Surface Interaction:
Separating Direct Manipulation Interfaces
from their Applications

Roger Kenton Took

Submitted for the degree of Doctor of Philosophy

University of York
Department of Computer Science

July 1990

Table of Contents

Acknowledgementscocevuerrrerereeene ceresssssassussnrsnnasnase SR cresernnes 1
Declaration......................... cesesenseresessanasnanane teecesessessreressnnarasenresesessssnsssasanans 2
ADSErACL.....cccueeeerreenenneosnnesannane cereeesreranes ceserseeensesssssesanaans veesrenereseececasassnene 3
1. Introduction........... corseseseresssnsane cerernrenee SO p—— 4
L1, The Needs Of the USET..........c.oeeoveeeeeeeeeeeeeeeeeee oo eee e eeeesesaeesannseanesenes 4

L1 1. PEIfOIIMNANCE ...t e senaene 5

1.2. The Needs of the Interface DeSigner.................o.oooeueueeecerrreeveserrseseiereeeeenns 6

L2 1, POWET ..ottt es et ee e enee s s e s nnsnassees 7

122, FIEEAOM ...covioeeeeee e 7

130 SEPATAtION ...t 8

L300, ADSIACHON ..o e e e e e 8

1320 BANAING ..o e e ens e 10

1.4. Existing User INterface SySIEMScoooouuiviveiireeereeeiecins s sssceseees 12

1.5, Premises and ISSUES...........c..ooeeumieiie oo es s e s e eeeseans 13
LS. 1. PreSENUAIONouviviieieeeeeceie e eereeesaesaeaneenenee e sanensens 14

1.5.2. Terms: Object and AppliCationccocereuerveeresiimisnssssnenenees 16

1.5.3. FOrmal DESIZN........c.oovmevieieeeeeeeeeeee e e ensassanenenn e 16

1.6. OVerview Of the TRESISo.ooviieeeeee oo eeee e 17

L6.1. THE TRESIS...ccooiiiiiiiii it e sa e 17

1.6.2. StUCIUTE Of the TRESISo.eeveeeeeeeeeeeeeeeeeee e e ereee e esenren e ens 19

2. Architectures for Separationceceeereeveescssesessesassessssssesesns 20
2.1, SEPATALION ..ottt e et 20
2.1.1. Motivation for SEParation...............c.euvrreeeceruecsesnsreerssessesssiesennns 21

2.1.2. FIOW Of CONUTOL........oieeeeeoeeeeeeeeeeeeeeeeee e e s se st e et 25

2.2, Input FramewOrKsc.ooviuiviminiiriisietcenece s 27
2.2.1. Input Types and Modes..........cccooeeviiminieieiiiiiinnien e 27

2.2.2. Input ROULINGc.oovviniiee ettt e 28

2.3. Interaction and SEMANTCSu.oeeviurieiiiiiri e e e eeete e ee e 35
2.3.1. FEedbaCK ..coviei i e 35

2.3.2, DITECIMESS . .vuvrereieierireteeie e ceerieeeseeetteeeessssansaeseessse s ssateeeseeeananneaenenaas 37

2.3.3. SemantiC Perspectives...........cocvviieeiieieieeeestie et ene e 38

2.4. Linguistic ATChItECIUIESc.coviuiiiiiiiiireiieecee e e 38
2.4.1. Dialogue ADSITACHONc..coovviiiieieirrereeceee s ceeessressaesseaesaee e s 39
2.4.2. Transition NEtWOTKS......cc.cceevuimiiernenieerenieersiiici i 39
2.4.3. GraIMATS.covvierierreerrieeirreesereeaesseseseessesessassssiaeesssssssesassssssesaneense 41
2.4.4. Problems of Dialogue AbSIraction............cccceeivvennennisinnnnnccnnnnn, 43

2.5. Aent ATChItECIUTES........cocmiitiiiteriteret et 48
2.6. Refinements of the Agent ATChitecture. ..o, 51
2.6.1. User Interface TOOLKILScccevervviriminirninnnrinienne e 51
2.6.2. DeviCe ADSITACHON.ccvvrireeeeeiiiiinieminie ettt e s 52
2.6.3. HOMOZENEILYeeieeeieeieiieieiinieir e snae et 52
2.6.4. LOZICAl DEVICESvovuvveinieriiiisesiisss et e 53
2.6.5. ODJECt-OMENTALIONeuveveriireiiisesiiseseesessren s 55
2.6.6. The Model-View Paradigm...........cccooreevevnncninnininnnices 59
2.6.7. Problems of Model-View Separation.......ocveiriinnieieniinn 66
2.6.8. Separation Problems in Agent ArChiteCturesocooeeenivnenennn: 67

2.7, CONCIUSIONS ...vevveerecriieeeteetienteieetesessesseeees e sabe s besr s st s st 68
3. A Formal Perspective on Dialogue Separation sassssesnessnsace 70
I B £ 1 - To2 ¢ Lo « VU OO OO OO PO UO PP OO U PO IP LR PSSR LI LE 70
3L 1 SHALE woeeriiee ittt 71
3.1.2. FUNCHONALILY .oocviiniieeiieeiie v 72
3.1.3. ODJECT ..ottt 74
314, RANEE .oieeee ettt et st e e e e enas s e 74
3.1.5. BERAVIOUT ..ottt e s sa s sr e s 75
3.1.6. DHAIOGUEcvviimiiiiieiiiir ittt ereee e sesre e e sabe s st 76

3.2. Relation between Functionality and Behaviour ... 78
3.3. Taking account Of the USETcccoieueiieiereiee et 79
3.3.1. Implementing Trace Constraints Separately........ccooovvcinirsenees 82

3.4. Limitations on SEPArationccccviviniiviiimiineniesssesnss s 83
3.4.1. Classes of Dialogue Separationccceeenminenies 84

3.5. Input and OULPUL......coovteeiiiiieciieiteire et i et n s s n s 85
3.5.1. COMMUNICALION......ccevierueerriiiriecrresrreaisesoreessraeassnessamssnnsss s et sssesss 90

3.6. CONCIUSIONScvverreeieeerieieetee et et eeie s e eneesaesee e es s e sane st 93
4. Surface INteractioncceeiecrsecceecsessecrssorsanssaneses vessssssnssssssassssenase 96
4.1. Abstract Models of INteraction...............ocooiviiiiiiiiimiincnesin s 97
4.2, The MeQIUM......coiiiiiiiiiiicceiee et ae e cveearae e sranas e e s s s ne e s s s et 99
Q2.1 MOACL...ooo ettt e e 100
4.2.2. PreSCNIALION.......ccevieiviieeeiiieiiiieeeeenreaearrenresenaseaessasnasraasassessssiess 100
4.2.3. Abstracting the Meditimcccoeeniiiiiiirmienessensrssesinosssscse e 101
4.2.4. Separating the Meditmcooviimmiiinieennisennss e 103
4.2.5. Directness in the Mediumccccoeeriren et 105
4.2.6. CONSISIENCYovrveeveeeeerreemcessesmrestasss st 106
4.2.7. The Medium: SUMMATYccoimmmeimiii 107

4.3, Surface INTETACHIONoeeiiuieereneeiirineere et 107
4.3.1, PIEmMUSE....uoceeieiieeeeeeeieeeetresresssas s srsssbasssss s et saa s st 107
4.3.2. ThE SUITACE ..ottt 108
4.3.3. REfINEMENLSovoeveeiiectiie et 109

4.4. The UMA ATCRItECIUTEccoviuiiriiiiiiririnii et 111

4.4.1. THE MEAIUIMI..oueoioeiiii ettt eeeaesesssesansssssnnssasssssssssassnsanesesesasens 113

4.4.2. The UsSEr AZENL..cc.ccooiiiiiiieiurirreeereeenneiees e srrracsre e snaesesase s e s 114
4.4.3. The APPlICAtIONcceiviiiiiiiiiiciiiiicie et 117
4.4.4. The SUMTACEcueveecreeierieeeiee et e e eas st st 118
4.4.5. An Observation of Surface Interactioncccoeveimniinniiiinea, 119

4.5. A Simple SUIaCecooimimiiiiei s 121
4.5.1. The Concrete Meditumcocceuiivivriiinenimiienee st 122
4.5.2. The Concrete APPHCAION........cccueriiriieieierinitecie e 123
4.5.3. The Concrete User AZENt......ccuureeeieinieerinenreiieiiniissneienes 124
4.5.4. The Communication StrUCTUTEovvrerrmrrrireennicici e 127

4.6. Implementation ISSUEScocovirmriramirererseessmincse s 128
4.6.1. PEIfOTINANCE ...coeoovvvcreiiveenrereeniesirsaaesseestasestetasieaanes et 128
4.6.2. TIMNG...cvovieerrerrerecrteiereriieeitras st ss st sttt 129
4.6.3. Binding User Agent and Mediumcooiieeiicinimieee. 131
4.6.4. Multiple APPLICALONScocoovivimimeeniiininirssnss e 131
4.6.5. FAIITIESS ceeeeeeeerereerrereeeieereesesvenaseessosassessasstesss sasssatastesaaibcannesessnsaees 132
4.6.6. ODJECT SIUCKUTES.....coouiivirrrireiiiseiniasess s 132
B.6.7. PICKINE ..oooveereereeiceiiiinie e 133
4.6.8. Stylistic Bindingc.cccoviimiiiiinn 133
4.6.9. BUffEriNg ...covieuereiieiceeeniiieiiecie s 135
4.6.10. ChanDeElS.....cooiivviieeiiee e ereeeereseesesssaess s st 136
4.6.11. SYNCRIONISALIONc.c.oiviiiuiiiirinieieeccneines s e 137
4.6.12. ECROINE «..eovviieiniie it svera s e s 138
4.6.13. Pruning State........cccccevrveriiiimiinmnneesnssscses st s 139
4.6.14. Error Handlingccccooooiiiiiiiiiiic e 140
4.6.15. Logical EVENLSc.ococvviiiiiiieiic s 141

4.7, CONCIISIONSeveneerineeniieiitiiie ettt eecmsae e esese s st 141
5. Surface Models....cccceecerccerecneccncans veenenssssesesssasseasssssnses 143
5.0.1. Procedural and Declarative Models...........cooeiieeiiiininnenninnnes 143
S5.0.2. Marks and Mediac.coocvviiiiiiiininiiniiree e 144

5.1. Window Managementccceoviiiiiiiiinieniiirnrersrensseessessasas s sss e 145
S5.1.1, The MOl et 147
5.1.2. Features: Icons and Menus..........cc.ccoeuiiimmnicennminrmmssnnsnsesesese 152
5.1.3. The Window INtErfaceccocoeierueimiiimiinneniiniansms e 153
5.1.4. Window System ATChItECIUTEcccoviivrmemerismnmmnnnmaeneeeeenes 154

5.2, GIAPRICS wveevenieiecieciee e s 158
5.2.1. IMAGING ..ot 158
5.2.2. MOAEHING .c.eeiiiieiiiieiiie et 164
5.2.3. Procedural Modelling.......cocooiiiiniiniiiienciiennnninssassns e 165
5.2.4. Declarative Modellingccccccciviimmnimenmnrsenne s 166
5.2, 5, SHTUCIUTC ..o e e seeesasaaeeeen e snaesan s s e s s s s s e s s s n e 171
5.2.6. VIBWING ..ottt s e 177

5.3, TOX e ietterteeeetecietreeetr et et esaae st ebscas e a e s ST 182
5.3.1. CONIENL .ot irteenee e seeeebesree e s seas e e s s n st s 182

5.3.2. LOZICAl SIUCLUTE........covouemiremnriiereese sttt 183
5.3.3. PIOPETHESucovivneceeterererie s cvencramnse s s 184
534, EQIUNE oot r e 184

5.4, DOCUIMIEILS. .cveuvreeuerrerirrereseieeeesaresereseeresas i es s s s S SaE Sssbs 186
5.4.1. FOIMAING........ooveviereniieeeriiiiit e et 187
5.4.2. LAYOUL ..veteetirecncres et st s 188

5.4.3. Integrating Format and Layoutcccoomiimiminn 190

5.5, CONCIUSIONS -.voveeevaerereerreereerieeenererenstraeseseassresrnserseasssasssasbesiassarssonniabnsenasanas 194
6. A Formal Model for the Surface Mediumccocuveescernnsseneninrsecsanes 196
6.1, TREFOAUCHION .ooveevireerreie et et bbb 196
6.2. The Presenter MOAE!occcruririiiiriniii i 199
6.2.1. The SPECIfICAtIONcoormirivireiriiieis s 199

6.3. Objects, Structures, and PTOPETHESccoovueviiiimmiimsiimissessn e 200
6.3.1. Fundamental Objects: REGIONS. ...t 200
6.3.2. Fundamental REPresentation.couuuisiesusssisssinsssssssssssse e 200
6.3.3. Fundamental Structure: Ordered Treeccoevnniniiienciseens 201
6.3.4. BasiC REIAHOMScocevevemeiicamrerrsieseiasisss st 204
6.3.5. Fundamental Properties ... 204
6.3.6. CONLENL..vnreereneeeeeeeeseseeasesessertossisiasasassesssassssss s st s bs s st 206
6.3.7. GEOMELIC PrOPEITIES ..vcveeveveririnniensmissssenssssssasn st 208
6.3.8. ViISHASAtION «.overeeviverireiesereereenenesessssesmsses st s 211
6.3.9. BERAVIOUT ...vveeeveeveieeeeresemseessmseesssasienssassnassss s an st s cn st 213
6.3.10. The COore MOELoouiurmeniimininmsenriensssmasesnsirsssssse e 214

6.4, SUMFACE PreSENIAtIONvveevevereeriereerrersererainnssesassa st st s s 214
6.4.1. Projecting the TIEE........cvvrveverniiiiinnisinss s 214
6.4.2. TMAZINE ..cooveeririeiriiiereisrie s s 216
6.4.3. Geometric TranSfOrMAtiONScoovuerersinsmmissmsmmmmmnsneenssseees 216
6.4.4. CHPPING w.ocvovoniariiiie st 219
6.4.5. Combining Transformation and CLPPINgGccoeoewmeresesseeees 221
6.4.6. Propagation of AUTIDULESccoviiemimmmimirisimnmmsies e 222
6.4.7. Visualisation AtTIDULESc..ceoeriveeriiimieniieesssnrnrmmessssnnsesensarsnssees 225
6.4.8. PreSenlAIION ..cevieieeeenriiieeeeeeeeevrerasusaresesacesaaese s sesssaseasssssmsientss 225

6.5. Manipulating the MOdel.......c..c.coiiriniiincniiiniimieins e 228
6.5.1. TNIALISALON «eerereeeeeerervreeiiineeeeeessesenneeaesssassssssansasesnsssmssensssssees 228
6.5.2. Operations on the Medium........cccvniiinen e 228
6.5.3. Picking and SeleCNg..........cccoovirmiiiniirs s 241]
6.5.4. The USET AEN ettt 245

6.6, CONCIUSIONS ..oeeveeeeeeeeereiieeeereevterieeeseestenrren s sensasssas e snse s s s s s s e e e 249
7. PreSENLET ceceeeererrersreressreessnsossansessesssssseassarssssassssssessanass reeeseaessssssensass 250
T.1. BIHEE OUIHNE..corueevieivieeriesreeeeereerntsnneesresassniessasssesarssssssnasnnesesst st 251
7 2. DDAFEEIEIICES o ovveeeeeeeeeeriesieeereeeseeseesssaaeenbeesse e e s e shn s s e s n ST 252
7.2.1. CHPPING coecmmeriieneiereisie et s T 252
7.2.2. Application Confirmation OF INPUL ..o 254

T3 AQQIIONS 1oveeee e reeeeeee e eeireeeeeassnnsaaeessramaben e saessaseesesasnn s T as ST 254
7.3.0. BN ..o s 254
7.3.2. LANKINE . o.ovvoeeieiiere ettt e s 257
7.3 3, PErSISICIICE . uueeeieeeseeeeeereeessrsareeasesras e s as s s et s TS 260
7.3.4. HATACOPYoveoverveeeeiereveesiisinsssesrsssss s s e 261

7.4, REFINEIMENIS. covnvieveeieeiiiieierienesreesecnesrasssssssassnssasnaessan sttt 261
741, Presentation.......ccocovveeriieenrorereiisere st 261
742, SEIECHOM...ccoeveuerieviriieieieeeeeercersaee st 262
7.4.3. HighIIghtingcovovcuriirmnrineessrissmeis s e 264
7.4.4. Grouping and SCAlNGcoovvmmimmimini s 264

7.5. Deficiencies............ ST U U PO PR RO PRSPPI IR PP 265
7.5.1. Text and GraphiCsccccovuerieriremrmmrsmssri e 265

-y -

7.5.2. INPUE MASKS..........ooiiiiiniiiii ettt 265

7.5.3. The USEr AENt...ociiioiniiiiiiiiictieeeree ettt 266

7.5.4. Client-Server WOorking............c..cocoeveisueienesinineresssonsessisesenescssnnens 266

7.5.5. SunView Dependence.............c..cccoooivemmeceieeeeeeee e, 266

7.5.6. Memory Limitationsccooooieiiiieiececieecee et 267

7.5.7. Manipulation EffiCiencycccoveeivnenenienecccreiveneenecre e 268

7.5.8. CONSITAINESocvveeiirierieiireiee ettt ece e e e etae et ee e seestenesaeeeensesreneas 269

7.5.9. Higher CONSIIUCESccccccrmiiiiiireeiie ettt niae s 269

T0. ISSUES coureeeirieteiiiteeiiiee et teeereteeeetrne e e sttt eeseeeesseeteesanateserbaneesmnaesserneen srnneeans 270
7.6.1. EMPLY LEAVES. ...c.cccviviririeieriiiniecniicniie et 270

T.6.2. ACCESS 10 TEXE....viviiiiiiiiinieeieerieeeereeee e e eesereeeraetaeessresesnsnnsenree s 271

7.6.3. ReCtanguIAritycccoovveceviiereevieiie i siesnneer e sres e 271

7.6.4. DIMENSIONALILYc.ccveiveenririeriieereie ettt sas s einns 272

7. 7. CONCIUSIONS «..e.vvteneeeeietire et eesteeasseresnssesbarseesasessbossaesnnestesssaersesasesssassssssanns 273

8. Future Work: An Alternative Model for the Surface.................... 274
8.1. An Informal Description of the Model............ccovmrieeinniccninniinins 276
8.1.1. FrAMING...ceoiiioiiiieriiieiectenie vttt sr e s s 279

8.1.2. EMDBEdding......cociiiiiiiiiiiiiiiincirienieicciinr i 280

8.1.3. Multiple INhEritance........cc.ccviveiimireireee i, 281

B.1.4, CONSITAINISooiiiieie i creeereereeseeecsee s sna e e sarsenasn e e, 284

B.L1.5. TADIES..cueeeeieciecrei ettt e e en et e s s e 285

B.2. CONCIUSIONSeeenreiiitineer ettt ev st eb e sessesasiesasessmest s ae e esabeneeneas 287

9. CONCIUSIONS....ccereercersaeesnerereresearesescsnesassosesse vraveres 289
9.1. The Thesis of Surface INtEractionccocoeviiieieicinire e 289
9.1.1. Surface MOEISocoviuiieieeri et 291

9.2. Contributions of the TRESIScocuivviiieeceirireeieeeeeceereeee e se i 291

9.3. Limits of Surface INtEraCtion...............covveieueivioveeierieireeeeeeienieseesssesseeeens 293

9.4, POSHIUAC ... et 204
Appendix I: Presenter Applications..........ccceeeeverecrneceseesessessessensssossenee 296

Appendix II: Generic FUNCHONScucereeerecnrssensesnessserssssssasasess 302

Appendix ITI: GIOSSArYccccvicsrcsenrsesneressansarsessansssssesees reesessssesarassasasses 303

References eesecensessasessanrsassrsssnnsrssrasanssesnnsssrsesses

Acknowledgements

My sincerest thanks must go to the many people who have supported and
helped this work. In particular, I owe a debt of gratitude to Anthony Hall, whose
enthusiasm provided the initial impetus. My thanks are also due to Professor
Michael Harrison for his patience and optimism; to my supervisor, Dr. Ian Benest,
for keeping me on a long lead; to Sylvia Holmes, for her many suggestions which
were incorporated in Presenter; and to Greg Abowd, for many fruitful discussions,

comments, and corrections on the more mathematical side of this work (although of

course any errors that remain are mine).

My final and warmest thanks must go to Kate and Douglas, my wife and son,
who have put up with my absences and abstractions over this Thesis for as long as
they have both known me. They have given me nothing but love and encouragement.

I hope I can make it up to them.

Declaration

Minor parts of this Thesis, in a very modified form, have already appeared in
[Took90a] and [Took90b].

Presenter was originally specified and written within the Aspect project - the
code therefore belongs to System Designers PLC. The formal specification of Presen-
ter which appears in [ASPECT87] is very different from that given here, which is an
idealisation based on several iterations of implementation and use. The notion of
Surface Interaction, and the UMA architecture, were developed later as a result of
research on this Thesis. Indeed Presenter does not conform to the UMA architecture

since it has no separable user agent.

#define he he or she
#define him him or her .
#define his his or hers

Abstract

To promote both quality and economy in the production of applications and their
interactive interfaces, it is desirable to delay their mutual binding. The later the bin-
ding, the more separable the interface from its application. An ideally separated
interface can factor tasks from a range of applications, can provide a level of indepen-

dence from hardware I/O devices, and can be responsive to end-user requirements.

Current interface systems base their separation on two different abstractions.
In linguistic architectures, for example User Interface Management Systems in the
Seeheim model, the dialogue or syntax of interaction is abstracted in a separate
notation. In agent architectures like Toolkits, interactive devices, at various levels of

complexity, are abstracted into a class or call hierarchy.

This Thesis identifies an essential feature of the popular notion of direct manip-
ulation: directness requires that the same object be used both for output and input.
In practice this compromises the separation of both dialogue and devices. In addi-
tion, dialogue cannot usefully be abstracted from its application functionality, while
device abstraction reduces the designer’s expressive control by binding presentation

style to application semantics.

This Thesis proposes an alternative separation, based on the abstraction of
the medium of interaction, together with a dedicated user agent which allows direct
manipulation of the medium. This interactive medium is called the surface. The The-
sis proposes two new models for the surface, the first of which has been
implemented as Presenter, the second of which is an ideal design permitting docu-

ment quality interfaces.

The major contribution of the Thesis is a precise specification of an architecture
(UMA), whereby a separated surface can preserve directness without binding in
application semantics, and at the same time an application can express its seman-
tics on the surface without needing to manage all the details of interaction. Thus
UMA partitions interaction into Surface Interaction, and deep interaction. Surface
Interaction factors a large portion of the task of maintaining a highly manipulable

interface, and brings the roles of user and application designer closer.
-3-

Chapter 1

Introduction

The medium is the message - Marshall McLuhan

The context of this Thesis is both the making and using of interactive computer
applications. The purpose of the Thesis is to advance a new architecture for the
structuring of applications and their user interfaces which reduces the cost of making
direct manipulation interfaces while providing for ease of use. This architecture is
based on the separation of a generic presentation model from applications. The
essence of the Thesis is that by giving this presentation model (the surface) its own
state, operations, and agent, it can be manipulated either by applications, or directly
by the end user. The surface can thus abstract common manipulative tasks from
applications, and also act as a medium of communication [Draper86] between appli-

cations and end users.

We explore the context of this architecture by examining first the needs of the

user and the needs of the interface designer.

1.1. The Needs of the User

The user is concerned primarily with the quality of the interface. This may
involve stylistic issues like ‘look and feel’, or the interface’s ability to prevent or
undo errors. At base, however, the quality of the interface must be judged on how
well it enables the user to perceive the current state of an application, and how well

it allows him to manipulate that state in order to attain some user-defined goal.

The interface is thus necessarily, in the general case, a two-way medium
between applications and users. However, an important criterion is the degree to

-4-

which the interface allows the same object to be used for both input and output. We

can call this criterion directness.

A glass teletype, for example, has low directness. Interaction is textual, and
references to previous output are symbolic rather than direct. The user might ask for
a directory listing, and then, if he wishes to delete a file in the list, must retype the
file name as a parameter to the appropriate command. In the worst case, when out-

put scrolls off the screen, the user must maintain the relevant state in his memory,

and make references from that.

A graphical mouse-driven interface, by contrast, has potentially high direct-
ness, since graphical objects persist and can be referenced geometrically by the
mouse. It is conventionally agreed that ‘direct manipulation’ [Shneiderman83, Shnei-
derman82, Hutchins86] enables higher quality interfaces. However, graphical

displays and pointing devices are a prerequisite, but not a guarantee of directness.

Directness itself does not ensure consistency between the state of the inter-
face and the state of the underlying application. The interface operations need to
form some ‘complementary algebra’ [Harrison90] to the operations possible on the
application state. It is precisely mismatches between operations in the interface, and
their denotation in the semantics of the application, which leads to poor interface
usability. It is an open question whether these algebras (i.e. the interface operations
and their semantic counterparts) can be specified independently. This Thesis
attempts to define precisely the bounds on interface independence, and the conse-

quent communication requirements between application and interface.

1.1.1. Performance

Human users may also have constraints on their performance which are not
taken into account in the functionality provided by the application. They may be
naive, colour-blind or otherwise disabled. They may have a limited short term memo-
ry, and go away for cups of tea. The hope is often voiced that these ‘human factors’
issues of aesthetics, ergonomics or cognitive psychology can be represented in the
interface. The problem of determining and formulating these human constraints is the
concern of research initiatives like user modelling [Young89, Kass88]. Accommodat-
ing such constraints has been a traditional goal for User Interface Management

Systems (UIMS) [Bennett87].

As well as disabilities, human users may also have skills which equally may
not be exploited by the application. They may be able to assimilate graphical infor-
mation rapidly. They may have good hand-eye coordination, and be used to handling
and manipulating physical objects. An interface system should present application
functionality in a way which maximises the use of these common human skills. Bai-
ley et al [Bailey88}, for example, quote a user productivity gain of 77% through re-

engineering of the user interface alone.

1.2. The Needs of the Interface Designer

In 1972, Meads [Meads72] criticised graphics software for being either too
complex for the occasional user or too inflexible for the sophisticated programmer.
Recently, Myers [Myers88b p.17] was still able to list ten problems with existing
user interface design tools, including the difficulty of coming to grips with new inter-

action languages or libraries consisting of hundreds of tools, and limitations in

functionality.

The interface designer may well consider a successful interface to be ‘saleable,
fabricable, and cost-effective’ [CohenB86]. That is, he may be concerned primarily
with the economy of the interface system. From the point of view of cost, the high
proportion of user interface code typically found in interactive graphical applications
(over 50% [Szekely88b]; 80% [Myers88b]) makes it a target for rationalisation.
Such a cost would not be tolerated, for example, in interfaces to hardware peripher-

als like disks.

Economy and quality in interface systems may conflict. The high cost of writing
interactive graphical software often results in interfaces restricted to ‘cheap’ static
panels of ‘clickable’ objects (buttons, menus, icons) which simply invoke application
functions. There may thus be as many levels of indirection between actions and
effects in a mouse-driven interface as there are in a command-line interface: there is

a loss of ‘engagement’ [Hutchins86] between the user and the objects he may be

directly interested in manipulating.

In this context, we consider the interface designer (who may of course also be

the application writer) to have two basic needs: power and freedom.

1.2.1. Power

Interface systems vary in their constructive power. An under-powered system
only provides low level primitives, such as RasterOps [Newman79] or BitBLT
[Goldberg83 p.333, Ingalls81]. Higher types of object must be constructed and main-

tained by the interface designer. At the extreme, an interface system which only

provided a
setpixel (position, colour)

operation on its medium could display any image, but at the expense of much itera-

tive coding on the part of the designer.

On the other hand, we may consider an interface system over-powered if the
complexity of the functionality it provides is as much a barrier to effective use as a
lack of functionality. The following diagram appears to represent a system that is

over-powered in this sense [Encarnacao79 p.89]:

input
simula-
tion
routines|

&
input
code
inter-
correlation preter
user coordinates to the data base
prewdo e recoras _—
58 fadmini -l records o rol
code (PPC?E = strator]
L L
device output device
:::: Bescript devices
PPC- ion state-
inter- PRC- tables tables
preter g
T refresh
display
pre-processoy PPC-
(Graphics » adming-
superviser) strator
"..r;. 4 4 I storage
-;»1 n- It \ tube device
buffered tion !zgf‘ —
input program output \' om
(e.9. simulati¢n kit
digitizef) 4 routines
1 plotter
transformatidns ’ Y
local processing device output
ability coordinates device

Concept for a device independent graphics system

1.2.2. Freedom

As well as considering the ease with which the interface designer can con-

struct the interface he wishes, we can also consider the possibility of realising his

-7-

design. That is, the medium may limit the scope of interface design, either by con-
straints in the presentation types (Cedar windows [Beach85], for example, cannot
be overlapped), or by withholding control over its generation (at the extreme, an
interface may be generated automatically from an abstract interaction specification

[Olsen83b, Scott88], or even, in theory, from a description of the task model

[Green87, Singh89].)

Such design constraints can be called sryle [Newman88)]. Viewed positively,
style can impose a pleasing consistency. As Kasik [Kasik89 p.60] says, "attractive
interfaces matter”. However, it is an open question whether consistency is worth
the loss of design freedom. Applications and user groups may wish to customise
their user interface to some house style [Marcus84], and HCI researchers may wish
to explore alternative styles. Since an interface medium which gives design freedom
may be constrained to produce a consistent style, but not vice versa, it is clear that
imposing consistency in the interface system is a less fruitful approach. It can also
be argued that the ergonomics and aesthetics of interface design have not yet been
so thoroughly researched that they can be standardised in a fixed ‘look and feel’.

[Took90b] explores these issues in more detail.

We go on to examine a basic mechanism for catering for the needs of both the

user and the interface designer: separation.

1.3. Separation

The provision of interface services for applications is conventionally justified in
terms of application/interface separation. This is a notoriously vague term (see

Chapter 2). We define it more precisely here in terms of abstraction and binding.

1.3.1. Abstraction

The conflict of economy and quality in user interface construction can best be
addressed (as in most fields) by abstracting common features and implementing
these separately. At a very idealistic level we can view the interface itself as an

abstract, which is applied to application functionality to produce a usable system:

interface (application) = system

This formulation suggests that it should be possible to apply the same inter-
face to a number of different applications, or apply a number of different interfaces to

the same application. We might even be able to make the interface generic over a

range of styles (or users) [Wiecha89]:
interface [style] (application) = system

A major concern of this Thesis is to examine the limitations of performing this

abstraction. Abstraction has two main benefits: factoring and independence.

Factoring
If a number of applications duplicate the same operations, it makes sense to
abstract these into a single separate resource. We can thus factor the work done,

and reduce any unnecessary effort. As a rough illustration:

clients
‘.‘.. v~ ' ”'.

Q. . ' "o

resource

The cost of factoring is the difficulty of designing the data types and operations
in the factored resource. On the one hand there is no point in factoring functionality
that is rarely used. On the other hand it is equally pointless to factor functionality
that is so frequently used that the bandwidth of the communication medium becomes
a bottleneck. In general, as Stroustrup notes [Stroustrup88], finding ‘commonality’

in a set of objects and designing appropriate operations is far from trivial.

Independence
Not everything has been standardised. There exist many different types of

input and output devices, communication protocols, text and graphics libraries, lan-
guages, and so on. If an application is not to be completely rewritten for each
different software or hardware environment, then there must exist a representation

at some level between the hardware and the application code which is common over

.9.

a range of environments. This representation is then a resource which provides a
level of independence. This hides the diversity of the underlying implementations,
and anything written to the representation is easily ported between these (so long
as appropriate back ends already exist). Standard graphics languages such as GKS
[ISO85, Enderle84] or PHIGS [ISO87b, Brown85] are predicated upon such inde-

pendence. As a rough illustration:

' resource

l‘ ' ‘ .\

” !
s l | K
implementations
The user interface is an ideal site for a level of independence. That is, the inter-
face can provide a common representation over a range of input and output devices
and software. This commonality might be realised on a set of normalised devices, or

at higher levels, for example on logical devices, interactive techniques, or even dia-

logue.

At the highest level, it is even possible to conceive of the user as requiring
independence from applications (applications are simply implementations of the
user’s tasks). In this view, the interface should allow the user to impose his own
concerns on the representations of the applications. For example, he should be able

to cut and paste representations from one application to another.

1.3.2. Binding

Once identifiers declared in one component are bound to values (constants,
variables, operations, functions, procedures) defined and implemented in another,
then communication can take place. Whereas independence allows a conceptual dis-
tinction between abstractions and their implementations, binding allows a temporal
distinction between communication mechanisms. Early or static binding permits com-
munication via a shared environment. Late or dynamic binding permits

=10 -

communication via a distributable protocol. We can thus use binding in a relative
sense, to compare the separations achievable between two components. If we delay

the binding of the interface abstraction to the application, we gain in separation.

We can distinguish four common classes of separation, in order of increasing

lateness of binding. In each case we can say what tasks can be factored over the
binding:

+ Application and interface are designed separately, but coded as one process.

In this case only the design can be factored.

» Application-specific and interface-specific code are held in separate classes
or libraries and bound together at compile time. This in addition factors the pro-

gramming cost of the interface. Toolkits typically have this class of separation.

o The formalisms (languages or primitives) for interfaces and applications are
distinct. The interface language is interpreted at run time, but cannot be
changed. If the communication between application and interface is by mes-
sages rather than subroutine calls, then the interface and application may run
on separate devices. The interface, for example, may run locally on the work-
station for optimal performance. This in addition factors the running cost of the

interface. UIMS ideally have this class of separation.

» The interface to an application can be changed while it is running, without the
application being aware. This is the principle behind Coutaz’ Dialogue Socket
[Coutaz86]. This (in theory) factors the user’s control over the style of interac-

tion, and makes the application and the interface mutually independent.

As the last point illustrates, incorporating user concerns dynamically into the
interface ideally requires maximum separation. In interactive systems, user input is
necessarily bound late to application functionality. Otherwise the application would
not be responsive and would need to be run in batch mode. However, in order to pro-
vide dynamically adaprive interfaces [Kantorowitz89, Alty84, Benyon84], it is
necessary to delay the binding of (the stylistic component of) the interface to the
application at least until run time. On the other hand, this reduces the designer’s

expressive control [Bos83 p.89] over the interface.

Representations which are maximally late bound may in addition be persistent,
in that their lifetimes are not tied to the lifetime of the objects which create or use

211 -

them. Interface objects which are persistent may be created prior to the applications

which use them, and may be saved and recreated between application sessions, and

even passed as messages between different applications.

Separation thus necessarily involves abstraction (if one component were not

an abstraction of some functionality in another, there would be no need, or basis, for

communication). In addition, abstractions may be more or less separated from their

use, depending on their binding time.

1.4. Existing User Interface Systems

ding:

Existing interface services can be categorised in terms of abstraction and bin-

» Graphics languages abstract the production of output. Typically the primitive
operations are bound early to the client application, but their implementation

may be delayed so that equivalent images can be produced on a range of work-

stations.

* Input frameworks abstract the routing and first level parsing of user input.
Applications are usually written on a particular framework, and so are bound
early to this. The implementation of input frameworks, for example in the X
Intrinsics layer [MIT88], may be late bound and therefore compatible with a

range of workstations.

« UIMSs abstract the interactive dialogue from applications, that is, the
sequencing of input and output events. Ideally the dialogue is bound late to the
application functionality, so that the application can be isolated from interface
issues. The UIMS itself can be seen as the implementation of the dialogue,
and ideally this is bound at run time (the UIMS interprets the dialogue) so that
the dialogue can be presented in a variety of styles on a variety of machines,

and possibly to a variety of users. This ideal, as we show, is very limited in

practice.

o Agents in general abstract components of application functionality into
devices. They are necessarily bound early to the application task, since they

encapsulate it.

-12 -

+ logical device agents abstract sub-dialogues from applications, typically to
provide input functions such as option choice, strings, or location. These may
be bound early to the application, but their implementation in terms of particu-

lar styles or hard devices may be bound late.

« Toolkit agents typically provide logical devices, except that these are often

bound early to a particular stylistic ‘look and feel’.

1.5. Premises and Issues

We should only want to abstract some component of human-computer interac-
tion into a separated interface if we can thereby serve a wide range of potential
users and applications. Thus in this Thesis we are concerned not with the perfor-
mance of particular interfaces to particular applications, but with providing generic
interface support. Such a system should be free both of user and application bias but

capable of incorporating both.

The major premise for the Thesis is that, in order to promote both quality and
economy, the interface system should be maximally separate, that is, maximally
abstracted and late bound. This is in contrast to library and toolkit paradigms, which
concentrate on just abstraction of functionality. We make the assumption that quali-
ty is best promoted through economy, since it is thus cheaper to iterate interface

design.

Whereas user interface services have typically concentrated on separating
either the form of interaction (i.e. dialogue) or the devices of interaction, this Thesis

concentrates instead on separating the medium (i.e. content) of interaction.

The medium itself could be any domain which can be directly addressed by the
user. It could, for example, be a domain of sounds or speech, or text, or limited graph-
ics such as windows, or a more general graphical domain. This Thesis, however, is
concerned with visual, as opposed to audio, tactile, or other media. This includes
text and graphics. Interactive visual devices are considered at a certain level of

abstraction, but in implementation a bitmapped screen for output and a mouse and

keyboard for input is assumed.

The Thesis is not concerned with judging visual interfaces against human fac-

tors criteria. We simply aim to provide the basic constructs whereby user interfaces

213 -

can be built by the designer and modified by the user. The implicit standpoint
throughout the work is that usability is best promoted by flexibility at the designer

level rather than by a fixed stylistic ‘look and feel’.

A core problem is to provide constructs for the medium which have objectivity
but not style. It is considered that the best way to design or discover these is to
examine the basic features of the medium itself, rather than any use to which it might
be put. Text, for example, is considered independently of its use as a medium for

applications like mail systems, databases, or document processors.

1.5.1. Presentation

The visual domain subsumes what is commonly called presentation, that is,
the display of screen objects. This is obviously an essential part of any visual user
interface. Many designs for user interface systems, however, simply assume the
existence of a presentation layer [Alexander87 p.22, Olsen86 p.322]. Green
[Green86) and Hudson [Hudson87 p.120] point out that the main emphasis of UIMS
research has been on the dialogue rather than the presentation component. Olsen

claims that presentation has been ‘sorely neglected’ [Olsen87a p.135], and that

all ... UIMS that we are aware of ... [do] not account for the pre-
sentation of application data. This most important aspect of a
user-interface implementation has not been adequately
addressed by current research. [Olsen86 p.322]

He himself addresses these problems in the GRINS UIMS [Olsen85b].

However, there is no clear agreement as to what the presentation level should
comprise. Green [Green85b p.13] sees it as a fairly static layer concerned with out-
put types (he extends this to sound and the control of mechanical movement) and
input types (again extended to include video, voice, and gestural input). Olsen
[Olsen85a p.126] and Dance et al [Dance87 p.99], on the other hand, impute more
‘input/output linkage’ [Olsen85b] to the presentation level, in the form of ‘logical
devices’ or ‘interaction techniques’. That is, a certain amount of the echoing
between input and output devices is allowed to migrate from the dialogue level to
the presentation level. Still another interpretation is given by Szekely [Szekely87,
Szekely88b] and Moreland [Moreland87] who view presentation as output only. In

Szekely’s view, presentation is a display mapping from underlying application

.14 -

objects, whilst input is a separate mapping from physical devices to application oper-

ations.

The issues are thus whether input is to be included in the presentation domain,
and if it is, the amount of control autonomy that is to be given to the presentation

level in order to ‘link’ input and output prior to application involvement.

Presentation Constructs

Constructs for presentation have traditionally been addressed by standard
graphics packages, like GKS [ISO85] and PHIGS [ISO87b]. Rosenthal
[Rosenthal83 p.38] calls this ‘mainstream’ graphics. However, presentation on
bitmapped workstations has essentially pursued a separate development path. To a
large extent this is due to the unsuitability of the traditional vector-oriented
paradigm to the mechanics and capabilities of raster displays, and the poor input
facilities of the standard graphics packages. It may also have something to do with
the task domains: standard graphics has typically been used in an industrial environ-
ment where a model of a complex object like an automotive part or an oil refinery is
constructed in virtual space, and then is viewed from a variety of angles. This may
be called scenic modelling. The parts of the object have no denotation other than
their visual qualities (they stand for no other information or functionality). Opera-
tions (pan, zoom, rotate) are global to the space, rather than being targeted on

particular parts of the object.

Bitmapped workstations, on the other hand, have their main application in
office environments [Newman83, Newman87] as a medium for what may be called
schematic modelling. In a schematic model the information content of the interface is
paramount, while accuracy of geometry or rendition are secondary issues. Such sys-
tems include software engineering environments [Benest85, Took86b], database
systems, spreadsheets, and document processing applications. In these applications
displayed entities denote information or functionality, rather than represent real
world objects. These reasons may account for the lack, in bitmapped environments,
of a global graphical model for all objects of visual interaction. In these environ-
ments, only low-level operations like RasterOp, and various windowing protocols,

such as X [Scheifler86), have reached even the status of de facto standards.

A similar situation is developing in the domain of textual presentation. Emerg-
ing international document standards like ODA [ISO87a] and SGML [ISO86b)

-15 -

address issues of device independence and document structuring and transmission,
but take little account of the suitability of their constructs for inferactive document
preparation. Independently of, and in contrast with, this standardisation effort, the
workstation community is experimenting with hypertext [Conklin87], and active
[Zellweger88, Allen 81 p.74], interactive [Amon88], multimedia [Crowley87,

Angell87] and hypermedia [Meyrowitz86] documents.

The models proposed in this Thesis attempt an integration of document and
application concerns by tightly coupling textual and graphical presentation. At the
same time they address issues currently underdeveloped in bitmapped environ-
ments: structuring in text and modelling in graphics. Finally, they attempt to provide
a broader covering of the domain of presentation than that possible with the custom-

ary opaque, rectangular windows. Considerations include transparency, hierarchical

structuring, tabular layout, and persistent graphical links.

1.5.2. Terms: Object and Application

A central concept in this Thesis is the notion of an Object. By Object we mean
an abstract data type [Guttag78] which encapsulates not only operations but also
state. The identity of an Object persists, but its state may be modified by its opera-
tions. We do not assume class inheritance or any other feature of object-oriented
programming in this definition, although clearly these may create Objects. Since the
word object is common and useful, when we mean it specifically in the sense above,

we use the capitalised form.

Throughout the Thesis we use the term application to refer simply to some
domain-specific functionality, and do not imply thereby any particular computational
model like procedural, declarative or object-oriented, unless otherwise stated. How-
ever, we do assume that an application may have control, that is, we do not

necessarily think of an application as simply a collection of semantic functions to be

called by the interface.

1.5.3. Formal Design

A final premise of the Thesis is that a well-powered interface system can best
be achieved via a formal design. The hope is that such a design elucidates the a pri-
ori features of the objects of interest themselves, uninfluenced by implementation
strategies. If unavoidable conflicts occur (the screen resolution might not be quite up

-16 -

to displaying mathematical points, for example!) then a formal design at least forms
a basis upon which sensible trade-off decisions can be made. The model is
expressed here in the formal notation Z [Spivey89], developed at the Programming

Research Group in Oxford, and its communication architecture in CSP [Hoare85].

1.6. Overview of the Thesis

1.6.1. The Thesis

The Thesis is that by separating the medium of human-computer communica-
tion we can provide for both economy and quality in user interface design. The
abstraction is supported by a model (i.e. state and operations) by which the seman-
tics of the medium is defined. The late binding of the medium and applications is
supported by an architecture (UMA) which defines how the user, the medium, and

the application communicate.
The medium’s model

* has encapsulated state and operations on the state. Applications can invoke
the operations and address objects in the state, which have persistent identity.

* has a presentation function by which the objects in the state can be presented
on a display. The presentation function can be inverted to allow users to pick
surface objects by addressing the display directly with a pointing device.

The UMA architecture incorporates a user agent, dedicated to the medium,
which translates all user input either to operations on the medium, or to messages
to the application. Together, the medium and the user agent form an inferactive
medium, here called the surface. The term surface is used deliberately to suggest a

more specialised domain than interface in general.

The major benefit of a surface in the UMA architecture is that, because it is
abstract and late-bound, its operations may also be invoked independently of the
application. Thus application objects can be manipulated both by the application, and
directly by the user. This allows the surface to factor manipulations which are irrele-

vant to application semantics, but which may be significant for the user.

-17 -

In practice this economises on the cost of creating application interfaces, as
well as allowing the user greater power over the appearance of the surface. It also
allows surface objects to be interactively constructed prior to being bound to applica-
tion semantics. Thus the roles of user and interface designer are closer. This
application-independent manipulation is here called Surface Interaction. Surface
Interaction allows surface objects to have behaviour without functionality. This is

the core of the Thesis.

Very schematically, we think in this Thesis in terms of the following separation:

human user
!
. Y \
Display — Surface
surface Interaction
separation TR U
Deep
Interaction

application }

Thus the surface has some depth, that is, it has its own semantics. However,
this is separated from application semantics. At the boundary between the surface
and the human user there is some display, which we usually think of as a screen (we
also assume appropriate input devices). Surface Interaction takes place simply
between the user and the surface, while deep interaction takes place between the

user and the application.

-18 -

1.6.2. Structure of the Thesis
The Thesis is in two broad parts, the first of which (Chapters 2-4) presents
Surface Interaction and its UMA architecture, and the second of which (Chapters 5-

8) presents two alternative models for the surface.

Chapter 2 categorises existing architectures which provide separation of appli-
cation and interface, in particular into what it calls linguistic architectures and agent
architectures. Linguistic architectures abstract the syntax of interaction, while agent

architectures fragment application functionality into devices.

Chapter 3 examines critically and formally the premises for dialogue abstrac-

tion, and accounts for the lack of success of systems which employ this as the basis

for separation.

Chapter 4 is the main formulation of the Thesis. It establishes the existence of
the surface and the possibility of Surface Interaction, and defines formally, in CSP, a
minimal architecture (UMA) by which Surface Interaction can occur. It also examines

implementation issues arising from the architecture.

Chapter 5 describes existing models for the surface and its medium, in particu-

lar window and graphics systems.

Chapter 6 gives a formal model, in Z, of the surface which has been implement-

ed as Presenter.

Chapter 7 gives an account of the implementation of Presenter, and how this

differs from the formal model. Lessons are drawn from its difficulties and deficiencies.

Chapter 8 describes informally an alternative, more ambitious architecture

which forms the basis of future work.

Chapter 9 concludes.

-19-

Chapter 2

Architectures for Separation

2.1. Separation

The extreme positions on the separation of interface from application are repre-
sented by Coutaz and Sibent respectively. Coutaz ‘accepts the principle of

separation’ [Coutaz85 p.21]. Separation brings the following benefits (see

[Szekely87 p.235)):

¢ User interface and applications can evolve independently. It may be possible
to program, analyse or prototype each in isolation from the other, and using dif-

ferent formalisms.

* One interface can be made common to a range of applications, and thus inter-
face consistency can be enforced, and code and development effort shared.
Generic commands, for example to invoke abort, undo, or help operations, and
status or error reporting, can be provided [Lieberman85 p.182]. As well as
“such run-time support, a common interface could offer support for design, anal-
ysis, or evaluation of interfaces [Dance87 p.97]. Myers [Myers88b p.4] gives
a more detailed list of such facilities.

» A range of interfaces can be applied to the same application, so that user pref-
erence or designer experimentation can be catered for. In this way various

levels of independence can be built into the interface, from device independence

to style and dialogue independence.

Barth, for example, claims to ‘maintain a strong separation’ [Barth86 p.147]

between interface and application in GROW.
-20 -

At the other extreme is Sibert [Sibert86 p-261]:

We are convinced thar it is not possible to build systems
which handle semantic errors and feedback intelligently if we
maintain a strict separation between the lexicallsyntactic
domain in the UIMS on the one hand, and the semantic

domain of the application on the other.

See also [Sibert85 p.183]. This is supported by Green, who argues that if the
application can directly influence the user interface, then ‘the notion of a separate
user interface module breaks down’ [Green86 p.257]. Recent experience

[Manheimer89 p.131] underlines this.

Clearly there is no consensus on the possibility of separation. Even papers
that deal centrally with the topic [Hartson89] come to no firm conclusion. This chap-
ter examines different architectures for separation and their success, in particular
what we here call linguistic architectures and agent architectures. Some of the mate-
rial in this Chapter has also appeared in [Abowd89].

2.1.1. Motivation for Separation

Architectures providing separation originate in response to the problems of
coding an interactive system as a single process in a standard procedural language.
We illustrate these problems, and their various proposed solutions, with an example

due to Newman [Newman68]:

What is required is a draughting system which minimally allows the user to
draw arbitrary lines on the screen. The functionality is as follows: upon the first

27

mouse click (or push on the light pen [Benest79 p.99] in Newman’s paper) the sys-
tem goes into line drawing mode (in Newman’s paper it is only at this point that
cursor echoing begins). Once in line drawing mode the user can move the mouse cur-
sor around the screen until he decides on the starting point for the line, which he
signals with another mouse click. He can then continue to move the mouse, but now
a rubber line starting at the first point stretches to the cursor. Upon a third mouse
click this line is fixed in place, and the system goes back to its uncommitted state.

A procedural coding of this system is as follows (we assume an input event of
type button | point, where point is a pair of coordinates, and also primitives to draw

a line between two points and to clear the screen):

var start: point,;
repeat
repeat
read (event);
until event = button;
repeat
read (event);
if event # button then start := event,
until event = button;
repeat
read (event),
if event # button then
begin
clearscreen;
drawline (start, event);
end,
until event = button,
until false;

This approach is recommended by Jones [JonesDWS88] as ‘the best way " to
code a finite state machine, which indeed the draughting system is. Notice, however,

a number of deficiencies of this code from the point of view of abstracting its interac-

tive behaviour:

« The states of the system are only implicit in the organisation of the program.
A more complex FSM might result in a more deeply nested program structure

in which the states would be even less obvious.

« This is a concise representation only for FSMs in which the control flow is
well-structured. If arbitrary jumps are permitted in the FSM, for example to
.22 -

reach abort states, then much redundant code might result. This is because the
aborting code would have to be replicated in each block of the program in which

an abort could occur.

* Input consumption (read (event)) is scattered through the program. A change

to the event types might require many modifications to the code.

* Reads occur in places where only particular events are expected. If there
were two concurrent FSMs, such that their input could be arbitrarily inter-
leaved (for example, if there were a second mouse button which drew circles)
it would be impossible to code both FSMs together using this technique with-
out much redundant code. This is because, in general, the state space of two
concurrent FSMs is the product of the number of states in each, since for each

state in one machine there may occur an event moving the other machine into

any of its states.

* A simple modification to the FSM, for example the addition of a transition,

may require a radical restructuring of the code.

An alternative approach (‘the wrong way’, according to Jones) is to make the

states of the FSM explicit in the program:

state ;= initial;
while true do
begin

read (event);

case state of
initial: if event = button then state := startline;

startline: if event = button then state := endline;
else start := event;
endline: if event = button then siate = initial;

else begin
clearscreen;
drawline (start, event);
end;
end case;
end while;

Jones’ main criticism of this style of control structure is that it is in effect a
series of goto statements. Indeed the assignments to state could simply be replaced
by gotos to the appropriate section of code. However, systems may well be driven
by relatively unstructured FSMs which it is difficult to code any other way. For

223 -

example, although a system may have nested states, it may also, as noted above,
provide unstructured jumps to common facilities like help systems and abortion.
[Bohm66] demonstrates formally that while any program can be expressed without
conditional jumps, unstructured programs will require either explicit state variables

or repetitive coding.

This second style of control structure in fact resolves many of the problems of

the first:
« Its states are explicit.

« Its complexity is independent of the structuredness of the FSM.
« Input consumption takes place at one location.

+ So long as there is some method of despatching input to the appropriate case
statement, a concurrent FSM could be added such that the total number of

states would be simply the sum of the states of the two FSMs.
» Modifications to the FSM are easily incorporated in the code.
Nevertheless, this coding is not ideal. There are two remaining problems:

« All acceptable sequences of input are explicitly coded. If it is not important in
what order some inputs occur, so long as they all do occur, then nevertheless
each possible sequence would have to be coded. Thus, paradoxically, giving

the user more freedom to choose his style of interaction involves extra work for

the programmer.

o The programmer must construct the input despatching framework, in this
example the while or repear loops and the read primitive. This is clearly a

generic structure which could be provided as a service.

These problems form the fundamental motivation for all user interface manage-
ment systems and services. They illustrate how the primary concern with

abstracting interactive dialogue from application functionality has arisen.

We first examine various mechanisms for separation.

.24 -

2.1.2. Flow of Control

Separation of interface and application can be characterised simplistically by
their flow of control. Historically, the proposals for user interface systems have dif-
fered clearly in this respect. The programming language model above, in which the

user interface is coded as part of the application program, can be illustrated:

R
APPLICATION > INTERFACE
G—

This has been called the ‘internal control’ model [Thomas83 p.17] or
‘embedded control’ [Kamran83 p.59], or the ‘prompting’ model [Young88 p.371]. In
this model the interface modules are typically bound in at compile time from a library,
and it is difficult to separate interface services at run time. For example it is not pos-
sible to separate dialogue, simply because control resides in the application. In this
model also the application must have knowledge of, and thus be dependent upon, the
interface, since it calls on its functions. Lantz claims that most applications have

internal control [Lantz87a p.40].

The 1982 Seattle workshop which laid the foundations for UIMS development
proposed an alternative model in which control resides in the interface rather than
the application. This is called ‘external control’ [Thomas83 p.17], or the
‘despatching’ model [Young88 p.371]. This can be illustrated:

e

APPLICATION INTERFACE
T >

This configuration makes dialogue separation possible, since the dialogue
interpreter can reside in the interface. Many early UIMS and window systems have
external control. This is true of Sun and Tajo [Teitelman86 p.40], AIH [Kamran83
p.59], Tiger and Oasis [Kasik89 p.56], SODDI [Gangopadhyay82], and MINICORN
[Strubbe83 p.1041]. Dialogue separation in the linguistic architecture requires at
least an external control model, since it is the dialogue control module in the inter-

—

face which determines the invocation of application functionality.

.25 -

In the external control model, application functionality is thus typically frag-
mented into ‘action’ routines [Swick88 p.224] or ‘callback’ routines [Rao87 p.120].
User input must be multiplexed and despatched to these semantic routines with ref-
erence both to the type of the input event, and to the object upon which the event

occurred. Depending upon the order in which this selection is performed, routines

may conceptually be attached

« to the particular interface agent (as is the case with widgets in the X Toolkit
[Roberts88 p.272] and in GROW [Barth86 p.155], PAC [Coutaz87 p.434], the
Box [Coutaz84b p.4], Descartes’ ‘interactive extensions’ [Shaw83 p.105],

and Minicorn [Strubbe83 p.1039]).

* to particular events (as happens in Cardelli’s Toolkit [Cardelli87 p.22]).

A common characteristic of both internal and external control models is that
there is a single thread of control. This makes it difficult to cater for asynchronous
events which occur at the level in which control does not reside. In the internal con-
trol model, for example, spontaneous user input cannot be accepted. On the other
hand, under external control, internal events (such as signals to the application from
other processes) are difficult to handle. Continual operations, also, are difficult to
achieve at the level in which control does not reside. It is therefore difficult to ani-

mate views or monitor state using the external control model.

These problems are noted in the 1984 Seeheim workshop on UIMSs [Pfaff85],
and by the time of the 1986 Seattle workshop a third model emerges in which the

interface and application components are truly concurrent [Hill87b, Tanner87,

Lantz87b]:

APPLICATION (}

{) INTERFACE

VvV N

In this model the components can each retain control and thus monitor input or
generate output asynchronously. Communication is by messages or events, and not
by handing over control. If required, either the internal or external control models can
be simulated by the concurrent model, simply by using blocking sends or reads. In
addition, the components need not be monolithic: the granularity of communicating

-26 -

components can be increased (in theory) arbitrarily, as for example in actor systems
[Agha86]. The concurrent model also allows interface and application to run on sepa-
rate processors. The concurrent model therefore seems by far preferable. The UMA

architecture in Chapter 4 allows concurrency between application and interface.

We go on to examine specific classes of architecture that provide some level of
separation between applications and generic user interface tasks. These architec-

tures are input frameworks, linguistic architectures, and agent architectures.

2.2, Input Frameworks

As we saw in the programming illustration above, reading and acting upon user
input is likely to be a common task in interactive applications. Input frameworks hide
implementation details such as device polling loops, and allow the application to deal

with more abstract events.

2.2.1. Input Types and Modes

At the most abstract level, user input simply delivers values of some type. In
mainstream graphics this is known as the ‘measure’ of the input device. Measure is
some function of the state of the device, for example producing a character or a loca-
tion. In graphical user interfaces the mouse is so pervasive that a useful first
composition of input is into a value, a time, and a location (a what, a when, and a

where). These are construed as happening simultaneously.

Orthogonally, physical input devices may be divided into two classes: discrete
and continuous. Discrete devices are generally two-state (like buttons) which gen-
erate events upon transitions between these states. Continuous devices, on the
other hand, (like a mouse or a potentiometer) must be sampled upon some trigger in

order to generate a measure,

The conventional interpretation is that discrete devices generate events (for
example, a keypress), whereas continuous devices are sampled (for example, to get
the position of a dragged mouse). In the general case, however, all devices have
state, and the measure of that state may be triggered arbitrarily. Thus discrete

devices can be made to deliver continuous input (such as the time interval between

-27-

press and release of a button), and conversely continuous devices can be made to

deliver discrete input (such as an event generated when the mouse starts moving).

In practice, GKS for example allows these permutations, but CORE (GKS’
failed standardisation competitor, but still in use [Kasik89 p.56]) binds the input
classes with particular modes: valuator is sample-only input, pick event-only
[Rosenthal80 p.364). Similarly, in VGTS [Lantz84 p.33] the mouse can be used in
sample or event mode, but pick operates only in request mode and the keyboard only
in event mode. Further, the construction of a logical input token may involve the
reading of a number of physical input devices simultaneously. In mainstream graph-
ics, there may for example be both measure and trigger processes and associated
devices [Rosenthal82 p.34]). Mainstream graphics also adds a request input mode,
which in effect implements an infinite wait for an event of a particular type. These

mismatches in interpretation and synchronisation between logical and physical

devices are major problems in the management of input.
User interface frameworks essentially perform two functions on raw user input:

« they route input to the appropriate processes. An appropriate process might

be one which is expecting input, or one to which the user has directed input.

« they interprer input with respect to some context. A keypress event, for
example, may be interpreted as a character input in the context of a table map-

ping keys to characters.

We examine these two functions in detail.

2.2.2. Input Routing

Routing is the passing of raw input tokens from the physical devices to pro-
cesses which are interested in them, or at which the user has directed the input.
Without an input framework this could only be achieved by requiring all processes
needing input to poll all input devices to ascertain if their state had changed since
the last poll. Application polling makes the synchronisation of different devices diffi-

cult, and may result in an application consuming an event not directed at it.

These disadvantages to device polling have meant that frameworks typically
provide event rather than sample input. In cases where the event is not immediately

generated by the user (by activating a discrete device like a button), a trigger pro-

.28 -

cess is usually stationed in the server to emit events on some criterion, for example
when the mouse starts moving or has moved a certain distance. An input framework

which provides events essentially hides input device polling from clients.

Events provide a mechanism for asynchronous input processing. In this way, in
theory, input can be handled immediately, independently of the state of the underly-
ing computation. This is guaranteed if events are signalled to the process by a hard-
ware interrupt. In practice, however, while immediate handling of input might be
useful in dealing with catastrophic occurrences such as ‘abort’, in many cases the
sequencing of user input carries significance. A fast typist, for example, would not be
happy to find that many characters failed to be registered because they were con-
stantly being either interrupted by the next character typed, or, depending on the
prioritising scheme, locked out while the previous character completed its process-
ing. If the interrupt routines were stacked, the typist might even find the characters

coming out in reverse order! For this reason a general interrupt mechanism is not

normally used at a high level, although CSI proposes one possibly using UNIX™ sig-
nals [Williams87 p.6].

A more effective solution is the provision of an input queue. Events are there-
fore not lost if they are not consumed before the next event. A main issue here is the
queue mapping between devices and processes. Typically there is a single queue per
process (see [Lantz87b p.90, Lantz87a p.41, Lantz84 p.33]) upon which all its input
events are interleaved. However, CSI clients can set up multiple queues
[Williams87 p.27], and Pike makes a proposal for a window system that has sepa-

rate mouse and keyboard channels [Pike89].

The major routing problems are event synchronisation and event despatch.

Event Synchronisation

A single queue abstracts the task of event synchronisation from the applica-
tion, since events from different devices which occur together appear together on the
queue. The cost of queuing in comparison with interrupt-driven input processing is a
loss of immediacy. The input event must wait on the queue until its process is ready
to deal with it. Similarly, the typical process action is to WAIT (see Foley

[Foley84a p.57]) until there are events ready on the queue.

*UNIX is a registered trademark of AT&T.
-29.

However, the problems of event synchronisation must still be dealt with in the
framework. These are particularly severe in a networked environment, where net-
work latency (round-trip response) may be unpredictable. A typical problem is
‘mousing-ahead’: a user requests a pop-up menu, for example, by pressing a mouse
button, and then drags the mouse and releases the button on the menu item he
wants. However, an expert user may know where the menu item is going to be, and
is capable of releasing the button before the screen manager has had time to draw
the menu (or, in NeWS, the menu process has had time to express an interest in
input [NeWS87b p.50]). The danger is that the button release event will be wrongly
despatched to the application under the menu, rather than to the menu process. A
simple but effective mechanism to handle this is for the menu process to freeze input
processing until it is sure the menu has been drawn. Both X (‘synchronous mode’
[MIT88(1) p.124]) and NeWS (‘blockinputqueue’ [NeWS87a p.21]) provide a
mechanism to block input in this way. It is important to note that input events are

not lost by blocking, just delayed in their despatch.

There is a converse problem, however. As Myers notes [Myers86a p.65] a
novice user may be confused by network latency into thinking that the system sim-
ply has not responded (for example, to a mouse button push) and repeat the action.
Contrary to what he expects, his input is queued, and he finds he has made multiple
invocations of, say, some menu command. A simplistic solution is to flush the buffer
(resulting effectively in a single-event record rather than a queue) or to allow events
some limited lifetime [Tanner86 p.247). Essentially, however, there is a conflict here
between the needs of the novice and the expert user. Whereas the expert user
needs to be guaranteed that his input is despatched to what he predicts is its target
(a soon-to-pop-up menu, for example), the novice user needs to be guaranteed that
events are despatched to what he sees is their target (for example, a plain back-
ground against which he has no means of knowing that a menu is about to pop up).
This is not easily resolved, and seems to be a matter of case by case tactics rather

than an overall strategy.

A more general event synchronisation problem is the ability to synchronise
multiple devices in the interpretation of logical input events [Hill87b, Tanner87, Bux-
ton86]. Tanner [Tanner86 p.246] distinguishes between ‘simultaneous input’
(multiple devices, multiple tasks) and ‘user’s choice input’ (multiple devices, single
task). These categories, however, assume only one device per task at any one time.
Clearly, as in other physical input systems like cars, several devices may share one

-30-

task simultaneously. For example, a configuration may enable the user to draw a
line using the mouse in one hand, whilst at the same time controlling the width of the
line using a touch tablet with his other hand [Hill86 p.195]. The capability of han-
dling input from multiple devices is also highly relevant to Supervisory and Control
systems, in which input may arrive not only from a human user, but also from sen-
sors in the system being controlled [Alty87 p.1008]. Tanner [Tanner86 p.247],
conversely, discusses the sharing of a single device by multiple processes. Salmon
and Slater [Salmon87 p.263] give an example of this: a mouse button press might
generate three events - a CHOICE that segment rotation is required, a PICK identi-
fying the segment to be rotated, and a LOCATOR to specify the centre of rotation.
Although a basic configuration like a mouse and a keyboard in itself represents a
multiple device configuration, in the general case there is thus a need to connect arbi-
trary devices dynamically. There is also an increased need for synchronisation the

more closely devices are associated with a common task.

A number of different schemes have been adopted to handle such device syn-
chronisation. The mainstream graphics proposals of CORE and GKS addressed
multiple devices in their full generality. In both these proposals all device events are
placed on the input queue marked with the trigger process which occasioned them. In
CORE, simultaneously occurring events (i.e. those with the same trigger) were
packaged together as a single compound event [Rosenthal82 p.37], whereas in GKS
the application is allowed to ‘INQUIRE MORE SIMULTANEOUS EVENTS’.
Salmon and Slater [Salmon87 p.262] point out, however, that most implementations
of GKS do not implement the full level ¢ input (sample and event modes). In con-
trast, recent workstation-based systems have, perhaps unwisely, exploited their
limited range of input devices by including the total device state, along with a times-
tamp, in each event. CSI [Williams87 p.6] and NeWS [NeWS87a p.110] do this, for
example. X and VGTS [Lantz84] have less general schemes. X divides events into
a number of different classes (e.g. ‘KeyPress’, ‘MotionNotify’), only some of which
(but including the standard device events) have timestamps. At the same time, the
X server maintains a number of global time values for recent events, for example last
keyboard or last pointer grab. All X mouse and keyboard events include the mouse
location, but not all appear to give the total key state. VGTS distinguishes key-
board, mouse, and pick events [Lantz84 p.32]. It is thus not clear how easy it is to
perform arbitrary device synchronisation in X or VGTS, for example to register key
chord events. NeWS’s event mechanism is cleaner, at the risk of including more
redundant information in each event.

-3] -

Event Despatching

Input routing also requires events to be despatched to the processes at which
the user has directed them. In window systems screen objects are usually used to
multiplex input. That is, events occurring in a window are sent to the process owning

the window. However, it is not necessarily evident which window is receiving input.

There are primarily two options: spatial and state-based (Schiefler and Gettys
[Scheifler86 p.101] call these real estate and listener). Using a spatial criterion, key-
board input, for example, is directed to the queue associated with the window
currently containing the mouse cursor. In the state-based approach, on the other
hand, a particular window is designated current, (or active or in focus) and all key-
board input is directed to it until its state changes. At the user interface this
obviously requires some echoing of the state of ‘currentness’ - often this is by high-
lighting the window borders or title bar. Tanner’s Switchboard [Tanner86 p.245]}, for
example, displays a keyboard icon in the current window. ‘Currentness’ also
requires a method by which the user can assign this state - for example by clicking

the mouse in the window he wishes to make current.

However, in a hierarchical window environment several windows may be lay-
ered underneath the cursor. This is particularly a problem in object-oriented or
object-based (iconic) systems where the screen object/process granularity is high,
such that on the normal spatial criterion there may be several candidate processes
for a particular mouse event. Where the management system cannot decide on
behalf of processes (perhaps on the basis of some expressed ‘interest’ [Lantz87b

p.90]) if they are to receive the event or not, this contention can be resolved in three
ways:

« A process (say the one owning the window ‘in front’) can be allowed to look
at the input first and then pass it on to the window ‘behind’ if it is not interest-
ed (as in NeWS). In a hierarchical system this is usually a parent window.
Rosenthal [Rosenthal83 p.44] calls this ‘passing the buck’ up the hierarchy.
This only works if there is a strict geometric nesting of child windows in their

parent.

« An input event can be distributed to all candidate processes at once (as in X,
TheWA ([Lantz87b p.90], or the Local Event Broadcast Method of the Sas-
safras UIMS [Hill86 p.187]), on the expectation that only the interested

process will take action.
-32-

* An input event can go first to the root of the visual hierarchy, and then be
passed down to ever smaller objects until one accepts the event. Rosenthal
[Rosenthal83 p.44] calls this the ‘I’ll handle it’ method. The Andrew Toolkit
uses this, and calls it the ‘parental authority’ concept. The justification is that

it is often ‘wider’ objects which need to arbitrate the behaviour of component

objects.

A process may also need to divert input to itself which would not normally be

directed to it. There are three main reasons for allowing this preferential access:

* A process may wish to ‘lie in wait’ for a particular input event (a function but-

ton or mouse button press, for example).

* Processes with urgent business may wish to force the user to pay attention

(for example to a ‘modal’ dialogue box) by blocking input to any other process.

* A process may wish to implement a manipulation mode in which all mouse

input is directed to it while (and irrespective of where) the mouse is dragged.

Popping a menu is an example of a manipulation mode. A pop-up menu may
need to appear when a mouse button is pushed, and disappear when (and wherever)
it is released. The release event must therefore be despatched to the menu process,

even if the mouse is currently over some other object. This input access contention

between processes can be solved by imposing a priority.

There are a variety of prioritising schemes. In X and CSI, any process is
allowed to ‘grab’ all mouse or keyboard input. X also calls this an ‘active’ grab, and
in addition allows a ‘passive’ grab, where only a specific set of keys is grabbed. X
can thus also allow a process to lie in wait for a particular input event. X11 in fact
imposes a mouse button grab automatically during mouse drag events (i.c. between
press and release of a mouse button) [MIT88]. This is needed in order to implement
a manipulation mode. Since the grabbing process preempts all others until it explicit-
ly drops the grab, these servers have only a two-level priority for input despatching.
NeWS, on the other hand, has a more complex prioritising scheme. Each canvas has
a prioritised list of processes interested in input events occurring within it, while in
addition there exists a ‘global interest list’ containing processes interested in the
whole screen. A process can only express one interest at a time. In order to grab

input, therefore, a process can either put itself on the global interest list, or draw an

-33 -

‘overlay canvas’ in front of all other windows. In the second case, it may be preempt-

ed by another process which overdraws it with yet another overlay canvas.

Input to a process may come not only from the user, but also from another pro-
cess. This may be via an operating system signal, or by a change in an active value
[Szekely88a p.37] or other message in an object-oriented system. In general, again,
the event is the most useful mode. In systems with a high process granularity, like
Smalltalk and its MVC paradigm (Burbeck87], the Sassafras UIMS [Hill86],
Beach’s ‘anthropomorphic’ paint program on the Thoth operating system [Beach82],
Tanner’s Switchboard system on Thoth’s successor Harmony [Tanner86], or Lantz
et al’s proposals for a Workstation Agent [Lantz87b p.91], an important function of
this input will be for process synchronisation. All these systems use a simple FIFO
queuing mechanism to resolve contention between parallel events. That is, input

€vents to a process converge on a single queue, and are thus automatically sorted

by time of arrival.

As Borning points out [Borning86 p.365], however, this is a coarse mecha-
nism, since processes generating the events have littie control over when they may
be received. He gives as an example the problem of interleaving the update of two
different views of a model. In MVC this would not be possible, since there is no way
that the sending process (the model) can synchronise the behaviour of two separate
view processes. It is also useful to be able to generate what Lantz calls ‘out-of-
band’ events [Lantz87b p.91] in order, for example, to abort some previously
entered sequence of inputs. If this is not to be handled by process interrupts, there

must be some mechanism whereby such an event can jump to the head of the queue.

Both Bomning’s Animus system [Borning86], and NeWS, allow processes gen-
erating events to specify their timestamp, rather than leaving it to the system. The
input queues are then ordered by this timestamp (and will thus not necessarily be
FIFO). All events are guaranteed not to be despatched before their marked times-
tamp. Borning regards this mechanism as a temporal constraint. Processes have
thus finer control over the despatch of their events, and there may be arbitrary inter-
leaving and (pseudo) concurrency among events (many events can be given the
same timestamp). Processes can even send themselves future-dated events, thus
emulating system-generated timer events. NeWS in addition can emulate both syn-

chronous (directed) and asynchronous (broadcast) message sending, simply by

specifying (or not) the receiving canvas.

-34 -

2.3. Interaction and Semantics

Interaction essentially consists of alternations of input and output between the
user and the computer. As an introduction to architectures which subsume both input

and output, we consider in general the ways in which input and output can be linked.

While many writers see input and output as separate languages (see
[Rosenthal80 p.361, Foley74 p.465, Green86 p.251]), it is clear there must be some
link [Olsen85b] between the two in order for transactions to take place between the

computer and the user. In general, users impute semantics to precisely the transfor-

mations that occur between input and output.

2.3.1. Feedback

Feedback is the most fundamental linkage between input and output. All inter-
action can be seen in terms of feedback. Feedback, however, can occur at a number
of levels. It can thus be used to ‘short-circuit’ [Lantz84 p.29] input and output
before application involvement. We can categorise these levels linguistically into

lexical, syntactic, and semantic feedback.

Lexical Feedback

Lexical feedback consists of low-level echoing of input events for the purpose
of informing the user that input has registered. It has a high granularity, for example
individual keystrokes or mouse movements. Ideally it should also be highly respon-

sive.

Lexical feedback is typically incremental. That is, it occurs in a context which

does not change. The echoing of characters to the screen, for example, is not simply
a function from keypresses (K) to screens (5):

K-S
(except in the most simple calculators), but a function from sequences of keypresses
to screens:

seqK — S

This is because we expect keypresses to be echoed by characters that are
appended to the text, or, in the case of delete characters, that remove the previous
-35-

character [Shaw83 p.102]. Thus in order to generate this feedback either the history

of characters entered, or (equivalently) the screen state, must be retained.

Syntactic Feedback

Syntactic feedback reinforces the current state of the interactive dialogue. That
is, it enables the user to predict the effect of his next action. A caret in text, for
example, indicates (or should indicate) where the next keyed character will be
inserted. Similarly, with the mouse button pressed over it, a menu item may be high-

lighted as a potential selection if the button were to be released.

Syntactic feedback may also be used to report syntactic errors, or to give the
user an opportunity to amend, withdraw or cancel inputs at an intermediate stage of
the dialogue. A spelling error may be corrected in a command line before pushing
return, for example, or an icon moved away from the trashcan before releasing the

mouse button, or the ‘quit’ button pushed in a dialogue box.

Semantic Feedback

The most problematic form of feedback in this consideration of architectures for
separation is semantic feedback, that is, feedback from the deepest level of function-
ality. Here we may be satisfied with a single response, for example a document
emerging from the printer. This is the result of the computation. However, in order to

achieve this result we may need to go through a number of interactions in order to

query or update computer objects.

Therefore there is a need to present to the user not only the application func-
tions available to him, but also an appropriate visualisation of the state of his data,
and how this affects the availability and progress of the functions. In this way, the
user’s actions can have immediate, incremental consequences [Shneiderman83]

with no ‘gulf of evaluation’ [Hutchins86] which the user must bridge himself by ref-

erence to a complex conceptual model.

For example, functions might be presented as menus, while data might be visu-
alised by text, or any of a wide domain of graphical representations. Unavailability of
functions (because the data is in an inappropriate state, or there are type mismatch-
es) could be signalled by shadowing the menu items (as on the Mac), or by more
elaborate mechanisms, for example having buttons ‘fall through’ inappropriate
objects (as in ARK [Smith87 p.62]). Progress of functions can either be represented

-36 -

by continual incremental updates of the data representation (for example, the ‘slow’

global replace operation in the text editor spy [Jones-Ng86]), or by ‘percent-done’

indicators.

The consequence of these two requirements is that the operations available to
the user (for example through the mouse) should provide not only lexical and syntac-
tic feedback, but should also be incrementally sensitive to underlying application
state. Myers [Myers87a p.132] gives examples of such semantic feedback in direct
manipulation, from rubber lines ‘snapping’ to gravity points on an application-deter-
mined grid, to chess pieces which are directly manipulable only along their legal
moves, or even only along their possible moves in the current state of the game.
Young recognises that ‘immediate semantic feedback’ [Young88 p.368] must not be
sacrificed in an interactive system. Hudson feels that providing semantic feedback at
the lexical level is one of the major challenges UIMSs must face in order to support
direct manipulation [Hudson87 p.122, Hudson90). Lantz [Lantz87a p.41] and Myers
[Myers88b p.2] echo this. Dance et al [Dance87 p.97] feel that separation has not

worked in practice because of the problem of semantic feedback.

2.3.2. Directness

In addition to giving semantic feedback, interactive graphical systems should
ideally also give the user the impression of manipulating his data objects directly,
rather than manipulating syntactic agents (commands, icons, or menus) which do the

job on his behalf. That is, the same object should be used for both input and output.

Mallgren notes [Mallgren83 p.27] that whereas in batch systems input may
depend only on previous input, in interactive systems input may also depend on pre-
vious output. Even at the level of a framework, as we have seen, input may be
interpreted in the context of some output configuration of the screen, for example to

despatch input depending on which window the mouse cursor is currently in.

Directness thus has two fundamental requirements:

« The display medium must have state which persists over a number of cycles

of input and output.

« The user must be able to dereference this state by addressing the displayed
objects using a pointer like a mouse. This is conventionally called ‘picking’.
Picking is further examined in Chapters 4 and 5.

-37.

Without directness the user is reduced to making symbolic references to appli-

cation state, such as typing command names on a glass teletype.

2.3.3. Semantic Perspectives

As a preparation for the more formal parts of this Thesis, we note that there

are two fundamental perspectives we can take of the semantics of an application.

* Extensional: we can define the behaviour of an application in terms of the

sequences of operations which it accepts.

* Intensional: we can define the resulr of an application in terms of changes to

its state produced by its operations.

Chapter 3 will show formally that these two definition methods are equivalent.
There are however subtle differences of emphasis between the two. The first stress-
es input, and suggests that semantics is best expressed in terms of syntactic
constraints on sequences of input. The second stresses output, and suggests that

semantics is best expressed by defining the result of the operations.

We go on to consider two classes of architecture which match these two per-
spectives: linguistic architectures which exploit dialogue abstraction, and agent
architectures which exploit device abstraction. In particular we examine how both

architectures cope with directness.

2.4. Linguistic Architectures

Linguistic architectures see interaction as layered, comprising at least lexical,
syntactic, and semantic levels. Separation based on such linguistic divisions is
closely associated with Foley [Foley80b, Foley80a, Foley84a p.220]. Moran’s CLG
(Moran81] and a protocol proposed by Nielsen [Nielsen86] have a similar linguistic
structure. In addition to these layers there may be a ‘conceptual’ (Foley) or ‘task’
(Moran) layer at a more abstract level, while at a more concrete level there may be
some consideration of what Buxton calls ‘pragmatics’ [Buxton83] - issues of device

ergonomics that underlie the lexical layer. At the core of all these models, however,

is the lexical/syntactic/semantic layering.

-38-

User Interface Management Systems

The UIMS model, particularly in its Seeheim formulation [Olsen85a,
Green85b] of presentation, dialogue, and application linkage components, is the
clearest example of a linguistic architecture. The most concise characterisation of a
UIMS is that it implements a user interface [Shaw83 p.101, Cockton88b p.510], that
is, a UIMS provides a formalism for user interface syntax that can be interpreted sep-

arately from application semantics.

Even as early as 1972, George’s Meta system [George72] proposes a linguis-
tically layered, prototypical UIMS which has a separable control language. However,
it is at the 1982 Seattle workshop and the 1984 Seeheim workshop that the concept
of a UIMS receives its fullest definition. While the term UIMS is sometimes used in
a wider sense, we here use it in the precise sense of an interface system which sep-
arates and gives central importance to the syntactic, or dialogue, component
[Pfaff85]. Typically, the linguistic architecture in its UIMS form is monolithic

[Lantz87a p.39] - there is a single dialogue component.

2.4.1. Dialogue Abstraction

Chapter 3 will demonstrate formally the fundamental issues of dialogue separa-
tion, that is, the binding time of dialogue and functionality. In this section we

examine the prior problem of dialogue abstraction.

Dialogue consists of sequences of both input and output events, and thus rep-
resents the observable interaction between user and computer. Two main

formalisms are used to express allowable dialogue sequences: transition networks

and grammars.

2.4.2. Transition Networks

Transition networks express allowable sequences of events by associating
events with transitions between system states. In its simplest form a transition net-
work is a finite state automaton and expresses a regular grammar, although in
practice the formalism is often extended to give greater power. Transition networks

are usually coded as a table of tuples of the general form:

State x Input — Newstate x Output

-39 .

Dialogue separation based on transition networks was first used by Newman
in his early Reaction Handler [Newman68], examined by Foley and Wallace
[Foley74], and taken up by Boullier et al in Metavisu [Bouilier72 p.248], and by

Wasserman in USE [Wasserman85].

Newman (op. cit. p.47) gives the following example of a transition network rep-

resentation for the draughting task introduced above:

O,

button button

button
2 1 display
=" line

store
starting point

pen movement pen movement

From an initial state, the user first presses the button to initiate the operation.
In the second state the user can move the light pen around the screen until he
decides on a starting point for the line. He then pushes the button again and changes
to a state in which pen movements are continuously echoed by a rubber line whose
endpoint is the pen position. On the final button push the line is fixed and the system
returns to the initial state. Even this simple example illustrates the moded
[Tesler81] nature of transition networks: in any state only a fixed number of transi-

tions out are specified. The system response to user input that does not match these

allowed transitions is undefined.

The transition network notation has been extended in three main ways.

« Large networks may be modularised by allowing labels on arcs to refer to
separate networks: the labelled arc may be traversed only if there is a path
through the associated subsidiary network. The label can thus be viewed as a
non-terminal symbol in a grammar. If recursive labelling is allowed, then the
network has the power of a context-free grammar [Jacob86b p.213].

-40 -

+ Transitdons may be made to depend not simply on the current input token and
state, but also on a global data structure. Transitions may enquire and update
this structure. Woods [Woods70] calls these networks Augmented Transition
Networks (ATN’s). In general, an ATN has the power of a Turing machine
(since any computable function can be applied to the data structure by a transi-
tion), and this has been exploited to enable the dialogue to encapsulate all
application computation, as for example in Kamran’s ‘Abstract Interaction
Handler’ [Kamran83]. A more restricted form of ATN, the pushdown automa-
ton, in which the data structure is limited to a stack, can implement recursion
and therefore parse context-free grammars. Olsen in SYNGRAPH [Olsen84]
and GRINS [Olsen85b] uses a form of these called ‘interactive pushdown

automata’.

» Local, independent transition networks may be embedded in a wider environ-
ment scheduled non-deterministically by input events. Jacob is most closely
associated with this extension [Jacob86c, Jacob86a], but Coutaz in her PAC
model [Coutaz87 p.434], Images [Simoes87], and Myers’ Garnet [Myers89]

have similar schemes.

2.4.3. Grammars

Dialogue parsing on the basis of a grammar allows a task abstraction. That is,
each of the symbols in the grammar can be associated with a task. Terminal symbols
specify basic input tasks such as keystrokes, while non-terminal symbols express

higher, logical tasks. The grammar determines the sequences of basic input symbols

necessary in order to achieve a task.

The grammar is conventionally specified in a variant of BNF productions (as,

for example, in SYNGRAPH [Olsen83a], or Reisner’s ROBART languages

[Reisner81]). Here is Newman’s line drawing task expressed in Reisner’s version

of BNF (| is alternation, + is sequential concatenation. Terminal symbols are in
upper case):

draw line ::= initiate line + choose line + complete line
initiate line ::= BUTTON PRESS + move cursor
choose line ::= BUTTON PRESS + move cursor

complete line ::= BUTTON PRESS
move cursor ::= POSITION CURSOR | POSITION CURSOR + move cursor

-41] -

This grammar thus expresses a hierarchical breakdown of the task, from the
top-level ‘draw line’ to the terminal lexemes like ‘BUTTON PRESS’. A parse tree
for a particular sequence of user actions which results in the drawing of a line could
therefore be (using BP and PC for BUTTON PRESS and POSITION CURSOR

respectively):
draw line
/I\
initiate line choose line complete line
N\ |
BP move BP move BP
PC move PC move
N\
PC move PIC
re

Thus this parse represents the sequence of actions:

<BP,PC, PC, PC, BP, PC, PC, BP>

This shows the sequence of actions: a button press to indicate the intention to draw
a line, a drag of the cursor to the start point of the line, indicated by a second button
press, a drag of the cursor (followed by a rubber line) to the end point of the line, ter-

minated by a third button press.
Since this grammar is equivalent to the state transition machine given above, it
is regular - that is, its productions expand from one end only (in this case the right).

A higher grammar, however, for example a context-free grammar in which the pro-
ductions expand from the centre outwards, can easily model nested sequences of

actions.

Note, however, that this grammar generates only sequences of inmput actions.
In order to specify output, output echoing can be incorporated in the productions. For
example, POSITION CURSOR could be expanded to consist of an input of the

-42 .

mouse position, followed by an output of the cursor at that position. However, the
semantics of output rapidly reaches a complexity which a context-free grammar is
not capable of expressing, especially if picking is required. In spite of the loaded

symbol names in this example, there is no semantics here - this could just as well

result in a circle being drawn as a line.

In order to express more general semantics, the grammar must essentially be
‘attributed’. In SYNGRAPH, for example, Pascal procedures are inserted into the
productions of the grammar to perform the semantic operations [Olsen83a p.50] like
drawing a line between the start point and the current position of the cursor. Liere
and Hagen [Liere87] also note the need for an atributed, and therefore at least con-

text-sensitive, grammar in order to incorporate the semantics of the task.

2.4.4. Problems of Dialogue Abstraction

Semantic Feedback

Under the impact of the direct manipulation style, a number of fundamental
problems with dialogue formalisms have come to light. Transition networks suffer
from a quadratic growth in the number of possible transitions as the number of
states increases. This is a severe problem in graphical interfaces, where significant
state distinctions may depend on incremental graphical changes such as moving an
icon to a new location. This is compounded by the fact that the number of screen
objects may vary dynamically (see Sibert et al [Sibert85 p.186]). In a typical direct
manipulation interface, therefore, the overall state space may be enormous. It is gen-

erally agreed that a higher than regular grammar is required to abstract and

modularise the dialogue in such interfaces.

The basic state transition approach is also incapable of handling call/return
sequences (i.e. nested states): as outlined above, a labelling mechanism or push-
down state is at least required for this. As Newman points out [Newman68 p.48],
this deficiency means that common semantic functions cannot be abstracted (for
example as a sub-network) and invoked by any of a number of actions. Such a capa-
bility is needed to define globally-accessible user actions such as abort, help and

undo. Kasik also notes the difficulty of doing this [Kasik89 p.57].

Various extensions have been proposed to handle these actions. Olsen’s

SYNGRAPH has the notion of distinguished ‘escape’ and ‘reenter’ states for each

-43 -

nonterminal, which he calls ‘pervasive’ states [Olsen84 p.182]. For example, a task
is aborted via the escape state, while help might be invoked at any time via an
escape and then a reenter state. Help is, of course, in addition context-sensitive.
Equivalently, but more generally, Cockton [Cockton88b] proposes ‘Generative Tran-
sition Networks’ by which transitions can be defined over sets of states, rather than

state-by-state as in the standard notation. Thus an abort or help transition can easi-

ly be defined for all states.

Abort, undo, and general syntactic error recovery present special problems
related to the parsing algorithm used. A top-down parsing algorithm commits the
dialogue to a task as soon as the first possible input symbol for that task is
received. The only solution for a subsequent abort, undo, or illegal input may be to
cancel the parse. This may be difficult if output from the task such as prompting has
already taken place. On the other hand, a bottom-up parsing algorithm may be easi-
er to backtrack, but provides poor intermediate feedback, since the task may not be

invoked until the whole input sequence is complete.

A bottom-up algorithm may be acceptable in a textual interface, where no
action might be expected until the entire command string is typed and despatched
(by pushing ‘return’). A direct manipulation interface, on the other hand, requires a
top-down algorithm, both because users expect incremental feedback of their actions
[Shneiderman83], and because a graphical screen retains no unambiguous trace of
user actions (such as a command line does), over which a parser could backtrack.
Green [Green86 p.252] Bos [Bos80 p.167] and Kamran [Kamran85 p.46] all exam-
ine this problem. It is also interesting to note that as early as the Seillac II
conference, Alan Kay was able to report [Guedj80 p.22] that experience with the
well-used (textual) learning system PLATO had shown that error handling and
back-tracking took up most of the interaction, and that finite-state grammars were

unable to cope with this dialogue.

Finally, as Reisner points out [Reisner81 p.237], not all syntactically correct
dialogues allowed by a grammar-driven parser may be legal in terms of the underly-
ing task. That is, there may be semantic (contextual) errors not trapped by the
dialogue parser. There are two approaches that may be taken in this case. In one,
errors may simply be allowed to pass through to the application task, which may
then need to instigate a special dialogue with the user in order to correct them. This
strategy is adopted by GWUIMS [Sibert86 p.262]. An alternative approach is to
allow the dialogue knowledge of or communication with the application task. For

-44 -

example, parameter types may be declared in advance against which the dialogue

can check input, or enquiry operations may be allowed on the task state, as in MIKE

[Olsen86].

This is a particular instance of the general problem of incremental semantic
feedback. Directness, in the definition of this Thesis, also requires that the output of
semantic feedback be reusable as dialogue input. This is difficult if the dialogue is

separated from the application semantics.

Multi-Threading

The ability to interrupt a task, get help or other information, and then return to
the task at the point where it was interrupted is simply a particular case of the gen-
eral need to run multiple tasks concurrently. This need is especially high in systems
with interactive graphical, and particularly window-managed, interfaces. The prob-
lem from the point of view of a monolithic dialogue parsing system like a standard
UIMS is that input destined for the various tasks arrives arbitrarily interleaved: the
user may type a few characters in one window, move an icon against the back-
ground, then draw a line in another window. To handle this in a single parse a
grammar must be evolved whose states (or symbols) is the Cartesian product of the

states of each of the tasks.

Some systems handle this interleaving complexity by disallowing it. For exam-
ple, SYNGRAPH, like GKS REQUEST input, is highly moded: physical and virtual
input devices are dynamically ‘acquired’, ‘enabled’, and prioritised so that inputs are
delivered only in the expected contexts. A single thread of control is therefore forced
on the user. The need to cater for arbitrarily multi-threaded dialogues, and the inade-
quacy of formal grammars for this, was recognised early by Alan Shaw [Shaw80
p.378] and Anson [Anson80 p.123] (their comments even predate the flourishing of
the UIMS model). Mary Shaw [Shaw83 p.107] uses the phrase ‘data-driven’ to con-
vey similarly the notion of the user’s freedom to update any visible data, as opposed
to a ‘control-driven’ model where the order of updates is determined by the program.
More recently, there has been a revival of interest in the handling of multi-threaded
dialogues. The fundamental perception is of the user as a realtime system - asyn-
chronous and unpredictable [Tanner86 p.248] - and that therefore interaction should

be treated as a problem in parallel computation [Mallgren83 p.185].

.45 -

Determinism

Syntactic dialogue parsing suffers two further fundamental objections. Firstly,
whereas some use of formal grammars in parsing is for descriptive and analytical
purposes [Reisner81, Payne84, Moran81], current use in UIMS is prescriptive. That
is, the grammar determines the acceptable input and output sequences. We can dis-
tinguish between this problem and the problem of multi-threading: in the latter a
grammar restricts the number of alternative concurrent dialogues, in the former a
grammar restricts the number of alternative sequences in the same dialogue. Kam-
ran [Kamran85 p.47], for example, admits that the Interaction Language of his AIH
permits only a rigid sequencing of actions, and that more flexibility is required. This
problem is more severe the higher the grammar, since as grammars become more

context-sensitive the tasks they model become more moded.

Chapter 3 argues that there are two cases where dialogue determination is

necessary or useful:

« when there is a necessary sequencing in the operations provided by the func-
tionality, for example non-commutative operations like pushing and then

popping an empty stack, or logging in and then opening a file.

» when one of the participants in the dialogue cannot be expected to be respon-
sible for its actions, for example a novice user who does not know that exiting
from an editor does not automatically save his edited file, or a nuclear reactor
that does not ‘know’ that raising its damping rods and voiding its coolant
would result in a melt-down. In these cases it is useful to impose temporal or
logical constraints on the possible traces of the functionality for the good of the
user. However, it is not clear that a grammar is the best formalism for doing

this.
Chapter 3 also shows that there are cases where dialogue determination is

unnecessary, for example in the ordering of parameters to an operation. A just bal-
ancing of these factors should result in what Thimbleby [Thimbleby80] calls a well-

determined dialogue.

Practical Experience

Parsing human-computer dialogue according to a grammar, therefore, has a

number of theoretical drawbacks. In practice, also, experience of using grammars has

-46 -

not been positive. Two complaints are voiced. Firstly, specifying the dialogue in a
separate language or formalism from the application functionality is often difficult
[Myers88b p.17, Myers87a p.130, Olsen86 p.320]. SYNGRAPH was not widely
used for this reason [Olsen87a p.135]. The only real solution is to generate the dia-
logue automatically. Green [Green87 p.114] proposes this, but there are few
prototypes [Myers88b p.15]. Secondly, parsing user input according to the grammar
often presents problems. Hekmatpour and Woodman complain of this

(Hekmatpour87 p.71.

In recent papers, Olsen, Hudson, and Hill have strongly criticised the syntactic
approach to dialogue. Olsen [Olsen87a p.135] thinks that ease of use is often more
critical to the success of a UIMS than syntactic capability. Having used syntactic
dialogue parsing in the SYNGRAPH and GRINS, Olsen’s recent system, MIKE
[Olsen86 p.320], abandons the syntactic component. Coutaz similarly abandons the
single dialogue component in her PAC model [Coutaz87]. Hudson [Hudson87 p.121]
views syntactic input as reducing ‘engagement’ in a direct manipulation system,
since the user is communicating with the system rather than with the objects of
interest, and concludes that syntax should be minimised. Hill [Hill§7b p.118]
regards the parser-based approach as "clumsy and awkward", and argues for a user
interface specification language with programming power. This requires that the user
interface system run the interface specification, as in the Blit [Pike84, Pike85],
NeWS [NeWS87a], and CLAM [Call87). Downloading user interface programs in

this way, however, factors execution but not programming costs.

We conclude that syntactic dialogue specification fulfills neither the require-
ments for separation, nor the original goals of UIMSs. Nevertheless, there may be

some more restricted domain in which syntactic specification is useful. Chapter 3

isolates this domain precisely.

In 1982 the perceived benefits of a UIMS were device exploitation for human
factors optimisation, cost savings, reliability, interface consistency, rapid specialist
prototyping, adaptability, extensibility, portability, and ease of debugging
[Thomas83 p.7]. Unfortunately, by the time of the 1986 Seattle workshop it was pos-
sible to say (in the chairman’s introduction) that: “it was not clear that the UIMS
concept or structure was still valid after four years" [Olsen87b p.71]. There appear
to be two main reasons for this lack of success: the impact of the direct manipulation

style (in particular the problems of semantic feedback and multi-threaded dia-

-47 .

logues), and the difficulty of using the UIMS’s formalisms. Most commercial UIMS
have in fact been textual, at least in input [Kasik89 p.56, Prime90].

2.5. Agent Architectures

If a separate dialogue parser, as in a UIMS, is not used, then it is up to the
application to interpret the sequence of input events. A more recent approach to the
problem of coding large complex dialogues within the application is to fragment the
application into specialised agents each of which manages a relatively simple dia-
logue. The agents communicate and cooperate to achieve the application task.
Dialogue control is thus distributed [Coutaz89a p.11) among the agents, and as a
result is minimally determined. That is, dialogue with a number of different agents

can be interleaved by the user arbitrarily.

Agents are a very general architectural paradigm, and do not in themselves
represent a solution to the problems of separation. Thus there are a number of differ-
ent models that have been supported on top. Indeed, the syntactic UIMS itself can
be seen as a monolithic agent. However, the tendency is to regard agents as medi-

um or small scale objects which coexist in teams.

In general, agents encapsulate any functionality, including possibly input and
output handling. They do this by maintaining their own state, and so are formally
equivalent to Objects. We adopt Sugaya’s diagram [Sugaya84] as a canonical model:

agent

state

events =| actions - events

Hurley and Sibert give a slightly more detailed model (CREASE) [Hurley89].

Agents are scheduled by events. Events can be construed as input tokens, or

as messages from other agents. We simply assume the agent ‘fires’ when events

-48 -

are available which match its input rule. The temporal behaviour of an agent can thus
be modelled by a process in CSP [Hoare85]. The input rule may require the tokens
or messages making up the event to be single or multiple, ordered or not, depending

on the agent.

A basic formalism for events and agents is a set of <input, action> pairs
[Shaw83 p.107] (Chapter 3 gives a more precise formulation of this in terms of a
behaviour function which maps input to state transitions). Agents can thus be
viewed as event-handlers. Green [Green86] shows that this is greater in expres-
sive power than either state-transition networks or context-free grammars (in fact,
it has Turing power). This is because the event handlers are allowed programming
constructs over state. There is thus little or no notion of a syntax over the events
themselves other than what might be imposed by individual event handlers - events
are simply despatched as they arrive to matching handlers. This is what gives the

model its flexibility and frees it from the restrictions of syntactic parsing.

In this form, an agent can be expressed as a production system [Hopgood80].
In contrast to a formal grammar, symbols on the left hand side of productions used in
agents are typically input tokens rather than task abstractions. Hopgood and Duce,
for example, give a production system for Newman’s line drawing task (although

they suppose three buttons rather than one) (op. cit. p. 250):

BI — <enable tracking device>

X — <display cursor>

B2 — <store start point> S

S X — <display rubber band line> S
B3 — <store end point>

In this system, productions (held in Long Term Memory (LTM)) are invoked
on each time interval if the events to the left of the arrow are present in Short Term
Memory (STM). The events are not ordered. X is the position of the cursor, which is
generated on each time interval. BI, B2, and B3 are button events (presumably gen-
erated by different buttons). The S event after the action specification is generated
by the rule and written back to STM. Events are consumed on each time interval, but
may match more than one rule. This formalism is thus more expressive than either
the transition network or BNF grammar given above. For example, if § and X are in
STM then both the second and the fourth rules are satisfied. The formalism is also

less moded, in that it does not determine the order of some sets of events. For

.49 .

example, the end point could be given before the start point (by pressing B3 before
B2). A refinement of the production system does impose an ordering on the produc-

tion rules in LTM, which reduces the ambiguity but increases the modedness.

The power of the notation is mainly exhibited in the ease with which systems
can be combined. For example, if a similar production system were defined for anoth-
er set of buttons (say, B4, BS, B6), then the two sets of productions could simply be
combined to implement a system which allowed the user arbitrarily to interleave the
drawing of two lines. To give the same power using a state-transition network

would require many extra states for all the permutations of interleaving.

Green in the University of Alberta UIMS [Green85a), Cardelli and Pike (with
Squeak) [Cardelli85], Tanner [Tanner87], Hill [Hill87a], Olsen [Olsen90], and
Lantz [Lantz87b, Lantz87c] have all produced systems or formalisms for handling
interaction using events and agents, usually in the form of a production system.
These, however, may be bound early to their functionality. Squeak, for example, is

precompiled into C.

There are also some hybrids in which agents use state machines or grammars
to maintain their individual input syntax independently of other agents. As noted
above, Jacob [Jacob86c] expresses task syntax using state-transition networks, but
his top-level input is event-driven. When an individual task is suspended (because
the current input does not match any of its possible transitions) it maintains its
state until control returns. The tasks thus behave as coroutines in which there is a
single thread of control. Similarly Garnet [Myers89) has ‘interactors’ each of which
runs a predefined state machine. On the other hand, Scott and Yap [Scott88]

express task syntax as a context-free grammar, but allow parallel invocations of

tasks.

A useful benefit of an agent architecture, exploited by Hill, is that it easily han-
dles concurrent multi-device input. This is because events from a number of input
devices can be interleaved and synchronised by monitoring agents. Green’s more
general agent model also allows event handlers to generate events, which brings it
close to the communication model of NeWS processes and the object-oriented

paradigm.

-50 -

2.6. Refinements of the Agent Architecture

We consider ways in which the basic agent model has been exploited to pro-
duce architectures for separated user interfaces. We first introduce Toolkits, which
are the most specific instantiation of an agent architecture, and then examine the

abstractions upon which Toolkits have been based.

2.6.1. User Interface Toolkits

It is useful to distinguish user interface Toolkits from UIMSs, as do Lantz
[Lantz87a p.39] and Myers [Myers88 p.1]. Toolkits aim to provide a pre-packaged
set of useful tools (agents) to the interface designer. Toolkits are generally designed
to take advantage of some underlying window system, and may extend or hide the
facilities provided there. The NeWS Lite Toolkit [NeWS87a p.43], and the X
[Swick88, Rao87] and Andrew [Palay88] Toolkits, for example, are designed to run
on their respective window systems (although the Andrew Toolkit has now been
ported to X). Recent window systems, in fact, are not intended to be immediately
used by the interface designer, but to be a ‘platform’ or substrate for Toolkits
(Williams87 p.2]. Rosenthal gives a good example of how difficult it may in fact be to

write directly to the window manager without using a Toolkit [Rosenthal87].

A Toolkit may provide its own input framework (such as the X Intrinsics layer
[Rao87 p.121]). The Andrew Toolkit framework [Palay88 p.13] and the InterViews
framework [Linton87 p.261], for example, completely hide the underlying X Intrinsics

framework.

Most Toolkits profess to be object-oriented, and so also allow some degree of
customisation and composition of tools, although the ease with which this can be
accomplished varies. Some Toolkits are concerned mainly with the mechanisms for
creating and maintaining tools, but others concentrate on providing a set of pre-
defined tools which may have their appearance bound in to their functionality
[Swick88 p.227]. The X Toolkit, for example, distinguishes this as a set of
‘widgets’> The X and Andrew Toolkits, Interviews [Linton87], MacApp
[Schmucker86], Cardelli’s Toolkit [Cardelli87], and Coral [Szekely88a], for exam-
ple, all provide basic button, scrollbar, and menu tools. However, these and other
basic tools will vary, across the different Toolkits, in their functionality, structure,

composability, and conceptual integrity (see the comments in (Roberts88 p.2791).

-51-

2.6.2. Device Abstraction

Underlying Toolkits, and a major use of agent architectures, is device abstrac-
tion. In contrast to dialogue abstraction, the fundamental formalism for device
abstraction is not syntax, but type. Physical devices, under some measure, deliver
values of a type. However, it is possible to abstract from physical devices to logical
devices, whose type may be more complex, for example even documents or databas-
es. The measure in these cases may be a complex function dependent on a complex
state, rather than a simple transducing function. Similarly, the triggering of logical
devices may be the result of complex event synchronisations. Nevertheless, any log-

ical device can be expressed using the basic agent model above.

An important refinement of the agent architecture in supporting such logical
devices is that agents be recursively composable. That is, complex agents can be
built out of simpler ones, to any level, such that at the top level the application itself
is an agent (see [Bos83 p.91]). In implementation this simply requires that the out-
put of one agent can form the input of another. This is minimally satisfied if the /O

protocols are the same, as for example with UNIX filters.

There is thus a correspondence between the grammar formalism, in which sym-
bols expressed tasks, and devices, which represent the resulr of tasks. Just as the
productions of a grammar express orderings of lower symbols, device values may
consist of some structuring of values from lower devices. The correspondence is
closer if the structure is given some temporal interpretation. Hagen’s ‘dialogue

cells’ merge the grammar and device formalisms in just this way [Hagen85].

2.6.3. Homogeneity

Systems based on an agent architecture can be homogeneous [Dance87 p.98],
in which there is fundamentally only one sort of agent which may vary in its function-
al content and type. Other agent-based systems can be heterogeneous, in which

there may be a variety of agents specialised for particular tasks.

Both object-oriented and actor [Agha85, Agha86] systems are basically homo-
geneous agent architectures, in that they do not in themselves determine the
semantics of the objects. However, systems which attempt to separate user inter-
face concerns by providing a set of predefined interface objects, like Toolkits, are

heterogeneous. In heterogeneous agent-based systems there is often a linguistic

-52.

alignment, with at least a logical partition of agents into lexical, syntactic, and

semantic classes.

For example, GWUIMS [Sibert86 p.259], Smalltalk’s MVC [Burbeck87],
Voodoo [Scofield85 p.56], EZWin [Lieberman85], Nephew [Szekely88b], Garnet
[Myers89 p. 320}, and the Sassafras UIMS [Hill86 p.187] are all heterogeneous,
distinguishing different types of object which can be classified linguistically.
GWUIMS, for example, has ‘graphic’, ‘technique’, and ‘representation objects’
(lexical/syntactic), ‘interaction objects’ (syntactic/semantic), and ‘application
objects’ (semantic); correspondingly, MVC has view, control, and model objects;
Voodoo has images, editors, and objects, EZWin has presentation, EZWin objects,
and commands; Nephew has presenters, commands/recognisers, and models; Gar-
net has object-oriented ‘views’, interactors and Lisp code, and the Sassafras UIMS
has modules which are specialised for I/O, dialogue control and application routines.
In Coutaz’ PAC system [Coutaz87 p.431] the linguistic levels are made explicit

within each agent.

2.6.4. Logical Devices

We make a distinction (as does Rosenthal [Rosenthal82 p.34], but nor Tanner
[Tanner86 p.247]) between virtual and logical devices. A virtual device does not
define any output, but simply composes input into some logical token. Examples
might be the ‘double click’ event which Roberts et al [Roberts88] complain that X
does not provide, or Squeak’s E and L events (entering or leaving a rectangle)
[Cardelli85 p.200]. A logical device, on the other hand, we take to include the pro-
duction of output. This may be for prompts, echoing, and other feedback. In GKS, for
example, devices in REQUEST mode can provide prompting output [Enderle84
p.275], although this is highly implementation dependent. The logical device is thus

the more complete device abstraction.

Logical devices underlie the input classes of mainstream graphics: string, valu-
ator, locator, pick, stroke and choice. Formulated first by Foley and Wallace
[Foley74] and Wallace [Wallace76], and critically examined by Rosenthal
[Rosenthal82, Rosenthal83 p.19] and Maligren [Mallgren83 p.28], they form the
basis for the input models of CORE, GKS, and PHIGS. They have in common the
characteristic that they abstract a single value from a possibly complex set of user

actions, and generate echoing and possibly prompting. However, in the standards

.53 -

they are not composable or extensible (other than through the programming lan-
guage in which they are embedded), but form a single layer of input primitives. For
this reason, the abstractions they express should ideally be complete and orthogonal
over the domain of interactive input. The differences between CORE, GKS, and
PHIGS (and between these and other logical device layers - see [Kamran83 p.60]
and [Kasik82 p.103]) suggest that this is not yet so. According to Rosenthal, the
input devices mainstream graphics appear “either inadequate or inelegant when
applied to interactive as opposed to passive graphics applications” [Rosenthal80
p-361]. This is echoed by Myers [Myers87a p.132], who claims that the input model
of the graphics standards is inappropriate for direct manipulation interfaces. More
recently, Duce et al [Duce90] have proposed a generalisation of the standard model

which allows device composition.

A forerunner of the logical device is Newman’s ‘Reaction Handler’

[Newman68]. In this system, reactions can be programmed to issue an immediate
‘Tesponse’ to user action, for example the prompt string "point at line to delete”
when the user hits the ‘delete’ button. In addition to this, the reactions contain a
procedure which typically handles feedback, such as redrawing a line. However,
Newman’s reactions are scheduled as transitions in a network. In addition, they are
not composable: the group of reactions in the network only conceptually comprises
the behaviour associated with a logical device, for example to maintain a rubber line.
A very similar system is Metavisu [Boullier72] which again has ‘reaction’ state-

ments scheduled in a network.

Classical logical device models which do allow composition are Anson’s
Device Model [Anson80, Anson82], and Bos' Input Tool [Bos80, Bos78] (or his lat-
er variant IOT [Bos83]). Other systems and architectures which can be thought of
as being within the logical device model are Hopgood's adaptive productions

[Hopgood80], Hill’s event-response paradigm (with its extension, ‘outgoing

events’) [Hill87a], Sugaya’s Logical Device Modules [Sugaya84], Hagen’s Dia-
logue Cells [Hagen85), and ‘interaction techniques’ [Foley84b, Dance87 p.99,
Kamran83 p.58] (although Kamran’s are expressed as part of an interpreted

‘Interaction Language’).

-54-

2.6.5. Object-Orientation

Object-orientation [Stroustrup88] extends the basic notion of a logical device
which delivers a value of some type to include abstractions which declare instances
of these (for example, classes in Smalltalk [Goldberg83]). In combination with inher-
itance, this allows abstract objects to be partially specified, and instances to be
created which inherit some operations and variables but supply others more specific
to their task. In terms of type, the classes represent supertypes, and the instances
subtypes. Their relationship is such that a value of a subtype can be used wherever
a value of the supertype can, since all the operations of the supertype should be

inherited in the subtype.

There are a growing number of interface systems that are built on top of
objects [Szekely88a, Coutaz87, Borning86, Linton87, Call87, Szekely87, Schmuck-
er86, Crampton87, Barth86, Simoes87, Palay88, Sibert86, Lieberman85]. However,
it is worth repeating Olsen’s caveat [Olsen87a p.134] (echoed by Cockton
(Cockton88a p.18]) that object-orientation, like agents, is a very general model, and

in itself sheds no light on the particular problems of interface separation.

Object Customisation

The argument for the suitability of object-orientation for the construction of
user interfaces rests on its inherent strategy of design by modification rather than
creation [Nanard87 p.83, Scofield85 p.156]. In user interfaces, it is argued, there can

be a basic set of interactive classes (menus, scroll bars etc.) which need simply to

be customised for a particular application.

However, with the trend towards visual programming [Cook88, Ingalls88,
Myers86b, Reiser88, Myers88a, Chang86] and the interactive design of user inter-
faces [Myers87b, Cardelli87] there is a need to visualise such classes. A
representative or default instance must therefore be created on the screen. The stan-
dard object-oriented model, however, does not support (in Stroustrup’s sense
[Stroustrup87 p.162]) instance specialisation, that is, the ability to use an instance
(with default values) as a prototype [Borning86 p.359] for a class of objects.

[Took90b] also argues that finding the optimum set of basic classes is a criti-
cal design problem in an object-oriented system, involving finding ‘commonality’
[Stroustrup87 p.165] in objects over the whole domain. Where this fails, the result
is often an arbitrary collection of loosely distinguished classes. Toolkits often fall

-55 -

into this category. On the other hand, where a true taxonomy has been achieved, as
in GROW [Barth86], object instances may not be much use on their own. GROW,
for example, can provide class paths such as Vecror:Open:RighiAngles or Vec-
tor:Closed:Box. Coral [Szekely88a p.39] has a simpler taxonomy: Graphical-
Object:Line-GO or Graphical-Object:Rectangle-GO, for example. In order to construct
useful interactive objects, it is necessary to build these primitive instances into com-
pound objects [Swick88 p.227]. Consider the compound visual object:

There are two strategies whereby such an object might be constructed from

simpler objects such as squares and lines. We call these strategies object combina-

tion and object composition.

Object Combination

In single inheritance systems (where an instance can inherit from only one
class), objects which have a number of distinct properties are awkward to imple-
ment. For example, a rectangle filled with text may have some properties relating to
polygonality, and others relating to text handling. However, not all text need be dis-
played in a polygon, nor all polygons filled with text. These classes are therefore
orthogonal. In a single inheritance system this can lead to code duplication, since
either a text instance must be extended with a rectangular border, or a polygon

instance extended with filled text, and either of these extensions might need to be

performed on instances of different classes.

Within the object-oriented paradigm, therefore, construction of objects is more

natural through multiple inheritance [Linton87 p.262] from a number of classes. The

-56 -

compound object above, for example, could be constructed (with the square class

inherited twice with different labels):

I

Object-oriented systems capable of multiple inheritance are becoming important in

user interface implementations for this reason [Barth86, Szekely88a, Borning p375

81, Borning86).

Object combination through multiple inheritance has a number of problems,
however. At a very fundamental level there are the possibilities of name clashes (if
two inherited classes use the same name in different contexts) and aliasing (if two
inherited classes themselves each inherit from the same class). More specifically,
the combined object is a single object, rather than a structure. Thus, dynamic
restructuring, for example to exchange a circle for a square, is impossible. Also, any
inherited modularity breaks down. In the example, the implementations of the square
and the line would each be visible from the other. Most importantly from the perspec-

tive of this Thesis, user interface issues like presentation are bound in to the

semantics of the objects.

Object Composition

True multiple inheritance, however, is rarely supported (again in Stroustrup’s
sense). InterViews [Linton87 p.262], and the Andrew [Palay88 p.14] and X
[Swick88 p.227] Toolkits, are all based on taxonomic (single inheritance) systems,

for example.

-57-

An alternative mechanism for building compound objects on single inheritance
systems is object composition. This is essentially the creation of a data structure of

component objects. Thus the compound object above could be created:

O ~ O

The structure is maintained by a super-object which holds pointers to, or slots
for, the component objects. Objects can thus be dynamically created or deleted. The
most common structure is a part-whole hierarchy, or tree structure, which can model
a compound object which does not have cyclic dependencies. Nearly all visualisable

objects fall into this category.

Object composition is supported in GROW [Barth86 p.151] and ThingLab
[Borning81]. Similarly Coral [Szekely88a] provides ‘aggregates’, and the X Toolkit
provides ‘forms’ [Swick88 p.225].

Object Dependencies

Composite objects in user interfaces typically have geometric or textual depen-
dencies between their states. For example, the appearance of a sub-object should
bear a constant geometric relationship to its parent object. A scroll bar, for example,
would be expected to remain at the side of a window when the window is moved.
Thus primitive objects in Coral [Szekely88a] have a geometric specification
(endpoints in class Line-GO, for example) which allows them to be positioned with
respect to any composite object of which they are a part. Similarly, objects in Inter-
Views [Linton87 p.256] can be composed geometrically using Knuth’s more flexible
‘box’ and ‘glue’ model (sce Section 5.4.2). In the same way, textual dependencies

might govern the placement of sub-text, for example paragraphs or sections, within

a wider document.

Geometric or textual dependency is a simple case of a constraint since the rela-

tionship between dependent interface objects is often constant over their lifetime.

-58 -

(Note, however, that not all constraint-based systems are object-oriented, for
example Sketchpad [Sutherland63]). In general, however, as Borning notes
[Borning81 p.356] there is a fension between the object-oriented (and agent) policy
of encapsulation, and the need to apply state constraints between otherwise unrelat-
ed objects. In the linked box example above, the endpoints of the link are
constrained to lie on corners of the boxes. While this constraint may be constant
with respect to components like the boxes and the linking line, it will not necessarily

be constant with respect to the parent space, since the boxes may move indepen-

dently.

One strategy for resolving this tension, as represented by Thinglab and Ani-
mus, is to exploit part-whole composition to capture the dependencies. That is,
inter-dependent objects can be incorporated as parts in a wider object, which itself
holds the constraints on them (and the methods for solving them). The sub-objects
are not accessed directly, but via a pathname starting with the enclosing object. This
object can therefore monitor all access to its component objects, and apply the con-
straints. The strategy is analogous to the Andrew Toolkit’s ‘parental authority’
(see Section 2.2.2). A restriction of this is the technique of ‘merging’ [Sutherland63
p.337] [Boming81 p.380], by which objects or parts of objects are constrained to be
the same (for example, the endpoints of two lines), and thereafter referred to by the

same pathname.

2.6.6. The Model-View Paradigm

A disadvantage of this approach is that logically important objects (like the
boxes and their content) may be bound in, and subordinate, to presentation objects
(like the composite object representing the linked pair). A further refinement of the
agent architecture seeks to separate logical objects from presentation objects. The
most common terminology is model objects and view objects, respectively. In the
model-view paradigm some agents represent the model, or application state, while
others generate views on the model. The view agents may be parameterisable by

style or format definitions, so that different visualisations can be applied to the same

-59.

state, simply by applying different views to the same model. The number three, for

example, may be viewed as the face of a dice, a numeral, or a value on a sliding bar:

views .Q. 3 =]

model

These views may in addition be presented concurrently, for example if the model

support views distributed over a number of workstations.

It is also conceivable that a single view have aspects which are controlled by a
number of models. For example, the colour, size, and shape of a single view may

depend on distinct models:

view

-
models ®/ @ @

The values in these models may be determined by separate physical devices.
Sassafras [Hill86], for example, allows the size and colour of a drawing stylus to be

controlled concurrently by different devices.

Szekely’s ‘models’ and ‘presenters’ [Szekely88b], Young’s ‘artists’, which
contain ‘models’ and ‘views’ [Young88], Linton’s ‘subjects’ and ‘views’ [Linton87
p-256], the Andrew Toolkit’s ‘data objects’ and ‘views’ [Palay88 p.11], Scofield’s
objects and images [Scofield85], and Ciccarelli’s presentation and application
databases [Ciccarelli85] typify the model-view paradigm. In theory, if the agents
communicate by messages, then the model and the view can be late bound and

therefore separable.

-60 -

Coutaz exploits the two possible mappings between models and views above

by proposing an intermediate component by which the models and the views can be

mutually independent:

dial
O ialogue]

views

As originally proposed [Coutaz84a, Coutaz85, Coutaz86], the Dialogue Socket
was a syntax-based interpreter in the manner of a UIMS. A more recent formulation

[Coutaz90, Coutaz89a] plays down the syntactic component.

There are clearly state dependencies between model and view agents. It is
usually the case that changes to the model cause changes to the view. There are

two basic ways in which this can be implemented:

» The model can maintain the view. When the state of the model changes, it
updates the view. This is called variously ‘presentation’ [Ciccarelli85],
‘announcement’ [Szekely87 p. 239], or a ‘procedural API’ [Coutaz90].

 The view can monitor the model. When the view is aware that the state of
the model has changed, the view updates itself accordingly. This is variously
called ‘recognition’ [Szekely87 p. 239, Ciccarelli85), or a ‘declarative API’

[Coutaz90].

Maintenance is the traditional method by which applications update their inter-
faces, and is an example of the internal control model (see Section 2.1.2). The
disadvantage is that the interface objects are thereby bound in to the application,
and different views cannot be applied dynamically. Monitoring, on the other hand, is
an example of the external control model. It has the theoretical disadvantage that it
is costly to expect the view explicitly to poll the model in the expectation of a change

of state.

-61 -

Access-Orientation

A mechanism by which model monitoring is provided as a service to views is
access-orientation [Stefik86]. Here, variables can be ‘annotated’ with procedures or
properties. They thus become active values [Stefik86, Myers87b p.55], in that when
they are accessed or updated the associated procedures are called or properties re-

evaluated automatically.

Myers refines this slightly so that active values keep lists of dependent
objects rather than themselves encapsulating methods or procedures. Smalltalk’s
Model-View-Controller architecture [Burbeck87] similarly uses an explicit
‘changed’ message to inform the view(s) that the model has been updated. The
MVC model must keep note of all dependent view objects (in a global dictionary) to
which the ‘changed’ message must be sent. These views can then recalculate any
applicable constraints. Active values are used in this way in Incense [Myers83], in
Coral [Szekely88a p.37], in GWUIMS [Sibert86 p.262] (where they are called
‘active containers’), in Nephew [Szekely88b p.50] (where they are called ‘changes
communication concepts’), and in Descartes [Shaw83 p.106] (where they are not

named).

Active values have wide applicability in model-view architectures. They can be
used to monitor program state for debugging purposes (‘program visualisation’
[Myers86b, Myers88a]), or to provide process monitoring interfaces, as in Stefik’s
gauges and control panels [Stefik86 p.14]. However, at a lower level they can also
provide input transducing in a way closely analogous to logical devices. Here the
model is the hardware-generated value of the input device, while the view that is
activated is a measure of this. Myers notes this use [Myers87b p.55]. Turner
[Turner84] similarly makes an early proposal for ‘graphics variables’ for languages
like GKS and PHIGS, which extends the notion of logical device to something very

close to active values.

If models and views can be composed hierarchically, such that a view at one
level becomes a model for a higher view, then hierarchical control schemes, analo-
gous to ‘passing the buck’ (see Section 2.2.2), can be constructed. These can be
used to build agents which simply wait for their parameters to accumulate, as in
MIKE [Olsen86], EZWin [Lieberman85], and Szekely’s ‘input gathering’ mode
[Szekely88b p.56], and in forms-based systems such as Cousin [Hayes84], and the

Karlsruhe system [Bass85].

.62 -

As in general constraint-based architectures, it is thus theoretically possible
for model-view dependencies based on active values to be cyclic. In practice, howev-
er, this is rarely allowed. Stefik, for example, explicitly disallows the procedures
annotated to active values from having interfering side effects [Stefik86 p.11]. Chi-
ron [Young88 p.372] allows only hierarchical dependencies, in which complex agents
receive events only from their component agents. The dependencies in GROW are
similarly hierarchical and uni-directional [Barth86 p.152]. Coral’s dependencies are
uni-directional, but in contrast allow cycles [Szekely88a p.37]. However, constraint

satisfaction here is not allowed to iterate around these cycles (op. cit. p. 44).

Using models and views hierarchically in this way, however, results in a con-
struct very similar to a logical device in which the model forms the input processor,
and the view the output processor. This makes separating models from views diffi-
cult. This is unfortunate, since the modelfview distinction is a clear candidate for
separation. For example, views can have part-whole dependencies which may be
orthogonal to the logical dependencies of their associated models (c.f. the linked box-
es above). This Thesis is predicated on the notion that views may even have

behaviour which is orthogonal to their model.

A number of systems make a distinction between model and view structures,
for example Smalltalk, Chiron, Incense (where views are ‘artists’), Coral, Animus,
Voodoo [Scofield85 p.115], Nephew [Szekely88b p.47], MIKE [Olsen86 p.327], and
the Andrew Toolkit [Palay88 p.13]. At the top level, the view structure may simply
be mapped directly to a window hierarchy, as in Xtk [Rao87 p.118].

An alternative mechanism to provide access-orientation is daemons. Dacmons
are attached to model operations, rather than to model values. When the operation
is invoked, associated procedures are triggered to update the relevant view.
Young’s ‘artists’ [Young88 p-369] use a daemon-like mechanism to update the

view as a side effect of each operation.

Directness in Model-View Architectures

The pure model-view architecture is uni-directional. Changes to the model are
reflected in the view, but there is no inverse mapping (the model cannot be affected
by the view). Such a system cannot be direct, in the sense defined in Chapter 1.
Incense, for example, has this restriction [Myers83 p.123]. This is fine for program
visualisation [Myers88a], process monitoring [Stefik86], animation [Bomning86,

-63 -

BrownMH88], and database presentation [Mackinlay86, Herot80], but not for inter-
active direct manipulation systems, where the user expects to control the model
directly through the view (he may even believe the view is the model!). Directness
would enable the user, for example, to change the model number in the illustration

above by clicking on the dots on the dice, or dragging the bar. Lack of directness is a

major limitation of access-orientation.

Directness therefore requires minimally that the model-view dependencies be
bi-directional. Borning and Duisberg [Borning86 p.370] suggest a construct called a
‘filter’ which is a bi-directional constraint between a model and a view. Wills
[Wills87b pp.10,14] has a notion of ‘transformer’ along similar lines. A transformer
is not only a ‘projection’ function between model and view, but also a mapping
between operations on the view, and operations on the model. That is, manipulating
the view invokes the corresponding operations on the model. More formally, Harri-
son [Harrison90] expresses the viewing function as having a ‘complementary
algebra’: in the same way as Will’s transformers, operations on the view, via some
parsing function, have corresponding operations on the model. These examples, how-

ever, are as yet paper models.

Mapping operations on the view to operations on the model assumes that, just
as the model can have state, so can the view. In a multi-agent environment changes
to view state are likely to be incremental. This suggests editing as a general
paradigm for model-view interaction. Scofield’s is the classic thesis in this respect
[Scofield85]. In terms of text, the editing paradigm allows a model-view transforma-
tion (fonts, formatting, pagination etc.) as well as a view-model transformation
(insert, delete etc.). Olsen claims that 85% of interaction is editing or browsing
through some underlying data model [Olsen87a p.136). Clearly other domains, such
as graphics or databases, can, in a general sense, be edited [Wills87a p.34, Fras-
er80]. It simply requires that the operations of an abstract type be conceived as
‘editing’ operations. Thus one ‘edits’ a stack, for example, through the operations

pop and push.

The problem of bi-directional views has also been addressed in the database
domain [Claybrook85, Wiederhold86). Views with state can similarly be used as a
database for the application [Olsen87a p.135, Green87 p. 115]. Some representative
examples are EZWin, in which EZWin objects hold application state [Lieberman85
p.182], Ciccarelli’s presentation database [Ciccarelli85], Hudson’s shared objects
[Hudson87 p.123], GWUIMS ‘A _objects’ [Sibert86 p.262], frames in Zog and KMS

-64 -

[Akscyn88], Cousin [Hayes83], and Higgens and DOMAIN/Dialogue [Dance87
p.99]. The danger here is a loss of data freedom: applications are constrained to a
common object representation. Young criticises this approach, and gives the further
example of structure editors like Mentor which impose this restriction
[Young88p.368]. Alternatively, there is a risk of unnecessary duplication of data
between model and view [Lantz84 p.29]. Presenter (Chapter 7) has been utilised for

database presentation [Brown90].

Directness requires not only bi-directional model-view dependencies, but also
some mechanism whereby raw user input can be mapped to operations on the view
or on the model (for example, operations to position dots on the face of dice, or oper-
ations to increment or decrement a number). Where this mapping is performed is
critical to the separation of interface and application agents. If input is routed raw by
a framework, then the semantic interpretation of input is performed in either the mod-
el or the view. Some systems, however, distinguish a separate component, often
called a controller, as in Smalltalk’s MVC paradigm [Burbeck87]. To the extent
which the controller performs this mapping, it is bound to the model or to the view.

Three routing variants can be distinguished:

-1 1

In the first, input is passed by the controller to the model. The model then
updates the view (in which case the view is simply a projection and requires no
state) or it sends a ‘changed’ message to the view to ask it to update itself, as in
Smalltalk’s MVC. In either case, in order to provide directness the model must be
aware of, and thoroughly determine, the view, so that it can interpret the input in the
view context (for example, as a click on the face of a dice). The view is thus bound

early to the model, and so is difficult to separate. UIMSs, in which the dialogue com-

ponent can be identified with the controller, typically use this variant.

In the second variant, it is the view which interprets user input. If the view
updates itself on this basis then, in order to provide directness it must also be aware
of model semantics, and thus be bound early to this. Toolkit objects (views) typical-

-65 -

ly use this control variant. If the view does not update itself, but relies on the model

to do this, then this variant degrades to the first.

In the last variant, the controller passes input both to the view and to the mod-
el. If in addition the controller interprets input as operations on the view and the
model, then clearly the controller must know both about the view and about the mod-
el, and these two are bound early here. However, separation is possible if the view
and the model interpret raw input independently. The UMA architecture presented in

Chapter 4 is a refinement of this third variant which provides both for directness and

separation as a consequence of Surface Interaction.

2.6.7. Problems of Model-View Separation

In any non-trivial application the model state may be large and structured. It is
likely to be optimised for its logical content, rather than for any concrete view. For
example, a network may be represented by storage structures interconnected using
pointers. Possible screen views may vary enormously in appearance and layout -
they may be tabular as well as graphical. Therefore there is not likely to be a clear
mapping between components of the model state and the view. As Szekely
[Szekely87 p.240] points out, this is a major failing of access-orientation as a mech-
anism for prompting view updates: in a complex model data structure there may be
no single variable which can be isolated as containing the ‘value’ which is to be
viewed. The view might be a complex function of the model, and updating the model

and updating the view may each require a number of incremental changes which bear

little relation to each other.

Secondly, as Young [Young88 p.370] points out, the view may contain ele-
ments not derivable from the model and of relevance only to the view. The graphical
representation of a network, for example, may be laid out in various ways indepen-
dently of its connectivity. The user may even wish to manipulate the view after the
lifetime of the model which generated it, for example to include this in a document.
This is not possible in Andrew, for example, since its views are not persistent
[Palay88 p.11]. One might also wish to have generic views which could be applied to

a variety of models (scroll bars, for example). These facilities would be impossible if

the view were simply a projection of the model.

It is thus necessary to give views their own model, separate from the

‘semantic’ model, for example the face of a dice as a separate entity from the number

- 66 -

three. But even that view could have a separate model, for example a high level
graphical description, which itself could have several views, and so on. That is, there
is a need for a nesting of models. The PAC architecture [Coutaz87] is in theory

recursive in this way. This problem has also been recognised in the An