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Abstract 

This thesis presents some substantial theoretical analyses and optimal treatments 
of Kohonen's self-organising map (SOM) algorithm, and explores the practical 
application potential of the algorithm for vector quantisation, pattern classification, 
and image processing. It consists of two major parts. In the first part, the SOM 
algorithm is investigated and analysed from a statistical viewpoint. The proof of its 
universal convergence for any dimensionality is obtained using a novel and 
extended form of the Central Limit Theorem. Its feature space is shown to be an 
approximate multivariate Gaussian process, which will eventually converge and 
form a mapping, which minimises the mean-square distortion between the feature 
and input spaces. The diminishing effect of the initial states and implicit effects of 
the learning rate and neighbourhood function on its convergence and ordering are 
analysed and discussed. Distinct and meaningful definitions, and associated 
measures, of its ordering are presented in relation to map's fault-tolerance. The 
SOM algorithm is further enhanced by incorporating a proposed constraint, or 
Bayesian modification, in order to achieve optimal vector quantisation or pattern 
classification. The second part of this thesis addresses the task of unsupervised 
texture-image segmentation by means of SOM networks and model-based 
descriptions. A brief review of texture analysis in terms of definitions, perceptions, 
and approaches is given. Markov random field model-based approaches are 
discussed in detail. Arising from this a hierarchical self-organised segmentation 
structure, which consists of a local MRF parameter estimator, a SOM network, and 
a simple voting layer, is proposed and is shown, by theoretical analysis and 
practical experiment, to achieve a maximum likelihood or maximum a posteriori 
segmentation. A fast, simple, but efficient boundary relaxation algorithm is 
proposed as a post-processor to further refine the resulting segmentation. The class 
number validation problem in a fully unsupervised segmentation is approached by 
a classical, simple, and on-line minimum mean-square-error method. Experimental 
results indicate that this method is very efficient for texture segmentation 
problems. The thesis concludes with some suggestions for further work on SOM 
neural networks. 
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Chapter 1 

INTRODUCTION 

1.1 Self-Organising Neural Networks 

One of greatest abilities of human beings is their creativity. It allows them to invent 
various tools and machines to assist them to build their world and carry out their 
work more efficiently. Human beings are also curious about the natural world 
around them, the way it functions, and even about human beings themselves. 
Exploring the brain and understanding how it works have been one of most 
challenging tasks for a very long time. The invention of computers and the initial 
success of the earliest learning machine models in the middle of this century made us 
almost to believe that these questions were to be solved in a short time and that 
thinking machines were soon to arrive (Hecht-Nielsen 1990). However when further 
theoretical research on these early models of brain function (such as perceptrons) 
showed some crucial drawbacks (Minsky and Papert 1969), the research in the field 
stalled. After a resurgence in the late 1970s and early 1980s it has been progressing 
more prudently and deeply. The previous models have been modified and improved 
in various ways. Many new models and theories for describing various brain 
functions have been proposed in the light of current biological, physiological, 
psychological, and mathematical evidence. They have been, and still continuously are 
being, examined and improved by extensive experiments and studies. 

A brief history of neural networks from its beginnings and early success to later 
development can be found in many important and excellent articles and books in this 
field (e.g. Lippmann 1987; Hecht-Nielsen 1988, 1990; Widrow and Lehr 1990; Haykin 
1994; Simpson 1990). Many of them also give a broad and deep discussion on the 
recent achievements of neural networks and their applications in various fields. The 
benefits of this research have not been limited to biological and computer science, 
they have gone far beyond their original purpose and extent. Applications have been 
extended to more and more fields, such as economics, information technology, 
electronics and electrical engineering, medical science, civil engineering, and 
mathematics. In these fields, researchers have found that using a neural network 
approach is much simpler, more adaptive, and more efficient than using traditional 
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methods, which often require vigorous mathematical modelling and detailed 
parameters to describe the target phenomenon. There is little doubt that neural 
networks have become an important and useful methodology and will become more 
popular in even more application fields. Just as computers let us work more 
accurately. and .efficiently, neural networks will let us work on more complicated 
problems In easIer and more adaptive ways. 

When most research efforts were focusing on various learning principles and the 
sophisticated computational power of neural networks, there was also a great deal of 
effort being constantly dedicated to other very important observations from living 
brains, i.e. self-organisation in associative memories. Even in the "quiet years" of later 
1960s and early 1970s, much fundamental work continued (von der Malsburg 1973; 
Kohonen 1974; Grossberg 1976a, b; Amari 1972; etc.). Kohonen's self-organising map, 
SOM, was proposed as an associate memory model (Kohonen 1982). It is an 
abstracted, simplified, and developed form from many previous research findings for 
content-addressable memories, in particular, an earlier model of von der Malsburg 
(1973, Willshaw and von der Malsburg 1976). It models the mapping between 
sensory stimuli (mostly from the retina) and the cortex. It attempted to discover how 
perceived information is mapped and stored in biological memories, and the 
properties of such associative memories. Kohonen extended von der Malsburg's 2-
dimension presynaptic field to 2-dimension postsynaptic field mapping model to a 
generalised M-dimension to N-dimension mapping, where N<M, and proposed a 
competitive learning law and neighbourhood conscience rule, so that the input can be 
mapped onto a dimension-reduced output space while preserving the topological 
order. 

Like any other model of neural networks, research activities on the Kohonen's 
SOM have increased dramatically. The SOM has been shown to be an efficient and 
powerful model for associative memories and unsupervised learning. Tremendous 
efforts have contributed to this model of simple structure yet demonstrating 
complicated dynamic processes (e.g. Kohonen 1986, 1987, 1988, 1990, 1991, 1994; 
Cottrell and Fort 1986; Ritter and Schulten 1986, 1988; Ritter 1991; Ritter et al. 1992; 
Erwin et al. 1991, 1992a, b; Luttrell 1989a, b, 1991, 1994a, b; Bauer and Pawelzik 1992; 
Budinich and Taylor 1995). Although some convergence and dynamic properties 
have been discovered, most of them have been limited to the I-dimensional case with 
rare extensions to the 2-dimensional situation. The general and complete convergence 
theory and learning dynamics of the algorithm still need to be produced. The 
optimality it can and may produce are still to be revealed. A clear understanding of 
the model can make it more meaningful, applicable, and suitable to its application 
areas. Applications of the SOMs have already been found in the areas such as pattern 
recognition, speech and image processing, robot control, data clustering and 
visualisation, and function approximation (e.g. Allinson 1990; Ritter et al. 1992; Kim 
and Ra 1995; Mao and Jain 1996; Mulie and Cherkas sky 1995). It is the simple 
computational form of the model that makes the SOM a promising and supe~ior 
alternative to related classical approaches. For example, when used as a clustenng 
algorithm, the SOM is an adaptive and stochastic gradient descent method compa:ed 
to the batch version of the k-means algorithm. Thus it is more capable of escapIng 
local minima and does not suffer from under-utilisation problems. When used as a 
data compression algorithm, the SOM is also superior to the standard LBG (Linde et 
al. 1980) and competitive learning methods in these points. Furthermore, with an 
ordered (even if only local ordered) codebook, the SOM algorithm shows greater 
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inherent noise resistance, which cannot be found in the methods that employ non­
ordered codebooks. 

. A~ important feature of neural networks is their ability to tolerant imprecise 
stImulI and system errors. The topographical order found in biological memory is a 
natural example of such a fault-tolerant system, in the sense of producing the lowest 
error in response to distorted inputs. The SOM is a algorithm which is naturally able 
to form such a topology preserving mapping due to the effect of its neighbourhood 
functions. The SOM's noise-tolerant ability is beginning to be appreciated by more 
and more researchers (Luttrell 1989a, b, 1994a; Andrew and Palaniswami 1994). 
Recently the algorithm has been used to produce robust vector quantisations (Carrato 
1994; Chen et al. 1994). However the precise and quantitative role of the 
neighbourhood function to the ordering process is still far from clear. Even the 
meaning of the ordering process has not yet been explained in detail. Such important 
properties are certainly worth studying and exploring. They will not only provide 
useful strategies for optimal coding and data compression, but also may bring many 
important insights into fault-tolerant memory mechanisms. 

1.2 Neural Network Approaches to Image Processing 

Neural networks are adaptive, parallel, and distributed information processing 
structures with massive, independent, and interconnected simple processing 
elements, termed neurons. They are intended to be trained to carry out complicated 
and computational intensive processing tasks, such as non-linear classifications, 
adaptive control, and combinatory optimisation. 

Vision is one of the most complex information processing tasks. It involves a 
large-scale parallel processing of low-level visual perceptions, transformations, 
abstractions, distributions and storage, and pattern classifications. Image processing 
problems are often computational intensive, complex, non-linear, and parallel in 
nature. Since vision provides us with more than 60 percent of our perceived 
information of the external world, image processing has become an important part of 
artificial intelligence. Thus it is an important application area for neural networks. 
More and more applications have shown the suitability, successful, and promising 
future for neural networks in many aspects of image processing, such as face 
recognition, texture classification and segmentation, scene analysis, and image 
compression (Nightingale and Hutchinson 1990; Van Hulle and Tollenaera 1993; 
Luckman et al. 1995; Wright et al. 1995; Dony and Haykin 1995; etc.). 

An important primitive of many images is the perceived texture of many 
surfaces within a complex image. Texture analysis provides many essential clues for 
image recognition and segmentation. The techniques used for texture processing 
have become a fundamental and important methodology in image processing and 
computer vision. Searching for the underlying, effective, and discriminable texture 
features has long been the core of texture analysis. Classical features can be 
considered as the various statistical quantitative measures derived directly from the 
image texture. They are simple and direct, and can give reasonably good 
discrimination for textures. Modern approaches are seeking a deeper understanding 
of both the underlying principles of texture formation and human perceptive function 
of textures. Markov random field (MRF) model based descriptions and 
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multiresol.ution filteri~g analyses have recently emerged as important and dominant 
methods In texture Image processing (e.g. Tuceryan and Jain 1993; Geman and 
Geman 1984; Chellappa et al. 1993; Haralick and Shapiro 1992; Zhang et al. 1994; 
Daugman 1985; Mallat 1989; Manjunath and Chellappa 1993). Apparently these two 
methods can exist in parallel, as both can produce good performance in practical 
applications. 

Neural networks have also started been incorporated with both model-based and 
filter-based methods for texture image processing, such as texture classification 
(Chellappa et al. 1993; Shang and Brown 1992; Schumacher and Zhang 1994) and 
textured image segmentation (Lampinen and Oja 1989; Zhang et al. 1994; Dony and 
Haykin 1994). Neural networks' adaptive, parallel processing, and non-linear 
properties are beginning to make image processing more efficient, adaptable, robust, 
and suitable for practical applications. 

1.3 The Aims of this Thesis 

As Kohonen and many other researchers in the field have acknowledged, the 
vigorous mathematical analysis of the SOM algorithm still needs to be fully explored. 

"Apparently the memory functions of biological organisms have been implemented 
in the neural realms; but in spite of extensive experimental research pursued on 
biological memory, it seems that many central questions concerning its functional and 
organisational principles have been remained unanswered" (Kohonen 1984). 

The first half of this thesis is to present a detailed investigation of the general 
statistical and convergence properties of the SOM, to explore its application potential 
relating to various criteria, and to apply appropriate modifications to the standard 
algorithm to enhance optimum performance for these different applications. It is 
hoped this work will be a significant contribution to self-organisation theory. The 
second half aims to demonstrate some useful applications and extensions of the SOM 
for some pattern recognition and image processing problems, such as vector 
quantisation, data classification, and image texture segmentation. A detailed 
application structure of the SOM, in combination with other methods, is proposed for 
the unsupervised segmentation of textured images. The chapters of this thesis and 
their objectives are briefly described below: 

In Chapter 2, a brief review of the SOM's derivation and formation, and a clear 
understanding of the functionality of the algorithm are first presented. The statistical 
and convergence properties of the features of the SOM algorithm are then studied 
from a statistical viewpoint. The effect of initial weights on the state of the final map 
of the algorithm is investigated. The algorithm's objectives and their meanings 
relating to what kind of optimality are discussed. Some representative examples are 
used to support this study and to provide some useful guidelines on implementation 
and application of the algorithm. 

Chapter 3 presents some useful treatments of the SOM algorithm in order to 
achieve optimum performance in two major application areas of the algorithm: 
namely, vector quantisation and pattern classification. Some advantages of the SOM 
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over traditional methods are revealed and examined. A constrained SOM is proposed 
to yield a vector quantisation with the global distortion minimum (or an improved 
local minimum). Another modification is proposed aimed at producing optimal 
Bayesian results when applied to unsupervised classification and clustering 
problems. The noise-tolerant ability of the SOM through its topological orders is then 
discussed and clearly explained for optimal vector quantisations. The definitions of 
ordering and their practical meaning are explored. This chapter also opens up a 
discussion on the role of the neighbourhood function in achieving a global optimum 
mapping and ordering. 

A broad review on image textures and their description is presented at the 
beginning of the Chapter 4. Existing approaches to texture classification are briefly 
reviewed. Model-based approaches, mainly Markov random fields and Gibbs 
distributions, are then extensively examined. The simplicity and usefulness of these 
models are explained. The key operational problems to the model-based approach, 
i.e. estimation of model parameters, are also examined in detail. This forms an 
introduction to the next chapter. 

Chapter 5 develops in a step by step approach a system for the unsupervised 
segmentation of textured images by using the SOM algorithm and model-based 
descriptions. The local property of textures and the convergence property of the SOM 
are incorporated. The possibility and suitability of each stage are examined carefully 
and logically. A novel hierarchical self-organising structure, and an extended version, 
are proposed for the unsupervised segmentation of textured images. The theoretical 
analysis of the optimality of these approaches is also presented. By using a local 
energy comparison scheme, a boundary relaxation method is proposed to improve 
the accuracy of the segmentation at texture boundaries. A simple on-line validation 
scheme in terms of minimum mean-square-error is finally proposed for the case 
when the class number is unknown and needs to be validated. The proposed 
segmentation structures and validation method are examined by extensive 
experiment on various textured images, to demonstrate their suitability. 

The final chapter, Chapter 6, briefly reviews the contents of this work, 
summarise the major results and contributions, and discusses further potential 
research topics. 

5 



Chapter 2 

STATISTICAL ANALYSIS OF SELF­

ORGANISING MAPS 

In this chapter a detailed investigation of the statistical and convergence properties 
of Kohonen's self-organising mapping algorithm of any dimension is presented. 
The feature (or weight) space of the algorithm is considered as a cumulation of 
random variables. We extend the Central Limit Theorem to a particular case, which 
is then applied to prove that the feature space during the learning is an 
approximation to a multiple Gaussian distributed stochastic process and will 
eventually converge, in the mean-square sense, to the probabilistic centres of the 
input subsets to form a quantisation mapping with a minimum mean squared 
distortion with a local or global topological ordering. The difficulties in dealing 
with the implicit dependence of the neighbourhood function on the winning 
neurons have been overcome in this analysis. As the training progresses, the 
diminishing effect of the initial values of the weights on the values of the final 
map is shown. The convergence conditions have been analysed both theoretically 
and experimentally. The effects of the learning rates on the convergence speeds 
and ordering have been analysed. Several useful guidelines for setting algorithm 
parameters in order to obtain good mappings are also provided. 

2.1 Introduction 

For many years, artificial neural networks have been used to model information 
processing systems based on natural biological neural structures. They not only may 
provide solutions with improved performance when compared with traditional 
problem-solving methods, but also give a deeper understanding of human cognitive 
abilities. Among the various existing neural network architectures and learning 
algorithms, Kohonen's self-organising map (SOM) model (Kohonen 1982) is one of 
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~ost popular neural network models. It is an unsupervised learning algorithm with 
sImple structures and computational forms, and is inspired by the biological retina­
cortex mapping. Thus it can provide topologically preserved mapping from input to 
output spaces. Kohonen (1990) has provided a comprehensive review of this form of 
network. Although the model's computational form and structure are very simple, 
numerous researchers have already examined the algorithm and many of its 
problems; and research in this area goes deeper and deeper, there are still many 
aspects to be exploited. Even a most general theory of this algorithm is far from 
complete and lacking in vigorous mathematical explanation, as Kohonen (1984, 1991) 
and other researchers have remarked (Lo and Bavarian 1991; Erwin et al. 1992a, b; 
Bauer and Pawelzik 1992; etc.). The aim of this chapter is to provide a strict 
mathematical analysis of the learning process of the algorithm and so to determine 
important guidelines for how to correctly and properly implement the network. 

As the reasons for the convergence and self-ordering phenomena are very subtle, 
the convergence and ordering of the SOM have been proved by Kohonen (1984) and 
Cottrell and Fort (1986) only in the simplest case, i.e. one-dimensional array of 
neurons in response to a one-dimensional input space with a one-step 
neighbourhood function. Erwin et al. (1991, 1992a, b) have extended the proof of this 
Kohonen chain's ordering and convergence from the one-step neighbourhood 
function to any convex neighbourhood functions centred at the winning neuron. 
They have also shown that non-convex neighbourhood functions may cause the 
existence of metastable states. Lo and Bavarian (1991) have analysed the effects of 
stepped and Gaussian type neighbourhood functions on the ordering of the SOM. 
They have given a comparison of both through simulations on two-dimensional 
arrays of neurons. However for higher dimensional cases or for mappings from a 
high dimensional input onto a low dimensional output, the convergence and the 
ordering remain very difficult to examine and explain. By considering the SOM's 
Markovian properties, Ritter and Schulten (1988) have derived a Fokker-Planck 
equation to describe the transitional properties of distribution function of the feature 
space in the vicinity of equilibrium. Luttrell (1989a, b) has related hierarchical vector 
quantisation principles to the SOM algorithm and has shown that the latter with a 
neighbourhood is a stochastic gradient descent method which minimises the mean 
squared distortion including the effect of code noise. For mapping from a high 
dimensional space to low dimensional data, Allinson (1990) has given some examples 
of mapping patterns. Recently, Bauer and Pawelzik (1992) have proposed the use of 
topographic products to measure the neighbourhood preservation or violation in the 
map. Further analysis of one-dimensional SOM is still being undertaken (e.g. Thiran 
and Hasler 1994). 

Although developed from a different background, the SOM and stochastic 
approximation algorithms (e.g. Robbins-Monro 1951, cited in Sakrison 1966) bear 
some similarities in their computational form. The SOM looks like a multivariate 
stochastic approximation with the extra consideration of topographical ordering. 
Therefore, the basic convergence conditions for the adaptation gain (or learning rate) 
are the same (Kohonen 1984, 1994). These conditions have been relaxed by Ritter and 
Schulten (1988). 

In this chapter, first a brief review on the neurobiological background of the SOM 
is presented. The development from von der Mals~urg's ~odel .to Kohonen's model 
is described from this background. Then, Kohonen s algonthm IS clearly stated and 
rewritten in a non-recursive form for our subsequent analysis, and this shows that 
each feature consists of two parts - the contribution from the initial states and the 
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contribution from the input data. In Section 2.3, analysis of the diminishing effect of 
initial states, as the training progresses, on the value of the feature space, is shown. 
The limited topological effect of initial states is also examined. 

In Section 2.4, we analyse the learning dynamics of the SOM algorithm by using 
probability theories to consider each neuron's weight or feature as a stochastic 
process, which is composed of random variables weighted by time-varying scalars. 
The contribution from the input space to each feature is proved, through an extended 
form of the Central Limit Theorem, to tend to a multiple Gaussian process and to 
converge in the mean-square (m.s.) sense to the probabilistic centre of each input 
subset. The dynamic properties of the neighbourhood function in the SOM algorithm 
are very important and are the key to topologically ordered mapping, but explicit 
and strict mathematical analYSis of the effects of this function on the convergence and 
ordering of the process has long proved to be extremely difficult because of its 
implicit relationship with the winning neurons. This problem, however, has been 
overcome in our analysis. Our proof of convergence also formally reveals the 
algorithm's potential optimality for vector quantisation (VQ) as it will eventually 
match the two necessary conditions of an optimal VQ, although local minima may 
exist. 

Section 2.5 provides an analysis of the relationship between convergence speeds 
and ordering of the algorithm with learning rates. Some useful guidelines, for 
selecting the model parameters in order to achieve a well converged and ordered 
map, are also presented, together with a discussion on possible ordering results and 
definitions of the ordering. Formal discussion on the definition, measurement, and 
realisation of ordering from optimisation theory aspects will be given in next chapter. 

2.2 Kohonen Self-Organising Map and Its Rewritten 
Form 

2.2.1 The neurobiological background: Form Malsburg's model to 
Kohonen's model 

Understanding the principles of information processing in the brain, and then 
formulating them in mathematical forms, are one of the most demanding challenges 
in neurobiological studies. Humans have long been fascinated by our complex, 
remarkable, and powerful brains, which none of today's computers can compare with 
in so many aspects. Tremendous efforts have been applied i.n this resear~h area ~nd 
numerous results have been obtained. Gradually, the mystenes of the bram are beIng 
uncovered. Stimuli from the outside world are received by various sensory or 
receptive fields (e.g. visual-, auditory-, motor-, ~r somato-sensory), coded or 
abstracted by the living neural networks, and prOjected through ~xons onto the 
cerebral cortex, often to distinct parts of cortex. In other words, the dIfferent areas of 
the cortex (cortical maps) correspond to different sensory inputs. Topographically 
ordered maps have been widely observed in the cortex. Th~ mai~ str~ctur~s (primary 
sensory areas) of the cortical maps are established before bIrth (CIted In Willshaw and 
von der Malsburg 1976; Kohonen 1984; etc.), in a predetermined topographically 
ordered fashion (maybe we can call this the global order of the cortex). Other more 
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detailed areas (associative areas), however, are developed through self-organisation 
gradually during life and in a topographically meaningful order (maybe this can be 
termed local ordering). Therefore studying such topographically ordered projections 
(both global and local), which had been ignored during the early period of neural 
information processing development (Kohonen 1986), is clearly important for 
forming dimensionality-reduction mapping and for the effective representation of 
sensory information and feature extraction. 

The self-organised learning behaviour of brains has been studied for a long time 
by many people. Many pioneering works, e.g. Hebb's learning law (1949), Marr's 
theory of the cerebellar cortex (1969), Willshaw et al.'s non-holographic associative 
memory (1969), Gaze's studies on nerve connections (1970), von der Malsburg and 
Willshaw's self-organising model of retina-cortex mapping (von der Malsburg 1973, 
Willshaw and von der Malsburg 1976), Amari's mathematical analysis of self­
organisation in the cortex (1980), Kohonen's self-organising map (1982), Cottrell and 
Fort's self-organising model of retinotopy (1986), still have a great influence on 
today's research. (Since we are concerned with self-organising maps rather than other 
models, many excellent pioneering works, such as McCulloch and Pitts (1943), 
Rosenblatt (1958), Widrow (1962), Amari (1967), Anderson (1968), Minsky and Papert 
(1969), Fukushima (1975), Grossberg (1976a, b), Sejnowski (1976), Hopfield (1984), 
Rumelhart and Mcclelland (1986), will not be discussed here). von der Malsburg 
(1973) and Willshaw (1976) first developed, in mathematical form, self-organising 
topograghical mappings, mainly from two-dimensional presynaptic sheets to two­
dimensional postsynaptic sheets, based on retinatopic mapping: the ordered 
projection of visual retina to visual cortex (see Fig. 2.1). Their basic idea was: 

.. .... the geometrical proximity of presynaptic cells is coded in the form of correlations in 
their electrical activity. These correlations can be used in the postsynatic sheet to 
recognise axons of neighbouring presynaptic cells and to connect them to neighbouring 
postsynaptic cells, hence producing a continuous mapping ..... . 

Figure 2.1: von der Malsburg's self-organising map model. . 
Local clusters in a presynaptic sheet are connected to local clusters En a post­
synaptic sheet. There are lateral interconnectio~s within the postsynaptic 
sheet (solid lines are used to indicate such connectwns). 
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· ~he mod:l uses short-range excitatory connections between cells so that activity 
~n nelghbOll~lng cells becomes mutually reinforced, and uses long-range inhibitory 
Int~r~~nnectio~s to prevent. activity from spreading too far. The postsynaptic 
activIties {y/t),j=l, 2, ... NyL at time t, are expressed by 

(2.1) 

where c is the membrane constant, wij(t) is the synaptic strength between cell i and 
cell j in pre- and post-synaptic sheets respectively, {xi*(t), i=l, 2, ... N

x
L the state of the 

presynaptic cells, equals to 1 if cell i is active or 0 otherwise, and ekj and bkj is short­
range excitation and long-range inhibition constants respectively. y.*(t) is an active 
cell in postsynaptic sheet at time t. The postsynaptic cells fire if their JaCtivity is above 
a threshold, say 8, 

{

Yk *(t)-8 if Yk *(t»8, 
Yk * (t) = 

o otherwise. 
(2.2) 

The modifiable synaptics between pre- and post-synaptic sheets are then 
facilitated in proportion to the product of activities in the appropriate pre- and post­
synaptic cells (according to a verbal form of Hebbian learning): 

aw.· (t) 
lj =ax.(t)y. *(t) at I J 

(2.3) 

where a is a small constant representing the organising speed. 

To prevent the synaptic strengths becoming unstable, the total strength 
associated with each postsynaptic cell is limited by renormalisation to a constant 
value S after each iteration: 

(2.4) 

Kohonen (1982) abstracted the above self-organising learning principles and 
functions and proposed a much simplified learning mechanism which cleverly 
incorporates the Hebb's learning rule and neural lateral interconnection rules and can 
emulate the self-organising learning effect. As Ritter, Martinetz and Schulten 
commented in their book (1992): 

.... .. Kohonen IS model of self-organising maps represented an important abstraction of 
earlier model of von der Malsburg and Willshaw; the model combines biological 
plausibility with proven applicability in a broad range of difficult data processing and 
optimization problems ..... . 

In Kohonen's modet the postsynaptic activities are similar to Eqn. (2.1). To find 
the solutions of this equation and ensure they are non-negative properties, a sigmoid­
type nonlinear function is applied to each postsynaptic activity: 

Yj (n + 1) = (j(w~ (t)x(t) + L hkjYk (t)) 
k 
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where hkj is simila~ to ekJ. and ~kj' the input is described as a vector as the map can be 
extended to any dlmenslOnallnput. A typical mapping is shown in Fig. 2.2. 

X = 

Figure 2.2: Kohonen's self-organising map model. 
The input is connected to every cell in the postsynaptic sheet (the map J. The 
learning makes the map localised, i.e. different local fields will respond to 
different ranges of inputs. The lateral excitation and inhibition connections 
are emulated by a mathematical modification, i.e. local sharing, to the 
learning mechanism (so there are no actual connections between cells, or in a 
sense we can say the connections are virtual. Hence grey lines are used to 
indicate these virtual connections J. 

A spatially-bounded cluster or bubble will then be formed among the 
postsynaptic activities and will stabilise at a maximum (without loss of generality 
which is assumed to be unity) when within the bubble, or a minimum (i.e. zero) 
otherwise, 

. (t + 1) = {I if neuron / is inside the bubble , 
YJ ° otherWIse 

(2.6) 

The bubble is centred on a postsynaptic cell whose synaptic connection with the 
presynaptic cells is mostly matched with the input or presynaptic state, i.e. the first 
term in the function in Eqn. (2.5) is the highest. The range or size, denoted ll(t), of the 
bubble depends on the ratio of the lateral excitation and inhibition. 

In modifying the Hebbian learning rule, i.e. Eqn. (2.3), instead of using the form 
of Eqn. (2.4), a forgetting term -~Yjwij is added to Eqn. (2.3). Let a=~, and apply the 
function (2.6), the synaptic learning rule can then be formulated as 

dWi (t) _ _ _ {a (Xi(t) - wij (t», if j E 1l (t), 
~t =aYj(t)xi(t)-~y/t)wij(t) -a[ xi(t) wij(t) ]Yj(t) - 0, ifj~ll (t). 

(2.7) 

At each time the best matching postsynaptic cell is chosen according to the first 
term of the function in Eqn. (2.5), which is the inner product, or correlation, of the 
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presynaptic input and synaptic weight vectors. When normalisation is applied to the 
postsynaptic vectors, as it usually is, this matching criterion is similar to the 
Euclidean distance measure between the weight and input vectors. Therefore the 
model provides a very simple computational structure. 

The lateral interconnection between neighbouring neurons and the "Mexican-hat" 
excitatory or inhibitory rules are simulated (mathematically) by a simple local 
neighbourhood excitation form centred on the winner. Thus the neuron's lateral 
interconnections (both excitatory and inhibitory) have been replaced by 
neighbourhood function adjustment. The neighbourhood function's width can 
simulate the control of the exciting and inhibiting scalars. The constrained (with a 
decaying or forgetting term) Hebbian learning rule has been simplified and becomes 
a competitive learning model. The detailed form of Kohonen network will be given in 
the next subsection. 

Most of Kohonen's work has been in associative memories (Kohonen 1972, 1973, 
1974, 1980, 1982, 1984, 1986, 1988, etc.). In his studies, he has found that the spatially 
ordered representation of sensory information in the brain is highly related to the 
memory mechanism, and that the inter-representation and information storage can be 
implemented simultaneously by an adaptive, massively parallel, and self-organising 
network (Kohonen 1986). This simulated cortex map, on one hand can perform a self­
organised search for important features among the inputs, and on the other hand can 
arrange these features in a topographically meaningful order. This is why the map is 
sometimes termed the self-organising feature map, or SOFM. In this thesis, however, it 
will be refereed to the self-organising map (SOM), which comes from Kohonen's 
original definition and purpose (i.e. associative memory). 

2.2.2 The Kohonen SOM algorithm 

The SOM algorithm uses a set of neurons to form a topology conserving (partially or 
globally) discrete mapping of the input space. Let XE RN represent the input space, 
where N is the dimension of the input space. Let Y represent the neural network or 
map, which is arranged in a M-dimensional space (usually M=l, 2, or 3), so Y is a e1x 
C

2
X",C

M 
array, where {ej , j=l, 2, ... M} represents the number of neurons along each 

dimensional side of the neuron space, and e=e1xe2x ... eM is the total number of 
neurons. Every neuron or cell, CE Y, is connected, in parallel, to all dimensional 
components of the input sample, XE X, 

The connection strengths, or weights, are 

T 
wc(n)=[wcl(n), wc2(n), ",wcN(n)] 

where n is the discrete time and n~O. 

(2.8) 

VCEY (2.9) 

The initial weights are normally set to small random values (Lippma~ 1987). 
The only restriction to the initial states has been. stated that t~ey should. be different 
(Kohonen 1990, Haykin 1994). Duri~g the evolution of the weIght .updating, at every 
training step, an input sample, x(n), IS randomly selected from the Input space X, and 
presented to the network. Every neuron compares its weights with the input, and a 
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winning neuron, v(n), which is said to be the "best match" with the input (i.e. closest 
to the current input in the Euclidean distance sense), can be found through 

v ( n ) = arg min {II x ( n ) - W c ( n ) II}' V CE Y 
CEY 

(2.10) 

Then the weights are updated according to the following rule: 

W C (n + 1) = W C (n) + a(n)h(c, v,n)[x(n) - w c(n )], V CE Y (2.11a) 

or, since normally only scalar valued {a(n)} and {h(c,v,n)} terms are employed, each 
dimensional component of a updating weight vector receives the same degree of 
modifying scalar: a(n)h(c,v,n). The above expression can be written in another form, 
namely, 

wci(n + 1) = wci(n) + a(n)h(c, v,n)[xi(n) - wci(n)], i=l, 2, ... N; VCE Y (2.11b) 

where h(c, v,n) is termed the neighbourhood function. There are many types of 
neighbourhood function. Originally step functions were used, that is, 

h(c, v,n) = {~, if c E ~v (n) 
if c E ~v(n) 

(2.12) 

where ~/n) is the neighbourhood set around the winner, v(n), at time n. ~Jn) "should 
be very wide in the beginning (of the training) and shrink monotonically with time" until the 
winner is the only member of the neighbourhood set; "a good global ordering" may then 
be formed (Kohonen 1990). (Note, h(c, v,n) is a function of time n, cell c, and winner v). 

The coefficients {a(n), n~O}, termed adaptation gain, or learning rate, are scalar­

valued, decrease monotonically, and satisfy (Kohonen 1984) 

(i) O<a(n)<I; (ii) lim La(n)~oo; and (iii) lim La
2
(n)<oo (2.13) 

n~oo n~oo 

They are similar to those used in stochastic approximation (Sakrison 1966). The third 
condition in (2.13) has been relaxed by Ritter and Schulten (1988) to a less restrictive 

one, namely, lim a(n)~O. 
n~oo 

If the inner product similarity measure is adopted as the matching law, i.e. 

v(n) = argmax{ w~ (n)x(n)} 
CEY 

then the corresponding weight updating will be read as (Kohonen 1990) 

Ween) + a(n)x(n) 

Ilwe(n) + a(n)x(n)11 
w e (n+l)= 

13 

(2.14) 

(2.15) 



2.2.3 The rewritten SOM algorithm 

Eqn. (2.11b) can be rewritten as a non-iterative expression, 

n n n 

wcJn + 1) = wcJO) I1[l- a(k)h(c, v,k)]+ Lxi(k'p.(k)h(c, v,k) I1[l- a(l)h(c, v,l)], 
k=O k=O l=k+l,k<n 

i=1,2, ... N; 'v'CEY (2.16) 

The first term in the above equation is the contribution from the initial state to 
the final feature (value) of the map, while the second term represents the contribution 
of the input data. Though one might suppose that {h(c,v,n)} is influenced indirectly by 
the weights at any time, including the initial weights, and inputs, so the first term 
might be influenced by the inputs as well, and the second term might be also affected 
by the initial states. However, as we will show in the next subsection this is not so at 
the limit. We maintain the expression of the neighbourhood function, h(c,v,n), as a 
function of neuron, winner, and time for the generality. 

In most applications, only scalar-valued {a(n)} and {h(c, v,n)} terms are used, this 
means, as shown in Eqn. (2.11b) or (2.16), that all dimensional components of a 
weight are (or should be) unrelated. Thus the ith component, wei' of each neuron's 
weight, is only influenced by the ith dimensional components, xi' of the inputs, XE X, 
even though the winner is decided by all the dimensional components of all weights 
and the current input. 

2.3 The Effect of Initial States 

2.3.1 The mathematical effect of initial states 

To examine the first term of (2.16), we write 

n n 

bci(n) == I1[l- a(k)h(c, v, k)] = I1[l- a(k)] (2.17) 
k=O k=O,CE~vCk) 

Only if the neuron, c, is in the neighbourhood set, ~ /n), at time n, will its weights be 
modified, and the corresponding terms appear in (2.17). Let DcCm)=={the number of time 

intervals, or steps, for which c is not in ~/n) beginning at time m, m=O, 1, ... n; n2::0} 

represent the intervals or periods between updates of neuron c's weights: For .each 
neuron {D (m)} must be a finite number set. Then let Dcmax=max{Dc(m)}, which Will be 
a finite' nu~ber, otherwise c will not fire again. We assume that there are no "dead" 

neurons. Hence 

(2.18) 
kl/l=O,stepDc(m) 

Taking natural logarithms of both sides, gives 
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n 

L In [1- a (km ) ] ~ 
n 1 n 

L[ -a(km )]= D L Dcmaxa(km ) 

k",=O,stepDc(m) cmax k -0 stepD (m) 111- , C 
kill =O,stepDc (m) 

(2.19) 

The first inequality holds because 0 < a(n) < 1, the last inequality holds because {a(k)} 

n 
decreases monotonically. From the second condition of (2.13), i.e. La(k) ) 00, 

k=O 
we obtain 

1 n 
bci(n)~exp{- La(k)} n~oo )0 

Dcmax k=O 

(2.20) 

Thus the first term of (2.16) will tend to zero whatever the initial states are set to 
provided they are finite. So the effect of initial states on the values of the final states 
will tend to zero. The monotonically decreasing property of {a(n), n~O} and the first 
two conditions of (2.13) are necessary and sufficient conditions for this effect. These 
results show why the initial states of the SOM can be randomly selected. The only 
restriction that initial weights should be different is due to the requirement that a 
winner has to be chosen from them when the first input is provided. Many papers 
restrict the initial weights to random and small values, however no formal reason is 
given. The reason may be that they use the exponential series for {a(n)}. Then the 
term (2.19) will not go to minus infinity and (2.20) will not go to zero, so the initial 
states will have some impact on the final states, unless they are very small. However, 
choosing such exponential series as learning coefficients will have serious effects on 
the correct mapping to the centroids of the data subsets (as we will show in Sections 
2.4 and 2.5). There are some incorrect ideas about weight initialisation for SOMs (e.g. 
Fu 1994; Wasserman 1989). 

The above results apply for step, "top hat", or squared, neighbourhood functions. 
They can be extended to general convex neighbourhood functions. For such a 
function, since inf{h(c, v,n)}~h(c, v,n)~sup{h(c, v,n)}, hence 

n n 
bci(n) = II(l-a(k)h(c,v,k))~ II(l-inf{h(c,v,n)}a(k) (2.21) 

k=O k=O,CE~v(k) 

Taking logarithms of both sides gives a similar result to (2.19) except for a factor of 
inf{h(c, v,n)}, which will not affect the further result, (2.20). 

Convex type, such as Gaussian, functions are often used as neighbourhood 
functions because they have better performance for the ordering than that of step 
functions. Although from the above we have seen that there is a small factor, i.e. 
inf{h(c,v,n)}, in Eqn. (2.21), the average {DcCm)} in (2.19) is also very small because this 
type of neighbourhood function lasts spatially longer. Thus the convergence 
performance will not be affected. Instead, since they can make the ordering phase of 
the algorithm shorter, the convergence performance may actually be improved by 
using proper Gaussian type neighbourhood functions. 
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2.3.2 The topographical effect of initial states 

The above results show that the mathematical values of the final weights or features of 
the SOM will not be affected by the initial states provided the adaptation gains satisfy 
the convergence conditions. However, in some circumstances, the initial states may 
affect the order, or both the order and the value, of the final states due to 
inappropriate implementation of the neighbourhood function and/ or the adaptation 
gain. All possible situations can be described by three cases. In the first one, a global 
topological order has been formed (if it exists), but it may appear in different 
arrangements (or appearances). When the mapping is between identical dimensional 
spaces, the globally topographical order can be well defined and it is feasible to make a 
mathematical measure. However when the projection is from a high to a low dimensional 
space, the definition of global ordering is possible but it may be not achievable. The definition 
is not easy visualisable (Kohonen 1991; Bauer and Pawelzik 1992). We will address this issue 
briefly in Section 2.5.3, and in detail in the next chapter. These different appearances can 
be called different phases or directions. For example, a five-neuron chain when trained 
to quantise a uniformly distributed interval [0, 1] may result in two different globally 
ordered maps in two directions, see Fig. 2.3(a) and (b) respectively. Actually they are 
the same. Order should be interpreted as the inter-relationship or inter-arrangement 
of neurons. 

o 
I • • • • 
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(a) 

o 
I • • • • 

nl n2 n3 n5 
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1 . , 
n5 

1 . , 
n4 

o 
I • • • 

n5 n4 n3 

(b) 

o 
I •••• 

(d) 

• 
n2 

1 

• 
nl 

1 ., 

Figure 2.3: Possible mapping results of a 5-neuron SOM chain to a uniformly 
distributed area [0, 1]. (a) and (b) are globally ordered maps and are the same 
though in different direction appearances; (c) is locally ordered map; (d) is a 

disordered and non-optimal map. 

In the second case, neurons are mapped to the correct positions; however, some 
local topological order, instead of the global topological.orde~, has been aChie:ed, s~e 
Fig. 2.3(c). The shrinking speed of the neighbourhood ~IZ~ mIght be set to? high, this 
. probably due to unavailable measurements or morutonng of the ordenng process 
IS I . 
and happens in some cases especia!ly in high to low dimen~i?na mappIng cases. 
However if the adaptation gains satisfy the converge~c~ .conditIons .(2.1~), or the far 

I restrictive ones of Ritter and Schulten (1988), the Irutial states still WIll not affect 
ess h ill b the values of the final states from the whole map point of view. T e neurons w e 
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mapped to the positions as in the ordered map, and these positions will make the 
distortion of representation a minimum (at least a local minimum). Thus it is still a 
form of optimal mapping in the sense of minimum representing errors. However, 
since it is not a globally ordered map, its noise tolerance to the system error will not 
be as high as that of the globally ordered map. 

In the third case, e.g. Fig. 2.3(d), the mapping can be meaningless. Whatever the 
order of the map, the positions (values) of the neurons have not been mapped to the 
correct positions so the mapping is meaningless, i.e. not optimal in any sense. The 
adaptation gains might have decreased too fast, or both the adaptation gains and the 
size of the neighbourhood function shrunk too fast. For example, there are many 
attempts to use exponential functions, like e-n series, as adaptation gains. However, 
they do not satisfy the second condition of (2.13). Thus theoretically they will not 
guarantee convergence though they may give a good approximation in some cases. 
In this situation, the initial states do affect both values and orders of the final results 
of the map because of inappropriate implementation of the SOM algorithm. If the 
adaptation gains decrease too fast, even though the size of the neighbourhood is 
reduced slowly, there will not be sufficient weight changing power to move neurons 
to the correct positions and so change their ordering unless the order is provided 
before the training commence or is formed at a very early stage of the training. But 
even if the ordering is correct (or optimal), the map is still not optimal, since the 
positions of the neurons are incorrect, or not optimal. 

2.4 The Distribution and Convergence of the SOM 
Feature Space 

As the effect of initial states will tend to zero, the final feature map will depend 
primarily on the second term of (2.16), i.e. the contribution from the input space. 
Since the input vectors are drawn randomly, or independently, from the input set X, 
then from Eqn. (2.16) the second contribution can be treated as a time-varying 
weighted sum of independent random variables (r.v.s), {x(n), n>O}. Each neuron 
receives inputs from a set, termed Xc(n), which is a time-varying subset of the input 
set X. At the beginning of training, subsets are maximally overlapped with each 
other. As the training progresses and the neighbourhood size shrinks to just one 
neuron, the winner, input subsets {Xc(n), CE Y, nzO} will eventually be mutually 

separated with 

cEY 

As time tends to infinity, {X/n)} will tend to {Xcl, which are termed the final input 

subsets. 

Suppose the probability density function of the i.nput set. X is ~(x), ~he probab.ility 
of an input sample x(n) falling into a subset, X/n), IS changIng WIth time and gIven 

by 

P(Xc,n) = f p(x)dx, VCEY (2.23) 

xEXc(n) 
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and within each input subset, XcCn), the varying probability density function is 

pc(x,n)= p(x) 
P(Xc,n) 

VCE Y (2.24) 

As time tends to infinity, {Xc(n), P(Xc' n), and PcCx, n), CE Y} will tend to {Xc' P(X), and 
pcCx), CE Y} respectively. So pcCx)=p(x)/P(Xc)' 

Next we will use statistical methods to prove that in the SOM algorithm, each 
feature or weight component, wc/n), in Eqn. (2.16), represents a stochastic process 
whose probability distribution density will tend to a Gaussian-type function, and 
furthermore its variance will tend to zero and its mean will tend to the mean of the 
corresponding input subset Xc' 

2.4.1 An extended Central Limit Theorem 

The Central Limit Theorem is concerned with the statistical properties of a sum of 
independent r.v.s. The differences in the present case are that such a sum (see the 
second term of (2.16)) is a sum of r.v.s. weighted by time-varying scalars. Each 
variance of a weighted random variable (r.v.) will tend to zero, rather than to a finite 
number, because these time-varying scalars tend to zero. In the following, we will 
show that the variance of the sum of these weighted r.v.s will also tend to zero 
(otherwise the algorithm will not converge). We cannot apply directly any existing 
version of the Central Limit Theorem (e.g. Markov's, Liapounov's, Lindeberg's, see 
Papoulis 1965, Chow and Teicher 1978) to this analysis. It is necessary to extend the 
theorem to this particular application. We introduce an extended form of the 
theorem. The proof is given at the end of this chapter, in an Appendix. 

Theorem 2.1: If {Xn, n;;:::O} are independent r.v.s with finite means of {mn, n;;:::O}, finite 
variances of to}, n;;:::O}, and finite higher moments, i.e. for any 0 >0, 

(2.25) 

Xn 

where p(Xn) is the density function of Xn., lain), k=O,l, ... n, n;;:::O} is a set of time-varying real 
numbers, which satisfy 

n 

(i) 0 < ak(n) < 1; (ii) Lak(n) 
k=O 

n 

n 
n~co )1; (iii) Laf(n) n~co )0 (2.26) 

k=O 

The weighted sum {Lak(n)Xn, n;;:::O} will tend to a Gaussian distributed process with mean 
k=O 

n 

(varying with time) of {men) = Lak(n)mk ,n;;:::O} and varzance (varying with time) of 
k=O 

{cr2 (n) = iaf(n)cr~,n;;:::O}, and with m(n)~ E{mn}, cr
2
(n) ~ 0 when n ~ 00. Furthermore if 

k=O 
Xn ~ X', then such a weighted sum will converge in the m.s. sense to m, the mean of x'. 
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2.4.2 The asymptotical distribution of the SOM features 

Returning to the second term of (2.16), we can regard it as a time-varying weighted 
sum of independent r.v.s. and here the time-varying weight set {ain), k=O, l, ... n; n~O} 

is given by 

n 

ak (n) == [ IT (1- a(l)h(c, v,l))]a(k)h(c, v,k) (2.27) 
I=k+l,k<n 

Next we shall prove that this set will satisfy the three conditions of the above 
theorem, i.e. (2.26). The first condition, O<ain)<l, holds because of (2.12) and (2.13); 
and the second condition holds because 

n 11 11 

Lak (n) = L[ II (1- a(l)h(c, v,l))]a(k)h(c, v,k)=[l-(l-a(n)h(c, v,n))] 
k=O k=O I=k+l,k<n 

+[l-a(n)h(c, v,n)][l-(l-a(n-l)h(c, v,n-l))] 

+ ..... . 

+[1-a(n)h(c, v,n)][1-a(n-l)h(c, v,n-l)] ... [l-a(l)h(c, v, 1)] [1-(l-a(O)h(c, v,O))] 

n 

= 1- II[l- a(k)h(c, v,k)] (2.28) 
k=O 

From Section 2.3.1, we know that the second term of above will tend to zero. 

For the last condition, considering 

n n n 
Iaf (n) == I[ IT (1- a(l)h(c, v,I))2 ]a2 

(k)h
2 

(c, v,k) (2.29) 
k=O k=O I=k+l,k<n 

00 

Since Iu2 (k) converges, so for any arbitrary small value E, there exists a value of K, 

k=O 

00 

for which Ia2 (k) < E, and because O<[l-a(l)h(c,v,I)]<l, then 
1( 

n 00 00 222 ~2 
lim Iaf (n) = I[ IT (1- a(l)h(c, v,l)) ]a (k)h (c. v,l) < L.,;a (k) < E 

1l~00 k=1( k=1( I=k+l k=1( 

(2.30) 

For a finite K, since laCk) diverge, taCk) will also diverge, and from Section 2.3.1, 
k=O k=1( 

1( 

we can see that IT(1-a(l)h(c,v,I)) will also tend to zero, and since Ia2
(k)<8, (a 

1=1(+1 k=O 

constant), therefore, 
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K K 00 

lim Laf(n)= L[ IIO-a(l)h(c,v,I))2]a2(k)h2(c v k) 
n~oo k=O k=O l=k+l ' , 

00 K 00 

<[ IIO-a(l)h(c,v,I))2]La
2
(k)<8 rrO-a(l)h(c,v,I))~O (2.31) 

I=K+l k=O I=K+l 

We conclude from (2.30) and (2.31) that the last condition also holds. The above 
results, together with the nearest neighbour matching law of the algorithm result in 
the lemma given next. ' 

2.4.3 The convergence of the SOM: A Lemma 

Lemma 2.1: The feature space of the SOM algorithm is approximate Gaussian distributed 
stochastic processes, and will converge in the m.s. sense to the means, or centroids, of the final 
input subsets, i.e. 

( n~oo 1 J we n)---4) me = xp(x)dx, 
P(Xe) X 

c 

(2.32) 

Where {me} is termed the final feature space, and is the set of cluster centres of the final input 
subsets {Xc}. Each final subset Xc has hyperplane boundaries which are defined by: 

\:;Ic, C'EY, but c'::j:.c (2.33) 

The lemma means that the algorithm will eventually converge to positions that 
will meet the two well-known necessary conditions for minimising the mean squared 
distortion in representing input space by the map, or quantisation error. The SOM is 
naturally a multiple stochastic process, although non-stationary, but asymptotically 
convergent and normally distributed. 

We use a simple example to conclude this subsection. A 10-neuron SOM chain is 
used in mapping to a uniform distributed interval [0, 1]. The parameters are set as: 
initial weights w(0)=0.lxrandom(1)+0.5; learning gains a(n)=0.9xB/(B+n); and the step 
neighbourhood shrinking speed ~(n)=5xG/(G+n)}, where Band G are time constants 
and are both set to 100 in this example. The evolution random processes of the 
features, i.e. the weights, are shown in Fig. 2.4(a). The corresponding mean and 
variance processes, which are calculated from 100 independent simulations, are 
shown in Fig. 2.4(a) (smooth lines) and (b) respectively. Care should be taken when 
performing this averaging, since the results may be in different directions, as defined 
in Fig. 2.3 (a) and (b). When we specify neuron "0" to be the neuron whose final 
position is closest to the zero end of the data segment, then the averaged process for 
neuron "0" should be the sum over the process of the neuron whose final weight is 
closest to the zero end in each of these 100 trials. So when each trial begins, each of its 
ten processes has to be stored, and the average over this trial will not take place until 
the final configuration occurs. 
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Figure 2.4: The evolution processes or trajectories of weights of a 10-neuron 
chain in a uniformly distributed input. (a) Typical learning processes and 
averages over 100 such processes, (b) typical variance processes. 

600 

As we can see from the results, the learning process represents a multiple 
stochastic process, whose mean process is smooth and asymptotical, and will 
gradually converge to the optimal positions. The averaged variance process is also 
smooth and asymptotical, and will gradually go to zero. This means that, the mean 
process of the SOM (instead of itself) is a gradient descent process, or in other words, the 
SOM is a stochastic gradient descent method. 
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2.5 Convergence Conditions and Speeds 

2.5.1 Ritter and Schulten's extended convergence conditions 

The original convergence conditions of (2.13) agree with the ones of stochastic 
approximation methods. Ritter and Schulten (1988) have considered the SOM feature 
space as a Markov process and derived a Fokker-Plank equation to describe the time 
evolution of these processes in the final stage of the convergence phase. They 
proposed a less restrictive necessary and sufficient condition set for convergence, i.e. 
(of course {a(n)} still needs to decrease monotonically), 

(i) 0 < a(n) < 1; (ii) lim L a(n) ~ 00; (iii) lim a(n) ~ 0 (2.34) 
n~= n~= 

i.e. the third condition of (2.13) has been replaced. 

By using Theorem 2.1, we also can show that these relaxed conditions will 
guarantee the convergence. The proof is similar to the previous case. We simply need 
to examine if the variance term, i.e. (2.29), will go to zero since the other two 
conditions for the theorem can be easily seen to be fulfilled. 

Since a(n)~O, so for any arbitrary small value £, there exists a finite T, for a(n)<£, 

n>T. Then: 

n = = 
lim Laf(n)= La2(k)h2(c,v,k) IT(1-a(l)h(c,v,I))2 
n~= k=T k=T l=k+l 

= = = 
< £ L (1- (1- a(k)h(c, v,k)) IT (1- a(l)h(c, v,l)) = £(1- IT (1- a(k)h(c, v,k))) ~ £. 

k=T l=k+l k=T 
(2.35) 

= = = 
For a finite T, since La(k)~oo, so La(k)~oo, thus IT(1-a(l)h(c,v,I)))~O. Since 

k=O k=T I=T+l 

T 

I,a2 (k) <i)-, a constant, thus 
k=O 

T T = 
lim Laf(n)= La2(k)h2(c,v,k) IT(1-a(l)h(c,v,I))2 ~O (2.36) 
n~= k=O k=O l=k+l 

Therefore the variance will tend to zero. 

2.5.2 The effect of learning rates on convergence speeds 

However, different selections of the adaptation gain, or learning rate, {a(n)}, under 
the above convergence conditions, will result in quite different convergence sp~eds. 
To make a quantitative measure of this matter. We first see how the -:anance 
processes of weights are changing in accordance with different types of learrung rate. 
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To visualise th~s, we compar~ some typical different variance curves. For exam Ie, we 
choose four dIfferent decaYIng order series, all of which satisfy the condilons of 
(2.34). They are ul(n)=n- l , u 2(n)=n- 1I2, a 3(n)=n-1/4, and a 4(n)=n- II10. To look at the effect 
of each s~t on the convergence speed, we examine the corresponding variance index 
of evolutIon process, which is similar to term (2.29) and is defined as 

N N 
cr'f (N) = La? (k) II (1- a i (l))2, i=l, 2, 3, 4. (2.37) 

k=l l=k+l 
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Figure 2.5: Convergence speeds. 
Series i = cr'?(N) (i.e. ai(n)'s variance index), i=l, 2, 3, 4. 

The results are shown in Fig. 2.5. We can see that as the rate at which a tends to 
zero decreases, the variation reducing rate, the most important measure of the 
convergence speed, will also be greatly reduced. In these examples, after 1,000 
iterations, the variance index has been reduced to 0.001 for series a v while to 0.0162, 
0.0977, and 0.3344, for ~, U:3, and a 4 respectively. After 1,000,000 iterations, the 
variance indexes are 0.000001, 0.0005, 0.0161, and 0.1436, for a v ~, U:3, and a 4 

respectively. It seems that a l is better than the others. However, this depends on 
situations. In some cases (e.g. very many neurons, and/or high dimension data), a 
slow learning rate may be helpful for (i) ordering of the map and (ii) improving 
convergence, i.e. converging to the correct (optimal) positions earlier. A correct choice 
of learning rate, as well as neighbourhood function parameters, will depend on 
individual applications and data dimensions. In the rest of thesis, when we refer to 
the convergence conditions we shall mean those in (2.13), unless we specify the ones 
in (2.34). 
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~ven within the same decaying rate, there is great flexibility for changing the 
learrung rate. For example, normally we use an n- l order learning rate, but in the 
form of (although the series tn-I} meets the convergence conditions itself, it is not 
used directly, as we will discuss next) 

a(n )=a(O)B/(B+n) (2.38) 

where a(O) is initial rate and can be chosen between 0.5 to 1, and B is the rate 
decaying circle constant. By choosing different B, we can form a large range of 
learning rates. 

Theoretically when the {a(n)} satisfies the convergence conditions, the neurons 
will eventually (that means as time tends to infinity!) converge to some pre­
determined positions, with which the neural map provides the minimum mean 
squared distortion of input space. These positions depend on the number of neurons, 
input distribution, and dimensions of both input and neuron spaces. This means 
whatever we choose a(O) and B, they should not affect the convergence results. It 
will, however, affect the convergence speed indirectly by its weak ability to move 
neurons to the required positions. For example, if we use a small a(O) and/ or small B 
to start with the training (or if the ordering phase takes long time and the 
convergence phase starts with a very small a(T1), where T, is the iterations that the 
ordering phase has taken), it will need very many iterations to converge to the 
required positions. However, permitting time go to infinity is unrealistic; and after a 
large number of iterations, the changes in weights are very small, so it will take a 
long time to move those neurons whose positions are far from optimal to the correct 
places. Converging in a limited time is one of the most demanding tasks. The 
following example gives a quantitative analysis of the effect of different B in Eqn. 
(2.38). 

A 10-neuron chain is mapped to a one-dimensional uniformly distributed area of 
[0, 1]. If we choose a(0)=0.8 and B=10, and let us assume that the first 1,000 iterations 
are for ordering, i.e. TI =l,OOO, then observe how much the residuals in Eqns. (2.17)­
(2.20) are after 10,000 iterations. The average De(m) in this case will be 10 because of 
the uniform distribution. be(10,000) can be calculated from (2.18)-(2.20), i.e. 

1 10,000 a(O)B 
be (10, 000) ~ exp( -- L ) = exp( -1. 835) = 0.16 

De k=l,OOO B + k 
(2.39) 

which is still a large value compared with the required zero. So the initial weights, or 
the weight values after the ordering phase (normally far from the optimal positions), 
will have an influence on the map even after 10,000 iterations. In addition, the value 
in Eqn. (2.28) will be 1-0.16=0.84, instead of the required 1, this means the positions of 
neurons are still quite different from the mean values of their subsets. Therefore the 
map will be a certain distance from the optimal one, unless you let the process run 
much longer, say after 100,000 iterations (be~0.025 and Eqn. (2.28)=0.975), or after 
1,000,000 iterations (be~0.004 and Eqn. (2.28)=0.996), or even longer. 

When B is increased, however, it may be very different. For example if B=100, 
then be~1.972X10-8=0 and Eqn. (2.28)=1, after 10,000 iterations (still keeping a(0)=0.8). 
A result which is close to the optimal map can be expected. If the order can be formed 
earlier, the situation may also be different. For example, if T,=200, be~0.045 after 
10,000 iterations for a(0)=0.8 and B=10. So two basic rules of thumb for choosing 

24 



learning parameters can be deduced: one is to make the ordering phase as short as 
possible, .or simply initialis~ the ~eurons in a ordered fashion if you can (it is possible 
at least In many same dImensIOnal mapping situations); the other is choose a 
sufficient value for B (the more neurons in the map, the larger B should be, since 
De(m) is larger). However B should not be too large, otherwise the variance term, i.e. 
Eqn. (2.29) would be still very large even after a large number of iterations. 

Dynamically selecting {a(n)} is also possible, but a great deal of care should be 
taken to guarantee convergence to the correct position. The learning rates must be in 
accordance with the convergence conditions. If the ordering is not important, or is 
already formed after a certain number of iterations, the decreasing rate of {a(n)} can 
be reset, or even be increased as long as it will comply with the convergence 
conditions. The learning rate, however, may have a stochastic relaxation effect on the 
convergence. A slower learning rate might give a higher possibility to escape local 
minima and so achieve a global optimum, when the situation is complicated, e.g. 
non-uniform input distribution, and/or high dimensional input data, and/or, very 
large number of neurons. 

It may also be appropriate to use separate learning rates for different neurons. 
Their parameters can be set to the same, but each neuron has its own learning rate 
and timing, which means that each neuron's iteration number for calculating learning 
parameter (like n in Eqn. (2.38)), is decided by its firing frequency rather than the 
natural global clock. So the previously inactive neurons will not be affected by the 
disadvantage that a single learning rate provides, i.e. a(n) may be very small after 
many times of updating by some very active neurons. The "less fired" neurons then 
have a greater capacity for updating, and the more frequently fired neurons reduce 
their abilities to change. This interesting phenomena will be further analysed in the 
next chapter. 

2.5.3 The effect of learning rates on topological ordering 

UNIVERSITY 
OF YORK 
LIBRARY 

Ordering is mainly influenced by the parameters of the neighbourhood function, 
specifically its shrinking rate. The slower the shrinking rate, the more likely an 
ordered map will be formed. The learning rate may also have a small influence on the 
topological ordering process. Generally large learning rates provide great capacity for 
adjusting disordered regions of the map when the neighbouring size has not been 
reduced to simply the winner. Once the ordering has been formed, it will keep the 
order provided convex type neighbourhood functions are used (Lo and Bavarian 
1991) (This might be true only for the same dimension mapping cases, see the next 
chapter). To choose the learning rate we may also ne~d to consi~er the ~ocal optimal 
situations. The more local optima, a slower relaxatIon speed IS reqUIred. A slow 
learning rate does help in the ordering process when neighbourhood functio~s a~e 
not set correctly as when a criterion for selecting neighbourhood functIon IS 
unavailable. The following examples show some limited effects of learning rate on the 
ordering. A formal analysis on this issue will be give in next chapter. 

In the one-dimensional case: 10 neurons are mapped onto a uniformly 
distributed area [0, 1]. We use a Gaussian type neighbourhood function in the form of 

(i-v)(i-v) 

h(i,v,n)=e 2cr
2

(n) 
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and 

a(n) = h(O)G / (G + n) (2.41) 

v:here ~(O) is the initial neighbourhood radius, G is the neighbouring radius decaying 
cIrcle (tIme) constant. 

When we set h(0)=3, G=10, and B (in Eqn. (2.38)) =50, then in many cases this will 
result in a disordered chain. However when we change B to 100 or higher, there will 
be an increased probability of forming a ordered chain. It is certain that if one could 
increase G to its correct range, a ordered map would be easily formed even when 
B=50 or lower. This example shows that, at least in some cases, when the correct 
range of neighbouring functions is not clear, slower learning rates may give higher 
possibilities for achieving ordered maps. 

In the two-dimensional example, a 9-neuron chain is mapped onto a uniformly 
distributed square of [(0, 0), (0, 1), (1, 1), (1, 0)]. We choose 9 neurons because it is 
easy to show what are the optimal positions that will make the total distortion a 
minimum. In most uniformly distributed cases these positions are unique (as shown 
in Fig. 2.6(d) for this example). However in other cases they may not be unique, i.e. 
there may exist local minima. The three typical possible Peano curves results of this 
example are shown in Fig. 2.6(a), (b), and (c), corresponding to a very disordered 
map, a locally ordered map, and a kind of optimal ordered map respectively. Step­
type neighbourhood functions were used in this example. In the first two cases, as we 
can assume, the neighbourhood function parameters were improperly set. The 
parameters were chosen as 2 and 20 for the initial neighbour radius, h(O), and the 
neighbourhood shrinking rate, G, respectively. The neighbourhood was apparently 
shrinking too fast to just the winner, so that the map could not update disordered 
parts of the map. These parameters are normally chosen by experience, and are 
dependent on input and output dimensions, input probability densities, the number 
of neurons, etc. The Fig. 2.6(b) differs from (a) in its learning rate constant, B, which 
was 100 and 20 for case (b) and (a) respectively. With the parameters set as in case (b) 
the possibility for a better ordered map is higher than that in case (a). This shows that 
the learning rate in a limited range can improve the ordering. We state that Fig. 2.6(c) 
is a kind of globally ordered map because it does not take account of one edge, or 
terminal, neuron, which has violated the order definition, (see section 3.6). An ordered 
neuron is one for which, at least, its nearest neighbouring neurons in neuron space should 
also be the nearest neighbouring neurons in the input metric space, i.e. neighbourhood 
preserving for this neuron. A globally ordered map is a map in which every neuron is a 
ordered neuron. Ordering should not simply be considered as "unwrapping" of the 
neural positions in the map, but should be referenced to firm definitions of 
optimisation. Under the above definition an ordered map is more optimal than a 
disordered map in the sense of error tolerance, i.e. when the coding or mapping 
processes, and/ or the transmission of the code vectors in VQ, and/ or the decoding or 
recalling of the mapped or stored states in associative memory, involves noise, the 
ordered map will give the smaller distortion, or less errors, than a disordered map. In 
this example, we used open maps (chains), i.e. edge neurons were not wrapped or 
connected to other edge neurons, so the edge neurons only have one sided 
neighbourhood. It is very difficult (maybe impossible) to draw a totally globally 
ordered optimal map which can satisfy the above definitions without excluding one 
edge-neuron. Since this is a dimension reducing process, such distortion is to be 

expected. 
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Figure 2.6: Various mapping results of a I-D SOM chain to a 2-D input space 
(after 10,000 iterations). (a) very disordered; (b) locally ordered; (c) a form of 
globally ordering; and (d) the optimal positions for the neurons. 

If we arrange these 9 neurons in two dimensions, i.e. in the same dimensional 
space as the input space (e.g. 3x3 grid), then a globally optimal map is obvious and 
can be easily obtained. However this will increase (exactly double) the total code 
vectors to be transmitted, or total numbers to be stored or memorised. In this 
example, one-dimensional mapping just needs to transmit and store 9 numbers 
(codebook size) and to transmit only one number for each code, while two­
dimensional mapping will need to transmit and store 18 numbers for codebook and 
to transmit a 2-D vector, i.e. two numbers (x, y values), for each code. Of course you 
may number these two dimensional neurons on a scalar order, e.g. in a scanning 
order, that will reduce the code length for each code, but this will reduce the error 
tolerance ability since the 2-D neighbouring structure will be violated. So all these 
conditions and parameters - the number of neurons, the map dimension and shape, 
etc. - have to be made by considering the purpose, performance requirement and 
noise situations of each individual application. A trade-off may have to be made 
between feature representation, fault tolerance optimality, and transmission or 
storage efficiency. 
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However, whatever the map order is, the optimal positions (there may be several 
possible sets of such positions if there are local minima) of neurons can be 
predete~mine~; and. the neurons will converge to these positions provided the 
adaptatIon gaIns satIsfy the convergence conditions. In this example, the neuron 
positions in Fig. 2.6(a), (b), and (c), are close to, and are going to converge to (if time 
goes to infinite), these optimal positions in Fig. 2.6(d). Thus the Fig. 2.6(a) and (b) can 
still be optimal for noise-free transmission and/or decoding situations. We can 
deduce this from the mathematical analysis of the SOM presented earlier, especially 
Section 2.3 and 2.4, i.e. a locally or globally optimal map with local order or a global 
order will be formed eventually when the learning parameters satisfy the 
convergence conditions. The predetermined positions depend on the number of 
neurons (codebook size) and the distribution of input space. When the distribution is 
not uniform or smooth; and/or the number of neurons is small, there may not be a 
unique set of predetermined positions. In the next chapter we will look at these 
problems, and provide a kind of statistical treatment for the SOM in forming different 
kinds of optimal maps for different applications, such as VQs and pattern classifiers. 

2.6 Conclusions 

In this chapter, we have introduced the self-organising map algorithm from its 
historical background and have analysed the statistical properties of the feature space 
of the SOM algorithm. From the proof of its Gaussian distribution approximation we 
have also formally proved the convergence of the SOM algorithm under the original 
and relaxed conditions for adaptation gains. The resulting Lemma 2.1 means that the 
SOM algorithm will eventually minimise the mean squared distortion function. 
Together with its matching law, it will eventually satisfy the two necessary conditions 
for optimal VQ. The results are dimension irrelevant, i.e. convergence exists for any 
dimensional maps, provided that the learning rate complies with the convergence 
conditions. If the shrinking speed of neighbourhood set is not too fast, then a globally 
topographical ordered, or in general locally ordered, map may be formed. A clear 
understanding of the learning dynamics of the SOM algorithm gives some insight 
into an appropriate implementation and improvement of the algorithm for practical 
applications. Some useful guidelines for choosing the algorithm's parameters have 
been discussed with supporting mathematical analysis and examples. The dynamic 
convergence properties of the original algorithm described in this chapter will be 
employed in the next chapter to further analyse the optimality of the algorithm and 
to apply some useful constraints on, or extensions to, the algorithm in order to 
achieve optimal performance for VQ or pattern classification purposes. 

28 



2.7 Appendix: Proof of Theorem 2.1 

First consider the zero-mean case, i.e. {mn=O, n~O}. 

The following two formula can easily be obtained: 

jX 1 .x X2 ~ IXe+
o 

e = + ] --+ 
2 20 ' 

l_X=e-x _
WX2 

2 ' 

'v'XER, I ~1~1 (2.a1) 

'v'~O, O<W<l (2.a2) 

In (2.a1) let X=ak(n)XkO) and taking the expectation of both sides, the characteristic 
function of ain)Xk is obtained: 

2( ) 2 2+0( ) (2+0) 
<l>k(O),n) = E{ejWak(n)Xk} = 1- ak n crk 0)2 + ~k ak n ollk 100e+o, 

2 2 
I ~k I ~1 (2.a3) 

Let X = ak
2(n)crk

20)212 in (2.a2), then: 

O<~k<l (2.a4) 

Then we can write: 

(2.aS) 

Since ak(n) n~oo) 0, thus ak2(n)crk
20)2 <1 holds for any finite area of 0), and since: 

(2.a6) 

The last inequality holds because (cri)2+0 ~ (1l~2+0)2. So the following inequality 

holds: 

(2.a7) 

Since {X
n

, n~O} are independent r.v.s, then: 
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The error of its Gaussian distribution approximation is: 

(2.a9) 

n n 
because if La;(n) n~oo )0, and 0>0, then Laf+O(n) 

k=O 
n~oo ) o. and where 

k=O 

~~~O) =max{~~2+0),n~0}. 

From (2.a9) and using a lemma of Uspensky(1937) (i.e. if the characteristic function 
of r.v. 5 tends to the characteristic function of a Gaussian distributed variable, then the 

n 
distribution of 5 tends to that Gaussian function), we can conclude that {Lak(n)Xk,n ~ O} 

k=O 
tends to a Gaussian distributed process with zero mean and variance: 

n n 

a 2 (n) = Laf(n)ai < a~ax Laf(n) n~oo) 0 (2.a10) 
k=O k=O 

In the non-zero mean case {mn :;t O,n ~ A}, if every mn is a finite number, then the 
biased r.v.s {X'n' n~O} can be divided into {Xn+mn, n~O}, where {Xn} are zero mean r.v.s 
and according to a Corollary of Slutsky's theorem (cited in Chow and Teicher 1978) 

(i.e. if {p,A,Pn,An,n~O} are finite constants with Pn n~oo '\ n~oo '\ ) P, /\'n --~) /\', and 

n 

Xn n~oo) X, then pnXn + An ~ pX + A.), the weighted sum L ak (n )X" IS also 
k=O 

n 

Gaussian distributed with finite means men) = Lak(n)mk «mmaJ and finite variances 
k=O 

a2(n), which will tend to zero, when n tends infinity. Furthermore, if X~ 
(with the mean of m), then: 

n 
men) = Lak(n)mk _n_~_oo--7) m 

k=O 

n 
That is Lak(n)X~ will converge in the m.s. sense to the mean of the X'. 

k=O 
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Chapter 3 

OPTIMAL TREATMENTS OF SELF­

ORGANISING MAPS 

This chapter continues the analysis of the SOM algorithm, in particular its 
convergence speed and stability and its suitability for various information 
processing tasks. The local optima and non-optimal problems are discussed. 
Solutions and treatments for different purposes are proposed. First, Kalman 
optimal filter theory is applied to reduce the asymptotical Gaussian distributed 
noise existing in the learning process, hence to smooth and speed up the learning. 
Then from the objective criteria of various information processing needs, the 
potential optimality of the SOM for vector quantisation is further analysed and 
compared. Although having great advantages over other quantisers, the SOM still 
suffers from local minima problems. A constrained SOM, based on the equal­
distortion principle, is proposed to yield a global optimum, or near optimum, 
quantisation. Little extra computation costs are introduced but improved 
performance, both in lower distortion and in stable and fast convergence, is 
achieved. An explanation of noise-tolerant quantisation by using SOM related 
algorithms, and some meaningful and quantitatively measurable definitions of 
ordering, are also presented. The SOM algorithm is also widely employed as a 
classifier because of its simplicity and parallelism, though it is not optimal for this 
application. An extended SOM, in which both distance measures and 
neighbourhood functions have been replaced by the neuron's posterior 
probabilities, is proposed to achieve Bayesian classification performance when the 
pattern distribution is modelled as a mixture distribution and the learning is 
unsupervised. 

3.1 Introduction 

Following the statistical analysis of the self-organising map (SOM) algorithm in the 
last chapter, we have shown that the algorithm is potentially optimal for vector 
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qua~tis~tion (VQ) and related data compression. However, there are two major 
applIcatIOn areas of the SOM - one is signal compression, while the other is pattern 
classificat~on. Associative memories belong to the former, as they are knowledge 
representing methods as well. These two application tasks usually have different 
objectives. in informat~on processing, although sometimes they are very closely 
rel~ted. DIrectly applyIng SOMs to pattern classification will not normally result in 
optimal performance. Even when employed as a quantiser, the algorithm cannot 
guarantee a global optimum. How well does the algorithm perform in these two 
applications, or how to make the algorithm work as well as or better than 
conventional methods? These will be the main objectives of this chapter. 

First, in Section 3.2, a Kalman filter is incorporated into the SOM algorithm as a 
post-filter to reduce the learning noise and so smooth and accelerate the learning 
process. 

In Section 3.3, different optimal criteria corresponding to different information 
processing requirements, such as normal VQs, noise-tolerant VQs and pattern 
classification, are analysed. Section 3.4 first compares the use of the SOM algorithm 
for VQ with other VQ algorithms. Examples of image compression tasks are given. 
The theoretical analysis and practical examples reveal that the SOM algorithm can 
produce comparable performance to other compression techniques, such as the LBG 
(Linde et al. 1980), and competitive learning (CL) algorithms. It can naturally 
overcome some problems that other algorithms often encounter, such as under­
utilisation and strong initial reference impact. However the SOM algorithm, as well 
as other algorithms, possess the local minima problem. A constrained SOM, an 
equidistortion constrained SOM (ECSOM), is then proposed based on an asymptotical 
property of optimal VQs, i.e. the equal-distortion principle. The principle is indirectly 
applied to the SOM by constraining the width of the neighbourhood, and this makes 
the principle more applicable to practical problems. The proposed ECSOM algorithm 
is superior to the SOM in both performance (MSE distortion) and convergence speed. 

The SOM algorithm has also been widely used in data clustering for pattern 
classification. When used as a classifier, however, the SOM can only make reference 
vectors, or clustering centres, optimal with respect to the partitions, but can not 
produce optimal partitions or decision boundaries in the Bayesian criterion sense. 
Therefore a conventional unsupervised SOM will not normally produce Bayesian 
classification unless the input data are uniformly distributed or pattern clusters are 
well separated. In most cases, the pattern distributions are overlapping, and their 
joint distribution can be described by a mixture distribution. To produce an 
unsupervised Bayesian classifier, an extended SOM learning scheme is proposed in 
Section 3.5. In this algorithm both distance measures and the neighbourhood 
functions are replaced by on-line estimates of the individual neuron's posterior 
probabilities, so that each neuron will converge to a component of the mixture 
distribution. Some application examples are presented. 

In Section 3.6, definitions for the ordering of the maps to any dimension have 
been formalised into a mathematical form. The ordering of the map is defined in two 
different ways: one is in geometrical sense and the othe~ is in fault-to~er.a~t sense. 
Each of these has a very clear optimisation mearung. The dehrutions are 
quantitatively measurable, can easily be ~sed to judge the quality of the ordering of 
the map and can improve understandIng about what are the advantages of an 

ordered map. 
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3.2 Convergence Accelerating by a Kalman Filter 

3.2.1 Kalman filters 

We have shown that for the SOM algorithm, the feature space is a multiple Gaussian 
stochastic process. These processes are time-varying, or non-stationary, but they are 
also asymptotic stationary and will eventually converge to finite states. This means 
that these processes begin with large fluctuations, or variances, but gradually the 
training will cause them to decrease. In this section, we combine an optimal filter, the 
Kalman filter, with the SOM to moderate the effects of large variances during the 
training process. There have been some previous examples of the application of 
classic optimal filter theory to neural networks (e.g., Cho and Don 1991; Ruck et al. 
1992). A Kalman filter is a linear estimation method which can produce an optimal 
estimation of model states when applied to Gaussian distributed processes. It is also a 
recursive algorithm which is based on the prediction of system states from the latest 
states and linear measurements such that the expected sum of the squared errors 
between actual and estimated states are minimised. 

The algorithm can be described as following (cited in Hostetter 1987): 

System model: 

Predictor: 

Corrector: 

S(k + 1) = F(k)S(k) + U(k) 

Z(k + 1) = H(k + I)S(k + 1) + V(k + 1) 

(3.1) 

(3.2) 

S(k+1I k)=F(k)S(kl k) (3.3) 

Z(k+llk)=H(k+l)S(k+llk) (3.4) 

S(k+l1 k+l)=S(k+lI k)+K(k+l)[Z(k+l)-Z(k+lI k)] (3.5) 

Gain: 

K(k + 1) = P(k + 1 I k)HT (k + 1)[H(k + I)P(k + 1 I k)H
T 

(k + 1) + R(k + l)r
1 

(3.6) 

Covariance: 
P(k+1I k)=F(k)P(kl k)FT(k)+Q(k) 

P(k + 11 k + 1) = [I - K(k + I)H(k + 1)]P(k + 11 k) 

(3.7) 

(3.8) 

Where S(k) are the states to be estimated or filtered, F(k) is the state transition matrix, 
U(k) is the model noise vector, Z(k) is the observation vector, H(k) is the measurement 
matrix, V(k) is the measurement noise vector, and 

Q(k) = E{U(k)UT (k)} 

R(k) = E{V(k)VT (k)} 

are the covariance matrices of model noise and measurement noise respectively. 
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3.2.2 Smooth and speed up the convergence of the SOM 

When applying a Kalman filter to a multilayer perceptron (i.e. a non-linear system), 
the model of the system should be linearised. Cho and Don (1991) and Ruck et al. 
(1992) used an extended Kalman filter as an alternate training algorithm for multilayer 
perceptrons. Ruck et al. (1992) also compared it with the back propagation algorithm 
and concluded that back propagation is a degenerate form of the extended Kalman filter 
under the assumptions of: (1) [HPHT+R]-l=aI, and (2) P=pI. In general, these 
conditions are not satisfied. However in the SOM, where the system model is linear, 
the Kalman algorithm must be applied in different way. We use a Kalman algorithm 
as a post-filter to the SOM. The updated weights of the SOM are considered as the 
measurements of the Kalman filter. The system models are asymptotic, thus we can 
use some asymptotic functions to describe them, such as exponential functions. The 
model states are the filtered, or true, weights of the network. Since every weight of 
each neuron is, or has to be, independent as we have shown in Chapter 2, the F, H, K, 
P matrices are all diagonal. So there will be no need for matrix computation. 
Furthermore, it is possible to consider every weight to have the same speed of 
convergence, so we can use the simplest computational form of the algorithm. A 
diagram is shown in Fig. 3.1. 

neuron c weights 
o-......... -~ }iIIII-... -Ie> filtered 

weights 

:c 

SOM Nets 

model 

measurement 

measurement noise model noise 

Figure 3.1: A post Kalman filter for the SOM algorithm. 

For a one-dimensional (I-D) input to output mapping example, the state 

transition F, can be modelled as: 

g 

F(k) = as(k) = ek(k+l) I (3.11) 
ak 

Where g is the underlying converging constan~, which depends ~n the number of 
neurons. Its value is not very critical and can eaSIly be chosen expenmentally. 

H is identical to I since we treat the output of the SOM as the measurement of the 
filter. The noise in every neuron's state is considere~ to be the same scalar-value, and 

d . wI·th time and so is the measurement nOIse. Thus: ecreaslng , 
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Figure 3.2: Comparison of the original SOM and Kalman Filter modified SOM 
(lO-neuron chain and uniform distribution input case). (a) Typical SOM 
learning and Kalman filtered SOM learning processes; (b) The corresponding 
distortion level processes for both algorithms. 
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U(k)=e-k/ u I 

V(k)=e-k/ v I 
(3.12) 

(3.13) 

where u, v are decay constants of the state noise and measurement noise respectively. 

Fig. 3.2 shows an example of applying such a Kalman filter to the SOM 
algorithm in the map~ing of a 10-neuron chain to a uniformly distributed interval [0, 
1]. !he SOM and ~he fIltered SOM evolution processes are shown in Fig. 3.2 (a), while 
theIr corr~sp~nding performances, i.e. MSE distortions (see Section 3.3), are 
compared In FIg. 3.2 (b). The parameters in the SOM algorithm were set similar to the 
example in Section 2.4.3. The Kalman filter parameters are all scalar values in the 1-D 
case .and in this exampl~ were set: g=lO, u=v=lOO, R=0.2xlO-3, Q=0.5xlO-6. Normally 
t~e fIlte~ has to be ap?h~d after a certain number of iterations (say 10-20) to avoid 
high nOIse at the begInnIng of the learning. As we can see the filter processes are 
much smoother and more stable than the original ones. They demonstrate low 
variance especially in the initial phase. Their performances show that the filtered 
processes can reduce the distortion earlier in the learning. Although both algorithms 
will reach the same distortion minimum (in this case it is - 30.79 dB) after very many 
iterations, more stable and faster converging algorithm can still be a great advantage. 

This example shows that optimal filter theories can be applied to reduce the 
learning dynamic noise, which in the SOM algorithm is Gaussian distributed. 

3.3 The Optimality Criteria for SOMs 

3.3.1 Minimum mean squared error criterion 

Since the SOM uses a finite, usually only a few, points or vectors, which though 
defined in the input space lie in the output space, to represent a possibly infinite or 
large number of points of the input space, distortion is unavoidable. Information 
contained in the input space has to be extracted or compressed by mapping to a 
limited and smaller output space. This is not a one-to-one mapping from a global 
point of view (although some one-to-one correspondences do exist in living brains). 
Most information or knowledge we learn from the outside world is captured, sorted, 
and assigned to some specific regions of our memory, each of which represent an 
abstraction of a certain knowledge domain. This learning and knowledge-building 
process continues throughout our entire life. Knowledge can be updated and new 
knowledge can be incorporated. For example, when we are learning some general 
domain knowledge (e.g. doors, windows, lights, cars), such learning starts from the 
first time we encounter such objects, and is gradually enhanced and generalised as 
more and more objects that have the same function are perceived either through 
explicit teaching or through self-learning. Thus when we consider one of these 
knowledge domains in general, what we are recalling from our memory is an 
ambiguous generalised image (not a specific one) but one with a clear meaning and 
functional description. This generalised knowledge is constructed by extracting 
representative symbols and meanings from as.sociated. obje~ts. By doing thi~ w.e can 
recognise a previously encountered or learnt Item or IdentIfy a new one WIthin the 
same class. So we reduce the amount of information stored in our brains. Imagine if 
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we had to remember every example of door, window, car, etc., that we ever 
encountered, what size of brains would we need! There is no doubt, our brains can 
remember clea~ly a :rery large number of specific items and individual objects, like 
our names, fnends names, personal belongings, etc. However, extraction and 
generalisation for more general knowledge are so important in our cognitive 
process:s. Such a process has been employed for a long time in information 
processlI:g tec~ology such ~s . signal compression (e.g. signal coding) and in 
InformatIOn stonng (e.g. assocIatIve memories) in order to reduce the transmission 
burden / or storage space. According to Shannon's rate-distortion theory, better 
perfor~anc.e can always be achieved by coding vectors instead of scalars (Shannon 
19~9, cIted In Gray 1984). There have been considerable efforts in vector quantisation 
(LInd~ et al. 1980; Gray 1984; Makhoul et al. 1985; Nasrabadi and King 1988). A 
mappIng of data blocks in 2-D input space to individual reference vectors is show in 
Fig. 3.3. This forms the basis of VQ. 

Input space 

, 0 

o 

o 

Figure 3.3: Quantising input space. 

o 

o 

o 

o 0 

o 

o 

Output space 

The degree of distortion caused by such extraction and generalisation reflects the 
soundness of the learning process. The lower the distortion, the better the learning. 
Although for living neural networks a measure for such distortion may not exist or 
cannot be expressed in a mathematical form (e.g. how could we measure the general 
difference between doors and windows in a precise mathematical format), such 
measures of distortion, if available and quantitatively comparable, would be very 
useful to guiding our learning, and indicating how we have learnt about various 
perceptual classes. Natural brains have incredible abilities to extract the most 
representative and meaningful features from various objects. To exploit such abilities 
and apply them to artificial intelligence would be very beneficial. 

Since the SOM is an abstract form of mathematical modelling of the brain's 
information mapping mechanism, inputs to the map and its outputs are (or should 
be) all formally defined in mathematical forms, e.g. real values, multi-dimensional 
points, or vectors. If we could (!) express any object by such vectors or represent 
objects by extracting some distinguishing features, our next objective is to abstract 
these features and project them onto a representing space (like the cortex) in a strict 
mathematical sense. The quality of the approximation is measured by a metric 
distortion factor, normally the Euclidean distance. The difference and similarity 
between features are measured by such distances. The quality of a representative for 
a class is measured by the average distortion between the representing vector and the 

37 



class members over the entire class range, which is given by the mean-squared error 
(MSE), i.e. 

CEY (3.14) 
Xc 

where {x} is the input data, we is the c-th reference vector, Xc is the input sub-space or 
the data subset that reference C covers, Y is output or feature space, and p(x) is the 
probability density function (pdf) of the input data. The integration is over all 
dimensional directions of the input space. 

The measure, De' is the variance for each reference to represent its subset in the 
input space. The less the variance, the more accurate is the corresponding reference. 
(Measures using other distances, e.g. absolute Euclidean distance, Mahalanobis 
distance, are also possible). Individual distortions normally indicate the fitness of the 
individual references. Only in some cases, when the subsets are well separated (i.e. 
clearly clustered subsets) can their individual minimum distortions be accepted as an 
overall optimal criterion. In most cases, the subsets are close to each other, or even 
overlapped, and/or the variability of each subset is large, the individually 
minimising the distortions of each reference will not lead to a globally optimal 
mapping. The overall distortion has to be adopted as a fitness criterion. Therefore, the 
mapping, <P: X ~ Y, is said to be optimum (global optimum), if and only if the 
following overall distortion is minimised with respect to all variables, and over the 
entire input and output spaces: 

Dl = L f Ilw c - xl12 
p(x)dx (3.15) 

CEY Xc 

This is a sum of all individual variances, i.e. the total MSE distortion, over a 
usually finite and discrete output or feature space. The input space, however, can be 
any kind of continuous or discrete or both. 

Although for speech or image signal compression, such difference measures may not 
exactly emulate human auditory or visual perceptual measures, which may need more 
complex integration of various discriminations including psychological aspects, the above 
measures are the most widely employed criteria because of their simplicity and mathematical 
tractability. 

Minimising the total MSE distortion, however, is certainly not an easy task as it is 
a combinatorial optimisation problem. Generally, a direct solution does not exist. A 
great deal of effort has been applied to this problem; and many methods have been 
proposed - most notably; methods of gradient descent, least-mean-square, stochastic 
annealing, and neural network methods. 

As we have seen from the previous chapter, the goal of the SOM is to minimise 
the total distortion D

1
• The SOM algorithm will eventually reach a minimum (in most 

cases, a local minimum). We have already proved that the SOM will meet the two 
necessary conditions for minimising Dl' derived from signal coding and VQ theory. 
This also means that the SOM is inherently an information compressing algorithm 
and is a potential candidate for VQ and related Signal compression. In Section 3.4, a 
detailed mathematical analysis for optimal VQ will be given, and an optimal 
treatment to the original SOM is proposed in order to achieve a globally optimal 
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mapping. With regard to the ordering properties, the modified SOM can produce a 
noise-tolerant VQ together with a globally minimal distortion. 

The criterion for information compression and signal transformation are basically 
the same; that is the difference between the original signal and its reconstruction 
should be as small as possible. Transform coding theory (e.g. Karhunen-Loeve 
transform (KLT), discrete Fourier transform (DFT), discrete cosine transform (DCT)) 
is one realisation of such principles. However in realising such compression 
optimally, the signal's characteristics may need to be taken into account. For example, 
sound and speech signals are recorded and represented in the form of time-series 
signals. However due to their production and reception mechanisms, i.e. vibrations, 
they may be better represented in the frequency domain. So it is not surprising why 
Fourier transforms and more recently wavelets (an extended, improved, and 
multi scale version of the Fourier transform) are so useful and popular in speech and 
sound signal processing. It has been known for some time that there are some parts 
of the auditory cortex, which respond to various frequency bands (cited by Shepherd 
1988, Kohonen 1984). These auditory regions are called tonotopic map, in which 
different strips or fields represent different sound frequency receptive fields and are 
usually arranged in some ordered way. 

The Fourier transformation itself can be seen as a signal compression process. 
The relation can be seen from Fig. 3.4. 

x 

Fourier Transform 

Encoding 

Inverse 
Fourier Transform 

Decoding 

Figure 3.4: Fourier transfonn. 

Codes 

The Fourier transform maps the signal from the time domain to the frequency 
domain. The number of coefficients of Fourier transform can be infinite, but most 
coefficients are redundant as only a limited number of the most significant ones are 
used in practical applications. This process can seen as a near optimal encoding, and 
the remaining most significant coefficients can be used as the codes. He~~e the 
reconstructed signals (via the inverse Fourier transform) have t~e rmru~um 
distortion when using the same number of coefficier:ts. Howe~er If ~he sIgnal 
spectrum is widely spread (e.g. noise corrupted SIgnal, white nOIse), such 
compression may be a disadvantage, as the number of the domin~nt coeffici.ents 
could be very large. VQ compression techniques in time domaIn have gIven 
impressive results and have become more and more popular in speech. or sound 
coding and compression (Gersho and Cuperman 1983; Makhoul et al. 1985, Tsao and 

Gray 1985; Luttrell 1989a, b). 

39 



3.3.2 Minimum hierarchical mean squared error criterion 

If the encoded or stored references can be fully recalled, or if the signal transmission 
c~annel is noiseless and every code can be received without error, or if the input 
sIgnal or pattern (recalling pattern) is noiseless, then the above MSE criterion, i.e. D

1
, 

will be the optimal criterion. However, in some cases, these assumptions are not true. 
For example, signal channels are often noisy, and transmitted codes (or stored codes) 
will be disturbed over a certain range by noise. Although many transmission 
techniques use high noise tolerant modulation and transmission methods, e.g. FM, 
peM, Hamming code; and the source coding and the channel coding or error control 
coding can be designed separately to construct nearly optimal communication 
systems according to Shannon's coding theory, the principle of the noise-tolerant 
coding is still very important not only to signal compression but also to associative 
memory for fault-tolerant ability (e.g. when the input signals or recalling patterns 
contain noise). Some channel coding techniques pay the price for noise immunity by 
increasing the number of transmission bits, which reduces the compression ratio, for 
example, Hamming (7,4) coding uses 7 bits to transmit a 4-bit signal, so that a single­
bit channel error can be detected and corrected (Hamming 1950, cited in Gonzalez 
and Woods 1992). Noise-tolerant coding and compression also have some similarity 
to natural cognition processes and may provide some useful theories for many other 
artificial intelligence areas. For example even when you incorrectly recognise a word, 
or a object, the fact is that this word, or the object, is very similar in some sense to 
what you originally thought. When incorrect recall does happen, the optimal solution 
should limit the error to an as low as possible value. 

Luttrell (1989a, b) first related hierarchical noise tolerant coding theory to the 
SOM principles. When considering the channel noise, a two-stage (hierarchical) 
optimisation has to be done not only in minimising the representing distortion Dc but 
also in minimising the distortion caused by the channel noise. He revealed that the 
SOM can be interpreted as such a coding algorithm. The neighbourhood function can 
be interpreted as a channel noise distribution and should not go to zero as it does in 
the original SOM. Kohonen (1991) has also defined a similar distortion measure for 
the objection function, which the SOM seeks to minimise, but concluded that the 
original convergence conditions are not sufficient for the ordering, by an example 
which indicated the difference between the results of the original SOM and his 
modified version. He also suggested that this modified version might be not worth 
applying to practical applications. This indicates that the self-organising and ordering 
processes, with regard to the noise tolerance optimal criterion, are still far from being 
clearly understood. The theories of such systems need to b~ exploited a~ they ha:re. a 
close relationship to the ordering theory of the SOM. We wIll expand this analysIs ill 
Section 3.6. Here we give the objective function for the globally optimal minimisation 
of the compression distortion over a noisy channel (Luttrell 1989a, b, 1994a), i.e. 

(3.16) 
CEY Xc 

where n(c) is the channel noise density function, and index c. is in vector f~rm ~s the 
maps are usually arranged in an array rat~er than a sca~ar lIne .. Eqn. 3.!-6 IS slIghtly 
different from the one given by Luttrell In that the dIscrete Integration over the 
channel noise is used here as we note that reference books (or codebooks) are always 

discrete. 
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The importance of this optimal criterion is that it can clearly explain in a well­
defined mathematical form the meaning of a topologically ordered mapping, and 
why such a biological inspired mapping is so important and desirable in information 
compression and storage. 

SOMs can produce a map that will satisfy the D2 criterion, if the algorithm is 
properly guided and constrained during training AND the neighbourhood function 
is fixed (not shrinking) to the channel noise density. However the resulting reference 
(or feature) map will differ from the one obtained using D) criterion (e.g. the original 
SOM algorithm) in two aspects, one is the ordering fashion of the map, the other is 
the positions of the final references. What kind of mapping to apply and what kind of 
algorithm to use depend entirely on the application. 

3.3.3 Minimum classification error criterion 

The goal of pattern classification is to classify or group various pattern samples into 
different meaningful classes. This process is sometimes called data clustering. Each 
class or cluster usually has certain internal structures in the distribution of its 
members. Such structures can be pre-determined by some valid assumption or learnt 
from known samples; or have to be estimated from unknown class data by on-line 
learning and testing. In the former case, the learning is carried out in a supervised 
manner; while in later case, the learning is carried out in an unsupervised manner. 

An example is shown in Fig. 3.5. The requirement is to group data into some 
kind of meaningful classes, where some kind of underlying pattern structures can be 
seen. Each class then can be represented by its cluster centre. The boundaries between 
classes are defined in some way to perform optimal clustering, i.e. produce least 
possible errors. 
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Figure 3.5: Data clustering. 

The criterion for verifying the quality of classification can only be the minimum 
classification errors. Optimal clustering results in the minimum mis-classification. In 
Bayesian terms, this can be expressed as 
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K 

D3 = LP(CO i ) f XPi(X / coi)dx (3.17) 
i=l x~Qi 

where K is the total (correct) number of the pattern classes, 0i is the data set for the i­
th cl~ss, P(co) represents the probability of the i-th class, and p/x/co) is the density 
functIon for class i. 

Sometimes when the class probabilities and density function are not available (as 
in many discrete cases where only a finite training data are available) the above 
criterion for error measurement has to be simplified to 

K 

D3' = L L {l- o[m(x) - in (3.18) 
i XEQi 

where the membership function m(x) represents the true class member for x, and the 
delta function 0 equal to 1 when its variable is 0, and 0 otherwise. In this case, each 
class's density is its histogram's discrete distribution from its samples, and each 
sample is assumed to have equal probability (which might not be true in some 
practical problems). 

{Oi' P(co), Pi(x/COi), i=1,2, K} are the parameters to be estimated. In supervised 
learning, class probabilities and density functions are known, or can be learnt from 
known training samples. The only task is to assign the input test samples so that Eqn. 
(3.17) or (3.18) reaches the minimum. When some, or all, of the above parameters are 
unknown, the learning becomes unsupervised. Usually the class densities have to be 
assumed (with possible later adjustment) to be a particular function such as 
Gaussian. Other parameters can then be learnt on-line from samples. This is usually 
more difficult than in supervised cases. Sometimes even the class number K is 
unknown, so a validation process is needed to find out the best class number. 
Normally, an initial K has to be assumed and when the clustering converges, select a 
different K, and apply clustering algorithm again. Repeating doing this and 
comparing the errors of different K's, the one giving the minimum errors is the best 
answer. 

According to Bayesian theory, the minimum classification error is obtained by 
assigning or labelling each input x according to its maximum a posteriori (MAP) 
probability, i.e. 

P(i) p(x / i) 
lex) = argrnax {P(i / x) == } 

i p(x) 
(3.19) 

It has been proved that multilayer perceptron neural classifiers estimate these 
Bayesian a posteriori probabilities when the network has one output for each pattern 
class; and desired outputs are 1 of M (one output unity corresponding to the correct 
class, all other zero) (Richard and Lippmann 1991). The estimation accuracy depends 
on network complexity, the amount of training data, and the fitness of training data 
to likelihood distributions or class densities, {p(X/i)}, and prior class probabilities, 
{P(i)}. However, for self-organising networks, when used as classifiers, there is no 
formal analysis to show whether they will converge to Bayesian classifiers or what 
kind of performance they can achieve. Many experimental results have suggested 
that SOMs will not converge to Bayesian performance unless classes are well 
separated. In Section 3.5, we will explore this by comparing the asymptotical 
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prop~~ties obtain~d in the previous chapter with the properties of Bayesian 
classIfIers. An optimal treatment of the original SOM, which can lead to forming the 
Bayesian classification, is proposed. 

In much of the literature, clustering algorithms and VQ algorithms are often 
confused. Only when in very specific circumstances (e.g. uniform distribution, well 
separated classes), will one algorithm produce optimal performance for both VQ and 
classification. Because the objective functions for VQs and pattern classification are 
different, one algorithm which is optimal for VQ (or classifier) will not be optimal for 
the other. As the SOM and CL algorithms are potentially optimal for VQ, they are 
normally not optimal for pattern classification. However, they are often applied for 
such tasks. The SOM and CL algorithms can produce an optimal classification 
performance only if they are appropriately modified. In Section 3.5, an extended 
SOM is proposed to yield Bayesian classification performance. 

3.4 Towards the (Global) Optimal VQ 

3.4.1 Two necessary conditions for optimal VQs 

The VQs we will discuss in this section are noise-free but lossy VQs, or (lossy) source 
coding methods. Discussions on noise tolerant VQs will be given in Section 3.6. 

The two well-known necessary conditions for an optimal VQ that minimise DI 
are (i) the nearest neighbour condition, or Voronoi partition; and (ii) the centroid 
condition (Linde et al. 1980, Gersho 1979). They can be directly derived from the 
differential of the distortion D1. They can be stated as: 

1. Nearest neighbour condition: Given reference vectors {wel, the VQ is a 
minimum distortion mapping, i.e. it assigns each input vector according to the 
nearest neighbour rule: 

Q(X)=Wi or XEXi iffd(x,wi)::;;d(x,wc) V cEY (3.20) 

where the distance measure is normally Euclidean. 
This is also called the Voronoi partition, and it minimises the average 
distortion for given reference vectors. 

2. Centroid condition: Given a partition {Xc}, the reference vectors should be the 
centroids of the partitions, i.e. 

We = cent(Xc) = E[XcJ = f d(x, wc)p(x / Xc)dx (3.21) 

XEXc 

Each reference vector locally minimises the distortion in its corresponding 

partition. 

There is another necessary requirement for optimal VQs, i.e. the zero probability 
boundary condition (Gersho and Gray 1992), whi~h is identical t? E~n. (2.22). It 
requires that partitions are exclusive and cover all Input space, which IS clearly the 

case in many algorithms. 
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The above are the necessary conditions for an optimal VQ. The sufficient 
conditions can only be that it minimises the average distortion, e.g. DJt among all 
possible mappings for input samples. Since local minima, which also satisfy the two 
conditions, are often the results for practical applications, the requirement for a 
globally optimal VQ becomes increasing important. There are no direct solutions to 
this problem. An asymptotical property of optimal VQ was given by Gersho (1979) 
which shows that for an optimal VQ, each Voronoi partition has the same 
contribution to the total distortion, under the conditions that the input distribution is 
smooth and the number of reference vectors is very large. This property will be 
applied in Section 3.4.3 to the SOM algorithm as a constraint to guide the SOM to 
converge to the (global) optimum. 

3.4.2 A comparative study of various VQ algorithms 

There are many signal compression methods for both lossless and lossy compression, 
such as lossless bit-plane encoding (Gray code, Run length encoding, etc.), lossless 
predictive coding (DPCM, Huffman, etc.); lossy predictive coding (e.g. DPCM, 
ADPCM), transform coding (e.g. K-LT, DFT, DCT, JPEG DCT), block truncation 
coding, subband coding, and VQs (e.g. LBG, Residual VQ, Classified VQ, Finite-state 
VQ, Predictive VQ). For a comprehensive review of theoretical and technical aspects 
of this topic see Gersho and Gray (1992), and Rabbani and Jones (1991). In this section 
we will limit our attention to the learning methods in lossy VQ and related 
compression techniques. 

Before we discuss any technical details of the various methods, we shall first 
mention some commonly used quantitative measures for VQ performance. 

Compression Rate: 

General definition: 
Number of bits for original image 

R=------~--~--~----~--
Number of bts for compressed image 

(3.22) 

Commonly used in VQs: 
log2 K 

r= 
k 

(3.23) 

where K is the codebook size, i.e. the number of reference vectors; and k is the block 
size, i.e. the vector dimension, r means how many bits are needed for per pixel, i.e. 
bi t / pixel or bpp. 

The distortion measure is the distortion form D1, i.e. Eqn. (3.15). In the case of 
discrete input space, its second integration has to be changed to a summation form, 
and it is also termed the MSE: 

Dl'=MSE=~ L L(wc -x)2 (3.24) 
M CEYXEffic 

where M is the total number of data points or pixels, i.e. the size of the original image. 

Sometimes, this is expressed as the peak signal-to-noise ratio (PSNR) and .SNR, 
and is used as a measure of quality in image and other source coding, respectIvely. 

They are defined by 
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2 
PSNR=10Io 255 

g MSE' 

where Ps is the signal power. 

p 
and SNR = 10 log _s_ 

MSE 

(1) Linde-Buzo-Gray (LGB) Algorithm (Linde, et al. 1980) 

(3.25) 

This is the most widely used algorithm for generating codebooks. The LBG 
algorithm is a generalisation of the Lloyd-Max iteration algorithm (GLA) (Lloyd, 
1957). This algorithm is a direct implementation of the two necessary conditions for 
optimal VQs, and is very similar to the k-means algorithm developed by MacQueen 
(1967) for cluster analysis and pattern classification. The LBG algorithm is a batch 
version of the least squares method for minimising total MSE distortion. The 
algorithm involves the following steps: 

(0) Initialisation: Given the number of code vectors, K, and a distortion 
threshold £~O. The initial codebook {weCO)} is chosen randomly, or by using 
first K input vectors. The average distortion is set Dl (0)=00. 

(1) Given {weCO)}, find the minimum distortion partition cI>{XEX}={Xe(n)}, from 
(3.20), i.e. XEXi, if d(x, wi(n»<d(x, ween»~, VCEY, but c#. The partition goes 
over all input data. Compute the resulting average distortion D1(n). 

(2) If (D1(n)-D1(n-l))/D1(n) ::;£, then halt with codebook:{we(n)} and partition: 
{XJn)} describing the final quantisation. Otherwise continue. 

(3) With the partition: {XJn)}, find the new code vectors: {we(n+ I)} by (3.21), i.e. 
wJn+l)=cent(XJn)), VCEY. Then go to (1). 

In the above, we did not specify how the code vectors are arranged. Normally 
the code vectors are arranged in a numerical order, i.e. c=l, 2, ... K, and there is no 
relation between neighbouring references. In some cases, however, we would like the 
neighbouring references to be close to each other in the input space (i.e. an ordered 
codebook), so that it can demonstrate tolerance to signal and transmission noise. 

For the above algorithm, in the training and/ or encoding, each step is performed 
over all reference vectors and data samples. If the codebook size is not small, 
searching for the minimum distorted representative can be a time consuming task. 
There are methods for fast reference searching, e.g. using tree-structured codebooks. A 
very popular structure is the binary codebook tree. 

In practical codebook design (after training), another useful strategy is to use 
product codebooks. The reason is that when the bit rate is fixed, the codebook size 
grows exponentially with the block size. For example, for an 8-bit 512x512 image at 
1.0 bpp rate, and 4x4 block size, the codebook size will be 64K! Therefore if we can 
use separate codebooks, Nel , Ne2 for example, then the effective size of a product 
codebook will be Ne=Nel *Ne2 instead of Nel +Ne2. There are several types of product 
codebooks, namely, mean/residual VQ (M/RVQ), interpolative/residual VQ 
(I/RVQ), and gain/shape VQ (G/SVQ). 

Here, these techniques are not our major concern. We focus on the learning 
mechanisms that describe how to learn from inputs efficiently, effectively and 
optimally so that the code references converge and become a good representation of 
the input space. 
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(2) Competitive Learning (CL) VQ Algorithm 

~ompetitive learning methods have been very popular for unsupervised 
learrung (Grossberg 1976a, b, 1987; von der Malsburg 1973; Amari and Takeuchi 1978; 
Kohonen 1982; Bienenstock et al. 1982; Rumelhart and Zipser 1985), and for adaptive 
vector quantisations (Ahalt et al. 1990; Kosko 1991; Yair et al. 1992). 

The CL~ VQ i.s an adaptive. vers~on of the least squares method for minimising 
total MSE dIstortion. For each Iteration, only one input vector is presented and the 
closed code vector, i.e. the winner, adapts towards the input. 

(0) Initialisation: Given the number of code vectors, K, and a distortion 
threshold E~O. The initial codebook {weCO)} is chosen randomly, or from (the 
first) K input vectors. Set the average distortion Dl (0)=00. Set initial adaptive 
learning rate a(O), O<a(O)<l. 

(1) Randomly present an input vector from the input space, find the winning 
reference by 

v = argmin d(wc(n) - x(n» 
CEY 

(3.26) 

(2) Update the winning reference: 

wv(n + 1) = wv(n) + a(n)[x(n) - wv(n)] (3.27) 

then decrease the learning rate a(n) to a(n+ 1) monotonically, usually on the 
scalar inverse to the time n. 

(3) Theoretically it needs n~oo for the algorithm to converge to the (local or 
global) minima. In practice, (Dl(n)-Dl(n-l))lDl(n)~E can be used to indicate 
when to stop the algorithm. Otherwise go back to (1). 

(3) Self-Organising Map (SaM) VQ Algorithm: 

There has been considerable research in applying the SOM algorithm to image or 
speech VQs (e.g. Carrato 1994; Chen et al. 1994; Kim and Ra 1995). As has been 
described in detail in Chapter 2, the algorithm is similar to the CL algorithm in that it 
has the same steps of (0), (1), and (3) of the CL algorithm, but the difference is that in 
step (2), the updating not only applies to the winner, but also to its neighbouring 
references. The notation for the neuron index is also different for image VQs: c should 
become a vector c in the SOM algorithm as the codebook is often arranged in 2-D 
space. 

To see the differences between these three representing algorithms, let us first 
consider a simple example: using four code vectors to quantise the input data in a 2-
D space as shown in Figure 3.6, which is similar to the one discussed by Ahalt et al. 
(1990). 

There is no doubt that all three algorithms can find the best quantisation result, 
i.e. each reference at the centroid of each data subset, provided the initial references 
are carefully selected. However among these algorithms, the LBG and CL algorithms 
are very sensitive to the initial states. Normally their initial states cannot be randomly 
selected, otherwise some neurons will not have an opportunity to update. This is the 
so-called "under-utilisation" problem. In this example, if all initial references are 
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randomly set in. a small range. ar?un~ the origin (this kind of initialisation is very 
popula: ~n p~actice .when the dIstnbutIons of the training set are not known or when 
the tralrung IS earned out in real time), the LBG and the CL algorithm will often 
encour:ter such pr?blems. Some neurons will stay in their original positions forever. 
SometImes. there IS another problem, termed "over-utilisation" problem, i.e. some 
neurons wIll over-react and become responsive to too much of the data. This will 
result ~n one neur?n converging to the middle of two subsets. The SOM algorithm is 
better In o~ercoffilng these two problems. As we have already seen in Chapter 2, the 
SOM ~l~~nthm do~s not ~epend on the initial states (the order of the map may depend 
on the Inztzal states, if the nezghbourhood function is not implemented correctly) . 
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Figure 3.6: An input space to be quantised. 

Next, a more practical, complex, and popular example will be considered -
compression of the image "Lena". The original image is in 8-bit and 512x512 pixels 
shown in Fig. 3.7. The codebook size chosen is 256. In the LBG and CL algorithms, 
the codebooks are not ordered, so can be arranged in any numerical order, e.g. 1-D 
array; while in the SOM algorithm, we arrange the codebook in to a 2-D 16x16 array. 
The block size chosen is 4x4. So the bit rate of the quantisation is 0.5 bpp (from Eqn. 
(3.23». The training samples are from the entire image, thus there are totally 128x 

128=16,384 samples for 4x4 block size. 

For these three algorithms, the LBG and CL algorithms cannot use random 
values as their initial references, and have to use some of data samples, e.g. 256 raster 
scan samples starting from any point, e.g. (0, 0), or (100, 0), or (200, 0), of the image. 
While the SOM can use randomly selected values as its initial references. The final 
results of the SOM algorithm show very little dependence on the initial states. Typical 
results after 30 iterations for these three algorithms are shown in Figs. 3.8 and 3.9, in 
which all algorithms used (0, 200) and onwards pixels as their initial references (we 
found that they were the best for the LBG algorithm). Since it is meaningless to show 
the codebooks of the LBG and the CL algorithms, only their quantisation results (i.e. 
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Figure 3.7: (a) Original Lena image (8-bit, 512x512 pixels) ; (b) Its histograms. 
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(a) 

(b) 

Figure 3.8: (a) LBG-VQ; (b) CL-VQ, at 0.5 bpp, 30 iterations. 
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Figure 3.9: (a) SOM-VQ; (b) Its codebook, at 0.5 bpp, 30 iterations. 
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reconstruction images) are shown, which is obtained after 30 entire iterations (one 
entire iteration requires supplying the entire data set, i.e. 16,384 samples). For the 
LBG, the samples can be input in a natural raster scan order, while for the CL and 
SOM, the samples are normally input in a random order, but each sample must be 
used only once in an entire iteration. In Fig. 3.9 the results from the SOM algorithm 
and its codebook are shown. The codebook is in a 2-D array and in a full wrap 
fashion, i.e. left side and right side are connected, and top side and bottom side are 
connected. As we can see the local ordering of references exists in many places. 
Because it is a very high dimensional reduction case, global order may not exist. 
Further analysis of ordering will be given in Section 3.6. The best local ordered map 
should have as many local ordered areas as possible. 

These results are visually very similar. The slight differences between algorithms 
can only be seen in their performance curves. Here we use the widely adopted PSNR 
values instead of MSE distortions, which are shown in Fig. 3.10. Since the SOM needs 
to adjust both winners and their neighbouring neurons, the distortions are higher 
than those of the LBG and CL algorithms in the early stages. Updating over a 
neighbourhood can not only provide an ordered codebook but also escape some local 
minima in the MSE distortion. However it will slow down the convergence. Therefore 
the SOM will normally take a longer time to converge than the LBG and CL 
algorithm. The final PSNR results (after 30 iterations) are 31.72 dB, 31.92 dB, and 
31.90 dB for the LBG-, CL-, and SOM- VQs respectively. 
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Figure 3.10: PSNR performance comparison for the LBG-, CL- and SOM- VQs. 
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The three methods can produce very similar results. The CL- and SOM-VQs 
yield just a slight better result than the LBG-VQ. By letting neighbourhoods shrink 
slow~r, learr:ing. rates decrease slower, and iterations go on even longer, the SOM 
algOrIthm wIll gIve the best PSNR results, even though there is not much difference. 
The LBG algorithm is a gradient descent method for reducing the distortion, at each 
iteration the total distortion always goes down (PSNR goes up); while the CL and 
SOM are stochastic gradient descent methods, which do not necessarily reduce the 
total MSE distortion after each iteration because of their local minimising properties, 
but will reduce statistically the mean of the total distortion at every iteration. This 
property can give the CL and SOM algorithms greater possibility in escaping local 
minima. The SOM algorithm results in even more dynamic processes in reducing the 
total MSE distortion, because updating within a neighbourhood cannot even 
minimise local distortion at each iteration. However, since the neighbourhood will 
shrink to zero, the SOM will tend to the CL algorithm and will minimise every local 
distortion. The neighbourhood updating may find an even better local minimum and 
will result in an ordered reference book. In summary, for the LBG and CL algorithms, 
the initial references have to be chosen very carefully, otherwise they will suffer from 
"under-utilisation" and/or "over-utilisation" problems. However for the SOM 
algorithm, if the neighbourhood function is properly set (initially wide 
neighbourhood radius, and gradually decreasing with time), and the initial references 
are different, the under-utilisation problem normally will not appear. However the 
SOM algorithm is slower (or has to be slower, in order to produce ordered maps and 
escape from local minima) than the LBG and CL algorithms if not implemented in 
parallel. 

There are also some constrained versions of the CL algorithm, like the frequency­
sensitive competitive learning (Ahalt et al. 1990), that apply "conscience" learning to the 
algorithm, so that less-fired neurons are encouraged while over-fired neurons are 
restricted in order to avoid under-utilisation problems. This is intended to lead to an 
approximately equal firing frequency of neurons, or equal probability mapping. The 
idea comes from Grossberg'S work (1976a, b, 1987) and others (DeSieno 1988; Hecht­
Nielsen 1988; etc.). 

The neighbourhood function of the SOM can naturally provide a solution to the 
under-utilisation problem. Since the neighbourhood size or radius is very large at the 
beginning, this will cause all references to respond to the input samples. This is a 
natural "conscience" learning. A large neighbourhood results in a large cluster of 
references; and similar references, in the input space distance sense, will be close 
together in output space. While a small neighbourhood results in a spreading of 
references. When the neighbourhood size is shrinking correctly (slowly enough), the 
input space will be well covered and quantised by all references. Such a role also 
gives the SOM algorithm an ability for escaping local minima, as updating in the 
neighbourhood can disturb the minimum state. Although it can not be guaranteed 
that the SOM will find the global minimum, the algorithm indeed can provide a 
better local minimum compared to other algorithms. The problem is that the 
emergence, frequency, and quality of such local minima are unpredictable, i.e. the 
reliability of the algorithm is not very high. The results heavily depend on the 
algorithm parameters and training procedures. In next subsection, an improved 
version of the algorithm is proposed, in order to make the algorithm more robust at 
finding the global or a "better" local minimum. 

Another great advantage of the SOM algorithm is that its codebook is ordered, 
which can inherently increase the noise tolerant ability of encoding. Therefore, when 
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the data to be quantised and/ or the transmission channel are noisy, the SOM-VQ can 
provide better results. 

3.4.3 A constrained SOM towards the global optimal VQ 

As we have described before, VQ algorithms are optimisation methods which use a 
very limited number of references to approximate the input space. A general 
principle and criterion for these methods is to limit the approximation distortion as 
low as possible. Most existing algorithms can not guarantee to reach the globally 
minimum distortion. The local minimum problem has become a very challenging 
issue in VQ design. Some algorithms, which combine the LBG or CL learning with 
some combinatorial optimisation methods from statistical physics (e.g. stochastic 
relaxation) have been proposed for escaping local minima (e.g. Zeger et al. 1992). 
Theoretically such relaxation schemes, also called simulated annealing, can converge 
in distribution to the global minimal energy configuration, if a slow enough annealing 
schedule is followed (Geman and Geman 1984). However this schedule is too slow to 
use in practice. Instead most relaxation methods actually use a fixed temperature or a 
fast annealing schedule, e.g. "sub-optimal" exponential schedule (Kirkpatrick et al. 
1983). This has been used by Zeger et al. (1992). Though they will not lead to the 
global optimum, they can find a much better local optimum. 

More recently, some more active searching strategies have been proposed and 
added to VQ algorithms for escaping local minima, as relaxation methods are passive 
and "blind" in avoiding local minima, and more importantly they are too slow to use 
in real applications. Veda and Nakano (1994) have proposed a so-called competitive 
and selective learning VQ algorithm based on competitive learning, genetic selection 
mechanism, and the equal-distortion or equidistortion principle (Gersho 1979) (to be 
explained below). Another interesting method, called the optimal adaptive k-means 
algorithm, which also applies the equidistortion principle, has been proposed by 
Chinrungrueng and Sequin (1995). This algorithm adaptively weights the distance 
measure and adjusts the learning rate of competitive learning VQs, according to the 
variances of the subsets. Both methods apply the asymptotical equidistortion 
property of the optimal VQ, i.e. for a smooth underlying probability density and large 
number of the code vectors, all regions in an optimal Voronoi partition have the same within­
region variances (Gersho 1979). 

The above two new approaches are CL based, whose codebooks are randomly 
arranged. Since SOM algorithm updates not only the winner but also its 
neighbouring references, this may result in slowing down the convergence, but will 
result in a better quantisation. To ensure that the SOM algorithm converge to the 
global or a near-global minimum, its learning procedure has to be monitored and 
properly guided. In the following, an equidistortion constrained SOM (ECSOM) is 
proposed. The ECSOM algorithm differs from the above two methods in that the 
asymptotical equidistortion principle is indirectly applied. The above two methods 
require two asymptotical conditions, i.e. a very large number of code vectors and 
smooth input density, so that resulting partitions have exactly the same variance. 
This may not be true in many practical applications. Especially, in Chinrungrueng 
and Sequin's methods, the equidistortion principle is applied through variance 
weighted distances. So if the final variances of each partition are not the same, the 
first of two necessary optimal VQ conditions will be violated. However, in the 
ECSOM the constraints are indirect and soft, because they are applied through 
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controlling the radii of the neighbourhood function. The two necessary optimal 
conditions for VQ will not be violated. Updating in a neighbourhood will result in the 
neighbouring references being closer to the winner than just updating the winner, 
therefore the winner will have lower variance. U sing this function of the 
neighbourhood, the estimated variance of each reference in its partition is employed 
to control the width of the neighbourhood function of that neuron. The variances can 
be easily estimated through its distance measure calculations in the original SOM 
algorithm at no extra computational costs. Details of the ECSOM are given below. 

(1) Equidistortion Constrained SOM (ECSOM) VQ Algorithm: 

(0) Initialisation: The initial codebook {we(O)} is chosen randomly, or by using 
(first) K input vectors. Set the initial variances, {vare(O)} of partitions to the 
same value, say, 1.0, and initial firing frequencies {Pc} to the same value. Set 
initial adaptive learning rate a(O), initial common neighbourhood size ~ (0), 
and their shrinking rates, as in the original SOM. Set the starting time, To, for 
applying constrains. 

(1) Randomly present an input vector from the input space. Find the winning 
reference by 

v = arg min d ( we (n) - x (n ) ) (3.28) 
eEY 

(2) Calculate the learning rate a(n) as usual. Calculate the neighbourhood size 
or radius, ~v(n) as usual if n<To, otherwise, calculate the ~vCn) and multiply 
a constraint factor: 

~varv(n)Pv 
F. = -----''-----';:::===-
v average {.jvarv (n)Pv } 

(3.29) 

(3) Update the winning reference and its neighbourhood: 

(3.30) 

Update the variance estimate of the winner in its partition: 

vary (n + 1) = varv(n) + a(n){min d[we (n) - x(n)] - varv(n)} (3.31) 

(In step (I), the distances, {d[we(n)-x(n)]} have already been calculated, so 
there will be no increase in computational costs in adding this variance 

estimation step). 
Update the firing probability of the winner by: P v=P v + 1. 

(4) Theoretically it needs n~oo for the algorithm to converge to the (local or 
global) minima; however, in practice the total variance change can be used to 
indicate when to halt the algorithm. Otherwise go back to step (1). 

As we can see, in the ECSOM algorithm, when a winning neuron has a large 
variance, its neighbourhood size is also large so more of its neighbouring neurons 
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will be updated towards to it. This will make its variance smaller. This kind of 
constraint is not strict, so there is no need to require the final partitions to have the 
same variance. However this constraint will bring the variances of the partitions as 
close as possible. This is the general principle in more practical applications, where 
the input probability density of the input space is not smooth and/ or the number of 
code references is not very large. 

This constraint principle can be also applied through the learning rate instead of 
the neighbourhood or both, e.g. large variance partitions have large learning gains. 
Here we will only demonstrate the constraint to the neighbourhood, i.e. the above 
algorithm. Two typical examples are given below. 

(2) Example 1: A Lloyd's example: Using two scalar references, {WI' w2}, to quantise 
the input space [0, 1] with the probability density function (pdf) as shown in Fig. 3.11, in 
which PI and P2 represents the probability density for the first half and second half of input 
space respectively, where P /c.O, p2'c.O, and P I+P2=2. 

The strict mathematical calculation, which is possible in this case, has shown that 
when the ratio p/p2~3, there is only one MSE distortion (Le. DI) minimum at {wI' 
w2}={O.25, O.75}. However, when the ratio PI/P2>3, there are two minima: the local 
minimum is always at {wI' w2}={O.25, O.75}, while the global minimum depends on 
the ratio. For example, when p/P2=4, the global minimum is at {wI*' w2*}={O.21875, 
O.65625}. 

In this example when there are two minima, i.e. p/P2>3, most VQ algorithms, 
e.g. LBG, eL, etc. will usually converge to the local one if the initial references are not 
carefully selected. The SOM algorithm does not depend on the initial states and is 
better in finding the global or a good local optimum. However the SOM cannot 
ensure convergence to the global minimum. Sometimes it goes to the global one, 
while other times it goes to a local one. When constraints are applied, the EeSOM 
algorithm will indeed converge to the global optimum. This has been confirmed by 
extensive simulations. 

2 

pJ 

p2 

... 
o • o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fig. 3.11: The input density function in a Llyod's example. 
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At the global minimum, in this example, the variances in two partitions are not 
the same, but have a smaller difference than that at the local optimum. This is a 
simp~e example showing that un-equidistortion optimal partition exists in many 
practIcal cases where the number of reference vectors is not large and the probability 
density is not smooth. When the conditions for the asymptotical optimal VQ are not 
satisfied, the equidistortion rule can not easily be applied and many so-called global 
optimal VQs may not lead to the true global optimum. However the proposed 
ECSOM algorithm works well for realistic situations, and does lead to global or 
"better" local minima, since the equidistortion rule in the ECSOM is applied 
indirectly. The effort of this constraint is to reduce the differences between variances 
of partitions to be as small as possible, and not necessarily to be exactly the same. 

(3) Example 2: Image compression (quantising "Lena" image) 

The test image is the familiar "Lena" image shown in Fig. 3.7 and is encoded 
using 256 4x4 references (i.e. at 0.5 bpp). For high dimensional data and/or many 
reference vectors, the global or local minima cannot be easily observed as in the above 
example. When the algorithm reaches convergence or near-convergence, it is hard to 
tell whether this is a global optimum, a local optimum, or a "better" local optimum 
unless the process is repeated many times with different parameters, and then choose 
the best one, i.e. the one which has the minimal total distortion. There is no general 
method to identify the global optimum. In real applications, it is impossible to apply 
the algorithm repeatedly to search for the global or a "good" local optimum. An 
algorithm which can generally produce good quantisations and is less demanding in 
parameter setting and application circumstances is most desirable in practice. The 
SOM algorithm is better than LBG- and CL-VQ algorithms, in the sense of it does not 
rely heavily on the algorithm's parameters. The SOM-VQ normally can produce 
better quantisation than the LBG- or CL-VQ can, when given the same initial 
conditions. With different initial states, the SOM-VQ yields almost the same result. 
Thus the SOM-VQ is a more generalised algorithm than others. The proposed 
ECSOM-VQ is an even more generalised algorithm. It normally yields even lower 
total distortion than the SOM-VQ does during extensive experiments on the data. 

Typical results, after 60 iterations of the SOM- and ECSOM- VQs on the Lena 
image, are given in Figs. 3.12 and 3.13 respectively. Some difference between these 
two results, SOM- and ECSOM-VQs, can be seen from their PSNR performance 
comparison shown in Fig. 3.14, although differences between Figs. 3.12 and 3.13 are 
not easy to detect visually. It can be seen that finally the ECSOM-VQ does yield better 
performance, i.e. lower distortion. It can also be seen that when the constraint 
applies, the MSE distortion does reduce quicker. This means that the constrained 
processes converge faster than the original ones. These two advantages will be very 
useful in practical applications. 

One disadvantage of SOM-based algorithms, however, is that the SOM- or 
ECSOM-VQ normally needs more iterations for convergence. If not implemented in 
parallel, the parallel updating in a neighbourhood has to be carried out serially, 
which will dramatically slow down the process. 
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Figure 3.12: (a) SOM-VQ; (b) Its Codebook, at 0.5 bpp, 60 iterations. 
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(a) 

(b) 

Figure 3.13: (a) ECSOM-VQ; (b) Its codebook, at 0.5 bpp, 60 iterations. 
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Figure 3.14: PSNR perfonnance comparison of the SOM and ECSOM. 

3.4.4 To match the input probability density 
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Gersho (1979) and Zador (1966, 1982) derived the asymptotic performance of the 
optimum VQs. The minimum distortion, i.e. the low bound, can be expressed as 

(3.32) 

where C(N, r) (or A(N, r) in Zador's paper) is a quantisation coefficient, N is the 
dimension of the input space; r (normally, 2), is the power of the Euclidean norm, 
which is defined as 

(3.33) 

This property shows that when the input probability density is smooth, and for a 
sufficient large codebook, there exists a quantiser with a total distortion arbitrarily 
close to this bound. It also reveals that the optimum point density A(W), i.e. the 
density of code references occupying in input space, should be proportional to 
p(x)NI(N+r). 

The SOM algorithm is a density-related mapping. It maps more neurons to 
regions with high probability densities, and less neurons to the low density regions. 
However, it is not like Kohonen's early supposition (Kohonen 1982), i.e. the SOM 
approximates the input density: A(W)=p(X). Later Kohonen (1994) referred to this by 
stating "It is not so important for the SOM to approximate the detailed form of the input 
density function, but to find its main dimensions!". Ritter (1991) first reported his 
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research on the point density issue of the SaM algorithm, and discovered that the 
asymptotic point density of the saM in the 1-D case is in the form of 

(3.34) 

where h is the number of neighbours on each side of winner for a rectangular or 
stepped neighbourhood function. When h=O, the saM is reduced to the CL 
algorithm, and A(W)ocp(x)1/3, which is consistent with (3.33) for the 1-D case. With h~ 
00, infinite neighbourhood, A(W)ocp(x)2/3. 

More recently, Dersch and Tavan (1995) have extended this result from stepped 
neighbourhood functions to any arbitrary monotonously decreasing neighbourhood 
functions, yielding 

A( w) oc p(x )O+12R)/3(l+6R) (3.35) 

where R is the normalised second moment of the neighbourhood function. 

Luttrell (1991) has derived a different result from Ritter's for the scalar 
topographic SaM, in which the monotonically decreasing neighbourhood function 
specifies the channel noise density function (see Section 3.3.2). In minimising the 
hierarchical distortion, i.e. (3.16), the point density of topographic SOMs will tend to 
A(W)ocp(x)1/3 instead of (3.34) when h#O. Luttrell (1991) explained that "the difference 
arises entirely from using minimum distortion rather than nearest neighbour encoding". 

We will not discuss this issue further. This property concerns the asymptotic 
performance of the SaM and is valid only when the K is very large and the input 
density is smooth. In practical problems these conditions may not be satisfied, so the 
point density may be different from the above forms and may be difficult to derive, 
especially when local minima exist. In some cases, there are requirements for exact, or 
as close as possible, matching of the input density, i.e. A(W)ocp(x), which the original 
SaM cannot do. As mentioned earlier in Section 3.4.2, the CL algorithm with a 
"conscience" mechanism can lead to a good matching to input density. The principle 
is to let the firing frequency of each neuron be the same, sometimes this is termed the 
equiprobable principle. This can be easily seen in Fig. 3.15, in which the shaded areas 
should be equal in order to match the input density. 

pl 

, , , p(x) 

--~-4~~~&--Q~----------W-~~-W----X 

i Uk11' ' w~ i 
l1 I l2 

I: 

since: 

A(Wk) -li 
A(wk) P2 

2 

we obtain: 

11 (== PIll) = P2 (== P2~ ) 

Figure 3.15: The equal probability rule. 
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In many applications, the equiprobable principle is applied through weighting 
the distance measure by the firing frequency of corresponding neurons (e.g. Ahalt et 
al. 1990). This may violate the basic nearest neighbour partition principle as the 
number of winning times for each neuron cannot be the same in many practical cases, 
e.g. in Example 1 (Fig. 3.11). We have found that to match the input density, the 
constraint method proposed in this section can also be employed by using the firing 
frequencies to control the width of the neighbourhoods instead of using distortion 
measures. 

3.5 Towards the Optimal Bayes Classifier 

Another domain, in which the SOMs has been widely used, is data clustering and 
pattern classification. However, when used as a classifier, especially in an 1 of M 
implementation (i.e. one output unit corresponding to one class), a conventional SOM 
will not normally perform optimal Bayesian classification unless the input data are 
uniformly distributed or pattern classes are well separated. This is because when the 
pattern classes are not well separated (or even overlapped), the distributions around 
boundaries are not the same for different classes and the nearest neighbour partition 
rule will not give Bayesian boundaries. A simple example can be seen in Fig. 3.16, 
when two Gaussians have equal prior probability but different means and variances. 

Bayesian boundary I SOM boundary 

/ 

--datapdf 

class 1 

class 2 

Figure 3.16: Difference between SOM and Bayesian classification. 

As we have already formally proved in the last chapter, the SOM algorithm is 
potentially optimum for VQ. In most pattern classification ca~es, the p~ttem 
distributions are overlapped, and their joint distribution can be descnbed by ~ mzxture 
distribution (MD). Like the k-means algorithm, the SOM of:en resu.l~s I~ more 
classification errors than the Bayes classifier. To form a BayeSIan claSSIficatIon, the 

61 



SOM needs some form of supervision to label and adjust a pre-turned SOM like the 
two-phase LVQ1, LVQ2, and LVQ3 (Kohonen 1990) algorithms, or the SOM 
algorithm cascaded with another linear supervised layer (Haykin 1994). These 
methods, however, defeat the unsupervised learning principle, and lack rigorous 
mathematical proof. Thus there is no guarantee for them to form a good Bayesian 
classification performance. An entirely unsupervised learning algorithm, which can 
accurately capture the underlying MD, is highly desirable to these problems, and it 
would also be helpful for the supervised learning phase in the above two-stage 
classification methods. 

3.5.1 Mixture distribution models 

Mixture distribution models can be seen in many practical pattern classification 
applications'. Each sample, X, from an N-dimensional input space, XE9\N, is to be 
assigned to one of K distinct classes, ffi1, ffi2, ... ffiK, which have prescribed class­
conditional distributions. The probability density of the samples is a mixture 
distribution, given by (Duda and Hart 1973; Everitt and Hand 1981) 

K 

p(xl 8) = L p(xl ffi i , 8i )P( ffi i ) (3.36) 
i=1 

where p(Xlffii' 8) is the i-th class-conditional density, and 8i are the sufficient statistics, 
or parameter vector for the i-th class-conditional density, 8=(81, 82, ... 8K)T. P(ffi) is the 
prior probability of the i-th class and is sometimes called the mixing parameter, or 
mixing weight. For a Gaussian distribution, 8i={ mi, L i }, where mi and Li are the i-th 
class multivariable Gaussian distribution's mean vector and co-variance matrix 
respectively. 

For most unsupervised learning applications, only the number of classes and 
their class-conditional density forms are known, the other parameters have to be 
learnt unsupervised from a set of M un-labelled independent samples, X={xv x2' ... xM}· 

In this case, maximising the joint likelihood (ML) of all observed samples, p{XI8}=Il 
p(x

k
I8), may lead to a singular solution. When restricted to the largest finite 

maximum and Gaussian components it results in the following implicit equations for 
the parameters (Duda and Hart 1973): 

(3.37) 

(3.38) 

(3.39) 

62 



P(CD.lx 0.)= p(xkICDi,Oi)P(CDi ) 
I k> I K 

L p(xkl CDj,O)P(CDj ) 
j=l 

(3.40) 

These equations can only be solved by using some non-linear optimisation 
methods. For example, the expectation-maximisation (EM) (Dempster et aI. 1977) 
method has been used to obtain an iterative procedure for these parameters (e.g. 
Tarassenko and Roberts 1994). Normally they require very intensive computation. 
Only local optima can be guaranteed and results depends on the initial states. The 
MD model covers the overlapping of single-modelled distributions. Luttrell has 
extended the MD model to a broader one, called a partitioned mixture distribution, 
which covers a set of overlapping mixture distributions. He has proposed a 
corresponding training algorithm using the EM method (Luttrell 1994b). When the 
number of pattern classes is unknown, a clustering validation procedure and/or 
verifications from statistical hypothesis testing for individual distributions are 
definitely required to find a global optimum solution. Such cases, with examples, will 
be studied in Chapter 5. Such verifications may be needed even when the number of 
classes is known in order to escape from local minima. 

3.5.2 Unsupervised classification learning 

(1) K-means Clustering Algorithm 

The k-means algorithm was proposed by MacQueen (1967) and has been widely 
used as a clustering algorithm. The LBG algorithm used for VQ is very similar to the 
k-means algorithm, except that the latter stops after the re-calculation of the centroids 
from the updated partitions, i.e. step (3) in the LBG algorithm (see Section 3.4.3) 
instead of step (2). That is, in the k-means algorithm, the final references are optimal 
(for the MSE distortion standard) for the final partition but not vice versa. However 
there will be no difference, or little difference, if the algorithm converges or is close to 
convergence. Therefore the k-means algorithm is also potentially optimal for VQ. For 
MD pattern classification problems, the algorithm works well only when the pattern 
classes are well apart. 

(2) CL or Winner-Take-All (WTA)-CL, and SOM 

The CL algorithm is indeed a "winner-take-all" learning algorithm, so CL or 
WTA-CL is an adaptive version of the LBG or k-means algorithm. While the SOM 
algorithm is similar to WTA-CL in the later stages of learning. They usually achieve 
very close or comparable results. The roles of introducing neighbourhood functions 
are to produce topographically ordered reference books, to avoid the influence of the 
initial states, and to escape from local minima. So the SOM algorithm may yield a 
slightly better performance. However they are all potential VQ algorithms, and face 
similar problems in pattern classification applications. Traven (1991) claimed to be 
first in applying neural network methods to the MD problems. In his method, the 
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parameters of the components in a MD are obtained by using a SaM, which is 
trained from a set of known class samples (Le. in supervised manner). 

(3) Maximum Likelihood Competitive Learning (ML-CL) 

Nowlan (1990) has proposed two possible modifications to the WTA-CL 
algorithm for MD problems. One is the maximum likelihood competitive learning (ML­
CL), in which the winner, v, is selected according to its weighted likelihood function 
instead of Euclidean distance, i.e. 

~ ~ 

v = argm~ P( Wi) p(Xk I Wi' 8i ) (3.41) 
I 

This comes from choosing the maximum component as a better approximation to 
the MD at xk than choosing any other. However this is true only when components 
are well separated or slightly overlapped. The ML learning gives better clustering 
results than the simple Euclidean distance WTA-CL algorithm. When the 
components of the mixture are Gaussian with equal prior probability, the 
Mahalanobis distance measure is equal to the ML measure. 

The other possible modification is "soft" competitive learning, in which neurons 
share responsibility in proportion to their posterior probabilities. In "soft" competitive 
learning, or sharing schemes, all other neurons in addition to the winner are updated, 
i.e. all neurons adapt to the inputs weighted by their probability distribution 
proportions. This may correspondingly increase the computation costs where it is not 
implemented in parallel, especially when the number of neurons is very large. 

(4) Probabilistic WTA Learning 

Osman and Fahmy (1994) have proposed a so-called probabilistic WTA, in which 
the winner is chosen probabilistically (using a random number generator) according 
to the neurons' posterior probabilities, i.e. (3.40), to avoid updating all neurons' 
weights. This will increase the total learning iterations, because each sample has to be 
input very many times to let all possible units learn. 

3.5.3 Bayesian SOM, an extended self-organising learning for 
optimal classification 

In this section, the SaM algorithm has been extended and applied to the kernel 
learning networks for the MD. The network places K units in the input space in the 
same or reduced dimensionality. Each unit has a Gaussian kernel, with its mean 

vector, m
i
, covariance matrix, Li, and mixing weight, P(W i ), or~, as learning 

parameters or self-organising learning weights. At each time step, n, a sample 
denoted by x (n) is randomly taken from the input set x. The winner is chosen 
according to As kernel output, i.e. maximum estimated posterior probability, as in 
Eqn. (3.41). The weights are then updated within a neighbourhood of the winner, ll\,· 
The updating rule is modified to: 
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Bayesian SOM Algorithm: 

mien + 1) = mi(n) + a(n)P( (Oil Xk' 8i )(Xk (n) - mi (n)) (3.42) 

i: j (n + 1) = i:i ( n) + a (n ) P ( (Oi I x k ' 8 i ) { ( X k (n ) - mi (n ) ) ( X k (t ) - m
i 

( n ) ) T - i:
j 

( n ) } (3.43) 

where the adaptive gain, a(n), is the same as in the original SOM. The calculation for 
"-

P( (Oi I xk' 9i ) is same as (3.40) . 

. A~ car: be. seen, the original SOM's neighbourhood function (fixed in shape but 
shnnkIng In sIze) has been replaced by an adaptive estimated posterior probability 
function. The neighbourhood size, which depends on the covariance of components, 
however, should be fixed in this case. The topological order property of the SOM 
ensures that the posteriors of the components that are outside the neighbourhood are 
very small. Therefore, 

p(xi 8)::::: L p(xl (Oi' 8i )P( (Oi) (3.45) 
iEllv 

The proof of the convergence of this algorithm can be deduced by using a similar 
method as in Chapter 2 (Theorem 2.1 and Lemma 2.1). The learning parameters will 
eventually converge to the conditions (3.37)-(3.40), which is at least a local minimum. 

3.5.4 Experimental results 

This extended SOM, or Bayesian SOM, has been employed for some typical MD 
classification problems. Firstly the algorithm is applied to the 1-D example shown in 
Fig. 3.16. It was found that the resulting boundary is positioned very close to the 
Bayesian boundary; and in addition, each pattern class's pdf parameters as well as 
the mixing parameter were correctly estimated. 

Problems arise only when the classes are very close to each other (i.e. heavily 
overlapped), where the result is not unique. In these situations, however, the 
multiple solutions are possible in reality as shown in Fig. 3.17. The MD for classes A 
and B and the MD for classes C and D are very close, even though the pair of classes 
A and B is quite different from the pair of classes C and D. This means that when the 
data set is not infinite, as it is often the case, the decomposition of some MDs is not 
unique. In this test, the MD is of two Gaussian components, which were set to m1 =0.0, 

0'1=1.0, Pl=0.25, m2=-2.0, 0'2=1.0, as shown for classes A and B in the figure. However, 
the results are not unique, sometimes the algorithm converges close to the pre-set 
parameters, sometimes it converges to another set of parameters: m1'=-0.94, 0'1'=1.29, 

Pl'=0.57, m2'=-2.30, 0'2'=0.84, as classes C and D shown in the figure. As we can see, 
the two possible results have very close MDs. Thus we should not be surprised about 
multiple results, since the problem itself is multi-resolution possible, when the 
components are too close to each other. 
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Figure 3.17: Multiple solutions for heavily overlapped MD. 

The algorithm has also been applied to a practical problem, namely the 
unsupervised segmentation of textured images. The whole network structure will be 
discussed in Chapter 5. With this proposed algorithm replacing the original SOM a 
better estimate of the underlying patterns' mixture distribution is obtained. Improved 
results have been achieved and are shown in Fig. 3.18, especially the estimating 
layer's results (Fig. 3.18 (d) and (i) are better than (b) and (g)) by using original SOM, 
and they are closer to the true output. This implies that the proposed algorithm gives 
a better interpretation of the sample distribution. 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

composite images using SOM using Extended SOM 

Figure 3.18: Textured image segmentation. (a) and (f) The composite textured 
images; (b), (d), (g), and (i) The outputs of the estimating layer; (c), (e) , (h), 

and (j) The outputs of the whole network. 
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~he algorithm can be ~sed in unsupervised kernel-like learning, e.g. radial-basis­
function networks, to estI~ate the underlying density modelled by a mixture of 
overlapped ~omponents. LIke .the SOM, the extended algorithm is a simple algorithm 
and easy to Implement. Its neIghbourhood function can form a topologically ordered 
map, which may provide hi?~er ~oise to~erance, and makes local learning possible. It 
can also over~ome under-utihsation or SIngularity problems. Since it generally is not 
an exa~t .gradient d~scent met~o~ and is independent of initial states, it has a higher 
probabI~ty of e~cap~ng local mlnima. Proper monitoring of its learning procedure, or 
an ~~-llIl~e vahda~IOn program, may be useful for forming globally optimal 
claSSIfIcatIOn mappIng. 

3.6 Discussions on Topological Ordering 

3.6.1 Definitions and their meanings 

In attempting to form an ordered map, to examine the order, and to quantitatively 
measure the quality of the order, a clear definition of order is needed. 

However, what is order, what is an ordered map, and how well is a map 
ordered? These questions have not been fully answered. Even a general definition has 
not been formally given except for the very obvious 1-D definition (Kohonen 1984), in 
which order means sequenced neurons have their weight values arranged either 
monotonically increasingly or monotonically decreasingly. When this idea is 
extended to higher dimensions (which is not so simple as Kohonen originally 
proposed), it defines a fully ordered map, i.e. it requires that any neuron, for which any 
possible sized neighbourhood in the neuron space, should reflect or preserve the 
neighbourhoods of the input space. Such fully ordered maps may not exist when the 
dimensions of input and output space are not the same. This means that when the 
mapping is from a high dimension space onto a low dimensional space, the original 
1-D order definition can not be extended. From topology space concepts (Mendelson 
1990), order is not defined and only the topology preserved mapping can be defined. 
SOMs will always result in topology preserved mappings as long as no neuron 
represents the "empty set" in the input space (i.e. no "dead" neurons) and the 
mapping is one-to-one (not one-to-many), since the definition of neighbourhood is 
too broad in topological theory. The neuron spaces are discrete lattices, and the 
neighbourhood concept in neuron space is some forms of regular lattice around 
certain neurons and is not like the very general neighbourhoods of topology. It seems 
that there are two ways to define the order in the SOMs: one is a geometric or single­
distortion definition, the other is a group-distortion or channel-optimised definition. 

We first present a generalised definition, which covers the original one, gives 
clear geometric meaning, and is quantitatively measurable. Then we discuss a strict 
definition, which is directly related to the fault tolerance requirement so is 
meaningful in optimisation terms. 

(1) Definition One, Generalised Ordering Definition: 

Using the same notations as before, we assume that a N-dimensional input space 
X is mapped to a reference map Y which is arranged in M-dimensional space. Y is a 
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CIXC2~",CM ~rray, ~here {Ck, k=l, 2, ... M} represents the number of neurons along 
each dImensIOnal sIde of output space, and the total number of neurons is C xC X 
... CM· Each neuron is indexed fully by a vector, c=[i1, i2, ... , iMF, which repres~nts2 a 
point in the neuron map or output space, where {ik=O, 1,2, ... , Cr 1, k=l, 2, ... M}. 

Let us first define a hypercubic neighbourhood in the neuron space (the 
neighbourhood structure depends on the neuron structure used). 

If a set of neurons is indexed by 

±jl 
±h 

~~m)={c+ ,A=O,l, ... m, andO~(ik±jk)~Ck-1, k=1,2, ... ,M} 
±jk 

±jM 

(3.46) 

where Uk' k=1,2, ... ,M} is the index of neuron c. Then ~~m) is called the m-th order 
hypercubic neighbourhood of neuron c. ~ c (0) is c its self. 

A generalised hyper-rectangular neighbourhood, in which the neighbouring 
radii along each dimension may not be the same, can be readily extended from the 
above. 

A. Zero-order map 

This term (zero-order) has been used by Kangas et al. (1990) to identify maps 
without any topological ordering properties. 

B. 1st-order map 

A map, in which each neuron has its nearest neighbouring neurons along each 
dimension of output space closest to it in input space among other neurons in 
that neighbouring neuron's direction. In mathematical terms, it can be expressed 
as: 

d(wc ' W
c

(1») ~ d(wc , W
c
(1)+d), Vc E Y; Vc?) E ~~l), cj1) is a neuron in the 1st - order 

I I (1) 
neighbourhood of c; c?)+d ~ ~~l), and is called an extension of c[ ,defined by 

cP) = c + 
±lk 

l = ° l' then c(l)+d = c + , k " [ 
±(lk +dk) 

±(lM +dM ) 

{
=o, ijlk=O, 

,dk = 1~2, ... , otherwise, 
(k-1,2, ... M) 

±lM 
(3.47) 

where d( ) is a distance measure, usually the Euclidean distance. 
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C. 2nd-order map 

~ map~ in which each neuron has its nearest neighbouring neurons in each 
dImensIon of output space closest to it in input space, and has its second nearest 
neighbouring neuron second closest to it, in all directions. These can be 
expressed as: 

d(wc' wc(l)) ~ d(wc' WC(l)+l) ~ d(wc' W (2)+d), Vc E Y; Vc[O) E ~O) c[(2) E ~(2) , ,c, c , c ' 

cjl)+l is an extension of cjl) but within c[(2); c?)+d is the extensions of cjl)+l . 

(3.48) 

This recursive definition can be extended to m-th order ordered map. 

Here, order or order-level, m, could be up to min{Ck, i.e. the number of neurons 
on each dimensional side, k=l, 2, ... M} if an open map is used, or half the number of 
neurons on each dimensional side if a wrapped map structure is used. We say that 
the above definition is a single-distortion definition because the order is measured 
according to a single distance. If in a map, each neuron satisfies the above m-th-order 
ordering definition, we can state the map is a globally m-th-order ordered map. If 
only some neurons meet the conditions, the map is said has local m-th-order 
ordering. It is not difficult to prove that if the neighbourhood function is fixed to a m­
th neighbourhood (step or monotonically decreasing), the resulting map will be a 
globally m-th-order ordered map or will have some local m-th-order ordered areas. 

When a map is ordered to the highest order level in each of its dimensions, then 
it is a fully ordered map, which may exist only when the dimensions of input and 
output spaces are the same. When the mapping is from a high dimensional space 
onto a lower dimensional space, only low order ordered maps exist. In some cases, 
even 1st-order fully ordering is impossible. An optimum ordered map is the one 
which not only has the required order-level of ordering but also has minimised the 
MSE distortion, D1, Eqn. (3.15) (i.e. the neurons has been mapped to the optimum 
positions). Otherwise the map can be only called a local ordered or disordered 
optimum map; or ordered but non-optimal map; or non-optimal and disordered 
map. 

Considering the example used in Section 2.5.3, if the neurons are arranged in the 
same dimension (2 in this case), a fully ordered map can be easily obtained as shown 
in Fig. 3.19 (a). Since there are only three neurons along each dimensional side in 
neuron space, the highest possible ordering order is 2 if an open map structure is 
used, or 1 if a wrapped map structure is used (in this case the input space would also 
be wrapped). When the output space is only 1-D (i.e. a neuron chain), only a 1st­
order ordered map is possible for the SOM algorithm as shown in Fig. 3.19(b), if an 
open map structure is used. The maps shown in Fig. 3.19(c) and (d) are possible 
higher-order ordered maps for a wrapped structure (at least to 3rd- or 4th-order) and 
for a non-wrapped structure (up to 8th-order one side), but neurons are not at the 
optimal positions so they can not be called optimal maps as they will not minimise 
the MSE distortion. 

69 



1 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 -
0 0 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 

(a) (b) 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0 0 
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 

(c) (d) 

Figure 3.19: Different ordering situations. 

The meaning of this kind of ordering definition is that the ordered map can 
tolerate the corresponding levels of directional channel or recalling pattern noise, and 
is optimal for decoding (but not for encoding) with overall minimum distortion and 
channel error. That is, if the reference book is fixed and the channel noise level is not 
above the order level, then the decoded signals have the minimum error in the 
corresponding directions. If a code error occurs on the k-th dimension of the code 
vectors and the error bias is a positive value, say, one, then the corresponding biased 
code will have less distortion than all neurons whose bias value is greater than one. 
For example, the map in Fig. 3.19(b) will produce less errors than other maps when 
the channel noise is limited only to 1st-order, as it is a 1st-order ordered maps. 

Arranged in a lower dimension, the map may have advantages in the sense of 
less code errors, when channel noise exists. High dimensional codes increase channel 
errors. For example, using 2-D codes may double the code errors of using 1-D code. 
However the mapping from high dimension to low dimension may reduce the 
possible order-levels, i.e. the noise tolerance of the map. 

The next definition of ordering is stricter in the sense of error-tolerance encoding 
and decoding. 
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(2) Order Definition Two, Strict Ordering Definition: 

When the channel noise has to be taken into account, the encoding must be 
considered in a different way. Its objective function is now the hierarchical mean 
squared error distortion, i.e. D2, Eqn. (3.16), instead of D l . Luttrell (1989a, 1989b, 
1994a) has developed a hierarchical self-organising encoding network to minimise D2. 

Although the source coding and error correcting channel coding are usually 
separately designed in many practical cases, the important properties of such 
combined, noise tolerant encoding cannot be ignored. It will provide benefits not only 
for signal encoding, but also for information compression, associative memories, and 
pattern recognition. 

Luttrell used the variational principle to analyse the hierarchical encoding in the 
SOMs. His hierarchical self-organising network is similar to the SOM, but with the 
noise pdf (fixed) replacing the normal neighbourhood function (shrinking). In 
addition, the nearest neighbour winning rule must be replaced by the so-called "local" 
minimum distortion winning rule, which can be expressed as 

v = arg min {J d ( we - x) 7t ( e ) de } 
eEY 

(3.49) 

where the integration is over the range that code noise density covers. 

This winning rule is different from the nearest neighbour rule, as the distortion 
curves to each dimension may not be symmetric (Luttrell 1994a). When trained using 
the above minimum distortion rule, for a global optimum in terms of total distortion 
and channel errors, the resulting map should also be ordered very strictly to fit any 
directional noise. 

The definition of ordering and the requirement for the ordering depend on the 
pdf of the channel noise. There are two common noise situations: uniform and 
symmetric (decreasing) distributions. Without losing generality, the independent 
identical distributed properties of the noise in each dimension of reference vectors 
and Gaussian distribution for symmetric noise are assumed. 

A. 1st-order map 

if the code errors or channel noise pdf only spread to the nearest neighbouring codes. 

(a) Uniform noise: 

d( we' W e(l)(k») ~ d( We' We')' Ve E Y; Ve(1\k) E ~~l), Ve' E Y(but ~ ~~l)) (3.50a) 

For every neuron, any other neighbouring neuron (except the 1st-order neighbouring 
neurons) is further (i.e. has higher distortion) from it than any of its 1st-order 
neighbouring neurons are. 

(b) Gaussian noise: 

If d(e,e(1)(k))~d(e,e'), then (3.50b) 
d(we,We(l)(k»)~d(we,we')' VeEY; Ve(1)(k)E~~l), Ve'EY(but#e,e(1)(k)) 

where d( c, c*) is the distance of two neurons indexed by c and c* in neuron space. 

Every neuron with its 1st-order neighbouring neuron has a similar weight distance 
hierarchy in the input space as it has in the neuron space. 
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B. 2nd-order ordered map 

If the code errors or channel noise pdf can happen to not only the nearest neighbouring 
codes, but also the second nearest neighbouring codes. 

(a) Uniform noise: 

dew c' w c(2)(k):::; d( w c' wc')' \fe E Y; \fe(2) (k) E N~2), \fe' E Y(but E N~2) (3.51a) 

(b) Gaussian noise: 

If d(e,e(2)(k» :::;d(e,e'), then 
d( w c' w cO)(k):::; d( w c' w c,), \fe E Y; \fe(2) (k) E N~2), \fe' E Y(but *- e, e(2) (k» (3.51b) 

This recursive definition can be extended to m-th-order map. 

This kind of ordering has the greatest channel noise tolerance. For example, if the 
channel errors can be up to an m-th neighbourhood, an m-th-order ordered map 
could produce less errors than lower-order ordered maps could, i.e. within error 
occurring area (m-th neighbourhood) distortion is smaller than outside the area when 
noise is uniform distributed, or the distortion is smaller if the error probability is 
higher when the noise is symmetric and monotonically decreasing Gaussian 
distributed. This is why the ordered map will give the best decoding performance up 
to the order-level channel noise. With its local minimum distortion winning rule 
(encoding rule) instead of distance winning rule (nearest neighbour encoding), the 
resulting map can be the global optimal map (for both encoding and decoding). 

3.6.2 Ordering measurements 

Kohonen has given a measure for disorder of a map in the 1-D case, which is quite 
obvious (Kohonen 1984), 

M-l 
DIS1 =[ I..d(wi -wi-l)]-d(wM-l -wo) 

i=l 

Carrato (1994) extended this measure to any (assume M) dimension maps: 

+ ...... 
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(3.53) 

.This kind of di~order measure actually measures the excessive length or 
str~Igh~ness (geometrIc regulation, or rectangularness, or squareness) of the map, 
which IS equal .to a sum of sub-sums over all dimensions of the output space; and 
e~ch s~b-sum IS a sum of all segments connecting adjacent neurons along one 
dImensIOn of neuron space subtracting the length between the first and last neurons 
i~ that ~imension. For the 1-D case, DI5I=0, if the map is ordered. While for higher 
dI~ensIOn cases, D.15M =:-0, only. when the maps are perfect M-dimensional rectangular 
lattIces. However In higher dImensions, this will often not be the case unless the 
input space is uniformly distributed. Carrato extended this measure in order to 
compare the SOM with other non-ordering VQ algorithms (e.g. LBG, CL) and 
showed the advantages of ordered codebooks for VQ. 
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o 0.2 0.4 0.6 0.8 

Figure 3.20: Two possible globally ordered chains. 

This measure, however, cannot be used to indicate whether a map is ordered or 
not. Its value also cannot be used as a judgement of the goodness of the ordering of 
the map. This has two implications. One is that the measure (3.53) cannot be used to 
assist in the training, since some disordered maps could have a lower value than an 
ordered map! For example, a map condensed to the centre of the input space (e.g. a 
small random initial map) has a smaller D15M value than a fully expanded and 
ordered map (e.g. Figure 3.19 (b). The second is that it cannot be used to judge the 
goodness of the final SOM results when local minima exist. In this case, some local 
minimum map (but ordered) could have a lower disorder index value than the global 
one. For example in Fig. 3.20, a four-neuron chain is mapped to a 2-D square. The 
global minimum reference map is shown by A-B-C-D; while a local minimum map is 
shown as A'-B'-C'-D', whose dis-order index is (..)2/3+-.12/3+..)2/3)-..)2/3=2..) 
2/3=0.9428, which is smaller than (0.5+0.5+0.5)-0.5=1.0 of the global one. However, 
the global optimum map will produce less MSE distortion than the local one. 
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Bauer and. Pawelizk (19~2) have proposed a neighbourhood preservation 
n:e~sure by uSIng topographic products. Their definition for neighbourhood is 
snnIlar to ?urs, but the~ grade the neighbourhood order-levels entirely by distance. 
So our fIrst-order neIghbourhood would be their first- and second- order 
neighbourhoods; our second-order neighbourhood would be their third-, fourth-, and 
fifth- order neighbourhoods, and so on. They measure the distance hierarchies of the 
map's various neighbourhoods in the input space, but require distances from a same 
order neighbourhood to be the same as for a well preserved mapping. This measure 
is the first which can be used to quantitatively measure the ordering for more than 
one dimensional space. However no optimisation meaning has been provided. 

In my opinion, order can only be measured by using its definition. A globally 
ordered map should have at least the first-order ordering property, which is defined 
by (3.47) for the general purpose SOM (e.g. the original SOM, or normal SOM-VQs), 
or defined by (3.50) for the error tolerance coding SOM. The ordering can be 
measured by the order-levels of the maps. If the order-level is below one, the map is 
disordered or at most a local ordered or partly ordered (1st, 2nd, ... ) map. Actually in 
many applications of the SOM, the mapping is from a very high dimension to a much 
lower dimension. Only local ordering can be found in the resulting maps; the global 
one may not exist. For example, in the SOM-VQ and ECSOM examples in Section 3.4, 
many local ordered areas (but not global ones) can be seen in the resulting codebooks 
(see Figs. 3.9(b), 3.12(b), and 3.13(b». 

3.6.3 The impact of neighbourhoods on the ordering 

The neighbourhood function has three distinct and important roles in SOMs: 
preventing under- and/ or over- utilisation and initial effects, escaping local minima, 
and producing ordered maps. These roles have already been demonstrated through 
various analyses and examples in the previous sections. 

The realisation of ordered maps (by whichever definition) is indeed dependent 
on the appropriate implementation of the neighbourhood functions. For the 
ordinarily defined (Definition one) ordered maps, the original SOM together with a 
proper shrinking speed for neighbourhood function, or the proposed ECSOM 
algorithm, can produce the required order ordered maps if the neighbourhood 
function remains long enough at the required order level before it goes to zero. Care 
also should be taken to leave the learning rate large enough to move neurons to their 
optimal positions. 

For the second type ordering, Luttrell's self-organising networks with a fixed 
neighbourhood function (which is identical to the channel or decoding noise pdf) 
may produce the required maps. However, there are still arguments that ~he 
neighbourhood function should be wider at the beginning and then gradually ShrInk 
to the noise pdf, so that the updating is undertaken in a wider area. Otherwise the 
algorithm would be like a group WTA-CL algorithm, as the ~inn~r is se~ected 
according to the local distortion of a neighbourhood area; updatIng IS also In the 
same area (not in a larger area). Thus it will have similar problems as the CL 
algorithm, such as local minima and under-utilisation. 

It is worth mentioning that if a mapping within the same dimension is required, 
the map can be initialised in an ordered fashion. There is no point in wasting time in 
the ordering phase; one can just concentrate on the convergence phase. 
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3.7 Conclusions 

In this chapter, a full treatment of the SOM algorithm for a wide range of applications 
has been presented. This chapter has analysed and exploited the SOM's potential in 
its application areas, and corresponding modifications and extensions have been 
given so that the best performance may be achieved. Two different modifications, the 
ECSOM and Bayesian SOM, to the SOM algorithm for two of its major application 
domains: VQ and pattern classification, have been proposed. They could be useful for 
many practical tasks. Kalman-filtered SOM is an example to show that traditional 
optimal filter theory can be applied to neural networks in order to reduce the 
dynamic learning noise and improve convergence performance. The SOM's 
convergence can also be accelerated by the proposed constrained ECSOM algorithm, 
which is aimed at forming a global or near-global optimum VQ. 

The proposed Bayesian SOM solved the non-optimal problems of the original 
SOM when used as a classifier. Bayes's theorem has been incorporated into the SOM 
algorithm, and results in this extended SOM algorithm, which can converge to the 
Bayesian boundaries in classifying MD-modelled input data structures. 

A good signal representation (e.g. by optimal VQ) may be helpful in pattern 
classification as well. For example, when the neurons are mapped (unsupervised) to a 
representation space with equal distortion for each neuron, the next supervised stage 
labels neurons corresponding to sample patterns. The network may then have 
minimum errors for later classification! A good classification may also be beneficial in 
VQs, as in some VQ designs pattern classification is also incorporated (Oehler and 
Gray 1995). 

The definitions for the ordering of maps have been proposed for any dimension 
in two ways: geometric and fault tolerant. They have clear optimisation meanings. 
They are quantitatively measurable and can be used to judge the goodness of the 
ordering of maps. These definitions give us a better understanding about the 
advantages of an ordered map. 
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Chapter 4 

IMAGE TEXTURES AND MARKOV 

RANDOM FIELDS 

Texture analysis is a basic and important methodology in image processing and 
computer vision. Texture properties describe the spatial-relationships between 
image elements. Together with grey levels and colours, they define the categories 
and attributes of image objects, and provide these images with their distinct visual 
characteristics. In this chapter, the definitions of textures, visual perception of 
image textures, and textural analysis methods (such as statistical feature based, 
model based, and multichannel-filter based approaches) are reviewed. In 
particular, the Markov random field, Gibbs distribution, and related texture 
approaches, are extensively analysed and explained. Some commonly used 
estimation techniques for model parameters (such as least square, maximum 
likelihood, maximum pseudo-likelihood) are summarised and discussed in a 
logical order. Texture related image processing problems are also briefly 
addressed. All this paves the way for more directed work in the next chapter on 
textured image segmentation. 

4.1 Introduction 

Textures are image primitives upon which human visual perception and 
discrimination are, in part, based. Image classification, segmentation, and other 
processing employing the image's textural characters have played an important role 
in the study of images. However, a precise and rigid definition for texture does not 
exist. Perhaps the main difficulty is that there is a large variety of textural attributes. 
It is extremely difficult to produce a single precise definition to cover such a diversity. 
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A very general and dictionary definition of texture has been given by Ballard and 
Brown (1982) as "something composed of closely interwoven elements". 

Textures can be classified into two major categories: structural and statistical. 
Some images may contain attributes of both. Natural textures can be either structural 
or statistical; or bot~. Structu:al. ~extures are regarded as containing, or being 
composed of, some l~~~e prImItIves of various shapes and sizes, with many 
placements. Image prImItIves play a strong role in structural textures. Statistical 
textures are regarded as realisation samples from spatial random processes which can 
be described in a statistical sense by the dependence or interaction between the 
elements of the image. Image primitives playa weak role in the statistical textures. 
They are mostly irregular and the placement rules are random. The textures which 
are addressed in this thesis belong to this second category. Approaches to statistical 
textures have been studied for many years. Haralick (1979) has gIVen a 
comprehensive review of most classical methods in this area. Tuceryan and Jain 
(1993) have presented a review on more recent progress in texture analysis. 

Approaches to statistical textures have fallen into two major methodologies: 
feature-based analysis and model-based analysis. The feature-based analysis attempts 
to find a set of good statistical features which can be used to describe and classify the 
textures. Substantial research has been done on this basis. A comprehensive survey of 
the most well-known and commonly used texture features (such as auto-correlation 
functions, Fourier transforms, spatial grey-tone (grey-level) co-occurrence matrices, 
grey-tone run lengths) can be found in Haralick (1979, 1986). In the model-based 
texture approach, however, textures are described by a mathematical process, in 
which a set of parameters can be extracted as textural features for description and 
discrimination (Kashyap 1986; Chellappa et al. 1993). Furthermore, these models can 
be used to reproduce or regenerate textures which provide us with a physical and 
visual measurement on the "goodness-of-fit" of the model. Typical texture models 
include: time series; fractals; random mosaics; autoregression (AR); Markov random 
fields (MRFs); Gibbs random fields (GRFs). The practical evaluation of a model is 
between its generality and its complexity. A good model should be physically 
meaningful with a wide application range and a simple model structure. MRF 
models seem to be very attractive models and have received intensive attention in 
scene and texture processing over recent years. Gibbs distribution (GD), a MRF 
equivalence, has also received a great deal of attention in texture analysis. MRF and 
GRF both belong to the same stochastic process approach, but through different 
mathematical descriptions. In MRF, the characteristics of a texture are described by 
local conditional probabilities; while in GRF, a general form of a joint probability is 
employed and is related to statistical physics mechanisms. 

In the next section, some basic conceptions and most popular descriptions for 
textures, together with some examples, are presented. Section 4.3 very briefly reviews 
various statistical approaches to textures, including various statistical features, 
statistical models, and multichannel filters. More detailed discussions on MRFs and 
GDs, as well as some simulations of MRFs, are given in Section 4.4. Model parameter 
estimation plays a very important role in model-based approaches. Section 4.5 
outlines the commonly used estimation methods. A brief introduction to various 
texture processing tasks, especially the segmentation of textured images, is given in 
Section 4.6, followed by a short summary section. 
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4.2 Description of Textures 

4.2.1 Definitions of textures 

Objects and scenes have their characteristic surface textures, which in the 
corresponding digital images become parts of their distinguishing identities. Texture 
characterisation and discrimination are important to understanding human visual 
abilities, and have become more and more important in computer vision for 
analysing various images, e.g. satellite, microscopic, robotic, and medical images. 

However, "Despite its importance and ubiquity in image data, a formal approach or 
precise definition of texture does not exist. The texture discrimination techniques are for the 
most part ad hoc." (Haralick and Shapiro 1992). Since textures present so much variety, 
a precise and rigid universal definition of textures may not be possible. "Something 
composed of interwoven elements" can only be a very broad dictionary description. More 
detailed descriptions depend on particular applications. The following are some of 
definitions (compiled by Coggins) cited in Tuceryan and Jain (1993): 

"We may regard textures as what constitutes a macroscopic region. Its 
structure is simply attributed to the repetitive patterns in which elements or 
primitives are arranged according to a placement rule." (Tamura et al. 1978). 

"A region in an image has a constant texture if a set of local statistics or other 
local properties of the picture function are constants, slowly varying, or 
approximately periodic." (Sklansky 1978). 

"An image texture is described by the number and types of its (tonal) 
primitives and spatial organisation or layout of its (tonal) primitives." (Haralick 
1979). 

"Texture is defined for our purposes as an attribute of a field having no 
components that appear innumerable. The phase relations between the components 
are thus not apparent. Nor should the field contain an obvious gradient. The intent 
of this definition is to direct attention of the observer to the global properties of the 
display- i.e. its overall 'coarseness', 'bumpiness', or fineness'. " (Richards and 
Po lit 1974). 

"Texture is an apparently paradoxical notion. On the one hand, it is commonly 
used in the early processing of visual information, especially for practical 
classification purposes. On the other hand, no one has succeeded in producing a 
commonly accepted definition of texture." (Zucker and Kant 1981). 

"The notion of texture appears to depend upon three ingredients: (i) some local 
'order' is repeated over a region which is large in comparison to the order's size, (ii) 

the order consists in the non random arrangement of elementary parts, and (iii) the 
parts are roughly uniform entities having approximately the same dimensions 
everywhere within the texture region" (Hawkins 1969). 

Although there is not a universal definition for texture, a number of general and 
intuitive properties of texture have been summarised by Tuceryan and Jain (1993) as: 

* Texture is a property of area; the texture of a (single) point is undefined. So, texture 
is a contextual property and its definition must involve grey values in a spatial 
neighbourhood. The size of this neighbourhood depends upon the texture type, or the 
size of the primitives defining the texture. 
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* Texture involves the spatial distribution of grey levels . Thus, two-dimensional 
histograms or co-occurrence matrices are reasonable texture tools. 

* Texture in an image can be perceived at different scales or levels of resolution. For 
example, consider the texture represented in a brick wall. At a coarse resolution, the 
texture is perceived as if formed by the individual bricks in the wall; the interior 
details of the brick are lost. At a higher resolution, when only few bricks are in the 
field of view, the perceived texture shows the details of the brick. (The same 
argument applies to forests and trees). 

* A region is perceived to have texture when the number of primitive objects in the 
region is large. If only a few primitive objects are present, then a group of countable 
objects is perceived instead of a textured image. In other words, a texture lS 

perceived when significant individual 'forms" are not readily identifiable. 

In a computer vision context, textures are treated as some form of image pattern 
in which some regularities (image primitives) and/or irregularities (stochastic grey 
levels) can be found with some regular and/ or irregular placement and size variation 
rules. They can be expressed as spatial dependence functions, which can be either 
explicit or implicit, either deterministic or random, functions of image elements or 
grey levels. Psychophysicists (e.g. Julesz 1962; Marr 1982; Julesz and Bergen 1983) 
explore the relationships between human visual perception and texture 
discrimination; while statisticians (e.g. Besag 1974; Kinderman and Snell 1980; Qian 
and Titterington 1991) model textures as functions of spatial positions. Researchers in 
signal processing and computer vision, on one side directly apply the discoveries of 
above two, on the other side expand their traditional methodologies (such as 
transformations, features, and models) from one dimensional signal processing into 
two dimensions (e.g. Woods 1972; Ord 1975; Cross and Jain 1983; Kashyap and 
Chellappa 1983; Geman and Geman 1984; Daugman 1985; Dunn et al. 1994) . 

Some image texture examples of structural, statistical, natural, and artificial are 
shown in Fig. 4.1 to end this section. 

Figure 4.1: Some image textures (S-bit, 12Sx12S). 
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4.2.2 Human visual perceptions of textures 

It has been known that human visual perception of textures has two basic distin t b t . . c u 
Interactive operations: 

(1) Preattentive Vision 

':Parallel, in~tanta~eous, ~ithout scrutiny, independent of the number of patterns, 
covermg a large vIsual fIeld, as m texture discrimination" (Julesz and Bergen 1983). 

(2) Attentive Vision 

"Serial search by focal attention in 50-ms step limited to small aperture, as in form 
recognition" (Julesz and Bergen 1983). 

Most of Julesz's work (Julesz 1962, 1981; Julesz and Bergen 1983) is concerned 
with pre attentive texture perception (mainly for structural textures). He discovered 
that a few local conspicuous features, which he named textons, appear to be the basic 
units, or image primitives, of pre attentive texture perception. In his proposed "theory 
of textons"; textons are defined as elongated blobs, terminators, and crossings of line 
segments. Julesz and Bergen (1983) also found that "preattentive vision directs attentive 
vision to the locations where differences in the density (number) of textons occur, but ignores 
the position relationships between textons." 

In most practical image processing applications, the images are likely to contain 
natural textures, which are statistical rather than structural. The image primitives are 
too small to be recognised as features or textons, too many to count, and too random 
in their sizes and locations. Texton definitions for these images are not appropriate. 
The features in statistical images are hidden, so a proper mathematical method 
and/ or transformation is needed to find the underlying distinguishing features. In 
the next section, we will review some of the most popular methods regarding 
statistical textures. 

4.3 Approaches to Statistical Textures 

Approaches to textured image analysis have progressed through two different stages 
(Cross and Jain 1983; Haralick 1986; Haralick and Shapiro 1992): feature-based 
approaches and model-based approaches. Early work in texture analysis sought to 
discover useful features to characterise the textures and to establish specific measures 
for discriminating between textures. Later, model-based work seeks a deeper 
understanding of inter-pixel relationships within a textured image by using stochastic 
models. On one hand, model-related parameters can be used as useful texture 
features for recognition or classification. On the other hand, a generative image 
model has the capability to resemble textured images which provide direct visual 
matches with observed textures. Very recently, multiresolution, or multiscale, signal 
processing techniques such as Gabor filters and wavelet transformatio.ns or 
decompositions are receiving considerable attentions and have been apphed to 
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texture processing (Tuceryan and Jain 1993). Fig. 4.2 provides a taxonomy of 
approaches in texture analyses. 

Texture Analysis 
- ______ 1, _____ --

1 

Region-based Boundary-based 
_____ 1. __ _ 

feature-based 
1 

auto-correlation 
co-occurrence 

model-based 
1 

lulesz model 
fractals model 

auto-regressive model 
Markov random field (Gibbs distribution) 

Filter-based 
1 

Fourier 
Gabor 
Wavelets 

Figure 4.2: General approaches to texture analysis. 

4.3.1 Statistical feature based approaches 

Image textures have a number of perceived qualities or attributes which give some 
quantitative measures in describing them, such as: coarseness, roughness, contrast, 
fineness, smoothness, regularity, directionality, uniformity, and density. In feature­
based approaches, the primary goal is to find a set of good features for a texture, 
which has less parameters but can effectively measure these qualities and thus 
capture the most prominent characteristics of the texture. The most commonly used 
texture features are briefly described below. A general review of these measures can 
be found in Haralick (1979, 1986) and Weszka et al. (1976). 

(1) Autocorrelation 

Let Q denote a NxN image lattice (we will usually consider a square lattice for 
simplicity, however results can be easily extended to any other shape of lattice). Let 
x(i,}) denote the discrete intensity or grey level of the image at position (i, j), then the 
spatial autocorrelation function is defined by 

1 f j x(u, v)x(u + i, v + j)dudv 
(N - i)(N - j) 

p(i,j) == -: ' Os i gy, Os} gy (4.1) 

~ f f x2(u, v)dudv 
N 

-00 

This function measures the spatial autocorrelation of image pixels and 
primitives. It describes the size of the tonal primitives. For an image with tonal 
primitives of large size, its autocorrelation will extend further; while an image with 
tonal primitives of a small size, its autocorrelation will fall quickly with distance. The 
autocorrelation function may have periodic properties if the primitives of the texture 
are spatially periodic. 
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(2) Digital Transforms 

The most commonly used transform is the Fourier transform, defined by 

00 

F(u, v) = J J xCi, j) exp( -2nJ=I (ui + vj))didj , -00< u, v <00 (4.2) 

where u, v are the spatial frequencies. 

The Fourier transform directly measures the spatial frequency components of the 
textured image. Fine textures are rich in high spatial frequencies, while coarse images 
are restricted to the low frequencies. 

Other transforms include Walsh-Hadamard transform, Slant function, Karhunen­
Loeve expansion (see Haralick 1986). It is reported (cited in Haralick 1979) that there 
is no significant difference in classification accuracy between these transform 
functions. 

(3) Texture Gradient 

Another method to measure the spatial frequency of textures is to calculate the 
number of edges (or sharp intensity changes) per unit area, that is "texture edginess". 
Fine textures have more edges per unit area, while coarse textures have less. 

An extended edginess measure is the gradient function over distance, which is 
defined as 

g(d) == L {Ix(i,}) - xCi + d,})1 + IxCi, j) - xCi - d,j)1 + IxU,}) - xU,j + d)1 + IX(i,j) - xCi,} - d)l} 
(i,j)El1 

(4.3) 
where d(·) denotes the distance, and 11 denotes the texture window over which the 
gradient function is defined. 

(4) Spatial Grey-Tone Co-Occurrence Matrix 

Spatial grey-tone (grey-level) co-occurrence matrix is another commonly used 
texture measure. It measures the relative frequencies or probabilities of transition 
from one grey level to another at defined spatial distances. Some texture features can 
be extracted from this matrix. Haralick (1986) and Weszka et al. (1976) give a 
comprehensive review on this issue. Such studies have achieved reasonable results 
for different textures (Haralick 1979, 1986). 

Usually the co-occurrence probability matrix is defined at a fixed distance d and a 
fixed angle <p, 

PCi,jld, <p) =#{(k, l), (m, n) E L, d[(k, l), (m, n)] = d, <p[(k, l), (m, n)] = <p, x(k, I) = i,x(m, n) = j} 
(4.4) 

where d(.) is a distance measure, and <p(.) is an angle measure, i, jE {grey levels}, # 
denotes the number of pixels in the set. 

From this matrix, the following texture features can be calculated: 
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Energy: IIp(i,j)2 
i j 

Entropy: II P(i,j) log P(i,j) 
i j 

Contrast: II(i - j)2 P(i,j) 
i j 

Correlation: L L(i - ux)(j - uy )P(i,j) / (J x(Jy 
i j 

etc. 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

where ux' uy are means of the matrix along row and column respectively, and (J , (J 

are the corresponding standard variances. x y 

P: generalised grey level spatial dependence has been proposed by Haralick and 
ShapIro (1992) to extend the measures for the relationships of pixel pairs to more 
generalised spatial neighbourhoods. 

(5) Other Features 

There are many other traditional texture features such as grey-level run-length 
statistics, grey-level difference statistics (see Weszka et al. 1976). The Gabor function has 
been used for extracting texture features for discrimination (Fogel and Sagi 1989; 
Turner 1986). Shang and Brown (1992) have used interframe principal component 
features in texture classification. 

4.3.2 Texture model based approaches 

In model-based texture approaches, the primary goal is to seek a mathematical 
expression, or model, which can efficiently and effectively describe the inter­
relationship of the pixel grey levels in an image. These models define the stochastic 
configuration of pixels on the image lattice. They are always reproductive, and can be 
used to simulate the textures under study, and thus provide a direct visual 
comparison between real textures and synthetic ones. The most popular models are: 

(1) Julesz Model 

To study the visual discrimination on statistical textures, Julesz carried out a 
series of experiments in which a stochastic model, known as the Julesz model, was 
used to generate textures with different statistical orders (Julesz 1962, 1975, 1981). 
Julesz first conjectured that human visual texture discrimination is based on the 
second order statistics of textures. Later, he modified the hypothesis to "the pre­
attentive textural system cannot globally compute third- or higher-order statistics" (Julesz 
1981). The Julesz model is applied mostly for texture image analysis in 1-D on a row 
by row basis. In a NxN image, a pixel sequence {x(i,1), x(i,2), ... , x(i,k), ... x(i,N)} is 
formed from right to left along each row. If the grey tone is quantised to L levels, then 
O-::;X(iJ)~-l, and X and Yare two random variables taken from 1 to L-l. 
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For the first-order process, each pixel is an independent random variable 

P[X(i,j) = m] = P(m) (4.6) 

For the seco~d-?rder process~ in addition to the first order probability of (4.6), the 
second-order statistical property IS formed by using the following procedure (Pratt et 
al. 1981): 

Set X(i,l)=X, i.e. xi.l' select X(iJ)=(XiJ_1+y) mod L, then the transition probability is 

P(xi,jlxi,j-l) = P[X(i,j) = (Xi,j-l + Y) = n mod L] = Pen) (4.7) 

In a similar way, the third order probability is described by 

P(xi,jl Xi,j-l, Xi,j-2) = P[X(i,j) = (Xij-l + xij-2 + Y) = q mod L] = P(q) (4.8) 

Two dimensional cases can be generated by repeating the above procedures on a 
column basis as well. Gagalowicz (1981) proposed a method to synthesise a stochastic 
process from its a priori second-order statistics. 

(2) Simultaneous Autoregressive (SAR) Model 

The autoregressive model has been used successfully in 1-D time series analysis, 
where it models the underlying stochastic process of the series by a linear 
combination of the past states and random noise. Such a model can be extended to 2-
D cases. Denoting X(iJ), or Xij' as a random variable, x(i,j), or xij' is a realisation of 
X(iJ). x is a realisation of the random process on a NxN lattice Q, x=(x

11
, X1 2' ... x

NN
). For 

simplicity, we can assume x has zero mean (otherwise x can be subtracted from the 
mean value). 

For an infinite lattice, the autoregressive (AR) model can be represented by 

X(i,j)= Ieu,vX(i+u,j+v)+£(i,j) (4.9) 
(U,V)Ell 

where {eu•v' (u,v)El1} are the minimum mean-squared-error (MMSE) model parameters, u 
and v are incremental coordinates, 11 is a neighbourhood set, {£(i,j)} is the independent 
identical distributed noise sequence with zero-mean and variance, 0 2. 

Ordinary AR models are causal, which means that the neighbour set only 
consists of pixels before site (i,j) in the raster scan order. When the neighbour set 
consists of the pixels of both sides, i.e. before and after the pixel (i,j), the model is 
termed a simultaneous autoregressive model (SAR). Although the neighbourhood needs 
not to be symmetrical, in most cases it is assumed to be so, and parameters are also 
assumed symmetrical (i.e. eu.v=e_u.)' Otherwise parameters may not be identifiable 
(Besag 1974; Cross and Jain 1983). A commonly used hierarchically-ordered 
neighbourhood structure is shown in Fig. 4.3. The numbers indicate the relative order 
of the neighbourhood system. For example, the first order neighbourhood set, i.e. the 
nearest-neighbourhood, is {(O,-l); (0,1); (-1,0); (l,O)}, the second order neighbourhood 
set is {(-1,-1); (0,-1); (1,-1); (-1,0); (1,0); (-1,1); (0,1); (1,1)}, referring the pixel (i,j). 

However, there is no restriction on the definition of the neighbourhood structure. 
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Figure 4.3: Neighbourhood structures (Numbers indicate the relative orders of 
the neighbourhood of x). 

For .a finite lattice .0, a toroidal structure can be used to compensate the 
boundarIes where usually only half neighbourhood pixels are available. The toroidal 
SAR model can be written as 

(u, V)Ell 
(4.10) 

where EB is the modulo operator. 

If the noise sequence is assumed to be Gaussian distributed with zero-mean and 
variance a2

, then the process has a joint probability density function (Besag 1974): 

2 -M12 1 T T 
p(x) = (2na) IBlexp{--2 x B Bx} (4.11) 

2a 
where M=NxN, and B is a MxM matrix with diagonal elements of unity and off-
diagonal element of - 9uv' A sufficient condition on {9u) to ensure stationary of X(.) is 
given by Kashyap and Chellappa (1983), as 

1- L9uvzfz~ * 0, (4.12) 
(U,V)Ell 

Given a finite lattice image, the SAR model-based parameters can be estimated 
by the least square (LS) or the maximum likelihood (ML) methods. LS estimation is 
simple, but not consistent for non-unilateral neighbour sets (Besag 1974; Kashyap and 
Chellappa 1983). ML estimation yields consistent and efficient estimates, but is very 
complicated even for the Gaussian case. Kashyap and Chellappa (1983) used an 
approximate expression for the log likelihood function and have proposed an 
iterative method which yields an estimate close to the ML estimate with a faster 
convergence speed. More details on model parameter estimation will be addressed in 
Section 4.4. 

For a rotation invariant simultaneous autoregressive model (RISAR) (Kashyap 1986), 
averaging around a circle can be used to de-orientate the directionality of textures. 

(3) Markov Random Field (MRF) Model 

The SAR model is a subclass of the MRF model. For every SAR model, there 
exists a unique MRF model. The MRF model is an extension of Markov chain models 
for 1-D series to 2-D fields, and is a spatial interactive statistical model to describe 
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interrelationships between point variables in a 2-D statistical field. The MRF model 
and its equivalent Gibbs distribution (GD) model will be reviewed in details i~ 
Section 4.3 

(4) Other Models 

There are some other texture models, e.g. mosaic model, fractal model, etc. for 
some specific application purposes. For more details, see Kashyap (1986), Haralick 
(1986), and Cross and Jain (1983). 

4.3.3 Multichannel filter based approaches 

In addition to MRF or GD model-based approaches, multichannel filtering methods 
have become popular in recent years, because of their multiscale, or multiresolution 
nature. Both approaches have achieved very impressive results. Using MRF models, 
statisticians and mathematicians attempt to seek a deeper understanding of spatial 
relationships between image pixels by fitting them to mathematical models. The 
neurobiologists and psychophysicists have begun to understand the human visual 
perceptive principles in texture discrimination based on human retinal multichannel 
localised spatial filtering receptors. Tuceryan and Jain (1993) termed this latter 
approach as "signal processing methods". 

The Gabor filter (1942, cited in Daugman 1985) is a Gaussian window, and the 
corresponding transform is a short-time Fourier transform windowed by such a 
function. It was first used to optimise both time and frequency resolutions, i.e. to 
reach the low bound of time-frequency resolution. Daugman (1985) extended this one 
dimensional optimal filter to two dimensional (i.e. spatial and spatial-frequency 
domain) to mimic the receptive fields of the human visual system (HVS). There is 
considerable evidence from neurobiological and psychophysical studies showing that 
the HVS is performing some form of local spatial-frequency filtering of the retinal 
image using a bank of filters pre-tuned to different spatial-frequency bands and on 
different spatial scales. A typical 2-D Gabor function (Daugman 1985) can be defined 
as 

( . .)2 (. .)2 
l-to 1-10} {2 111 [ ( .. ) ( .. )]} <p(i,j) = exp{-[ 2 + 2] xexp - n-y-l U(J l-lO +vo 1- 10 
2a· 2a· 1 1 

(4.13) 

where (iJ) is the spatial co-ordinate, (u,v) represents spatial-frequency co-ordinates, 
and the (ai,a.) represents the spatial bandwidth. The 2-D Gabor function <p(x,y) is a 
product of a~ elliptical Gaussian with an aspect ratio A=a/aj whose centroid is located 

at (io, jo) and a complex exponential modulation with spatial-frequency ~u1J + v~ and 

orientation 9=arctan(voluo)' The Fourier transform of the 2-D Gabor function can be 

written as 

<I>(u, v) = exp{ -2 n[ af (u - U(J)2 + a] (v - vO)2]) X exp{ -2n.J=1 [io (u - U(J) + jo (v - vo)]} 

(4.14) 

The Heisenberg uncertainty inequality defines the time and frequency and spatial 
and spatial-frequency resolution limits for any filter as follows 
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2-D: 

1-D: 
1 

I1tl1f ~-
4n 

l1il1u ~ _1_; I1jl1v ~ _1_; l1il1jl1ul1v ~ ~2 
4n 4n 16n 

(4.15a) 

(4.15b) 

where I1t and I1f are the 1-D time and frequency effective widths of a 1-D filter. The 
effective width is defined as the square root of the variance of the energy distribution 

of the filter. l1i, I1j, l1u, and I1v are the 2-D spatial and spatial-frequency effective 
widths for a 2-D filter. The Gabor functions can achieve the lowest resolution limit 
with the effective widths in both domains of 

l1i = ..ficri. I1j = ..ficrj ; l1u = ..fi ; I1v = ..fi 
2 ' 2 4 4 ncr· ncr . 

I } 

(4.16) 

Many applications have adopted a bank of Gabor filters (with different locations 
and orientations), and used the outputs of these filters as features for texture 
processing (Tuner 1986; Bovik et al. 1990; Jain and Farrokhnia 1991; Dunn et al. 1994; 
Guerin-Dugue and Palagi 1994; Tan 1995) 

Using a Gabor filter bank is an example of multiresolution signal processing, and 
more recently the field of wavelet theory (wavelet representation, decomposition, and 
transformation) has developed (Mall at 1989). By varying the scale of the window 
function, the wavelet transform provides varying frequency (or spatial-frequency) 
resolutions with varying time (or spatial) resolutions (Mallat 1989; Rioul and Vetterli 
1991; Manjunath and Chellappa 1993; Chen and Kundu 1994). Although orthogonal 
decomposition is the most desirable, it is difficult to achieve. The non-orthogonal 
basis functions, such as Gabor functions, are the most popular basis functions used in 
practical applications. For example, Manjunath and Chellappa (1993) have used the 2-
D Gabor function as a basis function (basic wavelet). The signal can be decomposed 
in terms of such functions with different scaling, usually uq, (u>O, q=l, 2, 3 ... ), to the 
different aspect ratios A, and different orientations in [0, n]. The corresponding Gabor 
wavelet transform can be expressed as (Manjunath and Chellappa 1993) 

(4.17) 

4.4 Markov Random Field and Gibbs Distribution 

4.4.1 Definition of Markov random fields (MRFs) 

Besag (1974) and Cross and Jain (1983) have given a clear definition. of MRF.s. 
Assuming that a random field X is defined on a lattice Q of Nxl!' then ~ IS. a matrIX 
with each element is a random variable. Assuming x is one possIble realIsation of the 
X and denote A as the set of all possible realisations of X on Q. 
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Definition: A MRF is a random field X on a lattice 0 with: 

(1) Positivity: Any realisation on the lattice is possible, i.e. 

P(x) > 0, for all XE A (4.18a) 

(2) Markovianity: The conditional probability of any site on the others only depends on 
its neighbouring sites, i.e. 

(4.18b) 

(3). Ho~oger:eity: T~e condition~l probabi!ity P(xij I 11ij) depends only on the 
confzguratzon of nezghbours and zs translatIOn invarzant, i.e. does not depend on the 
location. 

where 11ij denotes the neighbourhood set of pixels around (i,j) , excluding (i,j) itself. 
Neighbourhood structures are defined as in the SAR model. 

4.4.2 Expression of Markov random fields 

Woods (1972) has shown that in the homogeneous Gaussian case, the MRF can be 
expressed by a set of difference equations, which is also called the conditional Markov 
model (CM) by Kashyap and Chellappa (1983). 

In a finite lattice, a Gaussian MRF (GMRF) can be represented by 

X(i,j) = I8uvX(i EB u,j EB v) + e(i,j) (4.19) 
(U,V)Ell 

where the neighbour set is symmetrical and 8uv=8-uv for all (u, V)E 11, {e(i,j)} IS a 
stationary Gaussian noise sequence and is characterised by 

E{ e(i, j)lall x(m, n), (m, n ):t=(i ,j) } =0 

E{ e(i, j) }=O 

E{ e2(i, j) }=p 

So the noise sequence is correIa ted as shown below 

p 

E{e(i,j)e(i + u,j + v)} = { -8uv p 
o 

U,v=O 

(u,v)E11 

otherwise 

(4.20a) 

(4.20b) 

(4.20c) 

(4.20d) 

Parameters {8 } are the MMSE coefficients for forming X(i,j) by using its 
neighbours. The n~ise {e(i,j)} is the error and is not white. However if {~(i,j)} is 
homogeneous and Gaussian, the {X(i,j) , (i,j)E O} is also homogeneous, GaussIan, and 
Markovian (Wood 1972, and Kashyap and Chellappa 1983 (Geman and Geman 1984). 

The conditional probability density function of the GMRF is 
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p[x(i,j)lx(i+u,j+V,(U,V)E11]= 1112 exp{ __ l [x(i,j)- "9 xCi J.)]2} (4.21) 
(2np) 2p L..J uv , 

(u, V)Ell 

The sufficient condition for stationary of {X(i,j)} is 

for all (i,j)E Q (4.22) 

where 8=col[9uv' (u,v)E11'], <I>ij=co[{cos[(2n/M)(iu+jv)], (u,v)E11'}, 11' is the asymmetric 
half of 11. 

The joint distribution for a zero-mean GMRF on the lattice Q is (Be sag 1974) 

-M12 112 1 T 
p(x)=(2np) IBI exp{--x Bx} 

2p 
(4.23) 

where the B is defined as for the SAR model. 

4.4.3 Simulations of Markov random fields 

There are several algorithms to generate MRFs (e.g. Fourier transform methods: 
Kashyap and Chellappa 1983, Khotanzad and Kashyap 1987; Monte Carlo methods: 
Cross and Jain 1983). Here we describe the algorithm proposed by Cross and Jain 
(1983): 

(0) Choose a initial realisation x with equal grey level probability at each site of 
the lattice Q, 

(1) Randomly choose two pixels, x(i,j) and x(m,n), and swap them to obtain a 
new realisation y. Re-index x and y to vectors: x=[x(l), x(2), ... x(M)] and 
y=[y(l), y(2), ... y(M)], where M is the total number of sites in Q. 

(2) Calculate the probability ratio r=p(y)/p(x) from the conditional distribution 
(Besag 1974, Cross and Jain 1983), 

p(y) = IT p[x(k)1 x(l), x(2), ... x(k -l),y(k + 1), ... y(M)] 

p(x) k=l p[y(k)lx(l),x(2), ... x(k -l),y(k + 1), ... y(M)] 
(4.24) 

where p[x(k)I11]= exp [x(k)T(l1)] , or p[x(k)I11]= exp [x(k)T(l1)], for 
1 + exp[x(k)T(l1) Lexp[sT(l1)] 

SEC 

binary or grey-level images respectively, and T(l1) is a function of the 
neighbourhood and G is the grey-level range. 

(3) If r'C. 1, accept the new realisation, if r<I, accept the new realisation with 

probability r. 

The following figure shows some simulation results of second order Markov 

random fields by using this algorithm. 
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Figure 4.4: Markov random field simulations: Binary case (lOOxlOO in size) . 

4.4.4 Gibbs distributions (GDs) 

MRFs were not widely used until the Harnmerslay-Clifford theorem (see Besag 1974), 
Spitzer' work (1971), and the work of Hassner and Sklansky (cited in Cross and Jain 
1983; Geman and Geman 1984) became better known. They have proved the 
equivalence between the MRF and Gibbs distribution (GD). That is, every MRF can 
be measured by the Gibbs distribution, and the Gibbs distribution is Markovian. An 
important property of the MRF is its local characteristic, while an important property 
of the GD its explicit probabilistic measure. The GD provides the MRF with an 
explicit form of joint distribution (not only for the Gaussian case). 

The random field concept came from some of Ising's work on statistical and 
physical characteristics of ferromagnetic materials, is known as the Ising model, and 
was used to measure the probabilistic configurations (Kinderman and Snell 1980). 
The measure which Ising defined is the Gibbs measure or Gibbs distribution 

1 1 
p(x)=-exp{--V(x)} (4.25a) 

Z k8T 

where Vex) is the energy function of configuration x, T is the temperature, k8 is a 
universal constant (e.g. Boltzmann constant), and Z is a normalising constant defined 
by 

1 
Z = Lexp{--V(x)} 

XEA k8T 
(4.25b) 

which is also called the partition function. 

To complete the Gibbs distribution definition, we need to define the clique 
system. In a lattice with a neighbourhood system, (0, 11), the cliques are defined as 

follows: 

Definition of cliques: A clique of image lattice (0, 11), denoted by c, is a subset of 0 

such that: 

(1) c consists of a single pixel; 
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(2) c consists of a set of pixels, which are neighbours of each other. 

The collection of all cliques of (Q, ll) is denoted bye. 

For the first order and second order neighbourhood t d' sys ems, correspon mg 
clique types are shown in Fig. 4.5. 

D rna 

(a) (b) 

Figure 4.5: Clique systems. (a) First order; (b) Second Order. 

Definition of Gibbs distribution: For a neighbourhood system, ll, defined over a 
finite lattice Q, a random field X={XU,}) , U,})E Q}, has the Gibbs distribution, i.e. it is a 
Gibbs random field if and only if its joint distribution has the form of (4.25a) with the 
partition function of (4.25b) and the energy function defined as 

(4.26) 
CEe 

where Vc(x) is a potential associated on (L, ll) and depends only on those pixels xU,}) 

of x for which U,})E c. 

,,~} 
.. ~ 
0.32286325 
0.46267086 
0.063505173 
0.17593558 

• r. 
0.061819665 
0.066363379 
-0.06049132 
0.91843075 

"" , 
-

0.5046013 
0.33525425 
0.04837478 
0.13235053 

.. -
0.52003068 
0.3241109 
0.20624141 
-0.033037834 

-0.40692893 
-0.20318381 
0.27242249 
0.14718156 

..... 
0.45472297 
0.42671672 
0.058408961 
0.079954281 

0.97572881 
0.97199595 
-0.47992283 
-0.47896639 

Figure 4.6: Simulations of Gibbs random fields (Binary case, lOOx iOO in size). 
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GDs have been intensively employed in MRF model-based image processing. 
Geman . and Geman (1984) developed a stochastic relaxation algorithm for image 
restoration. They also proposed a method, called the Gibbs sampler, for generating 
?ibbs random fields. I?erin and .Elliott (1987) used GDs to model and segment noisy 
Images and textured Images. FIg. 4.6 shows some simulations of binary GRFs by 
using the Gibbs sampler algorithm. 

4.5 Model Parameter Estimation 

In model-based texture approaches, model parameters are used as features for 
classifying different textures and to construct discriminable energy functions. Model 
parameter estimation plays an very important role in model-based texture analysis 
whether the analysis is for classification or segmentation, either in supervised or in 
unsupervised cases. The accuracy, effectiveness, consistence, and computational 
efficiency of the estimate are the important practical criteria. The followings are 
commonly used estimation methods: 

4.5.1 Least square (LS) estimation 

(1) SAR Model 

Given an image on a finite lattice Q, its SAR model parameters can be estimated 
by applying the LS method to the model equation (4.9) over the entire lattice, which 
results in 

e = [ LZ(i,j)zT (i,j)r1
[ LZ(i,j)x(i,j)], 

(i,j)EQ. (i,j)EQ. 

where col means column. 

&2 =~ L[x(i,j) -El z(i,j)f, 
M (i,j)EQ. 

z(i,j) = col[x(i + u,j + v),(u, v) E 11], 

(4.27a) 

(4.27b) 

(4.27c) 

The LS estimate is very simple method, but is not consistent for non-unilateral 
neighbour sets even when M tends to infinity (Kas~yap and C~ella~pa 1983). 
However, because of its low computational cost, LS estimates are still wId.ely used 
either as an initial estimate for other iterative estimate methods, or as an estimate for 

segmenting purposes. 

(2) CMModel 

For the CM model, or GMRF model, it is also possible to use the LS method to 
estimate its model parameters in Eqn. (4.19). Kashyap and Chellappa (1983) hav.e 
modified the above LS estimate by using only interior pixels, and have proved that It 

yields an asymptotically consistent estimation: 
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A 

8=[ Lq(i,j)qT(i,j)rI ( Lq(i,j)x(i,j)) (4.28a) 
(i,j)En I (i,j)En I 

p=_l L(x(i,j)-BTq(i,j))2 
M (i,j)EnI 

(4.28b) 

where o.r is called the interior set, and o.ro.-o.B' where o.B is called the boundary set, 
o.B ={ (iJ)E 0., and (i+U,j+V)E 0., for at least one (i,j)E 11 }, and 

q ( i , j) = co I [x (i + u, j + v) + x (i - u, j - v), (u, v) Ell] (4.28c) 

(3) GD (MRF) Model 

The difficulty in estimating GD parameters is in the calculation of the partition 
function, which is an integration over all possible realisations of the random field 
under one set of parameters. Exact derivation of this function is almost impossible. 
Derin and Elliott (1987) proposed a parameter estimate method, termed the 
histogramming method by Gurelli and Onural (1994), which avoids the calculation of 
the partition function. We regard this method as a LS method. The method models 
each pixel's energy function as a joint co-occurrence probability of the pixel and its 
neighbours, which can be estimated using histograms. This process can form a series 
of difference equations. Then an estimate for the model parameter can be made by 
using LS methods to these equations. The method can be stated as follows: 

Denote {x(i+u,j+v);(u,v)E11} as pixels in the neighbourhood, 11, of the pixel x(i,j). 

Then we have 

where 

[ (
. .) ( . . ) ( ) ] -U(x(i,j)IT],8) 

P Xl,j,xl+u,j+v;u,VE 11 [(. ')1] e 
..:........:::.-...:...--=-:....--~-----=---------- = P Xl, j 11 = --.-. --

p[x(i + u,j + v);(u, v) E 11] Z[x(l,j)I11,8] 

Z[x(i,j) I11,8]= Le-U [x(i,j)IT],8] 

X(i,j)EQ 

where Q is the state space for each pixel, i.e. the grey levels of the image. 

Rearranging these two equations yield 

e-U [x(i,j)IT],8) Z[x(i,j)I11,8] 
= 

p[x(i,j), xCi + u,j + v );(u, v) Ell] p[x(i + u,j + v );(u, V) Ell] 

(4.29a) 

(4.29b) 

(4.30) 

Note that the right hand side (RHS) of this equation does not depend on the pixel 
x(i,j) , so should the left hand side (LHS). Therefore, for any two distinct pixels, e.g. 

x(iI,jI)' x(i2,h), we have 

-U[x(i
I ,jI)IT],8)]+U[X(I1,j2)1T],8] _ P[x(il,jI),xCiI +u,jI +v);(u,V)E11] =J!L (4.31) 

e - p[x(~,h),x(i2 + u,h + v);(u, v) E 11] P2 

where P and P2 are the joint probabilities for x(i1J1) and X(~2J2) with their own 
neighbo~rhoods respectively. The energy function is usually defIned as 
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U[x(i,j) l ll, e] = - L 9uv<1>[x(i, j), x(i + u,j + v)] (4.32) 
(U,V)ET] 

Taking the logarithm of Eqn. (4.31), we have a difference equation for the pixel pair 
x(i1J1) and x(i2J2) 

L9uv {<!>[X(z2,h),X(z2 +u,h +v)]-<!>[x(il,jl),x(il +u,jl +v)]}=ln(EL) (4.33) 
(U,V)ET] P2 

The value of RHS of (4.33) can be estimated using a histogram method. Taking as 
many as possible of distinct pairs from the image, the parameters e can be estimated 
using the LS method. 

This method works well provided that a large amount of image data is available, 
however for limited training data or unsupervised case, the histogram estimates for 
joint probabilities will be far from accurate. Gurelli and Onural (1994) have improved 
the performance of this method for the case of a small amount of image data. 

4.5.2 Maximum likelihood (ML) estimation 

The ML estimate is an optimal Baysian estimate for model parameters. It can yield a 
consistent and efficient estimate. However in many cases, even the log likelihood 
function can only be derived under some assumptions about distribution of the 
process, such as Gaussian. Maximising the likelihood function is not an easy task. 
Numerical optimisation methods, such as the Newton-Raphson approach, have to be 
used to obtain ML estimates. Generally, ML estimates are computationally very 
costly. 

(1) SAR Model 

For the SAR model, the joint distribution for an infinite lattice, i.e. (4.9), is 
extremely difficult to derive, but is available, i.e. (4.11), for a finite toroidal lattice SAR 
model. Kashyap and Chellappa (1983) have proposed an approximation to the ML 
estimate for the finite toroidal lattice SAR model in Gaussian noise case. Their 
method is an iterative scheme 

where 

1 1 1 e 1 =(R--S)- (V --U), t = 0, 1,2, ... 
t+ Pt Pt 

(5; = ~ L(x(i,j) - ei z(s))2, 
M (i,j)EQ 

t = 0, 1,2, ... 

(4.34a) 

(4.34b) 

S= LZ(i,j)zT(i,j); U= LZ(i,j)x(i,j), V= LCij' R= .~(SijSJ -CijCJ) 
(i,j)EQ (i,j)EQ (i ,j)EQ (t,) )EQ 

21t . 21t(. .) ( ) h] C. = col[cos-(iu + jv),(U,v) Ell], Sy" =col[sm- lU+ JV , U,V E 
Y N N 
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The initial value, 8 0, is chosen as 8 0=S-IU i.e. the LS t' t Th' . 
h ,es Ima e. err expenmental 

work as shown that this scheme yields an estimate close to the ML tim' d 
. ld d' es a te an also Yle s a goo estimate for the non-Gaussian variable case. 

(2) CMModel 

fu 
Tt·he ioint distribution for CM model is expressed by (4.23), then the likelihood 

nc IOn IS 

where 

Inp(x/8,p)=InIBII/2
_ M In2np-_l xTBx 

2 2p 

IBI= IT (1- 8 T
'fIij) 

(i,j)EO 

~2n 
'fIij =eo[{exp[v-l M (iu+ jv)],(U,V)Ell} 

(4.35a) 

(4.35b) 

(4.35c) 

For the ~arkov model~ it appears that the ML estimate of model parameters can only 
~e o.btmned by. applyIng numerical optimising methods in maximising the above 
lIkelIhood function (Cross and Jain 1983; Kashyap and Chellappa 1983). 

(3) Coding Method 

Coding methods for model parameter estimation were introduced by Besag 
(1972, cited in Besag 1974), initially for binary images and later for other cases. 

In the Markov model, the noise term has a correlative nature over a 
neighbourhood. Every site's conditional likelihood can not be simply summed to 
form the joint likelihood function for the whole lattice because of the dependence of 
neighbouring pixels. Only with the assumption of Gaussian structure for the noise 
sequence and toroidal lattice structure, does the joint log likelihood function have an 
explicit form (Be sag 1974; Kashyap and Chellappa 1983), which is still difficult to 
solve. 

In general, the lattice can be partitioned into disjoint sets (independent sets) of 
points called eodings. For example, the first order process has two sets of codings, and 
the second order process has four sets of codings, etc. For every set of codings, the 
log likelihood of each point can be summed because of independence of pixels in 
every set. Therefore a ML estimate of parameters can be obtained by maximising this 
sub-joint likelihood function. However, there is lack of a reasonable and rigorous 
ways for combining all coding estimates to form the final estimate because these 
estimates are dependent. Cross and Jain (1983) use a simple averaging over all the 
coding estimates, and find little variation in their examples. While in Kashyap and 
Chellappa's experiment (1983), each coding estimate differs considerably and the 
simple averaging over these estimates is not satisfactory. Geman and Geman (1984) 
also doubted the credibility and consistence of the coding method. 
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4.5.3 Maximum pseudo-likelihood (MPL) estimation 

Besag (1975, 1986) has proposed an alternative to the joint likelihood kn 
pseudo-likelihood (PL), which is defined by , own as 

IIp[x(i,j)lx(m,n),(m,n) =1= (i,j),(m,n) E Q;8] 
(i,j)EQ 

(4.36) 

. The method considers that t~e random ~ariables at each pixel are conditionally 
Independent. Although the PL IS not genuIne and is not always valid, it indeed 
ma.kes the parameter estimation much easier and can provide reasonably good 
estimates. 

(1) GMRF Model 

For the GMRF with conditional distribution of (4.21), the joint PL is 

PL = p' (x) = (2nprM
'
2 exp{ __ l xTBx} 

2p 
(4.37) 

Maximising the above PL is relatively easy. The results are the same as for the LS 
estimate. 

(2) GDModel 

For the GD distribution, although the joint distribution is explicitly expressed, i.e. 
(4.25a), the partition function, (4.25b), will involve an expectation over all possible 
realisations under the same parameter set, and it is often intractable. Therefore, the 
ML estimation is practically impossible to achieve. In PL methods, the independence 
of each pixels is assumed, so that the joint distribution is a multiple of each single 
site's conditional distribution, which is also a Gibbs distribution, and defined by 

1 1 
p(x(i,j)lx(i + u,j + v), (u, v) E lls;8) =-exp{--U[x(i,j)lll, 8]} (4.38a) 

Z" kBT Ij 

where 

Zij = L exp{-_I_U[x(i,j)11l,8]} 
(" ") kBT x l,j 

(4.38b) 

In each site's distribution, its partition function is simply a sum of conditional 
distributions over all possible pixel values at one site. Geman and Graffigne (1986) 
have proved the consistency of the MPL estimation. This method has been widely 
adopted in image texture analysis (e.g. Geman and Graffigne 1986; Cohen and 
Cooper 1987; Qian and Titterington 1991; Manjunath et al. 1990; Manjunath and 
Chellappa 1991). 

Parameter estimation is still a very importance issue in MRF or GD model-based 
image analysis. How to make an consistence and efficient estimate for non-lattice 
images, as in many segmentation problems, remains a challenging task. 
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4.6 Textured Image Processing 

In this section: some basic texture processing tasks are briefly reviewed. In the next 
chapter, we wIll focus on unsupervIsed segmentation of textured images. 

4.6.1 Region segmentation 

S~gme~ting ~n ima?e int? different regions is a process which assigns or groups 
pIxels In the Image Into dIfferent sets, each of which has similar properties. Texture 
segmentation in a broad sense is segmenting an image according to its textural nature 
or characteristics. Texture within the same region is always assumed to have some 
kind of homogeneity. 

There is no single standard approach to segmentation. The perceptual process 
involved in segmentation of a scene by the human visual system are not well 
understood. Segmenting methods are very dependent on the images to be analysed. 
We will concentrate on the segmentation based upon the textural properties of the 
image. Early segmentation work relied on texture feature extraction, feature distance 
measures and clustering algorithms. Recent segmentation work involves more 
accurate description of the textured images through some forms of statistical model 
and relies more on probabilistic measures. 

Referring to the prior knowledge about the texture image to be segmented, there 
are basically two categories of segmentation: supervised and unsupervised. In 
supervised segmentation, the features or model parameters of each region, are 
known, or can be obtained through the analysis of the sample images provided from 
known categories. While in unsupervised segmentation, these properties, sometimes 
even including the number of the regions, are not known or only partially known. 
They need to be learnt during the segmentation. Simultaneous parameter estimation 
and segmentation are often very difficult. It needs many possible interactive steps to 
update parameter estimation based on new segmenting results, and to re-segment 
the image based on these new parameters. 

In model-based texture analysis, there are two key difficulties in segmentation. 
One is to select an appropriate neighbourhood size over which pixels are regarded as 
dependent. Large neighbourhood size means more features are available, and may 
lead to more accurate description by the model. However, this creates a greater 
computational demand. Some approaches use a fixed neighbourhood size which is 
determined empirically. Others use a second- or third-order neighbourhood system 
which appears to be adequate in many cases. 

The other difficulty is to select an appropriate window size from which the local 
model parameters are extracted. Usually different window sizes are needed d~ring 
the segmentation. Sometimes the scale of the image is :aried in accordan~e ~Ith a 
multiresolution scheme. Some approaches use large wIndows at the begInnIng to 
obtain a coarse segmentation, then use smaller windows to obtain a ~er 
segmentation. This may avoid being trapped in a local mi~m~m when only USIng 
small initial windows. However there is no guarantee that It wIll lead to a globally 

optimal segmentation. 
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In recent years, maximum a posteriori probability (MAP) has dominated the MRF 
model-~ased texture segmentation. There ar~ two major reasons. One is the proof of 
the equ1valence of MRF and GD. The other 1S that simulated annealing or stochastic 
relaxat~on becomes a~ailable for obtaining a MAP segmentation even though 
theoretically the annealIng process needs a very long time to reach the optimum. In 
practice most applications use a fixed temperature or a fast annealing scheme. There 
are some alternatives, such as using mean field theory in the expectation­
maximisation method for searching for optimum (Zhang 1992) and using maximum 
posterior marginal probability estimation (Marroquin 1989; Comer and Delp 1994). In 
these segmentation approaches, the texture image is modelled as a hierarchical (or 
doubly) MRF-Gibbs model - texture region field (higher level) and texture grey 
image field (lower level) (Geman and Geman 1984; Cohen and Cooper 1987; Derin 
and Elliott 1987; Lakshmanan and Derin 1989; Manjunath et al. 1990; Manjunath and 
Chellappa 1991; Zhang et al. 1994). Usually they model the texture grey image field as 
a second- or higher-order Gaussian MRF model, while the texture region field a first­
order Gibbs model. 

Given a texture image x on a finite lattice .0, let the random field, Y={ Y(i,j), (i,j)E 

.o}, denote the underlying region field, where Y(i,j) takes values from the region label 
set R={ 1, 2, ... K}, and K is the number of region types. Y(i,j)=y(i,j)=l means that the 
pixel (i,j) belongs to region type l. In the texture grey image level, X={X(i,j), (i,j)E.o}, 

is a multi-random field. Among each region l, there is a random field which takes 

values from l-th region grey level set, G(l) = [gil) ,g~l) , ... g~~)], where qjl) denotes the 

number of grey levels in region l. 

The objective of MAP segmentation is to assign each pixel to a proper region 
label, i.e. form a region realisation Y=y respect to the observed image X=x, such that 
the posterior probability P(Y=y\X=x) has the maximum value. Using the Bayes rule, 
we can write 

P(X = xlY = y)P(Y = y) 
P( Y = yl X = x) = ~---.::....:..--.:..---=:..-

P(X = x) 
(4.39) 

Since P(X=x) is a constant referring to the region field Y, so maximising the above 
form is equivalent to maximising the numerator of the RHS of (4.39), i.e. the joint 
probability P(Y=y,X=x) = P(Y=y)P(X=xIY=y). Most existin.g algorithms .are aimed at 
finding a resolution which is as close as possible to the optimal MAP estimate. 

4.6.2 Texture classification 

Texture classification is to identify one texture from others. Usually one image 
contains only one class of texture. The knowledge about each texture class is learnt in 

a supervised fashion, i.e. from known class samples. 

Texture classification techniques have been widely used in natur.al ~mage 
recognition (e.g. Kashyap et al. 1982; Vicke~s and Mo~estino. 1982~, aenal 1mage 
classification (Weszka et al. 1976), and industnal product 1nspection (S1e~ et al. 19~8). 
With texture features, the classification rate can be much better ~han s1mply uS1ng 
spectral densities of the image (Kirvida 1976). In most CIrcumstances, the 
classification is required to be rotation invariant. Kashyap and ~otanzad (1986~ have 
proposed a rotation invariant SAR model, which uses a clfcular symmetr1c AR 
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m~del. The model averages the pixels of different angles from a circular 
neIghbourh~od. Mao and Jain (1992) have extended this model to multiresolution 
levels, and I~proved the classification rates. Cohen et al. (1991) proposed a MRF 
model to claSSIfy the rotated and scaled image textures. 

4.6.3 Image restoration 

The ultimate goal of restoration techniques is to recover the real image from a 
blurred, distorted, noisy or degraded one. Such blur or noise to the image may be 
caused by camera defects, digitalisation, transmission errors, etc. Restoration is 
oriented towards modelling the noise, blurring, or degradation processes, to applying 
the inverse process in order to remove the noise or deblur, and recover the original 
image. Gonzalez and Woods (1992) provide a review on this topic. 

Using texture models, e.g. MRFs and GDs, to describe the image attributes and 
noise nature has become increasingly popular. Geman and Geman (1984) first proved 
that the conditional probability distribution of the real image given an observed 
degraded image, i.e. the posterior distribution for restoration, is a Gibbs distribution. 
The restoration process is the MAP estimation. The conventional maximum entropy 
restoration is a special case of MAP estimation. They proposed a stochastic relaxation 
algorithm to search for the global optimal reconstruction. They have proved that 
under certain annealing schedules (though too slow to use in practice) the algorithm 
will converge to the minimum energy configurations of the field. Besag (1986) has 
proposed an iterative method for reconstruction known as iterated conditional modes. 
Woods et al. (1987) have proposed a MRF model to recover noised images. Bouman 
and Sauer (1993) have used a Gaussian MRF model to reconstruct images from noisy 
data with high edge-preserving ability. 

4.7 Conclusions 

In this chapter, we have reviewed the most commonly used descriptions and 
approaches for texture processing. In particular we have reviewed the SAR, MRF, 
and GD models for the representation of statistical textures and their parameter 
estimation methods. Although the multiresolution filtering methods, such as Gabor 
filter bank and wavelet decomposition, are becoming increasingly popular in the past 
few years, the MRF model-based approaches still have a very strong influenc~ on 
texture analysis, and can also yield the greatest performa~~e when used In a 
multiresolution scheme. There are also some methods combIrung the MRF model 
with multiresolution or multiscale wavelet decomposition methods (e.g. Bouman and 
Liu 1991; Liu and Yang 1994; Chen and Kundu 1994). In the next chapter we adopt 
the MRF model, particularly the GMRF, for textured image ~egmentation. ~ self­
organising neural network structure is proposed and Incor~orated In. the 
segmentation process. The network simulates, in part, the human VIsual ?~er~tlOns, 
but has a simple computational form, and can perform Bayesian clasSIfIcatIon or 

MAP segmentation. 
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Chapter 5 

SELF-ORGANISED SEGMENTATION OF 

TEXTURED IMAGES 

In this Chapter, a hierarchical self-organising learning structure is proposed for the 
unsupervised segmentation of textured images. The system combines model-based 
texture description especially Markov random field, a local model parameter 
estimator, a self-organising chain, and a local voting network. It learns to 
progressively estimate the model parameters for each texture region in an image 
and hence classifies the various region categories. The model parameters and the 
segmentation are updated iteratively, and their final estimates are obtained at the 
end of the process. The computational structure of the algorithm is relatively 
simple and efficient. Theoretical analysis of the algorithm shows that the algorithm 
will converge to the maximum likelihood or maximum a posteriori (if the Bayesian 
SOM is used) segmentation. A number of experimental results on various images 
are provided. A simple parallel stochastic boundary relaxation algorithm is also 
proposed for improving the segmentation quality at boundaries. The algorithm 
reconfigures a boundary in a local area encompassing a boundary according to the 
mean-square-error energies. It can be used after the segmentation as a post­
processor, or it can be incorporated within the segmentation process as a on-line 
validation scheme. Based on this idea, a simple on-line minimum mean-square­
error validation scheme is proposed for the validation of the number of regions, 
when this is not known a priori. Experiments have demonstrated the usefulness of 
this approach. 

5.1 Introduction 

Most recent work on model-based image segmentation employs MRF model 
parameters, clustering algorithms, and/or deterministic or stochastic. r~laxati?n, in 
order to obtain a maximum a posteriori (MAP) segmentation. One dIfficulty In the 
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unsuper.vised seg~entation is ~he lack of a priori knowledge. The model parameters 
of the dIfferent r~gIons, o~ which the se?mentation process depends, are unknown, 
or need to be estImated uSIn? the emergIng segmentation results formed during the 
process. Hence, these estImates are always inaccurate or incomplete. The 
segmentation has to be achieved by an iterative procedure (e.g. Lakshmanan and 
Derin 1989; Ma~jun.ath and Chellappa 1991; Zhang et al. 1994). Another difficulty is 
the accurate estImation for the model parameters. Maximum likelihood (ML) estimation 
is essentially impossible in most cases. Alternatives involve using pseudo-likelihood 
function to yield a maximum pseudo-likelihood (MPL) estimate, in which the 
independence of pixels has to be assumed. Even so the MPL estimate is still 
computationally intensive. 

The least-square (LS) estimate provides an easy and fast parameter estimation for 
the Gaussian MRF (GMRF). Although it can only achieve asymptotically consistency 
under restricted conditions, its implementation efficiency and low computational 
demanding make it a satisfactory estimator. In the first part of the proposed 
segmentation algorithm, an LS estimator gives rapid but coarse parameter estimates 
over the windowed pixel data. Then, a two-level SOM structure learns to classify and 
cluster these noisy, coarse parameters and to re-estimate them in order to reduce the 
nOIse. 

The SOM network is used in the proposed segmentation algorithm as the 
parameter re-estimator (after the local LS estimator) and region classifier. Lampinen 
and Oja (1989) proposed a self-organising auto-regressive (AR) model for segmenting 
textured images. In their algorithm, each texture was modelled as an AR series. 
SOM's competitive matching law and Widrow-Hoff least-mean-square learning rule 
were combined to obtain the model parameters. However, for two-dimensional 
images, causal AR series are not a valid assumption. In addition, their learning is a 
pixel-based adaptive least-mean-square-error method, though the estimation errors 
were averaged over the past. The textures are characterised by groups or blocks of 
pixels, rather than by individual pixels, therefore the inhomogeneity of each single 
pixel could heavily affect their parameter estimation and so the resulting 
segmentation. 

This chapter is organised as follows. In the next section, a detailed examination 
of the LS estimation and its performance over windows with different sizes are 
provided. In Section 5.3, the proposed segmentation structure is gradually 
introduced, together with various experimental results. Section 5.4 pr~sents an 
analysis of the optimality of the algorithm. It indicates that the BayesIan SOM, 
proposed in Chapter 3, can be used in the segmentation algorithm for an improved 
interpretation of the data structures. A parallel boundary relaxation algorithm is 
proposed in Section 5.5. A validation method given in Section 5.~ can be usef~J for a 
fully unsupervised situation, where the number of the regIOn clusters IS also 
unknown. 

5.2 On-Line Model Parameter Estimation 

Model parameter estimation is very important in model base? tex~re ~mage 
processing. In many applications, there is a requirement for on-hne eStima~IOn o~ 
model parameters. Therefore the estimation method has to be computationall;. 
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efficient, simple, and accurate. Among several existing estimation methods discussed 
in Chapter 4, ~he LS me~hod pro~ose~ by Kashyap and Chellappa (1993) is a simple 
but asymptotIcally conSIstent estimatIon. This LS method is also equivalent to the 
MPL estimation for G~RF as previousl~ not~d. Thus it is a good choice for practical 
problems. In the on-Ime parameter estimatIon, the whole region for each texture 
categories may be not available. The region areas are also variables. The estimation 
has to be operated in an incomplete data environment. According to the texture's block 
and local properties (i.e. texture properties are contained in a small block of the entire 
texture), we can use a small window (small compared to the image size, but large 
enough to recover the texture local properties) to estimate the model parameter in 
this window, which is considered homogeneous. In this section we shall first examine 
the LS estimation for the whole texture, and from various smaller windows. This is to 
pave the way for the next section, in which on-line estimation and segmentation are 
carried out simultaneously. 

5.2.1 Asymptotically consistent least-square estimation 

In zero-mean cases, the LS estimate for the parameter set of the MRF model is Eqn. 
(4.28). The calculations are straightforward. q(i,}) is a neighbouring pixel pair vector, 
q(i,j)q T(i,j) is a kxk matrix (k=2, 4, 6, ... for the first-, second-, third-, ... order models 
respectively). The summation in Eqn. (4.28a) includes all pixels in the interior set (Le. 
excluding the boundaries). Care should be taken when using multiple-grey-Ievel 
images and high-order models, since the determination of the matrix L<}(i,j)q T(i,}) 
might result in overflow of variable bytes if the image size is very large. A solution is 
to normalise the data, so each pixel will be within [0,1) range. When the mean of the 
image is not zero, the pixel values in Eqn. (4.28) should be subtracted by the mean 
value. The mean value itself should be also considered as a parameter in this case. A 
proper normalisation to the variance terms is also needed in practice. We propose to 
use the sample's variance to normalise to the model's variance (for binary textures, 
such normalisation is not necessary). The normalised variance is 

A, 
0'= 

"2 1 "" ( .. ) e"T ( .. )]2 0' =- "",[x l,j -m- ~ q l,j 
M' (0 0) r. I,] Eu[ 

~ I)x(i,j) - m]2 
M (i,j)EQ 

(5.1) 

where m is the sample mean over the entire texture on il, e is the estimat~ of t~e 
parameter set, x(i, j) is the pixel value at point (i, j), M is the total number of pIxels In 

il, and M' is the total number of pixels in the interior lattice. 

Consider first some synthetic textures and their corresponding MRF parameter 
estimates using the LS method. Several textures were simulated using the method 
described in Section 4.3.3 with the parameter settings given in Table 5.1. The tw.o gr~y 
levels, black and white, were set to the equal probability. The results shown In FIg. 
5.1 are after 100,000 iterations, and are 128x128 pixels squares. 
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setting (a) (b) (c) (d) (e) (f) 

a -3.0 -4.0 6.0 0 -3.0 -2.0 bll 3.0 2.0 -3.0 3.0 3.0 0.0 bl2 0.0 2.0 -3.0 -1.0 3.0 0.0 b21 3.0 2.0 -3.0 -1.0 -2.0 0.0 b22 0.0 2.0 -3.0 -1.0 -2.0 3.0 

Table 5.1: Simulation parameter settings. 

(a) (b) (c) 

(d) (e) (f) 

Figure 5.1: Some synthetic textures (128x128) . 

The corresponding estimation results of their second-order MRF model are listed 
in Table 5.2. It can be seen that these parameters are distinctive, and follow the 
simulation parameter settings. 

para- Fig. 5.1 Fig. 5.1 Fig. 5.1 Fig. 5.1 Fig. 5.1 Fig. 5.1 
meters (a) (b) (c) (d) (e) (f) 

O~ 0.2887 0.1595 -0.2460 0.3209 0.3573 -0.0036 

On -0.0353 0.1648 -0.2455 -0.1006 0.3498 0.0032 

<hI 0.2741 0.1077 -0.2631 -0.0586 -0.2385 0.0036 

On -0.0071 0.1052 -0.2563 -0.0482 -0.2320 0.4459 

0' 0.3144 0.3031 0.3219 0.3120 0.3485 0.3436 

Table 5.2: Parameter estimates for the textures in Fig. 5.1. 
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Examples of 8-bit natural textures (128x128 in size) are sho . p' 5 
B d w n In Ig 2 They 

are ro atz (1966! textures. Their corresponding third-order GMRF' . 
parameters were estImated as shown in Table 5.3. model 

(a) Grass (D9) (b) Leather (D24) (c) Pigskin (D92) 

J. 

j i l' ! ••. ! j •. 

: . i ~ 

1./,1 
i dr 
If .. f Jl I ; J .. .; .. 

(d) Straw (DIS) (e) Treebark (DI2) (f) Woodgrain (D68) 

Figure 5.2: Natural textures examples (128x 128). 

para- Grass Pigskin Leather Straw Tree- Wood-
meters bark grain 

811 0.3594 0.4812 0.2008 -0.0775 0.4706 0.2292 
812 0.6140 0.3456 0.5754 0.5414 0.5012 0.5420 

821 -0.1707 -0.1111 -0.0329 0.0443 -0.1871 -0.1184 

822 -0.1520 -0.0986 -0.0886 0.2082 -0.1708 -0.1097 

8:n -0.0277 -0.0761 -0.0198 -0.0027 -0.0535 -0.0001 

8:12 -0.1505 -0.0517 -0.1493 -0.2167 -0.0696 -0.0433 

m' 0.4687 0.6423 0.5091 0.6067 0.5653 0.7289 

cr' 0.2506 0.3442 0.3710 0.2334 0.1637 0.1288 

Table 5.3 : Third-order GMRF parameters estimated from the textures shown 
in Fig. 5.2. Here m' and cr' are the normalised mean standard variance. 

5.2.2 Window-based model parameter estimation 

The above estimation examples are applications of the LS estimate method to an 
entire texture region (one texture category) . The parameter set reflects the average or 
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overall properties of the texture. For texture classification tasks, such a parameter set 
can be employed as th~ represe.ntative ~eatures for each texture. Comparison among 
the ~~rat~eter sets uSIng EuclIdean dIstance metric (or others) should give good 
classIfIcatIon performance. In model-based segmentation problems, model 
parameters are also the major representing figures in distinguishing different texture 
regions. However, the overall estimation of one texture region may not be available at 
least initially as the configuration of the regions still need to estimate. To obtain an 
accurate estimate of parameter set for each region so as to obtain the correct region 
segmentation under unsupervised situation, is one of the most challenging tasks in 
image processing. In the next section, a hierarchical structure for achieving such an 
objective is proposed, in which the parameter estimation is from various local 
windows. Therefore, we now examine the case where estimates are from only part of 
an entire region, and compare the difference between these estimates and those from 
the whole region. 

Since texture is a property of a group of neighbouring pixels rather than isolated 
pixels, basic texture characters are preserved in local areas. So recovering parameters 
from a smaller window is feasible; and the resulting estimate will be an 
approximation to the estimate for the whole region. The accuracy of this 
approximation depends on the size of the window (i.e. the larger the better). 
However large windows make good segmentation less likely, since they are more 
likely to contain more than one texture region so the homogeneity assumption of the 
window will not be valid. The correct window size is one of the key problems in the 
model-based segmentation. The window has to be small enough for accurate 
segmentation, but large enough to represent the texture characteristics. The low limit 
of the window size depends on the nature of the texture and recognition requirement. 
For example, in a brick-wall texture, a small window can only tell the properties of 
the brick, a window large enough to cover several bricks will show the characteristics 
of the wall. Usually homogeneous textures, e.g. synthetic textures, can preserve their 
properties in a very small area, but most natural textures need a larger window. We 
shall discuss this aspect later. 

As window-based estimation provides an approximation for the entire region 
parameters, we can model such an estimate as a noisy estimate, i.e. 

a(t) = 8 * +n(t) (5.2) 

where 8* is the correct parameter set (including 8ll , 812, 821 , .... , m (or m'), cr (or cr')); n(t) 

is the noise term, which can be regard as normally distributed; and t is the time step. 

This hypothesis describes the estimate from a window as the real parameter plus 
a random noise. As the iteration progresses, the actual parameters can be recovered 
by applying an appropriate statistical technique to th~ window estimates. W~ now 
give some examples of window-based parameter estImates for the synthetIc and 

natural textures shown in Figs. 5.1 and 5.2. 

Fig. 5.3 shows 50 estimates of the second order GMRF parameter estima~es from 
a 30x30 window which is randomly located on the image Fig. 5.1 (a) at each tI~e. We 
split the parameters in pairs in order to visualise them. As we can ~ee, ~Indo:v 
estimates are well distributed around the estimate from the whole regIOn (gIVen In 

Table 5.2, and marked in dark squares). The distribution in the variance p~ramete~s 
has the same appearance as these two pairs; and examination on the other Images In 

Fig. 5.1 gives similar distribution results. 
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Figure 5? : ~indow-based parameter estimates from the synthetic texture Fig. 
5.1 (a) .wIth wmdow size of 30x30. Dark -square represents the estimate from 
the entIre texture. 
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Figure 5.4: Window-based parameter estimates from the natural texture Fig. 
5.2(a) with window size of 30x30. Dark-dots represent the estimates from the 

whole texture. 

For natural texture images, the hypothesis is also acceptable. A 30x30 window 
has been used on the images shown in Fig. 5.2, their MRF parameters estimated from 
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the windowed regions support Eqn. (5.2). Here we just present the results of one 
texture - grass. Its third-order GMRF parameters for 50 estimates are shown in Fig. 
5.4. The parameters: 811 and 812 (first-order); 821 and 822 (second-order); 8

31 
and 8

32 
(third-order); m' and cr' (mean and variance), have been grouped into pairs so that 
they can be shown in one figure for convenience. 

As we can see the estimate from the whole image is approximately the statistical 
centre of the window-based estimates. In other words, if the mean calculation is 
applied to the window-based estimates, then the real parameter can be recovered. 

The window size certainly controls the accuracy or dispersion of the estimates. 
The smaller the window the larger variance in the estimates. We use the total 
variance, which is a sum of the variances so 50 such estimates, to describe the 
influence of the window size. Fig. 5.5 shows the results for two examples, synthetic 
texture Fig. 5.1 (a) and natural texture Fig 5.2 (a). The window size is varied from lOx 
10 to 50x50. At each size, 50 estimates from the window were obtained. Such figures 
can provide guidance for selecting window size. As we can see when the window 
size is smaller than 10xl0, the estimate from the window is generally very unreliable 
for both synthetic and natural textures. If the window size is 20x20 or over, the 
window-based estimate will be sufficient for synthetic or very homogeneous natural 
textures. For other natural textures, however, the minimum window size needs to be 
about 30x30. After post-processing of these raw estimates, a near-optimal estimate of 
the model parameters can be obtained. 

0.25 -.- Fig. 5.1 (0) 

~ ~ Fig. 5.2 (0) 
C.J 

== ~ ... 
$.0 
~ 
;;.. -~ .... 
0 
~ 

0.05 • 
0 

10 20 30 40 50 

Window diameter 

Figure 5.5: Variances of window-base estimates vs window sizes. 

In the next section, these estimates, instead of raw pi~el data, will be used as 
input data. An SOM network is used to further remove nOIse and so to converge to 

. A h t' the SOM network also acts the real parameter set for each regIOn. t t e same Ime, . e and 
as a classifier which assigns the current parameter estimate to one regIOn typ , h 
produces a winning signal to the upper segmenting layer. The segmenting layer t en 
updates the region type of the area that the current window covers. 
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5.3 Hierarchical Self-Organised Segmentation Structure 

5.3.1 A shrinking window to emulate preattentive and attentive . . 
VISIons 

When we look at an image, first we glance it, i.e. we take a general look on the whole 
image or large parts of it. Then we ?radually f~cus on to local details in the image. 
These are two well-known human vIsual operations: preattentive and attentive vision 
which were briefly described in Chapter 4. To apply these principles to model-based 
segmentation and estimation problems, we can use a shrinking window, whose size 
is . very lar~e a~ the beginning a~d .then gradually shrinks to small sizes. Large 
wIndows wIll gIVe an overall descnption about the image and its region distribution, 
while small windows can give more accurate descriptions especially at the region's 
boundaries. 

The preattentive and attentive vision principle can also be applied in other ways. 
For example, one can first use large windows to look for large homogeneous blocks, 
and use them as region bases. This process corresponds to the preattentive phase. 
Then small windows can be used to refine the area for each region by adding or 
subtracting small window areas round the region boundaries. This process 
corresponds to the attentive vision phase. 

5.3.2 A primary self-organised segmentation (SOS) network 

From the analysis of window-based parameter estimation in previous sections and 
analysis of SOM performance, we can now develop a basic network for textured 
image segmentation using an MRF model and SOM network. The general structure is 
depicted in Fig. 5.6. 

I1(t) represents the shrinking random window whose size shrinks with time and 
whose location is chosen randomly at each time step. The parameter estimator 
performs a crude estimate for the area that the current window covers. Then the 
estimating SOM chain, will remove noise and converge to the mean or true parameter 
set for each region. At the same time, the SOM chain also acts as a classifier, .w~ch 
assigns the current parameter estimate to a region type, and produces a winrung 
signal for the top layer, namely the segmenting layer. This segmenting l~yer then 
updates the region type of the area that the current window covers, accordI~g t~ ~he 
region type of the parameter estimate. The function of this layer is a sIm~hfied 
"winner-take-all", or more accurately, "winner-change-all" (WCA). Although I.n the 
original idea, the segmenting layer was to be a full SOM network (in 2-D wIth as 
many neurons as pixels), so that the neurons in the segmenting layer would converge 
to the means of the pixel labels. However, the simplified structure can produce very 

good results. 
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e(t) 

Segmenting Layer 
(segmented image) 

SOM Chain 

LS Parameter Estimator 
(on window II(t)) 

Textured Image 
(to be segmented) 

Figure 5.6: Self-organised segmentation structure. 

The algorithm is given below: 

Self-Organised Segmentation (SOS) Algorithm: 

For a textured image {x(i,j),(i,j) E Q}: 

(0) Initialisation: The initial weights of the SOM chain are chosen randomly. The 
number of neurons in the chain is set by the number of texture regions in the 
image, K, which is assumed known, or the number of texture regions that 
we wish to segment into (otherwise class number validation is needed, see 
Section 5.6 for more details). Set the initial window size to a large value, say, 
half of the image size. Set a small threshold £>0. 

(1) Window-based parameter estimation: randomly place the window, I1(t), centred 
on pixel x(i, j) (ensuring the window is within the image lattice); extract the 
model parameters by a LS estimator (see Section 4.5.1 and Section 5.2.2) from 
the area that the current window covers. 

(2) Winner selection: 
A 

v(t)=arg min d[Wk (t)-8(t)] (5.3) 
k=O,l, .. K-l 

where {Wk(t), k=O, 1, ... K-l} is the weight vector at time t, whose dimension is 

equal to that of the parameter vector, 8, and e (t) is the parameter estimate 

of I1(t). 

(3) Update the weights of the winning neuron and its neighbouring neurons 
according to the SOM algorithm, i.e. 

(5.4) 

where llv is the neighbourhood of the winner v (including v). 
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(4) Update the segmenting layer: 

labe l [x (i , j ), ( i , j ) E TI (t ) ] == v (5.5) 

i.e. "winner-change-all". 

(5) If I[Wv(t + I! - Wv(t)] / Wv (t)l~ E, then halt the process with the final 
segmented Image at the segmenting layer and th . d b e regIOns parameters 
repr~sente y the neurons weights. Otherwise go back to t (1) and 
contInue. s ep 

Experiments using the SO~ algorithm have been undertaken on both synthetic 
and natural (Brodatz) compOSIte textured images (128x128 · . ) S . . . . In SIze . orne typIcal 
results ~re ?Iven In FIg. 5.7. As we can see, the algorithm can correctly segregate the 
comp.osite Images. Although t~ere are some errors at the region boundaries (and 
occasIOnally elsewhere), the main part of each region has been correctly assigned . 

(a) (b) 

(c) (d) 

Figure 5.7 : Segmentation results of the SOS algorithm. 

5.3.3 A hierarchical self-organised segmentation (HSOS) network 

The reason for the above errors is the inhomogeneity even within a single texture 
region. This can be overcome by using larger windows so that smoothed or averaged 
texture parameters can be derived from the window. However larger windows give 
poor resolution at texture boundaries. The segmenting layer's WCA algorithm does 
not take account the previous segmentation results. Going back to the original idea 
(i .e. fully implementing a 2-D SOM for the segmenting layer) would give an ideal 
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solutio~. However, it would be computationally ve costl In 
alternative scheme called the local voting (LV) h ry r ~tead, we can use an sc erne to sImplIfy t . 
LV layer takes into account the results (region lab 1) f h . ~ompu ation. The 

1 b 
. e s 0 eac 1 tera tion ad' th 

true a el of a pIxel according to its highest label t Th : n gIVes e vo es. e structure IS' . F 
5.8. The algorithm is stated below (steps 1-3 are similar to th SOS 1 . gIven In Ig. e a gonthm): 

II(lj 

n 

Segmenting Layer 
(segmented image) 

Local Voting Layer 

SOM Chain 

LS Parameter Estimator 
(on window II(lj) 

Textured Image 
(to be segmented) 

Figure 5.8: Hierarchical self-organised segmentation network. 

Hierarchical Self-Organised Segmentation (HSOS) Algorithm: 

For a textured image {x(i,j),(i,j) EO}: 

(0) Initialisation: The initial weights of the SOM chain are chosen randomly. The 
number of the neurons in the chain is chosen as the number of texture 
regions in the image, K, which is assumed known. Set the initial window 
size to a large value. Set an integer threshold £>0. Set each vote of the 
segmenting layer to zero: {Li/O)=O, (i, j)E O}, where Lij is the voting vector for 

the pixel at (i, j), which has K elements {zg,zt, ... Z{-I} corresponding to the 

votes for each region class member. 

(1) Window-based parameter estimation: randomly place the window, TI(t), on the 
image, and assume its centre is at pixel x(i, j); extract the model parameters 

using a LS estimator from the current window. 
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(2) SOM winner selection by 

v(t)=arg min d[Wk(t)-S(t)] 
k=O,l, .. K-l (5.6) 

(3) Update the weights of the winning neuron and its neighbo . b unng neurons y, 

Wk (t + 1) = Wk (t) + aCt )h(t)[ S(t) - Wk (t)], 'v' k E llv (5.7) 

(4) Update the voting vectors by 

Iij (t + 1) = Iij ( t) + 1 
k k' (i,j)ETI(t),'v'k:;t:v Ii} (t + 1) = Ii} (t) (5.8) 

(5) Winner. in. the segmenti~g layer: The largest voting element of each voting 
vector IndIcates the regIOn class for this pixel, i.e. 

label[x(i, j), (i, j) E .0, t + 1] = argmax {l~ (t + I)} 
k lj 

(5.9) 

(6) If I <>{labeI[(i,j),t + l]-IabeI[(i,j),t]}sc, (where o(x)=1, ifx=O; or 0 
(i,j)EIl 

otherwise), then halt the process with segmented image at the segmenting 
layer and regions parameters represented by neurons' weights. Otherwise 
go back to step (1) and continue. 

5.3.4 Experimental results 

Extensive experiments using the HSOS algorithm for segmenting both synthetic and 
natural textured images have been carried out. Typical results are given in Fig. 5.9 
through Fig. 5.12. Only a second-order MRF model (and a single resolution) was used 
in these tests. A higher-order model and/or multiresolution would improve the 
accuracy of the segmentation. What we are demonstrating here is the operational 
ability of the HSOS algorithm in segmenting textured images. A theoretical analysis 
of the optimality of the SOS and HSOS algorithms will be given in the next section. 
As can be seen from the figures, the results are promising and very close to the actual 
boundaries. The results of the HSOS network are smoother than those of the SOS 
algorithm, since it uses one more layer (i.e. LV) for performing a spatial median filter 
function. 

(1) Synthetic Textures 

The images are 128 x 128 in size and are composed of two binary synthetic 
textures (of several shapes). Five sets of results after 2,000 iterations are shown in Fig. 
5.9, where left-hand-side (LHS) images are the composite images; middle images are 
the first layer'S output, corresponding to the SOS segmentation result; and right­
hand-side (RHS) images are the final layer's output (i.e. the results of the HSOSr As 
we can see the final segmentations are much smoother and cleaner than th~ mIddle 
layer outputs. The algorithm has consistently produced very good segmentatIon. 
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(a-C) (a-SOS) (a-HSOS) 

(b-C) (b-SOS) (b-HSOS) 

(c-SOS) (c-HSOS) 

(d-SOS) (d-HSOS) 

(e-C) (e-SOS) (e-HSOS) 

Figure 5.9: The HSOS algorithm on synthetic textured images (128x 128). 
(x-C): Composite images; (x-SOS): Outputs of the first layer; (x-HSOS): Final 

segmenting outputs. 
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(a-C) (a-SOS) (a-HSOS) 

(b-C) (b-SOS) (b-HSOS) 

(c-C) (c-SOS) (c-HSOS) 

(d-C) (d-SOS) (d-HSOS) 

(e-C) (e-SOS) (e-HSOS) 

Figure 5.10: The HSOS algorithm on natural textured images ( 128x 128). 

(x-C): Composite images; (x-SOS): Outputs of first layer; (x-HSOS): Final 

segmenting outputs . 
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(2) Natural Textures 

The images shown in Fig. 5.10 are 128x128 in size The com 't' . POSI e Images are 
taken from the Brodatz album (Brodatz 1966) They are in 8 b't I I 

. - 1 grey eve s. The 
textures used are grass (D9), tree bark .(D12), straw (DIS), calf leather (D24), beach 
sand (D2~), water . (D38), wood graIn (D68), and pig skin (D92). The final 
segmentatIOns (RHS Images) are also much smoother and contaI'n les . th th .,. s nOIse an e 
fIrst layer s outputs (mIddle images). Compared to the synthetic textures, natural 
textures. are less homogeneous, so slightly more noise is expected especially at 
boundanes. However the results are still very good. For example, the tree bark image 
in Fig. 5.10 (b) and (d) is very inhomogeneous and has large block attribute 
however, it has been correctly segregated. s, 

(3) Multi-Region Textures 

In the previous two-region texture examples, the neighbourhood function of the 
SOM is not important, as long as it can bring both neurons into activity (this can be 
achieved by allowing the non-winning neuron to undergo partial learning during the 
first few iterations, say 10). The two neurons will always globally segregate the 
image. However, for multi-region textures, allowing all the neurons to be active is not 
sufficient, since one neuron may cover two regions, while two other neurons may 
share one region (i.e. split one texture region into two, especially when this region is 
not very homogeneous), or one neuron may converge to some boundary areas, where 
the parameter estimates are always noisy and poor. These effects will lead to an 
incorrect segmentation. In such cases, the neighbourhood function plays an 
important role in allowing each neuron response to just one texture region so forming 
a globally correct segmentation. We have found that maintaining a large 
neighbourhood for a longer time is helpful in forming globally correct segmentation. 
During this stage (global ordering stage), we also found that a low-noise parameter 
estimate is also helpful. Thus a small (but not too small) estimating window is used 
during this stage, otherwise a larger window will have a greater probability of 
overlaying a number of regions. A proper validation scheme may be needed to assist 
in the segmentation process (see Section 5.6). Here we will just consider the role of 
the neighbourhood function. 

In our experiments, the neighbourhood of the SOM chain was kept active for the 
first 1000 iterations. The amplitude of the neighbourhood function for the nearest 
neighbouring neurons is initially set to 0.6, decreasing linearly with time to 0 at the 
1,000th iteration, and then remains at O. The amplitude of the neighbourhood 
function for the second nearest neighbouring neurons is initially set to 0.2, decaying 
to 0 at the 1,000th iteration, and remains at O. The segmenting process can be halted 
by monitoring the changing rate in the final layer, or simply by setting a fixed 
iteration numbers. Figures 5.11 and 5.12 show some typical results of the HSOS 
algorithm for some 4-region synthetic and natural textured images after 5,000 
iterations. In general, more noise exists in natural textured imag~s .since th~y are less 
homogeneous than synthetic textures. For this reason, the mIrumum SIze of the 
estimating window for the natural textures should be larger than that for the 
synthetic textures. In our experiments, it was set to 20x20 and 15x15 for the natural 
and synthetic textures respectively. Good learning and ordering o~ the SO~ d~pend 
on the appropriate shrinking rate of the neighbourhood function (which ~s s~t 
empirically in most cases) and may also depend on the input sequence (which IS 

usually a purely random sequence). 
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(a-C) (b-C) 

(a-SOS) (b-SOS) 

(a-HSOS) (b-HSOS) 

Figure 5.11: The HSOS algorithm on multi-region synthetic images (256x256). 
(x-C): Composite images; (x-SOS): First layer outputs; (x-HSOS): Final 

segmentation outputs. 

116 



(a-C) (b-C) 

(a-SOS) (b-SOS) 

(a-HSOS) (b-HSOS) 

Figure 5.12: The HSOS algorithm on multi-region Brodatz images (256x256). 
(x-C): Composite images; (x-SOS): First layer outputs; (x -HSOS ): Final 

outputs. 
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(a) 

(b) 

(c) 

Figure 5.13 : The HSOS algorithm on a real image (256x256). 
(a) A landscape picture; (b) Final output of the HSOS ; (c) HSOS segmentation 

but with pixel-value-based inputs. 
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(4) Aerial Images 

The HSOS a~gorithm has als.o been tested on a typical aerial photograph. Fig. 5.13 
(b) shows the (fInal) segmentatIon result for the image of Fig. 5.13 (a), which is a 
picture of a university landscape. Four neurons were used in the SOM chain of the 
HSOS structure, together with a second-order MRF model. The result shows that the 
se~m~ntation has conver?e~ to ~our basic meaningful region types: trees, grass, 
bUIldIngs, and roads. This IS qUIte good segmentation for a totally unsupervised 
system. There are some errors in the segmentation, especially in the tree region. 
However the building areas have been clearly segregated, as have the roads. 

In image processing, there are basically two kinds of inputs: pixel-based 
representation and feature-based representation. In the previous algorithms, the 
inputs to the network are the MRF model parameters or features that describe the 
spatial relationships between neighbouring pixels. Segmentation of such images can 
also been undertaken directly by using raw pixel values in a window (e.g. 6x6) as the 
input to the HSOS structure (i.e. without the LS estimator, see Fig. 5.8). The inputs 
are directly fed to the SOM chain layer, the remainder of the system remains 
unchanged. Different areas will converge to their corresponding neurons. Since there 
is no LS estimator, the segmenting speed is much faster. However, in this case, the 
weight dimensions are increased to 6x6, instead of just six (for a second-order MRF 
model). Fig. 5.13 (c) shows the result of such an approach. The segmentation has also 
meaningfully converged to four basic regions. It shows a very good segregation of 
the tree and grass areas. The road area is also very clear in most places, except for a 
block area on the left. In general the result is better than that of Fig. 5.13 (b), because 
in this case regions are not "pure" textures or less texture-based, so image data can be 
used directly as inputs. 

5.4 Towards the Optimal Segmentation 

5.4.1 The optimality of the SOS and HSOS algorithms 

The SOS algorithm proposed in the last section ~ses the local properties of tex~res 
and optimal estimation and classification propertIes of neural n~twor~s. It consIders 
the segmentation as a classification or clustering problem of vano~s wI.nd.ows placed 
over the image to be segmented. It groups local windows WIth sinular t~xture 
attributes and labels the blocks with region types. It regards the label of each Imag~ 
pixel as ~ unknown constant (instead of a random variable). The advantages an 
disadvantages of this algorithm can be listed below: 

Advantages: 

* Pre attentive and attentive vision based search strategy. 
* Simple computational structure. 
* Fast convergence (only feedfor,:~rd p~oc~ss) .. 
* No need to compute the image JOInt dIstrIbutIon. 
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Disadvantages: 

* Local minimum problem (which also exists for most other al . fum ) 
* Not globally optimal. gon s . 
* Some errors at boundaries . 

. ~he HS~S alg~ri~hm is similar to SOS, but with an extra local voting laver. The 
prInCIple behind this IS that the LV layer can remove noise in the label field - hich' 

'd d ,w IS 
conSI ere as unknown constant values. As the estimating windows are often 
re?ularly shap~d, which will not usually match the actual boundary shapes, so 
WIndows may he across boundaries, and noise is unavoidable in the SOS's labelling 
stage. The. voting vectors in the LV ~ayer of the HSOS structure act like fuzzy 
membershIp rules, and produce a medIan average of a pixel's region label from the 
results of previous various windows around it. When the noise distribution is 
symmetric around the true label value, the median is equal to the mean. So the HSOS 
algorithm will give a better performance especially at boundaries. We have seen this 
effect in the last section. Further improvement to the boundary classification can 
achieved by applying a relaxation algorithm, which will be introduced in Section 5.5. 

As we have shown in Section 5.2, window-based parameter estimates will be 
approximately Gaussian distributed around the actual parameter for the whole 
region. We have modelled this relationship by Eqn. (5.2), i.e. the real parameter with 
a noise term. In SOS structure, the SOM chain will eventually filter out the noise and 
converge to the actual parameter set of the texture regions. Therefore, for each texture 
region, from the algorithm's distance matching law, its region-joint-distribution, or 
region-joint likelihood function, will be maximised, since 

In p[xI0;C 00)] z In p(xl 0 i *) > In p[xI0, V0 * 0 i ( 00 )], XEQ· 
I 

(5.10) 

under the assumption of well-separated classes, or equal variance and probability for 
each class. This will lead the SOS and HSOS algorithms to an approximate ML 
segmentation. However this regional optimum may not lead to a global optimu~~ as 
the underlying assumptions may not be satisfied in real problems. S~ th~ JOInt­
likelihood function of the whole image may not be maximised. However In this case, 
even the ideal optimal MAP segmentation will contain a certain amount of 

segmentation error. 

5.4.2 Bayesian SOM for the SOS and HSOS algorithms 

For a globally optimal segmentation, the assignment of th~. esti:nating windo,: to a 
label class should be according to its posterior probabIlity. I.ns~e~d of a. ~Im~le 
Euclidean distance. This is the so-called Bayes law, aimed at mInImISIng cl~ssl~ca~on 
errors. In window-based segmentation, the problem becomes a mi.xtu.re dlstr.lbu:a~~ 
(MD) problem. Window estimates are approximately normally dIS.tributed In f 
region class. We have already proposed a Bayesian SOM (BSOM~Insg~apt~r~s~~ 
such problems. When replacing the SOM algori~hm by the BSOM,. t e f an f \ fAP 
algorithm will become globally optimal algOrIthms and result In a °lrm "f~ "boons 

" b d rvised texture c aSSI lCa segmentation in the sense of window- ase unsupe 
instead of the whole image sense (from Eqns. (3.41) and (3.19)). 
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(a-C) (a-SOM) (a-BSOM) 

(b-C) (b-SOM) (b-BSOM) 

(c-C) (c-SOM) (c-BSOM) 

(d-C) (d-SOM) (d-BSOM) 

Figure 5.14: Comparison of the SOM and Bayesian SOM in 
the SOS or HSOS system. 

(x-C): Composite textured images (128x128); (x-SOM): Results using SOM; 

(x-BSOM): Results using Bayesian SOM. 
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Fig. 5.14 shows s~me typical examples of applying the BSOM in the SOS 
network. They are the duect outputs of the SOM chain (i.e. the first layer of the HSOS 
network). As we can see the results of using the BSOM are better tha th . '. nose usmg 
standard SOM, espeCIally when the vanances or the sizes of different reoi . . o~ons are not 
the same. An Interesting example is shown in Fig. 5.14(a). The results from the SO\1 
and BSOM are both very ?ood, and are almost identical. It would be expected. This is 
because that the two regIOns have the same variance and size. In such a case the 
BSOM is equivalent to the standard SOM. Although in the HSOS algorithm, th~ LV 
layer can clean up the noise and provide a smoother boundary, a better interpretation 
of sample distributions could be useful. 

5.4.3 Towards the common ML and MAP segmentation 

In statistical model-based segmentation of textured images, pixel grey levels are 
modelled as random fields, usually GMRF, while labels of pixels are also considered 
as a random field. Such doubly random field structures for describing noisy image 
and textured images were first adopted by Derin and Elliott (1987) and Cohen and 
Cooper (1987), and have since become very popular. The idea is that neighbouring 
pixels tend, or are more likely to have, the same region label. The label field is often 
modelled as a simple first-order GD or GRF. 

In such a doubly random field model, the entire random field can be expressed 
as a hierarchical random field: Y=[Xv' Lv' (i, j)E Q], where [Xv' (i, j)E Q] is the pixel grey 
level field (intensities) at the lower level, while [Lv, (i, j)E Q] represents the label field 
at the higher level. Usually at the lower level, the intensity field is described through 
a conditional GMRF, whose distribution can be expressed as (see Chapter 4) 

. . IB(l)11I2 1 T T 
p[X-. =x··14· =1 (l ])EQ]= 2 MI2 exp{- 2 x B (l)x} (5.11) 

l) l} IJ " [ 2 ncr (l ) ] 2 cr (l ) 

where x is a raster scan vector of all pixels whose label belongs to class 1. 

At the higher level, the label field is often described by a GRF~ as the 
neighbouring pixels tend to have the same label or region cla.ss, a~d the regIOn areas 
are more likely to have patchy-like blocks rather than spreadIng pIxel~. It seems that 
in natural images the distribution of texture regions can be well descnbed by such a 
random field. However, some work has shown that man-made scenes (e.g. reT~~~ 
shapes) can also be well represented by such models (Cohen and Cooper , 
Geman and Graffigne 1986, Lakshmanan and Derin 1989). Such a model can be stated 

as 

1 
p[ £'. =1,(i,j)EQ]=-exp{-U(I)} 

l} Z 
(5.12) 

f . hi h . s often a function of 
where Z is similar to (4.25b), U(l) is the energy unction, weI 

pair cliques, i.e. 

k 

U(l) = L L VCj (I) 
(5.13a) 

CjEC ;==1 
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(5.13b) 

where i denote the clique type, and ~. is its corresponding 
• 1 parameter The numb f 

the clIque types, k, depends on the order of the model. . er 0 

The aim of the segmentation of such doubly random field d 1 . . 
1 b 1 f· ld . " mo e s IS to es tima te 

the a e Ie gIven a realIsatIon of the multi-texture fields' h th . . . . . ' I.e. c oose e L which 
can maXImISe a postenon (MAP) probability: P(LIX=x) The poste' di tr'b . 
be expressed from the Bayes rule: 

. nor s 1 ution can 

p(LIX=x)= p(xIL)p(L) 
p(x) (5.14) 

One difficulty in such seg~entation prob.lems is the estimation of the region 
model parameters. In m~st algonthms (e.g. Denn and Elliott 1987, Cohen and Cooper 
1987, Geman and Graffigne 1986), these parameters, together with the number of 
regions, are assumed to be known a priori and can be pre-estimated from known 
samples. So the conditional distributions in the numerator in (5.14) can be explicitly 
expressed by Eqn. (5.11). The configuration which has the largest value for the 
numerator in (5.14) is the best segmentation. That is, only the numerator term in 
(5.14), i.e. the joint distribution p(L,X), needs to be compared with different 
configurations, as the denominator p(x) is fortunately a constant when the input is 
fixed. 

However, there is another difficulty in searching for a MAP configuration, since 
the search space increases dramatically with image size. For example, for a 64x64 
lattice and two texture regions, there are totally 24096(:::::101216) different configurations. 
It is impossible to make an exhaustive search. Many methods have been developed 
for such problems. Usually they assume a random initial configuration or according 
to some fast, coarse segmentation, find a substitute segmentation either randomly or 
according to some rules, and then take this substitution of the segmentation if the 
joint distribution is increased (deterministic) or probabilistically according to the ratio 
of the joint-likelihood of this substitution to the original configuration (stochastic). 
Deterministic methods are generally fast and easy to implement. However they can 
only guarantee a local minimum. For example, Besag (1986) has proposed an efficient 
iterated conditional model method for a deterministic, pixel by pixel searching for a 
MAP segmentation. While stochastic relaxation searching may have a greater 
probability in finding the global minimum, if the temperature is decreased 
sufficiently slowly. 

For all methods, the search space has to be limited. This can be done by applyi~g 
relaxation methods to a smaller area rather than the entire image. For example, Denn 
and Elliott (1987) have applied the MAP segmentation on a strip b~sis and ~ven a 
dynamic programming scheme to calculate the joint-likelihood In the S.trIP f?r 
optimal MAP segmentation. The actual relaxation is limited to .a narrow stnp (strIp 
width is from 2 to 4 pixels), so the computation for the search IS manageable. For a 
complete segmentation, strip by strip relaxation is needed. Their method uses ~re­
estimated model parameters for all regions, and a fixed temperature for relaxation. 
This also can only achieve local (i.e. strip) MAP segmentation. Cohen .and ~ooper 
(1987) developed a parallel hierarchical relaxation for ML segmentation of \ lRF 

. h d" 1'" . I'ndows into four quadrants, or textured Images. The met 0 sp Its regIOn w 
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"merges" region windows of different sizes. So the segm t ti" . 
I 

. I I en a on IS searched In a 
re ative y regu ar manner and at less computational cost S' th 

d k h
· . mce e method does not 

un erta e an ex austive search and stochastic relaxation it'd . 
f A 

.. ' provi es an ML Instead 
o M P segmentatIon. This method also uses pre-estimat d d 1 
G d G ff

' e mo e parameters 
eman an ra Igne (1986) have used a window-based I ti' h" . . re axa on met od for 

texture segmentation. They used a wIndow (5x5 pixels) which sl'd h . 
. . ' 1 es over t e lmage 

to hffilt the search space. They also used the pseudo-likelihood I'n th . . . e segmentation 
and the ~odel parameter ~stIma~on, ~o .that computation is even faster. Such simple 
and straightforward techniques, 1.e. shdlng window and/ or pseudo-lik lih d h 'd I d . e 00, ave 
been WI e y use In texture segmentation algorithms (Lakshmanan and Derin 1989' 
Manjunath et al. 1990; Chang and Chatterjee 1992). ' 

. U~supervised segm~ntation is even more difficult and computationally 
IntensIve. Both segment~tlOn and parameter estimates have to be updated according 
to current parameter estImate and segmentation. Little work has been undertaken on 
these problems. Lakshmanan and Derin (1989) proposed an adaptive segmentation 
algorithm for unsupervised segmentation of noisy images which are corrupted by 
additive independent Gaussian noise. Manjunath and Chellappa (1991) proposed a 
window and pseudo-likelihood based interactive method for a MAP and maximum 
posterior marginal (MPM) unsupervised segmentation of textured images. In such 
problems, the optimal solution should achieve both ML parameter estimation and 
MAP (or MPM) segmentation. 

Recently, the expectation-maximisation (EM) algorithm, proposed by Dempster 
et al. (1977) for solving ML estimation problems with incomplete data, has been 
applied in MRF model parameter estimation and unsupervised segmentation (Zhang 
1992, Zhang et al. 1994). Initial model parameters for the regions and segmentation 
are obtained using a moving window based clustering method, then the parameters 
are estimated by an iterative EM algorithm. At least a local optimum can be achieved. 
They proposed several algorithms for independent noise models, MRF models, and 
doubly MRF models. However, in deriving a practical solvable procedure, many 
assumptions and simplification (e.g. independence of pixels; Gaussian distributions) 
had to be made in their methods. Under such assumptions, simpler methods, such as 
the proposed HSOS (with a boundary relaxation algorithm), will achieve similar 

performance. 

We have shown that the 50S and HSOS algorithms will produce an approximate 
ML segmentation in the sense that the label field is a constant but u~own field. 
While with the BSOM the SOS and HSOS can provide a MAP segmentation (actually 
an MAP classification ~ver window-based inputs). In the sense ~f a rand?m label field, 
these algorithms are approximation to a ML or MAP loc~ o~tImum. Smce they treat 
the window-based inputs as homogeneous, they simply liffilt the s~arch sp.ac~ to 1 of 
M problem. Since the size of the window cannot be r~duced Wlt~out llffilt, such 
methods will have some segmentation errors around regIOn boundanes, where ~ore 

. . f d' 'd" eded For a doubly random field complex confIguratIons or IVI Ing regIOns are ne . 
model a further relaxation phase is needed to achieve a full ML and MAP 
segme~tation. As the region parameters have already obtained in the S?S or HSOS 
structure, and the segmentation in the centres of the regions are often nOIseless., such 

. . I d d d taken near region boundanes. In 
a relaxation can easIly be Imp emente an un er . 
the next section, such a boundary relaxation scheme IS proposed. 
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5.5 Stochastic Relaxation for Improvement on Bou d 
CI ·f· · n ary aSSl lcatlon 

5.5.1 Optimal searching by stochastic relaxation schemes 

Ov:r .the. last decade, stochastic relaxation has been applied for combinatorial 
optllnlSatIon problems, where the objective functions have various non-linear 
relations with very many variables, and a directly deviation is infeasible. The earliest 
idea was the Metropolis algorithm (Metropolis et al. 1953), which simulates the 
behaviour of a multivariate system in equilibrium at a given temperature. The aim is 
to develop efficient techniques for finding minimum or maximum values of such a 
define objective function. Statistical mechanics, the central discipline of condensed 
matter physics, concerns the behaviour of a system with many degrees of freedom in 
thermal equilibrium at a finite temperature, and what happens to the system in the 
limit at low temperatures. Statistical mechanics is characterised by the Boltzmann 
probability factor, exp(-EIKBT), where E denotes the energy of the system, K8 is 
Boltzmann constant, and T is the absolute temperature. For many phYSical systems, 
the low energy states are the most stable and ordered, and so the most desirable 
states. The Metropolis algorithm applies a small random turbulence to the current 
state, compares the energies of the original state with the disturbed state. The new 
state is accepted or rejected according to the energy change, !ill. If !ill<O, i.e. the 
change will bring the system to a lower energy state, this move is accepted. If D.F20, 
the new state is accepted with the probability of exp(-!illIKBT)· 

In finding a good low energy state, the temperature plays an important role. 
Physicists achieve a low energy state of a substance through annealing, i.e. heating 
then slowly cooling the substance. Introducing temperature and simulated annealing 
process into combinatorial optimisation is due to Kirkpatrick, who has given a good 
review of the connection between statistical mechanics and combinatorial 
optimisation (Kirkpatrick et al. 1983). Simulated annealing, also called stochastic 
relaxation, has been introduced by Geman and Geman (1984) to image processing to 
achieve an MAP restoration of noisy or corrupted images, and an MAP segmentation 
of textured images. They developed the Metropolis algorithm and proposed a Gibbs 
sampler stochastic relaxation algorithm. They also derived a theoret~cal limit to t~e 
annealing schedule and proved that under this schedule the relaxatio~ pro~ess will 
converge in distribution to the minimal energy configuration. The. algont~ mcludes 
two steps, one is the sampling that generates a new sample at a SIte accordu:g to the 
local conditional Gibbs distribution, i.e. (see Geman and Geman 1984 for detaIls) 

1 1 
P[YijIYmn,(m,n)El1ij]=-exp{-- L ~(y)} 

Zij T (i,j)EC 

(5.15) 

where the partition function Zij is similar to (4.25b). 

The other step is the annealing which gradually lowers the tem?~rature fro~ a 
high point (melting point) to a low degree according to a speCIfIed decreasmg 

scheme: 

i). T(t) t~oo) 0, ii). T(t) ~ M~ /log t, for all t~to and to~2 (5.16) 
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where M is the size of the image, d = max U(y) - min U(y) 
y y 

In the above the multi-variable y can be the ·0· t nf· . , , J In co 19uratio f .. 
or a textured image as described in Section 5 4 3 Fl. n 0 a nOISY Image 

bl . (51) . . . or examp e m MAP segmentati 
pro em, I.e. . 4, we only need to compare th ti· f on .. d. . . e ra os or the numerato . th 
JOInt Istnbution of the observation and label field t· t E r, 1.e. e es Ima e. ven so the t k' 
easy, as the search space for the label field is to 1 G as IS not 
M 1· 1· . 0 arge. eman and Gem ' 

etropo IS- Ike GIbbs sampler algorithm can be used t hi ~ s 
S h 1 

. h .. 0 ac eve a MAP resolution 
uc a gont ms have been applIed to Image restorati d . . 

(G 
on an segmentation problems 

eman and Geman 1984, Geman and Graffigne 1986) H h· 
h dul 

. owever suc annealing 
sc e es are too slow to follow in practice Some appl· ti· .. . . Ica ons, as mentioned ill 

SectIOn 5.4.3, use an approximation to the temperature dec . h .. reasmg sc erne, or a fast 
annealIng scheme, whIle some others simply use a clamped te tu I h . . mpera reo n t ese 
ca~es, a local oPbmu~ IS g.u~,ranteed: For example, Derin and Elliott (1987) have used 
a fIxed te~perature In theIr dynamIC programming algorithm" for obtaining a MAP 
seg~entatIon of a do~bly MRF modelled noisy or textured image. Lakshmanan and 
~enn (1989) a~d ManJunath et al. (1990) have used a low initial temperature (T =M~) 
In the relaxatIon scheme in their adaptive segmentation algorithm and sto~hastic 
network respectively for achieving the MAP segmentation. 

5.5.2 A boundary relaxation algorithm 

An important property of the HSOS algorithm is that it provides not only the 
segmentation results but also the parameter estimation results. The segmentation 
results are the final layer'S outputs; while the parameter estimates for each texture 
region are contained in each neuron's weights. These parameters are very useful in 
unsupervised segmentation. They can be used to further clear up or filter the noise, 
and smooth the region boundaries. In this section, a boundary relaxation (BR) 
algorithm, which makes use of these results, is proposed for incorporating with the 
HSOS algorithm as a second processing phase. 

In the BR algorithm, a relaxation window slides along the region boundaries of 
the segmentation result from the HSOS algorithm. The size of the relaxation window 
needs not to be too large, but should contain sufficient texture information. Typical 
sizes can be from 20x20 pixels (for homogeneous synthetic textures) to 30x30 pixels 
(for inhomogeneous natural textures). The centre of the window is located at the pixel 
which is on a current boundary. The placement rule of the relaxation window can be 
either random or deterministic. In the random fashion, a pixel is randomly picked at 
a boundary, then the window frames its neighbouring area. In the deterministic 
fashion, the window slides along every current boundary. 

In such a window, IT, shown in Fig. 5.15, the search for a substitute configuration 
or segmentation is limited to simple linear segments of the window into two regions 
(extension to more-region linear segments is not difficult). Such a segment can be 
horizontal, vertical, or any sloping segment crossing the window. The search space 
also includes the two simplest configurations, that is, the w~ole ~indo:v belongs to 
region type I or II. In our test program, a horizonta~ or vertic~lline WIth a random 
deviation from the pixel (i, j) is generated as a pOSSIble su~stI~te. For e~amplel a~ 
shown in Fig. 5.15, '(,0 represents the current segmentatIon In the \\ mdow, '(,-
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represents such a substitute, dotted lines denote th . 
distribution for the current segmentation boer possIble substitutes. The J"oint 

can e expressed as 

pen, so) = p(nl so) p(so) = p[xy- leI, (i, j) E /]p[xij I ell' (i, j) E I/]p( so) (5.17) 

where the I represents one region of the current se t.. . 
A A gmen ation m the wmdow, while II 

represents the other, E>I and E> are the estl' t d 
II rna e parameter set f . respectively. s or regIOn I and II 

or 

I 
I 
I 

--L_ 
I 

x(iJ) I 
---L_ 

I 
I 

Figure 5.15: The relaxation window. 

The joint distribution for the substitute segmentation can be either 

where WI is one part that the substitute divides the window, e.g. the left part divided 
by the line sS, while the wn is the other part, and SSl and SS2 represent the two 

possible configurations (SSl: {e/~w[t elI~wn}; while SS2: {e/~COIJt ell~CO/}) that the 
substitute may make. 

The label field distributions, peSO), p(SSl), and p(SS2), can be expressed as Gibbs 
distributions like Eqns. (5.12) and (5.13). However, we have noticed that the number 
of pixels on the boundary, both current or substitute, is much less than the total 
number of pixels in the window. Therefore, these three distributions are 
approximately the same. This further simplifies the calculation, as the label field 
distribution forms can be omitted from (5.17)-(5.19). The remainders are just 
conditional distributions which can be calculated from (5.11), (4.36), the pseudo­
likelihood. The algorithm then accepts or rejects the substitute (SSl or sS2)according 
the ratio of the joint distributions, i.e. 

{
I, if [maxp(D,sSi)]/ p(D,so)~l, 

Prob{substitute: SSi}= (D rsi)==]1./2 (D rO) th' (5.20 
[maxp ,~' p ,~ , 0 erwIse 

i==1,2 
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The substitute is then fed into the LV layer of the HSOS tr 
'b' h' s Ucture and makes contn utions to t e voting vectors in the window area After b f . . 
I

. . . a num er 0 Iterations 
the re axatIon algonthm together with the HSOS algorithm (its LV la er) will . ' 
accurate and smooth boundaries. y Yield 

. This is a Metropolis ~ersion of stochastic relaxation. The temperature can be 
Intr?duced, and the relaxation can be full~ irr:plemented as described in the previous 
sectIOn. However we have found that this sImple relaxation algorI'thm k . wor s very 
well wIth the HSOS structure. . 

5.5.3 Experimental results 

We have implemented this boundary relaxation method with the HSOS structure. As 
we have seen from the above analysis, the calculation of the joint distribution in a 
window is simple when the GMRF model is used. So the speed of the relaxation 
phase is fast. When we further examine the HSOS structure, we have found that the 
calculation for this relaxation phase can be further simplified. The HSOS uses the 
local LS estimation for the parameters, so the HSOS will finally obtain the MMSE 
model parameters. This implicitly employs the independent GMRF model for 
textures. Such a model is the most commonly used model because of its simplicity. 
Many existing unsupervised segmentation algorithms (e.g. Besag 1986; Lakshmanan 
and Derin 1989; Manjunath and Chellappa 1991; and Zhang et al. 1994), although 
start with very general cases, but settle with this simplest model. 

So why not directly use the MMSE principle in distribution or energy 
calculations? This can simplify the energy function to a mean-square-error function. 
The LS estimates consider the parameters that can minimise the total errors. In other 
words, when the pixels in an image are fitted to the correct parameters, the total 
description errors will be the smallest (This can make a short cut to avoid the full 
computations in calculating the joint likelihood function, and also leads to the MMSE 
validation method in the next section). 

Here we express the local energy function in a window, TI, as the total mean­

square-error of description: 

U(TI) = L [xij-m(l)- Le~~(xuv-m(l)f (5.21) 
(i,j)En,lab(i,j)=1 (U,V)ET\ij 

where m(l) and e(l) are the model's mean and parameters for region 1 which the pixel 

belongs to. 

In the case where the window may contain more than one regio~, as in the 
boundary relaxation algorithm, different segmentation and diff~rent r~glO~ ~od~s 
need to be fitted for a minimum error search. The BR algon~hm slmphfl~s t s 
procedure by generating a limited number of possible segmentations.o! the wmdo~ 

h t hich can produce the mIrumum energ\ 
into just two regions, then t e segmen w . th bstitutio~ 
(errors) will be the new segmentation within the windo:w (otherw~se,. e tU 

t d in 
is according to the energy difference). The BR algonthm can e Imp emen e 

parallel as shown in Fig. 5.16. 
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A pre-segmented image 

To the LV layer of HSOS 

i 
rele­

xation 

Figure 5.16: The boundary relaxation algorithm. 

When the window is located at a boundary, the algorithm generates a possible 
vertical and horizontal segment, each of which has two possible region labelling: s3 

and S4 are the two possible combinations for the vertical segment; while s5 and s6 are 
the two possible results for the horizontal segment. The Sl and 52 are the possible 
results for labelling the entire window to region I and II respectively. The 50 is the 
original segmentation in the window. The algorithm then calculates the 
corresponding energy function for these possible segmentations: U1, U2,··· U6, and Uo, 
and compares the six substitute energies, and chooses the substitute with the lowest 
energy. The chosen substitute is then compared with the original segmentation's 
energy. The substitution is accepted if its energy is lower than the original one, or 
according to the ratio of these two energies. The result is fed into the LV layer of the 
HSOS structure. The computation for the energy is relatively straightforward . The 
speed of the BR algorithm is very fast. 

Some typical results of applying this simple version of the BR algorithm for 10 
iterations to the HSOS results are shown in Figs. 5.17 and 5.18. The HSOS re ult 
used here are after only 1,000 iterations of the HSOS algorithm, much less than th 
previous results shown in Figs. 5.9 and 5.9. However the BR algorithm ha 
successfully removed the noise around the boundaries. After applying the BR 
algorithm, the segmentation is almost identical to the real boundaries. Remember that 
only vertical and horizontal substitutes are generated for these exampl r 
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(a-C) (a-HSOS) (a-BR) 

(b-C) (b-HSOS) (b-BR) 

(c-C) (c-HSOS) (c-BR) 

(c-C) (c-HSOS) (c-BR) 

Figure 5.17: The segmentation results of the HSOS and BR algorithms 
for synthetic textures. 

(x-C): Composite images (l28x128) ; (x-HSOS): Results of HSOS ; (x-BR): 

Results after applying the boundary relaxation . 
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(a-C) (a-HSOS) (a-BR) 

(b-C) (b-HSOS) (b-BR) 

(c-C) (c-HSOS) (c-BR) 

(d-C) (d-HSOS) (d-BR) 

Figure 5.18: The segmentation results of the HSOS and BR algorithm 
for Brodatz textures. 

(x-C): Composite images (l28x128); (x-HSOS) : Results of the HSOS ; and 

(x-BR) : Results after applying the boundary relaxation . 
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complicated substitutes such as angled-1m· e . 'segments curv 
Implemented, and the speed of the BR will not be affect~d e segments, can. be 
parallel nature. too much because ot i b 

5.6 MMSE Validation for Unsupervised Segmentation 

5.6.1 Clustering validation 

In unsupervised textured image segmentation, known class samples are not available 
and the m.odel parameters for each texture have to be estimated on-line during the 
segmentatIon process. !"f0wever, th~ n~mber of region classes in the image is often 
assumed to be known In most ~pphcatIons. Such an assumption is often reasonable, 
because the number of clusters IS rather a subjective than a objective matter, except for 
those cases where the clusters are well separated and within-class distributions are 
well behaved. In many circumstances, however, there is a need to determine the 
number of region classes, that is, the number of clusters itself is a variable. This 
requirement can be understood as a question of how many meaningful regions (for 
some purpose) can the image be grouped into, or how many homogeneous texture 
regions does the image contain. It is the fundamental problem of cluster validity, and 
is essentially (or explicitly) unsolved. In the general data clustering domain, validation 
refers to the objective assessment of a clustering structure to determine whether a 
structure is meaningful, useful, or can be well interpreted (Jain and Dubes 1988). 
Validation is accomplished by carefully applying statistical methods and testing 
hypotheses. 

In the unsupervised segmentation of textured images, a common approach to the 
validation problem is to derive a criterion function and to repeat the clustering 
procedure for various numbers of clusters, e.g. K=l, 2, 3, ... , and to examine the 
criterion function. It is very difficult to design a criterion function that can give a 
maximum or minimum answer to the correct number, K*, of clusters. However a 
meaningful function will normally monotonically increase or decrease with K and 
give a noticeable change at the correct number. For example, when the total squared­
error is chosen as the criterion function, it will decrease rapidly with K until K=K*, 
then it will decrease much more slowly until it reaches zero at K=M, the number of 
data points (pixels in this case) (Duda and Hart 1973). When the log joint-likelihoo~ is 
used as the criterion function, it exhibits a rising exponential behaviour as a function 
of K and the best class number can be selected at 90% of the rise (rounded to the 
near~st integer) according to Langan et al. (1994). The log joint-likelihood function is 
the Q-function in their EM algorithm for image segmentation (Zhang et al. 1994). 

As the joint-likelihood is a monotonic function with K, mo~t v~idation cri~eri,a 
amend the function by adding a penalty term to limit the likelihood ~un~tion s 
continuous growth above the correct number. Some commonly used cntena are 

briefly described below. 

(1) Akaike's Information Criterion (AIC) 

The criterion is used to select the model order for an autoregressive (AR) pn)(l'~~, 
and is defined as (Akaike 1974): 
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A 

K=arg min {-logp(xI8)+k} 
l:::;K:::;K 

max 

where k is defined as the number ofJree pa t . rame ers In the K -class model. 

( - II ~.--) 

As we can see the inverse joint-likelihood fu ti d 
K (rapidly before the correct class number a d nc on I ecreases monotOnically with 

. ' n more s owlyafte th t 
k always Increases monotonically with K A .. r a number), while 

. mInImum can be expected. 

(2) Minimum Description Length Criterion (MDL) 

b t The ~nim:m 1eSCription length (MDL) criterion was also developed to find the 
es mo e or er or AR processes, and to overcome the as m toti 11 . 

problem of the Ale criterion. It is expressed as below (Rissanen 1~84f ca y bIased 

A. 1 
K = arg nun { -log p (x 18) + - k log M} (5 23) 

l:::;K:::;K,1laX 2 . 

where k is defined as .the number of free parameters assuming K clusters, and M is 
the number of data pOInts . 

. Th~ MDL criterion takes into consideration the size of the data by using it as a 
weIght In the penalty term. 

(3) Merhav, Gutman, Ziv Criterion (MGZ) 

The MGZ criterion (Merhav, Gutman, and Ziv, 1989) is based on the MDL 
cr~terion, but limits its attention to Markov sources and exponential distributions. 
GIven that the true number exists, it balances the overestimation and 
underestimation probability through a parameter, A, in an extended Neyman-Pearson 
sense. It is stated as: 

A 1 
K=arg min {KI-[MDL(K)-MDL(Kmax)]~A} 

l:::;K:::;Kmax M 
(5.24) 

where A>O. 

5.6.2 MMSE validation for GMRF model-based segmentation 

As we stated in the last section, in most segmentation algorithms as well as our HSOS 
algorithm, the model parameters are obtained by the LS (MMSE) or MPL method, 
applied to a homogeneous texture. Two methods are equivalent and all assume that 
the pixels are independent. Within this domain, the calculation for validation 
criterion can be made much easier. There will be no need to compute the joint 
likelihood function, which in most application is computationally extensive. Instead, 
the total mean-squared-error (MSE), similar to (5.21) but extended to whole image n 
and all categories (1 to K), is calculated, i.e. 

MSE(K) = L [xij-m(l)- Le~~(xij-m(I)]2 
(i,j)EQ,l=lab(i,j) (u, v )ETlij 
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where l=label(i, j) is the output of the LV layer of the HSOS 
. network 1m(/) e(/)} correspondIng model parameters for region class 1. ' , are 

Ideally if each texture region is very homogeneous segment ti' . h h . ,a on WIt t e correct 
number of clusters will have the minimum MSE (MMSE) bec h" 

. I f h " . ' ause eac regIOn 'sill 
gIve ess errors or t e predIction dIfference if fitted to its LS param t h h e ers rat er t an 
any other parameters. We have seen that this idea was successfull d' h 

. ., b d I" Y use m t e 
prevIOus section s oun ary re axahon algorIthm. This is why we term it the !\l)'ISE 

v~li~ation. Ide:lly the MSE fu~ction .will decrease with K and then reach a (local) 
mInImum at K . The MSE function wIll change (increase or decrease) little for K>K*. 
Th~ MSE functi~n will be. slightl~ increased if the over-numbered clusters disperse on 
regIOn b~undarIes, or wIll be slIghtly decreased if the over-numbered regions split 
some regIons. 

However, when the texture regions are not very homogeneous as it is usually the 
case, the problem may return to the general case as we have mentioned earlier, i.e. 
the MSE will decrease rapidly with K until K=K*, then it will decrease much more 
slowly until it reaches zero at K=M. There should be still a significant change in slope, 
or even a local minimum, at K=K*. Even when a over-numbered cluster splits one 
assumed inhomogeneous texture region, the change of MSE function at K=K* should 
be noticeable, otherwise this split may be correct (i.e. the inhomogeneous region may 
be interpreted better as two regions instead of one). One advantage of using MSE is 
its simple computational form. The computation can be incorporated into the 
segmentation process. There are two ways to calculate the total MSE. One method is 
to use the definition of (5.25) with the model parameters obtained by HSOS network, 
when the segmentation process halts. The other is to use each region's variance 
parameter obtained on-line in HSOS algorithm, together with region size values (the 
number of pixels of each region), which can be easily obtained in segmentation), and 
the total MSE can be easily approximated to 

(5.26) 
l~I~K 

where is the estimated variance parameter for region I, and M(l) is the total number of 

pixels in region I. 

This MMSE validation idea may also be useful for validation of the segmentation 
result of the HSOS network for a globally correct segmentation even ~hen the 
number of clusters is provided. If the segmentation process converges ~o an mcorrect 

. t t some two splIt one texture segmentation (e.g. one class merges two ex ures, or 
region), the MSE function will always be higher than that for the correct 

segmenta tion. 

5.6.3 Experimental results 

r d t th HSOS network by using 
The MMSE validation scheme has bee~ a~p Ie 0 d ; (525) has been used to 
different SOM sizes to the same composIte Image, an qn. . 
calculate the corresponding total MSE values. . 

. . hich are 256x256 pixels. The composIte 
The results are shown In FIgS. 5.19-5.22: w I h I'n the figures are the 

. d'ff t t t re regIOns Resu ts sown images consIst of four 1 eren ex u . b K -2 3 -1 C; (sometimes 
LV layer outputs of the HSOS network for the cluster num er -, , ,~ 
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Composite image (256x256) K=2 K=3 

K=4 K=5 K=5 (again) 

Figure 5.19: MMSE validation of unsupervised segmentation of synthetic tex tures. 

Composite image (256x256) K=2 K=3 

K=4 
K=5 (again) 

. d t tion of yntheti c te ture, . 
Figure 5.20: MMSE validation of unsupervlse segmen a 
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r 

Composite image (256x256) K=2 K=3 

K=4 K=5 K=5 (again) 

Figure 5.21: MMSE validation of unsupervised segmentation of natural textures. 

Composite image (256x256) K=2 K=3 

K=4 
K=5 (again) 

. d tation of natural tex tur 
Figure 5.22: MMSE validation of unsupervlse segmen 
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two results of K=5 are given for comparison) The fi I I . . . h . gures c ear y mdica te the corr t 
segmentation. W en K=2, 3, 4, the segmentation re It cl ec 

h K 5 h 
. . su s are ear and comp t 

However, w en =, t e addItional neuron can only tak b . ac . 
b 

. I e some oundary pIxels and 
may e In severa separate places. The corresponding MSE al f . ' 
are given in Tables 5.4. v ues or these figures 

MSE K 2 K-3 K*-4 K-5 K 5 
Fig. 5.19 12041.11 9405.68 7505.74 7533.55 7493.1-1 
Fig. 5.20 9193.86 7719.68 6815.25 6799.31 6768.75 
Fig. 5.21 8906144.60 8830534.86 8534303.70 8538921.72 8528535.83 

Fig. 5.22 6158596.90 5823209.02 5572463.36 5543407.18 5527261.-17 

Table 5.4: MSE values for various numbers of clusters in Fig. 5.19-5.22. 

To visualise these values and examine their fitness for the validation, they have 
been put into dB form (10 log MSE) and shown in Fig. 5.23 and Fig. 5.24. In each 
figure, there is a very distinct change at the correct number of clusters (-1 in all these 
examples). Prior to this number the MSE functions decrease very quickly, but after 
this number, the MSE function is almost unchanged or decreased much more slowly. 
These results support the theoretical analysis for the proposed MMSE validation, and 
show the usefulness of this method when used together with the HSOS network. 
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Figure 5.24: MSE functions. (a) For Fig. 5.21; (b) For Fig. 5.22. 

5.7 Conclusions 

In this chapter, several practical methods, namely, the HSOS network, the BR 
algorithm, and MMSE validation method, for the unsupervised segmentation of 
textured images, have been proposed. A step by step approach of both theoretical 
analysis and discussion, together with experimental verification, has been adopted. 
These algorithms make full use of the local properties of textures, efficient 
representation by the MRF model, and the SaM's convergence properties and 
simplicity. They have been proved to be optimal in some sense, and efficient in 
implementation and operation. 
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Chapter 6 

CONCLUSIONS 

6.1 Summary and Conclusions 

This thesis has presented a detailed statistical analysis and treatment of Kohonen's 
self-organising map (SOM) algorithm, especially in respect of its convergence, feature 
distribution, and its potential optimality for two major practical applications: vector 
quantisation (VQ) and pattern classification. The unsupervised segmentation of 
textured images has also been investigated. Several effective segmenting structures 
combining the SOM algorithm and Markov random field (MRF) models have been 
proposed and examined through a step by step analysis of their viability. Significant 
and novel results are, the formal proof of the general convergence of the algorithm; 
the asymptotical Gaussian distribution of its feature space; the diminishing effect of 
the initial weights; the SOM's potential optimum performance for VQs; an optimal 
SOM-VQ algorithm; an optimal SOM classification algorithm; an practical 
combination of SOMs and other methods for texture segmentation; a simple yet 
effective class-number validation method. The major contributions and results are 
summarised as below: 

1. A proof has been obtained for the general convergence of the saM algorithm, and its 
potential optimality for VQs in the sense of minimum mean-square distortion. 

This thesis has shown that the convergence of the SOM algorithm to the 
centroids of input pattern subsets exists for any dimensional mapping. The algorithm 
asymptotically satisfies the two necessary conditions for minimising the mean-square 
distortion between the representing vectors, i.e. features, and the data samples. 

2. A comparative study of LBG, CL and SaM -VQs has been presented and a constrained 
saM algorithm for an improved VQ has been proposed. 

When the distortion surface is not a single concave, the problem can become very 
subtle, and most VQ algorithms, such as LBG-, CL-, and SOM- VQs, can only 
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gu.arantee a local ~nimum in distortion. However, we have found that the 
neIghbourhood function of the SOM has a significant influence on the local minima 
problems. For example, it can naturally overcome the under-utilisation probl d 

I 
.. . em, an 

can a so assIst In escapIng from some local minima. A constrained SOM al orithm 
based on the "equidistortion principle", has been proposed for guiding the st\ 1 to ~ 
global or a good local ~nim.um. Exp~rimental results have shown an improved 
performance t~ough uSIng thIS constraIned algorithm over standard LBG, eL, and 
SOM -VQ algonthms. 

3. The thesis has found the diminishing influence of the initial state, and has also given all 
exploration of the complicated impact of learning rates and neighbourhood functions on 
convergence and ordering. 

The initial weights will have little quantitative impact on the convergence of the 
map, as long as the learning rate satisfies the convergence conditions. However 
forming a globally ordered or a good locally ordered map has been found to rely 
mainly on the neighbourhood function in terms of its extent and shrinking speed, 
although the learning rate also has some influence. These parameters can only be 
chosen empirically with the current understanding of the SOM. They also affect the 
convergence speed. Slower learning rates, within the convergence conditions, will 
generally result in slower convergence speeds. However, slow learning rates, 
together with appropriate shrinking speeds of the neighbourhood function, are 
helpful for forming the global or a improved local minimum in final distortion and 
more importantly a better topological ordering. Our study has also emphasised that 
the choice of an exponential fall for learning rates is not correct and may result in an 
inaccurate mapping. 

4. A Bayesian SOM has been proposed for unsupervised pattern classification in order to 
achieve a maximum a posteriori performance. 

The SOM algorithm has been widely applied to the pattern classification and 
data clustering problems because of its computational simplicity and its ability to 
avoid the "empty-class" problem. Our study has shown, however, the algorithm is 
approximately optimal only when classes are compact and well-separated. For most 
other cases, the SOM needs to be modified in order to achieve the best performance. 
A general unsupervised pattern classification problem can be described as a mixture 
distribution problem. An extended SOM, termed the Bayesian SOM, has been 
proposed for such an application. The theoretical analysis and experimental results 
have supported this approach. This algorithm should find application in many 

practical classification problems. 

5. Clear definitions and measures of topological ordering and a meaningful analysis of the 
inherent fault-tolerance ability of ordered mappings have been presented. 

Two constructive definitions of topological order, one in geometrical sense, the 
other in mean-square distortion sense, have been formally put in mathematical forms. 
The second definition can provide a very useful explanation of the. fault-tolerance 
ability of an ordered map. The measuring metrics for the ordenng have been 
discussed. It has been found naturally that the ordering measure can only be 

meaningful in terms of the ordering definition. 
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6. A review of approaches to texture processing has been given in this thesis. 

The most commonly used descriptions and approaches of textures has b 
. 11 . d h een 

s~stemabca y r~vIewe . T e ~odel-based approaches, mainly MRFs, have been 
dIscussed fully In terms of theIr usefulness, simplicity, and effectiveness. Various 
methods for the parameter estimation of MRFs have been described. 

7. A hierar~hi~al self-organis~d segmentation structure for textured images has been 
proposed, and zt zs shown that thzs structure can achieve a maximum likelihood or maJ.:i11l1111l a 
pos teriori segmen ta tion. 

The unsupervised segmentation of textured images has been investigated as a 
possible application domain of the SOM algorithm. A direct self-organising 
segmentation structure and a hierarchical self-organising segmentation structure, 
which consists of a SOM (or a Bayesian SOM), a local voting network (a simplified 
SOM) and local MRF parameter estimator, have been proposed through theoretical 
analysis and extensive experiment. 

8. A simple and fast relaxation algorithm has been proposed for improving the segmentation 
accuracy at region boundaries. 

This is a local mean-square error energy comparative relaxation algorithm, which 
tracks the boundaries obtained from the segmentation algorithm. The search space in 
the relaxation algorithm has been limited simply to the original boundary and several 
regular alternatives within a small moving window. The segmentation results can be 
considerably refined by applying this in conjunction with proposed segmentation 
structures. 

9. A minimum mean-square-error validation method has been found useful for validating 
the correct class-number in a totally unsupervised segmentation of textured images. 

An on-line simple, classical, but applicable validation method has been used 
successfully for testing the correct class number in a fully unsupervised segmentation 
problem. This method exploits the homogeneity within each single texture region, 
tests the fitness of the estimated models in terms of the total mean-square-error. It 
can be incorporated within proposed segmentation structures. 

6.2 Future Work 

A great deal of research on the SOM neural network and texture image processi~g 
has already undertaken by many researchers. This t~esis .has made certam 
contributions to these two subjects, and it has also opened dISCUSSIOn on some fu~ther 
and deeper concepts, such as the role of the neighbourhood functions in optImal 
convergence and the ordering process; the noise-tolerance capability of orde~ed 
maps; a possible application for the proposed Bayesian SOM in kernel smoothmg 
method for function approximation; practical training considerations of the SO~ 1 
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algorithm; further development in MRF model parameter est' h' 'd __ . 
l 'nk b Ima on, an a pO<';"lble 
1 etween MRF model-based approaches and lti h I hI - -. mu c anne ter-based 

approaches. These pOInts for future investigation and improvement are noted bri t1 . 
below: e \ 

• M~re advance~ on-l!,ne validat~on and verification methods for the SOM algorithm are 
needed In order to tune the algorzthm to fiorm improved mappI'ngs' . 1 t 'bi ". , I.e. 111 a owes POSSI C 
dlstortwn and/or a highest possible order. 

. T~e SOM i~ a localle.ar~ng algorithm, which locally minimises the mean-square 
dlstort~o~ but aIms at a~hievIng a globally low distortion. How to judge the quality of 
the traInIng process as It progresses, especially on-line, would be very useful. 

• The detailed quantitative role of the neighbourhood function on the ordering process 
needs to be examined formally. 

Two important roles of the neighbourhood function, which have been stressed in 
this thesis, are in assisting the escape from some inappropriate local minima and 
forming a good topological ordering. However, such roles have not yet been analysed 
functionally or quantitatively. The possible utilisation of the neighbourhood function 
in other mapping requirements, such as exact density matching, may also be worth 
investigating. 

• Further exploration of the importance of the fault-tolerance ability of an ordered SOM 
mapping for VQ, associative memory, and other application, is needed. 

Fault-tolerance is one of important generic features of neural networks, and is a 
fundamental principle in associative memories. As we have previously stated that a 
good ordered map can provide greater fault-tolerance than a poorly ordered or 
disordered map. Such an ability will be very useful in many other areas, such as 
function approximation, pattern classification, and high dimensional data 
visualisa tion. 

• A practical strategy for fast training and/or training with a small number of data 
samples is urgently required. 

Theoretically, the SOM requires infinite iterations to converge, and this means 
each data sample has to be input many times (to eliminate the unequal contributi~ns 
of samples input in different times). To overcome this inefficiency, a short-penod 
training method (e.g. transformation-like), if possible, would be very useful and 
could make the SOM more practical. Ideally, the SOM also requires a large amount of 
data for the training. However, in many practical applications, obtaining large 
volumes of data may be very difficult or even impossible. The behaviour of the SOM 
in reduced data situations needs to be investigated. 

• Re-Iearning ability needs to be added in the SOM. 

One of greatest differences between neural network approaches and other non­
neural network approaches is the former's ability to learn and re-Iearn. There lS 
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apparently no theoretical analysis of this problem for the SOM 1 
. d' neura nehvork Can a 

traIne map be re-traIned when more new data sampi '1 bl' . . . . es are aval a e while 
preservIng the eXIsting ordering? ' 

• The function approximation ability of the SOM algorithm has not been explored in depth . 

The ?iHerence betw.een VQs and function approximations is that VQs use 
representing vectors, while function approximations use basis functions. Wh th . h . en e 
weig t. v~ctors, l.e. p.oints, are extended to a basis function centred at these points, 
so~e ~I~lar properties between these two approaches may arise. The feasibility and 
sUItabIlIty of the ~OM and related algorithms, such as self-organised pri~ciple 
~omp~nent analysIs, to the function approximation problem need to be full\' 
Investigated. . 

• It is worth investigating a possible link between model-based and mllltifilter-based 
approaches to image texture description and analysis. 

Currently these two methods exist in parallel in texture-related image 
processing. Multifilter-based approaches have also been found useful in some other 
image processing problems, while model-based approaches seem merely applicable 
for textured, or homogeneous, images. The relationship between these two could be 
very close at least in the discrimination of image textures. 

• Parameter estimation for Gibbs distributions needs further study. 

As we have pointed out, the optimal maximum likelihood estimation for model 
parameters is currently untractable. Most existing estimates use least-square or 
maximum pseudo-likelihood approaches instead, and this requires the assumption of 
independence between the pixels. Parameter estimation of MRFs or CDs has long 
been, and still remains, a challenging topic in statistics. 

• The continuing exploration of application potential of neural networks in general image 
segmentation, scene understanding, and object recognition. 

This could be a life-long topic, but it is one of most important and eternal 
objectives of neural network research. The need to understand information, especially 
visual information, processing mechanism, and so to model the process by means of 
neural networks has increased greatly as more and more disciplines such as 
computer vision, robotics, psychology, physiology, and cognitive science, have 
become actively involved. Developments in neural computing in t~eses yelds are 
expected to continue. Information processing based on neural computing wIll become 
a new and popular computation method. 
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