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Abstract

TD(A) is a sophisticated estimator of value functions encountered as part of
reinforcement learning. This research examines the behaviour of TD(A) as a
statistical estimator of the value function. The relationship between the eligibility

forms of TD(A) and the various ways that recurrent states can be used 1s explored.

The reason why some forms of TD(A) diverge for some choice of a is investigated.
A simple condition is presented that ensures that TD-like estimators converge in the

mean for all a and this is used to propose a non-divergent form of Accumulating

traces TD(A).

The reason why TD(A) shows a small sample advantage over simpler estimators 1s
examined. The form of the estimator in the first few steps of estimation is shown to
be close to a weighted reward estimator or WR(A) estimator which does not use any

“temporal difference” principles. By comparing the behaviour of the various forms

of TD(A) to the behaviour of the corresponding WR(A) estimator in a range of

models, it is proposed that the action of weighted rewards accounts for TD(A)’s small

sample advantage.

Estimates of the value function are often used to derive the optimum policy. An

additional measure of success, the concordance coefficients is used to compare
WR(A), TD(A) and simpler estimators for their suitability in this role. It is shown that
the WR(A) and TD(R) estimators behave in a very different way to simpler estimators
and this behaviour is largely parameter insensitive. An experiment that compares the

estimates of optimal state values reveals that WR(A) and TD(A) retain their distinct

behaviour. This proves to be an advantage when the initial estimates are optimistic

but a disadvantage when they are pessimistic.
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Chapter One

Reinforcement Learning

This chapter introduces the basic ideas of reinforcement learning in the most general
terms. TD(A) is then described as the best known technique specific to reinforcement

learning and its spectacular success when applied to the problem of playing

backgammon is outlined. The question of whether the success of the backgammon

playing program is due to TD(A) or something else is considered. As TD(4) is such
an important method within reinforcement learning its relationship to a broader

philosophy of temporal difference learning is considered

Reinforcement learning

An autonomous system that has to learn to improve its behaviour without the help of

a supervisor or teacher has little choice but to attempt to characterise the quality or

value of its behaviour in terms of the reward or benefit that accrues to 1t. Such

situations are generally referred to as “reinforcement learning”, (Sutton & Barto
1998).

The exact details of the assumed situation vary but the constants are that the

autonomous system, or agent, has to evaluate and modify its behaviour using nothing
but knowledge of a reward gained at some time in the future — a delayed reward. This

can be contrasted with the easier problem of supervised learning, where more

detailed information concerning the direction in which to modify the behaviour is

supplied. That is, in supervised learning an “error vector” is supplied to the agent
which indicates both the distance that the behaviour is from the optimum, or target,

behaviour and the direction to “move 1n” to get closer to that target.

Examples of reinforcement learning are very common in the natural world. In

psychology reinforcement learning is supposed to work at a more primitive and basic
level than logic or “reasoning” and the behaviourists have argued that all behaviour,

even the most sophisticated, is due to conditioning. With regard to a more synthetic

environment, Al researchers have invented many artificial tests of reinforcement

learning, including pole balancing and playing games such as Backgammon, Chess

Chapter 1. Reinforcement Learning 11



and Go. In these artificial situations expert knowledge has often been incorporated

into the design of the unsupervised learning mechanisms. For example, Tesauro’s
Backgammon program (Tesauro, 1992) was given a predefined set of “features” to

use to judge the quality of a position. There 1s nothing inherently different about

such hybrid approaches as the final stage of learning involves improving play or

behaviour using nothing but the reward eventually obtained.

Value estimation

A key idea in reinforcement learning is that the worth of any given state or action is
judged by the reward it eventually produces, (Sutton & Barto, 1998). In many cases

it is not enough to select the state or action which maximises the immediate reward
because states subsequent to this might well be sub-optimal. In other words, 1t may
be worth accepting a lower immediate reward than possible at a given state in order
to reap the benefit of higher rewards later. Thus the task of maximising the eventual

reward is likely to be a global, i.e. involving all the possible future states, rather than

a local search or the optimisation of the states immediately reachable from the

current state.

The estimation problem may well be global but the agent can only use local

information such as the nature of the current and immediately accessible subsequent

states. This leads to the 1dea of an “optimal value function” which gives the expected
best reward each state produces in the long run. Knowledge of the optimal value

function reduces the global search for a maximum reward to a local search. The

reason is that, with knowledge of the optimal value function, at each stage the agent

simply has to select the action or next state with highest value. That is, the optimal
behaviour is simply “greedy” with respect to the optimal value function, i.e. the

agent simply selects the state or action that produces the maximum value function at

the next stage.

Clearly complete knowledge of the optimal value function makes the reinforcement-

learning task trivial but obtaining knowledge of this is far from trivial. As a result
part of the theory of reinforcement learning is concerned with finding ways of
efficiently estimating value functions. Alternative approaches such as estimating
model parameters and direct policy methods can also be applied and these sidestep

the problem of direct value function estimation. However any policy, no matter how

Chapter 1. Reinforcement Learning 12
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dertved, can be used to infer a value function and this can be used as a value function

estimate.

Backgammon and temporal difference learning

The most successful direct application of reinforcement learning theory to date is
Tesauro’s backgammon program, which used Temporal Difference (TD) learning to
estimate the state value function for the game using a neural network (Tesauro,

1992). TD is a value estimation method introduced by Sutton (Sutton, 1988) and 1ts

role in reinforcement learning is the main topic of this study. In the case of

backgammon the sequence of board states X, X,, X3... X¢ results in a final reward z,

which is 1 for a win and 0 for a defeat, and the output of a suitably trained neural

network is simply P(x;), the probability of winning from position X;.

The training method employed, for the neural network, was to start from an 1nitial
configuration and to use the network to select moves for both sides. The move
selection consisted of presenting the network with all possible legal moves and

selecting the one that maximised its output. That is, the next move, X; 1s given by:

1 =argmax(P(x,,w))

kelegalmoves

where P(xy,w) is the output of the neural network with weight vector w when
presented with the board state xi derivable from the current board state by a legal

move. The same procedure is used for the opponent’s move but in this case the
output of the network is minimised. That is, the neural network was being used to

predict the evaluation function for the game.

The weights were adjusted using the TD(A) method (see Chapter Two for a detailed

explanation) employing the outputs from the network on the moves it selected, i.e.
taking P as the error signal. As the network was being used to play itself, there was

no input of information from a trainer, other than the win or lose signalled at the final

move. Tesauro also states that only raw features were used as input and not features

constructed to have a relevance to the game,

In several tests based on particular phases of the game of backgammon, it was found

that the TD algorithm lagged behind a traditional supervised learning method at
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selecting the best moves using the same configuration of network. However, unlike

the expert-trained network, its performance continued to increase as the number of

hidden units was increased. It was suggested that the TD algorithm is not highly

subject to overfitting the data because of the way that new training data is generated

during self-play.

A more surprising result is that, when pitted against an algorithm-based backgammon-
playing program, the TD algorithm won more games than the expert-trained network.
This seems to suggest that differences in performance at predicting the best move may
have more to do with a similarity between the test data and the expert-trained
network’s training data. Tesauro goes on to state that the TD network is as good, or
slightly better, than Neurogammon 1, the best backgammon program in the 1989

Computer Olympiad. This is all the more surprising because Neurogammon 1 uses

hand-crafted features and the TD network does not.

A later paper (Tesauro, 1994), describes how adding the feature set used by
Neurogammon 1 gave the newly named TD-Gammon the ability to greatly surpass

Neurogammon 1. Indeed, with the new program installed as a move evaluator within
a program that used a heuristic for “doubling” strategy, the resulting TD-Gammon 1

played well enough to rival a strong human opponent. By adding a two-ply look
ahead to the supervising program, TD-Gammon 2 improved still further and, by
increasing the number of hidden units to 80, TD-Gammon 2.1 is reckoned to play at
strong master level and is extremely close to equalling the world’s best human

players. The performance of the various versions of TD-Gammon is listed in Table 1.

Table 1: Performance of TD-Gammon

TD 1.0 | 300,000 - Lost 13 points in 51 games
TD 2.0 | 800,000 Lost 7 points in 38 games

TD 2.1 | 1,500,000 - Lost 1 point in 40 games
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Although the performance of reinforcement learning has been good when applied to

other games, nothing has matched the outstanding success of TD-Gammon. Games

that have been tried include Go (Schraudolph, Dayan & Sejnowski, 1994) and Chess
(Thrun, 1995 and Baxter, Tridgell & Weaver, 1998). See Chapter Three for more

details.

The problem that TD-Gammon presents is that it 1s a complex learning system and it

i1s difficult to see which of its features, or which features of the game, were important

to 1ts success — neural network design, TD(A), the particular game feature set, the

random play training regime, the stochastic nature of the game and so on.

Learning by co-evolution

The ability to learn by playing a reinforcement learning system against itself, termed

“co-evolution”, is an opportunity that is unique to reinforcement learning. The lack

of need for a supervisor or teacher means that a reinforcement learning system can be

pitted against itself at various stages of its history. This sounds like a very good idea

but in practice it has proved disappointing. To quote Pollack & Blair, 1997,

“... self-playing learners usually develop eccentric and brittle strategies which allow

them to draw each other, yet play poorly against humans and other programs.”

It 1s as 1f the two systems agree not to test each other by playing more creative

strategies.

The best counter-example of this folklore is TD-Gammon but why the method works

in this case is difficult to determine. There is evidence that the co-evolution learning

of TD-Gammon is more likely to be due to the structure of the game rather than any
of the details of the learning algorithm (Pollack & Blair, 1997). Clearly more work

1s needed to understand what makes co-evolution a successful learning method.

The role of TD(A) in reinforcement learning

Tesauro’s (1994) results with TD(A) applied to backgammon and, to a lesser extent
ID() applied to chess (Baxter et al, 1998) and Go (Schraudolph, Dayan &
Sejnowski, 1994), indicate that it is an appropriate learning method to use when

taking a reinforcement learning approach to games. However the question of why
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Tesauro’s backgammon program performs so well is still open. The question
remains, “is TD(A) so good an estimation procedure that it makes a decisive
difference to reinforcement learning as suggested by Tesauro’s backgammon

program”, (Tesauro, 1994). To quote again from Sutton and Barto (1998):

“If both T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>