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Abstract 

An apparatus was built to perform mechanical experiments on single 

skinned muscle fibres. Fibre length was controlled using a purpose built motor 

capable of applying rapid «180lJs) length changes. Tension was measured using 

a strain gauge with a high frequency response. The muscle bath was held at a 

constant temperature using a Peltier effect heat pump. 

The software written to control the apparatus had several important features 

that provided the means for recording better quality data. The ability to change 

sample rate in mid-recording enabled the optimal capture of processes of 

different rates in the same trace. Fast machine code routines allowed very high 

sample rates where needed and very rapid data plotting. On-line Fourier analysis 

and exponential fitting routines gave immediate feedback during the course of 

experiments. Signal averaging and data smoothing routines increased the signal 

to noise ratio of recorded traces. 

Selective digestion of the thin filament protein troponin-H by the enzyme 

calpain, resulted in a decrease in the amplitude of delayed tension. The changes 

were not accompanied by a change in relaxed or rigor stiffnesses. It was 

concluded that troponin-H is associated with the mechanism of stretch activation. 

The insect fibrillar muscle cross-bridge was characterised in a T1-T2 plot by 

subtracting the passive component from the active traces. By modelling using the 

Huxley-Simmons equations and also the stochastic cross-bridge model, it was 

concluded that the size of the working stroke of the insect muscle is longer than 

that of vertebrate striated muscle, in the region of 10nm. The kinetics of the 

delayed tension change in insect muscle was investigated under varying 

concentrations of inorganic phosphate and varying step size. 

A stochastic multi-state cross-bridge model was developed. The rate 

constants were manipulated to investigate what is required to reproduce the non­

linear characteristics of the tension phases observed in mechanical fibre 

experiments. Two mechanisms for stretch activation in insect fibrillar muscle are 

also modelled. 
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Introduction 

In order to drive the wing-beat cycle in flight, the flight muscles of many 

insects are stretch activated. Rather than initiating each contraction with a nerve 

impulse, the muscle contraction is activated by the stretch that occurs with each 

wing-beat. This type of muscle is referred to as insect fibrillar flight muscle. The 

delayed rise in tension following a stretch is not peculiar to insect flight muscle. 

Under the right conditions many types of muscle can be made to behave in this 

way. However in insect muscle the size of the tension rise is very large. 

The mechanism of stretch activation in insect fibrillar flight muscle is not 

understood, although several models have been suggested. The aim of the work 

described in this thesis was to investigate the mechanical properties of active 

insect fibrillar flight muscle, with particular attention to the large amplitude stretch 

activation seen in this muscle. 

1.1 The structure of striated muscle 

1.1.1 Muscle fibres, myofibrils and sarcomeres 

All types of striated muscle, including insect fibrillar flight muscle, have the 

same basic structure. The cellular unit of striated muscle is the muscle fibre. 

Fibres are unbranched and can span the whole length of the muscle. The 

diameter of most striated muscle fibres lies in the range 30~m and 1 OO~m, 

though some insect muscle fibres can be over 200~m. 

The contractile organelles within the fibre are the myofibrils. A single fibre 

can contain a thousand or more myofibrils, which run the entire length of the 

fibre. Myofibrils are between 1 ~m and 3~m in diameter. Often the second most 

abundant fibre organelles, after the myofibrils, are the mitochondria. The volume 

ratio of mitochondria to myofilaments is an indication of the metabolic activity or 

work performed by that fibre (Pennycuik and Rezende, 1984). Because of the 

high metabolic cost of insect flight, insect fibrillar flight muscle contains roughly 

equal volumes of mitochondria and myofilaments. 

1 
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Thin filament Thick filament 

i M line 

'-- .A... .J 
Z-line --....r- V-

A band I band 

Figure 1.1: A schematic illustration describing the striated muscle sarcomere and 
.. its major structures. The striations are the result of alternating A and I bands. 

The A-band is the region containing the whole length of the thick filaments. 
The I band is the region between A bands consisting of part of the length of 
the thin filaments, with the Z-line at the centre. 

1.1.2 Sliding filaments 

The banding in striated muscle is composed of alternating bands of varying 

refractive index called A-bands and I-bands. Using electron microscopy 

H. E. Huxley (1953) made the observation that these bands consist of two types 

of interdigitating filaments (thick and thin). Huxley also made the suggestion that 

the two major muscle proteins actin and myosin were situated in the thin and thick 

filaments respectively. 

H. E. Huxley suggested that during active shortening, the two sets of 

filaments slide past on another, rather than undergo any change in filament 

length. This view of muscle contraction was supported by work by A. F. Huxley 

and Niedergerke (1954). Using interference microscopy, Huxley and Niedergerke 

were able to show that during active contraction the width of the A bands 

remained constant whilst the I bands shorten. An observation consistent with the 

sliding filament model. 

A schematic diagram showing the main structures that make up a striated 

muscle sarcomere is shown in Figure 1.1. The sarcomere is the contractile unit of 

the muscle composed of the thick and thin interdigitating filament. 

2 
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1.2 The Cross-bridge theory of muscle contraction 
Given the information that the two sets of filaments slide past each other 

during length changes, it became quite plausible that the mechanism by which 

muscle produces force involves interaction of the proteins contained in the two 

types of filament. One of the predictions of a model in which force is produced at 

the region of overlap is that force should be proportional to the degree of overlap. 

This was shown to be the case by Gordon et af (1966). 

1.2.1 The Huxley two state model 

In 1957 A. F. Huxley proposed a mechanism of muscle contraction in which 

projections from t7he thick filaments interacted cyclically and independently with 

sites on the thin filaments. The projections are now referred to as cross-bridges, 

and most models of muscle contraction since then have incorporated the idea of 

cross-bridges cycling in this way . 

In his model, Huxley considered the cross-bridges to exist in just two states, 

attached to the thin filament or detached (see Figure 1.2). The rate constants for 

transition between the two states are f for attachment and g for detachment. The 

fraction of the total population of cross-bridges attached is n, leaving a total of 

1-n detached. 

Attached states ( n ) 
g 

Rate constants f g 
2 

Detached states ( 1- n ) 1 
_ - -I f 

I g 
I 

+h x 

Figure 1.2: Schematic diagram of Huxley 1957 two-state model. Proportion n of 

the total cross-bridge population are in the attached force-producing state, I-n 
are detached. The graph shows the dependence of the rate constant for 
attachment (/, dashed line) and detachment (g, solid line) on cross-bridge 

distortion (x). 

Huxley suggested that the attached cross-bridges behave elastically, the 

force produced by an attached cross-bridge being proportional to its distortion. 

Also that such distortion affects the values of f and g. For negative distortions 

/ =0 and g is very large. For positive distortions both increase proportionally with 

3 
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displacement, with f approximately eight times the magnitude of g. In this 

scheme, random thermal motion makes it possible for cross-bridges to attach with 

positive distortion, and hydrodysis of a single ATP molecule is necessary for 
detachment. 

With this simple two state model, Huxley was able to account for the 

findings of Hill (1938), for tension, contraction velocity and heat production. This 

model does not however account for the results of transient experiments, in which 

tension is recorded during a rapid change in length. 

1.2.2 Huxley and Simmons model (1971) 

In 1971, Huxley and Simmons published a paper in which they studied the 

tension response to rapid step changes in length. Using apparatus with greatly 

improved temporal resolution they were able to record previously unnoticed 

features on the tension response. Using such results they proposed a model in 

which generation of force occurs after attachment, rather than relying on thermal 

motion for attachment in a positive distortion position. 

The response of a muscle to a rapid release follows a characteristic 

sequence. A diagram describing this sequence is shown in Figure 1.3. Firstly a 

rapid tension change occurs which is in phase with and in the same direction as 

the length change. This elastic part of the response is referred to as phase 1. 

Creating a length-tension plot for this part of the curve allows the instantaneous 

stiffness of the muscle to be calculated. Huxley and Simmons (1971) showed that 

in active vertebrate muscle, stiffness measured in this way is proportional to the 

degree of filament overlap and therefore to the number of cross-bridges attached. 

Phase 2 is the rapid recovery in tension towards the starting tension. Two 

possible reasons are suggested for this recovery. Firstly that during phase 2 

there is a redistribution of attached and detached cross-bridges resulting in a 

recovery of force (Podolsky et ai, 1969). Secondly the cross-bridges remain 

attached throughout phase 2 and undergo a conformational change between 

different attached states. It was the second case that Huxley and Simmons 

suggested in their model. Evidence in favour of the second explanation is that a 

second length change occurring at the end of phase two demonstrates the same 

stiffness as the first length change. This indicates that the same number of cross­

bridges are attached at this stage in the tension transient. 

4 



Introduction 

Length \ 

Tension 

3 

Relative 
tension 

(Tn) 1.5 

-15 -10 -5 

0.5 

T, T 
2 

5 10 15 
Length step 

(nm) 

Figure 1.3: Diagram to explain the derivation of the T1-T2 curves (Huxley and 

Simmons, 1971). The tension response to a rapid length change can be 
separated into four distinct phases. Phase 1 is the elastic phase showing the 
tension changes that are in phase with the length change. The plotted value 
of T1 is the ratio of the tension at the end of phase 1 to the starting tension To. 

Phase 2 is a rapid process in which tension recovers towards To. The value 

of T2 is the ratio of tension at the end of phase 2 to To. Phases 3 and 4 are 

slower processes not considered in the model. The T1-T2 curves shown are 

the output from the mathematical model of a cross-bridge moving between 
two attached states. 

Huxley and Simmons (1971) measured the tensions at the end of phases 1 
and 2, and showed the results in a T1-T2 plot. The units of the applied length step 

are shown in nanometres. This refers to nanometres per half sarcomere, meaning 
the relative displacement of the filaments. A T1-T2 plot is shown in Figure 1.4. 

This plot is not real data but was generated from the Huxley and Simmons 
mathematical model. In active muscle the T1 curve describes the behaviour of an 

elastic element, with a linear relationship with the applied length change. The T2 

curve however has a non-linear relationship with the applied step size. With very 

small step sizes the phase 2 recovery returns tension to the level of starting 
tension (To). 

The explanation for the shape of the T 2 curve is that at these small step 

length changes the cross-bridges move through the working stroke. In the 

mathematical modelling section, two cross-bridge positions are considered. At 

steady state it is assumed that equal numbers of cross-bridges exist in both 

states. On releases the cross-bridge populations are redistributed with the 

tendency to move into the second state. Conversely stretches have the tendency 
to move cross-bridges into the first state. In the linear regions of the T 2 curve at 

the larger step sizes, the cross-bridges are all in one or the other state. 

5 
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This model of cross-bridge action is an improvement on the Huxley (1957) 

scheme because force generation occurs after binding to actin, rather than 

relying on binding in a strained state. Using the model, Huxley and Simmons 

were able to estimate that the size of the working stroke of the cross-bridge was 
in the region of Bnm. 

1.2.3 Muscle biochemistry 

The most abundant proteins in muscle are myosin and actin. Monomeric 

actin is a globular protein (G-actin) of molecular weight 42 OOOOa. Under 

physiological conditions actin form into a double helix which makes up the 

majority of the thin filaments (F-actin). The helical nature of the thin filament is 

evident from both electron microscopy and X-ray diffraction studies of whole 

muscle. The atomic structure of G-actin complexed with DNase 1 has been 

solved by Kabsch et al (1990) using X-ray crystallography. The molecule consists 

of two domains. It is thought that the larger of the domains is situated towards the 

centre of the filament, while the myosin binds to the smaller domain. 

Myosin is a high molecular weight protein (MW 520 OOOOa), which like actin 

polymerises at physiological ionic strengths. When denatured, myosin 

dissociates into two heavy chains (MW 220 OOOOa) and four light chains 

(MW 20 OOOOa). Mild digestion with chymotrypsin will cleave the myosin 

molecule into two fragments, heavy meromyosin (HMM) and light meromyosin 

(LMM). The LMM is a rod-like ex-helical region of the heavy chain. In the whole 

molecule, the LMM of the two heavy chains form a coiled coil. This coiled-coil 

region of the myosin links with other myosin molecules in the formation of the 

back-bone of the thick filament. The HMM can be further cleaved into 

subfragments 1 (S 1, MW 120 OOOOa) and 2 (S2, MW 100 OOOOa) using papain 

or chymotrypsin. 

S 1 is the globular head of the myosin molecule which attaches to actin 

during contraction. The S 1 head is also the location of the myosin light chains. In 

vertebrate skeletal muscle the light chains do not perform a regulatory role. 

However in the majority of invertebrate muscles, including insect flight muscle, 

the light chains are regulatory Lehman (1977). 

Many of the major muscle proteins are present in the cytoskeleton of non­

muscle cells as well as the myofibrils of muscle cells. An example of such a 

protein is tropomyosin. Tropomyosin is an ex-helical coiled coil dimer which 

extends across 7 actin monomers. Tropomyosin sits in the groove of the actin 

filament, slightly overlapping the neighbouring tropomyosin molecule. Thin 

6 
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filament regulation requires both the tropomyosin and another complex called 
troponin. 

Troponin consists of three subunits Troponin-C (calcium binding), 

Troponin-I (inhibitory) and Troponin-T (tropomyosin binding). When calcium 

binds to troponin-C, the whole tropomyosin-troponin complex shifts in position. 

The tropomyosin moves out of the thin filament cleft, in the process revealing 

myosin binding sites. 

Besides these force producing and regulatory muscle proteins there are a 

number of proteins with structural roles in the sarcomere. One such protein is 

titin, an enormous protein with a molecular weight close to 3 000 OOOOa. Titin 

connects the thick filament to the Z-line. It is responsible for the passive stiffness 

in striated muscle (Wang et ai, 1993) and probably helps keep the thick filaments 

towards the centre of the sarcomere. 

Another large myofibrillar protein is nebulin (MW 600 - 800KOa). 

Immunological studies show that nebulin lies parallel to the thin filament, 

extending from the Z-line to the end or possibly just beyond the end of the thin 

filament. (Wang & Wright, 1988). There are 3 or 4 nebulin molecules per thin 

filament. Nebulin may have a role as a template controlling thin filament length. 

1.3 Stretch activation 
In muscles which exhibit stretch activation, fully calcium-activated fibres can 

be activated further by applying a small stretch. In insect fibrillar flight muscle 

stretch activation is a property of the myofibrillar proteins, rather than a 

membrane mediated response (Jewell and Ruegg, 1966). 

In order to avoid confusion, it is necessary to clarify the meaning of the word 

activation used here. In terms of stretch activation, the word 'activation' can refer 

to any of three properties demonstrated in insect fibrillar flight muscle. Following 

a small stretch the muscle shows 

(1) a delayed tension rise, 

(2) a maintained increase in tension and 

(3) a maintained increase in ATPase activity. 

These three observations can be categorised as transient (1) and 

maintained (2 and 3) effects. 

7 



.. 

Introduction 

Tension 

1% 

Length 

0% '\I\JVWVVWV 50ms 

Figure 1.4: The change in stiffness during the delayed tension rise of stretch 
activation. A low amplitude (0.2 %

) high frequency (280Hz) oscillation is 
superimposed over a 1 % step stretch of a single insect flight muscle fibre 

(Tipula dorsal longitudinal muscle). 

The delayed tension rise following stretch is not a response only found in 

insect fibrillar flight muscle. Under certain conditions vertebrate skeletal muscle 

can show a delayed tension rise after stretch (Ruegg et aI, 1970) and given 

sinusoidal oscillations perform work on the apparatus (Kawai & Brandt, 1980). In 

comparison to insect fibrillar muscle however, the stretch activation shown in 

vertebrate skeletal muscle is low in amplitude and shows none of the maintained 

observations seen in insect fibrillar muscle and cardiac muscle. 

Cardiac muscle gives delayed tension which is as large as that in insect 

fibrillar muscle (Steiger, 1977). This stretch activation is also similar to that in 

insect fibrillar muscle in that the steady state tension remains high after the 

stretch. 

1.4 The Mechanism of Stretch Activation 
In both insect fibrillar flight muscle (see Figure 1.4) and vertebrate cardiac 

muscle (Steiger, 1977 in Figure 27), the tension rise following stretch is 

accompanied by an increase in high frequency stiffness. It is accepted that 

stiffness measured in this way gives an indication of the number of cross-bridges 

attached. The increase in stiffness which accompanies the rise in tension 
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indicates that the mechanism of stretch activation must be one of recruitment. 

Any model proposed to explain the mechanism of stretch activation must show 

how stretch of the sarcomere increases the number of the cross-bridges that are 
attached and producing force. 

A structural basis to the mechanism of stretch activation in insect fibrillar 

muscle is yet to be determined, though several possible mechanisms have been 

proposed. The mechanism which has received most attention is that of Wray 

(1979b) which is based on the observed geometry of the myofilaments. In other 

mechanisms people have focused their attention on proteins that are peculiar to 

this muscle. Mechanical strain on these novel or modified proteins in some way 

changes the interaction of actin and myosin. Connecting filaments which attach 

the thick filaments to the Z-line in insect muscle could directly activate the thick 

filament (Thorson & White, 1969). Finally, the unusually large troponin complex 

in insect flight muscle (Bullard, 1984) may detect relative displacement of the two 

filament types. There follows a more detailed description of these mechanisms. 

1.4.1 The Wray 'match-mismatch' model 

Using X-ray diffraction Wray (1979a) suggested that in Lethocerus flight 

muscle, the thick filament consists of a four start helix with 38.5nm helicity. Wray 

(1979b) suggested that it was no coincidence that 38.5nm was also the distance 

between preferred myosin binding sites on the thin filament, rather that this 

filament geometry was the structural basis for the high degree of stretch 

activation found in this muscle. 

If Wray's interpretation of the X-ray data is correct, it is possible to show that 

a small displacement of the two filaments can result in a large change in the 

population of cross-bridges that can attach and produce force. Figure 1.5 shows 

a pictorial representation of this model. 

The six thin filaments that surround a single thick filament are shown 

"unrolled" in (a). Each half turn of the thin filament is 38.5nm long. The half turn 

consists of an active region where cross-bridges can bind (black) and the 

remainder (white) where binding is unfavourable. The opposing pairs of filaments 

surrounding a thick filament share the same orientation. This arrangement of the 

thin filaments has been shown to exist in insect flight muscle in rigor (Reedy, 

1968). 
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Figure 1.5: The Wray model of stretch activation in insect fibrillar flight muscle. 
The potential cross-bridge binding sites (a, black regions) are superimposed 
over the cross-bridge binding ranges (b, circles). In the state shown in (e), 
the muscle is at rest length. In (d) a small longitudinal displacement (muscle 
stretch) greatly increases the proportion of cross-bridges that can attach. 
However the same level of activation can be acheived by a small twist in the 

filament. In (f) the low activation state (c) has has been modified by a small 
45° rotation as shown in (e). (Modified from Wray, 1979). 
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The myosin thick filament itself is also shown unrolled (b). The circles 

represent an assumed range for possible attachment of a cross-bridge pair. The 

four myosins per 14.5nm repeat was suggested by Reedy (1968). As drawn, the 

potential binding sites in (a) and the cross-bridge ranges in (b) share a helix in 

common. That is a four start helix with an axial separation of 38.5nm for each 
track. 

When the drawings in (a) and (b) are superimposed, the tracks of the four 

start helices may be in or out of phase. This phase relationship has a very large 

effect on the proportion of cross-bridges that may attach and produce force. In (c) 

the phase relationship is such that a minimum number of interactions are 

occurring. Applying a small stretch to the muscle (d), brings the tracks into phase. 

Here the maximum number of cross-bridges can interact with the actin active 

sites. 

Assuming a sarcomere length of 2.7lJm for active Lethocerus muscle, the 

38.5nm axial repeat corresponds to a 2.85% length change of the whole muscle . 

There is some evidence from work on whole fibres that supports this inherent 

periodicity in the muscle. Abbott and Cage (1978) demonstrated a 3% periodicity 

in the in-phase and quadrature stiffness on stretching a sub-maximally activated 

Lethocerus flight muscle fibre. In their experiment, a single fibre was stretched in 

0.250/0 increments from 0% to more than 80/0. At each increment, an oscillation of 

0.07%, 5Hz was applied and in-phase and quadrature stiffness measured. 

Throughout the stretch from 0% to 8%) the tension increases in an almost linear 

fashion. However, the stiffness measurements rise from almost zero at the 0% 

level to a peak at roughly 4%. The stiffnesses then decrease and rise to another 

peak at near 7%. 

To date this is the only mechanical evidence in support of Wray's model. 

The observed 3% periodicity does fit with the inter filament sliding distances 

suggested by the Wray model. On closer inspection the Abbott and Cage result 

has some features which would not be predicted by the Wray model. 

The observed periodicity is not observed at saturating levels of calcium. The 

authors claim that this is due to heterogeneity of sarcomere lengths at full 

activation. In terms of the Wray model this is an unsatisfactory explanation. Since 

stretch activation increases with calcium concentration right up to saturation, then 

so should such an observation that claims to explain the mechanism of stretch 

activation. 

The shapes of the stiffness curves is not that predicted by the Wray model. 

There is a maximum at 7% and one at 4% stretch. Wray's geometric 
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interpretation, with its 3% repeat suggests that a further peak should exist in the 

1 % region. There is no peak at 1% • 

In the Abbot and Cage results, it is surprising that no periodicity is apparent 

in the tension signal itself. It is not the case that stretch activation is a transient 

phenomenon detectable only by oscillation or in the short period of time following 

a stretch. The maintained characteristics, the increased ATPase and tension, 

should also show a 3% repeat. No such relationship is apparent here in the 

tension signal, or has been demonstrated in ATPase. 

In order for Wray's model to work, several assumptions must be made about 

the proteins involved. As drawn in his diagram (reproduced in Figure 1.5 part (a)), 

Wray assumes that approximately 36% of the thin filament half-turn has available 

actin sites. Wray does not explain why this value was chosen. The proportion is 

equivalent to 2.5 actin monomers out of the 7 in a half turn of the filament. The 

real value is difficult to determine. In rigor it is thought that 70% of cross-bridges 

are attached (Lovell et ai, 1981), though whether this reflects the proportion of 

cross-bridges which can bind and produce force in active muscle is difficult to 

say. 

Similarly the range of movement of individual cross-bridges (circles in 

Figure 1.5, part (b)) is difficult to determine. As drawn, the circles in the Wray 

model correspond to a longitudinal attachment range of 15nm and an axial 

attachment range of 33°. 

One critical factor which is not accounted for in the explanation of the model 

is that described in (e) and (f) of Figure 1.5. If the thick filament is allowed to 

rotate through 45° as described in (e) then the resulting helix overlap picture is 

that shown in (f). That is the same amount of activation which previously required 

a 1.5% stretch of the muscle can also be achieved by a very small twist in the 

thick filament. Indeed the state drawn in (c) is energetically a highly unstable one. 

Once cross-bridges attach and favour a twist in one direction, yet more cross­

bridges attach and twist the filament till the helices fully overlap. Present 

knowledge about fi lament structure suggest that there is no reason why fi laments 

are not free to twist in this way. 

This criticism considers the possibility of a small twist in only one of the 

filament types. When one also takes into account the possibility that the thin 

filaments may also twist to favourable positions, the idea that the filaments would 

remain in state (c) becomes less believable. 

For the Wray model to discount this possibility, it is necessary to show that 

the filaments are not free to twist in this way. It is very unlikely that the filaments 

themselves have a high enough torsional stiffness to prevent such twisting. 
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Instead, the model requires that a protein physically prevents such twist from 
occurring. 

1.4.2 Connecting filaments 

Insect fibrillar flight muscle has very short I-bands. The thick filaments 

extend almost all the way to the Z-lines. This distance does not alter very much, 

since the amplitude of the length change in the flying insect is very small. 

Auber and Couteaux (1963) saw a link between the thick filaments and the 

Z-line in electron micrographs of insect flight muscle. These protein links are 

called C-filaments or connecting filaments. 

The protein responsible for these links has been isolated and shown to be a 

large protein referred to as p800 because of its molecular weight of 800KOa 

(Lakey et ai, 1990). This is the same protein as projectin, a large protein shown 

to be present in the locality of the Z-lines (Saide et ai, 1990). 

Immunofluorescence and electron microscopy showed that projectin spanned the 

gap between the thick filament and the Z-line, forming a mechanical link (Lakey 

et ai, 1990). Projectin is antigenically related to vertebrate titin (connectin) and 

nematode twitchin, which occur at the same location in these muscles. 

The connecting filaments are thought to be the component in insect flight 

muscle which give it its high relaxed stiffness (White, 1983). This high stiffness 

can be accounted for simply by the fact that insect flight muscle C-filaments are 

much shorter than their non-fibrillar equivalents. It is not necessary that the 

projectin be any stiffer per unit length than vertebrate titin to explain this 

observation. 

Thorson & White (1969) suggested that strain acting through the C­

filaments onto the thick filaments may be involved in stretch activation. 

1.4.3 Troponin mediated activation 

The troponin complex of insect flight muscle is very much larger than its 

vertebrate equivalent, with a total molecular weight of approximately 1200000a 

compared to 70 OOOOa in vertebrate striated muscle. The difference in size is due 

to a larger Tn-T (MW 53 OOOOa compared to 31000-360000a in rabbit) and to 

the existence of another heavy component with an apparent molecular weight of 

800000a (Bullard, 1984). 

The heavy component is called troponin-H (Tn-H). It is related to the heavy 

tropomyosins of Orosophila flight muscle (Bullard et aI, 1988). There is good 
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evidence that the carboxyl end of Tn-H extends away from the thin filament. 

Firstly, the carboxyl terminus, which has been sequenced in Drosophila, has a 

high proline content. Secondly, the Tn-H molecule is extremely susceptible to 

digestion by calpain, a calcium activated protease. 

Bullard (1984) suggested that the mere size of the troponin complex in 

insect fibrillar muscle could prevent cross-bridges from binding at certain muscle 

lengths. The possibility that Tn-H plays a role in stretch activation in fibrillar flight 

muscle inspired the work described in chapter 5. 

1.5 Modelling stretch activation 

Using the model proposed by A. F. Huxley (1957), Thorson and 

White (1969) developed a simple two state model of stretch activation. In this 

model the tension contributed by all n attached cross-bridges is assumed to be 

equal. The change in tension on stretch must therefore change n by altering ratio 

of the attachment (f) and detachment (g) rates. 

There follows a brief description of the derivation of this model. From the 

Huxley 1957 model it can be seen that the change in the value of n can be written 

as follows: 

dn 
dt = f(1-17) - g.n 

dn 
-=f-n·(f+g) 
dt 

In steady state conditions dn = 0, therefore: 
dt 

f n=--
f+g 

(1.1 ) 

(1.2) 

Since all attached cross-bridges are assumed to contribute the same force, 

this expression describes the relationship between tension and the attachment 

and detachment rate constants. 

In steady state conditions the cycling rate or flux in the model is n.g 

(or f (l-n)) this can be written: 

flux= f·g 
f+g 

(1.3) 

Assuming that a fixed number of ATP are hydrolysed per cycle, this 

estimation of flux is proportional to the ATPase of the muscle. 
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If non-steady state conditions are considered, we have to account for 
changes in n. This is written as an exponential function. 

Differentiating: 

n = A + Be-let 

dn -let -=-kBe 
dt 

dn = kA-kn 
dt 

(1.4) 

Equation (1.1) shows that k in the last equation is equal to f+ g, so the 

system approaches equilibrium with the rate constantf+g. 

1.6 Muscle fibre mechanical analysis 
To investigate the frequency characteristics of a system, the system must be 

perturbed in some way, and the response to that perturbation analysed. This type 

of analysis falls into three main categories. These are step perturbations, 

sinusoidal analysis and white noise analysis. In a linear system all these methods 

are equivalent extracting the same information from a system. However it is 

important to note that active muscle is a nonlinear material, so these different 

methods of analysis do not always provide the same results. 

One of the simplest perturbations that can be applied to a muscle is a length 

change. In the majority of single muscle fibre experiments, the fibre length is 

controlled whilst the tension is recorded and analysed. The analysis is 

complicated because muscle is a nonlinear system. The tension response to a 

stretch is not necessarily the mirror image of the response to a release. This 

nonlinearity becomes more apparent as the amplitude of the length change 

Increases. 

For the mechanical experiments described in this thesis, I used step 

perturbations and sinusoidal analysis to extract kinetic information from the 

muscle fibres. The next two chapters in this thesis describe the apparatus built to 

perform these types of tests single muscle fibres and the software written to drive 

the apparatus and analyse the data. 

A materials and methods chapter follows this describing the conditions used 

for most of the single fibre experiments. This chapter also contains some 

important control experiments which investigate the properties of single insect 

fibrillar flight muscle fibres under changing physical conditions. 
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Chapter five describes experiments carried out to investigate the role of a 

single protein (Tn-H) in the stretch activation of insect fibrillar flight muscle. The 

relaxed, active and rigor mechanical characteristics of single fibres is recorded 

before and after mild digestion with the protease calpain. 

The change in the amplitude and rate constants of phases 2, 3 and 4 are 

investigated at various step sizes and at different concentrations of inorganic 

phosphate (Pi) is studied in Chapter six. 

The final chapter introduces a computer model of cycling cross-bridges, in 

which distortion dependent rate constants are defined in such a way that the 

model recreates all three phases observed in striated muscle, as well as their 

relationships to step size described in chapter six. Two different mechanisms of 

stretch activation are modelled . 
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Hardware 

2.1 Introduction 

This chapter describes the apparatus built to perform rapid mechanical 

experiments on single muscle fibres. Following this brief introduction, each part of 

the apparatus is described and discussed individually. 

Figure 2.1 shows a summary of the major components of the apparatus, 

illustrating how they are interconnected. The muscle fibre is held between two 

glass hooks in a bath of solution. 

The bath solution is held at a constant temperature. A small bead thermistor 

measures the temperature of the bath solution. The temperature signal controls a 

feedback circuit that drives a Peltier effect heat pump on the muscle bath. 

Solutions in the bath can be changed using two syringes in a flow through 

system. New solutions quickly reach the temperature set by the Peltier circuit. 

To the right of the muscle bath is a position motor capable of applying fast 

length changes. A feedback circuit with velocity compensation controls the motor 

position. A 170W power amplifier supplies The high currents necessary to 

accelerate the motor quickly. Under computer control, the motor can perform 

quick steps or high frequency sinusoidal length changes to the muscle fibre. 

The other end of the fibre attaches to a strain gauge on the opposite side of 

the muscle bath. To complement the fast motor, the strain gauge is also 

optimised for high frequency response. The strain gauge is mounted on a 

micromanipulator so it can be moved to accommodate fibres of different length. 

The motor position signal and the output of the strain gauge amplifier are 

displayed in real time on an oscilloscope. For recordings, these signals are 

digitised and stored temporarily by a Datalab DL 1200 waveform recorder. Once 

recorded, data is dumped from here to the computer over a fast general purpose 

interface bus (GPIB). 

An IBM AT compatible computer controls the recordings made using a 

Labmaster interface card. A digital to analogue converter (DAC) on the interface 

card provides the signal that controls the motor position in real time. Accurate 

programmable timers on the interface card control both the timing of the output of 

DAC values and also that of the samples taken by the Datalab. 

The computer and driving software allow the user to view and analyse the 

length and tension data dumped from the Datalab. Recorded data, calibration and 

timing information can be saved to disk. 
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2.2 Position Motor and driver circuitry 

2.2.1 Requirements 

This section describes the mechanical and electrical characteristics of a 

motor used in rapid length change experiments on insect flight muscle fibres. 

The range of movement of the motor need not be very great. In comparison 

to other muscle types, insect muscle is very stiff. Typically, stretches greater than 

5% over rest length result in either fibre damage or failure of the fibre attachment. 

A total range of movement of 1 mm allows for a length change range of ±1 0% of 

the longest fibres that are likely to be used. The moving mechanism of the motor 

must be designed such that the hook does not vibrate out of the axis of the 

muscle fibre. 

The quality of the motor position signal is very important. Not only is this 

signal important in the analysis of the recorded data, but is also used for feedback 

control of the motor position in a servo loop. This means that noise in the signal 

will also affect the length of the muscle being tested. For these reasons, position 

signal noise must be reduced as much as possible. Unfortunately, it is usually the 

case that reduction of high frequency noise involves a trade off against the 

frequency response of the position detection circuitry. Low frequency noise or drift 

is equally undesirable, especially when one considers the stretch sensitivity of the 

muscle type to be tested. This type of drift is usually caused by temperature 

changes in the circuitry as it warms up. This low frequency noise can be 

controlled by choosing low drift components. 

The amount of noise that is acceptable is dependent on the experimental 

conditions. The length of the fibres being tested is important. Obviously the length 

signal noise has most effect on the shortest fibres used. For example, if it is 

necessary to analyse 0.2% length changes on Drosophila fibres, then length 

changes of the order of 500nm must be clearly visible. 

The type of analysis is also important in determining the effect of noise on 

the experiments. When measuring high frequency stiffness using step length 

changes, only a the small number of samples taken during the length change are 

used in the analysis. Conversely, sinusoidal analysis makes use of all samples 

taken during the oscillation to extract the stiffness information. This means that 

stiffness measurements made in step length change experiments are more 

sensitive to signal noise than those made from sinusoidal analysis. 
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Figure 2.1: Schematic overview of the muscle apparatus, showing the major 
components and how they are interconnected. Arrows adjacent to some of 

the lines indicate direction of "information" flow. 
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Ideally, the position signal should be linear over the range that the motor is 

used. With a linear output, the computation of motor position is very simple. All 

that is required is that the analysis software knows the slope of the motor Signal 

response in lJmN. A non-linear position Signal unnecessarily complicates the 

computation required. In such cases, a look-up table is necessary to correct the 
data after or during sampling. 

The frequency response of the motor and driving circuitry needs to be high. 

This property of the motor system is what limits the rate at which steps can be 

applied and the highest frequency at which the fibre can be oscillated. In some 

fibre preparations the rapid recovery phase (phase 2) can begin less than 200lJs 

after the onset of the length change. There are two reasons why it is undesirable 

for the tension change of phase 2 to begin before the length change is over. 

Firstly, it is possible to make stiffness measurements only in the linear part of the 

tension signal. That is the region before the phase 2 relaxation begins. Secondly, 

for the analysis of phase 2 it is ideal that the length change is over before this 

relaxation phase begins. For these reasons, for better analysis of the high 

frequency properties of the muscle fibres a step length change should be 

complete within 200lJs. 

2.2.2 Position motor designs 

Before building this apparatus, two designs of position motor were in use in 

this laboratory. The older and slower of the two designs is a commercially 

available electromagnetic vibrator produced by Ling Dynamics (type 101). This 

type of motor is very robust. It works on the same principle as a loudspeaker. The 

moving part of the motor contains a coil that sits between the poles of a strong 

permanent magnet. Current passing through the coil causes deflection of the 

moving part of the motor. Unfortunately, mass of the moving part of the motor is 

larger than necessary for this type of experiment. This mass limits the minimum 

ramp times to 1 ms or more. 

A faster motor is described by Ford et al (1977), and by Molloy (1988). In 

this motor, the arrangement of the coil and magnet is similar to those in a 

galvanometer. The muscle attachment hook connects to the coil by way of a light, 

rigid pyramid constructed from dried grass. This design of motor is capable of 

completing steps as fast as 200lJs. In this design of motor, the pyramid moves 

perpendicular to its long axis. Because of the nature of this movement, vibration 

in the long pyramid supports makes it necessary to have several bracing struts. 

These add to the mass of the moving part of the motor, increasing its moment of 

inertia. An increase in the moment of inertia of the moving part of the motor 
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results in an increase in the current necessary to apply a given angular 
acceleration. 
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More recently a motor design that incorporates the best qualities of the two 

previously described deSigns has been used in muscle fibre experiments. The 

simplicity of the linear translational movement of the loudspeaker design is 

combined with the light dried grass pyramid of Ford et al. This is the design of 

motor I chose to use in my experiments. Both the motor and its driving circuitry 
are described in the next section. 

2.2.3 The loudspeaker motor 

The motor built to perform rapid length changes is shown in 'exploded' view 

in Figure 2.2. The coil and magnet used are those of a 15W loudspeaker 

(RS 249-902). The speaker coil is wound around an aluminium former. To reduce 

mass, this former is cut away until the minimum required to hold the coil remains. 

The dried grass pyramid was constructed on top of this former. The pyramid was 

assembled and fixed to the coil former using Araldite adhesive. In this design of 

motor, since acceleration and deceleration occur in the almost the same plane as 

the long struts, no serious vibration has been detected in these. For this reason 

no bracing struts were necessary. 

The hinge mechanism consists of two sets of four strip hinges. These 

constrain the pyramid and coil assembly to movement in only one plane. The strip 

hinges used were 1.5mm wide sections of .15mm gauge phosphor bronze sheet. 

These were attached to the top of the pyramid and to the aluminium former using 

Araldite. The other ends of the hinges were fixed to the motor casing, a section of 

65mm aluminium tubing. 

An optical system is used for position detection. The light beam from a bright 

light source shines onto a mask on the pyramid assembly. This mask casts a 

band of light onto a pair of photodiodes (Farnell BPW34-B). A difference amplifier 

detects changes in the relative illumination of the two photodiodes. When no 

current passes through the coil, the motor remains in its central position. Here 

light falls equally on the two photodiodes resulting in a motor position signal of 

approximately OV. Small movement of the pyramid assembly changes the relative 

illumination of the photodiodes, and therefore the voltage of the motor position 

signal. 
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Figure 2.2: An exploded view of the position motor. The motor uses the coil and magnet from a small 15W 
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The choice of light source is an important consideration. For a low noise 

position signal, the voltage output of the photodiodes must be large compared to 

the noise of the photodiodes. To do this a bright light source is necessary. Until 

recently the only convenient solution was to use a filament light bulb. In some 

instances this caused problems due to the tendency for the lamp filament to 

oscillate after a motor step. This oscillation does not necessarily appear on the 

circuit position out signal, since the motor may oscillate to compensate. In the late 

1980s cheap and very bright GaAllight emitting diodes (LEOs) became available. 

This is the light source used in the position motor (RS 577-730). These LEOs 

have the advantage of a bright narrow beam of light without the problem of 
filament vibration. 

The light emitted by the LED must be constant. Any variation here will alter 

the calibration of the position signal. The voltage driving the LED is regulated by 

the circuit shown in part (c) of Figure 2.3. The power supply feeding this LED 

driver circuit can vary between 5V and 7V. Under these conditions the output 

voltage remains within 1 mV of 2.35V. 

2.2.4 Motor driving circuitry 

Figure 2.3 shows the position signal and feedback circuits built to drive the 

length motor. The position signal is generated by the circuit (a). The signal from 

the photodiodes is put through a difference operational amplifier (op-amp) circuit. 

The position signal circuit uses low noise op-amps (Burr Brown OPA606KP and 

OPA37GP). The second (upper) op-amp circuit in (a) amplifies the position signal 

further into a range suitable for input into the Oatalab waveform recorder (±0.5V). 

This op-amp circuit also prevents the potentially disastrous consequences of the 

Oatalab or other monitoring equipment taking too much current from the signal 

circuit. This type of leakage could make the feedback circuit unstable, and 

damage the motor. 

The position signal is fed back into the motor driving circuitry, in a signal 

mixing circuit (b). In the signal mixer op-amp, the position signal is compared to 

the command position signal from the computer (OAC liP). In essence, the output 

from the signal mixer is an error signal that is further amplified and drives the 

motor. This error signal ensures that the command input from the computer is 

closely followed by the motor position. 
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As an example we will assume that the computer DAC is giving out a 

continuous square wave. The rate at which the motor is able to reach a new 

position set by the computer is partly a function of the gain ("Main gain") of the 

signal mixer circuit. Increasing the gain of this circuit increases the rate at which 

the motor is able to reach the new position. Unfortunately, this rate increase has 

an upper limit. As the gain is increased to high levels, overshoot begins to occur. 

Beyond this damped ringing starts, further still and positive feedback causes the 
system to go into permanent oscillations. 

This high frequency instability of the system introduces the reason for the 

second op-amp in the circuit. This velocity compensation circuit allows the circuit 

to be tuned to reduce ringing and overshoot at high step rates. The capacitor on 

the input line allows the op-amp to detect the rate of change of the position 

signal. The variable resistor in series with the capacitor allows the frequency 

characteristics of the velocity circuit to be adjusted. The op-amp gain can be 

adjusted (velocity gain) to vary the effect of velocity compensation on the signal 
mixing circuit. 

The error signal with velocity compensation drives a large power amplifier. 

This amplifier is a DC coupled power amplifier that provides the large currents 

necessary to drive the motor. The amplifier is a commercially available unit 

(Crimson Elektrik CE1704) originally designed for public address systems. The 

maximum output of 170W is more than enough to run the motor at its maximum 

speeds. 

Although the coil in the motor is from a 15W loudspeaker, the coil itself can 

withstand very high currents provided that they are brief. For a step length 

change the motor is sent a two opposing voltage spikes to accelerate and 

decelerate the motor. These large currents pass through the coil only during the 

length change. After the step a very small current flows though the coil, that being 

the current necessary to oppose the forces of the strip hinges to hold the new 

motor offset. For protection from high currents that may damage the motor a 1A 

quick blow fuse lies between the power amplifier and the motor. 

2.2.5 Tuning 

The fine tuning of the motor and the motor driver circuit is done each time it 

is used. The motor driving software is written in such a way that it is not possible 

to drive the motor without first executing a motor set-up and self-calibration 

routine. This procedure includes a continuous square wave output from the DAC. 

This enables the main gain and velocity adjustments to be set. 
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The loop is switched on with the main gain set very low. This caution 

ensures that if there is any error in the circuit, only small currents should be sent 

to the motor. The shape of the motor step response can be viewed on the 

oscilloscope or the computer screen. The computer also provides information 

about the present ramp time (5%) to 95%). The main gain and velocity controls 

are adjusted so that the step time is at its fastest, without any overshoot or ringing 
after the step. 

In the set up procedure, it is also possible to adjust the range of the DAC. It 

is useful to vary this according to the length of the present fibre and the type of 

analysis that is to be done on the fibre. In all cases it is desirable to have the full 

scale of the 12 bit DAC (4096 values) to correspond to just more than the 

maximum length change required. If only a small part of the full 12 bit scale is 

used, the staircase nature of the DAC output signal becomes visible in the length 

signal. This is not purely an issue about the appearance of the length signal. The 

tension response of a fibre to a length change that consists of large discrete 

steps is different from that in which the will steps are a small proportion of the 

signal. This "bit noise" introduces high frequency harmonics into the system. 

These harmonics can be a source of error during the analysis of the traces. 

When setting up the motor DAC range the software is self calibrating. 

During the motor set up procedure, the computer continuously sends out steps. 

The motor response to these steps is dumped back to the computer so that a 

calibration value for the DAC can be set. The DAC range is printed to the screen 

as a percentage of the present fibre length. It is important that the software 

includes this self calibration. The length change per DAC unit is also sensitive to 

the current settings of the main gain and velocity compensation circuits. 

2.2.6 Calibration 

The calibration procedure involves setting a single value in the muscle 

program software. The value of the variable Leal! (in ~m per length unit) contains 

the current setting for the length calibration of the motor position detection 

circuitry. 

To measure the actual motor displacement, a travelling microscope is 

positioned over the hook where the fibre is attached. The eyepiece reticle has 

units of 10!Jm. The motor could be calibrated by measuring the voltage of the 

"position out" signal at various motor positions. The calibration value (!JmN) 

could then be used to set the value of Leal! (!Jm / length unit). A more simple 

calibration is to set the software to output a slow staircase of 10!Jm step size. 

These steps can be observed through the eyepiece. If the observed steps do not 
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fOIl~w the reticle units then the calibration value can be adjusted accordingly. The 

staircase can be applied in both directions. This simple, fast and accurate method 

of calibration also detects any nonlinearity in the position detection system. 

Although unlikely, a calibration error in the Datalab would not affect the accuracy 
of this type of motor calibration. 

2.2.7 Performance 

The amplitude of the high frequency noise in the position signal is 

equivalent to 50nm of hook movement. This level is acceptable for most 

recordings made. However it is too much for accurate small signal sinusoidal 

analysis of the shortest fibres. This can be overcome by averaging several 
traces. 

Another type of noise which can be easily overlooked is that of the hook 

position itself. The most common source of this type of noise is mains 

interference in the position detection circuitry, but may be elsewhere in the 

feedback circuit. It is important to check for this type of noise because it is not 

visible in the position signal. When the loop is switched on the feedback circuit 

will cancel the noise by moving the motor. Any mains hum or other interference in 

the position signal can be seen by looking at the signal when the loop is not 

switched on. This does not account for any noise in the other amplifiers circuits. 

When the loop is switched on, hook movement noise can be detected by 

attaching a very stiff material to the apparatus and recording the tension signal. A 

fine hair can be attached to the apparatus using the same type of clips used for 

muscle experiments. Presently some 50Hz (mains noise) movement is detected 

which has an amplitude of 7nm. This size of movement is a very small prop.ortion 

of the typical length changes used in muscle experiments. This movement can be 

a source of error when performing small signal sinusoidal analysis on short 

fibres, especially at frequencies close to 50Hz. However in such experiments it is 

necessary to average several traces to get a clear signal in both the length and 

tension channels. Trace averaging reduces both high and low frequency noise. 

Presently the motor is capable of performing a complete step without any 

overshoot or ringing within 180~s (5 % to 95% in 160~s). 
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2.3 Recording tension 

2.3.1 Requirements 

The compliance of the gauge itself must be very small. Some movement will 

always be present since this is how strain gauges detect the applied force. 

However a large deflection in the strain gauge would make the measurement of 

the applied length change inaccurate. The compliance of the gauge should not 
be more than 40nm/mN. 

The maximum tension that a single insect muscle fibre can produce is very 

rarely greater than 500~N. This is a suitable value for the full scale range of the 

output circuitry. Unfortunately it is by no means a suitable upper limit for the 

failure value of the transducer. When mounting the fibres on the apparatus 

touching the strain gauge hook may apply forces that are orders of magnitude 

higher than a single fibre could exert . 

The acceptable level of high frequency noise in the output signal is 

dependent on the type of recording that is to be made. For example when 

periorming small signal sinusoidal analysis on a relaxed fibre (low stiffness fibre), 

then the amplitude of the tension signal may be as small as 1 O~N. In this 

situation the noise must be much less than 1 O~N. It is not always necessary that 

this noise reduction be performed by the strain gauge amplifier. After capture the 

computer can do trace averaging and digital filtering. 

The low frequency noise is very often a problem with very sensitive strain 

gauges. Since the mechanism relies on detecting a tiny movement in the gauge 

itself, they can be very sensitive to temperature change. During experiments, a 

small amount of slow drift in the output signal can corrected for by performing 

frequent releases to find zero tension. 

The frequency response of the strain gauge is a very important 

consideration. As the mechanical frequency response of the strain gauge 

increases, the more rapid are the tension changes which can be measured 

accurately. The most rapid tension changes to be analysed are those which occur 

during step length changes, and the rapid recovery phase (phase 2) in step 

release experiments. However in practice, increasing the frequency response of 

the gauge can introduce other unwanted factors. For example reducing the length 

of the transducer lever, reduces both the signal to noise ratio and also the 

freedom of movement that the hook has within the muscle bath. 
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2.3.2 Micro-Newton strain gauge designs 

The most popular type of strain gauge used in single muscle fibre 

experiments is the Akers 801. This strain gauge consists of a small beam of 

silicone. Two piezo-resistive elements are etched onto opposite sides of the 

beam. The resistance of these elements is sensitive to the stretch or compression 

that results from flexing in the silicon beam. Applying a force to the end of the 

beam increases the resistance of one element and decreases the resistance of 

the opposite one. The two elements in the gauge are connected in a Wheatstone 

bridge circuit and fed through a difference amplifier. The presence of two 

elements not only doubles the sensitivity of the transducer, but also reduces the 

sensitivity of the strain gauge to changes in temperature. To attach the muscle 

fibre to the gauge, an extension piece with a hook (made from a glass capillary) 

is fixed to the end of the beam. The normal gauge without any extension piece 

has an undamped resonant frequency in the region of 12kHz. The addition of the 

glass extension, hook and the fixative typically reduces this to 4 to 5kHz . 

A much higher frequency response has been achieved in purpose built 

capacitance strain gauges (Huxley & Lombardi, 1980). The muscle hook is 

attached to the centre of a small, thin quartz strip. This strip lies over another 

piece of quartz, supported at both ends to leave a 6~m gap between the two. The 

surfaces of the quartz are metallized and act as a capacitor. A force acting on the 

hook causes the attached quartz strip to flex slightly. This increases the size of 

the gap enough to be detected as a change in the capacitance of the gauge. 

Such strain gauges have been constructed with a resonant frequencies as high 

as 50kHz. These gauges do not require further damping since sufficient damping 

is provided by the air in the gap of the gauge. 

However these gauges do have problems. Expansion and contraction of the 

quartz due to temperature changes cause the gauge to drift. Though this can be 

reduced by using fused quartz which has a higher thermal stability, it still remains 

a problem. A more serious problem is that of drift caused by humidity changes. 

The dielectric property of the air in the capacitor gap is very sensitive to humidity 

change. Humidity changes in the environment close to the muscle bath are 

difficult to avoid. To reduce this drift it is necessary to isolate or at least distance 

the gauge from the bath solution. This has the unavoidable consequence of 

reducing the resonant frequency of the gauge. 

To measure tension I chose to use the Akers gauge. Though it typically has 

a lower resonant frequency, it does not suffer from drift problems associated with 

the capacitance gauge. 
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Figure 2.4: Strain gauge apparatus optimised for high frequency tension 
measurement at the micronewton level. (a) Akers gauge, shortened and 
ground to a wedge shape to increase the frequency response. (b) Diagram 
of the circuit used, showing the Wheatstone bridge and low noise, low drift 
operational amplifiers. 
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2.3.3 The Akers gauge 

The strain gauge and circuitry are shown in Figure 2.4. To increase the 

resonant frequency of the gauge, the silicone beam was ground down to a wedge 

shape. The glass capillary was pulled out using a Bunsen flame. The hook on the 

end was shaped using a small electric heating element. The length of the glass 

capillary is the minimum which will allow a range of movement of 2mm inside the 

muscle bath. Also a minimal amount of shellac was used to attach the hook. 

The gauge is mounted in an aluminium block. A brass flat ended screw lies 

behind the gauge. This screw allows adjustable oil damping to be applied if 

necessary. The front of the gauge is shielded with a piece of aluminium foil. The 

gauge hook passes through a small hole in the foil. The Akers gauge is very 

sensitive to ambient light changes. The foil shields the gauge so that sunlight 

changes and the 100Hz of the illuminating lamp do not affect the tension signal. 

.. The foil also reduces the sensitivity of the gauge to local changes in air 

temperature. 

2.3.4 Tension circuitry 

The Akers gauge is incorporated into a Wheatstone bridge circuit. A 

variable resistor allows the bridged to be balanced at OV when no load is applied 

to the gauge. The bridge voltage is supplied by four batteries. Batteries are used 

because they are a cheap way to supply the bridge with a stable, low noise 

voltage source. 

A difference op-amp circuit amplifies changes in the bridge balance. A 

second op-amp circuit serves two functions. Firstly it amplifies the Signal further 

into a range which the Datalab can record (+O.SV). Secondly it allows gain of the 

tension circuit to be switchable. Having a switchable gain is necessary when the 

circuit is to be used for other gauges which are not optimised for a high frequency 

response. The op-amps used in the circuit are Burr Brown OPA37GP. They were 

selected for their low noise, low drift and high frequency characteristics. 

The voltage gain on the tension amplifier is adjusted to give a final value in 

the region of 600~NN. A value lower than this would risk the signal going off­

scale in some recordings. Higher range values would be of no benefit since the 

fibre preparation used does not withstand forces higher than this. A larger range 

value would result in a reduction of resolution in the recordings. 

The small capacitors on the feedback resistors reduce some of the high 

frequency noise in the circuit. Increasing the value of the capacitors used would 
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further reduce the high frequency noise in the output. Unfortunately this also has 

the effect of reducing the frequency response of the circuit. The amount of 

electronic filtering used is always a compromise between noise reduction and 
reduced frequency response. 

To detect the effect of the feedback capacitors on the frequency response of 

the circuit, a waveform generator was used to apply a high frequency signal to 

the input of the first amplifier in the tension circuit. By maintaining the same input 

voltage amplitude but changing the input frequency, it is possible to determine 

the frequency characteristics of the tension circuit. The capacitors chosen were 

those with which the high frequency amplitude remained constant at frequencies 

below 15kHz. Further filtering is done by software. 

2.3.5 Calibration and performance 

A calibration curve for the strain gauge is shown in Figure 2.5, part (a). The 

strain gauge is calibrated by positioning the strain gauge hook so that the glass 

capillary hangs down vertically. A range of small weights are hung from the hook 

and the change in the output voltage recorded as they are removed. It is more 

accurate to record the voltage change when removing the weight. This takes less 

time than adding the weight, allowing less time for drift. The range of small 

weights added correspond to a force range similar to that applied by the muscle 

fibres. Any non-linearity of the gauge outside this range should not alter the 

calibration. Recording the tension output for a range of forces shows the linearity 

of the gauge and its circuitry. 

Generally Akers gauges prove to be quite linear output over the range that 

they are used in muscle fibre experiments. Calibration results remain true for a 

long period of time. Any change in sensitivity is usually due to the a lowering to 

the battery voltage. At this time the batteries must be replaced, since they can 

lose there charge at different rates causing the tension output to drift quite 

quickly. 

The resonant frequency of the strain gauge is 13.2kHz (Figure 2.5 parts (b) 

and (c)). Such a high resonant frequency is very important for recording the high 

frequency characteristics of the muscle fibre. This frequency describes the 

oscillation of the free transducer. This is quite different from the expected 

resonant frequency of the gauge when a muscle fibre is attached in experiments. 

Because of the added mass of the fibre and the damping effects of the 

surrounding solution the experimental resonant frequency is in the region of 6 to 

8kHz. The exact value is difficult to determine and is dependent on how the fibres 

are mounted. 
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Figure 2.5: The mechanical charicteristics of the strain gauge. (a) Gauge calibration showing that the output is linear with applied 
force (530.3IJNN, r=0.999948). (b) Touching the unloaded undamped strain gauge can cause it to ring. (c) The same 
recording on a faster time base showing a resonant frequency of 13kHz. (d) An elastic material is oscillated at 32 
frequencies from 1.3kHz to O.125Hz. (e) A Bode plot for the data shown in (c). The phase angle is zero at the lower 
frequencies, increasing to a maximum of 5° at the highest frequency recorded. (f) The Nyquist plot for the same data. 
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To accurately characterise the frequency response of the tension recording 

system an elastic material is attached to the apparatus in the same way as fibres 

are mounted. Of several materials were tested for their elasticity, condom rubber 

is the most perfectly elastic under the conditions used. A strip of rubber is 

mounted in the same type of aluminium clips used in fibre experiments. The bath 

is filled with solution, since this has a small damping effect on the gauge. The 

results of a Nyquist series on the rubber fibre are shown in Figure 2.5 (parts (d), 

(e) and (f)). From the tension plot in (d) it can be seen that the tension amplitude 

remains quite consistent throughout all the frequencies tested. The change in 

phase angle remains very small, even at the highest frequency of 1.3kHz. 

2.3.6 Temperature controlled bath 

In previous muscle experiments in this laboratory, muscle bath temperature 

was controlled by water from a constant temperature tank passing close to the 

muscle bath. This method of temperature control has several problems. Because 

there is no feedback from the muscle bath, the bath temperature is sensitive to 

changes in room temperature and must be checked regularly. Temperature 

changes can take a long time. This affects the length of time it takes to start an 

experiment and makes temperature change experiments difficult. 

Because the amount of solution in a typical muscle bath is small (10 to 

100IJI) it is possible to use Peltier effect heat pump to control its temperature. 

Peltier effect heat pumps are small, cheap devices which transfer heat from one 

surface to the other. The direction of heat transfer is dependent on the direction 

of the current passing through them. In this way the same device can be used as 

a heating or a cooling element depending on the direction of the applied current. 

The circuit designed to drive the Peltier effect heat pump is shown in 

Figure 2.6. Two Peltier devices (O.32W mini module, RS 618-718) are wired in 

series. One side of the pumps is fixed to a very thin piece of aluminium which 

makes up one wall of the muscle bath. The other sideof the pumps is attached 

to a small block of aluminium (1 Omm x 1 Omm x 30mm). This block acts as a "heat 

reservoir". Bath temperature is detected by a miniature bead thermistor in the 

muscle bath. A variable resistor allows the user to set the temperature. The "set 

temperature" signal is compared to the "present temperature" signal in the op­

amp LM759. The error signal drives two FET transistors which supply the current 

to drive the Peltier pump. 
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Figure 2.6: The peltier heat pump driver circuit. The bath thermistor in a Wheatstone bridge circuit provides the 
temperature signal. The bath temperature is compared to the pre-set temperature in a difference amplifier. The 
amplified error signal drives two large transistors that provide the current to drive the peltier heat pump. 
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Two related and important variables in this system are the gain of the feed 

back circuit and the position of the thermistor in the muscle bath. A high gain 

setting ensures that temperature clamping is accurate and rapid. Unfortunately 

setting the gain too high introduces oscillation into the circuit due to the delay 

between passing current through the Peltier and the thermistor detecting any 

temperature change. This delay can be reduced (allowing a higher gain setting) 

by positioning the thermistor close to the Peltier pump in the muscle bath. When 

the thermistor is very close to the Peltier another problem is introduced. The 

solution in the region of the Peltier is perfectly well temperature clamped, 

however there is now a temperature gradient (possibly of several degrees 

centigrade across the bath). For these reasons, position of the thermistor and the 

inSUlation of the bath are important factors in the design of a temperature 
feedback system. 

In the muscle bath used, the bath solution is surrounded by insulating 

material (plastic and silicone rubber glue). This increases the speed at which 

temperature changes can be made, and decreases the effect of temperature 

gradients across the bath. The bath volume is low (30IJI). The mounted fibre lies 

in parallel with and close to (1.Smm) the surface of the Peltier device. The 

thermistor lies slightly below the fibre O.Smm from the surface of the Peltier 

device. 

The temperature controlled bath is capable of maintaining constant 

temperatures in the range 5° to 48°. Temperatures lower than So are possible if 

cold water is passed through the aluminium block close to the Peltier device. 

Heating occurs at approximately 2.S0 per second and cooling at 1 ° per second. 

Some oscillation occurs on reaching a new temperature, but is stable within 10s. 

To reduce evaporative heat loss (and ionic strength changes) at higher 

temperatures a cover-slip can be placed across the top of the bath. This also 

reduces temperature gradients at the highest and lowest temperatures. 

2.4 Oatalab waveform recorder (OL 1200) 

A Datalab 1200 waveform recorder samples and stores the data during 

experiments. When used with the muscle program the Datalab is set to 4 channel 

mode. In this mode it can simultaneously record and store 8192 samples on each 

of four channels. 

The DL 1200 multichannel waveform recorder is a sophisticated storage 

oscilloscope. The recorder used has the ability to record up to 4 channels 

simultaneously. Each channel has a 12 bit analogue to digital converter (ADC). 
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All channel data is stored in 64Kb of on board memory. A channel can record 

3~K, 16K or 8K samples depending on whether 1 , 2 or 4 channels are recording 

Simultaneously. On board clocks allow sampling rates as fast as 2~s (0.5MHz), 

although if triggered externally the ADCs can run at 1 ~s. Recorded data is 
displayed separately on an oscilloscope screen. 

During muscle experiments the Datalab is configured to record on 4 

channels. Although only two channels are used presently (motor position and 

muscle tension), this still allows 8K samples per channel to be recorded and 

enables future expansion, if further channels are required. 

Two methods of interface are available, the RS232C (serial) and the IEEE-

488 or GPIB (parallel). All parameters and front panel switch settings can be set 

through these interfaces using a simple command language. The GPIB port is 

used to link the computer and the Datalab. To dump the 32K of recorded data 

from the Datalab to the computer using the RS-232 would take approximately 40s 

to complete. Using the GPIB and machine code routines the data is transferred in 
less than one second. 

2.5 Computer interface 

An IBM AT compatible computer controls the motor position and triggers 

samples during recordings. The computer used is a Viglen II (16MHz 80286). The 

computer contains two commercially available expansion cards. Firstly a 

CEC 010000 card provides the GPIB interface to the Datalab waveform recorder. 

Secondly, a general purpose interface card controls the motor position and 

Datalab sampling. 

The interface card is a Labmaster DMA interface card. The card contains 

two digital to analogue converters (12 bit). One of these DACs generates the 

motor control signal. Two programmable timers (9513A) accurately control the 

timing of both the Datalab sampling and the timing of the output of new DAC 

values. The details the machine code that controls the interface is given in the 

software chapter. 

2.6 Future work 
Making the apparatus faster than at present is not a simple task. This would 

require modifications to both the motor and the strain gauge, since both are 

working at their limit. A motor capable of steps faster than 150~s will require a 

strain gauge with a higher frequency response than the present one. The motor 
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could be made faster by rebuilding the moving part of the motor so that it is 

lighter than at present. The present resonant frequency of 13kHz is probably 

close to the upper limit of what is possible with an Akers gauge. If more mass is 

removed from the silicone beam this would lower the leverage the fibre has on 

the gauge and decrease the signal to noise ratio further. A shorter glass capillary 

would reduce the range of movement the gauge has in the bath. A faster strain 

gauge could be constructed using a glass needle with an optical movement 

detector. 
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Software 

3.1 Introduction 

The computer performs many functions in muscle experiments. As 

described in the hardware chapter, the computer controls the position signal and 

triggers samples during recordings. Once recorded, data is dumped from the 

Datalab waveform recorder to the computer. Here the data can be displayed, 
analysed, filtered and also saved to disk. 

In this chapter program names and variable names from the software are 

written in bold Roman text e.g. CALL NyquistMenu. Source files, the 

executable file and some example traces are included on the diskette supplied 

with this thesis (the diskette format is 3.5", 720K DOS). The executable file will 

run on an IBM-PC compatible computer running DOS (version 3.3 or later), with 

an EGA, VGA or Hercules graphics. 

3.1.1 Programming Language 

Before my work, software to control muscle experiments was already in use 

in the laboratory. This was originally written by K. Drew (Drew, 1984) in a 

combination of machine code and BASICA. BASICA is Basic for the IBM PC, and 

is equivalent to GW-Basic available for IBM compatible computers. For several 

reasons, BASICA is not the best choice for this application. The most significant 

of these being its slow speed and its 64Kb limit on program size. These versions 

of Basic for the IBM PC are not compiled. Instead the program code must be 

loaded into the Basic editing environment where it is run in an interpreted way. 

More recent versions of Basic for the IBM PC are supplied with a compiler 

and do not have the 64K program limit. I chose to use QuickBASIC (Microsoft, 

version 4.5) to write most of the control and analysis software. This is the most 

popular Basic for DOS. A cut-down version of QuickBASIC called QBasic is 

supplied with versions of DOS from version 5.00 onwards. 

In QuickBASIC, like in BASICA, programs can run from the editing 

environment. Once written, the source code can be compiled to create a stand­

alone executable program. The only limit on program size is the amount of 

available base memory. The language, although almost completely compatible 

with GW-Basic, has many more advanced features that make programs more 

simple to write and understand. 
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Other programming languages are available which would produce faster 

and smaller code than Microsoft QuickBASIC. The obvious example being the 

language "C". A further advantage of some C compilers is the ability to write 

machine code in the same source file. However, some aspects of the C 

programming language make it less suitable than Basic for this application. The 

main problem being its apparent complexity to those who are not familiar with the 

syntax. I have tried to write this code in such a way that future researchers could 

alter and add to the code without a BSc in computer science. In this respect, 

since it is the most popular language among non-professional programmers, 
Basic is an obvious choice. 

The parts of the software that are not written in Basic are written in machine , 
code. Machine code (also known as assembly language) is the language that the 

microprocessor understands. High level languages like Basic and C must be 

converted to machine code before the microprocessor can run them. This 

conversion process is done by the compiler (or an interpreter in the case of 

BASICA). Unfortunately the compilation process is never as efficient as it could 

be. Routines that are written directly in machine code are faster than the 

equivalent code which is compiled from a high level language. The speed 

enhancement is not trivial, in well written code an improvement of an order of 

magnitude or more is not unusual. 

Obviously there is a price paid for this high speed. In comparison to high 

level languages, machine code is difficult to learn and write. Machine code 

programming requires a level of understanding of the computer architecture 

beyond that necessary to write in a compiled language. Machine code is also 

very unforgiving. The smallest mistake can result in the computer locking up, the 

reset switch being the only solution. Finding errors in the code (debugging) can 

also be a very slow task. Unless written with many descriptive comments the 

code can be very difficult to understand. Making alterations to code without an 

abundance of such comments is very difficult. Code without comments can 

sometimes be quicker to re-write than to decipher. 

The muscle program uses several machine code subroutines. In these 

routines, I used machine code either for its speed of execution or to perform 

operations that are not available in QuickBASIC. The one routine in which 

machine code is essential is the routine that controls the trace recordings. Other 

routines include displaying the data, the Datalab interface commands and various 

array manipulating functions could have been written in Basic but would make the 

program considerably slower. 
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3.1.2 Source files 

The software is compiled into one executable file (MUSCPROG.EXE) 
which from here will be referred to as the muscle program. Keeping analysis 

software together with the trace recording software in one program has several 

advantages. At first sight these seem to be separate functions which could be 

performed by independent programs. However it is often convenient to see a 

Nyquist plot or fit an exponential to a trace as soon as it is recorded. Also the 

routines which control the hardware and the analysis software share common 

subroutines (called Subprograms in QuickBASIC), such as those which display 
data and perform array functions. 

The QuickBASIC source code is split into three files. This split is necessary 

because QuickBASIC cannot compile source files which are larger than 64K. The 

three source files (modules) are MUSCPROG.BAS, MUS-ANL V.BAS and 

MUS-HDWR.BAS. The first is the main module. It contains the code for the user 

interface. The second two modules contain the code for trace analysis and 

hardware control respectively. 

The machine code subroutines are assembled and linked into two libraries. 

Firstly MPCODE.LIB is the library which is linked into the muscle program when 

the program is compiled. The second library MPCODE.QLB is a Quick library 

which makes the machine code subroutines available from within the Basic 

editing environment. In the editing environment, with the quick library and all 

three of the Basic source modules loaded, the muscle program can be run just as 

it would when compiled. This makes editing and debugging much more 

convenient. It removes the need to compile to detect errors. However, when run 

from the editing environment, the Basic code runs more slowly than when 

compiled. 

3.1.3 Overview of muscle program 

All of the modules begin with the same include file, MUS-INCL.BAS. This 

file contains the declaration statements for the Basic subprograms, the machine 

code subroutines and all the variables that are to be shared between the 

modules. The shared variables are declared using the COMMON SHARED 

statement. Some of the variables are declared a second time with a lower case 

"r" prefix. The first variable stores the current system values. The second with the 

"r" prefix holds the values for the record which is currently held in memory. Using 

two sets of variables in this way allows previously recorded traces to be loaded 

without changing the current system values. 
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Figure 3.1: Flow chart of the Muscle experiment control program. 
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A flow chart of the muscle experiment control program is shown in 

Figure 3.1. Program execution begins in the main module. After the declarations 

in the include file, memory is allocated for the permanent arrays and other 
variables. 

Before the main muscle program screen is plotted, a set-up routine (Setup) 

is called. This procedure assigns default values to the major program variables. 

It also detects the type of graphics adapter (VGA or Hercules). If a Microsoft (or 

compatible) mouse and driver are detected, the driver is initialised. 

Once initialised, the program plots the main program screen and waits for a 

key to be pressed. The majority of the main program screen consists of the 

plotted length and tension data. The program is now in the main program loop, in 

which it waits for a key-press, performs the associated function and if necessary 

re-plots the data screen once complete. All the program functions are accessed 

from the main screen using the function keys. 

In the flow chart the program functions are split into four groups. The first 

three groups describe the function keys F1 to F4, F5 to F8 and F9 to F12. These 

groups access the user-interface, trace analysis and hardware functions 

respectively. With a small number of exceptions these groups correspond to code 

in the modules MUSCPROG.BAS, MUS-ANL Y.BAS and MUS-HDWR.BAS 

respectively. The final group describes the non-function keys which are primarily 

for controlling what data is plotted to the screen. Most of the program functions 

operate by calling one or more subprograms. Though some are small enough to 

be performed in the main program loop. 

3.2 Recording traces 

3.2.1 Introduction 

All the hardware functions of the muscle program are accessed using the 

function keys F9 to F12. By default all of these keys are disabled at start-up. This 

is a safety mechanism which prevents computers without the hardware interface 

cards from locking up if these keys are pressed. Hardware functions are 

initialised from the experimental details menu (F3). The apparatus functions can 

be turned on only if the presence of the GPIB interface card is detected. 

Before recordings can be made the motor must be set-up. The motor set-up 

routine allows the motor driving circuitry to be tuned. Also the motor is calibrated 

for its sensitivity to the DAC signal. Separate menus are used to select for simple 
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recordings such as steps and single sinusoids (F12) or for Nyquist recordings 

(F11). Once the recording type has been selected, it can be recorded using F9 

(record and save) or F1 0 (record without save to disk). 

3.2.2 Motor Set-up Routine 

The motor set up procedure performs several functions which relate to the 

tuning the motor circuitry, and the characteristics of the DAC signal which 

controls the motor position. The Motorsetup subprogram must be run at the 

start of all experiments. The muscle program will not run other trace recording 

options until this initialisation routine has been done. It can also be run in mid­

experiment if the tuning circuitry is changed in any way. 

Before any signal is sent to the motor circuitry, the user must select two 

characteristics of the test output signal. Firstly the size of the step as a 

percentage of the present muscle fibre length (default 1 0/0). Secondly the duration 

of the ramp in the step signal (RampILen%, default 11 O~s). Sending a fast ramp 

to the motor produces a more smooth step than a square wave input. That is it 

reduces the tendency for the motor to ring after the step. The fastest steps with 

least ringing occur when the DAC ramp is set between half and two thirds of the 

motor ramp time. 

Once these variables are set, a series of steps are sent to the motor. The 

motor response is recorded on the Datalab, dumped to the computer and plotted 

on the computer screen. This sequence is repeated continuously. At this time the 

"main gain", "velocity gain" and "velocity balance" can be adjusted to give the 

best step response from the motor. See section 2.2.5 for a more detailed 

description of this process. 

With each step motor response dumped from the Datalab, the computer 

performs a DAC calibration. The variable DACcal! stores the amount of motor 

movement (~m) produced per DAC unit. The variable is set very accurately by 

averaging 3800 samples at both zero offset and at the top of the step to do the 

calculation. This self calibration is performed with each loop of the motor set up 

procedure. The value in DACcal! from each step is used to calculate the DAC 

values sent in the next step. Once the motor set up is completed, DACcal! is 

used to set all signals that are written to the motor. 
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MOTOR SETUP 
II 
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Figure 3.2: A screen image captured during the motor set-up procedure. Test 
steps are repeated and this screen updated continuously allowing the user to 
adjust the motor driving circuitry. 

The channel data dumped from the Datalab is in the form of unsigned 12 bit 

words. The values from 0 to 4095 cover the input voltage range from -0.5V to 

+0.5V. For this reason when the motor is at zero offset, the motor position signal 

voltage corresponds to a channel output value close to 2048. In the motor set up 

routine the channel value which represents zero offset is calculated accurately. 

The value is stored in the variable zeroL %. After the motor set-up procedure is 

completed, this value is subtracted from length channel samples of all recordings. 

The muscle program stores and saves length channel data as signed integers, in 

which a value of zero represents a motor offset of zero. Unlike the equivalent 

tension value (see zeroT% in section 3.2.9) the length signal does not drift. For 

this reason, zeroL % need only be set at the start of an experiment. 

A captured screen image from this set-up procedure is shown in Figure 3.2. 

As well as the plotted step, other information about the step response is printed 

with each repetition. Two motor ranges are given. Firstly the full motor range of 

the DAC output ("Motor range"). This value is given as a percentage of the 

current fibre length. The second range is the full range that the Datalab is 

capable of recording. The motor range can be changed at this point by adjusting 

a potential divider on the DAC input to the motor circuit. The motor range should 

be set to a value just above the maximum offset that is expected to be used in the 
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experime~t. T~is makes optimal use of the full range of theDAC, reducing the 
affect of bit nOise on the recordings. 

3.2.3 Machine code control of recordings (Sweep) 

3.2.3.1 Introduction 

Motor position and Datalab samples are controlled by a single machine 

code subroutine called Sweep. This routine disables the system interrupts and 

performs an accurately timed loop. In a single loop cycle, three different 

operations take place. A trigger signal is sent to the Datalab to take a single 

sample on the length and tension channels. Secondly, a new val,ue is sent to the 

DAC to control the motor position. Finally, if the sample rate is to change, the new 

value is placed in the loop timer. These operations are completed in a loop time 

as short as 6IJs (limited by the speed of the 286 used). The range of timer values 

from 6IJs to 65535IJs allows complete recordings (8192 samples) to last from less 

than 50ms to almost 9 minutes. 

It is not inconvenient that DAC output and sample triggering are coupled in 

this way. Rapid changes in motor position occur more smoothly if the controlling 

signal is made up of many small steps i.e. a fast loop rate. During rapid length 

changes many samples should be triggered to capture the high frequency 

stiffness information. 

The ability to change sample rate in mid-recording increases tremendously 

the amount of information that can be recorded in a single trace. For example in 

step length changes the highest sample rate can capture the ramp and the rapid 

recovery of the muscle tension and slower rates used to capture the slower 

tension transients. Similarly, in Nyquist recordings, the whole range of 

frequencies can be recorded quickly in a single trace. Previously separate 

recordings at different sample rates were necessary to record all of these 

processes. 

The ability to change sample rate also improves the accuracy of the 

exponential fitting process. Unlike previous recordings, the sum of all the 

exponential processes can be fitted in one run of the fitting program. To a certain 

extent the sample rate changes also give the tension transients a more even 

weighting. When fitting more than one exponential, the tension transient that 

contains the most samples will bias the result of the fit. One way to reduce this is 

to try to have more even numbers of samples in each of the processes by 

changing the sample rate through the trace. 
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Phases: 1 2 3 4 5 
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Sampling ) 

Post-recording phase 

Phase 0 1 2 3 4 5 6 

Signal 1 SnumO/o 0 64 1728 3200 3200 128 0 
description 

Sint% 4000 6 140 2200 1304 
Offset! 0 1 1 1 0 arrays Sgnl$ T T T T R 

(b) Example oscillation: 

DAC signal 

Phases: o o o 1 

Samples: 8192 8192 8192 8192 
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Phase 0 1 2 
Snum% 3 8192 0 
SintO/o 12 
Cycles % 4 
Freq! 40.69 
Ampltd! 1 
Offset! 0 
Sgnl$ S 

Figure 3.3: Examples showing how trace recordings are split into phases. (a) The 
table shows the signal description array values for a typical step recording. 
The sample rate is high during and immediatley following the length change, 
but decreases in each of the two phases which follow this. A post-recording 
ramp down returns the muscle to rest length. (b) In sinusoidal recordings, the 
sampling phase is repeated several times before the recording starts. This 
ensures that a steady state is reached before recording starts. The number 
of times that phase 1 is repeated before recording starts is stored in 

Snum 0/0(0). 
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3.2.3.2 Recording phases 

A single recorded trace is made up of one ore more recording phases. 

Recording phases differ according to either the motor position signal or to the 

sample rate. If a sample rate change or a new motor position is required then a 

new recording phase must be defined. The Sweep subroutine accepts as many 

phases as there are samples. That is each sample could be recorded at a new 

sample rate, although in practice between 1 and 32 are used. When the muscle 

program calls the Sweep subroutine, it sends information in three arrays, 

Snum%O, Sint%O and DACout%O. The former pair of arrays describe each 

phase in terms of number of samples and sample interval (~s) respectively. The 

third array contains all of the motor position information (8192 or more values) 

which is sent to the DAC during the recording. 

Figure 3.3 shows how recordings can be made up of one or more phases. 

Part (a) shows an example step recording. The diagram below the DAC signal 

shows the relationship between the phases which describe the timing of the 

recording and the DAC signal itself. The table shows the values in the signal 

description arrays. A "_" in the table indicates that the actual value in this element 

of the array is irrelevant to the function of the code. The phases 1 to 4 are the 

sampling phases, the sum of the sample numbers in these phases is 8192. Phase 

5 occurs after all the samples have been recorded, it returns the muscle offset to 

rest length. 

The value in Snum%{O) is zero in the step length change example. This is 

reserved for pre-conditioning in sinusoidal recordings. In sinusoidal recordings, it 

is often important to give the muscle several oscillations before recording is 

started. These pre-recording oscillations allow the muscle to reach a steady state 

before any samples are taken. The array element Snum%{O) stores the number 

of repetitions of phase 1 (described by Snum%(1) and Sint%(1)) that occur 

before recording begins. In non-sinusoidal recordings, the value sent in 

Snum%{O) is zero and no pre-recording phases occur. 

3.2.3.3 The DAC signal array 

As well as Snum%O and Sint%O, other arrays are shown in Figure 3.3 

which describe the DAC signal. These arrays are not passed directly to the 

Sweep subroutine. Instead the signal which these arrays describe is written to a 

single array DACout%O before the machine code is called. The Basic 

subprogram WriteDAC fills the array DACout%O with the exact values which 

are written to the DAC during the recording. 
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The WriteDAC subprogram fills the DACout%O array phase by phase. 

The array 8gnl$0 describes the type of signal in each phase using a single 

character. The character "T" for fast steps and steady values and "S" for simple 

sinusoids. Phases in a Nyquist series are designated by "N" or "F" depending on 
whether they use pre-recording oscillation or not. 

For rapid steps, a fast ramp is written to the DACout%O array as defined in 

the motor set-up routine. The Offset!O array stores the length offset for each 

phase. The value is stored as a percentage of the total muscle length. In the 

motor set-up procedure the motor sensitivity is stored in the motor calibration 

variable DACcal!. Using this calibration value and the muscle fibre length 

(Mlength!) the WriteDAC subprogram calculates the exact value to achieve the 

percentage length change specified in the Offset!O array. 

F or sinusoidal phases, several more arrays are required to store the signal 

description. The number of complete cycles in the Cycles%O array, the 

oscillation amplitude in the Ampltd!O array and frequency in the Freq!O array. 

The value in Offset!O is taken into account if a non-zero offset is specified. 

3.2.3.4 Machine code details 

The code that controls the recording process is actually a very small part of 

the source code. The majority of the source prepares the timers and data arrays 

for the small timed loop to run as efficiently as possible. 

At the start of the subroutine, the system interrupts are stopped. This is 

essential in a routine such as this where timing is critical to the level of less than 

one microsecond. When system interrupts are enabled, several precious 

microseconds of processor time can be used by another routine. An example of 

such an interrupt is that generated to maintain the value in the time-of-day clock. 

This routine is called 18.2 times per second on all IBM compatibles. Such 

interference would not be acceptable, especially during rapid length changes. 

Programming references recommend that interrupts are not disabled for 

longer than a few milliseconds. Despite this, I have noticed no adverse effects 

even on the longest recordings of several minutes. Caution on the part of these 

references is probably to avoid problems with other interrupt driven routines such 

as packet drivers for networks. The value in the time-of-day clock is reset from 

the value stored in CMOS at the end of the Sweep routine (the CMOS clock is 

that which keeps time when the machine is off). This ensures that the system 

clock and more importantly the file save times remain accurate. 

Two versions of the phase output loop exist in the code, one for each timer 

on the interface card. The output signal of the Labmaster timer 1 is wired directly 
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to the sample trigger line of the Datalab waveform recorder. For this reason, a 

separate control loop and timer 2 are used to perform the timing of any pre­

recording repetitions of phase 1 (i.e. when Snum%(O»O). During the 

development of the control loop, many different ways of performing the same task 

were tested, in order to find that which gave the maximum sample rate. 

Once written, the code was given rigorous testing. This was to ensure 

accuracy in the timing events. The accuracy of the timing was tested by recording 

the signal from an external waveform generator of known frequency. The optimal 

loop frequency can be found by having the loop output a repeating signal with a 

small number of samples. The DAC output can be viewed on an oscilloscope, 

whilst the timer value is reduced. When the computer execution time becomes 

limiting is shown by sudden irregularity in the output signal. The present minimum 

loop time is 6~s on the 286 based computer. On a fast 486 based computer, the 

maximum sample rate of the Datalab of 1IJs will be possible, though it is 

debatable whether such a high sample rate is necessary. 

3.2.4 Step length change recordings 

Simple step recordings can be selected by pressing F12. This calls the 

subprogram StepMenu. A simple menu allows the user to select the size (as a 

percentage of the muscle length) and duration (seconds) of the step to be 

applied. 

The number of phases can also be altered. The step can be made up of up 

to 10 phases. The phases have equal numbers of samples (Snum%(»), but the 

sample rate (Sint%O) increases logarithmically. The values of the sample rates 

are calculated automatically from the selected step duration. 

By default the program will record the return to zero offset after the step is 

completed. This return to zero is recorded using half the number of samples in 

the step itself. The return to zero recording can be switched off so that all of the 

samples are used to record the step. In such recordings, the length offset is 

returned to zero after the recording has ended. A slow ramp is used for such non­

recorded length changes since they do less damage to the fibre. 

3.2.5 Nyquist recordings 

Although Nyquist recordings use the same phase by phase style of 

recording as other recording types they have a dedicated menu system. This is 

because Nyquist recordings have several special requirements. Pressing F11 

invokes the NyquistMenu subprogram. 
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Figure 3.4: Two screens captured from the Nyquist menu subprogram. (a) The 
menu itself allows individual frequencies to be edited. The number of 
frequencies to record in a single sweep is set using the function keys F1 to 
F4. Pressing F8 shows the set up screen shown in (b). This automatically 
sets all the frequencies based on the lowest and highest values in menu (a). 
Frequencies are plotted on a logarithmic scale. Frequencies can be biased 
towards or away from a specified point on the scale. 
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A captured screen from the Nyquist set up menu is shown in Figure 3.4, 

part (a). The number of frequencies to be recorded is selected using the keys F1 

to F4. From 4 to 32 frequencies can be recorded in a single sweep. Each 

frequency is allocated an equal number of samples in a recording. This varies 

from 2048 samples in 4 frequency recordings to 256 samples in 32 frequency 

recordings. In the main Nyquist menu, the user can set the number of whole 

cycles to as well as the frequency itself for each phase. It is necessary to record 

more than one cycle at the higher frequencies because of the limit on the loop 
time in the Sweep subroutine. 

Although all each frequency can be altered individually from this menu, this 

is a lengthy process. Another set up screen performs this automatically. Pressing 

F8 calls the subprogram NyqSetFreq. This routine (Figure 3.4, part (b)) reads 

the highest and lowest frequencies set in menu (a). Using these values it 

automatically calculates the spacing for the intervening frequencies. This spacing 

can be calculated on a logarithmic or linear scale, the default is logarithmic. The 

frequencies positions are plotted across the screen, linearly or logarithmically. 

The phase number is written above each frequency dot, the frequency value is 

written below. 

This procedure allows the user to bias frequencies towards the middle 

frequencies. This is especially useful for recording active responses, where the 

frequency characteristics of the muscle can be especially sensitive to frequency 

changes in the mid-range. The value for "bias" can be altered using the "+" or "_" 

keys. The actual value of bias is the ratio of the smallest log-frequency interval to 

the average interval for all frequencies. The left and right cursor keys can be 

used to move the bias centre to any point in the frequency range. The bias centre 

is shown as a vertical line on the frequency scale. 

3.2.5.1 Nyquist amplitude correction 

Once the Nyquist frequency range has been selected, a length correction 

routine can be performed. At the highest frequencies the motor cannot always 

match the amplitude output by the DAC. To prevent this change in amplitude with 

frequency, the correction procedure NyqCorr sets the values in the array 

NyqLcorr!{). This array contains the multiplication values for the amplitude of 

each frequency in the Nyquist series. At start-up all are set to 1, so that by default 

no amplitude correction is performed. 

The correction routine records a Nyquist series and performs a discrete 

Fourier transform on the recorded length signal for each frequency. The value of 

NyqLcorr!{) is modified according to the amplitude of the returned signal. The 

value in NyqLcorr!{) is used to calculate the amplitude of the signal written into 
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the DACout%O array for the next recording. This process in repeated until the 

amplitude error for all frequencies is less than ±4%. The values of the correction 

array are printed to the screen in the Nyquist set up menu (Part (a) of Figure 3.4, 
columns labelled "Lcorr"). 

It could be argued that this is an unnecessary correction, especially since 

the length signal amplitude is taken into account when calculating muscle 

stiffness for all sinusoidal analYSis. However even at the small amplitude 

oscillations used in sinusoidal analysis the nonlinearity of the muscle is still 

apparent. The Nyquist plots of Insect muscle fibres are especially sensitive to the 

amplitude at which they are recorded (see Chapter 4 for more details). 

In the example shown little amplitude error occurs, the largest is a 6.1 % 

error at the frequency 1.3kHz. In this case the correction has made very little 

improvement to the recording quality. However when higher frequencies are 

specified or a slower motor attached to the apparatus, this correction procedure 

is more important. The correction values can also detect mechanical resonance 

problems in the apparatus. 

3.2.6 Other recordings 

From the main program screen of the muscle program, pressing Shift-F12 

calls the subprogram SignalParameters. This displays a full screen menu in 

which the operator can define the properties of each phase in a recording. The 

program allows up to 20 different phases to be specified in terms of muscle 

length (Offset!O array), sample interval (Sint%{) array) and sample number 

(Snum%O array). Each phase is assigned a row on screen. The cursor keys 

move the cursor to any field on the screen. Values can be updated by inputting a 

new value manually from the keyboard or changed incrementally using the Page­

Up and Page-Down keys. For sinusoidal oscillations, the user can specify the 

amplitude, offset, frequency and number of cycles in the trace. In ramp length 

changes the ramp rate can be set. 

Most menu changes are made in a friendly way. For example if the duration 

of a phase (in seconds) is altered, the Sint%O value is adjusted automatically. 

When physically impossible entries are made, a warning beep is given and the 

nearest value possible is substituted. Examples of this are frequencies specified 

that are too high, ramp rates which would last for longer than the duration of the 

phase and offsets which are beyond the range of the DAC. 

Though this menu is more complex than the Nyquist or Step set-up menus, 

it is very versatile. A recording can be set-up from any combination of steps, 

ramps or sinusoids. Some of the more commonly used recordings can be 
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selected using the function keys. The pre-programmed parameter sets include 

fast steps, T1-T2 recordings, staircase recordings and recordings designed for 

motor calibration. Pressing the relevant function key will make all the necessary 

changes to the phase array values. This makes it more convenient to change 
recording styles during an experiment. 

3.2.7 Oatalab communication 

Interfacing the Datalab to the PC presented an unexpected problem. The 

card used for the GPIB interface was compatible with BASICA and GW-Basic, but 

unfortunately pre-dates QuickBASIC. QuickBASIC differs from the former 

languages in the length of its string descriptors. The subroutines on ROM expect 

a 2 byte string descriptor, not the QuickBASIC 3 byte descriptor. A further 

complication is the address of card in PC memory. The card has a switch 

enabling the user to set the ROM segment address to any 64K page boundary. 

Unfortunately the subroutines on the ROM make calls to subroutines in page 

&hCOOO. For this reason if the card is set to any page other than &hCOOO the 

ROM routines cannot possibly function. 

Despite the ROM problem, the page switch will allow the registers 

necessary for GPIB communication to relocate successfully. I chose to write my 

own subroutines to send values directly to the registers on the bus controller 

chip. To do this it was necessary to disassemble CEC ROM and follow the code 

to find out how to program the controller chip TMS9914A. 

Three machine code subroutines, DLsend, DLreceive and DLchannels, 

enable the computer to communicate with the Datalab. An initialisation sequence 

in Basic in the Details subprogram establishes contact with the Datalab and sets 

up the bus controller chip. A further subprogram called DLdialogue allows the 

user to type commands strings directly to the Datalab. 

The DLsend and DLreceive subroutines, as their names suggest are 

simple routines which communicate short messages between the Datalab and the 

computer. 

The DLchannels subroutine dumps channel data from the Datalab to 

arrays in the computer memory. A small array is passed to the subroutine when it 

is called. This array instructs how many channels to dump, the number of 

samples per channel and the location in memory of the arrays where the channel 

data is to be stored. 

In normal recordings the channel data is dumped to two arrays called 

Ldata%O and Tdata%O· These arrays hold the length and tension channel data 
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respectively. The channel data is not written directly to the array memory, but is 

added to the values currently in memory. This simplifies th~ process of trace 

~veraging, but makes it necessary to set arrays to zero before the first recording 
In a sequence. 

3.2.8 Trace Averaging 

Due to the high accuracy of the system and the repeatable nature of the 

majority of recordings made, it is possible to record and average a specified 

number of separate muscle responses to a given length signal. 

This averaging results in a significant reduction in noise in the recorded 

data. This method of noise reduction is preferable to any kind of filtering, whether 

electronic or digital. A maximum of sixteen traces can be averaged in this way. 

This ceiling is imposed by the fact that Ldata%O and Tdata%O are two-byte 

integer arrays. The channel data from each run in an averaging sequence is 

added into these arrays and divided through by the number of runs at the end. To 

average more than sixteen traces would require the use of four-byte integers. 

The use of signal averaging in this way, reduces noise by approximately the 

square root of the number of traces averaged. Using the maximum of sixteen 

averaging runs will result in about a four fold improvement in the signal to noise 

ratio. Only when very small length changes are imposed is such a number of runs 

necessary. Since the improvement in data quality decreases with each run, it is 

usually not worthwhile to perform more than five. Unlike digital and electronic 

filters, this method of noise reduction is not frequency dependent. Both high and 

low frequency noise are reduced equally well. 

Ideally, for each trace in an averaging sequence, the fibre should be in the 

same chemical, thermal and mechanical environment. Particularly during 

mechanical perturbations greater than 0.5%) in activating solutions, there are 

large changes in the concentrations of ATP, ADP and Pi within the fibre and in 

the solution immediately surrounding it. For this reason in such recordings there 

is a forced wait between averaging runs to allow the fibres chemical environment 

to equilibrate. The duration of the wait period is set in the Details menu. In 

recordings which involve a large amplitude stretch activation, a wait period 

greater than 10s can be necessary. 

3.2.9 Finding zero tension 

Due to the slow drift in the tension transducer circuit, frequent zeroing 

recordings are necessary. A zeroing trace is usually made with each recording, 
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although this option can be turned off in traces where the step may damage the 
fibre. The subprogram Zero performs this function. 

To find zero tension a large amplitude (more than 1% ) step release is 

recorded. Step releases of this amplitude cause the fibre to go slack. The tension 

samples recorded in the few milliseconds following the step are averaged and the 

result stored in the variable zeroT%. Once recordings are finished, the value in 

zeroT% is subtracted from all values in the Tdata%O array (similarly zeroL % is 

subtracted from Ldata%O). The zeroing trace alone can be executed by pressing 

Shift-F9. The Zero subprogram prints the present value of steady state tension 

on the screen. This can be useful when following the progress of slow activations. 

When several traces are being averaged, the zeroing trace is recorded in 

the middle of the averaging set. Assuming a steady drift in one direction, this 

method gives the best estimate for the average value of zeroT% for all the traces. 

This is important when averaging many traces that last for several seconds. 

3.3 Viewing traces 

3.3.1 Plotting the data to screen 

The main program screen is made up predominantly of a plot of the data. 

The data may be plotted in one of four ways. Figure 3.5 shows captured screens 

of all four plotting methods. All the screens are plots of the same recorded trace. 

Pressing the F2 key cycles the muscle program through these different plot types. 

The plots used most often are the length and tension against time and the tension 

against length plots ((a) and (c) in Figure 3.5). The sample number plot (b) is 

useful when finding the best values for the number of samples and sample 
interval when setting up the recording phases. The log10(time) plot is good way to 

view all the muscle tension processes in equal detail without needing to alter the 

timebase. When fitting exponentials to tension transients, a single log plot can 

show how well the fitted curve describes the fastest and the slowest processes 

simultaneously. 
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A cursor cross is always present on screen (not visible in the screens 

shown). Information about the current cursor position is displayed on the top line 

of the main screen. This line shows the time, length and tension of the data 

highlighted by the cursor cross. The cursor can be moved in several ways. The 

left and right arrow keys move the cursor by one sample. This movement speed is 

increased when the CTRL key is also pressed. The Page-Up and Page-Down 

keys move the cross by a whole recording phase. The Home and End keys move 

the cursor to the first or last data points on screen. If a Microsoft ( or compatible) 

mouse is present, the cursor cross can be moved to any data point on the screen 

by moving the on-screen pointer to the relevant data and clicking the primary 

mouse button. The cursor cross follows the mouse if the primary button is held 
on. 

The plot screen can display between 2 and all 8192 data samples. There a 

several ways that the user can zoom-in on part of the trace. A single phase can 

be plotted by entering the phase number from the keyboard. The present cursor 

position can be made the first or last point plotted on screen by pressing "L" or 

"U" respectively. Clicking the primary mouse button to the left of the data plot 

area causes a vertical line to be drawn down the screen. If the mouse button is 

held closed, this line can be dragged to any point on the screen. When the button 

is released, the screen is re-plotted starting from this position. Similarly clicking to 

the right of the plot area allows the upper plot boundary to be selected. Pressing 

"A" on the keyboard re-plots all the data. 

All the data plots are created by a single machine code subroutine called 

Datplot. The details of the plot are passed to the subroutine in a single data 

array. The information sent to the subroutine includes the plot type, the number of 

points to plot, the number of data series to plot. With each data series plotted, the 

subroutine must be told where in memory to find the data, where to plot on screen 

and the pixel colour for that series. 

The subroutine automatically detects the current screen mode. This allows it 

to exit gracefully if it detects a text mode, and not to attempt to plot pixels that 

map off-screen. The subroutine works in all the commonly used graphics modes 

on the IBM PC (Hercules, CGA, EGA and VGA but not super-VGA). In the two 

graphics modes used in the muscle program, pixels are plotted directly into 

screen memory. This is much faster than using the pixel plotting routines 

available by using software interrupt 10. 
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3.3.2 Printing routines 

The muscle program contains a simple printing routine. This routine allows 

graphics screens to be dumped to an Epson compatible dot-matrix printer 

connected to LPT1. A more complex printer interface has not been implemented 

for two reasons. Firstly there is no industry standard interface for dumping 

graphics files to printing devices. Secondly, with the now commonplace use of the 

Microsoft Windows as a working environment, screens from DOS applications 

can easily be captured and pasted into graphics packages or word processors. 

From here the images can be saved to disk or printed using the normal Windows 
procedures. 

3.3.3 Data smoothing 

Despite the use of low noise amplifiers the signal to noise ratio from the 

strain gauge amplifiers is not as high as I would like it to be. Electronic filtering 

could reduce the high frequency noise to much more acceptable levels. 

Unfortunately, as the level of analogue electronic filtering increases, the high 

frequency response of the circuitry decreases. This reduces the highest 

frequencies at which accurate stiffness measurements can be made. 

An alternative to this is to filter data after capture. This has several 

advantages over analogue electronic filters. Firstly and most importantly, 

software filtering introduces no phase shift into the signal. Electronic filters 

introduce a shift into the signal because they only have the present signal value 

and its recent history to work on. However, software filters that work on previously 

captured data, can make use of the future signal as well as previous values when 

filtering a data point. The data points immediately before and after the point to be 

filtered are treated on an equal basis. 

Many filtering algorithms can be used, the simplest to imagine being moving 

average filters. In a three point moving average filter, a data point is averaged 

with the data points on either side of it. As more points are used in the averaging 

filter, more smoothing is obtained. Moving average filters are fast and simple to 

write. Unfortunately they have the tendency to smooth out the tops of peaks in the 

data. During rapid length changes, sharp peaks occur in the tension data that 

give the experimenter information about the stiffness of the fibre. For this reason 

a filter that reduces the peak height would remove important information from the 

data. 

Other more complex convolute functions exist which allow for weighting or 

favouring of data nearest the filtered point. This reduces the tendency to smooth 
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out sharp peaks in the data. A further improvement on this would be a filter that 

places the point on a line which best fits the data in its vicinity. The most popular 

numerical criterion for defining 'best fit' is that of least squares. That is the 

minimisation of the squared difference between the fit curve and the data. 

Savitzky and Golay (1964) describe a method to perform least squares 

smoothing using simple integer arithmetic. This method allows a polynomial to be 

fit to the data to determine the best value for the central point. However it is not 

necessary to do any complex curve-fitting arithmetic. Savitzky and Golay publish 

tables of integers which when used in a weighting function give exactly the same 

results as fitting polynomials using least squares. Corrections necessary for some 
of the tables are given by Steinier et al (1972). 

The tables include integer sets to fit a cubic or a quintic equation to the data 

to find the best value for the smoothed data point. The exact curves being 

y = ao + a1x + ay'(2 + a3x
3 for the cubic and y = ao + a1x + a2x

2 + a3x
3 + a4x 4 + a5x

5 

for the quintic. The smoothing tables shows integer sets for filters from 5 to 25 

points for cubic smoothing and from 7 to 25 for quintic smoothing. 

The code to perform data smoothing is written in machine code, in the 

subroutine Filter. This subroutine contains the all the smoothing integer sets. 

When the subroutine is called, the arguments passed include the number of data 

points to filter, the location of the data in memory and a three letter string which 

specifies the filter type. For example "A 13" would perform a 13 point moving 

average filter, whilst "Q25" a 25 point quintic smoothing filter. 

The filtering process is fast. To smooth 8192 data points using a 9 pOint 

cubic filter takes less than one second on the 16MHz 286 used for experiments. 

Since filtering is so fast, the traces are stored on disk in the original captured 

form and filtered later if necessary. Traces should be stored in their original 

unfiltered form, since the filtering process may remove some information that is 

required later. When filtering is done, the filter type is added to the on-screen 

trace name. The presence of this addition prevents the trace being saved to disk 

or filtered more than once. To apply a different filter, the original data must be 

loaded back from the disk. 

The cubic and quintic smoothing filters dramatically alters the appearance of 

the plotted data. Small tension changes which were previously hidden in the high 

frequency noise become much more clear. Improving the appearance of the 

recorded traces, and making small signal changes more visible are the main use 

of these smoothing filters. In terms of Fourier analysis and exponential fitting, the 

smoothing filters make no Significant change to the results obtained from these 

analyses. 
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3.4 Saving and loading traces 

The Basic subprograms Savetrace and Loadtrace allow traces to be 

saved to disk and retrieved. Length and tension channel data is written to disk in 

binary form. With the data from both channels (16K each) and some environment 

and trace information, the trace data files occupy approximately 33K each. 

As well as the channel data, the following information is saved with each 

trace; experimenter names, muscle species name, muscle length, apparatus 

calibrations, number of traces averaged to create the trace and all the relevant 

signal description arrays. 

The method Basic uses to save integer values to disk is very slow. For this 

reason a small machine code subroutines (FastSave) copies the channel data to 

a fixed length string which Basic then saves to disk. The subroutine FastLoad 

performs the converse action when loading the trace from disk. 

The filename used to save the trace is created automatically by the save 

subprogram. A user-defined filename can be given the trace is saved using the 

Shift-F4 "Save trace" option. The filenames generated by the savetrace 

subprogram have the format shown in Figure 3.6. 

llA92103.IND 
T 1 ~ 

Month in Hex Fibre number Species 

Day of the month Year Trace number 

Figure 3.6: Diagram illustrating the nomenclature for muscle trace files. 

This filename format appears complex. However the amount of information 

that can be obtained simply by viewing a directory listing makes the complexity 

worthwhile. Using simple masks and wild-cards, all the recordings made on one 

day can be listed from a directory or disk containing many files. 

3.5 Exponential fitting 
Accurate values for the amplitudes and rate constants of the phases in the 

tension signal can be obtained by fitting exponentials to the captured data. The 

software to fit up to five exponentials to the data was incorporated into the muscle 
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program. Exponential fitting is one of the more complex types of curve fitting 

problems, requiring an iterative procedure to estimate the parameters. 

3.5.1 Introduction to Linear and nonlinear regression 

Most curve fitting problems can be solved by linear regression. In this 

context the word linear can be interpreted in two ways. Firstly, it could mean that 

the curve to be fitted is a straight line. Secondly and more relevant here, that the 

curve function is linear in its parameters. Meaning that the function has no 

products of parameters or parameters in exponents. This distinction is very 

important here, because the solution to nonlinear regression problems is not 

nearly so straightforward as for linear. 

In most regression analysis, the best fit is calculated by minimising the sum 

of the squared difference between the data and the fit curve, also known as the 

sum of the squares. That is the point at which the fitting parameters (f3) are at 

such values that the sum of the squares S(fJ) is at its global minimum. 

S(fJ) = ~]Y, - f(X"fJ)Y 
i=1 

For most purposes, regression analysis is described with LS with standard 

algebraic notation. The mathematics can be described equally well using matrix 

algebra. In fact using matrices can make the algebra considerably easier, 

especially when several parameters are involved or there are more than one 

regressor variable (multiple regression). Here matrices will be written as single 

letter in bold non-italic type, for example Y. 

In matrix notation the function to be fitted to the data (x 1'Y 1)' 

(X2,Y2), ... ,(xn,Yn), with parameters f31, f32,.·.,f3p can be written as 

y = Xp + E 

where: 

Y 1 
1 XII X l2 

X 1k /30 

Y2 
1 X 21 X 12 

X 1k p= 
/31 

Y= , X= · 
and 

· · 
Yn 

1 x nl x n2 xnk /3k 

E= 

The (nx1) vector y contains the Y data. The matrix containing the x data is 

X. It has one column for each parameter and so is an (nxp) matrix. The 

parameter vector J3 is (px1), and the errors are in E which is an (nx1) vector. 
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t~e su~ of the squares S(fJ) reaches a minimum. It is possible to imagine a three 
dImensIonal surface plot in which the two parameters fJo and fJ1 are the 

horizontal axes and S(fJ) , the dependent variable, is the vertical axis. 

The shape of this surface depends on how well the data can be described 

by a single exponential. With data that accurately follows a single exponential 

with little noise, the surface would be smooth and have a single very distinct 

minimum point. The position of this minimum point shows the optimal values for 
" 

the two parameters, S(P). Unfortunately, data is rarely so ideal. With more noisy 

data the sum of the squares surface is much less regular. The surface may 

contain many local minima, as well as the global minimum point. Also the global 

minimum itself may be a long valley, that is it may be well defined for some 

parameters, but not so clear for others. 

Most iterative fitting algorithms work by looking at the shape of the sums of 

squares surface in the neighbourhood of the present parameter values, and 

making a best fit estimate from that information with each iteration. The different 

algorithms vary according to how they decide the best changes to make to the 

parameters with each iteration. 

The simplest fitting algorithm to imagine is the steepest descent method. 

This method examines the slope of the surface at the present parameter values 

and moves the parameters in the direction of the steepest gradient until 

convergence, that is a minimum point is reached. When more than two 

parameters are being fit, the mechanism becomes much harder to visualise, 

however the mathematics is not much more complex. The direction of the vector 

used to change the parameters is of the form 

as(p) 
a/32 

, ... , 

Different steepest descent methods vary according to how they define the 

magnitude of the step. This method is fast to converge when the surface is 

ellipsoidal with a single global minimum. Unfortunately when the S(fJ) surface is 

irregular, the steepest descent method can be very slow and inefficient. The 

parameters may find themselves stuck in a local minimum which is not close to 

the best fit, or moving very slowly down a long valley. Typically the algorithm will 

make good progress at first, especially if the starting parameter values (13 0) are 
A 

not close to p, but become painfully slow close to convergence. 

A better method to use when the surface is non-ellipsoidal and irregular is 

the Linearization method. Other names for the same method include Gauss­
Newton, Taylor Series, and Inverse-Hessian method. 
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As these names suggest this method uses a Taylor series expansion of the 

gradient at S(f3) to make a linear approximation of the function. Only the first 

order terms are required to give a reasonable approximation of local curvature. 

The linearization method is usually faster than the steepest descent method when 

the parameters are close the global minimum values. 

By far the most common algorithm used in nonlinear parameter estimation is 

a compromise between these two methods. This is the Marquardt algorithm 

(Marquardt, 1963), it combines the advantages of both the steepest descent and 

the linearization method. Other names that refer to the same algorithm include 

Levenbt!rg-Alarquardt, Afarquardt's compron1ise, and Maximum 

"\Teighbourhood. 

In the Marquardt algorithm parameter change direction lies somewhere 

between that suggested by the linearization and the direction of steepest 

descent. The variable A dictates the exact direction. When the value of A is high 

the parameters change in the direction close the steepest descent. When A~O, 

the parameters change is more Gauss-Newton. 

The Marquardt algorithm begins with a large value for A. As fitting 

progresses the value decreases with each iteration. However the value is 

increased if Gauss-Newton cannot find a solution, and the iteration repeated. 

3.5.3 Exponential fitting procedure 

The exponential fitting menu is accessed from the main program screen by 

pressing F5. Before this the user must select the data points to be used for curve 

fitting. This is done from the main program screen by windowing the data. In the 

exponential fitting menu (Figure 3.7 part (a)), the user is able to set up the fitting 

environment. 

From the fitting menu the starting parameters can be edited. The first 

parameter P( 1) is the offset for the fit equation. The parameters below this 

describe the exponential processes, the exponential amplitudes on the left (units 

are IJN) and the rate constants on the left (sec-1). In the example screen shown a 

total of four separate exponential processes have been fit, the equation fit to the 

data is as follows: 

pel) + P(2).e- P(3).t + PC 4).e- P(5).t + P(6).e- P
(7).t + P(8).e- P

(9).t. 
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Figure 3.7: Exponential fitting. The fitting menu (a) allows the user to set the fit 
starting values and the extent of data averaging before fitting. (b) As the 
fitting algorithm progresses the parameters are printed on the screen as they 
are modified, and the the current curve is plotted against the data. Four 
separate plots are shown. The fitted curve is plotted over the data with time 
(upper left) and with log(time) (lower left). The upper right plot shows the data 
and the fitted curve plotted against sample number, along with another plot 
showing the difference between the data points and the curve. In the lower 
left plot, the data is shown along with the current weighting function applied 
to the data points. 
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Individual parameters can be fixed by moving the text cursor to the 

parameter and pressing "F". Repeating "F" will free a fixed parameter. 

Parameters fixed in this way are not adjusted during the fitting procedure. The 

number of data points that are sent to the fitting routine can be adjusted using 

Page-Up and Page-Down. Fitting a curve to a small number of data points is fast, 

but produces a less accurate fits than when larger data sets are used. If "Auto 

repeat" is selected by pressing F6, a sequence of fits is done. With each fit in the 

sequence more data points are sent, until the last fit where all the data is used. 
Pressing F5 begins the fitting procedure. 

Part (b) of Figure 3.7 shows an example screen of the fitting algorithm in 

progress. The new parameter values are printed to the screen with each iteration. 

To the right of each parameter, the ratio of the parameter to its value in the 

previous iteration is shown. These values tend towards 1 as the fit progresses. 

This value shows which parameters are changing most rapidly. It can also 

indicate parameters which are causing difficulties in the fitting process. 

During the fitting process the four data plots are regularly updated. The two 

plots on the left of the screen display the current curve fit plotted over the data 

against time (upper) and log-time (lower). The upper right plot expands the 

difference between the data and the fit curve (plotted against sample number). 

Below this the data weighting is shown, also plotted against sample number. 

3.5.4 Exponential fitting software 

The implementation of the Marquardt algorithm in the muscle program is 

modified from a version published by Schreiner et al (1985). The majority of the 

mathematical operations are done in Basic. A machine code subroutine is used to 

when calculating the value of the exponential processes at a given time 

(ExCaIFn). 

I made some minor modifications to the Marquardt algorithm. In the original 

algorithm the sign of any of the parameters is free to change. When fitting to 

muscle transients this is not useful. The rate constants will always remain 

positive, since these are always decays and never a growth exponentials. 

Secondly, sign of the amplitude of each phase will not change since this depends 

on direction of the length change. In fact when the algorithm attempts a sign 

change, a warning beep occurs and the offending parameter is highlighted 

temporarily. An attempted sign change in this situation indicates that the 

procedure has gone 'off track'. In some cases this may require some user 

intervention. Pressing any key during the fitting procedure will make the program 

return to the fitting menu after completion of the current iteration. 
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3.5.5 Data Weighting 

Due to limitations on the highest possible sample rate, the fast phase 2 

rapid relaxation process is made up of far fewer samples than are phases 3 and 

4. For this reason, unless the data is weighted in some way, the phases made up 

of more samples will be favoured in the fitting process. The Wgt!{) array contains 

a weighting value for all the data values sent to the fitting procedure. The 

weighting assigned to each data point takes into account the both the time 

interval from the previous data point and also the contribution of the data point to 

each of the exponential processes (based on the starting rate constant values). 

The data weighting function can be toggled on and off using the F7 key. 

3.5.6 Exponential fitting problems and considerations 

In some situations the accuracy of the starting values has a very large 

effect not only on the speed of convergence but also on the accuracy of the 

result. However in most cases, when fitting exponentials to muscle tension 

transients, the default values or the result of a previous fit are good enough. 

The software does not quantifying goodness of fit for the exponential 

curves. The result of the final weighted sum of squares is not a good criterion 

since this value is sensitive to the weighting function applied, the amplitude of the 

processes being fit and the noise in the tension signal. Presently the only 

criterion for judging the quality of fit is the appearance of the fit curve after 

convergence. 

3.6 Sinusoidal analysis 

With a Nyquist style recording loaded, pressing F7 will invoke the Nyquist 

analysis. By calling the subprogram Fourier, a discrete Fourier transform (OFT) 

is performed on all the frequencies in the series. If a phase contains more than 

one cycle, then these cycles are averaged into one cycle before the OFT is done. 

This is a simple process since the number of cycles and also the number of 

samples in a recording phase are always numbers of the form 2x, where x is an 

integer. 

Using the results of the OFT performed on the length and tension signals, 

the phase relationship of the two signals is calculated. Using the phase shift and 

complex stiffness values, the In-phase and quadrature stiffnesses are calculated. 

The OFT results can be shown drawn over the data (optional). This demonstrates 

the linearity of the tension signal. 
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Figure 3.8: An example of the Nyquist plot and Bode plot screens. These plot~ 
describe the small signal frequency characteristics of one or more Nyquis 
recordings. Using a menu screen, multiple Nyquist analysis results can bE 
stored and plotted together. 
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T~e Nyquist plot menu can store the phase shift and stiffness results for up 

to 16 different traces, each trace with up to 32 frequencies. This allows the 

results from traces to be compared on the same plot. The results of the OFT 
analysis can be shown in different ways. 

Examples of a Nyquist plot and a Bode plot are shown in Figure 3.8 (parts 

(a) and (b) respectively). Both the plots shown are screens captured directly from 

the muscle program. In a Nyquist plot the quadrature stiffness is plotted against 

the in-phase stiffness. The frequency of the individual pOints can shown on the 

plot. In the Bode plot, the phase shift and complex stiffness are plotted separately 

against the Log(frequency). The example Nyquist plot and Bode plot shown are 
from the same trace. 

Both the Nyquist plots and Bode plots can display the frequency responses 

from up to 16 traces. When using a colour monitor, each plot is shown in a 

different colour. This makes it simple to identify the individual plots. 

3.7 Future Work 

3.7.1 Curve Fitting to Nyguists 

A very important, and possibly quite simple, addition to the sinusoidal 

analysis software would be the ability to fit a curve to Nyquist plots. Like the 

exponential fitting algorithm, this is a nonlinear problem. It may be possible to fit a 

curve by making some modifications to the present Marquardt algorithm. The 

ability to fit a curve to the Nyquist plot would mean that rate constants for the 

three major processes could be extracted from the Nyquist recordings. This would 

be a great improvement on the present case where only qualitative observations 

and comparison of Nyquist plots can be made. 

3.7.2 High frequency correction 

Ford et af (1977, Appendix F) describe a method to correct the tension 

signal data given the mechanical limitations of the transducer itself. This 

correction is important when the frequency response of the strain gauge is 

limiting the accuracy of high frequency stiffness measurements. At each tension 

data point ~, the value is corrected depending on the velocity and acceleration of 

the signal, to give the corrected signal ~cow 
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The other values required in the above equation describe the mechanical 

characteristics of the transducer itself. They are the damping coefficient of the 
transducer bt, its effective stiffness kt and the mass of the moving part of the 

transducer mt· Ford et al (1977) describe how the coefficients blk and mlk can 
t t t t 

be calculated from the resonant frequency of the transducer v
t 
and the time 

constant of the decay of its resonance "Ct as follows. 

bt 2 n1t -=-x-
kt 't kt 

The method recommended to find the velocity and acceleration of the signal 

is to use the data values immediately before and after the data being corrected. 

However, due to a combination of a high data rate and noise in the signal, this 

frequency correction simply results in a large increase in the noise in the 

corrected signal. This noise is caused by the unreliable way in which the velocity 

and acceleration of the signal are calculated. 

One way to reduce this would be to apply the previously described least 

squared smoothing algorithm before the frequency correction. However, by far 

the best solution would be to modify least squared algorithm to calculate 

accurately the first and second derivative of the signal. Savitzky and Golay 

(1964) and Steinier et al (1972) provide the integer sets necessary to do this. 
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Materials, methods and controls 

4.1 Introduction 

This. chapter serves as a general materials and methods chapter describing 

the techniques used for single fibre mechanical experiments. Also described are 

several experiments performed to investigate the optimal conditions to make 
single fibre recordings. 

4.2 Muscle fibres 

4.2.1 Flight muscle dissection 

The flight muscle used in the majority of experiments was the dorsal 

longitudinal muscle of Lethocerus, the giant waterbug. Lethocerus indicus 
(Thailand) and Lethocerus griseus (Florida) were kept alive in the laboratory for 

up to a year, fed with live goldfish. 

Before dissection, the waterbug was cooled on ice for two minutes to make 

it easy to handle. Using scissors, the head was removed, followed by the legs 

and wings. Using small scissors, the cuticle of the abdomen was cut close to the 

thorax. Here care was taken so little damage was done to the gut. The abdomen 

was pulled away from the thorax, at the same time removing as much gut as 

possible. Avoiding the flight muscle, sharp scissors were used to remove the 

ventral side of the thorax cuticle. Any remaining gut was removed, to avoid 

exposing the flight muscle to gut enzymes. 

The thorax was immersed in a glycerol extraction solution. This procedure 

demebranates (skins) the fibre by a combination of two mechanisms. The glycerol 

disrupts the membrane by a process of osmotic shock, while a detergent disrupts 

the membrane chemically. 

For the first 24 hours of demembranation, the thorax was kept on ice. In this 

time there were solution changes at 1 hour and at 6 hours. Glycerol solutions 

contained 500/0 glycerol (v/v), 20mM potassium phosphate buffer, 1 mM sodium 

azide, 1 mM dithiothreitol (OTT), 2mM magnesium acetate and adjusted to pH 7.0. 

The OTT reduces oxidation of sulfhydryl groups in the myofibrillar proteins. The 

presence of magnesium ions reduces the enzymatic degradation of the myosin 

light chains (Weeds and Pope, 1977). Sodium azide reduces bacterial 

contamination. The extraction solution used in the first 24 hours also contained 

0.50/0 (v/v) of the detergent Triton X-1 00 and the following protease inhibitors: 
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1 j..Jg/ml pepstatin (Sigma, P4265), 1 OJ..Jglmlleupeptin (sigma, L2884) and 
1 o j..Jg/m I trypsin inhibitor (Sigma, T9777). 

After the first 24 hours in the extraction glycerol solution, the thorax was 

transferred to storage glycerol (without the Triton-X100 and protease inhibitors) 

and stored at -20°C. When required single fibres were removed from the thorax 

immediately before use. Thoraces varied according to how long their fibres 

showed good active responses, that is a low amplitude resting tension and large 

amplitude delayed tension rise. Typically a thorax stored at -20°C lasted between 
2 and 4 months. 

For a small number of experiments, Tipula (crane-fly) dorsal-longitudinal 

flight muscle was used. Due to the large numbers of these insects in the late 

summer, muscle could be used on the same day of capture. In the dissection the 

thoraces were cut in half vertically using dissecting scissors. This left two half 

thoraces each with a set of dorsal-longitudinal muscles exposed. For 

demembranation, I used the same glycerol extraction buffers that were used for 

Lt!thocenls. The muscle tissue was left on ice for at least half an hour in the 50% 

glycerol buffer with 0.5% Triton-X100 before use. 

4.2.2 Fibre size 

For each muscle fibre type there is an optimal diameter for mechanical 

experiments. Since changes in tension are proportional to the cross-sectional 

area of the fibre, larger fibres give a larger signal to noise ratio. However when 

studying active muscle, diffusion rates to and from the centre of fibres of ATP and 

its hydrolysis products can affect the mechanical properties of the muscle. 

Large fibres have a low surface area to volume ratio and can become 

diffusion limited. When the ATP concentration falls close to zero at the centre of 

the fibre, rigor cross-bridges form in these myofibrils. The presence of a small 

central core of diffusion limited myofibrils can have a large effect on the 

appearance of the tension response. The most obvious indicator of a diffusion­

limited fibre is the large high-frequency stiffness of the fibre. This is seen as a 

large spike at the start of step length changes. 

Clearly fibre size is not the only variable in the system that affects the ratio 

of the rate of ATPase and the diffusion rate of ATP into the fibre. Increasing the 

concentration of ATP in the muscle solution will increase the diffusion rate into 

the fibre. However the concentrations of 1SmM and 20mM ATP used in 

experiments are already high. Alternatively the muscle ATPase can be reduced 

by lowering the temperature of the muscle bath. Muscle ATPase has a 
temperature coefficient (Q10) greater than 3, whereas the diffusion rate is 
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proportional to the absolute temperature. For this reason a small reduction in 

temperature can have a large effect on the ratio of diffusion rate to ATPase. The 

ATP concentration and bath temperature chosen are discussed further in 4.4.2. 

Lethocerus fibres are small and very uniform in their diameter. Most fibres 

have a diameter between 70\Jm and 90\Jm. When demembranated, these fibres 

remain intact and can be separated very easily. A single Lethocerus fibre at 

15°C, saturating calcium and 15mM ATP is not limited by ATP diffusion (the 

accumulation rates of Pi and ADP have not been investigated). This makes the 

Lethocenls fibre a very convenient preparation for fibrillar muscle experiments. 

Generally, the fibre size in the fibrillar muscle of other insects is larger. In 

Tiplila flight muscle, fibres have a diameter greater than 220\Jm. Even at 20mM 

ATP, fully activated whole fibres are diffusion limited at 15°C. For this reason it is 

necessary to split fibres to a diameter closer to that of Lethocerus. Using sharp 

tungsten needles, the fibres can be pared down quite easily. The resulting 

bundles of myofibrils can then be treated in the same way as whole fibres. 

Although stray myofibrils do make them harder to handle than the discrete 
Lerhocerlls fibres. 

4.2.3 Attaching fibres to the apparatus 

The method of fibre attachment is a very important consideration in single 

fibre mechanical experiments. In the ideal fibre mounting system, all myofibrils in 

the fibre should contribute equally to the measured tension and undergo the 

same length changes when the motor position changes. Also, there should be no 

compliance at the mount itself. The quality of fibre attachment will be close to this 

in vivo, but repeating this on the apparatus is not simple. 

Two methods were used to attach fibres to the apparatus. In the majority of 

experiments, fibres were glued directly to the apparatus hooks. In some 

experiments, aluminium clips were used to mount the fibres. 

4.2.3.1 T-clips 

Small T-shaped pieces of aluminium foil (T-clips) were made from 20\Jm 

aluminium foil. The clips were cut using a fine-ended scalpel under a dissecting 

microscope as described by Molloy, 1988. In the glycerol extraction buffer, the T­

clips were attached to each end of the fibre before transfer to the apparatus bath. 

Attaching the T -clips to the muscle fibre is a delicate procedure that takes 

some practice before it can be done reasonably reliably. While the fibre is resting 

on the clip, first one then the other arm of the clip are folded over it. Then a small 

force is applied to the top of the clip to squeeze the fibre. It is this process that 
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determines how well the fb . . d If '. . 
. I re IS gnppe. the fibre IS not gnpped well it will pull 

free 0: the CI.lp when under little tension on the apparatus. Conversely if too much 

force IS ap~lled to the clip, the fibre will be damaged and will also break away 
from the clip when the fibre is under tension. 

Between these extremes the fibre can be gripped sufficiently well to perform 

most types of muscle experiment. However the highest tensions are rarely as 

high as those achieved when the equivalent fibre is glued to the apparatus. One 

advantage that T -clips have over gluing is that fibres can be easily removed 

intact. For electron microscopy of mechanically tested fibres, T-clips are the 

better system of attachment. T -clips must be used if the fibres are shorter than 
4mm as is the case for some small Tipula. 

4.2.3.2 Cellulose nitrate glue 

Cellulose nitrate glue was used to stick fibres directly to the apparatus 

hooks. The glue was made by dissolving cellulose nitrate centrifuge tubes in 

acetone. The best ratio is approximately three volumes of acetone to one volume 

of cellulose nitrate. Though due to evaporation, it is necessary to add acetone 

from time to time to maintain the viscosity. If the glue is too viscous it does not 

adhere well to the fibre, which will pull free under tension. With too much 

acetone, the glue can run along the surface of the fibre. 

Fibres were cut to the required length allowing another 2mm for looping 

around the hooks. They were transferred to the muscle bath which contained the 

50%) glycerol 50% glycerol storage buffer. The ends of the fibre were looped 

around the glass hooks 2 or 3 times. With the fibre raised out of the muscle bath, 

the tension micromanipulator was used to pull the fibre to give it some tension. 

The corner of a tissue was used to remove excess solution where the fibres wrap 

around the hooks. This improves adherence of the glue to the fibre. Using the 

end of a flexible piece of wire, cellulose nitrate glue was added to each end of the 

fibre to secure it to the apparatus. The flexible wire made it possible to touch the 

glass hook on the tension transducer, without the fear of it disappearing across 

the laboratory. As little as possible glue was used, firstly so that the glue dried 

quickly, minimising the amount of time the fibre spent exposed to the air, and 

secondly so as not to reduce too much the frequency response of the strain 

gauge due to added mass. On drying the glue turns white, at this point the fibre 

was returned to the muscle bath. After experiments the fibres were removed by 

dissolving the glue with acetone. 

The use of glycerol in the muscle bath greatly reduces the amount of 

damage done to the fibre when it is exposed to air. Under laboratory temperature 

and humidity, water evaporation from the 50% glycerol storage buffer will stop at 
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when the volume of glycerol reaches 75%). Above 75% this solution is 

hygroscopic. Therefore when the fibre is exposed to air it does not dry out, but its 
solution content reduces by a maximum of 250/0. 

The mechanical performance of glued fibres is better than that of fibres 

mounted using T -clips. The fibres can withstand much higher tensions before 

failing. This is because comparatively little damage is done to the fibre as it is 

mounted. Also the glue is able to diffuse into the fibre, so myofibrils at the centre 

of the fibre are bonded to the apparatus with the same strength as those on the 
periphery. 

4.2.4 Rest length 

Rest length is the term that refers to the point of 0% length offset in 

mechanical experiments. Given the sensitivity of insect fibrillar flight muscle to 

small changes in the length, it is important that a consistent method is used in the 

definition of rest length. 

For all mechanical experiments described in this thesis, rest length was 

defined as that fibre length which gives a tension of 1 O~N when relaxed. This is 

the first measurement to be made on the fibre. The value of steady state tension 

is measured by giving a step release to find zero tension. Because some slow 

elongation of the fibre as it is put under tension (stress relaxation) the fibre is 

given a few seconds to reach a steady tension value before tension is measured. 

A length-tension plot of a slow 5% ramp applied to a single relaxed 

Lethocerns fibre is shown in Figure 4.1. The plot shows that for tensions between 

5~N and 40~N the relationship with length is linear. Below 5~N the tension 

approaches zero more slowly than would be predicted by this linearity. The 

reason for this nonlinearity can be seen if the fibre is viewed under high 

magnification. At tension values below 5~N some myofibrils are slack while 

others are under tension. A rest length tension of 1 O~N is high enough to perform 

small signal sinusoidal analysis on all relaxed myofibrils in the fibre. A higher 

value was not used because the rate of stress relaxation increases with 

increasing tension. 

The exact tension value used to define rest length could conceivably take 

into account the diameter of the fibre. However this would unnecessarily 

complicate experiments in which the fibre diameter generally remains within a 

narrow range. 
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Figure 4.1: The tension trace describes the definition of rest length used for 
mechanical experiments on single fibres. Rest length is that fibre length 
which gives a steady tension of 1 OIJN in relaxing solution. The tension trace 
was recorded by applying a slow 5% ramp length change (0.25%/s) to a 

relaxed Lethocenls flight muscle fibre, starting with the fibre slack. 

4.2.5 Mounted fibre lifetime 

Mounted fibres have given large amplitude stretch activation after five hours 

on the apparatus, when maintained at 15°C using the solutions described in 

Table 4.1 That is not to say that the mechanical characteristics of the fibre remain 

constant in this time. The amplitude of the processes contributed by cross­

bridges slowly reduces with time. That is the amplitude of stretch activation and 

the stiffness in active and rigor conditions all decrease. Relaxed stiffness does 

not seem to decrease, indeed in some instances an increase in relaxed stiffness 

has been recorded after two hours or more on the apparatus. 

The cause of these changes will be a combination of several factors. Stress 

relaxation occurs in all mounted muscle fibres. One factor which certainly 

contributes to stress relaxation is compliance at the fibre mount. Generally the 

rate of stress relaxation is higher in fibres attached with T -clips than those glued 

to the apparatus. The reduction in active response could also be due to damage 

at the level of the whole myofibrils, the myofilaments or the cross-bridges. 

For the reasons outlined above, to make quantitative comparison of 

recordings made on the same fibre it is important that the time interval between 
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the recordings is as short as possible. The results of experiments described in 

this and the other chapters, were all recorded within one hour of mounting the 

fibre on the apparatus. The majority of experiments were complete within half an 

hour. To reduce fibre damage caused by rapid step stretches, where possible 

non-recorded length changes were made using slow ramps. For example when a 

step length change is recorded without the return to rest length the motor position 
is ramped to zero.once sampling has finished. 

4.3 Solutions 

4.3.1 Constituents 

Unless otherwise stated all chemicals were obtained from Sigma. The 

constituents of the solutions were calculated using a PC computer program 

based on the algorithm by Perrin and Sayce (1967). The program 

SOLUTION.EXE calculates the quantities of various stock solutions necessary 

to give the specified final concentrations and ionic strengths for each solution. 

These values are calculated using a table of binding equilibria given in the input 

file. All the muscle solutions have ionic strength of 150mM and pH 7.0 at 15°C. 

The details of the constituents are given in table 4.1. 

Some resulting 
Solution Added Constituents (mM) constituents 

(mM) 

Na
2

- Mg- EGTA Ca- P. Histidine Gluta- K- Mg-, 
ATP acetate C0

3 buffer thione propionate ATP 

Relaxing 15.00 13.90 5.00 - - 15.00 5.00 45.65 12.62 

Activating - no 15.00 13.50 5.00 5.24 - 15.00 5.00 46.57 12.39 
added Pi 

Activating 15.00 14.25 5.00 5.24 20.00 - 5.00 7.15 12.40 
+ 20mM P. 

I 

Rigor - - 5.00 - - 15.00 5.00 130.48 -

Ca2+_ Rigor - - 20.00 22.5 - 15.00 5.00 82.90 -

Table 4.1 Composition of solutions used in mechanical experiments. The 
ionic strength of all solutions was adjusted to 150mM by potassium 
propionate. All solutions were adjusted to pH 7.0. 

Free 
Ca2+ 

-

0.032 

0.032 

-

2.5 

The ionic strength of all solutions was corrected to 150mM by making up the 
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difference using potassium propionate. To create the Mg-ATP complex the 

magnesium ions in solution were added in the form of magnesium acetate. All 

solutions except the 20mM phosphate solution contained 15mM histidine as a pH 
buffer. In the phosphate solution, the Pi buffer itself served this purpose. 

In the case of ATP concentration the solutions used in the work described in 

this thesis were carried out using an ATP concentration of 15mM. The ionic 

strength for all solutions is adjusted to 150mM. Using higher concentrations of 

ATP would leave less freedom for adjustment of other constituents without forcing 

ionic strength above the 150mM value. For each 1 mM increase in ATP 

concentration there is a further increase in ionic strength of 2mM due to the 

associated sodium ions and approximately 1. 7mM of potassium ions that are 

added for pH correction. Another reason for not using higher ATP concentrations 

is the necessity to avoid straying too far from physiological conditions. 

Magnesium acetate was added to provide the magnesium ions for the 

Mg-ATP complex in solution. 

4.3.2 Changing solutions 

The bath solution was changed using two syringes in a flow-through system. 

Using a 250~1 Hamilton syringe the new solution was washed into the 30~1 

muscle bath, the surplus solution removed using a second syringe. 

In the ideal muscle bath design, little more than one bath volume would be 

required to the replace the solution completely with the new solution. 

Unfortunately flow through the bath is non-laminar. The second best alternative is 

to have optimal mixing of the new solution with the current bath volume, washing 

through several bath volumes until the bath contains little of the original solution. 

The exact volume that was washed through the muscle bath on solution 

changes was dependent on the type of solution change. New solution was 

washed through until the point where further solution caused no change in the 

mechanical properties of the fibre. The minimum volume used for any solution 

change was one full syringe (250~1). This is equal to more than eight bath 

volumes and is sufficient for most solution changes. Rigor solutions required 

more than one syringe volume to reduce the concentration of ATP sufficiently for 

the muscle to go into rigor. 
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4.4 Nyquist recordings 

Most Nyquist recordings were made using frequencies from 1302Hz to 

O.25Hz. The apparatus used was capable of higher frequencies, but would 

complicate the recording procedure. The phase and amplitude inaccuracies 

caused by the limitation of the tension transducer response time would make it 

necessary to make frequency corrections to the data above 1302Hz. At 1302Hz 

and below I measured phase and amplitude errors small enough to omit the 

frequency correction procedure (see Figure 2.5 for details of the strain gauge 
frequency response). 

A lower frequency of O. 25Hz was chosen for reasons of recording speed. 

Though lower frequencies could be recorded, the sampling times necessary 

would start to have a significant effect on the Nyquist recording time, especially if 

pre-recording oscillation is necessary. Between these frequencies limits, the 

intervening frequencies are spaced logarithmically, usually with a bias towards 
the central frequencies. 

The number of traces averaged in a single recording was dependent on the 

amplitude of the resulting tension signal. In some instances it was necessary to 

average five or more traces to obtain a high signal to noise ratio. Such high 

averaging was necessary where very small amplitude length changes were 

imposed or the fibre stiffness was very low. 

4.4.1 Pre-recording oscillation 

When an oscillation is applied to a muscle fibre, the tension response 

changes in the first few cycles. The muscle fibre requires several cycles to settle 

into its new oscillating state. The number of cycles that are required to reach a 

steady state depends on both the frequency and amplitude of the length change 

applied. Because most Nyquist recordings are made using small amplitude length 

changes only a small number of oscillations are necessary before sampling can 

proceed. 

The need for pre-recording oscillations indicates that the oscillation steady 

state is different from the isometric steady state. However with low amplitude 

oscillations (0.2% or less) there is little or no difference between mean tension 

during oscillations and isometric tension suggesting that difference in the state of 

the muscle is very small. 

83 



+100pH/% 
With pre-recording 

oscillation 

Materials, methods and controls 

-100pN//. 

~ __ 13D~ 
.......--- 13D~ 

is I ~--::-..-.-,,­
...---:::;--S51'-~ 

~-::::::.:--' . 
....... m Continuous recording 

_./ 
lSI 

/;1 ;.1 
10& / 

~9& 
~I. 

+200pH//. 

Figure 4.2: Nyquist plots showing the frequency response of a single active Insect 
flight muscle fibre oscillated at an amplitude of 0.2%). Two recording methods 
were used. In one the fibre was oscillated at each frequency for 0.25s before 
sampling took place. In the continuous recording, all frequencies were 
recorded consecutively without pausing. 

The Nyquist recordings described in this thesis were made using two 

methods. In some recordings, for each frequency the fibre was oscillated for a 

specified amount of time before any cycles were recorded. In this type of Nyquist 

recording the motor driving software was given a minimum pre-oscillation time. 

The muscle was oscillated for the nearest whole number of cycles over this time. 

Most Nyquist recordings were made at an amplitude of 0.2%>. At this amplitude a 

pre-oscillation time of 0.2s was sufficient time for the fibre to reach a steady state. 

Longer periods of pre-recording oscillation made no change to the recorded 

Nyquist. 

In the second style of Nyquist recording, a pre-recording oscillation was 

applied only for the first recorded frequency. Following this, all the frequencies 

were recorded consecutively. In such recordings, for each frequency the 

preceding oscillation serves as the pre-recording oscillation. 

The Nyquist plot in Figure 4.2 shows that at low amplitude these two 

methods of recording give almost identical results. The advantage of the second 

method is that recordings take less than half the time. In the example shown all 

frequencies were sampled in less than 9.5s using the continuous method 

compared to 20.5s for the pre-recording method. When multiple recordings are 
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made to increase the signal to noise ratio, the doubling of recording speed 

becomes a more significant improvement to experiments. 

In all Nyquist recordings the highest frequencies were recorded first the , 
lowest frequencies last. Nyquist plots in which the order of applied oscillations 

was reversed superimposed (data not shown). Application of frequencies in a 

random order was not tried, although the lack of any change when reversing the 

frequency order suggests that little or no difference would be observed. Clearly in 

a randomly ordered Nyquist series the fibre would need to be pre-oscillated at 

each frequency. This pre-recording oscillation duration is (as defined above) 

sufficient time for the fibre to reach its new steady (oscillating) state, so removes 

any effect of the previous oscillation frequency. 

4.4.2 Temperature 

The effect of temperature on the small amplitude transfer function of insect 

fibrillar flight muscle is shown in Figure 4.3 Data recordings were made of 

oscillation frequencies from 1302Hz to O.25Hz. All recordings were made using 

the same fibre in activating solution (no added phosphate). After each 

temperature change, there was a pause of two minutes. This reduced any 

temperature gradients across the bath and allowed the fibre some time to reach a 

steady state. 

As the temperature increases, the general trend is that the processes 

become faster and complex stiffness amplitudes larger. The greatest shift in 

phase angle with temperature occurs in the region of the plot with negative phase 

angle. That is the process with the most temperature sensitive kinetics is the work 

producing process. Nyquist recordings were also made at 30°C and 35°C, though 

these are not shown in the Figure 4.3. At these higher temperatures the fibre 

became diffusion limited. There was a a large increase in the high frequency 

stiffness. Also the kinetics became slower, the phase angle plot appearing closer 

to that at 15°C than the one at 25°C. 

The results of this experiment indicate the optimal temperature to perform 

Nyquist analysis using this preparation. A large amplitude tension signal is an 

advantage since this increases the signal to noise ratio, improving the accuracy 

of the analysis. This is a good reason to perform experiments at a temperature 

higher than 10°C. 
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Figure 4.3: Nyquist (a) and Bode (b) plots showing the small amplitude frequency 

characteristics of a single Lethocerus flight muscle fibre at the temperatures 
BOC, 10°C, 15°C, 20°C and 25°C. The oscillation amplitude was 0.2% in all 
recordings. 
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At the higher temperatures the diffusion rate of ATP and its hydrolysis 

products starts to become limiting. Under the conditions used in this experiment, 

the diffusion rate of ATP does not become limiting until 30°C. However if the fibre 

is activated further by recording large amplitude step stretches or by increasing 

the pre-stretch of the muscle, the temperature at which diffusion limitation 
becomes a problem is lower. 

For the reasons outlined above, all mechanical experiments on single fibres 

other than those described here were performed at 15°C. At 15°C the amplitude 

of the tension Signal is much larger than that recorded a few degrees cooler. 

However increasing temperatures above 15° increases the tendency for diffusion 

limitations to occur especially during large stretches. 

4.4.3 Oscillation amplitude 

To obtain accurate results from sinusoidal analysis, the tension response 

must be close to linear. The Discrete Fourier transform (OFT) routine fits a single 

sinusoid to the tension signal. As the shape of the tension signal departs from 

that of a single sinusoid the results of the Fourier analysis become less accurate. 

Active insect flight muscle is a nonlinear material. The response to a stretch 

is not a mirror image of that to a release. The main difference is in the kinetics 

rather than the amplitude of these two processes. The extent of this difference 

increases with the amplitude of the length change imposed. Unlike step length 

change experiments, with sinusoidal analysis the kinetics of both the stretch and 

the release are analysed together. 

To investigate this nonlinearity a single Lethocerus fibre was oscillated at a 

the following amplitudes: 0.1 %, 0.2%, 0.4%, 0.8% and 1.6%. The duration of pre­

recording oscillation for each frequency were 0.25s, 0.25s, 1 s, 2s and 4s 

respectively. The length offset remained the same for all amplitudes. The fibre 

was held at 15°C in an activating solution with no added phosphate. 

The resulting Nyquist and Bode plots are shown in Figure 4.4. The plots for 

0.1 % and 0.2% amplitude oscillation superimpose throughout the range of 

frequencies tested. However at amplitudes of 0.4% and higher, the plots change 

considerably. Another feature of these large amplitude sinusoidal recordings is 

the change in mean absolute tension. 
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Figure 4.4: Nyquist (a) and Bode (b) plots showing the frequency characteristics 
of a single fibre at different amplitudes of oscillation. At 0.1 % and 0.2% the 
plots superimpose. At 0.4% and above there are large changes in the 
frequency reponse of the muscle. (e) The 3.5Hz data from each Nyquist 
series is shown as length-tension plots. The solid line shows the result of the 
discrete Fourier transform olotted over the data. 
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For a linear material, the shape of the Nyquist plot remains independent of 

the amplitude of the perturbation imposed (provided no damage is done to the 

material). The results shown for insect muscle indicate that this is the case for the 

amplitudes up to 0.2%. However at oscillations of 0.4% and above, the muscle is 

very nonlinear. It must be stressed here that since the shape of the tension 

waveform is less sinusoidal at the higher amplitudes, it is not possible to make 

accurate phase angle or stiffness measurements from the data using the DFT. 

The result of the DFT analysis is shown plotted over the 3.5Hz data from all the 
Nyquist series in part (c) of Figure 4.4. 

The signal analysis of the higher amplitude is further complicated by 

another problem, that of oscillation activation. The muscle is stretch activated 

by the large imposed length changes, such that at certain frequencies the mean 

tension is considerably higher than the steady state (non-oscillating) tension. 

This effect can be seen in part (c) of Figure 4.4. At low amplitudes (0.1 % and 

0.2%) mean tension is the same at all frequencies as it is without oscillation. 

Therefore at these amplitudes, the Nyquist plot is analysing the active state of the 

fibre at its current length. At higher amplitudes, the general level of fibre 

activation changes depending on the frequency of oscillation. The mean tension 

is highest at the work producing frequencies. Because the level of activation 

changes with frequency in the higher amplitude recordings, interpretation of the 

results is further complicated. However some observations can still be made 

about the general changes in the shapes of the resulting plots. 

The change in muscle kinetics with increasing amplitude of oscillation can 

be seen in the phase angle curves in the Bode plot. The most dramatic changes 

occur at the work producing frequencies. The frequency of maximum negative 

phase angle is that frequency with the most open work loops. As oscillation 

amplitude is increased, this frequency is reduced. The shift to a lower frequency 

is not a gradual one, instead it appears to occur in a discrete step. 

For reasons of nonlinearity at the higher amplitudes, all other Nyquist 

recordings shown in this thesis were made at an amplitude of 0.2%. 

4.4.4 Pre-stretch 

As the pre-stretch of insect fibrillar muscle fibres is increased, the steady 

state tension also increases. This increase in tension is higher than that expectec 

due to the elasticity of the passive components in this muscle, and is due to the 

stretch activation of the muscle fibre. 
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Figure 4.5: The effect of increasing pre-stretch on the small signal mechanical 
characteristics of active Lethocerus indicus flight muscle. All recordings were 
made at an oscillation amplitude of 0.20/0, at 0% (rest length), 0.5%), 1.0% and 
1.5% pre-stretch. The relaxed response is also shown at 0% and 1 % pre­
stretch. Increasing the pre-stretch results in a very small increase in relaxed 
stiffness. In the active response, increasing the pre-stretch has very little 
effect on phase angle, but increases muscle stiffness at all frequencies 
except those in a small range above the work frequencies. 
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The effect of increasing pre-stretch on the small signal mechanical 

characteristics of active insect fibrillar flight muscle was investigated using 

Lethocenls indicus fibres. The Nyquist recordings were made at an amplitude of 

0.2%, at logarithmically spaced frequencies from 1302Hz to 0.25Hz. The first two 

recordings were made in relaxing solution at rest length (0%) and at a 1 % pre­

stretch. The stretch was applied by adjusting the strain gauge micromanipulator. 

The fibre was returned to rest length and activated. Nyquist recordings were then 

made at 0%, 0.5%, 1.00/0 and 1.5% pre-stretch. The fibre was given at least 20s 

at each new length to reach a steady active state before the recording started. 

The Nyquist and Bode plots from the resulting data are shown in Figure 4.5. 

In relaxing conditions, there is a small increase in fibre stiffness with pre-stretch. 

When active, the increase in stiffness with pre-stretch is much greater. The 
\. 

complex stiffness increases with pre-stretch for all frequencies except for those 

frequencies in the low stiffness region. At these low stiffness frequencies (42Hz, 

69Hz and 109Hz), the Fourier results suggest that increasing pre-stretch has little 

or no effect on complex stiffness. As can be seen in the phase angle plot there is 

very little change in the rate constants of these small amplitude mechanical 

processes with stretch. 

The results are entirely compatible with the idea that the process of stretch 

activation involves an increase in the total number of attached cross-bridges. The 

reason for the lack of change in the low stiffness region can be partially explained 

by the relaxed Nyquist response. The passive elements responsible for the high 

relaxed stiffness of insect muscle also contribute to the active response 

(White, 1983). For this reason, as the population of active attached cross-bridges 

increases, the active response should move proportionately further from the 

relaxed Nyquist. Indeed the direction of many of the frequencies point towards 

the position of the same frequency on the relaxed Nyquist plot. Given this 

reasoning, the active frequency points that are closest to the relaxed Nyquist plot 

will move least as the muscle is stretched. 

4.5 Step length change recordings 
Unlike sinusoidal analysis, in the analysis of data from step length change 

experiments, the stretch and the release kinetics are analysed separately. For 

this reason, by using step length changes, it is possible to obtain accurate 

estimates of fibre kinetics at large amplitude length changes. The maximum of 

0.20/0 length changes imposed for sinusoidal analysis does not apply to step 

length change experiments. 
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Because in typical step length change experiments larger amplitude length 

changes were used, the already high signal to noise ratio reduced the need to 

perform multiple trace averaging. In most experiments between one and three 

traces gave a clean tension signal from which accurate rate constant and 

amplitude information could be extracted. 

When more than one trace was averaged in a single recording, it was 

necessary to specify a pause time that the controlling software should wait 

between traces. This gave the fibre time to reach a steady state, so that all traces 

averaged were recorded under the same conditions. In some large amplitude 

length stretches a pause as long as 15s was necessary between traces. 
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5.1 Introduction 

The work described in this chapter, investigates the role of one particular 

protein in stretch activation in insect fibrillar flight muscle. The protein is 

troponin-H (Tn-H), a member of the troponin complex in the thin filaments of 
insect fibrillar flight muscle. 

The troponin complex of Lethocerus flight muscle is almost twice the size of 

that found in vertebrate skeletal muscle. Bullard (1984) suggested that this large 

troponin complex may playa role in stretch activation by blocking potential cross­

bridge binding sites. These sites only become available after the muscle is 

extended. This type of model for stretch activation is compatible with that of Wray 

(1979b) in that it would act alongside such geometric models. 

Bullard et al (1988) gave a detailed account of the biochemistry of the 

troponin complex of insect flight muscle. They described three components. 

Troponin-C (MW 18 OOOOa) and troponin-T (MW 53 OOOOa) were isolated and 

shown to have similar properties to their vertebrate equivalents. Troponin-I was 

not observed in this study, but a heavy component, referred to as Troponin-H 

(Tn-H) was described in some detail. The molecular mass of Tn-H is 

approximately 55 OOOOa, although in poly-acrylamide gel electrophoresis it runs 

anomalously high in the 80 OOOOa to 90 OOOOa region. 

5.1.1 Troponin-H 

Although Lethocerus Tn-H has not been sequenced, the sequence is known 

for Drosophila Tn-H. Karlik et al (1984) have investigated the gene arrangement 

in the 88F subdivision of chromosome 3 in Drosophila. This small region in the 

right arm of chromosome 3 contains the genes for several myofibrillar proteins, 

including the act88F flight muscle actin gene. Karlik et al describe five 

antigenically related proteins, from a 20 kilobase region in the 88F subdivision, 

three of which accumulate only in the indirect flight muscles. 

Three of the five proteins, referred to as proteins 127, 128 and 129 (from 

their positions on a 20 PAGE), have MW 35 OOOOa and are tropomyosin 

isoforms. The remaining two, proteins 33 and 34, are flight muscle specific 

proteins of apparent MW 78 OOOOa and 70 OOOOa respectively. All five of the 

proteins are generated from just two transcribed regions, by multiple overlapping 

mRNAs. The two regions are Tm 1 which encodes the tropomyosin isoforms 127, 

129 and Tn-H 34, Tm 2 encodes tropomyosin 128 and Tn-H 33. 
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The difference in mass between troponin-H (33 and 34) and the 

tropomyosin isoforms (127, 128 and 129), is due to the addition of a particularly 

unusual sequence of amino acids at the carboxy end. These carboxy-terminal 

portions of the proteins contain a very high proportion of proline. This is unusual 

because tropomyosins, being a-helical, do not contain this amino acid. 

Approximately the last 100 amino acids consist of a repeating pattern; an acidic 

residue (usually glutamine) followed by a glycine, then 3 to 7 prolines and/or 
alanines. 

Bullard et al (1988) showed that these heavy tropomyosins in Drosophila 

are equivalent to the Tn-H of Lethocerus. Monoclonal antibodies to Lethocerus 

Tn-H cross reacts strongly with these Drosophila proteins. The epitope shared 

between the two was the unusual carboxy terminal half. This is known because 

the antibody did not react to the other tropomyosins. 

Electron micrographs of isolated thin filaments from Lethocerus flight 

muscle showed very conspicuous swellings at 39nm intervals. Observed under 

the same conditions rabbit striated muscle thin filaments have no such repeat, 

and appear uniform along their length. The 39nm distance corresponds to the 

repeat of the troponin-tropomyosin in the thin filament. The protrusion itself is 

thought to be due to the large troponin complex, particularly the Tn-H component. 

The secondary structure of the carboxy terminus of the Tn-H protein is not 

known. However the high proline content of this part of the protein does put some 

constraints on its possible structure. Sometimes prolines are present in an a­

helical region of a protein where they cause an abrupt change in direction of the 

helix. However the occurrence of so many prolines in this part of Tn-H, makes it 

impossible for the carboxy terminus to be a-helical. The high proline content of 

the carboxy-terminus is typical of proteins which have extended conformations 

such as collagen. 

Further evidence for the presence of Tn-H in the troponin complex comes 

from gold/Fab labelling of Tn-H (Newman et ai, 1992). Isolated thin filaments 

were labelled with gOld-conjugated Fab fragment of the monoclonal antibody to 

Tn-H. The gold particles were 3nm in diameter, the minimum size to be clearly 

visible by conventional electron microscopy. Given the size and shape of the 

probe, the gold particles could occur no further than 8nm from the combining site, 

a distance which is short enough to determine a 40nm repeat in the thin 

filaments. The resulting micrographs showed a convincing 40nm repeat of the 

gold particles in the case of the Lethocerus flight muscle thin filament, but no 

correlation in the leg muscle thin filaments, where Tn-H does not occur. In some 

instances, in the flight muscle thin filament, two gold particles could be seen at 

the same place on the filament. These would correspond to the two tropomyosin-
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troponin complexes on opposite sides of the filament, suggesting that the 

stoichiometry of Tn-H is one per tropomyosin-troponin complex. 

Calpain 

Some preliminary unpublished data from R. Marco and J. C. Sparrow 

suggests that in Drosophila thin filaments, for every 6 actins there are: 1 arthrin, 

2 tropomyosins and either 1 or 2 Troponin-H. The latter includes both the 

Tn-H 33 and Tn-H 34. If these values prove to be correct, the 1 or 2 Tn-Hs would 

be present in addition to (not replacing) the tropomyosins present in the each 
tropomyosin-troponin complex. 

5.1.2 Calpain 

Bullard ct al (1988) suggest that previous failure to localise Troponin-H in 

insect flight muscle was due to the high sensitivity of this protein to proteolysis. 

The endogenous enzyme thought to be responsible for this proteolysis is calpain, 

a Ca2
+ -activated protease present in muscle. Calpain is also known as calcium 

activated prutease, calcium activated neutral protease, calcium activated 
jactor and calcium dependent protease (CAP, CANP, CAF and COP 

respectively). Cal pain and its natural inhibitor calpastatin have been isolated from 

many different tissue and from many organisms (Melloni and Pontremoli, 1991). 

Animal tissues contain two isoforms of calpain, classified according to their 

Ca2+ -sensitivity. Calpain I requires micromolar Ca2+ to be proteolytic, whereas 

calpain II reaches only half maximal activation at 1.2mM Ca2+ (Tsuji and 

Imahori, 1981). Calpain is a membrane associated enzyme, though most forms 

do not require association with a membrane surface in order to be proteolytic. In 
vivo regulation of calpain activity is not merely a function of Ca2+ concentration. 

Both calpain I and calpain II require autolysis in order to be fully activated, also 

the presence of the inhibitor and some membrane bound regulator proteins affect 

its proteolytic activity (Melloni & Pontremoli, 1991). 

The natural function of calpain is not yet clear. Evidence from its preferred 

substrates and location in the cell, has led people to suggest that calpain has a 

role in protein turnover in the cytoskeleton and myofibrils. However, calpain has 

also been shown to exist in platelets which have neither a cytoskeleton nor 

significant protein turnover (Phillips and Jakabova, 1977). The physiologically 

uncommon levels of calcium required to fully activate calpain II suggest that it 

may have a role in pathological conditions where calcium levels can be very high. 
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5.1.3 Cal pain specificity 

Many reports have described the action of calpain on myofibrillar proteins 

and on the appearance of myofibrils. The most noticeable event in the digestion 

of myofibrils by calpain is that at sufficiently high levels, calpain will remove Z­

lines (Reedy et aI, 1975). At the level of digestion required to completely remove 

Z-lines, there was very little reduction of myosin, actin or paramyosin, suggesting 

that these proteins are not very susceptible to cleavage by calpain (Reddy et aI, 
1981 ). 

The sensitivity of Tn-H to calpain digestion is very much greater than the 

other major myofibrillar proteins. The extent of calpain digestion necessary to 

digest all Tn-H results in only a very small reduction in the levels of a-actinin and 

Tn-T. 

The unusual structure of Tn-H and the fact that it is an insect fibrillar muscle 

specific protein led to the suggestion that it plays a role in stretch activation 

(Bullard, 1984 and 1988). Bullard (1988) suggested that the potentially stiff 

proline rich tail end of the Tn-H molecule may extend away from the thin filament, 

explaining its high susceptibility to cleavage. This carboxy end of Tn-H may 

attach to the thick filament, where it could be involved in the mechanism of 

stretch activation by sensing the relative displacement of the thick and thin 

filaments. 

Given the possible role Tn-H in stretch activation and a potential method to 

selectively remove the Tn-H, I decided to investigate the effect of mild calpain 

digestion on the stretch activation of skinned Lethocerus fibres. 

5.2 Materials and Methods 
Unless otherwise stated, the set-up of the apparatus and muscle bath 

solutions used were the same as those described in chapter 4. 

5.2.1 Digestion conditions and solutions 

Calpain used in digestion experiments was the 80K subunit of calpain II, the 

variety which requires calcium concentrations of more than 1 mM for full 

activation. Although the 30K subunit is necessary for full activation, the 80K 

subunit alone is sufficient for proteolysis (Tsuji and Imahori, 1981). Calpain was 

kept in a deactivating storage solution at -20°C. The storage solution contained 

10 units of calpain (Sigma, P4533), in 1 ml of solution of 50% glycerol (v/v), with 
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2mM EGTA, 2mM mercaptoethanol, 3mM sodium azide and SmM histidine at 
pH 7.0. 
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Without the 30K subunit, 80K subunit of calpain II requires 1.4mM Ca2+ to 

give half of its maximal activity (Tsuji and Imahori, 1981). For this reason the 

Ca2+-rigor solution used for digestion contained 2.SmM free Calcium (calculated 

using the program SOLUTION using known association constants). This very 

high calcium concentration, readily washed out with the calcium free rigor 

solution and did not adversely affect the muscle's active response. 

The solution used for all calpain digestions contained 2~1 of the calpain 

stock and 98~1 of Ca2+ rigor solution. 

For the 5 minute period of digestion the temperature was raised to 2SoC. 

This temperature gives optimal enzyme activity, above this the calpain shows 

increased autolysis (Dayton et ai, 1976). Control fibres received a 5 minute 

incubation at 2SoC in the Ca2
+ rigor solution without added calpain. 

5.2.2 Fibre mechanics 

Fibres were attached to the mechanical testing apparatus with cellulose 

nitrate glue. Fibres attached to the apparatus using T-clips had a tendency to slip 

in the clips after mild digestion, causing them to lose tension, so T-clips were not 

used for these experiments. 

In step length change experiments all mechanical testing was done at 15°C, 

the bath temperature was changed to 25°C only for the digestion and control 

periods. First, the fibre was given a 1 % stretch in relaxing solution. After 1 minute 

in pre-activating solution, activating solution was washed through and another 

1 % step stretch given to record the stretch activated response of the muscle. The 

fibre was put into rigor, first by washing through relaxing solution to remove 

calcium, then the rigor solution. The Ca2+ -rigor solution was then washed 

through. Only a small step was given (0.2%) to measure rigor stiffness to prevent 

damage to the fibre. 

Calpain digestion rigor solution was washed through and the bath 

temperature set to 25°C. The fibre remained in digestion solution for 5 minutes. 

After digestion the bath temperature was reset to 1SoC and calpain-free Ca2+­

rigor washed through. A 0.20/0 step was given to find the post-digestion rigor 

stiffness. Normal rigor then relaxing solution were washed through and 1 % step 

was used to measure relaxed stiffness. The muscle was then activated and a 1% 

step given to record the post-digestion stretch activation. Finally, the muscle was 

put into Ca2+ -rigor and stiffness recorded again as a check for any fibre damage. 
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High frequency stiffness measurements were made from the step length 

change experiments by plotting tension against length for the period of the length 

change. A straight line was fitted to the data using linear regression, and the 

slope used to measure fibre stiffness. In the majority of recordings, the length 

change is 95% complete in less than 200~s. Unfortunately, in some active fibres 

this is not fast enough. In these fibres, phase 2 relaxation has begun before the 

length change is over. In these recordings the stiffness was measured during the 

first part of length change where the tension rise remains linear, by plotting length 
vs tension over this part of the record. 

The amplitude of the stretch-activated response was calculated by 

subtracting the starting steady state tension (before the stretch) from the 

maximum tension reached between phases 3 and 4. 

In the case of Nyquist analysis, the same overall procedure was used. 

However all steps were replaced by brief sinusoidal oscillation sweeping through 

a range of frequencies at an amplitude of 0.2% peak to peak. In some fibres both 

Nyquist and step analysis were performed. The frequencies used were in the 

range 1.3kHz to 0.25Hz, with a logarithmic spacing biased towards the mid-range 

frequencies, close to that which produces maximum work per cycle. Some of the 

fibres used for mechanical experiments were fixed for electron microscopy. 

5.2.3 Digestions for PAGE and the Western Blot 

In parallel experiments fibres were digested, using exactly the same 

procedure as for mechanical experiments. Digestions were done in 1 O~I droplets 

of Ca2+ -rigor with calpain solution under silicone oil. The control fibres were 

incubated in Ca2+ -rigor without calpain. Each droplet and fibre was used for a gel 

lane, in this way both the insoluble fibre matrix and any soluble proteolytic 

fragments could be observed. Digestions were started by dragging a single 

Lethocerus fibre into a droplet. Digestion was stopped by the addition of 2~1 of 

SOS sample buffer (5 x normal concentration). 

5.2.4 50S Poly-acrylamide gel electrophoresis (PAGE) 

Vertical mini-slab gels were run on a Protean (BioRad, Richmond CA) 

system. The separating gel was made up of 10% (w/v) acrylamide:bis-acrylamide 

(950/0:5% respectively), 375mM Tris pH 8.8, 0.1 % (w/v) SDS, 1.5mM APS, 

4mM TEMEO. The stacking gel was 3.750/0 (w/v) acrylamide, 125mM Tris pH 6.8, 

0.1 % (w/v) SOS, 2.3mM APS, 6.4mM TEMED. The gel was run at 200V for 40 

minutes. Then stained in 40% methanol, 100/0 acetic acid and 0.1 % Coomassie 
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brilliant blue-R for 2 hours. The gel was destained in 100/0 acetic acid for 24 hours 

with constant agitation. The buffer system used was that described by 

Laemmli (1970). 

5.2.5 Western Blot 

The 10 SOS gel was soaked for 40 minutes in transfer buffer. Proteins were 

transferred to nitrocellulose (600mA for 1.Shrs). Rinsed in transfer buffer and cut 

in half, one for stain, one for hybridisation. Nitrocellulose was stained in 

Ponceau-S for 10 minutes, washed with acetic acid, rinsed with water and left to 

air dry. Hybridisation procedure was as follows. The surface of the nitrocellulose 

was blocked with 3% BSA in TBS for 1 hr, followed by multiple washes in TBS. 

The monoclonal antibody (MAC 144) was kindly donated by Belinda Bullard. This 

was hybridised to the gel for 1 hr at room temperature. The secondary antibody 

(goat, anti-rat) conjugated with horseradish peroxidase (HRP) was left for 1 hr at 

room temperature. Horseradish peroxidase was developed using HRP stain for S 

to 10 minutes. Rinsed with water and left to air dry. 

Solution constituents: 

TBS 20mM Tris, SOOmM NaCI, 0.01 % Thimersal pH 7.S. 

Transfer buffer 2SmM Tris, 1S0mM Glycine, 20% methanol, pH 8.3. 

Ponceau-S stain 0.2% Ponceau-S (Sigma, Mo) in 3%) TCA, 3% 

sulphosalicylic acid. 

HRP stain 0.017%) 4-chloro-1-napthol, 0.01S%) H20 2 ,16% methanol in TBS. 
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Figure 5.1: 10% SOS/polyacrylamide gel. A time series showing the progress of 
digestion of myofibrillar proteins by calpain. Whole fibres were digested at 
25°C in Ca

2
+ rigor solution. The lane headings show the total digestion times. 

High (H) and low (L) molecular weight marker lanes are also shown. The 
Troponin-H band reduced most rapidly, it is significantly reduced at 1.25 
minutes and is not visible at 2.5 minutes. 

5.3 Results 

5.3.1 Electrophoresis 

The SOS polyacrylamide gel (Figure 5.1) shows that mild digestion with 

calpain removed Tn-H from whole skinned fibres in Ca2+ rigor solution. Under 

the conditions used Troponin-H appears to be highly sensitive to calpain 

digestion. At 1.25 minutes it is considerably reduced. At 2.5 minutes onwards it is 

not visible. No other protein is digested so quickly. Some of the proteins such as 

actin and myosin show no reduction in intensity even at 80 minutes. The arthrin 

band can be seen to become weaker at 20 minutes of digestion. 
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Figure 5.2: Westem blot: the disappearance of Tn-H after 5 minutes of mild 
calpain digestion, shown using the MAC 144 antibody. Whole 

demembranated Lethocerus indicus fibres were digested. The lane headings 
show the digestion time in minutes. The first two lanes contain high (H) and 
low (L) molecular weight markers. 

5.3.2 Western Blot 

The western Blot in Figure 5.2 confirms the result suggested by the SOS 

polyacrylamide gel that all Tn-H within the fibre has been digested at 5 minutes of 

digestion. Because of the high contrast of this method, any very small amount of 

Tn-H would be visible in the other lanes. 

5.3.3 Step length changes 

A summary of the changes in the mechanical characteristics of the fibre due 

to digestion is given in table 5.1. No significant change in either the relaxed or the 

rigor stiffness occurs. However, in the same fibres there is a significant reduction 

in the amplitude of stretch activation. An example step response is shown in 

Figure 5.3. for the tension response to a 1 % step stretch before and after mild 

calpain digestion. 
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Figure 5.3. The superimposed active tension responses of a single Lethocerus 
indicus fibre before and after mild calpain digestion. The same traces are 

shown in (a) and (b), on different time bases. (a) There is a large decrease in 
the amplitude of the delayed tension after digestion. (b) The immediate 
stiffness of the fibre at steady state is not changed. The amplitude of the 
phase 2 recovery is reduced following digestion. 
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Control Calpain digested 
(n=4) (n=10) 

Relaxed stiffness 1 00% + 6%, 101% + 7%, 

Rigor stiffness 92% ± 1% 90% + 20/0 

Active stiffness 91 % ± 6% 890/0 + 9% 

Amplitude of stretch 92% ± 30/0 56% + 4% * 
activation 

Table 5.1: Mechanical properties of Lethocerus indicus flight muscle fibres 
from rapid step length change experiments. The values are digested 
divided by undigested (mean ± s.e.m.). Measurements marked with "*" 

demonstrate a significant difference between the control and the 

digested fibres. 

5.3.4 Sinusoidal analysis 

Cal pain 

In a similar way to the step length change results, the small amplitude 

sinusoidal analysis showed little or no change in the relaxed and rigor stiffnesses 

due to digestion. The before digestion and after digestion Nyquist plots at rest 

length (0% offset) superimpose over the whole range of frequencies (Figure 5.4). 

However after 1 % pre-stretch, the complex stiffness of the digested fibre at all 

frequencies is considerable less than for the same fibre before digestion. 
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Figure 5.4: Nyquist plots of a single Lethocerus indicus fibre before (Pre) and 
after (Post) mild calpain digestion. Plots are shown at rest length (0%) and at 
1 % strain. The pre and post-digestion responses overlap at rest length. 
However at 1 % stretch the digested fibre has a much lower stiffness at most 
frequencies, the maximum work per cycle is lower at the work producing 
frequencies. 

5.3.5 Electron micrographs 

After mechanical testing, electron micrographs were made of some of the 

fibres (Figure 5.5). There is no obvious difference between the fibres given mild 

calpain digestion and the undigested fibres either in the filament lattice or at the 

Z-lines. It is important to know that the integrity of the sarcomeres is unaffected 

by the dosage of calpain used, because calpain is known to remove some Z-line 

proteins Gall et ai, 1991), and at high enough levels will completely remove Z­

lines (Reedy et ai, 1975). 

Electron micrographs of four of the digested fibres were compared to those 

of the control fibres, no structural damage was observed in the digested fibres. 
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Figure 5.5: Electron micrographs of fibres used in mechanical experiments. The 
fibre in (a) was a control fibre with no calpain digestion. In (b) the fibre shown 
has been digested with calpain during a mechanical experiment. At the level 
of digestion used, there is no visible damage to the sarcomere. 
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5.4 Discussion 

The SOS PAGE results (Figure 5.1) and those of the Western blot (Figure 

5.2) show that at the level of digestion used, the Tn-H protein was significantly 

digested whereas other sarcomeric proteins remained intact. 

The results (Table 5.1) show that there is no significant reduction of rigor 

stiffness. This indicates that there is no reduction in the number of cross-bridges 

that are able to bind to actin following mild calpain digestion, showing that cross­

bridges remain undamaged. Secondly it shows that other structures in the 

sarcomere that are under tension also remain intact. These include the thick and 

thin filaments and also the Z-lines. Any damage to these structures would cause 
a reduction in measured rigor stiffness. 

There is no significant difference in between the stiffness of relaxed fibres 

before and after digestion. The high relaxed stiffness of insect fibrillar flight 

relative to non-fibrillar muscle is due to the C-filaments (White, 1983 and Granzier 

and Wang 1993b). The protein that makes up C-filaments in insect fibrillar flight 

muscle is minititin (also known as projectin). The fact that relaxed stiffness is 

unchanged is good evidence that the C-filaments remain intact after the calpain 

treatment used here. 

It has been suggested that stretch activation may arise from thick filament 

stress caused by the C-filaments (White, 1983; Granzier and Wang, 1993a). If 

such a mechanism for stretch activation is present in insect fibrillar flight muscle, 

the fact that passive stiffness is unaffected in these experiments suggests that 

such a mechanism, if present, should not be affected by the level of calpain 

digestion used. 

The results of sinusoidal analysis show that at rest length there seems to be 

little difference between the cross-bridge activity before or after digestion. This 

suggests that at rest length there is a similar sized population of active cross­

bridges before and after digestion. However with an imposed stretch, the 

undigested fibres were considerably stiffer at almost all the frequencies recorded. 

The post digestion Nyquist plot at 1 % stretch (Post 10/0) is the response one 

would expect in a normal fibre if the pre-stretch were somewhat less than 10/0 

(see Figure 4.5). A worry is that because of fibre damage, the actual inter-filament 

displacement imposed by the 1 % pre-stretch was less in digested fibres than in 

non-digested fibres. A good argument against this is that because rigor and 

relaxed stiffness values showed no significant change, the mechanical damage to 

digested fibres must be minimal. 
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To summarise, the SOS PAGE and the Western blot show that the level of 

calpai.n digestion used removes most of the Tn-H in the fibre without grossly 

affectmg other contractile proteins. The electron micrographs show that any 

myofibrillar disruption is minimal. The maintenance of relaxed and rigor 

stiffnesses indicate that the mechanical integrity of the sarcomere remains and 

that a similar number of crOSS-bridges can bind in digested compared to 

undigested fibres. However after mild calpain digestion, stretch activation 

measured as the difference between the maximum force in the delayed tension 
phase and pre-step tension, is much reduced. 

Together these findings imply that Tn-H has a major role in the stretch 
activation of Lethocerus flight muscle, but that one or more other mechanisms 

probably exist in parallel with this mechanism. 

5.4.1 Passive stiffness and stretch activation 

As well as insect fibrillar flight muscle, vertebrate cardiac muscle also gives 

a large amplitude stretch activated response. One factor that these muscle types 

have in common is the very high passive stiffness compared to that of non-stretch 

activated muscle. This has led to the idea that high passive stiffness in some way 

increases the amplitude delayed tension seen in striated muscle. 

The fact that high passive stiffness and stretch activation are common to 

these muscle types does not necessarily confirm the causal relationship that is 

often assumed. These muscles also have in common the fact that they both work 

cyclically with relatively short length changes. Given these conditions it may well 

be the case that a high passive stiffness makes the muscle more efficient and 

does not necessarily imply a role in the mechanism of stretch activation. 

The work of Tawada and Kawai (1990) is often quoted as evidence that 

increasing muscle stiffness increases the stretch activation of the muscle. 

Performing what may be the converse experiment to that described here, they 

cross-linked about 20% of cross-bridges to the thin filament in rabbit psoas 

muscle. This gave the fibres more insect-like mechanical characteristics, notably 

an increase in relaxed stiffness and a large enhancement of oscillatory work 

output. 

It is important to note that the link added here is between the cross-bridges 

and the thin filament, whereas that in insect fibrillar flight muscle is located in the 

C-filaments at the ends of the thick filaments. This of course does not account for 

the possibility that Tn-H may link the two filaments similarly to the cross-link 

added in the Tawada and Kawai experiment. 
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Unfortunately there is one line of evidence that is not in favour of the idea 

that Tn-H spans gap between the two filaments. A molecule that formed a 

permanent link between thick and thin filaments would contribute to the relaxed 

st~ffness. However digestion of Tn-H shows no significant change in the passive 

stiffness of the fibre. This suggests that if Tn-H has a permanent attachment to 

the thick filament then the link must be "slack" or very compliant. By completely 

removing thin filaments, Granzier and Wang (1993a) have demonstrated that the 
low frequency passive stiffness of Lethocerus fibres is entirely due to tension in 

the thick and C-filaments. This is further evidence that if Tn-H forms a link 

between the filaments then it is not under tension in the passive fibre at rest 
length. 

5.4.2 Possible roles for Tn-H in stretch activation 

The calpain digestion experiments described here do not indicate any 

mechanism for the stretch activation mechanism. However, it is possible to make 

some suggestions based on the location of Tn-H and its properties. All the 

potential roles for Tn-H in stretch activation described here assume stretch 

activation to be a cross-bridge recruitment process. 

5.4.2.1 Tn-H and the Wray model 

One way Tn-H could act is such that the mere size of the protein prevents a 

large proportion of cross-bridges from binding to the thin filament. This is a model 

that could work in the same way as Wray's model (1979). Stretching the muscle 

allows the cross-bridge access to the thin filament, which before the stretch was 

obscured by the large Tn-H molecule. This kind of model is similar to the steric 

blocking model for thin filament regulation by troponin-tropomyosin. 

One of the arguments against the Wray model is the instability of the low 

activation state (see section 1.4.1). In order to maintain this low activation state 

the relative longitudinal displacement of the filaments must remain within a narrow 

range (see Figure 1.5). Also a small twist in a filament, either thick or thin, can 

have a large affect on the size of the force producing cross-bridge population on 

that filament. 

What the model requires is evidence that the position of the filaments 

relative to each other is well controlled throughout the sarcomere. It is not likely 

that having the filaments constrained at the Z-lines and at the M-lines is enough 

to prevent filament rotation in the overlap region. 

An alternative way in which Tn-H could control the relative positions of the 

filaments is by cross-linking the two filaments. The link across could control the 
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position of the filaments, and prevent twisting. In this way it would enhance the 

Wray mechanism by maintaining the register (or lack of it) of the thick and thin 

filament repeats. This idea is compatible with some of the results of this work. 

However not the value of steady state tension. If this was the real function of Tn­

H in the sarcomere, then cleavage of the Tn-H would result in a large rise in 

tension, as filaments twist into configurations where more cross-bridges can 
attach. 

5.4.2.2 Tropomyosin displacement 

Troponin-H forms part of the tropomyosin-troponin complex (Bullard et aI, 

1988). Clearly this is the best location for a protein if it is to interact mechanically 
with the thin filament regulatory complex. 

In synchronous muscle the presence of calcium ions bound to Tn-C is 

sufficient to displace the tropomyosin from the thin filament groove, exposing the 

cross-bridge binding sites and allowing full activation. This is not the case in 

insect fibrillar muscle. The addition of saturating calcium to a relaxed fibre gives a 

very small tension rise, the absolute value may be as little as 100/0 that achieved 

when the fibre is stretched. 

It is possible that the presence of calcium ions is not sufficient to displace 

the tropomyosin from its position in the thin filament groove. However Tn-H could 

make a mechanical link to the thick filament. Now with a small stretch of the fibre, 

the Tn-H could cause a displacement of the tropomyosin. 

5.4.2.3 Direct interaction with the Cross-bridge 

The Tn-H link between the two filaments could act on the cross-bridges 

themselves. There is some similarity between the sequence of the carboxy 
terminus of Tn-H and that of the amino terminus of MLC-2 in Drosophila (Bullard 

et aI, 1988). This gives Tn-H a potential binding site on the cross-bridge head. If 

Tn-H does bind to the cross-bridge in this way, stretching the fibre could pull 

cross-bridges closer to the thin filament, increasing the probability of attachment. 

This could also be the mechanism by which the cross-link in the Tawada and 

Kawai experiment increases the delayed tension observed. 

Since stretch activation in insect flight muscle has evolved several times 

(Cullen, 1974), it is quite likely that different mechanisms of stretch activation exist 

in different species of insect. Indeed the mechanical characteristics of activated 

muscle varies between the different orders of insects, as does the presence of 
proteins that cross react to Lethocerus Tn-H antibody (Peckham et aI, 1992). 
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However, the results described in this chapter show that Tn-H plays a role in the 

mechanism of stretch activation in Lethocerus flight muscle. 
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6.1 Introduction 

This chapter describes experiments which investigate how insect flight 

muscle cross-bridge kinetics vary with the concentration of Pi and the amplitude 
of step length perturbations. 

By subtracting the passive tension component, the T1-T2 curves of the 

remaining active component of Lethocerus flight muscle are plotted. Using the 

mathematical model proposed by Huxley and Simmons (1971) to account for the 

rapid tension recovery after a fast step, it is possible to make estimations of the 

size of the cross-bridge working stroke. 

The relationship of the rate constant for the phase 2 rapid tension recovery 

with step size is well known (Huxley and Simmons, 1971). Here I describe a study 

in which the relationships of the rates constants for phases 2, 3 and 4 with step 

size are all investigated in insect flight muscle. Both synchronous and 

asynchronous flight muscles were used in this study. 

Increasing the concentration of Pi reduces steady state tension. Following a 

step stretch the amplitude of phase 3 is reduced and the rate constant is 

increased as the concentration of Pi is increased (White and Thorson, 1972). 

Here this effect is characterised over a range of step sizes. 

The effect of interfilament displacement on the amplitudes and rate 

constants for the phases 2, 3 and 4 are investigated. Are these parameters 

determined solely by the size of step applied or is the initial filament displacement 

also important? If the latter is true, the nature of this relationship with distortion 

may shed some light on the mechanism of stretch activation. 

6.2 Materials and methods 
The flight muscle fibres used in these experiments came from three species 

of insect: the hemipteran bug Lethocerus indicus, the Dipteran Tipula (cranefly) 

and the noctuid moth Noctua pronuba (Large yellow underwing). The' 

Lethocerus and the Tipula both have asynchronous muscle, whereas that of the 

Noctua pronuba (order Lepidoptera) has synchronous flight muscle (Cullen, 

1974). 

All experiments were performed at 15°C and at an ionic strength of 150mM 

(as described in Chapter 4). All mechanical rate constants were estimated using 
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the nonlinear least squares algorithm described in section 3.5.4. With the 

exception of the first T1-T2 experiment described here, fibres were mounted by 

gluing them directly to the apparatus hooks with cellulose nitrate glue as 
described in 4.2.3.2. 

6.2.1 T1-T2 with passive component subtracted 

To make the T1-T2 records, a Single Lethocerus indicus fibre was given a 

series of fast steps and releases ranging from 0.1 0Jc) to 1 % in amplitude. The 

same sequences of steps and releases were recorded in both relaxing and _. 

activating solutions. All step length changes were complete within 21 O~s. 

The duration of time at each length offset was very short, 1 Oms for stretches 

and 8.3ms for releases. This provides enough time to record a tension signal to 

which a single exponential function can be fitted. A slightly longer period of time 

was given on the stretches to capture all of the slower phase 2 at the larger 
stretches. 

Between these steps, a pause of 5s was given to allow the muscle to reach 

a steady state. This is particularly important in the case of the larger stretches 

where some initial delayed tension changes must be given time to return to the 

steady pre-step tension. 

In order to generate a T 1-T 2 curve that demonstrates the characteristics of 

the active component of the muscle (the cross-bridges), the recordings made in 

relaxing solution were subtracted from the active transients. The tension values 

for To, T1 and T2 were read using the muscle program. The rate constant for 

phase 2 was estimated by fitting a single exponential decay to phase 2. 

6.2.2 Changes in r2~3 and r4 with step size and [Pil 

Sequences of varying amplitude step stretches and releases were applied 

to the flight muscle of Lethocerus, Tipula and Noctua pronuba. Recordings 

were of sufficient duration that phase 4 was completely or almost completely 

finished. Allowing the muscle to reach a new steady state in this way increases 

the accuracy of the exponential fit to phase 4. 

With the Noctua pronuba (synchronous) fibre length changes ranged from -

0.6%) (release) to +3.5% (stretCh). With the two asynchronous flight muscle fibres 

smaller ranges were used. This is because these fibres have a higher passive 

stiffness which reduces the offset at which mechanical damage starts to occur. 

The Tipula fibre was tested over the range -0.4% to +1 % and Lethocerus from 

-10Al to +1 %
• 
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In both Tipula and Lethocerus fibres, a range of concentrations of Pi was 

used. The Pi activating solutions used in these experiments were made by 

combination of two stock activating solutions with OmM added phosphate and 

20mM added phosphate. Both solutions had an ionic strength of 150mM, their 
constituents are described in Table 4.1. 

Experiments with Tipula were performed in activating solutions containing 

OmM, 3.3mM and 10mM Pi. Since a single exponential did not fit well to the rapid 

tension recovery of these records, two exponential functions were fitted to phase 

2, and one each to phases 3 and 4. The small signal characteristics of Tipula 

flight muscle was investigated at a range of concentrations of Pi, in the frequency 
range 1.3kHz to 0.5Hz. 

Activated Lethocerus muscle experiments were performed in OmM, 1 mM, 

3.1 mM and 10mM Pi solutions. The records were made starting with the 

activating solution with no added Pi. Several bath volumes of solution were 

washed through with each solution change to be sure that as little as possible of 

the previous solution remains in the bath. Records were not made for at least 30s 

after the solution was washed through. This ensured that the bath temperature 

had stabilised and that the new solution has diffused into the fibre. In the case of 

the Lethocerus records, after the last 10mM Pi recordings, a second sequence of 

steps at OmM Pi was recorded. 

6.2.3 Comparison of kinetics at 0% and 1% strain 

To investigate the effect of fibre strain on the parameters of the four phases 

of the tension recovery a series of step length change records were made. The 

same amplitude of step length change was applied at both rest length (0%) and 

at 1 % pre-strain. This experiment could be performed by making a sequence of 

step length change recordings at rest length, then applying a 1 % strain using the 

micro-manipulator on the tension gauge then repeating the same step sequence 

at this new strain. Unfortunately without the aid of a sarcomere length detector, it 

is difficult to know how much stress relaxation has occurred during the few 

minutes necessary to record the steps at 1 % strain. To reduce the possibility of 

error due to stress relaxation the 0% (rest length) and the 1 % (strained) 

recordings were made consecutively in a series of double step experiments. 

Each record began with the step from rest length, this length offset is 

maintained for 10s. Next the fibre was given a ramped length change to change 

the fibre strain to exactly 1 % above rest length, the length remained at this value 

for a 12s period to allow the fibre to reach a new steady state. From this new 

offset, the original step was repeated and recorded for a further 10s. Irrespective 
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of the size d' t' . 
or Irec Ion of the first step, the fibre was always returned to 1010 above 

rest length before the second step was applied. 

In this study due to the long duration of the recordings, the order of the step 

length changes was randomised. The step length changes (in percent of fibre 

length) were made in the following order: 0.1, -0.4, 0.6, -0.1, -1, -0.6, 0.4, 0.2, 

-O.S, O.S, -0.2, 1, 1.4, 1.8, and finally 2.2. As can be seen from this order it is not , 
truly random in that the largest four step sizes were performed last. This was a 

precaution taken in case these larger steps caused any loss of steady state 

tension at rest length. This would indicate that the fibre had been damaged. 

6.3 Results 

6.3.1 T1-T2 Active minus passive 

The active and relaxed tension signals are plotted in Figure 6.1 a. Separate 

plots are shown for stretches (upper) and releases (lower). In the larger releases, 

tension drops to zero. The tension signal does not overshoot far beyond the zero 

tension line indicating that the frequency response of the strain gauge is high. 

The length signal can be seen in Figure 6.1 c. Note that in each of these 

plots, two time bases are used. The length of time at each new length is 10ms for 

stretches and 8.3ms for releases. Between each of these steps there is a 

recovery period of 5s. 

The length-tension plots for the same data are shown in part (b). Here the 

plots are separated into the active and the passive responses. Note that in the 

active response, the T1 and T2 curves can be seen in the untransformed original 

data. 

Tension transients resulting from the subtraction of the passive response 

from the active are shown in Figure 6.1. part (b). As in part (a), the data is plotted 

with sample number. The resulting T1-T2 curve (Figure 6.1. part (a)) is not like the 

Huxley-Simmons (1971) curve. The most noticeable difference is the fact that the 

T 2 curve crosses the vertical axis with negative gradient rather than the zero 

gradient found by Huxley and Simmons. The displacement at which the T2 curve 

reaches zero tension is close to -14nm. The T1 curve is close to linear, although 

some curvature is present. The T1 curve crosses zero tension at -Snm. 
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Figure 6.1: Active and relaxed Lethocerus indicus flight muscle given a series of 
steps of increasing amplitude. (a) In the tension traces, the data is plotted 
against sample number, not against time. All length changes are complete 
within 200~s. The length of time at each length offset is 8.3ms in the releases 
and 10ms in the stretches. Between steps a pause of 5s was given to ensure 
that the fibre had reached steady state. (b) The same data is shown in length­
tension plots. The active and relaxed traces are plotted separately. In the 
active plot the T1-T2 curves are visible within the data. 

117 



(c) 100 

Tension 
(~N) 

o 

Cross-bridge kinetics 

Stretches 
10ms 5s 

( )( > 
\ ~ ~ 

L-, 
l ~ :\.. :\ 

'w'----r-JL-----......J i~ i ~ ~ ~ i\ ~-V ~ I~ ~r--' IN , .... -~ 
~ Ii :: :: 

. ..,........ . ........... , ............ ~ ......... , .. ~, ... , ...... ~ ....... , .. , 

1 
Length r 

(%) 0 ......... . '------.l . .. .'--.1 ....... LJ .. . LJ U ..... LL .. 
50 

Tension 
(~N) 

° 
Length or 

(%) 
-1 

(d) 

Releases 8.3ms 5s 
( )( ) 

I 

~ r A ~ '. 

y ...... tr-q·, .t~~r·~·!J, .. ~.~i...,.i~- r~!~)~:t\l,.~i~ h 
I J ~:I ':' :. .' 
• 2 " . I. .' 

t f ~: :Ja~~.. { 
i .: J;"~~ 

• '1 

, , , .... , ................ ·i· .......... ~ , ..... , ... :.;.;.~ 
'- ' , • , , • '~,--' --' '--.J' r--t .... , .. fl' ...... 11' ...... 'r!' , .... -'11' , , .... , 

L I \ r '. 
L (; L __ _ 

3 
Relative 
tension 

(To) 2.5 T1 

2 

1.5 

0.5 

-15 -10 -5 5 10 15 

-0.5 1 Step (nm/hs) 

Figure 6.1 (continued): A T1-T2 plot generated from the data shown in 
Figure 6.1 a. (c) The traces shown are the result of subtracting the relaxed 
response from the active. (d) The T1-T2 plot for the active component in 
Lethocerus indicus flight muscle differs from that of vertebrate striated 
muscle. The T 2 curve crosses the vertical axis with a negative gradient. The 
step units were converted to nanometres per half sarcomere (nm/hs) assuming 
a sarcomere length of 2.8Jjm. 
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Figure 6.2: Tension transients showing the change in rate constants of phase 3 
(delayed tension) with step size in activated insect flight muscle. Both sets of 
traces show the response of a single activated fibre in a solution with no added 
phosphate. The transients in (a) are Lethocerus indicus (asynchronous), while 
in (b) the moth Noctua pronuba (synchronous). With increasing step size the 
rate constant for delayed tension reduces dramatically. 
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Figure 6.3: The amplitudes and rate constants of phases 2, 3 and 4 for the 
activated synchronous flight muscle of the moth Noctua pronuba (Large 
yellow underwing). Three summed exponentials were fitted to the data using a 
nonlinear least squares procedure. 
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6.3.2 Step size and r6, r3 and r 4 
....... ..-

In the tension transients of Figure 6.2 it can be seen that the rate constants 

for phases 3 and 4 both decrease with increasing step size. This was found to be 

true for both the asynchronous muscle of Lethocerus indicus (a) and the 

synchronous muscle of Noctua pronuba (b). Also with increasing step size, the 

amplitude of both phases 3 and 4 increase. The results of the curve fits to the 

transients of Noctua pronuba are summarised in Figure 6.3. These show that the 

relationship of the rate constants for phases 3 and 4 have a similar relationship 

to step size as phase 2 i.e. slow for large stretches, fast for smaller stretches and 

very much faster for releases. 

6.3.3 The effect of Pi on the step size dependence of r2 

The results of this study are summarised in Figure 6.4. Some of the tension 

transients used to create the plot are shown in part (a). The plot shows that there 

little or no change in the rate constant for the phase 2 recovery with increasing 

concentration of Pi. 

Due to the lower steady state tension in the higher phosphate solutions, the 

step releases larger than 0.4%, resulted in tension falling to zero, so no curves 

could be fitted to these transients. 

6.3.4 The effect of Pi on the T1-T2 curves 

The affect of Pi on the T1-T2 curves can be observed in Figure 6.5. It must 

be recognised that the high frequency characteristics of glued fibres such as this 

one are not as good as those of T-clip preparations such as that described in 

Figure 6.1. The presence of the glue on the end of the strain gauge reduces its 

~equencyresponse. 

Despite this, stiffness changes can be observed. The effect of increasing Pi 

is to reduce the gradient of the T1 curve. This suggests that the there is a 

reduction in the number of attached cross-bridges at the higher concentrations of 

Pi used. 
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Figure 6.4: The effect of the concentration of inorganic phosphate (Pi) on the rate 
constant of the rapid recovery phase in activated Lethocerus indicus flight 
muscle. (a) Some of the tension transients are shown, all on the same scale 
(each box is 20ms wide, full scale tension ranges from OIJN to 1001JN, solid line 
indicates resting tension). The larger releases were not possible in 3.1 and 
10mM Pi due to lack of tension. (b) Rate constants were estimated by least 
squares fitting three exponentials to phases 2, 3 and 4. Rate constant plotted 
against step size shows no effect of Pi. This indicates that Pi release step is not 
associated with the working stroke. 122 
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plotted relative to To with no added phosphate. The instantaneous stiffness of 
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6.3.5 The effect of Pion the step size dependence of r3 and r4 

As was shown previously (White and Thorson, 1972), with increasing Pi 

concentration, the rate constants for both phases 3 and 4 following a stretch 

become faster (Figure 6.6). The results described here show that in contrast for , 
step releases, the rate constant of phase 3 becomes slower with increasing 
concentration of added Pi. 

It is worth noting that the amplitude of phase 4 for releases in the higher Pi 

solutions was very low. This reduces the accuracy of the fit and in some cases 

made fitting an exponential impossible. The amplitudes and rate constants for 

phase 3 and phase 4 estimated for these data are shown in Figure 6.8 and 
Figure 6.9 respectively. 

The Tipula rate constants for phase 4 could not be fitted satisfactorily in the 

higher Pi solutions, due to the presence of a brief Schadler's oscillation following 

the delayed tension rise (Schadler et ai, 1971). This oscillation is greatest at 

large stretches in the 10mM Pi solution. It was not possible to prevent the curve 

fitting procedure from fitting phase 4 to this rapid reduction in tension rather than 

the more gradual tension decline of phase 4. 

In Tipula flight muscle in the presence of millimolar quantities of Pi there is 

a slight increase in r3 as the step size increases (see Figure 6.7). For steps 

greater than 0.2O;(), r3 becomes faster as the concentration of added Pi increases. 

6.3.6 The Effect of Pi on the Nyquist plot 

The small amplitude frequency response of the fibre at different 

concentrations of Pi is shown in Figure 6.10. The most striking effect of 

increasing the concentration of Pi is to reduce the complex stiffness of the fibre at 

all frequencies tested. This result is consistent with a reduction in the number of 

attached cross-bridges as Pi increases. There is a also a small increase in the 

frequency of maximal work per cycle. 

6.3.7 The kinetics of Lethocerus flight muscle at 0% and 1 % strain 

An example experimental record is shown in Figure 6.11 a. The pair of T1-T2 

curves for 0% (rest length) and 1 % (strained) are plotted in Figure 6.11 b. Despite 

steady state tension more than doubling after the 1 % strain, the gradient of the T1 

curve shows only a very small increase. 
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Figure 6.6: A series of traces demonstrating the effect of inorganic phosphate 
(Pi) on the delayed tension changes in Lethocerus indicus flight muscle. (a) 
After a 1 % stretch the delayed tension rise (phase 3) becomes faster and lower 
in amplitude with increasing Pi. Indeed at 10mM Pi, phase 3 is too fast to be 
seen clearly on the timebase used. (b) On a step release (-0.4%) the phase 3 
process is faster. As in (a) the amplitude of phase 3 reduces with increasing Pi. 
However the rate constant can be seen to be faster in the traces with lower Pi. 
For clarity the traces in (b) were filtered using a 15-point quadratic least 
squares smoothing filter. 
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Figure 6.7: The relationships between step size, the concentration of inorganic 
phosphate (Pi) and the rate constant of the delayed tension (r 3) in Tipula 
(crane-fly) flight muscle. (a) Tension transients show that the r3 becomes 
slower with increasing step size in low phosphate conditions, but changes little 
in the higher phosphate solution. (b) The rate constant for the phase 3 as 
estimated by fitting three exponential functions to the data. 
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nonlinear least squares fitting procedure, three exponentials were fitted to 
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The same steps in 10mM added Pi gives 100s-1 to 31s-1 respectively. 
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Figure 6.9: The amplitude and rate constant of phase 4 in Lethocerus indicus 
flight muscle at different concentrations of inorganic phosphate (Pi)' (a) The 
amplitude of phase 4 decreases with increasing Pi' (b) With low or zero levels 
of added phosphate, the rate constant for phase 4 decreases with increasing 
step size. At the highest level of Pi used, the rate constant shows little or no 
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The results of fitting three exponential functions to phases 2, 3 and 4 of both 

the 0% and 1 % transients are plotted in Figure 6.12. In these plots the "Step" axis 

does not include the 1 % strain applied, for example a 0.2% step will be plotted at 

0.2% irrespective of whether the step occurred before or after the 1 % strain. This 

simplifies the comparison of the parameter curves before and after the applied 

strain. 

The rate constant for phase 2 shows no detectable trend with the change in 

strain. The amplitude of phase 2 is slightly greater following the 1 % strain. 

The rate constants for both phase 3 and 4 also prove to be quite insensitive 

to the level of strain on the fibre. However the amplitude of phases 3 and 4 show 

a horizontal shift. In the region of stretches from 0.2% to 0.8% there in a large 

increase in the amplitude of phases 3 and 4 at 1 % strain. This horizontal shift of 

the amplitude curves 3 and 4 is in the region of 0.2% to 0.3% of the fibre length. 
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Figure 6.10: Small signal analysis of activated Tipula flight muscle at a range of 
concentrations of Pi. The change in the mechanical characteristics with 
increasing Pi is complementary to the results of the step length change 
experiments, though the effect is smaller. With increasing phosphate the 
amplitude of all processes are reduced. The largest negative phase angle 
(corresponding to phase 3 in step experiments) occurs at increasing 
frequencies at the higher concentrations of Pi (3.1 mM and 10mM). 
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Figure 6.11: The T1-T2 curves recorded at 00/0 and at 10/0 pre-stretch. (a) For 
each step size, the step was applied at rest length (00/0), then the fibre pre­
stretch was adjusted to 1 % above rest length. Once at steady state (12s later) 
the same step size was repeated. (b) The T1-T2 curves are plotted relative to 
To at 00/0 pre-stretch. The curves with filled symbols are those recorded at 10/0 
pre-stretch. The T1 curves (diamonds) show that there is very little increase in 
stiffness after the 1 % pre-stretch. 
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Figure 6.12: The amplitudes and rate constants for phases 2, 3 and 4 for a single 
activated Lethocerus indicus flight muscle at 00/0 (circles) and at 1 % pre­
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6.4 Discussion 

6.4.1 The active component T1-T2 

In many ways the T1-T2 curves shown in Figure 6.1 d resembles that of in 

vertebrate skeletal muscle as described by Huxley and Simmons (1971). Their 

mathematical modelling of the rapid recovery (phase 2) provides a framework in 

which it is possible adjust the parameters that define the shape of the T 2 curve. 

To estimate the value of a in their equations, a term required by the 

modelling process, the rate constants fitted to phase 2 at all step sizes were 

plotted against step size (Figure 6.13). The Huxley-Simmons model shows that 

the curve should have an equation of the type: 

The value used for ro was 2750s-1, this being an estimate of the region 

where the r2 curve crosses zero step size (see Figure 6.13). The curves for two 

values of a are plotted over the data. The curve of the original Huxley-Simmons 

value for a of 0.5nm-1 does not describe the data well. The rate constants are too 

high on the releases. The other curve (a=0.2nm-1) is a much better fit to the data. 

However rate constants measured for larger displacements do not fit the shape of 

curve very well. They were ignored when estimating the goodness of fit for a 

particular value of a. 

Using the Huxley-Simmons model it is possible to generate theoretical T1-T 2 

curves for given values of working stroke h, cross-bridge stiffness K, and a. 

Using their equation (16), 

( 
h ha.yj T =K y +y--tan -

2 0 2 2' 

The value of Yo is the release size at which the T 1 curve reaches zero 

tension. For the insect muscle studied here, Yo is Bnm. That is the same value as 

that used by Huxley and Simmons. 

Using the same values for the constants a and K used by Huxley and 

Simmons, but changing the value of the working stroke h, it is possible to 

generate a T 2 curve with the negative gradient characteristic shown by the insect 

data. The result of changing the working stroke from Bnm to 11 nm is shown in 

Figure 6.14 along with the original Huxley and Simmons T2 and T1 curves. 
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Figure 6.13: Calculation of a based on the relationship between step size and the 
rate constant of the rapid recovery phase. The rate constant (black squares) 
was estimated using a nonlinear least squares fitting procedure. The value of a 
which best fits the equation r=(rol2)(1 +e-<lY) to the data is considerably lower 
than that of Huxley and Simmons (1971). Curves of a=O.5nm-1 (circles) and 
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Figure 6.14: T1-T2 plots showing the .output of the Huxley and Simmons (1971) 
model of the rapid recovery phase. The T 2 plots show the output of the model 
given different values of the working stroke (h) and for a. 
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The relationship between the rapid tension recovery rate constant and the 

imposed step size led to the estimation a of to be O.2nm-1 for insect fibrillar flight 

muscle. This is less than half the value that was estimated by Huxley and 

Simmons to describe the vertebrate skeletal muscle r curve. With the value of the 

working stroke set a 8nm, using the new value for a to generate a T2 curve 

results in a curve which crosses the vertical axis with a positive gradient. In order 
to generate a T 2 curve with a negative gradient at small step sizes, it is necessary 

to use a value for the working stroke greater than 20nm. The T 2 curve generated 

for h=20 and a=.2nm-1 is shown in Figure 6.3. 

If the estimation of a is accurate, then this modelling suggests that the 

cross-bridge working stroke must be over 20nm to account for the existence of 
the negative gradient region of the T 2 curve. One consequence of such a large 

value for the working stroke is that the position of the point where T2 reaches 

zero tension is shifted along the axis. The experimentally determined T 2 curve 

reaches zero tension at a release size close to 14nm. This characteristic of the T 2 

is more similar in appearance to the curve generated by a=.5nm-1 and h=11 than 

it is to curves described by a=O.2nm-1 and h>20nm. In the light of this, it is 

reasonable to assume that the estimate of a is too low. 

To explain the shape of the insect fibrillar muscle T1-T2 plot in terms of the 

Huxley-Simmons 1971 mathematical model it is necessary to conclude that the 

working stroke in insect muscle is longer than it is in vertebrate muscle. To 

reproduce the negative gradient of the T 2 curve at the vertical axis, the cross­

bridge working stroke must be at least 11 nm, assuming a=O.5nm-1, and must be 

set to closer to 20nm when the value used for a is O.2nm-1. 

This issue will be addressed more fully in Chapter 7, where the stochastic 

cross-bridge modelling provides a more complete explanation of how the shape 

of the T2 curve changes with work-stroke size. In particular, this model removes 

the need for the assumption, of the Huxley-Simmons equations, that at to the two 

states are equally populated. 

6.4.2 Phosphate and the step size dependence of r3 and r4 

The relationships of r3 and r4 with step size have the same characteristics in 

both synchronous and asynchronous insect flight muscle. Both of the rate 

constants r3 and r4 maintain roughly constant values at stretches greater than 

0.3% • However for the smaller stretches there is an increase, and for releases the 

increase in rate constant can be an order of magnitude or more. 

The cross-bridge model described in chapter 7 is able to reproduce these 

characteristic r-step size plots for phases 3 and 4. The general mechanism of 
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how this takes place is the following. Following the step length change there is a 

redistribution of cross-bridges amongst the two states on either side of the work 

stroke transition. Following this redistribution there is a surplus of cross-bridges 

in one state and a "lack" of cross-bridges in the other state. Due to the definition 

of the free energy profiles of these two states (and in the vast majority of similar 

models) the "surplus" cross-bridges must detach via a route that is not the work 

stroke step. This is because the work-stroke transition is particularly energetically 

unfavourable for these cross-bridges. 

For this reason the routes for the redistributing cross-bridges after the rapid 

tension recovery phase is different depending on whether a stretch or a release 

was applied. Due to the different routes of cross-bridge redistribution, depending 

on whether the length change was a stretch or a release, it is not surprising that 

the rate constants for these processes are different. 

That Pi increases r3 and r4 on stretch an reduces them on releases may be 

explained if the Pi release step is located between the steps that set the rate 

constants for phases 3 and 4. However I have not yet done model simulations 

with varying Pi concentration. 

6.4.3 Phosphate and the step size dependence of r2 

Figure 6.4 shows that if the concentration of Pi has an effect on the 

relationship of phase 2 with step size, then this effect is very small. 

It is widely believed that in vertebrate striated muscle, the power stroke step 

is the Pi release step from the AM.ADP. Pi state (Hibberd et ai, 1985; Dantzig et 
ai, 1992). If this is the case in insect fibrillar muscle, the rate constant for phase 2 

should be sensitive to the concentration of Pi, especially for step stretches. If Pi 

release corresponds to the cross-bridge work stroke, the stretch r2 would be most 

sensitive to Pi concentration because it is in the stretches where the cross­

bridges would be moving from the AM.ADP state to the AM.ADP. Pi state. If Pi 

release is concomitant with force generation, the rate of r2 on stretch should 

become much more rapid with increasing Pi concentration. If anything the reverse 

of this trend seems to occur, stretch r2 values being lowest in the higher Pi. 

From this it can be concluded that in insect fibrillar flight muscle the Pi 

release step occurs at a different time from the work stroke step. This conclusion 

has also been drawn from oxygen exchange studies on insect fibrillar flight 

muscle by Lund et al (1987), who suggest that Pi release occurs in a step 

following the work stroke step. 
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6.4.4 The effect of Pi on the fibre stiffness 

The fibre stiffness reduces with increasing Pi. This is indicated by the 

reduction in the slope of the T1 curve in Figure 6.5, and also the reduction in the 

complex stiffness in the sinusoidal analysis shown in Figure 6.10. The decrease 

in fibre stiffness indicates that the number of attached cross-bridges is lower in 

the higher Pi solutions. This reduction in the number of attached cross-bridges 

suggests that the Pi release step occurs before or in the same step as force 

generation. If Pi release followed force generation as suggested by Lund et al 

(1987), an increase in Pi concentration would encourage the cross-bridges back 

into the force producing states, resulting in an increase in fibre stiffness with 
increasing Pi. 

6.4.5 Fibrillar muscle kinetics at 0% and 1% strain 

This is a comparison between the tension transients of active Lethocerus 
indicus flight muscle at rest length and at 10;() pre-stretch. The T1-T2 curves are 

shown in Figure 6.11. The most striking observation to be made in this plot is that 

at 10;() pre-stretch, even though the fibre is producing twice the tension, the 

immediate stiffness is not much higher. If this is the case, and assuming that all 

attached states are of equal stiffness, this implies that the same number of cross­

bridges are attached at the steady state following the pre-stretch as were 

attached at the rest length steady state. 

The results of fitting three exponential functions to the steps before and 

after the applied pre-stretch are plotted in Figure 6.12. The first thing to note is 

that none of the graphs contain 1010 displacements. Such a result would indicate 

that a the filaments had a rigid mechanism for detecting inter-filament 

displacement, such as the match -mismatch model. On stretches the rate 

constants show no apparent relationship with pre-stretch. There is some 

separation of the r3 and r4 plots on the step releases, though this may be due to 

the fibre tension dropping close to zero in the rest length steps. 

The most significant horizontal offset can be seen in the amplitudes of 

phases 3 and 4 in the stretch range 0.2% to 0.8%, though this offset is 0.3% at 

most. This observation is more compatible with models of stretch activation in 

which a flexible link is extended (such as C-filaments or Tn-H) rather than the 

rigid filament geometry favoured by Wray. 
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7.1 Introduction 

This chapter is concerned with computer simulation of cycling cross-bridges. 

It describes a multiple state model devised to simulate the mechanical and 

biochemical properties of striated muscle. 

The relative displacement of a cross-bridge and its potential binding site on 

the thin filament is referred to as distortion. In this model some of the reaction rate 

constants are distortion dependent, both to emulate certain mechanical and 

biochemical properties of muscle and also to obey the laws of thermodynamics. 

The same software includes three model types. In the first, a vertebrate 

skeletal muscle model, the distribution of distortions is uniform. The second and 

third models investigate two ways to generate a stretch activated response. The 

match-mismatch model suggested by Wray (1979) is simulated by setting the 

distortion of most cross-bridges within a small range of the distortions available . 

Finally strain activation is investigated in a model in which the stability of all 

attached states is dependent on strain on the muscle. 

Simulating cross-bridge dynamics in this way provides much more insight 

into possible molecular mechanisms than can a series of equations on paper. 

Using this model it is simple to observe the effect of a change in a single rate 

constant on the dynamics of the whole system. 

7.1.1 Cross-bridge models 

Since Huxley published his model in 1957, virtually all cross-bridge models 

have incorporated many of the same ground rules. One particular aspect of the 

1957 two state model that has been included in the majority of proposed cross­

bridge models is the concept of distortion dependency of the rate constants. The 

rate constants of the Huxley 1957 model are shown in Figure 1.1. The most 

fundamental property of the distortion dependencies used in this and all 

subsequent multi-state models is that cross-bridges must be encouraged to 

remain attached at positive force, and should detach quickly at negative forces. 

After Huxley and Simmons (1971) suggested that attached cross-bridges 

existed in at least two mechanically distinct states, several multiple state models 

have been published. The two models on which the model presented here is 

based are that of Eisenberg, Hill and Chen (1980) and Pate and Cooke (1989). 

Particularly the free energy values of the states in this model were taken from 

these papers. However, unlike these models, the model presented here was 
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developed to study what is required for a mUlti-state model to recreate not only 

phase 2 but also phases 3 and 4 of the muscle tension transients. 

In 1974 Terrell L. Hill published a set of "rules" that must be followed if a 

muscle model is to be thermodynamically possible. This formalism was used to 

define the free energy profiles of the attached states in the model as well as the 

relationship between the forward and backward rate constants in all steps. 

7.2 A novel algorithm for stochastic modelling 

The method by which the step direction is chosen is a very important 

consideration in a model such as this. Figure 7.1 a shows the conventional 

approach to this problem. Given the three rate constants moving out of a 

particular state, it is possible to calculate the probability in time t that this step will 

occur. These probabilities are assigned there own region in the space 0 to 1. If a 

computed random number falls in that region, then that step is chosen. It can be 

seen that if a large value is chosen for t (Sms in the example shown) then a step 

could be taken in the majority of iterations, making the model run quickly. 

Unfortunately the problem with large values of t is that it becomes more likely that 

two ( or more) steps could occur within that time. 

Because assigning probabmties to two or more steps starts to become very 

complex, it is usually not done. Instead the value of t is chosen so that the 

probability of two steps is low in the most rapid parts of the scheme. Even so this 

method cannot rule out this possibility. With a small t (1 ms in the example), the 

majority of iterations predict no state change. This is computationally expensive 

because a large number of random numbers must be generated before a single 

state change is performed. This means that to simulate one second of data with a 

few hundred cross-bridges in the model is a very slow process. 

In my model I used a different approach. Rather than have a fixed iteration 

time, I used the random number generator to predict a "next step time" for each of 

the three possible directions. Now the random number generator provides a 

simulation of when the event occurs rather than whether it has occurred at a 

specified time. 

Considering each step independently, the exponential ~urves for step i (1,2 

& 3) out of the current state have the following equation: 

Si = exp(-kJ) , 

where k i is the rate constant and Si is the state population (tending from 1 to 

0). 
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Figure 7.1: Two approaches for modelling a single step in a complex 

chemical pathway. In the example shown the model must choose one of three 

possible steps. (a) In the first method, a small time interval (t) is chosen. The 

probability that each step occurs within time t is calculated. Each step is allocated 

its own a region of the range 0 to 1. A random number is generated (0<R<=1, 

uniform distribution). If the value of R falls within the range allocated to a step, 

then that step is chosen. The value chosen for t must be sufficiently small that the 

probability of performing two steps within that time is low. Although this is the 

conventional method it is slow and sometimes inaccurate. (b) The second 

approach uses the random number generator to provide a time value for each 

possible step. In this example the three random numbers Ro=0.2516, R1=0.7866 

and R2=O.4148 provide the step times using the equation shown. The step 

chosen by the model is that with the smallest time value (in this instance step 1). 
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:heref~re a random number between 0 and 1 (Rj) can be used to estimate a 
step time t; simply by rearranging the equation: 

-lnR; 
t. = ---=-1 • 

k. 
1 

The method is described in Figure 7.1. A new random number is generated 

for each of the three time values. The fastest time value is the step chosen. Using 

this system each cross-bridge must have its own time variable to store the time of 

the last state change. 

In terms of processor time this method is very efficient. One third of all 

random numbers generated result in a cross-bridge step. 

7.2.1 Storing time information for each element in the model 

This model algorithm makes the iteration time very flexible. That is the 

• algorithm can be called to run for any finite length of time, independent of the 

values of the rate constants in the system. So for example the program can plot 

tension every microsecond or every ten seconds. 

There is one pitfall that must be avoided, particularly when short iteration 

times are chosen (that is iteration times where only a small number or no state 

changes occur). When a calculated step time over-shoots the iteration end time, 

the algorithm must exit in the state it was in at that end time. That is it must not 

perform the last step since this occurs after the specified end time. 

So what should be done with the step that was calculated, but not performed 

before the algorithm was exited? It is very important that this step is not discarded 

and recalculated in the next call. Doing this would "select against" quite valid slow 

steps in the sequence if they overshoot an end-time boundary. This step 

calculation must be stored and used in the next call. When the algorithm is exited 

the current and the next state must both be stored for each element in the model. 

In this way a the transition time for a slow step may span many iterations. After 

each iteration the time value for each element must store the calculated time , 
point for the transition from the current state to the next state. 

In this way the algorithm is not biased towards faster step rates. Also, but of 

less importance, saving calculated steps in this way increases the efficiency of 

the model. 
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7.2.2 Verification of the model mechanism 

Since I was not able to find previous models that used such a mechanism, it 

was necessary to show that the procedure used is a valid one. To show that the 

model follows the same curve as the analytical solution in a simple system would 

be a good indication that the method is valid. 

Although a simple two-state system would give a good indication of the 

validity of the model, this would by-pass one crucial part of the model 

mechanism. That is the occasions where the model must chose between different 

possible step directions. Clearly the simplest model which incorporates this is a 

linear three state model. The model used is shown in Figure 7.4(a). The rate 

constants for the steps in the system are shown as 8, b, c, and d. The number of 
elements in states 1, 2 and 3 are n1, n2 and n3 respectively. The total number of 

elements in the system is N, where N = ni + n2 + n3 . 

The differential equations for this system are: 

dni = n
2
a - nIb 

dt 

Since all elements in the system sum to N, it is possible to find the solution 

by solving the two equations dni/dt and dn3/dt. 

and 

Expanding, 

and 

dn i = -(a + b )nl - an3 + aN 
dt 

dn3 = -dni - (d + C )n3 + dN . 
dt 
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These expressions can be written in matrix form as follows: 

[
dn1 / dt] [-( a + b) -a ][nl] [aN] 
dn3/dt = -d -(d + c) n3 + dN . 

The general solution to a matrix expression such as this is written as 
(Chiang, 1984): 

This expression shows that the solutions to this system is for states 1 and 3 

are made up of two exponential processes with an offset value. The offset value, 

often called the long run solution (LRS) is given by the solution of the first two 

matrices in the expression. This provides the function value at t = CIJ • The rate 

constants for the two exponential processes are given by the eigenvalues (- A) . 

The amplitudes of each exponential are given by an amplitude term ( A ) and the 

eigenvectors [ : ] . 

Solving the LRS matrices gives the following: 

[
n1 (t)] N [ac] A [Vll] lIt ~[V12] l2t 

n3(t) =ad+bd+bc bd + 1 V21 e + V22 e . 

The eigenvalues, which provide the rate constants in the solution, are 

obtained by finding the values of A which satisfy the following: 

[
-( a + b) - A -a] 

-d -(d+C)-A =0. 

This provides the two values, 
~---------------------

-(a+b+c+d)±~(a+b+c+d)2 -4(ac+bd+bc) (7.1) 
A= 2 . 

To find the eigenvectors, it is necessary to reduce the[~~m] ber Of[::~]ms. This 

is done by simplifying the eigenvectors. The eigenvectors and v can 
V21 21 

be replaced with [;J and [;J, where 81 = Vll /V21 and 82 = V12 /V22 . 
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The eigenvectors can now be found using the relationship 

[-( a + b) -a][ 1] = A[ 1] . 
-d -( c + d) () () 

This yields two equations, either of which can be used to find the two values 
for (), these are: 

() = -d and () = A + a + b 
A+c+d -a 

The equations for the curves nl and n3 can be written: 

n1 (t) = LRS
I 
+ Ale).!! + ~e).2t 

and 

(7.2) 

(7.3) 

Given the values for the eigenvectors, it is possible to obtain the values for 
the amplitude constants Al and ~ from what we know about the initial 

conditions of the system. 

When t = 0, 

and 

nl(O) = LRSI + Al + ~ 

n3(0) = LRS3 + AI()1 + ~()2' 

This provides equations for the amplitude components as follows: 

~ = n3(O) - LRS3 - (n1(O) - LRS1)OI 
(()2 - ()l) 

Al = n1(0) - LRSI - ~ 

(7.4) 

Using the solution described above it is possible to plot the output of the 

model over the theoretical curves, shown in Figure 7.2(b) and (c). These curves 

are plotted using the output of equation 7.3, using the results of equations 7.1, 

7.2, and 7.4. When the number of elements in the simulation is high, the output of 

the stochastic model follows the theoretical curve very closely. This was the case 

using different values for the rate constants. The results in Figure 7.2 show that 

the model output follows the line provided by the analytical solution. The error or 

noise in the model output decreases with increasing number of elements in the 

model. 
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Figure 7.2: The approach to equilibrium of a simple three state system shown as 
both an analytical solution and a stochastic simulation. The model and the 
values of the rate constants used are shown in (a). At t=O all elements in the 
system are in state 1. Two model runs are shown using 128 elements (b) and 
8192 elements (c). The analytical solution is indicated by a solid line, the 
stochastic model output plotted as single points. The stochastic simulation 
uses the same mechanism as that used in the muscle model. That the 
simulation superimposes the theoretical curves is a good indication that the 
model method is a valid one. The simple program used to generate the plots 
(MOD-METH. BAS) is included on the diskette. 
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7.3 Software 

The ~iochemical scheme used in the model is shown in Figure 7.3. Although 

a total of eight states are used, when the model is running some of these states 

contain very few or no cross-bridges. The scheme was made symmetrical to 

simplify the programming. By keeping the scheme rectangular in this way, a 

cross-bridge at any state position has to choose one out of the three possible 
step directions. 

Substrate 0 1 2 3 4 

Attach=1 ( AM ) ~ C AM.ATP ) ~ (AM.ADP.PJ ~ (AM*ADPP~ ~ ( AM.ADP ) ~ 
1~ 1~ 1~ 1~ 1~ 

( J~( M.ATP ) ~ ( M.ADP.P~ ~ (M*ADP.Pi J ~ ( Attach=O M 
M.ADP) ~ 

Figure 7.3 The biochemical scheme showing all cross-bridge states used in the 

model. The software refers to each state using a substrate and an attachment 
value. 

7.3.1 The Stoch subroutine 

All the state stepping is performed within the S toch subroutine. This 

routine is passed four arrays, an example call line is shown below: 

CALL Stoch(Steps&(O,O) ,X%(l,O) ,k! (0,0,0,0) ,Xtime! (0». 

The X% () array describes the state of all cross-bridges in the model. For 

each cross-bridge this array stores information about the biochemical state (0 to 

4), the current attachment status (1 for attached, 0 for detached) and the current 

distortion values. Possible distortions range from -5nm to 20nm. Distortions are 

calculated in angstroms (A) providing a total of 251 possible cross-bridge 

distortions. 

The k! (0, ° , ° ,0) array holds the rate constant look-up table. For a 

particular cross-bridge the rate constant is found based on the criteria of 

biochemical state, current distortion, attachment status and the step direction. 

F or each cross-bridge, the sequence of events is as follows. Three random 

numbers are generated, and provide time values for the three possible steps from 

the current state. The step with the fastest time is taken. This step time is added 

to the cross-bridge time in the Xtime! () array and the cross-bridge state is 
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updated in the X% () array. This process is repeated until the cross-bridge time 

passes the current iteration end time (stored in Xtime! (O»). 

On exit the Steps& (O, 0) array returns the total count for each step in the 

model. This information is useful for showing flux in the model which is not always 

apparent by looking at the state totals or distortion distributions. The current 

cross-bridge state and also the next state (already calculated) are held in the 
x% () array. The time for the next step for each cross-bridge is stored in the 
Xtime! () array. 

7.3.1.1 Random number generation 

Computer algorithms cannot output truly random numbers. Indeed since 

computers are machines designed to create perfectly repeatable output, it is not a 

trivial matter to make them generate output which appears random (pseudo­

random). Although programming languages supply their own generators, these 

can often be the cause of problems. They are typically 15 bits wide and often 

have a short repeat period . 

In order to produce "trustworthy" random numbers, I wrote a random number 

generator within the model machine code. The choice of random number 

generator algorithm is a crucial consideration when writing a model. Although this 

model is based on a very efficient algorithm, a large proportion of processor time 

is still spent in the random number generation routine. 

In this model I have incorporated the algorithm suggested by Zaman and 

Marsaglia (1991). This algorithm allows the very fast generation of random 

numbers of any size. It uses a combination of two different types of generator to 

give an extremely long period (10356). The first is a subtract with borrow 

generator, this provides the long period while satisfying conventional 

randomness tests. The second is the more conventional congruentia/ generator 

with multiplier 69069 and base 232. The results of these two are XOR'ed to 

provide the final 32-bit value used in the model. This algorithm has the added 

bonus of never outputting zero. This avoids the infuriating situation of a "Division 

by zero" error halting the computer just before the end of a long simulation. 
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Figure 7.4: The cross-bridge model run screen. The screen was arranged to 
provide as much information as possible about the state of the model. The top 
half of the screen gives information about each biochemical state. The detail of 
one state is expanded (upper). The two plots show the rate constants and the 
distortion distribution, both plotted against distortion. Below each state plot is 
statistical information about the most recent model iteration. The lower half of 
the screen plots the progress of the model with time. Here the model tension is 
plotted. The number of attached cross-bridges or stiffness, strain and ATPase 
can also be plotted. 
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Like all pseudorandom number generators, the algorithm requires a seed to 

~tart. This provides a mechanism to prevent the same sequence of numbers each 
time the program is run. Two 32bit values are passed to the Rini t routine from 

the BASIC calling procedure. In the model program, two zeros are passed to this 

routine. On receiving two zeros, the PC clock time and date are combined and 
used as a seed. 

The random number generator was tested in two ways. Firstly, using the 

same seed values, the code produced the same sequence of numbers as a 

program described by the original authors. Secondly the distribution of the 

random number output was shown to be uniform by performing a five digit poker 
test. 

7.3.2 The model run screen 

The model run screen is shown in Figure 7.4. Small distortion distribution 

histograms are updated with each iteration. When the program begins, all cross­

bridges are in the M.ADP. Pi state so the user must wait until the model has 

reached a steady state. The following is a brief description of the keys that can 

be used to control the running model. 

The iteration duration can be altered by a factors of ten by pressing the <-> 

and <+> keys. The program will not allow iteration times that will require more 

than 20 seconds to complete. 

Pressing the <F> key allows the user to select full screen plots of cross­

bridge distortions, free energy profiles or rate constants. A full screen cross­

bridge distribution plot is shown in Figure 7.5. This type of plot is useful for 

showing the populations and distortion distributions of all states in the model in 

one plot. 

The model current status can be saved at any point by pressing <S>. The 

<X> key will restore this saved state. A step length change (nm) can be given at 

any point by pressing <P>. A sequence of steps can be started (e.g. T1-T2 

experiment) with <T>. The <V> key begins a force-velocity sequence. 

The <A> key turns on and off the ATPase, stiffness and perturbation value 

plots. The <B> key moves to a text based screen so that the model can be run in 

the background in Microsoft Windows. The model type can be selected using 

<M>. 

The length and tension values can be saved at any point by pressing <0>. 

These output files can be loaded into the muscle program, where curve fitting and 

analysis of tension values can be made. 
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M M.ATP M.ADP.Pi M* .ADP.Pi M.ADP 

• • 

Key: Att • 
Det •••• 

Figure 7.5: The distortion distribution of all cross-bridges in the model can be 
incorporated into a single diagram. Here the individual state distortion 
distributions (small upper plots) are shown as one single plot. This provides a 
concise way of describing the state of the model at any point during a 
simulation. 

7.4 Model parameters 
Like most models of this kind, the assumption is made that each cross­

bridge has the capability to bind to just one site on one actin filament. No filament 

overlap considerations are made in this model, complete overlap is assumed. 

Also no activation (Ca2+) parameters are included, the model is assumed to be 

fully activated. Cross-bridges are assumed to be completely independent force 

generators, binding site competition or co-operative binding are not considered. 
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Figure 7.6: Mechanical characteristics of the attached cross-bridges in the model 
(a) An attached cross-bridge can occur in either a 90° state (upper row) or a 
45° state (lower row). In a typical cycle, a cross-bridge binds in the 90° state, 
then goes through a "power stroke" transition to the 45° state. Distortion 
describes the relative sliding between the two filament types. Each mechanical 
state is shown at three distortion values with a qualitative indication of the 
force contributed ("-", "a" or "+"). (b) The cross-bridge stiffness is 2.0pN/nm in 
all attached states. The 45° states produce zero inter-filament force at zero 
distortion. For the 90° states zero force occurs at a distortion of 7.Snm. (c) The 
mechanical (not chemical) free energy of the 45° and 90° states is the energy 
required to extend or compress the elastic component of the cross-bridge 
(E=liI2, where K-cross-bridge stiffness and x=distortion ). 
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Figure 7.7: The free energy values (R1) of all biochemical states in the model. 
(a) The values for the attached states (upper four) are the minimum values 
which occur when the cross-bridge is under no force. (b) The distortion 
dependency of the free energy of all states. The attached states are parabolic 
since they include the work to extend or compress the elastic element in the 
cross-bridge. Each of the "ATP" states has two plots. One includes the 
chemical energy provided by ATP (solid line plots), the other does not (dotted 
line). 

153 



• 

Model 

7.4.1 Free energy profiles 

The free energy of attached cross-bridge states is distortion dependent due 

to the contribution of the energy required to extend or compress the elastic 

component of the cross-bridge (Hill, 1974). The relationship of this "mechanical" 

free energy with distortion is described in Figure 7.6. Note that the free energy 

contribution of the chemical status of the cross-bridge is not included in this 

diagram. The stiffness of all attached states is assumed to be 2.0pNnm-1
. 

The distortion value at which the force exerted by the cross-bridge is zero 

depends on whether the state is considered to be a 900 or a 450 state. The states 

preceding the work stroke are 90 0 states (AM.ADP.Pi and AM"".ADP.Pi). Because 

these states exert zero force at a distortion of 7.5nm, their free energy minimum 

is at this distortion value. In this way cross-bridges are more likely to bind in this 

region of distortion. All other attached states are 450 states, with zero force at 

Onm distortion . 

The free energy of each biochemical state in the model was based on the 

values used by Pate and Cooke (1989). The values used are described below in 

units of RTwhere K is the cross-bridge stiffness (2.0pNnm-1
) and x is the cross-

bridge distortion. These values are plotted against distortion in Figure 7.7. 

Attached: GAM.ATP(X) = .5 + K~ 

GAM.ADP.Pi(X) = -4 + K(x -7.5)2 

GAM*.ADP.Pi(X) = -5 + K(x -7.5)2 

GAM.ADP(X) = EAM.ADP.Pi(X -7.5) + Loge(0.00019 "" [Pi]) 

GAM(X) = EAM.ADP(X) + Loge(4000 "" [ADP]) 

Detached: = -12.6 

=0 

= -2.3 

=5 

= -10.48 

ATP hydrolysis: LlGATP = 25 

The ligand concentrations used in the model are 1 mM Pi, 30~M ADP and 

5mM Mg2
+ ATP. 
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Some states are included that were not present in the Pate and Cooke 

model. The detached states M, M*.ADP.Pi and M.ADP are included in the model 

because maintaining symmetry in the model simplifies the programming. These 

states were given relatively high free energy values to ensure that they were very 

rarely occupied. The free energy values of these states was set to ten more than 
the value of the equivalent attached state. 

7.4.2 Rate constant values 

The relationship between the forward and backward rate constants (R) 

between states a and b must satisfy the following at all distortions (x), where E is 

the free energy (Hill, 1974): 

Rab(x) (Ea(X) - Eb(X)] =exp . 
Rba(x) RT 

The following description of the rate constants starts from the working stroke 

rates and continues around the cycle. Generally distortion dependencies where 

they occur were kept as simple as possible. 
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constant 

(s·') 
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o 5 1 0 Distortio~ (nm) 
Figure 7.8: Plots of the rate constants and the steady· state populations of the 

AM*.ADP.Pi (90°) state and the AM.ADP (45°) state. 80t~ the. rate constants 
and the cross-bridge populations are plotted on the same distortion scales. 
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Figure 7.9: The rate constants (S-1) defined in the model. (a) For each 
forwards/backwards reaction pair, one rate constant is defined initially (bold), 
the reverse rate constant (italics) is calculated given the defined rate constant 
and the free energy change of the reaction. This calculation is made for all 
distortion values. (Abbreviations "dd" distortion dependent, "vs" very slow). 
(b) The distortion dependency of all reactions. For each biochemical state the 
rate constants for the three possible step directions are plotted against 
distortion. Each state has a rate constant for attachment or detachment 
(green), a step left (red) and a step right (blue). In each plot, the step direction 
is indicated by a small arrow. 
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7.4,2.1 Work stroke AM*.ADP.Pi (90°) <=? AM.ADP (450) 

Huxley and Simmons (1971) proposed that the rapid tension recovery 

following a step is due to a redistribution of cross-bridges amongst the cross­

bridge states of the working stroke. In this model the work stroke is a single step 

between the AM*.ADP.Pi and the AM.ADP states. 

The measured rate constant for the rapid recovery phase is the sum of 

these two rate constants. So that the model reproduces the relationship between 

this rate constant and step size the rate constant for 45° to 90° was made 

distortion independent at 200s·1
. This rate constant dominates the experimentally 

determined rate constant (r2) after rapid stretch (200 to 300s-1 Huxley and 

Simmons, 1971). Experimentally this rate constant does start to increase again 

with larger steps, though this is probably due to cross-bridges being pulled off 

(Chapter 6). 

Once this is defined, the forward working stroke (90° to 45°) is calculated 

automatically according to the free energy difference at all distortions. Since the 

parabolic free energy profiles of the two states have minima at different distortion 
values (x=O for 45° and x=7.5nm for 90°), the resulting forward working stroke 

rate constant is steeply distortion dependent, being extremely fast at negative 

distortions. These rate constants are plotted in detail in Figure 7.8, together with 

the steady state distortion distributions of the cross-bridge populations of the 

AM*.ADP.Pi (90°) state and the AM.ADP (45°) state. 

7.4.2.2 ADP on/off rate constants 

After a step release, cross-bridges in the AM.ADP.Pi (90°) state move 

quickly into the 45° state. Cross bridges with negative distortions (Le. negative 

force) must be lost quickly, by completing the hydrolysis route (Huxley, 1957). 

Therefore I chose a steep distortion dependency of the ADP off rate. This ADP off 

rate also determines the steady state ATPase of the muscle. If this distortion 

dependency were too steep, cross-bridges would rarely complete the hydrolysis 

cycle at steady state, resulting in a very low steady state ATPase. 

The ADP off rate constant is defined as follows: 

k ADP off == exp( In( 0.5) - 1.5( x - 7.5) 

Using this formula to it is simple to define the rate constant value at the 

distortion of 7.5nm (0.5s·1 used here) and also the gradient (when plotted 

logarithmically, see Figure 7.9) of the distortion dependency of the rate constant 

(value of 1.5). 
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In a single step working stroke model such as this one, it is important that a 

reaction step with this kind of distortion dependency immediately follows the first 

45° state. Firstly, at steady state, the populations of the AM*.ADP.Pi and AM.ADP 

states should remain high in order to produce a phase 2 on both stretches and 

releases. To achieve this the ADP off rate constant should be slow relative to the 

reverse work stroke at the distortion values of the steady state AM.ADP 

population (see Figure 7.8). Secondly, on releases, cross-bridges with negative 

distortions in the AM.ADP state must be detached quickly. Only with a very steep 

rate constant-distortion relationship for the ADP release step can these two 

criteria be satisfied. 

The energy drop of 2.12RTfor ADP release (at 30~M ADP) makes the 

reverse step (ADP on) rate constant slower by a factor of 8.33 at all distortions. 

7.4.2.3 AttachmenUdetachment rate constants 

F or all attachment/detachment rate constant pairs, the attachment rate is 

defined first. The detachment curves are determined by the software given the 

attachment rate constant and free energy profiles. 

All attachment rate constants are defined with a Gaussian distortion 

dependency, with the maximum attachment rate at the distortion with zero force 

(free energy minimum). The equation used is the following, 

The Gaussian mean (Jlx) is Onm for 45° states and 7.5nm for 90° states. The 

standard deviation (O"x)of all attachment profiles is 1.6nm. 

The kmax is the maximum attachment rate at the centre of the Gaussian 

distribution. The maximum attachment rate constants used in the model are 

10s-1 for M, 10s-1 for M*.ADP.Pi and 10s-1 for M.ADP. 

The two significantly populated detached states M.ATP and M.ADP.Pi are 

both given maximum attachment rate constants of 1 05S-1, to give a rapid 

attachmenUdetachment equilibrium (Stein et ai, 1979; Brenner et al,1986). 

7.4.2.4 Detached M.ATP <=> M.ADP.Pi 

The two significantly populated detached states, M.ATP and M.ADP. Pi, 

were given the free energy values as those used by Pate and Cooke, 1989. The 

free energy difference of 2.3RT between these two states results in a factor of ten 

difference between the forward and backward rate constants. This forces 900/0 of 

relaxed cross bridges into the M.ADP.Pi where they can attach quickly if in the 

158 



• 

Model . 
attachment distortion range. The hydrolysis rate constant is set to 100s·1 

resulting in a 10s·1 reverse step. ' 

7.4.2.5 AM.ADP.Pi ~ AM*.ADP.Pi 

Experimental evidence suggests that there is a rapid equilibrium (Brenner et 
ai, 1986) between M.ADP.Pi and AM.ADP.Pi. This is incorporated into the model. 

If the attached state in this rapid equilibrium steps directly into the work 

stroke, this introduces a problem. After a step stretch cross-bridges with high 

distortions (i.e. those that were already in this state before the stretch) will very 

quickly detach due to the rapid attachmenUdetachment equilibrium and their 

energetically unfavourable distortions. Experimental evidence suggests that there 

is little change in stiffness at the end of phase 2 compared to steady state (Ford, 

Huxley and Simmons, 1977). 

Also if these two rapid equilibria share a common attached state, the 

AM.ADP. Pi state, the redevelopment of tension following release (phase 4) would 

be extremely rapid. Incidentally this provides a simple way to reproduce the 

staircase results of Lombardi (1992), but would result in the loss of phases 3 and 

4 from the resulting transients. 

For these reasons an isomerisation state was added to the model moving 

the work stroke step away from the rapid equilibrium attachment/detachment 

step. Relatively slow rate constants are given to this step providing a mechanism 

to produce phases 3 and 4 following a step stretch in the model tension 

transients. 

The rate constant for the forward isomerisation step is 40s·
1

, giving a 

reverse value of 14s·1. 

7.4.3 Cross-bridge distortion distribution 

The distribution of cross-bridge distortions in the model is uniform by 

default. The total number of cross-bridges is an integer multiple of total number of 

distortion values so that there is an equal number of cross-bridges at each 

distortion. No filament overlap considerations are made in this model. 

A special case is the Wray model distribution. Here a non-uniform 

distribution of distortions is created, providing a way to simulate the match­

mismatch model. 
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7.4.4 ATPase 

The model ATPase is measured by counting the total number of cross­

bridges stepping from AM and M states to a the AM.ATP and M.ATP states. 

Cross-bridges performing the opposite step are subtracted from this total. In this 

way the model ATPase reflects the rate of loss of ATP from solution. This total 

ATP count is accumulated and plotted every 5ms (or every iteration if this is 

longer). This maximum plot frequency is set due to noise in the plot when higher 

plot rates are used. The value of ATPase shown (S-1) is corrected for the total 
number of cross-bridges in the model. 

7.5 Model output 

All the simulation results shown here were produced using the computer 

model with a total of 16281 cross-bridges. Although the capability to alter the 

ligand concentrations has been included in the code, these parameters were not 

changed. Instead the results shown here describe simulations of length change 

experiments that can be performed on muscle. 

7.5.1 Model T1-T2 curves 

Since the model is based on a single step work stroke transition one of the 

most fundamental requirements is that the model can reproduce the phase 2 

properties of striated muscle. This should include not only the T1-T2 relationship 

but also the change in the rate constant of phase 2 with step size. 

Three different model T1-T2 curves are plotted in Figure 7.1 Ob. These 

curves were produced by loading the tension transients produced by the model 

(Figure 7.1 Oa) into the muscle program where the tension values at the ends of 

phases 1 and 2 could be measured accurately. 

As modelled using the equations of Huxley and Simmons (1971) in Chapter 

6, the plot here shows the T1-T2 curves resulting from using different values for 

the working stroke (h values used were 6nm, 7.5nm and 9nm). The cross-bridge 

stiffness used in each of these simulations was 2.0pNnm-1
. It can be seen that the 

stochastic model is able to reproduce the change in the gradient of the T 2 curve 

as it crosses the vertical axis. As the size of the work stroke increases the T 2 

curve gradient becomes negative, just as predicted by the Huxley-Simmons 

equations. 
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Figure 7.10: Some tension transients and the T1-T2 curves from model 
simulations (a) Some example model output traces. These transients also 
demonstrate that the rate constants for all three phases (r2, r3 and r 4) become 
faster with decreasing step size. (b) The model is able to reproduce the T1-T2 
curves observed in rabbit and insect fibrillar flight muscle. The T1-T2 curves are 
plotted for three different values for the work-stroke (h). These plots show that 
the gradient of the T 2 curve at the vertical axis becomes negative as the work­
stroke is increased as predicted by the mathematical modelling of Huxley and 
Simmons (1971). The change in work-stroke also alters the "symmetry" of the 
T2 curve. 
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Figure 7.11: A model run simulating the four tension phases resulting from a step 
release of vertebrate skeletal muscle. The tension trace (lower) is model output 
generated by applying a 4nm release. Zero tension is indicated by the dotted 
line. The number and distribution of cross-bridges in each state is shown for 
several time points in a series of small plots. Each state is represented by a 
colour as described in the colour key. 
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Figure 7.12: The amplitudes and rate constants of phases 2, 3 and 4 of the 
vertebrate skeletal muscle model at different step sizes. The values were 
obtained by fitting three summed exponentials to the model output using the 
nonlinear least squares procedure in the muscle program. In the step range 
-2.5nm to +2.5nm, the amplitude of phase 4 was too small to fit a curve 
accurately. In this range only two exponentials (phases 2 and 3) were fitted. 
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Of the 16281 cross-brid . th . ' 
. ges In e model approximately 3000 occupy the two 

working stroke states at steady state. However the actual population of each of 

the two states at steady state was dependent on the value used for the work­

stroke. With a working stroke of 7.5nm the steady state populations are 

approximately 1390 in the AM.ADP.Pi (90 0
) state and 1740 in the AM.ADP (45 0 ) 

state. Being not far from equally populated this results in a simulation T2 curve 

that is quite "symmetrical". A work stroke of 6nm results in steady state 

populations of 615 cross-bridges in the 90 0 state and 2840 in the 45 0 state. The 

low number of cross-bridges in the 90 0 state results in low amplitude phase 2 on 

release, so that the release T2 curve remains close to the T1 curve. Conversely 

the 9nm work-stroke simulation has 2050 cross-bridges in the 900 state and 895 

cross-bridges in the 45 0 degree state, resulting in a large amplitude phase 2 on 

step releases and small amplitude following a stretch. 

7.5.2 Step length changes 

The model accurately reproduces all of the tension transients observed 

when a step length change is applied to striated muscle (both stretch and 

release). A detailed description of the changes in the populations of all the states 

in the model following a step release is shown in Figure 7.11. 

Before the step release was applied, the model was allowed to reach steady 

state by letting it run for one second. The steady state cross-bridge distribution is 

shown in the "pre-step" distribution. At steady state there are approximately equal 

numbers of cross-bridges in the AM*.ADP.Pi and the AM.ADP states. At all times 

during the sequence the majority of cross-bridges remain in the detached 

M.ADP.Pi state since they are at distortions where attachmenf is energetically 

unfavourable. 

At the instance of release (O~s) the whole distribution is shifted to the left 

(4nm release). The cross-bridges in the AM*.ADP. Pi 90 0 state are now at 

distortion values where the transition to the AM.ADP 45 0 state is very rapid, 

resulting in a rapid phase 2 (see the 5~s distribution). 

The excess of cross-bridges in the M.ADP state at unfavourable distortions 

(less than 5nm) move out at a rate limited by the ADP off rate constant. This 

process gives rise to the phase 3 on release (2.5ms to 10ms). Tension returns to 

the pre-step value with new cross-bridges attaching and occupying the 90
0 

state 

(phase 4, 10ms to 150ms). On release steps, the rate constant of phase 4 is 

determined by the rate constant for the step AM.ADP.Pi to AM*.ADP.Pi. 

A series of steps were given at 0.5nm intervals from -6.5nm to +8nm. Each 

step started from steady state and the resulting transients were recorded for 0.55. 
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These transients were loaded into the muscle program where three exponential 

functions were fitted to phases 2, 3 and 4 in exactly the same way as is done with 

experimental tension traces. The relationship of the fitted exponential amplitudes 

and the rate constants are shown in Figure 7.12. The same tension transients 

were used to create the T1-T2 curves in Figure 7.1 Ob, some of the tension 

transients are shown in Figure 7.1 Oa. 

On a step stretch the phases 3 and4 are a result of different processes than 

those on step release. After a stretch, cross-bridges from the AM.ADP 45° state 

build up in the AM*.ADP.Pi 900state (phase 2). Newly attaching cross-bridges 

occupy the now energetically favourable but poorly populated distortions of the 

AM*.ADP. Pi state (from 4nm to a maximum of 12nm, depending on the size of the 

imposed stretch). This process gives rise to phase 3 on stretch, and the rate 

constant is determined by that of the step AM.ADP.Pi to AM*.ADP.Pi. This is the 

same rate constant that determines the observed rate constant for phase 4 on 

step releases. Finally phase 4 on stretch is the result of cross-bridges at 

unfavourably high distortions in the AM*.ADP. Pi 90° state (mostly originally from 

the AM.ADP 45° state) going through the AM*.ADP.Pi to AM.ADP.Pi 

isomerisation and detaching. 

7.5.3 Force-velocity 

The force-velocity relationship plotted in Figure 7.13 was generated by 

applying series on constant velocity releases in the model program. Tension was 

measured using the muscle program. The slopes were generated by applying a 

0.1 nm step release with each iteration (the smallest possible perturbation in the 

model). Different velocities were generated by altering the iteration duration. 

7.5.4 Lombardi Staircase Experiment 

A staircase of step releases were applied to the model to compare the 

output with the results of Lombardi et al (1992). Each step in the sequence was 

4nm is size and 8ms in duration. 
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step applied was 3nm. 
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7.5.5 Stretch activation 

Two methods were used to model the characteristics of the stretch 

activation observed in activated insect fibrillar flight muscle. Both methods result 

in an increase in the amplitude of phase 3 on stretch. Also both methods result in 

a maintained increase in steady state tension following the stretch. 

7.5.5.1 Wray distribution model 

The first mechanism was based on the model of stretch activation proposed 

by Wray (1979b). In this model the matched periodicities observed on the thick 

and thin filaments is simulated by using a non-uniform distribution of cross-bridge 

distortions (see Figure 7.15). Cross-bridges are arranged such that the majority 

occupy distortion values where attachment and force generation are energetically 
unfavourable. 

Stretching the muscle shifts most cross-bridges into distortions where 

attachment and force generation can occur. This causes a large increase in the 

amplitude of phase 3. Little or no phase 4 is observed. 

7.5.5.2 Strain dependent model 

In the second model of stretch activation a uniform distribution of cross­

bridges are used. In this model, stretching the muscle reduces the minimum free 

energy level of the attached states relative to the detached states. The shape of 

the free energy profiles do not change. The free energy of all distortions of all 

attached states reduces by 1 RT for each nanometre of stretch applied. 

An example stretch is shown in Figure 7.16. Before the stretch was applied, 

the muscle strain was set to -3nm and the model given time to reach a steady 

state. At this steady state the free energy of all attached states was 3RT higher 

than when no strain is applied. On applying the 3nm step all free energy profiles 

return to their original values. 

In this strain dependent model, rate constants are also redefined based on 

the new free energy values. Note however that the pre-defined rate constant in 

each rate constant pair (bold values in Figure 7.9a) remains unchanged, but the 

reverse rate constant is recalculated based on the new free energy value. For 

this reason, since the attachment rates are predefined, the detachment rates are 

the only rate constants to change with strain. All other rate constants in the model 

remain unchanged. 
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7.6 Discussion 

This model is able to reproduce the characteristics of the four phases 

observed in tension transients in both step stretch and release experiments on 

activated striated muscle. 

Although all states in the model are described biochemically, it is quite likely 

that the biochemical identities of some states in the model are not accurate. 

Clearly for the model to reproduce realistic tension transients, the mechanical 

characteristics of each state and the rate constants between them are the 

important factors, rather than the biochemistry of each state. This is particularly 

true here because the main focus of this study has been the accurate 

reproduction of tension transients, rather than the sensitivity to changes in the 

various ligand concentrations. 

7.6.1 Huxley and Simmons (1971) characteristics 

In this model, one of the fundamental assumptions made is that the rapid 

recovery of tension following step length changes (phase 2) is due to a 

redistribution of cross-bridges between two attached states (Huxley and 

Simmons, 1971). The step between these two states is the force generating step. 

Since this is the force generating step, it is important that the model is able 

to match well the characteristics of phase 2. The model reproduces T1-T2 that are 

very similar to those seen in muscle (Figure 7.10). 

In the right conditions the model T2 curve can have a gradient of zero where 

it crosses the vertical axis (as seen in vertebrate skeletal muscle) or can 

demonstrate the negative gradient observed in the insect fibrillar muscle when 

the relaxed component of the tension response is subtracted out (Chapter 6, 

Figure 6.1 d). An increase in the size of the work stroke results in this negative 

gradient as was also demonstrated by the Huxley-Simmons equations in 

Chapter 6. 

One prediction that the Huxley-Simmons equations could not make is that 

the "symmetry" of the T 2 curve could be altered by changing the work stroke. The 

vertical distance of the T2 curve from the T1 curve is the same as the amplitude of 

phase 2. This amplitude is a function of the shapes and relative positions of the 

free energy parabolas of the two work stroke states and also the population sizes 

of the two work stroke states. The definition of the Huxley-Simmons equations 

was such that the two states were exactly equally populated at to· No such 

restriction is placed on this stochastic model, with the result that the actual steady 
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state populations are dependent on the relative positions of the two free energy 
parabolas. 

The insect fibrillar flight muscle T2 curve plotted in Figure 6.1 d not only has 

a negative gradient across the vertical axis but is also demonstrates a larger 

amplitude of phase 2 on release in relative to stretch. The interpretation of the 

shape of this T 2 curve based on the Huxley-Simmons equations was that insect 

muscle must have a larger amplitude working stroke to account for the negative 

gradient where the curve crosses the vertical axis. Unfortunately this 

mathematical modelling could not produce an accurate description of the T2 curve 

since the Huxley-Simmons equations are limited to the assumption of equal 

populations of the 900 and 45 0 states, forcing symmetry in the amplitude of phase 

2 on stretches and releases. In the stochastic model, it is the 9nm work-stroke T2 

curve that best matches that seen in insect flight muscle. This T 2 curve 

reproduces not only the negative gradient of the T 2 at the vertical axis but also 

the asymmetry of the T 2 curve . 

However, it is important to note that the shape of the T 2 curve is determined 

not only by the relative displacement of the free energy parabolas along the 

distortion axis, as defined by the amplitude of the work-stroke. The shape of the 

parabolas, determined by cross-bridge stiffness, and the vertical position of the 

curves, determined by the chemical free energy of each state, also playa role. 

For this reason an increase in the cross-bridge stiffness could also explain the 

negative T2 gradient observed in the insect flight muscle, though it is not clear 

whether this would also result in the asymmetry of the populations of the two 

states. 

The apparent difference in T1 gradient is due to the fact that all the plots are 

normal ised to their own To value. If plotted relative to the same To, all the T 1 

curves have the same gradient. The To of the curve where h=6nm, is 

approximately twice that of the curve where h=9nm. Although the numbers of 

attached cross-bridges remains roughly the same, in the 6nm case most cross­

bridges are in the 45 0 state whereas in the 9nm simulation most attached cross-

bridges occupy the lower force producing 90
0 

state. 

Secondly it is important to note that these T1 curves describe the tension 

value 1 DOns after the length change. For this reason the change in tension 

contributed by the weak binding AM.ADP. Pi will cause an increase in the T1 

gradient that is impossible to measure in real fibres. 
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The mechanical rate constant for phase 2 (fit using a least squares 

procedure) is plotted against the imposed step 'size in Figure 7.12b. The shape of 

this curve is similar to that observed in single fibre experiments (Huxley and 

Simmons, 1971; Chapter 6, Figure 6.4). 

The rate constant is the sum of the forward and backward rate constants of 

the work stroke step. The range of distortions where the model work stroke rate 

constants influence that of phase 2 depends on both the size of the imposed step 

and its direction. For a step stretch the mechanical rate constant observed for 

phase 2 is due to the value of the reverse work stroke rate constant (AM.ADP 45 0 

state to AM*.ADP.Pi 90 0 state) in the region x~7.5nm. This is the range in which 

45 0 cross-bridges will move into the 90 0 state, causing the observed tension drop. 

On releases the forward work stroke rate constant at distortion values x<7.5nm 

will influence the mechanically observed rate constant. 

Like muscle tension transients, the model phase 2 is best fit using more 

than one exponential function. This is because the cross-bridges are 

redistributing among the 45 0 and 90 0 states at very different rates depending on 

their distortion. 

Since in muscle r2 changes little with increasing size of step stretch, the 

reverse work stroke rate constant was made independent of distortion. This 

results in a very highly distortion dependent forward work stroke rate constant. 

Given the definitions of the free energy profiles used in the model, it is only 

with this type of relationship that it is possible to reproduce the r2-step size 

characteristics observed in muscle. Similar rate constants are defined by 

Eisenberg et al (1980), their model also reproduces the r2-step size 

characteristics. The complex work stroke rate constants of Pate and 

Cooke (1989) will not reproduce this relationship. Their rate constants would 

produce an r2 that is fast on releases, faster still on stretch with the slowest 

transients close to the zero step size axis. 

7.6.2 Step length changes 

When defining the rate constants in the model, considerable attention was 

paid to those which would give rise to realistic phases 3 and 4 in the tension 

transients. That the model can reproduce these phases can be seen in the 

tension transients shown in Figure 7.1 Oa, and in more detail for a single step 

release in Figure 7.11. 
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Fallowing the 4nm step release, almost all cross-bridges that were in the 

AM*.ADP.Pi state move into the AM.ADP 4So state (SOOj.Js in Figure 7.11), 

producing the phase 2. In order to produce a phase 3 and 4 at this stage, these 

force producing cross-bridges must detach faster than new cross-bridges can 

bind and restore the original tension. This is accomplished by making the rate 

constant for the isomerisation step AM.ADP. Pi to AM*.ADP. Pi slow relative to the 

ADP off rate constant of the low distortion AM.ADP cross-bridges. 

Following a stretch, 45° cross-bridges are forced into 90° state. Due to the 

high distortion of these cross-bridges, the mechanism for producing phases 3 and 

4 cannot be the same as that for release. For the cross-bridges at the high 

distortions in the 90° state, detachment must occur via the reverse isomerisation 

step (AM*.ADP. Pi to AM.ADP. Pi), since the hydrolysis path is energetically 

unfavourable. Since the forward isomerisation step is more rapid, new cross­

bridges bind and create force (phase 3) more quickly than these high distortion 

90° cross-bridges detach (phase 4) . 

Since these phases are due to different processes on stretch and release 

the rate constants are sensitive to step direction Figure 7.12. The relationship of 

these rate constants with step size is very similar to that observed in insect 

fibrillar flight muscle (see Chapter 6, Figures 6.4,6.8 & 6.9) and has also been 

demonstrated in synchronous insect flight muscle (see Chapter 6, Figure 6.3). 

Note that in the latter figure stretches up to 3.So/0 in amplitude are included. 

Assuming a sarcomere length of 2.6j.Jm, the model step range of -6.5nm to +8nm 

is equivalent to the range -O.s% to +0.6% in this figure. 

The observed rate constant for phase 4 on release and phase 3 on stretch 

are both determined by the same rate constant in the model, namely the 

isomerisation step AM.ADP.Pi to AM*.ADP.Pi. The observed rate constants for 

phase 3 on stretch and phase 4 on release are of similar value in insect fibrillar 

flight muscle (see Chapter 6, Figures 6.3, 6.8 & 6.9). 

7.6.3 Muscle shortening and ATPase 

The model shows the right characteristic shape of force-velocity curve, 

including the reduced gradient close to zero velocity. Two rate constants in the 

system affect the value of Vmax. Firstly the ADP off rate constant defines how 

quickly low distortion (low or negative force producing cross-bridges) can detach 

via the hydrolysis route. Secondly the forward isomerisation rate constant affects 

the rate at which the higher force producing cross-bridge distortions can be 

occupied by newly attached cross-bridges. 
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Th~e model ATPase is measured by counting the tota'i number of cross­

bridges stepping from AM and M states to a the AM.ATP and M.ATP states. 

Cross-bridges performing the opposite step are subtracted from this total. In this 

way the model ATPase reflects the rate of loss of ATP from solution. The total 

ATP count is accumulated and plotted every 5ms (or every iteration if this is 

longer). This maximum plot frequency is set due to noise in the plot when higher 

plot rates are used. The value of ATPase shown (S·1) is corrected for the total 

number of cross-bridges in the model. 

The majority of cross-bridges in the model are in the M.ADP.Pi state, since 

they are at distortions where attachment is unfavourable. This is a model 

limitation due to the fact that only one actin site is considered for each cross­

bridge. This is probably unrealistic, since in muscle a cross-bridge may have a 

choice of more than one actin site, possibly on more than one actin filament. For 

this reason the model isometric ATPase has a lower value than that of muscle 

(0.8s·1
) . 

At the onset of shortening at V max (from steady state), there is a burst of high 

ATPase peaking at approximately 30 times the steady state value. This reflects 

the rapid loss of cross-bridges from the force producing states as they detach via 

the hydrolysis route. Once tension has reached its new value, the ATPase 

remains considerably high, a factor of 6 greater than the steady state value. Such 

a large increase in ATPase is not observed in muscle (Kushmerick and Davies, 

1969). This larger increase in ATPase on shortening is a feature of all models in 

which the cross-bridge must pass through the AM then AM.ATP states before 

detaching during shortening. 

The staircase of 4nm step releases of 8ms duration shown in Figure 7.14, 

shows that the model is not capable of reproducing the tension transients 

observed by Lombardi et al (1992). If the model is to reproduce these transients, 

the rate constant for the isomerisation step AM.ADP. Pi to AM*.ADP. Pi must be 

made considerably faster in the region of distortions 7nm < x < 11 nm. This would 

allow new cross-bridges to attach quickly and go through the work stroke step. 

It has been demonstrated by Chen and Brenner (1993) that the model of 

Eisenberg et al (1980) is capable or reproducing the Lombardi staircase result 

without modification to any of the rate constants. This is because in this model 

cross-bridge attachment is very rapid (the rate constant UNI in the range 
60A < x < 100A), and cross-bridges attach directly into the 90° state of the work 

stroke. 
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If this modification were made to the model described here, the Lombardi 

result could be repeated. However this would be at the expense of the accurate 

reproduction of phases 3 and 4 in the model. Note that the Eisenberg model will 

not produce a phase 3 on stretch or release. Also the Eisenberg model phase 4 

will be unrealistically fast on both step stretches and releases. 

If a slow step occurs between cross-bridge attachment and the work stroke 

step in muscle, how could the Lombardi result come about? One possible 

mechanism could be that cross-bridges in the 45° state of the working stroke can 

"slip" to a more energetically favourable actin site during rapid shortening 

(Brenner, 1990). Such a step would by-pass ATP hydrolysis, which could also 

reduce the model's high ATPase observed during shortening. 

7.6.4 Stretch activation 

The model is able to reproduce the high amplitude and maintained rise of 

tension in phase 3 observed in insect fibrillar flight muscle in two ways. Firstly 

using a non-uniform distortion distribution (Wray, 1979b) and secondly by linking 

the free energy of all attached states to the value of the muscle strain. 

In both models the starting tension is much lower than the isometric tension 

observed in the vertebrate skeletal muscle model (the default mode of operation 

of the model). In the Wray model this is achieved by starting with the majority of 

cross-bridges at distortions where attachment is unlikely. In the strain dependent 

model, the model is at a steady state at -3nm strain before the step is applied. 

Due to the method of activation of this model, a starting strain of -3nm results in 

the free energy of all attached states (at all distortions) being O.3RT higher 

relative to the default model values. The applied 3nm step restores the free 

energy of all attached states to the default model values, so the delayed tension 

rise is similar to the initial activation observed in the skeletal muscle model. 

The non-uniform distortion distribution in the Wray model restricts the range 

over which delayed tension rises can be observed. When a second 6nm stretch 

is applied following the delayed tension rise seen in Figure 7.15, a large 

amplitude phase 2 followed by a phase 4 takes the tension level close to that 

observed before the first stretch. No phase 3 is present in this second step due to 

the rate at which cross-bridges are detaching. The relaxed stiffness in insect 

fibrillar flight muscle (not incorporated into the model) would not be sufficient to 

mask out periodic changes steady state tension that would be observed if this 

type of distortion distribution were present in insect fibrillar flight muscle. 

In typical insect fibrillar flight muscle fibre preparations a staircase of four or 

five 1010 stretches will each result in a delayed tension rise. Of the two stretch 
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Neither of the models produce a phase 4 like that seen in insect fibrillar 

flight muscle. Following a stretch in low phosphate conditions (such as in this 

model) insect fibrillar flight muscle shows a large amplitude phase 3 and a phase 

4 that can be more than half the amplitude of the phase 3. 

The phase 4 following a stretch observed in the model tension records 

shown in Figure 7.10 is a consequence of high distortion cross-bridges in the 

AM*.ADP. Pi 90
0 

state detaching after slowly going through the reverse 

isomerisation step to AM.ADP.Pi. In these records the phase 4 is caused by 

cross-bridges that were attached before the length change occurs. Because only 

a very small proportion of cross-bridges are attached before stretch in both 

stretch activation mechanisms modelled here, any phase 4 observed will be very 

small. In the transients shown here phase 4 is not detectable in the noise of the 
tension signal. 

This suggests that in muscle the phase 4 following stretch activation is due 

to a process that is affecting the larger population of newly attached cross­

bridges, rather than a redistribution of the those attached before the stretch. A 

very likely candidate for this is a build up of Pi in the fibre. The increase in 

ATPase due to the stretch activation causes Pi to be produced faster than it can 

diffuse out of the filament lattice. 

7.6.5 Future work 

Some parameters in the model need to be adjusted. Firstly the energy 

provided by ATP is currently too high. Secondly, and more importantly the cross­

bridge stiffness and work-stroke values in the model are higher than the values 

suggested by measurements made using optical tweezers. These experiments 

suggest a value of cross-bridge stiffness not less than 0.38pN/nm (Molloy et ai, 

1995), although a stiffness value greater than 1 pN/nm seems unlikely. Also the 

cross-bridge work stroke may be as low as 5nm. 

The model results described here have concentrated on the tension 

response to mechanical length changes. There has been no attempt to model the 

effects of changing any of the ligand concentrations, even though the program 

already contains the code to modify the energy profiles of each state depending 

on the concentrations of ATP, ADP and Pi. Modelling the tension transients due 

to the rapid release of caged compounds (ATP and Pi) would allow the chemical 

state of the mechanical states in the system to be refined further. 
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The effect of Pi on the mechanical characteristics of insect fibrillar flight 

muscle described in chapter 6 poses a particularly interesting problem which 

could be investigated using this model. That increasing Pi seems to reduce the 

number of attached cross-bridges while not affecting r2 suggests that the Pi 

release step occurs before force generation. This affect could be reproduced in 

the model by replacing the isomerisation step of newly attached cross-bridges 

with the Pi release step, and making the force producing step an isomerisation 

event. This would reproduce changes in the stretch values of ~ and r4 that occur 

with increasing Pi- However if Pi release occurred early in the attachment 

pathway some of the Pi effects would not be reproduced. The increase in stretch 

r3 with increasing Pi would not occur. Also, the release kinetics of phases 3 and 4 

would not be sensitive to Pi concentration, though in insect flight muscle they are 

clearly altered by Pi. The effects of Pi on the mechanical characteristics of insect 

fibrillar flight muscle are clearly complex. It may be the case that a model 

structure such as this is not able to reproduce all of the effects of Pi, without 

taking into account factors such as ligand diffusion rates into and out of the fibre. 
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