU notation, context windows are both set to [2,2] , 200 GIS iterations are performed , 
cutoff is set to 1 and the number of selected cases is set to 50. Smoothing functions use a = 0.44, {J = 0.11, 
while parameter 'Y varies from 0.002 to 0.010. Corpora: MUC-7 training corpus and MUC-7 formal test 
corpus. 

As earlier, the experiment has been repeated on the MUC formal test corpus. Results 

can be seen in figure 5.10. The effect of the T parameter observed for the MUC dryrun 

test corpus is essentially the same effect shown in this figure. However, the curves seem 

to indicate that the performance of the system might be starting an increasing trend 

from the value 0.010. Further experiments discard this possibility and the improvement 

observed rapidly declines as higher values are tested for T' 

Therefore, the value 0.005 selected from the previous experiment is a good value for 

preparing biLexMENE to process unseen texts. 

5.10.2 Assessing the hypothesis 

Recall that the main hypothesis guiding the study of biLexMENE is that because of 

the bias introduced in the approach, less training material is needed to solve the task 

with a given level of accuracy and better classification can be obtained on infrequent or 

unseen named entities. 

To assess this hypothesis empirically, an experiment has been set up in which the size 

of the training corpus is varied, so that the effect of the amount of the training material 
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Figure 5.11: Comparison of the performances of biLexMENE for different sizes of the training corpus: data 
is represented in FMLU notation, context windows are both set to [2,2], 200 GIS iterations are performed , 
cutoff is set to 1 and the smoothing function uses a = 0.44, {3 = 0.11 and 'Y = 0.005. The number of 
selected cases varies from 50 to 100. The performance of LexMENE-V2 is also included in the comparison , 
with and without smoothing. Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

available could be observed, as well as the behaviour of the system on different numbers 

of unseen named entities. 

Initially, the sizes 25, 50, 75 and 100 documents were tested with the parameters set in 

the previous section. This experiment indicated that biLexMENE could obtain almost 

the same performance it shows when using the whole MUC training corpus with half of 

the training material, and that only three points of F -score are lost if the training corpus 

is reduced to just a quarter of its size. This motivated an extension of the experiment 

in to ways: 

1. firstly, two new sizes for the training corpus were tested, namely 10 and 40 doc­

uments, to investigate whether the slow decrease in performance is maintained , 

and 

2. the number of cases selected form each ranking was allowed to vary from 25 to 

100 to determine whether this parameter has some incidence on these results 

Table 5.1 on page 152 presents the outcome of this extended experiment in detail, whilst 

figure 5.11 shows a pictorial summary of it. In these results, the performance of Lex­

MENE-V2 is also included, so that a comparison with t he unbiased approach could 
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be established. Because a sensibility of LexMENE-V2 to the smoothing function was 

observed, its performance is reported in both ways, smoothed (LV2S) with the same 

function used by biLexMENE, and not smoothed (LV2) - as the approach would be 
normally used. 

Several interesting observations can be made from the results presented in figure 5.11. 

For example, biLexMENE seems not to be affected much by the number of cases se­

lected and brings out more clearly that the difference in performance introduced by this 

parameter is only marginal. However, with the introduction of the value 0.005 for the 

, parameter, selecting the 75 most similar cases might yield a slight improvement in 

the extraction. This is suggesting that the set of similar cases been retrieved for each 

query, without considering repetitions, is maintained almost the same no matter how 

much its absolute size is. Only when 50 or more training documents are supplied for 

training, selecting more than 50 similar cases might introduce a few useful new cases in 

the set which could allow biLexMENE to slightly improve its performance. 

The main observation however, is that biLexMENE is always able to obtain an overall 

performance that is higher than the one achieved by the unbiased approach, though 

the smoothing scheme makes this difference less significant. The same effect is observed 

when more training material is provided to the system: the improvement is quite impor­

tant when only 10 training documents are available, less relevant when 25 documents 

are provided and no significant improvement is obtained when 40 or more training doc­

uments are considered. Therefore, the less the training material, the more important is 

to used the biased version to obtain a more accurate extraction. 

This superiority of biLexMENE is more evident when only unseen6 named entities are 

considered. No matter the size of the training corpus, biLexMENE is able to recognise 

much more unseen named entities than the unbiased version of the system, though this 

number -as stated above- is reduced as more training material is supplied. More­

over, biLexMENE also shows consistently better performance than LexMENE-V2 for 

ambiguous named entities when half or less of the training material is available. How­

ever LexMENE-V2 obtains better results on the seen named entities, more significantly , 
when smoothing is applied, which to some extent balances the overall performance of 

the smoothed approaches. 

Table 5.2 on page 153 and figure 5.12 present the outcome of this experiment when 

repeated on the MUC formal test corpus. 

6 Clearly, when only a fraction of the training material i~ used the ~~mber of.~ns~en named enti~~es 
found in the test corpora rises. However, these results consIder the orIgInal famIharIty of the dec~di g 
named entities so that a better comparison with LexMENE-V2 and previous reports can be estabhshed. 
Nevertheless, the performance on this type of familiarity is even m~re rele:ra..nt because many of the 
entities counted as seen or ambiguous were actually not included durmg trammg. 
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Figure 5.12: Comparison of the performances of biLexMENE for different sizes of the training corpus: data 
is represented in FMLU notation, context windows are both set to [2,2], 200 GIS iterations are performed , 
cutoff is set to 1 and the smoothing function uses a = 0.44, {3 = 0.11 and "1 = 0.005. The number of 
selected cases varies from 50 to 100. The performance of LexMENE is also included in the comparison, with 
and without smoothing. Corpora : MUC-7 training corpus and MUC-7 formal test corpus. 

These results closely follow the trends observed on the MUC dryrun test corpus, with 

the exception of the ambiguous named entities, for which LexMENE-V2 obtains better 

performance than the biased version when as few as 25 training documents are provided. 

In addition, the advantage of LexMENE-V2 on seen named entities is less steep than 

in the previous case. 

Note that an experiment with a baseline system based on CRN s only, in the same fashion 

that the one presented in section 4.13, is not possible. In effect, a CRN is not a machine 

learning algorithm and they can just be used to store past cases and retrieve the most 

similar cases for a given query. As they do not attempt to perform any classification, 

an adaptation step is still needed and any comparison would be constrasting the two 

different adaptation approaches. 

5.11 Summary and discussion 

This chapter has presented an approach to biasing (a new version of) the ma:cimum 

entropy baseline system towards pieces of texts that are similar to the text being anal­

ysed. This approach uses Case Retrieval Nets (CRNs) , which is a successful framework 

for memory-based learning algorithm (Lenz and Burkhard 1996). 
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The formulation of the named entity task as past cases and new cases (i.e. queries) have 

been also discussed. Furthermore, the appropriate representation of these cases for the 

eRN framework has been described, as well as the storage and retrieval procedures 

utilised. 

This approach has then been evaluated to survey the validity of hypothesis 2 proposed 

in this thesis, namely that introducing this bias to the baseline system based on the 

maximum entropy framework could help it to recognise better exceptions and unseen 

named entities. 

Results obtained in this chapter indicate that it might be beneficial to use biased ap­

proaches to named entity extraction when the training material is limited. It would be 

interesting to assess this result with other methods of biasing a classifier. One possibil­

ity might be to use Boosting (Freund and Schapire 1999). However, it was claimed that 

the linear function this algorithm utilises to combine the classifications might waste the 

ability of some of these classifiers to perform better on certain named entities. This 

hypothesis deserves some exploration as well as the idea of creating a new approach 

in which the combination of the resulting classifiers should be based on the similarity 

between the query in process and the training examples that are correctly classified by 

them. 

It was also determined in this chapter that the bias introduced in LexMENE-V2 does 

help to recognised infrequent named entities. However, the success obtained for unseen 

named entities is not equally repeated on ambiguous named entities. This suggests 

that the extraction of this type of named entity is quite difficult and that more world 

knowledge -perhaps in the form of word sense disambiguation- might be required. 

The almost constant performance obtained by biLexMENE with different numbers of 

similar cases retrieved suggests that there is a reduced number of key examples for each 

query which might guide the extraction process. It could be worth looking for ways in 

which these key cases could be recognised and used in a method less expensive than 

the one described in this chapter. If this is achieved, further studies can be carried 

out to determine how these examples can be enriched to break the learning bound that 

biLexMENE seems to reach. 

In this relation, the amount of computational resources that the biLexMENE requires 

to work is a remaining disadvantage. Several approaches could be studied to mitigate 

this limitation, but investigating other ways of detecting similarity between training 

and decoding texts would probably be the most relevant. 

Another limitation which needs to be addressed is the manually coded similarity func­

tion for orthographic features. It might be possible to determine this similarity function 
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automatically on the basis of the features fired by lexical features in named entities of 

the same class, but further research is needed to test this possibility. 

Finally, there is a large number of parameters to control the similarity between the 

information entities utilised in biLexMENE and their relevance for the cases defined. 

Although sensible decisions have been made to fix most of their values, an empirical 

study could contribute to locate better options. This study should be oriented to 

determine how to set these parameters so that the CRN approach retrieves the most 

relevant cases for each query. Of course, this relevance may not be easy to establish, 

but the activation of cases that contain named entities of the same class as the query, 

could be an initial useful approximation. 
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Table 5.1: Details of the performances of biLexMENE for different sizes of the training corpus: parameters 
are set as described in section 5.10.1, with the exception of the number of selected cases which varies from 
50 to 100. The performance of LexMENE-V2 is also included in the comparison, with (LV2S) and without 
smoothing (LV2). Corpora: MUC-7 training corpus and MUC-7 dryrun test corpus. 

biLexMENE LexMENE 
Selection: 25 50 75 100 LV2S LV2 

10 training documents 
UNSEEN 59.57 60.02 59.94 60.99 52.59 48.23 

SEEN 68.67 67.41 67.22 67.38 61.90 58.31 
HARD 30.40 26.02 26.45 28.10 21.36 12.77 

AMBIGUOUS 33.61 32.23 30.62 30.54 30.24 24.71 
OVERALL 60.18 59.67 59.42 59.96 54.31 51.03 

25 training documents 
UNSEEN 59.57 60.02 59.94 60.99 52.59 48.23 

SEEN 68.67 67.41 67.22 67.38 61.90 58.31 
HARD 30.40 26.02 26.45 28.10 21.36 12.77 

AMBIGUOUS 33.61 32.23 30.62 30.54 30.24 24.71 
OVERALL 60.18 59.67 59.42 59.96 54.31 51.03 

40 training documents 
UNSEEN 67.34 66.67 67.38 68.31 63.45 61.60 

SEEN 84.33 84.58 84.50 84.47 86.15 83.19 
HARD 36.23 35.97 37.41 35.29 10.39 10.96 

AMBIGUOUS 77.00 75.23 74.47 74.57 84.22 81.52 
OVERALL 74.73 74.66 74.96 75.28 75.39 73.71 

50 training documents 
UNSEEN 68.18 68.58 69.20 69.09 65.66 62.47 

SEEN 86.26 86.47 86.47 86.78 87.99 84.88 
HARD 36.50 36.88 34.29 37.68 19.47 15.09 

AMBIGUOUS 81.68 80.47 80.04 78.56 86.83 85.17 
OVERALL 76.63 76.90 77.11 77.23 77.79 75.75 

75 training documents 
UNSEEN 68.84 69.16 68.88 68.82 67.22 64.08 

SEEN 89.42 89.36 89.37 89.25 90.54 88.37 

HARD 30.66 32.35 31.88 33.58 18.64 18.18 

AMBIGUOUS 82.64 81.21 81.29 80.51 90.79 90.63 

OVERALL 78.73 78.81 78.81 78.71 80.27 78.98 

100 training documents 
UNSEEN 69.74 70.39 69.87 69.78 69.12 66.54 

SEEN 91.00 91.27 90.70 90.57 92.43 90.31 

HARD 31.11 27.27 32.12 31.11 24.39 21.24 

AMBIGUOUS 84.36 84.34 82.90 82.06 90.50 90.08 

OVERALL 80.08 80.51 79.95 79.87 81.86 80.79 
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Table 5.2: Details of the performances of biLexMENE for different sizes of the training corpus: parameters 
are set as described in section 5.10.1, with the exception of the number of selected cases which varies from 
50 to 100. The performance of LexMENE-V2 is also included in the comparison, with (LV2S) and without 
smoothing (LV2). Corpora: MUC-7 training corpus and MUC-7 formal test corpus. 

biLexMENE LexMENE 
Selection: 25 50 75 100 LV2S LV2 

10 training documents 
UNSEEN 46.10 46.37 45.62 46.44 40.21 36.08 

SEEN 66.06 64.79 65.39 64.73 66.62 61.80 
HARD 23.53 23.26 23.81 21.18 18.18 18.42 

AMBIGUOUS 49.92 54.07 54.55 54.10 036.48 29.14 
OVERALL 50.65 50.75 50.72 50.95 48.21 44.43 

25 training documents 
UNSEEN 54.38 53.57 52.87 53.02 50.15 47.21 

SEEN 76.65 76.84 77.63 77.12 79.89 76.32 
HARD 22.73 25.00 25.29 25.58 19.51 17.72 

AMBIGUOUS 60.13 63.58 65.59 67.85 58.03 53.44 
OVERALL 59.53 59.56 59.59 59.74 59.13 57.03 

40 training documents 
UNSEEN 57.08 56.75 57.30 57.21 54.42 50.70 

SEEN 80.53 80.52 81.21 81.82 84.89 81.25 
HARD 22.73 22.99 25.29 27.59 17.28 17.95 

AMBIGUOUS 64.36 67.40 69.19 70.05 64.24 59.56 
OVERALL 62.70 62.82 63.66 63.86 63.65 61.16 

50 training documents 
UNSEEN 58.83 58.51 58.45 58.04 55.16 52.17 

SEEN 81.78 81.78 81.68 82.08 86.52 83.39 

HARD 27.27 22.73 22.99 25.29 19.75 17.95 

AMBIGUOUS 62.33 63.41 66.98 65.62 63.27 58.50 

OVERALL 64.06 64.06 64.10 64.18 64.63 62.71 

75 training documents 
UNSEEN 59.28 59.44 59.04 58.82 56.89 53.63 

SEEN 82.69 83.46 82.81 83.46 87.64 85.08 

HARD 25.00 27.27 24.72 25.00 24.39 17.72 

AMBIGUOUS 59.53 64.16 65.83 68.76 79.63 72.67 

OVERALL 64.47 65.23 65.09 65.25 66.88 64.87 

100 training documents 
UNSEEN 59.91 59.75 59.83 59.79 58.06 54.74 

SEEN 85.18 85.57 85.34 84.95 89.38 85.98 

HARD 25.00 24.72 26.97 25.00 19.51 17.72 

AMBIGUOUS 63.52 67.71 70.39 69.48 84.76 82.32 

OVERALL 65.92 66.38 66.72 66.64 68.44 66,41 



Chapter 6 

Bootstrapping LexMENE 

As was stated in chapter 2, preparing training material for an NEE task -and for NLP 

problems in general- can be expensive in terms of both time and expert resources. 

On the other hand, there is an unmeasurable abundance of (unlabelled) text in natural 

language. This disparity has made bootstrapping, or semi-supervised learning, a research 

topic of great interest to computational linguistics (Abney 2004). In this sense, here 

the term bootstrapping will refer to the techniques that aim to improve a classifier 

obtained from a small set of labelled training examples, by utilising a larger set of 

unlabelled examples. 

In section 2.3, it was hypothesised that a NEE system based on the maximum entropy 

framework might take the advantages of semi-supervised learning, namely hypothesis 

3, though some doubts were raised. This chapter will show that these concerns were 

justified and look into ways of overcoming these difficulties. 

6.1 Why bootstrapping could or could not work for Lex­

MENE? 

On the one hand, named entity extraction is a task particularly compatible with boot­

strapping concepts due to the existence of internal and external evidence for recognising 

names (McDonald 1996), as discussed in chapter 2. 

Consider the following example, adapted from Riloff and Jones (1999): suppose that 

in a small set of annotated examples, the word Spain is seen several times annotated 

as a location name. This fact should be captured by the classifier which will both 

predict a high probability of finding a location name every time the word Spain is seen 

in an unlabelled sentence, and annotate them accordingly. Suppose also that among 
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these newly labelled sentences, there are several instances which contain the pattern the 

president of Spain... Then, by considering these examples as the training material for a 

new classifier, other location names can be captured from sentences like the president of 

Venezuela, the president of France, etc. These new location names could subsequently help 

to identify other contextual patterns, which in turn might assist in finding new location 

names. Riloff and Jones (1999) called this process mutual bootstrapping. 

Although this mutual bootstrapping works well in principle, its performance can rapidly 

deteriorate with patterns which have affinity for more than one type of name (Riloff 

and Jones 1999, Pierce and Cardie 2001). For example, the context the president of may 

indicate the presence of a country name, as exemplified above, but it can also be found 

around names, or generic references, of organisations such as in the president of Manchester 

United Fe, the president of the committee, etc. 

Therefore, this kind of approach requires a filter for the bootstrapped instances of one 

iteration that will be considered in the training of the classifier on the next iteration. 

Riloff and Jones (1999) used an approach based on rules and make the system more 

robust by adding a second level of bootstrapping in which the five most reliable noun 

phrases produced after a number of iterations, based on the number of different rules 

that extract them, are selected and permanently added to the training material. Most 

researchers, however, utilised a more direct ranking approach (Blum and Mitchell 1997, 

Steedman, Sarkar, Osborne, Hwa, Clark, Hockenmaier, Ruhlen, Baker and Crim 2003, 

N g and Cardie 2003). 

Nonetheless, the main risk of bootstrapping LexMENE comes from the maximum en­

tropy model it uses as the learning paradigm. It is not clear that this type of approach is 

suitable for bootstrapping methods since the maximum entropy framework obliges the 

learner not to make any assumption other than the constraints imposed by the training 

data. Therefore, it might be the case that the annotations made by a maximum en­

tropy classifier would only reflect these constraints, and considering subsequently these 

annotations for training another classifier could make little or no contribution to the 

learning process. 

However, experiments in previous chapters have shown that different variants of Lex­

MENE are able to identify unseen named entities. The work in this chapter aims to 

assess whether this ability of LexMENE is enough to support a bootstrapping procedure. 

There is another potential problem with bootstrapping LexMENE. Ng and Cardie 

(2003) identified and explained it quite well: there are feature-value pairs which alone 

can recognise and determine the class of a named entity. Probabilistic methods, unlike 

rule-based approaches, cannot take advantage of these pairs directly because they make 
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Algorithm 6.1: The original Co-training algorithm. Adapted from Blum and Mitchell (1997). 

Input: a set L of labelled examples and a set U of unlabelled examples 
1: procedure CO-TRAINING(L, U) 
2: Create a pool U' of examples by choosing u examples at random from U 
3: repeat 
4: Use L to train a classifier hI that considers only the Xl portion of X 

5: Use L to train a classifier h2 that considers only the X2 portion of X 

6: Allow hI to label p positive and n negative examples from U' 
7: Allow h2 to label p positive and n negative examples from U' 
8: Add these self-labelled examples to L 
9: Randomly choose 2p + 2n examples from U to replenish U' 

10: until k iterations are completed 
11: end procedure 
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decisions based on a combination of features. Nevertheless, they also recognise that 

these methods had the advantage of being resistant to class skewness, a characteristic 

easily found on the data of many NLP problems -and NEE is not the exception- in 

which the number of negative examples utterly outnumber the number of positive ones. 

When this research started in 2000-2001, there were no reports of attempts at boot­

strapping maximum entropy models, perhaps for the reasons mentioned above, but 

two works which consider this learning approach have been recently published (Clark 

et al. 2003, Cui and Guthrie 2004). This research will be discussed later on this chapter. 

6.2 Main bootstrapping approaches 

Most of the previous work on bootstrapping in NLP problems are based on two tech­

niques: Yarowsky algorithm (Yarowsky 1995) and co-training (Blum and Mitchell 1997). 

Co-training has somehow become more popular, perhaps because there have been some 

theoretical work on the approach (Dasgupta, Littman and McAllester 2002, Abney 

2002), and several variants are reported in the literature. Essentially, co-training ex­

ploits the redundancy in natural language texts by considering two independent views 

of the data. The method can be applied on an instance space X = Xl X X 2 , where 

Xl and X
2 

are the two different views of an example which are not tightly correlated, 

and each view in itself is sufficient to correctly classify any instance x. Therefore, if f 
denotes the target function for any example x = (Xll X2) associated with labell, there 

must exist the functions h and h so that f(x) = h(XI) = h(X2) = l. By using the 

small set of labelled examples, two weak predictors for h and h. can be found, which 

then can be used to bootstrap the unlabelled examples following the procedure shown 

in algorithm 6.1 (Blum and Mitchell 1997). 

Blum and Mitchell (1997) provided an analysis of why the co-training algorithm works 
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that is based on the independence between the different views of the data and the max­

imisation of the number of labels in which the classifiers agree. However, Abney (2002) 

argues that this analysis is flawed, because the co-training algorithm does not directly 

seek the agreement between the classifiers and because the independence assumption is 

very strong and normally violated by the data. 

Nonetheless, the co-training method has proved to work in practice and successful appli­

cations have been obtained in NLP problems that have a natural view separation, such as 

document classification, studied in the original work (Blum and Mitchell 1997), named 

entity recognition (Collins and Singer 1999) and NP chunking (Pierce and Cardie 2001). 

However, the sensitivity of the Blum and Mitchell's (1997) algorithm to the assumptions 

of independence and self-sufficiency of the two views has been shown to be an important 

limitation on NLP problems that do not have this clear separation. Muslea, Minton 

and Knoblock (2002) has shown that co-training is not very effective in classifying 

documents when the data does not allow uncorrelated views; Miiller, Rapp and Strube 

(2002) found mostly negative results when applying co-training to coreference resolution, 

a result confirmed later by Ng and Cardie (2003). 

These limitations have spurred researchers to investigate alternative co-training methods 

which do not require these views. The resulting variations have converged on replacing 

the two different views in a learner with two different learning algorithms. Goldman 

and Zhou (2000) studied the interaction of a decision list learner and a decision graph 

learner on several benchmark problems; Sarkar (2001) utilises two probabilistic models 

that form parts of a statistical parser to co-train each other; Steedman et al. (2003) 

also worked on parsing, but they used two completely different parsers; similarly, Clark 

et al. (2003) co-train two well-known probabilistic part-of-speech taggers; Ng and Cardie 

(2003) mixed decision lists and a NaIve Bayes classifier for coreference resolution. All 

these studies report successful results, some of them remarkably good. Hereafter, this 

variant approach of co-training will be referred to as co-learning. 

Unfortunately, only Clark et al. (2003) studied co-learning using maximum entropy 

models, as they applied the technique to the TnT tagger based on a trigram HMM 

(Brants 2000), and the C&C tagger based on the maximum entropy framework (Curran 

and Clark 2003a). The approach is described in algorithm 6.2. Initially, the taggers are 

trained on a small set of seed labelled sentences. At each iteration, a fixed-size cache is 

selected from the set of unlabelled sentences. Each tagger is then applied independently 

to this set. The resulting sentences labelled by the TnT tagger is added to the training 
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Algorithm 6.2: The Na·ive Co-learning algorithm for the TnT and C&C taggers. Adapted f CI k I 
(2003). rom ar et a . 

Input: a set S of labelled sentences and a set U of unlabelled sentences 
1: procedure NAIVE-CO-LEARNING-TNT-C&C(S, U) 
2: LTra' f- S 
3: Train the TnT tagger on LTra' 
4: LCM:; f- S 
5: Train the C&C tagger on LCM:; 
6: repeat 
7: Partition U into the disjoint sets C and U' 
8: CTra' f- application of TnT on C 
9: CCM:; f- application of C&C on C 

10: LTra' f- LTra' U CCM:; 
11: Train the TnT tagger on LTra' 
12: LCM:; f- LC&£: U CTra' 
13: Train the C&C tagger on LC&£: 
14: U f- U' 
15: until U is empty 
16: end procedure 

data for the C&C t agger , and vice versa!. At the end of the iteration, the cache is 

cleared and those sentences are removed from the total pool of unlabelled sentences. 

The algorithm stops when all unlabelled sentences have been used. 

There are important findings in this work that should be considered here. Firstly, the 

co-learning approach was very successful and, with just 50 seed sentences and a cache of 

500 sentences, is able to boost the performance of the C&C tagger from F -score 73.2% to 

F-score 85.1 after 50 iterations. Moreover, the experiments showed that the performance 

of both taggers gets better as the cache size increases. Secondly, the improvement is 

less impressive if the number of the labelled sentences (seeds) is incremented, making 

the co-learning approach ineffective when the taggers are initially trained with a large 

amount of manually annotated training examples. 

However, the most relevant observation comes from a set of experiments which Clark 

et al. (2003) called self-training. They modified algorithm 6.2 so that each tagger is 

retrained on its own labelled cache at each iteration. They reported that the perfor­

mance of the C&C remains constant under these settings, no matter the number of 

seed sentences provided. This finding could be indicating that the maximum entropy 

framework, discussed in section 6.1, is not suitable for bootstrapping. 

One explanation for this disappointing result is given III Abney (2004), who in an 

attempt at understanding the Yarowsky algorithm from a theoretical point of view, 

proposed several bootstrapping algorithms which, under certain conditions, have been 

IThis is the naive version of the algorithm. Clark et al. (2003) also studie~ ~ agreem.ent-based 
co-training in which only a subset of the cache is selected to be added to the trammg matenal for the 

next iteration. 
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proven to optimise the negative log likelihood of a classifier -at least to a local minimum­

with respect to the target labelling function. 

To understand Abney's (2004) work, the following notation is needed. A bootstrapping 

approach considers a set of examples X = A u V, where A represents the portion of 

examples that are labelled and V the portion of unlabelled examples. Whilst X remains 

the same during the bootstrapping procedure, its components vary in time. Therefore, 

at a given iteration t, X is composed by the current sets of labelled and unlabelled 

examples A (t) and V(t) respectively. In this way, an example x is associated to a label 

yY) at iteration t, which takes a value y = 1, ... ,L -i.e. there are L possible classes­

for labelled examples and the undefined value 1.. for unlabelled examples. Considering 

these associations, a labelling distribution ¢~t) (y) is defined for an example x E X and 

label y that takes the following possible values 

if x E A (t) and y = y}t) 

if x E A(t) and y =I y;t) 

if x E vet) 
(6.1) 

Finally, in each iteration t, the bootstrapping process uses a base learning algorithm to 

draw a classifier C(t+l) from the space of supervised classifiers that can be obtained 

from the training data (A (t), y(t))2. 

Abney (2004) proposes a bootstrapping algorithm, named Y-1, that is remarkably sim­

ilar to Clark et al. 's (2003) self-training (CST) algorithm. Indeed, the differences are 

not very significant: 

I> while CST uses a cache of unlabelled examples, Y-1 considers all of them. This 

can be seen as using a large cache in CST approach 

I> Y-1 transfers to the next-iteration training material only those examples for which 

the base classifier has declared itself. But using the C&C tagger as base learner, it 

is unlikely that Y-1 would predict uniform probabilities on many examples. Thus, 

the final results of both approaches would be quite similar. 

I> the main difference is that CST clears its cache after each iteration, while Y-l 

considers the same training data 

2In this notation when an index is not specified, the concept refers to(al) 1 t~e examples
h 

in\ tbhell~et. 
, . "\' S' '1 1 A. t WIll denote tea e mg 

Thus, yet) denotes the set of labels for all examples m -,. lIDl ar y, '+' 

distribution as a function over all examples and labels. 
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Algorithm 6.3: Abney's (2004) Y-I bootstrapping algorithm. 

Input: a set X of examples and their initial labels y(O) 

1: procedure MODIFIED-GENERIC-YAROWSKY-BOOTSTRAPPING(X, y(O» 

2: for t E {O, 1, ... } do 
3: Train a classifier C(t+l) on (A(t) , y(t» 

4: for each example x E X do 
5: i) f-- argmax C~t+l\y) 

y 

6: if x E A(O) then 
7: yx(t+1) f-- y~O) 

8: else if x E A (t) or C~t+l) (i) > i then 
9: yx(t+l) f-- Y 

10: else 
11: yx(t+l) f-- ..l. 

12: end if 
13: if y(t+1) = y(t) then 
14: stop 
15: end if 
16: end for 
17: end for 
18: end procedure 

Algorithm 6.3 sketches Y-1's procedure. Abney (2004) proved that Y-1 maximises the 

likelihood of the probability of the full data set according to the classifier's model when 

the base learning algorithm satisfies inequality 6.2, with equality only if there is no 

classifier Cit+l) that makes ~DA < o. 

(t) ( 
A _ ~ ~ (t)() Cx Y) 
l..l.DA = ~ ~ cPx y log (HI) 

xEA (t) yEY Cx (y) 
< 0 (6.2) 

In other words, the base learner must reduce the divergence, measured in term of the 

Kullback-Leibler distance (Kullback and Leibler 1951, Cover and Thomas 1991), with 

the labelling function at each iteration. 

On the other hand, recall from section 2.4 that the maximum entropy framework pro­

vides a model which coincides with the one that maximises log-likelihood (£) with the 

training examples. Therefore, if C(t+l) is a maximum entropy model trained over the 

examples x E A (t), its log-likelihood with respect to this set of examples will be higher 

than any other model drawn from the same space, such as C Ct). Therefore, the following 

analysis can be written, where p~) (y) corresponds to the empirical distribution at time 

t. Note the similarity of equations 6.2 and 6.3. 



CHAPTER 6. BOOTSTRAPPING LEXMENE 161 

This makes evident that maximum entropy models try to reduce the divergence with 

respect to the empirical distribution 't/xt
) (y) which, unfortunately, is normally different 

from the labelling distribution ¢~t) (y) in unrestricted sets of training examples. 

Therefore, Y-1 is not guaranteed to converge when used with a maximum entropy 

model as base learner and, given the close correspondence between this algorithm and 

the CST algorithm, the unsatisfactory results reported in Clark et al. (2003) should not 

be surprising. In fact, preliminary experiments with the combination Y-1+LexMENE 

showed an oscillatory curve of performance from which it seems unable to escape. 

The Y-1 algorithm is very close to the original Yarowsky algorithm, or the Y-O algorithm 

in Abney's (2004) terms. There are only two differences: 

[> Y-O allows non-hand annotated examples to become unlabelled again, whilst in 

Y-1 an example once labelled remains labelled, though the label may change 

[> at the end of each iteration, Y-1 labels all examples for which the basic learner 

predicts a non-uniform distribution among the classes, while Y-O labels only ex­

amples for which the best probability exceeds a given threshold. In this respect, 

Y-1 can be seen as Y-O with a threshold fixed to t where L is the number of 

classes. 

Thus, it might be possible that by selecting for the next iteration's training material 

only examples for which there is a high confidence on their predicted classifications, the 

algorithm could be able to learn new patterns without falling into the cycles observed 

in the preliminary experiments. Therefore, the initial experiments in this chapter aim 

to test whether the Y-O bootstrapping approach can help LexMENE to obtain valuable 

information from unlabelled examples. 

6.3 Experiment settings 

In order to test Yarowsky approach applied to LexMENE, hereafter boLexMENE, it 

is essential that a confidence measure is provided with each prediction. It is relatively 

simple to obtain such a measure for each token from the distribution over the classes 

predicted by LexMENE's maximum entropy model. However, the class of a token is 

not (exclusively) decided based on these probabilities. LexMENE utilises the F~lLU 

notation, which was found to produce better results than the BIO notation in chapter 4. 

As a result these distributions cannot be used directly and the algorithm requires the , 
application of a Viterbi search to annotate complete sentences with a valid sequence of 

labels. Thus, a confidence measure for the predicted sequence of labels is needed here. 
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Algorithm 6.4: The Viterbi Forward Backward Search algorithm (presented with Rabiner's (1989) notation). 
Adapted from Brushe, Mahony and Moore (1996). 

Input: a state transition distribution a that represents the valid transitions among 
classes and that includes the special states start-oj-sentence (SOS) and end­
oj-sentence (EOS); class distributions {b(i)}T given by LexMENE's maximum 
entropy model for each token Ot, 1 ::; t ::; T, over every NE class i 

Output: a normalised a posteriori distribution 'Y over the classes and the most 
likely sequence of classes q* according to this distribution 

1: procedure VFBS(a, {b(i)}T) 
2: Initialisation: 
3: (h(i)=asOS->ib1(i) l::;i::;N 
4: !3r(i) = ai->EOS 1::; i ::; N 
5: Recursion: 
6: bt(j) = max [bt-l(i)ai->j]bt(j) 

l:::;i:::;N 
l::;j::;N 
25ot5oT 

7: (3t( i) = max [{3Hl (j)ai->jbH1 (j)] 1::; i ::; N 
l:::;j:::;N 

T-l~t~l 
8: Termination: 
9: 'Yt(i) = bt(i){3t(i) 1::; j 50 N 

l::;t::;T 
10: Normalise 'Y 
11: Best sequence: 
12: q; = argmax [,t(i)] 1::; t ::; T 

l:::;i:::;N 

13: end procedure 

Clearly, the product of the best probability of each token distribution is not an appro­

priate measure as longer sentences will be unfairly penalised with respect to the shorter 

ones. A normalisation step could be attempted but this is not directly applicable and 

there are novel, better ways of obtaining a confidence measure for the sequence of labels 

in which its length has little or no impact. 

Several of these approaches originated from spoken language processing (Forney 1972, 

Hagenauer and Hoeher 1989, Junkawitsch, Neubauer, Hage and Ruske 1996, Morguet 

and Lang 1998, Li, Malkin and Bilmes 2004); others have been recently proposed for 

handwritten text recognition (Schlapbach and Bunke 2004) and information extraction 

(Culotta and McCallum 2004). Most of these methods can be adapted to work for 

boLexMENE with minor modifications. 

However, boLexMENE utilises the Viterbi Forward Backward Search (VFBS) given in 

algorithm 6.4, which is an adaptation of the algorithm proposed by Brushe et al. (1996) 

and further developed in Brushe, Mahony and Moore (1998). VFBS computes an a 

posteriori probability measure for each class at each token which is maximised over all 

valid paths that consider that (token, class) pair. Although VFBS is computationally 

more expensive than a normal Viterbi search, it finds the same maximum likelihood 

sequence and also provides a distribution over the classes which can then be normalised 

in the standard way. 

Now it is easy to obtain a confidence measure for the sequence of named entity classes as­

signed to a sentence: boLexMENE considers the Kullback-Leibler divergence (Kullback 

and Leibler 1951, Cover and Thomas 1991) of the distribution, returned by the YFBS 
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Figure 6.1: Comparison of the performances of boLexMENE with different thresholds: features as used by 
LexMENE-V2. cutoff is set to 3 and GIS iterations to 200. Bootstrapping: Y-O with thresholds varying from 
75% to 95% . Labelled examples: MUC-7 training corpus; unlabelled examples: MUC-7 dryrun test corpus; 
test examples: MUC-7 formal test corpus. 

and the appropriate uniform distribution for that sentence. This measure also makes 

the definition of thresholds simple. For example, suppose that a probability distribution 

is defined - with the same number of outcomes as considered by boLexMENE- so that 

90% of its mass is concentrated in one class and the rest shared out among the other 

classes. By telling Y-O to use as threshold the distance between this distribution and 

the uniform distribution, only sentences labelled with at least 90% confidence will be 

selected. 

6.4 Experiments 

As in the previous chapter, in order to avoid a number of experiments for setting the 

parameters of boLexMENE, those fixed for either LexMENE or MOLl MENE will be 

used, as there are no reasons to believe that maintaining these values would unfairly 

affect their comparison. Thus, all experiments presented in this section utilise the 

FMLU notation a cutoff set to three 200 GIS iterations, a lexical window of sizes [2 ,2] , , , 
a orthographic window of sizes [2 ,2] from which all fired features are considered, and 

the unknown words threshold set to three. 

The first experiment aims to test the first approach to boLexMENE, which consists of 

the Y-O algorithm with LexMENE-V2 as base learner, with different threshold values: 

75%, 80%, 85%, 90% and 95% confidence. Figure 6.1 presents the performance of 
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boLexMENE on the MUC-7 formal test corpus for the first 15 iterations of the Y-O 

algorithm. 

At iteration one, only hand-annotated examples -which in this case corresponds to the 

MUC-7 training corpus- are utilised by boLexMENE to train its maximum entropy 

model. This model is then applied on the set of unlabelled examples, which in these 

experiments corresponds to the MUC-7 dryrun test corpus. Then the threshold is 

applied and those sentences whose labels have been assigned with a confidence higher 

than the value required are selected to be added to the set of training examples in the 

next iteration. 

It can clearly be seen in this figure that the bootstrapping approach does not contribute 

but damages LexMENE's performance. There is some gain for ambiguous named en­

tities, specially for modest threshold values, but this is not enough to compensate for 

the loss on the other familiarities and the overall performance declines. Moreover, no 

matter the threshold, boLexMENE also falls into oscillatory curves of performance -

as happened in preliminary experiments with Y-l- which means that Y-O does not 

converge as its stop condition is never satisfied. 

There are two possible scenarios which might explain these results. The first one is 

that maximum entropy models have intrinsic difficulties to learn from themselves and 

thus are not appropriate for direct bootstrapping. To some extent, the experiments in 

Clark et al. (2003) suggest this as the performance of the maximum entropy tagger they 

use remains constant when retrained on its own output, but considerably improves in 

co-learning with another tagger. 

The second option was also observed by Clark et al. (2003): their co-learning algo­

rithm ''was unable to improve the performance of the taggers when they had already 

been trained on large amounts of manually annotated data". Surprisingly, what Clark 

et al. (2003) call a large amount of manually annotated data seems to be just 500 sen­

tences. The MUC-7 training corpus -used as the hand-labelled data here- contains 

100 documents which sum up to 4,377 sentences. 

The second scenario can be proved -or disproved- by repeating the experiment of 

above with a smaller set of manually annotated examples. Figure 6.2 shows the re­

sults of boLexMENE on the MUC-7 formal test corpus when using only the first 10 

documents from the MUC-7 training corpus as hand-labelled examples. The other 90 

documents and the 100 documents from the MUC-7 dryrun test corpus are provided 

for bootstrapping. 
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Figure 6.2: Comparison of the performances of boLexMENE with different thresholds: features as used by 
LexMENE-V2, cutoff is set to 3 and GIS iterations to 200. Bootstrapping: Y-O with thresholds varying from 
75% to 95%. Labelled examples: 10 documents from the MUC-7 training corpus; unlabelled examples: 90 
documents from the MUC-7 training corpus + MUC-7 dryrun test corpus; test examples: MUC-7 formal 
test corpus. 

It can be seen once again that boLexMENE would run indefinitely if not stopped after 

25 iterations. Even worse, these results suggest that the amount of initial training 

material is not the main problem of the approach, but that there is some deeper issue 

that is responsible for the poor performance of the system. 

These difficulties might be inherent to maximum entropy models, due to the maximum 

entropy principle, or even to probabilistic machine learning methods, as suggested in 

Ng and Cardie (2003), because they fail in capturing relevant clues that are nevertheless 

infrequent. 

6.5 Lighting the way 

In a recent work, Cui and Guthrie (2004) proposed a bootstrapping framework with a 

maximum entropy model as the learning component to perform semantic tagging, an 

NLP task that is similar to - but more general than- named entity extraction. They 

argue that if the following three conditions are satisfied: 

1. feature frequencies are not smoothed 

2. the set of features remains the same during the bootstrapping process 
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3. the confidence of an (example, label) pair at iteration t + 1 corresponds to the 

probability predicted by the maximum entropy model generated at iteration t 

then machine-labelled examples ''make no contribution to the constraint set". Because 

this is counter-intuitive, Cui and Guthrie (2004) called this effect the MaxEnt Puzzle. 

The MaxEnt Puzzle explains the self-training results reported in Clark et al. (2003), as 

it seems that all three conditions are met by their approach. BoLexMENE satisfies the 

first two conditions but not the third one. Nevertheless, it seems that using a confidence 

measure that is just based on the predicted probabilities is not enough to solve the 

puzzle. The experiments in the previous section suggest that feature expectations are 

changing, affecting slightly the performance, but that they remain largely unchanged. 

Cui and Guthrie (2004) recommend to break the restrictions by re-selecting the feature 

set after each iteration or adjust the labels assigned by the model. They conducted 

experiments in which both recommendations are followed. First, they re-select features 

based on the Association Rule's principles of support and confidence. And secondly, 

they permanently correct some of the predictions produced by their model in two ways: 

adjusting the probabilities given by the model, such as setting to probability zero the 

least probable label, setting to probability one the most probable label and removing 

instances with flat distributions; and pruning illegal labels by using information from an 

external dictionary. Cui and Guthrie (2004) reported that the new approach reduced 

the error rate of the system, but the improvement was not impressive. 

BoLexMENE is already correcting the maximum entropy's predictions by applying a 

Viterbi search. This effect was observed in chapter 4, in which the performance of the 

approach is considerably boosted by using the FML U notation and the correspond­

ing Viterbi algorithm. However, this corrective approach seems not to be enough to 

overcome the MaxEnt Puzzle, as observed in previous experiments. Adding external 

sources of correction, such as gazetteers, would necessarily compromise the portability 

of the system. Therefore, it seems necessary for bootstrapping LexMENE to introduce 

a re-selection of features procedure. 

In chapter 5, the Ripper rule inductor (Cohen 1995) was found to be good at generating 

features for maximum entropy models. Thus, it seems a reasonable idea to use this 

learning algorithm to inform LexMENE of a set of potentially good features present 

in the training data. Then, LexMENE could inform Ripper of the classes of a set of 

examples for which they were previously unknown. Then, Ripper will inform back of a 

new set of good features to describe the new examples. This co-informing process may 

continue until no new rules are necessary to describe newly labelled examples or there 

are no more examples to bootstrap on. 
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Algorithm 6.5: LexMENERipper: the co-informing approach applied to LexMENE-V2 and Ripper. 

Input: a set L of labelled sentences, a set U of unlabelled sentences and a cache 
size n 

Output: a LexMENE-V2 model trained on L U U 
1: procedure CO-INFORMING-LEXMEME-V2(L, U, n) 
2: rules(O) f- Ripper(L) 
3: t +- 1 
4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 
12: 

13: 

14: 

repeat 
Train LexMENE-V2(t) with rules(t-l) as features 
Apply LexMENE-V2(t) on U 

Sf-the n most confidently labelled sentences in U (selected with care) 
R +- Ripper(S) 
rules(t) +- rules(t-l) U R 
if rules(t) = rules(t-l) then 

Stop 
end if 
U+-U-S 
t+-t+l 

15: until U is empty 
16: end procedure 

6.6 LexMENERipper 

167 

Following the discussion above, a new named entity extractor has been designed which 

is based on co-informing LexMENE-V2 and Ripper. This system has been named Lex­
MENERipper. 

Algorithm 6.5 describes the co-informing approach applied to LexMENE-V2 and Ripper. 

Initially, the training sample -i.e. manually-annotated sentences- is handed to Ripper 

which obtains an initial set of rules from them. Then, an iterative procedure starts 

by training LexMENE-V2 on this set of rules and then applying it to all unlabelled 

sentences. The next step is the selection of a fixed number of newly labelled sentences 

from the pool of unlabelled sentences. This idea combines Riloff and Jones's (1999) and 

Clark et al. 's (2003) approaches. This corresponds to a cache of unlabelled sentences, 

which is cleared at the end of each iteration. However, the sentences selected to fill this 

cache are not selected randomly before labelling, but with the most reliably annotated 

sentences. 

It is important to mention here that the approach always tries to obtain new information 

from the unlabelled examples. Consequently, the selection of the sentences for the cache 

is performed with the due care. For example, if only negative sentences are selected, 

Ripper would come out with an empty set of rules and the instruction of predicting 

the class 0 for every token. Another possible situation is that only sentences with 

information of the document, such as sentences describing the author or the date of 

the document, are selected. This kind of sentence normally shows little variability and 

Ripper could produced a set of rules which are already known. Both situations lead to 

a premature stop of the algorithm. Therefore, the selection of sentences for the cache 
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tries to maintain as much as possible the same number of sentences with each of these 
characteristics. 

When a cache of newly labelled sentences has been selected, it is handed to Ripper 

with the mission of generating a new set of rules to classify them. These rules are then 

added to the current set of rules. If no new rules can be added, the algorithm assumes 

convergency and stops. Otherwise the process is repeated until all unlabelled sentences 

have been added into the cache. 

It could be also possible to set a minimum confidence threshold for selecting newly 

labelled sentences, so that the bootstrapping process halts when there are no reliable 

sentences from which information can be drawn. Or alternatively, the size of the cache 

could be reduced after each iteration so that sentences labelled with low confidence are 

not considered in the feature production. These, and other more common, stopping 

cri teria can be the subject of further research. 

6.7 An experiment with LexMENERipper 

An experiment with LexMENERipper is conducted here to determine whether a maxi­

mum entropy-based NEE system can benefit from semi-supervised learning. 

As explained in section 6.6, the initial extractor corresponds to a maximum entropy 

model that uses as features the rules generated by Ripper from the training sentences, 

that is sentences that have been hand-annotated, which in this case corresponds to the 

MUC-7 training corpus. 

After that, the bootstrapping procedure begins. The maximum entropy extractor is 

applied to unlabelled sentences, in this case the MUC-7 dryrun corpus, and the most 

reliable annotations made by the system are selected. Then, Ripper is applied on this 

cache of sentences and the resulting rules are added to the pool of features for the next 

maximum entropy extractor. Different cache sizes have been tested in this experiment, 

namely 50, 100, 200, 400 and 800 sentences. 

This procedure continues until Ripper does not generate any new rule to be added to 

the pool of features or all unlabelled sentences have been used in the process. Note 

that this last condition implies that the maximum number of bootstrapping iterations 

depends on the cache size utilised - as each sentence is included into the cache just 

once. For example, as the MUC-7 dryrun corpus contains 4,113 sentences, with a cache 

of size 800 there can be at most six iterations while a with a cache of size 50 sentences 

more than 80 iterations could be run. 
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Figure 6.3: Comparison of the performances of co-informing LexMENE-V2 and Ripper for different cache 
sizes: features as used by LexMENE-V2. cutoff is set to 3 and GIS iterations to 200. Labelled examples: 
MUC-7 training corpus; unlabelled examples: MUC-7 dryrun test corpus; test examples: MUC-7 formal test 
corpus. 

Figure 6.3 presents the performance of LexMENERipper for the different cache sizes 

tested. It is interesting noticing that only with the cache of size 50 LexMENERipper 

reaches convergence -i.e. no new rules can be obtained from the sentences in the 

cache- and for all other sizes the algorithm stops because the complete unlabelled 

material has been processed. 

Figure 6.3 shows that LexMENERipper is able to improved its initial overall performance 

- i.e. the one obtained with hand-labelled training data only- for all cache sizes tested. 

However, this experiment suggests that the approach is sensitive to the cache size pa­

rameter, an undesired characteristic which has also been reported for co-training (Pierce 

and Cardie 2001). In effect, versions with larger caches clearly outperform the versions 

with cache sizes of 200 sentences or less. 

Moreover, the results shown when using caches of sizes 400 and 800 sentences follow a 

similar overall trend. Both start with a sharp increase during the initial bootstrapping 

iterations. Then the performance falls and then recovers to adopt a smoother, but rising 

path. 

However, it is the cache of size 800 sentences the one that yields the best results ob­

taining increments of performance for all familiarity types of named entities, which 

is reflected in a 4% F-score overall improvement. Note however that Lex1,fENE-V2 

trained with the original lexical features, rather than the rules produced by Ripper 1 

obtains better performance on this corpus. 
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Interestingly, co-informing does help LexMENE to recognise more unseen named enti­

ties as all cache sizes obtained a clear improvement on this familiarity type. However, 

results are mixed on seen named entities for which large cache sizes achieve improve­

ments but smaller cache sizes actually led to a drop in performance. Although gains in 

performance are observed on ambiguous named entities for all cache sizes at the end of 

the bootstrapping process, the curves are oscillating with sharp increases and drops. 

6.8 Discussion 

In this chapter, several attempts to bootstrap a maximum entropy named entity ex­

tractor, namely LexMENE, have been presented. It has been explained that a MaxEnt 

Puzzle had been identified in the sense that providing large amounts of unlabelled ex­

amples to maximum entropy models could have no effect on their performance if used 

in the common way. 

However, a new bootstrapping approach, named co-informing, has been proposed and 

tested. An experiment with co-informing shows a significant improvement of Lex­

MENE's performance, though it also poses several questions. For example, it is rea­

sonable to wonder whether this positive result would have been obtained if the initial 

rules produces by Ripper had maintained the performance of the uninformed version of 

LexMENE. Another interesting issue comes from the observation that figure 6.3 sug­

gests that the bigger the cache, the better. Thus, it could be worth testing whether 

better results can be obtained from performing just one co-informing iteration with all 

unlabelled data. Different amounts of unlabelled data and cache sizes should be tested. 

The main question, nevertheless, is that co-informing has introduced a new puzzle. It 

is normally expected that the performance of a learner deteriorates as bootstrapping 

progresses, as noise is unavoidably added to newly labelled data. This effect has indeed 

been observed in different bootstrapping experiments (Ng and Cardie 2003). In fact, 

co-informing seems to behave in this way in the initial iterations for all the different 

cache sizes after obtaining a peak in performance. However, and particularly for the 

versions with larger caches, this trend is reversed and the performance of LexMENE 

tends to rise. 

There are two possible explanations for this phenomenon - or perhaps the combination 

of both. The first one, though unlikely, is that the rules produced by Ripper to classify 

the noisy sentences in later iterations, are complementing previous rules and, in this 

way, helping LexMENE to refine its maximum entropy model despite the occurrence 

of wrong labels. The second alternative is more plausible and is related to overfitting. 

Clearly larger caches lead to large sets of rules to represent the underlying classification 

task. Thus, the pool of features for the maximum entropy approach grows significantly 

after each iteration. But, because the number of GIS iterations has been kept constant, 



CHAPTER 6. BOOTSTRAPPING LEXMENE 171 

the framework has to produce increasingly more general hypotheses which, in the end, 

bring about better results. 

These open questions make difficult to declare hypothesis 3 valid -or invalid- as 

further exploration of the approach proposed here is required. 



Chapter 7 

Conclusions and future work 

This chapter sums up the work conducted in this thesis and re-assesses the hypotheses 

that originated it. It also presents proposals for future research that aims to find solu­

tions to unsolved issues, elucidate unanswered questions and extend the study presented 

here. 

7.1 Conclusions 

The main argument in this thesis is that it is possible to perform relatively accurate 

generic named entity extraction by combining the robustness of statistical learning 

methods, an appropriate management of exceptions and the utilisation of large amounts 

of unlabelled data. Such a system would be portable across named entity extraction 

tasks and, if the resources exist, across languages. However, this thesis has shown that 

several issues ought to be solved before this approach can be realised. 

The maximum entropy framework has proved to be a strong classifier that is able to 

obtain good levels of performance by capturing relevant information from lexical data 

only, which demonstrates it is a suitable method for named entity extraction (basis 

3). All the attempts presented in this work to improve this baseline approach have 

shown how challenging this might be and, though successful, most of the improvements 

obtained were not impressive. 

Table 7.1 presents a summary of the best performance (F -score) of each approach studied 

for both MUC-7 test corpora. The first row corresponds to the performance obtained by 

version B of LexMENE which is the baseline system extended here. Row two presents 

the performance obtained by MOLl MENE V2 which uses exactly the same lexically­

oriented features as LexMENE, but with different context windows. The third row 

shows the best performance achieved by MOLl MENE for the dryrun test corpus and 

for the formal test corpus. The former was obtained by MOLl ~IENE V8 and the latter 

172 
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Table 7.1: Summary ofthe best performance (F-score) obtained by the named ent"lty ext ct" h " " " ra Ion approac es 
presented In this thesIs" 

(1) 

(2) 

(3) 

(4) 

(5) 

Approach 
name 

LexMENE 
MOLl MENE V2 

MOLl MENE 
biLexMENE 

LexMENEJt~pper 

Best Performance 
Dryrun test Formal test 

79.54 64.51 
83.98 71.49 
84.68 73.05 
80.51 66.72 
78.18 63.06 

by MOLl MENE VII. Both versions utilise, in addition to the features used by MOLl 

MENE V2, linguistically-oriented features -namely trigger synsets- extracted from 

WordNet®. Row four indicates the best results accomplished by biLexMENE. In both 

situations, the system is trained with all documents from the MUC-7 training corpus, 

but the highest F-score for the dry run test corpus is obtained selecting 50 similar cases, 

whereas selecting 75 similar cases yielded the best result for the formal test corpus. 

Finally, the fifth row corresponds to the performance achieved by LexMENERipper when 

using a cache of 800 sentences. However, it must be noticed that the dry run test corpus 

was not the target corpus for this NEE system. The F -score reported here corresponds 

to the labels introduced by LexMENERipper after six co-informing iterations on the 

dryrun documents when used as a source of unlabelled text. 

It can be observed that the most significant increment in performance was obtained 

by re-arranging the context windows for the lexically-oriented features. Linguistically­

oriented features do lead to better F -scores on both test corpora, but these improvements 

are not as important as expected: just around 1 %. This makes difficult to decide on the 

validity of hypothesis 1, as these results were obtained using parameters estimated for 

MOLl MENE V2 and more significant improvements could be achieved with a different 

set of parameters. Thus, more research is needed to have more definitive evidence. 

The source of linguistic information has been WordNet, which is general enough to 

not affect the portability of the approach. However, it might be possible that other 

sources could be more appropriate for this because WordN et does not explicitly make 

differences between concepts and instances of these concepts. For example, consider 

the word president. WordNet considers the texts ex-president and Franklin Delano Roosevelt 

as hyponyms of this word. This mix of conceptual levels makes difficult the estimation 

of both semantic distances and the identification of irrelevant senses (de Boni 2004), 

which might be valuable information to identify named entities. 

The sheer amount of linguistic information collected from WordNet was another chal­

lenge to be faced. This problem was solved by using an efficient rule learning algorithm 

with the ability to manage set-valued attributes, namely Ripper (Cohen 1995, Cohen 

1996), to select the most important features from the new data which are then fed into 
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the maximum entropy model. This approach was the most successful in increasing the 

performance of the NEE system. 

Managing exceptions was less successful. Biasing the maximum entropy model, towards 

training material that is similar to the text being classified, obtained only marginal in­

crements in performance which are not clearly related to a better handling of exceptions. 

However, this material was retrieved by using a successful approach in the memory­

based learning field, namely the Case Retrieval Nets (Lenz 1999), that turned out to 

be an unfortunate choice as the efficiency of the algorithm is affected when cases are 

pieces of free text. This remains the main unsolved issue of this idea, which discouraged 

testing the approach further with other ways of measuring similarity. As a consequence, 

it has not been possible to determine the validity of hypothesis 2. 

Bootstrapping the maximum entropy approach was also intricate because of the so called 

MaxEnt Puzzle (Cui and Guthrie 2004). This puzzle states that unlabelled material 

could have no effect on the classifications made by a maximum entropy model, unless 

its output is externally processed before being added to the new, larger pool of training 

examples. Ripper was once again used for this task and a new bootstrapping framework 

was proposed, which was named co-informing. In the co-informing approach, Ripper 

informs the maximum entropy model of the most important features for classifying the 

new training material, which initially corresponds to hand-annotated examples. The 

maximum entropy NE extractor takes into account this information, obtains the classes 

for unlabelled sentences and informs Ripper of its finding. 

Co-informing proved to be successful in overcoming the MaxEnt Puzzle and the per­

formance increases as more and more unlabelled sentences are processed. Moreover, 

experiments in which larger number of sentences are processed at each iteration ob­

tained better results and do not show signs of convergence, which could indicate that 

the performance of the approach might be increased further if more unlabelled material 

were available. 

However, the overall performance reached by co-informing is below the one obtained 

by the baseline system. This was a consequence of lexical features being replaced with 

Ripper rules, rather than being added to - as above, which had a significant negative 

impact on the performance of the approach, degrading it in more than 7% F -score, at 

iteration one. 

Once more, these findings do not allow a conclusive decision on the validity of hypothesis 

3: on the one hand, LexMENERipper improves by extracting new information from 

unlabelled text; on the other hand, this new information was not enough to outperform 

the baseline system that uses hand-labelled text only. Again, this could be related to 

the fixed parameters used in the experiment and further research is needed in order to 

obtain an assertive conclusion. 
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Nevertheless, the inital idea of combining these techniques remains valid. Bootstrapped 

examples can be easily added to the instance-based memory to be considered in the 

biasing process, and the co-informing framework could be applied to the pool of lexical 

features enriched with linguistical information drawn from WordNet. Further research 

is required on how to solve the issues that prevented this integretation here. 

7.2 FUture work 

Future work has been divided into four areas depending on whether they will contribute 

to answer pending questions of the research conducted in previous chapters, as exten­

sions of the approaches proposed, to improve the methods proffered to obtain NLP 

technology or to extend the research of the techniques used in this thesis. 

7.2.1 Answering open questions 

There are a number of questions that has been left open about the methods proposed in 

this thesis, which require further hypotheses and empirical work in order to be answered. 

For example, the differences between the best performance obtained by each NEE sys­

tem studied in this thesis are quite small. In particular, only a 1% improvement has 

been observed when linguistically-oriented features are added to MOLl MENE. It re­

mains answered whether these differences have statistical significance, mainly because 

the procedure used for the MUC and CoNLL competitions was followed here, in which 

this consideration was not included. 

In addition, the above marginal improvement was obtained by including linguistically­

oriented features provided by WordN et® in the baseline maximum entropy NEE system, 

despite the fact that these features can be disorganised and noisy. Therefore, it also 

remains unanswered whether the application of word sense disambiguation approaches 

could produce a more helpful set of linguistically-oriented features that could further 

boost the performance of the baseline system. 

In chapter 5, it was found that biasing a maximum entropy NEE system by applying 

memory-based techniques is only beneficial when little training material is available. 

However, these results are observed for the specific application discussed in this thesis 

which is based on Case Retrieval Nets (CRNs) (Lenz 1999). Although CRNs normally 

provide a fast case retrieval process, they show efficiency problems when managing 

attributes with a large range of values, as are normally found in NLP tasks. This 

prevented further parameterisation and experimentation with the approach. Thus, it is 

possible that other similarity functions or the use of sentences as cases --rather than 

fixed windows of tokens- could yield better improvements of a biased NEE system, but 

this would necessarily require abandoning CRNs and looking for an alternatiw method 
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for retrieving similar cases. One possibility to be explored is the TiMBL memory-based 

leamer, which has been successfully applied to many NLP applications (Daelemans, 

Zavrel, van der Sloot and van den Bosch 2003). 

It could be argued that it is not clear that by biasing a maximum entropy NEE 

system, a better management of exceptions is obtained. This ability was measured 

here by looking at improvements in recognising ambiguous named entities which pre­

sented a disparate occurrence between classes. A more objective evaluation could be 

made by studying indices designed specifically for measuring exceptionality such as 

class prediction strength, typicality and local typicality (Daelemans, van de Bosch and 

Savrel 1999, Salzberg 1990, Rotaru and Litman 2003). 

Another open question is whether the co-informing bootstrapping approach proposed 

in chapter 6 is useful. Results indicate that it is indeed helping the underlying max­

imum entropy model to learn new features from unlabelled examples. However, the 

performance obtained by the resulting model is below the one obtained by the baseline 

system. Thus, it is not clear that this improvement could be observed if both algorithms 

start from the same level of accuracy. 

Co-informing also posed a new puzzle: experiments with large cache sizes do not show 

the expected effect of noise being added to the training data. On the contrary, they 

indicate that if more unlabelled training material were available then the approach 

would be able to continue the learning process. 

These two questions require further analysis and more experimentation, ideally on more 

than one classification problem and with larger amounts of unlabelled data. 

7.2.2 Extensions of the proposed approaches 

The corpora analysis presented in section 3.2 can be extended to include tokens and 

phrases that are not labelled as named entities in the target texts, but that have been 

seen as such during the training. This would provide information of the number of 

spurious named entities that a NEE system could wrongly recognise, which will improve 

the estimations of the complexity of the task and supply extra information of its ability 

to handle exceptions in the texts. 

It could be possible to use the familiarity information of named entities to develop a NEE 

system with several components that are specialised on an individual type. Moreover, 

by adding the class "actually not a name", these specialised NEE components could 

be applied after an initial NEE extractor which aims to identify in the texts as many 

named entities as possible. Such an approach might provide evident benefits for the 

recall and the precision of the system that are optimised separately. 

It must be observed that the approaches developed in this thesis complement each 

other. Thus, linguistically-oriented features can be included into both the biased and 
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bootstrapped approaches. Moreover, instance-based methods have the ability to easily 

include new examples to the case database and need no modification to be integrated 

with the bootstrapping method presented here. Therefore, once the efficiency problem 

of the biased system and the difficulties of the bootstrapping method are solved, all 

three NEE approaches can be combined into a single system. 

Finally, in the co-informing settings presented here, Ripper provides the maximum 

entropy model with new features obtained from a cache of machine-labelled examples. 

There are a number of slightly different approaches which could be worth testing. For 

example: 

I> provide Ripper with only a subset of selected sentences from the cache 

I> let Ripper to get relevant features not only from the sentences in the iteration's 

cache but from all sentences selected so far 

I> apply Ripper to linguistically-oriented features only and then combine the result­

ing features with the lexically-oriented features 

7.2.3 A end-user named entity extractor 

Although obtaining high performance has not been the goal guiding this thesis, there 

are a number of simpler modifications which could contribute to obtaining a better 

end-user named entity extractor. 

For example, the successful system MOLl MENE V2 presented in chapter 4 was em­

pirically parametrised considering only lexically-oriented features. It was found that 

looking at the token on the left and the token on the right for lexical information 

yielded the best results. However, it was discussed in section 3.4.2 that such a limited 

contextual information could deprive NEE systems of important clues for identifying 

named entities. 

Nevertheless, these facts are not completely contradictory as considering broader con­

texts for gathering lexical information could indeed make no contributions, but it could 

be possible that other types of information might benefit by more contextual material. 

On the other hand, this will increase the size of the pool of features and the application 

of Ripper will be necessary. Therefore, a better approach could be obtained by combin­

ing the selection method based on Ripper on both lexical and the "semantic" features 

and then performing an exhautive search of good parameters. 

In addition, there is a large number of further features that could be added. For instance, 

both simple morphological features (Cucerzan and Yarowsky 2002, Tjong Kim Sang 

2002b, Wu et al. 2002, Bender et al. 2003, Chieu and Ng 2003, Florian et al. 2003, Klein 

et al. 2003, Wu et al. 2003) and global features (\Vu et al. 2003) -that relate different 
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occurrences of a candidate named entity- have been intensively used for extracting 
named entities. 

Furthermore, a post-processing procedure could be included to identify and repair incon­

sistences in the labels that are output by the NEE system. The approach of retaining the 

boundaries of the named entities identified but then relabelling them showed improve­

ments in 11 out of the 12 systems participating in CoNLL-2002 (Tjong Kim Sang 2002a). 

Also, the approach of partial matching (Mikheev, Moens and Grover 1999) can be 

applied so that the classifications of named entities that occur more than once in a 

document are based on the appearance with the best contextual information. 

7.2.4 Future research 

This thesis has established that WordNet could be a source of general information 

that contributes to the extraction of named entities. However, WordNet has been 

criticised because it is not consistent in the way it handles knowledge (de Boni 2004) 

which makes the extraction of useful semantic relationships difficult. Moreover, several 

ways of extending the knowledge of WordNet and ways in which this could be used to 

determine the semantic similarity between sentences have been proposed (Budanitsky 

and Hirst 2001, de Boni 2004). These approaches could be used to define more organised 

semantic features that might be more useful for a named entity extractor. 

Moreover, these semantic relations could make sentences a more approapriate level of 

granularity for defining cases and queries in a memory-based biasing approach. Fur­

thermore, the semantic distance between two sentences could be used as the similarity 

measure to identify relevant cases for a given query. 

However, it has recently been suggested that a good treatment of exceptions in natural 

language applications is not only a property of instance-based methods. In fact, Ripper 

has been found to be quite good at this (Rotaru and Litman 2003). Although Ripper has 

been shown here to complement the statistical paradigm of maximum entropy models, 

it could be providing rules designed for exceptions rather than for regularity and it 

might turn out to be not an appropriate method for selecting features. 

Therefore, an interesting source for further research is looking for ways in which the 

efficient induction used by Ripper can be modified to specifically obtain a robust method 

for selecting features for maximum entropy models. For instance, it is not clear than 

the pruning and deletion of rules applied by Ripper is appropriate for selecting features 

(Cohen 1995). Nor is the stopping criterion -based on the description length principle 

(Mitchell 1997)- that it uses. These techniques are included into the inducer as an 

attempt to increase generalisation and avoid overfitting. Thus, Ripper does not output 

all the rules and conditions it finds useful to undertake the extraction task. 
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But the maximum entropy framework deals with these issues and, when applied as 

a second learning step, it might be not necessary for Ripper to be concerned about 

overfitting the training data or creating irrelevant rules which could be managed by the 

generalisation of features described in section 4.11 and the appropriate estimation of 

the model's parameters. 



Appendix A 

N YIllble iIll pleIllentation 

As it might be expected, although Nymble's approach is well explained in Bikel et al. 

(1997) -and in some extent in Bikel et al. (1999)1- some of the details necessary for 

actually implementing the algorithm are missing and sensible guesses are required to fill 

the gaps. In the rest of this section, the implementation of siNymble version is discussed 

in detail. 

A.I Top-level model 

The estimation of the probabilities for Nymble's top-level model is a simple procedure 

base in the function c(e), which counts the number of times the event e occurs in the 

training data: 

Pr(NC]NC- 1 , W-l) 

Pr( <w,j>jir.tI NC, NC-d 

Pr( <w,J> I <W,J> -1' NC) 

c(NC,NC- 1 ,w-l) 
c(NC- 1 ,w-d 

c( <w,j>jir.t' NC, NC-d 
c(NC,NC-d 

c( <w,J>, <w,j> -1' NC) 
c( <W,j>_I' NC) 

(A.l) 

(A.2) 

(A.3) 

Bikel et al. clarifies that the model for name-classes (equation A.l) is conditioned on 

the previous real word of the previous name-class, unless the previous state is the start 

of a sentence in which case it would "be conditioned on the +end+ word". 

In the interpretation given here, siNymble contains actually two completes models only, 

which generate the top-level model and the backing-off/smoothing models (see table 

3.4) by a full or a partial instantiation of their variables. 

The first complete model is for generating probabilities for name-classes and contains 

three variables: the current name-class, the previous name-class and the previous word. 

IThis article describes IndentiFinderTM, which seems to be remarkable similar to :\ymble though a 

better performance is reported for this name entity recogniser. 

180 
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(NC = alNC- l = b, W-l = c) (A.4) 

The second complete model is for generating probabilities for words and contains six 

variables: the current word and feature, the previous word and feature, the current 

name-class and the previous name-class. 

(W=p,!=qIW-l =r,!-l =s,NC=t,NC_l =u) (A.5) 

Thus, Pr(NC = aINC_1 = b) is interpreted as the sample probability of finding in the 

name-class complete model an event whose first variable has value a and second variable 

value b, considering all possible values for the third variable. 

In general, a model Pr(xIY) is interpreted as the sample probability in the corresponding 

complete model, partially or fully instantiated with the values x and y. It will be written 

Pr(xly) = Pr(X 1= xlY 1= y) to denote this operation. If the instantiation is partial, 

the count function will consider all possible values for all free variables. Formally, if a 

model M = Pr(x = {Xl, ... ,xn}ly = {Yl, ... ,Ym}) leaves k free variables ih, . .. ,Vk in 

the corresponding complete model, then the real estimation of M in these terms is 

= 

Pr(X F xIY F Y) 

c(X F xlY F Y) 

c(X F *IY F Y) 
C(il = Xl,··· ,in = xn,fh = Yl,·.· ,Yrn = Yrn,ih = *, ... ,ilk = *) 

C(XI = *, ... ,Xn = *,Yl = Yl, ... ,Yrn = Yrn,Vl = *, ... ,Vk = *) 

L ... L C(Xl, ... ,Xn,Yl,···,Yrn,Vl, ... ,Vk) 
VI E'DvI vk E'Dvk 

L ... L L'" L C(Xl, ... ,Xn,Yl, ... ,Yrn,Vl, ... ,Vk) 
xIE'DxI xnE'DxI vIE'DvI VkE'Dvk 

where Vv is the set of possibles values for the variable Vj. 
J 

(A.6) 

For example, the model Pr(NC = aINC-1 = b) will instantiate the name-class complete 

model (equation AA) resulting in the following estimation 

Pr(NC = alNC- l = b) Pr(X F aIY F b) 

c(X F alY F b) 

c(X F *IY F b) 

-

c(NC= a, NC- l = b,W-l = *) 
c(NC = *, NC- l = b, W-l = *) 

LCE'D
w

_
I 

c(a, b, c) 

L LCE'D
w

_
I 

c(ii, b, c) 
a.E'DNC 

similarly when siNymble requires Pr( <w,J> = <p,q>INC = t), it is estimated as 

" "- L- 'D c(p,q,f,s,t,u) 
L..-rE'Dw 1 L..-SE'Df I uE NC I 
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Note that DNC, DNC_1 and DW_1 are not the same sets in both complete models, as 

one is collecting statistics for changes of name-class (i.e. state transitions) while the 

other for the generation of words (i.e. emission probabilities). 

This strategy of complete models works for all models used by siNymble -including 

the back-off and smoothing models discussed later- but two observations need to be 

considered: the meaning of the subscript first in equation A.2 and the values of <w,j>_1 

in equation A.3. These top-level components collect probabilities for first words in a 

name-class and subsequent word in a name-class respectively, and they must exclude 

counts for the other type. Therefore, the subscript first in the former implies that the 

value of the previous word in the complete model is restricted to <+begin+,otw>, and 

that the values of <W,j>-l in the latter cannot be instantiated with <+begin+,otw>. 

This last rectriction is automatic as subsequent words will never be seen after the 

magical word <+begin+,otw>. 

With this discussion in mind, the equations for estimating the probabilities of the top­

level model can be re-written as follows 

Pr(NC = aINC- 1 = b, W-l = c) 

Pr( <w,J>first = <p,q>INC = t, NC- 1 = u) 

Pr( <w,J> = <p,q>1 <w,J> -1 = <r,s>, NC = t) 

A.2 Training sequence 

Pr(X 1== alY 1== b, c) 

Pr(X 1== p, qlY 1== +begin+, otw, t, u) 

Pr(X 1== p, qIY 1== r, s, t) 

Given this top-level model, it can be determined how input training sentences are trans­

formed into a sequence of training events for the system. Consider the following input 

sentences. 

Mr. <PERSON> T. Jones</PERSON> eats in <ORGANISATION>Mcdoneld's</OR­
GANISATION>. Mr. <PERSON>Jones</PERSON> is eating apples. 

Table A.l shows the training events which these two simple sentences produce. Note 

that actually shorter names are used in the implementation of siNymble. For example, 

Not-A-Name=NAN, first-word=fwd, Start-Of-Sent=SOS, etc. These shorter names will 

be used hereafter. 

A.3 Decoding sequence 

Now it can be determined how new sentences are transformed into a sequence of decod­

ing events to be presented to siNymble's hidden Markov model. Consider the following 

input sentence. 
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Table A.I: Training events for siNymble's hidden Markov model. 

I NC I w I F I w 1 I F 1 I NC - 1 

NAN mr. fwd +begin+ otw SOS 
NAN +end+ otw mr. fwd NAN 
PER t. cpp +begin+ otw NAN 
PER jones icp t. cpp PER 
PER +end+ otw jones icp PER 
NAN eats ucp +begin+ otw PER 
NAN in ucp eats ucp NAl\" 
NAN +end+ otw in ucp NA;';: 
ORG mcdoneld icp +begin+ otw NAT\" 
ORG 's otw mcdoneld icp ORG 
ORG +end+ otw 's otw ORG 
NAN otw +begin+ otw ORG 
NAN +end+ otw otw NA:,\ 
NAN mr. fwd +begin+ otw SOS 
NAN +end+ otw mr. fwd ::\A::\ 
PER jones icp +begin+ otw ::\A::\ 
PER +end+ otw jones icp PER 
NAN is ucp +begin+ otw PER 
NAN eating ucp is ucp NAN 
NAN apples ucp eating ucp ~A:\T 

NAN otw apples ucp :,\A::\ 
NAN +end+ otw otw ::\A:\" 

Table A.2: Decoding events for siNymble's hidden Markov model. 

- -
mr. fwd +end+ otw 

jones icp mr. fwd 
eats ucp jones icp 

+UNK+ ucp eats ucp 

in ucp +UNK+ ucp 

+UNK+ icp III ucp 
otw +UNK+ icp 

Mr. Jones eats bananas in Starebucks. 

Table A.2 shows the decoding sequence for this sentence. The token +UNK+ is an special 

token used by siNymble when managing words which are not seen during training. 

Section A.4 discusses this cases in more detail. Given the training events in table A.l, 

Nymble finds that the most likely word/name-class sequence for these events is 
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Pr(NANj808, +end+) . Pr( <mr·,fwd>INAN, 80S). 

Pr( <+end+,otw>1 <mr.,fwd>, NAN). 

Pr(PERINAN, mr.) . Pr( <mr·,fwd>IPER, NAN). 

Pr( <+end+,otw>1 <jones,icp>, PER). 

Pr(NANjPER,jones) . Pr( <eats,ucp> I NAN, PER). 

Pr( <+ UNK +,ucp>1 <eats, ucp> , NAN). 

Pr( <in,ucp>I <+ UNK +,ucp>, NAN). 

Pr( <+end+,otw>1 <in,ucp>, NAN). 

Pr(ORGINAN, in)· Pr( <+ UNK+,icp>IORG, NAN). 

Pr( <+end+,otw>I<+ UNK+,icp>, ORG). 

Pr(PERINAN, mr.) . Pr( <jones, icp> I PER, NAN). 

Pr( <+end+,otw>1 <.,otw>, NAN). 
Pr(E08INAN, .) 

which corresponds to the correct sequence of named entity tags. 

A.4 Unknown words 

184 

As any corpus-trained learner, siN ymble will encounter unknown words -words which 

have not been seen in the training data- during decoding. The approach for handling 

unknown words is quite simple though the exact procedure is not very clear. Bikel et al. 
say 

" ... we hold up 50% of our data to train the unknown word model (the vo­

cabulary is built up on the first 50%), save these counts in training data file, 

then hold out the other 50% and concatenate these bigrams counts with the 

first unknown word-training file." 

The interpretation of this approach given here is the following: using a vocabulary built 

up on the first half of the training data, counts are collected for all training bigram; when 

a bigram contains unknown words, they are replaced by the speciallexeme +UNK+ so 

that statistics for this token can be accumulated; then, the process is repeated but using 

a vocabulary built up from the other half of the training data. The frequencies obtained 

are then added together, which results in a model of ''unknown words occurring in the 

midst of known words" (Bikel et al. 1997). Later when a bigram is found to contain 

unknown words during decoding, this model is used to estimated the equations which 

defines the top-level model. 

A.5 Estimating top-level and back-off models 

As with any n-gram language model, Nymble's top-level model also requires less in­

formed models in which rely when a particular bigram has not been seen in the training 
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set. In this section, these schema is looked in detail and re-formulated in terms of the 

complete models. Table 3.4 presents these models as defined in Bikel et al. (1997). 

The top-level model estimation for name-class generation can be re-written as 

Pr(NC = aINC_ 1 = b, W-1 = c) Pr(X F alY F b, c) 
c(X F aIY F b,c) 

c(X F *IY F b,c) 

(A.7) 

During decoding, if the event e = (NC = aINC_1 = b, W-1 = c) has not been seen 

during training, siNymble will resort to the event e = (NC = aINC_1 = b), whose 

estimation can be written as 

Pr(NC = aINC- 1 = b) Pr(X F aIY F b) 

c(X F aIY F b) 

c(X F *IY F b) 

(A.8) 

If this event has also not been seen during training, the system will back off further to 

the event e = (N C = a), which is re-formulated to 

Pr(NC= a) Pr(X F aIY F *) 

c(X F aIY F *) 

c(X F *IY F *) 

(A.9) 

Finally, if this event is also unknown for the system, it will be backed off to a default 

constant probability given by 

(A.I0) 

where IDNCI is the number of name-class values seen for the variable NC in the name­

class complete model (which is the same number as IDNC_1lthough the actual sets are 

different as the former contains the special state EOS in addition to the name-class 

regions, whereas the latter contains the special state SOS instead). 

From section A.l, the top-level model estimation for first words of a name-class can be 

written as 

Pr( <w,!>jirst = <p,q>INC = t, NC- 1 = u) 

= 

Pr(X F p, qIY F +begin+,otw, t, u) (A.11) 

c(X F p, qIY F +begin+,otw, t, u) 

c(X F *IY F +begin+,otw, t, u) 

The back-off event for this top-level component is «w,f>= <p,q>1 <w,f> -1 = <+begin+, 

otw>, NC=t), whose sample probability is estimated by 

Pr( <w,J> = <p,q>1 <w,J> -1 = <+begin+,otw>, NC=t) = PrCY F p, qIY F +begin+,otw, t) (A.12) 

_ c(X F p, qIY F + begin+,otw, t) 

- c(X F *IY F +begin+,otw, t) 
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When there has been no such event in the training data, siNymble resorts to the event 

«w,j> = <p,q>ING = t), which is estimated as 

Pr{ <w,J> = <p,q>ING = t) - Pr{X FP,qIY F t) 
c{X F p,qlY F t) 
c{X F *IY F t) 

(A.13) 

If this event is also unknown, the system backs off to the multiplication of the proba­

bilities of the events (w = piNG = t) and (f = qlNG = t), thus 

Pr{w = piNG = t) . Pr(J = qlNG = t) Pr{X F plY F t) . Pr(X F qlY F t) (A.I4) 

= c(X F plY F t) . c(X F qIY F t) 
c{X F *IY F t) c(X F *IY F t) 

If at least one of this events has not been seen during training, siNymble backs off to a 

default constant probability given by 
1 

(A.I5) 

where IVwl is the number of different words seen for the variable w, IVfl is the number 

of different lexical features seen for the variable f in the word complete model. Once 

more, these numbers are the same as IVw-11 and IVf-11 (though Vw i= V W _ I , as the 

first domain contains the magic word +end+ whereas the second one contains the magic 

word +begin+ instead). 

Finally, the estimation for the top-level component to generate subsequent words of a 

name-class can be written as 

Pr{ <w,J> = <p,q>1 <w,J> -1 = <r,s>, NG = t) - Pr(X F p, qIY F r, s, t) (A.16) 

= 
c{X F p, qIY F r, s, t) 
c(X F *IY F r,s, t) 

remembering that the previous word will never be instantiated with the magic word 

<+begin+,otw>. 

When this estimation is not possible, siNymble follows the backing-off sequence to the 

models given in equations A.13, A.14 and A.15, until a result is obtained. 

A.6 The backing-off and smoothing strategy 

Another important aspect of n-gram language model is that they normarly require an 

smoothing procedure of the probabilities obtained from training. Bikel et al. (1997) 

defined an interesting smoothing strategy which automatically performs backing off 

w hen necessary. 

This is achieved by assigning the appropriate weights to each model and its immediate 

back-off model. When both models are relevant, an smoothed estimation for the main 
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model is obtained. When there is no information available for a main event, a backed 

off estimation is attained by making the weight for the main model zero and one for 

the secondary one. The procedure to calculate a model's weight is again rather simple 

though important details that were missing had to be filled: 

"If computing Pr(XIY), assign weight A to the direct computation... and 

weight (1 - A) to the back-off model, where 

A = (1 _ old c(Y) ) 1 
c(Y) 1 + unique outcomes of Y 

c(Y) 

(A.17) 

where 'old c(Y)' is the sample size of the model from which we are backing 

off ... 

This method ... overcomes the problem when a back-off model has roughly 

the same amount of training as the current model, via the first factor. .. 

which essentially ignores the back-off model and puts all the weight on the 

primary model in such an equi-trained situation ... " (Bikel et al. 1997) 

"The second factor... is based on the notion that the number of unique 

outcomes over the sample size is a crude measure of the certainty of the 

modeL." (Bikel et al. 1999) 

From this, it can be interpreted that the computation of the probability of a top-model 

M with back-off models B l , B2, .. ·, Bk has the form 

Pr (M) = AM Pr (M) + (1 - AM)' 

(AB1 Pr (Bl) + (1- AB1)· 

(AB2 Pr (B2) + (1 - AB2)' 

which is formulated by the recursive expression of equation A.18 in which m is a primary 

model and b is the immediate back-off model for m. 

_ _ { Am Pr (m) + (1 - Am) Pr (b) if a back-off model exists (A.I8) 
Pr (m) - Pr (m) otherwise 

The hard work here is to determine what exactly 'old c(Y)' means and how 'unique 

outcomes of Y' are counted for each model. 

First it must be noted that c(Y) in equation A.17 is equivalent to c(X F *IY F y) in the 

complete model notation used here. So, 'old c(Y)' must correspond to c(X F *Ir F y) 

for the model being backed off. Because top-level components are never secondary 

models, it can be assumed that 'old c(Y) = 0' for them, that is, the first term of A is 

always one for top-level models. 
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For name-class models, 'old c(Y)' is straighforward as it can clearly be seen that each 

secondary model frees one variable with respect to the primary one. Thus, 'old c(X F 
*IY F b)' is c(X F *IY F b, c) and 'old c(X F *IY F *)' is c(X F *IY F b). 

Word models are more tricky though, as some transformations are needed. At the 

beginning, things are quite straight as 'old c(X F p, qlY F + begin+,otw, t)' is the 

previous c(X F p, qlY F +begin+,otw, t, u) and 'old c(X F p, qlY F, t)' is c(X F 
p, qlY F r, s, t) whether <r,s> is the magical begin word (as for first word generation) 

or not (as for subsequent word generation) respectively. 

Problems arise for the model M = Pr(X F plY F t) . Pr(X F qlY F t). Each factor 

in this model is treated as an independent ~odel, so that wha! it is multiplied are the 

estimations after smoothing. That is M = Pr(X F plY F t)· Pr(X F qlY F t). Then, 

it must be solved the problem that free variables in the Y part in M has the same free 

variables than the Y part in the primary model c(X F p, qlY F t), which would always 

make the first term of A equals to zero for these submodels. This is done by defining 

'old c(X F plY F t)' and 'old c(X F qlY F t)' as c(X F p, qlY F t), which makes 

perfect sense with the equi-trained situation explained in Bikel et al. (1997), though 

variables belonging to the X are used. 

For determining 'unique outcomes of Y', Bikel et al. give further clues with the following 

example. 

"As an example-disregarding the first factor-if we saw the bigram 'come 

hither' once in training and we saw 'come here' three times, and nowhere 

else did we see the word 'come' in NOT-A-NAME class, when computing 

Pr( 'hither'l 'come', NO T-A-NAME) , we would back off to the unigram prob­

ability Pr( 'hither'l NO T-A-NAME) with a weight of ~, since the number of 

unique outcomes for the word-state for 'come' would be two, and the total 

number of times 'come' had been the preceding word in a bigram would be 

four (a 1/ (1 + i) = ~ weight for the bigram probability, a 1- ~ = ~ weight 

for the back-off model)." 

Analising this example, it can be noticed that 'unique outcomes of Y' follows the same 

considerations than for 'old c(Y)' by replacing the function c(X F xlY F y) by the 

function u(X F xlY F y) define as 

u(X F= xIY F= y) -- {01 if c(X F= xIY F= y) > 0 

otherwise 

Table A.3 shows the formulation of the A-weight for each model used by siNymble. 
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Table A.3: The A-weight for each model used by siNymble. 

Model ,X-weight 

1 

Pr(X F alY F b, c) 1+ u(~pal:Pb,c) 
c(XP*lypb,c) 

Pr(X F aIY F b) 
( 1 _ C(XF*IYpb,c)) . 1 

'(XF IYFb) 1+ u(XP*lypb) c * c(XP*lypb) 

Pr(X F alY F *) 
( 1 _ C(XP*IYPb)) .. 1. 

'(XF IYF) 1+ u(XP*IYP*) c * * c(XP*IYP*) 

1 

Pr(X F p,qIY F+begin+, otw, t,u) 1 + ~(Xpp,qlfP+begin+,otw,t,u) 
c(XPp,qIYp+begin+,otw,t,u) 

Pr(X F p, qIY F +begin+, otw, t) 
( 1 _ C(XFP,qIYP+begin+,otw,t,U)). 1 

, A '. 1 u(XPp,qIYp+begin+,otw,t) 
c(XFP,qIYF+begm+,otw,t) + c(XPp,qIYp+begin+,otw,t) 

1 

Pr(X F P, qIY F r, s, t) 1+ u(~Pp,qlypr,s,t) 
c(XPp,qIYpr,s,t) 

Pr(X F P, qIY F t) 
( 1 c(Xep qIYer s t)) 1 -, ' " 1 u(XPp,qIYpt) 

c(XFP,qIYH) + c(XPp,qlypt) 

Pr(X F PlY F t) 
( C(XFP qIYH)) , 1 1 - ;: x ' " u(XppIYpt) 

c(XFPIYH) 1+ c(XPpIYPt) 

Pr(X F qIY F t) 1 - " " u(XPqIYPt) ( C(XFP qIYH)) 1 
c(XFqIYH) 1+ c(XPqIYPt) 

Table A.4: Training events for the name-class complete model. 

NAN SOS +end+ 
PER NAN mr. 
NAN PER jones 
ORG KAN in 
:\"AN ORG 's 
EOS :\"AN 
:\"Al\" SOS +end+ 
PER l\AN mr. 
:\"A:\, PER jones 

EOS :\,A:\" 

A.7 Training: a walk-through example 

The first step is to generate the actual training events for each of the complete models 

in use. Table A.4 shows the training events for the name-class complete model given the 

training input of table A.l on page 183. Note how only transitions between name-classes 
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Table A.S: Training events for the word complete model. 

w I f I w 1 I f 1 I NC I NC 1 I - -

mr. fwd +begin+ otw NAN SOS 
+end+ otw mr. fwd NAN ~A~ 

t. cpp +begin+ otw PER NAN 
jones icp t. cpp PER PER 

+end+ otw jones icp PER PER 
eats ucp +begin+ otw NAN PER 
ill ucp eats ucp NAN NAN 

+end+ otw in ucp NAN NAN 
mcdoneld icp +begin+ otw ORG ~AN 

's otw mcdonald icp ORG ORG 
+end+ otw 's otw ORG ORG 

otw +begin+ otw NA~ ORG 
+end+ otw otw j',"A~ ~A~ 

mr. fwd +begin+ otw ~A~ SOS 
+end+ otw mr. fwd :\,A~ NA~ 

jones icp +begin+ otw PER ~A~ 

+end+ otw jones icp PER PER 
is ucp +begin+ otw :\"AN PER 

eating ucp is ucp XAN NAN 
apples ucp eating ucp ~AN NAN 

otw apples ucp NAN NAN 
+end+ otw otw NAN NA~ 

are considered and that transitions to the special state EOS has been included. 

Table A.5 presents the training events for the word complete model which closely follows 

the training input in table A.L 

Now, it is necessary to apply the procedure for generating statistics about unknown 

word as explained in section A.4. Tables A.6 and A.7 show the resulting training events 

for the example input. Note how these tables has twice the original amount of training. 

The first step of the training is the counting of events. Tables A.8 and A.9 detail the 

resulting figures for all required counts. 
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Table A.6: Training events for 
the name-class complete model. 

I NC I NC_1 I W-1 

NAN SOS +end+ 
PER NAN mr. 
NAN PER jones 
ORG NAN in 
NAN ORG 's 
EOS NAN +UNK+ 
NAN SOS +end+ 
PER NAN mr. 
NAN PER jones 
EOS NAN +UNK+ 
NAN SOS +end+ 
PER NAN mr. 
NAN PER jones 
ORG NAN +UNK+ 
NAN ORG +UNK+ 
EOS NAN 
NAN SOS +end+ 
PER NAN mr. 
NAN PER jones 
EOS NAN 

Table A.7: Training events for the word complete model. 

w I f I w 1 I f 1 I NC I NC - 1 

mr. fwd +begin+ otw NAX SOS 
+end+ otw mr. fwd XAX :\"A~ 

t. epp +begin+ otw PER NAX 
jones icp t. epp PER PER 

+end+ otw jones iep PER PER 
eats uep +begin+ otw NA~ PER 

III uep eats uep XAN ~AX 

+end+ otw in uep XAX XAX 
mcdonald icp +begin+ otw ORG XAX 

's otw mcdonald icp ORG ORG 
+end+ otw 's otw ORG ORG 

+UNK+ otw +begin+ otw NAN ORG 
+end+ otw +UNK+ otw NAN XAX 

mr. fwd +begin+ otw NAN SOS 
+end+ otw mr. fwd NAN XAX 
jones icp +begin+ otw PER XAX 

+end+ otw Jones iep PER PER 
+UNK+ uep +begin+ otw NAN PER 
+UNK+ uep +UNK+ uep NAN XAX 

+UNK+ uep +"cXK+ uep NAX XAX 

+UNK+ otw +"Cl\K+ uep NAX XAX 

+end+ otw +UNK+ otw XAX XAX 
mr. fwd +begin+ otw XAN SOS 

+end+ otw mr. fwd XAX XAX 

+UNK+ epp +begin+ otw PER XAX 

jones iep +UNK+ epp PER PER 
+end+ otw jones icp PER PER 

+UNK+ uep +begin+ otw XAX PER 
+UNK+ uep +UNK+ uep NAX XAX 

+end+ otw +UNK+ uep XAX NAX 

+UNK+ icp +begin+ otw ORG XAX 

+"cNK+ otw +UNK+ icp ORG ORG 
+end+ otw +UNK+ otw ORG ORG 

otw +begin+ otw NAN ORG 
+end+ otw otw NAX XAX : 

mr. fwd +begin+ otw NAN SOS ! 

+end+ otw mr. fwd NAX XA~ 

jones icp +begin+ otw PER X AX I 

+end+ otw jones iep PER PER 1 
is uep +begin+ otw l\AX PER l 
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Table A.8: The counting function applied to the events for the name-class complete model. 

EOS NAN 2 2 
NAN ORG 's 1 1 
NAN PER jones 2 2 
NAN SOS +end+ 2 2 
ORG NAN in 1 1 
PER NAN mr. 2 2 

EOS NAN 2 5 
NAN ORG 's 1 1 
NAN PER jones 2 2 

NAN SOS +end+ 2 2 

ORG NAN in 1 5 
PER NAN mr. 2 5 

I NC - a I NC 1 = b I w 1 I cCX 1= alY 1= *) I c(X 1= *IY 1= *) I - - -

EOS NAN 2 10 
NAN ORG 's 5 10 
NAN PER jones 5 10 
~A~ SOS +end+ 5 10 
ORG NAN in 1 10 
PER NAN mr. 2 10 
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Table A.9: The counting function applied to the events for the word complete model. 

w=p f= q NC=t NC_ 1 = u c(X F= p,ql c(X F= *1 I 
Y F= +begin+, otw, t, u) Y F= +begin+, otw, t. u) 

otw NAN ORG 1 1 
eats ucp NAN PER 1 2 

is ucp NAN PER 1 2 
mr. fwd NAN SOS 2 2 

mcdonald icp ORG NAN 1 1 
jones icp PER NAN 1 2 

t. cpp PER NAN 1 2 

w=p f=q NC=t NC_ 1 
c(X po p,ql c(X po *1 

Y po +begin+, otw, t) Y po +begin+, otw, t) 
otw NAN ORG 1 5 

eats ucp NAN PER 1 5 
is ucp NAN PER 1 5 

mr. fwd NAN SOS 2 5 
mcdonald icp ORG NAN 1 1 

jones icp PER NAN 1 2 
t. cpp PER NAN 1 2 

W=p f= q W-l = r f-l = s NC=t NC_ 1 
c(X F p,ql c(X F *1 

YFr,s,t) Ypor,s,t) 

's otw mcdonald icp ORG ORG 1 1 
+end+ otw 's otw ORG ORG 1 1 
+end+ otw otw NAN NAN 2 2 
+end+ otw in ucp NAN NAN 1 1 
+cnd+ otw jones icp PER PER 2 2 
+end+ otw mr. fwd NAN NAN 2 2 

otw apples ucp NAN NAN 1 1 
apples ucp eating ucp NAN NAN 1 1 

eating ucp is ucp NAN NAN 1 1 

III ucp eats ucp NAN NAN 1 1 

jones icp t. cpp PER PER 1 1 

w=p f= q W-l Ll NC=t NC_ 1 
c(X F= p,ql c(X F= pi c(X F ql c(X F= *1 

Y F= t) Y F= t) Y F= t) Y F t) 

's otw mcdonald icp ORG ORG 1 1 2 3 

+end+ otw 's otw ORG ORG 1 1 2 3 

I end + otw otw NAN NAN 5 5 7 14 

. end T otw in ucp NAN NAN 5 5 7 14 

fend f- otw jones icp PER PER 2 2 2 5 

+end+ otw mr. fwd NAN NAN 5 5 '7 1..t 

otw +begin+ otw NAN ORG 2 2 7 11 

otw apples ucp NAN NAN 2 2 7 11 

apples ucp eating ucp NAN NAN 1 1 5 11 

eating ucp is ucp NAN NAN 1 1 5 14 

eats ucp +begin+ otw NAN PER 1 1 5 14 

in ucp eats ucp NAN NAN 1 1 5 1..t 

is ucp +begin+ otw NAN PER 1 1 5 1-1 

jones icp + begin + otw PER NAN 2 2 2 .J , 

jones icp t. cpp PER PER 2 2 2 .J -! 
mcdonald icp +begin+ otw ORG NAN 1 1 1 :l 

mr. fwd -I begin+ otw NAN SOS 2 2 2 11 

t. cpp f- begin+ otw PER NAN 1 1 1 v J 
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Table A.10: Sample probabilities for the name-class complete model. 

NC=a NC_ 1 = b W-l =c Pr(X F al Pr(X F al Pr(X F al 1 
Y F b,c) Y Fb) Y F *) IDNCr 

EOS NAN 1.0 0.4 0.2 0.25 
NAN ORG 's 1.0 1.0 0.5 0.25 
NAN PER jones 1.0 1.0 0.5 0.25 
NAN SOS +end+ 1.0 1.0 0.5 0.25 
ORG NAN in 1.0 0.2 0.1 0.25 
PER NAN mr. 1.0 0.4 0.2 0.25 

Table A.ll: Sample probabilities for the word complete model. 

w=p f=q NC=t NC_1 = u Pr(X ~ p,ql Pr(X ~ p,ql 
Y ~ +begin+, otw, t, u) Y ~ +begin+,otw, t) 

otw NAN URG 1.0 0.2 
eats ucp NAN PER 0.5 0.2 

is ucp NAN PER 0.5 0.2 
mr. fwd NAN SUS 0.5 0.5 

mcdonald icp ORG NAN 1.0 1.0 
jones icp PER NAN 1.0 0.4 

t. cpp PER NAN 0.5 0.5 

I w - p I f - q I w 1 - r f 1 - s I NC - t I NC 1 I Pr(X F p qlY F t) - - - - r, s. , 
's otw mcdonald icp ORG ORG 1.0 

+end+ otw 's otw ORG ORG 1.0 
+end+ otw otw NAN NAN 1.0 
+end+ otw m ucp NAN NAN 1.0 
+end+ otw jones lCP PER PER 1.0 
+end+ otw mr. fwd NAN NAN 1.0 

otw apples ucp NAN NAN 1.0 
apples ucp eating ucp NAN NAN 1.0 
eating ucp IS ucp NAN NAN 1.0 

m ucp eats ucp NAN NAN 1.0 
jones lCP t. cpp PER PER 1.0 

w=p f=q W-l Ll NC=t NC_1 
Pr(X F p,ql Pr(X F pi Pr(X F ql 

IDwllDfl1 Y Ft) Y Ft) Y Ft) 
's otw mcdonald icp ORG ORG 0.33333 0.33333 0.66667 0.01667 

+end+ otw 's otw ORG ORG 0.33333 0.33333 0.66667 0.01667 

Tend+ otw otw NAN NAN 0.35714 0.35714 0.5 0.01667 

+end+ otw in ucp NAN N-AN 0.35714 0.35714 0.5 0.01667 

+end+ otw jones icp PER PER 0.4 0.4 0.4 0.01667 

+end+ otw mr. Twd NAN NAN 0.35714 0.35714 0.5 0.01667 

otw +begin+ otw NAN ORG 0.14286 0.14286 0.5 0.01667 

otw apples ucp NAN NAN 0.14286 0.14286 0.5 0.01667 

apples ucp eating ucp NAN NAN 0.07143 0.07143 0.35714 0.01667 

eating ucp is ucp NAN NAN 0.07143 0.07143 0.35714 0.01667 

eats ucp +begin+ otw NAN PER 0.07143 0.07143 0.35714 0.01667 

in ucp eats ucp NAN NAN 0.07143 0.07143 0.35714 0.01667 

IS ucp +begin+ otw NAN PEl{ 0.07143 0.07143 0.35714 0.01667 

jones icp +begin+ otw PER l'>A~ 0.4 0.4 0.4 0.01667 

jones icp t. cpp PER PER 0.4 0.4 0.4 0.01667 

mcdonald icp +begin+ otw ORG NAN 0.33333 0.33333 0.33333 0.01667 

mr. fwd +begin+ otw NAN SOS 0.14286 0.14286 0.14286 0.01667 

t. cpp +begin+ otw PER NAN 0.2 0.2 0.2 0.01667 

The probability of each model for every event in the training can be calculated now. 

Tables A.I0 and A.ll list the probabilities of each complete model for every training 

event. Note that these probabilities are not the final smoothed probabilities which are 

actually used. 
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Table A.12: The unique function applied to the events for the name-class complete model. 

! NC ! NC 1 b! w 1 c! u(X F *IY F b c) I u(X F *IY F b) I A(X F I A 

EOS 
, u * Y F *) NAN 1 3 6 NAN ORG s 1 1 6 

l'JAN PER jones 1 1 
NAN sus +end+ 

6 
1 1 6 ORC; NAN in 1 3 6 PEl{ NAN mr. 1 3 6 

Table A.13: The unique function applied to the events for the word complete model. 

w f NC=t NC_ 1 = U f1(X F *1 f1(X F *1 
Y F +begin+, otw, t, u) Y F +begin+,otw, t) 

otw NAN ORG 1 4 
eats ucp NAN PER 2 4 

is ucp NAN PER 2 4 
mr. I fwd NAN l'OS 1 4 

mcdonald icp ORG NAN 1 1 
jones icp PER NAN 2 2 

t. cpp PER NAN 2 2 

w f f 1 = s NC - t NC 1 u(X F *IY Frs t) I - - , , 
's otw mcdonald icp -URU URC; 1 

+end+ otw 's otw ORC ORC 1 
+end+ otw otw NAN NAN 1 
+end+ otw in ucp NAN NAN 1 
+end+ otw jones icp PER PER 1 
+end+ otw mr. fwd NAN NAN 1 

otw apples ucp NAN NAN 1 
apples ucp eating ucp NAN NAN 1 
eating ucp is ucp NAN NAN 1 

in ucp eats ucp NAN NAN 1 
jones icp t. cpp PER PER 1 

W=p f=q W-l Ll NC=t NC_ 1 
u(X ~ pi u(X ~ ql u(X ~ *1 

Y ~t) Y ~ t) Y ~ t) 
's otw mcdonald lCP ORG ORU 1 2 3 

+end+ otw 's otw ORG ORG 1 2 3 
+end+ otw otw NAN NAN 3 5 11 
+end+ otw in ucp NAN NA1~ 3 5 11 
+end+ otw jones lCP PER PER 1 1 4 

+end+ otw mr. I fwd NAN ~A~ 3 5 11 
otw +begin+ otw NAN ORG 2 5 11 
otw apples Ucp NAN NA~ 2 5 11 

apples ucp eating Ucp NAN ~A~ 1 5 11 
eating ucp IS ucp NAN ~A~ 1 5 11 
eats Ucp + begin + otw NAN PER 1 5 11 
III Ucp eats Ucp NAN NAN 1 5 11 
IS ucp +begin+ otw NAN PER 1 5 11 

Jones icp +begin+ otw PER NAN 2 2 4 

jones icp t. cpp PER PER 2 2 4 

mcdonald lCP +begin+ otw ORG NAN 1 1 3 

mr. fwd + begin + otw NAN SOS 1 1 11 

t. cpp +begin+ otw PER NAN 1 1 4 

Therefore, the next step is to calculate the A-weights for each model. For that, first it 

is needed the unique counts for each primary model. These are shown in Tables A.12 

and A.13. 
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Table A.14: A-weights for the name-class complete model. 

NC-a NC_ 1 - b W-l - C Pr(X F ali: F b, c) Pr(X F ali: F b) Pr(X F ali: F *) 
),0 ),0 ), AO A 

EOS NAN 0.66667 0.625 0.375 0.625 0.3125 

NAN ORG 's 0.5 0.5 0 0.625 0.5625 

NAN PER jones 0.66667 0.66667 0 0.625 0.5 

NAN SOS +end+ 0.66667 0.66667 0 0.625 0.5 

ORG NAN in 0.5 0.625 0.5 0.625 0.3125 

PER NAN mr. 0.66667 0.625 0.375 0.625 0.3125 

Now the A-weights can be computed for each model, though there is an important 

observation that needs to be made here. For each model in the middle of the backing­

off/smoothing strategy -i.e. not a top-level component nor a final constant, default 

model- two A-weights are actually calculated: one for smoothing a higher-level model 

(which considers 'old c(Y)') and one for backing off a higher-level model (which fixes 

'old c(Y)' to zero). It will be written A 0 for the latter weight to differentiate it 

from the former. Moreover, the model Pr( <wJ>JNC) smoothes two different models 

-namely Pr( <wJ>J <+begin+,otw>, NC) and Pr( <wJ>J <wJ> -1' NC)- and conse­

quently it has two smoothing A-weights. For this model, A f will be written to denote 

the weight for the first word model and As to denote the weight for the top-level com­

ponent for subsequent words. Tables A.14 and A.15 present the resulting weights for 

each model/event. 

Finally, the conditions to calculate the final sample probabilities are met. Here the 

word complete model is separated into the original two models for first and subsequent 

words in a name-class. These figures are compute by applying equation A.18, but 

considering that A must be used when doing smoothing and AD when estimating a 

back-off probability. Tables A.16, A.17 and A.18 present the final probabilities for the 

top-level model and their back-off models. 

This same procedure is applied to the events with unknwon words. Tables A.19, A.20 

and A.21 show the final probabilities for the top-level model and their back-off models 

considering unknown words. 
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Table A.IS: A-weights for the word complete model. 

w=p f = q NC = t NC_ 1 = u Pr(X F p,ql 
Y +begin+, otw, t 

W = p f = q W-l = r Ll = s NC = t NC_ 1 Pr(X F p, <tJy F r, s, t) 
A 

s otw mc lCP 
+en + otw otw 
+en + otw otw 
+en + otw m 
+en + otw Jones 
+en + otw mr. 

otw app es 
ucp eatmg 
UCp IS 

m UCp eats 
Jones lCP t. 

W=p f=q Pr(X F p, qlY F t) 

s otw 
+en + otw 
+en + otw 
+en + otw 

+ otw 
+ otw 

otw 

app es 
eatmg IS 

eats + egm+ 
eats 

+ egm+ 
+ egm+ otw 

t. cpp 
egm+ otw 
egm+ otw 
egm+ otw 

otw 
otw 
otw 
otw 
otw 
otw 

app es Ucp 
eatmg Ucp IS 

eats Ucp - egm+ 
m Ucp eats 
IS Ucp egm+ 

Jones lCP egm+ otw 
lCP t. cpp 

egm...l... otw 
egm-r otw 
egm+ otw 
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Table A.t6: Final sample probabilities for name-class generation. 

NC NC_ 1 W-l Pr(NCINC_1 , W-l) Pr(NqNC d Pr(NC) 1 
IDNCI 

EOS NAN 0.76549 0.33789 0.21875 0.25 
NAN ORG 's 0.69531 0.69531 0.40625 0.25 
NAN PER jones 0.79167 0.79167 0.40625 0.25 
NAN SOS +end+ 0.79167 0.79167 0.40625 0.25 
ORG NAN in 0.60078 0.20117 0.15625 0.25 
PER NAN mr. 0.76549 0.33789 0.21875 0.25 

Table A.17: Final sample probabilities for first words generation. 

w f W-l Ll NC NC_1 
Pr( <w, f>first I Pr«w,f> I Pr«w,f>INC) ~r(wINq. 1 

NC,NC_ 1 ) <+begin+, otw>, NC) Pr(fINC) 
I'D_II'D,I 

's otw mcdonald icp ORG ORG 0.16816 0.16816 0.16816 0.05979 0.01667 
T end I otw 's otw ORG ORG 0.16816 0.16816 0.16816 0.05979 0.01667 
! end! otw otw NAN NAN 0.20071 0.20071 0.20071 0.06852 0.01667 
I end I~ otw in ucp NAN NAN 0.22235 0.22235 0.22235 0.07410 0.01667 
'end, otw jones icp PER PER 0.55938 0.13500 0.0816 0.02382 0.01667 
I end I otw mr. fwd NAN NAN 0.0816 0.0816 0.0816 0.02382 0.01667 

otw +begin+ otw NAN ORG 0.04112 0.04112 0.04112 0.00823 0.01667 
otw apples ucp NAN NAN 0.04112 0.04112 0.04112 0.00823 0.01667 

apples ucp eating ucp NAN NAN 0.29245 0.12326 0.04112 0.00823 0.01667 
eating ucp is ucp NAN NAN 0.04112 0.04112 0.04112 0.00823 0.01667 
eats ucp +begin+ otw NAN PER 0.29245 0.12326 0.04112 0.00823 0.01667 
in ucp eats ucp NAN NAN 0.31676 0.31676 0.22235 0.04340 0.01667 
is ucp +begin+ otw NAN PER 0.22235 0.22235 0.22235 0.04340 0.01667 

jones icp + begin + otw PER NAN 0.55565 0.55565 0.16681 0.03063 0.01667 
jones icp t. cpp PER PER 0.72258 0.24516 0.08012 0.01016 0.01667 

mcdonald icp +begin+ otw ORG NAN 0.28343 0.28343 0.11123 0.01174 0.01667 

mr. fwd +begin+ otw NAN SOS 0.08012 0.08012 0.10079 0.10079 0.01667 

t. cpp +begin+ otw PER NAN 0.11123 0.11123 0.10833 0.10833 0.01667 

Table A.tS: Final sample probabilities for subsequent words generation. 

Pr«w,f> I Pr( <w, f>INC) 
Pr(wINC) 1 

w f W-l Ll NC NC_ 1 <W,f>_l,NC) Pr(fINC) 
Iv_lIv,1 

's otw mcdonald icp ORG ORG 0.55655 0.16816 0.05979 0.01667 

+end+ otw 's otw ORG ORG 0.55655 0.16816 0.05979 0.01667 

+end+ otw otw NAN NAN 0.72409 0.20071 0.06852 0.01667 

+end+ otw in ucp NAN NAN 0.59325 0.20071 0.06852 0.01667 

+end+ otw jones icp PER PER 0.71117 0.22235 0.07410 0.01667 

+end+ otw mr. fwd NAN NAN 0.72409 0.20071 0.06852 0.01667 

otw +begin+ otw NAN ORG 0.0816 0.0816 0.02382 0.01667 

otw apples ucp NAN NAN 0.53802 0.0816 0.02382 0.01667 

apples ucp eating ucp NAN NAN 0.51918 0.04112 0.00823 0.01667 

eating ucp is ucp NAN NAN 0.51918 0.04112 0.00823 0.01667 

eats ucp +begin+ otw NAN PER 0.04112 0.04112 0.00823 0.01667 

in ucp eats ucp NAN NAN 0.51918 0.04112 0.00823 0.01667 

is +begin+ otw NAN PER 0.04112 0.04112 0.00823 0.01667 
ucp 

jones icp +begin+ otw PER NAN 0.22235 0.22235 0.04340 0.01667 

jones icp t. PER PER 0.58897 0.22235 0.04340 0.01667 
cpp 

mcdonald icp +begin+ otw ORG NAN 0.16681 0.16681 0.03063 0.01667 

fwd +begin+ otw NAN SOS 0.08012 0.08012 0.01016 0.01667 
IDr. 

t. +begin+ otw PER NAN 0.11123 0.11123 0.01l7~ 0.01667 
cpp 
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Table A.19: Final sample probabilities for nam~class generation considering unknown words. 

Table A.20: Final sample probabilities for first words generation considering unknown words. 

w f NC NC_1 

s 
+end+ 
+end+ 
+end+ 

+UNK+ 
+UNK+ 
+UNK+ 
+UNK+ 
+UNK+ 
+UNK+ 
+UNK+ 

otw 1 UlllJ UIlG 
otw ! UlllJ UIlG 
otwlNAN NAN 
otw 1 P.ti1l P.ti1l 
Cp): 1 P.ti1l NAN 
lcp ORG NAN 
otw ,NA1'1 UlllJ 
otw ,ORG UR{j 
otwiNAN ~ 
ucplNAN PElf 
ucplNAN NAN 
otw NAN ORG 
otw NAN NAN 

apples ucp NAN NAN 
eatmlf ucp NAN NAN 
eats ucp NAN PER 
m ucp NAN NAN 
18 ucp NAN PJ:;J:(. 

jones lcp 1 P.ti1l NAN 
jones lcp 1 P.ti1l PJ:;H. 

mcdonald lCO 1 UlllJ NAN 
mr. 1 twa 1 NAN ::;U::; 
t. I co): 1 P.ti1l NAN 

Pr( <w, f>flrst I 
NC,NC_1) 

U.08533 
U.16804 
U.2228U 
U.250U9 
0.15918 
0.28078 
0.28705 
0.09565 
0.05681 
0.33807 
0.11365 
0.28276 

0.046 
U.02336 
U.02336 
uJ:6324 
U.U233ti 
U~4 
U.35UUti 
0.25009 
0.27826 
0.83716 
0.15918 

Pr«w,f> I 
<+begin+, otw>, NC) 

0.08533 
0.16804 
0.22280 
0.25009 
0.15918 
U.28U78 
U.08058 
O:OO56S-
O:u5ff!IT 
0.1533 
0.11365 
0.07414 
0.04600 
U.02336 
U.02336 
0JJ6854 
O~ 
0.0685;r 
0.35006 
0.25009 
0.2'r826 
0.27148 
0.15918 

Pr« w,f >INC) 

0.08533 
IT.I01SU4 
1T.22280 
1T.~50U9 
O . .16286 
O. )8783 
O. )t>titi. 

o.J:JO!!l 
0.1365 
0.1l365 
U. J4tiUl 
O. J4tiUU 
O. J~33ti 
O.O~;:s;:so 

0.02336 
--U:02336 
-o.U2336 

0.D!!4UO 

Pr(wINC)· 
~r(fINC) 

0.03104 
0.05946 

U.1043!! 
--U:00621 
0.U3040 
O.us. .11 
0.Ut>946 
O.U:Jl11 
0.035ti4 

-U.03564 
If.UI347 
O.OIID 
0.00553 
0.00553 

lr.OO553 
0.00553 

0.0553l 
0.U:J:J3U 
0.Ql !7 
0.01377 

--U:00621 

1 
1D.1WrT 

0.01538 
10.0I538 
10.01538 
1 U.01538 
1 U.01538 
10.~ 
10.0l538 
10.01538 
1 U.UI538 
1 U.UI538 
10]JI538 
0.Ql538 
0.01538 
U.01538 
U.01538 
OJJI538 
O.UI538 
0.01538 

10.01538 
1 U.01538 
10.01538 
1 U.U1538 
10.01538 
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Table A.21: Final sample probabilities for subsequent words generation considering unknown words. 

w f W-l Ll NC Pr«w,f> I Pr( <w, f>INC) 
~r(wINC). 1 

<W,f>_l,NC) Pr(fINC) 
Ivwllv,1 

's otw mcdonald icp ORG 0.53589 0.08533 0.03104 0.01538 

+end+ otw 's otw ORG 0.57024 0.16804 0.05946 0.01538 

+end+ otw +UNK+ otw NAN 0.73567 0.2228 0.07549 0.01538 

+end+ otw +UNK+ otw ORG 0.57024 0.16804 0.05946 0.01538 

+end+ otw +UNK+ ucp NAN 0.19373 0.2228 0.07549 0.01538 

+end+ otw otw NAN 0.73567 0.2228 0.07549 0.01538 

+end+ otw in ucp NAN 0.60745 0.2228 0.07549 0.01538 

+end+ otw jones icp PER 0.83003 0.25009 0.10438 0.01538 

+end+ otw mr. fwd NAN 0.83824 0.2228 0.07549 0.01538 

+UNK+ cpp +begin+ otw PER 0.06286 0.06286 0.00621 0.01538 

+UNK+ icp +begin+ otw ORG 0.08783 0.08783 0.0304 0.01538 

+UNK+ otw +begin+ otw NAN 0.05681 0.05681 0.05111 0.01538 

+UNK+ otw +UNK+ icp ORG 0.54191 0.09565 0.05946 0.01538 

+UNK+ otw +UNK+ ucp NAN 0.14469 0.05681 0.05111 0.01538 

+UNK+ ucp +begin+ otw NAN 0.11365 0.11365 0.03564 0.01538 

+UNK+ ucp +UNK+ ucp NAN 0.41046 0.11365 0.03564 0.01538 

otw +begin+ otw NAN 0.046 0.046 0.01347 0.01538 

otw apples ucp NAN 0.52225 0.046 0.01347 0.01538 

apples ucp eating ucp NAN 0.51132 0.02336 0.00553 0.01538 

eating ucp is ucp NAN 0.51132 0.02336 0.00553 0.01538 

eats ucp +begin+ otw NAN 0.02336 0.02336 0.00553 0.01538 

in ucp eats ucp NAN 0.51132 0.02336 0.00553 0.01538 

is ucp +begin+ otw NAN 0.02336 0.02336 0.00553 0.01538 

jones icp +begin+ otw PER 0.25009 0.25009 0.0553 0.01538 

jones icp +UNK+ cpp PER 0.61255 0.25009 0.0553 0.01538 

jones icp t. cpp PER 0.61255 0.25009 0.0553 0.01538 

mcdonald icp +begin+ otw ORG 0.08406 0.08406 0.01587 0.01538 

mr. fwd +begin+ otw NAN 0.08898 0.08898 0.01377 0.01538 

t. cpp +begin+ otw PER 0.06286 0.06286 0.00621 0.01538 



APPENDIX A. NYMBLE IMPLEMENTATION 200 

A.8 Decoding: a walk-thorugh example 

The first step for applying siNymble is to prepare the sequences of decoding events _ 

representing sentences- to be presented to the HMM. The example sequence is shown 

in table A.2 on page 183. 

Bikel et al. (1997) state they use the Viterbi algorithm (Viterbi 1967, Rabiner 1989, 

Durbin, Eddy, Krogh and Mitchison 1998) for decoding, though they do not provide 

any detail of how this was done. It is evident that the standard Viterbi algorithm is 

not applicable as probabilities for transitions and emissions are mixed in the n-gram 

language model. 

An appropriate version of this algorithm has been created for siNymble. Basically, the 

program keeps one possible path which finalises in a given state NC after the emission of 

the k-th event <w,f>k in the input sentence. That is, \'DNC - {EOS} \ -the number of 

name-classes- different paths are kept at any step. Each of them has associated a prob­

ability 8k(j) where j iterates over the name-classes. When all the words in the sequence 

has been emitted, the highest 8 determines the most likely path for that sequence. Al­

gorithm A.l illustrates this procedure in detail. For a complete understanding of this 

algorithm, the following clarifications are needed: 

l> the special states for the beginning and end of sentences are not considered as 

name-classes because it is known a priori that the probability of making a tran­

sition to these states in the middle of the sentence is zero; they are consequently 

considered during the initialisation and termination of the algorithm 

l> Wk denotes the word only -ignoring the lexical feature f- of the k-th event; 

thus W-l in siNymble models becomes W(k-l) for this event 

l> the function model( w, W-l) determines whether the algorithm should use the un­

known words model or the model from normal training; that is 

{

normal training top-level model if w = +UNK+ or W-l = +UNK+ 
model(w, W-l) = I d I 'f b th d kn unknown words top-Ieve mo e 1 0 wor s are own 

l> Pr ~denotes the final sample probabilities of a top-level component C given the 

modality M determined by the function model(w, W-l) 

The following is the ouput produced by algorithm A.l for the sample decoding sentence. 

INITIALISATION 

<mr.,fwd> 
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Algorithm A.I: The Viterbi algorithm used by siNymble. 

Input: E {<w, 1>0, <W, 1>1, ... , <W, I>n}, the events for a sentence 
Output: q*, the indices for the most likely name-class path {NCq*, NC

q
., .•. , NC • } 

1: procedure VITERBI(E) 1 2 qn 

2: Initialisation: 
3: M+-model(wo,+begin+) 
4: for each name-class j = 1,2, ... , IDNC - {EOS}I do 

1: ( .) p" NC( I " FW 
5: UO J +- rM NC j SOS, +begin+) . PrM «w, 1>0 INC· SOS) 
6: 'l/Jo(j) +- j ], 

7: end for each 
8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

Recursion: 

for each event <w, l>kE E, k = 1,2, ... , n do 
M +- model(wk,w(k_l)) 
for each name-class j = 1,2, ... , IDNC - {EOS}I do 

for each name-class i = 1,2, ... , IDNC - {EOS}I do 
if j = i then 

else 

"sw 
p +- PrM «W,I>k I <W,I>(k_1),NC j ) 

" sw 
p' +- PrM «+end+,otw> I <w, 1>(k-1), NC j )· 

" NC 
PrM (NC j INC j ,W(k_1»)· 

" FW 
PrM «w, I>k INC j , NC j ) 

Pi +- max(p,p') 

end if 
end for each 
'l/Jk (j) +- argrnax Pi 

i 

6k(j) +- 6(k-1)(j) . PWk(j) 
end for each 

end for each 
Termination: 

M +- model(+end+,wn) 
for each name-class j = 1,2, ... , IDNC - {EOS}I do 

" sw 
PI(j) +- PrM «+end+,otw> I <w,l>n,NCj )· 

" NC 
PrM (EOSINC], Wn) 

end for each 
q~ +- argrnax PI (j) 

J 
31: Best sequence: 
32: q'k +-'l/Jk+1(q(k+1))' k = n - 1, n - 2, ... ,1 
33: end procedure 

[ncModel] Pr(NC=NANlpre-NC=505,pre-w=+end+)=0.791666666666667 

[fwModel] Pr( <w,f>=<mr. ,fwd> I NC=NAN ,pre-NC=505) =0.722579188712522 

log Delta(O, 50S, NAN)=0.5720418577307468 

[ncModel] Pr(NC=ORGlpre-NC=505,pre-w=+end+) - Pr(NC=ORG)=0.15625 
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[fwModel] Pr( <w,f>=<mr.,fwd>INC=ORG,pre-NC=505) - Pr(default)=0.0166666666666667 

log Delta(O, 50S, ORG)=0.0026041666666666713 

[ncModel] Pr(NC=PERlpre-NC=505,pre-w=+end+) - Pr(NC=PER)=0.21875 

[fwModel] Pr( <w,f>=<mr.,fwd>INC=PER,pre-NC=505) - Pr(default)=0.0166666666666667 

log Delta(O, 50S, PER)=0.00364583333333334 

log Delta(O, NAN)=0.5720418577307468 

log Delta(O, ORG)=0.0026041666666666713 

log Delta(O, PER)=0.00364583333333334 

ITERATION 
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<jones.icp> 

[swModel] Pre <w.f>=<jones.icp>lpre-<w.f>=<mr .. fwd>.NC=NAN) - Pr(default)=0.0166666666666667 
[swModel] Pr«w.f>=<+end+.otw>lpre-<w.f>=<mr .. fwd>.NC=NAN)=0.724090388007055 
[ncModel] Pr(NC=NANlpre-NC=NAN.pre-w=mr.) - Pr(NC=NAN)=0.40625 

[fwModel] Pre <w.f>=<jones.icp>INC=NAN.pre-NC=NAN) - Pr(default)=0.0166666666666667 
log Delta(1.NAN.NAN)=0.00953403096217913 

[swModel] Pre <w.f>=<+end+.otw>lpre-<w.f>=<mr..fwd>.NC=ORG) - Pre <w.f>=<+end+.otw>1 
N C=ORG) =0.168159722222222 

[ncModel] Pr(N C= NAN I pre-NC=ORG .pre-w=m r.) - Pre N C= NAN I pre-NC=ORG) =0.6953125 

[fwModel] Pre <w.f>=<jones.icp>INC=NAN.pre-NC=ORG) - Pr(default)=0.0166666666666667 
log Delta(1.0RG.NAN)=5.0748071552794776E-6 

[swModel] Pre <w.f>=<+end+.otw>lpre-<w.f>=<mr .. fwd>.NC=PER) - Pre <w.f>=<+end+.otw>1 
NC=PER)=0.222345679012346 

[ncModel] Pr(NC=NAN Ipre-NC=PER,pre-w=mr.) - Pr(NC=NANlpre-NC=PER)=0.791666666666667 

[fwModel] Pre <w.f>=<jones.icp>INC=NAN.pre-NC=PER) - Pr(default)=0.0166666666666667 
log Delta(1.PER.NAN)=1.0695882273091053E-5 

log Delta(l.NAN) = log Delta(l.NAN.NAN) = 0.00953403096217913 

[swModel] Pr«w.f>=<+end+.otw>lpre-<w.f>=<mr..fwd>.NC=NAN)=0.724090388007055 
[ncModel] Pr(NC=ORGlpre-NC=NAN.pre-w=mr.) - Pr(NC=ORGlpre-NC=NAN)=0.201171875 

[fwModel] Pre <w.f>=<jones.icp>INC=ORG.pre-NC=NAN) - Pr(default)=0.0166666666666667 
log Delta(l. NAN. ORG)=0.0013887900750069976 

[swModel] Pr«w.f>=<jones.icp>lpre-<w.f>=<mr..fwd>.NC=ORG) - Pr(default)=0.0166666666666667 

[swModel] Pre <w.f>=< +end+.otw>lpre-<w.f>=<mr .. fwd>.NC=ORG) - Pre <w.f>=<+end+.otw>1 
NC=ORG)=0.168159722222222 

[ncModel] Pr(NC=ORGlpre-NC=ORG.pre-w=mr.) - Pr(NC=ORG)=0.15625 
[fwModel] Pre <w.f>=<jones.icp>INC=ORG.pre-NC=ORG) - Pr(default)=0.0166666666666667 

log Delta(1.0RG.ORG)=4.34027777777779E-5 (I tag) 

[swModel] Pre <w.f>=<+end+.otw>lpre-<w.f>=<mr .. fwd>.NC=PER) - Pre <w.f>=<+end+.otw>1 

NC=PER)=0.222345679012346 
[ncModel] Pr(NC=ORGlpre-NC=PER.pre-w=mr.) - Pr(NC=ORG)=0.15625 
[fwModel] Pre <w.f>=<jones.icp>INC=ORG.pre-NC=PER) - Pr(default)=0.0166666666666667 

log Delta(1.PER,ORG)=2.1110293960048104E-6 

log Delta(1.0RG) = log Delta(l.NAN.ORG) = 0.0013887900750069976 

[swModel] Pre <w.f>=< +end+.otw> Ipre-<w.f>=<mr .. fwd> .NC=NAN)=O. 724090388007055 

[ncModel] Pr(NC=PERlpre-NC=NAN.pre-w=mr.)=0.765494791666667 

[fwModel] Pre <w. f>=<jones. icp> I NC=PER,pre-NC=NAN)=0.316759259259259 

log Delta(1.NAN.PER)=0.10043663404226938 

[swModel] Pre <w.f>=<+end+.otw> Ipre-<w.f>=<mr..fwd>.NC=ORG) - Pre <w.f>=<+end+,otw>1 

NC=ORG)=0.168159722222222 
[ncModel] Pr(NC=PERlpre-NC=ORG.pre-w=mr.) - Pr(NC=PER)=0.21875 

[fwModel] Pre <w.f>=<jones,icp>INC=PER,pre-NC=ORG) - Pre <w.f>=<jones,icp>1 
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pre-<w,f>=<+begin+,otw>,NC=PER)=0.316759259259259 

log Delta(l,ORG,PER)=3.0343672146685987E-5 
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[swModel] Pr( <w,f>=<jones,icp>lpre-<w,f>=<mr.,fwd>,NC=PER) - Pr( <w,f>=<jones,icp>I 
NC=PER)=0.222345679012346 

[swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<mr.,fwd>,NC=PER) - Pr( <w,f>=<+end+,otw>1 
NC=PER)=0.222345679012346 

[ncModel] Pr(NC=PERlpre-NC=PER,pre-w=mr.) - Pr(NC=PER)=0.21875 

[fwModel] Pr( <w,f>=<jones,icp> I NC=PER,pre-NC=PER)=0.222345679012346 

log Delta(l,PER,PER)=8.106352880658458E-4 (I tag) 

log Delta(l,PER) = log Delta(l,NAN,PER) = 0.10043663404226938 

log Delta(l, NAN)=0.00953403096217913 

log Delta(l, ORG)=0.0013887900750069976 

log Delta(l, PER)=0.10043663404226938 

<eats,ucp> 

[swModel] Pr( <w,f>=<eats,ucp>lpre-<w,f>=<jones,icp>,NC=NAN) - Pr( <w,f>=<eats,ucp>1 

NC=NAN)=0.0411209523809524 

[swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<jones,icp>,NC=NAN) - Pr( <w.f>=<+end+,otw>1 

NC=NAN)=0.200712962962963 

[ncModel] Pr(NC=NAN Ipre-NC=NAN,pre-w jones) - Pr(NC=NAN)=0.40625 

[fwModel] Pr( <w,f>=<eats,ucp>INC=NAN,pre-NC=NAN) - Pr( <w,f>=<eats,ucp>I 

pre-<w,f>=<+begin+,otw>,NC=NAN)=0.123264338624339 

log Delta(2,NAN,NAN)=3.920484331942936E-4 

[swModel] Pr( <w,f>=<+end+,otw>lpre-<w.f>=<jones,icp>,NC=ORG) - Pr( <w,f>=<+end+,otw>1 

N C=ORG)=0.168159722222222 

[ncModel] Pr(NC=NANlpre-NC=ORG,pre-w=jones) - Pr(NC=NANlpre-NC=ORG)=0.6953125 

[fwModel] Pr( <w,f>=<eats,ucp>INC=NAN,pre-NC=ORG) - Pr( <w.f>=<eats,ucp>1 

pre-<w,f>=<+begin+,otw>,NC=NAN)=0.123264338624339 

log Delta(2,ORG,NAN)=2.001594376897324E-5 

[swModel] Pr( <w,f>=< +end+,otw> Ipre-<w,f>=<jones,icp>,NC=PER)=0.711172839506173 

[ncModel] Pr(NC=NAN I pre-NC=PER,pre-w= jones)=O. 791666666666667 

[fwModel] Pr«w,f>=<eats,ucp>INC=NAN,pre-NC=PER)=0.292448253968254 

log Delta(2,PER,NAN)=0.01653707529480418 

log Delta(2,NAN) = log Delta(2,PER,NAN) = 0.01653707529480418 

[swModel] Pr( <w,f>=< +end+,otw>lpre-<w,f>=<jones,icp>,NC=NAN) - Pr( <w,f>=< +end+,otw>1 

NC=NAN)=0.200712962962963 

[ncModel] Pr(NC=ORGlpre-NC=NAN,pre-w jones) - Pr(NC=ORGlpre-NC=NAN)=0.201171875 

[fwModel] Pr( <w,f>=<eats,ucp>INC=ORG,pre-NC=NAN) - Pr(default)=0.0166666666666667 

log Delta(2,NAN,ORG)=6.416053748377586E-6 

[swModel] Pr( <w,f>=<eats,ucp>lpre-<w,f>=<jones,icp>,NC=ORG) - Pr(default)=0.0166666666666667 

[swModel] Pr( <w.f>=< +end+,otw>lpre-<w,f>=<jones,icp>,NC=ORG) - Pr( <w,f>=< +end+,otw>1 

NC=ORG)=0.168159722222222 

[ncModel] Pr(NC=ORGlpre-NC=ORG,pre-w jones) - Pr(NC=ORG)=0.15625 
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[fwModel] Pr( <w,f>=<eats,ucp>INC=ORG,pre-NC=ORG) - Pr(default)=0.0166666666666667 
log Delta(2,ORG,ORG)=2.3146501250116655E-5 (I tag) 

[swModel] Pr( <w,f>=< +end+,otw> Ipre-<w,f>=<jones,icp>,NC=PER)=0.711172839506173 

[ncModel] Pr(NC=ORGlpre-NC=PER,pre-w jones) - Pr(NC=ORG)=0.15625 

[fwModel] Pr( <w,f>=<eats,ucp>INC=ORG,pre-NC=PER) - Pr(default)=0.0166666666666667 

log Delta(2,PER,ORG)=1.8600991203719593E-4 

log Delta(2,ORG) = log Delta(2,PER,ORG) = 1.8600991203719593E-4 

[swModel] Pr( <w,f>=< +end+,otw>lpre-<w,f>=<jones,icp>,NC=NAN) - Pr( <w.f>=<+end+,otw>1 
NC=NAN)=0.200712962962963 

[ncModel] Pr(NC=PERlpre-NC=NAN,pre-w jones) - Pr(NC=PERlpre-NC=NAN)=0.337890625 

[fwModel] Pr( <w,f>=<eats,ucp>INC=PER,pre-NC=NAN) - Pr(default)=0.0166666666666667 

log Delta(2,NAN,PER)=1.0776478625915744E-5 

[swModel] Pr( <w,f>=< +end+,otw>lpre-<w,f>=<jones,icp>,NC=ORG) - Pr( <w.f>=<+end+,otw>1 

NC=ORG)=0.168159722222222 

[ncModel] Pr(NC=PERlpre-NC=ORG,pre-w jones) - Pr(NC=PER)=0.21875 

[fwModel] Pr( <w,f>=<eats,ucp>INC=PER,pre-NC=ORG) - Pr(default)=0.0166666666666667 

log Delta(2,ORG,PER)=8.514426420141109E-7 

[swModel] Pr( <w,f>=<eats,ucp>lpre-<w,f>=<jones,icp>,NC=PER) - Pr(default)=0.0166666666666667 

[swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<jones,icp>,NC=PER)=0.711172839506173 

[ncModel] Pr(NC=PERlpre-NC=PER,pre-w=jones) - Pr(NC=PER)=0.21875 

[fwModel] Pr( <w,f>=<eats,ucp>INC=PER,pre-NC=PER) - Pr(default)=0.0166666666666667 

log Delta(2,PER,PER)=0.0016739439007044932 (I tag) 

log Delta(2,PER) = log Delta(2,PER,PER) = 0.0016739439007044932 

log Delta(2, NAN)=0.01653707529480418 

log Delta(2, ORG)=1.8600991203719593E-4 

log Delta(2, PER)=0.0016739439007044932 

<+UNK+,ucp> (bananas) 

[unk_swModel] Pr( <w,f>=<+UNK+,ucp>lpre-<w,f>=<eats,ucp>,NC=NAN) -

Pr«w,f>=<+UNK+,ucp>INC=NAN)=0.113652484267869 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=NAN) -

Pr( <w,f>=< +end+,otw> I NC=NAN)=0.222801475002144 

[unk _ ncModel] Pr(NC=NANlpre-NC=NAN,pre-w=eats) - Pr(NC=NAN)=0.422413793103448 

[unk_fwModel] Pr( <w,f>=<+UNK+,ucp>INC=NAN,pre-NC=NAN)=0.113652484267869 

log Delta(3,NAN,NAN)=0.001879479689779297 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w.f>=<eats,ucp>,NC=ORG) -

Pr( <w.f>=< +end+,otw> INC=ORG)=0.168037475345168 

[unk_ncModel] Pr(NC=NANlpre-NC=ORG,pre-w=eats) - Pr(NC=NANlpre-NC=ORG)=0.702586206896552 

[unk _fwModel] Pr( <w,f>=< +UNK+,ucp>INC=NAN,pre-NC=ORG) - Pr( <w.f>=< +UNK+,ucp>lpre­

<w.f>=<+begin+,otw>,NC=NAN)=0.153299326239371 

log Delta(3,ORG,NAN)=3.3665269922629046E-6 

[unk_swModel] Pr( <w.f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=PER) -

Pr( <w.f>=< +end+,otw>INC=PER)=0.25008875739645 
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[unk_ncModel] Pr(NC=NANlpre-NC=PER,pre-w=eats) - Pr(NC=NANlpre-NC=PER)=0.877586206896552 

[unk_fwModel] Pr( <w,f>=<+UNK+,ucp>INC=NAN,pre-NC=PER)=0.338070947313837 
log Delta(3,PER,NAN)=1.2420317771032666E-4 

log Delta(3,NAN) = log Delta(3,NAN,NAN) = 0.001879479689779297 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=NAN) -

Pr( <w,f>=< +end+ ,otw> I NC=NAN)=0.222801475002144 

[unk_ncModel] Pr(NC=ORGlpre-NC=NAN,pre-w=eats) - Pr(NC=ORGlpre-NC=NAN)=0.199425287356322 

[unk_fwModel] Pr«w,f>=<+UNK+,ucp>INC=ORG,pre-NC=NAN) - Pr(default)=0.0153846153846154 
log Delta(3,NAN,ORG)=1.1304298978449625E-5 

[unk_swModel] Pr( <w,f>=<+UNK+,ucp>lpre-<w,f>=<eats,ucp>,NC=ORG) -

Pr(default)=0.0153846153846154 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=ORG) -

Pr«w,f>=<+end+,otw>INC=ORG)=0.168037475345168 

[unk_ncModel] Pr(NC=ORGlpre-NC=ORG,pre-w=eats) - Pr(NC=ORG)=0.146551724137931 

[unk_fwModel] Pr«w,f>=<+UNK+,ucp>INC=ORG,pre-NC=ORG) - Pr(default)=0.0153846153846154 

log Delta(3,ORG,ORG)=2.861690954418402E-6 (I tag) 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=PER) -

Pr( <w,f>=< +end+,otw> I NC=PER)=0.25008875739645 

[unk _ ncModel] Pr(NC=ORGlpre-NC=PER,pre-w=eats) - Pr(NC=ORG)=0.146551724137931 

[unk_fwModel] Pr«w,f>=<+UNK+,ucp>INC=ORG,pre-NC=PER) - Pr(default)=0.0153846153846154 

log Delta(3,PER,ORG)=9.438710015033703E-7 

log Delta(3,ORG) = log Delta(3,NAN,ORG) = 1.1304298978449625E-5 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=NAN) -

Pr( <w,f>=< +end+,otw> I NC=NAN)=0.222801475002144 

[unk _ ncModel] Pr(NC=PERlpre-NC=NAN,pre-w=eats) - Pr(NC=PERlpre-NC=NAN)=0.344252873563218 

[unk_fwModel] Pr( <w,f>=<+UNK+,ucp>INC=PER,pre-NC=NAN) - Pr(default)=0.0153846153846154 

log Delta(3,NAN,PER)=1.9513761060781844E-5 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=ORG) -

Pr«w,f>=<+end+,otw>INC=ORG)=0.168037475345168 

[unk _ ncModel] Pr(NC=PERlpre-NC=ORG,pre-w=eats) - Pr(NC=PER)=0.21551724137931 

[unk_fwModel] Pr«w,f>=<+UNK+,ucp>INC=PER,pre-NC=ORG) - Pr(default)=0.0153846153846154 

log Delta(3,ORG,PER)=1.0363606103417495E-7 

[unk_swModel] Pr( <w,f>=<+UNK+,ucp>lpre-<w,f>=<eats,ucp>,NC=PER) -

Pr( default)=0.0153846153846154 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<eats,ucp>,NC=PER) -

Pr( <w,f>=< +end+,otw> INC=PER)=0.25008875739645 

[unk_ ncModel] Pr(NC=PERlpre-NC=PER,pre-w=eats) - Pr(NC=PER)=0.21551724137931 

[unk_fwModel] Pr( <w,f>=<+UNK+,ucp>INC=PER,pre-NC=PER) - Pr(default)=0.0153846153846154 

log Delta(3,PER,PER)=2.5752983087761442E-5 (I tag) 

log Delta(3,PER) = log Delta(3,PER,PER) = 2.5752983087761442E-5 

log Delta(3, NAN)=0.001879479689779297 

log Delta(3, ORG)=1.1304298978449625E-5 

log Delta(3, PER)=2.5752983087761442E-5 
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<in,ucp> 

[unk_swModel] Pr( <w,f>=<in,ucp>!pre-<w,f>=<+UNK+,ucp>,NC=NAN) -
Pr( <w,f>=<in,ucp>!NC=NAN)=0.0233632009016624 

[unk_swModel] Pr«w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=NAN)=0.193733488919108 
[unk_ncModel] Pr(NC=NAN!pre-NC=NAN,pre-w=+UNK+) - Pr(NC=NAN)=0.422413793103448 

[unk_fwModel] Pr( <w,f>=<in,ucp>!NC=NAN,pre-NC=NAN)=0.0233632009016624 
log Delta(4,NAN,NAN)=4.391066158290782E-5 

[unk_swModel] Pr( <w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=ORG) -

Pr«w,f>=<+end+,otw>!NC=ORG)=0.168037475345168 

[unk_ncModel] Pr(NC=NAN!pre-NC=ORG,pre-w=+UNK+)=0.776939655172414 

[unk_fwModel] Pr( <w,f>=<in,ucp>!NC=NAN,pre-NC=ORG) - Pr( <w,f>=<in,ucp>! 
NC=NAN)=0.0233632009016624 

log Delta(4,ORG,NAN)=3.448017133816848E-8 

[unk_swModel] Pr( <w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=PER) -
Pr( <w,f>=< +end+,otw>! NC=PER)=0.25008875739645 

[unk _ ncModel] Pr(NC=NAN!pre-NC=PER,pre-w=+UNK+) - Pr(NC=NAN! 
pre-NC=PER)=0.877586206896552 

[unk _ fwModel] Pr( <w,f>=<in,ucp>! NC=NAN ,pre-NC=PER) -

Pr( <w,f>=<in,ucp>!NC=NAN)=0.0233632009016624 
log Delta(4,PER,NAN)=1.32051653496337E-7 

log Delta(4,NAN) = log Delta(4,NAN,NAN) = 4.391066158290782E-5 

[unk_swModel] Pr«w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=NAN)=0.193733488919108 
[unk_ncModel] Pr(NC=ORG!pre-NC=NAN,pre-w=+UNK+)=0.279632183908046 

[unk_fwModel] Pr«w,f>=<in,ucp>!NC=ORG,pre-NC=NAN) - Pr(default)=0.0153846153846154 

log Delta(4,NAN,ORG)=1.566448548080543E-6 

[unk_swModel] Pr( <w,f>=<in,ucp>!pre-<w,f>=<+UNK+,ucp>,NC=ORG) -

Pr( default)=0.0153846153846154 
[unk_swModel] Pr( <w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=ORG) -

Pr«w,f>=<+end+,otw>!NC=ORG)=0.168037475345168 
[unk_ ncModel] Pr(NC=ORG!pre-NC=ORG,pre-w=+UNK+) - Pr(NC=ORG)=0.146551724137931 

[unk_fwModel] Pr( <w,f>=<in,ucp>!NC=ORG,pre-NC=ORG) - Pr(default)=0.0153846153846154 

log Delta(4,ORG,ORG)=1.739122919761483E-7 (I tag) 

[unk _swModel] Pr( <w,f>=<+end+,otw>!pre-<w,f>=< +UNK+,ucp>,NC=PER) -

Pr( <w,f>=< +end+,otw> !NC=PER)=0.25008875739645 
[unk _ncModel] Pr(NC=ORG!pre-NC=PER,pre-w=+UNK+) - Pr(NC=ORG)=0.146551724137931 

[unk _fwModel] Pr( <w,f>=<in,ucp>!NC=ORG,pre-NC=PER) - Pr(default)=0.0153846153846154 

log Delta(4,PER,ORG)=1.4521092330821073E-8 

log Delta(4,ORG) = log Delta(4,NAN,ORG) = 1.566448548080543E-6 

[unk _ swModel] Pr( <w,f>=< +end+,otw>!pre-<w,f>=< +UNK+,ucp>,NC=NAN)=0.193733488919108 

[unk _ ncModel] Pr(NC=PER!pre-NC=NAN,pre-w=+UNK+) - Pr(NC=PER! 

pre-NC=NAN)=0.344252873563218 
[unk _fwModel] Pr( <w,f>=<in,ucp>!NC=PER,pre-NC=NAN) - Pr(default)=0.0153846153846154 

log Delta(4,NAN,PER)=1.9284418782888972E-6 
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[unk_swModel] Pr( <w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=ORG) -
Pr«w,f>=<+end+,otw>!NC=ORG)=0.168037475345168 

[unk_ncModel] Pr(NC=PER!pre-NC=ORG,pre-w=+UNK+) - Pr(NC=PER)=0.21551724137931 

[unk_fwModel] Pr( <w,f>=<in,ucp>!NC=PER,pre-NC=ORG) - Pr(default)=0.0153846153846154 
log Delta(4,ORG,PER)=6.2982289817163E-9 

[unk_swModel] Pr( <w,f>=<in,ucp>!pre-<w,f>=<+UNK+,ucp>,NC=PER) -
Pr( default)=0.0153846153846154 

[unk_swModel] Pr«w,f>=<+end+,otw>!pre-<w,f>=<+UNK+,ucp>,NC=PER) -
Pr( <w,f>=< +end+ ,otw>! NC=PER)=0.25008875739645 

[unk_ ncModel] Pr(NC=PER!pre-NC=PER,pre-w=+UNK+) - Pr(NC=PER)=0.21551724137931 

[unk_fwModel] Pr( <w,f>=<in,ucp>!NC=PER,pre-NC=PER) - Pr(default)=0.0153846153846154 
log Delta(4,PER,PER)=3.96199739811715E-7 (I tag) 

log Delta(4,PER) = log Delta(4,NAN,PER) = 1.9284418782888972E-6 

log Delta(4, NAN)=4.391066158290782E-5 

log Delta(4, ORG)=1.566448548080543E-6 

log Delta(4, PER)=1.9284418782888972E-6 

<+UNK+,icp> (starebucks) 

[unk_swModel] Pr( <w,f>=<+UNK+,icp>!pre-<w,f>=<in,ucp>,NC=NAN) -
Pr(default)=0.0153846153846154 

[unk_swModel] Pr«w,f>=<+end+,otw>!pre-<w,f>=<in,ucp>,NC=NAN)=0.607449520379286 
[unk_ncModel] Pr(NC=NAN!pre-NC=NAN,pre-w=in) - Pr(NC=NAN)=0.422413793103448 

[unk_fwModel] Pr«w,f>=<+UNK+,icp>!NC=NAN,pre-NC=NAN) - Pr(default)=0.0153846153846154 

log Delta(5,NAN,NAN)=6.755486397370441E-7 

[unk_swModel] Pr( <w,f>=<+end+,otw>!pre-<w,f>=<in,ucp>,NC=ORG) -

Pr«w,f>=<+end+,otw>!NC=ORG)=0.168037475345168 
[unk_ncModel] Pr(NC=NAN!pre-NC=ORG,pre-w=in) - Pr(NC=NAN!pre-NC=ORG)=0.702586206896552 
funk _fwModel] Pr( <w,f>=< +UNK+,icp>!NC=NAN,pre-NC=ORG) - Pr(default)=0.0153846153846154 

log Delta(5,ORG,NAN)=2.8451721261433814E-9 

[unk _swModel] Pr( <w,f>=<+end+,otw>!pre-<w,f>=<in,ucp>,NC=PER) -

Pr«w,f>=<+end+,otw>!NC=PER)=0.25008875739645 
[unk_ncModel] Pr(NC=NAN!pre-NC=PER,pre-w=in) - Pr(NC=NAN!pre-NC=PER)=0.877586206896552 

[unk_fwModel] Pr«w,f>=<+UNK+,icp>!NC=NAN,pre-NC=PER) - Pr(default)=0.0153846153846154 

log Delta(5,PER,NAN)=6.511441677022464E-9 

log Delta(5,NAN) = log Delta(5,NAN,NAN) = 6.755486397370441E-7 

[unk _ swModel] Pr( <w,f>=< +end+,otw> !pre-<w,f>=<in,ucp>,NC=NAN)=0.607449520379286 

[unk_ncModel] Pr(NC=ORG!pre-NC=NAN,pre-w=in)=0.599655172413793 

[unk_ fwModel] Pr( <w,f>=< +UNK+,icp>! NC=ORG,pre-NC=NAN)=0.280777996931843 

log Delta(5,NAN,ORG)=4.491018349709104E-6 

[unk_swModel] Pr«w,f>=<+UNK+,icp>!pre-<w,f>=<in,ucp>,NC=ORG) - Pr( <w,f>=<+UNK+,icp>! 

NC=ORG)=O.0878336620644313 
[unk_swModel] Pr( <w,f>=<+end+,otw>!pre-<w,f>=<in,ucp>,NC=ORG) - Pr( <w,f>=< +end+,otw>! 

NC=ORG)=0.168037475345168 
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[unk _ncModel] Pr(NC=ORGlpre-NC=ORG,pre-w=in) - Pr(NC=ORG)=0.146551724137931 

[unk_fwModel] Pr«w,f>=<+UNK+,icp>INC=ORG,pre-NC=ORG) - Pr«w,f>=<+UNK+,icp>1 

pre-<w,f>=<+begin+,otw>,NC=ORG)=0.280777996931843 

log Delta(5,ORG,ORG)=1.375869124134256E-7 (I tag) 

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<in,ucp>,NC=PER) - Pr«w,f>=<+end+,otw>1 
NC=PER)=0.25008875739645 

[unk _ ncModel] Pr(NC=ORGlpre-NC=PER,pre-w=in) - Pr(NC=ORG)=0.146551724137931 

[unk_fwModel] Pr«w,f>=<+UNK+,icp>INC=ORG,pre-NC=PER) - Pr«w.f>=<+UNK+,icp>1 

pre-<w,f>=<+begin+,otw>,NC=ORG)=0.280777996931843 

log Delta(5,PER,ORG)=1.98451655608078E-8 

log Delta(5,ORG) = log Delta(5,NAN,ORG) = 4.491018349709104E-6 

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<in,ucp>,NC=NAN)=0.607449520379286 

[unk_ncModel] Pr(NC=PERlpre-NC=NAN,pre-w=in) - Pr(NC=PERlpre-NC=NAN)=O.344252873563218 

[unk _fwModel] Pr( <w,f>=< +UNK+,icp>INC=PER,pre-NC=NAN) - Pr(w=+UNK+INC=PER)*Pr(f=icpl 

NC=PER)=0.013567202028740483 

log Delta(5,NAN,PER)=1.2457991786051997E-7 

[unk _swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<in,ucp>,NC=ORG) - Pr( <w,f>=< +end+,otw>1 

NC=ORG)=0.168037475345168 

[unk_ncModel] Pr(NC=PERlpre-NC=ORG,pre-w=in) - Pr(NC=PER)=0.21551724137931 

[unk_fwModel] Pr«w,f>=<+UNK+,icp>INC=PER,pre-NC=ORG) - Pr(w=+UNK+INC=PER)* 

Pr(f=icpINC=PER)=0.013567202028740483 

log Delta(5,ORG,PER)=7.696523397930446E-10 

[unk_swModel] Pr«w,f>=<+UNK+,icp>lpre-<w,f>=<in,ucp>,NC=PER) - Pr(w=+UNK+INC=PER)* 

Pr(f=icpINC=PER)=0.013567202028740483 

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<in,ucp>,NC=PER) - Pr«w,f>=<+end+,otw>1 

NC=PER)=0.25008875739645 

[unk_ncModel] Pr(NC=PERlpre-NC=PER,pre-w=in) - Pr(NC=PER)=0.21551724137931 

[unk _fwModel] Pr( <w,f>=<+UNK+,icp>INC=PER,pre-NC=PER) - Pr(w=+UNK+INC=PER)* 

Pr(f=icpINC=PER)=0.013567202028740483 

log Delta(5,PER,PER)=2.6163560563429185E-8 (I tag) 

log Delta(5,PER) = log Delta(5,NAN,PER) = 1.2457991786051997E-7 

log Delta(5, NAN)=6.755486397370441E-7 

log Delta(5, ORG)=4.491018349709104E-6 

log Delta(5, PER)=1.2457991786051997E-7 

<.,otw> 

[unk_swModel] Pr( <w,f>=<.,otw>lpre-<w,f>=< +UNK+,icp>,NC=NAN) - Pr( <w,f>=<.,otw>1 

NC=NAN)=0.0460033730669182 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=NAN) -

Pr«w,f>=<+end+,otw>INC=NAN)=0.222801475002144 
[unk _ ncModel] Pr(NC=NANlpre-NC=NAN,pre-w=+UNK+) - Pr(NC=NAN)=0.422413793103448 

[unk_fwModel] Pr( <w,f>=<.,otw>INC=NAN,pre-NC=NAN)=0.0460033730669182 

log Delta(6,NAN,NAN)=3.107751609867233E-8 
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[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=ORG) -
Pr«w,f>=<+end+,otw>INC=ORG)=0.168037475345168 

[unk_ncModel] Pr(NC=NANlpre-NC=ORG,pre-w=+UNK+)=0.776939655172414 

[unk _ fwModel] Pr( <w,f>=<.,otw>INC=NAN,pre-NC=ORG)=0.282761843507663 
log Delta (6,0 RG, NAN) = 1. 657902820550323E-7 

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=PER) -
Pr( <w,f>=< +end+ ,otw> I NC=PER)=0.25008875739645 

[unk_ncModel] Pr(NC=NANI 

pre-NC=PER,pre-w=+UN K+) - Pr(NC=NAN Ipre-NC=PER)=0.877586206896552 

[unk_fwModel] Pr«w,f>=<.,otw>INC=NAN,pre-NC=PER) - Pr«w,f>=<.,otw>1 
pre-<w,f>=<+begin+,otw>,NC=NAN)=0.0741427652614944 

log Delta(6,PER,NAN)=2.0272195103891604E-9 

log Delta(6,NAN) = log Delta(6,ORG,NAN) = 1.657902820550323E-7 

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=NAN) -
Pr( <w,f>=< +end+,otw> I NC=NAN )=0.222801475002144 

[unk _ ncModel] Pr(NC=ORGlpre-NC=NAN,pre-w=+UNK+ )=0.279632183908046 
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[unk _fwModel] Pr( <w,f>=<.,otw>INC=ORG,pre-NC=NAN) - Pr(default)=0.0153846153846154 
log Delta(6,NAN,ORG)=6.475129869856067E-10 

[unk_swModel] Pr( <w,f>=<.,otw>lpre-<w,f>=<+UNK+,icp>,NC=ORG) -
Pr(default)=0.0153846153846154 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=ORG) -

Pr«w,f>=<+end+,otw>INC=ORG)=0.168037475345168 

[unk_ncModel] Pr(NC=ORGlpre-NC=ORG,pre-w=+UNK+) - Pr(NC=ORG)=0.146551724137931 
[unk_fwModel] Pr( <w,f>=<.,otw>INC=ORG,pre-NC=ORG) - Pr(default)=0.0153846153846154 

log Delta(6,ORG,ORG)=6.909258999552476E-8 (I tag) 

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=PER) -

Pr( <w,f>=< +end+,otw> I NC=PER)=0.25008875739645 
[unk_ncModel] Pr(NC=ORGlpre-NC=PER,pre-w=+UNK+) - Pr(NC=ORG)=0.146551724137931 
[unk_fwModel] Pr( <w,f>=<.,otw>INC=ORG,pre-NC=PER) - Pr(default)=0.0153846153846154 

log Delta(6,PER,ORG)=7.024570643540017E-ll 

log Delta(6,ORG) = log Delta(6,ORG,ORG) = 6.909258999552476E-8 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=NAN) -

Pr( <w,f>=< +end+,otw>1 NC=NAN)=0.222801475002144 
[unk _ncModel] Pr(NC=PERlpre-NC=NAN,pre-w=+UNK+) - Pr(NC=PERI 

pre-NC=NAN)=0.344252873563218 
[unk_fwModel] Pr«w,f>=<.,otw>INC=PER,pre-NC=NAN) - Pr(default)=0.0153846153846154 

log Delta(6,NAN,PER)=7.971478937939354E-10 

[unk_swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=ORG) -

Pr«w,f>=<+end+,otw>INC=ORG)=0.168037475345168 
[unk _ncModel] Pr(NC=PERlpre-NC=ORG,pre-w=+UNK+) - Pr(NC=PER)=0.21551724137931 

[unk_fwModel] Pr( <w,f>=<.,otw>INC=PER,pre-NC=ORG) - Pr(default)=0.0153846153846154 

log Delta(6,ORG,PER)=2.5021862904971494E-9 
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[unk_swModel] Pr«w,f>=<.,otw>lpre-<w,f>=<+UNK+,icp>,NC=PER) -
Pr(default)=O.0153846153846154 

[unk_swModel] Pr«w,f>=<+end+,otw>lpre-<w,f>=<+UNK+,icp>,NC=PER) -
Pr( <w,f>=< +end+ ,otw> I NC=PER)=O.25008875739645 
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[unk_ncModel] Pr(NC=PERlpre-NC=PER,pre-w=+UNK+) - Pr(NC=PER)=O.21551724137931 

[unk_fwModel] Pr( <w,f>=<.,otw>INC=PER,pre-NC=PER) - Pr(default)=O.0153846153846154 
log Delta(6,PER,PER)=1.916614120931079E-9 (I tag) 

log Delta(6,PER) = log Delta(6,ORG,PER) = 2.5021862904971494E-9 

log Delta(6, NAN)=1.657902820550323E-7 

log Delta(6, ORG)=6.909258999552476E-8 

log Delta(6, PER)=2.5021862904971494E-9 

FINALISATION 

[swModel] Pr( <w, f>=< +end+,otw> Ipre-<w, f>=<.,otw>, NC=NAN)=O. 724090388007055 
[ncModel] Pr(NC=EOSlpre-NC=NAN,pre-w=.)=0.765494791666667 
log Delta(7,EOS,NAN)=9.189546781994543E-8 

[swModel] Pr( <w,f>=< +end+,otw>lpre-<w,f>=<.,otw>,NC=ORG) - Pr( <w,f>=<+end+,otw>1 
NC=ORG)=0.168159722222222 

[ncModel] Pr(NC=EOSlpre-NC=ORG,pre-w=.) - Pr(NC=EOS)=0.21875 
log Delta(7,EOS,ORG)=2.541566724650912E-9 

[swModel] Pr( <w,f>=<+end+,otw>lpre-<w,f>=<.,otw>,NC=PER) - Pr( <w,f>=<+end+,otw>I 
NC=PER)=O.222345679012346 

[ncModel] Pr(NC=EOSlpre-NC=PER,pre-w=.) - Pr(NC=EOS)=O.21875 
log Delta(7,EOS,PER)=1.217016302634939E-10 

log P(SOS NAN PER NAN NAN NAN ORG NAN EOS)=9.189546781994543E-8 [*BEST*] 

log P(SOS NAN PER NAN NAN NAN ORG ORG EOS)=2.541566724650912E-9 

log P(SOS NAN PER NAN NAN NAN PER PER EOS)=1.217016302634939E-I0 

A.9 Implementation 

The baseline system presented in this appendix is fully implemented in Java TM. SiNymble 

models are stored in a relational database which allows an efficient way of searching 

probabilities during decoding -with full or partial information- given that the appro­

priate indexes on the tables have been set. Moreover, a relational database provides 

elegant implementations for the cO and uO function as queries of the form SELECT 

COUNT ... GROUP BY from a table that contains all training events or DISTINCT 

events only. 



Appendix B 

A walk-through example for 

LexMENE 

In this appendix, a walk-through example is presented to show how LexMENE is trained 

and applied on unseen documents. This examples are taken from the MUC-7 training 

and dryrun test corpora. 

B.l Training 

Consider the following sentence which is part of the training input for LexMENE. 

<TIME>Last night</TIME>'s crash came just hours after <LOCATION>St. Louis</LO­
CATION>-based <ORGANISATION> TWA</ORGANISATION> reported a fivefold 
increase in <DATE>second-quarter</DATE> profit. 

The sentence must be tokenized first. This tokenization needs to be fine-grain because 

words can partially be part of a named entity. In this scheme, a word contains tokens 

which may atomically belong to a particular named entity class. In the text above, 

the words tonight's and Louis-based are example of multi-token words. In both cases, 

only the first token has a named entity class associated (namely time and organisation 

respectively). Consequently, each token is marked %FT, %MT and %LT when they 

are the first, a middle and the last token in a multi-token word respectively, and %UT 

when the token is actually a (unique token) word in the terms used here. Note that 

possessives are considerer a completely new token, whereas tokens linked by hyphens 

are considered as part of a multi-token word. 

During this procedure, paragraphs and sentences are also identified and marked in 

the text. The beginning of a paragraph is marked with a label %BP followed by the 

paragraph identifier and the text zone in which it is found. Valid text zones are p 
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(paragraph of text), SLUG, DATE, NWORD5, PREAMBLE and TRAILER, in accordance 

with the sections contained in the New York Time documents compiled for the corpora. 

This text zone is also made explicit in tokens by adding a feature (labelled %ZN) with 

the corresponding value to each one of them. The labels % %505 and % %E05 are used 

to mark the start and the end of sentences respectively. 

The second step is submitting these tokenized sentences to the MBSP parser (Daelemans, 

Veenstra and Buchholz 1999). This parser assigns a part-of-speech tag to each token 

and identifies the chunks in the sentence. This information is marked by adding a label 

%Po5 to each token and indicating the beginning of each phrase with the label %CT. 

In the third step, orthographic features are associated to each token by adding one or 

more word features (labelled %WF) that indicate the orthographic features presented 

by the word to which the token belongs. Tokens in multi-token words also have token 

features (labelled %TF) which give information about the orthographic features of the 

particular token. 

The following is the output of these pre-processing steps applied to the example sentence. 

The mark %NE identifies the named entity class in BIO notation. 

% BP 16 p 
%% 50S 
%CT=NP 
%UT =Last %WF=icp %NE=ltime %PoS=JJ %ZN=p 
%UT =night %WF=ucp %NE=ltime %PoS=NN %ZN=p 
%UT ='5 %WF=mix %WF=ucp %NE=O %PoS=POS %ZN=p 
%UT =crash %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p 
%CT=VP 
%UT =came %WF=ucp %NE=O %PoS=VBD %ZN=p 
%UT just %WF=ucp %NE=O %PoS=RB %ZN=p 
%UT =hours %WF=ucp %NE=O %PoS=VBZ %HD=true %ZN=p 
%CT=P 
%UT =after %WF=ucp %NE=O %PoS=IN %ZN=p 
%CT=NP 
%UT =St. %WF=icp %WF=abb %NE=lIocation %PoS=NNP %ZN=p 
%FT =Louis %WF=icp %TF=icp %NE=lIocation %PoS=JJ %ZN=p 
%MT =- %WF=icp %TF=ncp %NE=O %PoS=JJ %ZN=p 
%LT =based %WF=icp %TF=ucp %NE=O %PoS=JJ %ZN=p 
%UT = TWA %WF=acp %WF=icp %NE=lorganisation %PoS=NNP %HD=true %ZN=p 

%CT=VP 
%UT=reported %WF=ucp %NE=O %PoS=VBD %HD=true %ZN=p 

%CT=NP 
%UT =a %WF=ucp %NE=O %PoS=DT %ZN=p 
%UT=fivefold %WF=ucp %NE=O %PoS=JJ %ZN=p 
%UT =increase %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p 

%CT=P 
%UT =in %WF=ucp %NE=O %PoS=IN %ZN=p 
%CT=NP 
%FT=second %WF=ucp %TF=ucp %NE=ldate %PoS=JJ %ZN=p 
%MT =- %WF=ucp %TF=ncp %NE=ldate %PoS=JJ %ZN=p 
%LT=quarter %WF=ucp %TF=ucp %NE=ldate %PoS=JJ %ZN=p 
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%UT = profit %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p 
%CT=CONJ 
%UT =. %WF=ncp %NE=O %PoS=. %ZN=p 
%% EOS 
%% BP 17 p 
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The text is then processed further to obtain the input for the training algorithm of the 

maximum entropy model. In the case of LexMENE, the information provided by the 

parser is completely ignored. In the resulting text, the first line indicates the features 

-all atomic in this case-- given in each line. The feature tokO represents the (token) 

lexical feature of the focus token, and tkfO its orthographic feature. Note how some 

orthographic features identified in the text are actually not provided to the maximum 

entropy model, as they were not defined in MENE's configuration. In addition, named 

entity tags are translated into the FMLU notation. In this notation, tokens are marked 

as the first, a middle or the last token of a multi-token named entity or the unique token 

in a one-token named entity. This information is kept by the prefix of the tag: F-, M-, 

L- or U- respectively. The second part of a named entity tag indicates the actual named 

entity class of the token. When a token is not part of any target named entity, the tag 

o is assigned. The following is the example text after these processing, in which every 

line -except the first one-- represent a training event for the GIS algorithm in used 

implemented in the maxent package version 2.1.0. 

%% FEATURES tkf+1 tkf+2 tkf-1 tkf-2 tkfO tok+1 tok+2 tok-1 tok-2 tokO znf FMLU 

ucp ucp * * icp night's NONE NONE last p F-time 
ucp ucp icp * ucp 's crash last NONE night p L-time 
ucp ucp ucp icp ucp crash came night last's p 0 
ucp ucp ucp ucp ucp came just's night crash p 0 
ucp ucp ucp ucp ucp just hours crash's came p 0 
ucp ucp ucp ucp ucp hours after came crash just p 0 
ucp icp ucp ucp ucp after st. just came hours p 0 
icp icp ucp ucp ucp st. louis hours just after p 0 
icp * ucp ucp icp louis - after hours st. p F-Iocation 
* ucp icp ucp icp - based st. after louis p L-Iocation 
ucp acp#icp icp icp * based twa louis st. - p 0 
acp#icp ucp * icp ucp twa reported - louis based p 0 
ucp ucp ucp * acp#icp reported a based - twa p U-organisation 
ucp ucp acp#icp ucp ucp a fivefold twa based reported p 0 
ucp ucp ucp acp#icp ucp fivefold increase reported twa a p 0 
ucp ucp ucp ucp ucp increase in a reported fivefold p 0 
ucp ucp ucp ucp ucp in second fivefold a increase p 0 
ucp * ucp ucp ucp second - increase fivefold in p 0 
* ucp ucp ucp ucp - quarter in increase second p F-date 
ucp ucp ucp ucp * quarter profit second in - pM-date 
ucp * * ucp ucp profit. - second quarter p L-date 
* * ucp * ucp . NONE quarter - profit p 0 
* * ucp ucp * NONE NONE profit quarter. p 0 
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Note also that none of the tokens in this sentence is considered unknown for the training 

process. This is because all of them have been seen more than three times in the training 

documents, according to Borthwick's (1999) definitions. 

B.2 Decoding 

For decoding, input texts have a similar pre-processing than training documents: the 

text is first tokenized; then subjected to the parser; then each token is associated with 

lexical, orthographic features, the zone feature and its named entity class; and finally 

the features of context tokens are gathered. Considerer the following (key) input text 

from the dryrun corpus. 

<ORGANISATION>Valujet Airlines</ORGANISATION> stock dropped sharply 
<DATE>Monday</DATE>, the first day of trading since the crash and also the first 
day of intensified federal scrutiny ofthe <LOCATION>Atlanta</LOCATION>-based 
carrier. 

The following is the text resulting of pre-processing this sentence. 

%% BP 23 p 
%% 50S 
%CT=NP 
%UT =ValuJet %WF=icp %WF=mcp %NE=lorganisation %PoS=NNP %ZN=p 
%UT =Airlines %WF=icp %NE=lorganisation %PoS=NNPS %ZN=p 
%UT =stock %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p 
%CT=VP 
%UT =dropped %WF=ucp %NE=O %PoS=VBD %HD=true %ZN=p 
%CT=ADVP 
%UT =sharply %WF=ucp %NE=O %PoS=RB %ZN=p 
%CT=NP 
%UT=Monday %WF=icp %NE=ldate %PoS=NNP %HD=true %ZN=p 
%CT=CONJ 
%UT =, %WF=ncp %NE=O %PoS=, %ZN=p 
%CT=NP 
%UT =the %WF=ucp %NE=O %PoS=DT %ZN=p 
%UT =first %WF=ucp %NE=O %PoS=JJ %ZN=p 
%UT =day %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p 
%CT=P 
%UT =of %WF=ucp %NE=O %PoS=IN %ZN=p 
%CT=VP 
%UT =trading %WF=ucp %NE=O %PoS=VBG %HD=true %ZN=p 

%CT=P 
%UT =since %WF=ucp %NE=O %PoS=IN %ZN=p 
%CT=NP 
%UT =the %WF=ucp %NE=O %PoS=DT %ZN=p 
%UT =crash %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p 

%CT=CONJ 
%UT =and %WF=ucp %NE=O %PoS=CC %ZN=p 
%CT=ADVP 
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%UT =also %WF=ucp %NE=O %PoS=RB %ZN=p 
%CT=NP 
%UT =the %WF=ucp %NE=O %PoS=DT %ZN=p 
%UT =first %WF=ucp %NE=O %PoS=JJ %ZN=p 
%UT =day %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p 
%CT=P 
%UT =of %WF=ucp %NE=O %PoS=IN %ZN=p 
%CT=NP 
%UT=intensified %WF=ucp %NE=O %PoS=JJ %ZN=p 
%UT =federal %WF=ucp %NE=O %PoS=JJ %ZN=p 
%UT =scrutiny %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p 
%CT=P 
%UT =of %WF=ucp %NE=O %PoS=IN %ZN=p 
%CT=NP 
%UT =the %WF=ucp %NE=O %PoS=DT %ZN=p 
%FT=Atlanta %WF=icp %TF=icp %NE=llocation %PoS=JJ %ZN=p 
%MT =- %WF=icp %TF=ncp %NE=O %PoS=JJ %ZN=p 
%LT=based %WF=icp %TF=ucp %NE=O %PoS=JJ %ZN=p 
%UT =carrier %WF=ucp %NE=O %PoS=NN %HD=true %ZN=p 
%CT=CONJ 
%UT =. %WF=ncp %NE=O %PoS=. %ZN=p 
%% EOS 
%% 50S 

215 

The following text is the piece of the decoding events file provided to the maximum 

entropy model for classification corresponding to the example sentence. Although is 

basicaly identical to the training events file, there are three considerations which should 

be noticed. Firstly, the decoding process ignores the annotated named entities at the 

end of each line. These annotations are included in order to performed the comparison 

with the predicted classes by the scoring algorithm. Secondly, sentence boundaries are 

kept because they are necessary to applied the Viterbi algorithm, which estimates the 

most probable sequence of labels (named entity classes) for the whole sentence, and 

ultimately to translate the annotation and predictions back to the BIO notation, which 

is the notation used by the scoring program. Finally, each line starts with the token 

producing the event. This is also ignored during the maximum entropy application, and 

is kept in this file to make more human readable the report of the scoring program. 

%% FEATURES tkf+l tkf+2 tkf-l tkf-2 tkfO tok+l tok+2 tok-l tok-2 tokO znf FMLU 

%% 50S 
valujet icp ucp * * icp#mcp airlines stock NONE NONE valujet p F-organisation 
airlines ucp ucp icp#mcp * icp stock dropped valujet NONE airlines p L-organisation 
stock ucp ucp icp icp#mcp ucp dropped UNK airlines valujet stock p 0 
dropped ucp icp ucp icp ucp UNK monday stock airlines dropped p 0 
sharply icp * ucp ucp ucp monday I dropped stock UNK p 0 
monday * ucp ucp ucp icp I the UNK dropped monday p U-date 
I ucp ucp icp ucp * the first monday UNK I P 0 
the ucp ucp * icp ucp first day I monday the p 0 
first ucp ucp ucp * ucp day of the I first p 0 
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day ucp ucp ucp ucp ucp of trading first the day p 0 
of ucp ucp ucp ucp ucp trading since day first of p 0 
trading ucp ucp ucp ucp ucp since the of day trading p 0 
since ucp ucp ucp ucp ucp the crash trading of since p 0 
the ucp ucp ucp ucp ucp crash and since trading the p 0 
crash ucp ucp ucp ucp ucp and also the since crash p 0 
and ucp ucp ucp ucp ucp also the crash the and p 0 
also ucp ucp ucp ucp ucp the first and crash also p 0 
the ucp ucp ucp ucp ucp first day also and the p 0 
first ucp ucp ucp ucp ucp day of the also first p 0 
day ucp ucp ucp ucp ucp of UN K first the day p 0 
of ucp ucp ucp ucp ucp UNK federal day first of p 0 
intensified ucp ucp ucp ucp ucp federal scrutiny of day UNK p 0 
federal ucp ucp ucp ucp ucp scrutiny of UNK of federal p 0 
scrutiny ucp ucp ucp ucp ucp of the federal UNK scrutiny p 0 
of ucp icp ucp ucp ucp the atlanta scrutiny federal of p 0 
the icp * ucp ucp ucp atlanta - of scrutiny the p 0 
atlanta * ucp ucp ucp icp - based the of atlanta p U-Iocation 
- ucp ucp icp ucp * based carrier atlanta the - p 0 
based ucp * * icp ucp carrier. - atlanta based p 0 
carrier * * ucp * ucp . NONE based - carrier p 0 
. * * ucp ucp * NONE NONE carrier based. p 0 
%% EOS 
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The output to this input is the probability of every token of being associated with all 29 

named entity tags. For example, the following is the output for the word Atlanta-based. 

atlanta U-Iocation 
F-date 2.3582254497589891E-4 
F-Iocation 0.0056284907665606985 
F-money 5.8084742966748794E-5 
F-orga n isation 0.003972190320722765 
F-percent 3.8034777646051736E-6 
F-person 2.749348552523396E-5 
F-time 1. 732437548339911E-5 
L-date 4.78912617717637 4E-6 
L-Iocation 8.880591606821247E-4 
L-money 7.464585779427727E-9 
L-organisation 3.538716311993472E-5 
L-percent 1.1149902005758877E-5 
L-person 3.919547376509764E-7 
L-time 5.908821429276911E-5 
M-date 5.674433920287156E-6 
M-Iocation 1.572481606027267E-5 
M-money 3.0283646902420904E-5 
M-orga n isation 1.020023235271163E-4 
M-percent 3.338873085558022E-8 
M-person 5.601148139433899E-6 
M-time 4.29918584804938E-6 
o 0.03622207086611734 
U-date 2.523912498607799E-4 
U-Iocation 0.9454951129329978 
U-orga nisation 0.006762640356509325 
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U-person 1.6120473375125032E-4 
U-time 8.782180344493859E-7 

-0 

F-date 2.2427269407620365E-4 
F-Iocation 9.761312465862E-7 
F-money 1.98000802195393E-6 
F-organisation 1.0099160338869072E-5 
F-percent 6.436769989325952E-7 
F-person 1.5565573843853617E-7 
F-time 0.001454113467014768 
L-date 1.5315163103567881E-4 
L-Iocation 0.0029026916121269344 
L-money 1.0655820638683854E-5 
L-orga n isation 0.0035994135656187585 
L-percent 2.895073508629643E-6 
L-person 1.3034007607261184E-4 
L-time 3.636429566865979E-6 
M-date 1.0473197292275692E-4 
M-Iocation 8.115132644627172E-5 
M-money 1.0214220922467269E-4 
M-organisation 6.306883913024113E-4 
M-percent 3.9878955612484467E-8 
M-person 4.4994337643814996E-7 
M-time 2.452453201441192E-5 
o 0.9902344229398096 
U-date 7.953225159614118E-5 
U-Iocation 6.121161821338814E-6 
U-orga n isation 1.9101024534620337 E-4 
U-person 1.7384016768339187E-5 
U-time 3.277612841174649E-5 

based 0 
F-date 0.0010599138066777003 
F-Iocation 2.3339245958880563E-5 
F-money 1.579078437197117E-6 
F-organisation 1.2458725322157061 E-6 
F-percent 5.902656497025372E-6 
F-person 2.7884670045230972E-5 
F-time 2.4540518125800207E-4 
L-date 6.232198488898867E-5 
L-Iocation 9.21150184764415E-6 
L-money 4.305207280045616E-6 
L-organisation 2.6005054949159107E-4 
L-percent 2.568766574996694E-6 
L-person 2.0963634223038765E-6 
L-time 2.394891056400395E-5 
M-date 1.5180629034018936E-5 
M-Iocation 4.098018079674603E-5 
M-money 5.0642669272570075E-6 
M-organisation 0.0011839996710339387 
M-percent 7.884049038543913E-7 
M-person 4.062421773683823E-6 
M-time 0.0030214750319969372 
o 0.993220056089924 
U-date 6.5426657607175796E-6 
U-Iocation 5.350868941303706E-4 
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U-organisation 1.3260809718281386E-6 
U-person 1.8431244086216143E-4 
U-time 5.135142640852881E-5 
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These probabilities correspond to the input for the Viterbi search explained in section 

3.3.2. The output of this search is a file in which each token is associated with a unique 

named entity class. The following is the output resulting for the example input. It can 

be noted that LexMENE misclassifies the token Monday in this example. 

%% 50S 
valujet F-organisation F-organisation 
airlines L-organisation L-organisation 
stock 0 0 
dropped 0 0 
sharply 0 0 
monday U-date 0 
,0 0 
the 0 0 
first 0 0 
day 0 0 
of 00 
trading 0 0 
since 0 0 
the 00 
crash 0 0 
and 0 0 
also 0 0 
the 00 
first 0 0 
day 00 
of 00 
intensified 0 0 
federal 0 0 
scrutiny 0 0 
of 00 
the 0 0 
atlanta U-Iocation U-Iocation 
- 0 0 
based 0 0 
carrier 0 0 
.00 
%% EOS 

In the final step, sentence delimiters are replaced by empty lines and the familiarity 

types are added to enable the scoring program to produce the performance report. 



Appendix C 

Decision lists 

In this appendix, the hypotheses built by the Ripper algorithm are presented. In each 

MOLl MENE version that utilises this algorithm, the real name of the features are re­

placed by the simpler names £1, f2, etc., so that the process that checks which rules are 

fired by each example can do so very efficiently by just looking up into a table. Conse­

quently, each decision list presented here is preceded by a table with the interpretation 

of each feature reported in the final hypothesis outputted by the Ripper algorithm. 

C.I MOLl MENE V6 

Recall that MOLl MENE V6 introduces features which inform the algorithm of the 

chunk tags and the head words of these chunks in a window of sizes [4,4]. Therefore, 

there are 18 new features per token, whose relation with the names as used by Ripper 

can be seen in table C.l. 

It should be remarked that the atomic features are considered set-valued, that is their 

value is a set of strings (Cohen 1996). This is not really necessary for the features 

employed here, as they could be transformed into nominal features - though it would 

be a bit unnatural for the head word feature. Nevertheless, this kind of features are 

necessary for the next versions of MOLl MENE and consequently also used in this 

version for the sake of standarisation. 

The following is the outputted final hypothesis given by the Ripper algorithm. In the 

format utilised in this implementation by Cohen (1995), each line contains the class 

predicted followed by the conditions of the rule. The symbols - and ! - represent the 

symbols E and ~ respectively, so that the condition is met if the value of the feature 

-a set- contains or not a given string. At the end of each rule, the Ripper algorithm 

reports the number of positive and negative examples covered by the rule. 
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Table C.1: Relation between the names of the features as used by Ripper and the r·· II . ~ ed 
features in MOll MENE V3jV6jV9. more IngUlstlca yin orm 

I Ripper's name I MOLl MENE V3jV6jV9 feature 

fl chunk_4 's tag 
f2 chunk_4 's head word 
f3 chunk_3 's tag 
f4 chunk_3 's head word 
f5 chunk_ 2 's tag 
f6 chunk_2 's head word 
IT chunk_1's tag 
f8 chunk_1's head word 
f9 focus chunk's tag 
flO focus chunk's head word 
fl1 chunk+1 's tag 
fl2 chunk+1's head word 
fl3 chunk+2 's tag 
fl4 chunk+2 's head word 
fl5 chunk+3 's tag 
fl6 chunk+3 's head word 
fl7 chunkH's tag 
fl8 chunkH's head word 

Utime :- flO ~ night, f5 ~ NP, fl5 ~ VP (5/4). 
Mmoney :- flO ~ million, fl3 ~ CONJ, fl ~ CONJ (5/2). 
Mdate :- flO ~ years, f11 ~ ADVP, f7 ~ NP (12/0). 
Mdate :- flO ~ years, f6 ~ UNK, fl5 ~ CONJ (6/5). 
Fdate :- f9 ~ NP, flO ~ last (36/6). 
Ldate :- f11 ~ CONJ, flO ~ ago (20/1). 
Ldate :- f11 ~ CONJ, f8 ~ last (19/4). 

s 

Uperson :- fl2 ~ said, f8 ~ P _COMMA, flO !~ he, fl3 ~ CONJ, f3 - VP, flO !~ 

official, flO !~ she (33/14). 
Uperson :- fl2 ~ said, f8 ~ P _COMMA, fl3 ~ CONJ, flO !- he, flO - UNK (10/1). 
Ulocation :- f11 ~ CONJ, f3 ~ P, f8 ~ in, fl2 ~ P COMMA, fl5 - CONJ, fl !­
CONJ, fl8 !~ UNK, f2 !~ bombed (16/0). 
Ulocation :- f9 ~ NP, f11 ~ CONJ, f8 - P COMMA, f3 ~ P, fl5 - NP, flO !- UNK 

(36/28). 
Ulocation :- f11 ~ CONJ, f8 ~ in, f3 ~ P, flO ~ atlanta (8/0). 
Ulocation :- f9 ~ NP, f11 ~ CONJ, flO ~ washington (37/0). 
Uorganisation :- f9 ~ NP, flO ~ valujet (109/30). 
Uorganisation :- f9 ~ NP, flO ~ faa (105/103). 
Uorganisation :- f9 ~ NP, flO ~ twa, f8 !- after (54/14). 
default 0 (80755/10148). 

================ summary ================ 
Train error rate: 11.31% +/- 0.10% (91626 data points) < < 
Hypothesis size: 16 rules, 74 conditions 
Learning time: 247.31 sec 

In this example, the first rule states that if the focus head word is night and the third 

and the eighth chunks in the context are a noun phrase and a verb phrase respectively, 

then the token must be classified as a one-token time expression. This rules covers nine 
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examples: five of them are classified correctly and four incorrectly. 

C.2 MOLl MENE V7 

MOLl MENE V7 cosideres features which include the lemmas of the tokens in a window 

of sizes [1,1], their part-of-speech tags and the WordNet® synsets of their close syn­

onyms. In other words, there are nine new features per token. Because there is not any 

kind of word sense disambiguation applied, all this features are of type set (Cohen 1996). 

In this way, a word can be -for example- both a noun and an adjective having both 

part-of-speech tags, the corresponding lemmas and all the close synonyms synsets for 

every sense in each lexical category. 

Table C.2: Relation between the names of the features as used by Ripper and the more linguistically informed 
features in MOll MENE V4/V7/VIO. 

I Ripper's nallle I MOLl MENE V 4/V7 /VIO features I 
f1 token_l's lemmas 
f2 token_l's PoS tag 
f3 token_l's close synonyms synsets 
f4 focus token's tag 
f5 focus token's PoS tag 
f6 focus token's close synonyms synsets 
f7 token+l's lemmas 
f8 token+l's PoS tag 
f9 token+l's close synonyms synsets 

Table C.2 presents the names used by Ripper in building the following decision list 

hypothesis with the more informed features of MOLl MENE V7. As an example, the 

fourth rule indicates that if the token that follows the focus token is a synonym of the 

meaning n12793745 (e.g. day, space-age), and the token that preceeds the focus token 

is a form of the word late, then the focus token must be classified a token in the middle 

of a time expression. This rules correctly classifies three examples. 

Lpercent :- f4 - percent (34/0). 
Fpercent :- f7 - percent (33/1). 
Mtime :- f7 - local time (16/0). 
Mtime :- f9 - n 12793745 , f1 - late (3/0). 
Mtime :- f9 - n12896567, f2 - ee, f7 - second (4/0). 
Utime :- f6 - n12832221, f3 - n12831744 (41/4). 
Utime :- f6 - n12836480, f1 - sunday (2/0). 
Utime :- f6 - n12836480, f8 - NN, f6 ,- n12823670 (4/0). 
Uti me :- f6 - n12833627, f4 ,- day (11/4). 
Utime :- f4 - tonight (2/0). 
Mmoney :- f2 - '$', f8 - CD, f2 ,- PRP (64/0). 
Mmoney :- f9 - n11302011, f9 ,- n11293334 (6/1). 
Mlocation :- f8 - NNP, f9 - n7498246, f2 - NNP (35/6). 
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Mlocation ;- f8 - NNP, f9 - n2336754 (11/3). 
Mlocation ;- f8 - NNP, f2 - NNP, f7 - international (6/0). 
Mlocation :- f8 - NNP, f1 - new _york_ city (6/0). 
Mlocation :- f8 - NNP, f2 - NNP, f3 - n7574159 (4/3). 
Lmoney ;- f2 - CD, f5 - CD, f8 - IN (19/7). 
Lmoney :- f5 - CD, f2 - CD, f8 - DT (8/0). 
Lmoney ;- f5 - CD, f2 - '$', f2 ,- PRP (23/2). 
Lmoney ;- f2 - CD, f5 - CD, f8 - P _COMMA (10/6). 
Lmoney :- f2 - CD, f6 - n11524771 (14/0). 
Lmoney :- f2 - CD, f5 - CD, f8 - NN, f7 ,- flight, f7 ,- plane (7/1). 
Lmoney ;- f2 - CD, f5 - CD, f8 - P _COLON (3/0). 
Fmoney ;- f5 - '$', f8 - CD, f5 ,- PRP (85/5). 
Fmoney :- f7 - cent (12/0). 
Fmoney :- f1 - donate (1/0). 
Mperson :- f6 - n5710086, f2 - NNP, f8 - NNP, f1 ,- be, f3 ,- n6790797, f3 ,­
n11594993 (49/4). 
Mperson :- f2 - NNP, f3 - n5408511, f8 - NNP (5/0). 
Mperson :- f5 - NNP, f3 - n8049747, f6 - n5938672 (12/0). 
Mperson :- f2 - NNP, f8 - NNP, f7 - jr (4/0). 
Mperson :- f2 - NNP, f8 - NNP, f1 - hillary (3/0). 
Ftime ;- f5 - CD, f8 - CD, f2 - NNP (101/1). 
Ftime :- f9 - n5294032, f4 ,- pan (23/0). 
Ftime :- f7 - pP _PERIODmP _PERIOD (9/0). 
Ftime :- f9 - n12836480, f4 - last (9/1). 
Ftime :- f7 - aP _PERIODmP _PERIOD (8/0). 
Ltime :- f2 - CD, f5 - CD, f8 ,- CD, f8 ,- NNS, f8 ,- P PERIOD, f8 ,- TO, f8 ,­
CC, f8 ,- NNP, f8 ,- JJ, f8 ,- NN (101/8). 
Ltime :- f6 - n12824116, f4 - night, f2 - JJ (11/3). 
Ltime :- f6 - n5294032, f1 ,- pan, f8 ,- NNP (20/0). 
Ltime :- f6 - n12803990 (9/0). 
Ltime :- f4 - pP _PERIODmP _PERIOD (6/0). 
Ltime :- f4 - aP _PERIODmP _PERIOD (4/0). 
Mdate :- f9 - n12811110, f2 - JJ, f5 - CD (21/1). 
Mdate :- f6 - n12811110, f8 - RB (33/14). 
Mdate :- f9 - n12846772, f1 - earlier (9/0). 
Mdate :- f3 - n12877042, f8 - P _COMMA, f1 - sept (4/0). 
Mdate :- f2 - CD, f8 - CD, f5 - P _COMMA (23/9). 
Fdate ;- f6 - n12873180, f8 - CD (127/3). 
Fdate :- f9 - n12896721, f4 - last (54/2). 
Fdate :- f9 - n12811110, f7 - week, f8 - NN (18/7). 
Fdate :- f9 - n12811110, f7 - year, f5 - DT, f2 ,- IN (14/11). 
Fdate :- f6 - a1370871, f8 - NNP (22/0). 
Fdate ;- f9 - n12811110, f5 - CD, f2 ,- IN, f7 - years, f1 ,- be, f2 ,- RB, f2 ,- VBG, 

f2 ,- TO, f2 ,- CC (15/5). 
Ldate :- f6 - n12896721, f1 - last (54/2). 
Ldate :- f3 - n12872860, f5 - CD (104/21). 
Ldate :- f6 - n12811110, f4 - week, f5 - NN (18/6). 
Ldate :- f6 - n12811110, f4 - year, f2 - DT, f8 ,- IN, f7 ,- earlier (13/9). 
Ldate :- f6 - n12811110, f4 - month, f5 - NN (9/2). 
Ldate :- f8 - P COMMA, f3 - n12811110, f4 - ago (13/0). 
Ldate :- f6 - n12811110, f6 - n11598583, f8 - P _COMMA (4/1). 
Flocation :- f5 - NNP, f8 - NNP, f2 - IN, f9 - n7533497, f9 ,- n7430143 (43/1). 
Flocation :- f5 - NNP, f8 - NNP, f2 !- NNP, f9 - n7130825, f2 !- IN (70/21). 
Flocation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f9 - n7653466 (47/9). 
Flocation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f9 - n976162, f2 !- IN, f2 ,- DT, f2 !-
CD, f6 - n976162 (13/1). 
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Flocat~on :- f5 - NNP, f8 - NNP, f2 - IN, f4 - pearl_harbor (6/0). 
Flocat~on :- f5 _- NNP, f~ - NNP, f:' - IN, f6 - n7430143, f4 ,- new_york (13/0). 
Flocatlon :- f5 NNP, f8 NNP, f2' NNP, f9 - n7700297, f4 ,- uP PERIODsP PERIOD 
(17/3). - -

Flocation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f6 - n7430143, f9 - n6993235 (8/1). 
Flocat~on :- f5 - NNP, f8 - NNP, f2 ,- NNP, f7 - airport (14/2). 
L1ocat~on :- f2 ~ NNP, f5:: NNP, f8 ,- NNP, f6 - n7170582, f3 - n7170582 (102/1). 
L1ocat~on :- f2 _ NNP, f5 _NNP, f8 ,- NNP, f6 - n7130825, f6 ,- n12345618 (50/11). 
L1ocatlon :- f2 NNP, f5 NNP, f6 - n7653466, f3 - n7172103 (32/1). 
L1ocation :- f2 - NNP, f6 - n2342336 (50/18). 
L1ocation :- f2 - NNP, f6 - n7158145, f3 - n7144938 (21/0). 
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n7700297 (17/4). 
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n7710579 (12/0). 
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n7745910 (12/1). 
L1ocation :- f2 - NNP, f5 - NNP, f6 - n7034213, f4 - county (11/3). 
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n7164229, f3 - n7164229 (8/0). 
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f4 - pearl_harbor (10/0). 
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n3573798 (6/1). 
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f1 - persian_gulf (6/0). 
L1ocation :- f2 - NNP, f5 - NNP, f4 - york (5/1). 
L1ocation :- f2 - NNP, f4 - everglades (9/0). 
L1ocation :- f2 - NNP, f5 - NNP, f6 - n7552184 (5/2). 
L1ocation :- f5 - NNP, f2 - NNP, f6 - n7457534 (9/8). 
L1ocation :- f2 - NNP, f5 - NNP, f6 - n7740659 (5/1). 
L1ocation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f3 - n7003112 (7/6). 
L1ocation :- f2 - NNP, f6 - n7130825, f5 - NNPS (4/0). 
L1ocation :- f2 - NNP, f5 - JJ, f8 - JJ (9/6). 
L1ocation :- f5 - NNP, f2 - NNP, f3 - n7533173, f6 - n7533173 (5/1). 
L1ocation :- f5 - NNP, f6 - n11834397 (4/1). 
L1ocation :- f5 - NNP, f6 - n7758560, f2 - NNP (3/0). 
L1ocation :- f5 - NNP, f1 - camp (3/0). 
Fperson :- f5 - NNP, f8 - NNP, f2 - NN, f3 - n8041449 (33/1). 
Fperson :- f5 - NNP, f8 - NNP, f2 - VBD, f1 - say (68/17). 
Fperson :- f5 - NNP, f8 - NNP, f6 - n9160375 (41/7). 
Fperson :- f5 - NNP, f8 - NNP, f9 - n5710086, f6 ,- n11594993, f9 !- n6737514 
(41/15). 
Fperson :- f5 - NNP, f8 - NNP, f3 - n8655657, f6 ,- n8788729 (30/1). 
Fperson :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 ,- DT, f9 - n9184552, f7 !- service, 
f9 ,- n8307222 (18/2). 
Fperson :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 ,- DT, f4 - robert (11/0). 
Fperson :- f5 - NNP, f8 - NNP, f2 ,- DT, f2 ,- NNP, f6 ,- n7130825, f4 ,- bc, f6 -

n8923881 (10/1). 
Lperson ;- f2 - NNP, f8 - P _COMMA, f5 - NNP, f3 - n5708379 (32/2). 
Lperson :- f2 - NNP, f8 - P _COMMA, f5 - NNP, f3 ,- n2771586 (239/132). 
Lperson :- f2 - NNP, f5 - NNP, f8 ,- NNP, f6 - n9296454, f4 ,- service (45/2). 
Lperson :- f2 - NNP, f5 - NNP, f8 ,- NNP, f8 - VBD, f9 - v648722, f3 ,- n3977588, 
f6 ,- n2847188, f3 ,- n6748862, f1 ,- air force 26/12}. 
Uperson :- f5 - NNP, f8 - VBD, f9 - v648722, f2 - P _ SINGLEQUOTEP _ SINGLEQUOTE 

(70/0) . 
Uperson :- f5 - NNP, f8 - VBD, f9 - v734519, f2 ,- NNP, f2 ,- DT, f2 ,- IN (99/9). 
Uperson :- f5 - NNP, f8 - VBD, f2 - P _COMMA (31/14). 
Uperson :- f5 - NNP, f8 ,- NNP, f2 ,- NNP, f6 - n8908571 (32/0). 
Uperson ;- f5 - NNP, f8 ,- NNP, f8 - VBD, f6 - n9360060, f6 ,- n9067642 (11/0). 
Uperson :- f5 - NNP, f8 ,- NNP, f3 - v734519, f6 ,- n12831744, f8 - P _PERIOD 

(12/4). 
Uperson :- f5 - NNP, f8 ,- NNP, f2 ! - NNP, f6 - n8696598, f4 ,- houston (33/3). 
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Uperson :- f5 - NNP, f8 ,- NNP, f2 ,- NNP, f6 - n9351365 (18/6). 
Uperson :- f5 - NNP, f8 ,- NNP, f2 ,- NNP, f3 - v600025, f8 - P COMMA (9/2). 
Udate :- f5 - CD, f1 - c (90/0). -
Udate :- f6 - n12831744, f2 ,- JJ, f4 !- th (200/1). 
Udate :- f5 - CD, f8 ,- NNS, f2 - IN, f8 - P _COMMA (43/8). 
Udate :- f5 - CD, f8 !- NNS, f2 ,- NNP, f8 !- IN, f2 ,- P COMMA f8 ,- JJ 
f8 ,- CD, f8 !- NN, f2 ,- NN, f3 ,- v50921, f2 ,- CC, f2 '--CD, f8 ,-' CC, f8 ,..: 
P _COMMA, f8 !- NNP, f8 !- P _PERIOD, f8 !- TO, f2 ,- NNPS, f2 ,- P COLON, 
f8 ,- JJR, f8 ,- VBN, f9 ,- v50921 (111/83). -
Udate :- f5 - NNP, f8 - CD, f2 - NNP, f6 ,- n6790295, f1 ,- bound, f3 !- n12425532, 
f4 ,- world, f1 ,- honeymoon, f1 ,- delta, f1 ,- district, f4 ,- bound (101/6). 
Udate :- f5 - CD, f2 - IN, f8 - P _PERIOD (25/24). 
Udate :- f5 - CD, f2 - DT, f8 - NN (21/7). 
Udate :- f6 - n12824724, f6 !- n12846772 (30/3). 
Udate :- f6 - n12877042, f2 - IN (28/5). 
Udate :- f4 - sunday (28/0). 
Morganisation :- f2 - NNP, f8 - NNP, f5 - NNP, f3 - n7130825, f4 - times (84/0). 
Morganisation :- f2 - NNP, f8 - NNP, f5 - NNP, f6 - n5590116, f1 ,- crash (95/0). 
Morganisation :- f5 - NNP, f2 - NNP, f8 - NNP, f9 - n2847188, f1 - national (41/0). 
Morganisation :- f2 - NNP, f8 - NNP, f6 - n976162 (73/9). 
Morganisation :- f2 - NNP, f8 - NNP, f9 - n6882991 (61/1). 
Morganisation :- f2 - NNP, f8 - NNP, f9 - n6769589 (44/2). 
Morganisation :- f2 - NNP, f8 - NNP, f3 - n5272695 (25/10). 
Morganisation :- f2 - NNP, f8 - NNP, f6 - n3977588, f9 ,- n7528713, f1 ,- crash 
(18/2). 
Morganisation :- f2 - NNP, f8 - NNP, f9 - n6748862 (14/2). 
Morganisation :- f2 - NNP, f8 - NNP, f1 - uP _PERIODsP _PERIOD (12/5). 
Morganisation :- f2 - NNP, f8 - NNP, f9 - n12475555, f7 - co (8/0). 
Morganisation :- f5 - NNP, f2 - NNP, f8 - NNPS (26/0). 
Morganisation :- f2 - NNP, f8 - NNP, f9 - n6895143 (8/0). 
Morganisation :- f2 - NNP, f8 - NNP, f6 - n7593134 (5/0). 
Morganisation :- f2 - NNP, f8 - NNP, f9 - n3085921, f1 ,- world, f7 ,- hall (9/0). 
Morganisation :- f5 - NNP, f8 - NNP, f9 - n3725783 (16/2). 
Morganisation :- f2 - NNP, f8 - NNP, f4 - rent (8/0). 
Morganisation :- f2 - NNP, f8 - NNP, f9 - n6693458 (7/0). 
Morganisation :- f2 - NNP, f8 - NNP, f3 - n7593134, f9 !- n6987833 (6/0). 
Morganisation :- f2 - NNP, f8 - NNP, f9 - n717997 (5/0). 
Morganisation :- f5 - NNP, f2 - NNP, f3 - n7909591, f8 ,- NNP (8/1). 
Morganisation :- f5 - NNP, f2 - NNP, f6 - n5975532 (7/1). 
Morganisation :- f5 - NNP, f8 - NNP, f9 - n438352, f9 - n207743 (8/1). 
Morganisation :- f2 - NNP, f8 - NNP, f7 - police_department (4/0). 
Morganisation :- f2 - NNP, f8 - NNP, f3 - n6879976 (5/2). 
Morganisation :- f2 - NNP, f8 - NNP, f9 - n9287812 (5/2). 
Morganisation :- f5 - NNP, f8 - NNP, f9 - n5282591 (10/8). 
Forganisation :- f5 - NNP, f8 - NNP, f2 - DT, f9 - n6757947 (60/0). 
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - DT, f9 - n226730 (32/0). 
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT, f9 - n6788854 (34/0). 
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - DT, f6 ,- n5708379, f6 -

n7676970 (17/0). 
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - CD, f4 - ny (28/0). 
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - IN, f6 - n7431482, f4 ,- la 

(65/25). 
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f6 - n7474210, f: - CD (14/0). _ 
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - DT, f6! n5938672, f9 

n3756403 (12/0). _ 
Forganisation :- f5 - NNP, f8 - NNP, f2 ,- NNP, f2 - DT, f6 ,- n5938672, f9 
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n8083876 (12/0). 

Forgan~sat~on :- f5 = NNP, f8 = NNP, f2 !- NNP, f9 - n5592130 (25/1). 
Forgan~sat~on :- f5 _ NNP, f8 _ NNP, f2 !- NNP, f2 - IN, f6 - n2792013 (12/0). 
Forganlsatlon :- f5 NNP, f8 NNP, f2 !- NNP, f2 - DT, f6 !- n5708379, f9 !-
n7041023, f9 - n6686439 (10/0). 

Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT, f6 !- n5938672, f4 -
uP _PERIODsP _PERIOD (10/2). 
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - IN, f9 - n6643594, f7 !- europe 
(20/2). 

Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT, f9 - n6895143 (9/0). 
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f6 - n7902212 (19/0). 
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f9 - n218158 (17/0). 
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f6 - n6757947 (28/3). 
Forganisation :- f5 - NNP, f7 - airline, f8 - NNPS (32/0). 
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - IN, f9 - n6788854 (7/0). 
Forganisation :- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT, f9 - n6637680 (6/0). 
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f6 - n6790797 (128/1). 
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f6 - n6882991, f4 !- bureau (62/1). 
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f6 - n6769589, f1 !- army (41/0). 
Lorganisation :- f2 - NNP, f5 - NNP, f8 ,- NNP, f3 - n6757947 (41/1). 
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f6 - n3756403 (26/0). 
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f3 - n7457534 (25/4). 
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f8 - NN, f9 - n2341562 (10/5). 
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f3 - n2692952 (17/2). 
Lorganisation :- f2 - NNP, f5 - NNP, f8 !- NNP, f6 - n549894, f1 !- trade (20/0). 
Lorganisation :- f2 - NNP, f5 - NNPS, f6 - n3898137 (46/1). 
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f6 - n5592130 (17 /2). 
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f3 - n7170582 (13/2). 
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f6 - n5279815 (11/2). 
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f3 - n5272695 (6/1). 
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f6 - n6686439 (11/6). 
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f1 - national_guard (6/0). 
Lorganisation :- f5 - NNP, f2 - NNP, f9 - n6790295 (15/6). 
Lorganisation :- f5 - NNP, f2 - NNP, f8 !- NNP, f6 - n12475555 (6/1). 
Lorganisation :- f5 - NNP, f2 - NNP, f7 - dc (6/1). 
Lorganisation :- f5 - NNP, f2 - NNPS, f8 !- NNP, f8 !- CD (12/3). 
Lorganisation :- f2 - NNP, f1 - pan (16/1). 
Lorganisation :- f5 - NNP, f6 - n6751988, f2 - IN (10/2). 
Lorganisation :- f5 - NNP, f2 - NNP, f6 - n6788854, f1 - air_force (6/0). 
Lorganisation :- f2 - NNP, f3 - n6789709, f1 - squadron (9/0). 
Ulocation ;- f5 - NNP, f2 - IN, f8 !- NNP, f8 - P _ COMMA (153/49). 
Ulocation :- f5 - NNP, f6 - n7424046 (175/7). 
Ulocation :- f5 - NNP, f8 !- NNP, f2 - IN, f6 - n7172103 (31/2). 
Ulocation ;- f5 - NNP, f8 ,- NNP, f2 - P COMMA, f6 - n7431482 (48/0). 
Ulocation ;- f5 - NNP, f6 - n7168879, f8 T- NNP (96/5). 
Ulocation ;- f5 - NNP, f8 ! - NNP, f2 - IN, f6 - n7474210 (27/3). 
Ulocation ;- f5 - NNP, f8 ,- NNP, f2 - P COMMA, f6 - n7165212 (30/0). 
Ulocation :- f5 - NNP, f8 !- NNP, f6 - n747421O, f4 !- independence, f2 !- NNP, f4 

,- troy (35/2). 
Ulocation ;- f5 - NNP, f8 ,- NNP, f2 !- NNP, f6 - n7168503 (33/0). 
Ulocation :- f5 - NNP, f8 ,- NNP, f6 - n7529345 (52/1). 
Ulocation :- f5 - NNP, f6 - n7166963, f9 ,- n7166963, f4 ,- jordan (40/5). 
Ulocation :- f5 - NNP, f8 ,- NNP, f2 - IN, f6 - n7130825 (15/2). 
Ulocation :- f5 - NNP, f8 ,- NNP, f6 - n7165019 (22/1). 
Uorganisation :- f5 - NNP, f2 - DT, f8 !- NNP (412/228). 
organisation :- f5 - NNP, f8 !- NNP, f2 ! - NNP, f8 - POS (71/53). 
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Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f8 - NNS, f9 - n8686103 (27/5). 
Uorganisation :- f5 - NNP, f8 !- NNP, f2 !- NNP, f8 - VBZ (46/40). 
Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f6 !- n12345618, f8 - NNS, f2 -
JJ (10/2). 

Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f8 - NN, f9 - n231407 (1O/0). 
Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f8 - NN, f2 - JJ (23/1O). 
Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f6 !- n12345618, f8 - ')', f2 - '(' 
(18/7). 

Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f6 !- n12345618, f2 - CD, f8 !­
NNS (11/4). 

Uorganisation :- f5 - NNP, f2 !- NNP, f8 !- NNP, f6 !- n12345618, f6 - n6788854 
(11/2). 
default 0 (80388/3411). 

================ summary ================ 
Train error rate: 5.01% +/- 0.07% (91626 data points) < < 
Hypothesis size: 221 rules, 1065 conditions 
Learning time: 2533.86 sec 

C.3 MOLl MENE VB 
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MOLl MENE V8 uses trigger synsets as linguistically informed features. As there are 

three lists of trigger synsets (the next-is list, the this-is list and the previous-is list), 

there are three new features per token with the synsets hit by the tokens in a window 

of sizes [1,1]. Table C.3 shows the relation between these features and the names that 

Ripper utilises. 

Table C.3: Relation between the names of the features as used by Ripper and the more linguistically informed 
features in MOll MENE V5jV8jVl1. 

I Ripper's name I MOLl MENE V5/V8/Vll features 

f1 synsets in the next-is list hit by token_l 
f2 synsets in the this-is list hit by the focus token 
f3 synsets in the previous-is list by token+l 

The following is the final hypothesis as given by the Ripper algorithm. 

Lpercent :- f2 - n11658514 (34/1). 
Fpercent :- f3 - n11658514 (33/2). 
Mtime :- f3 - n19843, f2 - n16993, f3 !- n24936 (10/5). 
Mtime :- f3 - n19843, f2 - r250909 (4/0). 
Uti me :- f2 - n12889670, f1 - n24936 (30/2). 
Utime ;- f2 - n12832221, f2 ! - n8944134 (24/6). 
Utime ;- f2 - n12889670, f2 - n12832754 (4/0). 
Mmoney :- f3 - n11302011 (6/1). 
Mlocation ;- f3 - n2888347, f1 - n1742, f2 - n22634 (21/4). 
Mlocation ;- f3 - n2888347, f3 - n2336754 (1O/4). 
Mlocation :- f3 - n2342336, f1 - n1742, f2 - n13067 (11/2). 
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Mlocat~on :- f1 = n19046, f3 - n6992023, f2 - n19046 (7/0). 
Mlocatlon :- f3 n6905978, f2 - n7147136, f2 ,- n7937305 (4/0). 
Lmoney :- f2 - n11295091, f2 - n11474780 (17/1). 
Fmoney :- f3 - n11562705 (12/0). 
Mperson :- f2 - n5708379, f1 - n13067 (38/7). 
Mperson :- f2 - n5708379, f2 - n11603699 (4/1). 
Mperson :- f2 - n5708379, f3 - n5303, f1 ,- n11455258 (6/2). 
Mperson :- f2 - n5708379, f2 - n12366980 (2/0). 
Mperson :- f1 - n5303, f1 - n8152966 (3/0). 
Mperson :- f3 - n8388313 (4/0). 
Mperson :- f2 - n11667742, f2 - n11586299, f1 ,- n24936 (3/0). 
Mperson :- f1 - n8391286, f2 - n8338222 (2/0). 
Ftime :- f3 - n5293770, f2 ,- n7856852 (23/0). 
Ftime :- f3 - n12889670, f2 - a1370871 (9/2). 
Ftime :- f3 - r250909 (8/0). 
Ltime :- f3 - NoWordKey, f1 ,- n1742, f1 ,- n16993, f2 - n5293770 (4/0). 
Mdate :- f3 - n12786206, f1 - a1370871 (11/1). 
Mdate :- f3 - n12786206, f1 - r60367 (9/2). 
Mdate :- f2 - n12786206, f3 - r73272 (23/1). 
Mdate :- f1 - n12786206, f1 - n12872860, f1 - n6729321 (4/1). 
Mdate :- f3 - n12786206, f3 - n12811259, f1 - a421470 (5/1). 
Mdate :- f3 - n12786206, f1 - a2922382 (5/2). 
Mdate :- f3 - n12786206, f1 - n12786206, f2 - n24936 (4/2). 
Fdate :- f2 - n12872860, f1 ,- a1370871 (132/46). 
Fdate :- f3 - n12786206, f2 - a1370871, f3 ,- n6067926 (76/2). 
Fdate :- f3 - n12786206, f3 - n12811259, f1 - n1742 (9/6). 
Fdate :- f3 - n12786206, f3 - n12806554, f1 - n1742 (7/0). 
Fdate :- f3 - n12786206, f2 - n12826002 (8/3). 
Fdate :- f3 - n12786206, f2 - a790152 (7/2). 
Ldate :- f2 - n12786206, f1 - a1370871, f2 ,- n16840 (76/2). 
Ldate :- f1 - n12872860, f3 ,- NoWordKey (106/68). 
Flocation :- f3 - n7111224, f2 - n7111224, f2 ,- n7492354, f2 - n7058546 (104/23). 
Flocation :- f3 - n1742, f2 - n1742, f3 ,- n13067, f2 ,- n13067, f3 ,- n14223, f2 -
n7582157 (27/9). 
Flocation :- f3 - n1742, f2 - n19046, f3 - n19046, f2 ,- n13067, f2 - n7117259 
(13/0). 
Flocation :- f3 - n7111224, f2 - n7111224, f3 ,- n7058546, f2 ,- n22634, f2 ,- n24503 
(25/5). 
Flocation :- f3 - n1742, f3 - n7130102, f3 - n9377530, f2 ,- n1742, f1 ,- n13067 
(29/10). 
Flocation :- f3 - n7111224, f2 - n7062038, f1 - NoWordKey (12/2). 
Flocation :- f3 - n1742, f2 - n1742, f3 - n7667106, f2 - n7497888 (31/0). 
Flocation :- f3 - n1742, f2 - n7130825, f3 - n7623806 (9/0). 
Flocation :- f3 - n1742, f2 - n7130825, f3 - n7101501, f2 - n7758560 (6/0). 
Llocation :- f2 - n7111224, f1 - n7111224, f3 ,- n22113, f2 ,- n16840, f2 - n7130102 
(72/2). 
Llocation :- f2 - n1742, f1 - n1742, f2 ,- n13067, f1 ,- n13067, f3 ,- n16993, f1 -
n7058546 (77/12). 
Llocation :- f2 - n1742, f1 - n1742, f2 - n7667106, f1 - n7497888 (30/1). 
Llocation :- f2 - n1742, f1 - n1742, f2 ,- n13067, f2 - n7582157, f1 - n7582157 

(24/3). 
Llocation :- f2 - n1742, f2 - n2338751, f1 - n6961162 (16/0). 
Llocation :- f2 - n1742, f1 - n1742, f2 ,- n13067, f1 - n7034213, f1 ,- n22634, f2 
,- n1l800524, f1 ,- n7184130 (21/2). 
Llocation :- f2 - n1742, f1 - n1742, f2 - n2338751, f1 - n5303 (16/0). 
Llocation :- f2 - n1742, f1 - n19046, f2 - n7459488 (13/0). 
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Llocation ;- f2 - n1742, f2 - n6778253, f1 ,- n1742 (28/15). 

Llocat~on :- f2 = n1742, f1 = n1742, f1 ,- n13067, f2 - n7623806 (9/0). 
Llocatlon ;- f2 n1742, f1 n1742, f2 - n7058546, f2 - n7653466 (6/0). 
Llocation ;- f2 - n1742, f1 - n19046, f1 - n7505383 (6/1). 
Llocation ;- f2 - n1742, f1 - n1742, f2 - n2342336, f1 !- n7111224 (6/2). 
Llocation :- f2 - n1742, f2 - n7036073 (11/5). 
Llocation :- f2 - n1742, f1 - n1742, f2 - n12897329 (6/0). 
Llocation :- f2 - n1742, f1 - n1742, f2 - n7582157, f1 - n7653466 (4/0). 
Llocation :- f2 - n1742, f1 - n1742, f1 - n3277837 (7/6). 
Llocation :- f2 - n1742, f2 - n7575544 (6/5). 
Llocation :- f2 - n1742, f2 - n7582157, f2 - n3783785 (4/3). 
Fperson :- f2 - n2956, f2 - n7953417, f2 !- n8032285 (77/20). 
Fperson :- f2 - n2956, f3 - n5708379, f3 !- n12599031 (21/1). 
Fperson :- f2 - n3135, f2 - n8523465 (19/0). 
Fperson :- f1 - n5303, f1 - n8337045, f1 - n8655657, f2 !- n8655657, f1 - n22113 
(25/3). 
Fperson :- f2 - n2956, f2 - n7801312 (18/4). 
Fperson :- f2 - n2956, f2 - n8536242, f3 - n6992023 (7/0). 
Fperson :- f1 - n5303, f1 - n8712722, f3 - n13067 (21/5). 
Fperson :- f2 - n3135, f2 - n8056193, f2 - n8580113 (10/0). 
Fperson :- f2 - n2956, f2 - n8045071, f2 - n8528433 (7/0). 
Fperson ;- f2 - n3135, f2 - n7956863 (10/1). 
Fperson :- f3 - n3135, f1 - v2154903, f3 - n7902627 (8/0). 
Fperson :- f2 - n3135, f2 - n8536242, f2 - n7904081, f2 !- n8477015 (8/4). 
Fperson :- f3 - n3135, f3 - n8536242, f2 - n2847188 (4/0). 
Fperson ;- f1 - v730155, f3 - n7893547 (7/4). 
Fperson :- f3 - n2956, f3 - n8648356, f3 !- n8619573, f2 - n5294998 (5/0). 
Fperson :- f2 - n7832025 (16/1). 
Fperson :- f2 - n2956, f2 - n7960124, f2 - n7961997 (6/0). 
Fperson :- f2 - n3135, f2 - n8853746 (6/0). 
Fperson :- f2 - n3135, f2 - n3272277 (6/0). 
Fperson :- f1 - n5303, f1 - n7904081, f1 - n2883498 (5/0). 
Fperson :- f1 - v730155, f2 - n8163608 (3/0). 
Fperson :- f1 - n5555437 (11/0). 
Lperson :- f1 - n2956, f1 - n7953417, f1 !- n8032285 (55/14). 
Lperson :- f2 - n3135, f2 - n7902627, f2 !- n7899836, f1 - n23704 (16/2). 
Lperson :- f1 - n2956, f1 - n8523465 (19/0). 
Lperson :- f1 - n2956, f1 - n8704783, f1 - n16840 (14/1). 
Lperson :- f1 - n2956, f2 - n2956, f2 - n8563620 (10/4). 
Lperson :- f2 - n3135, f2 - n8833984, f2 !- n25413, f2 !- n24936, f2 - n2656025 

(11/0). 
Lperson :- f1 - n5708379, f3 - NoWordKey (15/3). 
Lperson :- f1 - n2956, f1 - n8056193, f1 - n8580113 (8/0). 
Lperson :- f2 - n2956, f1 - n1742, f2 - n8833984, f2 !- n22634 (18/8). 
Lperson ;- f1 - n2956, f1 !- n2664, f1 - n8391286 (6/2). 
Lperson :- f1 - n2956, f1 - n8536242, f1 - n8629644, f1 !- n8024371 (7/1). 
Lperson ;- f1 - n5708379, f1 !- n11478129, f1 - n11455258, f1 - n11474597 (6/2). 
Lperson :- f2 - n3135, f2 - n7902627, f2 !- n8619573, f2 !- n8105326, f1 - n1742, 

f2 ,- n11413 (8/2). 
Lperson :- f2 - n3135, f2 - n8536242, f2 - n8200333, f3 !- v1454310 (5/0). 

Lperson :- f1 - n7832025 (15/2). 
Lperson :- f1 - n3135, f1 - n3272277 (6/0). 
Uperson :- f3 - v599108, f1 - NoWordKey, f2 !- n7899836, f2 - n1742, f2 !- n7911996 

(17/1). 
Uperson :- f3 - v594545, f2 - n7893547, f2 !- n16993 (25/8). 
Uperson :- f3 - v730155, f1 - NoWordKey, f2 !- n13067 (32/26). 

228 



APPENDIX C. DECISION LISTS 

Uperson :- f3 - v1868026, f3 - v802014, f1 !- n1742, f2 - n7898963 (6/1). 
Uperson :- f2 - n2956, f2 - n8094623 (51/8). 
Udate :- f2 - n12830667, f2 !- n1742, f1 !- a790152 (233/3). 
Udate :- f1 - n11497797 (90/6). 
Udate :- f1 - NoWordKey, f3 - NoWordKey (100/80). 
Udate :- f2 - n12824116, f2 !- n12786206 (30/3). 

Morgan~sat~on :- f3 = n6643140, f1 - n22113, f2 - n21905 (77/1). 
Morgan~sat~on :- f1 _ n1742, f2 - n22113, f3 - n16993, f1 - n7491601 (80/0). 
Morgamsatlon :- f1 n1742, f3 - n22113, f2 - n1742, f1 !- n2664, f1 - n7116686 
(67/3). 
Morganisation :- f3 - n6643140, f1 - n1742, f2 - n27447 (88/6). 
Morganisation :- f1 - n1742, f2 - n22634, f2 - n241678, f1 - n7905970 (41/0). 
Morganisation :- f3 - n6643140, f1 - n1742, f2 - n1742, f3 !- n148506, f1 - n19046, 
f1 !- n7058546 (15/2). 
Morganisation :- f3 - n22634, f1 - n1742, f2 - n16993, f3 !- n6636576 (18/7). 
Morganisation :- f3 - n6643140, f2 - n22634, f1 - n6643140, f1 - n6893418 (7/0). 
Morganisation :- f3 - n22634, f2 - n22634, f2 - n7782241, f3 - n6696044 (17/1). 
Morganisation :- f3 - n22634, f1 - n1742, f2 - n6790797 (6/0). 
Morganisation :- f3 - n22634, f1 - n13067, f2 - n6791040 (8/2). 
Morganisation :- f3 - n22634, f1 - n13067, f3 - n6686439, f3 !- n8395191 (7/3). 
Morganisation :- f1 - n1742, f2 - n19046, f2 - n5270807, f1 - n7062038 (7/0). 
Morganisation :- f3 - n22634, f1 - n22634, f3 - n6746043 (19/5). 
Morganisation :- f2 - n1742, f1 - n19046, f1 - n7516129 (6/1). 
Morganisation :- f3 - n22634, f2 - n1742, f3 - n6694803 (6/1). 
Morganisation :- f3 - n16993, f3 - n7593134, f2 - n1742 (17/1). 
Morganisation :- f1 - n8501671, f2 - n22634 (3/0). 
Morganisation :- f3 - n22634, f3 - n310023, f2 - n4099891, f3 - n11340514 (5/0). 
Forganisation :- f3 - n6683510, f2 - n1742, f3 - n6741150, f3 !- n16840 (62/1). 
Forganisation :- f3 - n22634, f2 - n6683510, f2 - n6748862 (32/5). 
Forganisation :- f3 - n22634, f2 - n1742, f3 - n3197306, f2 !- n22634 (36/5). 
Forganisation :- f3 - n22634, f2 - n1742, f3 - n8416837 (21/2). 
Forganisation :- f3 - n22634, f2 - n6683510, f3 - n6790797, f1 !- a2650604 (50/3). 
Forganisation :- f2 - n1742, f3 - n1742, f3 !- n13067, f2 - n6671151 (23/1). 
Forganisation :- f2 - n7491601, f3 - n12792491 (31/0). 
Forganisation :- f3 - n1742, f2 - n6992023, f3 - n19046, f2 !- n7130102, f3 - n22634 
(10/0). 
Forganisation :- f2 - n1742, f3 - n19046, f2 - n7430143 (64/43). 
Forganisation :- f3 - n22634, f2 - n3135, f3 - n6683510, f3 !- n25413, f3 !- n16993, 
f1 !- n5303, f2 !- n7895781 (61/12). 
Forganisation :- f3 - n1742, f2 - n1742, f3 - n12543232, f1 !- n24936 (11/4). 
Lorganisation :- f2 - n6643140, f1 - n22634, f3 - n1742 (68/18). 
Lorganisation :- f2 - n6643140, f1 - n1742, f2 - n6710350, f1 - n6802831 (24/2). 
Lorganisation :- f2 - n6643140, f1 - n1742, f2 - n2771586, f2 - n8575577 (16/0). 
Lorganisation :- f2 - n6643140, f1 - n1742, f2 - n6882991 (49/24). 
Lorganisation :- f2 - n6643140, f1 - n1742, f2 - n3197306, f1 !- n22634, f2 !-
n11246282 (36/5). 
Lorganisation :- f2 - n22634, f1 - n6683510, f1 !- n1742, f2 - n12786206 (26/0). 
Lorganisation :- f2 - n22634, f1 - n5540028 (86/2). 
Lorganisation :- f2 - n22634, f1 - n6683510, f2 - n6790797 (27/7). 
Lorganisation :- f2 - n6643140, f2 - n6746043, f1 - n6710350 (15/1). 
Lorganisation :- f2 - n22634, f1 - n1742, f2 - n6850179 (10/2). 
Lorganisation :- f2 - n6683510, f2 - n6746043, f2 - n833292 (11/5). 
Lorganisation :- f2 - n22634, f1 - n1742, f2 - n2533363 (16/4). 
Lorganisation :- f2 - n22634, f2 - n6696044, f1 - n13067, f2 !- n2956, f1 !- n15787 

(13/6). 
Lorganisation :- f2 - n1742, f1 - n1742, f2 - n12345618, f3 !- n310023 (26/2). 
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Lorganisation :- f2 - n22634, f1 - n16993, f2 - n310023, f1 - n4099891 (8/4). 
Lorganisation :- f2 - n22634, f2 - n6694803 (8/0). 
Lorganisation :- f2 - n1742, f1 - n1742, f1 - n7162964, f2 - n15787 (19/1). 
Lorganisation :- f2 - n1742, f1 - n1742, f2 - n1290467 (8/0). 
Lorganisation :- f2 - n22634, f2 - n85621 (7/4). 
Lorganisation :- f2 - n22634, f1 - n22113, f2 - n6686439 (6/2). 
Ulocation :- f2 - n7111224, f2 - n6992023, f2 - n7159610 (103/3). 
Ulocation :- f2 - n7111224, f2 - n7013143, f3 ,- n22634, f3 ,- n3252432, f1 1-

n13067 (130/5). 

Ulocation :- f2 - n6992023, f2 - n6899919, f3 ,- n7582157, f3 ,- n16840 (64/3). 
Ulocation :- f2 - n6992023, f2 - n7062038, f3 ,- n1742 (63/5). 
Ulocation :- f2 - n6992023, f2 - n7130825, f2 ,- n14223 (110/24). 
Ulocation :- f2 - n6992023, f2 - n15787 (41/8). 
Ulocation :- f2 - n6992023, f2 - n7017569, f1 ,- n1742, f2 ,- n7030738, f2 ,- n20595, 
f2 ,- n7524388, f2 ,- n16993, f2 ,- n7341405 (54/11). 
Ulocation :- f2 - n1742, f2 - n6992023, f2 - n7034213, f2 !- n6772247, f3 !- n1742, 
f1 !- n1742, f3 ,- n11800524, f2 ,- n7758560 (189/13). 
Ulocation :- f2 - n7667106, f2 - n7188766 (20/3). 
Ulocation :- f2 - n1742, f2 !- n2664, f2 !- n4911, f2 - n7623806 (18/1). 
Ulocation :- f2 - n7040158, f2 - n7138810, f2 !- n5303, f2 !- n7143957 (13/4). 
Ulocation :- f2 - n1742, f2 !- n13067, f2 - n7700297, f2 !- n11450705 (18/2). 
Ulocation :- f2 - n1742, f2 - n7673764, f3 ,- n6961162, f3 !- n2338751 (18/0). 
Ulocation :- f2 - n7040158, f2 - n12363793 (4/0). 
Ulocation :- f2 - n1742, f2 - n7667106, f2 - n7622212 (5/4). 
Ulocation :- f2 - n9100610, f3 !- n13067 (6/0). 
Ulocation :- f2 - n793354 (5/1). 
Ulocation :- f1 !- n1742, f2 - n1818808 (3/0). 
Ulocation :- f2 - n6899919, f3 - n22634 (6/0). 
Ulocation :- f2 - n3176620 (4/0). 
Ulocation :- f2 - a2796035 (4/0). 
Ulocation :- f1 !- n1742, f2 - n8120742 (3/0). 
Ulocation :- f2 - n7667106, f2 - n7552184 (3/1). 
Uorganisation :- f2 - n6789273 (80/4). 
Uorganisation :- f1 - n12829061, f3 - n21905, f2 ,- n13067 (43/2). 
Uorganisation :- f3 - n13067, f3 - n8337045, f2 - n8655657 (23/5). 
default 0 (80480/5404). 

================ summary ================ 
Train error rate: 6.77% +/- 0.08% (91626 datapoints) < < 
Hypothesis size: 193 rules, 793 conditions 
Learning time: 2710.72 sec 

C.4 MOLl MENE V9 
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Recall that the complex features used for the maximum entropy model of MOLl MENE 

V9 are the same than V6 uses, plus the generalisation of these features into less complex 

features according to the procedure presented in Mikheev (1998). Therefore, this new 

''rules'' do not predict a class. Table C.1 on page 220 can be consulted for the meaning 

of the features mentioned in the following short extension. 

Rule 17:- f9 - NP. 
Rule 18:- f11 - CONJ. 
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C.5 MOLl MENE VIO 

The generalisation of the complex features of MOLl MENE V7 produces the features 

considered by MOLl MENE VI0. Table C.2 on page 221 shows the relation between 

the actual features and the names used in the following added features. 

Rule 222:- f2 - $, f2 ,- PRP. 
Rule 223:- f8 - NNP, f2 - NNP. 
Rule 224:- f8 - NNP. 
Rule 225:- f2 - CD, f5 - CD. 
Rule 226:- f2 - NNP, f8 - NNP. 
Rule 227:- f4 - last. 
Rule 228:- f5 - CD. 
Rule 229:- f6 - n12811110, f5 - NN. 
Rule 230:- f5 - NNP, f8 - NNP, f2 !- NNP. 
Rule 231:- f2 - NNP. 
Rule 232:- f2 - NNP, f5 - NNP, f8 ,- NNP. 
Rule 233:- f2 - NNP, f5 - NNP. 
Rule 234:- f5 - NNP, f2 - NNP. 
Rule 235:- f2 - NNP, f5 - NNPS. 
Rule 236:- f5 - NNP. 
Rule 237:- f5 - NNP, f8 - NNP. 
Rule 238:- f2 - NNP, f8 - P _COMMA, f5 - NNP. 
Rule 239:- f5 - NNP, f8 ,- NNP, f2 !- NNP. 
Rule 240:- f5 - NNP, f8 - NNPS. 
Rule 241:- f5 - NNP, f2 - NNP, f8 ,- NNP. 
Rule 242:- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT. 
Rule 243:- f5 - NNP, f8 - NNP, f2 !- NNP, f9 - n6788854. 
Rule 244:- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - CD. 
Rule 245:- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - DT, f6 !- n5938672. 
Rule 246:- f5 - NNP, f8 - NNP, f2 !- NNP, f2 - IN. 
Rule 247:- f5 - NNP, f8 - NNP, f2 - IN. 
Rule 248:- f5 - NNP, f8 - NNP, f2 - P _ COMMA. 
Rule 249:- f5 - NNP, f8 - NNP. 
Rule 250:- f5 - NNP, f2 - NNP, f8 !- NNP, f8 - NN. 
Rule 251:- f5 - NNP, f2 - NNP. 
Rule 252:- f2 - NNP, f8 - NNP. 

C.6 MOLl MENE VII 

Applying Mikheev's (1998) generalisation to MOLl MENE V8 features, Vll is obtained. 

Table C.3 on page 226 presents the names used by the Ripper algorithm for each atomic 

feature mentioned in the following list of complex features added. 

Rule 194:- f2 - n12889670. 
Rule 195:- f2 - n5708379. 
Rule 196:- f3 - n12786206. 
Rule 197:- f3 - n12786206, f3 - n12811259. 
Rule 198:- f3 - n12786206, f1 - n1742. 
Rule 199:- f2 - n1742, f1 - n19046. 
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Rule 200:- f2 - n1742. 
Rule 201:- f2 - n1742, f1 - n1742. 
Rule 202:- f2 - n3135. 
Rule 203:- f2 - n2956. 
Rule 204:- f1 - v730155. 
Rule 205:- f3 - NoWordKey. 
Rule 206:- f3 - n22634, f2 - n1742. 
Rule 207:- f2 - n22634. 
Rule 208:- f2 - n22634, f1 - n1742. 
Rule 209:- f2 - n7667106. 
Rule 210:- f1 !- n1742. 
Rule 211:- f1 - n1742. 
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Appendix D 

Biasing LexMENE: details 

D.I The constituent pattern information entity 

The weight on a similarity arc that connects two constituent patterns corresponds to 

the sum of the estimated similarity of each chunk tag in the best alignment that the 

Needleman-Wunsch-Sellers (NWS) algorithm (Needleman and Wunsch 1970, Sellers 

1974) can obtain. Algorithm D.1 presents the similarity function for calculating the 

similarity between two chunk tags in the patterns. 

Basically, the similarity is zero if the chunk tags are different. Otherwise, the position of 

the closest constituent to the focus is determined and a similarity is assigned according 

to this distance. BiLexMENE consider two patterns more similar if they share a chunk 

tag closer to the focus. Accordingly, the score 5.50 is assigned to the position next to 

the focus, then 3.25, then 2.25 and finally 1.00 to the position farthest from the focus 

on either extremity. These weights have been selected so that the maximum similarity 

between two constituent patterns is 12. 

If the chunk tags being scored are not in the same position, a penalty (Penalty 1) is 

applied in function of the distance between the different positions. In addition to this, 

a second penalty is applied (Penalty 2) to acknowledge this difference. Thus, a match 

between constituents in the same position gets a higher score than a match between 

constituents in contiguous positions, which in turn is higher than the score assigned to 

a match between -for example- the closest and farthest constituents from the focus. 

In addition to this, if the matched constituents are optional, the score is further penalised 

(Penalty 3) as this can be thought as a less important match. BiLexMENE considers as 

optional constituents marked as adjectival phrases (ADJP) , adverbial phrases (ADVP) 

and verb particles (PTR). 

There is one observation that should be commented here. When one of the constituents 

is null -at a sentence's boundary- it matches constituents tagged as CONJ, a tag used 

233 
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Algorithm 0.1: Calculation of the similarity between two constituents for the alignment of two t't t Th ... I . h cons I uen 
patte~ns. e Inltla welg ts are: 5.50, 3.25, 2.25 and 1.00, according to the distance from the focus 
constituent. By default, CPPenaltyl = 1.0, CPPenalty2 = 0.5, CPPenalty3 = 0.5 and CPPenalty4 = 
0.5. 

Input: consh and const2, the two constituents to be compared 
Output: a score of the similarity between the two constituents 

1: procedure GET-SIMILARITY-TWO-CONSTITUENT-LABELs(consh, const ) 
2: if the constituents' labels are the same then 2 

3: sim = the weight corresponding to the closer position to the focus 
4: if the constituents are not in the same position then 
5: sim = max(O, sim - CPPenaltyl . distance) 
6: sim = sim· CPPenalty2 
7: end if 
8: 

9: 

10: 

if the constituents are optional then 
sim = sim· CPPenalty3 

end if 
11: return sim 
12: end if 

[> i.e. ADJP, ADVP or PTR 

13: if one of the constituents is null and the other one is labelled CON J then 
14: sim = the weight corresponding to the closer position to the focus 
15: sim = sim . CP Penalty4 
16: if the constituents are not in the same position then 
17: sim = max(O, sim - CPPenaltyl . distance) 
18: sim = sim . CPPenalty2 
19: end if 
20: return sim 
21: end if 
22: return 0.0 
23: end procedure 

by the MBSP parser to recognise conjunctions -such as the words and, but and 0(­

but that has been extended here to manage also punctuation marks -such as periods, 

commas, semicolons, quotes, etc.- that link two pieces of text. In this case however, 

the score is penalised (Penalty 4) in addition to the penalties mentioned above - except 

Penalty 3, of course. 
Although the penalty values used by biLexMENE could be free parameters, in the 

implementation discussed here they have been fixed to the values 1.0, 0.5, 0.5 and 

0.5 respectively on both left and right constituent patterns. These values showed to 

produced the desired effects when tested with a small number of examples. 

D.2 The binary lexical pattern information entity 

The similarity weight that labels an arc between two binary lexical patterns corresponds 

to the sum of the similarity of each binary lexical feature in the best alignment of 

those patterns (obtained by the NWS algorithm). The similarity function to obtain the 

individual similarity scores between two binary lexical features is presented in algorithm 

D.2. In few words, the algorithm gets the similarity of the features on the basis of the 

corresponding value in one of three tables of similarity weights, according to the type 

of both binary lexical features. 
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A.lgorith~ 0.2: Calculation of the similarity between two orthographic features for the alignment of two 

binary lexical patterns. By default. BLPPenaltyl = ~. 
Input: bit 1 and bit 2, the two binary lexical features to be compared 
Output: a score of the similarity between the two features 

1: procedW"e GET-SIMILARITY-TWO-BINARY-LEXICAL-FEATURES(bll b11 ) of £ . :f 1, oj 2 
2: lone eature IS left context and the other is right context then 
3: retW"n 0.0 
4: end if 
5: weight +- 1.0 
6: if either bit 1 or bit 2 is a context feature then 
7: weight +- BLPPenaltyl 
8: end if 
9: if both bit 1 and bit 2 are number-type then 

10: sim +- the corresponding similarity score from the following table 
I II ,dg I -dg I .dg I / dg I 2dg I 4dg I ·dg I adg I odg I vdg I 

,dg 12.0 4.0 8.0 4.0 8.0 8.0 4.0 2.0 8.0 3.0 
-dg 4.0 12.0 4.0 8.0 4.0 4.0 4.0 2.0 4.0 3.0 
.dg 8.0 4.0 12.0 4.0 4.0 4.0 4.0 2.0 4.0 3.0 
/dg 4.0 8.0 4.0 12.0 4.0 4.0 4.0 2.0 4.0 3.0 
2dg 8.0 4.0 4.0 4.0 12.0 8.0 4.0 2.0 8.0 3.0 
4dg 8.0 4.0 4.0 4.0 8.0 12.0 4.0 2.0 8.0 3.0 
:dg 4.0 4.0 4.0 4.0 4.0 4.0 12.0 2.0 4.0 3.0 
adg 2.0 2.0 2.0 2.0 2.0 2.0 2.0 12.0 2.0 2.0 
odg 8.0 4.0 4.0 4.0 8.0 8.0 4.0 2.0 12.0 3.0 
vdg 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 12.0 

11: return we~ght . s~m 
12: end if 
13: if both bit 1 and blt 2 are word-type then 
14: sim +- the corresponding similarity score from the following table 

I II acp I adg I cpp I icp I mcp I ucp I 
acp 12.0 2.0 6.0 4.0 8.0 4.0 

adg 2.0 12.0 2.0 2.0 2.0 2.0 

cpp 6.0 2.0 12.0 6.0 6.0 6.0 

icp 4.0 8.0 4.0 12.0 4.0 4.0 

mcp 8.0 4.0 4.0 4.0 12.0 8.0 

ucp 8.0 4.0 4.0 4.0 8.0 12.0 
15: return we'tght . s'tm 
16: end if 
17: if both bit 1 and bit 2 are other-type then 
18: sim +- the corresponding similarity score from the following table 

I II null I adg I mix I ncp I 
null 12.0 0.0 0.0 6.0 

adg 0.0 12.0 8.0 0.0 

mix 0.0 8.0 12.0 4.0 

ncp 6.0 0.0 4.0 12.0 

19: retW"n we'tght . s'tm 
20: end if 
21: retW"n 0.0 
22: end procedW"e 

For this effect, three types have been defined: the number-type, which gathers binary 

lexical features shown by numeric tokens, such as digits with commas (,dg) , two-digits 

number (2dg), etc.; the word-type, which groups binary lexical features that are pre­

sented by words, such as all capitals (acp) , mixed capitalisation (mcp) or uncapitalised 
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(ucp); and the other-type for any other binary lexical feature in use, such as symbols 

(ncp) and mixed characters (mix). 

Algorithm D.2 changes the score retrieved from the similarity tables in two ways. First, 

if at least one of the binary lexical features is not from a focus token, then the similarity 

weight is penalised. And secondly, if both binary lexical features are contextual, and one 

is from the left of the focus and the other is from the right side of the focus constituent, 
then the similarity is reduced to zero. 

As earlier, the penalty applied was determined on the basis of testing different values 

on a selected set of examples until the scores obtained were considered sensible. In this 

case, this penalty was fixed to one eighth of the value in the tables. 

D.3 The lexical pattern information entity 

The similarity weight associated with each arc between lexical patterns corresponds to 

the sum of the similarity of the lexical features -i.e. words or tokens- in the best 

alignment that the NWS algorithm can obtain for the patterns. The similarity function 

to obtain the similarity score between two lexical features in the patterns is presented 

in algorithms D.3 through D.7. 

Algorithm 0.3: Calculation of the similarity between two lexical features (words/tokens). By default, 
LPPenaltyl = ~. 

Input: If 1 and If 21 the two lexical features to be compared 
Output: a score of the similarity between the two features 

1: procedure GET-SIMILARITY-LEXICAL-FEATURES(lfll If2) 
2: if one feature is left context and the other is right context then 
3: return 0.0 
4: end if 
5: weight +-- 1.0 
6: if either If 1 or If 2 is a context feature then 
7: weight +-- LPPenaltyl 
8: end if 
9: if either If 1 or If 2 is null then 

10: return weight· G ET- SIMILARITY - NULL- LEXICAL- FEATURES (If 11 If 2) 

11: end if 
12: if both If 1 and If 2 have known meanings then 
13: return weight· GET-SIMILARITY-LEXICAL-FEATURES-WITH MEANINGS(lfll lf2) 
14: end if 
15: if both If 1 and If 2 are tokens without known meaning then 
16: return weight· GET-SIMILARITY-TOKENS-WITHOUT-MEANINGS(lf 1 1 If 2) 
17: end if 
18: return 0.0 
19: end procedure 

In few words, the main source of information for comparing two lexical features is their 

meaning. However, sometimes a comparison based on meanings is not possible: when 
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(at least) one of the lexical features is from the context of the beginning or ending of 

a sentence, in which case the feature is null; or when the features are tokens without 
known meanings. 

This last case occurs because WordNet manages information on open class lexemes 

only (i.e. nouns, verbs, adjectives and adverbs), leaving automatically out determiners, 

prepositions, conjunctions, etc. In addition to this, it is unrealistic to expect that 

WordNet's lexical database is complete, specially nouns, and in particular proper nouns. 

When meanings are not available, the similarity function makes use of less informed, 

more lexically-oriented characteristics to estimates their similarity. 

Algorithm D.3 changes this normal calculation in two occasions: if the two lexical 

features are from the context of a focus constituent, but one is from the left context 

and the other is from the right context, then their similarity is reduced to zero; and 

when the matching is occurring between a context lexical feature and a focus one, their 

similarity is penalised. As earlier, this penalty has been fixed on the basis of trying 

different values in a small set of selected examples and choosing the value that produces 

the desired effect best. In this case, this penalty has been fixed to 0.125. 

Algorithm 0.4: Calculation of the similarity between two lexical features (words/tokens) when at least one 
of them is null. By default, LPBothNullFeatureSim = 12.0, LPNullFeatureStopSymbolSim = ~ LPBoth­
NullFeatureSim and LPNullFeatureSemistopSymbolSim = ~ LPBothNullFeatureSim. 

Input: 1f 1 and 1f 2, the two lexical features to be compared, 
of which at least one is null 

Output: a score of the similarity between the two features 
1: procedure GET-SIMILARITY-NULL-LEXICAL-FEATURES(lfl, 1f2) 
2: if both 1f 1 and 1f 2 are null then 
3: return LPBothNullFeaturesSim 
4: end if 
5: if the not-null feature occurs in a constituent labelled CON) then 
6: if the not-null feature is a stop symbol then t> i.e .. , ; : ? 
7: return LP NullFeatureStopSymbolSim 
8: 

9: 

10: 

11: 

end if 
if the not-null feature is a semi-stop symbol then 

return LP NullFeatureSemistopSymbolSim 
end if 

12: end if 
13: return 0.0 
14: end procedure 

. """() t> l.e. 

When one or both of the lexical features are null, their similarity is estimated as pre­

sented in algorithm D.4. Essentially, three cases are considered as valid matches and 

each one of them is associated with a fixed similarity value. The matches considered 

include: both lexical features are nuli, which at this stage are known to come from the 

same contextual side; one of the features is null and the other is a punctuation mark 

that indicates the beginning of a new idea in the text; and one of the features is null and 
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the other is a token that (more weakly) suggests a possible change in the discussion. 

In the version of biLexMENE presented here, the symbols considered as strong indica­

tors of change in the discourse are periods, commas, semicolons, colons, question marks 

and exclamation marks. These symbols are referred to as stop symbols. Similarly, sim­

ple and double quotes and parentheses are considered as weak indicators of change in 

the discourse and, consequently, called semi-stop symbols. Note that these symbols are 

normally found in constituents labelled CON). 

The similarity values has been fixed as previously. The best combination of values 

found is to consider the match of two null lexical features as a perfect match -i.e 

LPBothNullFeatureSim = 12.0- and matches with stop and semi-stop symbols as half­

good matches, that is setting LPNullFeatureStopSymbolSim = 6.0 and LPNullFeature­

SemistopSymbolSim = 6.0. 

Algorithm 0.5: Calculation of the similarity between two lexical features (words/tokens) with known mean­
ings. By default, WordNetSameLemmaSim = 12.0, WordNetSynonymsSim = % WordNetSameLemmaSim, 
WordNetSiblingsSim = ~ WordNetSameLemmaSim and WordNetParentChildSim = ~ WordNetSame­
LemmaSim. 

Input: If 1 and If 2' the two lexical features with known meanings to be compared 
Output: a score of the similarity between the two features 

1: procedure GET-SIMILARITY-LEXICAL-FEATURES-WITH-MEANINGS(lf l' If2) 
[> Searches in this algorithm are for every sense in the same lexical category 

2: if If 1 or If 2 does not have a WordNet entry then 
3: get special meanings for the features with unknown meaning 

[> e.g. % means 'percent', 's in a VP means 'is' or 'has' 
4: end if 
5: if If 1 and If 2 have the same WordN et lemma then 
6: return WordNetSameLemmaSim 
7: end if 
8: if If 1 is a WordNet synonym of If 2 then 
9: return WordNetSynonymsSim 

10: end if 
11: simI +- 0.0 
12: if If 1 is a WordNet coordinate term of If 2 then 
13: simI +- W ordN etSiblingsSim 
14: end if 
15: sim2 +- 0.0 
16: if one of the features is a WordNet direct hypernym of the other then 
17: sim2 +- W ordN etParentChildSim 
18: end if 
19: return max(siml' sim2) 
20: end procedure 

Algorithm D.5 shows the procedure to estimate the similarity between lexical features 

with known meanings, which considers four cases: the features have the same lemma­

i.e. they are the same word or differ in their inflections, the features are synonyms, the 

features are coordinate terms, and the features have a hyponymjhypernym relationship. 

As above each case is associated with fixed values that represent the strength of these , 
semantic relations. These values were selected following a sensible order. Thus, if 
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two lexical features are essentially the same word, their match is considered perfect 

(WordNetSameLemmaSim = 12.0). Then, the slightly less strong relation of synonymity 

is set accordingly to a slightly lower value (WordNetSynonymsSim = 9.0). The next 

relation in strength is the sibling relation, which in WordNet's terminology corresponds 

to coordinate terms. The similarity value for this relation has been defined has half of 

the perfect match (WordNetSiblingsSim = 6.0). Finally, the weakest semantic relations 

are the superordination and subordination, which in WordNet are called the hypernym 

and hyponym relations respectively, for which the lowest similarity value is defined 

(WordNetParentChildSim = 3.0). 

Two observations about algorithm D.5 should be noticed. First, the similarity function 

always tries to determine the highest similarity value. Thus, before checking whether the 

lexical features match in a weaker semantic relationship, it exhausts the possibilities for 

a stronger relationship with every sense of each feature. And secondly, some extension 

of WordNet is performed before the comparison starts. This extension allows lexemes 

that do not have explicit entries in the lexical database to be associated with known 

meaning. For example, the symbol % is associated with the meanings that the word 

percent has in WordNet. This extension can manage several conditions, such as that 

the lexical feature occurs in a particular type of constituent. The list of lexemes added 

to lexical features with known meaning is mainly language dependent. Although, task 

specific entries might be included in this list, this has not been necessary in the version 

of biLexMENE presented here. 

The last possibility for a match is that both lexical features are tokens with no known 

meanings. Words are discarded here because biLexMENE maintains as words only 

lexemes that consists of more than one token and have an entry in WordN et 's lexi­

cal database. Thus, there are no words without known meaning. Example of words 

are prime minister, executive_ officer, pearl_ harbor, etc. - for which valuable semantic 

information would be lost if analysed from the component tokens individually. 

Algorithm D.6 describes the estimation of the similarity between tokens without known 

meanings. The first step is an attempt at making strings that contain numbers less 

variable. This process consists of replacing each digit in the token for the character 'D', 

and then replacing ordinal endings for the generic string 'TH'. For example, the strings 

530, 10/31/97, 221, 21st and 8/12/98 will become DDD, DD/DD/DD, DDD, DDTH and 

D/DD/DD respectively. The resulting strings, called texts in the algorithm, are the ones 

considered in the following comparisons. 

The highest match possible is that the two texts are the same. If this happens, algorithm 

D.6 returns the constant LPSameTextSim, which has been set to the maximum value 

of 12 in this initial version of biLexMENE. Otherwise, the algorithm checks whether 

there are defined special matches for the texts. Special matches include both tokens 

that are related to tokens that do not have an entry in WordNet's lexical database 
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Algorithm 0.6: Calculation of the similarity between two lexical features that are tok ·th . 
( d I h . ens WI out meanings 
wor ~ a ways ave me~nlngs). By de!ault, LPSameTextSim = 12.0, LPBothStopSymbolsSim = !. LPSame-
TextS/m, LPBothSem/stopSymbolsS/m = ~ LPSameTextSim and LPStopAndSemistopSymbolsSim 0.0. 

Input: tokenl and token~, ~he.two tokens without known meanings to be compared 
Output: a score of the slImlanty between the two tokens 

1: procedure GET-SIMILARITY-TOKENS-WITHOUT-MEANINGS(tokenl, token2) 
2: textl t- GET-TEXT-NUMBER-PATTERN(td 

3: text2 t- GET-TEXT-NUMBER-PATTERN(~) 

4: 

5: 
6: 

7: 

8: 

9: 
10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

I> e.g. 'nuts4nuts' =? 'nutsDnuts', '3-11-04' =? 'D-DD-DD' 
if texh = text2 then 

return LPSameTextSim 
end if 
if textl and text2 have an special match then 

return the similarity defined for the special match 

end if 
I> e.g. '&' '" 'and', 'DD-DD' '" 'DD/DD' 

sim t- GET-MORPHOLOGICAL-SIMILARITY(textl, text2) 
if sim > 0.0 then 

return sim 

I> e.g. 'Jackson' '" 'Johnson', 'D,DDD' '" 'DD,DDD' 
end if 
if both tokens are stop symbols then 

return LP BothStopSymbolsSim 
end if 
if both tokens are semi-stop symbols then 

return LP BothSemistopSymbolsSim 
end if 
if one token is a stop symbol and the other is a semi-stop symbol then 

return LP StopA ndS emistopSymbolsSim 
end if 
return 0.0 

24: end procedure 

-e.g. the word and and the & symbol- and language-dependent/domain-dependent 

relations which might be missed or incorrectly estimated by a morphological analyser 

- such as the texts DD-DD-DD, DD/DD/DD and DD:DD:DD, which would be considered 

to have the same morphological similarity even though the former two patterns could 

be thought closer as both are used to express dates, whereas the latter is used to express 

time. These special matches -which are introduced in biLexMENE as a list that can 

be easily adapted to other languages and domains- include the similarity score in their 

definition, which are the scores returned by the algorithm in these cases. 

When the texts being compared are not equal and algorithm D.6 cannot find special 

matches for them, their similarity is estimated by applying a morphological analysis as 

presented in algorithm D.7. This algorithm starts by ensuring that the morphological 

analysis has a high probability of being significant. This involves checking that the texts 

are long enough to show some meaningful prefix or suffix -which in this implementation 

corresponds to four or more characters- and that a common prefix or suffix might be 

indicating the same linguistic phenomenon - i.c. the texts' lengths suggest that a 
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Algorithm 0.7: Calculation of the similarity between two texts according to the lengths of their common 
prefixes a nd com mon suffixes. 

Input: text! and text2, the texts to be compared 
Output: a score of the similarity between the two texts 

1: procedure GET-MORPHOLOGICAL-SIMILARITY(text text) 
of I ( !, 2 

2: 1 ength textd < 4 and length(text2) < 4 then 
3: return 0.0 
4: end if 
5: 

6: 

7: 
8: 
9: 

10: 

11: 

12: 

13: 

14: 

15: 

if one text is twice as long as the other then 
return 0.0 

end if 
leftsim +- length(common prefix)/length(longest text) 
rightsim +- length(common suffix)/length(longest text) 
if length ( common prefix) < 3 then 

leftsim +- 0.0 
end if 
if length( common suffix) < 3 then 

rightsim +- 0.0 
end if 

16: if the common prefix and the common suffix overlap then 
17: min(leftsim, rightsim) +- 0.0 
18: end if 
19: return leftsim + rightsim 
20: end procedure 

common prefix or suffix is indeed a common prefix or suffix rather than a coincidence, 

which is determined by checking that one text is not twice as long as the other one. 

If this conditions are complied, the algorithm determines whether the texts have a 

common prefix or/and a common suffix. These common bits are ignored if they do not 

have a length higher than two characters. In addition to this, if the texts have both a 

common prefix and a common suffix that overlaps, algorithm D.7 considers only one of 

them. These heuristics and fixed values -as well as the ones explained below- have 

been obtained following the procedure applied earlier, thus analysing a reduced number 

of examples until the desired output -i.e. obtaining similarity values mostly when the 

tokens are morphologically related- was observed. 

The morphological similarity corresponds to the sum of the lengths of the common 

prefix and common suffix found, divided by the length of the longest text in analysis. 

When the morphological analysis yields null similarity, algorithm D.6 makes a last 

attempt at finding a relation: it checks whether the texts in analysis are a combination of 

stop and semi-stop symbols. According to this, the procedure returns a fixed similarity 

value for matches between two stop symbols (LPBothStopSymbolsSim = 6.0), two semi­

stop symbols (LPBothSemistopSymbolsSim = 6.0) and a stop and a semi-stop symbol 

(LPStopAndSemistopSymbolsSim = 0.0). 
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D.4 Reducing the size of the problem 

Because of the computational costs of retrieving similar cases, an attempt to reduce 

the number of queries that need to be processed was introduced in biLexMENE. The 

initial idea was to train a binary classifier to decide whether a query is relevant or 

irrelevant, which should try to maximise recall but keeping, at the same time, a low 

number of spuriously checked queries - i.e. irrelevant queries classified as relevant. 

However, the parametrisation of such classifier became difficult and soon was clear that 

a heuristic to filter the classifier's decisions was needed. Algorithm D.8 presents this 

heuristic procedure. 

Basically, a query should be processed when it contains a token which might be part of a 

named entity. The first approach is to look at the frequency of the token and its binary 

lexical feature with respect to the named entity classes with which they occur. When 

this pair is not seen or seldom seen, the decision is left to biLexMENE. If the token has 

a moderate to high frequency, but every single time it occurs outside a named entity, 

the token is a priori ruled out. Otherwise, that is the pair has been seen within named 

entities, and its frequency is only moderate, it is consider safer to leave the classification 

to biLexMENE. When a pair is frequent and has been seen as part of named entities 

in at least 30% of the time, the token -and consequently, the query- is passed on 

to biLexMENE. Finally, if the frequent pair is mostly seen outside named entities, a 

classifier is applied and the token is discarded only if this classifier determines that its 

probability of being part of a named entity is less than 5%. 

This heuristic introduces several parameters which were adjusted following a similar 

approach to estimating the other parameters of biLexMENE: some values were fixed 

to apply the heuristic on a small set of examples, then the results were analysed to 

identify mistakes and new values were obtained in an attempt to reduce these errors. 

After some iterations, a final set of values was obtained which showed to produce the 

effect sought. 

For this implementation, too little frequency was set to less than three times and high 

frequency to more than 15 events (thus, pairs occurring three to 15 times with a class 

are considered to have moderate frequency). The above parameters were also set in this 

way and the values 30% and 5% used above resulted from the best trade off obtained 

between a high recall and a low number of spurious checks. 

The classifier used in algorithm D.8 is not restricted to any particular approach. The 

only condition that this classifier must meet is that it should estimate the probability 

that a token is not part of a named entity. Several algorithms were tested for the current 

implementation of biLexMENE and the one selected corresponds to a PART decision list 

learner, freely available in the Weikato Environment for Knowledge Analysis (\YEKA.) 

(Witten and Frank 2000), which builds partial decision trees in a series of iterations, 

transforming into a rule the best leaf of each partial tree (Frank and \Vitten 1998). 
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Algorithm 0.8: The heuristic used to reduce the number of queries to be processed by biLexMENE. 
Input: a query 

Output: true if it is considered likely that the query contains tokens which are part 
of a named entity; false otherwise 

1: procedure SHOULD-BE-CHECKED( query) 
2: for each token E query do 
3: if SHouLD-BE-CHEcKED(token) then 
4: return true 
5: end if 
6: end for 
7: return false 
8: end procedure 

Input: a token 

Output: true if it is considered likely that the token is part of a named entity; false 
otherwise 

9: procedure SHOULD-BE-CHECKED(token) 
10: answer f- TRY-DECISION-BASED-ON-FREQUENClEs(token) 
11: if answer oj:. Maybe then 
12: return answer 
13: end if 

14: features f- Create features for the token with context window of [-2,2] 
15: Apply a classifier on features 
16: if the classifier determines P( not in a named entity I features) > 0.95 then 
17: return No 
18: end if 
19: return Yes 
20: end procedure 

Input: a token 
Output: Yes, No or Maybe to whether it is likely that the token is part of a named 

entity, according to the frequency of the events in which the token takes part 
21: procedure TRY-DECISION-BASED-ON-FREQUENCIEs(token) 

22: blf f- the main binary lexical feature of token 
23: counts f- the number of times that the pair (token, blf) has been seen 
24: if counts < 3 then 
25: return Yes I> The pair has been seen too few times to ignore it 
26: end if 
27: if all counts are registered outside named entities then 
28: return No I> The pair will probably not be part of named entities 
29: end if 

I> Therefore the pair has been seen as part of named entities 
30: if counts:::; 15 then 
31: return Yes I> Too few times to safely discard the token 
32: end if 
33: if less than 70% of the counts are registered outside named entities then 
34: return Yes I> The pair has often been seen as part of named entities 
35: end if 

I> Most of the time the pair has been seen outside named entities 
36: return Maybe 
37: end procedure 
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The features provided to this classifier for a given token are five: lexical, binary lexical 

at word and token level, composition type and not-a-name features. 

The lexical feature corresponds, as in earlier chapters, to the string of the token in 
lowercase. 

The binary lexical features are the values defined in table 4.1 to indicates the writing 

style used for the lexical feature. Two binary lexical features are used: one indicates 

the style of the token itself and the other indicates the style used for the word to which 

the token belongs. For example, the word Atlanta-based is composed of three tokens. 

At token-level, these lexemes fire the binary lexical features icp (capitalised token), ncp 

(symbol token) and ucp (uncapitalised token), but all of them fire the feature icp (i.e. a 

capitalised word) at word-level. 

The next feature is also related to this phenomenon, as the composition type feature 

indicates the place that a token occupies in a composed word. This feature can take 

four different values: FT when the token is starting a composed word, MT when the 

token is in the middle of a composed word, L T when the token is ending a composed 

word or UT when the token is the only lexeme in a one-token word. 

Finally, the feature not-a-name is added to a token when the pair (lexical feature, 

token-level binary lexical feature) has been seen outside named entities in three or more 

occasIOns. 

All these features are obtained from a context window which includes the focus token, 

the two tokens on the left and the two tokens on the right if they exists. It should be 

clarified that the classifier is trained with context windows obtained for all tokens in the 

training documents, but applied only on context windows for tokens in the decoding 

texts that cannot be decided with the most direct approach based on frequencies, as 

stipulated by algorithm D.8. 

D.5 Obtaining final similarities 

As explained in section 5.8.3.1, the activation values of constituent patterns are re-cal­

culated to also consider the head word of the constituents. The comparison of head 

words, described in algorithm D.9, is similar to the calculation of the similarity between 

lexical features. The main difference is that algorithm D.9 returns activation values in 

the range [0, 1]. Each of these activation values is multiplied by the similarity score 

calculated for each tag according to their positions in the pattern. In this way, the final 

activation values of a constituent pattern range from (approximately) 1.3 to 12. 

Activation values for lexical patterns also need to be re-calculated. The problem arises 

when the memorised cases are selected. If this selection is guided only by the global 
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Algorith~ 0.9: 1 Cal:ulation. of th~ similarity between two head lexical features. By default, Chunk­
Labe/Welght = 4' BmaryLexlca/Welght = ~ and LexicalWeight = ~. 

Input: hI and h2' the two constituent heads to be compared 
Output: a score of the similarity of the two heads between 0.0 and 1.0 

1: pro.cedure GET-SIMILARITY-LEXICAL-FEATURES(hl , h2 ) 

2: If both hI and ~ are null then 
3: return 1.0 
4: end if 
5: if either hI or ~ is null then 
6: if the not-null head is a stop symbol then 
7: return 1.0 
8: end if 
9: return 0.0 

10: end if 
11: 1f t- GET-SIMILARITY-LEXICAL-FEATURES(hl.LF, h2 .LF) 
12: normalise 1f in the range [0,1] 
13: b1f t- GET-SIMILARITY-TWO-BINARY-LEXICAL-FEATURES(hl.BLF, h2 .BLF) 

14: normalise b1f in the range [0, 1] 
15: cp t- 1.0 

ChunkLabelWeight . cp+ 
16: score t- BinaryLexica1Weight· b1f + 

Lexica1Weight·1f 
17: return score 
18: end procedure 

activation of a case, which combines the individual activation of all its information 

entities, there is a high risk of obtaining a set of cases that would not cover every lexical 

feature in the query. In other words, there would not be examples for some tokens in 

the query to be used in the adaptation phase. 

This problem was expected and the original idea to manage it was to use elements 

available in the eRN models to control the importance of an information entity, namely 

the relevance weights, in the global activation of a case. Thus, the relevance of the 

lexical information entity was increased to three times the relevance of the constituent 

patterns. Nonetheless, and although the problem was slightly reduced, this approach 

was unsuccessful and it was clear that a more radical solution was needed. 

To solved this problem, biLexMENE manages a different ranking of similar cases for 

each lexical feature in a query. In each ranking, the final activation value of a case is 

re-estimated by applying the lexical window on the corresponding focus token. 

In this way, if a focus token in a case is aligned with a focus token in the query, the 

strength of both the focus match and the matches of immediately surrounding tokens 

will be considered in the activation. On the other hand, if a focus token in a case does 

not match any of the focus token in the query, the activation value of the case will only 

consider contextual matches for that token. 

This approach proved to be quite successful in retrieving training examples for most 

of the tokens in a query. The activation weights for the context window were homo-
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geneously fixed to 1.0. Thus, the relevance of lexical patterns was kept at three times 

the relevance of constituent patterns, mainly because lexical features have proved -in 

the previous chapters as well as in the literature--- to be strong predictors of named 

entities. Therefore, a perfect lexical match will have a final activation value of 36. 

In order to reduce the size of the sets of cases maintained for each lexical feature of 

a query, a heuristic restriction is applied to discard cases whose activation values are 

under 1.5. This value showed to filter out cases that contribute little or nothing towards 

the classification of individual tokens. 

The approach described above also requires individual activation values for binary lexical 

features. Therefore, an analogous calculation process is performed by applying the 

binary window to each focus token in a case. 

The weights for the binary window were fixed to values 1/3 for features on the left 

context, 1/2 to features on the right context and 5/6 for the focus feature. This values 

were determined so that the maximum activation value for a focus feature is 30, which 

seems to be an appropriate relevance weight for this information entity. 

Once more, a heuristic restriction was imposed to ignore cases that fail in obtaining 

an activation value of at least 1.5, because they were found to contribute too little 

information for the classification of a specific token. 

D.6 Messy details 

The description of biLexMENE given in chapter 5 depicts the conceptual modelling of 

the system. However, the system was quite challenging to build in reality. 

The main problem was that the sheer number of information entities, microfeatures, 

cases, similarity and relevance arcs, etc. made impossible to construct and maintain a 

CRN structure in the memory of a normal desk computer. 

Therefore, the CRN was stored in fragments and processed by a sequence of programs. 

For instance, there is one program that builds and stores the left constituent pattern 

of each case· another one that activates the left constituent patterns for each query to , 
be checked· another one that combines these activations with the ones coming from the , 
right pattern, and so on. 

However, even after this separation into individual steps, it was not possible to keep 

in primary memory a sufficiently large portion of the CRN and the set of activated 

elements -i.e. microfeatures, information entities and cases- for all the queries in a 

document. Secondary memory -i.e. databases- could not solve the problem either 

because it turned the system too slow. 
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Fortunately, the University of York is part of The White Rose Grid (WRG) , which is 

a multi-site computing system that aims to provide high performance computing to its 

users. In this system, there are available machines with several gigabytes of primary 

memory - see (WRG 2004) for more details. BiLexMENE, operating in sequential 

steps, manages to run on the WRG machines using up to 8GB of primary memory. 

As expected, running time was a problem too. BiLexMENE needs from six to ten 

days of continuing processing, depending of the size of the training and the parameters 

used. Surprisingly, most of this time is consumed in retrieving the similar cases, and the 

adaptation phase -i.e. the construction of a maximum entropy model for each query­

rarely needs more than 20% of the total running time. 



Appendix E 

Sllloothing function 

The smoothing function used by BiLexMENE employs three parameters for re-allocating 

the probabilities to a more uniform distribution, so that every possible tag has a non­

zero probability associated. These parameters are: 

0: which establishes the importance of each named entity class 

(3 which indicates the importance of the not-a-name tag 

which assign the importance of each tag withing a named entity class 

The smoothing parameters controls the uniformity of the resulting distribution: the 

greater and the more similar the values, the more uniform the resulting distribution 

will be. The process is straightforward and it is probably easier to be understood with 

an example. 

Suppose there are three named entity classes: location names, organisation names and 

person names; and the not-a-name class for words which are not part of these named 

entities. 

Now suppose a maximum entropy model gives the following probability distribution 

in BIO notation: [I-organisation=O. 2, l-person=0.3, not-a-name=0.5), which needs to be 

smoothed with parameters 0: = 0.25, (3 = 0.25 and '"'( = 0.5. 

The first step is to smooth the distribution among tags. The original distributions are: 

[location: 8=0, 1=0; organisation: 8=0, 1=0.2; person: 8=0, 1=0.3). Now the function adds 

the '"'( parameter to each probability and then normalises them by named entity class. 

The resulting distributions are: [location: 8=0.5, 1=0.5; organisation: 8=0.41667,1=0.58333; 

person: 8=0.38461, 1=0. 61539}. 
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The second step is to smooth the distribution among named entity classes. The original 

distribution is: {location=O.O, organisation=O.2, person=O.3, not-a-name=O.5}. The smooth­

ing function adds the parameter (3 to the probability of the not-a-name class and the pa­

rameter 0: to each named entity class probability. Then it normalises them. The result­

ing distribution is: {location=O.125, organisation=O.225, person=O.275, not-a-name=O.375}. 

The final step is the combination of the two distributions by re-allocating the smoothed 

probabilities of each named-entity class to the smoothed tag distribution. The resulting 

distribution is: {B-location=O.0625, 1-location=O.0625, B-organisation=O.09375, l-organisation=O.13125, 

B-person=O.10577, l-person=O.16923, not-a-name=O.375}. 
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