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Abstract

This thesis presents some substantial theoretical analyses and optimal treatments
of Kohonen's self-organising map (SOM) algorithm, and explores the practical
application potential of the algorithm for vector quantisation, pattern classification,
and image processing. It consists of two major parts. In the first part, the SOM
algorithm is investigated and analysed from a statistical viewpoint. The proof of its
universal convergence for any dimensionality is obtained using a novel and
extended form of the Central Limit Theorem. Its feature space is shown to be an
approximate multivariate Gaussian process, which will eventually converge and
form a mapping, which minimises the mean-square distortion between the feature
and input spaces. The diminishing effect of the initial states and implicit effects of
the learning rate and neighbourhood function on its convergence and ordering are
analysed and discussed. Distinct and meaningful definitions, and associated
measures, of its ordering are presented in relation to map's fault-tolerance. The
SOM algorithm is further enhanced by incorporating a proposed constraint, or
Bayesian modification, in order to achieve optimal vector quantisation or pattern
classification. The second part of this thesis addresses the task of unsupervised
texture-image segmentation by means of SOM networks and model-based
descriptions. A brief review of texture analysis in terms of definitions, perceptions,
and approaches is given. Markov random field model-based approaches are
discussed in detail. Arising from this a hierarchical self-organised segmentation
structure, which consists of a local MRF parameter estimator, a SOM network, and
a simple voting layer, is proposed and is shown, by theoretical analysis and
practical experiment, to achieve a maximum likelihood or maximum a posteriori
segmentation. A fast, simple, but efficient boundary relaxation algorithm is
proposed as a post-processor to further refine the resulting segmentation. The class
number validation problem in a fully unsupervised segmentation is approached by
a classical, simple, and on-line minimum mean-square-error method. Experimental
results indicate that this method is very efficient for texture segmentation
problems. The thesis concludes with some suggestions for further work on SOM

neural networks.
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Chapter 1

INTRODUCTION

1.1 Self-Organising Neural Networks

One of greatest abilities of human beings is their creativity. It allows them to invent
various tools and machines to assist them to build their world and carry out their
work more efficiently. Human beings are also curious about the natural world
around them, the way it functions, and even about human beings themselves.
Exploring the brain and understanding how it works have been one of most
challenging tasks for a very long time. The invention of computers and the initial
success of the earliest learning machine models in the middle of this century made us
almost to believe that these questions were to be solved in a short time and that
thinking machines were soon to arrive (Hecht-Nielsen 1990). However when further
theoretical research on these early models of brain function (such as perceptrons)
showed some crucial drawbacks (Minsky and Papert 1969), the research in the field
stalled. After a resurgence in the late 1970s and early 1980s it has been progressing
more prudently and deeply. The previous models have been modified and improved
in various ways. Many new models and theories for describing various brain
functions have been proposed in the light of current biological, physiological,
psychological, and mathematical evidence. They have been, and still continuously are
being, examined and improved by extensive experiments and studies.

A brief history of neural networks from its beginnings and early success to later
development can be found in many important and excellent articles and books in this
field (e.g. Lippmann 1987; Hecht-Nielsen 1988, 1990; Widrow and Lehr 1990; Haykin
1994; Simpson 1990). Many of them also give a broad and deep discussion on the
recent achievements of neural networks and their applications in various fields. The
benefits of this research have not been limited to biological and computer science,
they have gone far beyond their original purpose and extent. Applications have been
extended to more and more fields, such as economics, information technology,
electronics and electrical engineering, medical science, civil engineering, and
mathematics. In these fields, researchers have found that using a neural network
approach is much simpler, more adaptive, and more efficient than using traditional



methods, which often require vigorous mathematical modelling and detailed
parameters to describe the target phenomenon. There is little doubt that neural
networks have become an important and useful methodology and will become more
popular in even more application fields. Just as computers let us work more

accurately and efficiently, neural networks will let us work on more complicated
problems in easier and more adaptive ways.

When most research efforts were focusing on various learning principles and the
sophisticated computational power of neural networks, there was also a great deal of
effort being constantly dedicated to other very important observations from living
brains, i.e. self-organisation in associative memories. Even in the "quiet years" of later
1960s and early 1970s, much fundamental work continued (von der Malsburg 1973;
Kohonen 1974; Grossberg 1976a, b; Amari 1972; etc.). Kohonen's self-organising map,
SOM, was proposed as an associate memory model (Kohonen 1982). It is an
abstracted, simplified, and developed form from many previous research findings for
content-addressable memories, in particular, an earlier model of von der Malsburg
(1973, Willshaw and von der Malsburg 1976). It models the mapping between
sensory stimuli (mostly from the retina) and the cortex. It attempted to discover how
perceived information is mapped and stored in biological memories, and the
properties of such associative memories. Kohonen extended von der Malsburg's 2-
dimension presynaptic field to 2-dimension postsynaptic field mapping model to a
generalised M-dimension to N-dimension mapping, where N<M, and proposed a
competitive learning law and neighbourhood conscience rule, so that the input can be
mapped onto a dimension-reduced output space while preserving the topological
order.

Like any other model of neural networks, research activities on the Kohonen's
SOM have increased dramatically. The SOM has been shown to be an efficient and
powerful model for associative memories and unsupervised learning. Tremendous
efforts have contributed to this model of simple structure yet demonstrating
complicated dynamic processes (e.g. Kohonen 1986, 1987, 1988, 1990, 1991, 1994;
Cottrell and Fort 1986; Ritter and Schulten 1986, 1988; Ritter 1991; Ritter ef al. 1992;
Erwin et al. 1991, 1992a, b; Luttrell 1989a, b, 1991, 1994a, b; Bauer and Pawelzik 1992;
Budinich and Taylor 1995). Although some convergence and dynamic properties
have been discovered, most of them have been limited to the 1-dimensional case with
rare extensions to the 2-dimensional situation. The general and complete convergence
theory and learning dynamics of the algorithm still need to be produced. The
optimality it can and may produce are still to be revealed. A clear understanding of
the model can make it more meaningful, applicable, and suitable to its application
areas. Applications of the SOMs have already been found in the areas such as pattern
recognition, speech and image processing, robot control, data clustering and
visualisation, and function approximation (e.g. Allinson 1990; Ritter et al. 1992; Kim
and Ra 1995; Mao and Jain 1996; Mulie and Cherkassky 1995). It is the simple
computational form of the model that makes the SOM a promising and superior
alternative to related classical approaches. For example, when used as a clustering
algorithm, the SOM is an adaptive and stochastic gradient descent method compared
to the batch version of the k-means algorithm. Thus it is more capable of escaping
local minima and does not suffer from under-utilisation problems. When used as a
data compression algorithm, the SOM is also superior to the standard LBG (Lipde et
al. 1980) and competitive learning methods in these points. Fu'rthermore, with an
ordered (even if only local ordered) codebook, the SOM algorithm shows greater



inherent noise resistance, which cannot be found in the methods that employ non-
ordered codebooks.

An important feature of neural networks is their ability to tolerant imprecise
stimuli and system errors. The topographical order found in biological memory is a
natural example of such a fault-tolerant system, in the sense of producing the lowest
error in response to distorted inputs. The SOM is a algorithm which is naturally able
to form such a topology preserving mapping due to the effect of its neighbourhood
functions. The SOM's noise-tolerant ability is beginning to be appreciated by more
and more researchers (Luttrell 1989a, b, 1994a; Andrew and Palaniswami 1994).
Recently the algorithm has been used to produce robust vector quantisations (Carrato
1994; Chen et al. 1994). However the precise and quantitative role of the
neighbourhood function to the ordering process is still far from clear. Even the
meaning of the ordering process has not yet been explained in detail. Such important
properties are certainly worth studying and exploring. They will not only provide
useful strategies for optimal coding and data compression, but also may bring many
important insights into fault-tolerant memory mechanisms.

1.2 Neural Network Approaches to Image Processing

Neural networks are adaptive, parallel, and distributed information processing
structures with massive, independent, and interconnected simple processing
elements, termed neurons. They are intended to be trained to carry out complicated
and computational intensive processing tasks, such as non-linear classifications,
adaptive control, and combinatory optimisation.

Vision is one of the most complex information processing tasks. It involves a
large-scale parallel processing of low-level visual perceptions, transformations,
abstractions, distributions and storage, and pattern classifications. Image processing
problems are often computational intensive, complex, non-linear, and parallel in
nature. Since vision provides us with more than 60 percent of our perceived
information of the external world, image processing has become an important part of
artificial intelligence. Thus it is an important application area for neural networks.
More and more applications have shown the suitability, successful, and promising
future for neural networks in many aspects of image processing, such as face
recognition, texture classification and segmentation, scene analysis, and image
compression (Nightingale and Hutchinson 1990; Van Hulle and Tollenaera 1993;
Luckman et al. 1995; Wright et al. 1995; Dony and Haykin 1995; etc.).

An important primitive of many images is the perceived texture of many
surfaces within a complex image. Texture analysis provides many essential clues .for
image recognition and segmentation. The techniques used for texture processing
have become a fundamental and important methodology in image processing and
computer vision. Searching for the underlying, effective, and Fiiscriminable texture
features has long been the core of texture analysis. Classical features can be
considered as the various statistical quantitative measures derived directly from the
image texture. They are simple and direct, and can give reasonably gqod
discrimination for textures. Modern approaches are seeking a deeper unc.lerstand%ng
of both the underlying principles of texture formation and human perceptive function
of textures. Markov random field (MRF) model based descriptions and



multiresolution filtering analyses have recently emerged as important and dominant
methods in texture image processing (e.g. Tuceryan and Jain 1993; Geman and
Geman 1984; Chellappa et al. 1993; Haralick and Shapiro 1992; Zhang et al. 1994;
Daugman 1985; Mallat 1989; Manjunath and Chellappa 1993). Apparently these two

methods can exist in parallel, as both can produce good performance in practical
applications.

Neural networks have also started been incorporated with both model-based and
filter-based methods for texture image processing, such as texture classification
(Chellappa et al. 1993; Shang and Brown 1992; Schumacher and Zhang 1994) and
textured image segmentation (Lampinen and Oja 1989; Zhang et al. 1994; Dony and
Haykin 1994). Neural networks' adaptive, parallel processing, and non-linear
properties are beginning to make image processing more efficient, adaptable, robust,
and suitable for practical applications.

1.3 The Aims of this Thesis

As Kohonen and many other researchers in the field have acknowledged, the
vigorous mathematical analysis of the SOM algorithm still needs to be fully explored.

"Apparently the memory functions of biological organisms have been implemented
in the neural realms; but in spite of extensive experimental research pursued on
biological memory, it seems that many central questions concerning its functional and
organisational principles have been remained unanswered" (Kohonen 1984).

The first half of this thesis is to present a detailed investigation of the general
statistical and convergence properties of the SOM, to explore its application potential
relating to various criteria, and to apply appropriate modifications to the standard
algorithm to enhance optimum performance for these different applications. It is
hoped this work will be a significant contribution to self-organisation theory. The
second half aims to demonstrate some useful applications and extensions of the SOM
for some pattern recognition and image processing problems, such as vector
quantisation, data classification, and image texture segmentation. A detailed
application structure of the SOM, in combination with other methods, is proposed for
the unsupervised segmentation of textured images. The chapters of this thesis and
their objectives are briefly described below:

In Chapter 2, a brief review of the SOM's derivation and formation, and a clear
understanding of the functionality of the algorithm are first presented. The statistical
and convergence properties of the features of the SOM algorithm are then studied
from a statistical viewpoint. The effect of initial weights on the state of the final map
of the algorithm is investigated. The algorithm's objectives and their meanings
relating to what kind of optimality are discussed. Some representative examples are
used to support this study and to provide some useful guidelines on implementation

and application of the algorithm.
Chapter 3 presents some useful treatments of the SOM algorithm in order to

achieve optimum performance in two major application areas of the algorithm:
namely, vector quantisation and pattern classification. Some advantages of the SOM



over traditional methods are revealed and examined. A constrained SOM is proposed
to yield a vector quantisation with the global distortion minimum (or an improved
local minimum). Another modification is proposed aimed at producing optimal
Bayesian results when applied to unsupervised classification and clustering
problems. The noise-tolerant ability of the SOM through its topological orders is then
discussed and clearly explained for optimal vector quantisations. The definitions of
ordering and their practical meaning are explored. This chapter also opens up a
discussion on the role of the neighbourhood function in achieving a global optimum
mapping and ordering.

A broad review on image textures and their description is presented at the
beginning of the Chapter 4. Existing approaches to texture classification are briefly
reviewed. Model-based approaches, mainly Markov random fields and Gibbs
distributions, are then extensively examined. The simplicity and usefulness of these
models are explained. The key operational problems to the model-based approach,
i.e. estimation of model parameters, are also examined in detail. This forms an
introduction to the next chapter.

Chapter 5 develops in a step by step approach a system for the unsupervised
segmentation of textured images by using the SOM algorithm and model-based
descriptions. The local property of textures and the convergence property of the SOM
are incorporated. The possibility and suitability of each stage are examined carefully
and logically. A novel hierarchical self-organising structure, and an extended version,
are proposed for the unsupervised segmentation of textured images. The theoretical
analysis of the optimality of these approaches is also presented. By using a local
energy comparison scheme, a boundary relaxation method is proposed to improve
the accuracy of the segmentation at texture boundaries. A simple on-line validation
scheme in terms of minimum mean-square-error is finally proposed for the case
when the class number is unknown and needs to be validated. The proposed
segmentation structures and validation method are examined by extensive
experiment on various textured images, to demonstrate their suitability.

The final chapter, Chapter 6, briefly reviews the contents of this work,
summarise the major results and contributions, and discusses further potential

research topics.



Chapter 2

STATISTICAL ANALYSIS OF SELF-
ORGANISING MAPS

In this chapter a detailed investigation of the statistical and convergence properties
of Kohonen's self-organising mapping algorithm of any dimension is presented.
The feature (or weight) space of the algorithm is considered as a cumulation of
random variables. We extend the Central Limit Theorem to a particular case, which
is then applied to prove that the feature space during the learning is an
approximation to a multiple Gaussian distributed stochastic process and will
eventually converge, in the mean-square sense, to the probabilistic centres of the
input subsets to form a quantisation mapping with a minimum mean squared
distortion with a local or global topological ordering. The difficulties in dealing
with the implicit dependence of the neighbourhood function on the winning
neurons have been overcome in this analysis. As the training progresses, the
diminishing effect of the initial values of the weights on the values of the final
map is shown. The convergence conditions have been analysed both theoretically
and experimentally. The effects of the learning rates on the convergence speeds
and ordering have been analysed. Several useful guidelines for setting algorithm
parameters in order to obtain good mappings are also provided.

2.1 Introduction

For many years, artificial neural networks have been used to model information
processing systems based on natural biological neural structures. They not only may
provide solutions with improved performance when compared with traditional
problem-solving methods, but also give a deeper understanding of human cognitive
abilities. Among the various existing neural network architectures and learning
algorithms, Kohonen's self-organising map (SOM) model (Kohonen 1982) is one of



most popular neural network models. It is an unsupervised learning algorithm with
simple structures and computational forms, and is inspired by the biological retina-
cortex mapping. Thus it can provide topologically preserved mapping from input to
output spaces. Kohonen (1990) has provided a comprehensive review of this form of
network. Although the model's computational form and structure are very simple,
numerous researchers have already examined the algorithm and many of its
problems; and research in this area goes deeper and deeper, there are still many
aspects to be exploited. Even a most general theory of this algorithm is far from
complete and lacking in vigorous mathematical explanation, as Kohonen (1984, 1991)
and other researchers have remarked (Lo and Bavarian 1991; Erwin ef al. 1992a, b;
Bauer and Pawelzik 1992; etc). The aim of this chapter is to provide a strict
mathematical analysis of the learning process of the algorithm and so to determine
important guidelines for how to correctly and properly implement the network.

As the reasons for the convergence and self-ordering phenomena are very subtle,
the convergence and ordering of the SOM have been proved by Kohonen (1984) and
Cottrell and Fort (1986) only in the simplest case, i.e. one-dimensional array of
neurons in response to a one-dimensional input space with a one-step
neighbourhood function. Erwin et al. (1991, 1992a, b) have extended the proof of this
Kohonen chain's ordering and convergence from the one-step neighbourhood
function to any convex neighbourhood functions centred at the winning neuron.
They have also shown that non-convex neighbourhood functions may cause the
existence of metastable states. Lo and Bavarian (1991) have analysed the effects of
stepped and Gaussian type neighbourhood functions on the ordering of the SOM.
They have given a comparison of both through simulations on two-dimensional
arrays of neurons. However for higher dimensional cases or for mappings from a
high dimensional input onto a low dimensional output, the convergence and the
ordering remain very difficult to examine and explain. By considering the SOM's
Markovian properties, Ritter and Schulten (1988) have derived a Fokker-Planck
equation to describe the transitional properties of distribution function of the feature
space in the vicinity of equilibrium. Luttrell (1989a, b) has related hierarchical vector
quantisation principles to the SOM algorithm and has shown that the latter with a
neighbourhood is a stochastic gradient descent method which minimises the mean
squared distortion including the effect of code noise. For mapping from a high
dimensional space to low dimensional data, Allinson (1990) has given some examples
of mapping patterns. Recently, Bauer and Pawelzik (1992) have proposed the use of
topographic products to measure the neighbourhood preservation or violation in the
map. Further analysis of one-dimensional SOM is still being undertaken (e.g. Thiran

and Hasler 1994).

Although developed from a different background, the SOM and stochastic
approximation algorithms (e.g. Robbins-Monro 1951, cited in Sakrison 1966) bgar
some similarities in their computational form. The SOM looks like a multivariate
stochastic approximation with the extra consideration of topographical Qrdermg.
Therefore, the basic convergence conditions for the adaptation gain (or learning rate)
are the same (Kohonen 1984, 1994). These conditions have been relaxed by Ritter and

Schulten (1988).

In this chapter, first a brief review on the neurobiological background of t'he SOM
is presented. The development from von der Malsburg's model to Kohonen's model
is described from this background. Then, Kohonen's algorithm is clearly stated and
rewritten in a non-recursive form for our subsequent analysis, and this shows that

each feature consists of two parts — the contribution from the initial states and the



contribution from the input data. In Section 2.3, analysis of the diminishing effect of

initial states, as the training progresses, on the value of the feature space, is shown.
The limited topological effect of initial states is also examined.

In Section 2.4, we analyse the learning dynamics of the SOM algorithm by using
probability theories to consider each neuron's weight or feature as a stochastic
process, which is composed of random variables weighted by time-varying scalars.
The contribution from the input space to each feature is proved, through an extended
form of the Central Limit Theorem, to tend to a multiple Gaussian process and to
converge in the mean-square (m.s.) sense to the probabilistic centre of each input
subset. The dynamic properties of the neighbourhood function in the SOM algorithm
are very important and are the key to topologically ordered mapping, but explicit
and strict mathematical analysis of the effects of this function on the convergence and
ordering of the process has long proved to be extremely difficult because of its
implicit relationship with the winning neurons. This problem, however, has been
overcome in our analysis. Our proof of convergence also formally reveals the
algorithm's potential optimality for vector quantisation (VQ) as it will eventually
match the two necessary conditions of an optimal VQ, although local minima may
exist.

Section 2.5 provides an analysis of the relationship between convergence speeds
and ordering of the algorithm with learning rates. Some useful guidelines, for
selecting the model parameters in order to achieve a well converged and ordered
map, are also presented, together with a discussion on possible ordering results and
definitions of the ordering. Formal discussion on the definition, measurement, and
realisation of ordering from optimisation theory aspects will be given in next chapter.

2.2 Kohonen Self-Organising Map and Its Rewritten
Form

2.2.1 The neurobiological background: Form Malsburg's model to
Kohonen's model

Understanding the principles of information processing in the bre?in, and then
formulating them in mathematical forms, are one of the most demanding challenges
in neurobiological studies. Humans have long been fascinated by our complgx,
remarkable, and powerful brains, which none of today's computers can compare with
in so many aspects. Tremendous efforts have been applied in this resear(?h area gnd
numerous results have been obtained. Gradually, the mysteries of the brain are being
uncovered. Stimuli from the outside world are received by various sensory or
receptive fields (e.g. visual-, auditory-, motor-, or somato-sensory), coded or
abstracted by the living neural networks, and projected through axons onto the
cerebral cortex, often to distinct parts of cortex. In other wor(.is, the different argas of
the cortex (cortical maps) correspond to different sensory mputs. Topograpl*gcally
ordered maps have been widely observed in the cortex. Thg main strgcturgs (primary
sensory areas) of the cortical maps are establishefi before birth (c'1ted in Wlllshaw and
von der Malsburg 1976; Kohonen 1984; etc.), in a predetermined topographically
ordered fashion (maybe we can call this the global order of the cortex). Other more



detailed areas (associative areas), however, are developed through self-organisation
gradually during life and in a topographically meaningful order (maybe this can be
termed local ordering). Therefore studying such topographically ordered projections
(both global and local), which had been ignored during the early period of neural
information processing development (Kohonen 1986), is clearly important for

forming dimensionality-reduction mapping and for the effective representation of
sensory information and feature extraction.

The self-organised learning behaviour of brains has been studied for a long time
by many people. Many pioneering works, e.g. Hebb's learning law (1949), Marr's
theory of the cerebellar cortex (1969), Willshaw et al.'s non-holographic associative
memory (1969), Gaze's studies on nerve connections (1970), von der Malsburg and
Willshaw's self-organising model of retina-cortex mapping (von der Malsburg 1973,
Willshaw and von der Malsburg 1976), Amari's mathematical analysis of self-
organisation in the cortex (1980), Kohonen's self-organising map (1982), Cottrell and
Fort's self-organising model of retinotopy (1986), still have a great influence on
today's research. (Since we are concerned with self-organising maps rather than other
models, many excellent pioneering works, such as McCulloch and Pitts (1943),
Rosenblatt (1958), Widrow (1962), Amari (1967), Anderson (1968), Minsky and Papert
(1969), Fukushima (1975), Grossberg (1976a, b), Sejnowski (1976), Hopfield (1984),
Rumelhart and Mcclelland (1986), will not be discussed here). von der Malsburg
(1973) and Willshaw (1976) first developed, in mathematical form, self-organising
topograghical mappings, mainly from two-dimensional presynaptic sheets to two-
dimensional postsynaptic sheets, based on retinatopic mapping: the ordered
projection of visual retina to visual cortex (see Fig. 2.1). Their basic idea was:

...... the geometrical proximity of presynaptic cells is coded in the form of correlations in
their electrical activity. These correlations can be used in the postsynatic sheet to
recognise axons of neighbouring presynaptic cells and to connect them to neighbouring
postsynaptic cells, hence producing a continuous mapping......

Figure 2.1: von der Malsburg's self-organising map model.
Local clusters in a presynaptic sheet are connected to local clusters in a pos.r-
synaptic sheet. There are lateral interconnections within the postsynaptic
sheet (solid lines are used to indicate such connections).



The model uses short-range excitatory connections between cells so that activity
in neighbouring cells becomes mutually reinforced, and uses long-range inhibitory
interconnections to prevent activity from spreading too far. The postsynaptic
activities {yj(t), J=1,2,..N,}, at time ¢, are expressed by

a}’j(t)

ot

oy (=Y Wi (DX * (1) + D ey * (1) = S by, * (1) (2.1)
i k k

where c is the membrane constant, w;(#) is the synaptic strength between cell i and
cell j in pre- and post-synaptic sheets respectively, {x*(z), i=1, 2,..N }, the state of the
presynaptic cells, equals to 1 if cell i is active or 0 otherwise, and ¢y and by; is short-
range excitation and long-range inhibition constants respectively. y*(#) is an active

cell in postsynaptic sheet at time 7. The postsynaptic cells fire if their activity is above
a threshold, say 6,

e ¥ (1) =

{yk *()-0 if y, *(1)>6,
(2.2)

otherwise.

The modifiable synaptics between pre- and post-synaptic sheets are then
facilitated in proportion to the product of activities in the appropriate pre- and post-
synaptic cells (according to a verbal form of Hebbian learning):

I oux; (1)y; * (1) (2.3)

where o is a small constant representing the organising speed.

To prevent the synaptic strengths becoming unstable, the total strength
associated with each postsynaptic cell is limited by renormalisation to a constant
value S after each iteration:

1 M
-]—V—zwij(l‘)=S (2.4)

x i=1

Kohonen (1982) abstracted the above self-organising learning principles and
functions and proposed a much simplified learning mechanism which cleverly
incorporates the Hebb's learning rule and neural lateral interconnection rules and can
emulate the self-organising learning effect. As Ritter, Martinetz and Schulten

commented in their book (1992):

...... Kohonen's model of self-organising maps represented an important abstraction of
earlier model of von der Malsburg and Willshaw; the model combines biological
plausibility with proven applicability in a broad range of difficult data processing and

optimization problems......

In Kohonen's model, the postsynaptic activities are similar to Eqn. (2.1). To find
the solutions of this equation and ensure they are non-negative properties, a sigmoid-
type nonlinear function is applied to each postsynaptic activity:

y;(n+1)=0(wj (OX(1) + 3 gy (D) 2.5)
k
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where /; is similar to ey and by, the input is described as a vector as the map can be
extended to any dimensional input. A typical mapping is shown in Fig. 2.2.

N

Figure 2.2: Kohonen's self-organising map model.

The input is connected to every cell in the postsynaptic sheet (the map). The
learning makes the map localised, i.e. different local fields will respond to
different ranges of inputs. The lateral excitation and inhibition connections
are emulated by a mathematical modification, i.e. local sharing, to the
learning mechanism (so there are no actual connections between cells, or in a
sense we can say the connections are virtual. Hence grey lines are used to
indicate these virtual connections).

A spatially-bounded cluster or bubble will then be formed among the
postsynaptic activities and will stabilise at a maximum (without loss of generality
which is assumed to be unity) when within the bubble, or a minimum (i.e. zero)
otherwise,

_J1 ifneuron is inside the bubble,
Vil +13 —{O otherwise (2.6)

The bubble is centred on a postsynaptic cell whose synaptic connection with the
presynaptic cells is mostly matched with the input or presynaptic state, i.e. the first
term in the function in Eqn. (2.5) is the highest. The range or size, denoted n1(z), of the
bubble depends on the ratio of the lateral excitation and inhibition.

In modifying the Hebbian learning rule, i.e. Eqn. (2.3), instead of using the form
of Eqn. (2.4), a forgetting term -Byw; is added to Eqn. (2.3). Let o=B, and apply the
function (2.6), the synaptic learning rule can then be formulated as

). x;(1)—w; (1)), if jen(r),
M:Ocyj(t)xi(t)—Byj(f)w,'j(f)za[xi(f)—W,’j(f)])’j(l‘)Z{g,(r() e
2.7)

At each time the best matching postsynaptic cell is chosen according to the first
term of the function in Eqn. (2.5), which is the inner product, or correlation, of the
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presynaptic input and synaptic weight vectors. When normalisation is applied to the
postsynaptic vectors, as it usually is, this matching criterion is similar to the
Euclidean distance measure between the weight and input vectors. Therefore the
model provides a very simple computational structure.

The lateral interconnection between neighbouring neurons and the "Mexican-hat"
excitatory or inhibitory rules are simulated (mathematically) by a simple local
neighbourhood excitation form centred on the winner. Thus the neuron's lateral
interconnections (both excitatory and inhibitory) have been replaced by
neighbourhood function adjustment. The neighbourhood function's width can
simulate the control of the exciting and inhibiting scalars. The constrained (with a
decaying or forgetting term) Hebbian learning rule has been simplified and becomes
a competitive learning model. The detailed form of Kohonen network will be given in
the next subsection.

Most of Kohonen's work has been in associative memories (Kohonen 1972, 1973,
1974, 1980, 1982, 1984, 1986, 1988, etc.). In his studies, he has found that the spatially
ordered representation of sensory information in the brain is highly related to the
memory mechanism, and that the inter-representation and information storage can be
implemented simultaneously by an adaptive, massively parallel, and self-organising
network (Kohonen 1986). This simulated cortex map, on one hand can perform a self-
organised search for important features among the inputs, and on the other hand can
arrange these features in a topographically meaningful order. This is why the map is
sometimes termed the self-organising feature map, or SOFM. In this thesis, however, it
will be refereed to the self-organising map (SOM), which comes from Kohonen's
original definition and purpose (i.e. associative memory).

2.2.2 The Kohonen SOM algorithm

The SOM algorithm uses a set of neurons to form a topology conserving (partially or
globally) discrete mapping of the input space. Let XeR" represent the input space,
where N is the dimension of the input space. Let Y represent the neural network or
map, which is arranged in a M-dimensional space (usually M=1, 2, or 3), so Y is a Cx
C,x...Cy, array, where {Cj, j=1, 2,...M} represents the number of neurons along each
dimensional side of the neuron space, and C=CxC,x...C, is the total number of
neurons. Every neuron or cell, ceY, is connected, in parallel, to all dimensional

components of the input sample, xe X,

X=[x1, XZ, ...XN]T (2.8)

The connection strengths, or weights, are
w, (1) =[we (), wea(n), ...way (M1 VeeY (2.9)

where n is the discrete time and n=0.

The initial weights are normally set to small random values (Lippmam 1987).
The only restriction to the initial states has been stated that they should' be different
(Kohonen 1990, Haykin 1994). During the evolution of the weight updating, at every
training step, an input sample, x(n), is randomly selected from thg input space X, and
presented to the network. Every neuron compares its weights with the input, and a
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winning neuron, v(n), which is said to be the "best match" with the input (i.e. closest
to the current input in the Euclidean distance sense), can be found through

v(n)=argmi{{1{“x(n)—wc(n) }, VeeY (2.10)

Then the weights are updated according to the following rule:

w.(n+1)=w.(n)+o(n)h(c,v,n)[x(n)—w.(n)], VceY (2.11a)

or, since normally only scalar valued {a(rn)} and {A(c,v,n)} terms are employed, each
dimensional component of a updating weight vector receives the same degree of

modifying scalar: on)h(c,v,n). The above expression can be written in another form,
namely,

w,(n+1)=w,(n)+o(n)h(c,v,n)[x;(n)=w,(n)l, i=1, 2,..N;, Vee Y (2.11Db)

where h(c,v,n) is termed the neighbourhood function. There are many types of
neighbourhood function. Originally step functions were used, that is,

1, if ceX, (n)
h(c,v,n)—{o, if ceX.(n) (2.12)

where R (n) is the neighbourhood set around the winner, v(n), at time n. R (n) "should
be very wide in the beginning (of the training) and shrink monotonically with time" until the
winner is the only member of the neighbourhood set; "a good global ordering” may then
be formed (Kohonen 1990). (Note, h(c,v,n) is a function of time n, cell ¢, and winner v).

The coefficients {o(n), n>0}, termed adaptation gain, or learning rate, are scalar-
valued, decrease monotonically, and satisfy (Kohonen 1984)

@) 0<o(n)<l; (i) lim ¥ 0(n)—eo; and (i) im Y a’(n)<eo (2.13)

n—oo n—>ee

They are similar to those used in stochastic approximation (Sakrison 1966). The third
condition in (2.13) has been relaxed by Ritter and Schulten (1988) to a less restrictive

one, namely, lim o(n)—0.

n—>eo

If the inner product similarity measure is adopted as the matching law, i.e.
p(n)= argmz;x{wf(n)x(n)} (2.14)
ce

then the corresponding weight updating will be read as (Kohonen 1990)

Cw.(n) +0(n)X(n)

if ceR (n),
[w(n) +a(m)x(n)| i ceR,n)
w (n+1)=ﬁ (2.15)

[

| w.(n) ifceR, (n)
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2.2.3 The rewritten SOM algorithm

Eqn. (2.11b) can be rewritten as a non-iterative expression,

wa(n+ D)= w O J11-a(t)h(e,v, 1+ Y 5 (bxuh(ev k) [[11-a(bhce.v.D],
k=0

k=0 I=k+1,k<n
i=1,2,..N; VceY (2.16)

The first term in the above equation is the contribution from the initial state to
the final feature (value) of the map, while the second term represents the contribution
of the input data. Though one might suppose that {i(c,v,n)} is influenced indirectly by
the weights at any time, including the initial weights, and inputs, so the first term
might be influenced by the inputs as well, and the second term might be also affected
by the initial states. However, as we will show in the next subsection this is not so at
the limit. We maintain the expression of the neighbourhood function, h(c,v,n), as a
function of neuron, winner, and time for the generality.

In most applications, only scalar-valued {a(n)} and {h(c,v,n)} terms are used, this
means, as shown in Eqn. (2.11b) or (2.16), that all dimensional components of a
weight are (or should be) unrelated. Thus the ith component, w,, of each neuron's
weight, is only influenced by the ith dimensional components, x;, of the inputs, xeX,
even though the winner is decided by all the dimensional components of all weights

and the current input.

2.3 The Effect of Initial States

2.3.1 The mathematical effect of initial states

To examine the first term of (2.16), we write

bci(n)—:—ﬁ[l—oc(k)h(c,v,k)]: | J [EEICY (2.17)

k=0 k=0,ceX, (k)
Only if the neuron, ¢, is in the neighbourhood set, X (n), at time n, will its weights be
modified, and the corresponding terms appear in (2.17). Let D (m)={the number of time
intervals, or steps, for which c¢ is not in X (n) beginning at time m, m=0, 1,..n; n>0}
represent the intervals or periods between updates of neuron c's weights. For each

neuron, {D(m)} must be a finite number set. Then let D, =max{D_(m)}, which will be
4 finite number, otherwise ¢ will not fire again. We assume that there are no "dead”

neurons. Hence

n

b (my=  J]0-oak,)] (2.18)

k,,=0,stepD_(m)

Taking natural logarithms of both sides, gives
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n n
1 n
b, (n)y=" Y h[l-ok,)]< > [~o(k,)]=— S D, 0k,
k,,=0.stepD,(m) k,=0,stepD,(m) cmax k, =0,stepD,(m)
1 n D”A"m 1 n
== Y (auk,,) + ok, )+...0(k,, ))<— Y (k) (2.19)
cmax k =0,stepDc(m) Dcmax k=0

The first inequality holds because 0 < a(n)<1, the last inequality holds because {ou(k)}

n
decreases monotonically. From the second condition of (2.13), i.e. Y o(k)—"22 s 0,
k=0
we obtain

Y (k) 2750 220)

cmax k=0

b;(n)<exp{-—

Thus the first term of (2.16) will tend to zero whatever the initial states are set to
provided they are finite. So the effect of initial states on the values of the final states
will tend to zero. The monotonically decreasing property of {ou(n), n>0} and the first
two conditions of (2.13) are necessary and sufficient conditions for this effect. These
results show why the initial states of the SOM can be randomly selected. The only
restriction that initial weights should be different is due to the requirement that a
winner has to be chosen from them when the first input is provided. Many papers
restrict the initial weights to random and small values, however no formal reason is
given. The reason may be that they use the exponential series for {o(n)}. Then the
term (2.19) will not go to minus infinity and (2.20) will not go to zero, so the initial
states will have some impact on the final states, unless they are very small. However,
choosing such exponential series as learning coefficients will have serious effects on
the correct mapping to the centroids of the data subsets (as we will show in Sections
2.4 and 2.5). There are some incorrect ideas about weight initialisation for SOMs (e.g.
Fu 1994; Wasserman 1989).

The above results apply for step, "top hat", or squared, neighbourhood functions.
They can be extended to general convex neighbourhood functions. For such a

function, since inf{h(c,v,n)}<h(c,v,n)<sup{h(c,v,n)}, hence

b (n)= f[a —oa(k)h(c,v, k)< [~ inf{hle,v,n)}ou(k) (2.21)

k=0 k=0,ceX (k)

Taking logarithms of both sides gives a similar result to (2.19) except for a factor of
inf{h(c,v,n)}, which will not affect the further result, (2.20).

Convex type, such as Gaussian, functions are often used as neighbourhood
functions because they have better performance for the ordering than that of step
functions. Although from the above we have seen that there is a small factor, i.e.
inf{h(c,v,n)}, in Eqn. (2.21), the average {D(m)} in (2.19) is also very small because this
type of neighbourhood function lasts spatially longer. Thus the convergence
performance will not be affected. Instead, since they can make the ordering phase of
the algorithm shorter, the convergence performance may actually be improved by
using proper Gaussian type neighbourhood functions.
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2.3.2 The topographical effect of initial states

The above results show that the mathematical values of the final weights or features of
the SOM will not be affected by the initial states provided the adaptation gains satisfy
the convergence conditions. However, in some circumstances, the initial states may
affect the order, or both the order and the value, of the final states due to
inappropriate implementation of the neighbourhood function and/or the adaptation
gain. All possible situations can be described by three cases. In the first one, a global
topological order has been formed (if it exists), but it may appear in different
arrangements (or appearances). When the mapping is between identical dimensional
spaces, the globally topographical order can be well defined and it is feasible to make a
mathematical measure. However when the projection is from a high to a low dimensional
space, the definition of global ordering is possible but it may be not achievable. The definition
is not easy visualisable (Kohonen 1991; Bauer and Pawelzik 1992). We will address this issue
briefly in Section 2.5.3, and in detail in the next chapter. These different appearances can
be called different phases or directions. For example, a five-neuron chain when trained
to quantise a uniformly distributed interval [0, 1] may result in two different globally
ordered maps in two directions, see Fig. 2.3(a) and (b) respectively. Actually they are
the same. Order should be interpreted as the inter-relationship or inter-arrangement
of neurons.

0 1 0 1
—eo—eo—0—0—0— eo—eo—o—o—o—
ni nZ n3 n4 no nS n4 n3 n2 nl
(a) (b)

0 1 0 1

o—o—eo—0—o—- | —o 0060 o

nl ne n3 n5 nd

() (d)

Figure 2.3: Possible mapping results of a 5-neuron SOM chain to a uniformly
distributed area [0, 1]. (a) and (b) are globally ordered maps and are the same
though in different direction appearances; (c) is locally ordered map; (d) is a
disordered and non-optimal map.

In the second case, neurons are mapped to the correct positions; however, some
local topological order, instead of the global topological.order., has been achleyed, see
Fig. 2.3(c). The shrinking speed of the neighbourhood size might be set tqo high, this
is probably due to unavailable measurements or monitoring of. the orderm.g process
and happens in some cases especially in high to low d1men§19nal mapping cases.
However if the adaptation gains satisfy the convergence .condltlons .(2.13.), or the far
less restrictive ones of Ritter and Schulten (1988), the initial states still will not gffect
the values of the final states from the whole map point of view. The neurons will be
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mapped to the positions as in the ordered map, and these positions will make the
distortion of representation a minimum (at least a local minimum). Thus it is still a
form of optimal mapping in the sense of minimum representing errors. However,

since it is not a globally ordered map, its noise tolerance to the system error will not
be as high as that of the globally ordered map.

In the third case, e.g. Fig. 2.3(d), the mapping can be meaningless. Whatever the
order of the map, the positions (values) of the neurons have not been mapped to the
correct positions so the mapping is meaningless, i.e. not optimal in any sense. The
adaptation gains might have decreased too fast, or both the adaptation gains and the
size of the neighbourhood function shrunk too fast. For example, there are many
attempts to use exponential functions, like e series, as adaptation gains. However,
they do not satisfy the second condition of (2.13). Thus theoretically they will not
guarantee convergence though they may give a good approximation in some cases.
In this situation, the initial states do affect both values and orders of the final results
of the map because of inappropriate implementation of the SOM algorithm. If the
adaptation gains decrease too fast, even though the size of the neighbourhood is
reduced slowly, there will not be sufficient weight changing power to move neurons
to the correct positions and so change their ordering unless the order is provided
before the training commence or is formed at a very early stage of the training. But
even if the ordering is correct (or optimal), the map is still not optimal, since the
positions of the neurons are incorrect, or not optimal.

2.4 The Distribution and Convergence of the SOM
Feature Space

As the effect of initial states will tend to zero, the final feature map will depend
primarily on the second term of (2.16), i.e. the contribution from the input space.
Since the input vectors are drawn randomly, or independently, from the input set X,
then from Eqn. (2.16) the second contribution can be treated as a time-varying
weighted sum of independent random variables (r.v.s), {x(n), n>0}. Each neuron
receives inputs from a set, termed X(n), which is a time-varying subset of the input
set X. At the beginning of training, subsets are maximally overlapped with each
other. As the training progresses and the neighbourhood size shrinks to just one

neuron, the winner, input subsets X, (n), ceY, n=0} will eventually be mutually
separated with

UX,(m)—=">X, and X, (X, (n)—="—0, cxc, Ve, ceY (2.22)
ceY
As time tends to infinity, {X (n)} will tend to {X_}, which are termed the final input
subsets.
Suppose the probability density function of the input set X is p(x), the probabﬁW
of an input sample x(n) falling into a subset, X (n), is changing with time and given

by

P(X,.n)= | p(x)dx, VeeY (2.23)
xeX(n)
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and within each input subset, X (n), the varying probability density function is

p.(X,1) = p(x)

=t VeeY :
PR ce (2.24)

As time tends to infinity, {X (n), P(X_, n), and p(X, n), ce Y} will tend to {X, P(X,), and
p(X), ce Y} respectively. So p.(X)=p(x)/P(X ).

Next we will use statistical methods to prove that in the SOM algorithm, each
feature or weight component, w (n), in Eqn. (2.16), represents a stochastic process
whose probability distribution density will tend to a Gaussian-type function, and
furthermore its variance will tend to zero and its mean will tend to the mean of the
corresponding input subset X ..

2.4.1 An extended Central Limit Theorem

The Central Limit Theorem is concerned with the statistical properties of a sum of
independent r.v.s. The differences in the present case are that such a sum (see the
second term of (2.16)) is a sum of r.v.s. weighted by time-varying scalars. Each
variance of a weighted random variable (r.v.) will tend to zero, rather than to a finite
number, because these time-varying scalars tend to zero. In the following, we will
show that the variance of the sum of these weighted r.v.s will also tend to zero
(otherwise the algorithm will not converge). We cannot apply directly any existing
version of the Central Limit Theorem (e.g. Markov's, Liapounov's, Lindeberg's, see
Papoulis 1965, Chow and Teicher 1978) to this analysis. It is necessary to extend the
theorem to this particular application. We introduce an extended form of the
theorem. The proof is given at the end of this chapter, in an Appendix.

Theorem 2.1: If {X, n20} are independent r.v.s with finite means of {m,, n=0}, finite
variances of {0,?, n=0}, and finite higher moments, i.e. for any & >0,

uZ® = [ X2*®p(X,)dX, <o (2.25)
Xﬂ.
where p(X,) is the density function of X,., {ay(n), k=0,1,...n, n20} is a set of time-varying real
numbers, which satisfy

(i) 0<a,(n)<1; (i) iak(n)—"—_)i—)I; (iii) Y af (n)——=-0 (2.26)
k=0 k=0

The weighted sum {zn:ak(n)Xn, n>0} will tend to a Gaussian distributed process with mean
k=0

(varying with time) of {m(n)="Y a,(nymy ,n20} and variance (varying with time) of
k=0

{02(,1) — zn“ag(n)o,%,nZO}, and with m(n)— E{m_}, cz(n) — 0 when n — oo. Furthermore if

k=0
X —» X', then such a weighted sum will converge in the m.s. sense to m, the mean of X'.
n 7
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2.4.2 The asymptotical distribution of the SOM features

Returning to the second term of (2.16), we can regard it as a time-varying weighted
sum of independent r.v.s. and here the time-varying weight set {a,(n), k=0, 1,...n; n>0}
is given by

a,(n)=[ H(l —a(Dh(c,v,D)Jok)h(c,v,k) (2.27)
I=k+1,k<n

Next we shall prove that this set will satisfy the three conditions of the above
theorem, i.e. (2.26). The first condition, 0<a,(n)<1, holds because of (2.12) and (2.13);
and the second condition holds because

Yam)y=31 [l0-adh(e,v.0)lokh(c,v,k)=[1-(1-a(n)h(c,v,n))]
k=0

k=0 I=k+lk<n

+[1-a(n)h(c,v,n)][1-(1-a(n-1)h(c,v,n-1))]

+[1-0(n)h(c, v, [ 1-o(n-1)h(c,v,n-1)]...[1-o(DA(c, v, D][1-(1-0(0)h(c,v,0))]

=1- ﬁ[l —o(k)h(c,v,k)] (2.28)
k=0

From Section 2.3.1, we know that the second term of above will tend to zero.

For the last condition, considering

ia,%(n) = i[ ﬁ(l—a(l)h(c,v,l))2]ocz(k)hz(c,v,k) (2.29)

k=0 k=0 I=k+l,k<n

Since 20(2 (k) converges, so for any arbitrary small value ¢, there exists a value of k,
k=0

for which i{oc2 (k)< €, and because 0<[1-0(D)h(c,v,1)]<1, then
K

lim iag(n)z i[ ﬁ(l—oc(l)h(c,v,l))Z]ocz(k)hz(c.v,l)< Yor(ky<e  (230)

n—=>%p—x k=x [=k+1 k=x

For a finite x, since ia(k) diverge, Zoc(k) will also diverge, and from Section 2.3.1,
k=0 k=x

K
we can see that H(l — aD)h(c,v,1)) will also tend to zero, and since 20(2 (k)<®, (a
I=x+1 k=0

constant), therefore,
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lim ¥ a;(n)= 31 [T~ aD)hie,v.0)* a2 (k)h2 (c,v.k)
k=0

Ny - k=0 I=k+1

<{ [Ta-ah(c,v,)*1Y 02 (k)< ﬁ(l —o(Dh(e,v,1)—>0  (2.31)
k=0

I=x+1 I=x+1

We conclude from (2.30) and (2.31) that the last condition also holds. The above
results, together with the nearest neighbour matching law of the algorithm, result in
the lemma given next.

2.4.3 The convergence of the SOM: A Lemma

Lemma 2.1: The feature space of the SOM algorithm is approximate Gaussian distributed
stochastic processes, and will converge in the m.s. sense to the means, or centroids, of the final
input subsets, i.e.

- 1
W (n)—"2 %mC=P(X ; [xp(x)dx,  VeeY (2.32)
(o Xc

Where {m } is termed the final feature space, and is the set of cluster centres of the final input
subsets {X }. Each final subset X has hyperplane boundaries which are defined by:

HX —m, ” = "x -m|, Ve, c’'eY, but c'#c (2.33)

The lemma means that the algorithm will eventually converge to positions that
will meet the two well-known necessary conditions for minimising the mean squared
distortion in representing input space by the map, or quantisation error. The SOM is
naturally a multiple stochastic process, although non-stationary, but asymptotically
convergent and normally distributed.

We use a simple example to conclude this subsection. A 10-neuron SOM chain is
used in mapping to a uniform distributed interval [0, 1]. The parameters are set as:
initial weights w(0)=0.1xrandom(1)+0.5; learning gains o/(n)=0.9xB/(B+n); and the step
neighbourhood shrinking speed R(n)=5xG/(G+n)}, where B and G are time constants
and are both set to 100 in this example. The evolution random processes of the
features, i.e. the weights, are shown in Fig. 2.4(a). The corresponding mean and
variance processes, which are calculated from 100 independent simulations, are
shown in Fig. 2.4(a) (smooth lines) and (b) respectively. Care should be taken when
performing this averaging, since the results may be in different directions, as defined
in Fig. 2.3 (a) and (b). When we specify neuron "0" to be the neuron whose final
position is closest to the zero end of the data segment, then the averaged process for
neuron "0" should be the sum over the process of the neuron whose final weight is
closest to the zero end in each of these 100 trials. So when each trial begins, each of its
ten processes has to be stored, and the average over this trial will not take place until

the final configuration occurs.
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Figure 2.4: The evolution processes or trajectories of weights of a 10-neuron
chain in a uniformly distributed input. (a) Typical learning processes and
averages over 100 such processes, (b) typical variance processes.

As we can see from the results, the learning process represents a multiple
stochastic process, whose mean process is smooth and asymptotical, and will
gradually converge to the optimal positions. The averaged variance process is also
smooth and asymptotical, and will gradually go to zero. This means that, the mean
process of the SOM (instead of itself) is a gradient descent process, or in other words, the
SOM is a stochastic gradient descent method.
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2.5 Convergence Conditions and Speeds

2.5.1 Ritter and Schulten's extended convergence conditions

The original convergence conditions of (2.13) agree with the ones of stochastic
approximation methods. Ritter and Schulten (1988) have considered the SOM feature
space as a Markov process and derived a Fokker-Plank equation to describe the time
evolution of these processes in the final stage of the convergence phase. They
proposed a less restrictive necessary and sufficient condition set for convergence, i.e.
(of course {on)} still needs to decrease monotonically),

(i) O<a(n)<l; (i) lim Y, 0(n)—>eo; (iii) lim a(n)—0 (2.34)

n—yoo n—oco
i.e. the third condition of (2.13) has been replaced.

By using Theorem 2.1, we also can show that these relaxed conditions will
guarantee the convergence. The proof is similar to the previous case. We simply need
to examine if the variance term, ie. (2.29), will go to zero since the other two
conditions for the theorem can be easily seen to be fulfilled.

Since an)—0, so for any arbitrary small value ¢, there exists a finite T, for o(n)<e,
n>T. Then:

lim ia,f(n) = i o2 (k)h* (c,v,k) ﬁ(l —a(l)h(c,v, 1))
k=T k=T I=k+1
<e i (1 - (1 - a(k)h(c,v,k)) ﬁ(l —a(Dh(e,v,D)=e(l—- f[a — au(k)h(c,v,k))) <E.
= I=k+1 k=T
. (2.35)

For a finite T, since Zoc(k) — o0, SO Zoc(k) — oo, thus H(l —a(Dh(c,v,0)))— 0. Since
k=0 k=T I=T+1

T
20(2 (k) <¥, a constant, thus
k=0

T o0
lim ia,f(n) = Y o2 (2 (e,v.k) [T -ah(er.h)* >0 (2.36)
k=0 k=0 I=k+1

Therefore the variance will tend to zero.

252 The effect of learning rates on convergence speeds

However, different selections of the adaptation gain, or learning rate, {o(n)}, under
the above convergence conditions, will result in quite different convergence spgeds.
To make a quantitative measure of this matter. Wg first see how the variance
processes of weights are changing in accordance with different types of learning rate.
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To visualise this, we compare some typical different variance curves. For example, we
choose four different decaying order series, all of which satisfy the conditi)n’s of
(2.34). They are o, (n)=n"!, o (n)=n"12, 03(n)=n"14, and o,(n)=n"119, To look at the effect
of each set on the convergence speed, we examine the corresponding variance index
of evolution process, which is similar to term (2.29) and is defined as

N N
I (N)=Yalk) [[-0,()?, =123 4. (2.37)
k=1 I=k+1

0.5

0.45
04
0.35

&
w

variance index
o
V3

0.2
0.15
0.1
0.05 . )
1 1
0 ﬂ,); Y ~
- ) o =] o o o o o o =) o =)
S S S =) > S ) ) S S S S =)
— Q v S S ) =) S S =) S =) o
— ' o S = S S S o S
— o\l vy o S (=) (]
— o T2 o
.
time

Figure 2.5: Convergence speeds.
Series i = ¢'2(N) (i.e. o,(n)'s variance index), i=1, 2, 3, 4.

The results are shown in Fig. 2.5. We can see that as the rate at which o tends to
zero decreases, the variation reducing rate, the most important measure of the
convergence speed, will also be greatly reduced. In these examples, after 1,000
iterations, the variance index has been reduced to 0.001 for series a,, while to 0.0162,
0.0977, and 0.3344, for o,, 0, and o, respectively. After 1,000,000 iterations, the
variance indexes are 0.000001, 0.0005, 0.0161, and 0.1436, for o, o, 05 and oy
respectively. It seems that o, is better than the others. However, this depends on
situations. In some cases (e.g. very many neurons, and/or high dimension data), a
slow learning rate may be helpful for (i) ordering of the map and (ii) improving
convergence, i.e. converging to the correct (optimal) positions earlier. A correct choice
of learning rate, as well as neighbourhood function parameters, will depend on
individual applications and data dimensions. In the rest of thesis, when we refer to
the convergence conditions we shall mean those in (2.13), unless we specify the ones

in (2.34).
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Even within the same decaying rate, there is great flexibility for changing the
learning rate. For example, normally we use an n! order learning rate, but in the

form of (although the series {n!} meets the convergence conditions itself, it is not
used directly, as we will discuss next)

o(n)=0u(0)B/(B+n) (2.38)

where 0(0) is initial rate and can be chosen between 0.5 to 1, and B is the rate

decaying circle constant. By choosing different B, we can form a large range of
learning rates.

Theoretically when the {a(n)} satisfies the convergence conditions, the neurons
will eventually (that means as time tends to infinity!) converge to some pre-
determined positions, with which the neural map provides the minimum mean
squared distortion of input space. These positions depend on the number of neurons,
input distribution, and dimensions of both input and neuron spaces. This means
whatever we choose a(0) and B, they should not affect the convergence results. It
will, however, affect the convergence speed indirectly by its weak ability to move
neurons to the required positions. For example, if we use a small o(0) and/or small B
to start with the training (or if the ordering phase takes long time and the
convergence phase starts with a very small o(7,), where T, is the iterations that the
ordering phase has taken), it will need very many iterations to converge to the
required positions. However, permitting time go to infinity is unrealistic; and after a
large number of iterations, the changes in weights are very small, so it will take a
long time to move those neurons whose positions are far from optimal to the correct
places. Converging in a limited time is one of the most demanding tasks. The
following example gives a quantitative analysis of the effect of different B in Eqn.
(2.38).

A 10-neuron chain is mapped to a one-dimensional uniformly distributed area of
[0, 1]. If we choose 0/(0)=0.8 and B=10, and let us assume that the first 1,000 iterations
are for ordering, i.e. T;=1,000, then observe how much the residuals in Eqns. (2.17)-
(2.20) are after 10,000 iterations. The average D (m) in this case will be 10 because of
the uniform distribution. b ,(10,000) can be calculated from (2.18)-(2.20), i.e.

1 10,000 0B
b,(10,000) <exp(—— Y, a.(0)

)=exp(—1.835)=0.16 (2.39)
e k=000 B+

which is still a large value compared with the required zero. So the initial weights, or
the weight values after the ordering phase (normally far from the optimal positions),
will have an influence on the map even after 10,000 iterations. In addition, the value
in Eqn. (2.28) will be 1-0.16=0.84, instead of the required 1, this means the positions of
neurons are still quite different from the mean values of their subsets. Therefore the
map will be a certain distance from the optimal one, unless you let the process run
much longer, say after 100,000 iterations (b.<0.025 and Eqn. (2.28)=0.975), or after

1,000,000 iterations (6,<0.004 and Eqn. (2.28)=0.996), or even longer.

When B is increased, however, it may be very different. For example if B=100,
then bCS1.972><10'850 and Eqn. (2.28)=1, after 10,000 iterations (still keeping o(0)=0.8).
A result which is close to the optimal map can be expected. If the order can be formed
carlier, the situation may also be different. For example, if 7,=200, b.<0.045 after
10,000 iterations for 0(0)=0.8 and B=10. So two basic rules of thumb for choosing
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learning parameters can be deduced: one is to make the ordering phase as short as
possible, or simply initialise the neurons in a ordered fashion if you can (it is possible
at least in many same dimensional mapping situations); the other is choose a
sufficient value for B (the more neurons in the map, the larger B should be, since
D (m) is larger). However B should not be too large, otherwise the variance term, i.e.
Eqn. (2.29) would be still very large even after a large number of iterations.

Dynamically selecting {au(n)} is also possible, but a great deal of care should be
taken to guarantee convergence to the correct position. The learning rates must be in
accordance with the convergence conditions. If the ordering is not important, or is
already formed after a certain number of iterations, the decreasing rate of {o(n)} can
be reset, or even be increased as long as it will comply with the convergence
conditions. The learning rate, however, may have a stochastic relaxation effect on the
convergence. A slower learning rate might give a higher possibility to escape local
minima and so achieve a global optimum, when the situation is complicated, e.g.
non-uniform input distribution, and/or high dimensional input data, and/or, very
large number of neurons.

It may also be appropriate to use separate learning rates for different neurons.
Their parameters can be set to the same, but each neuron has its own learning rate
and timing, which means that each neuron's iteration number for calculating learning
parameter (like n in Eqn. (2.38)), is decided by its firing frequency rather than the
natural global clock. So the previously inactive neurons will not be affected by the
disadvantage that a single learning rate provides, i.e. o(n) may be very small after
many times of updating by some very active neurons. The "less fired" neurons then
have a greater capacity for updating, and the more frequently fired neurons reduce
their abilities to change. This interesting phenomena will be further analysed in the
next chapter.

UNIVERSITY
OF YORK

2.5.3 The effect of learning rates on topological ordering LIBRARY

Ordering is mainly influenced by the parameters of the neighbourhood function,
specifically its shrinking rate. The slower the shrinking rate, the more likely an
ordered map will be formed. The learning rate may also have a small influence on the
topological ordering process. Generally large learning rates provide great capacity for
adjusting disordered regions of the map when the neighbouring size has not been
reduced to simply the winner. Once the ordering has been formed, it will keep the
order provided convex type neighbourhood functions are used (Lo and Bavarian
1991) (This might be true only for the same dimension mapping cases, see the next
chapter). To choose the learning rate we may also need to consider the local optimal
situations. The more local optima, a slower relaxation speed is required. A slow
learning rate does help in the ordering process when neighbourhood functions are
not set correctly as when a criterion for selecting neighbourhood function is
unavailable. The following examples show some limited effects of learning rate on the
ordering. A formal analysis on this issue will be give in next chapter.

In the one-dimensional case: 10 neurons are mapped onto a uniformly
distributed area [0, 1]. We use a Gaussian type neighbourhood function in the form of

=)
h(i,v,n)=e 20 (2.40)
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and
6(n)=h(0)G/(G+n) (2.41)

where h(0) is the initial neighbourhood radius, G is the neighbouring radius decaying
circle (time) constant.

When we set h(0)=3, G=10, and B (in Eqn. (2.38)) =50, then in many cases this will
result in a disordered chain. However when we change B to 100 or higher, there will
be an increased probability of forming a ordered chain. It is certain that if one could
increase G to its correct range, a ordered map would be easily formed even when
B=50 or lower. This example shows that, at least in some cases, when the correct
range of neighbouring functions is not clear, slower learning rates may give higher
possibilities for achieving ordered maps.

In the two-dimensional example, a 9-neuron chain is mapped onto a uniformly
distributed square of [(0, 0), (0, 1), (1, 1), (1, 0)]. We choose 9 neurons because it is
easy to show what are the optimal positions that will make the total distortion a
minimum. In most uniformly distributed cases these positions are unique (as shown
in Fig. 2.6(d) for this example). However in other cases they may not be unique, i.e.
there may exist local minima. The three typical possible Peano curves results of this
example are shown in Fig. 2.6(a), (b), and (c), corresponding to a very disordered
map, a locally ordered map, and a kind of optimal ordered map respectively. Step-
type neighbourhood functions were used in this example. In the first two cases, as we
can assume, the neighbourhood function parameters were improperly set. The
parameters were chosen as 2 and 20 for the initial neighbour radius, A(0), and the
neighbourhood shrinking rate, G, respectively. The neighbourhood was apparently
shrinking too fast to just the winner, so that the map could not update disordered
parts of the map. These parameters are normally chosen by experience, and are
dependent on input and output dimensions, input probability densities, the number
of neurons, etc. The Fig. 2.6(b) differs from (a) in its learning rate constant, B, which
was 100 and 20 for case (b) and (a) respectively. With the parameters set as in case (b)
the possibility for a better ordered map is higher than that in case (a). This shows that
the learning rate in a limited range can improve the ordering. We state that Fig. 2.6(c)
is a kind of globally ordered map because it does not take account of one edge, or
terminal, neuron, which has violated the order definition, (see section 3.6). An ordered
neuron is one for which, at least, its nearest neighbouring neurons in neuron space should
also be the nearest neighbouring neurons in the input metric space, i.e. neighbourhood
preserving for this neuron. A globally ordered map is a map in which every neuron is a
ordered neuron. Ordering should not simply be considered as "unwrapping” of the
neural positions in the map, but should be referenced to firm definitions of
optimisation. Under the above definition an ordered map is more optimal than a
disordered map in the sense of error tolerance, i.e. when the coding or mapping
processes, and/or the transmission of the code vectors in VQ, and/or the decoding or
recalling of the mapped or stored states in associative memory, involves noise, the
ordered map will give the smaller distortion, or less errors, than a disordered map. In
this example, we used open maps (chains), i.e. edge neurons were not wrapped or
connected to other edge neurons, so the edge neurons only have one sided
neighbourhood. It is very difficult (maybe impossible) to draw a totally globally
ordered optimal map which can satisfy the above definitions without excluding one
edge-neuron. Since this is a dimension reducing process, such distortion is to be

expected.
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Figure 2.6: Various mapping results of a 1-D SOM chain to a 2-D input space
(after 10,000 iterations). (a) very disordered; (b) locally ordered; (c) a form of
globally ordering; and (d) the optimal positions for the neurons.

If we arrange these 9 neurons in two dimensions, i.e. in the same dimensional
space as the input space (e.g. 3x3 grid), then a globally optimal map is obvious and
can be easily obtained. However this will increase (exactly double) the total code
vectors to be transmitted, or total numbers to be stored or memorised. In this
example, one-dimensional mapping just needs to transmit and store 9 numbers
(codebook size) and to transmit only one number for each code, while two-
dimensional mapping will need to transmit and store 18 numbers for codebook and
to transmit a 2-D vector, i.e. two numbers (x, y values), for each code. Of course you
may number these two dimensional neurons on a scalar order, e.g. in a scanning
order, that will reduce the code length for each code, but this will reduce the error
tolerance ability since the 2-D neighbouring structure will be violated. So all these
conditions and parameters — the number of neurons, the map dimension and shape,
etc. — have to be made by considering the purpose, performance requirement and
noise situations of each individual application. A trade-off may have to be made
between feature representation, fault tolerance optimality, and transmission or

storage efficiency.
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However, whatever the map order is, the optimal positions (there may be several
possible sets of such positions if there are local minima) of neurons can be
predetermined; and the neurons will converge to these positions provided the
adaptation gains satisfy the convergence conditions. In this example, the neuron
positions in Fig. 2.6(a), (b), and (c), are close to, and are going to converge to (if time
goes to infinite), these optimal positions in Fig. 2.6(d). Thus the Fig. 2.6(a) and (b) can
still be optimal for noise-free transmission and/or decoding situations. We can
deduce this from the mathematical analysis of the SOM presented earlier, especially
Section 2.3 and 2.4, i.e. a locally or globally optimal map with local order or a global
order will be formed eventually when the learning parameters satisfy the
convergence conditions. The predetermined positions depend on the number of
neurons (codebook size) and the distribution of input space. When the distribution is
not uniform or smooth; and/or the number of neurons is small, there may not be a
unique set of predetermined positions. In the next chapter we will look at these
problems, and provide a kind of statistical treatment for the SOM in forming different
kinds of optimal maps for different applications, such as VQs and pattern classifiers.

2.6 Conclusions

In this chapter, we have introduced the self-organising map algorithm from its
historical background and have analysed the statistical properties of the feature space
of the SOM algorithm. From the proof of its Gaussian distribution approximation we
have also formally proved the convergence of the SOM algorithm under the original
and relaxed conditions for adaptation gains. The resulting Lemma 2.1 means that the
SOM algorithm will eventually minimise the mean squared distortion function.
Together with its matching law, it will eventually satisfy the two necessary conditions
for optimal VQ. The results are dimension irrelevant, i.e. convergence exists for any
dimensional maps, provided that the learning rate complies with the convergence
conditions. If the shrinking speed of neighbourhood set is not too fast, then a globally
topographical ordered, or in general locally ordered, map may be formed. A clear
understanding of the learning dynamics of the SOM algorithm gives some insight
into an appropriate implementation and improvement of the algorithm for practical
applications. Some useful guidelines for choosing the algorithm's parameters have
been discussed with supporting mathematical analysis and examples. The dynamic
convergence properties of the original algorithm described in this chapter will be
employed in the next chapter to further analyse the optimality of the algorithm and
to apply some useful constraints on, or extensions to, the algorithm in order to
achieve optimal performance for VQ or pattern classification purposes.
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2.7 Appendix: Proof of Theorem 2.1

First consider the zero-mean case, i.e. {m,=0, n=0}.

The following two formula can easily be obtained:

) ' X2 IX|2+6
eX =1+jX- > +B 5 VXeR, |Bl<1 (2.a1)
~ /X2
1-X=¢X —92—, VX>0, 0<P'<1 (2.a2)

In (2.al) let X=a,(n)X,» and taking the expectation of both sides, the characteristic
function of g,(n)X, is obtained:

) 2 2 2+6 (2+8)
cbk(m,n)zE{elwak<">xk}=1—f’k—(”2)—(’&m2+Bk (’;)“ o, 1B, 1<l (2.a3)

Let X = g;2(n)c,20?/2 in (2.a2), then:

2 2
2 2 4 (n)S; ;2 2.2
a,(n)o - ® a, (n)o;®

, 0<B’ <1 D.ad
2 2 2 P (2.ad)

Then we can write:

2 2
_ 9 (n)oy >

O (onm)=e 2 (1+7,) (2.a5)
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a4 (;)Gk 2 (B 2+5 (n)u%+8|m12+5 B;{ (a]% (I’l)Gi(Dz
L Pk RN

2d 2 2
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where v, =e

Since a, (n)—=2—0, thus a,2(n)0,2w? <1 holds for any finite area of ®, and since:

(af(n)ﬁiwz Y = (a,f(n)cﬁmz )1—5/2(0!;%(”)0%@2 )i+8/2
2 2 2

(PN * (2.26)

< 1 (a;% (n)0;0° yrosz 1 g2es
1072 5 27

The last inequality holds because (62)2+ <y, So the following inequality
holds:

1< -z-e”2a,%+5(n)u§3+5>|m|2+5 (2.a7)

Since {X,, n>0} are independent r.v.s, then:

2 _n
®

jo y af.(n)Xk n ——Zaf(n)
®(w,n)=Ele ; }=[]®x(@n)=e 2 A+yd+y)(+y,)  (228)
k=0
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The error of its Gaussian distribution approximation is:

2N

® 2 2
|(I)( _7§ak(n)6k by, 1+ | ZWH
w,n)—e |< (1Y DAHY, DA+ D) 1< MMl 35

n
20 pEDY a2 (n)
e k=0

< -1 50 (2.a9)

because if Za,f(n)—"-_L)O, and 6>0, then Zaf‘Ls(n)i)O. and where
k=0 k=0

Eﬁ:xs) = max{uﬁl%s),n 20}.

From (2.a9) and using a lemma of Uspensky(1937) (i.e. if the characteristic function
of r.v. S tends to the characteristic function of a Gaussian distributed variable, then the

n
distribution of S tends to that Gaussian function), we can conclude that { Y a,(n)X,,n >0}
k=0
tends to a Gaussian distributed process with zero mean and variance:

o’(n)= Y ai(n)or <ok Y at(n)—L220 (2.a10)
k=0 k=0

In the non-zero mean case {m, #0,n 20}, if every m  is a finite number, then the

biased r.v.s {X', n=0} can be divided into {X,+m,, n=0}, where {X,} are zero mean r.v.s
and according to a Corollary of Slutsky's theorem (cited in Chow and Teicher 1978)

(ie. if {p,A.p,,A,, n 20} are finite constants with p,———>p, A,———A, and

X —22 53X, then p,X,+A,—>pX+A.), the weighted sum Y q,(n)X; is also
k=0

n
Gaussian distributed with finite means m(n) = Zak(n)mk (<m,,,,) and finite variances
k=0

02(n), which will tend to zero, when # tends infinity. Furthermore, if X 25X,
(with the mean of m), then:

m(n)= Y a;(n)m, —22 sm (2.al1)
k=0
That is iak(n)X,’l will converge in the m.s. sense to the mean of the X'. a

k=0
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Chapter 3

OPTIMAL TREATMENTS OF SELE-
ORGANISING MAPS

This chapter continues the analysis of the SOM algorithm, in particular its
convergence speed and stability and its suitability for various information
processing tasks. The local optima and non-optimal problems are discussed.
Solutions and treatments for different purposes are proposed. First, Kalman
optimal filter theory is applied to reduce the asymptotical Gaussian distributed
noise existing in the learning process, hence to smooth and speed up the learning.
Then from the objective criteria of various information processing needs, the
potential optimality of the SOM for vector quantisation is further analysed and
compared. Although having great advantages over other quantisers, the SOM still
suffers from local minima problems. A constrained SOM, based on the equal-
distortion principle, is proposed to yield a global optimum, or near optimum,
quantisation. Little extra computation costs are introduced but improved
performance, both in lower distortion and in stable and fast convergence, is
achieved. An explanation of noise-tolerant quantisation by using SOM related
algorithms, and some meaningful and quantitatively measurable definitions of
ordering, are also presented. The SOM algorithm is also widely employed as a
classifier because of its simplicity and parallelism, though it is not optimal for this
application. An extended SOM, in which both distance measures and
neighbourhood functions have been replaced by the neuron's posterior
probabilities, is proposed to achieve Bayesian classification performance when the
pattern distribution is modelled as a mixture distribution and the learning is

unsupervised.

3.1 Introduction

Following the statistical analysis of the self-organising map (SOM) algorithm in the
Jast chapter, we have shown that the algorithm is potentially optimal for vector
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quantisation (VQ) and related data compression. However, there are two major
application areas of the SOM ~ one is signal compression, while the other is pattern
classification. Associative memories belong to the former, as they are knowledge
representing methods as well. These two application tasks usually have different
objectives in information processing, although sometimes they are very closely
related. Directly applying SOMs to pattern classification will not normally result in
optimal performance. Even when employed as a quantiser, the algorithm cannot
guarantee a global optimum. How well does the algorithm perform in these two
applications, or how to make the algorithm work as well as or better than
conventional methods? These will be the main objectives of this chapter.

First, in Section 3.2, a Kalman filter is incorporated into the SOM algorithm as a
post-filter to reduce the learning noise and so smooth and accelerate the learning
process.

In Section 3.3, different optimal criteria corresponding to different information
processing requirements, such as normal VQs, noise-tolerant VQs and pattern
classification, are analysed. Section 3.4 first compares the use of the SOM algorithm
for VQ with other VQ algorithms. Examples of image compression tasks are given.
The theoretical analysis and practical examples reveal that the SOM algorithm can
produce comparable performance to other compression techniques, such as the LBG
(Linde et al. 1980), and competitive learning (CL) algorithms. It can naturally
overcome some problems that other algorithms often encounter, such as under-
utilisation and strong initial reference impact. However the SOM algorithm, as well
as other algorithms, possess the local minima problem. A constrained SOM, an
equidistortion constrained SOM (ECSOM), is then proposed based on an asymptotical
property of optimal VQs, i.e. the equal-distortion principle. The principle is indirectly
applied to the SOM by constraining the width of the neighbourhood, and this makes
the principle more applicable to practical problems. The proposed ECSOM algorithm
is superior to the SOM in both performance (MSE distortion) and convergence speed.

The SOM algorithm has also been widely used in data clustering for pattern
classification. When used as a classifier, however, the SOM can only make reference
vectors, or clustering centres, optimal with respect to the partitions, but can not
produce optimal partitions or decision boundaries in the Bayesian criterion sense.
Therefore a conventional unsupervised SOM will not normally produce Bayesian
classification unless the input data are uniformly distributed or pattern clusters are
well separated. In most cases, the pattern distributions are overlapping, and their
joint distribution can be described by a mixture distribution. To produce an
unsupervised Bayesian classifier, an extended SOM learning scheme is proposed in
Section 3.5. In this algorithm both distance measures and the neighbourhood
functions are replaced by on-line estimates of the individual neuron’s posterior
probabilities, so that each neuron will converge to a component of the mixture
distribution. Some application examples are presented.

In Section 3.6, definitions for the ordering of the maps to any dimension have
been formalised into a mathematical form. The ordering of the map is defined in two
different ways: one is in geometrical sense and the other is in fault-tolerant sense.
Each of these has a very clear optimisation meaning. The definitions are
quantitatively measurable, can easily be used to judge the quality of the ordering of
the map and can improve understanding about what are the advantages of an

ordered map.
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3.2 Convergence Accelerating by a Kalman Filter

3.2.1 Kalman filters

We have shown that for the SOM algorithm, the feature space is a multiple Gaussian
stochastic process. These processes are time-varying, or non-stationary, but they are
also asymptotic stationary and will eventually converge to finite states. This means
that these processes begin with large fluctuations, or variances, but gradually the
training will cause them to decrease. In this section, we combine an optimal filter, the
Kalman filter, with the SOM to moderate the effects of large variances during the
training process. There have been some previous examples of the application of
classic optimal filter theory to neural networks (e.g., Cho and Don 1991; Ruck et al.
1992). A Kalman filter is a linear estimation method which can produce an optimal
estimation of model states when applied to Gaussian distributed processes. It is also a
recursive algorithm which is based on the prediction of system states from the latest
states and linear measurements such that the expected sum of the squared errors
between actual and estimated states are minimised.

The algorithm can be described as following (cited in Hostetter 1987):

System model:
S(k +1) = F(k)S(k) + U(k) (3.1)
Z(k+1)=H(k+ DSk +1)+V(k+1) (3.2)
Predictor:
S(k+1/k)=Fk)S(k/ k) (3.3)
Z(k+1/k)=H(k+1)Sk +1/k) (3.4)
Corrector: A
Sk +1/k+1)=S(k+1/k)+K(k+ D[Z(k+1) = Z(k+1/ k)] (3.5)
Gain:

Kk+D)=Pk+1/ OHT (k+ D[H(k+ )Pk +1/ KHT (k+1)+R(k+ DI (3.6)

Covariance:
P(k+1/k)=F(k)P(k/k)FT(k)+Q(k) (3.7)

Pk+1/k+1)=[1-Kk+DH(k+DIP(k +1/k) (3.8)

Where S(k) are the states to be estimated or filtered, F(k) is the state transition matrix,
U(k) is the model noise vector, Z(k) is the observation vector, H(k) is the measurement
matrix, V(k) is the measurement noise vector, and

Q(k) = E{U(k)U (k)} (3.9)

R(k)=E{V(k)VT(k)} (3.10)

are the covariance matrices of model noise and measurement noise respectively.
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3.2.2 Smooth and speed up the convergence of the SOM

When applying a Kalman filter to a multilayer perceptron (i.e. a non-linear system),
the model of the system should be linearised. Cho and Don (1991) and Ruck et al.
(1992) used an extended Kalman filter as an alternate training algorithm for multilayer
perceptrons. Ruck et al. (1992) also compared it with the back propagation algorithm
and concluded that back propagation is a degenerate form of the extended Kalman filter
under the assumptions of: (1) [HPH"+R]!=al, and (2) P=pl. In general, these
conditions are not satisfied. However in the SOM, where the system model is linear,
the Kalman algorithm must be applied in different way. We use a Kalman algorithm
as a post-filter to the SOM. The updated weights of the SOM are considered as the
measurements of the Kalman filter. The system models are asymptotic, thus we can
use some asymptotic functions to describe them, such as exponential functions. The
model states are the filtered, or true, weights of the network. Since every weight of
each neuron is, or has to be, independent as we have shown in Chapter 2, the F, H, K,
P matrices are all diagonal. So there will be no need for matrix computation.
Furthermore, it is possible to consider every weight to have the same speed of
convergence, so we can use the simplest computational form of the algorithm. A
diagram is shown in Fig. 3.1.

neuron ¢ weights filtered

weights

SOM Nets

model

\. _J/

measurement

measurement noise model noise

Figure 3.1: A post Kalman filter for the SOM algorithm.

For a one-dimensional (1-D) input to output mapping example, the state
transition F, can be modelled as:

g

F(k) = Q%%‘—) SN | (3.11)

Where g is the underlying converging constant, which depends on the number of
neurons. Its value is not very critical and can easily be chosen experimentally.

H is identical to I since we treat the output of the SOM as the measurement of the
filter. The noise in every neuron's state is considered to be the same scalar-value, and
decreasing with time, and so is the measurement noise. Thus:
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Figure 3.2: Comparison of the original SOM and Kalman Filter modified SOM
(10-neuron chain and uniform distribution input case). (a) Typical SOM
learning and Kalman filtered SOM learning processes; (b) The corresponding
distortion level processes for both algorithms.
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U(k)=e*/u ] (3.12)
V(k)=e ™V 1 (3.13)
where u, v are decay constants of the state noise and measurement noise respectively.

Fig. 3.2 shows an example of applying such a Kalman filter to the SOM
algorithm in the mapping of a 10-neuron chain to a uniformly distributed interval [0,
1]. The SOM and the filtered SOM evolution processes are shown in Fig. 3.2 (a), while
their corresponding performances, i.e. MSE distortions (see Section 3.3), are
compared in Fig. 3.2 (b). The parameters in the SOM algorithm were set similar to the
example in Section 2.4.3. The Kalman filter parameters are all scalar values in the 1-D
case and in this example were set: g=10, u=v=100, R=0.2x1073, 0=0.5%10. Normally
the filter has to be applied after a certain number of iterations (say 10-20) to avoid
high noise at the beginning of the learning. As we can see the filter processes are
much smoother and more stable than the original ones. They demonstrate low
variance especially in the initial phase. Their performances show that the filtered
processes can reduce the distortion earlier in the learning. Although both algorithms
will reach the same distortion minimum (in this case it is — 30.79 dB) after very many
iterations, more stable and faster converging algorithm can still be a great advantage.

This example shows that optimal filter theories can be applied to reduce the
learning dynamic noise, which in the SOM algorithm is Gaussian distributed.

3.3 The Optimality Criteria for SOMs

3.3.1 Minimum mean squared error criterion

Since the SOM uses a finite, usually only a few, points or vectors, which though
defined in the input space lie in the output space, to represent a possibly infinite or
large number of points of the input space, distortion is unavoidable. Information
contained in the input space has to be extracted or compressed by mapping to a
limited and smaller output space. This is not a one-to-one mapping from a global
point of view (although some one-to-one correspondences do exist in living brains).
Most information or knowledge we learn from the outside world is captured, sorted,
and assigned to some specific regions of our memory, each of which represent an
abstraction of a certain knowledge domain. This learning and knowledge-building
process continues throughout our entire life. Knowledge can be updated and new
knowledge can be incorporated. For example, when we are learning some general
domain knowledge (e.g. doors, windows, lights, cars), such learning starts from the
first time we encounter such objects, and is gradually enhanced and generalised as
more and more objects that have the same function are perceiv.ed either through
explicit teaching or through self-learning. Thus when we consider one of .these
knowledge domains in general, what we are recalling fr(?m our memory is an
ambiguous generalised image (not a specific one) but one with a clear meaning a'nd
functional description. This generalised knowledge is .constructeq by gxtractmg
representative symbols and meanings from as'sociated. ob]e.cts. By doing '(hlS., we can
recognise a previously encountered or learnt 1teg1 or 1dent1fy a new one W1th1¥1 th.e
same class. So we reduce the amount of information stored in our brains. Imagine if
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we had to remember every example of door, window, car, etc., that we ever
encountered, what size of brains would we need! There is no doubt, our brains can
remember clearly a very large number of specific items and individual objects, like
our names, friends' names, personal belongings, etc. However, extraction, and
generalisation for more general knowledge are so important in our cognitive
processes. Such a process has been employed for a long time in infor;lation
processing technology such as signal compression (e.g. signal coding) and in
information storing (e.g. associative memories) in order to reduce the transmission
burden /or storage space. According to Shannon's rate-distortion theory, better
performance can always be achieved by coding vectors instead of scalars (Shannon
1959, cited in Gray 1984). There have been considerable efforts in vector quantisation
(Linde et al. 1980; Gray 1984; Makhoul et al. 1985; Nasrabadi and King 1988). A

mapping of data blocks in 2-D input space to individual reference vectors is show in
Fig. 3.3. This forms the basis of VQ.

Input space Output space
Figure 3.3: Quantising input space.

The degree of distortion caused by such extraction and generalisation reflects the
soundness of the learning process. The lower the distortion, the better the learning.
Although for living neural networks a measure for such distortion may not exist or
cannot be expressed in a mathematical form (e.g. how could we measure the general
difference between doors and windows in a precise mathematical format), such
measures of distortion, if available and quantitatively comparable, would be very
useful to guiding our learning, and indicating how we have learnt about various
perceptual classes. Natural brains have incredible abilities to extract the most
representative and meaningful features from various objects. To exploit such abilities
and apply them to artificial intelligence would be very beneficial.

Since the SOM is an abstract form of mathematical modelling of the brain's
information mapping mechanism, inputs to the map and its outputs are (or should
be) all formally defined in mathematical forms, e.g. real values, multi-dimensional
points, or vectors. If we could (!) express any object by such vectors or represent
objects by extracting some distinguishing features, our next objective is to abstract
these features and project them onto a representing space (like the cortex) in a strict
mathematical sense. The quality of the approximation is measured by a metric
distortion factor, normally the Euclidean distance. The difference and similarity
between features are measured by such distances. The quality of a representative for
a class is measured by the average distortion between the representing vector and the
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class members over the entire class range, which is given by the mean-squared error
(MSE), i.e.

2
D, = [|w. - x| p(x)dx, ceY (3.14)
XC
where {x} is the input data, w, is the c-th reference vector, X, is the input sub-space or
the data subset that reference ¢ covers, Y is output or feature space, and p(x) is the

probability density function (pdf) of the input data. The integration is over all
dimensional directions of the input space.

The measure, D,, is the variance for each reference to represent its subset in the
input space. The less the variance, the more accurate is the corresponding reference.
(Measures using other distances, e.g. absolute Euclidean distance, Mahalanobis
distance, are also possible). Individual distortions normally indicate the fitness of the
individual references. Only in some cases, when the subsets are well separated (i.e.
clearly clustered subsets) can their individual minimum distortions be accepted as an
overall optimal criterion. In most cases, the subsets are close to each other, or even
overlapped, and/or the variability of each subset is large, the individually
minimising the distortions of each reference will not lead to a globally optimal
mapping. The overall distortion has to be adopted as a fitness criterion. Therefore, the
mapping, ®: X — Y, is said to be optimum (global optimum), if and only if the
following overall distortion is minimised with respect to all variables, and over the
entire input and output spaces:

D, = z J”wc - xth(x)dx (3.15)

ceY X,

This is a sum of all individual variances, i.e. the total MSE distortion, over a
usually finite and discrete output or feature space. The input space, however, can be
any kind of continuous or discrete or both.

Although for speech or image signal compression, such difference measures may not
exactly emulate human auditory or visual perceptual measures, which may need more
complex integration of various discriminations including psychological aspects, the above
measures are the most widely employed criteria because of their simplicity and mathematical

tractability.

Minimising the total MSE distortion, however, is certainly not an easy task as it is
a combinatorial optimisation problem. Generally, a direct solution does not exist. A
great deal of effort has been applied to this problem; and many methods have been
proposed — most notably; methods of gradient descent, least-mean-square, stochastic
annealing, and neural network methods.

As we have seen from the previous chapter, the goal of the SOM is to minimise
the total distortion D,. The SOM algorithm will eventually reach a minimum (in most
cases, a local minimum). We have already proved that the SOM will meet the two
necessary conditions for minimising D,, derived from signal coding and VQ theory.
This also means that the SOM is inherently an information compressing algorithm
and is a potential candidate for VQ and related signal compression. In Section 3.4, a
detailed mathematical analysis for optimal VQ will be given, and an optimal
treatment to the original SOM is proposed in order to achieve a globally optimal
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mapping. With regard to the ordering properties, the modified SOM can produce a
noise-tolerant VQ together with a globally minimal distortion.

The criterion for information compression and signal transformation are basically
the same; that is the difference between the original signal and its reconstruction
should be as small as possible. Transform coding theory (e.g. Karhunen-Loeve
transform (KLT), discrete Fourier transform (DFT), discrete cosine transform (DCT))
is one realisation of such principles. However in realising such compression
optimally, the signal's characteristics may need to be taken into account. For example,
sound and speech signals are recorded and represented in the form of time-series
signals. However due to their production and reception mechanisms, i.e. vibrations,
they may be better represented in the frequency domain. So it is not surprising why
Fourier transforms and more recently wavelets (an extended, improved, and
multiscale version of the Fourier transform) are so useful and popular in speech and
sound signal processing. It has been known for some time that there are some parts
of the auditory cortex, which respond to various frequency bands (cited by Shepherd
1988, Kohonen 1984). These auditory regions are called tonotopic map, in which
different strips or fields represent different sound frequency receptive fields and are
usually arranged in some ordered way.

The Fourier transformation itself can be seen as a signal compression process.
The relation can be seen from Fig. 3.4.

4 )
Fourier Transform

Encoding \

.

contruction Inverse
Fourier Transform

Decoding
\_ y

Figure 3.4: Fourier transform.

The Fourier transform maps the signal from the time domain to the frequency
domain. The number of coefficients of Fourier transform can be infinite, but most
coefficients are redundant as only a limited number of the most significant ones are
used in practical applications. This process can seen as a near optimal encoding, and
the remaining most significant coefficients can be used as the codes. Hepge the
reconstructed signals (via the inverse Fourier transform) have the minimum
distortion when using the same number of coefficients. However if Fhe signal
spectrum is widely spread (e.g. noise corrupted signal, wMte n01se),' guch
compression may be a disadvantage, as the number of the dommgnt coeff1c1§nts
could be very large. VQ compression techniques in time d'omam have given
impressive results and have become more and more popular in speech or sound
coding and compression (Gersho and Cuperman 1983; Makhoul et al. 1985; Tsao and

Gray 1985; Luttrell 1989a, b).
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3.3.2 Minimum hierarchical mean squared error criterion

If the encoded or stored references can be fully recalled, or if the signal transmission
channel is noiseless and every code can be received without error, or if the input
signal or pattern (recalling pattern) is noiseless, then the above MSE criterion, i.e. D,
will be the optimal criterion. However, in some cases, these assumptions are not true.
For example, signal channels are often noisy, and transmitted codes (or stored codes)
will be disturbed over a certain range by noise. Although many transmission
techniques use high noise tolerant modulation and transmission methods, e.g. FM,
PCM, Hamming code; and the source coding and the channel coding or error control
coding can be designed separately to construct nearly optimal communication
systems according to Shannon's coding theory, the principle of the noise-tolerant
coding is still very important not only to signal compression but also to associative
memory for fault-tolerant ability (e.g. when the input signals or recalling patterns
contain noise). Some channel coding techniques pay the price for noise Immunity by
increasing the number of transmission bits, which reduces the compression ratio, for
example, Hamming (7, 4) coding uses 7 bits to transmit a 4-bit signal, so that a single-
bit channel error can be detected and corrected (Hamming 1950, cited in Gonzalez
and Woods 1992). Noise-tolerant coding and compression also have some similarity
to natural cognition processes and may provide some useful theories for many other
artificial intelligence areas. For example even when you incorrectly recognise a word,
or a object, the fact is that this word, or the object, is very similar in some sense to
what you originally thought. When incorrect recall does happen, the optimal solution
should limit the error to an as low as possible value.

Luttrell (1989a, b) first related hierarchical noise tolerant coding theory to the
SOM principles. When considering the channel noise, a two-stage (hierarchical)
optimisation has to be done not only in minimising the representing distortion D, but
also in minimising the distortion caused by the channel noise. He revealed that the
SOM can be interpreted as such a coding algorithm. The neighbourhood function can
be interpreted as a channel noise distribution and should not go to zero as it does in
the original SOM. Kohonen (1991) has also defined a similar distortion measure for
the objection function, which the SOM seeks to minimise, but concluded that the
original convergence conditions are not sufficient for the ordering, by an example
which indicated the difference between the results of the original SOM and his
modified version. He also suggested that this modified version might be not worth
applying to practical applications. This indicates that the self-organising and ordering
processes, with regard to the noise tolerance optimal criterion, are still far from being
clearly understood. The theories of such systems need to be exploited as they have a
close relationship to the ordering theory of the SOM. We will expand this analysis in
Section 3.6. Here we give the objective function for the globally optimal minimisation
of the compression distortion over a noisy channel (Luttrell 1989a, b, 1994a), i.e.

D, = Y () f|w - x| p(x)dx (3.16)
ceY X

c

where 7(c) is the channel noise density function, and index ¢ is in vector form as the
maps are usually arranged in an array rather than a scalar line. Eqn. 3.16 is slightly
different from the one given by Luttrell in that the discrete integration over the
channel noise is used here as we note that reference books (or codebooks) are always

discrete.
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The importance of this optimal criterion is that it can clearly explain in a well-
defined mathematical form the meaning of a topologically ordered mapping, and

why such a biological inspired mapping is so important and desirable in information
compression and storage.

SOMs can produce a map that will satisfy the D, criterion, if the algorithm is
properly guided and constrained during training AND the neighbourhood function
is fixed (not shrinking) to the channel noise density. However the resulting reference
(or feature) map will differ from the one obtained using D, criterion (e.g. the original
SOM algorithm) in two aspects, one is the ordering fashion of the map, the other is
the positions of the final references. What kind of mapping to apply and what kind of
algorithm to use depend entirely on the application.

3.3.3 Minimum classification error criterion

The goal of pattern classification is to classify or group various pattern samples into
different meaningful classes. This process is sometimes called data clustering. Each
class or cluster usually has certain internal structures in the distribution of its
members. Such structures can be pre-determined by some valid assumption or learnt
from known samples; or have to be estimated from unknown class data by on-line
learning and testing. In the former case, the learning is carried out in a supervised
manner; while in later case, the learning is carried out in an unsupervised manner.

An example is shown in Fig. 3.5. The requirement is to group data into some
kind of meaningful classes, where some kind of underlying pattern structures can be
seen. Each class then can be represented by its cluster centre. The boundaries between
classes are defined in some way to perform optimal clustering, i.e. produce least
possible errors.
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Figure 3.5: Data clustering.

The criterion for verifying the quality of classification can only be the minimum
classification errors. Optimal clustering results in the minimum mis-classification. In

Bayesian terms, this can be expressed as
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K
Dy=3 P(®;) [xp;(x/w;)dx (3.17)
=1 xgQ;
where K is the total (correct) number of the pattern classes, Q, is the data set for the i-
th class, P(w)) represents the probability of the i-th class, and pix/®) is the density
function for class .

Sometimes when the class probabilities and density function are not available (as
in many discrete cases where only a finite training data are available) the above
criterion for error measurement has to be simplified to

K
Dy=Y Y {1-8[m(x)~-i]} (3.18)
i xeQ,
where the membership function m(x) represents the true class member for x, and the
delta function 6 equal to 1 when its variable is 0, and 0 otherwise. In this case, each
class's density is its histogram's discrete distribution from its samples, and each
sample is assumed to have equal probability (which might not be true in some
practical problems).

{Q;, P(®), p(x/®), i=1,2, K} are the parameters to be estimated. In supervised
learning, class probabilities and density functions are known, or can be learnt from
known training samples. The only task is to assign the input test samples so that Eqn.
(3.17) or (3.18) reaches the minimum. When some, or all, of the above parameters are
unknown, the learning becomes unsupervised. Usually the class densities have to be
assumed (with possible later adjustment) to be a particular function such as
Gaussian. Other parameters can then be learnt on-line from samples. This is usually
more difficult than in supervised cases. Sometimes even the class number K is
unknown, so a validation process is needed to find out the best class number.
Normally, an initial K has to be assumed and when the clustering converges, select a
different K, and apply clustering algorithm again. Repeating doing this and
comparing the errors of different K’s, the one giving the minimum errors is the best
answer.

According to Bayesian theory, the minimum classification error is obtained by
assigning or labelling each input x according to its maximum a posteriori (MAP)
probability, i.e.

P(i)p(x/i)} (3.19)
p(Xx)

It has been proved that multilayer perceptron neural classifiers estimate these
Bayesian a posteriori probabilities when the network has one output for each pattern
class; and desired outputs are I of M (one output unity corresponding to the correct
class, all other zero) (Richard and Lippmann 1991). The estimation accuracy depends
on network complexity, the amount of training data, and the fitness of training data
to likelihood distributions or class densities, {p(x/i)}, and prior class probabilities,
{P(i)}. However, for self-organising networks, when used as classifiers, there is no
formal analysis to show whether they will converge to Bayesian classifiers or what
kind of performance they can achieve. Many experimental results have suggested
that SOMs will not converge to Bayesian performance unless classes are well
separated. In Section 3.5, we will explore this by comparing the asymptotical

[(x)=argmax{P(i/x)=

42



properties obtained in the previous chapter with the properties of Bayesian
classifiers. An optimal treatment of the original SOM, which can lead to forming the
Bayesian classification, is proposed.

In much of the literature, clustering algorithms and VQ algorithms are often
confused. Only when in very specific circumstances (e.g. uniform distribution, well
separated classes), will one algorithm produce optimal performance for both VQ and
classification. Because the objective functions for VQs and pattern classification are
different, one algorithm which is optimal for VQ (or classifier) will not be optimal for
the other. As the SOM and CL algorithms are potentially optimal for VQ, they are
normally not optimal for pattern classification. However, they are often applied for
such tasks. The SOM and CL algorithms can produce an optimal classification

performance only if they are appropriately modified. In Section 3.5, an extended
SOM is proposed to yield Bayesian classification performance.

3.4 Towards the (Global) Optimal VQ

3.4.1 Two necessary conditions for optimal VQs

The VQs we will discuss in this section are noise-free but lossy VQs, or (lossy) source
coding methods. Discussions on noise tolerant VQs will be given in Section 3.6.

The two well-known necessary conditions for an optimal VQ that minimise D,
are (i) the nearest neighbour condition, or Voronoi partition; and (ii) the centroid
condition (Linde et al. 1980, Gersho 1979). They can be directly derived from the
differential of the distortion D,. They can be stated as:

1. Nearest neighbour condition: Given reference vectors {w.}, the VQ is a
minimum distortion mapping, i.e. it assigns each input vector according to the
nearest neighbour rule:

O(x)=w, or xeX; iffd(x,w;)<d(x,w.) VceY (3.20)

where the distance measure is normally Euclidean.
This is also called the Voronoi partition, and it minimises the average
distortion for given reference vectors.

2. Centroid condition: Given a partition {X }, the reference vectors should be the
centroids of the partitions, i.e.

w, =cent(X,)= E[X, 1= [d(x,w.)p(x/X)dx (3.21)
xeX,
Each reference vector locally minimises the distortion in its corresponding
partition.

There is another necessary requirement for optimal VQs, i.e. the zero probability
boundary condition (Gersho and Gray 1992), which is identical to Eqn. (2.22). It
requires that partitions are exclusive and cover all input space, which is clearly the

case in many algorithms.
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The above are the necessary conditions for an optimal VQ. The sufficient
conditions can only be that it minimises the average distortion, e.g. D,, among all
possible mappings for input samples. Since local minima, which also satisfy the two
conditions, are often the results for practical applications, the requirement for a
globally optimal VQ becomes increasing important. There are no direct solutions to
this problem. An asymptotical property of optimal VQ was given by Gersho (1979)
which shows that for an optimal VQ, each Voronoi partition has the same
contribution to the total distortion, under the conditions that the input distribution is
smooth and the number of reference vectors is very large. This property will be
applied in Section 3.4.3 to the SOM algorithm as a constraint to guide the SOM to
converge to the (global) optimum.

3.4.2 A comparative study of various VQ algorithms

There are many signal compression methods for both lossless and lossy compression,
such as lossless bit-plane encoding (Gray code, Run length encoding, etc.), lossless
predictive coding (DPCM, Huffman, etc.); lossy predictive coding (e.g. DPCM,
ADPCM), transform coding (e.g. K-LT, DFT, DCT, JPEG DCT), block truncation
coding, subband coding, and VQs (e.g. LBG, Residual VQ, Classified VQ, Finite-state
VQ, Predictive VQ). For a comprehensive review of theoretical and technical aspects
of this topic see Gersho and Gray (1992), and Rabbani and Jones (1991). In this section
we will limit our attention to the learning methods in lossy VQ and related
compression techniques.

Before we discuss any technical details of the various methods, we shall first
mention some commonly used quantitative measures for VQ performance.

Compression Rate:

Number of bits for original image

General definition: R= : (3.22)
Number of bts for compressed image
log, K
Commonly used in VQs: r= ng2 (3.23)

where K is the codebook size, i.e. the number of reference vectors; and k is the block
size, i.e. the vector dimension, r means how many bits are needed for per pixel, i.e.
bit/pixel or bpp.

The distortion measure is the distortion form D, i.e. Eqn. (3.15). In the case of
discrete input space, its second integration has to be changed to a summation form,

and it is also termed the MSE:

Dl'zMSEz_Alzz Z(wc_x)2 (3.24)

cEYXEW,

where M is the total number of data points or pixels, i.e. the size of the original image.

Sometimes, this is expressed as the peak signal-to-noise ratio (PSNR) and SNR,
and is used as a measure of quality in image and other source coding, respectively.

They are defined by



_ 255" P
PSNR =101log VSE’ and SNR=10log — (3.25)

MSE

where P is the signal power.

(1) Linde-Buzo-Gray (LGB) Algorithm (Linde, et al. 1980)

This is the most widely used algorithm for generating codebooks. The LBG
algorithm is a generalisation of the Lloyd-Max iteration algorithm (GLA) (Lloyd,
1957). This algorithm is a direct implementation of the two necessary conditions for
optimal VQs, and is very similar to the k-means algorithm developed by MacQueen
(1967) for cluster analysis and pattern classification. The LBG algorithm is a batch
version of the least squares method for minimising total MSE distortion. The
algorithm involves the following steps:

(0) Initialisation: Given the number of code vectors, K, and a distortion
threshold €20. The initial codebook {w(0)} is chosen randomly, or by using
first K input vectors. The average distortion is set D,(0)=c.

(1) Given {w_0)}, find the minimum distortion partition ®{xe X}={X (n)}, from
(3.20), i.e. xe X, if d(x, w/(n))<d(x, w(n)), VceY, but c#i. The partition goes
over all input data. Compute the resulting average distortion D, (n).

(2) If (D,(n)-Dy(n-1))/D,(n) <e, then halt with codebook:{w_(n)} and partition:
{X (n)} describing the final quantisation. Otherwise continue.

(3) With the partition: {X (n)}, find the new code vectors: {w (n+1)} by (3.21), i.e.
w (n+1)=cent(X (n)), Vce Y. Then go to (1).

In the above, we did not specify how the code vectors are arranged. Normally
the code vectors are arranged in a numerical order, i.e. c=1, 2, ...K, and there is no
relation between neighbouring references. In some cases, however, we would like the
neighbouring references to be close to each other in the input space (i.e. an ordered
codebook), so that it can demonstrate tolerance to signal and transmission noise.

For the above algorithm, in the training and/or encoding, each step is performed
over all reference vectors and data samples. If the codebook size is not small,
searching for the minimum distorted representative can be a time consuming task.
There are methods for fast reference searching, e.g. using tree-structured codebooks. A
very popular structure is the binary codebook tree.

In practical codebook design (after training), another useful strategy is to use
product codebooks. The reason is that when the bit rate is fixed, the codebook size
grows exponentially with the block size. For example, for an 8-bit 512x512 image at
1.0 bpp rate, and 4x4 block size, the codebook size will be 64K! Therefore if we can
use separate codebooks, N,,, N, for example, then the effective size of a product
codebook will be N =N, *N,_, instead of N, +N_,. There are several types of product
codebooks, namely, mean/residual VQ (M/RVQ), interpolative /residual VQ
(I/RVQ), and gain/shape VQ (G/SVQ).

Here, these techniques are not our major concern. We focus on the learning
mechanisms that describe how to learn from inputs efficiently, effectively and
optimally so that the code references converge and become a good representation of

the input space.

45



(2) Competitive Learning (CL) VQ Algorithm

Competitive learning methods have been very popular for unsupervised
learning (Grossberg 1976a, b, 1987; von der Malsburg 1973; Amari and Takeuchi 1978;
Kohonen 1982; Bienenstock et al. 1982; Rumelhart and Zipser 1985), and for adaptive
vector quantisations (Ahalt et al. 1990; Kosko 1991; Yair ef al. 1992).

The CL-VQ is an adaptive version of the least squares method for minimising
total MSE distortion. For each iteration, only one input vector is presented and the
closed code vector, i.e. the winner, adapts towards the input.

(0) Initialisation: Given the number of code vectors, K, and a distortion
threshold €>0. The initial codebook {w(0)} is chosen randomly, or from (the
first) K input vectors. Set the average distortion D,(0)=es. Set initial adaptive
learning rate a/(0), 0<c(0)<1.

(1) Randomly present an input vector from the input space, find the winning
reference by

v=argmin d(w,(n) —x(n)) (3.26)

ceY

(2) Update the winning reference:
w,(n+1D)=w, (n)+o(n)x(n)-w, (n)] (3.27)

then decrease the learning rate a(n) to o(n+1) monotonically, usually on the
scalar inverse to the time n.

(3) Theoretically it needs n—ee for the algorithm to converge to the (local or
global) minima. In practice, (D,(n)-D,(n-1))/D,(n)<e can be used to indicate
when to stop the algorithm. Otherwise go back to (1).

(3) Self-Organising Map (SOM) VQ Algorithm:

There has been considerable research in applying the SOM algorithm to image or
speech VQs (e.g. Carrato 1994; Chen et al. 1994; Kim and Ra 1995). As has been
described in detail in Chapter 2, the algorithm is similar to the CL algorithm in that it
has the same steps of (0), (1), and (3) of the CL algorithm, but the difference is that in
step (2), the updating not only applies to the winner, but also to its neighbouring
references. The notation for the neuron index is also different for image VQs: ¢ should
become a vector ¢ in the SOM algorithm as the codebook is often arranged in 2-D

space.

To see the differences between these three representing algorithms, let us first
consider a simple example: using four code vectors to quantise the input data in a 2-
D space as shown in Figure 3.6, which is similar to the one discussed by Ahalt et al.

(1990).

There is no doubt that all three algorithms can find the best quantisation result,
i.e. each reference at the centroid of each data subset, provided the initial references
are carefully selected. However among these algorithms, the LBG and CL algorithms
are very sensitive to the initial states. Normally their initial states cannot be randomly
selected, otherwise some neurons will not have an opportunity to update. This is the
so-called "under-utilisation" problem. In this example, if all initial references are
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randomly set in a small range around the origin (this kind of initialisation is very
popular in practice when the distributions of the training set are not known or when
the training is carried out in real time), the LBG and the CL algorithm will often
encounter such problems. Some neurons will stay in their original positions forever.
Sometimes there is another problem, termed "over-utilisation" problem, i.e. some
neurons will over-react and become responsive to too much of the data. This will
result in one neuron converging to the middle of two subsets. The SOM algorithm is
better in overcoming these two problems. As we have already seen in Chapter 2, the
SOM algorithm does not depend on the initial states (the order of the map may depend
on the initial states, if the neighbourhood function is not implemented correctly).
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Figure 3.6: An input space to be quantised.

Next, a more practical, complex, and popular example will be considered —
compression of the image "Lena". The original image is in 8-bit and 512x512 pixels
shown in Fig. 3.7. The codebook size chosen is 256. In the LBG and CL algorithms,
the codebooks are not ordered, so can be arranged in any numerical order, e.g. 1-D
array; while in the SOM algorithm, we arrange the codebook in to a 2-D 16x16 array.
The block size chosen is 4x4. So the bit rate of the quantisation is 0.5 bpp (from Eqgn.
(3.23)). The training samples are from the entire image, thus there are totally 128X

128=16,384 samples for 4x4 block size.

For these three algorithms, the LBG and CL algorithms cannot use random
values as their initial references, and have to use some of data samples, e.g. 256 raster
scan samples starting from any point, e.g. (0, 0), or (100, 0), or (200, 0), of the image.
While the SOM can use randomly selected values as its initial references. The final
results of the SOM algorithm show very little dependence on the initial states. Typical
results after 30 iterations for these three algorithms are shown in Figs. 3.8 and 3.9, in
which all algorithms used (0, 200) and onwards pixels as their initial references (we
found that they were the best for the LBG algorithm). Since it is meaningless to show
the codebooks of the LBG and the CL algorithms, only their quantisation results (i.e.
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(b)
Figure 3.8: (a) LBG-VQ; (b) CL-VQ, at 0.5 bpp, 30 iterations.
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(b)
Figure 3.9: (a) SOM-VQ; (b) Its codebook, at 0.5 bpp, 30 iterations.
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reconstruction images) are shown, which is obtained after 30 entire iterations (one
entire iteration requires supplying the entire data set, i.e. 16,384 samples). For the
LBG, the samples can be input in a natural raster scan order, while for the CL and
SOM, the samples are normally input in a random order, but each sample must be
used only once in an entire iteration. In Fig. 3.9 the results from the SOM algorithm
and its codebook are shown. The codebook is in a 2-D array and in a full wrap
fashion, i.e. left side and right side are connected, and top side and bottom side are
connected. As we can see the local ordering of references exists in many places.
Because it is a very high dimensional reduction case, global order may not exist.
Further analysis of ordering will be given in Section 3.6. The best local ordered map
should have as many local ordered areas as possible.

These results are visually very similar. The slight differences between algorithms
can only be seen in their performance curves. Here we use the widely adopted PSNR
values instead of MSE distortions, which are shown in Fig. 3.10. Since the SOM needs
to adjust both winners and their neighbouring neurons, the distortions are higher
than those of the LBG and CL algorithms in the early stages. Updating over a
neighbourhood can not only provide an ordered codebook but also escape some local
minima in the MSE distortion. However it will slow down the convergence. Therefore
the SOM will normally take a longer time to converge than the LBG and CL
algorithm. The final PSNR results (after 30 iterations) are 31.72 dB, 31.92 dB, and
31.90 dB for the LBG-, CL-, and SOM- VQs respectively.

3 T

PSNR (dB)

23 | ! ' '

0 5 10 15 20 25 30

Iterations

Figure 3.10: PSNR performance comparison for the LBG-, CL- and SOM- VQs.
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The three methods can produce very similar results. The CL- and SOM-VQs
yield just a slight better result than the LBG-VQ. By letting neighbourhoods shrink
slower, learning rates decrease slower, and iterations go on even longer, the SOM
algorithm will give the best PSNR results, even though there is not much difference.
The LBG algorithm is a gradient descent method for reducing the distortion, at each
iteration the total distortion always goes down (PSNR goes up); while the CL and
SOM are stochastic gradient descent methods, which do not necessarily reduce the
total MSE distortion after each iteration because of their local minimising properties,
but will reduce statistically the mean of the total distortion at every iteration. This
property can give the CL and SOM algorithms greater possibility in escaping local
minima. The SOM algorithm results in even more dynamic processes in reducing the
total MSE distortion, because updating within a neighbourhood cannot even
minimise local distortion at each iteration. However, since the neighbourhood will
shrink to zero, the SOM will tend to the CL algorithm and will minimise every local
distortion. The neighbourhood updating may find an even better local minimum and
will result in an ordered reference book. In summary, for the LBG and CL algorithms,
the initial references have to be chosen very carefully, otherwise they will suffer from
"under-utilisation" and/or "over-utilisation" problems. However for the SOM
algorithm, if the neighbourhood function is properly set (initially wide
neighbourhood radius, and gradually decreasing with time), and the initial references
are different, the under-utilisation problem normally will not appear. However the
SOM algorithm is slower (or has to be slower, in order to produce ordered maps and
escape from local minima) than the LBG and CL algorithms if not implemented in
parallel.

There are also some constrained versions of the CL algorithm, like the frequency-
sensitive competitive learning (Ahalt et al. 1990), that apply "conscience” learning to the
algorithm, so that less-fired neurons are encouraged while over-fired neurons are
restricted in order to avoid under-utilisation problems. This is intended to lead to an
approximately equal firing frequency of neurons, or equal probability mapping. The
idea comes from Grossberg's work (1976a, b, 1987) and others (DeSieno 1988; Hecht-
Nielsen 1988; etc.).

The neighbourhood function of the SOM can naturally provide a solution to the
under-utilisation problem. Since the neighbourhood size or radius is very large at the
beginning, this will cause all references to respond to the input samples. This is a
natural "conscience" learning. A large neighbourhood results in a large cluster of
references; and similar references, in the input space distance sense, will be close
together in output space. While a small neighbourhood results in a spreading of
references. When the neighbourhood size is shrinking correctly (slowly enough), the
input space will be well covered and quantised by all references. Such a role also
gives the SOM algorithm an ability for escaping local minima, as updating in the
neighbourhood can disturb the minimum state. Although it can not be guaranteed
that the SOM will find the global minimum, the algorithm indeed can provide a
better local minimum compared to other algorithms. The problem is that the
emergence, frequency, and quality of such local minima are unpredictable, i.e. the
reliability of the algorithm is not very high. The results heavily depend on the
algorithm parameters and training procedures. In next subsection, an improved
version of the algorithm is proposed, in order to make the algorithm more robust at

finding the global or a "better" local minimum.

Another great advantage of the SOM algorithm is that its codebook is ordered,
which can inherently increase the noise tolerant ability of encoding. Therefore, when
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the data to be quantised and/or the transmission channel are noisy, the SOM-VQ can
provide better results.

3.4.3 A constrained SOM towards the global optimal VQ

As we have described before, VQ algorithms are optimisation methods which use a
very limited number of references to approximate the input space. A general
principle and criterion for these methods is to limit the approximation distortion as
low as possible. Most existing algorithms can not guarantee to reach the globally
minimum distortion. The local minimum problem has become a very challenging
issue in VQ design. Some algorithms, which combine the LBG or CL learning with
some combinatorial optimisation methods from statistical physics (e.g. stochastic
relaxation) have been proposed for escaping local minima (e.g. Zeger et al. 1992).
Theoretically such relaxation schemes, also called simulated annealing, can converge
in distribution to the global minimal energy configuration, if a slow enough annealing
schedule is followed (Geman and Geman 1984). However this schedule is too slow to
use in practice. Instead most relaxation methods actually use a fixed temperature or a
fast annealing schedule, e.g. "sub-optimal” exponential schedule (Kirkpatrick et al.
1983). This has been used by Zeger et al. (1992). Though they will not lead to the
global optimum, they can find a much better local optimum.

More recently, some more active searching strategies have been proposed and
added to VQ algorithms for escaping local minima, as relaxation methods are passive
and "blind" in avoiding local minima, and more importantly they are too slow to use
in real applications. Ueda and Nakano (1994) have proposed a so-called competitive
and selective learning VQ algorithm based on competitive learning, genetic selection
mechanism, and the equal-distortion or equidistortion principle (Gersho 1979) (to be
explained below). Another interesting method, called the optimal adaptive k-means
algorithm, which also applies the equidistortion principle, has been proposed by
Chinrungrueng and Sequin (1995). This algorithm adaptively weights the distance
measure and adjusts the learning rate of competitive learning VQs, according to the
variances of the subsets. Both methods apply the asymptotical equidistortion
property of the optimal VQ, i.e. for a smooth underlying probability density and large
number of the code vectors, all regions in an optimal Voronoi partition have the same within-
region variances (Gersho 1979).

The above two new approaches are CL based, whose codebooks are randomly
arranged. Since SOM algorithm updates not only the winner but also its
neighbouring references, this may result in slowing down the convergence, but will
result in a better quantisation. To ensure that the SOM algorithm converge to the
global or a near-global minimum, its learning procedure has to be monitored and
properly guided. In the following, an equidistortion constrained SOM (ECSOM) is
proposed. The ECSOM algorithm differs from the above two methods in that the
asymptotical equidistortion principle is indirectly applied. The above two methods
require two asymptotical conditions, i.e. a very large number of code vectors and
smooth input density, so that resulting partitions have exactly the same variance.
This may not be true in many practical applications. Especially, in Chinrungrueng
and Sequin's methods, the equidistortion principle is applied through variance
weighted distances. So if the final variances of each partition are not the same, the
first of two necessary optimal VQ conditions will be violated. However, in the
ECSOM the constraints are indirect and soft, because they are applied through
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controlling the radii of the neighbourhood function. The two necessary optimal
conditions for VQ will not be violated. Updating in a neighbourhood will result in the
neighbouring references being closer to the winner than just updating the winner,
therefore the winner will have lower variance. Using this function of the
neighbourhood, the estimated variance of each reference in its partition is employed
to control the width of the neighbourhood function of that neuron. The variances can
be easily estimated through its distance measure calculations in the original SOM
algorithm at no extra computational costs. Details of the ECSOM are given below.

(1) Equidistortion Constrained SOM (ECSOM) VQ Algorithm:

(0) Initialisation: The initial codebook {w(0)} is chosen randomly, or by using
(first) K input vectors. Set the initial variances, {var(0)} of partitions to the
same value, say, 1.0, and initial firing frequencies {P} to the same value. Set
initial adaptive learning rate a(0), initial common neighbourhood size X(0),
and their shrinking rates, as in the original SOM. Set the starting time, T}, for
applying constrains.

(1) Randomly present an input vector from the input space. Find the winning
reference by

v =argmin d(w (n)—x(n)) (3.28)

ceY

(2) Calculate the learning rate a(n) as usual. Calculate the neighbourhood size
or radius, R (n) as usual if n<T, otherwise, calculate the X (n) and multiply
a constraint factor:

F = Jvar, (n)P, (3.29)
average{,/var,(n)P, }

(3) Update the winning reference and its neighbourhood:

wc(n+1)=wc(n)+oc(n)[x(n)—wc(n)], ifceR,(n)F (n) (3.30)
Update the variance estimate of the winner in its partition:
var, (n + 1) = var, (n) + o(n){min d[w (n)—x(n)]— var,(n)} (3.31)

(In step (1), the distances, {dlw (n)—x(n)]} have already been calculated, so
there will be no increase in computational costs in adding this variance

estimation step).
Update the firing probability of the winner by: P,=P +1.

(4) Theoretically it needs n—-e for the algorithm to converge to the (local or
global) minima; however, in practice the total variance change can be used to
indicate when to halt the algorithm. Otherwise go back to step (1).

As we can see, in the ECSOM algorithm, when a winning neuron has a large

variance, its neighbourhood size is also large so more of its neighbouring neurons

54



will be updated towards to it. This will make its variance smaller. This kind of
constraint is not strict, so there is no need to require the final partitions to have the
same variance. However this constraint will bring the variances of the partitions as
close as possible. This is the general principle in more practical applications, where

the input probability density of the input space is not smooth and/or the number of
code references is not very large.

This constraint principle can be also applied through the learning rate instead of
the neighbourhood or both, e.g. large variance partitions have large learning gains.
Here we will only demonstrate the constraint to the neighbourhood, i.e. the above
algorithm. Two typical examples are given below.

(2) Example 1: A Lloyd’s example: Using two scalar references, {w,, w,}, to quantise
the input space [0, 1] with the probability density function (pdf) as shown in Fig. 3.11, in
which p, and p, represents the probability density for the first half and second half of input
space respectively, where p,20, p,20, and p ;+p,=2.

The strict mathematical calculation, which is possible in this case, has shown that
when the ratio p,/p,<3, there is only one MSE distortion (i.e. D;) minimum at {w,
w,}={0.25, 0.75}. However, when the ratio p,/p,>3, there are two minima: the local
minimum is always at {w;, w,}={0.25, 0.75}, while the global minimum depends on
the ratio. For example, when p,/p,=4, the global minimum is at {w,*, w,*}={0.21875,
0.65625}.

In this example when there are two minima, i.e. p{/p,>3, most VQ algorithms,
e.g. LBG, CL, etc. will usually converge to the local one if the initial references are not
carefully selected. The SOM algorithm does not depend on the initial states and is
better in finding the global or a good local optimum. However the SOM cannot
ensure convergence to the global minimum. Sometimes it goes to the global one,
while other times it goes to a local one. When constraints are applied, the ECSOM
algorithm will indeed converge to the global optimum. This has been confirmed by
extensive simulations.

4

pl

p2

Fig. 3.11: The input density function in a Llyod's example.
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At the global minimum, in this example, the variances in two partitions are not
the same, but have a smaller difference than that at the local optimum. This is a
simple example showing that un-equidistortion optimal partition exists in many
practical cases where the number of reference vectors is not large and the probability
density is not smooth. When the conditions for the asymptotical optimal VQ are not
satistied, the equidistortion rule can not easily be applied and many so-called global
optimal VQs may not lead to the true global optimum. However the proposed
ECSOM algorithm works well for realistic situations, and does lead to global or
"better” local minima, since the equidistortion rule in the ECSOM is applied
indirectly. The effort of this constraint is to reduce the differences between variances
of partitions to be as small as possible, and not necessarily to be exactly the same.

(3) Example 2: Image compression (quantising "Lena” image)

The test image is the familiar "Lena" image shown in Fig. 3.7 and is encoded
using 256 4x4 references (i.e. at 0.5 bpp). For high dimensional data and/or many
reference vectors, the global or local minima cannot be easily observed as in the above
example. When the algorithm reaches convergence or near-convergence, it is hard to
tell whether this is a global optimum, a local optimum, or a "better" local optimum
unless the process is repeated many times with different parameters, and then choose
the best one, i.e. the one which has the minimal total distortion. There is no general
method to identify the global optimum. In real applications, it is impossible to apply
the algorithm repeatedly to search for the global or a "good" local optimum. An
algorithm which can generally produce good quantisations and is less demanding in
parameter setting and application circumstances is most desirable in practice. The
SOM algorithm is better than LBG- and CL-VQ algorithms, in the sense of it does not
rely heavily on the algorithm's parameters. The SOM-VQ normally can produce
better quantisation than the LBG- or CL-VQ can, when given the same initial
conditions. With different initial states, the SOM-VQ yields almost the same result.
Thus the SOM-VQ is a more generalised algorithm than others. The proposed
ECSOM-VQ is an even more generalised algorithm. It normally yields even lower
total distortion than the SOM-VQ does during extensive experiments on the data.

Typical results, after 60 iterations of the SOM- and ECSOM- VQs on the Lena
image, are given in Figs. 3.12 and 3.13 respectively. Some difference between these
two results, SOM- and ECSOM-VQs, can be seen from their PSNR performance
comparison shown in Fig. 3.14, although differences between Figs. 3.12 and 3.13 are
not easy to detect visually. It can be seen that finally the ECSOM-VQ does yield better
performance, ie. lower distortion. It can also be seen that when the constraint
applies, the MSE distortion does reduce quicker. This means that the constrained
processes converge faster than the original ones. These two advantages will be very

useful in practical applications.

One disadvantage of SOM-based algorithms, however, is that the SOM- or
ECSOM-VQ normally needs more iterations for convergence. If not implemented in
parallel, the parallel updating in a neighbourhood has to be carried out serially,

which will dramatically slow down the process.
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(b)
Figure 3.12: (a) SOM-VQ; (b) Its Codebook, at 0.5 bpp, 60 iterations.
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(b)
Figure 3.13: (a) ECSOM-VQ; (b) Its codebook, at 0.5 bpp, 60 iterations.

58



33 T

Constraint starts

PSNR (dB)

Iterations

Figure 3.14: PSNR performance comparison of the SOM and ECSOM.

3.4.4 To match the input probability density

Gersho (1979) and Zador (1966, 1982) derived the asymptotic performance of the
optimum VQs. The minimum distortion, i.e. the low bound, can be expressed as

D*=C(N, K"y swsn (3.32)

where C(N, r) (or A(N, r) in Zador's paper) is a quantisation coefficient, N is the
dimension of the input space; r (normally, 2), is the power of the Euclidean norm,
which is defined as

lpGol, =[ [ p(o®ax] (3.33)

This property shows that when the input probability density is smooth, and for a
sufficient large codebook, there exists a quantiser with a total distortion arbitrarily
close to this bound. It also reveals that the optimum point density A(w), i.e. the
density of code references occupying in input space, should be proportional to
p(x)N/(N+r)_

The SOM algorithm is a density-related mapping. It maps more neurons to
regions with high probability densities, and less neurons to the low density regions.
However, it is not like Kohonen's early supposition (Kohonen 1982), i.e. the SOM
approximates the input density: A(w)=p(x). Later Kohonen (1994) referred to this by
stating "It is not so important for the SOM to approximate the detailed form of the input
density function, but to find its main dimensions!". Ritter (1991) first reported his

59



research on the point density issue of the SOM algorithm, and discovered that the
asymptotic point density of the SOM in the 1-D case is in the form of

A(w) o p(x)2/3—1/[3h2+3(h+1)2] (3.34)

where h is the number of neighbours on each side of winner for a rectangular or
stepped neighbourhood function. When #=0, the SOM is reduced to the CL
algorithm, and A(w)e<p(x)!/3, which is consistent with (3.33) for the 1-D case. With h—s
oo, infinite neighbourhood, A(w)e<p(x)2/3,

More recently, Dersch and Tavan (1995) have extended this result from stepped
neighbourhood functions to any arbitrary monotonously decreasing neighbourhood
tunctions, yielding

M(w) e p(x)HZRIA+6R) (3.35)
where R is the normalised second moment of the neighbourhood function.

Luttrell (1991) has derived a different result from Ritter's for the scalar
topographic SOM, in which the monotonically decreasing neighbourhood function
specifies the channel noise density function (see Section 3.3.2). In minimising the
hierarchical distortion, i.e. (3.16), the point density of topographic SOMs will tend to
AMw)o<p(x)13 instead of (3.34) when h#0. Luttrell (1991) explained that "the difference
arises entirely from using minimum distortion rather than nearest neighbour encoding".

We will not discuss this issue further. This property concerns the asymptotic
performance of the SOM and is valid only when the K is very large and the input
density is smooth. In practical problems these conditions may not be satisfied, so the
point density may be different from the above forms and may be difficult to derive,
especially when local minima exist. In some cases, there are requirements for exact, or
as close as possible, matching of the input density, i.e. A(w)e<p(x), which the original
SOM cannot do. As mentioned earlier in Section 3.4.2, the CL algorithm with a
"conscience" mechanism can lead to a good matching to input density. The principle
is to let the firing frequency of each neuron be the same, sometimes this is termed the
equiprobable principle. This can be easily seen in Fig. 3.15, in which the shaded areas
should be equal in order to match the input density.

since:
7\,(wk‘)z-l'E & 7»(wk2)z£
2 let 1
E'a Aw)  py
O— '@ O X K(sz) - 1%}
e
. 2 y we obtain:
Tt | R(=pil) = B(= poby)

Figure 3.15: The equal probability rule.
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In many applications, the equiprobable principle is applied through weighting
the distance measure by the firing frequency of corresponding neurons (e.g. Ahalt et
al. 1990). This may violate the basic nearest neighbour partition principle as the
number of winning times for each neuron cannot be the same in many practical cases,
e.g. in Example 1 (Fig. 3.11). We have found that to match the input density, the
constraint method proposed in this section can also be employed by using the firing
frequencies to control the width of the neighbourhoods instead of using distortion
measures.

3.5 Towards the Optimal Bayes Classifier

Another domain, in which the SOMs has been widely used, is data clustering and
pattern classification. However, when used as a classifier, especially in an 1 of M
implementation (i.e. one output unit corresponding to one class), a conventional SOM
will not normally perform optimal Bayesian classification unless the input data are
uniformly distributed or pattern classes are well separated. This is because when the
pattern classes are not well separated (or even overlapped), the distributions around
boundaries are not the same for different classes and the nearest neighbour partition
rule will not give Bayesian boundaries. A simple example can be seen in Fig. 3.16,
when two Gaussians have equal prior probability but different means and variances.

data pdf

"~ class 1

Bayesian boundary o

/ /SOM boundary

class 2

Figure 3.16: Difference between SOM and Bayesian classification.

As we have already formally proved in the last chapter, the SOM algorithm is
potentially optimum for VQ. In most pattern classification cages, the pa'ttern
distributions are overlapped, and their joint distribution can be described by a mixture
distribution (MD). Like the k-means algorithm, the SOM often resu.lt's in more
classification errors than the Bayes classifier. To form a Bayesian classification, the
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SOM needs some form of supervision to label and adjust a pre-turned SOM like the
two-phase LVQ1, LVQ2, and LVQ3 (Kohonen 1990) algorithms, or the SOM
algorithm cascaded with another linear supervised layer (Haykin 1994). These
methods, however, defeat the unsupervised learning principle, and lack rigorous
mathematical proof. Thus there is no guarantee for them to form a good Bayesian
classification performance. An entirely unsupervised learning algorithm, which can
accurately capture the underlying MD, is highly desirable to these problems, and it
would also be helpful for the supervised learning phase in the above two-stage
classification methods.

3.5.1 Mixture distribution models

Mixture distribution models can be seen in many practical pattern classification
applications. Each sample, x, from an N-dimensional input space, XeR¥, is to be
assigned to one of K distinct classes, ®;, ®,, ...0g, which have prescribed class-
conditional distributions. The probability density of the samples is a mixture
distribution, given by (Duda and Hart 1973; Everitt and Hand 1981)

K
p(x10) =) p(xl®;,0;)P(®;) (3.36)
i=1
where p(xlo,, 8) is the i-th class-conditional density, and 6, are the sufficient statistics,
or parameter vector for the i-th class-conditional density, ©=(6,, 0,, ... 8x)7. P(w)) is the
prior probability of the i-th class and is sometimes called the mixing parameter, or
mixing weight. For a Gaussian distribution, 8;={m,, X}, where m, and X, are the i-th
class multivariable Gaussian distribution's mean vector and co-variance matrix
respectively.

For most unsupervised learning applications, only the number of classes and
their class-conditional density forms are known, the other parameters have to be
learnt unsupervised from a set of M un-labelled independent samples, x={x;, X, --Xy}-
In this case, maximising the joint likelihood (ML) of all observed samples, p{x|©}=I1
p(x/0), may lead to a singular solution. When restricted to the largest finite
maximum and Gaussian components it results in the following implicit equations for
the parameters (Duda and Hart 1973):

f, = 2. Ploilx,, 0%, (3.37)
>, P(o;1%;,0))
A ~ A A T
i. _ ZP(wilxk’eiA)(Xk —mj)(xk _mi) (338)
l >, P(;1%;,8;)
A 1 A A
P(mi)zﬁzmmilxk,ei) (3.39)
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- N X Io‘)i’éi ﬁ) o;
oy, 8,) = P @ir 0 P(:) (3.40)

ZP(Xkl(Dj,éj)ﬁ((Dj)
j=1

These equations can only be solved by using some non-linear optimisation
methods. For example, the expectation-maximisation (EM) (Dempster et al. 1977)
method has been used to obtain an iterative procedure for these parameters (e.g.
Tarassenko and Roberts 1994). Normally they require very intensive computation.
Only local optima can be guaranteed and results depends on the initial states. The
MD model covers the overlapping of single-modelled distributions. Luttrell has
extended the MD model to a broader one, called a partitioned mixture distribution,
which covers a set of overlapping mixture distributions. He has proposed a
corresponding training algorithm using the EM method (Luttrell 1994b). When the
number of pattern classes is unknown, a clustering validation procedure and/or
verifications from statistical hypothesis testing for individual distributions are
definitely required to find a global optimum solution. Such cases, with examples, will
be studied in Chapter 5. Such verifications may be needed even when the number of
classes is known in order to escape from local minima.

3.5.2 Unsupervised classification learning

(1) K-means Clustering Algorithm

The k-means algorithm was proposed by MacQueen (1967) and has been widely
used as a clustering algorithm. The LBG algorithm used for VQ is very similar to the
k-means algorithm, except that the latter stops after the re-calculation of the centroids
from the updated partitions, i.e. step (3) in the LBG algorithm (see Section 3.4.3)
instead of step (2). That is, in the k-means algorithm, the final references are optimal
(for the MSE distortion standard) for the final partition but not vice versa. However
there will be no difference, or little difference, if the algorithm converges or is close to
convergence. Therefore the k-means algorithm is also potentially optimal for VQ. For
MD pattern classification problems, the algorithm works well only when the pattern
classes are well apart.

(2) CL or Winner-Take-All (WTA)-CL, and SOM

The CL algorithm is indeed a "winner-take-all" learning algorithm, so CL or
WTA-CL is an adaptive version of the LBG or k-means algorithm. While the SOM
algorithm is similar to WTA-CL in the later stages of learning. They usually achieve
very close or comparable results. The roles of introducing neighbourhood functions
are to produce topographically ordered reference books, to avoid the influence of the
initial states, and to escape from local minima. So the SOM algorithm may yield a
slightly better performance. However they are all potential VQ algorithms, and face
similar problems in pattern classification applications. Traven (1991) claimed to be
first in applying neural network methods to the MD problems. In his method, the
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parameters of the components in a MD are obtained by using a SOM, which is
trained from a set of known class samples (i.e. in supervised manner).

(3) Maximum Likelihood Competitive Learning (ML-CL)

Nowlan (1990) has proposed two possible modifications to the WTA-CL
algorithm for MD problems. One is the maximum likelihood competitive learning (ML-
CL), in which the winner, v, is selected according to its weighted likelihood function
instead of Euclidean distance, i.e.

v=argmax P(0,) p(x,1;,6,) (3.41)
4

This comes from choosing the maximum component as a better approximation to
the MD at x; than choosing any other. However this is true only when components
are well separated or slightly overlapped. The ML learning gives better clustering
results than the simple Euclidean distance WTA-CL algorithm. When the
components of the mixture are Gaussian with equal prior probability, the
Mahalanobis distance measure is equal to the ML measure.

The other possible modification is "soft" competitive learning, in which neurons
share responsibility in proportion to their posterior probabilities. In "soft" competitive
learning, or sharing schemes, all other neurons in addition to the winner are updated,
i.e. all neurons adapt to the inputs weighted by their probability distribution
proportions. This may correspondingly increase the computation costs where it is not
implemented in parallel, especially when the number of neurons is very large.

(4) Probabilistic WTA Learning

Osman and Fahmy (1994) have proposed a so-called probabilistic WTA, in which
the winner is chosen probabilistically (using a random number generator) according
to the neurons' posterior probabilities, i.e. (3.40), to avoid updating all neurons’
weights. This will increase the total learning iterations, because each sample has to be
input very many times to let all possible units learn.

3.5.3 Bayesian SOM, an extended self-organising learning for
optimal classification

In this section, the SOM algorithm has been extended and applied to the kernel
learning networks for the MD. The network places K units in the input space in the
same or reduced dimensionality. Each unit has a Gaussian kernel, with its mean

vector, m, covariance matrix, X; and mixing weight, 13(60,-), or P, as learning
parameters or self-organising learning weights. At each time step, n, a sample
denoted by x,(n) is randomly taken from the input set x. The winner is chosgn
according to its kernel output, i.e. maximum estimated posterior probability, as in
Eqn. (3.41). The weights are then updated within a neighbourhood of the winner, n,.

The updating rule is modified to:
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Bayesian SOM Algorithm:
ti; (7 +1) =1, (n) + o(n) P(w;1x,,8,)(x, (n) - 1, (n)) (3.42)
T (n+1)=2;(n) + 0(n) P(0,1%,.. 8,) (%, (n) m; (n)(x, () -1y (n) —$.(n)})  (3.43)

FA}(n+1)=ﬁi(n)+(x(n)(13(oailxk,éi)—é(n)) (3.44)

where the adaptive gain, a(n), is the same as in the original SOM. The calculation for

P(w;1x,,8;) is same as (3.40).

As can be seen, the original SOM's neighbourhood function (fixed in shape but
shrinking in size) has been replaced by an adaptive estimated posterior probability
function. The neighbourhood size, which depends on the covariance of components,
however, should be fixed in this case. The topological order property of the SOM
ensures that the posteriors of the components that are outside the neighbourhood are
very small. Therefore,

p(x10)= Y p(xlw;,6,)P(w,) (3.45)

ien,

The proof of the convergence of this algorithm can be deduced by using a similar
method as in Chapter 2 (Theorem 2.1 and Lemma 2.1). The learning parameters will
eventually converge to the conditions (3.37)-(3.40), which is at least a local minimum.

3.5.4 Experimental results

This extended SOM, or Bayesian SOM, has been employed for some typical MD
classification problems. Firstly the algorithm is applied to the 1-D example shown in
Fig. 3.16. It was found that the resulting boundary is positioned very close to the
Bayesian boundary; and in addition, each pattern class's pdf parameters as well as
the mixing parameter were correctly estimated.

Problems arise only when the classes are very close to each other (i.e. heavily
overlapped), where the result is not unique. In these situations, however, the
multiple solutions are possible in reality as shown in Fig. 3.17. The MD for classes A
and B and the MD for classes C and D are very close, even though the pair of classes
A and B is quite different from the pair of classes C and D. This means that when the
data set is not infinite, as it is often the case, the decomposition of some MDs is not
unique. In this test, the MD is of two Gaussian components, which were set to m;=0.0,
0,=1.0, P,=0.25, m,=-2.0, 6,=1.0, as shown for classes A and B in the figure. However,
the results are not unique, sometimes the algorithm converges close to the pre-set
parameters, sometimes it converges to another set of parameters: m;'=-0.94, 6,'=1.29,
P,'=0.57, m,'=-2.30, 0,'=0.84, as classes C and D shown in the figure. As we can see,
the two possible results have very close MDs. Thus we should not be surprised about
multiple results, since the problem itself is multi-resolution possible, when the

components are too close to each other.
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Figure 3.17: Multiple solutions for heavily overlapped MD.

The algorithm has also been applied to a practical problem, namely the
unsupervised segmentation of textured images. The whole network structure will be
discussed in Chapter 5. With this proposed algorithm replacing the original SOM a
better estimate of the underlying patterns' mixture distribution is obtained. Improved
results have been achieved and are shown in Fig. 3.18, especially the estimating
layer's results (Fig. 3.18 (d) and (i) are better than (b) and (g)) by using original SOM,
and they are closer to the true output. This implies that the proposed algorithm gives
a better interpretation of the sample distribution.

(a) (b) (c) (d) (e)

® (2) (h) (1) @
composite images using SOM using Extended SOM

Figure 3.18: Textured image segmentation. (a) and (f) The composite textured

images; (b), (d), (g), and (i) The outputs of the estimating layer; (c), (e), (h),
and (j) The outputs of the whole network.
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The algorithm can be used in unsupervised kernel-like learning, e.g. radial-basis-
function networks, to estimate the underlying density modelled by a mixture of
overlapped components. Like the SOM, the extended algorithm is a simple algorithm
and easy to implement. Its neighbourhood function can form a topologically ordered
map, which may provide higher noise tolerance, and makes local learning possible. It
can also overcome under-utilisation or singularity problems. Since it generally is not
an exact gradient descent method and is independent of initial states, it has a higher
probability of escaping local minima. Proper monitoring of its learning procedure, or

an on-line validation program, may be useful for forming globally optimal
classification mapping.

3.6 Discussions on Topological Ordering

3.6.1 Definitions and their meanings

In attempting to form an ordered map, to examine the order, and to quantitatively
measure the quality of the order, a clear definition of order is needed.

However, what is order, what is an ordered map, and how well is a map
ordered? These questions have not been fully answered. Even a general definition has
not been formally given except for the very obvious 1-D definition (Kohonen 1984), in
which order means sequenced neurons have their weight values arranged either
monotonically increasingly or monotonically decreasingly. When this idea is
extended to higher dimensions (which is not so simple as Kohonen originally
proposed), it defines a fully ordered map, i.e. it requires that any neuron, for which any
possible sized neighbourhood in the neuron space, should reflect or preserve the
neighbourhoods of the input space. Such fully ordered maps may not exist when the
dimensions of input and output space are not the same. This means that when the
mapping is from a high dimension space onto a low dimensional space, the original
1-D order definition can not be extended. From topology space concepts (Mendelson
1990), order is not defined and only the topology preserved mapping can be defined.
SOMs will always result in topology preserved mappings as long as no neuron
represents the "empty set” in the input space (i.e. no "dead" neurons) and the
mapping is one-to-one (not one-to-many), since the definition of neighbourhood is
too broad in topological theory. The neuron spaces are discrete lattices, and the
neighbourhood concept in neuron space is some forms of regular lattice around
certain neurons and is not like the very general neighbourhoods of topology. It seems
that there are two ways to define the order in the SOMs: one is a geometric or single-
distortion definition, the other is a group-distortion or channel-optimised definition.

We first present a generalised definition, which covers the original one, gives
clear geometric meaning, and is quantitatively measurable. Then we discuss a strict
definition, which is directly related to the fault tolerance requirement so is

meaningful in optimisation terms.
(1) Definition One, Generalised Ordering Definition:

Using the same notations as before, we assume that a N-dimensional input space
X is mapped to a reference map Y which is arranged in M-dimensional space. Y is a
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C1><C2><....CM e.irray, Where {Cp k=1, 2, ... M) represents the number of neurons along
each dimensional side of output space, and the total number of neurons is C,xC,x
CM Each neuron is indexed fully by a vector, e=[i, iy, ..., iy]7, which represents a
point in the neuron map or output space, where {4=0,1,2, .., C,-1, k=1, 2, ..M}.

Let us first define a hypercubic neighbourhood in the neuron space (the
neighbourhood structure depends on the neuron structure used).

If a set of neurons is indexed by

[+,
th
R = (¢ + o Ik =0,1,...m, and 0< (i, £ j)<C, -1, k=1,2,..., M)}
Tk

Tim |

(3.46)

where {i,, k=1,2,..,M} is the index of neuron c¢. Then N(cm) is called the m-th order
hypercubic neighbourhood of neuron ¢. X © is c its self.

A generalised hyper-rectangular neighbourhood, in which the neighbouring
radii along each dimension may not be the same, can be readily extended from the
above.

A. Zero-order map

This term (zero-order) has been used by Kangas et al. (1990) to identify maps
without any topological ordering properties.

B. 1st-order map

A map, in which each neuron has its nearest neighbouring neurons along each
dimension of output space closest to it in input space among other neurons in
that neighbouring neuron's direction. In mathematical terms, it can be expressed

as:

d(w,, W )<d(w,, W ), VceY; Vcl(l) € N(Cl), cl(l) is a neuron in the 1st - order
! !

neighbourhood of c; cl(l)+d ¢ N(cl) , and is called an extension of v, defined by

E (] +d,)

*/ (L, +d,)

L b -0, ifl, =0,
cl(l):c+ e | 4, =0,1; then cl(1)+d=c+ , dpy=1,2,..., otherwise,

Em | (L +dy) |

(3.47)
where d( ) is a distance measure, usually the Euclidean distance.
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C. 2nd-order map

A map, in which each neuron has its nearest neighbouring neurons in each
dimension of output space closest to it in input space, and has its second nearest
neighbouring neuron second closest to it, in all directions. These can be
expressed as:

d(WC ,Wcl(l) ) < d(Wc,Wcl(l)ﬂ )S d(WC,chz)m ), VC S Y; Vcl(l) e &El), cl(z) = NE‘Z),

(D+1 . . 1 ) . .
¢, is an extension of c,( ) but within cl( ); c,(2)+d Is the extensions of cl(l)“.

(3.48)

......

Here, order or order-level, m, could be up to min{C,, i.e. the number of neurons
on each dimensional side, k=1, 2, ..M} if an open map is used, or half the number of
neurons on each dimensional side if a wrapped map structure is used. We say that
the above definition is a single-distortion definition because the order is measured
according to a single distance. If in a map, each neuron satisfies the above m-th-order
ordering definition, we can state the map is a globally m-th-order ordered map. If
only some neurons meet the conditions, the map is said has local m-th-order
ordering. It is not difficult to prove that if the neighbourhood function is fixed to a m-
th neighbourhood (step or monotonically decreasing), the resulting map will be a
globally m-th-order ordered map or will have some local m-th-order ordered areas.

When a map is ordered to the highest order level in each of its dimensions, then
it is a fully ordered map, which may exist only when the dimensions of input and
output spaces are the same. When the mapping is from a high dimensional space
onto a lower dimensional space, only low order ordered maps exist. In some cases,
even 1st-order fully ordering is impossible. An optimum ordered map is the one
which not only has the required order-level of ordering but also has minimised the
MSE distortion, D1, Eqn. (3.15) (i.e. the neurons has been mapped to the optimum
positions). Otherwise the map can be only called a local ordered or disordered
optimum map; or ordered but non-optimal map; or non-optimal and disordered
map.

Considering the example used in Section 2.5.3, if the neurons are arranged in the
same dimension (2 in this case), a fully ordered map can be easily obtained as shown
in Fig. 3.19 (a). Since there are only three neurons along each dimensional side in
neuron space, the highest possible ordering order is 2 if an open map structure is
used, or 1 if a wrapped map structure is used (in this case the input space would also
be wrapped). When the output space is only 1-D (i.e. a neuron chain), only a 1st-
order ordered map is possible for the SOM algorithm as shown in Fig. 3.19(b), if an
open map structure is used. The maps shown in Fig. 3.19(c) and (d) are possible
higher-order ordered maps for a wrapped structure (at least to 3rd- or 4th-order) and
for a non-wrapped structure (up to 8th-order one side), but neurons are not' gt the
optimal positions so they can not be called optimal maps as they will not minimise

the MSE distortion.
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Figure 3.19: Different ordering situations.

The meaning of this kind of ordering definition is that the ordered map can
tolerate the corresponding levels of directional channel or recalling pattern noise, and
is optimal for decoding (but not for encoding) with overall minimum distortion and
channel error. That is, if the reference book is fixed and the channel noise level is not
above the order level, then the decoded signals have the minimum error in the
corresponding directions. If a code error occurs on the k-th dimension of the code
vectors and the error bias is a positive value, say, one, then the corresponding biased
code will have less distortion than all neurons whose bias value is greater than one.
For example, the map in Fig. 3.19(b) will produce less errors than other maps when
the channel noise is limited only to 1st-order, as it is a 1st-order ordered maps.

Arranged in a lower dimension, the map may have advantages in the sense of
less code errors, when channel noise exists. High dimensional codes increase channel
errors. For example, using 2-D codes may double the code errors of using 1-D code.
However the mapping from high dimension to low dimension may reduce the
possible order-levels, i.e. the noise tolerance of the map.

The next definition of ordering is stricter in the sense of error-tolerance encoding
and decoding.
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(2) Order Definition Two, Strict Ordering Definition:

When the channel noise has to be taken into account, the encoding must be
considered in a different way. Its objective function is now the hierarchical mean
squared error distortion, i.e. D,, Eqn. (3.16), instead of D,. Luttrell (1989a, 1989,
1994a) has developed a hierarchical self-organising encoding network to minimise D,.
Although the source coding and error correcting channel coding are usually
separately designed in many practical cases, the important properties of such
combined, noise tolerant encoding cannot be ignored. It will provide benefits not only
for signal encoding, but also for information compression, associative memories, and
pattern recognition.

Luttrell used the variational principle to analyse the hierarchical encoding in the
SOMs. His hierarchical self-organising network is similar to the SOM, but with the
noise pdf (fixed) replacing the normal neighbourhood function (shrinking). In
addition, the nearest neighbour winning rule must be replaced by the so-called "local”
minimum distortion winning rule, which can be expressed as

v=argmi‘1(1{Jd(wc — x)7(c)de} (3.49)

where the integration is over the range that code noise density covers.

This winning rule is different from the nearest neighbour rule, as the distortion
curves to each dimension may not be symmetric (Luttrell 1994a). When trained using
the above minimum distortion rule, for a global optimum in terms of total distortion
and channel errors, the resulting map should also be ordered very strictly to fit any
directional noise.

The definition of ordering and the requirement for the ordering depend on the
pdf of the channel noise. There are two common noise situations: uniform and
symmetric (decreasing) distributions. Without losing generality, the independent
identical distributed properties of the noise in each dimension of reference vectors
and Gaussian distribution for symmetric noise are assumed.

A. 1st-order map
if the code errors or channel noise pdf only spread to the nearest neighbouring codes.
(a) Uniform noise:
d(w,, wcm(k)) <d(w,,wg), Veey; veP(k)e N(cl), Ve e Y(but ¢ Ng)) (3.50a)

For every neuron, any other neighbouring neuron (except the 1st-order neighbouring
neurons) is further (ie. has higher distortion) from it than any of its 1st-order

neighbouring neurons are.

(b) Gaussian noise:

If d(c,cP(k))<d(e,c'), then 2500
d(Wc,Wcm(k))Sd(Wc,ch ), VeeY; Vc(l)(k)ex(cl), Vc’eY(but¢c,c(l)(k)) (3.50b)

where d(c, ¢*) is the distance of two neurons indexed by ¢ and ¢* in neuron space.

Every neuron with its 1st-order neighbouring neuron has a similar weight distance
hierarchy in the input space as it has in the neuron space.

71



B. 2nd-order ordered map

If the code errors or channel noise pdf can happen to not only the nearest neighbouring
codes, but also the second nearest neighbouring codes.

(a) Uniform noise:

d(We, W ) Sd(We,we), VeeY; Ve () ex?, Ve e Y(bur¢8?)  (3.51a)
(b) Gaussian noise:

If d(c,cP (k)< d(c,c"), then

d(We, W ) Sd(We, W), Vee Y; Ve (k) ex®, Ve e Y(bur= e, (k) O1P)

......

------

This kind of ordering has the greatest channel noise tolerance. For example, if the
channel errors can be up to an m-th neighbourhood, an m-th-order ordered map
could produce less errors than lower-order ordered maps could, i.e. within error
occurring area (m-th neighbourhood) distortion is smaller than outside the area when
noise is uniform distributed, or the distortion is smaller if the error probability is
higher when the noise is symmetric and monotonically decreasing Gaussian
distributed. This is why the ordered map will give the best decoding performance up
to the order-level channel noise. With its local minimum distortion winning rule
(encoding rule) instead of distance winning rule (nearest neighbour encoding), the
resulting map can be the global optimal map (for both encoding and decoding).

3.6.2 Ordering measurements

Kohonen has given a measure for disorder of a map in the 1-D case, which is quite
obvious (Kohonen 1984),

M-1
DIS, = zd(Wi —w_)1—=d Wy —wo) (3.52)
i=1
Carrato (1994) extended this measure to any (assume M) dimension maps:

¢-1 C, -1 C,-1
DISM = z T Z{ [ Z d(wi1,i2,~..iM—1»iM+1 - wil»izv-"iM—l’iM )] - d(wil’i2""iM—-l’CM_1 B wil*’ﬁ""’.M—l’O )}

i=1 iy_=l1 iy=1
CM—Z _ICM -1 Gy

G -1 1
+ z Z Z{[ zd(wil,iz,...iM_,H,iM - wil,iz,...iM_l,iM)]_ AW, i, Coua=Ling ~ Wiy Oiiaey )}

L=l iya=liy=l iy =1
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C,-1  C,,-1C, -1 C,-1
+Y . T
2 2 z{[ zd(wtl+l,tz,...1M_1,tM Wiiysiyg 1y )]1- d(WCl_l,iz,_“,,’w i = W0iiyiy )}
M- sy seeeslpg 1oy

=l iy,=liy=l =1

(3.53)

This kind of disorder measure actually measures the excessive length or
straightness (geometric regulation, or rectangularness, or squareness) of the map
which is equal to a sum of sub-sums over all dimensions of the output space; anci
each sub-sum is a sum of all segments connecting adjacent neurons along, one
dimension of neuron space subtracting the length between the first and last neurons
in that dimension. For the 1-D case, DIS;=0, if the map is ordered. While for higher
dimension cases, DIS, =0, only when the maps are perfect M-dimensional rectangular
lattices. However in higher dimensions, this will often not be the case unless the
input space is uniformly distributed. Carrato extended this measure in order to
compare the SOM with other non-ordering VQ algorithms (e.g. LBG, CL) and
showed the advantages of ordered codebooks for VQ.

08 + D \
D C

0.6 1

04

Figure 3.20: Two possible globally ordered chains.

This measure, however, cannot be used to indicate whether a map is ordered or
not. Tts value also cannot be used as a judgement of the goodness of the ordering of
the map. This has two implications. One is that the measure (3.53) cannot be used to
assist in the training, since some disordered maps could have a lower value than an
ordered map! For example, a map condensed to the centre of the input space (e.g. a
small random initial map) has a smaller DIS, value than a fully expanded and
ordered map (e.g. Figure 3.19 (b)). The second is that it cannot be used to judge the
goodness of the final SOM results when local minima exist. In this case, some local
minimum map (but ordered) could have a lower disorder index value than the global
one. For example in Fig. 3.20, a four-neuron chain is mapped to a 2-D square. The
global minimum reference map is shown by A-B-C-D; while a local minimum map is
shown as A'-B-C-D', whose dis-order index is (¥2/3+V2/ 3472/3)-V2/ 3=21
2/3=0.9428, which is smaller than (0.5+0.5+0.5)-0.5=1.0 of the global one. However,
the global optimum map will produce less MSE distortion than the local one.
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Bauer and Pawelizk (1992) have proposed a neighbourhood preservation
measure by using topographic products. Their definition for neighbourhood is
similar to ours, but they grade the neighbourhood order-levels entirely by distance.
So our first-order neighbourhood would be their first- and second- order
neighbourhoods; our second-order neighbourhood would be their third-, fourth-, and
fifth- order neighbourhoods, and so on. They measure the distance hierarchies of the
map's various neighbourhoods in the input space, but require distances from a same
order neighbourhood to be the same as for a well preserved mapping. This measure
is the first which can be used to quantitatively measure the ordering for more than
one dimensional space. However no optimisation meaning has been provided.

In my opinion, order can only be measured by using its definition. A globally
ordered map should have at least the first-order ordering property, which is defined
by (3.47) for the general purpose SOM (e.g. the original SOM, or normal SOM-VQs),
or defined by (3.50) for the error tolerance coding SOM. The ordering can be
measured by the order-levels of the maps. If the order-level is below one, the map is
disordered or at most a local ordered or partly ordered (1st, 2nd, ...) map. Actually in
many applications of the SOM, the mapping is from a very high dimension to a much
lower dimension. Only local ordering can be found in the resulting maps; the global
one may not exist. For example, in the SOM-VQ and ECSOM examples in Section 3.4,
many local ordered areas (but not global ones) can be seen in the resulting codebooks
(see Figs. 3.9(b), 3.12(b), and 3.13(b)).

3.6.3 The impact of neighbourhoods on the ordering

The neighbourhood function has three distinct and important roles in SOMs:
preventing under- and/or over- utilisation and initial effects, escaping local minima,
and producing ordered maps. These roles have already been demonstrated through
various analyses and examples in the previous sections.

The realisation of ordered maps (by whichever definition) is indeed dependent
on the appropriate implementation of the neighbourhood functions. For the
ordinarily defined (Definition one) ordered maps, the original SOM together with a
proper shrinking speed for neighbourhood function, or the proposed ECSOM
algorithm, can produce the required order ordered maps if the neighbourhood
function remains long enough at the required order level before it goes to zero. Care
also should be taken to leave the learning rate large enough to move neurons to their
optimal positions.

For the second type ordering, Luttrell's self-organising networks with a fixed
neighbourhood function (which is identical to the channel or decoding noise pdf)
may produce the required maps. However, there are still arguments that the
neighbourhood function should be wider at the beginning and then gradually shrink
to the noise pdf, so that the updating is undertaken in a wider area. Otherwise the
algorithm would be like a group WTA-CL algorithm, as the winner is selected
according to the local distortion of a neighbourhood area; updating is also in the
same area (not in a larger area). Thus it will have similar problems as the CL
algorithm, such as local minima and under-utilisation.

It is worth mentioning that if a mapping within the same dimension is required,
the map can be initialised in an ordered fashion. There is no point in wasting time in
the ordering phase; one can just concentrate on the convergence phase.
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3.7 Conclusions

In this chapter, a full treatment of the SOM algorithm for a wide range of applications
has been presented. This chapter has analysed and exploited the SOM's potential in
its application areas, and corresponding modifications and extensions have been
given so that the best performance may be achieved. Two different modifications, the
ECSOM and Bayesian SOM, to the SOM algorithm for two of its major application
domains: VQ and pattern classification, have been proposed. They could be useful for
many practical tasks. Kalman-filtered SOM is an example to show that traditional
optimal filter theory can be applied to neural networks in order to reduce the
dynamic learning noise and improve convergence performance. The SOM's
convergence can also be accelerated by the proposed constrained ECSOM algorithm,
which is aimed at forming a global or near-global optimum VQ.

The proposed Bayesian SOM solved the non-optimal problems of the original
SOM when used as a classifier. Bayes's theorem has been incorporated into the SOM
algorithm, and results in this extended SOM algorithm, which can converge to the
Bayesian boundaries in classifying MD-modelled input data structures.

A good signal representation (e.g. by optimal VQ) may be helpful in pattern
classification as well. For example, when the neurons are mapped (unsupervised) to a
representation space with equal distortion for each neuron, the next supervised stage
labels neurons corresponding to sample patterns. The network may then have
minimum errors for later classification! A good classification may also be beneficial in
VQs, as in some VQ designs pattern classification is also incorporated (Oehler and
Gray 1995).

The definitions for the ordering of maps have been proposed for any dimension
in two ways: geometric and fault tolerant. They have clear optimisation meanings.
They are quantitatively measurable and can be used to judge the goodness of the
ordering of maps. These definitions give us a better understanding about the
advantages of an ordered map.
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Chapter 4

IMAGE TEXTURES AND MARKOV
RANDOM FIELDS

Texture analysis is a basic and important methodology in image processing and
computer vision. Texture properties describe the spatial-relationships between
image elements. Together with grey levels and colours, they define the categories
and attributes of image objects, and provide these images with their distinct visual
characteristics. In this chapter, the definitions of textures, visual perception of
image textures, and textural analysis methods (such as statistical feature based,
model based, and multichannel-filter based approaches) are reviewed. In
particular, the Markov random field, Gibbs distribution, and related texture
approaches, are extensively analysed and explained. Some commonly used
estimation techniques for model parameters (such as least square, maximum
likelihood, maximum pseudo-likelihood) are summarised and discussed in a
logical order. Texture related image processing problems are also briefly
addressed. All this paves the way for more directed work in the next chapter on

textured image segmentation.

4.1 Introduction

Textures are image primitives upon which human visual perception and
discrimination are, in part, based. Image classification, segmentation, and other
processing employing the image's textural characters have played an important role
in the study of images. However, a precise and rigid definition for texture does not
exist. Perhaps the main difficulty is that there is a large variety of textural attributes.
It is extremely difficult to produce a single precise definition to cover such a diversity.
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A very general and dictionary definition of texture has been given by Ballard and
Brown (1982) as "something composed of closely interwoven elements".

Textures can be classified into two major categories: structural and statistical.
Some images may contain attributes of both. Natural textures can be either structural
or statistical; or both. Structural textures are regarded as containing, or being
composed of, some image primitives of various shapes and sizes, with many
placements. Image primitives play a strong role in structural textures. Statistical
textures are regarded as realisation samples from spatial random processes which can
be described in a statistical sense by the dependence or interaction between the
elements of the image. Image primitives play a weak role in the statistical textures.
They are mostly irregular and the placement rules are random. The textures which
are addressed in this thesis belong to this second category. Approaches to statistical
textures have been studied for many years. Haralick (1979) has given a
comprehensive review of most classical methods in this area. Tuceryan and Jain
(1993) have presented a review on more recent progress in texture analysis.

Approaches to statistical textures have fallen into two major methodologies:
feature-based analysis and model-based analysis. The feature-based analysis attempts
to find a set of good statistical features which can be used to describe and classify the
textures. Substantial research has been done on this basis. A comprehensive survey of
the most well-known and commonly used texture features (such as auto-correlation
functions, Fourier transforms, spatial grey-tone (grey-level) co-occurrence matrices,
grey-tone run lengths) can be found in Haralick (1979, 1986). In the model-based
texture approach, however, textures are described by a mathematical process, in
which a set of parameters can be extracted as textural features for description and
discrimination (Kashyap 1986; Chellappa et al. 1993). Furthermore, these models can
be used to reproduce or regenerate textures which provide us with a physical and
visual measurement on the "goodness-of-fit" of the model. Typical texture models
include: time series; fractals; random mosaics; autoregression (AR); Markov random
fields (MRFs); Gibbs random fields (GRFs). The practical evaluation of a model is
between its generality and its complexity. A good model should be physically
meaningful with a wide application range and a simple model structure. MRF
models seem to be very attractive models and have received intensive attention in
scene and texture processing over recent years. Gibbs distribution (GD), a MRE
equivalence, has also received a great deal of attention in texture analysis. MRF and
GRF both belong to the same stochastic process approach, but through different
mathematical descriptions. In MREF, the characteristics of a texture are described by
local conditional probabilities; while in GRF, a general form of a joint probability is
employed and is related to statistical physics mechanisms.

In the next section, some basic conceptions and most popular descriptions for
textures, together with some examples, are presented. Section 4.3 very briefly reviews
various statistical approaches to textures, including various statistical features,
statistical models, and multichannel filters. More detailed discussions on MRFs and
GDs, as well as some simulations of MRFs, are given in Section 4.4. Model parameter
estimation plays a very important role in model-based approaches. Section 4.5
outlines the commonly used estimation methods. A brief introduction to various
texture processing tasks, especially the segmentation of textured images, is given in

Section 4.6, followed by a short summary section.
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4.2 Description of Textures

4.2.1 Definitions of textures

Objects and scenes have their characteristic surface textures, which in the
corresponding digital images become parts of their distinguishing identities. Texture
characterisation and discrimination are important to understanding human visual
abilities, and have become more and more important in computer vision for
analysing various images, e.g. satellite, microscopic, robotic, and medical images.

However, "Despite its importance and ubiquity in image data, a formal approach or
precise definition of texture does not exist. The texture discrimination techniques are for the
most part ad hoc." (Haralick and Shapiro 1992). Since textures present so much variety,
a precise and rigid universal definition of textures may not be possible. "Something
composed of interwoven elements" can only be a very broad dictionary description. More
detailed descriptions depend on particular applications. The following are some of
definitions (compiled by Coggins) cited in Tuceryan and Jain (1993):

"We may regard textures as what constitutes a macroscopic region. Its
structure is simply attributed to the repetitive patterns in which elements or
primitives are arranged according to a placement rule.” (Tamura et al. 1978).

”A region in an image has a constant texture if a set of local statistics or other
local properties of the picture function are constants, slowly varying, or
approximately periodic.” (Sklansky 1978).

"An image texture is described by the number and types of its (tonal)
primitives and spatial organisation or layout of its (tonal) primitives.” (Haralick
1979).

"Texture is defined for our purposes as an attribute of a field having no
components that appear innumerable. The phase relations between the components
are thus not apparent. Nor should the field contain an obvious gradient. The intent
of this definition is to direct attention of the observer to the global properties of the
display — i.e. its overall ‘coarseness’, "bumpiness ', or 'fineness’. " (Richards and
Polit 1974).

"Texture is an apparently paradoxical notion. On the one hand, it is commonly
used in the early processing of visual information, especially for practical
classification purposes. On the other hand, no one has succeeded in producing a
commonly accepted definition of texture.” (Zucker and Kant 1981).

"The notion of texture appears to depend upon three ingredients: (i) some local
‘order’ is repeated over a region which is large in comparison to the order’s size, (ii)
the order consists in the non random arrangement of elementary parts, and (iii) the
parts are roughly uniform entities having approximately the same dimensions
everywhere within the texture region” (Hawkins 1969).

Although there is not a universal definition for texture, a number of general and
intuitive properties of texture have been summarised by Tuceryan and Jain (1993) as:

*  Texture is a property of area; the texture of a (single) point is undefined. So, texture
is a contextual property and its definition must involve grey values in a spatial
neighbourhood. The size of this neighbourhood depends upon the texture type, or the
size of the primitives defining the texture.
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* Texture involves the spatial distribution of grey levels. Thus, two-dimensional

histograms or co-occurrence matrices are reasonable texture tools.

* Texture in an image can be perceived at different scales or levels of resolution. For
example, consider the texture represented in a brick wall. At a coarse resolution, the
texture is perceived as if formed by the individual bricks in the wall; the interior
details of the brick are lost. At a higher resolution, when only few bricks are in the
field of view, the perceived texture shows the details of the brick. (The same
argument applies to forests and trees).

A vregion is perceived to have texture when the number of primitive objects in the

region is large. If only a few primitive objects are present, then a group of countable
objects is perceived instead of a textured image. In other words, a texture is
perceived when significant individual "forms” are not readily identifiable.

In a computer vision context, textures are treated as some form of image pattern
in which some regularities (image primitives) and/or irregularities (stochastic grey
levels) can be found with some regular and/or irregular placement and size variation
rules. They can be expressed as spatial dependence functions, which can be either
explicit or implicit, either deterministic or random, functions of image elements or
grey levels. Psychophysicists (e.g. Julesz 1962; Marr 1982; Julesz and Bergen 1983)
explore the relationships between human visual perception and texture
discrimination; while statisticians (e.g. Besag 1974; Kinderman and Snell 1980; Qian
and Titterington 1991) model textures as functions of spatial positions. Researchers in
signal processing and computer vision, on one side directly apply the discoveries of
above two, on the other side expand their traditional methodologies (such as
transformations, features, and models) from one dimensional signal processing into
two dimensions (e.g. Woods 1972; Ord 1975; Cross and Jain 1983; Kashyap and
Chellappa 1983; Geman and Geman 1984; Daugman 1985; Dunn et al. 1994).

Some image texture examples of structural, statistical, natural, and artificial are
shown in Fig. 4.1 to end this section.

Figure 4.1: Some image textures (8-bit, 128x128).

79



4.2.2 Human visual perceptions of textures

It has been known that human visual perception of textures has two basic distinct but
interactive operations:

(1) Preattentive Vision

"Parallel, instantaneous, without scrutiny, independent of the number of patterns,
covering a large visual field, as in texture discrimination” (Julesz and Bergen 1983).

(2) Attentive Vision

"Serial search by focal attention in 50-ms step limited to small aperture, as in form
recognition” (Julesz and Bergen 1983).

Most of Julesz's work (Julesz 1962, 1981; Julesz and Bergen 1983) is concerned
with preattentive texture perception (mainly for structural textures). He discovered
that a few local conspicuous features, which he named textons, appear to be the basic
units, or image primitives, of preattentive texture perception. In his proposed "theory
of textons"; textons are defined as elongated blobs, terminators, and crossings of line
segments. Julesz and Bergen (1983) also found that "preattentive vision directs attentive
vision to the locations where differences in the density (number) of textons occur, but ignores
the position relationships between textons."

In most practical image processing applications, the images are likely to contain
natural textures, which are statistical rather than structural. The image primitives are
too small to be recognised as features or textons, too many to count, and too random
in their sizes and locations. Texton definitions for these images are not appropriate.
The features in statistical images are hidden, so a proper mathematical method
and/or transformation is needed to find the underlying distinguishing features. In
the next section, we will review some of the most popular methods regarding
statistical textures.

4.3 Approaches to Statistical Textures

Approaches to textured image analysis have progressed through two different stages
(Cross and Jain 1983; Haralick 1986; Haralick and Shapiro 1992): feature-based
approaches and model-based approaches. Early work in texture analysis sought to
discover useful features to characterise the textures and to establish specific measures
for discriminating between textures. Later, model-based work seeks a deeper
understanding of inter-pixel relationships within a textured image by using stochastic
models. On one hand, model-related parameters can be used as useful texture
features for recognition or classification. On the other hand, a generative image
model has the capability to resemble textured images which provide direct visual
matches with observed textures. Very recently, multiresolution, or multiscale, signal
processing techniques such as Gabor filters and wavelet transformatiqns or
decompositions are receiving considerable attentions and have been applied to
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texture processing (Tuceryan and Jain 1993). Fig. 4.2 provides a taxonomy of
approaches in texture analyses.

Texture Analysis
I
I I I
Region-based Boundary-based Filter-based
. I
| I Fourier
feature-based model-based Gabor
| I Wavelets
auto-correlation Juleszmodel .
co-occurrence fractals model

...... auto-regressive model
Markov random field (Gibbs distribution)

......

Figure 4.2: General approaches to texture analysis.

4.3.1 Statistical feature based approaches

Image textures have a number of perceived qualities or attributes which give some
quantitative measures in describing them, such as: coarseness, roughness, contrast,
fineness, smoothness, regularity, directionality, uniformity, and density. In feature-
based approaches, the primary goal is to find a set of good features for a texture,
which has less parameters but can effectively measure these qualities and thus
capture the most prominent characteristics of the texture. The most commonly used
texture features are briefly described below. A general review of these measures can
be found in Haralick (1979, 1986) and Weszka et al. (1976).

(1) Autocorrelation

Let Q denote a NxN image lattice (we will usually consider a square lattice for
simplicity, however results can be easily extended to any other shape of lattice). Let
x(i, j) denote the discrete intensity or grey level of the image at position (i, j), then the
spatial autocorrelation function is defined by

! j jx(u,v)x(u+i,v+j)dudv

p(i,j)E(N—i)(N_j) = C 0<i<N, 0SSN (41)

—le—j sz(u,v)dudv

This function measures the spatial autocorrelation of image pixels and
primitives. It describes the size of the tonal primitives. For an image .with topal
primitives of large size, its autocorrelation will extend further; while an image with
tonal primitives of a small size, its autocorrelation will fall quickly with distance. The
autocorrelation function may have periodic properties if the primitives of the texture

are spatially periodic.
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(2) Digital Transforms

The most commonly used transform is the Fourier transform, defined by

F(u,v)=| jx(i,j)eXp(-sz?l(ui+vj))didj, —00< U, v <oo (4.2)

where u, v are the spatial frequencies.

The Fourier transform directly measures the spatial frequency components of the
textured image. Fine textures are rich in high spatial frequencies, while coarse images
are restricted to the low frequencies.

Other transforms include Walsh-Hadamard transform, Slant function, Karhunen-
Loeve expansion (see Haralick 1986). It is reported (cited in Haralick 1979) that there
is no significant difference in classification accuracy between these transform
functions.

(3) Texture Gradient

Another method to measure the spatial frequency of textures is to calculate the
number of edges (or sharp intensity changes) per unit area, that is "texture edginess".
Fine textures have more edges per unit area, while coarse textures have less.

An extended edginess measure is the gradient function over distance, which is
defined as

g(d)= D {|x(i,j)—x(i+d, j)|+|x(i, )~ x(i - d, | +|x(,J) = x (i, j+ d)| +|x (i, j) = x(i, j - d)]}
(i./)en
(4.3)
where d(') denotes the distance, and 1 denotes the texture window over which the
gradient function is defined.

(4) Spatial Grey-Tone Co-Occurrence Matrix

Spatial grey-tone (grey-level) co-occurrence matrix is another commonly used
texture measure. It measures the relative frequencies or probabilities of transition
from one grey level to another at defined spatial distances. Some texture features can
be extracted from this matrix. Haralick (1986) and Weszka et al. (1976) give a
comprehensive review on this issue. Such studies have achieved reasonable results

for different textures (Haralick 1979, 1986).

Usually the co-occurrence probability matrix is defined at a fixed distance d and a

fixed angle ¢,

P(i,jld,¢) =#{(k,]),(m,n) € L,d((k,]),(m,n)1=d,0[(k,1),(m,n)] =, x(k,]) = i,x(m,n) = j}
(4.4)

where d(.) is a distance measure, and ¢(.) is an angle measure, i, je {grey levels}, #
denotes the number of pixels in the set.

From this matrix, the following texture features can be calculated:
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Energy: ZZ P(i,j)2 (4.5a)
i

Entropy: Y Y P(i,j)log P(i, j) (4.5b)
i
Contrast: » ¥ (i - j)? P(i, ) (4.5¢)
i
Correlation: 3 ¥ (i —u,)(j - u,)P(i.j)/ 6,0, (4.5d)
i
etc.

where u,, u, are means of the matrix along row and column respectively, and o,, o,
are the corresponding standard variances. '

A generalised grey level spatial dependence has been proposed by Haralick and
Shapiro (1992) to extend the measures for the relationships of pixel pairs to more
generalised spatial neighbourhoods.

(5) Other Features

There are many other traditional texture features such as grey-level run-length
statistics, grey-level difference statistics (see Weszka et al. 1976). The Gabor function has
been used for extracting texture features for discrimination (Fogel and Sagi 1989;
Turner 1986). Shang and Brown (1992) have used interframe principal component
features in texture classification.

4.3.2 Texture model based approaches

In model-based texture approaches, the primary goal is to seek a mathematical
expression, or model, which can efficiently and effectively describe the inter-
relationship of the pixel grey levels in an image. These models define the stochastic
configuration of pixels on the image lattice. They are always reproductive, and can be
used to simulate the textures under study, and thus provide a direct visual
comparison between real textures and synthetic ones. The most popular models are:

(1) Julesz Model

To study the visual discrimination on statistical textures, Julesz carried out a
series of experiments in which a stochastic model, known as the Julesz model, was
used to generate textures with different statistical orders (Julesz 1962, 1975, 1981).
Julesz first conjectured that human visual texture discrimination is based on the
second order statistics of textures. Later, he modified the hypothesis to "the pre-
attentive textural system cannot globally compute third- or higher-order statistics” (Julesz
1981). The Julesz model is applied mostly for texture image analysis in 1-D on a row
by row basis. In a NXN image, a pixel sequence {x(i,1), x(i,2),..., x(i,k), ...x(i,N)} 1is
formed from right to left along each row. If the grey tone is quantised to L levels, then
0<x(ij)<L-1, and X and Y are two random variables taken from 1 to L-1.
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For the first-order process, each pixel is an independent random variable

P[X(i,j)=m]= P(m) (4.6)

For the second-order process, in addition to the first order probability of (4.6), the

slecond—)order statistical property is formed by using the following procedure (Pratt et
al. 1981):

Set X(i,1)=X, i.e. x;, select X(ij)=(x; ., +Y) mod L, then the transition probability is

P(x;jlx; ;1) = PLX(i,j)=(x; ;) +Y)=nmod L]= P(n) (4.7)

In a similar way, the third order probability is described by

P(xl,Jlx,,J_l,xl,]_z)ZP[X(l,])Z(le_l +Xl]_2+Y)=qud L]:P(Q) (4:8)

Two dimensional cases can be generated by repeating the above procedures on a
column basis as well. Gagalowicz (1981) proposed a method to synthesise a stochastic
process from its a priori second-order statistics.

(2) Simultaneous Autoregressive (SAR) Model

The autoregressive model has been used successfully in 1-D time series analysis,
where it models the underlying stochastic process of the series by a linear
combination of the past states and random noise. Such a model can be extended to 2-
D cases. Denoting X(i,j), or X, as a random variable, x(i,j), or x;, 18 a realisation of
X(iy)- x is a realisation of the random process on a NxN lattice Q, x=(x, , X1y, - Xyy). For
simplicity, we can assume x has zero mean (otherwise x can be subtracted from the

mean value).

For an infinite lattice, the autoregressive (AR) model can be represented by

X(i,j)= 2.6,,X(i+u,j+v)+e(,j) (4.9)
(u,v)en
where {0, ,, (u,v)en} are the minimum mean-squared-error (MMSE) model parameters, u
and v are incremental coordinates, 1 is a neighbourhood set, {e(i,j)} is the independent
identical distributed noise sequence with zero-mean and variance, 2.

Ordinary AR models are causal, which means that the neighbour set only
consists of pixels before site (i,j) in the raster scan order. When the neighbour set
consists of the pixels of both sides, i.e. before and after the pixel (i), the model is
termed a simultaneous autoregressive model (SAR). Although the neighbourhood needs
not to be symmetrical, in most cases it is assumed to be so, and parameters are also
assumed symmetrical (i.e. 6, =6, ). Otherwise parameters may not be identifiable
(Besag 1974; Cross and Jain 1983). A commonly used hierarchically-ordered
neighbourhood structure is shown in Fig. 4.3. The numbers indicate the relative order
of the neighbourhood system. For example, the first order neighbourhood set, i.e. the
nearest-neighbourhood, is {(0,-1); (0,1); (-1,0); (1,0)}, the second order neighbourhood
set is {(-1,-1); (0,-1); (1,-1); (-1,0); (1,0); (-1,1); (0,1); (1,1)}, referring the pixel (ij).
However, there is no restriction on the definition of the neighbourhood structure.
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Figure 4.3: Neighbourhood structures (Numbers indicate the relative orders of
the neighbourhood of x).

For a finite lattice Q, a toroidal structure can be used to compensate the
boundaries where usually only half neighbourhood pixels are available. The toroidal
SAR model can be written as

X(i,j)= 2.0, X(i®u,j®v)+e(i,j) (4.10)
(u,v)en
where @ is the modulo operator.

If the noise sequence is assumed to be Gaussian distributed with zero-mean and
variance 62, then the process has a joint probability density function (Besag 1974):

_ 1
p(x)=(276°) M/2|B|exp{——2—0—2—xTBTBx} (4.11)

where M=NxN, and B is a MxM matrix with diagonal elements of unity and off-
diagonal element of - 8,,. A sufficient condition on {6,,} to ensure stationary of X(.) is
given by Kashyap and Chellappa (1983), as

1- ZOWZIMZE #0, VZI,Zz; lzllzl’ lZzIZl (412)
(u,v)en

Given a finite lattice image, the SAR model-based parameters can be estimated
by the least square (LS) or the maximum likelihood (ML) methods. LS estimation is
simple, but not consistent for non-unilateral neighbour sets (Besag 1974; Kashyap and
Chellappa 1983). ML estimation yields consistent and efficient estimates, but is very
complicated even for the Gaussian case. Kashyap and Chellappa (1983) used an
approximate expression for the log likelihood function and have proposed an
iterative method which yields an estimate close to the ML estimate with a faster
convergence speed. More details on model parameter estimation will be addressed in

Section 4.4.

For a rotation invariant simultaneous autoregressive model (RISAR) (Kashyap 1986),
averaging around a circle can be used to de-orientate the directionality of textures.

(3) Markov Random Field (MRF) Model
The SAR model is a subclass of the MRF model. For every SAR model, there

exists a unique MRF model. The MRF model is an extension of Markov chain models
for 1-D series to 2-D fields, and is a spatial interactive statistical model to describe
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interrelationships between point variables in a 2-D statistical field. The MRF model

and its equivalent Gibbs distribution (GD) model will be reviewed in details in
Section 4.3

(4) Other Models

There are some other texture models, e.g. mosaic model, fractal model, etc. for

some specific application purposes. For more details, see Kashyap (1986), Haralick
(1986), and Cross and Jain (1983).

4.3.3 Multichannel filter based approaches

In addition to MRF or GD model-based approaches, multichannel filtering methods
have become popular in recent years, because of their multiscale, or multiresolution
nature. Both approaches have achieved very impressive results. Using MRF models,
statisticians and mathematicians attempt to seek a deeper understanding of spatial
relationships between image pixels by fitting them to mathematical models. The
neurobiologists and psychophysicists have begun to understand the human visual
perceptive principles in texture discrimination based on human retinal multichannel
localised spatial filtering receptors. Tuceryan and Jain (1993) termed this latter
approach as "signal processing methods".

The Gabor filter (1942, cited in Daugman 1985) is a Gaussian window, and the
corresponding transform is a short-time Fourier transform windowed by such a
function. It was first used to optimise both time and frequency resolutions, i.e. to
reach the low bound of time-frequency resolution. Daugman (1985) extended this one
dimensional optimal filter to two dimensional (i.e. spatial and spatial-frequency
domain) to mimic the receptive fields of the human visual system (HVS). There is
considerable evidence from neurobiological and psychophysical studies showing that
the HVS is performing some form of local spatial-frequency filtering of the retinal
image using a bank of filters pre-tuned to different spatial-frequency bands and on
different spatial scales. A typical 2-D Gabor function (Daugman 1985) can be defined
as

.. 2 L 2
m(i,j>=exp{—[(’2 o) U . G’S) 1) x exp (2771 (i = i) + v (= jo)]}  (4:13)

i [

where (ij) is the spatial co-ordinate, (#,v) represents spatial-frequency co-ordinates,
and the (c,0)) represents the spatial bandwidth. The 2-D Gabor function ¢(xy) is a
product of an elliptical Gaussian with an aspect ratio A=6,/6; whose centroid is located

at (iy, j,) and a complex exponential modulation with spatial-frequency Jud +v; and
orientation ©=arctan(vy/up). The Fourier transform of the 2-D Gabor function can be

written as

®(u,v) = exp{—27[ 02 (u—uy)? + 05 (v = )" 1} X exp{~27~/—1[ig (u — g + jo (v = ¥o) 1}
(4.14)

The Heisenberg uncertainty inequality defines the time and frequency and spatial
and spatial-frequency resolution limits for any filter as follows
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1-D: Atf 2 (415a)

, 1 , 1
2-D: Aiduz—; AjAv> 4—; AiAjAuAy > (4.15b)

47 T 167

where At and Af are the 1-D time and frequency effective widths of a 1-D filter. The
effective width is defined as the square root of the variance of the energy distribution

of the filter. Ai, Aj, Au, and Av are the 2-D spatial and spatial-frequency effective
widths for a 2-D filter. The Gabor functions can achieve the lowest resolution limit
with the effective widths in both domains of

: 20 .
Jz_c’;Ajz J;Au=ﬁ;Av= V2

2 2 4o, 410 ;

Ai=

(4.16)

Many applications have adopted a bank of Gabor filters (with different locations
and orientations), and used the outputs of these filters as features for texture
processing (Tuner 1986; Bovik et al. 1990; Jain and Farrokhnia 1991; Dunn et al. 1994;
Guerin-Dugue and Palagi 1994; Tan 1995)

Using a Gabor filter bank is an example of multiresolution signal processing, and
more recently the field of wavelet theory (wavelet representation, decomposition, and
transformation) has developed (Mallat 1989). By varying the scale of the window
function, the wavelet transform provides varying frequency (or spatial-frequency)
resolutions with varying time (or spatial) resolutions (Mallat 1989; Rioul and Vetterli
1991; Manjunath and Chellappa 1993; Chen and Kundu 1994). Although orthogonal
decomposition is the most desirable, it is difficult to achieve. The non-orthogonal
basis functions, such as Gabor functions, are the most popular basis functions used in
practical applications. For example, Manjunath and Chellappa (1993) have used the 2-
D Gabor function as a basis function (basic wavelet). The signal can be decomposed
in terms of such functions with different scaling, usually a4, (00, ¢g=1, 2, 3 ..), to the
different aspect ratios A, and different orientations in [0, n]. The corresponding Gabor
wavelet transform can be expressed as (Manjunath and Chellappa 1993)

W, (i o 0 A 8) = [ (0, )@ *[0? (i = ig, j = jo). 1B did] (4.17)

4.4 Markov Random Field and Gibbs Distribution

4.4.1 Definition of Markov random fields (MRFs)

Besag (1974) and Cross and Jain (1983) have given a clear definition of MRF.s.
Assuming that a random field X is defined on a lattice Q of NxN, then X is a matrix
with each element is a random variable. Assuming x is one possible realisation of the
X and denote A as the set of all possible realisations of X on €.
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Definition: A MREF is a random field X on a lattice Q with:
(1) Positivity: Any realisation on the lattice is possible, i.e.

P(x) > 0, for all xe A (4.18a)

(2) Markovianity: The conditional probability of any site on the others only depends on
its neighbouring sites, i.e.

Plxjjxpy, (m,n)#(0,)), (mn)e Ql=Plx;ilx,,,,, (m,n)#(i,j), (mn)en ij] (4.18b)

(3). Homogeneity: The conditional probability P(xijlni]-) depends only on the
configuration of neighbours and is translation invariant, i.e. does not depend on the
location.

where 1; denotes the neighbourhood set of pixels around (i,j), excluding ()) itself.
Neighbourhood structures are defined as in the SAR model.

4.4.2 Expression of Markov random fields

Woods (1972) has shown that in the homogeneous Gaussian case, the MRF can be
expressed by a set of difference equations, which is also called the conditional Markov
model (CM) by Kashyap and Chellappa (1983).

In a finite lattice, a Gaussian MRF (GMRF) can be represented by

X, )= 2.0,X(i®uj®v)+e,j) (4.19)
(u,v)en

where the neighbour set is symmetrical and 6,=6_, for all (wv)en, {e(ij)} is a
stationary Gaussian noise sequence and is characterised by

E{e(i, plall x(m, n), (m, n)#(i ,j)}=0 (4.20a)
E{e(i, j)}=0 (4.20b)
E{e2(i, j)}=p (4.20c)

So the noise sequence is correlated as shown below

p u,vy=0
Ele(i, )e(i +1.j + ) = { ~0p (uv)en (420d)
0 otherwise

Parameters {0,} are the MMSE coefficients for forming X(ij) by usil.ng ifs
neighbours. The noise {e(i,j)} is the error and is not white. However if {e(i,j)} 1s

homogeneous and Gaussian, the {X(i.j), (i,j)e Q} is also homogeneous, Gaussian, and
Markovian (Wood 1972, and Kashyap and Chellappa 1983 (Geman and Geman 1984).

The conditional probability density function of the GMRF is
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e 1 Lo
pLAG IR w4 v (uv) enl=o Sl D= D F ) (421)

(u,v)en

The sufficient condition for stationary of {X(i,j)} is

nj =(1-207d;)>0, for all (i,j)e Q (4.22)

where ©=col[8,, (uv)en'], (I)U.:col{cos[(Zn/M)(iu+jv)], mv)en'}, n' is the asymmetric
half of m.

The joint distribution for a zero-mean GMREF on the lattice Q is (Besag 1974)
- 1
p(x)=(2mp) M2 BI/2 exp{—z—xTBx} (4.23)
P

where the B is defined as for the SAR model.

4.4.3 Simulations of Markov random fields

There are several algorithms to generate MRFs (e.g. Fourier transform methods:
Kashyap and Chellappa 1983, Khotanzad and Kashyap 1987; Monte Carlo methods:
Cross and Jain 1983). Here we describe the algorithm proposed by Cross and Jain
(1983):

(0) Choose a initial realisation x with equal grey level probability at each site of
the lattice Q,

(1) Randomly choose two pixels, x(i,j) and x(m,n), and swap them to obtain a
new realisation y. Re-index x and y to vectors: x=[x(1), x(2), ..x(M)] and
y=[y(1), y(2), ... y(M)], where M is the total number of sites in €.

(2) Calculate the probability ratio r=p(y)/p(x) from the conditional distribution
(Besag 1974, Cross and Jain 1983),

p(x) g ply(R)x(1),x(2),...x(k=1),y(k +1),...y(M)]

_ exp[x(k)T(n)] DInl= exp[x(k)T(T])] for
where - p[x(k)In]= 1+exp[x(k)T(ﬂ)’ or plx(oml Zexp[sT(n)]
seG

binary or grey-level images respectively, and T(n) is a function of the
neighbourhood and G is the grey-level range.

(3) If r> 1, accept the new realisation, if r<1, accept the new realisation with
probability 7.

The following figure shows some simulation results of second order Markov
random fields by using this algorithm.
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Figure 4.4: Markov random field simulations: Binary case (100x100 in size).

4.4.4 Gibbs distributions (GDs)

MRFs were not widely used until the Hammerslay-Clifford theorem (see Besag 1974),
Spitzer' work (1971), and the work of Hassner and Sklansky (cited in Cross and Jain
1983; Geman and Geman 1984) became better known. They have proved the
equivalence between the MRF and Gibbs distribution (GD). That is, every MRF can
be measured by the Gibbs distribution, and the Gibbs distribution is Markovian. An
important property of the MRF is its local characteristic, while an important property
of the GD its explicit probabilistic measure. The GD provides the MRF with an
explicit form of joint distribution (not only for the Gaussian case).

The random field concept came from some of Ising's work on statistical and
physical characteristics of ferromagnetic materials, is known as the Ising model, and
was used to measure the probabilistic configurations (Kinderman and Snell 1980).
The measure which Ising defined is the Gibbs measure or Gibbs distribution

1 1
x)=—exp{—-———U(x)} (4.25a)
p(x) > p{ T
where U(x) is the energy function of configuration x, T is the temperature, k; is a

universal constant (e.g. Boltzmann constant), and Z is a normalising constant defined
by

1
e § U 4.25b)
xeAexp{ kBT (X)} (

which is also called the partition function.

To complete the Gibbs distribution definition, we need to define the clique
system. In a lattice with a neighbourhood system, (€2, n), the cliques are defined as

follows:

Definition of cliques: A clique of image lattice (€, n), denoted by ¢, is a subset of
such that:

(1) ¢ consists of a single pixel;
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(2) ¢ consists of a set of pixels, which are neighbours of each other.

The collection of all cliques of (€, 1) is denoted by ¢.

For the first order and second order neighbourhood s

clique types are shown in Fig. 4.5.

EIEEIH
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ystems, corresponding
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=
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Figure 4.5: Clique systems. (a) First order; (b) Second Order.

Definition of Gibbs distribution: For

a neighbourhood system, mn, defined over a

finite lattice Q, a random field X={X(i,j), (i,j)e Q}, has the Gibbs distribution, i.e. it is a
Gibbs random field if and only if its joint distribution has the form of (4.25a) with the
partition function of (4.25b) and the energy function defined as

Ux)=Y, V.(x).

(4.26)

cel

where V (x) is a potential associated on (L, ) and depends only on those pixels x(i,j)

of x for which (i,j)e c.

5)
9, &

l"

0.5046013

0.32286325

0.46267086 0.33525425
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0.27242249
0.14718156

Figure 4.6: Simulations of Gibbs random fields (Binary case, 100x100 in size).
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GDs have been intensively employed in MRF model-b i

-based image pr i
Geman-and Geman (1984) developed a stochastic relaxation algoritl%mpfc())rC eiirsll: ge;
restoration. They also proposed a method, called the Gibbs sampler, for generatir%
Gibbs random fields. Derin and Elliott (1987) used GDs to model and segment noisg

images and textured images. Fig. 4.6 shows some simulatio f bi
using the Gibbs sampler algorithm. ns of binary GRFs by

4.5 Model Parameter Estimation

In model-based texture approaches, model parameters are used as features for
classifying different textures and to construct discriminable energy functions. Model
parameter estimation plays an very important role in model-based texture analysis
whether the analysis is for classification or segmentation, either in supervised or in
unsupervised cases. The accuracy, effectiveness, consistence, and computational
efficiency of the estimate are the important practical criteria. The followings are
commonly used estimation methods:

4.5.1 Least square (LS) estimation

(1) SAR Model

Given an image on a finite lattice €, its SAR model parameters can be estimated
by applying the LS method to the model equation (4.9) over the entire lattice, which
results in

6= Yz, )" (i, NI X 26 Hx(E )], (4.273)
(i,)eQ (i,/)eQ
&=L 3 [x(i, )00, )P (4.27b)
(1,))eQ
z(i,j)=col[x(i+u,j+v),(u,v) enl, (4.27¢)

where col means column.

The LS estimate is very simple method, but is not consistent for non-unilateral

neighbour sets even when M tends to infinity (Kashyap and Chellappa 1983).
However, because of its low computational cost, LS estimates are still widely used
either as an initial estimate for other iterative estimate methods, or as an estimate for

segmenting purposes.

(2) CM Model

For the CM model, or GMRF model, it is also possible to use the LS method to
estimate its model parameters in Eqn. (4.19). Kashyap and Chellappa (1983) have
modified the above LS estimate by using only interior pixels, and have proved that it
yields an asymptotically consistent estimation:
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O=[ Ya(i.)Ha"G.HT'C Tqd,j)xG, ) (4.282)

(i,j)GQ, (i,j)EQ,

A 1 . . 2 . .
p=—A; > (x(i, j)-O0"q(i, j)) (4.28Db)
(i,))eQ,
where €); is called the interior set, and Q=Q-Qp, where Q; is called the boundary set,
Qp={(i)eQ, and (i+u,j+v)e Q, for at least one (i,j)en }, and

qi,j)=col[x(i+u,j+v)+x(i—u,j—-v),(u,v)en] (4.28¢)

(3) GD (MRF) Model

The difficulty in estimating GD parameters is in the calculation of the partition
function, which is an integration over all possible realisations of the random field
under one set of parameters. Exact derivation of this function is almost impossible.
Derin and Elliott (1987) proposed a parameter estimate method, termed the
histogramming method by Gurelli and Onural (1994), which avoids the calculation of
the partition function. We regard this method as a LS method. The method models
each pixel's energy function as a joint co-occurrence probability of the pixel and its
neighbours, which can be estimated using histograms. This process can form a series
of difference equations. Then an estimate for the model parameter can be made by
using LS methods to these equations. The method can be stated as follows:

Denote {x(i+u,j+v);(u,v)en} as pixels in the neighbourhood, 1, of the pixel x(i,).
Then we have

o L ~U(x(i,)M.©)
p[X(l,]).,X(l +.u’«]+v)’(u’v)en]:p[x(l',j)|'n]= — (4293.)
plx(i+u,j+v);(u,v)en] Z[x(i, )N, O]
where
ZIx(i, )im, ©]= 3 e VixGme) (4.29b)

x(i,/)eQ
where Q is the state space for each pixel, i.e. the grey levels of the image.

Rearranging these two equations yield

o~ULx(.1)n.©) Z[x(i,)HIn,0]

= (4.30)
plx(i, j),x( +u,j+v),(u,v) € nl  plx(i+u,j+v);(u,v)en]

Note that the right hand side (RHS) of this equation does not depend on the pixel
x(i,f), so should the left hand side (LHS). Therefore, for any two distinct pixels, e.g.

x(ipjy)s X(inJ,), we have

UG @)+ Ulx(iz )N O] plxCi, j), X +w i +vi@vIenl _ P 4 3)
plx(iy, o )s x(y + 1, jp +V)s(w,v) €MD Py

where p, and p, are the joint probabilities for x(i),j) and x(iyJj5) with their own
neighbourhoods respectively. The energy function is usually defined as
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Ulx(i, /)N, ©1== 3 8,00x(i, /), x(i +u, j +v)] (432)
(u,v)en
Taking the logarithm of Eqn. (4.31), we have a difference equation for the pixel pair
x(iy ) and x(iy.f,)

X0, (00x(i, 1), x(iy + o +¥) 1= O0x(i, j)o ¥+ jy + )] = (2D (4.33)
(u.v)en 125}

The value of RHS of (4.33) can be estimated using a histogram method. Taking as

many as possible of distinct pairs from the image, the parameters © can be estimated
using the LS method.

This method works well provided that a large amount of image data is available,
however for limited training data or unsupervised case, the histogram estimates for
joint probabilities will be far from accurate. Gurelli and Onural (1994) have improved
the performance of this method for the case of a small amount of image data.

4.5.2 Maximum likelihood (ML) estimation

The ML estimate is an optimal Baysian estimate for model parameters. It can yield a
consistent and efficient estimate. However in many cases, even the log likelihood
function can only be derived under some assumptions about distribution of the
process, such as Gaussian. Maximising the likelihood function is not an easy task.
Numerical optimisation methods, such as the Newton-Raphson approach, have to be
used to obtain ML estimates. Generally, ML estimates are computationally very
costly.

(1) SAR Model

For the SAR model, the joint distribution for an infinite lattice, i.e. (4.9), is
extremely difficult to derive, but is available, i.e. (4.11), for a finite toroidal lattice SAR
model. Kashyap and Chellappa (1983) have proposed an approximation to the ML
estimate for the finite toroidal lattice SAR model in Gaussian noise case. Their
method is an iterative scheme

1
©,,;=(R ——I—S)‘I(V -—U), t=0,1,2,.. (4.34a)
Py t
o’ L 3 (xG, /)~ 07 x(s)*,  t=0,1,2, .. (4.34b)
(1,/)eQ2

where

.. .o _ T T
S= Yz, ) (i.j); U= Dz )x0)), V= Y ¢, R= (885 —C;Gy)
(1,7/)eQ2 (i,))eQ (i,))eQ (i,/)eQ

. 2T . :
C; :col[cos—z&j—t-(iu+jv),(u,v) enl, S; =col[sm—]\-/-(lu+]v),(u,v)€h]
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The initial value, 0, is. chosen as ©y=S1U, i.e. the 1S estimate. Their experimental
Work has shown 'that this scheme yields an estimate close to the ML estimate and also
yields a good estimate for the non-Gaussian variable case.

(2) CM Model

The joint distribution for CM model is expressed by (4.23), then the likelihood
function is

M
lnp(x/G),p)=1nIBl1/2—71n 2np—2leBx (4.35a)
p
where
IBI= [J(-0"y,) (4.35b)
(1,))eQd
27 . .
‘I’ij =col{exp[\/_—_lﬁ—(lu+]v)],(u,v)en} (4.35¢)

For the Markov model, it appears that the ML estimate of model parameters can only
be obtained by applying numerical optimising methods in maximising the above
likelihood function (Cross and Jain 1983; Kashyap and Chellappa 1983).

(3) Coding Method

Coding methods for model parameter estimation were introduced by Besag
(1972, cited in Besag 1974), initially for binary images and later for other cases.

In the Markov model, the noise term has a correlative nature over a
neighbourhood. Every site's conditional likelihood can not be simply summed to
form the joint likelihood function for the whole lattice because of the dependence of
neighbouring pixels. Only with the assumption of Gaussian structure for the noise
sequence and toroidal lattice structure, does the joint log likelihood function have an
explicit form (Besag 1974; Kashyap and Chellappa 1983), which is still difficult to

solve.

In general, the lattice can be partitioned into disjoint sets (independent sets) of
points called codings. For example, the first order process has two sets of codings, and
the second order process has four sets of codings, etc. For every set of codings, the
log likelihood of each point can be summed because of independence of pixels in
every set. Therefore a ML estimate of parameters can be obtained by maximising this
sub-joint likelihood function. However, there is lack of a reasonable and rigorous
ways for combining all coding estimates to form the final estimate because these
estimates are dependent. Cross and Jain (1983) use a simple averaging over all the
coding estimates, and find little variation in their examples. While in Kashyap and
Chellappa's experiment (1983), each coding estimate differs considerably and the
simple averaging over these estimates is not satisfactory. Geman and Geman (1984)
also doubted the credibility and consistence of the coding method.
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4.5.3 Maximum pseudo-likelihood (MPL) estimation

Besag (1975, 1986) has proposed an alternative to the joint likelihood kn
pseudo-likelihood (PL), which is defined by J 1hood, known as

L1 plxG, plx(m,n),(m,n) 2 (i, j),(m,n) e Q:0] (4.36)
(i,))eQ

The method considers that the random variables at each pixel are conditionally
independent. Although the PL is not genuine and is not always wvalid, it indeed
makes the parameter estimation much easier and can provide reasonably good
estimates.

(1) GMRF Model

For the GMRF with conditional distribution of (4.21), the joint PL is

PL=p' (x)=(2mp) M2 exp{—ixTBx} (4.37)

Maximising the above PL is relatively easy. The results are the same as for the LS
estimate.

(2) GD Model

For the GD distribution, although the joint distribution is explicitly expressed, i.e.
(4.25a), the partition function, (4.25b), will involve an expectation over all possible
realisations under the same parameter set, and it is often intractable. Therefore, the
ML estimation is practically impossible to achieve. In PL methods, the independence
of each pixels is assumed, so that the joint distribution is a multiple of each single
site's conditional distribution, which is also a Gibbs distribution, and defined by

p(ei, P x(i+u, j+v), (u,v) €N,;0) _ L expc——Ulx(i, i, O] (4.38)
Z; kT

where

Zi= Y, exp{—;l—TU[x(i, Hin, e (4.38b)
x(i,J) B

In each site's distribution, its partition function is simply a sum of conditional
distributions over all possible pixel values at one site. Geman and Graffigne (1986)
have proved the consistency of the MPL estimation. This method has been widely
adopted in image texture analysis (e.g. Geman and Graffigne 1986; Cohen and
Cooper 1987; Qian and Titterington 1991; Manjunath et al. 1990; Manjunath and

Chellappa 1991).

Parameter estimation is still a very importance issue in MRF or GD model-basgd
image analysis. How to make an consistence and efficient estimate for non-lattice
images, as in many segmentation problems, remains a challenging task.
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4.6 Textured Image Processing

In this section, some basic texture processing tasks are briefly reviewed. In the next
chapter, we will focus on unsupervised segmentation of textured images.

4.6.1 Region segmentation

Segmenting an image into different regions is a process which assigns or groups
pixels in the image into different sets, each of which has similar properties. Texture
segmentation in a broad sense is segmenting an image according to its textural nature
or characteristics. Texture within the same region is always assumed to have some
kind of homogeneity.

There is no single standard approach to segmentation. The perceptual process
involved in segmentation of a scene by the human visual system are not well
understood. Segmenting methods are very dependent on the images to be analysed.
We will concentrate on the segmentation based upon the textural properties of the
image. Early segmentation work relied on texture feature extraction, feature distance
measures and clustering algorithms. Recent segmentation work involves more
accurate description of the textured images through some forms of statistical model
and relies more on probabilistic measures.

Referring to the prior knowledge about the texture image to be segmented, there
are basically two categories of segmentation: supervised and unsupervised. In
supervised segmentation, the features or model parameters of each region, are
known, or can be obtained through the analysis of the sample images provided from
known categories. While in unsupervised segmentation, these properties, sometimes
even including the number of the regions, are not known or only partially known.
They need to be learnt during the segmentation. Simultaneous parameter estimation
and segmentation are often very difficult. It needs many possible interactive steps to
update parameter estimation based on new segmenting results, and to re-segment
the image based on these new parameters.

In model-based texture analysis, there are two key difficulties in segmentation.
One is to select an appropriate neighbourhood size over which pixels are regarded as
dependent. Large neighbourhood size means more features are available, and may
lead to more accurate description by the model. However, this creates a greater
computational demand. Some approaches use a fixed neighbourhood size which is
determined empirically. Others use a second- or third-order neighbourhood system

which appears to be adequate in many cases.

The other difficulty is to select an appropriate window size from which the lqcal
model parameters are extracted. Usually different window sizes are needed dgrmg
the segmentation. Sometimes the scale of the image is varied in accordan.ce Wlth a
multiresolution scheme. Some approaches use large windows at the begmmng to
obtain a coarse segmentation, then use smaller windows to obtain a ﬁper
segmentation. This may avoid being trapped in a local minimum when only using
small initial windows. However there is no guarantee that it will lead to a globally

optimal segmentation.
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In recent years, maximum a posteriori probability (MAP) has dominated the MRF
model-based texture segmentation. There are two major reasons. One is the proof of

the equivalence of MRF and GD. The other is that simulated annealing or stochastic
relaxation becomes available for obtaining a MAP segmentation even though
theoretically the annealing process needs a very long time to reach the optimum. %n
practice most applications use a fixed temperature or a fast annealing scheme. There
are some alternatives, such as using mean field theory in the expectation-
maximisation method for searching for optimum (Zhang 1992) and using maximum
posterior marginal probability estimation (Marroquin 1989; Comer and Delp 1994). In
these segmentation approaches, the texture image is modelled as a hierarchical (or
doubly) MRF-Gibbs model - texture region field (higher level) and texture grey
image field (lower level) (Geman and Geman 1984; Cohen and Cooper 1987; Derin
and Elliott 1987; Lakshmanan and Derin 1989; Manjunath et al. 1990; Manjunath and
Chellappa 1991; Zhang et al. 1994). Usually they model the texture grey image field as
a second- or higher-order Gaussian MRF model, while the texture region field a first-
order Gibbs model.

Given a texture image x on a finite lattice Q, let the random field, Y={Y(i,j), (i.j)e
Q}, denote the underlying region field, where Y(i,j) takes values from the region label
set R={1, 2, ...K}, and K is the number of region types. Y(i,j)=y(i,j)=/ means that the
pixel (i,j) belongs to region type . In the texture grey image level, X={X(i,)), (i)e 2},
is a multi-random field. Among each region /, there is a random field which takes

values from [-th region grey level set, GV =[ gl(’),gé”,...gf,f)], where q}l) denotes the

number of grey levels in region .

The objective of MAP segmentation is to assign each pixel to a proper region
label, i.e. form a region realisation Y=y respect to the observed image X=x, such that
the posterior probability P(Y=y[X=x) has the maximum value. Using the Bayes rule,
we can write

P(X=xlY=y)P(Y=Yy)

P(Y=ylX=x)= PO (4.39)

Since P(X=x) is a constant referring to the region field Y, so maximising the above
form is equivalent to maximising the numerator of the RHS of (4.39), i.e. the joint
probability P(Y=y,X=x) = P(Y=y)P(X=xIY=y). Most existing algorithms are aimed at
finding a resolution which is as close as possible to the optimal MAP estimate.

4.6.2 Texture classification

Texture classification is to identify one texture from others. Usually one image
contains only one class of texture. The knowledge about each texture class is learnt in
a supervised fashion, i.e. from known class samples.

Texture classification techniques have been widely used in natural %mage
recognition (e.g. Kashyap et al. 1982; Vickers and Modestino 1982), aerial image
classification (Weszka et al. 1976), and industrial product inspection (Siew et al. 1988).
With texture features, the classification rate can be much better than simply using
spectral densities of the image (Kirvida 1976). In most circumstances, the
classification is required to be rotation invariant. Kashyap and Khotanzad (1986? have
proposed a rotation invariant SAR model, which uses a circular symmetric AR
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model. The model averages the pixels of different angles from a circular
neighbourhood. Mao and Jain (1992) have extended this model to multiresolution
levels, and improved the classification rates. Cohen et al. (1991) proposed a MRF
model to classify the rotated and scaled image textures.

4.6.3 Image restoration

The ultimate goal of restoration techniques is to recover the real image from a
blurred, distorted, noisy or degraded one. Such blur or noise to the image may be
caused by camera defects, digitalisation, transmission errors, etc. Restoration is
oriented towards modelling the noise, blurring, or degradation processes, to applying
the inverse process in order to remove the noise or deblur, and recover the original
image. Gonzalez and Woods (1992) provide a review on this topic.

Using texture models, e.g. MRFs and GDs, to describe the image attributes and
noise nature has become increasingly popular. Geman and Geman (1984) first proved
that the conditional probability distribution of the real image given an observed
degraded image, i.e. the posterior distribution for restoration, is a Gibbs distribution.
The restoration process is the MAP estimation. The conventional maximum entropy
restoration is a special case of MAP estimation. They proposed a stochastic relaxation
algorithm to search for the global optimal reconstruction. They have proved that
under certain annealing schedules (though too slow to use in practice) the algorithm
will converge to the minimum energy configurations of the field. Besag (1986) has
proposed an iterative method for reconstruction known as iterated conditional modes.
Woods et al. (1987) have proposed a MRF model to recover noised images. Bouman
and Sauer (1993) have used a Gaussian MRF model to reconstruct images from noisy
data with high edge-preserving ability.

4.7 Conclusions

In this chapter, we have reviewed the most commonly used descriptions and
approaches for texture processing. In particular we have reviewed the SAR, MRF,
and GD models for the representation of statistical textures and their parameter
estimation methods. Although the multiresolution filtering methods, such as Gabor
filter bank and wavelet decomposition, are becoming increasingly popular in the past
few years, the MRF model-based approaches still have a very strong inﬂuencg on
texture analysis, and can also yield the greatest performance when used in a
multiresolution scheme. There are also some methods combining the MRF model
with multiresolution or multiscale wavelet decomposition methods (e.g. Bouman and
Liu 1991; Liu and Yang 1994; Chen and Kundu 1994). In the next chaptgr we adopt
the MRF model, particularly the GMREF, for textured image gegmentauon. A self-
organising neural network structure is proposed and 1ncorporated in the
segmentation process. The network simulates, in part, the humap visual F)Perzfltlons,
but has a simple computational form, and can perform Bayesian classification or

MAP segmentation.
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Chapter 5

SELF-ORGANISED SEGMENTATION OF
TEXTURED IMAGES

In this Chapter, a hierarchical self-organising learning structure is proposed for the
unsupervised segmentation of textured images. The system combines model-based
texture description especially Markov random field, a local model parameter
estimator, a self-organising chain, and a local voting network. It learns to
progressively estimate the model parameters for each texture region in an image
and hence classifies the various region categories. The model parameters and the
segmentation are updated iteratively, and their final estimates are obtained at the
end of the process. The computational structure of the algorithm is relatively
simple and efficient. Theoretical analysis of the algorithm shows that the algorithm
will converge to the maximum likelihood or maximum a posteriori (if the Bayesian
SOM is used) segmentation. A number of experimental results on various images
are provided. A simple parallel stochastic boundary relaxation algorithm is also
proposed for improving the segmentation quality at boundaries. The algorithm
reconfigures a boundary in a local area encompassing a boundary according to the
mean-square-error energies. It can be used after the segmentation as a post-
processor, or it can be incorporated within the segmentation process as a on-line
validation scheme. Based on this idea, a simple on-line minimum mean-square-
error validation scheme is proposed for the validation of the number of regions,
when this is not known a priori. Experiments have demonstrated the usefulness of

this approach.

5.1 Introduction

Most recent work on model-based image segmentation employs MRF .mod.el
parameters, clustering algorithms, and/or deterministic or stochastic rglaxahgn, in
order to obtain a maximum a posteriori (MAP) segmentation. One difficulty in the
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unsupervised segmentation is the lack of a priori knowledge. The model parameters
of the different regions, on which the segmentation process depends, are unknown
or need to be estimated using the emerging segmentation results formed during th(;
process. Hence, these estimates are always inaccurate or incomplete. The
segmentation has to be achieved by an iterative procedure (e.g. Lakshmanan and
Derin 1989; Manjunath and Chellappa 1991; Zhang et al. 1994). Another difficulty is
the accurate estimation for the model parameters. Maximum likelihood (ML) estimation
is essentially impossible in most cases. Alternatives involve using pseudo-likelihood
function to yield a maximum pseudo-likelihood (MPL) estimate, in which the
independence of pixels has to be assumed. Even so the MPL estimate is still
computationally intensive.

The least-square (LS) estimate provides an easy and fast parameter estimation for
the Gaussian MRF (GMRF). Although it can only achieve asymptotically consistency
under restricted conditions, its implementation efficiency and low computational
demanding make it a satisfactory estimator. In the first part of the proposed
segmentation algorithm, an LS estimator gives rapid but coarse parameter estimates
over the windowed pixel data. Then, a two-level SOM structure learns to classify and
cluster these noisy, coarse parameters and to re-estimate them in order to reduce the
noise.

The SOM network is used in the proposed segmentation algorithm as the
parameter re-estimator (after the local LS estimator) and region classifier. Lampinen
and Oja (1989) proposed a self-organising auto-regressive (AR) model for segmenting
textured images. In their algorithm, each texture was modelled as an AR series.
SOM's competitive matching law and Widrow-Hoff least-mean-square learning rule
were combined to obtain the model parameters. However, for two-dimensional
images, causal AR series are not a valid assumption. In addition, their learning is a
pixel-based adaptive least-mean-square-error method, though the estimation errors
were averaged over the past. The textures are characterised by groups or blocks of
pixels, rather than by individual pixels, therefore the inhomogeneity of each single
pixel could heavily affect their parameter estimation and so the resulting
segmentation.

This chapter is organised as follows. In the next section, a detailed examination
of the LS estimation and its performance over windows with different sizes are
provided. In Section 5.3, the proposed segmentation structure is gradually
introduced, together with various experimental results. Section 5.4 presents an
analysis of the optimality of the algorithm. It indicates that the Bayesian SOM,
proposed in Chapter 3, can be used in the segmentation algorithm for an improvefi
interpretation of the data structures. A parallel boundary relaxation algorithm is
proposed in Section 5.5. A validation method given in Section 5.6 can be usefgl for a
fully unsupervised situation, where the number of the region clusters is also

unknown.

5.2 On-Line Model Parameter Estimation

Model parameter estimation is very important in model based texture %mage
processing. In many applications, there is a requirement for on-line estimation of
model parameters. Therefore the estimation method has to be computationally
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efficient, simple, and accurate. Among several existing estimation methods discussed
in Chapter 4, the LS method proposed by Kashyap and Chellappa (1993) is a simple
but asymptotically consistent estimation. This LS method is also equivalent to fhe
MPL estimation for GMREF as previously noted. Thus it is a good choice for practical
problems. In the on-line parameter estimation, the whole region for each texture
categories may be not available. The region areas are also variables. The estimation
has to be operated in an incomplete data environment. According to the texture's block
and local properties (i.e. texture properties are contained in a small block of the entire
texture), we can use a small window (small compared to the image size, but large
enough to recover the texture local properties) to estimate the model parameter in
this window, which is considered homogeneous. In this section we shall first examine
the LS estimation for the whole texture, and from various smaller windows. This is to
pave the way for the next section, in which on-line estimation and segmentation are
carried out simultaneously.

5.2.1 Asymptotically consistent least-square estimation

In zero-mean cases, the LS estimate for the parameter set of the MRF model is Eqn.
(4.28). The calculations are straightforward. q(i,j) is a neighbouring pixel pair vector,
q(i,))qT(i,j) is a kxk matrix (k=2, 4, 6, ... for the first-, second-, third-, ... order models
respectively). The summation in Eqn. (4.28a) includes all pixels in the interior set (i.e.
excluding the boundaries). Care should be taken when using multiple-grey-level
images and high-order models, since the determination of the matrix Zq(ij)qT(i))
might result in overflow of variable bytes if the image size is very large. A solution is
to normalise the data, so each pixel will be within [0,1) range. When the mean of the
image is not zero, the pixel values in Eqn. (4.28) should be subtracted by the mean
value. The mean value itself should be also considered as a parameter in this case. A
proper normalisation to the variance terms is also needed in practice. We propose to
use the sample's variance to normalise to the model's variance (for binary textures,
such normalisation is not necessary). The normalised variance is

& = Y [x(i,))-m-0TqG )T
<iif>€9: 5.1
= Y x(j)-m]

(1,))e

q_>
[l

where m is the sample mean over the entire texture on Q, O is the estimate of the
parameter set, x(i, j) is the pixel value at point (i, j), M is the total number of pixels in
Q, and M' is the total number of pixels in the interior lattice.

Consider first some synthetic textures and their corresponding MRF parameter
estimates using the LS method. Several textures were simulated using the method
described in Section 4.3.3 with the parameter settings given in Table 5.1. The two grey
levels, black and white, were set to the equal probability. The results shown in Fig.

5.1 are after 100,000 iterations, and are 128x128 pixels squares.
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setting (a) (b) (c) (d) (e) (f)
a -3.0 -4.0 6.0 0 3.0
-3. -2.0
b11 3.0 2.0 -3.0 3.0 3.0 0.0
b12 0.0 2.0 =50 -1.0 3.0 0.0
b21 3.0 2.0 =34) =1.0) -2.0 0.0
b22 0.0 2.0 5.0 -1.0 -2.0 3.0

Table 5.1: Simulation parameter settings.
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Figure 5.1: Some synthetic textures (128x128).

The corresponding estimation results of their second-order MRF model are listed
in Table 5.2. It can be seen that these parameters are distinctive, and follow the
simulation parameter settings.

para- | Fig.5.1 | Fig.5.1 | Fig.5.1 | Fig.5.1 | Fig.5.1 | Fig.5.1

meters (@) (b) (©) (d) (e) (f)
0,4 0.2887 | 0.1595| -0.2460 | 0.3209| 0.3573 | -0.0036
0, -0.0353 | 0.1648 | -0.2455 | -0.1006 | 0.3498 | 0.0032
05, 0.2741 | 0.1077 | -0.2631| -0.0586 | -0.2385| 0.0036
0,, -0.0071 | 0.1052 | -0.2563 | -0.0482| -0.2320 | 0.4459
o 0.3144 | 0.3031 03219 | 0.3120 | 0.3485| 0.3436

Table 5.2: Parameter estimates for the textures in Fig. 5.1.
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Examples of 8-bit natural textures (128x128 in size) are shown in Fig. 5.2. The
. s \'

are Brodatz (1966) textures. Their corres ondin i 3
‘ third-
parameters were estimated as shown in Table 51.)3. s r-order GMRF - model

(a) Grass (D9)

(d) Straw (D15)

(b) Leather (D24)

(e) Treebark (D12)

(c) Pigskin (D92)

(f) Woodgrain (D68)

Figure 5.2: Natural textures examples (128x128).

para- Grass | Pigskin | Leather | Straw Tree- | Wood-

meters bark grain
0., 0.3594 | 0.4812| 0.2008 | -0.0775| 0.4706 | 0.2292
0, 0.6140 | 0.3456 | 0.5754| 0.5414| 0.5012 | 0.5420
0,; -0.1707 | -0.1111| -0.0329 | 0.0443 | -0.1871| -0.1184
0,, -0.1520 | -0.0986 | -0.0886 | 0.2082 | -0.1708 | -0.1097
0, -0.0277 | -0.0761 | -0.0198 | -0.0027 | -0.0535| -0.0001
05, -0.1505 | -0.0517 | -0.1493 | -0.2167 | -0.0696 | -0.0433
m' 0.4687 | 0.6423 | 0.5091 | 0.6067 | 0.5653 | 0.7289
c' 0.2506 | 0.3442| 0.3710| 0.2334| 0.1637| 0.1288
Table 5.3: Third-order GMRF parameters estimated from the textures shown

in Fig. 5.2. Here m' and o' are the normalised mean standard variance.

5.2.2 Window-based model parameter estimation

The above estimation examples are applications of the LS estimate method to an
entire texture region (one texture category). The parameter set reflects the average or
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overall properties of the texture. For texture classification tasks, such a parameter set
can be employed as the representative features for each texture. Comparison amon
the parameter sets using Euclidean distance metric (or others) should give goog
classification performance. In model-based segmentation problems, model
parameters are also the major representing figures in distinguishing different texture
regions. However, the overall estimation of one texture region may not be available at
least initially as the configuration of the regions still need to estimate. To obtain an
accurate estimate of parameter set for each region so as to obtain the correct region
segmentation under unsupervised situation, is one of the most challenging tasks in
image processing. In the next section, a hierarchical structure for achieving such an
objective is proposed, in which the parameter estimation is from various local
windows. Therefore, we now examine the case where estimates are from only part of
an entire region, and compare the difference between these estimates and those from
the whole region.

Since texture is a property of a group of neighbouring pixels rather than isolated
pixels, basic texture characters are preserved in local areas. So recovering parameters
from a smaller window is feasible; and the resulting estimate will be an
approximation to the estimate for the whole region. The accuracy of this
approximation depends on the size of the window (i.e. the larger the better).
However large windows make good segmentation less likely, since they are more
likely to contain more than one texture region so the homogeneity assumption of the
window will not be valid. The correct window size is one of the key problems in the
model-based segmentation. The window has to be small enough for accurate
segmentation, but large enough to represent the texture characteristics. The low limit
of the window size depends on the nature of the texture and recognition requirement.
For example, in a brick-wall texture, a small window can only tell the properties of
the brick, a window large enough to cover several bricks will show the characteristics
of the wall. Usually homogeneous textures, e.g. synthetic textures, can preserve their
properties in a very small area, but most natural textures need a larger window. We
shall discuss this aspect later.

As window-based estimation provides an approximation for the entire region
parameters, we can model such an estimate as a noisy estimate, i.e.

é(r)=6*+n(t) (5.2)

where 6* is the correct parameter set (including 8,5, 6,5, 8, ..., m (or m’), G (or c")); n(t)
is the noise term, which can be regard as normally distributed; and £ is the time step.

This hypothesis describes the estimate from a window as the real parameter plus
a random noise. As the iteration progresses, the actual parameters can be recovered
by applying an appropriate statistical technique to the window estimates. Wg now
give some examples of window-based parameter estimates for the synthetic and

natural textures shown in Figs. 5.1 and 5.2.

Fig. 5.3 shows 50 estimates of the second order GMRF parameter estimat;es from
a 30x30 window which is randomly located on the image Fig. 5.1 (a) at each time. We
split the parameters in pairs in order to visualise them. As we can see, Wmdow
estimates are well distributed around the estimate from the whole region (given in
Table 5.2, and marked in dark squares). The distribution in the variance pe.iramete.rs
has the same appearance as these two pairs; and examination on the other images in

Fig. 5.1 gives similar distribution results.
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Figure 5.4: Window-based parameter estimates from the natural texture Fig.
5.2(a) with window size of 30x30. Dark-dots represent the estimates from the

whole texture.

othesis is also acceptable. A 30x30 window

] texture images, the h . .
gy g g MRF parameters estimated from

has been used on the images shown in Fig. 5.2, their
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the windowed regions support Eqn. (5.2). Here we just present the results of one
texture — grass. Its third-order GMRF parameters for 50 estimates are shown in Fig.
5.4. The parameters: 6,; and 6y, (first-order); 8,, and 0,, (second-order); 6,; and 6,,

(third-order); m' and ¢' (mean and variance), have been grouped into pairs so that
they can be shown in one figure for convenience.

As we can see the estimate from the whole image is approximately the statistical
centre of the window-based estimates. In other words, if the mean calculation is
applied to the window-based estimates, then the real parameter can be recovered.

The window size certainly controls the accuracy or dispersion of the estimates.
The smaller the window the larger variance in the estimates. We use the total
variance, which is a sum of the variances so 50 such estimates, to describe the
influence of the window size. Fig. 5.5 shows the results for two examples, synthetic
texture Fig. 5.1 (a) and natural texture Fig 5.2 (a). The window size is varied from 10x
10 to 50x50. At each size, 50 estimates from the window were obtained. Such figures
can provide guidance for selecting window size. As we can see when the window
size is smaller than 10x10, the estimate from the window is generally very unreliable
for both synthetic and natural textures. If the window size is 20x20 or over, the
window-based estimate will be sufficient for synthetic or very homogeneous natural
textures. For other natural textures, however, the minimum window size needs to be
about 30x30. After post-processing of these raw estimates, a near-optimal estimate of
the model parameters can be obtained.
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Figure 5.5: Variances of window-base estimates vs window sizes.

In the next section, these estimates, instead of raw pixel data, will be used as
input data. An SOM network is used to further remove noise and so to converge to
the real parameter set for each region. At the same time, the SOM network also actcs1
as a classifier, which assigns the current parameter estimate to one reglon type, ;n
produces a winning signal to the upper segmenting lgyer. The segmenting layer then
updates the region type of the area that the current window covers.
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5.3 Hierarchical Self-Organised Segmentation Structure

5.3.1 A shrinking window to emulate preattentive and attentive
visions

When we look at an image, first we glance it, i.e. we take a general look on the whole
image or large parts of it. Then we gradually focus on to local details in the image.
These are two well-known human visual operations: preattentive and attentive vision,
which were briefly described in Chapter 4. To apply these principles to model-based
segmentation and estimation problems, we can use a shrinking window, whose size
is very large at the beginning and then gradually shrinks to small sizes. Large
windows will give an overall description about the image and its region distribution,
while small windows can give more accurate descriptions especially at the region's
boundaries.

The preattentive and attentive vision principle can also be applied in other ways.
For example, one can first use large windows to look for large homogeneous blocks,
and use them as region bases. This process corresponds to the preattentive phase.
Then small windows can be used to refine the area for each region by adding or
subtracting small window areas round the region boundaries. This process
corresponds to the attentive vision phase.

5.3.2 A primary self-organised segmentation (SOS) network

From the analysis of window-based parameter estimation in previous sections and
analysis of SOM performance, we can now develop a basic network for textured
image segmentation using an MRF model and SOM network. The general structure is
depicted in Fig. 5.6.

TI(t) represents the shrinking random window whose size shrinks with time and
whose location is chosen randomly at each time step. The parameter estimator
performs a crude estimate for the area that the current window covers. Then the
estimating SOM chain, will remove noise and converge to the mean or true parameter
set for each region. At the same time, the SOM chain also acts as a classifier, .Wh-JCh
assigns the current parameter estimate to a region type, and produ.ces a winning
signal for the top layer, namely the segmenting layer. This segmenting lgyer then
updates the region type of the area that the current window covers, af:cordmg to Fh;
region type of the parameter estimate. The function of this layer is a mmphﬁe
"winner-take-all", or more accurately, "winner-change-all" (WCA). A.lthough in the
original idea, the segmenting layer was to be a full SOM ‘network (in 2-D with as
many neurons as pixels), so that the neurons in the se?g_mentmg layer would converge
to the means of the pixel labels. However, the simplified structure can produce very

good results.
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L1t
A / Y Segmenting Layer

/ \\ (segmented image)

N,
SOM Chain
®
Parqmeter LS Parameter Estimator
Estimator (on window I1(t))
() Textured Image
(to be segmented)

Q

Figure 5.6: Self-organised segmentation structure.

The algorithm is given below:

Self-Organised Segmentation (SOS) Algorithm:

For a textured image {x(i, j),(i,j) € Q}:

(0) Initialisation: The initial weights of the SOM chain are chosen randomly. The

()

(3)

number of neurons in the chain is set by the number of texture regions in the
image, K, which is assumed known, or the number of texture regions that
we wish to segment into (otherwise class number validation is needed, see
Section 5.6 for more details). Set the initial window size to a large value, say,
half of the image size. Set a small threshold £>0.

Window-based parameter estimation: randomly place the window, I1(t), centred
on pixel x(i, j) (ensuring the window is within the image lattice); extract the
model parameters by a LS estimator (see Section 4.5.1 and Section 5.2.2) from
the area that the current window covers.
Winner selection:

v(r)=arg min d[W,(1)~O()] (53)

k=0,1,.K-1

where {W,(#), k=0, 1, ...K-1} is the weight vector at time ¢, whose dimension is
equal to that of the parameter vector, ®, and ©(f) is the parameter estimate
of TI(¢).
Update the weights of the winning neuron and its neighbouring neurons
according to the SOM algorithm, i.e.

W, (1 +1)= W, (1) + a(DR(DIO) - W ()], Vken, (5.4)

where 1, is the neighbourhood of the winner v (including v).
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(4) Update the segmenting layer:

label[x(i,j),(i,j)eIl(t)]=v (

)]
Ul

i.e. "winner-change-all".

6) If I[W,(r+D) =W, (1)]/ W, (1)I<e, then halt the process with the final
segmented image at the segmenting layer and the regions parameters

represented by the neurons weights. Otherwise go back to step (1) and
continue.

Experiments using the SOS algorithm have been undertaken on both synthetic
and natural (Brodatz) composite textured images (128x128 in size). Some typical
results are given in Fig. 5.7. As we can see, the algorithm can correctly segregate the
composite images. Although there are some errors at the region boundaries (and
occasionally elsewhere), the main part of each region has been correctly assigned.

©) (d)

Figure 5.7: Segmentation results of the SOS algorithm.

5.3.3 A hierarchical self-organised segmentation (HSOS) network

The reason for the above errors is the inhomogeneity even within a single texture
region. This can be overcome by using larger windows so that smoothed or awv?raig'evdj
texture parameters can be derived from the window. Howev'er larger wmcliows §,1\t‘
poor resolution at texture boundaries. The segmenting 1ayer s WCA algoyltbnll C ?es
not take account the previous segmentation results. Gomg back to the o.rvlgma .1; t;l
(i.e. fully implementing a 2-D SOM for the segmenting layer) would give an idex

110



solution. However, it would be computationally ve

alternative scheme called the local vfting (LV) sycherIZeCt(gstsli};nllar;isft;acci),nr‘;V eu’f:t? useTin
LV layer takes into account the results (region labels) of each iteration Izjl)nd e the
true label of a pixel according to its highest label votes. The structure i,s ivegriv'eSF' )
5.8. The algorithm is stated below (steps 1-3 are similar to the SOS algorit}g\m)- e

+ 1 Segmenting Layer
+1 A A+I (segmented image)

I1() Local Voting Layer

—_— = ) SOM Chain
S
Parameter ) LS Parameter Estimator

Estimator (on window I1(t))

@7 1) Textured Image
Q (to be segmented)

Figure 5.8: Hierarchical self-organised segmentation network.

Hierarchical Self-Organised Segmentation (HSOS) Algorithm:

For a textured image {x(i, ),(i,J) €€2}:

(0) Initialisation: The initial weights of the SOM chain are chosen randomly. The
number of the neurons in the chain is chosen as the number of texture
regions in the image, K, which is assumed known. Set the initial window
size to a large value. Set an integer threshold €>0. Set each vote of the

segmenting layer to zero: {Lij(O):O, (i, j)e ©}, where L; is the voting vector for
the pixel at (i, j), which has K elements {lg ,li},...lf’l} corresponding to the
votes for each region class member.

(1) Window-based parameter estimation: randomly place the window, I1(t), on the
image, and assume its centre is at pixel x(i, j); extract the model parameters
using a LS estimator from the current window.
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(2) SOM winner selection by

v<t>=argk=5§;gnK_ld[Wk<r>—ém] (5.6)

(3) Update the weights of the winning neuron and its neighbouring neurons by
Wt + D) =W (D) +ahNON -W(1)],  Vken, (5.7)
(4) Update the voting vectors by

l;(t+1)=lé‘;(t)+l

Koot © GDETO.Very (5.8)

(5) Winner in the segmenting layer: The largest voting element of each voting
vector indicates the region class for this pixel, i.e.

labellx(i, j), (i, j) € Q, 1 + 1] = argmax {L£ (¢ + 1)} (5.9)
k

6) If Y 8{label[(i,j),t + 1]~ label[(i,),t]} <€, (where &(x)=1, ifx=0; or 0
(i, ))ell
otherwise), then halt the process with segmented image at the segmenting
layer and regions parameters represented by neurons' weights. Otherwise
go back to step (1) and continue.

5.3.4 Experimental results

Extensive experiments using the HSOS algorithm for segmenting both synthetic and
natural textured images have been carried out. Typical results are given in Fig. 5.9
through Fig. 5.12. Only a second-order MRF model (and a single resolution) was used
in these tests. A higher-order model and/or multiresolution would improve the
accuracy of the segmentation. What we are demonstrating here is the operational
ability of the HSOS algorithm in segmenting textured images. A theoretical analysis
of the optimality of the SOS and HSOS algorithms will be given in the next section.
As can be seen from the figures, the results are promising and very close to the actual
boundaries. The results of the HSOS network are smoother than those of the SOS
algorithm, since it uses one more layer (i.e. LV) for performing a spatial median filter
function.

(1) Synthetic Textures

The images are 128 x 128 in size and are composed of two binary syr.lthe.tic
textures (of several shapes). Five sets of results after 2,000 iterations are shown in Fig.
5.9, where left-hand-side (LHS) images are the composite images; middle images are
the first layer's output, corresponding to the SOS segmentation result; and right-
hand-side (RHS) images are the final layer's output (i.e. the results of the HSOS). As
we can see the final segmentations are much smoother and cleaner than the? middle
layer outputs. The algorithm has consistently produced very good segmentation.
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®-C)  (b-SOS) (b-HSOS)

(c-SOS) (c-HSOS)

(d-SOS) (d-HSOS)

= I
_l

L=t e S L RS M o L
(e-O) (e-SOS) (e-HSOS)

ges (128x128).

Figure 5.9: The HSOS algorithm on synthetic textured ima
HSOS): Final

(x-C): Composite images; (x-SOS): Outputs of the first layer; (x-
segmenting outputs.
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(a-HSOS)

(b-C) (b-SOS) (b-HSOS)

(c-C) (c-SOS) | (C-HSOS)

(d-SOS) ] (d-HSOS)

& D i
(e-O) (e-SOS) (e-HSOS)

Figure 5.10: The HSOS algorithm on natural textured images (128x128).

(x-C): Composite images; (x-SOS): Outputs of first layer; (x-HSOS): Final
segmenting outputs.
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(2) Natural Textures

The images shown in Fig. 5.10 are 128x128 in size. The ite i
taken from the Brodatz album (Brodatz 1966). They are in ;?tr,riltp;:; i:;aeie sﬁi:
textures used are grass (D9), tree bark (D12), straw (D15), calf leather (D24) Beach
sand (D29), water (D38), wood grain (D68), and pig skin (D92). Th:e final
segmentations (RHS images) are also much smoother and contain less noise than the
first layer's outputs (middle images). Compared to the synthetic textures, natural
textures are less homogeneous, so slightly more noise is expected especially at
boundaries. However the results are still very good. For example, the tree bark image

in Fig. 5.10 (b) and (d) is very inhomogeneous and has large block attributes,
however, it has been correctly segregated.

(3) Multi-Region Textures

In the previous two-region texture examples, the neighbourhood function of the
SOM is not important, as long as it can bring both neurons into activity (this can be
achieved by allowing the non-winning neuron to undergo partial learning during the
first few iterations, say 10). The two neurons will always globally segregate the
image. However, for multi-region textures, allowing all the neurons to be active is not
sufficient, since one neuron may cover two regions, while two other neurons may
share one region (i.e. split one texture region into two, especially when this region is
not very homogeneous), or one neuron may converge to some boundary areas, where
the parameter estimates are always noisy and poor. These effects will lead to an
incorrect segmentation. In such cases, the neighbourhood function plays an
important role in allowing each neuron response to just one texture region so forming
a globally correct segmentation. We have found that maintaining a large
neighbourhood for a longer time is helpful in forming globally correct segmentation.
During this stage (global ordering stage), we also found that a low-noise parameter
estimate is also helpful. Thus a small (but not too small) estimating window is used
during this stage, otherwise a larger window will have a greater probability of
overlaying a number of regions. A proper validation scheme may be needed to assist
in the segmentation process (see Section 5.6). Here we will just consider the role of
the neighbourhood function.

In our experiments, the neighbourhood of the SOM chain was kept active for the
first 1000 iterations. The amplitude of the neighbourhood function for the nearest
neighbouring neurons is initially set to 0.6, decreasing linearly with time to 0 at the
1,000th iteration, and then remains at 0. The amplitude of the neighbourhqod
function for the second nearest neighbouring neurons is initially set to 0.2, decaying
to 0 at the 1,000th iteration, and remains at 0. The segmenting process can be ha_lted
by monitoring the changing rate in the final layer, or si'mply by setting a fixed
iteration numbers. Figures 5.11 and 5.12 show some typical rgsults of the HSOS
algorithm for some 4-region synthetic and natural textured images after 5,000
iterations. In general, more noise exists in natural textured images since thgy are less
homogeneous than synthetic textures. For this reason, the minimum size of tﬁe
estimating window for the natural textures should be larger than that for t e1
synthetic textures. In our experiments, it was set to 20x20 an'd 15x15 for the na'fura::l
and synthetic textures respectively. Good learning and ordering of the SOI}/Ihde:penet
on the appropriate shrinking rate of the neighbourhooc.i function (whic hljsChsis
empirically in most cases) and may also depend on the input sequence (w

usually a purely random sequence).
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}] '#

(a-SOS) (b-SOS)

(a-HSOS) (b-HSOS)

256x256).

Figure 5.11: The HSOS algorithm on multi-region synthetic images ( _
(x-C): Composite 1mages, (x-SOS): First layer outputs; (x-HSOS): Final
segmentation outputs.
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(b-SOS)

(a-HSOS) (b-HSOS)

Figure 5.12: The HSOS algorithm on multi-region Brodatz images (256%256).
(x-HSOS): Final

(x-C): Composite images; (x-SOS): First layer outputs; (
outputs.
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(b)

()

Figure 5.13: The HSOS algorithm on a real image (256x256).
(a) A landscape picture; (b) Final output of the HSOS; (c) HSOS segmentation

but with pixel-value-based inputs.
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(4) Aerial Immages

The HSOS algorithm has also been tested on a typical aerial photograph. Fig. 5.13
(b) shows the (final) segmentation result for the image of Fig. 5.13 %a) pwmﬁ' >
picture of a university landscape. Four neurons were used in the SOM ’chain Oflfh :
HSOS structure, together with a second-order MRF model. The result shows that the
segmentation has converged to four basic meaningful region types: trees, grass
buildings, and roads. This is quite good segmentation for a totally unSup’ervised’
system. There are some errors in the segmentation, especially in the tree region
However the building areas have been clearly segregated, as have the roads. :

In image processing, there are basically two kinds of inputs: pixel-based
representation and feature-based representation. In the previous algorithms, the
inputs to the network are the MRF model parameters or features that describe the
spatial relationships between neighbouring pixels. Segmentation of such images can
also been undertaken directly by using raw pixel values in a window (e.g. 6x6) as the
input to the HSOS structure (i.e. without the LS estimator, see Fig. 5.8). The inputs
are directly fed to the SOM chain layer, the remainder of the system remains
unchanged. Different areas will converge to their corresponding neurons. Since there
is no LS estimator, the segmenting speed is much faster. However, in this case, the
weight dimensions are increased to 6x6, instead of just six (for a second-order MRF
model). Fig. 5.13 (c) shows the result of such an approach. The segmentation has also
meaningfully converged to four basic regions. It shows a very good segregation of
the tree and grass areas. The road area is also very clear in most places, except for a
block area on the left. In general the result is better than that of Fig. 5.13 (b), because
in this case regions are not "pure" textures or less texture-based, so image data can be
used directly as inputs.

5.4 Towards the Optimal Segmentation

5.4.1 The optimality of the SOS and HSOS algorithms

The SOS algorithm proposed in the last section uses the local properties of textures
and optimal estimation and classification properties of neural n.etwork.s. It considers
the segmentation as a classification or clustering problem of various w1.nd.ows placed
over the image to be segmented. It groups local windows with similar texture
attributes, and labels the blocks with region types. It regards the label of each image
pixel as a unknown constant (instead of a random variable). The advantages and

disadvantages of this algorithm can be listed below:

Advantages:
+ Preattentive and attentive vision based search strategy.

* Simple computational structure.
* Fast convergence (only feedforward procgss)..
* No need to compute the image joint distribution.
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Disadvantages:

* Local minimum problem (which also exists for most of
* Not globally optimal.
* Some errors at boundaries.

her algorithms).

' The HSQS algo.riFhm is similar to SOS, but with an extra local voting layer. The
principle behind this is that the LV layer can remove noise in the label field which is
considered as unknown constant values. As the estimating windows :'ne often
regularly shaped, which will not usually match the actual boundary shapes, so
windows may lie across boundaries, and noise is unavoidable in the SOS's labelllin
stage. The voting vectors in the LV layer of the HSOS structure act like fuzzy
membership rules, and produce a median average of a pixel's region label from the
results of previous various windows around it. When the noise distribution is
symmetric around the true label value, the median is equal to the mean. So the HSOS
algorithm will give a better performance especially at boundaries. We have seen this
effect in the last section. Further improvement to the boundary classification can
achieved by applying a relaxation algorithm, which will be introduced in Section 5.5.

As we have shown in Section 5.2, window-based parameter estimates will be
approximately Gaussian distributed around the actual parameter for the whole
region. We have modelled this relationship by Eqn. (5.2), i.e. the real parameter with
a noise term. In SOS structure, the SOM chain will eventually filter out the noise and
converge to the actual parameter set of the texture regions. Therefore, for each texture
region, from the algorithm's distance matching law, its region-joint-distribution, or
region-joint likelihood function, will be maximised, since

In p[x1©, ()] = In p(x1©,%)>In p[xIO, VO #O,(=)], x€Q; (5.10)

under the assumption of well-separated classes, or equal variance and probability for
each class. This will lead the SOS and HSOS algorithms to an approximate ML
segmentation. However this regional optimum may not lead to a global optimum, as
the underlying assumptions may not be satisfied in real problems. So the joint-
likelihood function of the whole image may not be maximised. However in this case,
even the ideal optimal MAP segmentation will contain a certain amount of

segmentation error.

5.4.2 Bayesian SOM for the SOS and HSOS algorithms

For a globally optimal segmentation, the assignment of th.e.esti.mating window tola
label class should be according to its posterior probability ms’.ce.ad of a simple
Euclidean distance. This is the so-called Bayes law, aimed at minimising cla_ss@ca’qon
errors. In window-based segmentation, the problem becomes a ml'xtu.re dlztr'lbut10§
(MD) problem. Window estimates are approxim_ately normally dls.trﬂz:lilte tm 3eafcO r
region class. We have already proposed a Bayesian SOM (BSOM) in Osap ZrHsos
such problems. When replacing the SOM algori'thm by the BSOM,' the ‘Sf an e
algorithm will become globally optimal algorithms and.result in a olrrn '?'ce;tions
segmentation in the sense of window-based unsupervised texture classi

instead of the whole image sense (from Eqns. (3.41) and (3.19)).
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(d-C) (d-SOM) (d-BSOM)

Figure 5.14: Comparison of the SOM and Bayesian SOM in
the SOS or HSOS system.

(x-C): Composite textured images (128x128); (x-SOM
(x-BSOM): Results using Bayesian SOM.

): Results using SOM;
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Fig. 5.14 shows some typical examples of applvi .
network. They are the direct outputs of thepSOM chaIi)rE) (}il.ls %th:zhfirs}isle? 1\e/Ir lrf1 t}t\he o
network). As we can see the results of using the BSOM are better t}}{an C;h e HSQS
standard SOM, especially when the variances or the sizes of different re 'or(: ate s
the same. An interesting example is shown in Fig. 5.14(a). The results fr%lm tsharggst
and BSOM are both very good, and are almost identical. It would be expected ?l'hj I
because that the two regions have the same variance and size. In such a cese i}ib
BSOM is equivalent to the standard SOM. Although in the HSOS algorithm the L\?

layer can clean up the noise and provide a smoother boundary, a better interpretation
of sample distributions could be useful.

5.4.3 Towards the common ML and MAP segmentation

In statistical model-based segmentation of textured images, pixel grey levels are
modelled as random fields, usually GMRF, while labels of pixels are also considered
as a random field. Such doubly random field structures for describing noisy image
and textured images were first adopted by Derin and Elliott (1987) and Cohen and
Cooper (1987), and have since become very popular. The idea is that neighbouring
pixels tend, or are more likely to have, the same region label. The label field is often
modelled as a simple first-order GD or GRF.

In such a doubly random field model, the entire random field can be expressed
as a hierarchical random field: Y=[X;, L, (i, )€ Q], where (X (i, De Q] is the pixel grey
level field (intensities) at the lower level, while [Ly (0, e Q] represents the label field
at the higher level. Usually at the lower level, the intensity field is described through

a conditional GMRF, whose distribution can be expressed as (see Chapter 4)

IB()IY?

R O B ()x)  (5.11)

p[Xl-jzx,-le,-j=l,(i,j)eQ]= p{

26%()
where x is a raster scan vector of all pixels whose label belongs to class I.

At the higher level, the label field is often described by a GRF, as the
neighbouring pixels tend to have the same label or region class, and the region areas
are more likely to have patchy-like blocks rather than spreading pixels. It seems that
in natural images the distribution of texture regions can be well described by such a
random field. However, some work has shown that man-made scenes (e.g. regular
shapes) can also be well represented by such models (Cohen and Cooper 1987,
Geman and Graffigne 1986, Lakshmanan and Derin 1989). Such a model can be stated
as

plL; =l,(i,j)eQ]=%exp{—U(l)} (5.12)

where Z is similar to (4.25b), U(l) is the energy function, which is often a function of

pair cliques, i.e.

k
u=Y 2V, D (5.13a)

c,eC i=l
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Vc,. (l) = —BIS[(LIj - Lm,,)l(i,j), (m,n) € Ci] (5 13b)
where i denote the clique type, and B; is its corres i
, ponding parameter.
the clique types, k, depends on the order of the mode]. o et The number of
The aim of the segmentation of such doubly random field models is to estimate
the label field given a realisation of the multi-texture fields, i.e. choose the I, which

can maximise a posteriori (MAP) probability: P(LIX=x). The posterior distribution can
be expressed from the Bayes rule:

p(LIX = x) = ZXL)p(L) (5.14)
p(x) '

One difficulty in such segmentation problems is the estimation of the region
model parameters. In most algorithms (e.g. Derin and Elliott 1987, Cohen and Cooper
1987, Geman and Graffigne 1986), these parameters, together with the number of
regions, are assumed to be known a priori and can be pre-estimated from known
samples. So the conditional distributions in the numerator in (5.14) can be explicitly
expressed by Eqn. (5.11). The configuration which has the largest value for the
numerator in (5.14) is the best segmentation. That is, only the numerator term in
(5.14), ie. the joint distribution p(L,X), needs to be compared with different
configurations, as the denominator p(x) is fortunately a constant when the input is
fixed.

However, there is another difficulty in searching for a MAP configuration, since
the search space increases dramatically with image size. For example, for a 64x64
lattice and two texture regions, there are totally 24096(=101216) different configurations.
It is impossible to make an exhaustive search. Many methods have been developed
for such problems. Usually they assume a random initial configuration or according
to some fast, coarse segmentation, find a substitute segmentation either randomly or
according to some rules, and then take this substitution of the segmentation if the
joint distribution is increased (deterministic) or probabilistically according to the ratio
of the joint-likelihood of this substitution to the original configuration (stochastic).
Deterministic methods are generally fast and easy to implement. However they can
only guarantee a local minimum. For example, Besag (1986) has proposed an efficient
iterated conditional model method for a deterministic, pixel by pixel searching for a
MAP segmentation. While stochastic relaxation searching may have a greater
probability in finding the global minimum, if the temperature is decreased

sufficiently slowly.

For all methods, the search space has to be limited. This can be done by applyil’.lg
relaxation methods to a smaller area rather than the entire image. For e,fxample,-Derm
and Elliott (1987) have applied the MAP segmentation on a .strip bf:lSlS and given a
dynamic programming scheme to calculate the joigt—}ikehhood in the strip fgr
optimal MAP segmentation. The actual relaxation is limited to a narrow strip i:stnp
width is from 2 to 4 pixels), so the computation for the search is manageable. For a
complete segmentation, strip by strip relaxation is r}eeded. Their method ulses t}inri
estimated model parameters for all regions, and a fixed terr'lperature for rs ega oer.
This also can only achieve local (i.e. strip) MAP segmentation. Cohen an fOS[pRF
(1987) developed a parallel hierarchical relaxatiop for ML segrnentatlox:1 Zntg F
textured images. The method "splits" region windows into four quadr ,
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"merges” region windows of different sizes. So th ion :

relatively regular manner and at less cornputa’cionalecZi%rISI?rr:;tZt‘t}(zre1 rlr?etssailcﬁed o
undertake an exhaustive search and stochastic relaxation, it provides anc;\/IL tnaton]
of MAP segmentation. This method also uses pre-estimated model par msteaq
Geman and Graffigne (1986) have used a window-based relaxation geti\rgs efr N
texture segmentation. They used a window (5x5 pixels), which slides over the ima 8
to limit the search space. They also used the pseudo-likelihood in the se mentatigﬁ
and the model parameter estimation, so that computation is even faster. S%lCh simple
and straightforward techniques, i.e. sliding window and/or pseudo-likelihood, hfve

been widely used in texture segmentation algorithms (Lakshmanan and Derin 1989
Manjunath et al. 1990; Chang and Chatterjee 1992). ’

Unsupervised segmentation is even more difficult and computationally
intensive. Both segmentation and parameter estimates have to be updated according
to current parameter estimate and segmentation. Little work has been undertaken on
these problems. Lakshmanan and Derin (1989) proposed an adaptive segmentation
algorithm for unsupervised segmentation of noisy images which are corrupted by
additive independent Gaussian noise. Manjunath and Chellappa (1991) proposed a
window and pseudo-likelihood based interactive method for a MAP and maximum
posterior marginal (MPM) unsupervised segmentation of textured images. In such
problems, the optimal solution should achieve both ML parameter estimation and
MAP (or MPM) segmentation.

Recently, the expectation-maximisation (EM) algorithm, proposed by Dempster
et al. (1977) for solving ML estimation problems with incomplete data, has been
applied in MRF model parameter estimation and unsupervised segmentation (Zhang
1992, Zhang et al. 1994). Initial model parameters for the regions and segmentation
are obtained using a moving window based clustering method, then the parameters
are estimated by an iterative EM algorithm. At least a local optimum can be achieved.
They proposed several algorithms for independent noise models, MRF models, and
doubly MRF models. However, in deriving a practical solvable procedure, many
assumptions and simplification (e.g. independence of pixels; Gaussian distributions)
had to be made in their methods. Under such assumptions, simpler methods, such as
the proposed HSOS (with a boundary relaxation algorithm), will achieve similar

performance.

We have shown that the SOS and HSOS algorithms will produce an approximate
ML segmentation in the sense that the label field is a constant but unknown field.
While with the BSOM, the SOS and HSOS can provide a MAP segmentation (actgally
an MAP classification over window-based inputs). In the sense (?f a randf)m label field,
these algorithms are approximation to a ML or MAP local optimum. Since they treat
the window-based inputs as homogeneous, they simply limit the se;arch space to 1 of
M problem. Since the size of the window cannot be reduced w1thout limit, such
methods will have some segmentation errors around region boundaries, where rrfmio;s
complex configurations for dividing regions are needed: For a doubly random fie :
model, a further relaxation phase is needed to achieve a full ML and Ivégs
segmentation. As the region parameters have already obtained in the SOS or H

structure, and the segmentation in the centres of the regions are often noiseless, such

a relaxation can easily be implemented and undertaken near (;egion boundaries. In
posed.

the next section, such a boundary relaxation scheme is pro
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5.5 Stochastic Relaxation for Improvement on Boun

Classification dary

5.5.1 Optimal searching by stochastic relaxation schemes

Over the last decade, stochastic relaxation has been applied for combinatorial
optimisation problems, where the objective functions have various non-linel:r
relations with very many variables, and a directly deviation is infeasible. The earliest
idea was the Metropolis algorithm (Metropolis et al. 1953), which simulates the
behaviour of a multivariate system in equilibrium at a given temperature. The aim is
to develop efficient techniques for finding minimum or maximum values of such a
define objective function. Statistical mechanics, the central discipline of condensed
matter physics, concerns the behaviour of a system with many degrees of freedom in
thermal equilibrium at a finite temperature, and what happens to the system in the
limit at low temperatures. Statistical mechanics is characterised by the Boltzmann
probability factor, exp(-E/KpI), where E denotes the energy of the system, K g is
Boltzmann constant, and T is the absolute temperature. For many physical systems,
the low energy states are the most stable and ordered, and so the most desirable
states. The Metropolis algorithm applies a small random turbulence to the current
state, compares the energies of the original state with the disturbed state. The new
state is accepted or rejected according to the energy change, AE. If AE<0, i.e. the
change will bring the system to a lower energy state, this move is accepted. If AE>0,
the new state is accepted with the probability of exp(-AE/KT).

In finding a good low energy state, the temperature plays an important role.
Physicists achieve a low energy state of a substance through annealing, i.e. heating
then slowly cooling the substance. Introducing temperature and simulated annealing
process into combinatorial optimisation is due to Kirkpatrick, who has given a good
review of the connection between statistical mechanics and combinatorial
optimisation (Kirkpatrick et al. 1983). Simulated annealing, also called stochastic
relaxation, has been introduced by Geman and Geman (1984) to image processing to
achieve an MAP restoration of noisy or corrupted images, and an MAP segmentation
of textured images. They developed the Metropolis algorithm and proposed a Gibbs
sampler stochastic relaxation algorithm. They also derived a theoretical limit to the
annealing schedule and proved that under this schedule the relaxation process will
converge in distribution to the minimal energy configuration. The algorithm includes
two steps, one is the sampling that generates a new sample at a site according to the
local conditional Gibbs distribution, i.e. (see Geman and Geman 1984 for details)

1
p[Y,jlymnxm,n)en,-j]:—zl—exp{—— yRAC) (5.15)

y (i.j)ec
where the partition function Z; is similar to (4.25b).

wers the temperature from a

The other step is the annealing which gradually lo p :
g to a specified decreasing

high point (melting point) to a low degree accordin
scheme:

). T(1)—22-0, ii). T(1)2MA/logt, for all £2t, and ;2 (5.16)
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where M is the size of the image, A = max U(y) - min U ¥)
y

In the above the multi-variable, y, can be the joint confi
or a textured image as described in Section 5.4.3. For example in MAP ¢ i
problem, i.e. (5.14), we only need to compare the ratios for the numeri%mer‘ltanon
joint distribution of the observation and label field estimate. Even so the :)r,kl P
easy, as the search space for the label field is too large. Geman andasé} . n?t
Metropolis-like Gibbs sampler algorithm can be used to achieve a MAP resoiglt?n S
Such algorithms have been applied to image restoration and segmentation roble(r):.
(Geman and Geman 1984, Geman and Graffigne 1986). However such e?nnealjnS
schedules are too slow to follow in practice. Some applications, as mentioned u%
Section 5.4.3, use an approximation to the temperature decreasing scheme, or a fast
annealing scheme, while some others simply use a clamped temperature,. In these
cases, a local optimum is guaranteed. For example, Derin and Elliott (1987) have used
a fixed temperature in their "dynamic programming algorithm" for obtaining a MAP
segmentation of a doubly MRF modelled noisy or textured image. Lakshmanan and
Derin (1989) and Manjunath et al. (1990) have used a low initial temperature (T ,=MA)
in the relaxation scheme in their adaptive segmentation algorithm and stochastic
network respectively for achieving the MAP segmentation.

guration of a noisy image

5.5.2 A boundary relaxation algorithm

An important property of the HSOS algorithm is that it provides not only the
segmentation results but also the parameter estimation results. The segmentation
results are the final layer's outputs; while the parameter estimates for each texture
region are contained in each neuron's weights. These parameters are very useful in
unsupervised segmentation. They can be used to further clear up or filter the noise,
and smooth the region boundaries. In this section, a boundary relaxation (BR)
algorithm, which makes use of these results, is proposed for incorporating with the
HSOS algorithm as a second processing phase.

In the BR algorithm, a relaxation window slides along the region boundaries of
the segmentation result from the HSOS algorithm. The size of the relaxation window
needs not to be too large, but should contain sufficient texture information. Typical
sizes can be from 20x20 pixels (for homogeneous synthetic textures) to 30x30 pixels
(for inhomogeneous natural textures). The centre of the window is located at the pixel
which is on a current boundary. The placement rule of the relaxation window can be
either random or deterministic. In the random fashion, a pixel is randomly picked at
a boundary, then the window frames its neighbouring area. In the deterministic
fashion, the window slides along every current boundary.

I1, shown in Fig. 5.15, the search for a substitute configuration

le linear segments of the window into two regions
a segment can be

In such a window,
or segmentation is limited to simp of
(extension to more-region linear segments is not dlfﬁcult).. Such
horizontal, vertical, or any sloping segment crossing the window. ‘The search space
also includes the two simplest configurations, that is, the Whole Wmdqw belongds to
region type I or IL. In our test program, a horizontal. or VertIC?ll line with a raII om
deviation from the pixel (i, j) is generated as a possible sub.stltu.te. For example, ai
shown in Fig. 5.15, {0 represents the current segmentation in the window, C
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represents such a substitute, dotted lines denote other

T ossible subst; i
distribution for the current segmentation can be expres d uhstitutes. The joint

sed as

PALE") = p(TE*) p(§%)=p[x;18,,(i, j) e 1]p[xl.j|(:)”,(i,j)eH]p(go)

where the I represents one region of the current se

(5.17)
gmentation in the window, while II

represents the other, ® ; and © i are the estima

. ted parameter sets for region | and [I
respectively.

Figure 5.15: The relaxation window.

The joint distribution for the substitute segmentation can be either

pILE") = p(INE") p(LH) = plx; 16,.(i,j) € ©;1p[x, 107, (u,v) €0y 1p(L") (5.18)
or

P(ILE™) = p(INE*™) p(§*) = plx1 0y, (i, j) € 0, 1Pl 16, (u,v) € oy1p€*)  (5.19)

where w, is one part that the substitute divides the window, e.g. the left part divided
by the line (% while the wy is the other part, and {5 and {5 represent the two

possible configurations ({5t {© | =0, (:),,—xnn}; while (5% {0, >0y, ©;,-50,}) that the
substitute may make.

The label field distributions, p(£%), p(£5Y), and p(£5?), can be expressed as Gibbs
distributions like Eqns. (5.12) and (5.13). However, we have noticed that the number
of pixels on the boundary, both current or substitute, is much 1es§ tban .the total
number of pixels in the window. Therefore, these thr.ee distributions -ars
approximately the same. This further simplifies the calculation, as the label ﬁel
distribution forms can be omitted from (5.17)-(5.19). The remainders are just
conditional distributions which can be calculated from (5.11), (4.36), the pseuc'io-
likelihood. The algorithm then accepts or rejects the substitute ({5 or {5?)according

the ratio of the joint distributions, i.e.

1, if [max p(ILEHY/ p(ILE") 21,

i=1,

[max p(IT1,§%)]/ p(I1,{°), otherwise
i=12

' 5.20
Prob{substitute: {5i}= { (
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The §ubsﬁtute is then fed into the LV layer of the HSOS structure and
contributions to the voting vectors in the window area. After 4 number o? rllt rrtliakeS
erations,

the relaxation algorithm together with the HSOS aleori .
orithm a1
accurate and smooth boundaries. gorithm (its LV layer) will yield

This is a Metropolis version of stochastic relaxation. The tem erature b
introduced, and the relaxation can be fully implemented as describedpin N
section. However we have found that this simple relaxation algorithm
well with the HSOS structure.

the previous
works very

5.5.3 Experimental results

We have implemented this boundary relaxation method with the HSOS structure. As
we have seen from the above analysis, the calculation of the joint distribution in a
window is simple when the GMRF model is used. So the speed of the relaxation
phase is fast. When we further examine the HSOS structure, we have found that the
calculation for this relaxation phase can be further simplified. The HSOS uses the
local LS estimation for the parameters, so the HSOS will finally obtain the MMSE
model parameters. This implicitly employs the independent GMRF model for
textures. Such a model is the most commonly used model because of its simplicity.
Many existing unsupervised segmentation algorithms (e.g. Besag 1986; Lakshmanan
and Derin 1989; Manjunath and Chellappa 1991; and Zhang et al. 1994), although
start with very general cases, but settle with this simplest model.

So why not directly use the MMSE principle in distribution or energy
calculations? This can simplify the energy function to a mean-square-error function.
The LS estimates consider the parameters that can minimise the total errors. In other
words, when the pixels in an image are fitted to the correct parameters, the total
description errors will be the smallest (This can make a short cut to avoid the full
computations in calculating the joint likelihood function, and also leads to the MMSE
validation method in the next section).

Here we express the local energy function in a window, II, as the total mean-
square-error of description:

vm= Y [x-mP- Y 60 (x,, - m™)P (5.21)
(i,j)erl,lab(i,j)=l (u,v)enij

where m(® and 60 are the model's mean and parameters for region | which the pixel

belongs to.

In the case where the window may contain more than one region., as in the
boundary relaxation algorithm, different segmentation and diff(.erent region .model.s
need to be fitted for a minimum error search. The BR algorl.thm sunphﬁgs this
procedure by generating a limited number of. possible segmentations of the wmdr()y
into just two regions, then the segment which can produce thg mn;llmurét :;eﬁg,;
(errors) will be the new segmentation within the wmdow (otherw1se,'t elsu s 1t ) oin
is according to the energy difference). The BR algorithm can be implemente

parallel as shown in Fig. 5.16.
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To the LV layer of HSOS

rele-
xation

A pre-segmented image

Figure 5.16: The boundary relaxation algorithm.

When the window is located at a boundary, the algorithm generates a possible
vertical and horizontal segment, each of which has two possible region labelling: s,
and s, are the two possible combinations for the vertical segment; while s; and s, are
the two possible results for the horizontal segment. The s; and s, are the possible
results for labelling the entire window to region I and II respectively. The s is the
original segmentation in the window. The algorithm then calculates the
corresponding energy function for these possible segmentations: U;, U,,... Uy, and U,
and compares the six substitute energies, and chooses the substitute with the lo.weét
energy. The chosen substitute is then compared with the original sggmentatlons
energy. The substitution is accepted if its energy is lower than the original one, or
according to the ratio of these two energies. The result is fed into th.e LV layer of the
HSOS structure. The computation for the energy is relatively straightforward. The

speed of the BR algorithm is very fast.

Some typical results of applying this simple version of the BR algorithm to‘r IQ
iterations to the HSOS results are shown in Figs. 5.17 and 5.18. The HSOS results
used here are after only 1,000 iterations of the HSOS algorithm, much less than the
previous results shown in Figs. 59 and 5.9. However the BR alg.orlthm };11:
successfully removed the noise around the boundaries. After- applying Lth.t-\ H)\t
algorithm, the segmentation is almost identical to the real boundaries. Remeln‘w‘n 1\ | :1
only vertical and horizontal substitutes are generated for these examples. More
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(a-HSOS)
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(b-C) (b-HSOS) (b-BR)

(c-HSOS)

(c-C) (c-HSOS) (c-BR)

Figure 5.17: The segmentation results of the HSOS and BR algorithms
for synthetic textures.
(x-C): Composite images (128x128); (x-HSOS): Results of HSOS; (x-BR):

Results after applying the boundary relaxation.
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(a-HSOS)

(b-C) (b-HSOS) (b-BR)

(c-C) (c-HSOS) (c-BR)

(d-C) (d-HSOS) (d-BR)

Figure 5.18: The segmentation results of the HSOS and BR algorithms

for Brodatz textures.
(x-C): Composite images (128x128); (x-HSOS): Results of the HSOS: and

(x-BR): Results after applying the boundary relaxation.
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complicated substitutes such as, an
implemented, and the speed of the B
parallel nature.

gled;line Segments, curve segments, can be
R will not be affected too much because of its

5.6 MMSE Validation for Unsupervised Segmentation

5.6.1 Clustering validation

In unsupervised textured image segmentation, known class samples are not available
and the mpdel parameters for each texture have to be estimated on-line during the
segmentation process. However, the number of region classes in the image is often
assumed to be known in most applications. Such an assumption is often reasonable,
because the number of clusters is rather a subjective than a objective matter, except for
those cases where the clusters are well separated and within-class distributions are
well behaved. In many circumstances, however, there is a need to determine the
number of region classes, that is, the number of clusters itself is a variable. This
requirement can be understood as a question of how many meaningful regions (for
some purpose) can the image be grouped into, or how many homogeneous texture
regions does the image contain. It is the fundamental problem of cluster validity, and
is essentially (or explicitly) unsolved. In the general data clustering domain, validation
refers to the objective assessment of a clustering structure to determine whether a
structure is meaningful, useful, or can be well interpreted (Jain and Dubes 1988).
Validation is accomplished by carefully applying statistical methods and testing
hypotheses.

In the unsupervised segmentation of textured images, a common approach to the
validation problem is to derive a criterion function and to repeat the clustering
procedure for various numbers of clusters, e.g. K=1, 2, 3, ..., and to examine the
criterion function. It is very difficult to design a criterion function that can give a
maximum or minimum answer to the correct number, K*, of clusters. However a
meaningful function will normally monotonically increase or decrease with K and
give a noticeable change at the correct number. For example, when the total sguared-
error is chosen as the criterion function, it will decrease rapidly with K until K=K,
then it will decrease much more slowly until it reaches zero at K=M, the nu,:rnber Qf
data points (pixels in this case) (Duda and Hart 1973). When the log .joint-likehhooc.i is
used as the criterion function, it exhibits a rising exponential behaviour as a function
of K, and the best class number can be selected at 90% of the rise (rounded t.o thg
nearest integer) according to Langan et al. (1994). The log. joint-likelihood function 1s
the Q-function in their EM algorithm for image segmentation (Zhang ef al. 1994).

As the joint-likelihood is a monotonic function with K, mo§t Vglidaﬁon crl‘tenva
amend the function by adding a penalty term to limit the likelihood f'ltmc.tlo:r Z
continuous growth above the correct number. Some commonly used criteria

briefly described below.

(1) Akaike’s Information Criterion (AIC)

The criterion is used to select the model order for an autoregressive (AR) process,

and is defined as (Akaike 1974):
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A

K =arg min {=log p(x1©) + k)

ISK<K,, (5.22)

where k is defined as the number of free parameters in the K-class model

A§ we can see the inverse joint-likelihood function decreases monotonically wi th
K (rapldly before the correct class number, and more slowly after that numbe )Y ‘rﬂhlﬂ
k always increases monotonically with K. A minimum can be expected Frwe

(2) Minimum Description Length Criterion (MDL)

The minimum description length (MDL) criterion was also developed to find the
best model order for AR processes, and to overcome the asymptotically biased
problem of the AIC criterion. It is expressed as below (Rissanen 1984):

A

: 1
K= - —
arngIr(xglrém{ log p(x1©) + 2klog M} (5.23)

where k is defined as the number of free parameters assuming K clusters, and M is
the number of data points.

The MDL criterion takes into consideration the size of the data by using it as a
weight in the penalty term.

(3) Merhav, Gutman, Ziv Criterion (MGZ)

The MGZ criterion (Merhav, Gutman, and Ziv, 1989) is based on the MDL
criterion, but limits its attention to Markov sources and exponential distributions.
Given that the true number exists, it balances the overestimation and
underestimation probability through a parameter, 2, in an extended Neyman-Pearson
sense. It is stated as:

A

R=arg min {KI-~[MDL(K)~ MDL(K g, )]<2) (5.24)
I<k<K,, M

where A>0.

5.6.2 MMSE validation for GMRF model-based segmentation

As we stated in the last section, in most segmentation algorithms as well as our HSOS
algorithm, the model parameters are obtained by the LS (MMSE) or MPL method,
applied to a homogeneous texture. Two methods are equivalent and all assume that

the pixels are independent. Within this domain, the calculation for validation

criterion can be made much easier. There will be no need to compute t}I: t]Olgt
e. Instead,

likelihood function, which in most application is computationally extensiv . .
the total mean-squared-error (MSE), similar to (5.21) but extended to whole image

and all categories (1 to K), is calculated, i.e.

—
P)
| §]
)]

/ QYISO v
MSE(K)= 3, [y-mP— 28,0 -m)]
(i-j)eQuI=lab(i,J) (uv)en;
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where [=label(i, j) is the output of the LV layer of the

. HS
corresponding model parameters for region class 1. OS network, {m®, o} are

Ideally if each texture region is very h - ,
number of clusters will havegthe mmgu;mgggezﬁiggniﬁﬁgg :let}k: the. correct
give less errors for the prediction difference if fitted to its iJS parametecr retgﬁon N
any other parameters. We have seen that this idea was successfull Sur: de‘r th;n
previous section's boundary relaxation algorithm. This is why we tern}: it tlie lirl\\lt‘%g
validation. Ideally the MSE function will decrease with K and then reach a (IA al
minimum at K* The MSE function will change (increase or decrease) little for K(;CK *)
The MSE function will be slightly increased if the over-numbered clusters disperse or;

region boundaries, or will be slightly decreased if the over-numbered regions split
some regions. p

However, when the texture regions are not very homogeneous as it is usually the
case, the problem may return to the general case as we have mentioned earlier, i.e.
the MSE will decrease rapidly with K until K=K*, then it will decrease much more
slowly until it reaches zero at K=M. There should be still a significant change in slope,
or even a local minimum, at K=K*. Even when a over-numbered cluster splits one
assumed inhomogeneous texture region, the change of MSE function at K=K* should
be noticeable, otherwise this split may be correct (i.e. the inhomogeneous region may
be interpreted better as two regions instead of one). One advantage of using MSE is
its simple computational form. The computation can be incorporated into the
segmentation process. There are two ways to calculate the total MSE. One method is
to use the definition of (5.25) with the model parameters obtained by HSOS network,
when the segmentation process halts. The other is to use each region's variance
parameter obtained on-line in HSOS algorithm, together with region size values (the
number of pixels of each region), which can be easily obtained in segmentation), and
the total MSE can be easily approximated to

MSE' (K)=Y.8*(HM(]) (5.26)
1SI<K
where is the estimated variance parameter for region [, and M(J) is the total number of
pixels in region [.

This MMSE validation idea may also be useful for validation of the segmentation
result of the HSOS network for a globally correct segmentation even when the
number of clusters is provided. If the segmentation process CONverges to an incorrect
segmentation (e.g. one class merges two textures, or SOME two split one texture
region), the MSE function will always be higher than that for the correct

segmentation.

5.6.3 Experimental results

SOS network by using

. b lied to the H
The MMSE validation scheme has been app (5.25) has been used to

different SOM sizes to the same composite image, and Eqn.
calculate the corresponding total MSE values. |
are 256x256 pixels. The composite

ults shown in the figures are the
4, 5 (sometimes

The results are shown in Figs. 5.19-5.22, which
images consist of four different texture regions. Res n
LV layer outputs of the HSOS network for the cluster number K=2, 5,
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_ K:4 K=5 K=5 (again)

Figure 5.19: MMSE validation of unsupervised segmentation of synthetic textures.

o

AN N R SRR O
Composite imag

K=5 K=5 (again)

K=4

rvised segmentation of synthetic textures.

Figure 5.20: MMSE validation of unsupe
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K=4 | ‘ K=5 K=5 (again)

Figure 5.21: MMSE validation of unsupervised segmentation of natural textures.

5

o » L K:S(aguin)
K=4 k= )

Figure 5.22: MMSE validation of unsupervised segmentation of natural textures.
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two results of K=5 are given for comparison). The figures clearly indicate th
e correct

segmentation. When K=2, 3, 4, the segmentation results are clear
However, when K=5, the additional neuron can only take some bound

may be in several separate places. The corresponding MSE values fo

are given in Tables 5.4.

and compact.

ary pixels, and
r these figures

MSE K=2 K=3 Ked s —
Fig 5.19 | 12041.11 9405.68 7505.74 753355 749314
Fig.5.20 | 9193.86 7719.68 6815.25 6799.31 6768.75
Fig. 521 | 8906144.60 | 8830534.86 | 8534303.70 | 8538921.72 | 852853583
Fig. 522 | 6158596.90 | 5823209.02 | 5572463.36 | 5543407.18 | 55272614

Table 5.4: MSE values for various numbers of clusters in Fig. 5.19-5.22.

To visualise these values and examine their fitness for the validation, they have
been put into dB form (10 log MSE) and shown in Fig. 5.23 and Fig. 5.24. In each
figure, there is a very distinct change at the correct number of clusters (4 in all these
examples). Prior to this number the MSE functions decrease very quickly, but after
this number, the MSE function is almost unchanged or decreased much more slowly.
These results support the theoretical analysis for the proposed MMSE validation, and
show the usefulness of this method when used together with the HSOS network.

41

405 +

40 1

395 T

10logMSE
10logMSE

391

385 T

g

(a) (b)

Figure 5.23: MSE functions. (a) For Fig. 5.19; (b) For Fig. 5.20.
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Figure 5.24: MSE functions. (a) For Fig. 5.21; (b) For Fig. 5.22.

5.7 Conclusions

In this chapter, several practical methods, namely, the HSOS network, the BR
algorithm, and MMSE validation method, for the unsupervised segmentation of
textured images, have been proposed. A step by step approach of both theoretical
analysis and discussion, together with experimental verification, has been ado'p.ted.
These algorithms make full use of the local properties of textures, gfﬁaent
representation by the MRF model, and the SOM's convergence properties aqd
simplicity. They have been proved to be optimal in some sense, and efficient in

implementation and operation.
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Chapter 6

CONCLUSIONS

6.1 Summary and Conclusions

This thesis has presented a detailed statistical analysis and treatment of Kohonen's
self-organising map (SOM) algorithm, especially in respect of its convergence, feature
distribution, and its potential optimality for two major practical applications: vector
quantisation (VQ) and pattern classification. The unsupervised segmentation of
textured images has also been investigated. Several effective segmenting structures
combining the SOM algorithm and Markov random field (MRF) models have been
proposed and examined through a step by step analysis of their viability. Significant
and novel results are, the formal proof of the general convergence of the algorithm;
the asymptotical Gaussian distribution of its feature space; the diminishing effect of
the initial weights; the SOM's potential optimum performance for VQs; an optimal
SOM-VQ algorithm; an optimal SOM classification algorithm; an practical
combination of SOMs and other methods for texture segmentation; a simple yet
effective class-number validation method. The major contributions and results are
summarised as below:

1. A proof has been obtained for the general convergence of the SOM algorithm, and its
potential optimality for VQs in the sense of minimum mean-square distortion.

This thesis has shown that the convergence of the SOM algorithm to the
centroids of input pattern subsets exists for any dimensional mapping. The algorithm
asymptotically satisfies the two necessary conditions for minimising the mean-square
distortion between the representing vectors, i.e. features, and the data samples.

2. A comparative study of LBG, CL and SOM -VQs has been presented and a constrained
SOM algorithm for an improved VQ has been proposed.

When the distortion surface is not a single concave, the problem can become very
subtle, and most VQ algorithms, such as LBG-, CL-, and SOM- VQs, can only
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guarantee a local minimum in distortion. However, we have found that the
neighbourhood function of the SOM has a significant influence on the local minima
problems. For example, it can naturally overcome the under-utilisation problem, and
can also assist in escaping from some local minima. A constrained SOM algori,thm
based on the "equidistortion principle", has been proposed for guiding the SOM to a
global or a good local minimum. Experimental results have shown an improved

performance through using this constrained algorithm over standard LBG, CL, and
SOM -VQ algorithms.

3. The thesis has found the diminishing influence of the initial state, and has also given an

exploration of the complicated impact of learning rates and neighbourhood functions on
convergence and ordering.

The initial weights will have little quantitative impact on the convergence of the
map, as long as the learning rate satisfies the convergence conditions. However
forming a globally ordered or a good locally ordered map has been found to rely
mainly on the neighbourhood function in terms of its extent and shrinking speeci,
although the learning rate also has some influence. These parameters can only be
chosen empirically with the current understanding of the SOM. They also affect the
convergence speed. Slower learning rates, within the convergence conditions, will
generally result in slower convergence speeds. However, slow learning rates,
together with appropriate shrinking speeds of the neighbourhood function, are
helpful for forming the global or a improved local minimum in final distortion and
more importantly a better topological ordering. Our study has also emphasised that
the choice of an exponential fall for learning rates is not correct and may result in an
inaccurate mapping.

4. A Bayesian SOM has been proposed for unsupervised pattern classification in order to
achieve a maximum a posteriori performance.

The SOM algorithm has been widely applied to the pattern classification and
data clustering problems because of its computational simplicity and its ability to
avoid the "empty-class” problem. Our study has shown, however, the algorithm is
approximately optimal only when classes are compact and well-separated. For most
other cases, the SOM needs to be modified in order to achieve the best performance.
A general unsupervised pattern classification problem can be described as a mixture
distribution problem. An extended SOM, termed the Bayesian SOM, has been
proposed for such an application. The theoretical analysis and experimental results
have supported this approach. This algorithm should find application in many
practical classification problems.

5. Clear definitions and measures of topological ordering and a meaningful analysis of the
inherent fault-tolerance ability of ordered mappings have been presented.

Two constructive definitions of topological order, one in geometrical sense, the
other in mean-square distortion sense, have been formally put in mathematical forms.
The second definition can provide a very useful explanation of the'fault-tolerance
ability of an ordered map. The measuring metrics for the ordering have been
discussed. It has been found naturally that the ordering measure can only be
meaningful in terms of the ordering definition.
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6. A review of approaches to texture processing has been given in this thesis.

The most commonly used descriptions and approaches of textures has been
systematically reviewed. The model-based approaches, mainly MRFs, have been
discussed fully in terms of their usefulness, simplicity, and effectiven/ess Various
methods for the parameter estimation of MRFs have been described. |

7. A hierarchical self-organised segmentation structure for textured images has been

proposed, and it is shown that this structure can achieve a maximum likelihood or maximum a
posteriori segmentation.

The unsupervised segmentation of textured images has been investigated as a
possible application domain of the SOM algorithm. A direct self-organising
segmentation structure and a hierarchical self-organising segmentation structure,
which consists of a SOM (or a Bayesian SOM), a local voting network (a simplified
SOM) and local MRF parameter estimator, have been proposed through theoretical
analysis and extensive experiment.

8. A simple and fast relaxation algorithm has been proposed for improving the segmentation
accuracy at region boundaries.

This is a local mean-square error energy comparative relaxation algorithm, which
tracks the boundaries obtained from the segmentation algorithm. The search space in
the relaxation algorithm has been limited simply to the original boundary and several
regular alternatives within a small moving window. The segmentation results can be
considerably refined by applying this in conjunction with proposed segmentation
structures.

9. A minimum mean-square-error validation method has been found useful for validating
the correct class-number in a totally unsupervised segmentation of textured images.

An on-line simple, classical, but applicable validation method has been used
successfully for testing the correct class number in a fully unsupervised segmentation
problem. This method exploits the homogeneity within each single texture region,
tests the fitness of the estimated models in terms of the total mean-square-error. It
can be incorporated within proposed segmentation structures.

6.2 Future Work

A great deal of research on the SOM neural network and texture image processigg
has already undertaken by many researchers. This thesis has made certain
contributions to these two subjects, and it has also opened discussion on some fur.ther
and deeper concepts, such as the role of the neighbourhood funct'lc.ms in optimal
convergence and the ordering process; the noise-tolerance capability of orde?ed
maps; a possible application for the proposed Bayesian SOM in kernel smoothing
method for function approximation; practical training considerations of the SOM
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glgoritm; further development in MRF model parameter estimation; and a possible
link -~ between MRF model-based approaches and multichannel filter-l;ased

Eplproaches. These points for future investigation and improvement are noted brieflv
elow: _

*  More advanced on-line validation and verification methods for the SOM algorithm are
needed in order to "tune” the algorithm to form improved mappings, i.e. in a lowest possible
distortion and/or a highest possible order. -
The SOM is a local learning algorithm, which locally minimises the mean-square
distortion but aims at achieving a globally low distortion. How to judge the quality of
the training process as it progresses, especially on-line, would be very useful. '

*  The detailed quantitative role of the neighbourhood function on the ordering process
needs to be examined formally.

Two important roles of the neighbourhood function, which have been stressed in
this thesis, are in assisting the escape from some inappropriate local minima and
forming a good topological ordering. However, such roles have not yet been analysed
functionally or quantitatively. The possible utilisation of the neighbourhood function
in other mapping requirements, such as exact density matching, may also be worth
investigating.

o  Further exploration of the importance of the fault-tolerance ability of an ordered SOM
mapping for VQ, associative memory, and other application, is needed.

Fault-tolerance is one of important generic features of neural networks, and is a
fundamental principle in associative memories. As we have previously stated that a
good ordered map can provide greater fault-tolerance than a poorly ordered or
disordered map. Such an ability will be very useful in many other areas, such as
function approximation, pattern classification, and high dimensional data
visualisation.

e A practical strategqy for fast training and/or training with a small number of data
samples is urgently required.

Theoretically, the SOM requires infinite iterations to converge, and this means
each data sample has to be input many times (to eliminate the unequal contribungns
of samples input in different times). To overcome this inefficiency, a short-period
training method (e.g. transformation-like), if possible, would be very useful and
could make the SOM more practical. Ideally, the SOM also requires a large amount of
data for the training. However, in many practical applications, obtaining large
volumes of data may be very difficult or even impossible. The behaviour of the SOM
in reduced data situations needs to be investigated.

»  Re-learning ability needs to be added in the SOM.

One of greatest differences between neural network approaches and other non-
neural network approaches is the former's ability to learn and re-learn. There 1s
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apparently no theoretical analysis of this
trained map be re-trained when mor
preserving the existing ordering?

problem for the SOM neural network. Can a
€ new data samples are available, while

*  The function approximation ability of the SOM algorithm has not been explored in depth.

The difference between VQs and function approximations is that VQs use
representing vectors, while function approximations use basis functions. When the
we1ght.vectors, i.e. points, are extended to a basis function centred at these points
some similar properties between these two approaches may arise. The feasibility andl
suitability of the SOM and related algorithms, such as self-organised priﬁciple

component analysis, to the function approximation problem need to be fully
investigated. )

o It is worth investigating a possible link between model-based and multifilter-based
approaches to image texture description and analysis.

Currently these two methods exist in parallel in texture-related image
processing. Multifilter-based approaches have also been found useful in some other
image processing problems, while model-based approaches seem merely applicable
for textured, or homogeneous, images. The relationship between these two could be
very close at least in the discrimination of image textures .

o Parameter estimation for Gibbs distributions needs further study.

As we have pointed out, the optimal maximum likelihood estimation for model
parameters is currently untractable. Most existing estimates use least-square or
maximum pseudo-likelihood approaches instead, and this requires the assumption of
independence between the pixels. Parameter estimation of MRFs or GDs has long
been, and still remains, a challenging topic in statistics.

e The continuing exploration of application potential of neural networks in general image
segmentation, scene understanding, and object recognition.

This could be a life-long topic, but it is one of most important and eternal
objectives of neural network research. The need to understand information, especially
visual information, processing mechanism, and so to model the process by means of
neural networks has increased greatly as more and more disciplines such as
computer vision, robotics, psychology, physiology, and cognitive science, have
become actively involved. Developments in neural computing in theses .flelds are
expected to continue. Information processing based on neural computing will become
a new and popular computation method.
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