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Abstract 
This thesis studies modelling and 2-D inversion schemes for earth resistivity data. 

Initially a detailed study of the basic theory, mechanisms and instrumentation of 

the resistivity surveying technique is presented. 

The Finite Element technique was chosen to perform the forward modelling. The 

features and accuracy of the 2.5-D FEM modelling scheme which was developed for 

that work are discussed. The FEM technique was modified to accommodate the 

calculation of arrays parallel to the strike direction. Further, the FEM is used to 

study the effect of the terrain topography on commonly used resistivity arrays. The 

results indicate that terrain can be a significant source of noise for all of the arrays. 

The general principles, of the resistivity inverse problem are presented. Ways for cal- 

culating the Jacobian matrix (within the FEM context) are presented. The adjoint 

equation technique was found to be both accurate and computationally economical. 

The use of the Jacobian matrix to explain unusual apparent resistivity responses 

and to design optimum surveys is demonstrated. 

The basic principles merits and demerits of commonly used "approximate" tech- 

niques for reconstructing earth resistivity data are discussed. Further, a generalized 

(iterative) back-projection algorithm is proposed. The merits and limitations of the 

algorithm are discussed and examples of its performance with synthetic and real 

data are given. 

Further, widely used "accurate" inversion techniques are studied. Some of the ad- 

vantages and limitations of the techniques are demonstrated by means of synthetic 

examples. Finally, a fast smoothness constrained inversion algorithm which uses a 

quasi-Newton technique for updating the Jacobian matrix is proposed and its fea- 

tures are fully explained. Extensive tests of the algorithm with synthetic and real 

data indicate that it is a reliable and robust tool for data interpretation. 
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Chapter 1 

Introduction 

1.1 Thesis subject and aims 

Geophysical techniques are well-established and widely used to solve a variety of 

subsurface detection problems. This study will deal with one particular technique 

which involves the measurement of the variations of the earth's resistivity. As in any 

geophysical technique, these measurements do not provide a direct "image" of the 

subsurface but simply the integrated effect of the subsurface property which could 

be (in cases of complex subsurface property distribution) far removed from reality. 

This work deals with inversion schemes concerning earth-resistivity data sets. The 

term "inversion" in the resistivity method describes the (usually fully computer- 

ized) procedure of constructing an image of the subsurface's resistivity distribution 

given the respective observed data sets. There are two general approaches to the 

resistivity inverse problem: "approximate" schemes which, despite their theoretical 

weaknesses, can produce useful images of the subsurface in a limited time, and "ac- 

curate" schemes which are more correct as far as their theoretical assumptions are 

concerned but commonly involve heavy computational loads. This study will deal 

with both approaches. For computational reasons the inversion will be restricted to 
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2-D schemes. 

From the beginning of the project it became clear that a full study of inversion 

algorithms cannot be achieved without addressing the resistivity forward modelling 

procedure first (forward modelling is the procedure of calculating the observed data 

set given a model property distribution) : the modelling procedure is vital for un- 

derstanding the nature of the resistivity problem and, moreover, can be used as a 

platform for developing efficient interpretation algorithms. 

Both resistivity modelling and 2-D inversion procedures have been widely studied 

over the last decades, so the following question has to be answered as far as this 

project is concerned: is there a real need for further studies in this area? This 

question is answered below. 

The need for this project 

Resistivity offers several relative advantages when compared to other geophysical 

techniques (low survey cost, simple to implement etc. ). On the other hand, its main 

disadvantage is that it is traditionally considered to be a low resolution technique, 

mainly due to hardware limitations. 

In the last few years, the advent of resistivity measuring instruments which allowed 

the full automation of the measuring procedure has a significant impact on the 

way resistivity is being viewed: the new instruments allow the collection of a large 

number of measurements in a relatively short time and, hence, resistivity cannot 

be considered to be a low resolution technique any more. But most of the exist- 

ing interpretation techniques cannot cope with this increased amount and type of 

measurements. 

Therefore it is clear that there is scope for reviewing the existing resistivity inversion 

techniques, and suggesting possible ways for improving them in view of the new 

automated measuring procedure. Although the algorithms presented should be able 
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to cope with any problem, regardless of its size, the examples and cases examined 

by this work will be from shallow depth targets. 1 

General guidelines and approach 

The general guidelines and approach that were followed throughout this project are 

as follows: 

"A detailed study of the basic theory, mechanisms and instrumentation of the 

resistivity surveying technique is necessary before proceeding into examining 

modelling and inversion schemes. 

" The existing forward modelling procedures have to be examined. The forward 

modelling scheme which will be chosen should be: 

a) able to model any resistivity structure (no matters how complicated). 
b) able to cope with circumstances encountered in surveys (i. e. topography). 

c) flexible enough to cope with any measuring scheme. 

d) able to calculate quantities that are needed by the interpretation/inversion 

schemes. (i. e. the Jacobian matrix). 

" The existing "approximate" and "accurate" inversion algorithms should be 

critically studied before any new algorithms are proposed. Bearing in mind 

the automated measuring procedure, the proposed inversion schemes should 
'At this point it is necessary to discuss what is meant by the term "shallow" depth targets. 

There are no general limits for what is shallow or deep in geophysics. It is always dependent on the 

kind of features which are sought. For instance, 5 meters most of the time, is considered to be very 

deep for archaeological features, while it is very shallow for water surveys. At the same time 300 

meters is deep for water exploration, while it is quite shallow for oil prospection. On the other hand, 

every geophysical method has, in respect of the penetration depth, physical and instrumentation 

limitations that must be considered. Taking all of this into account, it is believed that for the type 

of measurements taken by an automated measuring scheme the term "shallow" corresponds to an 

approximate depth between 0-150 meters. The kind of targets appropriate to these depths arise 

in : archaeological, civil engineering, environmental and hydrogeological applications. 

3 



have the following characteristics: 

a) they should be flexible enough to cope with any measuring scheme. 

b) They should be relatively fast, since they have to cope with an increased 

number of measurements. 

Other general constraints that were set are: 

" the thesis should be in a form that is accessible by a broad audience since geo- 

physical techniques are being applied in a variety of disciplines (geophysicists, 

geologists, engineers, archaeometrists etc. ). 

" The proposed schemes should be fully automated and thus employable on a 

computer system, preferably a desktop IBM PC compatible. But, to allow 
further flexibility (and since the computational needs may vary depending on 

the size of the problem) the programs should be readily transferable to any 

type of computer. 

" The algorithms should be reliable: extended testing has to be performed under 

a controlled environment. This can be achieved by the use of synthetic data. 

" Most importantly, since the entire project is trying to address a "real" need 

the algorithms should be able to cope well with real data. Thus, extensive 

tests with real data from areas of known conditions have to be performed in 

order to really evaluate the algorithms. 

1.2 The Structure of the Thesis 

The structure of the thesis reflects the structured approached mentioned above: 

Chapter 2 gives the basic background regarding the earth-resistivity method. This 

chapter provides the introductory material useful for the justification and un- 

derstanding of the work presented in the following chapters and focuses on 
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some aspects of the resistivity method which are not very clear in the current 

literature. The basic background regarding the conduction of the current flow 

into the earth is presented and basic concepts in resistivity prospecting are 

explained. The resistivity arrays and the resistivity measuring modes are de- 

scribed and a comparison of the performance of widely used arrays is discussed. 

The instrumentation used for earth resistivity measurements is described. Fi- 

nally, the field application procedures for a resistivity survey are presented in 

detail. 

Chapter 3 deals with the forward resistivity modelling. The existing approaches 
for the solution of the forward resistivity problem are discussed and among 
them the finite element method (FEM) is chosen for this work. Although a 
detailed analysis of the application of the 2.5-D FEM into the resistivity mod- 

elling is given in many works, the scheme developed for this work is described 

in full. This is necessary because full justification of techniques that are pre- 

sented in this work is possible only if the core of the 2.5-D FEM modelling 
is fully explained. The computational aspects and accuracy of the proposed 

scheme are addressed. Further, a strategy for modelling arrays parallel to the 

strike direction (i. e. square array) is proposed. Finally the scheme is used to 

study the effects of terrain topography on commonly used resistivity arrays. 

Chapter 4 In the first part of this chapter the general concept of the inversion 

procedure is discussed, with a view to the application of the inversion schemes 

to the resistivity data. The theoretical and practical limitations of the in- 

version procedure are discussed and the general usefulness of the inversion is 

addressed. Frther, general approximate and accurate ways for treating the 

resistivity inverse problem are presented. It will be shown that the Jacobian 

matrix is crucial in both approximate and accurate schemes. Therefore, before 

attempting to describe the inversion schemes analytically ways for calculating 

the Jacobian matrix are presented in detail. Particular emphasis is given to 

the application of those techniques within the finite element framework. The 
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accuracy and overall performance of the tested techniques is checked. One of 

those techniques is used to calculate the sensitivity of commonly used arrays. 

It will be shown that the sensitivity matrix can be used to justify the response 

of the arrays and to design optimum resistivity surveys. 

Chapter 5 presents approximate inversion schemes, which, despite their intrinsic 

theoretical weaknesses, can produce reasonably valid sectional images of the 

subsurface resistivity pattern in a limited time. The need for fast algorithms is 

increased by the development of the automatic measuring systems. The most 

commonly used approximate inversion algorithms will be reviewed (pseudo- 

section, Barker's method, back-projection etc. ). Medical imaging algorithms 

will be presented as well. An explanation of why these techniques work is 

given by means of the Jacobian matrix. Finally, a generalized (iterative) back- 

projection algorithm is proposed. The need for such an algorithm derives from 

the analysis of the limitations of the existing approximate algorithms. The al- 

gorithm can include all of the presented BP algorithms as well as techniques 

such as the pseudosection and Barker's method. Secondly it can reconstruct 

data from any array as well as from unconventional probe arrangements. This 

is achieved by recognizing the major importance of the Jacobian matrix within 

the approximate reconstruction procedure. The merits and limitations of the 

algorithm are discussed and examples of its performance with synthetic and 

real data are given. 

Chapter 6 presents non-linear inversion techniques applied to the 2-D reconstruc- 

tion of earth resistivity data. In the first part of this chapter widely used 

techniques such as the non-linear least-squares method, Marquadt's method, 

and smoothness constrained (Occam's) inversion will be reviewed. Further, 

approaches such as inversion with prior information, simulated annealing and 

maximum entropy will be presented as well. The advantages and limitations 

of the techniques will be demonstrated by means of synthetic examples. In 

the second part of this chapter a fast smoothness constrained inversion algo- 
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rithm which uses a quasi-Newton technique for updating the Jacobian matrix 

is proposed. The need for such an algorithm is discussed. The features of 

the algorithm are presented in detail and comparisons to other techniques will 

be shown. Finally, extensive tests of the algorithm with real data will be 

presented. 

Chapter 7 presents a summary of the main points being made in this thesis. Fur- 

ther possible improvements and lines of research are discussed. 
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Chapter 2 

Resistivity Background 

In this chapter the basic background regarding the earth-resistivity method is pre- 

sented. Thm chapter is not meant to be a detailed review of the basic theory (compre- 

henszve rrrncu s can be found in any exploration geophysics text-book) but is written 

with the Intention: 

a) to provide the introductory material useful for the justification and under- 

standing of the work presented in the following chapters. 

b) to focus on some aspects of the resistivity method which are not very clear 

in the current text book literature. 

In this chapter the basic background regarding the conduction of the current flow into 

the earth is presented and basic concepts in resistivity prospecting are explained. The 

resistivity arrays and the resistivity measuring modes are described and a comparison 

of the performance of widely used arrays is discussed. The field application proce- 
dures for a resistivity survey are presented as well. Finally, the instrumentation 

used for earth- vistivity measurements is described and some problems commonly 

encountered in 4istivity prospecting are discussed. 
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2.1 Basic Theory 

2.1.1 Resistivity and Geophysics 

Several geophysical techniques exist for the detection of "shallow" subsurface fear 

tures. Among them the most frequently used are: resistivity, induced polarization, 

electromagnetic methods, ground probing radar and magnetometery. The first four 

methods are described as "active" since the effect of an artificially created field is 

being measured, while magnetometry is considered to be a "passive" method be- 

cause the effect of an existing field is being measured. A short description of the 

techniques and their most common applications follows : 

Resistivity method With this technique the variations of the earth's resistivity 

are measured. An electrical current is introduced into the ground and the re- 

sultant measured potential differences at the surface give an indirect indication 

of the subsurface resistivity distribution. 

Induced polarization method this is very similar to the resistivity method but 

it makes use of the capacitance actions which are caused by conductive bodies. 

It is used mainly for mineral exploration (Sumner, 1976; Pelton et al., 1978) 

and for archaeological exploration (Aspinall and Lynam, 1970) as well. 

Electromagnetic methods An alternating EM field (primary) is introduced into 

the ground. This field induces eddy currents in an existing conductive body 

which then becomes a source of a secondary EM field. The resulting effect 

of these two fields is measured and in this way the electric and magnetic 

properties of the body can be obtained. Electromagnetic methods are the 

basic techniques used for the detailed mapping of mineral resources (Ward 

and Hohmann, 1988) but are also being used in archaeological prospection 
(Clark, 1990). 
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Ground Penetrating Radar method Electromagnetic waves are coupled into 

the ground through a transmitting antenna. These waves are partly reflected 

at any dielectric discontinuity. The reflected waves are received back and 

provide information about the discontinuity. Radar is being used extensively 

in civil engineering surveys (Daniels et al., 1988) and is also being used in 

archaeological surveys (Vaughan, 1986) 

Magnetometery The variations of the earth's magnetic field are measured and 

in this way targets of high (or low) magnetic susceptibility can be located. 

Magnetometery is used for initial mineral exploration and is also used for 

geophysical surveys in archaeology (Weymouth, 1986; Tsokas and Papazachos, 

1992). 

In general, there is no single optimum method which can always give valid and useful 

results independent of the target characteristics, since every method tends to pick 

up some types of targets better than others. Furthermore, it is not only the target 

characteristics that are crucial, but also the local environment. This is because in 

geophysical surveys it is not necessarily the actual value of a property that is of 

primary interest, but rather the difference between the property value of the feature 

compared to the surrounding environment. Therefore, it is the responsibility of 

the person who carries out the survey to choose the method which could give the 

best results, judging by the local field conditions. The decision is made considering 

several other, mainly financial, factors such as the instrumentation cost and the 

limitations of time, money and effort for the survey to be conducted, and finally the 

available processing facilities. 

Theoretically, the best geophysical survey would have been the one for which as many 

methods as possible were used, since the maximum amount of information could be 

collected. In practice, this is not possible, so usually just two (or sometimes even 

one) methods are felt to be enough to provide an adequate image of the subsurface. 
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This work will be limited to the resistivity method and, in particular, to the vertical 

profiling resistivity techniques. Compared to the other methods resistivity has some 

general advantages: 

" The instruments for resistivity surveys (Resistivity meters) cost 2 to 20 times 

less than these used in other techniques, making the implementation of resis- 

tivity methods financially attractive. 

. Resistivity results are relatively easy to interpret (especially resistivity profil- 
ing) and even without processing can give reasonably valid subsurface insights; 

but this happens only when the features have simple structures. 

9 Resistivity can provide information in both the lateral and vertical directions. 

" Resistivity is not particularly sensitive to external factors such as power cables 

or metallic litter. 

On the other hand the most significant limitations of resistivity are the following: 

" Complex structures render the resistivity interpretation rather complicated. 

" It is not entirely nondestructive, since probes have to be stuck into the area 

under prospection. Therefore, it is not, readily applicable to surveys in built 

constructions. 

" Data acquisition can become quite complicated and laborious when large num- 

ber of measurements are to be acquired. Furthermore, the method's penetra- 

tion depth is limited by hardware factors (cable length, electrical power). 

" It is sensitive to ground moisture, topography changes and surface resistivity 

variations 

As is obvious, resistivity is not the "perfect" method. Despite its disadvantages, 

however, it can provide high quality results and in several cases could give adequate 

information about the subsurface without the need to apply other techniques. 
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Applications 

The literature contains numerous examples of successful application of the resistivity 
technique to a variety of subsurface problems. The most common applications of 

resistivity are as follows: 

Geological Resistivity has been extensively used for geological mapping (Vanden- 

berghe, 1982; Olesen et al., 1992; Griffiths and Barker, 1993) 

Hydrogeological This is probably the most popular application of the resistivity 
technique. Resistivity has been used for hydrogeological mapping and ground- 

water exploration (Van dam, 1976; Rijo et al., 1977; Aubert et al., 1984; 
Olayinka and Barker, 1990). 

Geothermal Resistivity has been successfully used in geothermal field exploration 
(Tripp et al., 1977; Wright et al. 1985; Thanassoulas and Tsokas, 1987). 

Engineering Resistivity is being used to a variety of engineering problems such 

as the foundations and integrity of dams, cavity detection, planning of infras- 

tructure, assessing the hydraulic and anisotropical properties of the subsurface, 

etc. (Habberjam, 1975; Smith, 1986; Butler and Llopis, 1990; Dahlin et al. 

1994). 

Environmental Several applications of resistivity have been reported in environ- 

mental problems such as detecting ground-water pollution (Rogers and Kean, 

1981; Urish, 1983), landfill management (Barker, 1992) monitoring contami- 

nant leakage (Van et al., 1992), etc. 

Archaeological Resistivity is the most popular geophysical technique used in ar- 

chaeometry and has been used for decades to locate a variety of targets of 
archaeological interest (Aitken, 1974; Hesse et al., 1986; Roka and Tsokas, 

1987; Orlando et al. 1987; Szymanski et al., 1992). 
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2.1.2 Conduction of electricity in soil 

The resistivity method involves the introduction of direct electrical current into the 

ground. There are three ways via which the electrical current can be conducted 

within the earth: 

Electrolytic conduction: The electrical current propagates through the pores of 

the rocks or the soil which are filled with water, containing ions of dissolved 

salts and minerals. This is actually an ionic conduction and it is extremely 

important for the resistivity method because most rocks conduct electrical 

current with this process. 

Ohmic conduction: The electrical current propagates via the crystalline structure 

of some materials, mainly metals. This kind of conduction, also known as 

electronic, is quite important for mineral exploration. 

Dielectric conduction: The existence of an alternating electrical field can cause 

ions in the structure of insulating materials to have a cyclic change in their 

positions. This movement can be detected as an alternating current. Despite 

the fact that AC current is used in resistivity prospection, it is of such a low 

frequency that dielectric conduction is usually considered to be negligible. 

The goal of the resistivity method is to measure the potential differences on the 

surface due to the current flow within the ground. The measured drop of potential 

reflects the difficulty with which the electrical current can be made to flow through 

the earth, giving an indication of the earth's electrical resistivity p, which is directly 

dependent on the way the current is being conducted within the earth. Since cur- 

rent conduction is related to the lithology (ohmic conduction) and ground water 
(electrolytic conduction) of the subsurface, a knowledge of resistivity can be the 

basis for distinguishing existing earth features (layering, structures). The electrical 

resistivity p of a cylindrical solid of length L and cross section A having resistance 
R between the end faces is given by: 
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ROCK TYPE RESISTIVITY RANGE (em) 

IGNEOUS 102 - 106 

LIMESTONE 102 - 104 

SANDSTONE 102 - 103 

SOIL 100- 101 

MINERALS 10-8 - 100 

Table 2.1: Typical ranges of resistivity for some characteristic types of rocks (after 

Aitken, 1974) 

R. A 
P_L (2.1) 

Where R is in ohms, L is in metres and A is in square metres. The unit of resistivity, 

p, is the ohm-meter (Qm). Another term for describing the earth's behaviour to- 

wards current flow is conductivity, a, which is the reciprocal of resistivity o= 11p, 

and thus physically represents the ease with which the electric current can be made 

to flow through the earth. The unit of conductivity is siemens per meter (S/m). 

Typical ranges of resistivity for some characteristic types of rocks are shown in Table 

2.1. 

It should be stressed at this point that the effect of electrolytic conduction is the 

most important in governing the earth's resistivity. The factors that determine elec- 

trolytic conduction in the ground (and therefore the resistivity) are a combination 

of considerations concerning water content and water composition of the subsurface. 

According to (McNeill, 1980) and (Tagg, 1964) the most important factors are : 

a) The water distribution, which depends on weather, time of the year, depth 

of water table, type of soil. 

b) Chemical composition and concentration of the salts contained within the 

water. 

c) The grain size of the soil and the pore size of the rocks, combined with any 

possible fractures. 
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ROCK TYPE % WATER RESISTIVITY (Qm) 

SANDSTONE 0.10 1.4 108 

SANDSTONE 1.00 4.2 103 

GRANITE 0.00 1.0 1010 

GRANITE 0.19 1.8 106 

GRANITE 0.31 4.4 103 

Table 2.2: The variation of resistivity of some rocks with respect to the water content 

(after Telford et al., 1990). 

d) The temperature: earth resistivity highly depends on the water present and 

water's resistivity is known to have a large temperature dependence (Tagg, 1964). 

The variation of resistivity of some rocks with respect to the water content is shown 

in Table 2.2. Since the factors deciding electrolytic conduction are very variable, it 

is often observed that similar physical formations can appear as entirely different 

variations in resistivity. This fact renders resistivity as a property quite unstable, 

and hence sometimes inadequate, as a tool for using it to extract exact lithological 

conclusions for the subsurface. Therefore it should be born in mind while interpret- 

ing resistivity data that the measured resistivity values are not absolute but relative, 

and therefore only relative conclusions about the area's lithology can be made. 

For instance, by observing some data it may be said that there is a formation that 

is less resistive than the surrounding formations, but it will not be safe to decide 

its lithological characteristics just by the measured resistivity value. Erroneous 

interpretations can be made when this fact is not taken into account. 

This disadvantage does not prohibit successful lithological interpretations but in 

order to achieve good results prior information concerning the studied area should 

be considered. This prior information could be geologic or topographic maps of 

the area, or results from possible drilling, excavation results, or, in general, any 

kind of information that could enhance the knowledge of what may possibly be 

found beneath the soil. This information should be collected before the measuring 
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procedure to allow the optimum resistivity array and survey strategy to be chosen. 

2.1.3 Formulation of the basic equations 

The basic considerations that should be made in order to derive the equations that 

govern the flow of direct electrical current into the earth are the following: 

" Ohm's Law 

J= QE (2.2) 

where: 

J is the current density 

o is the conductivity 

E is the electric field intensity 

9 The electric field E is the gradient of a scalar potential V. 

E_ -VV (2.3) 

" The divergence of the current density J is zero when there are no charge 

sources or sinks in the medium, which is true for the earth's case. 

0"J=0 (2.4) 

From equations 2.2,2.3 

J= -o"vv (2.5) 

So from Equations 2.5,2.4 : 

V. (-UVV) =o (2.6) 

Which can be rewritten as 1: 

Vo. VV + QV2V =0 (2.7) 

1From vector analysis it is known that for every scalar field z and field vector F, V V. (zF) = 
x /+Vz F. 
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Figure 2.1: a) tangential electric field, b) normal current density, c) Snell's law for 

two media. 

Equation 2.7 is a form of the well-known Poisson's equation, which describes the 

electrical flow in an inhomogeneous earth. Consider now the case of an homogeneous 

earth. The first part of the left side of 2.7 becomes zero since V(7 is now zero 

v2V=0 (2.8) 

This is Laplace's equation, and it is valid only for a homogeneous earth. Laplace's 

equation for spherical coordinates (r, 0, ) is : 

a 
r2 

av +1a sin eav +1 azv (2.9) Or Or r2 sin 0 00 ae r2 sin2 B äßi2 

The boundary conditions that hold at any contact between two regions of different 

conductivity a1,02 are : 

9 The electric field tangential to the interface of the regions is continuous. In 

other words : 
Etl = Et2 (2.10) 
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This derives from the fact that electrostatic field is conservative. Therefore 

for the rectangular path of Figure 2.1a, if infinestimal sides are assumed: 

i E. dl = Etl. dl - Et2. dl =0 (2.11) 

9 The component of the current density normal to the interface is continu- 

ous. Assuming again an infinitely small volume with infinestimal sides (Figure 

2.1b), since there is no charge accumulation at the boundaries : 

i J. ds =0 or Jnl - Jn2 =0 (2.12 

Because of 2.2,2.12 becomes: 

crlEnl _ a2En2 (2.13) 

A direct conclusion of the boundary conditions mentioned is that if al , a2 are the 

angles which are formed between the electric field lines in media o, 62, and the 

normal direction (Figure 2.1c) then: 

En, = Etl/(tanal) and E,, 2 = Et2/(tan a2) (2.14) 

Because of equations 2.10,2.13,2.14 : 

of 
_ 

Ent 
_ 

tan a1 
a2 Enl tan a2 

(2.15) 

This is actually Snell's law, which is also valid for seismic and electromagnetic waves. 

Two other important considerations concerning the electrostatic field are: 

a) the potential V is considered to be zero at a great distance from the source. 

b) the family of equipotential curves are always orthogonal to the family of 

current curves. 

Despite the fact that Poisson's equation is the one that describes the real situation 

in the resistivity method, since the earth is not homogeneous, Laplace's equation is 

extensively used. This is due to its simplicity, enabling the easy derivation of useful 

conclusions concerning current flow within the earth. 
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Figure 2.2: The equipotential surfaces and the direction of the current for one point 

source electrode. 

2.1.4 Current flow in homogenous earth due to electrodes 

at the surface 

Consider a single point source of current on the surface of a homogeneous earth -a 

semi-infinite space with conductivity a. Laplace's equation for polar coordinates can 

be used in order to find the potential at every point P of the space with respect to its 

distance r from the source point. Because of the complete symmetry of the current 

flow with respect to 0 and 0 directions, it can be assumed that the derivatives of 

these may be eliminated, so that 2.9 reduces to (Keller and Frischknecht, 1966): 

a 
ar rar 0 (2.16) 

By integrating: 

or 

By further integration of 2.18 : 

r2 =C (2.17) 

avc 
ar r2 

(2.18) 

V= fd dr =f2 dr =- 
r+ 

D (2.19) 
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When r ---+ oo then V-0, hence D must be zero. The medium is homogeneous so 

that the current flows radially, crossing hemispherical equipotential surfaces. The 

total current density, J, of current with intensity I crossing the hemisphere surface, 

S, of radius r is given by J=I/S. Hence: 

since E= -äV/är 

J= of =2 r2 
(2.20) 

ayI 
Or 2irar2 

(2.21) 

From 2.18,2.21 the value of C can be found: 

C= 
2ýý 

(2.22) 

By substituting C in equation 2.19 and replacing conductivity, a, by resistivity, 

p [o- = 1/p], the potential at every point of the homogeneous space is given by 

J= I/S. Hence: 
Ip 

2irr 
(2.23) 

The equipotential lines for a point source electrode in a homogeneous space are 

shown in Figure 2.2. Consider now the case of two source point electrodes (this sort 

of arrangement is typically used in the resistivity method, since in effect a single 

electrode cannot carry current into the ground) on the surface of a semi-infinite space 

which has resistivity p. One of the electrodes is positive (A) and sends current I 

(source) into the ground while the other is negative (B) and collects the returning 

current -I (sink). The potential measured at a point P, which is at a distance rA 

and rB from A and B respectively, is Vp = VPA + VPB since potential is a scalar 
function. Taking into account 2.23: 

VP =lp+ -l p (2.24) 
2lrrA 2lrrB 

or 

VP 
27r \r. a a/ 

(2.25) 

In Figure 2.3 the equipotential curves and the current lines for a two point source 

configuration are presented. 
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Figure 2.3: The equipotential surfaces and the current lines for two point source 

electrodes. 

It is interesting to obtain an estimate of the depth that the current penetrates 

within an homogeneous half-space. This is of limited practical value because of 

two reasons : a) the investigation depth is also dependent, on the positions of the 

potential electrodes (Roy and Apparao, 1971). b) The current penetration depends 

on the earth's inhomogeneity a very conductive top layer, for example, can restrict 

the current's depth penetration. However, it is still useful to get an indication of 

how the penetration depth varies with the separation of the sources. 

Consider the case of two point electrodes A, B. If d is the distance between the 

souurces, it can be shown that the fraction of current that, penetrates below a depth 

z is (Telford et al., 1990): 

j= 
(1 -2 tan-'(2z/d)) (2.26) 

By plotting the fraction of current that penetrates below a range of depths for 

different, current probe separations (see Figure 2.4) it is obvious that the penetration 

depth increases as the distance between the probes gets bigger. Also from Figure 
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Figure 2.4: The % of current that penetrates below various depths for three different 

probe separations. 

2.5 it can be concluded that 50% of the current penetrates below z=d/2 and just 

30% below z=d. 

These observations describe one of the most important features of the resistivity 

method: the effective penetration depth can be influenced by adjusting the separa- 

tion of the current probes. This is a big advantage when the range of target depth 

is known (which is usually the case) but it can prove to be a limitation, either when 

no prior information is available or when the depth needed is extremely large. 

2.1.5 Effect of anisotropy 

So far the medium has been considered to be isotropic: in other words it is assumed 

that conductivity is the same in every direction. In reality, earth is anisotropic and 

therefore it appears to possess different conductivities depending on whether the 

current flows in one direction or another. The fact that conductivity is actually a 
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Figure 2.5: The % of current that penetrates below 15m while the probe separation 

increases. 

second rank tensor and not a scalar, as was assumed so far, renders computations 

rather complicated. Therefore, only in rare cases is anisotropy taken into account 

in the mathematical formulation of the problem. 

Fortunately, most of earth materials are not strongly anisotropic, and therefore the 

assumption of isotropy is not causing a big error. However, there are materials 

that do have highly anisotropical behaviour and so, even if it is difficult to include 

this factor in the computations, it should be taken into account while interpreting 

the data. Materials that display high anisotropy are either the stratified rocks 

(metamorphic rocks such as schists, shales, slates) or the highly fractured ones (e. g. 

limestone). As far as the stratified materials are concerned, the measured resistivity 

is smaller than the vertical resistivity and higher than the horizontal. 
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2.1.6 Apparent resistivity 

In order to insert current into the ground two current electrodes (a source and a sink) 

have to be used. Those probes cannot be used at the same time to measure the drop 

of potential due to the variations in contact resistances between the current probes 

and the soil, so two different probes have to be used for that purpose. Therefore, in 

the resistivity method two current and two potential probes are used 2. 

Assume a four terminal situation with current probes A, B and potential ones M, N 

over a homogeneous isotropic earth with resistivity p (see Figure 2.6a). The potential 

at M and N due to A, B can be found by using equation 2.25 and it is : 

VM 
2ir 

(ýi-M 
BMl (2.27) 

VN 
27r ̀ AN BNI (2.28) 

Therefore, the drop of potential AV will be: 

AV =v, -VN=IP 
1- 1- 1+ 1l Ip 

G (2.29) 
27r `AM BM AN iM 27r 

Solving 2.29 for p: 

Where: 

AV 1R 
2ý 

IG= 
2i 

R 
(2.30) 

9 AV = the potential drop 

"I= the intensity of the inserted current 

"R= the measured resistance (R = AV/I) 

"p= the resistivity of the homogeneous ground 

" AM, AN, BM, BN = the distances between the current and potential probes 
2the following notation (which is quite common in literature) will be used when referring to the 

probe arrays : I+=A, I-=B, V+=M, V-=N. 

24 



"G= the so-called geometrical factor 

In the case of a homogenous ground, for any possible four probe arrangement the 

geometrical factor, when applied to the measured resistance (R), yields the true 

resistivity. 

Reciprocity theorem in resistivity 

It can be seen from equation 2.29 that if the current electrodes A, B are interchanged 

with the potential M, N ones there will be no change of G. Hence, for a homogeneous 

earth, the potential difference AV will remain unchanged. According to Parasnis 

(1990) this is a special case of the Helmholtz'z reciprocity theorem and is also valid 

for an inhomogeneous earth by assuming that it consists of any number of separate 

homogeneous isotropic regions. Another condition that should be met is that the 

current passing through the new current electrodes should be kept the same. Most of 

the time reciprocity is verified in practice, however in noisy environments (geological 

noise) and for certain type of arrays (Park and Van, 1991) the reciprocity concept 

can be violated. In cases where real data are being interpreted by algorithms which 

make use of the reciprocity principle it is essential to take into account the degree 

in which the data satisfy the reciprocity test. In other words, the reciprocity test is 

indicative of the quality of the obtained data. 

Apparent resistivity for inhomogeneous ground 

There are many possible resistance measurements that can be obtained by any 

four-probe array, whether linear or not. However, as a direct consequence of the 

reciprocity theorem, it can be shown that only three of them can possibly be inde- 

pendent. The three basic electrode arrangements which provide the Ra, Rp and R7 

resistances are labelled by a, , ß, and 'y accordingly 3 and are shown in Figure 2.6b. 

3The respective resistivities are p°, pß and pr'. 
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Figure 2.6: a) A4 electrode array , 
b) The a, /3 and ry configurations. 

By superposition, it can easily be shown that the following relation holds for these 

three resistances: 

Ra - Rß=Ry (2.31) 

Consider now the case of an inhomogeneous ground. Equation 2.30 no longer rep- 

resents the true resistivity of the ground. The value that it gives in the case of an 

inhomogeneous ground is called apparent resistivity (AR), pa. Apparent resistivity 

is sometimes described as representing the resistivity that the ground would have 

had if it were, in fact, homogeneous. 

It is interesting at that point to discuss the physical meaning of the AR. Clark 

(1990) characterizes AR as the average resistivity of the volume of the ground that 

is being affected by the inserted current, Robinson and Coruh (1988) states that AR 

is a weighted average of the true resistivity of the subsurface. This is by no means 

mathematically true (Telford et al, 1990), however, in a broad sense this concept can 

be useful in the interpretation of many simple problems. It should be born in mind 

though, that AR is an artificial concept and there are situations where regarding it 
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as the weighted mean of the true resistivities can be totally unrealistic. 

Such an example (Carpenter and Habberjam, 1956) is shown in Figure 2.7: The 

four probe arrangement shown at the top of the figure was used in the three possi- 

ble modes to take resistivity measurements over a two layered earth with the bottom 

layer 100 times more resistive than the top. The AR for the a, ,0 and ry configura- 

tions were calculated for different depths (z) of the first layer using the technique 

of electrical images 4. From this example it can be clearly seen that the AR for the 

'y configuration (pä) can obtain negative values. Any connection of these measured 

AR values with the real resistivity (which is by definition always positive) is unre- 

alistic. This example, though somewhat extreme, indicates the artificiality of the 

AR concept and the fact that interpretations based on the AR should be made with 

caution. 

2.2 Resistivity Arrays and Instrumentation 

In this section the most common resistivity arrays are presented. A general descrip- 

tion of the resistivity measuring modes will be also given and a comparison of the 

resistivity arrays is presented. The resistivity instrumentation and the automated 

measuring systems will be described and, finally, problems encountered in resistivity 

surveying will be mentioned. 

2.2.1 Resistivity arrays 

The way in which the current and potential electrodes are arranged on the earth's 

surface is called a resistivity array. A large number of probe arrangements has 

been suggested, but only a few are used extensively. This happens because, as will 
4the technique of electrical images (Telford et al., 1990) is based on the analogy between the 

electrical situation and optics, and is a quite uncomplicated and effective method for solving a 

limited number of simple potential problems. 
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Figure 2.7: The apparent resistivity curves for the a, 0 and 7 configurations mea- 

sured over a 2-layered earth model (top) for variable thicknesses of the first layer. 

shown later, the use of an array is based both on theoretical and practical criteria, 

and therefore arrays that do have theoretical merits are often not used because of 

their practical drawbacks. For instance, the penta-electrode arrangement in theory 

performs better than many conventional arrays (Bernabini et al., 1987) biet is hardly 

ever used since its application is not practical. 

The main characteristic of an array is its geometrical factor, which is uniquely related 

to the relevant distances between the probes. The majority of the popular arrays 

involve electrodes that are in line and have distances governed by internal symmetry 

since, in this way both positioning and data interpretation become much easier. 

In this work, the presentation of the arrays will be restricted to these which are 
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most widely used 5. These are: 

Wenner In this configuration the potential probes M, N are placed between the 

current probes A, B (Figure 2.8a). The separations between adjacent electrodes 

are equal (a). By substituting in equation 2.29 we get: 

\a 2a 2a + 
1) 

-a (2.32) 

therefore the apparent resistivity for the Wenner array is: 

pa = 2ira 
AV 

(2.33) 

Gradient Schlumberger This array is similar to Wenner but the current elec- 

trodes are spaced further apart than the potential electrodes (Figure 2.8b). 

The centre of the potential electrodes is a distance x from the point of sym- 

metry 0. If L> 10 1 the AR is: 

_ 
7r (L2-x2)2 AV 

Pa 21 (L2 +. T2) I (2.34) 

Schlumberger This is similar to the previous array but all electrodes are placed 

symmetrically around a point 0 (Figure 2.8b). If the distance between the 

current electrodes is 2L and the distance between the potential probes is 21 

with L> 10 1 then the AR is: 

irL2 AV 
Pa _ 2l I (2.35) 

Dipole-Dipole In this array (Figure 2.8c) the current electrodes (current dipole) 

are separated from the potential ones (potential dipole). Both dipoles have 

stable separations (a) and the distance between them is na (proportional to 

a). The AR is: 

pa = -irn(n + 1) (n + 2)a 
AI 

(2.36) 

'In the literature there is no general agreement on the naming of the various arrays, so for each 

array the name with which it is most widely known will be used. 
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Pole-dipole The potential probes are between the current probes but one of the 

current probes, say B, is located a great distance from the remaining three 

(Figure 2.8d). In this way the distances BM, BN are considered to be infinite 

and therefore the terms 1/BM, 1/BN in the geometrical factor G are zero. If 

a is the AM distance and b the AN distance the AR is : 

_ 
2irab AV 

Pa b-aI 
(2.37 

In the case where the distance b is proportional to the distance a (b = na) 

equation 2.37 becomes: 

pa = 2irn(n + 1)a 
AV 

(2.38) 

Pole-pole This is a further variation of the pole-dipole array and is obtained by 

also moving one of the potential electrodes, say N, a great distance from the 

remaining A, M probes (Figure 2.8e). Thus the distances that are considered to 

be infinite are now BM, BN, AN. If AM=a, the geometrical factor G becomes 

G=1/a, which is the same as for the Wenner array, so the AR is 

pQ = lira 
AV 

(2.39) 

A further modification of the pole-pole array known as twin-probe is ob- 

tained by placing the remote probes (B, N) themselves close together (Figure 

2.8f). The distance BN is not considered infinite any more and if BN=b the 

geometrical factor becomes 

G_ a+b 
ab 

and the AR 

(2.40) 

Pa = 27ra a+b 
bI 

DV 
(2.41) 

In the case that BN=AM=a equation 2.41 becomes: 

pQ = ra 
Ay 

(2.42) 
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Square Array In this array, the four probes occupy the vertices of a square of side 

a. The three possible arrangements a, 3 and ry for the square array can be 

seen in Figure 2.8g. The apparent resistivities pä , and pä are expressed as 

2ira AV 
Pä -Pao 2- fI (2.43) 

The geometrical factor for the ry arrangement is not defined, so the AR for the 

square y array is not defined as well. Since both square a and ,3 configurations 

have identical geometrical factors and because of equation 2.31, for the case 

of a homogenous ground the Rry resistance is zero. 

The most interesting feature of the square array is its ability of the array to 

highlight directional variations of the subsurface resistivity. This orientational 

variation of the electrical properties of the subsurface can be expressed by the 

Azimuthal Inhomogeneity Ratio (AIR) which is given by 

AIR =2 
Ry 

_2 
(Ra - RP) 

(2.44) R, + RP Ra +Rp 

It is important at this point to discuss the assumption of the "infinite" distance. 

Both physically and practically there is no way of achieving an "infinite" distance. 

Therefore the term "infinite" is being used in a less strict sense, representing the fact 

that if a distance is far grater than another it can be omitted from the calculation 

of the geometrical factor without causing a significant error. 

Taking, for example, the case of the pole-dipole array with A, M, N equally spaced 

so that AM=MN=a and B spaced so that BN=20a, the percentage error that will 

occur by omitting BN from the calculation of the geometrical factor can be cal- 

culated easily: Greal = 0.498(1/a) while Gt or. = 0.50(1/a), and hence the error 

is approximately 0.4%. It is obvious that the greater the distance the smaller the 

error, but since in surveys the length of the cables used is limited, there is a mini- 

mum distance that keeps errors within acceptable limits. For pole-dipole arrays this 

distance is 10a, while for the pole-pole it is 30a. 
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Figure 2.8: Common resistivity arrays : a) Wenner, b) Schlumberger, c) dipole.. 

dipole, d) pole-dipole, e) pole-pole, f) twin-probe, g) square array. 
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2.2.2 Resistivity measuring modes 

There are three measuring procedures in resistivity prospecting, the choice of which 

depends on whether one desires to locate variations of resistivity with depth, with 

lateral extent or with both depth and lateral extent. In the first case, the procedure 

is called vertical sounding, the second case lateral profiling, while the third case is 

a combination of sounding and profiling. 

Vertical Sounding This procedure is based on the fact (section 2.1.4) that the 

effective depth of current penetration increases as the probe separation is in- 

creased. In this procedure arrays with internal symmetry are used. At every 

measurement the separation of the measuring electrodes is increased relative 

to a fixed centre 0. In this way, a series of measurements is produced that 

"broadly" correspond to the variation of resistivity at various depths below 

the centre 0. 

Lateral Profiling In the lateral profiling (LP) procedure the separation of the 

probes remains stable throughout the survey while a series of measurements 

are taken by moving the array in a lateral direction. By plotting the resistivity 

values along the measured profile the anomaly caused by a subsurface feature 

can be picked out. It is clear that in this way only information about the lateral 

variation of resistivity can be collected since the current probe separation 

remains the same - no information about the vertical extent of the anomaly 

can be obtained. 

Combined sounding and profiling This is a combination of both lateral profil- 

ing and vertical sounding procedures. In this way information about both 

vertical and lateral variations of resistivity can be acquired. The data acqui- 

sition pattern can be viewed either as a series of profiles over the same area 

with increasing probe separation or as a series of adjacent vertical soundings 

along the survey line. One of the main characteristics of this measuring mode 
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is that, compared to the other procedures, a larger amount of measured data 

(and therefore potentially useful information) is collected. 

So far, the main resistivity measuring modes have been defined: all of these modes 

are traditionally applied in a linear direction (survey line). However, other measur- 

ing modes exist involving measurements acquired in a non-linear fashion (Bibby and 

Hohmann, 1993). These sort of measuring modes, although not widely used, can be 

quite effective for certain type of surveys (e. g. geothermal field exploration). Fur- 

thermore, measuring modes involving a borehole electrode (miss-ä-la-mass method) 

can be employed as well. Recently, the development of automatic multiplexing al- 

lowed the use of a series of borehole probes. In this way borehole-to-surface or 

borehole-to-borehole data sets can be obtained (Zhao et al., 1986). 

2.2.3 Evaluation of the resistivity arrays 

The choice of a particular resistivity array for a survey is based upon considerations 

regarding theoretical merits and demerits of the array, while, at the same time 

practical aspects, such as the purpose of the survey, the survey cost, and the available 

equipment and personnel are equally important. 

Ward (1989) presented a review on the evaluation of several resistivity arrays. He 

proposed fourteen possible criteria for selecting a resistivity array. He suggested, 

however, that this evaluation is limited since the published literature contained 

inadequate information for a truly objective comparison of the arrays. The most 

important of his criteria and the subsequent evaluation are shown in Table 2.3. It 

has to be noted that most of the evaluation results have been drawn from systematic 

comparisons of models calculated using numerical techniques 6 (Coggon, 1973; Dey 

et al, 1975). 

6A detailed description of these techniques will be given at Chapter 3. 
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Array 

S/N 

ratio 

Lateral 

location 

Resolution 

of hor. layers 

Wenner 1 5 1 

Schlumberger 2 4 1 

Dipole-dipole 5 2 2 

Pole-dipole 4 3 2 

Gradient 3 1 5 

code: 1=best, 5=worst 

Table 2.3: Resistivity array evaluation (after Ward, 1990). 

Depth of investigation 

A significant criterion for choosing an array is the investigation depth of an array: 

the approximate maximum depth of a body that will be detected by the array. Field 

geophysicists mainly use the empirical depth of an array. An estimate of this depth 

is based on practical experience acquired by comparing the measured data with 
drilling or excavation results. It is very difficult to give an absolute value of the 

investigation depth for two reasons: 

a) The measured signal in resistivity prospecting is due to variable contribu- 

tions from various depths, so there is no particular depth which contributes uniquely 

to the measured signal. 
b) despite the fact that theoretical values concerning the depth of investigation 

can be calculated for a homogeneous earth, the actual exploration depth depends on 
(the unknown) characteristics of the existing subsurface features (inhomogeneities). 

A theoretical approach to investigation depth is the concept of a "depth of inves- 

tigation characteristic" (DIC) suggested by Roy and Apparao (1970). Despite the 

reasonable criticism (Parasnis, 1990) that the DIC is not objective since it applies 

only to a homogeneous earth, we will further discuss the concept for two reasons: 

a) It can give a qualitative insight into the relative behaviour of the various 

resistivity arrays. 
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b) It has been used as the basis of approximate reconstruction methods which 

will be examined in a later chapter. 

Roy and Apparao (1970) showed that the depth of investigation of resistivity arrays 

is not only dependent on the current probe separation, but it is also affected by 

the positions of the measuring probes. Therefore, instead of examining the current 

distribution within the ground, they calculated the contribution to each elementary 

volume of earth to the signal (AV/I) observed at the surface by integrating this 

contribution over a thin horizontal layer parallel to the surface. Calculation of this 

contribution for several depths produced the (DIC) curve which for a generalized 

four electrode array has the form (z is the depth): 

DIC =J 4z pI 
1 C 

(AM2 + 4x2)3/2 

1 

((AM + MN)2 + 4x2)3/2 

((MN + NB)2 + 4x2)3/2 

+ (NB2 + 4z2)3/2I 
dz (2.45) 

The DIC curves for Wenner, dipole-dipole and pole-pole arrays are shown in Figure 

2.9. DIC begins with zero value for zero depth, reaches a maximum and finally 

reaches zero at large depths. The depth of investigation, according to Roy and 

Apparao (1970), is the depth where the DIC curve attains its maximum - the depth 

that gives the largest contribution to the signal received at the ground surface. 

Further, the DIC curve gives an indication of the resolution with depth: in general, 

the bigger the width of the curve the smaller the resolution. The depth resolution 

is defined as the inverse of the width of the DIC curve at its half-maximum points. 
The investigation depth and the resolution relative to the distance L between the 

two external active (not at "infinite" distance) probes of the array are presented in 

Table 2.4. 

Edwards (1977) compared these results with empirical ones and suggested that the 

most representative choice for the investigation depth of an array is not the one 

given by the maximum of the DIC curve (maximum depth) but the one given by the 
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Figure 2.9: DIC curve for the Wenner, dipole-dipole and pole-pole arrays. 

point of the curve which corresponds to the depth that one-half of the total signal 

originates - this depth is the "median" depth. The results of Edwards (see Table 

2.5), which were also supported by a later work of Barker (1989), are somewhat 

more optimistic than those of Roy. 

No matter which results are chosen, some interesting remarks can be made about 

the characteristics of the arrays: 

a) The arrays which use remote probes (twin-probe, pole-dipole) have by far 

the largest depth of investigation. This advantage does not mean that they are supe- 

rior to the other arrays since this feature is counterbalanced by their lack of resolu- 

tion with depth. In general, this characteristic renders them ideal for reconnaissance 

investigation but prohibits their use in high resolution vertical investigations. 

b) Wenner, Schlumberger and Dipole-Dipole arrays appear to have high a ver- 

tical resolution and an adequate depth of investigation and hence they can be used 

whenever high resolution with depth is needed. 

c) Gradient Schlumberger was proved to have a very large investigation depth 

and therefore a very low resolution with depth. 
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Array Depth Resolution 

Wenner 0.11 L 1/2.25 

Schlumberger 0.125L 1/2.45 

Dipole-dipole 0.195L 1/3.1 

Twin-probe 0.35 L 1/8.4 

Table 2.4: Depth of investigation and resolution of some resistivity arrays (after Roy 

and Appaxao, 1970; Roy, 1971). 

Array Depth 

Wenner 0.17 L 

Schlumberger 0.195L 

Dipole-dipole 0.25L 

Twin-probe 0.77L 

Pole-dipole 0.52L 

Table 2.5: Depth of investigation of some common resistivity arrays (after Edwards, 

1977). 

The method for calculating an investigation depth can be extended to simple inho- 

mogeneous models (Apparao et al., 1992), but these results still cannot be used to 

derive general conclusions. 

2.2.4 Resistivity instrumentation 

In order to measure the resistivity of the earth special instruments called resistivity 

meters (RM) are used. Further, equipment such as cables and probes are also 

needed. Two current probes are used to insert current into the ground and due to 

the large contact resistance between the probes and the ground, separate voltage 

probes should be used: four probes in all. The resistivity meter then measures the 

resistance R which is simply the ratio of the voltage across the potential probes 

V�,,, to the intensity I of the inserted current. Hence the apparent resistivity can be 
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readily found (see equation 2.30). The resistivity meter has two main components 

a) The power source and b) The measuring system (see Figure 2.10a). 

Power source 

For obtaining a resistivity measurement, the test current has to pass through a 

circuit including the earth resistance and the resistances of the current probes. The 

total resistance could be several hundred ohms and therefore the voltage used should 

be fairly high. In actual instruments it is between 50 and 500 volts. The power source 

could be either a DC or an AC one. 

DC source: If a direct current source is used, two problems have to be faced: 

a) Polarization effect: There is a concentration of anions around the negative 

electrode and cations around the positive one. This build-up of ions will gradually 

increase with time and therefore the measured resistance between the probes will 

gradually increase too. 

b) Spontaneous potential: Natural electrical currents of electrochemical origin 

exist in the subsurface. These currents will increase the value of the measured 

potential. 

The problem of the polarization effect is tackled by reversing periodically the DC 

polarity or by using special porous porcelain probes. The spontaneous potential ef- 

fect should be measured before the source is turned on and then subtracted from the 

measured voltage when current is inserted. Modern instruments do this procedure 

automatically. 

AC source: When an AC current is used the accumulation of ions does not occur 

and so electric polarization is eliminated. Furthermore, the AC signal nullifies the 

effects of spontaneous potential (at every current reversal the spontaneous poten- 

tial current increases or decreases the measured potential by equal amounts). The 

frequencies used in the AC source must be low enough for effects such as electro- 
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magnetic induction to be minimal, and the selection of the frequency is also related 

to the required depth of the investigation (the highest the frequency the lower the 

depth of investigation). Finally, when an AC source is used, capacitance effects and 
EM coupling between current and potential probes also have to be considered. 

Measuring systems 

Theoretically, a simple ammeter and voltameter are adequate for measuring the 

earth's resistivity. However, quite advanced instruments have been developed. The 

design of the measuring system is closely related to the purposes of the instrument: 

RMs used in archaeology have totally different specifications from those used in 

geological applications. In the following table some typical specifications of RM 

used in archaeological and geological surveys are shown [source: Geoscan, Geonics, 

OYO]. 

SPECIFICATIONS RM (archaeol. ) RM (geol. ) 

OUTPUT CURRENT 0.1-10 mA 1-200 mA 
OUTPUT VOLTAGE 50 V max. 200 V max. 

FREQUENCY 0.1-150 Hz DC/ 100 Hz max. 

POTENTIAL RANGE 20-200-2000 mV 20-200-2000 mV 

Most of the modern automatic instruments make use of the constant current princi- 

ple. The current source is designed to maintain a constant current in to the ground 

by varying its voltage in response to the changes in the resistance. It should be 

noted that these changes may be of a wide range (e. g. 0.05-2000 Ohms) As long as 

the potential difference reading is taken the resistance can be readily found. Modern 

instruments have also other characteristics such as measurement recording systems, 
high accuracy via averaging, measurement noise reduction devices etc. 
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Automatic RM 

In recent years the development of the RMs has been oriented towards systems 

which automate the resistivity measuring procedure. This is being achieved by the 

use of automatic multiplexing. Automatically multiplexed RM have main measuring 

units identical to that of the conventional RM. This measuring unit is connected to 

a switching unit which contains computer controlled relay cards which are used to 

connect the RM with any four of a series of electrodes via a multi-core cable. The 

entire measuring procedure is controlled by a computer which not only "decides" 

which probes will be connected but also can be used to trigger the RM and to store 

the measurements, as well as to change the RM's settings (e. g. current intensity, 

measurement sampling etc. ). 

There are two main ways with which the multiplexing can be achieved: 

a) Central switching unit. In this approach the channels in the multi-core 

cable should be as many as the probes used for the survey. This increases the cable 

cost and limits the total number of the probes that can be used since the number 

of channels in a multi-core cable is fixed. 

b) Distributed switching units. This switching mode involves computer con- 

trolled switching circuits at every probe point 7. In this way multi-core cables with 

a limited and stable number of channels can be used (e. g. five channels can be 

enough: two for the current transmission, two for the potential measurements and 

one for the computer signal) and therefore the maximum number of probes that can 

be used is theoretically unlimited. 

From a theoretical point of view distributed switching units are superior to central 

switching units as far as cabling cost and flexibility is concerned, however the total 

cost of the distributed switching unit itself can be higher than that of a central 

one. In practice, central switching units are less sensitive to rough field conditions 
7For practical reasons these switching circuits are mounted on the probes this sort of probes 

are known as "smart" probes. 
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(Dahlin, 1993). 

The obvious advantages of the use of automatic measuring systems compared to the 

use of traditional (manual) ones are: 

a) An increase of the survey speed since the entire measuring procedure is 

automated. 

b) The ability to increase the amount of measurements acquired and therefore 

potentially the resolution of the data sets. 

c) Increased flexibility in the choice of the array. Arrays involving quite labo- 

rious manual multiplexing, such as 2-D Wenner array, can now be easily measured. 

Further, "non-standard" measuring schemes can be recorded easily. 

d) Reduction in the man-power and labour needed for the survey. 

There is no doubt that the automatic measuring systems offer a significant boost 

in resistivity prospection and, in particular, in the 2-D measuring mode, which is 

the one that needs a large amount of measurements over the same region. The 

technological development is quite rapid; already, several prototype systems have 

been reported in the literature using either distributed (Griffiths et al, 1990; Noel and 
Walker, 1991) or central (Overmeeren and Ritsema, 1988; Dahlin, 1993; Kohlebeck 

et al. 1993) switching. Several commercial firms offer systems which can support 

automatic multiplexing (OYO, AGI, Campus, ABEM, IRIS, Geoscan research). 

The main disadvantage that these systems appear to have is the increased cost of 

the equipment. A central switching unit costs approximately as much as the RM 

itself (Dahlin, 1994, personal communication) and the cost of the multi-core cable 
has to be added on top of that. Therefore resistivity can no longer be viewed as 

such a cheap technique. 
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2.2.5 Problems with resistivity surveys 

Apart from the accuracy of the RM itself, there are several other sources of noise 

that could affect the quality of the field apparent resistivity data sets. Some of those 

are: 

Electromagnetic coupling Whenever the transmitted current is changed, elec- 

tromagnetic (EM) coupling between the transmitting and receiving cables will 

occur (Ward, 1990). The coupling increases with frequency, with cable length 

and with the earth conductivity. Arrays which have separate receiving and 

transmitting cables are less susceptible to electromagnetic coupling. Therefore, 

dipole-dipole or pole-dipole arrays are preferable to Wenner or Schlumberger 

arrays as far as EM coupling is concerned. For the automated measuring 

systems which use multi-core cables coupling can become a problem if the 

conductors in the cables are not screened. 

Probe positioning Misplaced probes effect the accuracy of the measurements since 

they result in a miscalculated geometrical factor and consequently in a mislead- 

ing apparent resistivity value. Extra care has to be taken in order to position 

the electrodes as accurately as possible. Automatic positioning instruments 

such as the electromagnetic positioning system can practically eliminate this 

source of errors with consequent increases in the survey costs. One other way 

to reduce positioning errors is to use probes mounted on a fixed frame. This 

approach is widely used in archaeological and pedological surveys where the 

small scale renders the use of a frame practical 8 

'One of these systems developed for the square array, widely known as RATEAU (Hesse et al., 
1986), consists of four steel wheels, which act as a square frame. The frame can be towed by a 

vehicle which has an electromagnetic positioning facility - the system is capable of providing one 

reading per 10 cm and can cruise at a speed of about 15 miles/hour. Another system which uses 

probes mounted on a frame is the RM4 instrument (Geoscan Research). It is used mainly for 

archaeological surveys and can incorporate the twin-probe array. A modified version called RM15 

can cope with a variety of arrays (e. g. Wenner, dipole-dipole etc). 
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Topography effects Topographic effects are important in resistivity surveying. In 

general topography causes dispersion and focusing of the current distribution 

and, in this way, artificial conductive and resistive anomalies. Slopes angles of 

more than 10 degrees create significant errors in measurements. Although only 

the behaviour of the dipole-dipole array has been studied, a way for correct- 

ing the topography effects (both for 2-D and 3-D effects) has been suggested 

(Fox et al., 1980; Oppliger, 1984). A further discussion of the correction of 

topographical effects will be made in Chapter 3. 

Other sources of noise could be due to the geology and field conditions (surface 

inhomogeneities near the probes, overburden, excessive moisture etc. ), or due to 

anisotropical behaviour of the subsurface. When interpreting the resistivity the level 

of noise has to taken into account in order to avoid artefacts in the interpretation 

results. 

2.3 Measuring and Interpreting Resistivity Data 

In this section the practical application of the resistivity technique is demonstrated. 

Further, ways for presenting and interpreting the data will be described. The way to 

perform a resistivity survey depends on the measuring mode that has been selected 

for the survey, and thus each resistivity measuring mode will be described separately. 

2.3.1 Vertical electrical sounding 

The purpose of the vertical electrical resistivity sounding (VES) procedure is to 

investigate the variation of subsurface resistivity with depth. This is achieved by 

arranging the measurement lay-out in such a way that for every consecutive mea- 

surement the measured potential difference is affected by the formations that lie at 

increasingly greater depths: the spacing of the current probes is increased systemat- 
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ically. The entire procedure is based on the assumption that the subsurface consists 

of distinct horizontal layers which are homogenous and isotropic. 

Application 

In this procedure, only electrode arrays with internal symmetry (no probes at infin- 

ity) are used: Schlumberger, Wenner, dipole-dipole and square array since at every 

measurement the separation of the electrodes is increased relative to a fixed centre 0 

(which is the centre of the MN for Wenner and Schlumberger arrays, the mid-point 

of the two dipoles for the dipole-dipole array and the centre of the square for the 

square array). In order to achieve good resolution with depth the array should be 

expanded about six times per decade of distance (in a logarithmic scale). 

The Schlumberger array is used most commonly (Rijo et al., 1974): due to the 

assumption that the distance between the current probes is much larger than that 

of the potential probes (AB/2 > 5MN), the potential difference between MN 

represents the electric field at the mid-point between A and B. At every measurement 

the current electrodes are displaced outwards (in order to change the depth range) 

while the potential probes are left at the same position. However, when the ratio 

between AB and MN distances becomes very large (20-50) the MN distance has to 

be increased as well, otherwise the measured signal is two weak. 

The Wenner array is also used for VES. The application is similar to that for the 

Schlumberger array, but for every measurement the potential probes have to be 

moved as well - this is not a problem, however, when automatic multiplexing is 

used. The Wenner array has the advantage that due to the large MN separation 

the measured signal is quite high (see Table 2.3); but for the same reason, however, 

Wenner measurements have an unpredictable level of noise caused by the existence 

of lateral inhomogeneities 9 (Koeford, 1979). 

9The effect of the lateral inhomogeneities on the Wenner sounding configuration was studied by 

Barker (1981) who proposed an efficient way for taking them into account while measuring (offset 
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Figure 2.11: Schlumberger VES data set for a three layered earth model(top). 

Dipole-dipole VES can be used for very large scale exploration since it has favourable 

cable logistics (Al'pin, 1950) but on the other hand due to its low signal is not 

widely used . Finally, square array VES is mainly used for ascertaining directional 

variations in the subsurface resistivity (Al Hagrey, 1994) 

Vertical soundings are applied extensively for stratified earth studies, since stratifi- 

cation is a characteristic that is usually relatively constant over considerably large 

areas. Therefore a sparse grid of soundings can be enough to deduce useful conclu- 

sions about the subsurface. It follows that with soundings it is very difficult to get 

an indication of the lateral variations of resistivity. Due to the importance of the 

hydrogeological applications of soundings there is a large amount of research being 

conducted in this field (Koeford, 1979). 

Wenner method). 
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Interpretation 

The VES curves are presented in logarithmic scale. A typical Schlumberger sound- 

ing curve for a three layer earth is shown in Figure 2.11. In VES the basic assump- 

tion is that of an earth with resistivity varying only in one dimension (depth), and 

therefore the resulting interpretation is called 1-D. The interpretation of the VES 

curves is traditionally made by matching parts of the measured curve (the contin- 

uous curve produced by interpolation of the discreet measured VES data points) 

with master curves produced for two or three layered earth models (Koeford, 1991). 

Although nowadays automatic full-curve matching (inversion) schemes are used reg- 

ularly (Inman, 1973; Zhody, 1989) manual curve matching is still useful for giving 

the interpreter a "feel" for the data, or for providing initial models to be used in 

automatic interpretation schemes. 

There are several factors which can affect severely the validity of the interpretation 

of the VES data: The existence of severe lateral inhomogeneities (departure from 1- 

D model), non horizontal layer interfaces, anisotropy etc. Moreover the assumption 

of an earth which consists of distinct homogenous layers is not always valid since 

changes of the resistivity with depth can be so gradual and continuous that no 

distinct layer units can be assumed (Constable et al., 1987). Finally, an extra 

problem is imposed by the principle of equivalence (Kunetz, 1966): for some specific 

layer sequences there are several layer models which produce almost identical VES 

data sets. All of these factors have to be taken into account when measuring and 

interpreting VES data. 

2.3.2 Lateral profiling 

In the lateral profiling (LP) procedure the separation of the probes remains stable 

throughout the survey while a series of measurements are taken by moving the array 

in a lateral direction. By plotting the resistivity values along the measured profile 
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Figure 2.12: Apparent resistivity profiles with different arrays over a buried wall 
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the anomaly caused by a subsurface feature can be picked out. 

In profiling, the lateral resistivity anomalies such as dykes, faults and walls can be 

picked up. However, the information is restricted due to the stable penetration depth 

which is imposed by the constant separation of the current probes. In practice, most 

of the time the measurements acquired "represent" the upper part of the feature, 

therefore any attempts to describe the total shape of the feature are based more on 

prior knowledge. 

Application 

There are two ways for employing lateral resistivity profiling, depending on the 

size of features one is interested in. Profiling of geological features takes place in 

separate sections with large probe separations and is used mainly for reconnaissance 

purposes. 

Conversely, when it comes to more detailed surveys (archaeological applications), a 
different approach in profiling is followed. A dense grid of parallel sections is created 

and the resistivity measurements acquired at this pattern are plotted to the exact 

grid coordinates. In this way a resistivity map is created which can lead to the 

identification of various features such as walls, ditches, tombs etc. 

Any of the various arrays can be used for LP. From a practical point of view the 

scale of the survey is essential: for quite deep surveys where a large probe separation 

is needed, the arrays with remote probes (probes at "infinite" distance) are not 

practical. Consider, for instance, the twin-probe array with a separation of 50 

meters. The remote probes should be placed (50x30) 1500m away from the active 

ones- a distance which is not at all practical. On the other hand, for shallow civil 

engineering or archaeological targets, these arrays are far more preferable since less 

probes are being moved with each measurement. 

The choice of the array depends also on the sensitivity of the array to the existing 
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lateral inhomogeneities (See Table 2.3). The array that is most widely used in the 

LP procedure is the gradient array (which was designed for profiling purposes only). 

Pole-pole is also quite popular while dipole-dipole and pole-dipole are used as well. 

Wenner and Schlumberger arrays are not widely used for LP. 

Interpretation 

The interpretation of the LP data is related to the shape of the various anomalies 

in the data set. In general the interpretation is made by assuming that the array 

will produce high apparent resistivity anomalies over resistive features and low ones 

over conductive bodies. lo 

Arrays that give anomalies which have a width approximately equal to the width 

of a feature and a clear maximum which corresponds to the feature resistivity dis- 

tribution are considered to be ideal. In general, the shape of the resulting anomaly 

is a complex combination of effects, due to the geometry of the array and the char- 

acteristics of the body. In particular the anomaly is affected by: a) the position of 

the array relative to the feature, b) the resistivity contrast between the body and 

the surrounding environment, c) the depth that the body is buried. 

As long as the proper array is chosen, the interpretation of LP results can be easy 

and quite accurate. This can be seen in the examples presented here: In Figure 

2.12 apparent resistivity profiles with different arrays over a wall are shown. For 

every array the anomaly produced is quite pronounced. Moreover in Figure 2.13 

(Szymanski et al., 1992) and in Figure 2.14 (Tsokas et al., 1994) examples of recent 

LP surveys using a twin-probe array are shown. The distribution of the apparent 

resistivity (shown here in a grey scale) clearly indicates the location of the buried 

features. 

10This is broadly true but (due to the variable sensitivities that the arrays have) for specific 

locations of the array relative to the body the opposite effect can occur (negative sensitivity). A 

more detailed discussion on that feature is presented in chapter 4 
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Figure 2.13: Grey scale resistivity map (twin-probe, 0.5m spacing) from the site of 

Fountains Abbey (arbitrary gray scale - contrast equalise. d) The pattern of the 

Abbey's guest house can be very easily seen. (Szymanski et al., 1992). 
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2.3.3 Combined sounding and profiling (CSP) 

Combined Sounding and Profiling (CSP) is a combination of both lateral profiling 

and vertical sounding procedures: information about both vertical and lateral vari- 

ations of resistivity can be acquired. The data acquisition pattern can be viewed 

either as a series of profiles over the same area with increasing probe separation or 

as a series of adjacent vertical soundings along the profile line. 

Almost all arrays that can be used in profiling can also be used for obtaining sec- 

tional resistivity images. One of the main characteristics of CSP is that, compared 

to the other procedures a larger amount of measurements (and therefore informa- 

tion) is collected. But this fact makes the interpretation of CSP data rather more 

complicated. 

Application 

The practical considerations concerning the use of the electrode arrangements in 

lateral profiling are also valid for their use in CSP. Furthermore, because of the nu- 

merous measurements that CSP involves, when no automatic measuring instruments 

are available, schemes with limited probe movement are preferred. 

Hence, the Wenner array is not extensively used if there is not an automatic measur- 

ing procedure, while for geological applications dipole-dipole is preferable (Streten- 

ovic et al., 1992). When it comes to shallower applications apart from dipole-dipole 

(Patella, 1978), either the pole-dipole or pole-pole array can be employed. 

When a dipole-dipole array is used, the length, a, of every dipole, (AB, MN), remains 

stable and the same profile is repeated by increasing the separation, na, between 

the dipoles by an integer number of dipole lengths (n=1,2,3... ). In practice, in order 

to minimize the probe movements one dipole remains stable (usually the measuring 

one) and the other is moved along the profile. As soon as the measuring sequence 

is completed a new one starts, but this time the stable dipole is moved one position 
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Figure 2.14: Grey scale resistivity map (twin-probe) from the Classical/ Roman site 

of Europos (N. Greece). The high anomalies (dark) represent the ruins of the ancient 

acropolis (Tsokas et al, 1994). 
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forward (see Figure 2.15a). The maximum dipole separation n,,, Qy is usually no larger 

than 6-7 dipole lengths since for larger values of n the measured signal is usually 

too low and the quality of the measurements drops. The number of measurements 

(N) acquired by this procedure for the dipole-dipole array, if P is the number of 

probes will be: 
'nm.. 

Nom= (P-2)-i n,,, ßy<P-2 (2.46) 
i-i 

A similar measuring scheme can be followed when the pole-dipole array is used for 

CSP. This time instead of the current dipole a single current probe exists, and that 

fact increases the number of the acquired measurements (Npd). 
fmox 

Np (P-1)-i nmax <P-1 (2.47) 

A similar approach can be followed for the pole-pole CSP. It is interesting to note 

that if an ideal pole-pole array 11 CSP data set is obtained, then all of the measure- 

ments that would have been produced by other arrays (dipole-dipole, pole-dipole, 

Wenner) can be produced (using superposition) from that data set. The number of 

measurements (N, ) produced with the pole-pole CSP is given by 
mm.. 

N pp= P-in,,, ý <P (2.48) 

The Wenner array CSP is obtained somewhat differently. The entire profile is ob- 

tained for a stable probe separation n=1a. This procedure is repeated for every 

probe separation until n=n,,. (see Figure 2.16a). The total number of measure- 

ments (N,,,, i) obtained is given by 
7amax 

P- 3i n� < P/3 (2.49) 

The ways for obtaining CSP data sets presented here apply only when manual 

multiplexing is used. When automatic measuring systems are available there is 

more flexibility in the way the measurements can be obtained 12. 

11B, N probes at infinity 
12Xu (1993) proposed a measuring scheme which involves all the possible independent measure- 

ments for a number of surface electrodes. The scheme turns out to be a combination of a full 

dipole-dipole data set with several Wenner-like measurements. 
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One of the problems of the CSP procedure is that the common use of equally spaced 

probes does not allow adequate sparsity of measurements and therefore high resolu- 

tion of horizontally layered structures. If high resolution with depth is needed the 

survey could be carried out using non-integral values of n but this is not practical. 

In such a case a better choice is the use of Schlumberger CSP: A survey line with 

equally spaced points is chosen and a full VES data set is obtained having as a 

centre each of these points. Each sounding is expanded in a direction parallel to the 

survey line. 

Theoretically, CSP is the procedure that guarantees the maximum amount of in- 

formation in resistivity prospecting. This advantage is counterbalanced by the fact 

that it is the most laborious when compared to VS and LP in isolation. Therefore 

traditionally it is used either when detailed information about the structures sought 

is needed or when the other methods fail to give reliable results. In both cases it 

is supplementary to the basic VS and LP procedures. However, the recent develop- 

ment of computer driven measuring systems has given a boost to its use, and so it 

is believed that, at least for shallow depth applications, it will in future be used as 

a stand-alone measuring procedure. 

Interpretation 

The CSP data sets are presented traditionally using the pseudosection method. It 

was proposed initially by Hallof (1957) for the dipole-dipole data set. It is based 

on the fact that the bigger the dipole separation, the more the resistivity is related 

to greater depths. Hence, each measured resistivity value is arbitrarily placed at 

the intersection of two 45-degree lines through the centres of the dipoles (see Figure 

2.15b). In this way an approximate 2-D sectional resistivity image (pseudosection) 

which is easy interpretable is produced. 

For the Wenner array the pseudosection is constructed by projecting each apparent 

resistivity measurement to the midpoint of the MN probes and at a depth equal to 
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the inter-probe spacing of that measurement (see Figure 2.16b). In a similar fashion 

pseudosections for the pole-dipole and pole-pole arrays can be constructed. 

Edwards (1977) suggested that changing the depth scale of the pseudosection results 

in more geologically realistic images of the earth. The scale that he suggested for 

each array can be seen in Table 2.5. Pseudosection images can be presented either 

in the form of contour maps or with the form of colour or grey scale images. A 

detailed presentation of the pseudosection technique is given is chapter 5. 

More recently the interpretation of the CSP data is carried out made by using 

semi or fully automatic modelling and inversion schemes which will be presented 

analytically in chapters 5 and 6. 

In Figure 2.15c a pseudosection (in a contoured map form) of a dipole-dipole data 

set obtained from the Archaeological site of Europos (N. Greece) is presented. The 

survey line was positioned over a buried tomb (previously identified by a twin-probe 

LP survey) which gave the high apparent resistivity values positioned at the centre 

of the pseudosection. 

In Figure 2.16c a pseudosection (in a contoured map form) of a Wenner data set 

obtained at the courtyard of the Electronics Department at York is presented. The 

survey line was positioned over a drainage cavity. The high resistive structure can 

be clearly identified in the figure. 

Naming 

There are several other names that are used to describe the CSP procedure. The 

most common name is pseudosection (from the Greek "pseudo", meaning in this 

case approximate). This name describes mainly the interpretation method (which 

gives an approximate section of the subsurface) and not the measurement procedure 

itself. 
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Figure 2.16: Measurement scheme for the 2-D Wenner array: a) The way the data set 

is acquired for 12 electrodes and maximum separation n=4. b) The representation 

of the data set in a pseudosection form. Each number corresponds to the number 

assigned to each measurement in Figure a. c) Wenner pseudosection of a data set 

acquired at a courtyard of the Electronics department at York over a drain. 
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Figure 2.17: Borehole-to-surface and borehole-to-borehole probe arrangements. 

In general it is quite common to associate the measuring mode with the interpreta- 

tion: several times the VES procedure is described as a 1-D resistivity survey and in 

the same context the CSP procedure is described as a 2-D resistivity survey. In this 

work, however, we will use the 2-D term strictly for the interpretation (inversion) 

schemes. 

The name resistivity tomography is also used: the term is due to the similarities 

of the procedure to medical imaging techniques (X-ray tomography). This term 

was first used by Shima in order to describe the borehole-to-surface and borehole- 

to-borehole resistivity measuring modes (see Figure 2.17) which although different 

in physical terms, can be treated similarly as far as the measuring configuration is 

concerned: a dipole-dipole CSP measuring sequence for surface-to-surface data can 

be easily transferred to accommodate borehole-to-surface measurements. 

On the other hand, the automated measuring systems allow absolute flexibility in 

the choice of the probes and the arrays (Xu and Noel, 1993), so in a sense the term 

tomographic is more general than the term CSP. In that context the term "tomo- 

graphic resistivity data sets" will appear in this work and also embraces traditional 

CSP data sets. This is because the modelling and most of the reconstruction tech- 

niques that will be described can be applied to any sort of electrical data (surface, 

borehole-to-surface, borehole-to-borehole ). 
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The data sets for this work 

For this work most of the presented real-data examples are obtained using the dipole- 

dipole CSP measuring scheme. Although the techniques for modelling and recon- 

struction described in the following chapters are flexible enough to incorporate any 

short of data set the dipole-dipole CSP was chosen for two main reasons: 

a) Since an automatic measuring system was not always available an easily 

applicable array should be chosen (minimum probe motions). 
b) The comparison of the resistivity arrays showed that this array has good 

resolution (both lateral and vertical). Further, recent studies (Sasaki, 1992) showed 
that dipole-dipole can produce inversions with a higher resolution compared to the 

other arrays. 

c) The vast majority of research work on the 2-D reconstruction of resistivity 

data has been done using this array. Hence, direct comparisons can be made. 

2.4 Chapter Overview 

In this chapter the basic resistivity theory has been reviewed. The basic mechanism 

and equations that govern the flow of the electrical current into the earth were 

presented. Basic concepts such as that of the apparent resistivity, the reciprocity 

and the anisotropy were explained. Further, the artificial nature of the apparent 

resistivity was demonstrated and a review of the existing resistivity arrays showed 

some of their merits and limitations. 

The resistivity instrumentation and the automated systems were presented and the 

practical application of the resistivity approach was explained. For the combined 

sounding profiling mode which is one of the interest of this thesis it was decided 

that the dipole-dipole array was the best choice in view of the its merits and the 

hardware limitations. 
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Chapter 3 

Forward Resistivity Modelling 

Using the Finite Element Method 

In this chapter the forward resistivity problem is addressed. The existing approaches 
for modelling earth-resistivity data are discussed and the reasoning for using the 

finite element method (FEM) is presented. 

Although a detailed analysis of the application of the 2.5-D FEM into the resistivity 

modelling is given in many works, the scheme developed for this work is described in 

full. This is necessary because full justification of techniques that are presented in 

this work is possible only if the core of the 2.5-D FEM modelling is explained fully. 

The computational aspects and accuracy of the proposed scheme are addressed. 

Further, a strategy for modelling arrays parallel to the strike direction (i. e. square 

array) is proposed. Finally the scheme is used to study the effects of terrain topog- 

raphy on commonly used resistivity arrays. 
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3.1 Resistivity Modelling 

Forward resistivity modelling, (FRM), is the procedure of obtaining the surface 

potential response of a model of a known resistivity distribution, interacting with 

a particular applied current. In other words, the FRM involves the solution of 

the equations that govern the flow of electrical current through the inhomogeneous 

ground for a specific resistivity distribution and current source configuration such 

that the potential distribution can be found. The potential distribution could be 

calculated either at only the measuring points, or at a range of points over a specified 

area. Once the potential is known it is straightforward to calculate the apparent 

resistivity. There are two different ways of handling the solution of the forward 

problem: 

Analytical approach: this involves the direct solution of the field equations. In 

practice, only very simple structures, such as a buried sphere (Cook and Van 

Nostrand, 1954), have known solutions. Analytical solutions, although of not 

any direct practical significance, are useful for validating modelling results 

produced by other techniques. 

Numerical approach: this involves mathematical procedures based on arithmetic 

operations performed by computers. This implies that a way must be found 

for expressing the solution of the continuous field equations at a finite number 

of discrete points. The numerical methods have the great advantage of being 

able to incorporate arbitrary resistivity distributions, and therefore they are 

preferable to analytical ones. 

There are a variety of numerical modelling techniques that have been applied for 

solving the forward resistivity problem. These can be separated into two main 

categories: 

Integral equation methods: the area where the solution is sought is restricted 

to the surface of resistivity discontinuities. The principle of the numerical 
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calculation is based on the use of a Green's function, which in a broad sense 

assumes that the existence of a perturbing body of different resistivity from the 

background is equivalent to a distribution of elementary electrostatic sources 

on its surface. In order to decide the distribution of the potential at the 

earth's surface the cumulative effect of all of the elementary sources is calcu- 
lated by integration and is added to the potential distribution caused by the 

source. The integral method was mainly developed for handling simple resis- 

tivity distributions (Keller and Frischknecht, 1966; Lee, 1974; Furness, 1992). 

More recent works incorporate inhomogeneity within layered media and give 

numerical checks (Das and Parasnis, 1987). 

Differential methods: the area of the solution is discretized and is constrained 

by the introduction of artificial boundaries to the problem in order to be 

compatible with computer finite arithmetic. The solution is calculated at every 
discrete point of the study area. Hence, a different resistivity can be attributed 

within each discrete fragment, so that differential methods can cope with any 

resistivity distribution, no matter what its complexity. 

By comparing the two methods it can be said that integral equation methods have 

the advantages of being less time-consuming and occupying less computer mem- 

ory than differential methods since the solution is confined to the surfaces of the 

discontinuity rather than through the entire area of study. Conversely, differential 

methods have the attractive advantage of handling complicated resistivity distribu- 

tions. Moreover their theoretical development is less laborious than that for the 

integral equation methods. 

The choice of which method to use is closely related to the purpose of the forward 

model: integral equation methods are preferable either when the intention is to 

study the potential distribution at the surface caused by simple structures, or to 

study the responses caused by moving different arrays over the same body (Bern- 

abini et al., 1987). On the other hand, when the final goal is to incorporate the 
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forward model within an iterative inversion scheme in order to decide a resistivity 

distribution based on real measurements, the choice should be clearly a differential 

method (Hohmann, 1988) since the subsurface resistivity distribution can be com- 

plicated. Moreover, during the inversion procedure not only the apparent resistivity 

(AR) measurements but also the first derivatives of the AR in respect of changes 

in the resistivity of discreet blocks (distributed all over the studied space) have to 

be calculated. Differential methods can easily cope with these calculations since 

they provide a solution for the entire studied area. Hence, no further justification is 

needed for the choice of a differential method for this work. 

3.1.1 Modelling using differential methods 

Three differential forward resistivity modelling schemes are reported in the liter- 

ature. These are: resistor network analysis, finite difference, and finite element 

methods. They all involve the calculation of the potential distribution (due to point 

sources) at discrete points of a medium of arbitrary resistivity. The fact that the 

domain is restricted by imposing artificial boundaries to an open boundary problem 

(semi-infinite space) signifies that a unique solution can be obtained only if knowl- 

edge concerning the behaviour of the potential and its derivatives at these boundaries 

is available (boundary conditions). A short presentation of these methods will follow 

in order to pinpoint their similarities and differences: 

Resistor Network Analysis Method (RNAM) - This method is based on the 

direct analogy between field equations and the equations governing voltage about 

a point source in resistance networks. The subsurface is discretized into a resistor 

network; thus the resistors are being used to simulate the earth's resistivity. The 

potential is decided at the nodes by solving a system of linear equations (which is 

constructed via Kirchhoff's second law) : 

LV =S (3.1) 
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where: 

L is a sparse banded matrix which depends on the features of the network. 
V is the unknown potential vector. 

S is a vector describing the current sources. 

The method was incorporated in an inversion algorithm suggested by Pelton et al. 

(1978) and Tripp et al. (1984) 
. The biggest advantage of the method is that 

it allows a physical insight into the simulation of the earth, unlike the other two 

methods which follow a more theoretical approach. 

Finite Difference Method (FDM) - The continuous medium is divided into rect- 

angular cells, each associated with a point to which a resistivity value is attributed. 

Hence, a grid of discrete points is formed at which the unknown potential can be 

computed. The partial derivatives of the governing equation (see section 2.1.3) are 

approximated by evaluating them at a point as a central difference of the potential 

at its neighbouring points. Further, taking into account the boundary conditions 

for the exterior points, the solution for the unknown potential can be obtained by 

solving a system of linear finite difference equations which has the form : 

CV =I 

where: 

(3.2) 

C is the sparse banded matrix (called the coupling matrix) dependant on the 

resistivity distribution and the coordinates of the points. 

V is the unknown potential vector. 

I is the vector describing the current sources. 

The FDM was first developed for resistivity modelling by Mufti (1976) and Dey and 

Morisson, (1979a, b). Ever since, it has become a very popular modelling technique, 

mainly because of the relative simplicity of its theoretical formulation. 

Finite Element Method (FEM) - In the FEM the field is subdivided into ele- 

ments, i. e. into subregions where the unknown potential is approximated by suitable 
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interpolation functions attributed to specific points of the element, which are called 

nodes. These functions contain as unknowns the values of the potential at the re- 

spective nodes of each element. The minimization of the residual caused by this 

approximation results in the formation of an algebraic system of linear equations 
(similar to the one produced by RNAM and FDM), the solution of which leads to 

the determination of the potential values at the nodes. 

3.1.2 The choice of FEM for this work 

The selection of a numerical modelling technique is based on several considerations, 
the most important of which are: computing time, computing memory, solution 

accuracy and flexibility. 

By comparing the differential modelling techniques used for resistivity modelling it 

is quite clear that they all involve the solution of a system of linear equations having 

the general form of K. V = F, which will give the potential distribution V in the 

study area. According to Pelton et al. (1987) there is practically no difference in 

the size and type of the matrix K in all these methods. Since the solution of this 

algebraic system of equations is the most time-consuming procedure (more than 

80%) it follows that (more or less) the time and memory needed is the same for all 

three methods. 

Dey and Morisson (1979a) suggests that his FDM program appears to be faster than 

the FEM program (Coggon, 1971) when similar meshes are used; however this could 
be due to differences in programming efficiency. Furthermore, according to Fristiani 

et al. (1980) it is very difficult to set valid criteria for direct time comparison of the 

two methods since the design of the mesh used is based on different philosophies. 

In terms of accuracy Rijo (1977) presented a simple example for which all three 

methods produced identical results when similar meshes were used. Although the 

example presented was for a limited case his conclusions can be easily generalized: 
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assuming similar mesh design strategies, it can be concluded that no method appears 

to show superiority as far as the accuracy of the results produced is concerned. 

Thus, the choice of which method to use should be based upon the individual features 

that each method has. All methods can incorporate variable size meshes but only the 

FEM can cope with irregular shapes and boundaries 1, while the other two assume 

only rectangular meshes. This advantage is quite crucial when we are dealing with 

earth resistivity measurements since, as has been discussed, resistivity is sensitive to 

terrain anomalies. By using the FEM method the mesh can be adjusted to the local 

geomorphology, thus enabling the pseudo-noise due to terrain anomalies to be taken 

into account (Fox et al., 1980; Molano et al., 1990) It is this feature that renders 

the FEM superior to RNAM and FD methods, and therefore it will be used for this 

work. 

As far as the implementation of the methods is concerned it can be argued that 

both RNAM and FDM are easier to develop since the mesh design principle is quite 

straightforward. The FEM, on the other hand, (for reasons that will be given in 

a following section) is a more laborious procedure as far as mesh construction is 

concerned. 

3.1.3 Modelling dimensions 

3-D Modelling - The resistivity forward problem is clearly a 3-D one: the mea- 

sured AR is the effect of a three-dimensional current flow in to an earth which has 

a resistivity distribution varying in three dimensions. 3-D differential modelling 

schemes have been presented for the resistivity case: Dey and Morisson (1979b) 

produced a 3-D FD algorithm while Pridmore et al. (1981) presented a 3-D FEM 

algorithm. 
'Recently, at least for the EM case, FD schemes which can incorporate curved boundaries have 

been presented (Taflove, 1995), however FEM still remains the most flexible method for modelling 

a variable topography. 
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The common feature of the 3-D differential schemes is that they are memory and time 

consuming. Although they offer the most accurate way to model the subsurface they 

are not widely used in inversion algorithms. This is because an iterative inversion 

algorithm needs the repetition of the forward model several (perhaps very many) 

times and hence an algorithm involving a 3-D modelling procedure will be extremely 

time consuming. Few examples of using 3-D schemes for inversion exist in the 

literature (Park and Van, 1991; Zhang et al., 1995). Recently, due to the advent of 

automatic measuring systems and the increase in computing power, the usage of 3-D 

differential models has increased, but they still remain a costly choice for routine 

data modelling and interpretation 2. 

2-D Modelling- A far simpler approach to the resistivity forward problem is 2-D 

modelling: the measured signal is considered to be the effect of a 2-D current flow, 

while the subsurface resistivity is considered to vary in only two dimensions. Essen- 

tially, a 2-D model studies the behaviour of an idealized section of the subsurface. 

The 2-D schemes that have been produced (Muffti, 1976; Dittmer and Szymanski, 

1993) can be only used for qualitative studies of the resistivity responses of the 

models since they use quite crude modelling assumptions. 2-D modelling schemes 

have the advantage of being economical in computer time and memory but their use 

in the accurate inversion of real data is inappropriate. 

2.5-D Modelling- A compromise between these two approaches is a scheme known 

as modelling in two-and-a-half dimensions (2.5-D), where the change in resistivity is 

considered to be two dimensional but the current flow pattern is a three dimensional 

one. In other words, the measured values correspond to a three dimensional infinite 

half-space where the resistivity is allowed to vary in only two dimensions and remains 

constant in the strike direction. 

The advantage of the 2.5-D approach is that a physically realistic representation, 

2Further development of the computer systems will enable 3-D modelling to be widely used so 
there is no doubt that in few years time 3-D schemes will be the standard procedure for modelling 

and interpreting resistivity data. 
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involving full 3-D potential variations, is obtained by solving several problems with a 

restricted 2-D geometry. In this way the computational loads are reduced compared 
to a full 3-D scheme. 

At the same time 2.5-D modelling provides relatively accurate results as long as the 

2-D resistivity variation assumption is not strongly violated. In particular, Dey and 

Morisson (1979b) presented comparative dipole-dipole array results between their 

2.5-D and 3-D FDM schemes and concluded that 2.5-D models become inaccurate 

only when the body extends along the strike direction a distance smaller than the 

maximum dipole separation. However, for many subsurface features the 2.5-D as- 

sumption is quite close to reality even if this criterion is violated and the consequent 

error introduced is not prohibitively large. 

In conclusion, 2.5-D modelling is a good compromise between computing load and 

accuracy, and therefore it is used in this work. 

3.1.4 General FEM principles 

The FEM was initially developed for mechanical and civil engineering problems 

but soon found application in a wider range of problems (such as electromagnetic, 

magnetostatic, acoustic, heat and water conduction) and is still an active area of 

research (Zienkiewicz and Taylor, 1989). Here, a summary of the basic principles of 

the FEM is presented. 

Trial Solution - The FEM method seeks an approximate solution of the governing 
differential equation in terms of an unknown function U which satisfies both the 

equation and the boundary conditions. The approximate solution U. is obtained 
by using the classical trial-solution procedure which has the form of a finite sum of 
functions. The general form of the solution is: 

N 

U. = u; oi (3.3) 
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The undetermined coefficients ul , u2 , ..., UN represent the values of the function 

at the N points which are defined when the domain is discretized. 

The functions Oo, 01 , ..., 
ON are called trial, or base, or shape functions. Most 

commonly, they are expressed as simple power series polynomials (their exact form 

depends on the way the domain is discretized). 

Galerkin Method - As long as the functions q, have been specified, only the 

parameters ui remain unknown. Each particular set of ui values defines uniquely 

a solution for Ua. However, since i=1,2,... N there are N2 unique solutions. Hence, 

a method of defining a set of ui parameters so as to allow the "best" approximate 

solution Ua, to be acquired should be used. By "best" is meant the approximate 

solution that is as close as possible to the true one. 

If the general form of the field equation is G(U) = F, then by replacing U with the 

approximate solution we get G(Ua) =F since U. is only approximately equal to 

U. Therefore, the residual caused by the approximation is: 

Ra = G(U0) -F (3.4) 

The formulation of the problem is now as follows: use an optimization criterion in 

order to obtain the set of us parameters for which the residual Ra of equation 3.4 

becomes minimal. Several criteria have been suggested but the most popular in FE 

analysis is the Galerkin weighted residual method (GM) 3. 

In the GM the residual R. minimization is achieved by forcing the weighted average 

of R. for each parameter ui to be zero over the entire domain D. The weighted 
functions are the trial functions Ot associated with each ui: 

f R. cb; (x, y)dD =0i=1,2.. N (3.5) 
D 

3The Ritz variational method is also widely used, and despite the fact that is based on differ- 

ent concepts, gives results identical to the GM when applied to identical problems (Pridmore et 

al., 1981). However, according to Burnett (1989) the GM is applicable to a wider class of problems 

and so is preferable. 
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4- MESH 

Figure 3.1: An example of FEM discretization. 

N algebraic equations of this form are required, each using different trial functions, in 

order to determine the N parameters ui. By using the GM two things are achieved: 

a) The initial problem of seeking the solution of the unknown function U(x, y) is 

changed to finding the unknown parameters u; which are the values of the function 

at specific points. 

b) the unsolvable initial equation is transformed to an approximately equivalent but 

potentially solvable system of linear equations (see equation 3.5). 

Discretization of the Domain - As mentioned above, the application of the FEM 

is based on finding the solution of the unknown function at discrete points of the 

domain. So far, the approximate solution given by equation 3.5 is defined for the 

entire domain. Since the trial functions are in the form of quite simple power series, 

a solution for the entire domain would not be able to cope with any small or local 

changes of the unknown function or its gradients and hence the solution would be 

undesirably inaccurate. In order to handle this problem the domain is subdivided 

into a finite number of smaller regions (sub-domains) called elements. The elements 

have simple shapes (e. g. triangular or quadrilateral for the 2-D case) and they are 

assembled in a pattern known as a mesh. Each element has its own power series 

approximate solution (see equation 3.3) which is transformed into a series of linear 
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algebraic equations (element equations) using the GM 4 

The approximate solution is defined at particular points of the elements called nodes. 

Each type of element has a specific number and pattern of nodes and for elements of 

the same type the element equations are algebraically identical. This is extremely 

useful as the element equations need only be derived for a few typical elements of 

the mesh. In Figure 3.1 an example of a FEM mesh is shown. 

Next, the element equations are assembled into a far larger set of algebraic equations 

Known as the system equations. It is at this stage that the boundary conditions 

must be applied. The solution of this system will give the unknown parameters u; 

which describe the discrete solutions of the function at the nodes. 

3.2 2.5-D FEM Resistivity Modelling 

The first 2.5-D FEM algorithm for the resistivity case is due to the pioneering work 

of Coggon (1971). R. ijo (1977) presented a modified 2.5-D FEM scheme and gave a 

detailed analysis of its features. Several other schemes were presented later (Queralt 

et al., 1991). The 2.5-D FEM algorithm developed in this work is partly based on a 

2-D scheme produced by Dittmer (Dittmer and Szymanski, 1993) who modified a 

general 2-D program presented by Burnett (1989) and adjusted it to work for the 

2-D resistivity case. 

Although the previously mentioned researchers gave a detailed analysis of the ap- 

plication of the 2.5-D FEM in the resistivity modelling, the scheme developed for 

that work will be described in full. This is necessary for two reasons: 

a) The scheme was developed from scratch and in many ways is different to 

the existing ones. 
b) Full justification of techniques that are presented in this work (a strategy 

4The only difference from the set of equations 3.5 is that the error minimization is taking place 

at each sub-domain and not over the entire domain 
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for modelling arrays parallel to the strike direction, study of the topographical effect 

and the calculation of the Jacobian matrix) is possible only if the core of the 2.5-D 

FEM modelling is fully explained. 

3.2.1 Formulation of the field equations 

As demonstrated in section 2.1.3 the governing equation for the steady state current 

electrical field when there are no charge sources or sinks in the medium is (equation 

2.7): 

V. (-Q(., u, =) VV x, v, =)) =0 

In the presence of a current source the previous equation no longer holds. If J is 

the current density then equation 2.6 becomes (see equation 2.5) 

O. (-Q(ý, v, =)OV(x, v, Z)) _V"J (3.6) 

V is a three dimensional operator and the term V"J describes the current source. 

In reality the current is applied via finite probes, however for the purposes of the 

modelling the current is considered to be introduced by point sources. Therefore, 

the source term V V. J can be described by a Dirac delta function and a point current 

I (Coggon, 1971). If x� y,, z, are the source coordinates the source term is: 

v. J= Ib(x - xa)b(% - ya)b(z - z, ) (3.7) 

Taking in to account the 2.5-D modelling assumptions (3-D source, 2-D resistivity 

variation) the expression of the field equation will be 

= I6(x - x5)b(y - Y. )Ü(. Z - . z8) (3.8) 

The potential field depends on all three coordinates and hence a way should be 

found to include this dependence within the FEM formulation. The classical way is 

to Fourier transform the potential variation in the y direction into the wavenumber 

domain (Coggon, 1971). Because of the constant resistivity in the strike direction it 
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follows that the potential V(y, b, z) is an even function of y so we can apply the cosine 

Fourier transform. The transformed potential is given by 

00 V(x, k, z) =f V(x, y, z) cos(ky)dy (3.9) 
0 

Therefore the field equation 3.8 when the transformed potential is considered takes 

the form 

p. (-U(x, z)VV(y, k, z» = 16(x - x, )6(z - z3) (3.10) 

3.2.2 General form of element equations 

In the FEM the domain is discretized into elements. Assuming that each element is 

constant and homogenous equation 3.10 becomes: 

v2ý''(x, k, z) = IS(x - x, )S(z - z8) (3.11) 

By using known cosine Fourier properties 5 equation 3.11 takes the form: 

-°(x, z) 172+ Q(x, z)k2= Iö(x - x, )ö(z - z, ) (3.12) 

(the operator V is now a 2-D one). The initial differential equation is now trans- 

formed into a Helmholtz type equation in the wavenumber domain. Based on equa- 

tion 3.12, we can derive the general element equations via the procedure summarized 

in the previous section. 

The trial solution approximating the transformed potential V'(x, k, z) at the element e 

is 
N 

V(x, k, z) _E as O: (x, z) (3.13) 
i=1 

where at is the unknown transformed potential at the element's nodes and Ot are 
the shape functions to be defined later. 

51f Uk is the transformed function of U. in respect of k it can be shown that for the second 
derivative of Uk it holds that (Kreyszig, 1992): Uk = -k2Uk 
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Following equation 3.5, the set of the Galerkin residual equations for the element 

can be derived s) : 

-ý J Je 7X ax 

= 
Jffqidxdz i= 1.. N 

a (a, ý w dxdz +offk2V ¢Z dxdz 

At the next step the high order differential terms of equation 3.14 

%a av Ile 
al al Oi dxdz i=1.. N 1=x, z 

can be integrated by parts using the chain rule of differentiation, that is 

(3.14) 

La av dxdz a av dxdz I 
äi Öl =I Je äc ei - ei ei 

(3.15) 

Conducting the appropriate substitutions in equation 3.14 according to the pattern 

of equation 3.15 and rearranging the terms yields 

Jf 
19V 090i 
äx 5x + az as 

dxdz + o. 
ff k2Vq5i dxdz = e() 

11 
J%f 

Os dxdz ++ dxdz f 
Jx ax äz -az Je e[ 

11 
()l 

C i=1.. N (3.16) 

The last term of equation 3.16 is a perfect differential. 

By using the 2-D divergence (Green's) theorem this term can be reduced to a line 

integral over the boundary of the element's area 

ra av a av 
ax ax 

ýz + Dz Oz 
dxdz = 

aV aV 
Oi nx + az O= nz ds = ý'nOi ds äx- e 

6A simplified notation is used: 

Transformed potential: V(x, 
k, t) --+ 

V 

2-D Conductivity: Q(x, z) -º Q 

Source term: Iö(x - x3)ö(z - z3) --i f. 
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The nx, nz symbols are the x, z components of the outward unit n normal to the 

element boundary (the inward unit normal to the boundary is -n ). The term TT can 

describe the energy flowing out from the system (the inward flowing energy is T_, ti). 
The main reason for integrating by parts was to create this term which contains 

the first derivative of the potential. As will be shown later, this term facilitates the 

application of the boundary conditions. Equation 3.16 now becomes 

T8+ äz ä0Zt 
dxdz +a k2V ¢i dxdz = e)ff C f jfqdxdz 

- Tq5z ds i=1.. N (3.18) 
e 

Now, the general form of the trial solution (equation 3.13) is substituted into equa- 

tion 3.18 yielding 
N 

[IL ýax 
ax 

dxdz +f1 
-z ý 

dxdz + 
IL k20j Ozdxdz äj 

=fff O1 dxdz - T,, O; ds i=1.. N (3.19) 

These are the element equations for a typical element. If 

K j_ Q JL a 
dxdz +ff aý 

dxdz + fjk2qkjqkdxdz (3.20) 
z (9z 

and 

Fe = 
ff f ýidxdz - TnOds (3.21) 

the element equations can be written in a matrix form giving 

Kit Kit """ KIN äi Fi 

K21 K22 
... 

K2N a2 F2 

_ (3.22) [K1 

KN2 
... 

KNN aN FN 

which in a simple matrix notation is K(e) A(e) = F(e) 
. The terms Kj are called 

stiffness terms and the matrix K(e) is the element stiffness matrix 7 while the terms 

f(e) are the load terms. 

'The name is due to the initial use of the FEM in structural civil engineering problems 
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Figure 3.2: The boundaries of the domain. 

The element equations, which so far have been developed in a general form, will 

become meaningful as long as the trial solution is defined (this is closely related to 

the type of elements that exist in the mesh). 

3.2.3 Boundary conditions 

In order to obtain a unique solution the boundary conditions have to be considered. 

In our case there are two types of boundary conditions: domain boundary conditions, 

or simply boundary conditions (BC), and inter-element boundary conditions (IBC). 

Domain BC -: These are equations that must be satisfied by the exact solutions 

on the boundaries of the domain (D). In our problem the domain is enclosed by a 

boundary that is formed of two parts: a natural boundary, D3, which lies at the 

Air/Subsurface interface and an artificial one, Dom, which simulates the potential 

behaviour at an infinite distance from the source both in the horizontal and vertical 

directions (see Figure 3.2). 

For this boundary-value problem, which involves the solution of a second order 

differential equation, two types of BC can be applied. 

Essential or Dirichlet BC (EBC) which specify the value of the potential 
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U at points of the boundary. 

Natural or Neumann BC (NBC) which specify the value of the first order 

potential derivative at points of the boundary. 

In the scheme used here the BC known as homogeneous BC were applied: 

a) At the air/earth interface DS, the normal component of the current density 

is zero (assuming that air has infinite resistance). 

b) If the artificial boundaries are selected properly in order to be as far away 

from the possible positions of the current sources as possible it can be assumed that 

the potential at the boundary D,,,,, is zero (VD. = 0). 

Inter-element BC - These boundary conditions must be satisfied by the exact so- 

lution on the boundaries between elements. For the resistivity case these conditions 

are the continuity of the potential, and the continuity of the normal component of 

the current density vector between the boundaries. Hence, if two elements (e), (f), 

with conductivity ae, of respectively have a common boundary IB and n is the unit 

normal to that boundary, for every point at that boundary 

ve = Vf 
IB IB 

If C9V 
0eaäB = or f äB (3.23) 

Note that any possible trial solution must be selected so as to satisfy these IBC. 

3.2.4 Trial solution for the linear triangular element 

There are several type of elements, having a pattern of nodes of varying complexity; 

however, for this work, only simple linear elements of triangular shape were used 

(three nodes, one at each vertex). This is partly in order to avoid complexity 

and partly because triangles can simulate almost any structure met in geophysical 

exploration with reasonable accuracy. That is why this element type is so popular 

in geophysical modelling. 

Suppose that the general form of the trial solution of the element is given by a simple 
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power series approximation (see Figure 3.3a) 

b+ cx + dz (3.24) 

Instead of expressing the trial solution in respect of the parameters b, c, d it is prefer- 

able to express it in respect of the values of the trial solution at the nodes in the 

form of interpolation polynomials since in this way we can ensure more easily the 

continuity of the potential at the inter-element boundaries. 

In particular, consider the two elements (e), (f) which have two common nodes 

(see Figure 3.3b). Since for both elements the trial solutions Ve, Vf are linear 

polynomials, along the elements' sides both Ve and Vj will be straight lines. The 

continuity between the e, f common boundary will be achieved only if these lines are 

identical. A straightforward way of accomplishing this is to force the trial solutions 

of the two elements to be identical at their common nodes (a straight line is uniquely 

determined by two points), a thing that requires the element's trial solution to be 

expressed in terms of its values at the nodes. 

This can be done in the following way: let 1,2,3 be the nodes of the element , 
(xl, zl), (x21z2), (x3i z3) their respective coordinates and äl, ä2 , a3 their respective 

trial solutions. By using equation 3.24 

b+cxi +dzl = äi 

b+cx2+dz2 = ä2 

b+ Cx3 + dz3 = a3 (3.25) 

Solving equation 3.25 for b, c, d, substituting the resulting expressions into equation 

3.24 and rearranging the terms gives the interpolatory form of V 

äj Oi(x, z) (3.26) 
j=1 

where 
A3 +B, x+C3z j=1,2,3 (3.27) 

20 
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Figure 3.3: a) The trial solution of one element, b) the trial solutions of two elements, 

c) the trial function of node 2. 
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and 

A3 = XkZZ - XIZk 

B2 = Zk - ZI 

Ci = xi - xk 
1 xl zl 

O=1 X2 Z2 

1 x3 z3 

= area of the element (3.28) 

The subscripts j, k, l have the values 1,2,3, for 01 and they change their order cyclically 

for 02 and q53. It can be easily seen from equation 3.27 that the value of the trial 

function Oj at the nodes is equal to unity for (x, z) = (x3, zj) while it is zero for 

(x, z) = (xi, zj) or (xk, zk) (see Figure 3.3c). 

3.2.5 Numerical evaluation of the stiffness and load terms 

The stiffness terms kt; (see equation 3.20) can now be evaluated easily since they 

only depend on the node coordinates. From equation 3.27 

act 
_ 

B3 
ax 20 
aq' 

_ 
C3 

(3.29) ay 2A 

which are both constants. Hence, using equation 3.29 the first two integrals of the 

stiffness terms can be evaluated. 

dxdz fJ--dxdz aff aj 
äx ax +e az 19Z 

=Q4 
BiB 2ff dxdz + 

4Ö2 ff dxdz 

= 4Ö 
B; Bj + C; Cj) i, j=1,2,3 (3.30) 
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the remaining integral of the stiffness terms 

Qff k2oj jdxdz i, j=1,2,3 (3.31) 
e 

is evaluated by using a triangle integration formula widely employed in FEM analysis 
(Rao, 1985). This formula involves the area (or barycentric) coordinates of a triangle 

which are three local coordinates related to the triangular geometry. If fl, f2, f3 are 

the area coordinates of the triangle 123 with area 0, raised to the powers l, m, n then 

Jfffdxdz 
= 

l! m! n! 20 (3.32) ý 
(l +m+n ß- 2). 

For the linear triangle the area coordinates are identical to the trial functions (Bur- 

nett, 1989) and hence this integration formula can be applied directly to the numer- 

ical evaluation of the integral of equation 3.31 : 

k2°- i=j 
Q%f k2qj ga aadxdz =6 (3.33) 

e %2 
12' 

i0j 

The loading terms consist of two integrals. The first represents the current flowing 

into the element. 

fff Ot dxdz =ff Ib(x - xa)ö(z - z8)os dxdz i=1,2,3 (3.34) 
ee 

If it is assumed that the current source is identical to a node, thus the current load 

must be assigned at the node and not at the whole element. If, for example, current 

is applied at node 1 then (as explained in the previous subsection) the value of the 

shape function 01 at that node is equal to 1 (01 = 1), while is 0 at the two remaining 

nodes (02 = 03 = 0). Therefore, equation 3.34 will be (if x1, zl are the coordinates 

of node 1) 

f jfctidxdz 
= fj16(x - xl)S(z - zl)dxdz =I 

f jfdxdz 
=0 

J ffcb2dxdz 
=0 

Since the current is applied to a node, and nodes are being shared by more than 

one element, the amplitude of the current has to be equally shared among these 
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elements. If 0 is the angle of the element's vertex which coincides with the source 

the correct magnitude Is is given by (Rijo, 1977): 

I8 1360 (3.35) 

Therefore the general form of the integral of equation 3.34 is: 

J JIo(x - x9)S(z - zs)Odxdz = 
I8 Z-s (3.36) 
0 i: s i=1,2,3 

where s is the nodal source. 

The remaining integral 

ie T,,, q1 ds 

represents expressions of the gradient of the potential at the element boundaries. 

These expressions need not to be calculated since they will be assigned values either 

when applying the boundary conditions or when assembling the system equations. 

Taking the previous considerations into account, we can write the element equation 
for the 2-D resistivity problem 

BiBi + CjCj BiBj + CjCj B2Bk + CiCk 
0, B3 Bi + CjCj B3Bj + CjCj BjBk + CjCk + 40 

BkB1 + CkCi BkBj + CkCj BkBk + CkCk 
211 äi Si +A 

u122 121) äj = I. Sj +, 3j (3.37) 
12 

112 dk bk + ßk 

where the indices i, j, k indicate the nodes of the element, B, C are expressions of the 

element's coordinates (equation 3.28), A is the area of the element, Is is the current 

source distributed into the element, ö; denotes unity when the node i coincides with 

the origin, and otherwise is zero (6j, 6k take analogous expressions for nodes j, k 

respectively), and 3i, j, k are the boundary terms to be evaluated later. 
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3.2.6 Global system 

As long as the stiffness matrix has been numerically evaluated for every element, the 

element equations should be assembled into a single set of linear equations, taking 

into account the fact that elements will share common nodes and the trial solution 

has been designed to be identical for the common elements' nodes. 

If the mesh has M elements, then M sets of element equations should be assembled. 
The pattern of the assembly can be easily derived (Burnet, 1989). The stiffness term 

Kij of element e will be added to the term Ktj of the global stiffness matrix K. 

Similarly, the load term F(e) will be added to the term Ft of the global load vector 

F. The global system will have the form 

K"A=F (3.38) 

If the mesh has N nodes the matrix K will have NxN dimensions and will be sparse, 

symmetrical and banded since only directly connected nodes will share a line. The 

transformed potential (A) and the load (F) axe vectors with dimension N. 

In Figure 3.4 the general form of the global system of equations can be seen for an 

example with 4 elements and 6 nodes. Note the symmetrical and banded nature of 
the global stiffness matrix. 

3.2.7 Application of the BC, IBC 

After the system is assembled both BC and IBC are applied. Numerically, the 

application of the NBC is straightforward. If one side of the triangular element is 

at the boundary Ds the respective term OU/öz of equation 3.17 can be made zero. 

The EBC are applied at elements that have sides at the boundary D. by assigning 

the zero value at the node's trial solution a. In this way they are applied, indirectly, 

as a constraint to the system equations 8. 

8Note that the EBC could have been applied directly at the element equations if a further 

integration by parts of the first term of equation 3.18 had taken place. 
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Figure 3.4: The FEM stiffness matrix for 4 elements. 

Finally, the IBC are applied to the assembled terms of the F vector, since after the 

assembly the line integrals of the normal current density terms (see equation 3.17) 

of, say, two elements which share the same boundary, will appear as a sum at a 

line of the vector F. Since they are equal (equation 3.23) and of opposite sign their 

addition will give zero. 

3.2.8 Derivation of the potential 

After the application of the BC the resulting system can be solved with the help of 

standard methods that are known to perform better when sparse banded systems are 

involved (Gauss elimination in this work). This solution will give the transformed 

potential V(x, k, Z) 
for specified values of k. 

In order to obtain the potential V(z, y, z, ) the inverse Fourier cosine transform should 
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be applied, that is 
2 00 

- Jo 
V(x, k, z) cos(k y)dk (3.39) 

Hence, if the transformed potential V x, k, z) is calculated for several k, the potential 

V(x, y, Z) can be obtained by conducting numerical integration according to equation 

3.39. 

3.3 Practical Considerations and Application 

3.3.1 Mesh design 

The mesh design is one of the most important procedures in the FEM. The usual 

strategy in simulating soil is to separate the mesh into two main regions. In the re- 

gion of main interest, the mesh consists of elements of approximately the same size 

repeated in regular patterns with a high nodal density. The area of interest is the 

one where the most accurate and valid solutions are obtained. This area occupies 

the central part of the domain and is surrounded by the second region in which the 

element size becomes gradually larger while the node density decreases. In this way 

the infinite distance from the source can be simulated. The practical considerations 

regarding the design of the mesh are: 

a) The existence of a point source (which, as explained, is an artificial concept 

- no point sources exist in nature) imposes a singularity at the FEM calculations, 

in the sense that the potential at the source node is theoretically infinite. As long 

as no arrays parallel to the strike directions are modelled, there is no need to use 

the value of the transformed potential at that point. However, the singularity in- 

dicates abrupt potential variation (near logarithmic) at points near to the source. 

In addition the elements used (linear triangular) approximate the variation of the 

potential using linear polynomials which cannot cope with that such a variation in 

the potential. These factors introduce unavoidable inaccuracies into FEM solution. 
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Figure 3.5: a) Three meshes with different element arrangement. b) The transformed 

potential calculated using those three meshes. 
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One solution 9 to this problem is to increase the refinement of the mesh in the area 

near to the probes in both the lateral and vertical directions. In practice, for the 

scheme used in this work it was found that there should be at least 2 nodes between 

the source node and the measuring node in order to achieve an acceptable accuracy. 

Greater refinement will further increase the accuracy, but there are computing cost 

limitations. Moreover, excessive refinement can lead to increasing ill-conditioning 

(Burnett, 1989). 

b)Another important consideration in the design of a mesh is that the tran- 

sition from refined to less refined areas should always be made in the smoothest 

possible manner. At the same time, if homogeneous boundary conditions are used, 

the boundaries have to extend a "great" distance from the possible source posi- 

tions in order to simulate theoretical infinity (zero potential at the bottom and side 

boundaries). 

In Figure 3.5a three meshes with different triangular element arrangements are 

shown. These meshes were used to calculate the transformed potential (for k=0.5) 

at a unit distance for every source position (also shown in Figure 3.5a). Since a 

homogeneous ground was considered the results for every source position should be 

identical. However, in Figure 3.5b it can be seen that only Mesh 3 produced the 

expected results. Also note that the results of Mesh 1 and Mesh 2 yield the results 

of Mesh 3 if they are averaged out. Therefore the element arrangement used in Mesh 

3 (it can be described as a crossed triangular element arrangement) was followed 

for all of the meshes presented in this work. In Figure 3.6 a typical mesh used is 

depicted. 

3.3.2 Solution of the global system of equations 

The stiffness matrix of the global system of equations as explained is sparse, banded 

and symmetrical around the main diagonal. Because of these properties there is 

ON a subsequent section another strategy for avoiding the singularity will be presented 
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Figure 3.6: Typical mesh used in this work. 
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no need to store the entire matrix when solving the global system of equations. In 

particular, only the diagonal and the upper (or lower) elements of the matrix need 

to be stored, saving computer memory. If the system has N nodes the K matrix 

instead of being NxN is now Nx HB where HB is the half-bandwith of the matrix 

(see Figure 3.7a). It can easily be seen that the half-bandwidth of the matrix is 

related to the nodal numbering. In particular if the mesh has M elements and N 

nodes: 
HB = max[(Nmeäx - N, )) + 1) 1e=1,2,... M 

where N(e>x and N(e) are the largest and smallest node numbers for element e. 

In Figure 3.7b it can be seen that different numbering of the same mesh results 

in different bandwidths. An optimum numbering will achieve the minimum half- 

bandwidth and therefore minimum storage cost. 

The most popular techniques for solving this type of equations are Gauss elimination 

and Cholesky decomposition. In this work Gauss elimination was used1°. Initially, 

it involves the forward reduction (elimination) of the linear system by a series of 

row and column operations; The solution is then given by back substitution. 

Note, at this point, that since resistivity modelling is being used to provide us with 

a series of simulated measurements (measured with the procedures described in 

Chapter 2), in order to obtain a full data set for the same resistivity distribution, 

the FEM numerical procedure has to be repeated for as many times as there are 

different sources (current positions). Fortunately, there is no need to repeat the 

entire procedure. Since the resistivity distribution remains constant, the matrix 

K will be the same and so its forward reduction will take place only once. Each 

additional source position will require only forward elimination of the global load 

vector F and back substitution in order to obtain the transformed potential. 

'°The routine used is specially designed to deal with sparce linear systems and is due to Burnett 

(1987) 
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Figure 3.7: a) An example of how the stiffness matrix is actually stored. b) Different 

bandwidths resulting from different node numbering schemes. 
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3.3.3 Inverse Fourier transformation 

In the 2.5-D FEM the transformed potential V(X, k, z) is calculated for several wavenum- 

bers and the potential V(x, y, z) can be obtained by conducting numerical integration 

according to equation 3.39. 

By the use of integral forms of Bessel functions (Abramowitz and Stegun, 1972) the 

analytical expression of the transformed potential for a homogeneous half-space can 
be derived: 

V= 
2iI 

Bo(k r) (3.40) 

Where Bo is the modified Bessel function of zero order and r is the radial distance 

from the source. It is important to notice that the transformed potential is singular 

for kr=0. When four electrode arrays are considered this singularity does not 

affect the accuracy of the integration, since it introduces errors which are cancelled 

out. For-two probe arrays, however, this singularity can become a serious source of 

errors. A method for tackling these errors is discussed in the following subsection. 

In Figure 3.8 the spectrum of the potential for different distances from the point 

source for a homogeneous half-space is shown. We notice that the potential drops 

almost exponentially as the wavenumber is increased and has a quite smooth pattern. 

For linear arrays, the cosine term in equation 3.39 disappears and this smooth 

pattern remains: the inverse Fourier transformation takes the form (y is considered 
to be zero at the measuring line): 

- 

V(x, o, z) _2 7r 
J °O 

V x, k,, z)dk (3.41) 

Simple integration strategies can be used in this case. One common way of calculat- 

ing the area of the spectrum is by approximating it with a subsectional exponential 
fit and then integrating analytically (e. g. Dey and Morisson, 1979a). 

How many k points should be used within an appropriate integration scheme? In 

general, increasing the number of k points makes the result more accurate but, on 
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Figure 3.8: The variation of the transformed potential for different distances from 

the s ource. 

the other hand, the modelling scheme is more time-consuming. Studies by Dey 

and Morisson (1979a) indicated that 6-8 k points are a good compromise between 

accuracy and time. In the scheme presented here subsectional exponential fitting 

using 7 wavenumber points was used. 

The wave-number values were calculated as follows: starting with an initial (very 

small) wavenumber value (kmt�) the choice of the appropriate ending wavenumber 

value was based on analytical calculations of the transformed potential using equa- 

tion 3.40. Since the distances (r) between the receiver and the source are known in 

advance the maximum wavenumber km... was chosen to be such that V (kmay, r) -º 0. 

The remaining wavenumbers were placed at constant intervals in a logarithmic scale 

in-between the first and last wavenumber values. 

When two-electrode arrays (pole-pole) are modelled the singularity of the trans- 

formed potential at ky=0 introduces errors that are not cancelled out and thus 

more sophisticated integration techniques have to be considered. For these types 

of arrays, an alternative approach (in order to avoid the extra computational cost 
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DATA 

" Nodal coordinates 
" Elements with their nodes 
" Element properties 

Source nodes 
" BC 

FOR k=1 TO WAVENUMBERS 

FORM THE GLOBAL 
STIFFNESS MATRIX (K) 

" Calculate elements matrices 
" Assemble element matrices 

FOR S=1 TO NODAL SOURCES 

FORM THE GLOBAL 
LOAD VECTOR (F) 

" Apply current load 
" Apply EBC (if any) 

S=1 
/} 

ýlil 
%\ 

--__ 
I GAUSS ELIMINATION (8) 

Forward reduction of 
the stiffness matrix (K) 

GAUSS ELIMINATION (b) 

" Forward reduction of the 
load vector (F) 

" Perform Back-substitution and 
recover transformed potential. 

INVERSE FOURIER 
TRANSFORMATION 

CALCULATE 
APPARENT RESISITIVITIES 

END 

Figure 3.9: A simplified flow-chart of the 2.5D FEM algorithm. 
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implicit in using more k values) can be followed (Zhao et al., 1986). The response to 

a homogenous ground can be calculated using the FEM and any anomalous response 

can then be normalized with respect to the homogenous ground case. In this way 

increased accuracy can be obtained. 

Determination of the Apparent Resistivity - Overall, this scheme, given a 

resistivity distribution and a current source configuration, will provide the potential 

values at discrete points, and since a known current (I) is applied the corresponding 

resistances can be found. In order to calculate the resistance RMN which corresponds 

to a particular array it is preferable to work with one source each time and to 

superimpose the effect of these sources (see section 2.1.6). 

RMN = RAM - RAN - RBM + RBN (3.42) 

That happens because the variation of the transformed potential due to multiple 

sources is complicated (Queralt et al., 1991) and therefore more sophisticated inter- 

polation schemes would need to be used. 

As long as the resistances have been established the apparent resistivities can be 

calculated easily using the known formula (see section 2.1.6) pa =2 ir RMN/G, 

where G is the geometrical factor of the array. 

In Figure 3.9 a simplified flow-chart diagram of the 2.5-D FEM algorithm is de- 

picted. Several comparative tests were carried out in order to verify the validity of 

the modelling scheme. In Figure 3.10 a comparison is given between analytical and 

numerical dipole-dipole responses (calculated with the present scheme) from two 

different models (a 2-layered earth and a vertical discontinuity, also shown in the 

figure). It can be seen that the agreement is quite good. In Figure 3.11 the normal- 

ized and un-normalized pole-pole responses over a vertical discontinuity are shown 

together with the analytical response. The normalization procedure significantly 

increased the accuracy of the results. 

96 



Ap. Resistivity 
(O imm) 

3.0 

ABMN 

2.5 a na a, 

1 O, m-m h--2a 

2.0 

1.5 

1.0 

0.5 

1 

Ap. Resistivity 
(Owl+n) 
6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

0.0 

5 Ohm-m 

S 

." 

Analytlcal 

. FEM 

0 

23456789 10 11 12 
N-separation 

""" 

ra--" 
Analytical 

FEM 
" -f a 

7234567 

I Ohm-m 

89 10 11 12 13 14 

5 Ohm-m 

Figure 3.10: Analytical and 2.5-D FEM dipole-dipole responses over a 2-layered 

earth (top) and an vertical discontinuity (bottom). 
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Figure 3.11: Comparison between analytical, normalized 2.5-D FEM and un- 

normalized 2.5-D FEM pole-pole responses over a vertical discontinuity. 

3.4 A Method for Calculating Responses from Ar- 

rays Parallel to the Strike Direction 

The 2.5-D modelling scheme is used most commonly to provide responses of arrays 

which are perpendicular to the strike direction, despite the fact that 2.5-D modelling 

assumptions (3-D source) allow the calculation of the potential at any point in the 

3-D space. This is due to the fact that the inverse Fourier transformation is quite 

complicated for arrays which are not perpendicular to the strike direction. For the 

particular case of arrays which are parallel to the strike direction the existence of a 

singularity renders the inverse Fourier transformation even more difficult. 

In this section a scheme which allows the calculation of the potential due to a source 

at any point of a 3-D space is presented. The scheme is a modified version of an 

algorithm proposed by Queralt et al., 1991. In their work an accurate interpolation 

scheme is used to perform the inverse Fourier Transform of the potential variations 

parallel to the strike direction: the total potential is calculated using the FEM, and 

in order to avoid the singularity problems at the current source, the potential is 

evaluated at a point very close to the source, with an implicit assumption that the 

98 

123456789 10 11 12 13 14 15 1 



error is negligible. 

This scheme has the disadvantage that it requires extra refinement of the FEM 

mesh near the current source and therefore is impractical when resistivity profiling 

is to be considered, since many current positions are involved in a complete profile 

calculation. In order to avoid this problem, the approach has been modified to avoid 

the extra mesh refinement without a loss in accuracy. With the presented scheme 

two things are achieved: a) The advantages of the 2.5-D modelling scheme are being 

exploited in full. b) responses of arrays (such as the square array), which previously 

could not be calculated using the 2.5-D modelling, can now easily be obtained. 

The inverse Fourier transformation scheme presented in this section is associated 

with an alternative strategy for solving the forward problem. This strategy is de- 

scribed in the following subsection. 

3.4.1 Solving for the secondary potential 

In order to avoid singularity problems related to the existence of the current source 

it is possible to solve for the secondary potential by assuming that the total trans- 

formed potential VT is the sum of a primary transformed potential VP, which 

derives from a particularly simple model, and a secondary transformed potential 
VS which originates from the superposition of a modelled body which produces 
deviations from the primary model. Such an approach has been proposed by Rijo 

(1977) and Lowry et al. (1991). 

Here, it is considered that the primary potential is due to a homogeneous half-space 

and for this case the FEM global system of equations will be (see equation 3.38): 

KP Ap =F (3.43) 

Since the source terms in equations 3.38 and 3.43 are identical, we can replace the 

source vector for the total potential with its equivalent for the primary potential, so 
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that the global system for the total potential can be expressed as: 

KT AT =F= K" Ap (3.44) 

Replacing the total transformed nodal potential AT by the sum of the primary AP 

and secondary As ones yields: 

KT As = -(KT -Kp) Ap = -KD A" (3.45) 

The matrix KD, which is the difference between the total and the primary stiffness 

matrices, has non-zero terms only where the model departs from homogeneity. This 

matrix can be found readily since it is a function of the properties of each element 

and the nodal coordinates, while the vector AP can be calculated analytically using 

equation 3.40. The resulting global system of equations (equation 3.45) can be 

solved in exactly the same manner as the one formed for the total potential. Finally 

the secondary potential can be recovered by applying the inverse cosine Fourier 

transform and using numerical integration. 

The main advantage of this procedure is that, in effect, the current source is being 

replaced by fictitious sources placed inside and at the borders of the perturbing body 

(Rijo, 1977), and in this way the extra refinement of the mesh near to the current 

source can be avoided. However, the integration of the transformed secondary po- 

tential is quite complicated since it usually contains a local maximum (Pelton et al., 

1978) but is only sparsely sampled. For arrays which are not perpendicular to the 

strike direction the interpolation becomes even more difficult because of a cosine 

term in the inverse Fourier transform. Hence, in our scheme the interpolation is 

carried out on the total transformed potential by adding the analytically calculated 

primary transformed potential to the secondary transformed potential. 

VT = VS + Vp = 1/S + 2ýap 
Bo(k r) (3.46) 

where orP is the conductivity of the primary model and Bo(k r) is the modified Bessel 

function of zero order, corresponding to the analytical solution of the transformed 
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potential for a homogeneous medium: k is the wavenumber and r is the radial 

distance from the source (independent to the strike direction y, r= x2 + z2). 

3.4.2 Arrays parallel to the strike direction. 

Depending on the orientation of the array relative to the strike direction one ex- 

treme case exists as far as the inverse cosine Fourier transform is concerned: the 

arrays is parallel to the strike direction. In this situation the cosine term remains in 

equation 3.41, introducing an associated oscillatory effect, and therefore an accurate 

integration scheme is needed. 

The integration method, which is fully described in Queralt et al. (1991), uses a 

combination of a logarithmic and exponential interpolation for the low and high 

values of kr, using 10 wavenumber values. This approach was also used in this 

work, since the total potential is also used as the input to the integration algorithm. 

In order to avoid the singularity problems which arise when considering variations 

parallel to the strike direction but which go through the current source Queralt et 

al. (1991) calculated the potential at a "small" distance e from the current source, 
(e should be at least 20 times smaller than the y distance in order for the error to 

be acceptable) assuming that 

Vk(x3, k, ze) ^' Vk(x3+e, k, ze) (3.47) 

where x8, ze are the coordinates of the source. As far as the FEM is concerned, 

the existence of a node so close to the current source implies that a local mesh 

refinement should be performed - rendering the scheme impractical when resistivity 

profiling schemes are to be modelled. Moreover, no matter the detailed form of 

the refinement, the existence of tiny elements next to the source can increase the 

ill-conditioning of the FEM stiffness matrix (Burnett, 1989). 

In the modified scheme used here, the singularities arise as well in the sense that the 

modified Bessel function Bo(k r) has no solution when r=0, that is for points which 
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Figure 3.12: Analytical (continuous line) versus numerical (circles) response of the 

AIR over a vertical discontinuity measured every half unit. 

are in line with the current source in a direction parallel to the strike. Making a 

similar assumption to that of Queralt et al. it is assumed that: 

AT(xs�k, zs) - AS(x8, k, ze) +A"(x�+e, k, z3) 

= As (x., k, ze) + 21ruP 
I 

Bo(k e) (3.48) 

In this way, without a loss in accuracy, it is possible to avoid the extra mesh re- 
finement. For any other orientation of the array relative to the strike direction the 

inverse cosine Fourier transform can be calculated using the same scheme without 

this assumption. 

Several comparative tests were carried out in order to verify the validity of the 

modelling scheme. In Figure 3.12, a comparison between the analytical and numer- 

ical square array AIR response over a vertical discontinuity is presented, with good 

agreement. The square array is considered to have a side of one unit while the array 

step is half a unit. 
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3.4.3 Response of common 2-D structures 

The effect produced by various buried structures was calculated using the scheme 

outlined above. The model structures were designed to be representative of features 

that occur commonly in field exploration. The measurement profile was considered 

to be perpendicular to the strike. 

The scheme allowed the calculation of the square array a, ß configurations and AIR 

responses. Responses from others arrays were also calculated and are presented here. 

The sizes of the side of the square and the Wenner array spacing were set to one 
(arbitrary) unit. The spacing of the pole-pole probes and the potential dipole for 

the Schlumberger gradient, and dipole-dipole arrays were also set to unity. 

Figure 3.13a shows the calculated effect when profiling over a vertical contact, as 

illustrated. The two media have a resistivity contrast of ten. The AIR response 

shows a clear dipolar signal which contrasts with the zero response on both sides of 

the contact. 

A model which is particularly appropriate for archaeological geophysics is depicted 

in Figure 3.13b together with the calculated anomalies: a vertical square prism of 

side-dimension two units is buried at a depth of one sampling interval in a medium 

which is ten times more conductive. The body is assumed to simulate the remains 

of a buried wall or a tomb. On a geological scale, it could represent an uplift of 

the bedrock, an anticline or even an intrusion. The AIR anomaly has a distinctive 

pattern which can be seen to be similar to that of a synthesis of two vertical contact 

responses of opposite sign. The edges of the disturbing body can be defined to a 

reasonable approximation by the turning points of the signal. The Schlumberger 

gradient, the dipole-dipole (Wenner , 3) and the square, 3 arrays give fairly restricted 

spatial signals. On the contrary, the square a, Wenner a and pole-pole arrays give 

relatively smooth and wide anomalies. 
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Figure 3.13: a) Anomalies produced by various arrays when the measuring profile is 

perpendicular to the strike of a vertical contact. b) Calculated anomalies for various 

arrays when the measuring profile is perpendicular to the strike of a body of square 

cross section buried at one data unit depth. 
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3.5 The Effect of Terrain Topography on Com- 

monly used Resistivity Arrays 

In this section a study of the effect of surface topographical variations on several 

DC earth resistivity arrays is presented. The 2.5-D finite element method (FEM) 

modelling scheme is used to examine the performance of several survey arrays on 
buried features below a range of different topographical terrain contexts, such as 

valleys, hills and steep slopes. 

At all scales, one of the known problems commonly encountered in DC earth resis- 

tivity surveying is the effect of surface topographical changes. It is known that, in 

general, topography causes localised dispersion and focusing of the current distribu- 

tion near the surface and hence artificial, terrain induced, conductive and resistive 

anomalies in the recorded field data. Valley-like structures produce artificial conduc- 

tive anomalies (dispersion of current lines) and hills artificial resistive ones (focusing 

of current lines) (Telford et al., 1991). 

Even qualitative insights into the topographical effects on different resistivity arrays 

can be useful in two ways: 

a) It may be possible that the type of the array and the position of the survey lines 

can be chosen to ensure that the spurious artefacts due to topographical changes 

are minimized. 

b) The full field data set can be interpreted in the context of the known distortions 

likely to be introduced by any unavoidable topographical variations. In fact, detailed 

quantitative knowledge of the impact of local topography offers the more enticing 

opportunity to improve the experimental data sets by correcting for topography in 

a more accurate fashion, reducing the chances of erroneous interpretations. 

Several studies exist of the effect of topography on resistivity surveys, both in two 

and three dimensions (Fox et al., 1980; Holcombe and Jiracek, 1984) but are all 
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limited to the case of the dipole-dipole array. Methods for the quantitative correction 

of resistivity data sets which contain "noise" due to topographical variations have 

also been proposed (Fox et al., 1980; Tong and Yang, 1990) 

Unfortunately, however, studies of other array types and any comparative studies 

of the performance of different arrays in varying field contexts do not exist in the 

published literature (Ward 1989). In this work, the FEM forward modelling scheme 

is used to test several widely-used resistivity arrays, namely dipole-dipole, Wen- 

ner, pole-pole, pole-dipole and the Square array. This short study involves a series 

of calculations of both profiling and pseudosection surveys, with different probe 

configurations, each in the context of a range of commonly encountered idealized 

topographical models: valleys, hills and steep slopes. 

3.5.1 Incorporation of the topography into the FEM scheme 

In order to model the topographical effects a FEM mesh which is consistent with 

the terrain variations has to be used. An easy way to achieve this is to generate a 

rectangular mesh with x coordinates which are consistent with the electrode posi- 

tioning and then just raise or lower the depth (z-coordinates) of the surface nodes to 

match the terrain. However, abrupt terrain changes will cause the elements related 

to the surface nodes to be very large in the z direction - this can dramatically affects 

the accuracy of the scheme, since discretization near the sources should be high. An 

example of the mesh produced using this technique for a simple terrain model can 

be seen in Figure 3.14b. 

An automatic mesh-generator was developed to produce a FEM mesh which is con- 

sistent with both the lateral and vertical positioning of the probes, in view of the 

needs (boundary shape) of the particular topography to be studied and without re- 
ducing the nodal density at the top of the FEM mesh. This is achieved by creating 

a rectangular mesh which has basic x coordinates consistent with the x coordinates 

of the probes and then by adding as many nodal rows in the depth (z) direction as 
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Figure 3.14: Different meshes which incorporate topography: a) the terrain variation 

to be simulated, b) FEM mesh applying the terrain variations directly to the nodes 

at the top b) FEM mesh produced by a more sophisticated mesh generator, c) 

equivalent Finite difference mesh. 
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there are different probe heights. In this way high a nodal refinement is achieved 

throughout the mesh. On the other hand, this refinement results large mesh sizes if 

the terrain is complicated. 

The topographical variations are then incorporated by assigning an extremely large 

resistivity (e. g. 106 Ohm-m) within the "air" portion of the mesh (Fox et al., 1980). 

Figure 3.14c shows an example of the mesh produced using that technique for the 

terrain model of Figure 3.14a. 

This mesh generation scheme can simulate terrain anomalies in great detail. More- 

over, the method is quite realistic since the use of triangular elements allows the 

simulation of the slopes between any electrodes. This is a major advantage of the 

FEM compared to other techniques (i. e. the finite difference method) which dis- 

cretize the earth via rectangular elements. As it can be seen in Figure 3.14d, a finite 

difference mesh would simulate terrain anomalies in a staircase fashion. 

Once the mesh is created, the FEM scheme enables the production of the apparent 

resistivity results for any desired probe arrangement. Note however, that for the 

case of very steep valleys the mesh generator may position the measuring probes 

quite close to the lower boundary. In order to correct for the possible inaccuracies 

associated with this fact (and to make the topography modelling scheme valid for 

all cases) the following normalizing procedure was introduced: 

" The apparent resistivity response of a homogenous halfspace is calculated us- 

ing the FEM. A homogeneous halfspace of resistivity po is simulated by the 

constructed mesh as if no topographical variations existed - no high resistivity 

is assigned to the "air" portion of the mesh. In this way some of the measur- 

ing electrodes appear to be "buried". Each calculated apparent resistivity (Pi) 

is compared with the known homogenous resistivity and a modelling error is 

obtained. The error for the measurement i is given by: e2 = po/Pi. 

" The "air" portion (and any subsurface structure) is introduced into the mesh 
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and now the "topography contaminated" apparent resistivities Pti are calcu- 

lated once again. 

9 Finally the normalized "topography contaminated" apparent resistivity Ptn; 

is obtained by: Ptni = e2Pti 

This scheme is almost identical to the normalization procedure for the pole-pole 

array proposed by Zhao et al. (1986) (it was presented in section 3.3.3). This 

procedure is based on the assumption that the modelling errors are linear and, 

although this is a rough approximation, it produces a reasonable correction factor, 

as was demonstrated in section 3.3.3. 

3.5.2 Examples 

Several terrain models were tested in order to check their effect on the responses 

obtained from different resistivity arrays. Some of the results are presented and 

discussed in this section. It has to be noticed that no direct quantitative comparison 

between the arrays can be made since no equivalent form of the arrays can be 

established: Arrays tend to have different sensitivities and thus arrays which are 

comparatively more sensitive to topographical variations will also be more sensitive 

in picking up the targets. 

Vertical slope model 

This model was chosen to simulate a common situation encountered in resistivity 

surveys of archaeological sites: sometimes surveys have to be conducted in the 

vicinity of excavation pits or steep slopes (such an example is the Europos acropolis 

site depicted in Figure 2.14). The response of several arrays commonly used for 

archaeological site surveys is depicted in Figure 3.15. The model used is also shown 

[Figure 3.15(bottom)]. 
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Figure 3.15: Topography effect of a vertical slope (bottom) in the apparent resistivity 

profiles of different arrays. 

The results indicate that the pole-pole array is the most sensitive to this particular 

terrain type producing an artificial high anomaly. Pole-dipole, Wenner and dipole- 

dipole arrays are quite sensitive as well. Square a, 0 arrays are less sensitive. 

The results can be explained by considering the configuration of the arrays. The ter- 

rain anomaly causes a distortion of the current lines and therefore of the measured 

potential field. Since pole-pole array has one of the potential electrodes at "infin- 

ity" only the one potential probe "senses" the anomaly, and therefore the recorded 

potential difference is high. Conversely for the remaining arrays both potential 

electrodes "sense" the anomaly, to some degree, so that the potential difference is 

affected rather less by the vertical face. 

The square array is less sensitive since it is quite compact. In particular the square 

ß array is the least sensitive since both potential electrodes are placed orthogonally 

to the strike (measuring) direction (parallel to the slope) and hence the measured 

ss 
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effect is partially counteracted. A similarly better performance should be expected 

for any array (except for pole-pole) positioned parallel to the face. 

Note, however, that this explanation is only valid for this particular terrain model 

since it will be shown that for more complicated terrain anomalies the array-terrain 
interaction is quite complicated and no array has a significant advantage over the 

other. 

In general, this terrain feature can produce a misleading effect for all of the ar- 

rays and this has to be considered when interpreting the data. The extent of the 

corruption is a combination of three factors: the array spacing, the height of the 

vertical slope and the distance from the array to the slope. It can also be said that 

the pole-pole array (and the related twin-probe array, which is routinely used in 

archaeological exploration) is the worst choice in the case of a vertical slope. 

Hill and Valley models 

In Figure 3.16 the topographical effect of a hill model (Figure 3.16a) on the response 

of various arrays is shown for full 2-D data sets (a homogeneous ground is consid- 

ered). The results are presented in a pseudosection form as grey scale images. In 

figure 3.17 the % error introduced by this terrain model can be shown. The results 

indicate that all arrays tend to generate high and low "artificial" anomalies which 

can be mistakenly attributed to resistive or conductive bodies, or can mask the 

response of "real" bodies. 

The dipole-dipole array (Figure 3.16b) produced a central high apparent resistivity 

anomaly below the area of the hill which widens as the n separation increases. On 

either side of the spurious high, further low apparent resistivity regions appear. 

The Wenner array (Figure 3.16c) produces an effect opposite to that of the dipole- 

dipole array: a low apparent resistivity region below the central area of the hill, 

with a high at either side. 
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Figure 3.16: Topography effect of a hill model (top) on the pseudosection presen- 

tation of a 2-D resistivity survey over a homogeneous ground: b) dipole-dipole, c) 

Wenner, d) pole-dipole, e) pole-pole. 
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Figure 3.17: % error due to the effect of a hill model (top) on the pseudosection 

presentatio of a 2-D resistivity survey over a homogeneous ground: b) dipole-dipole, 

c) Wenner, d) pole-dipole, e) pole-pole. 
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Figure 3.18: Topography effect for a valley model (top) on the pseudosection pre- 

sentation of a 2-D Wenner data set over a homogeneous ground. 

The pole-pole array (Figure 3.16d) produced an anomaly which has a pattern similar 

to that of the dipole-dipole. The pole-dipole array (Figure 3.16e) produced an 

asymmetric anomaly with a high region just below and on the right of the hill and 

a low on the left of the central region 11 

The maximum positive and negative error within a profile was obtained when the 

centre of the array was positioned at the top of the hill. For all arrays the overall 

maximum error (both positive and negative) was obtained for probe separation n=3. 

As would be expected, the equivalent valley model (Figure 3.18a) produced results 

directly opposite to those of the hill model. In Figure 3.18b the Wenner array 

response is depicted. 

11The probe arrangement of the pole-dipole array is the one shown in Figure 2.8d. If different 

arrangement was used, i. e. N-M-A instead of A-M-N, the anomaly produced would have had an 

inverted pattern. 
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Slope model 

In Figure 3.19 the topography effect of a slope model (Figure 3.19a) on the response 

of various arrays is shown for full 2-D pseudosection data sets. All of the arrays 

produced asymmetric responses. Dipole-dipole, pole-pole and pole-dipole arrays 

produced a low response at the bottom of the slope and a high at the top. The 

Wenner array produced the opposite effect. 

As suggested by Rijo (1977) the results can be explained by considering the bottom 

of the slope behaving locally as a valley and the top behaving locally as a hill. The 

maximum errors within a profile were obtained when the centre of each array was 

over the top or the bottom of the slope. For all arrays, the overall maximum error 

was for n=5 or 6. 

3.5.3 Correction of topographical effects 

It has been demonstrated that the terrain anomalies can be a significant source of 

distortion in resistivity surveys. Fox et al. (1980) proposed an approximate way 

to take the quantitative effect of terrain noise into consideration, and eventually to 

correct the data. 

The technique is quite simple. Assuming that a data set has been obtained over a 

known field topography, the steps that have to be followed are as follows: 

" The topography is simulated and a similar model data set is obtained for a 
homogeneous ground. 

" The % errors introduced within this data set by the purely topographical 

variations are calculated and stored. 

. The original data set is then corrected using the error factors obtained for 

homogeneous earth. 
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Figure 3.19: Topography effect of a slope model (top) on a 2-D resistivity survey over 

a homogeneous ground (pseudosection presentation): b) dipole-dipole, c) Wenner, 

d) pole-dipole, e) pole-pole. 
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Figure 3.20: Correction of the topography effect for a pole-pole profile over a con- 

ductive prism (bottom). 

. The corrected data set can now be interpreted as if there were no terrain 

variation. 

An example of this procedure can be seen in Figure 3.20 for a case of a conductive 

prism under the of a vertical slope: The original pole-pole profile was corrected using 

the above procedure and the corrected profile is then compared with the anomaly 

that would have been obtained in the absence of the vertical discontinuity. 

The corrected and "real" anomalies are in good agreement. Their misfit is explained 

if we consider the approximate nature of the correction scheme: the assumption 

being that the topography response may be superimposed to the response of the 

target. This is in contrast to the non-linear nature of the forward resistivity problem. 

However, despite this linearity assumption, the method produced satisfactory results 
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for all of the models/arrays tested here and is the only direct 12 way for at least 

partially correcting the data for topographical noise. 

A real example of this correction technique is demonstrated in Figure 3.21. A twin- 

probe profile with probe separation 0.5m was carried out in the cloister area of 

Fountains Abbey (N. Yorkshire) using quite dense sampling (10cm). A fairly linear 

slope exists over the range 4.2 to 5 metres along the profile, as can be seen in Figure 

3.21a. The % error introduced purely by the slope can be seen in Figure 3.21b. The 

measured profile indicated a high resistive anomaly to the right of the slope (Figure 

3.21c) which could be attributed to a wall. In order to make sure that this effect 

was not due to the local topography, the profile was corrected using the described 

technique. The corrected data can be also seen in Figure 3.21c. A local minimum at 

4.2 metres and a global maximum at 5 metres which existed in the original profile 

can now be seen to be due to the terrain anomaly. The corrected profile indicates 

the existence of a resistive feature which has a centre at approximately 5.4 metres. 

3.5.4 Conclusions 

Overall, the results confirm that topographical variations can have a significant 

impact on the field resistivity data values for all resistivity arrays and show that the 

significance of the distortions will vary according to the details of the topography and 

survey type. Topography effects are predictable and should be taken into account 

when designing surveys and when interpreting data. 

Most importantly, it is shown that topographical variations can be treated in a 

flexible and accurate fashion within a realistic resistivity forward modelling pro- 

cess, pointing towards the viability of carrying out corrected resistivity data inver- 

sions/interpretations in the context of known topographical survey. 

12Tong and Yang (1990) proposed an indirect technique which treats topographic corrections 

within the interpretation/inversion procedure. 
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Figure 3.21: Correction of the topography effect for a twin-probe profile in the 

cloister of the Fountains Abbey (N. Yorkshire): a) the slope feature, b) % theoretical 

error introduced by the terrain c) the measured and corrected data sets. 
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The results of this study can be summarized as follows: 

9 The pole-pole array is more sensitive to the vertical slope topography for 

standard profiling applications while, conversely, the square-array is the least 

sensitive. 

" For full 2-D data sets the dipole-dipole and pole-pole arrays produced anoma- 

lies of similar patterns. The Wenner array produced anomalies with opposite 

patterns. The pole-dipole array in general produced anomalies with asymmet- 

ric patterns. 

" For 2-D surveys, as far as the amplitude is concerned, dipole-dipole and pole- 

dipole arrays produced the highest and lowest errors when compared with pole- 

pole and Wenner arrays. However, direct quantitative comparisons cannot be 

made since the sensitivity of each array is different (i. e. dipole-dipole may be 

giving the highest error, but it would also have given a higher and sharper 

anomaly under the presence of a target). 

9 All arrays produce significant, and potentially misleading, artificial errors 

within the data for slope angles larger than 10 degrees (if the extend of the 

slope is larger than the array spacing). 

3.6 Chapter Overview 

In this chapter the forward resistivity problem was addressed. The finite element 

method was chosen to simulate the earth resistivity responses due to its flexibility 

in modelling irregular boundaries. Further, modelling in 2.5 dimensions was found 

to be a reasonable compromise between accuracy and computational loads. 

In the next part of this chapter the full theoretical development of a FEM 2.5-D 

earth resistivity modelling scheme was presented. The practical implementation of 

the scheme is discussed and its accuracy was tested. 
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Further, a strategy for modelling arrays parallel to the strike direction (i. e. square ar- 

ray) was proposed. The proposed technique modified an existing integration scheme 

and made it more flexible for modelling profiles of resistivity arrays which so far 

could not be modelled in 2.5 dimensions. The accuracy of the scheme was checked 

and results for various arrays were presented. 

Finally, the FEM scheme was used to study the effects of terrain topography on 

commonly used resistivity arrays (dipole-dipole, Wenner, pole-pole, pole-dipole and 
Square). A mesh-generating algorithm was used to allow the realistic representation 

of the terrain topography. Different topographical terrain contexts, such as valleys, 

hills and steep slopes were tested. Topography effects are predictable and should be 

taken into account when designing surveys and when interpreting data. 

The results confirm that topographical variations can have a significant impact on 

the field resistivity data values for all resistivity arrays. Further, it is shown that 

topographical variations can be treated in a flexible and accurate fashion within a 

realistic resistivity forward modelling process. 
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Chapter 4 

The 2-D Inversion Procedure - 
Calculation of The Jacobian 

Matrix 

In the first part of this chapter the general concept of resistivity inversion is pre- 

sented. The theoretical and practical limitations of the inversion procedure are dis- 

cussed and general approximate and accurate ways for treating the resistivity inverse 

problem are presented. 

It will be shown that the Jacobian matrix is crucial in both approximate and accurate 

schemes. Therefore, before attempting to describe the inversion schemes analytically 
(this will be covered in the following two chapters), ways for calculating the Jacobian 

matrix are presented in detail. Particular emphasis is given to the application of 
those techniques within the finite element framework. 

One of those techniques is used to calculate the sensitivity of commonly used arrays. 

It will be shown that the sensitivity matrix can be used to justify the response of the 

arrays and to design optimum resistivity surveys. 
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4.1 The Inversion Procedure 

So far, we have been dealing extensively with the solution of the forward resistivity 

problem: given a known resistivity, calculate the observed data set. The inverse 

procedure (as the name suggests) is to find the subsurface distribution, given the 

observed data set. 

Since we are dealing with discrete space, the subsurface is divided into a finite 

number of continuous blocks. (see Figure 4.1b) The resistivity within each block 

is considered to be constant. Note that each block is assumed to extend infinitely 

along the strike (y) direction: in other words, the resistivity distribution is treated 

as pseudo-two-dimensional (see Figure 4.1a). This is why the inversion is described 

as 2-D. 

The overall resistivity distribution can be represented by a vector x. Suppose that 

the vector d represents the measurements d= {di, d2, 
... dn} corresponding to that 

resistivity distribution. The forward modelling problem is to find a transformation T 

which connects the known resistivity vector x to the unknown measurement vector. 

d=T (x) (4.1) 

The transformation T is related to the solution of the Poisson's equation and here it 

was handled by using the finite element method. The inverse problem is to find an 

inverse transformation T-1 which connects the known vector of the measurements 

d with the unknown resistivity x, that is 

x= T-1 (d) (4.2) 

Is inversion possible? One of the first questions to be answered is whether the 

inversion of resistivity data is possible: that is, whether the measured data set 

contains enough information to allow the resistivity to be determined uniquely, or 
(equivalently) to establish whether different resistivity distributions can always be 

distinguished by boundary measurements. 
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Figure 4.1: a) A 2-D parameter. b) The parametrization procedure. c) A parameter 

within the FEM scheme. 
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Recent studies [i. e. Kohn and Vogelious (1984)], involving rather complicated the- 

oretical mathematical formulations (the presentation of which is beyond the scope 

of this work), proved that measurements at the boundary can in theory uniquely 

determine even smooth variations in resistivity. Hence, the solution of the inverse 

problem is theoretically feasible. However, in practical terms, there are still several 

considerations which should be taken into account. An outline of these considera- 

tions follows. 

4.1.1 Problems within the inversion procedure 

The resistivity problem (as with almost every geophysical problem) is ill-posed in 

the sense that large resistivity variations may well cause only small differences in the 

observed data (Breckom and Pidock, 1987). For the inverse problem, it follows that 

small changes in the data can lead to large changes in the "solution". Consequently, 

the accuracy of the observed data is highly important for the validity of the inversion 

results. Since any inversion algorithm is destined to be used for real data, we can 

recall (chapter 2) that there are several factors which cause inaccuracies within 

the measurements, such as instrumentation limitations, probe positioning, terrain 

anomalies etc. Further, an extra problem arises from the use of forward modelling, 

which suffers from inherent modelling errors. These errors will affect the accuracy 

of the modelled data and hence the stability of the overall inversion scheme. It is 

very difficult to get an exact quantitative indication of the total noise level which 

corresponds to a data set, and so the noise distribution is usually considered to be 

Gaussian. 

An additional problem related to the accuracy of the inversion is that the measured 
data set derives from the sampling of a continuous function. This fact results in 

an unavoidable loss of information despite the fact that the sampling density can 
be chosen to be consistent with the size of the targets sought. Certainly, a high 

density measuring scheme has the potential to improve the quality of the obtained 
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information, and therefore the inversion results, but there are several restrictions 

imposed by practical difficulties. Automatic measuring systems are an obvious way 

of increasing the density of the measurements, but any inversion scheme would then 

have to deal with an increased amount of data computation- considering the current 

computer speed and memory, the extra computer power needed is not justified for 

most applications since the potential increase in the quality of the inversion results 

is not large enough compared to the cost (Smith and Vozoff, 1984). 

The subsurface discretization poses another source of inaccuracy. In real terms the 

subsurface resistivity distribution is too complicated to be modelled in great detail 

by a set of discrete blocks. It could be argued that those blocks can be as small as 

desired but this is not the case: their number and size is limited by the type and 

amount of the observed data. Consequently the introduction of a priori parameter 

blocks generates artificial boundaries which are quite unlikely to coincide with the 

boundaries of the targets which we are trying to resolve. In this way the exact 

shape and properties of the target are impossible to reconstruct accurately. Of 

course, a high measurement density results in a correspondingly higher parameter 

density, and thus improved accuracy, but the limitations explained in the previous 

paragraph apply here as well. 

The problems described so far are inherent to any inversion scheme. For the 2-D 

scheme an extra source of errors is the assumption that subsurface resistivity varies 

in only two dimensions. This is valid for a series of possible targets (i. e. layers, 

faults) and can be quite close to reality for several others (i. e. walls, ditches) and, 

in general, for any types of targets which have a lateral extent within the "range" 

of significant array sensitivity. But targets such as isolated voids can clearly be 

described accurately only by a 3-D resistivity variation'. An obvious solution to 

this problem is to use full 3-D schemes but the computational load of such a scheme 

'Bear in mind that those modelling approximation errors are not due to the inversion scheme 
itself but are due to the 2.5-D forward modelling scheme which is used by the inversion in order 

to reproduce the original data. It will be shown in a later section that the inversion and forward 

modelling techniques are in most schemes strongly interrelated. 
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renders it impractical for routine data interpretation, at least for the time being. 

The potential sources of errors in a resistivity inversion scheme can be summarized 

as follows: 

. The ill-conditioned nature of the problem in conjunction with the limited 

accuracy of the observations. 

" The fact that the measurements are just a discrete, usually sparse, sample of 

a continuous function. 

" The subsurface resistivity is usually too complicated to be modelled accurately 
by a set of discreet blocks. 

. The 2-D assumption is not valid for all possible targets. 

Several methods have been suggested for handling some of these problems. They are 
based on using mechanisms for stabilizing the inversion procedure and on incorpo- 

rating prior information about the area of interest and the quality of the measured 
data. Those techniques will be described. 

Why invert? There are several factors that affect the performance of an inversion 

algorithm. Given all of these problems, questions about the practical usefulness 

of resistivity inversion may arise. The answer to these questions is that inversion 

should not be viewed as a panacea for solving the resistivity problem, but simply 

as a tool, which, when it is used properly, could be of great help for resistivity 

interpretation since (as it will be shown) direct interpretation of the resistivity data 

(e. g. via a pseudosection) is inadequate and possibly misleading. "Proper" use of 

the inversion algorithms means that the operator is aware of the limitations and the 

problems of the particular inversion scheme. Hence, an objective validation of the 

inversion results can be made. 

The schemes for handling the 2-D resistivity inversion can be separated into two 

categories: 
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Approximate inversion schemes: including a wide range of algorithms 

which seek to simplify the inverse problem by assuming that it is linear. 

Accurate inversion schemes: the inversion problem is handled as a non- 
linear procedure. 

In the following chapters a detailed presentation of the algorithms used for 2-D 

reconstruction of the resistivity data is given. However, firstly it is necessary to 

present the general pattern of the suggested solutions (accurate and approximate) 

of the inversion problem. 

4.2 General Solutions for the Resistivity Inverse 

Problem 

Suppose that the resistivity distribution is represented by a vector x which has 

N parameters x= {x1 
i X2... XN} and the respective M measured data by a vector 

d. Note that the vector d could either represent apparent resistivity or potential 

difference measurements, since given apparent resistivity the potential difference 

can be easily calculated and vice-versa (recall equation 2.36). The set of algebraic 

equations that has to be solved is 

f(x) =d (4.3) 

Due to the non-linearity of f the solution cannot be obtained by direct inversion. 

Iterative non-linear schemes 

The accurate inversion techniques are able to handle non-linearity by using an iter- 

ative optimization scheme. The basic pattern of such a scheme is to start with an 

initial resistivity model xo and successively correct it in order for the modelled data 

f (Xcurrent) (which are the data that correspond to the current resistivity model) to 

be fitted to the measured data set d. Since the partial derivatives of the modelled 

data with respect to the resistivity parameters can be obtained, (ways for calculat- 
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ing these derivatives are demonstrated in the next section) a Gauss method can be 

used. Expand f(x) with respect to a small resistivity variation dx in a Taylor series 

expansion 

f (xi + dxz) =f (xi) + aa(x2) dxi + O( (dx=)2) i=1,2, ... N (4.4) 

where O((dxi)2) represents the higher order terms. Since dx is considered to be 

"small" the higher order terms can be neglected; hence equation 4.4 can be rewritten 

in a general form 

f (x + dx) =f (x) + Jdx (4.5) 

where J is the mxn matrix of the first derivatives (Jacobian matrix). The way that 

the Jacobian matrix can be derived will be shown in a following section. 

Assume now that a criterion has been defined for the optimum solution of dx to 

be found from equation 4.5 given all other components. An iterative procedure can 
then be defined: 

if xk is the resistivity estimate at the kth iteration 

1 calculate the modelled data set f(xk) using the forward model. 

2 find the optimum dxk 

3 set Xk+i = Xk + dXk 

4 repeat until a criterion of fitness is satisfied. 

Approximate schemes 

The approximate schemes try to linearize the problem by assuming the following 

type of relationship 

Ax^ýd (4.6) 

Where A represents an approximate relationship between the parameters and the 

observations. The solution is then given by either directly inverting A, or, most 
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commonly, by approximating its inverse. 

x ^ý Bd (4.7) 

where B- A-'. It has to be noted that iterative schemes can be also used. 

4.2.1 Fitting criterion 

We have explained that an inversion procedure is essentially an optimization scheme 

in which we are trying to fit the modelled data to the real data. In order to check the 

degree of fit the root mean square (RMS) error between the observed and calculated 

data is calculated. The RMS error is given by the following relationship (Jupp and 

Vozoff, 1975): 
M _dý 

2 doidot 
(4.8) RMS error =m ý() 

Where do;, dcq is the i observed and calculated measurements respectively. 

In an iterative scheme the RMS error can be also used as a stopping criterion: 

If the RMS error is not dropping consistently throughout each iteration, then no 

improvement in the fit is achieved and therefore the procedure can end. Similarly 

the procedure can end when the RMS error grows (divergence). 

4.3 Calculation of the Jacobian Matrix 

The inversion procedure involves the calculation of a resistivity distribution which 

will produce a modelled data set which is as close as possible to the observed one. 

The resistivity distribution in terms of the model space is expressed as a set of 

homogeneous blocks (parameters) which are allowed to vary their resistivity inde- 

pendently In most inversion schemes it is necessary to use a matrix, the Jacobian 

J, which associates variations in the property of those parameters with variations 
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in the observed data. Before we proceed to investigate the inversion schemes more 

closely, it is essential to demonstrate ways for calculating the Jacobian matrix. 

If n is the number of elements in the parameter vector, p, of the problem and m 

is the number of elements in the observed data vector, d, the Jacobian is amxn 

matrix and its i, j element JJ j is given by: 

Jt; = 
adi 

OcT 
(4.9) 

Where aj is the conductivity of the parameter pj The Jacobian matrix (JM) is 

also known as the sensitivity matrix since it represents the sensitivity of the mea- 

surements to small changes of the parameter property 2. If the observed data are 

apparent resistivities, equation 4.9 can be written as 

aPai aPai air aov J`' 
P; aQ; GI oQj 

(4.10) 

In equation 4.10 the geometrical factor (G) and the intensity of the inserted current 

(I) is known, thus the JM can be obtained by finding the variation of the potential 
drop versus the variation of the conductivity. 

In general, the JM can be calculated using the following three techniques (McGillivray 

and Oldenburg, 1990): a) sensitivity technique, b) adjoint equation technique, c) 

perturbation technique. 

The calculation of the JM is strongly related to the forward modelling technique 

used. Hence, for the purposes of this work, the ways for calculating the JM will 

be described analytically within the context of the finite element method (FEM). 

It has to be stressed that when the FEM forward modelling scheme is used each 

parameter usually consists of several sub-elements (see Figure 4.1c). 

2This type of derivative is also referred as Fachet derivative. 
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4.3.1 Sensitivity technique 

The sensitivity technique (ST) is widely used for the calculation of the JM (Sasaki 

1982; Smith and Vozoff, 1984 ). It has quite a simple mathematical formulation and 

can be easily applied within differential modelling schemes such as the FEM and 
FDM. 

Recall the final system of equations derived from the assembly of the element equa- 

tions, which has the general form (equation 3.38). 

K"A=F 

where: K is the transformed stiffness matrix, A is the transformed nodal potential 

vector and F is the loading terms vector. 

Partial differentiation of the global FEM equation with respect to the conductivity 

ap of a parameter p yields: 

a OF 
äp(K A) = äQ (4.11) 

and application of the chain rule (the load vector F is independent of the resistivity 

of the parameters) yields: 

K 
DA 

-A 
OK 

PP 
(4.12) 

The terms of equation 4.12 can be easily calculated. The transformed stiffness 

matrix K and the transformed nodal potential vector A are already known since 
they are obtained from the solution of the forward problem. 

The term OK/äap can be found by direct differentiation of the elementary stiffness 

terms K. Suppose that p is the parameter that is differentiated with conductivity 

op. Since the elementary stiffness term Ksý) is a function of conductivity (recall 

equation 3.20), differentiation with respect to ap yields 

OKsj3 Ktj')Qp if eE pj 
- (4.13) ao. p 0 otherwise 
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The matrix OK/öop is formulated by assembling the elementary differentiated stiff- 

ness terms, in a fashion similar to the formation of stiffness matrix for the FEM. 

Since the final system of equations which has to be solved (equation 4.12) is entirely 

similar to that solved at the forward problem, Gaussian elimination can also be used. 

Note that the forward reduction of the stiffness terms K has already occurred in the 

solution of the forward problem, thus only back-substitution is needed. The solution 

gives the partial derivatives of the transformed potential with respect to conductivity 

changes of each particular parameter. After solving the system of equation 4.12 for 

every wavenumber, the partial derivatives of the total potential are recovered by 

applying the inverse cosine Fourier transformation. 

It should be noted that the pattern of the derivatives of the transformed poten- 

tial is somewhat irregular: the derivative of the transformed potential for the first 

wave-number can sometimes be slightly smaller than the derivative of the trans- 

formed potential for the second wavenumber3. Hence, integration schemes such as 

subsectional exponential fitting will not suffice. Instead, for the area between (0,1], 

Gaussian quadrature was applied (Marron, 1982) using three critical wavenumber 

values. The quadrature weighting factors were decided using standard quadrature 

tables (Abramovitz and Stegun, 1972). Exponential fitting was then performed for 

the remaining wave-numbers. 

As long as the derivatives of the nodal potential are known, then the point to point 

variation OAV /&r can be easily calculated. Finally, the entries of the Jacobian 

matrix can be calculated using equation 4.10. 

4.3.2 The adjoint equation technique 

The adjoint equation technique (AET) has been applied both in 2.5-D and 3-D 

resistivity problems (McGillivray and Oldenburg 1990; Park and Van, 1991) but the 

3This could be due to round-off errors 
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formulation was restricted to the finite difference method. Similar formulations for 

calculating the JM have been derived within the network analysis context (Trip et 

al. 1994; Yorkey 1987a). Since no application of the method to the 2.5-D FEM 

modelling scheme has been reported, in this section the equations for applying the 

AET into the FEM are derived. 

The AET is based on the use of the properties of the adjoint operator and the adjoint 

Green's function (Lanczos, 1960). After laborious mathematical formulations (the 

presentation of which is beyond the scope of this work) it can be shown that for the 

resistivity case the sensitivity is a function of the differentiated original equation 

and the adjoint Green's function. Since the solution of the resistivity problem is 

self-adjoint, the same forward solver can be used to give the solution of both the 

original and the adjoint functions. McGillivray and Oldenburg (1990) derived the 

general form of the sensitivity of the corresponding transformed potential for the 

2.5-D resistivity case: 

OV(xa, k, z0, x8, z8) 

an,; 
J2 a2V(x, k, z, x., z. ) a2V(x, k, z, x., za) 

'V (x' k' z' xef z8) -' 02x -' ä2z 
V (x, k, z, xo, zo) dxdz (4.14) 

where: 

" OV(x,,, k, z0, x8, z, )/Oa, is the partial derivative of the transformed potential 

measurement at (xo, k, zo) when the source is at (x� z8) in respect of parameter 

j. 

"V (x, k, z, x� z, ), V (x, k, z, x0, zo) are the transformed potential at (x, k, z) 
when the source is at (x8, z, ) and (x0, z0) respectively. 

9 Oj is 1 if the (x, z) coordinates are within the limits of parameter region j, 

and otherwise is 0. 
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Using a simplified notation [V(xo)k, zo, x�z8)=Vo, V(x, k, z, x�z, )=V, V(x, k, z, xo, zo)=V'] 

equation 4.14 can be rewritten as 

19v" [k20; 
VV' -; 

02V v, -ý 
02v v' dxdz (4.15) 80-j -D 

192X atz 

By using the chain rule of differentiation equation 4.15 becomes: 

aV0 av aV' av 'V' 
c7ýý 

fD [k2 

' VV' +ý 8x ax + 'ý 8z az dxdz 

-' fD 
[ax 

ax 
vi) + äz 

(az 
V'll dxdz (4.16) 19 ( 

/J 

The last integral of the right hand side of equation 4.16 is a perfect differential and 
by using Green's theorem can be expressed as a line integral over the boundary B 

of the domain: 

ID 1a av 
vi +aV v' dxdz = 

aV 
V'n+ aV V' nds aX aX az 8z a Ox az 

(4.17) 

The ny, nZ symbols are the x, z components of the outward unit n normal to the 

domain's boundary. If the boundary conditions are considered, the line integral of 

equation 4.17 is zero: the potential (V') at the side and bottom boundaries is zero as 

a result of the Dirichlet BC (VDE = 0), and at the air/earth interface, the normal 

component of the potential derivative is zero. Therefore, the equation that gives the 

sensitivity of the transformed potential finally becomes: 

avo ,, /, av av' av ay k aUj =1 VVB + ýý 
ax ax +ý TZ oz dxdz (4.18) 

By using equation 4.18 the problem can now be formulated within the FEM context. 
Suppose that the sensitivity of the transformed potential (at a node n due to a source 

at node m) with respect to a perturbation of the conductivity of element e is to be 

found (see Figure 4.2). Equation 4.18 becomes 

= 
ÖV(e) ÖV(e) ÖV(e) ÖV(e) 

äa(e) 
[k2v, v 

in + äx 8x + öz az 
dxdz (4.19) - 

Ja(e) 

where V, im, is the potential at n due to a source at m and V�e), V(e) is the potential 

at element e due to sources at m, n respectively. 
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Transmitter Receiver 

mn 

Figure 4.2: The receiver, transmitter, parameter configuration (see text). 

The transformed potential derivatives in the right hand side of equation 4.19 can be 

calculated by the use of equation 3.26 which gives an element's transformed potential 

with respect to the potential at its nodes: 
3 

(e) (e) 
V ýe) 

= aj Oj 

j=1 

where 

ýeý 
_ 

Aye) + Býe)x + C; ez 
=123 ýi 2A() 

the terms A(e), B(e), C(e) depend on the coordinates of the node j, and O(e) is the 

area of the element (see equation 3.28). 

Therefore the derivatives of the right hand side of equation 4.19 will be 

aV' e) 

_3 
fie) 

(e) 

a m _ 
(e) 

Bje) 

Ea jm Öx ax j 
j_l 

20ýe) 
j_l 

CV(e) 

ciz j=1 

Similarly 
CiV(e) 

3 
(e) 

n_ a3n 
ax 

j=1 

a (e) 3 Cýe) 

aý 
(e) 

az aý, n 20(e) 
(4.20) 

j_1 

) 
(e) 3 

. 7e) Q(e) 
= aýhe) 

aä 
In 2z ) 

(4.21) 
2 j=1 
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Due to equations 4.20,4.21, equation 4.19 becomes 

ÖVnm 

O9Q(e) 
_ 

333 B(e) 3 B(e) 3 O(e) 3 /-. f(e) 
k2 a') aim + L1 

aim 
2O 

a(tt 
20(e) 

+ aj"' ajn (e) JO(e) j=1 j=1 j=1=1 j=1 
2A(e) 2Q(e) 

j=l 
dxdz 

(4.22) 

The integral of the right hand side of equation 4.22 can now be evaluated. The first 

term can be evaluated using the triangle integration formula given in equation 3.32. 

The integral of the remaining two terms can be calculated directly. Equation 4.22 

gets the following form 

ÖV a(e) ý3 (6 
(e) 

+ a(e) a 
(e) (e) (e) (e) (e) V.. 

= K2Q(e) 
Ej=1 

im j=1 
, fin lm In + a2ma2n + a3ma3n 

öcy(e) 12 

+Eý 
a(e)B(e) E9 ai 

)B 
9e) + ý3=1 a(') C(e) Ej=1 ajnC, e) 

4.23 40(e) 

Using equation 4.23 the sensitivity of any potential measurement due to pertur- 

bations of any element's conductivity can be calculated. It can be seen that the 

sensitivity is actually a function of the nodal coordinates and the nodal transformed 

potential of the element due to sources both at the transmitter and the receiver lo- 

cations. The nodal potential due to sources at the transmitter is calculated anyway 

to get the forward response, thus only the potential due to sources at the transmit- 

ter needs to be evaluated. This may seem to suggest that the procedure is quite 

time consuming, but in a combined sounding profiling measuring scheme most of 

the electrodes which provide a potential measurement for one probe arrangement 

will be used to apply current in another. Therefore, only few extra sources positions 

need to be evaluated in order for all sensitivity combinations to be obtained (e. g. 
for the dipole-dipole scheme just two extra source positions have to be calculated). 

As long as the derivatives of the transformed potential in respect to changes into 

the element's conductivity are known, the derivative with respect to a particular 
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parameter can be readily found: 

ov q ov 

= ä. 7p 
( ä0'. (4.24) 

where i=1,2, 
.. q are the elements that form the parameter region (see Figure 4.1c). 

Subsequently, the partial derivatives of the total potential are recovered by applying 

the inverse Fourier transformation in a fashion described into the previous section. 

Finally, the Jacobian matrix entries can be calculated using equation 4.10. 

4.3.3 The perturbation technique 

The perturbation technique (PT) gives an approximation to the Jacobian matrix 

in a finite difference sense. This method has been widely used in medical imaging 

(Kim and Woo., 1987; Yorkey, 1986) but it cannot strictly be classified as a method 

for obtaining the SM and hence the resultant matrix is called the Perturbation 

matrix (PM). The PM can give a useful indication of how every parameter affects 

the measurements. 

The PM can be obtained in the following way: an initial resistivity distribution 

p is assumed and the measurement pi(p) which corresponds to this distribution 

is calculated. Subsequently, the resistivity of one parameter, say j, is perturbed 

by Opi and the new measurement p=(p + Opa) is obtained. The ij element of the 

perturbation matrix P is then given by 

Pik _ 
pi (p + OPj) - pi (P) 

Jsý (4.25) AP. i 

The approximate nature of the PM is due to the arbitrary selection of the pertur- 

bation quantity Opi (Broyden, 1970): If Opi is "small" it could cause excessive 

rounding error (substraction of two very similar numbers) and if it is "large" it 

violates the assumptions of the first derivative. Further, the PT is a particular 

time-consuming procedure since the calculation of the entire PM needs as many 

forward calculations as the existing parameters. 
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On the other hand the PT is attractive for its computing simplicity: the forward 

solver needs only minor modification to accommodate the technique. 

4.3.4 Results 

All three techniques have been incorporated within the FEM algorithm and tested. 
As far as the accuracy is concerned the sensitivity and the adjoint equation tech- 

niques produced identical results (Figure 4.3a). The results of the PT were not very 

close to these of the other two methods (Figure 4.3a). 

In order to check the overall accuracy of the calculations, the computed results of 

the adjoint equation technique were compared to analytical results given by Sasaki 

(1982) for a dipole-dipole sounding over a three layered earth [see Figure 4.3b (top)]. 

Each layer is considered to be a parameter and graphs of the analytical and computed 

sensitivity entries for the first and second layers are depicted in Figure 4.3b. It can 
be seen that the analytical and computed responses are in good agreement. 

The computational time each method takes is quite important since the computation 

of the JM is quite a time-consuming procedure. The adjoint equation technique 

involves less floating point operations (Yorkey 1986) and thus was faster than the 

sensitivity technique. The perturbation technique proved to be the most time- 

consuming. 

In conclusion, in this work the AET was used as the standard method for calcu- 
lating the Jacobian matrix since it proved to be both accurate and economical in 

computational time. 
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Figure 4.4: The variation of the JM for common probe arrangements (homogeneous 

ground): a) pole-pole, b) Wenner, c) dipole-dipole, d) pole-dipole. 
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4.4 The Variation of the JM for Common Probe 

Arrangements 

The AET was used to calculate the sensitivity matrix responses for common re- 

sistivity arrays. A homogeneous ground divided into a set of square parameters 

was considered. In Figure 4.4 the sensitivity matrix entries for pole-pole, Wenner, 

dipole-dipole, and pole-dipole arrays are shown. The exact electrode location for 

each configuration is also depicted. 

From the results it is clear that there are positive and negative JM entries. Positive 

JM values indicate that positive or negative perturbations of the conductivity will 

cause respectively positive or negative changes into the measurements. Conversely, 

negative JM values indicate that positive or negative perturbations of the conduc- 

tivity will cause respectively negative or positive changes into the measurements. 

The most important sensitivity to consider is that of the pole-pole array, since the 

sensitivities of the other arrays are a superposition of elementary pole-pole sensi- 

tivities. The pole-pole array has a high positive sensitivity area around the two 

measuring probes and a negative sensitivity area just below the region of the mea- 

suring probes. This negative area extends to a depth of approximately 0.3a (where 

a is the inter-probe spacing). 

The sensitivity for the Wenner array is symmetrical. It appears as high positive 

values at the area between the potential probes and outside the current probes. High 

negative values appear at the regions between the potential and current probes and 

extend to a depth of approximately 0.3a. 

The dipole-dipole array has high negative sensitivity areas between the two dipoles 

as well as left and right of them. High positive sensitivity regions occur below the 

high negative sensitivity region but the highest values appear at the regions below 

the current and potential dipoles. Finally the pole-dipole, produces an asymmetric 
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sensitivity distribution with high negative sensitivities just below the centre of the 

array and to the right of the potential dipole. The positive sensitivity regions are 

located in the regions just below the potential dipole and below the central negative 

sensitivity region, as well as to the right of the current probe. 

No direct quantitative conclusions about the field measurements can be drawn from 

the Jacobian matrix since a measurement is the integrated effect of the individual 

parameters, but it can be said that for all arrays the positive entries are predominant 

and appear to have a larger amplitude. This explains the fact (which is the basic 

assumption when interpreting resistivity data) that, broadly speaking, a typical 

array response to a resistive (or conductive) body produces a predominantly positive 
(or negative) anomaly. However the detailed variations of the Jacobian matrix for 

the various arrays makes it clear that this is not always the case. In fact, the Jacobian 

matrix can give a useful qualitative insight into the response of resistivity arrays to 

certain features (i. e. the asymmetric pattern of pole-dipole anomalies is due to the 

asymmetric nature of the sensitivities of that array) and explain complicated and 

potentially misleading anomaly patterns which are contradictory to the common 

assumptions of resistivity surveying. In the following example illustrations of such 

cases are presented. 

The responses of the pole-pole, Wenner and dipole-dipole arrays over a thin resistive 

body buried at a depth of 0.25a (where a is the inter-probe spacing) are presented 

in Figure 4.5. The configuration and initial positioning for each array can be seen 

at the bottom of the x-axis of each graph. The results can be explained easily by 

referring to the sensitivity distribution of each array (see Figure 4.4). The pole-pole 

array (Figure 4.5b) produces a negative anomaly when it is over the body due to 

the negative sensitivity occurring in its upper central region. Similarly, the Wenner 

array (Figure 4.5c) produces two negative anomalies on either side of the body which 

are due to the negative sensitivity of the areas between the current and potential 

probes. Finally, the two peak anomaly produced by the dipole-dipole array (Figure 

4.5d) is due to the high sensitivity of the array below the potential and current 
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Figure 4.5: The response of various arrays to a shallow resistive prism: a) the model, 

b) pole-pole, c) Wenner, d) dipole-dipole. 
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Figure 4.6: a) The parametrized space, b) the entries of the Jacobian matrix. 

dipoles. 

4.4.1 Sensitivity analysis 

Another observation is that the amplitudes of the JM values vary abruptly between 

parameter regions: there are parameters which exert a large influence on the mea- 

surement and others that have only a small impact (almost zero). The latter are 

considered to be "unimportant" since they cannot convey any significant informa- 

tion about the subsurface to that particular measurement, and therefore they cannot 

be well-resolved by this measurement - even a very large change in the resistivity of 

that parameter will have a negligible effect on the measurement. 
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Based on this observation, an overall evaluation of a data set with respect to the 

parameters of the subsurface can be made. For a particular set of data and param- 

eters the Jacobian matrix is calculated. If there is a column (say j) of the Jacobian 

matrix which has considerably small sensitivity values then the particular data set 

cannot resolve the j parameter. 

This procedure can be used to design an optimum resistivity survey for a particular 

site. In practical terms, when surveying, the basic characteristics of the possible 

targets (approximate depth/size) as well as the area of interest are often known 

a priori, so that the subsurface can be parametrized accordingly. Subsequently, 

by a trial and error Jacobian testing the measured data set can be designed so 

than there are no "unimportant" parameters. On the other hand, if the measured 

data have already been obtained, the technique can be used to achieve an optimum 

parametrization of the area of interest. 

To give an example, in Figure 4.6a the parametrization corresponding to a dipole- 

dipole data set with n=4 can be seen. The resultant Jacobian matrix was obtained 

and the "post-map" of the absolute value of its elements can be seen in Figure 4.6b. 

It can be seen that there are no unimportant parameters for this example. 

In order to check the conditioning of the resultant Jacobian matrix its eigenvalues 

were obtained using the Singular Value Decomposition (SVD) technique (Press et 

al, 1987) 4. The eigenvalues of the matrix can be shown in Figure 4.7. The condi- 

tion number of the matrix (the ratio between the largest and smallest eigenvalues) 

was found to be 1000, and indication that the matrix is ill conditioned. The ill- 

conditioning of the Jacobian matrix is unavoidable for resistivity inversion. In a 
following chapter it will be explained how ill-conditioning is related to the physics 

of the problem as well as to the accuracy of the observations. 
4Using the SVD technique (Lanczos, 1960) a matrix A can be decomposed into three matrices: 

A=U W V, where U and V are orthogonal matrices and W is a diagonal matrix which contains 

the eigenvalues of A. Further applications of the technique are presented in a following chapter. 
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Figure 4.7: The eigenvalues of the Jacobian matrix. 

4.5 Chapter Overview 

In this chapter the general principles of the resistivity inversion problem have been 

described. There are several factors that can render 2-D inversion inaccurate: the 

ill-conditioned nature of the problem, data inaccuracies, the discrete nature of the 

measurements and parameters, and the 2-D assumption for the variations in the 

resistivity distribution. 

Despite these problems the inversion procedure is absolutely worthwhile, since it is 

the only way to get additional information from the data. The known resistivity 

inversion schemes can be separated into two categories: accurate inversion schemes 

which treat the problem as fully non-linear, and approximate inversion schemes, 

which seek to solve the inverse problem by assuming that it is linear. The general 

concepts of those categories were explained. Furthermore, it was shown that an 

important factor within the inversion procedure is the Jacobian matrix. 

In the second part of this chapter a detailed description of three techniques for cal- 
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culating the Jacobian matrix within the FEM context was given. The equations for 

applying these techniques were developed explicitly. The adjoint equation technique 

was found to be accurate and quite economical in computing time. 

The adjoint equation technique was then used to calculate the sensitivity response 

of common resistivity arrays. The results indicate that the Jacobian matrix can be 

used to get a qualitative analysis of the response of the arrays over known targets. It 

was shown that unusual apparent resistivity responses can be explained adequately. 

Finally, the use of the Jacobian matrix as a means for designing optimum surveys 

or achieving optimum parametrization was demonstrated. 
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Chapter 5 

2-D Reconstruction of Earth 

Resistivity Data using 

Approximate Inversion Schemes 

In this chapter commonly used approximate inversion algorithms such as the pseudo- 

section, the Zhody-Barker method and the back-projection technique will be reviewed. 

Relevant medical imaging algorithms will be presented as well. The advantages and 

disadvantages of the techniques will be discussed and several examples with synthetic 

data will be presented. An explanation of why these approximate techniques are 

effective is given by means of the Jacobian matrix. 

In the second part of this chapter a generalized (iterative) back-projection algorithm 

is proposed. The need for such an algorithm derives from an analysis of the lim- 

itations of the existing approximate algorithms. The algorithm can include all of 

the presented back-projection algorithms, as well as techniques such as the pseudo- 

section and Barker's method. Further, it can reconstruct data from any array as 

well as from unconventional probe arrangements. The merits and limitations of the 

algorithm are discussed and examples of its performance with synthetic and real data 

are given. 
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5.1 A Review of Approximate Reconstruction Al- 

gorithms 

The "accurate" inversion schemes can give good quality results, but these algorithms 

are quite costly in terms of computer time and memory. An alternative strategy 

towards resistivity inversion is to use approximate schemes, which, despite their 

intrinsic theoretical weaknesses, can produce reasonably valid sectional images of 

the subsurface resistivity pattern in a fairly short time. The need for such fast 

algorithms is increased by the development of automatic measuring systems which 

can result in a huge increase in the number of recorded measurements. 

Approximate algorithms handle the inversion problem as a linear one and they serve 

as a tool for preliminary interpretation of the experimental data sets. For most 

approximate resistivity reconstruction techniques it is only physical intuition rather 

than a solid mathematical background which is used to justify why they do work. 

Furthermore, it is quite possible to produce results which can lead to erroneous 

interpretations, and hence a thorough study of their properties and limitations is 

needed. 

In this section several approximate algorithms from the geophysical field will be 

reviewed, but first a brief description of related medical algorithms is presented. 
This is necessary because most of the recent geophysical back-projection techniques 

are based on medical back-projection algorithms. 

Tested models 
Most of the techniques presented in this section were tested using a series of synthetic 

data sets. Four of the models which were used to produce the synthetic data are 
depicted in Figure 5.1. We will be referring to those models as Model 1 (one resistive 

prism), Model 2 (vertical discontinuity), Model 3 (two resistive prisms), Model 4 

(conductive layers and a resistive prism). 
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Figure 5.1: The synthetic models used in this section: a) Model 1 (one resistive 

prism), b) Model 2 (vertical discontinuity), c) Model 3 (two resistive prisms), d) 

Model 3 (conductive layers and resistive prism). 
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5.1.1 Inversion Algorithms from the Medical Field 

In this section algorithms from the medical imaging field and, in particular, from 

a recent technique called applied potential tomography (APT) (Barber and Brown, 

1984) will be discussed. Just an overview of these algorithms will be presented here 

since a more detailed analysis of their features will be given within the geophysical 

context. 

APT is a noninvasive medical imaging technique which tries to reconstruct the 

image of the resistivity distribution of parts of the human body (i. e. Eyuboglu et 

al. 1989). Recently, it has also been used to monitor fluid flow within industrial 

pipes (i. e. Wang et al. 1994). Despite the fundamental differences between APT 

and the earth-resistivity technique, it is believed that it is worthwhile examining the 

applicability of the APT algorithms to earth-resistivity data sets for the following 

reasons: 

" Both techniques are trying to reconstruct the resistivity "image" of a region 

based on a large number of boundary measurements. 

" Despite the similarity of the reconstruction problem, the two research fields 

have been developing independently. Due to this fact, APT algorithms are 

based on reconstruction schemes developed for medical tomography (x-ray 

tomography) and not for geophysical problems. These algorithms are little 

known in geophysics and so the study of their applicability for earth resistivity 

data sets is likely to be quite interesting. 

One of the methods widely used in APT is the back-projection (BP) method (Gor- 

don et al., 1985), which originates within the field of x-ray tomography. In x-ray 

tomography the area of interest is encircled by a series of transmitters and receivers: 

the transmitters emit rays which are attenuated while travelling through the scanned 

area and are subsequently recorded by the receivers (see Figure 5.2). The recon- 
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struction problem can be expressed as a system of linear equations: 

LB=M (5.1) 

where L is the matrix of the unknown attenuation coefficients, B is the matrix of 

the weighting factors (which depend on the length of the intersection between each 

ray and each pixel of the scanned area), and M is the matrix which contains the 

measured ray intensities. The solution of the system by direct inversion is time- 

consuming since the B matrix is usually extremely large and ill-conditioned. One 

of the alternative strategies is the use of the back-projection (BP) technique. In the 

BP (or Summation) method the attenuation at each pixel p is obtained by summing 

the weighted measurements that correspond to the t rays that intersect that pixel 

LP = 
Et Mtp Btp 

(5.2) Et Btp 
The method is the crudest x-ray reconstruction method (Herman, 1980) and, most of 

the time, gives results which contain major artifacts. However, the iterative versions 

of BP have been mathematically proven to converge to the correct solution of the 

linear system of equation 5.1 (Herman et al., 1973). These iterative methods are 
the algebraic reconstruction technique (ART) (Gordon, 1974) and the simultaneous 
iterative reconstruction technique (SIRT) (Gilbert, 1972). In both techniques the 

estimate of L is being corrected at every iteration k. The correction is obtained 

by back-projecting the difference between the original M and the predicted M'` 

measurements. 

The only difference between the two methods is that in SIRT the corrections are 

made after the entire measurement set has been back-projected while in ART the 

corrections are made as soon as the data from only one transmitter has been back- 

projected (in other words, in APT, the model is updated as soon as possible). ART 

and SIRT have been also widely used for the inversion of borehole to borehole 

electromagnetic tomography data (Dines and Lytle, 1979; Radcliff and Balanis, 

1979). 

These methods are not limited to problems which involve only straight line paths 
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Figure 5.2: The measuring pattern in x-ray tomography. Si, S2 are the transmitters 

and R', 
..., 

R5 are the receivers (after Tarantola, 1987). 

and may be used in other multi-transmitter/receiver reconstruction problems. This 

is why they were also used in the APT reconstruction problem. Barber et al. (1983) 

first proposed a one-step algorithm based on BP between the equipotential curves. 

The first version was a simple (unweighed) BP, while in later versions the weighted 

logarithmic ratio between the measured and calculated values was back-projected 

(Barber and Brown, 1987). Ider et al. (1990) suggested an iterative SIRT-type 

algorithm restricting the reconstruction between the equipotential curves. 

Kim et al. (1983) presented an iterative ART-type algorithm which limited the BP 

between the current paths which end at the measuring probes. The weighting factors 

he used were calculated by the perturbation technique. In a later work (Kim and 

Woo, 1987) he suggested a weighting factor which varies linearly with the distance 

from the current probe. Yorkey et al. (1987a, b) modified Kim's scheme by using a 

SIRT-type algorithm. Furthermore he did not constraint the reconstruction between 

the current paths. 

Tarassenko and Rolfe (1984) suggested a back-projection algorithm which made use 

of the perturbation matrix. This one-iteration scheme back-projects the weighted 
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ratio of the measured to the predicted voltage measurements. The reconstruction is 

constrained by using only the larger entries of the perturbation matrix (which act 

as the weighting factor), setting the remaining entries to zero. 

Korte (1989) proposed a similar back-projection scheme which made use of the entire 

perturbation matrix. In a later version of the algorithm Korte (1993) showed the 

importance of the weighting in such a reconstruction and suggested that filtering 

techniques can be used to improve the quality of the resultant image. As suggested 

by Artola (1994) most back-projection techniques (at least those which are not 
iterative) can only give an indication about the possible position of inhomogeneities, 

and not accurate property values. 

5.1.2 The Pseudosection technique 

The pseudosection technique is not only the most common way to present a set of 

combined sounding profiling resistivity data but also the most common technique 
for interpreting that data - despite known deficiencies in such a simplistic approach. 

As explained in section 2.3.3, a sectional image of the earth is produced by pro- 
jecting the apparent resistivity measurements to a point below the centre of the 

corresponding electrode array at a depth which is related to the probe separation. 

It is obvious that three main assumptions are being made: 

1. The measured apparent resistivities are received as if in direct correspondence to 

the subsurface resistivities. Although it is obvious that in this way the correct 

resistivity values cannot be recovered, it is hoped that the apparent resistivity 

values will produce an image which will give some degree of information of 

about the qualitative distribution of the resistivity. 

2. As far as the lateral resistivity variation is concerned, each individual measure- 

ment is assumed to give information only about the central point of the a 

region below the corresponding electrode arrangement. 
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3. As far as the vertical resistivity variation is concerned, each individual measure- 

ment is assumed to correspond to a point which has a depth that is defined by 

the intersection of two 45° lines which begin from two points of the electrode 

arrangements. These points are the centres of the current (A-B) and potential 

(M-N) dipoles for the dipole-dipole array, the points at the mid-distance be- 

tween A, M and N, B electrodes for the Wenner array, the points of the A and 

M electrodes for the pole-pole array and the point of the current electrode A 

and the centre of the potential dipole (M-N) for the dipole-dipole array. 

It is clear that the basic assumptions of the pseudosection technique are quite crude. 

First of all, the assumption that there is a direct link between the earth resistivity 

and the apparent resistivity neglects the fact (discussed in Section 4.4) that every 

array has areas of negative sensitivity. In a pseudosection all apparent resistivity 

high/low will show up as highs/lows subsurface resistivity, but it is known that 

due to (negative sensitivity) a low apparent resistivity measurement can be due to a 

resistive body and vice-versa. On the other hand, for most arrays the low sensitivity 

area is quite restricted so, however crude this assumption is, in a broad sense valid 

for a wide range of resistivity distributions and probe arrangements. 

The second assumption, that of the lateral positioning of the anomaly below the 

centre of the array, is rather approximate, since it has been established that a fairly 

larger area (which also extends either side of the array) affects a measurement sig- 

nificantly. This assumption can still produce a reasonable approximation of the 

lateral distribution of resistivity for those arrays which exhibit high positive sensi- 

tivity directly under the centre of the array- namely Wenner and pole-pole. For the 

dipole-dipole and pole-dipole arrays this assumption is less true since they exhibit 

their highest sensitivity just under the potential and current electrodes. For large n 

separations (the current and potential electrodes are far apart) the representation of 

the measurement as below the centre of the array can be quite misleading (examples 

will be shown later). 
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Finally, the depth positioning of the anomaly is an arbitrary assumption since it lacks 

any detailed physical reasoning. This is why pseudosections are usually presented 

as having a depth scale which is a function of the n separation and not an absolute 

depth. 

In Figure 5.3 an example of the pseudosections produced for a resistive prism (Model 

1) is shown for different resistivity arrays. The data are presented in a grey scale con- 

tour image and the exact location of the prism is outlined within each pseudosection. 

Note that the traditional pseudosection depth scale is used. The results indicate the 

described weaknesses of pseudosection. Low apparent resistivity anomalies show up 

as low resistivity areas even though no such areas exist. Considering more closely 

the lateral and vertical positioning of the prism within the pseudosections the image 

for the Wenner and pole-pole arrays is quite satisfactory, but this is not the case for 

the remaining two arrays. 

The dipole-dipole pseudosection produces a hyperbola-like high resistivity area which 

is clearly quite misleading. It is worthwhile explaining in detail why this dipole- 

dipole pseudosection image is produced. It has been established that the array ex- 

hibits a high sensitivity area in the region below the current and potential dipoles. 

When the potential dipole 1 is over the resistive body a high measurement is 

recorded. This measurement will however, be attributed to a location below the 

centre of the array as the distance between the centre of the array and the dipole 

is increased (as the n separation is increased) the anomaly will be increasingly mis- 

placed. This generates the left branch of the hyperbola-like anomaly. Similarly the 

right branch of the hyperbola is created when the current dipole is over the body. It 

is quite clear that in the case of even slightly complicated subsurface resistivity dis- 

tribution, the dipole-dipole pseudosection can be complicated and quite misleading. 

Such an example (Model 3-two resistive prisms) is shown in Figure 5.4a. 

The pseudosection for the pole-dipole anomaly can be explained by taking into 

'The measuring direction is from left to right and the potential dipole is placed on the right of 

the current dipole. 
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Figure 5.3: Pseudosection results corresponding to Model 1 for various arrays: a) 

Wenner, b) dipole-dipole, c) pole-dipole, d) pole-pole. 
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account the particular sensitivity pattern of the array: a generally asymmetrical 

sensitivity distribution with quite a high sensitivity below the potential dipole and 

the current probe. The asymmetrical pseudosection image of the pole-dipole array 

is quite difficult to interpret. 

Edwards (1977) discussed the unrealistic pseudosection depth scale and suggested a 

modified pseudosection depth scale for the dipole-dipole array which is based on a 

set of empirically derived depth coefficients. These coefficients are consistent with 

the idea of the Depth of Investigation Characteristic (DIC) 2. Based on that obser- 

vation, he used the DIC to produce depth coefficients for a variety of arrays. Some 

of the depth coefficients which he proposed can be seen in Table 5.1. His modified 

pseudosection has two advantages when compared to the traditional pseudosection: 

1. The pseudosection depth scale is more realistic. 

2. The proposed scheme can incorporate arrays with different inter-electrode spac- 

ings since he also produced depth coefficients which are independent of the inter- 

electrode spacing (a) but dependent on the overall array length (L) (as can be seen 

in Table 5.1). An example of the Edward's modified pseudosection for the Wenner 

data set of Model 1 is shown in Figure 5.4b. 

We have demonstrated the inherent limitations of the pseudosection. Additionally, 

it has to be stressed that the pseudosection cannot be used for reconstructing data 

from new, unconventional arrays (i. e. arrays without internal symmetry). This is 

quite significant for data derived from borehole-to-surface and borehole-to-borehole 

data. 

It is clear that the use of a pseudosection with dipole-dipole and pole-dipole data 

sets produces quite misleading results. Its use with Wenner and pole-pole data is 

safer but there are still situations for which the results are misleading. Such an 

example for the Wenner array and for the case of an elongated prism can be seen in 

Figure 5.4c - the pseudosection gives the impression of two resistive prisms. 
2The concept of DIC and the results suggested by Edwards (1977) are fully explained in section 

2.2.3. 
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n Wenner Dipole-dipole Pole-dipole Pole-pole 

separation d/a d/L d/a d/L d/a d/L d/a d/L 

1 0.519 0.173 0.416 0.139 0.519 - 0.867 - 
2 0.519 0.173 0.697 0.174 0.915 - 0.867 - 
3 0.519 0.173 0.962 0.192 1.293 - 0.867 - 
4 0.519 0.173 1.220 0.203 1.658 - 0.867 - 
5 0.519 0.173 1.467 0.211 2.013 - 0.867 - 
6 0.519 0.173 1.730 0.216 2.478 - 0.867 - 

d=depth, a=inter-electrode spacing, L=external probe distance 

Table 5.1: Depth of investigation of resistivity arrays as a function of the n separation 
(after Edwards, 1977). 

Because of its simplicity the pseudosection is widely used for initial data interpre- 

tation and in many cases is the only tool used for interpreting the data. The user 

however must be quite careful/experienced in order to avoid erroneous interpreta- 

tions. 

5.1.3 User - forward modelling interactive technique 

This technique is effectively a manual trial and error procedure: the operator tries 

different sets of parameters and resistivity distributions within the forward mod- 

elling framework until a structure which will produce an acceptable fit between the 

observed and calculated data is found. It has been used extensively (Wright et al., 
1985; Stretenovic and Marcetic, 1992) at a period when limited computing power 

did not allow the routine usage of fully automated interpretation schemes. The 

technique has several limitations: 

1. The method is based heavily on the operator's expertise. The operator has to 

guess the possible structures from the original data and then try to verify 

these guesses. For complicated structures it is quite unlikely that this will be 
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successful. Additionally, the technique is subject to biased implementation. 

2. Since the technique is manual there are a limited number of parameter/property 

combinations that the operator can try. Hence, it is quite difficult to obtain 

small RMS errors and there is no guarantee that an optimum fit is achieved. 

3. Most importantly, the technique cannot take advantage of high resolution data 

sets (such as these produced by new automated measuring systems) since it is 

impossible to handle manually a large number of parameters. Therefore, only 

a rough/crude idea of the subsurface resistivity distribution is obtained. 

On the other hand, the technique is quite easy to implement and, if used properly, it 

can produce a useful initial/general subsurface resistivity image. In this way it can 

help to create an acceptable parameter set for subsequent use with fully automated 

interpretation schemes. 

5.1.4 The Zhody-Barker technique 

Barker (1992) modified an algorithm suggested by Zhody (1989) for 1-D resistiv- 

ity data and developed an scheme which is effectively an iterative pseudosection 
technique. 

Barker used the finite difference forward modelling scheme proposed by Dey and 

Morrison (1979a) as a base of his iterative technique. He generated a set of par 

rameters consistent with the pseudosection by considering each pseudosection point 

as the centre of a parameter region. He used the DIC concept to define the depth 

of each pseudosection point (and thus the depth of each parameter centre). The 

limits of each parameter were then found by linear interpolation. Note that in 

this way there is a one-to-one correspondence between a parameter region and a 

measurement. By assuming that each measurement is directly affected by only its 

corresponding parameter the iterative procedure is as follows: 
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" The initial pseudosection image is used to produce a starting resistivity dis- 

tribution for the first iteration. This is used to calculate the forward response 

(using the FD scheme) 

" At the k+1 iteration the resistivity estimate of the ith parameter is corrected 
by the ratio of the observed to the calculated measurement which corresponds 
to this parameter. 

k+l k 
Di 

Al =Adk (5.3) 

where pý is the resistivity of the ith parameter for the kth iteration, Dz is the 

ith observed measurement and di is the ith calculated measurement. 

" the procedure ends when there is no considerable improvement in the RMS 

error between the observed and modelled data or when divergence (increase of 

the RMS error) occurs. 

Barker showed results both from synthetic and real data but he restricted his work 

only to Wenner data sets. To improve the convergence behaviour of the algorithm 
for noisy data he also suggested prior filtering of the measurements. A similar 

procedure was followed by Dahlin (1993). The main improvement of the method 

with respect to the pseudosection technique is that the reconstructed image depicts 

the subsurface resistivity and not apparent resistivities - this is due to its iterative 

nature. 

On the other hand, since the technique uses the pseudosection principles it still 

suffers from all of the limitations and disadvantages of the pseudosection technique 

(described in the previous subsection). The technique theoretically should perform 

satisfactorily in cases where the pseudosection works, but will produce artifacts in 

cases where the pseudosection does not work. 

We performed several reconstructions using the Zhody-Barker method in order to 

verify this in practice. The FEM forward model was used as the basis of the recon- 

struction algorithm and we followed the parametrization suggested by Barker (1992). 
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The results are depicted in Figure 5.5. For the case of Model 1 the pseudosection 

image for the Wenner array (Figure 5.4b) is quite satisfactory (good delineation of 

the borders of the prism). In this case the results of Barker's method, shown in 

Figure 5.5a are satisfactory as well. The method took 6 iterations and produced an 

RMS error of 3%. But, for the case of the elongated prism (Figure 5.4c) Barker's 

method, as was expected, did not perform satisfactorily (see Figure 5.5b) - the re- 

construction of the Wenner data produces two large anomalies which give the wrong 

impression of two prisms. In this case the algorithm diverged after 5 iterations. 

Moreover, by following an equivalent parametrization scheme for the dipole-dipole 

array we were able to test Barker's method for other arrays apart from Wenner. 

The results for the reconstruction of the Model 1 for the dipole-dipole data set are 

shown in Figure 5.5c and it is clear that the reconstruction does suffer from similar 

artifacts to those produced by the pseudosection approach. Disappointing results 

were obtained from the reconstruction of the dipole-dipole data for Model 3 (two 

resistive prisms) depicted in Figure 5.5d. In this case the algorithm diverged after 

2 iterations. 

The tests indicated that the technique has no self-correcting mechanisms as far as 

the location of the target distribution is concerned. Further, the technique cannot 

cope with unconventional arrays. An additional problem with Barker's method is 

that the method cannot cope with data sets that have missing data points. If there 

is a missing data point 3 since there is a one-to-one mapping between a measurement 

and a parameter, there will be a parameter which cannot have a resistivity value. 

But the forward modelling scheme requires values for all parameters in order to 

operate. 
3This is quite common when surveying. Due to natural or man made obstacles there might be 

positions where a probe cannot be inserted this will result in missing many measurements. For 

example a Wenner profile for 20 probes (n=1) results in 17 measurements. If an intermediate probe 

cannot be inserted (19 probes in total) then only 13 measurements can be taken. 
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5.1.5 The Bristow technique 

Another approximate reconstruction technique was proposed by Bristow (1966). 

The method is used only for pole-dipole data and has been used extensively used for 

locating cavities (Smith, 1986). The pole-dipole measuring scheme used is somewhat 

different from the typical combined sounding profiling procedure since it involves, all 

the possible pole-dipole measurements that can be measured (see Figure 5.6a). 

In this method, measurements with identical probe spacings form a profile within 

which regions of anomalous resistivity are located. Using the current electrode 

positions as centres, arcs enclosing the resistivity anomalies are constructed. The 

intersections of the arcs define the source of the anomaly. These arcs are actually the 

equipotential lines (for homogeneous ground) that end on the edges of the area of 

the high anomaly (see Figure 5.6b). An example of how the reconstruction operates 

is shown in Figure 5.6c. 

However, the method is quite crude for the following reasons: the target location 

procedure is conducted graphically and therefore no indication of the amplitude of 

the anomaly can be incorporated. In this way a significant amount of information 

is lost and, furthermore, misinterpretations may occur. Moreover the graphical lo- 

cation of the anomalies renders the method subject to inaccuracies. That is why 

Bristow's method was mostly used for locating resistivity anomalies rather than for 

imaging the electrical properties of the subsurface. On the other hand, the tech- 

nique is quite simple and has produced successful results in many cases and recent 

studies (Lowry and Shive, 1990) claim that the technique can be used successfully 

to delineate the shape of the target as well. 

As suggested by Lowry and Shive (1990), The technique has been criticised for be- 

ing based on faulty assumptions and at first sight this seems to be reasonable since 

the introduction of the arcs/equipotential lines enclosing the high anomalous area is 

quite arbitrary and lacks physical reasoning. However this is not the case: the tech- 

nique has a physical reasoning which is not directly related to the arc/equipotential 
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lines but to the sensitivity of the points that lie between the arcs/equipotential lines. 

In Figure 5.6b it can be seen that for a pole-dipole measurement the equipotential 
lines enclose the area for which the sensitivity is quite high. 

If a high measurement is observed for this arrangement then this should be due to a 
feature within the high sensitivity region (enclosed by the arcs) and thus the anomaly 

should be (roughly) located there; consequently the graphical summation of these 

"anomalous regions" will tend to reveal the surveyed feature. In other words, the 

technique works for the pole-dipole array simply because a great part of the high 

sensitivity region of the array is coincidentally located between the equipotential 

lines. It is a coincidence since there is no physical reason for the equipotentials to 

enclose the high sensitivity region. 

As will be shown in the next section Bristow's method is nothing but a simple 

graphical back-projection. The fact that the region between the equipotential lines 

also includes an area which is less sensitive (see Figure 5.6b) suggest that if the 

technique is used for full imaging it will produce undesirable artifacts. 

5.1.6 Back-projection techniques 

In this part the back-projection techniques proposed for the approximate recon- 

struction of surface resistivity data set will be reviewed. The physical meaning of 

the back-projection was mentioned when discussing the Bristow method: the basic 

idea is to project each individual measurement to an area which exhibits the maxi- 

mum sensitivity. For every measurement a subsurface "image" is created. The final 

reconstruction "image" is the summation of these elementary "images". 

The back-projection technique for surface linear arrays was first used by Powell et 

al. (1987) who modified the algorithm of Barber et al. (1983). The technique uses 

a measuring technique similar to the dipole-dipole continuous sounding profiling 

scheme. The reconstruction is a simple BP constrained between the area of the 
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Figure 5.7: Equipotential lines and associated sensitivity for the dipole-dipole array. 

equipotential curves which end at the potential dipole. The resistivity pi of each 

block i is given by the following formula: 

m 

Pi = Pj Vo bij (5.4) 

where V j' is the ith measurement for homogeneous ground of resistivity pjO, Vm is the 

observed ith measurement, and 5ij is 1 if the centre of the jth parameter is between 

the equipotential lines which end at the potential electrodes of the ith measurement 

otherwise is 0. 

Powell et al. (1987) presented successful model reconstructions which indicate the 

potential of the method for linear earth-resistivity arrays. Although the method is 

fully computerized it is quite clear that is not very much different to the Bristow's 

method. The area between the equipotential lines (calculated for a homogeneous 

earth) that end at the potential electrodes, for the dipole-dipole array is the area of 

the highest sensitivity, as can be seen in Figure 5.7. 

Noel and Xu (1991) and Noel (1992) presented a modified version of the BP algo- 

rithm by introducing a weighting factor which is actually an estimate of the sensitiv- 

ity matrix calculated analytically. The measuring scheme that Noel followed is not 

a conventional one since it involves all of the possible independent measurements 

that can be obtained when a series of probes is used (Xu and Noel, 1991). However, 

this scheme does not, in fact, turn out to be much different from the classical dipole- 

dipole measuring scheme. The one-step algorithm assumes an initial homogeneous 

resistivity distribution and back-projects the weighted ratio of the measured to cal- 
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culated (for homogeneous earth) potential to the area between the equipotential 

curves using a formula very similar to equation 5.4. 

Pý = poI. 
i(Vm/Vo) 

Wi7ýji7 
(5.5) 'E Wii 

the extra term Waj is the Jacobian matrix entry for the ith measurement and jth 

block. Weighting the back-projection using the Jacobian matrix results in taking 

into account the quantitative contribution of each parameter to the measurement. 

On the other hand, the weighting implies a direct linear relationship between the 

measurement and the Jacobian matrix, which is not true. 

Since both the homogeneous potentials and the sensitivity matrix are calculated 

using the analytical solution of Laplace's equation (see equation 2.30) the algorithm 

cannot be iterative. 

Noel presented several results for synthetic and real data. He observed that at the 

side edges of the subsurface image the quality of the reconstruction is quite poor 

and he suggested reconstructing only the central region of the area of interest. The 

reconstructions are better than the respective pseudosections but still suffer from 

artifacts (Tsourlos, 1992). 

We applied the technique to a series of models but we faced a problem when we 

tried to reconstruct dipole-dipole data sets: the region between the equipotential 

lines is asymmetrical (it is larger in the region near the potential probes) but the 

sensitivity for the dipole-dipole is symmetrical (see Figure 4.4c). This resulted in an 

asymmetrical reconstructed image. This problem was tackled by also including into 

the reconstruction the reciprocal measurement (see Section 2.1.6) for each data-point 

(which is, by definition, identical to the original one). 

In Figure 5.8a, b reconstruction examples of dipole-dipole data sets for a resistive 

prism and a vertical discontinuity can be seen. It is clear that the prisms still produce 

a hyperbola-like image, although not as pronounced as that of the pseudosection. 

One of the disadvantages of the methods that constrain the BP between equipoten- 
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Figure 5.8: Example using Noel's method: a) reconstruction of a resistive prism 

(dipole-dipole data), b) reconstruction of a vertical discontinuity model (dipole- 

dipole data). The limits of the models are outlined within the image. The resistivity 

of the models is 100 Ohm-m and the background is 10 Ohm-m [The calculations 

were performed by the author]. 

tial lines (such as Noel's method) is that no data from arrays such as Wenner or 

pole-pole can be reconstructed. Especially for the pole-pole array, the equipotential 

line constraint is meaningless. 

Shima (1992) used a BP algorithm to reconstruct crossborehole-to-surface data sets. 

He used a one-step back-projection formula which is identical to the one described 

by equation 5.5 but he did not apply any constraint to the BP: he used the entire 

Jacobian matrix (both positive and negative values). The synthetic results which 

he presented were quite satisfactory and no major artifacts appeared. The only 

problem which he mentioned was that the introduction of the negative sensitivity 

matrix entries into the BP caused irregularities in the resistivity distribution at the 

corners of the reconstruction when the size of the parameters was too small. 
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We tried unsuccessfully to apply Shima's algorithm to surface resistivity data sets. 
Although the reconstructed image was quite close to the original structure, invalid 

negative resistivities were produced for those parameters which are located at the top 

of the reconstructed area - this did not change when the size of these parameters was 

increased. This irregularity can be explained by the very large values of the Jacobian 

matrix which are associated with these parameters. Because of the approximate 

nature of the technique, these large Jacobian values will exaggerate the resistivity 

correction for the top layer parameters and will produce "unreasonable" results. In 

the next section it will be shown that by excluding some of the Jacobian matrix 

values from the back-projection the procedure can be stabilized. 

5.1.7 Other techniques 

Beard and Morgan (1991) suggested the use of 1-D inversion techniques applied to 

2-D structures. The idea is based on the fact that every combined sounding profil- 

ing measuring scheme can be viewed as a series of continuous individual soundings 

(see Section 2.3.1). By performing a 1-D interpretation of each individual sounding 

a series of adjacent resistivity columns is obtained. Simple interpolation can then 

produce a "pseudo-2-D image" of the earth. Their results indicate that the tech- 

nique is successful in delineating the top and bottom edges of 2-D structures but, 

as expected, failed to give satisfactory results for the sides of the structures. Dahlin 

(1993) used this technique extensively to reconstruct Wenner CSP data. He ob- 

served that the technique can be sensitive to noise, so he suggested a procedure for 

producing smoothed results. He concluded that the technique is extremely fast and 

can produce valid results for layered-like structures however the user should bear in 

mind that the interpretation is strictly 1-D and thus the technique was inaccurate 

in locating the lateral extension of 2-D targets. 

Li and Oldenburg (1991) presented an approximate fast inverse algorithm based on 

linear programming. A Born approximation was used as the forward modelling tech- 
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nique and hence the suggested reconstruction reduced to a one-step matrix inversion 

procedure (at least for the 2-D model he presented). The presented modelled data 

reconstructions were particularly good. A similar algorithm has been presented by 

Xu (1993). The algorithm was fast and produced reasonably good results for simple 

structures. However, its ability is limited by the lack of resolution when the resistiv- 

ity contrasts are high (Xu, 1993) which is a consequence of the Born approximation. 

Finally, Hobbs and Reading (1994) presented a 2-D mapping technique which takes 

advantage of the sensitivity variation of the Wenner array [Offset Wenner, (Barker, 

1981)] and used it to locate conductive zones associated with faults. By its nature 

this technique has a limited applicability to this particular type of structure. 

5.1.8 Conclusions 

In this section widely used techniques for the approximate reconstruction of earth- 

resistivity data have been reviewed. The conclusions of this study can be summa- 

rized as follows: 

The pseudosection technique is based on crude assumptions but it is simple in its 

implementation. It produced results which, in most cases, suffer from major arti- 

facts which are associated with the varying sensitivity of the arrays. For arrays such 

as Wenner and pole-pole (which have high positive sensitivities below their central 

region) the pseudosection working more satisfactorily. But, for more complicated 

structures as well as for arrays such as the dipole-dipole and pole-dipole it pro- 

duces misleading results. Further, the technique cannot cope with unconventional 

measuring schemes (i. e. full tomographic data sets). 

The associated Barker's method suffers from the same limitations. Despite its itera- 

tive character it has no self-correcting mechanism for adjusting the lateral resistivity 
distribution. It is able to produce reliable reconstructions (both in qualitative and 

quantitative fashion) only when the pseudosection assumptions are valid. 
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The user-forward modelling interactive technique is based heavily on the operator's 

expertise and is subject to biased implementation. Further, it cannot cope with the 

increased amount of data produced by automated measuring systems. 

The simple back-projection algorithms (such as Bristow's method and Powell's 

method) are quite crude but easily applicable since there is no need to calculate 

the Jacobian matrix. The equipotential constraint however can be applied to a lim- 

ited number of arrays. When it works it guarantees that BP will take place at the 

most sensitive regions of the subsurface. The associated Noel's method is more so- 

phisticated (it makes use of the Jacobian matrix) but still suffers from reconstruction 

associated artifacts. 

Overall, in this section the major importance of the Jacobian matrix within the 

approximate reconstruction procedure was demonstrated. The sensitivity pattern of 

the various probe arrangements can explain the limitations of the various techniques 

and most importantly can give a physical insight into why these techniques work. 

Based on these observations a more general approximate technique can be proposed 

as it will be shown in the next section. 

5.2 A Generalized Iterative Back-projection Al- 

gorithm 

In this section a generalized back-projection algorithm for reconstructing earth- 

resistivity data is presented. The need for such an algorithm derives from an analysis 

of the limitations of the existing approximate algorithms. 

The presented algorithm is characterized as general for several reasons. 

a) It can include all of the presented BP algorithms (the methods of Bris- 

tow, Powell, Noel, and Shima) as well as techniques such as the pseudosection and 

Barker's method. 
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b) It can be iterative and, in this way, can produce a quantitative "image" of 

the subsurface resistivity. 

c) It can reconstruct data from any array as well as from unconventional probe 

arrangements and full tomographic data. Further, it can reconstruct incomplete 

data. 

This is achieved by recognizing the major importance of the Jacobian matrix within 

the approximate reconstruction procedure. Therefore, the constraints within the 

reconstruction are defined in relation to the JM and not as arbitrary expressions 

(e. g. equipotential lines constraint). 

5.2.1 The algorithm 

The proposed iterative technique seeks to obtain an estimate of the subsurface re- 

sistivity distribution for which the predicted measurement values (obtained by the 

solution of the forward problem) are as close as possible to the measured data. 

In order to achieve this, an initial resistivity distribution is assumed (usually uni- 

form) and by using the forward modelling technique, the modelled measurements 

that correspond to this distribution are obtained. These modelled measurements are 

compared with the original data and the weighted differences are back-projected in 

order to obtain a correction to the resistivity estimate. This correction is added to 

the current resistivity distribution and the procedure is repeated until the difference 

between the measured and the modelled data satisfies a stopping criterion. 

Let the M measured data values obtained by using a tomographic measuring scheme 

be represented by a vector D where DT = {Dl, D2, 
... DM}, and let d be the vector 

which represents the modelled data, dT = {dl, d2i 
... dM}. The N subsurface blocks 

that are allowed to vary their resistivity independently (the unknown parameters of 

the problem) are represented by a vector x with xT = {x1, x2i ..., xN}. The iterative 

procedure can be defined as: 
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1. xk is the resistivity estimate at the kth iteration; 

2. Calculate the modelled data set d' that corresponds to this resistivity distribution 

by using the FEM; 

3. Find the new resistivity vector xk: the new resistivity estimate at every block j 

will be 

xk+l _ 

(D2/di) W 
ýk 5.6 

i=l 
7Mk7) 

W=i 
s=1 

where Wig is the weighting factor, which for our case is the Jacobian matrix entry 

for the kth iteration which corresponds to block j and measurement i. 

4. Repeat until the RMS between the measured and modelled data is practically 

stable (i. e. less than 1% improvement), or divergence occurs, or if a preset number 

of iterations has been reached. 

This procedure has similarities to the simultaneous iterative reconstruction tech- 

nique (SIRT) in the sense that the resistivity corrections are taking place after the 

entire data set has been back-projected. Equation 5.6 describes the back-projection 

procedure. The final correction factor for each block is the sum of the weighted 

ratios between the observed and the modelled data. The updated resistivity esti- 

mate is obtained after multiplying the correction factor with the current resistivity 

estimate and in that sense this procedure can be described as a multiplicative back- 

projection. It will be shown that by choosing appropriately the weighting factors 

and constraints in equation 5.6 a wide variety of techniques can be described. 

Alternatively, iterative additive back-projection can also be used for the resistivity 

reconstruction problem (e. g. Tsourlos et al. 1993) with similar results. In such a 

case the corrected resistivity is given by: 

M 
E (Di-dik) Wj 

xk+l = xk + +=1 
M (5.7) 
EW 
ý_1 
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Figure 5.9: A comparison between the equipotential line and the generalized con- 

straint. 

Equation 5.6 can be very easily modified in order to become an ART-type algorithm: 

the only difference is that the correction takes place after only one set of measure- 

ments (the set that contains measurements which have identical current probes) is 

back-projected. However, tests with such an algorithm were not successful since the 

procedure was very sensitive to noise (Tsourlos, 1992). 

The weighting factor can play a significant role in the BP procedure since each sub- 

surface parameter contributes to each individual surface measurement to a different 

extent. By using parts of the JM as a weighting factor this varying sensitivity of 

the parameters towards the measurements is reflected to the reconstruction. In this 

scheme the Jacobian matrix was calculated using the adjoint equation approach. 
Since in every iteration the resistivity distribution changes it follows that the Ja- 

cobian matrix changes as well. Therefore, the Jacobian matrix is updated in every 

iteration. 

5.2.2 Constraining Back-Projection 

It has been explained that for linear resistivity arrays the use of the entire JM within 

the BP procedure can result in negative subsurface resistivities (see section 5.1.6). 

In order to tackle this problem it is common to apply some constraints and to use 

only parts of the Jacobian matrix. Instead of using arbitrary constraints such as 

those of the equipotential lines, we suggest the use of a constraint which is directly 
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related to values of the Jacobian matrix. Taking into account the direct link between 

the JM and the BP procedure, such a constraint allows the application of the BP 

for any type of resistivity data. 

If a threshold value t is defined, the weighting factor Wi3 of equation 5.6 is given by 

I J3 ifJi; >t 
Wij 

0 otherwise 

This threshold value can be decided after several tests. In particular, model tests 

were carried out in order to find the optimum value which is the highest possible 

one that does not affect the produced image. For most arrays the value t=0 (which 

excludes all the negative sensitivity entries) was a valid choice. 

In Figure 5.9 a comparison between this constraint and the equipotential line con- 

straint for the dipole-dipole data can be seen. It is clear that this proposed threshold 

allow a larger part of the sensitivity matrix to participate in the reconstruction, and 

that the equipotential constraint is an overally high threshold. 

As it was already stated, the scheme described by equation 5.6 can be used to de- 

scribe a variety of techniques. In particular, one iteration of the described algorithm 

is equivalent to Noel's method if the weighting factors are changed. If Q is the area 

between the equipotential curves which end at the measuring probes the weighting 

factor will be 

W; j = 
Jtj if the centre of the parameter jEQ 

(5.9) 
0 otherwise 

Note that in such a case an iterative equipotential constraint procedure can also be 

defined (i. e. Yorkey (1986)). Similarly, one iteration of the scheme is equivalent to 

Powell's and Bristow methods if the following constraint is used: 

1 if the centre of the parameter jEQ 
Wig 

0 otherwise 

Finally, the pseudosection procedure can be defined in similar way: if P is the 
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pseudosection projection point one iteration of the scheme is equivalent to the pseu- 

dosection if the following constraint is used: 

1 if the centre of the parameter j=P 
Wz; 

0 otherwise 

The iterative scheme using that constraint is Barker's method. Rom this it is quite 

clear that the pseudosection method is effectively a crude back-projection procedure. 

5.2.3 Reconstruction examples and discussion 

A computer program was written in order to enable the automatic reconstruction 

of surface resistivity data. The FEM was used as to calculate the forward model 

response and the Jacobian matrix was calculated using the adjoint equation tech- 

nique (section 4.3.2). The size of each parameter region was set to be a square with 

a side of half the inter-electrode spacing. The number of parameters in each layer is 

symmetrically reduced as depth increases since the parameters at the edges are not 

well-resolved. Outside the parametrized area the element resistivities were set to be 

equal to that of the nearest side or bottom parameter. Several tests were conducted 

to validate the algorithm. 

The dipole-dipole data set for Model 1 was reconstructed using one iteration of the 

generalized algorithm. The results are shown in Figure 5.10a. In Figure 5.10b the 

results for the same model after 10 iterations are shown. The quantitative results 

are not that close to the original ones. Despite this fact there is no doubt that the 

iterative procedure delineates the target far better than the non-iterative scheme. 

The convergence behaviour for this reconstruction can be seen in Figure 5.11: during 

the first few iterations the RMS error reduces rapidly while in the following iterations 

the convergence rate becomes almost linear. 

This convergence pattern was similar for all the tested cases. The calculation of 

the Jacobian at every iteration is important in speeding up the convergence but, on 

the other hand, calculating the Jacobian at every iteration is time consuming and 
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Figure 5.10: Reconstruction of Model 1 (dipole-dipole data): a) generalized BP (1 

iteration), b) generalized BP (10 iterations). 

therefore the Jacobian is updated only during the first iterations where the RMS 

drops fast (indicating in this way sizable changes in the resistivity distribution) and 

afterwards only every other 3 iterations. This reduces the time that the reconstruc- 

tion takes without significantly affecting the convergence. A simplified flow-chart of 

the algorithm is shown in figure 5.12. 

In Figure 5.13 the reconstruction results using several known arrays are shown. The 

reconstruction of the Wenner and pole-dipole data sets for Model 1 are depicted in 

Figures 5.13a, b. In Figure 5.13c the reconstruction of Model 2 for pole-pole data is 

shown The results indicate that the technique can be used for reconstructing data 

sets obtained from any array. For all reconstructions only the positive entries of the 

Jacobian matrix were considered and the additive BP formula was used (equation 

5.7). Note that for the pole-dipole array the full data set was considered (both A, 

M-N and N-M, A arrangements) since using only the data set for the arrangement 

(A, M-N) results in an asymmetric reconstruction. 
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Figure 5.11: The RMS error curve for the reconstruction of the dipole-dipole set for 

Model 1. 

Several other tests were conducted with a variety of synthetic models. In Figure 

5.14 the reconstructions for the dipole-dipole modelled data from Models 2,3,4 are 

shown. In all of the examples the maximum dipole separation was six dipole lengths 

(n=6) and the entire measuring pattern included 20 measuring probes. The data 

sets were corrupted with 5% Gaussian noise. 

The results indicate that the algorithm can give reliable reconstructions which de- 

lineate the subsurface structures fairly well in both a quantitative and a qualitative 

fashion. Further, the algorithm behaved well with noisy data and it still retained its 

stability. No major artifacts appeared which could have indicated an inherent prob- 

lem of the algorithm towards noisy data. Stability problems appeared only when 

the level of the noise was very high. 
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Figure 5.12: A simplified flow-chart of the algorithm. 
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Figure 5.13: Reconstruction of Model 1 using the generalized BP scheme: a) Wenner 

data set (10 iterations, 2.8% RMS error), b) pole-dipole data set (11 iterations, 3.5% 

RMS error). c) Reconstruction of Model 2 using the generalized BP scheme for pole- 

pole data (8 iterations, 4.2% RMS error). 
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Figure 5.14: Reconstruction of dipole-dipole data using the generalized BP scheme: 

a) Model 2 (9 iterations, 5.8% RMS error ), b) Model 3 (6 iterations, 6.3% RMS 

error ), c) Model 4 (11 iterations, 8.1% RMS error ). 
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5.2.4 Real data reconstructions 

The algorithm was tested with real data. The results presented here are from areas 

where the position and the characteristics of the targets are generally known. There- 

fore, the reconstructed images can be tested directly against the known targets and 

an objective validation of the algorithm can be made. 

Drain (University of York) 

A dipole-dipole data set from a drain situated outside the Electronics building at 

University of York was collected using the Sting resistivity meter and the Swift au- 

tomatic multi-electrode system (Advanced Geosciences Inc. ). The drain has surface 

dimensions 60 x 60cm and extends from 0-1.2 metres in depth; it is sealed with a 

metal cover which is surrounded by concrete. 

A total of 24 electrodes positioned at 60cm apart were used and the maximum n- 

separation was n=8 (137 measurements). Note that the drain is exactly positioned 

between the electrodes at 4.2 and 4.8 metres (see Figure 5.15a). The pseudosection 

results can be seen in Figure 5.15b. 

The generalized back-projection reconstruction after 7 iterations can be seen in 

Figure 5.15c. The % RMS error was quite high 14.3% but this can be justified by 

the full 3-D nature of the target. Both the lateral location and the bottom limits of 

the drain are reconstructed accurately. The upper limit of the drain appears to be 

lower than it actually is but this could be due to the metal plate and the concrete 

on the top. 

In general the BP algorithm reconstructed the drain reasonably well. Further, the 

reconstruction does not contain any significant artifacts (as opposed to the pseudo- 

section). 
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Figure 5.15: Reconstruction of dipole-dipole data measured over a drain (University 

of York): a) the exact location of the drain in relation to the measured section, b) the 

measured data set in a pseudosection form, c) reconstruction using the generalized 

BP algorithm (7 iterations, 14% RMS error). 
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Roman cemetery (Europos, N. Greece) 

The second case study is from the archaeological site of Europos (N. Greece). Based 

on a resistivity map from the area of the Roman cemetery of the ancient town 

(see Figure 5.16), dipole-dipole data sets, were collected with manual multiplexing 

using a SAS 300 Terrameter (ABEM). Two measured sections (AB, KL) (see Figure 

5.16) were taken over the centre of high resistivity features which are revealed on 

the map. These features have been interpreted as tombs (Tsokas et al., 1991) and 

this interpretation was later verified by the excavation results. The inter-electrode 

spacing was 1m, the maximum n separation was 8 and 16 electrodes were used (76 

data-points). 

The pseudosection of the data set AB is depicted in Figure 5.17a and the generalized 

back-projection reconstruction after 9 iterations (RMS error 9.4%) can be seen in 

Figure 5.17b. The excavation revealed a rectangular grave: its approximate position 

and dimensions in relation to the measured section can be seen in Figure 5.17c. The 

BP reconstruction is in good agreement with the excavation results. 

In Figure 5.18a the pseudosection of the data set KL is shown. Note that the pseudo- 

section image is quite complicated. The generalized back-projection reconstruction 

after 11 iterations (RMS error 12.2%) can be seen in Figure 5.18b. The excavation 

revealed a grave with a collapsed roof: its approximate position and dimensions in 

relation to the measured section can be seen in Figure 5.18c. The reconstruction 

produced useful information about the shape and the location of the anomaly (the 

side walls of the tomb can be distinguished), and they are in agreement with the 

excavation results. 

Fountains Abbey, (N. Yorkshire) 

Two case studies from the Fountains Abbey World Heritage site are presented here. 

The fist case study is from the guest hall area. A detailed twin-probe profiling 
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Figure 5.16: Resistivity contour map obtained from the area of the ancient cemetery 

of Europos. The observed resistivity anomalies have been interpreted as tombs 

(Tsokas et al., 1991). The measured sections (AB), (KL) are shown as well. 
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survey at the site revealed the foundations of the guest hall at the Western side of 

the Abbey. The survey results have been presented in Figure 2.13 [section 2.3.2] and 

the plan of the guest-hall after the interpretation of the resistivity survey is depicted 

in Figure 5.19a. 

A dipole-dipole data set was obtained over the section F1 (the section is also depicted 

in Figure 5.19a) with a South-to-North direction. A total of 65 electrodes positioned 

0.5m apart were used and the maximum n-separation was n=7 (413 measurements)4. 

The pseudosection results are shown in Figure 5.19b and the BP reconstruction 

(11 iterations, 7.5% RMS error) is shown in Figure 5.19c. The reconstructed image 

produced two major resistive features which coincide exactly with the location of the 

wall foundations. Further, a less resistive region situated at the middle of the section 

can be due to the side-effect of the pillar foundations which are located quite close 

to the measuring section (20cm). The reconstruction positioned the upper limits of 

the walls at a depth of approximately 50cm. This depth is probably unrealistic - the 

real depth should be around 20-30cm (Emerick, 1995, personal communication). 

The second case study is from the area of the mill of the Abbey. A drain runs across 

a narrow strip of land which is enclosed by the river Skell. A dipole-dipole data 

set (24 electrodes lm apart, maximum n=7) was obtained over a section situated 

orthogonally to the drain. The edge of the drain is visible and its exact position in 

relation to the measured section is depicted in Figure 5.20a. 

The pseudosection of the data set is depicted in Figure 5.20b - note that the pseu- 

dosection slightly misplaces the target to the left. The generalized back-projection 

reconstruction after 9 iterations (RMS error 6.3%) can be seen in Figure 5.20c. The 

BP results are in very good agreement with the reality - both the position and the 

size of the drain is successfully reconstructed. 

4The Sting resistivity meter and the Swift automatic multi-electrode system (Advanced Geo- 

sciences Inc. ) were used. 
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Figure 5.17: Reconstruction of the dipole-dipole data measured over a tomb at the 

roman cemetery of Europos (N. Greece) (section AB): a) the measured data set 

in a pseudosection form, b) reconstruction using the generalized BP algorithm (9 

iterations, 9.4% RMS error), a) the approximate location of the excavated tomb in 

relation to the measured section. 
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"Sting" Cave (Williamson County, Texas) 

A dipole-dipole data set was measured over a known cave (4T Ranch area- Williamson 

County, Texas) by Advanced Geosciences Inc. in order to validate their automated 

resistivity system (Sting/Swift system). 

The measured section involves 28 electrodes, 4.5 metres apart and the maximum n- 

separation was 8 dipoles (171 data-points). The data are shown in a pseudosection 

form in Figure 5.21b. The position of the previously known cave in relation to the 

section is depicted in Figure 5.21a. 

The pseudosection reveals an anomaly situated at the central part of the section 

(between 62 and 71 metres approximately) which corresponds to the previously 

known cave and another resistive anomaly (its centre is at 28 metres) which was 

interpreted as a new cave. A borehole was drilled and this interpretation was verified. 

The new cave was named "sting" and its position (as well as the position of the 

borehole) in relation to the measured section is depicted in Figure 5.21a. 

The BP reconstruction after 14 iterations (9.8% RMS error) can be seen in Figure 

5.21c5. The reconstructed image delineates the lateral extend of the caves satisfacto- 

rily. Note that another high resistive feature is also revealed in the image (centred at 

98m approximately)'. The technique, however, fails to produce the depth location 

of the caves. This could be due to the fact that the general geological "picture" of 

the area is quite complicated, and the simplifying assumptions of the BP technique 

are not valid. 
5Note that the logarithms of the resistivities are mapped- this is for presentation reasons only 

when the resistivity contrasts are very high. 

6Further processing of the data -it will be presented in the next chapter- makes us believe that 

this feature is probably another cave 
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5.2.5 Discussion 

The described algorithm, although by no means theoretically correct, is physically 

reasonable. The back-projection procedure can be viewed as a pseudo-inverse op- 

eration: following Shima (1992) if J is the Jacobian matrix, the back-projection 

approximates J-1 by WJT where W is a diagonal matrix whose elements are the 

inverse of the sum of the sensitivities related to each measurement. 

Because of its approximate nature the convergence of the algorithm is not guaran- 

teed, nor can the speed of the convergence be predicted. Divergence may sometimes 

occur when the data noise is high. The convergence, if there is convergence at all, 

can be speeded up by the use of an over-relaxation factor within the reconstruction 

algorithm. In most of the tested cases the algorithm presented a stable convergence 

behaviour and usually took less than 10 iterations to reach to a minimum error. 

Barker (1992) referred to possible inherent problems with simple back-projection 

methods when near-surface lateral changes in resistivity occur (especially when ar- 

rays sensitive to such types of resistivity anomalies are used) and he suggested that 

these effects can be propagated and projected deeper, hence creating artifacts. This 

can be true in the case of simple graphical back-projection schemes such as Bristow's 

method, although it should be borne in mind that full back-projection is a summa- 

tion procedure so that the correction factor for each parameter is influenced by all 

of the measurements that affect this parameter. Therefore, the effect of an individ- 

ual measurement need not to be decisive for determining any particular resistivity. 

Moreover, in the current scheme, the existence of the weighting terms are another 

factor which limit the propagation of the lateral effects with depth is limited. The 

results presented here verify this observation. 
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Figure 5.18: Reconstruction of the dipole-dipole data measured over a tomb at the 

roman cemetery of Europos (N. Greece) (section KL): a) the measured data set 

in a pseudosection form, b) reconstruction using the generalized BP algorithm (11 

iterations, 12.2% RMS error), a) the approximate location of the excavated tomb in 

relation to the measured section. 
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5.2.6 Conclusions 

Despite its approximate nature the algorithm studied in this chapter can give useful 

reconstructions of the subsurface resistivity and has proved to be stable and reliable 

in the cases tested. 

The tests with synthetic data indicated that the algorithm: 

- can produce reconstructions which do not suffer from major artifacts. 

- can produce reasonably accurate qualitative and quantitative reconstruc- 

tions. 

- is relatively noise-insensitive. 

The tests with real data indicated that the algorithm: 

- produced results that are generally in good agreement with the known tar- 

gets. 

- in some case-studies (of a generally complicated nature) failed to delineate 

the depth of the targets successfully. This problems are due to its approximate na- 

ture. For the same reason the RMS errors were not particularly low. 

Compared to existing schemes the main advantages of the proposed algorithm are: 

" It is flexible enough to cope with any type of measuring scheme since its use 

is not limited by the probe positioning or the measuring mode used. 

9 It can give reconstructions which produce both qualitative and quantitative 
information of the resistivity distribution -a major advantage over the non- 

iterative back-projection schemes which can only give qualitative information. 

" It is computationally fast compared to typical non-linear schemes since it 

avoids the matrix inversion procedure. Note that the matrix inversion pro- 

cedure when very large data sets (i. e. fully tomographic) are considered is 
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extremely time consuming. 

" It can be modified to include most of the known approximate reconstruction 

algorithms. 

Overall, it is believed that the algorithm can serve as a practical tool for the prelim- 

inary interpretation of tomographic resistivity data. Moreover, the reconstructed 
images can be used as initial estimates for accurate inversion schemes. 

5.3 Chapter Overview 

In this Chapter approximate inversion techniques applied to the 2-D reconstruction 

of earth resistivity data were presented. 

In the first part of this chapter widely used approximate reconstruction techniques 

such as the pseudosection, Barker's method, and back-projection algorithms have 

been presented. It was shown that the Jacobian matrix can be used to explain why 

these techniques are effective. Reconstruction with synthetic data tests indicated 

some of the merits and demerits of the tested techniques. 

On the basis of the theoretical characteristic of the techniques a generalized back- 

projection algorithm was proposed. The algorithm can include many of the existing 

approximate algorithms and can cope with any type of measuring scheme. This is 

achieved by recognizing the major importance of the Jacobian matrix within the 

approximate reconstruction procedure. 

The features of the algorithm were presented in detail and extended tests with 

synthetic data were conducted. Finally, tests of the algorithm with real data were 

presented. Despite its approximate nature the algorithm proved to be reliable and 

noise insensitive and produced good quality reconstructions. The tests with real 

data indicated that it can be a useful tool for data interpretation. 
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Figure 5.19: Reconstruction of the dipole-dipole data measured over the area of 

the Guest-Hall at Fountains Abbey (N. Yorkshire): a) the location of the section 

in relation to the Hall's foundations, b) the measured data set in a pseudosection 

form, c) reconstruction using the generalized BP algorithm (11 iterations, 7.5% RMS 

error). 
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Figure 5.20: Reconstruction of the dipole-dipole data measured over a drain at 

the Fountains Abbey (N. Yorkshire): a) the exact location of the drain in relation 

to the measured section, b) the measured data set in a pseudosection form, c) 

reconstruction using the generalized BP algorithm (9 iterations, 6.3% RMS error). 
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Figure 5.21: Reconstruction of the dipole-dipole data measured over a cave ("Sting" 

Cave, Williamson County, Texas): a) the exact location of the known caves in 

relation to the measured section, b) the measured data set in a pseudosection form, c) 

reconstruction using the generalized BP algorithm (14 iterations, 9.8% RMS error). 
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Chapter 6 

2-D Inversion of Earth Resistivity 

Data Using Accurate Inversion 

Techniques 

In this Chapter non-linear inversion techniques applied to the 2-D reconstruction 

of earth resistivity data will be presented. In the first part of this chapter widely 

used techniques such as the non-linear least-squares method, Marquadt's method, 

and smoothness constrained (Occam) inversion will be reviewed. Further, approaches 

such as inversion with prior information, simulated annealing and maximum entropy 

will be presented as well. The advantages and limitations of the techniques will be 

demonstrated by means of synthetic examples. 

In the second part of this chapter a fast smoothness constrained inversion algorithm 

which uses a quasi-Newton technique for updating the Jacobian matrix is proposed. 

The need for such an algorithm is discussed. The features of the algorithm are 

presented in detail and comparisons to other techniques will be shown. Finally, tests 

of the algorithm with real data will be presented. 
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6.1 A review of existing non-linear inversion tech- 

niques 

In this section non-linear techniques for solving the resistivity inverse problem are 

presented. These techniques are: non-linear least-squares, weighted least-squares, 

Marquadt's method, smoothness constrained (Occam) inversion, inversion with a 

priori information, maximum entropy, and simulated annealing. The relative merits 

and demerits of the techniques are discussed. 

Notation 

In this section (and throughout this chapter) the following general notation is used 

( The quantities corresponding to the resistivity case are specified in parenthesis) 

y is the m-dimensional observation vector (apparent resistivities). 

x is the n-dimensional model parameter vector (resistivities). 

J is the mxn Jacobian matrix. 

f(x) (apparent resistivities) is the m-dimensional measurement vector which corre- 

sponds to the model x. 
f represents the forward modelling procedure (FEM). 

dy is the m-dimensional vector of the differences (error) between the observed and 

modelled data. 

Tested models 

Most of the techniques presented in this section were tested using a series of synthetic 

data sets. For all of the tested techniques, an identical four layer parametrization 

scheme was followed. In the main, each parameter is a square block with side equal 

to the inter-electrode spacing, but the parameters at the side and bottom borders 

are set to be five times larger in one dimension (see Figure 6.1a). 

Three of the models which were used to produce the synthetic data are depicted 

in Figures 6.1b, c, d. We will be referring to those models as Model 1 (two resistive 

prisms), Model 2 (vertical discontinuity with overburden), Model 3 (complicated 
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structure). 

6.1.1 Least-squares inversion 

The least-squares method is one of the most popular techniques for solving opti- 

mization problems. Extended reviews of the technique can be found in many works 

(e. g. Lowson and Hanson, 1974; Press et al., 1987) and so only a brief description 

of the method is presented here. The least-squares technique has been used exten- 

sively for the solution of a wide range of geophysical optimization problems (Jupp 

and Vozoff, 1975; Lines and Treitel, 1984). 

The resistivity non-linear problem can be described as (see equation 2.7): 

f(x) =y 

where y is the vector of observed measurements, x is the vector describing the 

unknown parameters, and f(x) is the forward model solution which is a known 

function of the parameter distribution. As described in section 4.1, expanding in a 
Taylor series and ignoring the higher-order terms yields: 

f (x + dx) =f (x) + Jdx (6.1) 

where dx is the resistivity correction vector and J is the Jacobian matrix. The 

general optimization procedure seeks to minimize the errors between the observed 

and predicted data. The least-squares approach seeks to find the optimum resistivity 

correction vector dx for which the square sum of errors S(x) becomes minimum, 

where S(x) is 

S(x) = dyT dy = (y - f(x + dx))T (y - f(x + dx)) (6.2) 

This is achieved by setting the derivative of S(x) in respect of dx to zero 1 

as(x) 
Odx 

(6.3) 

'As Lines and Treitel (1984) emphasized, another criterion that should hold is that the second 

derivative of S(x) should be positive definite. They showed that this holds when the errors are 

linear functions of the parameters, and that otherwise minimization does not necessarily occur. 

201 



(a) 

(b) 
MODELI 

50 

10 

Ohm-m 

(c) 
MODEL2 

(d) 
MODEL3 

100 
50 
10 

Ohm-m 

150 

100 

80 

30 

Ohm-m 

Figure 6.1: a) The parametrization scheme used in this section. The synthetic 

models used in this section: b) Model 1 (two resistive prisms), c) Model 2 (vertical 

discontinuity with overburden), d) Model 3 (complicated structure). 
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Due to equations 6.1 and 6.2 equation 6.3 becomes: 

OS(x) 
- 

8[(y - f(x) - Jdx)T(y - f(x) - Jdx)] 
=0 (6.4) 

ädx ödx 

Performing the differentiation with respect to dx finally yields: 

JT Jdx = JT dy (6.5) 

Equation 6.5 can yield the resistivity correction vector for a particular choice of x, 

assuming that the matrix (JT J) is non-singular: 

dx = (JT J)-1JTdy (6.6) 

The inverse of the square nxn matrix (JTJ) is known as the generalized inverse (or 

the pseudo-inverse) of the matrix J (Hohmann and Raiche, 1987). Note that the 

formulation of equation 6.6 can accommodate the solution of any problem regardless 

whether m>n (over-determined problems)2 or m<n (under-determined problems). 

By starting with an initial resistivity estimate x,, and by calculating a parameter 

correction vector using equation 6.6 a new resistivity estimate xl = xo + dx is 

produced. Around the new estimate the model can again be linearized, and a new 

estimate x2 is obtained. An iterative procedure can be established as follows: 

9 At the kth iteration, if Xk is the resistivity distribution, calculate the forward 

model response f(xk) and the Jacobian matrix Jk 

. Find the parameter correction vector dxk which is given by (see equation 6.6) 

dxk = (Jk Jk)-'Jk dYk (6.7) 

where dyk =y- f(xk). 

9 The new resistivity estimate Xk+l is given by 

xk+l = xk + dXk (6.8) 

2Note that most of the resistivity inverse problems are over-determined by design. 
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9 The iterative procedure is repeated until a stopping criterion is met (i. e. no 

significant decrease in error is achieved with further iterations. ) 

This procedure is known as non-linear least-squares minimization or the Gauss- 

Newton method. Note that the initial problem of solving the system of non-linear 

equations has been changed to that of solving a system of linear equations at every 

iteration step. Non-linear least-squares methods have been reported to be quite 

sensitive into the choice of the initial parameter vector x,, and as suggested by Box 

and Kanemasu (1972), if the initial parameter choice is poor it has sometimes been 

found that severe oscillations of the solution vector occur through the iterations. If, 

for example, the initial property choice is too far away from the true solution, the 

correction vector dx may become too large and hence the assumption of linearity 

becomes invalid 3, leading to divergence. Smith and Vozzoff (1984) also suggested 

that sometimes the linearity assumption causes the procedure to choose the local 

minimum nearest to the initial model, hence rendering the results dependent on the 

initial parameter choice. 

Ill-conditioning and data error 

As far as the resistivity inversion is concerned, a quite significant problem arises 

from the fact that the matrix (JT J) is near-singular, a direct consequence of the 

reportedly ill-conditioned nature of the resistivity problem. Lanczos (1960) discussed 

the physical meaning of nearly-singular systems in relation to the observation error. 

He showed that the existence of small eigenvalues signifies that there are certain 

linear combinations of the unknown parameters which are only weakly represented in 

the system. In physical terms this means that there are some relatively unimportant 

parameters (see section 4.4). Therefore, it is a lack of useful information which 

creates the ill-conditioning and, although there are ways to handle ill-conditioning 

(discussed below) the base reasons need to be borne in mind. To quote Lanczos 

3The Taylor expansion procedure assumes that dx is "small" enough. 
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(1960): 

... there is an impression that an ill-conditioned matrix is merely in a 

mathematical condition which could be remedied by the proper know- 

how. In actual fact we should recognize that a lack of information cannot 

be remedied by any mathematical trickery... 

If the observations were -completely error free the inversion of the near-singular 

matrix would not be a problem, however this is not the case, and it is the combination 

of the ill-conditioning with the observation errors that creates the problem. Lanczos 

(1960) showed that for an idealized linear system (m=n) the amplitude of the error in 

the solution xi associated with a particular measurement error yz and the respective 

eigenvalue Ai is given by the following relation: 

xil =1 Y"I 
Ai 

(6.9) 

An eigenvalue of 0.01 and a measurement error of 1% will magnify the error in the 

solution vector by a factor of 100. The solution of a near-singular system will result 

into unreliable solutions not only for the parameters which are weakly represented 

in the system but also for the parameters which are strongly represented in the 

system4 

Lanczos's observations for square linear systems can be extended into the non-linear 

procedure. Treating the system of equation 6.7 using direct matrix inversion will 

result into unacceptable solutions for the resistivity inverse problems. Alternative 

techniques have to be used in order to tackle this problem and some of them will be 

presented in the following subsections. 

4Note that for the resistivity case the observation errors are typically larger than 3% and a 

typical conditioning number is 103 - 104 
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6.1.2 Weighted least-squares 

In this part a variation of the least-squares technique called weighted least-squares is 

presented. Weighted least-squares does not improve the conditioning of the inverse 

problem considerably, but can take into account the observation errors as well as 

other physical constraints (i. e. positive properties). They are presented at this point 

simply because similar weighting principles can be used within the framework of all 

the techniques presented in this section. 

Error weighting 

It has already been shown that the ill-conditioning of the resistivity problem when 

combined with the limited accuracy of the measurements, renders the solution of the 

inverse problem unstable. In order to take the measurement accuracy into account 

a weighted least-squares solution can be formed. 

In particular, instead of minimizing the sum of square errors an alternative cost 
function S(x)w can be minimized (Lawson and Hanson, 1974): 

S(x)w = (W dy)T (W dy) = W2 dyT dy = W2S(x) (6.10) 

where S(x) is the least-squares cost function, (see equation 6.2) and W is amxm 

diagonal matrix whose elements are weights which depend on the accuracy of each 

particular data point. One systematic way to assign weights is to use the standard 

deviation, o information for each measurement y1. A diagonal element of the W 

matrix is then defined as: 

W;; =1 (i = 1,2... m) (6.11) 
Oli 

In general, if a measurement i has a small standard deviation then W1, becomes large 

and thus this measurement has a relatively large contribution the error function 

S(x),,,. Conversely, an inaccurate measurement (high standard deviation) will tend 

to have smaller contribution into the S(x)ti,. 
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The minimization procedure for the function S(x)u, is identical to that for the least- 

squares problem and yields a similar equation to 6.6. 

dx = (WJT WJ)-l (WJ)T Wdy (6.12) 

Logarithmic weighting 

In resistivity inversion it is quite common to apply logarithmic weighting. The reason 
for this is twofold: a) logarithmic weighting constrains the subsurface resistivity 

to be positive, hence avoiding unrealistic solutions involving negative resistivity. 
(Sasaki, 1982), b) subsurface resistivities can vary over several orders of magnitude 

and a logarithmic weighting can accelerate the convergence of an iterative algorithm 

(Park and Van, 1991). 

To obtain the least-squares solution with logarithmic weighting requires the mini- 

mization of the cost function S'(x) = dyT ay where ay is given by 

dy=1n y- In f(x) (6.13) 

The parameter vector x is changed to p such that pi = exp(xi) and i=1,2.. n. The 

minimization results into a relation which has a form similar to equation 6.6 

dp = (JT J)-IJT ay (6.14) 

where J is amxn matrix which has elements Jj, =ö In y; /8pß 
. The matrix J can 

be readily expressed as a function of the Jacobian matrix J: 

'=0 
In yi 

=ö 
In y; 

= 
öy; xj=J.. x (6.15) Bpi 0In x, Oxj yt ' yi 

Equation 6.14 can be used to established an iterative procedure similar to the non- 

linear least-squares. The new resistivity estimate at the kth iteration is given by : 

xk+l = Xk + In dpk. 
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Combined weighting 

Error and logarithmic weighting can be combined. The cost function becomes 

S(X) 
w= 

(W1naY)T W1naY (6.16) 

where now Wln is a diagonal matrix whose elements are the variances of the loga- 

rithmic observations In y. The minimization yields 

dp = [(W1nJ)T (WlnJ)]-l(Wlni)T W1n y (6.17) 

6.1.3 Singular value decomposition (SVD) 

It has already been explained that the ill-conditioning is due to linear combinations 

of the unknown parameters which are weakly represented in the measurement sys- 

tem. Under the presence of data noise, these weakly represented linear combinations 

of parameters not only fail to convey any useful information, but also "contaminate" 

the entire solution. 

One way to avoid this problem is to identify these combinations (by getting a numer- 

ical estimate of the system's eigenvalues) and subsequently ignore them. This can 

be achieved by the use of the SVD technique. The detailed theoretical development 

of the SVD is described in many texts (Lanczos, 1960; Lawson and Hanson, 1974) 

and so only an outline of the technique is presented here. 

Assume a linear system Ax, = yl where A is amxn matrix and the adjoint 

problem AT x2 = Y2. Those two systems can be combined into a single system 

10A X2 Y1 
= or 

AT 0 [x1 Y2 

sx=y (s. is) 
Where S is akxk (k=m+n) matrix. The general eigenvalue problem for the system 

of equation 6.18 is Sw = Aw where w is an eigenvector and A an eigenvalue. By 
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appropriately partitioning w=(u, v) the following set of equations is obtained 

Av= Au (6.19) 

AT u= \v (6.20) 

Lanczos (1960) showed that the problem has n+m eigenvectors belonging to n+m 

independent eigenvalues. He also showed that these are m independent vectors ui, 

and n independent vectors vi. By arranging the normalized eigenvectors in successive 
columns two square matrices can be obtained: amxm matrix U=(ul, u2, ... u .. 

) 

which is associated with the (measurement) M-space and anxn V=(vi, v2, -.. vn) 

associated with the (parameter) N-space. The eigenvalue problem described by 

equations 6.19,6.20 can be written: 

AV= UA (6.21) 

AT U= VAT (6.22) 

where A is anxn diagonal matrix consisting of eigenvalues. Note that the matrices 

U, V consist of eigenvectors and hence are orthogonal: UT U=I, VT V=I. Post- 

multiplying equation 6.21 by VT yields 

A= UAVT (6.23) 

Equation 6.23 expresses the SVD principal 5. The shape of the matrices involved in 

the SVD can be seen in Figure 6.2. 

As long as the SVD has been calculated, the inverse of the matrix A can be readily 

found a (the matrices U, V are orthogonal and A is diagonal): 

A-' = VA-'UT (6.24) 

'In the more general case where the decomposition produces some zero eigenvalues (let p 

be the number of non-zero eigenvalues) the decomposition becomes (Lines and Treitel, 1984): 

A= UpAPVp , where now Up, Vp are semi-orthogonal matrices with dimensions mxp, nxp 

respectively, and Ap is apxp diagonal matrix. Note that for the resistivity case (as long as a 

reasonable parametrization scheme is followed) there are no zero eigenvalues. 
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mxn mxn 

[A]J 

]. 
nxn nxn 

VT 

Figure 6.2: The general shape of the matrices involved in the SVD calculation (after 

Press et al., 1987). 

where A-' is given by 

3I 0 ... 0 

0 A2 (6.25) 

0 
... An 

The solution of the non-linear least-squares problem can be expressed in terms of the 

SVD formulation. Due to equations 6.23,6.24 the least-squares correction vector at 

every iteration is given by (see equation 6.7) 

L .. An J 

The solution of the non-linear least-squares problem can be expressed in terms of the 

dx = (JTJ)_lJTdy 

= (VA2VT)-1VAUTdy 

= VA-lUTdy = J-ldy (6.26) 

Following Lines and Treitel (1984) the solution vector can be expressed as a weighted 

vector product sum: 

dx = vl1uidy+v22u2dy+... +v�Tnundy 

= vl i+ v2 
a2 + ... + vn 

an (6.27) 

where a2 = u'dy (i=1,2 
.. n). From equation 6.27 it is obvious that in general a 

small eigenvalue Ai will cause the factor a; /A2 to be large so that this term will have 

a large influence on the solution vector. Due to the limited accuracy of the term 

ai (at can be inaccurate since it is associated with the measurement vector y) the 

effect of the factor ai/Aj can hence be magnified and "contaminate" the solution. 
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Solving the least-squares problem using the SVD technique (as described by equation 

6.26) will produce solutions which are as unstable as those produced by any matrix 

inversion technique. The difference lies to that SVD gives all the information needed 

to handle the problem: by checking the matrix A the near-singular eigenvalues can 

be identified and subsequently excluded from the solution vector (equation 6.27). 

This is done by setting a threshold value At: 

if at < At then 
s=0 

(i = 1,2, .. n) 

In this way linear combinations of parameters which are weakly represented into the 

system are omitted and the solution becomes stable. The effectiveness of the proce- 

dure depends on the successful choice of the threshold: a high threshold results into 

discarding information which is potentially useful while conversely, a low threshold 

can produce instability. 

Limited use of this procedure has been reported in the solution of the inverse resis- 

tivity problem (Inman et al, 1973; Murai and Kagawa, 1985). The reason is that 

less "drastic" techniques, which do not involve the direct exclusion of the small 

eigenvalues are preferred. But, as will be shown in the following section, the SVD 

technique can be used with these techniques as well. 

6.1.4 Damped least-squares (Marquadt-Levenberg) method 

One way for treating ill-conditioning is to introduce constraints into the optimiza- 

tion procedure instead of directly rejecting the "small" eigenvalues. Treatment of 

non-linear problems with such an approach was proposed by Marquadt (1963). The 

technique is known as the damped least squares method (it is also known as the 

Levenberg-Marquadt method, the Marquadt method, or the Ridge-regression tech- 

nique) since by constraining the optimization, unbounded oscillations in the solution 

vector are avoided. The technique has been widely used in the solution of optimiza- 

tion problems which involve ill-conditioned matrices (Golub and Van Loan, 1989). 
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In the non-linear case the damped least-squares technique involves the following min- 

imization (Box and Camenasu, 1972): minimize the sum of square errors S(x) = 

dyT dy under the constraint that the amplitude of the solution vector dx is bounded 

by a defined quantity, say Xb so that dxT dx < xb. This type of constrained min- 

imization can be solved by the technique of Lagranian multipliers 6. The function 

to be minimized becomes: 

K(µ) = dy'dy + µ(dxTdx - Xb) (6.28) 

where y is the Lagranian multiplier (widely known as the Marquadt's damping 

factor). The minimization is achieved by setting the derivative of K(µ) with respect 

of dx to zero. This yields (recall equations 6.3,6.4,6.5): 

JT Jdx + µdx = JT dy or 

(JT J+ ILI) dx = JTdy (6.29) 

where I is the identity matrix. The solution vector dx is given by: 

dx = (JT J+ µI)-lJTdy (6.30) 

Marquadt (1963) demonstrated the hybridic nature of the damped least-squares 

technique. If the Lagranian multiplier is very small (µ -+ 0) then equation 6.30 

becomes equivalent to the Gauss-Newton technique (see equation 6-7). If p is very 

large (µ -+ oo) then equation 6.30 becomes equivalent to dx µ-1JTdy. This is 

proportional to the steepest descent vector 7 which is given by: dx = 2JTdy 

Box and Kanemasu (1972) discussed the geometrical representation of the damped 

least-squares method for a two parameter space (Pl, p2). In such a case the least- 

6The technique of the Lagranian multipliers (Smith, 1974) solves the problem of minimization 

of a function under certain restricting conditions by adding these conditions, multiplied by a factor 

M, to the initial function and then proceeding with the minimization as if no constraint exists. 
7The steepest descent method (Press et al. 1987) involves the iterative minimization of a cost 

function (i. e. the sum square of errors). This is achieved by setting a starting point and finding 

the direction of the maximum negative gradient of the cost function and then stepping in this 

direction until a point is reached at which the gradient is minimum. This point will be the new 

starting point and the entire procedure is repeated until optimization is achieved. 
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Figure 6.3: Two parameter space representation of damped least-squares minimiza- 

tion (after Box and Kanemasu, 1972). 

squares sum is presented as a set of deformed elliptical contours and the damped 

least-squares solution amounts to minimizing the sum of squares under a circular 

constraint whose axes are parallel to the pl, p2 axes. This can be seen in Figure 6.3. 

The only difference between equation 6.30 and the least-squares solution (equation 

6.6) is that a constant µ is added to the diagonal elements of the JT J matrix. The 

effect that this addition has on the solution vector can be more clearly demonstrated 

by the use of SVD. 

213 



SVD and damped least-squares 

The SVD can be easily applied in combination with the damped least-squares 

method. Due to equation 6.23,6.30 becomes 

dx = (VAUTUAVT + µI)-1VAUTdy 

= (VA2VT + µI)-1VAUTdy 

= V(A2 + µI)-1VTVAUTdy 

= Vdiag 
( 

ý2 
+) 

AUTdy 

= Vdiag A2 
+ UTdx 

where diag[A2/(A? + µ)] is given by: 

0 

X27 

0 ... 
a 

(6.31) 

(6.32) 

Equation 6.31 can be written as a weighted vector product sum (recall equation 

6.27) 

dx = v, 2+ uidy + v2 A2 
+ 

u2 dy +... +v,, 
ý2 +U 

dy (6.33) 
ýµ2µn 

Equation 6.33 describes the damped least-squares mechanism. If the eigenvalue 

Ai (i=1,2.. n) is large then the addition of the Lagranian multiplier will have no 

significant effect on the factor [A /()j2 + µ)], and thus no significant effect to the 

solution vector dx. But, if A2 is small (A -+ 0) then the addition of the Lagranian 

multiplier will cause the factor [, \i/(A? + µ)] to become smaller and thus force it to 

contribute less in the solution vector dx. 

Marquadt's algorithm 

Marquadt (1963) proposed an iterative damped least-squares scheme for solving non- 

linear problems. The scheme is quite similar to the iterative least-squares technique 
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and can be easily adapted to the resistivity problem. Given an initial resistivity 

estimate xo calculate the sum of square errors S(xo) and set an initial value of µo 
(say 0.1). 

1. At the kth iteration, if Xk is the resistivity distribution, calculate the forward 

model response f(xk) and the Jacobian matrix Jk which corresponds to the 

Xk resistivity distribution. 

2. Find the parameter correction vector dxk which is given by (see equation 6.30) 

dxk = (JT Jk + µJ)-1J' dyk (6.34) 

where dyk =y- f(xk). 

3. Calculate the new sum of square errors S(xk + dxk) 

4. If S(xk + dxk) > SXk (divergence) then set µk = Ak c where c is a set factor 

(c > 1, say 10) and go back to step 2. 

5. If S(Xk + dxk) < S(xk) (convergence) then set µk+l = µk/c, update the 

resistivity estimate Xk+l = Xk + dxk and start a new iteration. 

6. The iterative procedure is repeated until a stopping criterion is met (i. e. no 

significant decrease in error is achieved with further iterations). 

If a data-error and logarithmic weighted scheme is used in combination (recall section 

6.1.2) then the correction vector of equation 6.35 becomes dx=ln dp and dp is given 

by 

dp = [(WlnJ)T (WJnJ) + µI)-l(Wini)T WlnaY (6.35) 

The quantities involved in equation 6.35 are fully explained in section 6.1.2. 

The algorithm exploits the above mentioned hybridic nature of the method: the 

technique initially is closer to the steepest descent method, which is generally better 

when the error S(x) is large, but as the Lagranian multiplier decreases, it becomes 
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closer to the Gauss-Newton method, which is more effective when the error S is 

small (Lines and Treitel, 1984). 

Marquadt's algorithm has been used extensively for the solution of the 2-D inverse 

resistivity problem (Rijo et al, 1977; Pelton et al. 1978; Petrick et al., 1981; Sasaki 

1982; Smith and Vozoff 1984; Trip et al., 1984) mainly due to its stability and its 

fast convergence (quadratic). Jupp and Vozoff (1975) suggested a slightly modified 

algorithm which applies the Marquadt's technique in combination with the trunca- 

tion method. Two main disadvantages of the algorithm have been reported: a) the 

final result is strongly dependant on the initial model choice xo (Smith and Vozoff, 

1984) and b) in some cases the technique produces unnecessarily complex solutions 

- unnecessary in the sense that although they are mathematically correct, they are 

not physically reasonable. 

Inversion examples 

Here, Marquadt's non-linear optimization algorithm has been applied to a series of 

synthetic data. The forward calculations were performed by the FEM model and 

the Jacobian matrix was calculated by the use of the adjoint equation technique (see 

section 4.3.2). A logarithmic and data-error (when real or noise-corrupted synthetic 

data was used) weighting was applied (see equation 6.35). In order to avoid forming 

the terms jT J and JT dy 8 inferred by equation 6.15, the damped least-squares 

solution at every iteration was obtained by the use of the SVD (see equation 6.31). 

Computationally speaking, the SVD procedure is quite complicated. Efficient SVD 

routines have been presented by Lawson and Hanson (1974), Press et al. (1987); 

the routine of the latter is used in this work. 

In Figure 6.4a the reconstruction of the noise-free dipole-dipole data set which corre- 

sponds to Model 1 is depicted. The quality of the reconstruction is particularly good 

sLines and Treitel (1984) argued that the formation of those terms involves inaccuracies which 

could be problematic when large Jacobian matrices are considered. 
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Figure 6.4: Inversion results of Model 1 (dipole-dipole data, 5 iterations) using the 

Marquadt's method: a) in a gray scale form, b) in a post map form. 

- the resulting resistivities are quite close to the initial model (see Figures 6.4b and 

6. lb). The convergence pattern for this inversion is depicted in Figure 6.5. Similarly 

good results were obtained for the inversion of Model 2 (Figure 6.6a, b) and Model 3 

(Figure 6.6c, d). All inversions used a homogeneous ground as a starting model (the 

average of the measured apparent resistivities was the homogeneous ground resis- 

tivity) and produced an extremely low % RMS error (less that 0.5%). Note that the 

parameters at the bottom edges are somewhat less well recovered, since they are not 

so well resolved (comparatively irrelevant parameters). When noise-corrupted data 

were inverted (5% additive Gaussian noise) Marquadt's method did not perform so 

well. As can be seen in Figure 6.7a, b although the inversion of Model 1 still delin- 

eates the targets successfully there are also spurious noise-related artifacts in the 

final reconstruction. Similar artifacts were observed in all test cases. Note also that 

in those cases the algorithm became less stable: several changes in the Marquadt 

factor had to be made in order to achieve a better reconstruction. 
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Figure 6.5: The variation of the RMS error with iterations for the Marquadt's 

inversion of Model 1. 

6.1.5 Smoothness constrained (Occam) inversion 

Another way to tackle the instability of the resistivity inverse problem is to impose a 

smoothness constraint. The use of such a constraint to stabilize poorly conditioned 

problems belongs to a general class of methods known as regularization techniques 

(Tikhonov, 1963) 9. The technique has been proposed for geophysical purposes by 

Constable et al. (1987) who called it Occam's inversion (after the 14th century 

philosopher) and applied it to the 1-D resistivity and magnetotelluric inverse prob- 

lems. The idea is to find the smoothest model which could fit the data in the sense 

that the model should depart from the simplest case only as far as necessary to fit 

the data. 

The need for such a constraint derives from the reported deficiencies of the damped 

9This type of constrained optimization is also known as the LSQI problem (least-squares mini- 

mization with quadratic inequality constraint) (Golub and Van Loan, 1989). 
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Figure 6.6: Inversion results using the Marquadt's method. Inversion of Model 2 
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least-squares technique, namely the dependence of the result on the starting guess 

and the unnecessarily complex solutions. The smoothness constrained inversion 

will not necessarily yield the "best" solution, but it is hoped that it will produce 

a simplified model which is a reasonable representation of the subsurface. At the 

same time, the smoothness constraint guarantees stability and, most importantly, 

produces a model which is based on a characteristic that the user has chosen (the 

pattern or nature of the smoothness) and not on some arbitrary initial guess. 

The roughness term 

The smoothness constrained minimization can be achieved by firstly defining a term 

which describes the desired smoothness relationships between the parameters as a 

function of their resistivity. This roughness term (Constable et al., 1987) can be 

expressed in a discretized form as a finite difference operator. 

A simple roughness term for the 2-D parametrized earth is presented by Sasaki 

(1992): If there are L parameter layers and Q parameters in each layer (rectangular 

parameter blocks are assumed- see Figure 6.1a - the total model roughness R is 

given by: 

L-1 Q-1 2 
R=E E [x(k-1,1) + x(k, 1-1) - 4x(k, 1) +x(k, 1+1) + x(k+1,1)] (6.36) 

k=2 1=2 

Where x(kl) is the resistivity of the parameter which belongs at the kth layer and 

1th column and x(k_1, i), X(k, 1_1), X(k, t+l), X(k+i, t) are the resistivities of the western, 

northern, southern and eastern immediate neighbours of the X(k, I) parameter re- 

spectively 10. From equation 6.36 it is clear that the larger the resistivity variation 

among neighbouring parameters the larger the factor R will be. 

'°Note also that in equation 6.36 the roughness is expressed as sum of central differences and 

therefore as a sum of the second derivatives of the resistivities in respect of the x and z coordinates. 

deGroot-Hedlin and Constable (1990) proposed a 2-D model expressed as a sum of right-hand side 

differences - that is, as a sum of first derivatives. From some preliminary tests we concluded that 

there was no apparent difference between using first or second derivatives as far as the results are 

concerned. 
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(dipole-dipole data, 5% random noise, 4 iterations, error 5.4%): a) in grey scale 

form, b) in post map form. 

Equation 6.36 can be also written in a matrix form 

R= (C X)T (Ci X) (6.37) 

where C is anxn banded matrix (n is the number of parameters). The ith row 

of the matrix contains the smoothness information for the ith parameter and will 

have all its elements zero except from those corresponding to this parameter (this 

element will have a value of -4) and its immediate neighbours (those elements will 

have a value of 1). In Figure6.8 the matrix C for a simple case of 9 parameters can 

be seen. 

The optimization algorithm 

The initial non-linear problem can again be linearized by the use of a Taylor series 

expansion and treated as a series of linear problems. Since the solution of each 
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Figure 6.8: The smoothness matrix (right) for the case of a9 parameter mesh (left). 

linear problem will produce a resistivity correction vector dx which is the difference 

between two subsequent models, the roughness term can be defined in respect of the 

correction vector dx. In other words, the smoothness in the final model is achieved 

by imposing the smoothness in each model correction. The roughness term R (see 

equation 6.37) is redefined as AR such that 

OR = (C dx)T (C dx) (6.38) 

In every iteration the following minimization is sought (Constable et al, 1984): min- 

imize OR under the constraint that the sum of square errors S(x) is minimized or 
(since we are dealing with real data) becomes equal to Xd - the acceptable error in 

view of data uncertainties 11. In other words, find the least rough resistivity cor- 

rection vector which will fit the data. By using a Lagranian multiplier µ-1 the cost 

function becomes 

U= AR +m -'(S - Xd) 

= (C dx)T (C dx) + µ-1 
[(dy 

- Jdx)T(dy - Jdx) - Xd] (6.39) 

"Any effort to continue minimization beyond this poind would result in potentially fitting the 

data to noise. 
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Pi 

Figure 6.9: Two parameter space representation of constrained minimization (after 

Box and Kanemasu, 1972). 

Setting the derivative of U with respect of dx equal to zero and performing the 

calculations finally yields 

(JT J+ µCT C)dx = jT dy (6.40) 

Note that the only difference in equation 6.39 compared to the damped least-squares 

technique (see equation 6.33) is that the identity matrix I is replaced by the smooth- 

ness matrix CTC. Box and Kanemasu (1972) suggested that solutions of the form 

of equation 6.40 are a generalized case of Marquadt's algorithm. In such a case, 

and for a two parameter space (pl, P2), the least-squares sum is presented as a set 

of deformed elliptical contours and the solution amounts to minimizing the sum of 

squares under an elliptical constraint whose axes are parallel to the pl, P2 axes. This 

can be seen in Figure 6.9. 

An iterative algorithm can now be established as follows: 

Produce a matrix C which describes the smoothness pattern of the model, set an 

initial model xO and an initial Lagranian multiplier value µo. 
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1. At the kth iteration the parameter correction vector dxk is given by 

dxk = (Jk Jk + µkCT C)-1Jk dYk (6.41) 

where Jk is the Jacobian matrix which corresponds to the Xk resistivity dis- 

tribution, and dyk =y-f (xk )12 

2. The new resistivity estimate Xk+l is given by 

Xk+l = Xk + dXk (6.42) 

3. The iterative procedure is repeated until a stopping criterion is met (e. g. no 

significant decrease in error is achieved with further iterations, or the error is 

just above the estimated observation uncertainties) 

When data-errors and logarithmic weighting are considered (recall section 6.1.2) the 

resistivity correction vector becomes dx=ln dp, and dp is given by: 

dp = [(Win. )T (W1ni) + µß%T C]-1(W1fj)T w1näY (6.43 

The Lagranian multiplier (LM) is one way to control the smoothness of the inverted 

model: the larger the value of the LM the smoother the model, but how to decide the 

LM value (µk)? A reasonable scheme is to start the inversion with a relatively high 

LM value (increased smoothness) and reduce it gradually at each iteration (decrease 

the smoothness weighting as the final solution is approached). 

Constable et al. (1987) suggested the following technique: at the beginning of every 

iteration test several values of p (chosen on a linear scale for example) and calculate 
12Note that if the roughness term was chosen to be related to the resistivity model (equation 

6.37) and not to the resistivity correction vector (equation 6.38) the minimization would have 

produced: 

dxk = Pk Jk + I. kCT C)-1Jk (dYk + Jk Xk) 

Xu (1993) showed (via synthetic examples) that this type of minimization produces less satisfac- 

torily results with noisy data. 
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for each one the resistivity correction vector (using equation 6.41). Then calculate 

the sum of errors S(x) which correspond to those newly found resistivities. The 

optimum p value is chosen as the one that produces the minimum error. A 1-D line 

search procedure can be used to find the optimum value. This scheme involves the 

repetition of the inversion procedure (equation 6.41) and of the forward modelling 

calculations (to find the errors) for as many times as the number of p values to be 

tested. 

Few applications of the Occam scheme into the 2-D resistivity inversion are presented 

in the literature. Sasaki (1989) used this scheme to jointly invert resistivity and 

magentotelluric data. In a later work (1992) he applied the scheme to cross-borehole 

resistivity data. Xu (1993) compared the effect of different smoothness constraints 

to the inversion. Application of the technique has been also reported by Daily et al. 

(1995). 

Inversion examples 

A 2-D smoothness constrained inversion algorithm has been created in order to allow 

the 2-D inversion of earth resistivity data. The FEM algorithm and the adjoint 

equation approach were used again to calculate the forward model and the Jacobian 

matrix. A simple smoothness pattern (given by equation 6.36) was used. The 1-D 

line search technique was found to be time consuming. For a simplest line search 

several p values have to be tested at every iteration, but this does not guarantee that 

the optimum value is chosen. We used a scheme that calculated 5p values. A cubic 

spine interpolation algorithm was used to generate the line information and a golden 

section search was then used to find the optimum p value. [both interpolation and 

golden section routines are described in Press et al. (1987)]. In Figure 6.10a, b the 

resultant spline interpolations for iterations one and two and the optimum p values 

chosen for the inversion of Model 1 can be seen. In Figure 6.10c the quadratic 

convergence of the algorithm for the inversion of Model 1 is shown. 
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The algorithm produced good results when noise-free data were inverted, as it can 
be seen in the results obtained from the inversion of Model 1 (Figure 6.11a, b) and 
Model 2 (Figure 6.11c, d). All inversions had a homogeneous ground as a starting 

model and produced a low % RMS error (less that 0.5%). It is worthwhile noticing 

the effect that smoothness has in the reconstruction of Model 2: the resistivity 

varies smoothly between the contrasting media and whilst the resultant image is 

a reasonable representation of reality, it does not give accurate information about 
the exact positioning of the media. Due to this effect there might be arguments 
that smoothness is not always physically reasonable: in cases of abrupt resistivity 

contrasts, for example, the smoothness constraint may fail to produce the exact 
boundaries/contrasts of the media. But in 2-D parametrization schemes this is not 

a problem: the parameters have artificial boundaries chosen by the user, so it is 

unlikely that the boundaries of the target will coincide with the boundaries of the 

parameters. Therefore, the boundaries which will show up in the inverted subsurface 
image will not be exact anyway. In such a case smoothness becomes an advantage 

since it reflects reality in a safe (from the interpreter's point of view) way. 

In Figure 6.12 an example of such a situation is given. The reconstruction of the 
dipole-dipole data set which corresponds to the resistive prism of Figure 6.12a (note 

that its lateral boundaries do not coincide with the boundaries of the user-defined pa- 

rameters) was obtained using both Occam inversion (Figure 6.12b, c) and Marquadt's 

method (Figure 6.12d, e). The results indicate that Occam inversion produced a re- 

alistic image of the structure whilst Marquadt's technique tended to concentrate 

the resistivity in the upper layer. It is important to note that this result cannot be 

generalized: Marquadt's technique could have produced different results if a differ- 

ent initial model and/or different Lagranian multiplier values were used. What can 
be safely said though is that, at least, we would not expect the Occam inversion to 

produce results which are inferior to Marquadt's technique for this type of situation. 

One of the advantages of the smoothness constraint approach is that it is particularly 

suited to the treatment of noisy data. As can be seen in Figure 6.13a, b, the inversion 
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of Model 1 still delineates the targets quite successfully without producing any 

significant noise-related artifacts. Another impressive feature of the technique is its 

stability. Even when the values of the Lagranian multiplier were chosen empirically, 

the technique retained its stability and its quadratic convergence rate. Divergence 

occurred only when unreasonably small initial µ values were chosen. The stability 

derives from the fact that the smoothness constraint is a "strong" constraint which 

damps unwanted oscillations in the solution. 

6.1.6 Inversion with a priori information 

One way to stabilize the inversion procedure is to constrain it in order to be consis- 

tent with any existing prior information. The prior information could derive from 

some general physical knowledge of the problem (i. e. smoothness) or from knowledge 

of the particular surveyed area. The later could be available from several sources 

such as different geophysical techniques, drilling, excavation results. 

It has to be noted that in 2-D inversion a form of prior information has to be 

used anyway. The 2-D parameters, for example, are usually arranged in a way 

which is consistent with the local geology (stratigraphy) and with the depth/size of 

the targets under investigation. Moreover, for the damped least-squares inversion a 

good initial guess - which is a result of prior information - is crucial for the successful 

implementation of the technique. But the problem with such an implementation of 

prior information in an iterative procedure is that there is no guarantee that the 

final result will be consistent with the prior information. 

The idea behind the inversion with a priori information is the following: among the 

many possible models that could fit the data (there are many models due to the 

ill-posed nature of the inverse problem and the data uncertainties) choose the one 

which is as close as possible to the prior information. The use of prior information 

will stabilize the inverse procedure and as long as the prior information is reasonably 

accurate will produce a model which is close to reality. 
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Incorporation of prior information using a regularization scheme 

A way for incorporating a priori information in the inversion has been demon- 

strated into the previous subsection: the inversion scheme is constrained with a 

priori model smoothness. Recently, Ellis and Oldenburg (1994) presented a con- 

strained minimization scheme which allows the incorporation of different types of 

prior information. In their scheme the objective function 1(x) to be minimized has 

the form ýD _I (Wm dxJ 12 where W1z is a weighting matrix and dx is the resistivity 

correction vector. The objective function is defined as a sum of three terms. 

IIW�zdxlý2 = 0s + 0. x + 

_ IIWsdxII2 + IIW., dxH12 + IIWzdx112 = dx 

= dxT(W3 W9 + Wx W- + Wz W, z)dx (6.44) 
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This is equivalent to the smoothness constraint (see section 6.1.5): the matrix C is 

here replaced by the matrix Wm and thus the constrained minimization results in a 

algorithm which is similar to that of Constable et al. (1989). At the k+l iteration 

the model estimate is given by 

Xk+1 =Xk+ ýJkTJk+µk(Wä WB+Wx Wx+Wz Wz]-1Jkdyk (6.45) 

If n is the number of the parameters and pij is the parameter positioned at the ith 

layer and jth column of a 2-D parameter grid then 

" W8 is a diagonal nxn matrix which controls the model's amplitude deviation 

from the current estimate and has elements f Oxu Aztj where ax,,, Lztj is 

the length and thickness of the i jth parameter. Note that fi7j can be equal to 

1/ 'j where o-4j is the a priori variance that the resistivity of the ij parameter 

can have with respect to the initial model. 

" W., is anxn matrix which controls the model's variation in the x direction 

(horizontal roughness) with elements ± f, "'j Oz 1/rxi where rxi, is the distance 

between the centres of adjacent parameters in the ith parameter layer. 

" W, is anxn matrix which controls the model's variation at the z direction 

(vertical roughness) with elements f f, "' Oxij/rzi where rz� is the distance 

between the centres of adjacent parameters in the jth parameter column. 

Note that if all the factors f sp f j, fj are set to be equal to 1 for every parame- 
ter ij then the scheme becomes the usual smoothness constrained inversion. The 
flexibility of the scheme lies in the fact that those factors can become spatially 

variant, allowing the incorporation of any reliable prior information regarding the 

possible resistivity variations. If, for example, there are indications that the target 

lies within a particular region, then the factors corresponding to the parameters of 

this region can be reduced (reduce the penalty for roughness by reducing f, j, fizj, 

and simultaneously assign larger uncertainty limits by decreasing f ). 
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Such an example was presented by Ellis and Oldenburg (1994): using reliable prior 

information they produced a spatial weighting function for reducing the resistivity 

smoothness in the central reconstruction region of their synthetic topographic data 

set. Their results are considerably better than that of the smoothness constrained 

inversion for the same region. On the other hand, they did not present any other 

synthetic or real data examples. 

Incorporation of prior information using Bayesian statistics 

A more "elegant" procedure for incorporating prior information has been proposed 

by Tarantola and Valette (1982), Jackson and Matsu'ura (1985). The approach is a 

stochastic one (as opposed to the deterministic approach demonstrated previously) 

and is based on Bayesian statistics. The main framework is Bayes's rule which 

within the context of our problem becomes: 

P(X/Y) - 
P(Yp()Y) P(X) 

(6.46) 

where: P denotes the probability density function (PDF) and "/" means "condi- 

tional". P(x/y) is the PDF of having a property distribution x when the observed 
data are y(a posteriori PDF), P(y/x) is the PDF of measuring the data d when 

the property distribution is x (represents the solution of the forward problem), P(x) 

is the prior knowledge about the property distribution and P(y) is a normalizing 
factor. 

The technique involves the definition of an a priori model xo and a covariance matrix 

Ro such that 

(6.47) 
0 Rd 

where Rd is a diagonal covariance matrix which includes the data uncertainties (it 

is identical to the data error weighting matrix of equation 6.11) and R, n is a model 

covariance matrix and is used to weight the model parameters. 
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The problem can now be formulated within the Bayesian framework: maximize the 

a posteriori probability function (see equation 6.46): in other words, find the model 

which is both consistent with the measured data and the prior information. Taran- 

tola and Valette (1982) showed that this is equivalent to minimizing the following 

function: 

S= (d-f(x))TCd1(d-f(x)) + (x-xo)TC. (x - xo) (6.48) 

For the non-linear case the minimization yields an iterative algorithm. For the 

resistivity case the model at the k+1th iteration is given by (Park and Van, 1991) 

xk+l = xk + [JT Rd 1J + R; 1]-1 [JTRd 1(dy)k + Rml (xo - xk)] (6.49) 

Note that in the right hand side of equation 6.49 a term exists which explicitly 

involves the a priori model x0. Another key factor for incorporating prior infor- 

mation is the covariance matrix Rm'. It can be a diagonal matrix, with elements 

representing the desired variance that each parameter should have relative to the 

starting model. A very small variance for one parameter, for example, results in 

keeping it practically constant. In this way, different prior weights can make the 

inversion more sensitive to some parameters. Further, an a priori smoothness can be 

introduced by using the off-diagonal terms of R; 1 which couple adjacent parameters 

(Park and Van, 1991). This can be done in a fashion similar to the construction of 

the smoothness matrix in Occam inversion. 

Pous et al. (1987) presented successful applications of this technique for the 1-D 

resistivity case. The technique was also used by Park and Van (1991) and Zhang et 

al. (1995) for inverting 3-D resistivity data. Park and Van assigned equal weighting 

to all parameters (without including smoothness) and though they started with a 

realistic initial model they faced instability. They stabilized the procedure by adding 

a constant to the diagonal elements (similar to the Marquadt damping factor -see 

section 6.1.4). Zhang et al. (1995) used an identical algorithm. This is indicative 

that the initial model on its own cannot guarantee stability. 
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Is Inversion with prior information practical ? 

Although there is no doubt about the validity of the schemes which use prior infor- 

oration several questions about its practical applicability arise. 

The application of general prior information (such as smoothness) which derives 

from the physics of the problem is broadly justified. On the other hand other 

types of prior information and, in particular, the incorporation of spatially varying 

uncertainty limits on the model parameters is quite arguable. In many cases this 

type of information does not exist but, most importantly, even if it is available, it 

is not reliable: the possibility/suspicion that a resistivity anomaly is more likely to 

exist in a particular region does not give any guarantee that there are not significant 

resistivity perturbations - which have left their "signature" in the data - in the 

remaining areas. 

Tatantola and Valette stated that more often the a priori information will simply 

be obtained by putting "reasonable" error bars around a "reasonable" central value. 
Even if a "reasonable" starting resistivity can be established how can a "reason- 

able" error bar be defined knowing that resistivities can vary over several orders 

of magnitude? In the majority of real cases prior information is not reliable and 

therefore many (how many ?) possible error bars might have to be tested before a 
final interpretation is produced - but this is not practical. To quote Pedersen and 

Rasmunssen (1989): 

`We would argue that the inclusion of a priori information (in the form 

of elastic uncertainty limits on the model parameters) require one further 

step of interpretation. Not only do we have to worry about the reliability 

of data errors, but we also have to speculate as to whether the a priori 

constraints are reasonable. " 
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6.1.7 The Maximum Entropy technique 

The maximum entropy method (MEM) is a constrained optimization technique 

which has been used mainly for handling linear inverse problems, but can be im- 

plemented easily for non-linear problems as well (Andrews and Hunt, 1977). It 

has been widely used in the image restoration field (Gull and Skilling, 1984a, b). 

Limited use of the technique has been reported in the geophysical field (Robinson, 

1985; Christakos, 1991 ; Szymanski and Dittmer, 1992). Preliminary results of its 

application in the resistivity case have been presented by Szymanski et al. (1994). 

The word "entropy" in this case signifies the negative information content of a 

probability distribution. The basic idea of the MEM optimization is to find the 

least biased optimum probability distribution (the resistivity for example) based on 

the existing information. Thus, any solution which fits the data should at the same 

time maximize the entropy. In that sense the MEM solutions are inherently smooth 
(Hanson, 1987): no unnecessary complexity (which is not justified by the data and 

the prior information) is added to the model. 

The crux of the MEM is the system independence axiom (Skilling, 1988): if a 

proportion k of population has a certain property then it is reasonable to assume 

that any sub-population (which can have this property) has the property in the 

same proportion k. The consequence of this requirement is that the "best" set of 

proportions kj, (j = 1,2,... n) for n parameters must be obtained by maximizing the 

entropy. The entropy of a distribution g is expressed in a discretized form as 

E(g) _ý 9j - 93 - 9j log 
o 

n g' (6.50) 

where g; is the unknown distribution 
, g, is the a priori estimate of gj and n is 

the number of the parameters. For the resistivity case E(g) = E(x), g3 _ x2 and 

gj' = xj' Note that in equation 6.50 a term which explicitly involves the initial a 

priori model xo is included. 

The optimization problem is now defined as (Gull and Skilling, 1984b): find the 
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model which has the maximum entropy and at the same time fits the data. In other 

words, minimize E(x) under the constraint that the sum of square errors S(x), (see 

equation 6.2, or the weighted sum of square errors S(x),,, - in the case where data 

error information is available) is minimized. This type of minimization is known as 

"historic" maximum entropy 13. The minimization can be achieved by means of a 

Lagranian multiplier. In the non-linear case the minimization involves the iterative 

solution of a series of linear problems. 

Inversion examples 

The MEM was applied to the 2-D inversion of earth resistivity data. The exam- 

ples presented here are from the work of Szymanski et al. (1994) who combined 

the MEMSYS 3 package14 with FEM forward modelling and the adjoint equation 

technique for calculating the Jacobian matrix. 

As applied here, the algorithm involves the solution of a series of linear problems. 

For every linear problem the optimum resistivity correction vector is obtained by 

means of a conjugate gradient matrix inversion algorithm and of a search procedure 

for obtaining the optimum Lagranian multiplier (the philosophy is identical to the 

1-D line search involved in Occam inversion - see section 6.1.5). 

Here, preliminary results are presented from the reconstruction of the dipole-dipole 

data set for Model 1 (see Figure 6.1). Inversions were carried out for noise-free data 

(Figure 6.14a) and data corrupted with 5% additive random noise (Figure 6.14b). 

In both cases a homogeneous ground was the a priori model. The results of Figure 

6.14a indicate that the main features are successfully restored, with the deeper areas 

somewhat less well defined. In the inversion of the noise-corrupted data set the main 
13A more powerful maximum entropy formulation based on Bayesian statistics -known as "clas- 

sical" maximum entropy- has been suggested (see Skilling and Gull (1989) for example). Since this 

technique was not tested here it will not be discussed. 
"This is a collection of Fortan 77 routines for MEM image reconstruction developed by Maximum 

Entropy Data Consultans Ltd. 
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Figure 6.14: Maximum entropy reconstructions of the dipole-dipole data set for 

Model 1: a) noise-free data, b) data corrupted with 5% noise. 

features remain identifiable and the entopic regularization term is very effective at 

avoiding spurious noise artifacts in the resistivity section. 

The results -although preliminary - indicate that MEM can be successfully applied 

into the 2-D inversion of earth resistivity data. Further understanding of the MEM 

mechanisms and tests with more complicated synthetic data, but most importantly, 

with real data are essential for establishing the applicability of the technique. 

6.1.8 The Simulated Annealing technique 

Simulated annealing (SA) is a stochastic non-linear optimization technique which be- 

longs to the class of methods known as Monte-Carlo methods. It is based on ideas 

from statistical mechanics, thermodynamics and multivariable probability theory 
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(Bonomi and Lutton, 1984, van Laarhoven and Aarts, 1988). Only limited appli- 

cation of the technique has been reported in the geophysical literature (Rothman, 

1985). Sen and Stoffa, (1993) used SA for solving the 1-D resistivity inverse problem 

and Dittmer and Szymanski (1995) used it for inverting magnetic and 2-D resistivity 

data sets. 

As the name suggests, SA simulates the solidification (annealing) of a melted solid: 

the melted solid in its initial state has a large amount of energy and its molecules are 

positioned randomly, but as it cools the energy is gradually lost and its molecules 
become less mobile. If the cooling is "gradual enough" its final molecular structure 

is the one that holds the less possible energy. 

The analogy to the inverse resistivity problem can be easily established: the solid 

becomes the parametrized space and its molecules the parameters. The system's 

energy can be defined as the sum of square errors between the observed and calcu- 

lated data S(x) (see equation 6.2). Gradual minimization of the energy ("cooling" 

of the system) will produce the solution vector. The "cooling" procedure can be 

simulated by the following iterative procedure (Dittmer, 1994): 

- Define an energy (cost) function, for example, S(x) = dyT dy. Note that terms 

involving smoothness or other a priori constraints can be added to the cost function 

by the use of Lagranian multipliers. 

- Select randomly a parameter i and have its resistivity perturbed by a random 
(positive or negative) amount L xi such that 0< xi ± Oxi <L xmax (where 

Oxmax is the maximum allowable perturbation). 

- Calculate the new forward response f (x +A xi) and the new energy. 

- If the energy function is reduced (the misfit error is reduced) the resistivity change 

is always accepted . To determine whether resistivity changes that cause an increase 

of energy are accepted a control temperature, T, is generated and an algorithm 
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known as the Metropolis algorithm is consulted: 

Yes if exp(- TS) >R 
Accept change (6.51) 

No if exp(- TS) <R 

Where AS is the change in energy and R is a random number between 0 and 1. 

- While the algorithm is progressing the control temperature T (as well as the max- 

imum allowable perturbation L xmax) is gradually reduced to "freeze" the system 

(the reduction takes place after a set amount of iterations by an amount decided by 

the user (i. e. 90% reduction after every 500 iterations). 

- The procedure is repeated until practically no changes in energy are accepted or 

the misfit is just above the observation error. 

One of the most important components of the SA algorithm is the Metropolis algo- 

rithm: the fact that resistivity changes which increase the misfit can be accepted is 

essential for preventing the technique from being trapped in local minima. In this 

way the global searching character of the method is guaranteed, providing that the 

temperature profile is not to steep. 

Other advantages of the technique is that its progress is not determined by the 

conditioning of the controlling matrices, and that it enables the search of a greater 

proportion of the possible model parameter configurations (Dittmer and Szymanski, 

1995). On the other hand, it has to be noted that it is significantly slower (almost 

by a factor of 30 ) than the techniques involving matrix inversion (Tsourlos et al. 

1995)15. Furthermore, its use involves many quantities (such as the control temper- 

ature, the maximum perturbation, etc. ) that the user has to define arbitrarily, and 

this is a practical disadvantage. 

15Dittmer(1994) also proposed an accelerated version of the SA, but no tests with this algorithm 

were made by the author. 

240 



234 

-0.5ý 

-1.5 

-2.51 

-3.5 

567 

1"'. " .:... _ ... ... -. Jk.... 
__........ 

12 13 14 
II; 

lx_ Ohm-m 

5 10 15 20 25 30 35 40 45 50 55 

Figure 6.15: Simulated annealing reconstruction of the dipole-dipole data set for 

Model 1. 

Inversion examples 

The SA optimization was used for the 2-D inversion of resistivity data. The forward 

modelling and parametrization schemes are identical to those used for testing the 

previous techniques. The core SA routine was written by Dr. Jonathan Dittmer. 

The initial tests with dipole-dipole data indicated that the Metropolis algorithm 

was favouring changes at the top layers more than at the bottom. This coincides 

with what Dittmer (1994) observed for the magnetic SA inversion and a similar 

justification applies: the parameters at the top layers will have a higher contribution 

in the "cost" function than those at the bottom layers (in line with the ill-posed 

nature of the problem). Thus, changes in upper layers are more likely to be accepted 

by the Metropolis algorithm (see equation 6.51). 

To tackle this problem, the author introduced the following modification: The Ja- 

cobian matrix was calculated for a homogenous ground. A quantitative estimate of 

the energy difference Ssj that a "small" resistivity perturbation Sxj of a parameter 

j will produce can be obtained by 

ös; = (Jdx; )T (Jdx3) (6.52) 

where dxj is a vector with all elements but its jth (dxi = 6x; ) set to zero. Thus 
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equation 6.52 is equivalent to 

6sß = 6x (Jj J, ) (6.53) 

where J; is the jth column vector of the Jacobian matrix J. These estimates were 

used as weighting factors on the control temperature T. The exponential term in the 

Metropolis algorithm (equation 6.51) when the jth parameter is perturbed becomes 

exp 
AS (T(6sj/Ssm)) 

(6.54) 

This weighting scheme produced more balanced changes. 

A further modification was introduced to balance the fact that the random scheme 

for changing the parameter resistivity does not favour conductive bodies: if the 

resistivity of a parameter is small (i. e. 5 Ohm-m) and the maximum allowable 

perturbation Axmax is relatively large (i. e. 20 Ohm-m) (note that this is quite a 

realistic situation) then the possibility that the next resistivity perturbation change 

will be positive is much higher. To avoid this type of problem the usual logarithmic 

weighting was introduced (see section 6.1.2). 

In Figure 6.15 the SA inversion for Model 1 after 6000 iterations can be seems 

The reconstruction delineates the shape of the targets successfully. However, (even 

though the data set was noise free) some reconstruction artifacts related to the 

bottom side parameters appeared. They are due to the mechanism of the SA: as the 

system "cools" and the control temperature drops, the resistivity of the parameters 

of the top layers settles. In the later stages of the cooling it is effectively only the 

parameters with a small contribution to the misfit error (energy function) that are 

allowed to change (despite the fact that theoretically all parameters can change). 

These "unimportant" parameters are related to the bottom and side edges of the 

studied area. Thus, even if the total energy is low it would take several attempts 

until these parameters were finally corrected. In this sense the inversion presented in 

16Note that for the SA one iteration involves effectively only the solution of the forward problem. 

On the other hand, one iteration signifies a successful resistivity change - the unsuccessful attempts 

are not included 
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this figure is somehow "premature", and cannot improve while the upper parameters 

are fixed. 

6.1.9 Discussion and Conclusions 

In this section several non-linear techniques used in the solution of the 2-D resis- 

tivity inverse problem were presented. It was shown that ill-conditioning combined 

with data-errors generates unstable solutions. As far as the tested techniques are 

concerned the following can be said: 

" Marquadt's method produced very good results when noise-free data were 

tested, but in the case of noisy data spurious noise-related artifacts appeared. 

More generally, the problem with Marquadt's method is that it is based on a 

mathematical "trick" which produces stability but cannot guarantee physically 

realistic solutions. Apart from defining the initial model, the user cannot 

have any other control on the procedure, and thus the results will be highly 

dependent on the (successful or not) choice of the initial model. 

" Smoothness constrained inversion, on the other hand, produces a solution 

which has the general properties that the user has a priori selected. Requiring 

the solution to be smooth is physically realistic and particularly suited to the 

case of 2-D inversion (as was demonstrated by examples). The tests with noisy 

data indicated that the smoothness constraint is successful in avoiding noise 

related artifacts. Furthermore, the technique proved particularly robust and 

although it did not produce the "exact" solutions (it would be unrealistic to 

expect perfect results from any inversion scheme where inaccurate observations 

or an ill-conditioned system are involved) the results were quite close to reality. 

Elis and Oldenburg (1994) suggested a case where smoothness constrained inversion 

did produce totally smooth reconstructions which had no resemblance to the reality 

but their example is a special case with no general value. We noticed a similar 
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Figure 6.16: Reconstruction of noisy data (40 % noise). a) using the Occam method, 

b) using the Marquadt's method. 

behaviour for some of the tested cases: with extremely noisy data the technique 

tended to smooth the solution in such a way that all features are suppressed and 

the final result did not have much resemblance to the reality, however under no 

circumstances were features produced that were not there. Such an example is 

shown in Figure 6.16.40% noise was added to the data set which corresponds 

to the model of Figure 6.12a. The Occam inversion (Figure 6.16a) delineates the 

target slightly, while for Marquadt's method the prism is successfully recovered 

(Figure 6.16b) but the reconstruction it was full of major artifacts. Even though 

both inversion techniques were unsuccessful from a detailed interpretational point 

of view, the Occam inversion is preferable since it is quite reassuring to know that 

the inversion procedure is unlikely to produce spurious features. In other words, 
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"no-information" is better than "bad-information". 

" Inversion with a priori information is theoretically even more powerful than 

Occam inversion: apart from general constraints such as smoothness, prior 

information regarding the spatial variation of resistivity can be included. But 

when this type of prior information is not reliable (unfortunately most of 

the times this is the case ) inversion with a priori information can lead to 

biased interpretations and generally adds extra worries into the interpretation 

procedure. 

" The maximum entropy technique looked quite promising since (due to its in- 

herent smoothness) it can cope well with noisy data. More tests with synthetic 

and real data are needed in order to evaluate its performance. Similarly, the 

simulated annealing technique needs further testing. The general character- 

istics of the method (global searching and avoiding being trapped in local 

minima) are quite appealing, but currently it's applicability is limited by the 

enormous computational loads that it involves. 

In conclusion, it is believed that currently the smoothness constrained inversion is 

the most preferable technique for practical data interpretation. Although far from 

perfect it comprises numerous advantages: a) it is physically reasonable, b) it is 

robust, c) it can cope well with noise and does not produce artifacts, d) it produces 

solutions which have properties that the interpreter has chosen and are not a product 

of an arbitrary initial choice. For these reasons the smoothness constrained inversion 

was chosen as the platform for developing a fast 2-D inversion algorithm. This 

algorithm, together with further examples (with synthetic and real data) of the 

smoothness constrained inversion, will be presented in the following section. 
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6.2 A fast smoothness constrained algorithm for 

the 2-D inversion of earth resistivity data 

In this section a fast smoothness constrained algorithm for the 2-D inversion of earth 

resistivity data is presented. The procedure is fully automated and accelerated 

by the use of a Quasi-Newton update of the Jacobian matrix. In the following 

subsections the need for a fast algorithm is discussed and a detailed presentation of 
its features is given. Further, its performance is compared to other techniques on the 

basis of synthetic and real examples. Finally, extensive examples of its application 

to real data are presented and discussed. 

6.2.1 The need for a fast non-linear inversion algorithm 

The need for increased speed in the inversion procedure derives from the advent 

of automatically controlled resistivity meters. Most of the automated systems are 

able to control a large number of electrodes (i. e. 20-100 ) and in this way not only 

the amount of collected measurements, but also the speed of the data collection 

is increased. Eventually the geophysicists ends up with a large number of high 

resolution data sets. 

A rapid initial interpretation of the data sets is valuable and will help to check if 

the right survey settings are chosen, and can aid in the design of further surveys 

in the area of interest. Traditionally, the "approximate" inversion techniques are 

used for this purpose whilst "accurate" techniques are usually used for final process- 

ing/interpretation after the survey has ended. 

Therefore, it is clear that there is a scope for the development of a fast fully non- 

linear algorithm which could cope with the increased amount of data and could 

be used as a tool for more accurate initial data interpretation. Furthermore, the 

"accurate" algorithm can still be used during the final interpretation stages. 
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For most of the iterative schemes presented in this chapter the total time for one 

iteration is effectively divided between three basic procedures: the calculation of the 

Jacobian matrix, the calculation of the forward model, and the matrix inversion. For 

a typical data set obtained using an automated procedure (i. e. 40 electrodes, 300 

measurements) the calculation of the Jacobian matrix takes approximately 70% of 

the iteration time and the remaining time is equally divided between the calculation 

of the forward model, and the matrix inversion. As the data set gets larger the 

matrix inversion starts getting more time-consuming and for really large data sets17 

(i. e. >1000 measurements) it becomes dominant. 

Since for a typical size of data set the matrix inversion is not that time-consuming, 

it follows that the inversion procedure can be accelerated significantly by avoiding 

the direct calculation of the Jacobian at every iteration18. This can be achieved 

by the use of the Quasi-Newton techniques which will be described in the following 

section. 

6.2.2 Quasi-Newton techniques 

Quasi-Newton (QN) (or variable metric) techniques are a class of non-linear opti- 

mization methods which seek to approximate the Jacobian at each iteration instead 

of calculating it from scratch. This type of method is like the Gauss-Newton tech- 

nique (see section 6.1.1) except that the Jacobian matrix J is approximated by 

a matrix H which is corrected and updated from iteration to iteration (Fletcher, 

1987). 

There is a huge literature on QN techniques since, as Fletcher (1987) suggests, 

the possibilities of QN formulae are endless. It is worthwhile mentioning that QN 

17This type of data set derives from extensive roll-on surface surveys or, more typically, from 

crosshole or borehole-to-surface surveys 
1sFor very large data sets fast matrix inversion techniques can also be used (see Zhang at al. 

(1995) for an example). 
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formulas have been produced for constrained optimization problems (Gill and Muray, 

1974). Note that most of the QN techniques are also able to produce an approximate 

inverse of the Jacobian. Use of the QN techniques in the 2-D resistivity inverse 

problem has been made by Shima (1990)19 who used Powell's algorithm (Powell, 

1970). This algorithm combines a QN Jacobian update and Marquadt's method. 

Further, Loke and Barker (1994) gave a short presentation of a QN scheme for 

inverting earth-resistivity data. 

To indicate how the QN techniques work, consider a measurement vector y and 

an initial property distribution vector x0. If J,, is the Jacobian matrix and f (xo) 

is the forward modelling response then one iteration of any optimization technique 

which involves matrix inversion will produce a parameter correction vector dx,,. 

The forward response for the new estimate will be f (xo + dx,, ). The target is to 

find an approximate expression Bl of the Jacobian J1 for the new iteration without 

calculating it from scratch. A simple way is to approximate the new Jacobian in a 

finite difference sense (recall the perturbation technique -section 4.3.3): 

(i, ) fl (x� + dxo) - r(xo) 
or dx'o 

B1 dx ^" f(xo) - f(x, ) (6.55) 

Equation 6.55 is known as the Secant method. One of the problems of this technique 

is that it does not guarantee uniqueness (Burden and Faires, 1993): there is no 

indication that the approximate Jacobian B will affect vectors which are orthogonal 

to dx in the same way that the real Jacobian J does. Brodyen (1965) showed that 

the unique B1 can be defined as: 

Bi = Jo -{ Jodxo -[f (x�) -f (x, ) ]} dx° 
(6.56) 

dxo dxo 

Equation 6.56 can be used to update the estimate of the Jacobian in every iteration. 
19Shima (1990) had to use a QN update for the Jacobian since he used an integral equation 

technique (alpha-centres) for his forward model calculations. The integral equation techniques 

cannot be used to calculate the Jacobian matrix directly. 
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For the k+1 iteration the approximate estimate is given by 

Bk+1 = Bk -{ Bkdxk -[f (xk) -f (xk+l) ]}dd dx,, 
(6.57) 

where Xk+l = Xk + dxk. Note that from equation 6.56 an updated estimate for the 

inverse of B can also be obtained. 

One of the disadvantages of the QN methods is that they have superlinear conver- 

gence, as opposed to the quadratic convergence of the Newton-like methods. In 

2-D resistivity inversion QN techniques typically result in an average increase of 1-3 

iterations. For most cases, however, this trade-off is more than acceptable consid- 

ering the decrease in the amount of computation involved. Only in cases when the 

iteration time is dominated by the matrix inversion (extremely large data sets) does 

this become a real disadvantage. 

The main disadvantage of the technique is that it is subject to errors involved with 

the finite difference type of approximation of equation 6.56. One problem is that 

round-off errors propagate: each new approximate Jacobian Bk+l is a function of 

the previous (also approximate) Jacobian Bk. This is an extra source of error in 

the inversion (additional to the observation errors) and might cause instability. It 

will be shown that was not found to be the case: the smoothness constraint in the 

inversion scheme prevented the round-off errors from causing unstable solutions. 

6.2.3 Algorithm description 

The Broyden's QN technique was combined with the Occam inversion scheme in 

order to produce a fast non-linear algorithm for the 2-D inversion of earth resistivity 
data. The algorithm uses a FEM algorithm for the forward modelling needs. A 

general description of the algorithm follows. 

Initial Steps 

Given a measured data set y 

a. Define the model parameters 
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b. Produce the matrix C which describes the smoothness pattern of the model 

c. Define an initial resistivity estimate xo and calculate the model response f(xo). 

d. Calculate the Jacobian matrix Jo which corresponds to xo and set Bo = Jo. 

e. Set the initial value yo of the Lagranian multiplier. 

f. Set the inversion stopping criteria 

1. At the kth iteration the resistivity correction vector dxk is given by 

dXk = (BkT Bk + {&k CT C)-'Bk dYk (6.58) 

where Bk is the QN Jacobian estimate which corresponds to the xk resistivity 

distribution, and dyk =y- F(xk). 

2. Set the new resistivity estimate Xk+1 to Xk+1 = Xk + dxk and calculate the 

forward response of the new model f (xk+1). 

3. If one of the stopping criteria are met end the procedure, else find the new QN 

estimate of the Jacobian using equation 6.57 and go to step 1. 

Some of the practical considerations of the algorithm axe discussed below 

The parametrization scheme 

To render the algorithm fully automated a scheme for automatic generation of the 

parameter space was included. A reasonable parametrization scheme should: 

a) Generate a number of parameters which is almost equal to - but not more 

than - the number of measurements (maximum resolution without having an under- 

determined system). 

b) Be able to cope with any known resistivity array 

c) Reduce - as far as possible- the number of irrelevant parameters. 

d) Be able to cope with new/unusual array types. 
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After several sensitivity analysis tests (see section 4.4) the following scheme was 

produced: 

- The parameters are adjusted in a pseudosection-like form: the number of param- 

eters in each layer is symmetrically reduced as depth increases. That is because a 

sensitivity analysis indicated that parameters at the edges tended to become irrele- 

vant as the depth is increased. 

- The number of the parameter layers is set equal to the max n-separation of the 

measured data set. 

- The thickness of each layer is set to be 0.5 of the inter-electrode spacing for every 

array used. Broadly speaking, this is consistent with the depth of investigation (see 

discussion in section 2.2.3) for the most commonly used arrays and was verified by 

the sensitivity analysis tests. 

- Each parameter column is positioned between two subsequent electrode positions. 

The number of parameters produced by this scheme is quite close to (but always 

lower than) to the number of measurements (assuming that a full data set is ob- 

tained). In Figure 6.17a the resultant parameter mesh for the case of 20 electrodes 

and a n-separation of 5 for the dipole-dipole, pole-pole and pole-dipole arrays is de- 

picted. Special consideration had to be taken of the Wenner array which involves less 

measurements in the combined sounding profiling mode (see Figure 6.17b. ). Note 

also that the x dimension of the side and the z dimension of the bottom parameters 

were set to be quite large (> 8 electrode spacings) to simulate infinite boundaries. 

Further, the option of changing the number of the parameter layers and/or redefine 

the thicknesses of the existing parameter layers was introduced into the scheme. 
This was made for two reasons: 

" There might be missing data points or the measuring scheme could be in- 

complete. If too much data is missing then the automatic parameter gener- 

ation scheme (which assumes that is dealing with a full data set) will create 

more parameters than the existing measurements (under-determined system). 
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(meters) 

Figure 6.17: The parametrization scheme used by the algorithm: a) the case of 

dipole-dipole, pole-pole, pole-dipole arrays (20 electrodes, n=5), b) the case of Wen- 

ner array (20 electrodes, n=5) c) the case of a redefined number of layers and thick- 

nesses. 
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Although SC inversion can cope successfully with under-determined systems 

(Sasaki, 1992) it is better not to push the inversion too far. By defining less 

parameter layers than the maximum-n (reducing the vertical resolution) less 

overall parameters can be defined and a more "reasonable" parametrization is 

achieved. 

" In many cases there is reliable prior information concerning the studied area 
(i. e. prior information about the layer structure in the studied area exists or 

the targets have known depths). By redefining the thicknesses of the existing 

parameter layers a parametrization which is more consistent with the expected 

reality can be achieved. In Figure 6.17c the case for defining 3 layers with 

different thicknesses is depicted. Note that a successful application of this 

option in a real example is demonstrated in a following subsection. 

Smoothness matrix 

As discussed in section 6.1.5 the smoothness matrix C describes the smoothness 

relations between the parameters. The smoothness pattern in this algorithm is a 

slightly modified version of the scheme proposed by Sasaki (1989). According to his 

scheme the roughness of the spatial variation of resistivity for a parameter j is given 

by: 

Sxj = a3 [SxE + bxw + 6xN + 64,3 - 46x, ] (6.59) 

where E, W, N, S indicate the four immediate neighbours of the jth block and a3 

represents an empirically defined gradient-amplifying factor. If n is the number of 

parameters then C is anxn matrix whose coefficients are either aj, -4aß or 0. 

One possible choice for the factor a is the following: set aj=1,1.1 , 1.2 ... for the 

parameters in the 1st, 2nd 3rd ... layers respectively. In this way the smoothness 

is increased with depth. This is justified by the fact that resolution decreases with 
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depth while ill-conditioning increases. Thus the deeper the parameter the more 

smoothness constrained should be. The detail of this allowance is, however, an 

arbitrary decision by the operator. 

The modified smoothness pattern used in this algorithm is given by 

öxý _ [ajf(SxE + öxT) + a, '(öxý + 8xq) - 2(a7 + aj)6xß )] (6.60) 

where a' , aý are weighting factors which control the roughness in the horizontal and 

vertical direction respectively. They are adjusted in such a way that they compensate 

for the possible unequal length 5xß and thickness bzj, of the parameter j. The idea of 

such a weighting is due to deGroot-Hedlin and Constable (1990) who suggested that 

if a parameter has unequal dimensions then this is equivalent to having an increased 

smoothness in the direction of the largest dimension. This can be balanced by 

assigning an increased smoothness (roughness penalty) to the smaller dimension. In 

our case the weighting factors become a7 = 1, a, ' = Öxj, /özj 20. Finally it has to be 

mentioned that equation 6.60 gives the ability to assign directional smoothness -i. e. 

decrease the roughness penalty in the x direction if lateral variations of resistivity 

are of interest. In Figure 6.18 the matrix C for the simple case of 9 parameters can 

be seen. Note that the x, z dimensions of the parameters are not equal. 

The Lagranian Multiplier 

In this scheme an empirical way for deciding the Lagranian multiplier at every 

iteration is used. This scheme was preferred to the 1-D line search procedure (see 

section 6.1.5) since the latter proved to be quite time-consuming21 and would change 

the "fast" character of our scheme. The empirical scheme (which was established 

20Note that for the case of square parameters equation 6.60 becomes identical to 6.59. 
21Recall that a modest line search needs at least three repetitions of the forward modelling and 

matrix inversion procedure 
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Figure 6.18: The smoothness matrix C (right) for the case of a9 parameter mesh 
(left). Note that the x, z dimensions of the parameters are not equal. 

after several tests with synthetic and real data) is the following: 

I µk_1/2 if k<4 
µk = 

µk_1 if k>4 k= 112 ... number of iterations 
(6.61) 

This scheme proved quite satisfactory and, in the tested cases, produced inversions 

very similar to those obtained by the 1-D line search scheme. The only disadvantage 

of the empirical scheme compared to the 1-D line search is that sometimes it took an 

extra 1-2 iterations to reach the minimum error. But this is an acceptable trade-off. 
Actually, as Constable et al. (1987) has suggested, there is no guarantee that the 

1-D line search procedure will produce a model that fits the data better. Thus, there 

is no reason to believe that the empirical scheme is inferior to the 1-D line search 

scheme. 

The only requirement of the empirical scheme is that it needs a user-defined initial 

Lagranian multiplier value µo. A test/indication for choosing a proper value is the 
following: 

If the inverted model changes only slightly during the first 2 iterations then the 

value of LM is fairly high and it has to be reduced. 

If the inverted model changes abruptly during the first 2 iterations, producing un- 
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. Generate Parameters 
"Assign intial resistivity 

Generate Smoothness matrix 
Set intial value for the LM 

START ITERATI 
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Figure 6.19: A simplified flow-chart of the QN Occam algorithm. 
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reasonable high or/and low resistivity values, then the value of the LM is fairly low 

and it needs to be increased. 

After testing several models the following empirical values for LM seem to be ap- 

propriate for most cases: 

" For noise-free synthetic data a value of µo = 0.05 was found to be optimum. 

" The value µo = 0.5 was found to be satisfactory for the vast majority of the 

tested real data sets. This value has to be increased only if very noisy data 

sets are inverted. 

Stopping criteria 

There are four possible stopping criteria that the algorithm could apply depending 

on whether data noise information is incorporated: After the correction into the 

resistivity vector is made the % relative RMS error is calculated: 

% RMS error = 100 "1M 
(d,, b8i - d. 1ci)2 

M 
i_1 

dob8i2 

Where M is the number of measurements, d,, b8i is the i observed measurement d., 1ci 
is the i th calculated measurement. The inversion will stop in the following cases: 

1. Divergence The algorithm stops if the error between the real and model data 

increases (occurrence of divergence). Divergence may occur in rare cases such 

as extremely noisy data or unsuccessful (very low) choice of LM. 

2. Slow convergence rate the algorithm stops if the error between the real 

and model data decreases in a slow rate (less than 5%). Actually, in such a 

case the inversion procedure could continue but there is the danger that the 
data will start to fit to noise. In fact, this can also happen even though the 

convergence rate is not slow. 
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Figure 6.20: Inversion of synthetic dipole-dipole data (noise-free, 15 electrodes, 

n=5): a) the model used to produce the data. b) Inversion results using the QN 

Occam method. c) Inversion results using the Occam method. d) The convergence 

of the two techniques. 
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3. The misfit error is below the observation error This case is activated 

when data error information is given. If the inversion error is lower than the 

standard deviation of the data errors then the inversion stops (since data have 

started to fit to noise) and the resistivity estimate of the previous iterations 

is the valid result. Note that in such a case the inversion misfit error is S(x),,, 

(see equation 6.10). 

4. Number of iterations completed The algorithm could stop if a predefined 

number of iterations is completed. 

6.2.4 Application and evaluation of the algorithm 

The described algorithm was applied to a series of synthetic data. The finite ele- 

ment method was used as the forward modelling technique. The initial Jacobian 

matrix was calculated by the adjoint equation technique. The matrix inversion was 

performed by the use of the singular value decomposition routine of Press et al. 
(1987). 

Because of the option of assigning different parameter layer thicknesses and since 

the finite element mesh is created in accordance with the parameter mesh, the initial 

Jacobian matrix (assuming a homogeneous ground as a starting model) cannot be 

precalculated and stored as a look-up file. Each parametrization scheme will result 

in a different initial Jacobian matrix. Thus, despite the use of the QN technique 

the routine for calculating the Jacobian is included in the scheme. This also gives 

the flexibility of starting the inversion with any desirable initial model and, most 
importantly, the option to chose the "traditional" slower inversion which involves 

full Jacobian calculations (abandoning the QN technique). This option proved most 

useful since a direct evaluation/comparison of the performance of the QN was possi- 
ble. In Figure 6.19 a simplified flow-chart of the algorithm is depicted. AC program 

called 2DINVS was written in order to apply the described algorithm. The User's 

Manual for this program is presented in Appendix A. 

259 



(a) 
0 

-1 
10 Ohm-m 

-3 
-4 

50 Ohm-m "_" 400 
Ohm-m 

-5 100 Ohm-m 

(d) %RMS 
ERROR 
25.0 

20.0 U Ooram's inversion 

" QN Occam's in eision 
15.0 

10.0 

5.0 

0.0 
12345678 

ITERATIONS 

Figure 6.21: Inversion of synthetic dipole-dipole data (5% added noise, 20 electrodes, 

n=6): a) the model used to produce the data. b) Inversion results using the QN 

Occam method. c) Inversion results using the Occam method. d) The convergence 

of the two techniques. 
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Figure 6.22: Inversion of synthetic data for two resistive prisms (100 Ohm-m) using 

the QN Occam scheme (the boarders of the prism are also depicted): a) Inversion 

results for the pole-dipole data. b) Inversion results for the Wenner data. 

Several comparison tests were made in order to evaluate the performance of the 

algorithm. In Figure 6.20 the results of the inversion of the noise-free data of the 

model of Figure 6.20a. The inversions with and without the QN Jacobian niatrix 

update can be seen in Figures 6.20b, c respectively. No significant difference a's far 

as the results are concerned can be observed. Both techniques achieved a similar % 

RMS error and the only difference lies to the convergence pattern (see Figure 6.20d). 

The QN technique took an extra iteration (superlinear convergence as opposed to 

the quadratic of the "traditional" technique). 

Similar results were also obtained from the inversion of the dipole-dipole data (5% 

random noise) from the model of Figure 6.21a. The inversions with and without 

the QN Jacobian matrix update can be seen in Figures 6.21b, c respectively. The 

convergence pattern of both techniques is depicted in Figure 6.21d. 
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In Figure 6.22 some examples which illustrate the flexibility of the algorithm are 
depicted: The inversion of the Wenner and pole-dipole data which correspond to a 

two prisms model are depicted. 

Finally, the advantage that the QN technique has as far as the computational time 

is concerned can be seen clearly in Figure 6.23. As the data sets get larger the QN 

technique proves to be extremely economical. Note that all tests were carried out 

in a 486-66Mhz IBM-PC compatible. 

6.2.5 Application of the algorithm to real data 

The algorithm produced satisfactory results when synthetic data were considered 

but it is obvious that conclusive/convincing tests for a scheme which is designed 

for field data interpretation can only be made with real data. Furthermore, these 

real data sets should be from sites where there is a good knowledge of the existing 

targets in order to check/verify the inversion results22 Note that most of the real- 

data presented here have already been discussed in the previous chapter (section 

5.2.4) so only a brief description of the survey details is given. 

Drain (University of York) 

The data set which was obtained over the drain at the courtyard of the Department 

of Electronics at the University of York was inverted using the QN Occam inversion. 

The position of the drain in relation to the measured section is depicted in Figure 

6.24a). The pseudosection of the dipole-dipole data set can be seen in Figure 6.24b 

(24 electrodes, dipole=60cm, n,,. =8,137 measurements). 

The inversion after 6 iterations (7.2% RMS error) can be seen in Figure 6.24c. 

Despite the 3-D geometry of the target the inverted image delineates the limits of 

the drain quite accurately - only the top of the drain is somewhat misplaced - and 
221n that sense data from archaeological sites are ideal since they often involve targets with 

well-defined shape, which can be surveyed repeatedly. 
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Figure 6.23: Comparison of the total run-time for 4 data sets between the QN 

Occam and Occam inversion schemes (all tests were performed in a 486-66Mhz 

IMB-PC compatible). 

no major artifacts appear. 

Foundation walls (Guest hall, Fountains Abbey (N. Yorkshire) 

The dipole-dipole data set which was obtained over the foundations of the guest, 

hall in Fountains Abbey (see Figures 2.13,6.25) was inverted using the QN Occam 

scheme. The pseudosection of the data set (65 electrodes, dipole=50cm, n,,,, 1, T=7, 

413 measurements) is depicted in Figure 6.25b. 

In Figure 6.25a the dipole-dipole profile for n=1 is shown. This profile (wit-it a 

separation of 0.5m) is what one would have collected from a typical archaeological 

geophysics profiling survey. The possible interpretation of this profile is also depicted 

in Figure 6.25a. The effect of the walls is clearly identified. Further, at the right- 

hand side of the profile (between 25 and 27 metres), a pronounced high resistive 

anomaly which could be interpreted as a drain is shown. Note that the full resistivity 

profile map (twin-probe data in Figure 2.13) justifies this interpretation. 

The QN Occam inversion results (7 iterations, 2.5% RMS error) are depicted in 
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Figure 6.24: Reconstruction of the dipole-dipole data measured over a drain (Uni- 

versity of York): a) the exact location of the drain iii relation to the rnett. 5itred 

section, b) the measured data set in a pseudosection form, c) reconstruction using 

the QN Occam algorithm (6 iterations, 7.2% RMS error). 

264 

Distance (m) 



Figure 6.25)c. The foundation walls can be clearly seen: the lateral extent of the 

structures is realistic and their depth is consistent with the information about the site 

(Emerick, 1995 personal communication). Most importantly, the possible "drain" 

anomaly seems to derive from a very "weak" near-surface resistive structure (a walk 

path for example) since there is no indication that it extends deeper than 20cm. 

This is a typical example of the type of information that someone could get from a 

tomographic data set: specific tomographic sections in combination with the tradi- 

tional profiling surveys can produce safer and more informative interpretations. 

Drain - Mill, Fountains Abbey, (N. Yorkshire) 

The dipole-dipole data set (24 electrodes lm apart, maximum n=7) which was obtain 

over a section situated orthogonally to a drain at the Mill area of Fountains Abbey 

was inverted using the QN Ocam scheme. The position of the drain in relation to 

the measured section is depicted in Figure 6.26a and the pseudosection of the data 

set is depicted in Figure 6.26b. 

The inversion results (8 iterations, 1.3% RMS error) can be seen in Figure 6.26c. The 

inversion delineates accurately both the position and the size of the drain. Further, 

a conductive layer at a depth of approximately 2 metres corresponds to the water 

level in this area. 

Tunnels - Fountains Abbey (N. Yorkshire) 

A dipole-dipole section (South-to-North direction) was measured across the tunnels 

which are situated beneath the Infirmary area at the Fountains Abbey. The four 

tunnels are clearly visible and their exact dimensions are known (see Figure 6.27a). 

The electrode separation was Im (37 electrodes) and the maximum n separation was 

7 dipoles. The measured section does not fully "cover" the northernmost tunnel (due 

to obstacles). The data is presented in a pseudosection form in Figure 6.27b. It is 

once again clear that for a relatively complicated structure - such as this one - the 

pseudosection image is "uninformative" and misleading. 
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Figure 6.25: Reconstruction of the dipole-dipole data measured over the area of the 

guest hall at Fountains Abbey (N. Yorkshire): a) the dipole-dipole profile for n=1 

(spacing =0.5m), b) the measured data set in a pseudosection form, c) reconstruction 

using the generalized BP algorithm (7 iterations, 2.5% RMS error). 
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The QN Occam inversion results (9 iterations, 3.4% RMS error) are depicted in 

Figure 6.27c. Despite the low lateral resolution of the survey (the electrode sep- 

aration is lm but the distance between the tunnels is less than 0.5m) the results 

delineate three of the tunnels quite accurately. Only the southernmost tunnel is not 

well resolved - correctly representing the fact that it is half-filled with soil. 

"Sting" Cave (Williamson County, Texas) 

The "sting" cave data were inverted using the scheme. The location of the known 

caves is shown in Figure 6.28a. The pseudosection of the measured data (28 elec- 

trodes 4.5m apart, maximum n=8) is depicted in Figure 6.28b. 

The QN Occam inversion results after 9 iterations are depicted in Figure 6.28c. The 

RMS error for this inversion is 2.9%. This inversion was produced by adjusting the 

thicknesses of the parameter layers according to the accurate a priori information. 

The inversion with the automatic parameter generation (not shown here) produced 

a very similar image, gave an error of 5.4% and slightly misplaced the central cave 

in the depth scale. This is indicative of the improvement of the data fit if the correct 

parameter thicknesses are chosen. In any case, several possible parameter schemes 

have to be tested in order to obtain the optimum solution. 

The inverted image of Figure 6.28c delineates the two known caves fairly accurately. 

An artifact at the left side of the anomaly that corresponds to the "sting" cave is 

probably due to the fact that the measurements do not fully describe the target. 

Further, a pronounced resistive feature is now seen to be situated at the right- 

hand side of the section (centre at x=98m, z=13m). Judging by the accuracy of 

the reconstruction of the known caves we have every reason to believe that this is 

another cave. 
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Figure 6.26: Reconstruction of the dipole-dipole data measured over a drain at 

the Fountains Abbey (N. Yorkshire): a) the exact location of the drain in relation 

to the measured section, b) the measured data set in a pseudosect, ion form, c) 

reconstruction using the QN Occam algorithm (8 iterations, 1.3% RMS error). 
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6.2.6 Conclusions 

In this section a fast smoothness constrained algorithm is proposed. The algorithm 

combines the characteristics of the smoothness constrained inversion with the com- 

putational savings deriving from the QN Jacobian update. The conducted tests 

indicated that the algorithm has the following features: 

" It is considerably faster than the Occam inversion for a typical size of data 

set. The fact that it takes a further 1-3 iterations is a more than acceptable 

trade-off considering the computational savings that it involves. 

" In all tested cases it produced results similar to the Occam inversion and, in 

general, comprises all the advantages (and limitations) that Occam inversion 

has: stability, robustness to noise, and inversion with user defined character- 

istics. 

" It is flexible since it can cope with any known resistivity array and, further, it 

can readily cope with "unconventional" measuring schemes. 

" Extra flexibility is achieved by allowing the incorporation of variable smooth- 

ness and, most importantly, variable parametrization. 

" For all of the tested cases with real data the algorithm produced reasonably 

good results which do not suffer from algorithm and/or noise related artifacts. 

Overall, the algorithm proved to be a reliable and useful tool for routine data inter- 

pretation. 

6.3 Chapter overview 

In this Chapter non-linear inversion techniques applied to the 2-D reconstruction of 

earth-resistivity data were presented. 
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Figure 6.27: Reconstruction of the dipole-dipole data measured over the t innels at 

the Infirmary of Fountains Abbey (N. Yorkshire): a) a sketch of the tunnels b) the 

measured data set in a pseudosection form, c) reconstruction using the QN Occam 

algorithm (9 iterations, 3.4% RMS error). 
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In the first part of this chapter, widely used techniques such as the non-linear least- 

squares method, Marquadt's method, and smoothness constrained (Occam) inver- 

sion have been reviewed. Further, approaches such as inversion with prior infor- 

mation, simulated annealing and maximum entropy were discussed. It was shown 

how the ill-conditioning of the resistivity inverse problem, when combined with data 

noise, can produce unstable solutions. The synthetic data tests indicated some of 

the merits and demerits of the tested techniques. On the basis of the theoretical 

characteristics of the techniques, as well as, the results with synthetic tests, it was 

concluded that the smoothness constrained inversion is currently the best scheme 

for routine data interpretation. 

In the second part of this chapter a fast smoothness constrained inversion algorithm 

which uses a quasi-Newton technique for updating the Jacobian matrix is proposed. 

The need for such an algorithm was discussed. The features of the algorithm were 

presented in detail and comparisons to other techniques were shown. Finally, tests 

of the algorithm with real data were presented. The algorithm proved to be robust 

noise insensitive and produced good quality inversions. The tests with real data 

indicated that it can be a reliable tool for data interpretation. 
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Figure 6.28: Reconstruction of the dipole-dipole data measured over caves ("Sting" 

Cave, Williamson County, Texas): a) the exact location of the known caves in 

relation to the measured section, b) the measured data set in a pseudosection form, 

c) reconstruction using the QN Occam scheme (9 iterations, 2.9% RMS error). 
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Chapter 7 

Conclusions 

The aims of this thesis, as described in detail in the introduction, was to study 

existing approaches and propose new improved algorithms for the modelling and 2- 

D inversion of the earth resistivity data. The conclusions drawn have been presented 

in every individual chapter so that only a brief overview will be presented here. 

" Basic resistivity theory has been reviewed. The artificiality of the concept of 

apparent resistivity was discussed and a review of the existing resistivity ar- 

rays showed some of their merits and limitations. Resistivity instrumentation 

and automated systems were discussed and the practical application of the 

resistivity approach was explained. For the combined sounding profiling mode 

which is of interest in this thesis, it was decided that the dipole-dipole array 

was the best choice in view of its merits and normal hardware and survey 

limitations. 

" The forward resistivity modelling approaches were reviewed. In view of the 

project's targets, the finite element method was found to be ideal for the for- 

ward resistivity modelling for the following reasons: 

a) It can incorporate any resistivity distribution. 

b) It can be used to produce the Jacobian matrix. 
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c) It can cope with any resistivity array. 

d) it can readily be used to take terrain topography into account. 

"A full description of the 2.5-D FEM scheme which was developed for this 

project was presented. Several comparative tests verified the accuracy of the 

scheme. 

"A FEM scheme was proposed for modelling arrays which are parallel to the 

strike direction. The scheme takes full advantage of the 3-D variability of the 

potential and allows the modelling of arrays such as the square configuration 

which previously could only be modelled with full 3-D schemes. The accuracy 

of the scheme was tested. The results indicated that the square array and the 

resultant AIR can be used to delineate the exact edges of isolated targets in 

the profiling resistivity mode. 

" The FEM scheme was used to model the effect of terrain topography on sev- 

eral resistivity arrays. This was necessary since the previous studies dealt only 

with the dipole-dipole array. The results indicated that all arrays are signif- 

icantly affected by the terrain topography and that the FEM scheme can be 

readily used to take the terrain topography effect into consideration. Other 

conclusions are: 

a) All arrays produce significant, and potentially misleading, artificial errors 

within the data for slope angles larger than 10 degrees (if the slope extend is 

larger than the array spacing). 

b) The pole-pole array is more sensitive to the vertical slope topography for 

standard profiling applications while, conversely, the square-array is the least 

sensitive. 

c) For full 2-D data sets the dipole-dipole and pole-pole arrays produced 

anomalies of similar patterns. The Wenner array produced anomalies with 

opposite patterns. The pole-dipole array, in general, produced anomalies with 

asymmetric patterns. 
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d) For 2-D surveys, as far as the amplitude is concerned, dipole-dipole and 

pole-dipole arrays produced the highest and lowest errors when compared with 

pole-pole and Wenner arrays. However, direct quantitative comparisons can- 

not be made since the sensitivity of each array is different. 

" It was showed that the Jacobian matrix plays a significant role within the 

inversion procedure. Ways for calculating the Jacobian (sensitivity technique, 

adjoint equation technique, perturbation technique) were presented within the 

FEM procedure. The equations for applying these techniques were developed 

explicitly. The adjoint equation technique was found to be accurate and quite 

economical in computing time. The adjoint equation technique was used to 

calculate the sensitivity response of common resistivity arrays. The results 

indicate that: 

a) The Jacobian matrix can be used to get a qualitative analysis of the response 

of the arrays over known targets. 

b) It was shown that unusual apparent resistivity responses can be explained 

adequately by the sensitivity of the arrays. 

c) The Jacobian matrix can be used as a means for designing optimum surveys 

or achieving optimum parametrization. 

" Approximate resistivity techniques have been reviewed. The theoretical anal- 

ysis of their features and results from synthetic data indicated that: 

a) The pseudosection technique is based on crude assumptions but it is simple 

in its implementation. It produced results which, in most cases, suffer from 

major artifacts which are associated with the varying sensitivity of the arrays. 

b) The associated Barker's method suffers from the same limitations. Despite 

its iterative character, it has no self-correcting mechanism for adjusting the 

spatial resistivity distribution. It is able to produce reliable reconstructions 

only when the pseudosection assumptions are valid. 

c) The user-forward modelling interactive technique is heavily based on the 

operator's expertise and is subject to biased implementation. Fluther, it can- 
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not cope with the increased amount of data produced by automated measuring 

systems. 

d) The simple back-projection algorithms (such as Bristow's method and Pow- 

ell's method) are quite crude but easily applicable since there is no need to 

calculate the Jacobian matrix. The equipotential constraint can be applied 

to only a limited number of arrays. When it works, it guarantees that BP 

will take place at the most sensitive regions of the subsurface. The associated 

Noel's method is more sophisticated (it makes use of the Jacobian matrix) but 

still suffers from reconstruction associated artifacts. 

e) The BP technique proposed by Shima cannot be used directly for recon- 

structing surface resistivity data since it produces negative resistivity values. 

" On the basis of the theoretical characteristic of the approximate reconstruc- 

tion techniques tested in this work a generalized back-projection algorithm 

was proposed. The algorithm : 

a) Can include many of the existing approximate algorithms. 

b) Can cope with any type of measuring scheme. 

c) It can be iterative, and thus produce both qualitative and quantitative in- 

formation of the resistivity distribution. 

Those are achieved by recognizing the major importance of the Jacobian ma- 

trix within the approximate reconstruction procedure. 

The tests with synthetic data indicated that the algorithm: 

a) produces reconstructions which do not suffer from major artifacts. 

b) produces reasonably accurate qualitative and quantitative reconstructions. 

c) it is relatively noise-insensitive. 

The tests with real data indicated that the algorithm: 

a) produced results that are generally in good agreement with the known 

targets. 

b) in some case-studies (of a generally complicated nature) failed to delineate 
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the depth of the targets successfully. This problems are due to its approximate 

nature. For the same reason the RMS errors were not particularly low. 

" Several non-linear techniques used in the solution of the 2-D resistivity inverse 

problem were presented. It was shown that ill-conditioning combined with 

data-errors generates unstable solutions. As far as the tested techniques are 

concerned the following can be said: 

a) Marquadt's method produced very good results when noise-free data were 

tested, but in the case of noisy data spurious noise-related artifacts appeared. 

More generally, the problem with Marquadt's method is that it is based on 

a mathematical "trick" which produces stability but cannot guarantee physi- 

cally realistic solutions. 

b) Smoothness constrained inversion produces a solution which has the gen- 

eral properties that the user has a priori selected. The tests with noisy data 

indicated that the smoothness constraint is successful in avoiding noise related 

artifacts. Furthermore, the technique proved particularly robust and although 

it did not produce the "exact" solutions the results were quite close to reality. 

c) Inversion with a priori information is theoretically quite powerful: apart 
from general constraints such as smoothness, prior information regarding the 

spatial variation of resistivity can be included. But when this type of prior 

information is not reliable, inversion with a priori information can lead to bi- 

ased interpretations and generally adds extra worries into the interpretation 

procedure. 

d) The maximum entropy technique looked quite promising since (due to its 

inherent smoothness) it can cope well with noisy data. More tests with syn- 

thetic and real data are needed in order to evaluate its performance. 

e) The simulated annealing technique needs further testing. The general char- 

acteristics of the method (global searching and avoiding being trapped in local 

minima) are quite appealing, but currently it's applicability is limited by the 

enormous computational loads that it involves. 
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In conclusion, it is believed that currently the smoothness constrained inver- 

sion is the most preferable technique for practical data interpretation. Al- 

though far from perfect, it comprises numerous advantages: a) it is physically 

reasonable, b) it is robust, c) it can cope well with noise and does not produce 

artifacts, d) it produces solutions which have properties that the interpreter 

has chosen and are not a product of an arbitrary initial choice. 

"A fast smoothness constrained algorithm was proposed. The algorithm com- 

bines the characteristics of the smoothness constrained inversion with the over- 

all computational savings deriving from the QN Jacobian update. The con- 

ducted tests indicated that the algorithm has the following features: 

a) It is considerably faster than the Occam inversion for a typical size of data 

set. The fact that it takes a further 1-3 iterations is a more than acceptable 

trade-off considering the computational savings that it involves. 

b) In all cases tested it produced results similar to the Occam inversion and, in 

general, comprises all the advantages (and limitations) that Occam inversion 

has: stability, robustness to noise, and inversion with user defined character- 

istics. 

c) It is flexible since it can cope with any known resistivity array and, further, 

it can readily cope with "unconventional" measuring schemes. 

d) Extra flexibility is achieved by allowing the incorporation of variable smooth- 

ness and, most importantly, variable parametrization. 

e) For all of the tested cases with real data the algorithm produced reasonably 

good results which did not suffer from algorithm and/or noise related artifacts. 

Overall, the algorithm proved to be a reliable and useful tool for routine data 

interpretation. 

Some more general conclusions that can be drawn from the study are: 

9 The results with the real data sets illustrated the great potential that inversion 

techniques have. It was shown that inversion can delineate even complicated 
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structures and produce valuable information which can significantly increase 

the knowledge of a site. 

" On the other hand, it was illustrated that the inversion techniques have lim- 

itations and can produce artifacts (especially the approximate techniques). 

In this context, the user should be aware of the possible limitations of the 

techniques in order to avoid erroneous interpretations. 

" For most of the inversions presented in this work a remarkably good fit be- 

tween the modelled and real data was achieved. This is not only due to the 

fact that the presented inversion schemes are relatively efficient but also due 

to other factors which are equally important for obtaining good quality results: 

- Most of the presented data sets are from sites which are geologically "clean" (i. e. 

Fountains Abbey): there are a limited number of near-surface inhomogeneities 

which could mask the effect of the targets (geological "noise"). 

- The majority of the tested targets satisfy (to a certain degree) the assump- 

tions of the 2.5-D modelling ("infinite" extent along the strike (y) direction). 

- Most importantly, the quality of the collected data was particularly good 

and this is a consequence of the resistivity instrumentation. The Sting/Swift 

system (AGI Inc. ), with which most of the data was collected, has automatic 

noise-control features and produced reliable dipole-dipole measurements (re- 

call that the dipole-dipole array has a low signal-to-noise ration). 

" Direct comparisons between the approximate and accurate techniques cannot 

be made. The generalized back-projection algorithm produced results which 

are inferior to the fast QN Occam scheme -a consequence of the simplifying 

assumptions of the approximate schemes. Further, the back-projection algo- 

rithm proved to be slightly slower than the QN algorithm for the typical sized 

data sets presented in this work. On the other hand, preliminary results in- 

dicate that the BP algorithm is much faster when particularly large data sets 

are considered since it avoids the matrix inversion procedure. In that sense, 
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the generalized BP algorithm is best suited to the preliminary interpretation 

of sizeable data sets. 

7.1 Future Work and Lines of Research 

This work is by no means a complete investigation of the tested algorithms. Only 

some particulars features of the presented algorithms were studied having in mind 

mainly the practical application of the schemes. Therefore, there is much left to be 

done. 

Further study of the theoretical properties of the presented algorithms is necessary. 

We believe that this is essential since numerical tests, on their own, can be indicative 

of the performance of an algorithm but cannot be conclusive. A combined theoret- 

ical and practical study is the only way to find out the functional limitations and 

advantages of the various techniques. 

Moreover, since all the algorithms are designed for addressing a real problem, further 

tests with real data are needed. This data should be measured over calibrated test- 

sites and should describe various targets with different degrees of complexity and in 

varying contexts. 

As far as the schemes presented in this work are concerned the following can be 

done: 

Modelling 

The accuracy of the forward modelling is essential for the quality of the inversion 

results. With regard to the FEM modelling several modifications can be made 

in order to improve the accuracy: for example, the investigation of more efficient 

boundary conditions such as the application of "boundary elements" (Zienkiewicz 

and Taylor, 1989) or the incorporation of a context-adjustable mesh (automatic 

increase of the mesh density in areas of large property contrast). 
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Approximate inversion schemes 

As the potential size of the resistivity data sets is increasing, the approximate algo- 

rithms will always be a useful tool for preliminary data interpretation. The gener- 

alized BP algorithm presented in this work has to be tested further with synthetic 

and real data for the cases of full tomographic data sets since, as was explained, we 

believe that this is a field where its application is more practical. 

Accurate inversion schemes 

With respect to the accurate inversion schemes, there is a scope for the following: 

A better understanding of the effect of the different smoothness patterns in Occam 

inversion is necessary. Further, the technique can be used in conjunction with more 

efficient matrix inversion schemes such as the generalized singular value decompo- 

sition which are particularly suited for solving regularization problems (Golub and 

Van Loan, 1989). 

Further research on the practical application of a priori information in the resistivity 
inversion is needed. Although the theoretical background of the relevant algorithms 

is fully developed, there is very limited practical experience in this field. 

Further theoretical and practical evaluation of the Quasi-Newton techniques is nec- 

essary. Moreover, alternative QN updating formulas can be tested (see Gill and 
Murry (1974) for example). 

Finally, the preliminary results indicate that there is a scope for further studying 

and developing techniques such as the maximum entropy and simulated annealing. 

Increase in speed 
Due to the advent of the automated systems there is a scope for further accelerating 

the inversion/interpretation procedure. This can be achieved either by means of 
hardware (more powerful computers, parallel processing etc. ), efficient programming 
(i. e. machine code) and/or more efficient algorithms. Already, fast algorithms for 

inverting large matrices such as the sub-space methods (Oldenburg et al., 1993) 
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and conjugate gradient methods (Zhang, 1995) have been applied to the resistivity 

inverse problem with satisfactory results. 

3-D Inversion 

Most of the algorithms presented in this work can be modified readily in order to 

solve 3-D inversion problems. 3-D schemes are currently memory and time consum- 

ing but increases in the inversion speed (discussed above) will enable 3-D inversion 

to be widely used: so there is no doubt that in a few years time 3-D schemes will 
be the standard procedure for modelling and interpreting resistivity data. 
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Appendix A: 2DINVS-User's 

manual 

Al. ABOUT THE PROGRAM 

2DINVS is a program for 2-D inversion of surface earth resistivity data which oper- 

ates under DOS. The program performs smoothness constrained (Occam's) inversion 

and is based on a finite element forward modelling scheme. The Jacobian matrix is 

calculated using the Adjoint equation technique. The main features of the program 

are: 

" It can reconstruct data obtained using several known arrays. It can cope with 

a large amount of data since it uses a DOS extender. 

" There is an option for using Quasi-Newton update of the Jacobian matrix in 

order to speed up the inversion. 

" The parameters of the problem can either be decided automatically or by the 

user (till a certain degree). 

9 Some options for adjusting the model smoothness are included. 

A2. HOW TO INSTAL AND RUN IT 

Copy the contents of the disk to a directory. Within the disk there are: 

a. the [2DINVS. EXE] which is the executable inversion program 
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b. the [G032. EXE] file which is the DOS-extender 1. Note that unless [G032. EXE] 

is in the same directory with the [2DINVS. EXE] or in the DOS-Path the program 

will not run. 

c. Sample inversion input files and some test data files. 

In order to run the program you type: 2DINVS <filename> where filename is the 

name of a 2DINVS inversion input file. 

Example: > 2DINVS TST . IN 

or >2DINVS HILL. DAT 

The format of the inversion input file is explained in Section A3. 

A3. THE INVERSION INPUT FILE 

The inversion input file contains all the information that the inversion program needs 

in order to run. The input file can have any name however it should have a specific 

format. It consists of several lines. If the line starts with the symbol $ then this line 

is a header which is actually ignored by the program and is just for the operator's 

guidance, however this line should always be in the file. All other lines (without the 

$ symbol) should contain the required values or filenames. Note that the sequence 

of the lines must never change. 

The first line of the input file is a general header: 

INVERSIONINPUT_FILE-FOR_" 2DINVS" 

It is followed by the line: 

this type of line is an indication of a different part of the input file. The input file 

has three parts: 

PART 1: Includes information for the dynamic memory allocation. 
PART 2: Includes information about the type of the resistivity data to be inverted 

1G032. EXE is a public domain DOS extender (Free Software Foundation Inc. ). 
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as well as info about the output. 

PART 3: Includes information used by the inversion algorithm. 

An example of an input file is shown in Figure Al. 

The options that have to be inserted are described below: 

PART 1 
$Max_probes 

integer max-probes 

max probes= The maximum number of probes (electrodes) that 

the program can handle. This value is used exclusively for mem- 

ory allocation purposes and therefore any value equal or larger 

than the actual number of electrodes of the inverted data-set is 

valid 

Example: 

$Max_probes 

20 

This is a proper value for a data-set of 1-20 electrodes. 

$Max_n 

integer max_n 

max-n= The maximum probe separation (expressed in integer 

multiples of the unit electrode spacing) that the program can 
handle. This value is the well-known n-separation for the Wen- 

ner, Dipole-dipole pseudosection and similarly can be defined 

for other arrays. This value is used exclusively for memory al- 
location purposes and therefore any value equal or larger than 

the actual number of the n-separation of the inverted data-set is 

valid. 
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$INVERSION_INPUT FILE_FOR_"2DINVS" 
$----------------------------------------------------------------------- 
$MAXPROBES 
20 
$MAX_N 
8 
$MAXJ1EASUREMENTS 
105 
$----------------------------------------------------------------------- 
$DATA_TYPE_(Apres=l, Resistance=2, Apres+noise=l1, Resistance+noise=l2) 

11 
$ARRAY_TYPE_(Wen=l, Dip-Dip=2, Pole-Dip=3, Pole-Pole=4) 
2 
$DATA_INPUT_FILENAME 

test. dat 
$INFO_OUTPUT_FILENAME 

test. inf 
$----------------------------------------------------------------------- 
$MAXIMUM_NUMBER_OF_ITERATIONS 
2 
$INVERSION_TYPE_(Quasi-Newton=l, Newton=2) 
1 
$LAGRANIAN_MULTIPLIER 
0.5 
$SMOOTHNESS_TYPE_(normal=l, >bottom=2) 
1 
$DEFINE PARAMETERS-(auto=0, user=l) 
1 
$PARAMETER_USER_FILENAME 
test. prm 
$END 

Figure Al: An example input file 

303 



Example: 

$Max-n 

7 

This is a proper value for a data-set of 1-7 n-separation. 
$Max_measurements 

integer max_meas 

max_meas= The maximum number of measurements that the 

program can handle. This value is used exclusively for memory 

allocation purposes and therefore any value equal or larger than 

the actual number of the measurements of the inverted data-set 

is valid. 

Example: 

$Max-measurements 

55 

This is a proper value for a data-set of 1-55 measurements. 
PART 2 

$DATA_TYPE 

integer data type 

data-type=l, or 2, or 11, or 12 

Is a number which indicates the type of the measured data in- 

serted into the program. [The full format that the data should 
have is given in Section A41. The numbers that can be given are: 
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1 if the data are apparent resistivities (in Ohm-m) and no data 

errors are given. 

2 if the data are resistances (in Ohms) and no data errors are 

given. 

11 if the data are apparent resistivities (in Ohm-m) and data 

errors are also given (in Ohm-m). 

12 if the data are resistances (in Ohms) and data errors are also 

given (in Ohms). 

Example: 

$DATA_TYPE 

1 

In this case the given data are apparent resistivities in Ohm-m 

$ARRAY_TYPE 

integer data-type 

data type=l, or 2, or 3, or 4 

Is a number which indicates the type of the array used to obtain 

the measured data. The numbers that can be given are: 

1 for Wenner array 

2 for Dipole-dipole array 

3 for Pole-dipole array 
4 for Pole-pole array 
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Example: 

$ARRAY_TYPE 

4 

In this case the given data are obtained using the Pole-pole array. 

$DATAINPUT FILENAME 

string in-name 

in-name= The DOS name of the file which contains the data to 

be inverted. [The full format that the data should have is given 

in Section A4]. 

Example: 

$DATA_INPUT_FILENAME 

test. dat 

$INFO_OUTPUT_FILENAME 

string out-name 

out name= The DOS name of the file in which the inversion 

information and results will be stored. [The full format of the 

output info file is given in Section A5]. 

Example: 
$IN FO 

-OUTPUT. 
' I LEN AME 

out. dat 

PART 3 
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$MAXIMUM NUMBER_OFITERATIONS 

integer max_itr 

max_itr- The maximum number of iterations that the program 

is allowed to perform. Usually the program will converge in few 

(less than 6) iterations. Since the program has other stopping 

criteria if you do not want to use number of iterations as a stop- 

ping criterion put a large number (e. g. 20) as a value. 

Example: 

$MAXIMUM_NUMBER_OF_ITERATIONS 

10 

The program will not go further than 10 iterations. 

$INVERSION_TYPE 

integer inv_type 

inv_type=l, or 2 

Is a number which indicates the type of the inversion the program 

will perform. The numbers that can be given are: 

1 for smoothness constrained Quasi-Newton inversion (quasi- 

Newton update of the Jacobian matrix). 

2 for smoothness constrained Newton-type inversion (calculation 

of the Jacobian at every iteration. 
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Example: 

$INVERSION_TYPE 

1 

In this case Quasi-Newton inversion (quasi-Newton update of 

the Jacobian matrix) will be performed. 

$LAGRANIAN_MULTIPLIER 

float lagr_mlt 

lag_mlt= A float value of the Lagranian multiplier. A typical 

value is 0.5 but this can change according to your data set. 

Example: 

$LAGRANIAN_MULTIPLIER 

0.5 

$SMOOTHNESS_TYPE 

integer smooth-type 

smooth-type=l, or 2, 

Is a number which indicates the parameter smoothness scheme 

to be followed. The numbers that can be given are: 

1 for a uniform (equal in all directions) smoothness scheme. 
2 for increasing smoothness with depth. 
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Example: 

$SMOOTHNESS_TYPE 

2 

This will create increased smoothness with depth. 

$DEFINEPARAMETERS 

integer def_param 

def_param=0, or 1 

Is a number which indicates the way the parametrization will 

happen (see Section 6.5). The numbers that can be given are: 

0 the program will do the parametrization automatically. 

1 the program will do the parametrization based on user defined 

parameters -a filename has to be also defined using the option 

below. 

Example: 

$DEFINE. YAR. AMETERS 

1 

$PARAMETER_USER. rILENAME 

string param_name 

param_name= The DOS name of the file which con- 

tains the parametrization information. Needed only if the 

DEFINE-PARAMETERS option is 1. The general format of the file 

is given in section A6. 
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Example: 

$P ARAMETER_USER_F I LEN AME 

test. prm or prm. dat 

A4 FORMAT OF THE DATA INPUT FILE 

The data input file can have any Dos name however it should have a specific for- 

mat. The data input file is a series of lines. Each line bears information for one 

measurement of the data-set. The format of the line depends on the choice of the 

$DATA_TYPE option: 

If data-type=1 (apparent resistivities without errors) a line of the data file should 

have the following format: 

A_elec_pos B_elec_pos M_elec_pos N_elec_pos ap_res 

If data-type=2 (resisances without errors) a line of the data file should have the 

following format: 

A_elec_pos B_elec_pos M_elec_pos N_elec_pos restanc 

If data_type=11 (apparent resistivities with errors) a line of the data file should have 

the following format: 

A_elec_pos B_elec_pos M_elec_pos N_elec_pos ap_res apres_error 

If data-type=11 (resistances with errors) a line of the data file should have the 

following format: 

A_elec_pos B_elec_pos M_elec_pos N_elec_pos resstanc restanc_error 

where: 

A_elec_pos is the location (x coordinate) in metres of the current electrode A (1+) 

for a measurement. 

B_elec_pos is the location (x coordinate) in metres of the current electrode B (I-) 

for a measurement. 
M_elec_pos is the location (x coordinate) in metres of the potential electrode M (V+) 

for a measurement. 
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N_elec_pos is the location (x coordinate) in metres of the potential electrode N (V+) 

for a measurement. 

ap-res the measured apparent resistivity in Ohm-m- 

ap-res-error the standard deviation of the measurement's error in Ohm-m. 

restanc the measured resistance in Ohms. 

restanc-error the standard deviation of the measurement's error in Ohms. 

Example: 

Suppose that a full Wenner data set is obtained over a homoge- 

neous half space of 100 Ohm-m. The 7 probes used are positioned 

at 10,20,30, ... 70m. The input data file will be (depending on 

the data type choice) 
data-type=l: 

10.0 40.0 20.0 30.0 100.0 

20.0 50.0 30.0 40.0 100.0 

30.0 60.0 40.0 50.0 100.0 

40.0 70.0 50.0 60.0 100.0 

10.0 70.0 30.0 50.0 100.0 
data_type=2: 

10.0 40.0 20.0 30.0 1.591 

20.0 50.0 30.0 40.0 1.591 

30.0 60.0 40.0 50.0 1.591 

40.0 70.0 50.0 60.0 1.591 

10.0 70.0 30.0 50.0 1.591 

data type=ll (5% error ): 

10.0 40.0 20.0 30.0 100.0 5.0 

20.0 50.0 30.0 40.0 100.0 5.0 

30.0 60.0 40.0 50.0 100.0 5.0 

40.0 70.0 50.0 60.0 100.0 5.0 
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10.0 70.0 30.0 50.0 100.0 5.0 

data type=22 (5% error ): 

10.0 40.0 20.0 30.0 1.591 0.08 

20.0 50.0 30.0 40.0 1.591 0.08 

30.0 60.0 40.0 50.0 1.591 0.08 

40.0 70.0 50.0 60.0 1.591 0.08 

10.0 70.0 30.0 50.0 1.591 0.08 

The following have to be taken in to account when creating the data input file: 

1. All columns of the file should be separated by a space (no commas)'. 

2. The measurements can be inserted in any sequence. 

3. You should never use negative coordinates for the probes 3. 

4. In case you want to enter arrays that are using electrodes at "infinity" (pole- 

dipole and pole-pole) the format of the file should remain the same - the 

program will simply ignore the coordinates of electrodes at "infinity". Exam- 

ple: 

The correct pole-pole measurement entry with probes A, M at 15,25m respec- 
tively (for the half-space of 100 Ohm-m) should be: 

15.0 0.0 25.0 0.0 100.0 or 
15.0 500.0 25.0 0.0 100.0 or 
15.0 100.0 25.0 220.0 100.0 

the following is incorrect: 

15.0 25.0 100.0 

2There is no need to insert a number as a float if it has no decimal digits. For example it is 
equally correct to enter an electrode positioned of 10m as 10.0 or 10 

3Sometimes negative coordinates are used since it is common to use the centre of the measured 
area as the beginning (0m) of the coordinate system. In such a case you should render all electrode 
coordinates in positive- by adding the appropriate positive number- before you invert the data. 
Subsequently you can subtract this number from the inversion results in order to return to the 

original coordinate system 
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A5 FORMAT OF THE OUTPUT FILE 

The output file can have any name. It contains all information about the inversion 

results. The File has 3 parts: 

PART 1 

The first part is a general header which keeps a record of the selected options. 

PART 2 

The second part gives information about the progress of the inversion. It presents 

the results at each iteration in a pseudosection-like form 4. It keeps track of the 

lagranian multiplier and the % normalized RMS for each iteration. 

PART 3 

The third part gives the final inversion results: 

ERRORS 

3 lines of the variation of the RMS error through the iterations. 

PSEUDOSECTION OF REAL-MODEL DATA 

a <x y zl z2> file containing the pseudosections of the real and model data for the 

last iteration: x=the x-coordinate of the pseudosection point, y=the y-coordinate of 

the pseudosection point, z1= the measured (observed) data, z2=the calculated data 

XYZ FILE 

a<xyz> file containing the resistivities of the parameters: -the x-coordinate 

of the centre of the parameter, y=the y-coordinate of the centre of the parameter, 

z--the resistivity of the parameter. 

A6. PARAMETER-USER-FILENAME 

The parameter user file can have any DOS name however it should have a specific 

format: 
4In order to facilitate presentation the results are presented as integers so if you see 0 resistivity 

values that means that the value is below 1. For large numbers of parameters this facility becomes 

effectively redundant since there is not enough space for writing everything in order. 

313 



line 1: int x -spacing 
int numl 

line 2: float thick-layer-1 

line 3: float thick_layer_2 

line numl+1 : float thick_layer_numl 

where: 

x_spacing is the width (x-direction) of the parameters in inter-electrode spacing 

units. It can only have two values: 1 or 2. 

numl is the number of layers the parametrized space will have. 

thick_layer_1,2... numl are the thicknesses of the lst, 2nd.. numl layers respectively in 

metres. 

Example: 

12 

10 

20 

A7. FINAL REMARKS 

" The program cannot cope with irregular spaced electrodes. 

" The program will not do automatically topographic corrections. You have to 

remove topographic effects using an other program before you invert the data. 

9 This program cannot cope with tomographic-type data. 

" Although the program have some basic controls in general you have to be 
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careful that your selected options are consistent with the data. For example if 

you are inverting pole-pole data and the ARRAY-TYPE option is not set to 

4 then the program will either crush or will produce nonsense. 

Therefore if you are facing problems: a) check the validity of the chosen options 
in the inversion input file. b) check that your input data file is correct. 
If you are still getting meaningless or unstable results try to increase the 

Lagranian multiplier- maybe its value is too low. 
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