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ABSTRACT 

The kinetics and mechanical performance of glycerol-skinned 

muscle fibres from the wing muscle of a variety of different Insects 

were examined. 

Under forced sinusoidal length oscillation insect fibrillar 

muscle performs mechanical work on the driving apparatus. In response 

to a sudden, step, length change muscle fibres generate a large 

amplitude, delayed tension, transient. The rate constant for this 

transient determines the frequency of length oscillation at which the 

maximum power output is obtained. The rate constant was measured in a 

wide variety of insects and correlated with the wingbeat frequency. 

The slowest step in the biochemical cycle determines the rate of ATP 

hydrolysis. This rate constant was measured in different insects but 

was found to be independent of the wingbeat f requency. These f indings 

are incorporated in a minimal cross-bridge scheme for insect flight, 

muscle. 

The ATPase cycle in the common wasp was 

investigated further by measuring the pattern of phosphate water 

oxygen-exchange by fibres incubated in 180 water. In this insect, as 

found for the giant waterbug (ýjLqj-: erus indicuS), the rate constants 

controlling phosphate release are slow enough to contribute to rate- 

limitation of the biochemical cycle. The pattern of oxygen-exchange 

is compared and contrasted to findings from other workers for 

vertebrate skeletal mid Lethocerus muscle. 

The maximum power output obtainable from insect flight muscle 

depends not only upon the intrinsic properties of the muscle but also 

the operating temperature. The difference in surface area to volume 

ratio for small and large insects means that alternative strategies 
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have been adopted to c-ope with a variable environmental temperature. 

Strategies to optimise the insect flight motor are discussed. 

The genetics of Drosopjjýlja_Lntjýjn2giýster are the best understood 

of any eukaryote. Mutations in the flight muscle proteins can be 

independent of other muscles and lead to viable, flightless 

individuals. The mechanical properties of the flight muscles of 

these, very small, insects has been measured in wild type and suitable 

flightless mutants. The findings are discussed in terms of the likely 

structural significance in regions of the amino acid sequence. 
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CHAPTER I: 

INTRODUCTION 



INTRODUCTION 

This thesis is concerned with the muscles that drive an insect's 

wings in flight. The mechanical performance, biochemical aDd 

mechanical kinetics of muscle fibres, from a variety of different 

insects are examined. The study addresses three rather different 

questions : 

1) What can a comparative study of the kinetics of muscle 

contraction, in insects with different wingbeat frequencies, tell 

us about the cross-bridge cycle in muscle ? (Chapters 3& 4) 

2) How is the performance of the flight muscle in different 

insects optimised ? (Chapter 5) 

3) What changes in muscle function occur, following subtle 

modifications to the contractile proteins in 

Drosoph, i Ljg_Mejgp2gaster ? (Chapter 6) 

1.1 THE STRUCTURE OF INSECT FLIGHT MUSCLE :_ 

Upon dissection, the flight muscles are discernible from the 

other thoracic muscles by their distinct yellow colouration. This is 

caused by the high concentration of respiratory pigments, present in 

the plentiful mitochondria (Keilin, 1925). The muscle consists of 

separate fibres (just visible to the naked eye, usually about 50-200pm 

in diameter, (Tiegs, 1955 and Cullen, 1974)). Upon teasing, the 

f ibres yield very f ine myofibrils, a few micrometers across. Viewed 

by phase-contrast microscopy the muscle has a striated appearance. 

Each striation unit is about 2.5pm long and is called a sarcomere. 

The appearance of insect flight muscle sarcomeres is slightly 
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f rom different/ those of vertebrate skeletal muscle. At rest length, the 

dark, anisotropic band, occupies about half the length of the 

sarcomere in vertebrate muscle, but spans nearly the whole length in 

insect. 

The sarcomere striations are apparent because of the varying 

refractive index of bands of protein. Figure 1.1 summarises the 

position and properties of some of the proteins in insect flight 

muscle. 

H. E. Huxley (1953), produced 'thin section' electron micrographs 

of vertebrate muscle, showing thin filaments extending from the Z line 

and interdigitating with the thick filaments. Hanson & H. E. Huxley 

(1955) showed that upon extraction of protein, myosin from vertebrate 

muscle the 'thick' filaments disappeared and following the extraction 

of actin all that now remained were the 'Z'lines. The thick and thin 

filaments consist, mainly, of the proteins myosin and actin. 

The structure of actin filaments is highly conserved amongst the 

muscles of different organisms. The globular protein G-actin forms 

into a double stranded hellcal filament, F-actin. The repeat distance 

of each strand is 13.5 monomers (77nm). However, the filament, being 

a two start helix, repeats every 38.5 nm. In both vertebrate and 

insect muscle there are other, regulatory, proteins bound to the thin 

filament. The filamentous protein tropomyosin lies in the groove of 

the actin helix. A group of globular proteins called troponins 

(termed TnI, TnT and TnC) are grouped at the cross-over point of the 

actin helix (every 38.5 rm). 

synonymously in this thesis. 

Thin- and actin-filament are used 

Myosin filament structure is more variable amongst different 

organisms. The ot-helical myosin tails form the filament backbone and 

the globular myosin heads project out from the surface. Both the 
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FIGURE 1.1 

(a) Structure of vertebrate and insect flight muscle 

sarcomeres. The central, thick filaments are made predominantly 

of the protein myosin; the thin filaments consist mainly of 

actin. The myosin molecule consists of an oc-helical "tail" 

(LMM and S2 in b. above) and a globular head (S1, above). 

The actin filament is made up from a double helix of actin 

monomers. The protein tropomyosin lies in the groove of the 

actin filament (the troponin complex is not shown). 

The ability of myosin to bind to actin and hydrolyse 

ATP resides in the globular, S1 head-. 

Myosin mol. wt. 520,000 daltons 

Actin mol wt. : 45,000 aaltons 

(This figure is discussed further in the text) 

From White and Thorson, 1974 
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ATPase activity and actin binding ability reside in the globular heads 

or S1 units (Mueller & Perry 1962) of myosin. Thick filaments have an 
intrinsic polarity, growing out in opposite directions from a central 
'bare zone' (a tail-only region where no heads project). Both 

vertebrate and insect thick filaments have an axial repeat distance of 
14.5 nm but the pitch of the helices and the number of myosin heads 

per crown (the 'start' of the helix) is different. Initial 

calculations (Chaplain & Tregear, 1966) indicated that there were 6 

myosin molecules per 14.5 nm repeat in insects. However, more recent 

studies (Reedy et al , 1981) conclude that there are 4 molecules per 

14.5 nm repeat (i. e. four 'cross-bridges', consisting of two Sl heads 

each). This compares to the three myosins per crown in vertebrate 

muscle. One of the pitches of the four start helix in insect muscle 

is 38.5 run, this is coincident with the actin repeat distance (Wray, 

1979), the importance of this is discussed later. The greater number 

of myosin heads per crown in insect muscle is complemented by a higher 

proportion of actin filaments. The actin to myosin filament ratio in 

insect f light muscle is 3 -. I compared to 2: 1 in vertebrate muscle. The 

thick filaments of insect flight muscle have a hollow core which 

contains an additional protein, of unknown function, called paramyosin 

(Bullard, 1983). The ends of the thick filaments are linked to the Z- 

line by connecting, or C- filaments (the evidence has been summarised 

by Ashurst, 1977). Thick- and myosin- filament are used 

synonymously. 

1.2 MODELS OF MUSCLE CONTRACTION : 

1.2.1 Sliding-Filaments and Cross:: tridg! ýg_: 

Noticing that the thick and thin filaments interdigitated, H. E. 

Huxley (1953) concluded that : 



ti *, ** stretching of the muscle takes place, not by an 
extension of the filaments, but by a process in which the two 
sets of filaments slide past each other; extensibility will then be inhibited if the myosin and actin are linked together. " 

A. F. Huxley and Niedergerke (1954) observed that the length of 
the A-band did not change whereas the I-bands shortened in contracting 

muscles, viewed by interference light microscopy. They too concluded 

that muscle shortened by the relative sliding of the thick and thin 

filaments. 

Aubert (1951), showed that the force produced by a muscle 

depended in a characteristic fashion upon the length at which the 

muscle was held. More recent data obtained for single frog fibres 

is shown in Figure 1.2 (Gordon et al., 1966). The significance of 

this is that the degree of thick and thin filament overlap determines 

the amount of force that is generated. 

In 1957 A. F. Huxley advanced an hypothesis for the mechanism of 

muscle contraction. The basis of the model was that : 

"A relative force between adjacent filaments of the two 
kinds is generated at each of a series of points within the 
zone in which they overlap. " 

It was the first cross-bridge model for muscle function and many 

of its basic ideas persist iD all such models. 

1.2.2 The Cross-bridlge states .- 

In the model, side pieces (now referred to as cross-bridges), 

projecting from the thick filament, interacted cyclically, with the 

thin filament. At any time a given cross-bridge could be in either of 

two states; attached or detached to the thin filament. Equilibrium 

between the two states depended upon two rate constants; f for the 

attachment process, and 9'for detachment. 
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FIGURE 1.2 

(a) 

(b) 

Part (a) shows how the isometric tension developed 

in frog semiteninosus muscle depends upon the sarcomere 

length. 

Part (b) shows the appearance of the sarcomere at the 

different sarcomere lengths. The numbers 1-6 refer 

to the regions of the graph above (also labelled 

1-6) 

(from Gordon et al., 1966) 
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1.2.3_How_Forces were Generated : 

Within the hypothesised cross-bridgfý there was a compliant 

structure. Because of this, random thermal motion forced the cross- 
bridge to oscillate about an equilibrium position. Attachment could 
therefore occur with the elastic element distorted. For single values 

of f and g no net tension would be generated by a group of cross- 

bridges. At any moment in time there would, on average, be equal 

numbers of stretched and compressed ("pulling" and "pushing") 

compliant links. The way that the model worked was to have the values 

of f and g 4fýptýp4enj Lip2p ýýI: oss-bridg 4jistortion. Figure 1.3 shows 

how the rate constants were made to depend upon distortion. 

Cross-bridges were unable to attach at negative disortions (ie. 

f=O for "pushing" bridges), and detachment was rapid (9 is large) - 
For positive distortions, f and g increased linearly with distortion, 

with f being about 8 times larger than g (ie. 80% of bridges attached 

over the whole range). The limit of positive distortion at which 

attachment could occur by random thermal motion was termed h. At 

distortions greater than h, attachment became impossible (f=O) and 

detachment became the only option again. 

To prevent the model from being that of a "perpetual motion 

machine" the detachment of cross-bridges was coupled with the 

hydrolysis of a high energy phosphate compound (ATP). 

Muscle held at a constant length (isometric) maintains a constant 

tension because the attached bridges all have positive distortions. 

In an actively shortening muscle the velocity of inter-filament 

sliding is fast in comparison to the rate constant for detachment. 

Cross-bridges are "carried" to regions of lower, and negative, 

distortions before they have time to detach. They perform mechanical 

work, by exerting a force through a distance. At the maximum velocity 

7 
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[DEl] 

I 

The cross-bridge model of Huxley (1957). The myosin (M) 

"site" is suspended on a Hookean elastic element and 

may be in either of two states; attached (ATT) or 

detached (DET) to an actin site (A) 

The rate constants for attachment (f) and detachment (g) 

depend in a characteristic way upon distortion (x). 

The lower part of the figure shows how f and g were 

made to depend upon distortion. The model accounted 

closely for all of the steady state properties of 

muscle described by Hill (1938). 

From Huxley (1957). 

The model is described more fully in the text. 
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of shortening, force from pulling bridges is counteracted by that from 

pushing bridges, resulting in zero net force. The force and work 

produced by the muscle depends in a characteristic way upon the 

shortening velocity. Huxley solved the differential equations 

governing the behaviour of the cross-bridges during steady shortening. 

The chosen values for f and g, and their distortion dependencies, were 

such that the model accounted closely for all of the steady-state 

phenomena, described by Hill (1938), for the behaviour of live frog 

muscle. 

In 1969 H. E. Huxley proposed that the myosin heads (or Sls) 

produced forces in a slightly different manner : 

11 ** the contraction mechanism may be a rigid attachment of 
the globular head of the myosin molecule to the actin 
filament and an active change in the angle of attachment 
associated with the splitting of adenosine triphosphate. " 

The strongest, direct evidence in support of this hypothesis was 

from work using insect flight muscle. Reedy et al. (1965) showed that 

the angle of cross-bridges attached in rigor was approximately 450 

whereas muscle that was fixed in relaxed conditions had cross-bridges 

angled at near to 900. To date there are no conclusive structural 

data to show that cross-bridges change angle during the cross-bridge 

cycle in active muscle. Attempts to demonstrate changes in cross- 

bridge angle include the use of time-resolved X-ray diffraction and 

electron paramagnetic resonance (E. P. R. ) (reviewed by Huxley & Kress, 

1985). The most convincing argument supporting H. E. Huxley's 

proposition is described in the next section. 

. 
1.3 RAPID MECHANICAL EXPERIMENTS : 

A. F. Huxley (1957) tried only to explain steady-state phenomena 

i. e. where, for given conditions, the attached and detached cross- 
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bridge populations did not change with time. Following a perturbation 

to the steady-state a relaxation occurs either to a new steady-state 

or back to the original. A 'complete model' should also account for 

this transient kinetic behaviour of muscle. 

In order to make kinetic measurements, the rate at which the 

steady-state is perturbed must be very much faster than the most rapid 

step in the relaxation process. If this is not the case then part of 

the relaxation will occur during the course of the perturbation, 

making the results more difficult to interpret. For the same reasons, 

the assay system used to follow the relaxation process must be rapid. 

Podolsky (1960), using a "fast" mechanical test apparatus, 

performed experiments in which the tension generated by a muscle fibre 

was suddenly altered and the resulting length changes monitored. They 

found that rapid fluctuations in the velocity of shortening occured 

immediately after the step change in tension and before the new steady 

speed of muscle shortening was achieved. By modifying the distortion 

dependencies of Huxley's (1957) attachment (f) and detachment (g) rate 

constants, Podolsky et al. (1969) were able to account for their 

findings. Testable predictions of these modifications were; (1) that 

rapid cross-bridge detachment should occur immediately following a 

step change in tension, and (2) during steady shortening the number of 

attached cross-bridges should increase with the velocity. Subsequent 

experiments have refuted these predictions (Ford et al., 1985,1986). 

Huxley and Simmons (1971) presented a more cogent explanation for 

the transient mechanical behaviour of muscle f ibres. They performed 

experiments in which the length of a muscle fibre was held constant 

and the tension was free to change. They designed a tension 

transducer with a resonant frequency of over 4 kHz (Huxley & Simmons, 

10 



1968) and using an electrical feedback circuit (Gordon et al., 1966) 

sudden length changes were made in less than one millisecond. They 

performed length step experiments of varying step size on single live 

frog muscle fibres. The characteristics of the resulting tension 

transients are summarised below and in Figure 1.4 : 

1) An initial tension change occured simultaneously with the 

length change (the tension level reached being referred to as 

TI). The size of this tension change was proportional to the 

size of the length step and can be attributed to an elastic 

element. The amount of elasticity (stiffness) was directly 

proportional to the sarcomere length (degree of overlap) (Huxley 

&S immons 197 lb) 

2) An early tension recovery, which was very nearly monotonic in 

its time course reached a transient tension plateau (referred to 

as T2). The amplitude of the recovery was not directly 

proportional to the length step size, as would be expected of a 

simple viscous element. The amplitude of these recoveries 

was again directly proportional to the sarcomere length. The 

rate constant for the early tension recovery was very much 

greater for large releases than for small releases or stretches, 

being an exponential function of the size of the length step. 

3) There was, occasionally, a transient reversal of tension 

recovery (a delayed tension change) which in all cases was 

followed by a slow monotonic tension recovery to the original 

steady tension (called TO). 

Because the early tension events scaled with the degree of 

filament overlap they were attributed to the cross-bridges themselves. 
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The explanation for the early recovery phase was based on H. E. 

Huxley's proposal that forces were generated by a change in angle of 

attached cross-bridges. The size of the cross-bridge stroke could be 

determined directly from a graph of T2 versus length step size (see 

Figure 1.4). The finding that some part of the cross-bridge contained 

a Hookean elastic element meant that individual cross-bridges could 

generate forces "in their own time". Energy being stored in the 

elastic component as a cross-bridge changed angle from one 

conformation to another (only two states were considered). The stored 

energy could be discharged as work only when the filaments moved past 

one another, allowing a high chemo-mechanical efficiency. 

A tacit assumption of their formulation was that the attached 

cross-bridges were symmetrically distributed about a mean value of 

distortion. This greatly simplified the model since equations 

relating to a cross-bridge with the mean distortion were sufficient to 

describe the sum of the whole population. Another simplifying factor 

was that cross-bridges were allowed only two stable conformations 

which in an isometric muscle fibre were equally populated. 

The change in cross-bridge angle was used to couple directly the 

biochemical energy change to a mechanical energy change. They drew an 

energy diagram with the two stable conformations as energy wells. The 

reaction coordinate represented the angular position of the cross- 

bridge between the two stable states. The energy required to stretch 

the elastic component was superimposed upon this reaction coordinate. 

The choice of shape for the original energy diagram affects the way in 

which the forward and reverse rate constants are affected by the 

mechanical energy contribution. This is shown in Figure 1.5. 

Using Boltzman statistics they calculated the rate and 
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FIGURE 1.5 

The diagrams on the left are the energy profiles 
for the transition between two attached cross-bridge 

states. State (1) i, s the pre-working stroke state 

(a) 

(b) 

"( c) 

and state (2) is a post-work stroke state. The mechanical 

work performed by the working stroke is shown at the top 

left hand side; this "work" term is added into the energy 
diagrams below. 

Depending upon the shape of the original energy diagram 

eithe'r 'the forward, reverse or both rate constant-S 

governing-the transition between the two states is 

affected by distortion. 

The dependence of the rate constant for the early tension 

recovery (in the Huxley & Simmons type experiments) is 

shown in the diagrams on the right. The shape of energy 
diagram'chosen by Huxley and Simmons (1971) to model their 

data is like that of row (b) above, 

f. 
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equilibrium constants governing the cross-bridge behaviour for 

different length step sizes. The main dilemma was that the cross- 
bridge stiffness and stroke size required to model the transient 

tension response to step length changes was smaller (by a factor of 

about 2) than that required energetically and in order to generate the 

observed steady-state tensions found for activated muscle fibres. By 

making the cross-bridge angle change occur in more than one step 

(multiple attached states) both the transient kinetic characteristics 

and the kinetic and steady state tensions could be accounted for. 

Hill (1974) produced a "Theoretical Formalism for the Sliding 

Filament Model" which extends and brings together the ideas of Huxley 

and Simmons (1971) and Huxley (1957). He gives due consideration to 

the shape of the energy diagram describing transitions between 

attached states and to the probability functions governing attachment 

and detachment. 

1.4 MAPPING THE BIOCHEMICAL STATES TO THE MECHANICAL STATES : 

One problem with purely mechanical studies is that the 

interpretation of the assay (the measured length or tension changes) 

is model specific. The type of model presented by Huxley and Simmons 

(1971) is inherently testable because it combines events in the 

biochemical pathway with mechanical energy transduction. 

In recent years the challenge has been to link the biochemical 

and mechanical events. Biochemical kinetics in whole fibres have been 

difficult to measure because the rate of diffusion of chemicals is 

very slow compared to the biochemical rate constants. It has not been 

possible to mimic the forces present in intact muscle fibres in 

kinetic measurements made on isolated muscle proteins in solution. 

16 



1.4.1-SolutioLn )chemistry _PjL _I 
The "Lymn-Taylor Scheme" (Lymn & Taylor, 1971) provided the 

initial basis of the biochemical pathway for ATP hydrolysis by 

actomyosin in solution. It is likely that the intermediaries will be 

similar in intact muscle fibres but that the rate constants of some 

steps will be different (see Scheme 1.1). Eisenberg and Hill (1985) 

reviewing the solution biochemistry work, conclude that myosin might 

not completely detach during the cross-bridge cycle, but that there is 

a rapid equilibrium between attached and detached states referred to 

as "weakly bound states" (see also Geeves et al., 1984). Tension 

generation can occur only when cross-bridges are "strongly bound" (being 

associated with the release of product phosphate) and the recovery 

stroke when they are weakly bound to actin (with either ATP or ADP+Pi 

bound to the myosin head). A cartoon of this idea is shown at the 

bottom of Scheme 1.1. 

Sheetz and Spudich (1983) developed a technique which allows the 

relative movement of myosin molecules and actin filaments to be 

visualised in solution. The velocity of fluorescent beads coated with 

myosin (HMM) moving over actin filaments in the prescence of ATP can 

be measured directly by microscopy. The exciting aspect of this work 

is that the problems of chemical diffusion are minimised and that in 

the future it might be possible to impose forces on small numbers of 

isolated cross-bridges. 

Several techniques have been developed to study the biochemical 

kinetics in whole muscle fibres. They fall into two categories, 

transient kinetic techniques and steady-state kinetic techniques. 

These techniques make use of skinned muscle fibre preparations. 

17 
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SCHEME 1.1 

(a) 

(b) 

Part (a) shows the Lymn-Taylor scheme (Lymn & Taylor, 

1971). (A = actin; M= myosin). Part (b) shows 

how the biochemical scheme could be mapped onto 

a structural, mechanical model. 
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Fibres : 

One disadvantage of live muscle fibre experiments is that the 

chemical environment of the contractile proteins is not under direct 

control. The muscle membrane can be either mechanically removed or 

chemically disrupted to allow bathing solutions to enter the 

myofibrillar space. Chemical skinning with a concentrated glycerol 

solution (50% v/v) (S", ent-Gyorgýt, 1949) has the advantage of replacing 

the cytoplasm with a solution of low freezing point. Fibres can then 

be stored for several months at low temperature. 

There are two main problems with skinned muscle fibres. Firstly, 

the preparation is less "physiological" and proteins may be lost or 

damaged (Poole 1984). Secondly, the supply and removal of metabolites 

(ATP and ADP + Pi) can occur only by passive diffusion with the 

bathing solution and may be a rate-limiting factor. 

1.4.3 Transient Biochemical Techniq 

Inert, photolabile ("caged") compounds can be diffused into 

skinned muscle fibres and the active component released on a 

millisecond time scale by a flash of laser light (Goldman et al., 

1982). In this way transient tension changes following the sudden 

release of ATP into a fibre in rigor can be monitored. Caged 

compounds provide the necessary link between biochemical perturbations 

and mechanical transients. Hibberd and Trentham (1986) and White 

(1987) have reviewed the results of these experiments. The main 

conclusions are listed below : 

1) Following the rapid photolysis of caged-ATP within a fibre in 

the rigor state (in the absence of calcium ions) the tension 

falls with a complicated time course to the relaxed level. There 

is a brief tension "hump" followed by an approximately monotonic 
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tension fall. The rate constant of the tension fall depends upon 
the concentration of ATP released within the fibre (Goldman et 

al. , 1982). 

2) The same experiment performed in the presence of calcium ions 

shows a brief tension dip followed by a rapid tension rise to the 

active tension level appropriate to the concentration of free 

calcium. The addition of phosphate ions to the incubation 

solution increases the rate constant for the tension recovery and 

reduces its amplitude (14tbbf-rcI-ot--jkL., 1985b) 

In point I (above) the tension fall is attributed to rapid, ATP 

dependent, dissociation of strongly bound cross-bridges (AM) to form 

weak binding M. ATP and M. ADP. PI states. The tension hump is explained 

by cooperativity of tightly bound, rigor, cross-bridges allowing 

neighbouring bridges to cycle actively and generate tension. Point 2 

indicates that the tension generating step must precede the rate- 

limiting step (being faster than the overall ATPase rate). The 

effects of added phosphate are most easily explained if the AM. ADP. Pi 

state generates less tension than the AM. ADP state. Added phosphate 
c 

shifts the equilibrium of the re*ion AM. ADP. Pi -1-' AM. ADP + Pi to the 

left reducing the final tension level. Additionally, the rate 

constant for tension generation, being the sum of the forward and 

reverse rate constants for this step, will be increased by the 

presence of phosphate. 

1.4.4 Steady-state Biochemical-Experiments-, 

ygren-exchange provides a means of studying the biochemical Ox 

kinetics in skinned muscle fibres without perturbing steadyýstate. 

When ATP is hydrolysed by actomyosin, an oxygen from the solvent water 
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becomes incorporated into the product phosphate. However, the 

phosphate is not released immediately but remains in the catalytic 

site for some time. During this time reversal of the hydrolysis step 

may occur. The bound phosphate is free to rotate in the catalytic 

site, and there is an equal probability of any one of the four oxygen 

atoms being displaced upon reversal (Sleep et al., 1980). 

When a skinned muscle fibre is incubated in labelled 180 water, 

phosphate produced from ATP hydrolysis can contain from 1-4 labelled 

oxygen atoms. When the product phosphates are analysed by mass 

spectrometry a distribution of incorporation is found. The 

distribution is a statistical function of the ratio of the reverse 

hyrolysis rate constant and rate constants controlling phosphate 

release. A difference is found in the ATPase kinetics of insect and 

vertebrate muscle fibres when probed by oxygen exchange. The steps 

controlling phosphate release are rate-limiting for all cross-bridges 

in insect fibres (Lund et al., 1987,1988), but only for bridges with 

large positive distortions in vertebrate fibres (Webb et al., 1986). 

oxygen-exchange experiments were performed in collaboration with Dr. 

J. N. Lund (University of York) and Dr. M. R. Webb (N. I. M. R., Mill Hill) 

and are discussed at greater length in chapter 4. 

1.5 INSECT FIBRILLAR FLIGHT MUSCLE : 

Insect flight muscle performs cyclical contractions, the 

frequency of which is determined by the wingbeat frequency. Every 

time an insect uses its flight muscles, the degree of muscle 

shortening and the velocity of shortening are very nearly the same. 

The uniformity of function has led to the evolution of a specialised 

muscle tissue with uniform structure. 

The flight muscle of the giant waterbug (genus LethoSýtrMs) has 
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been used extensively as a model system for the study of muscle 

contraction (see Tregear, (ed) 1977). There are a number of reasons 

why insect flight muscle is an ideal experimental material : 

1) The uniform structure within the filament lattice means that 

X-ray diffraction patterns and E. M. s are the most distinct of any 

muscle tissue. 

2) The uniformity of the individual fibres means that mechanical 

and biochemical experiments on single fibres are very repeatable. 

3) The phenomenon known as stretr-b activation means that skinned 

muscle fibres can be activated extremely rapidly, simply by 

suddenly changing the length of the muscle. Under forced 

sinusoidal length oscillation skinned muscle fibres perform 

mechanical work which can be maintained for several hours. 

4) Although giant waterbugs are sometimes difficult to obtain 

this is made up for by the very stable glycerol skinned material. 

5) The wingbeat frequency of different insects varies over a very 

wide range. A comparative study of the mechanical and 

biochemical kinetics in different insects gives valuable 

information about how the cross-bridge cycle can produce tension 

at very different rates. 

1.5.1 A Scaling_Ej: 2hjem for Small Insects :_ 
rtl%Aivelb 

Viscous forces exerted by a fluid are/much greater for small 

bodies than large ones. Paradoxically, the phenomenon that keeps 

small dust particles airborne presents a problem for small flying 

insects. Small insects need to beat their wings very rapidly inorder 
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to move the comparatively viscous air over their wings to generate 

aerodynamic forces. Conventional excitation-contraction coupling 

systems are simply not fast enough to control the flight muscles of 

these animals. Instead, they have evolved a muscle type with a novel 

activation mechanism. 

1.5.2 Excitation-Contraction_CoLipling_: 

In most muscles, contraction is brought about by a change in the 

electrical potential of the cell membrane, the sarcolemma. The 

electrical changes cause a membrane system, the sarcoplasmic 

reticulum, to release calcium ions into the muscle cell. The calcium 

ions bind to regulatory proteins which, in turn, "switch on" the 

contractile proteins to produce a contraction. In muscles that 

require frequent contractions, a rapid on-off switching is necessary. 

Using this conventional control system, the song muscle of the cicada 

Ok2pgMa attains a contraction frequency of 550Hz (Josephson, 1985). 

Much of this muscle consists of an extensive sarcoplasmic reticulum, 

required for the rapid calcium pumping. Consequently, the power-to- 

weight ratio is very low and also a lot of energy is wasted on pumping 

calcium ions across the muscle membrane. 

Sotavalta (1947), found that by shortening the wings of certain 

insects (thereby reducing the inertia) the frequency of the wingbeat 

rose. Clearly there was a feedback system operating to match the 

muscle contraction frequency to the resonant frequency of the wings. 

Pringle (1949) measured the electrical activity in flight muscles of 

the blowf ly gglliphora. In this animal, the muscle action potentials 

were not coincident with the wing movements. He recorded about 40 

wingbeats for each depolarisation of the muscle, and termed the muscle 

type asynchronous. The mechanical "feedback" resided within the 
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muscle fibres and the stimulus for each contraction was myogenic. 

1.5.3 Evolution of Indirect Fibrillar Flighj_L4Mcle : 

The wings of all insects are driven by muscles situated in the 

thorax. There are two different ways in which the muscles are linked 

to the wings. In large primitive insects the muscles are connected 

directly, by tendons, to the wing base (ie. dragonflies, Odonata; 

Locusts, Orthoptera; Cockroaches, Dictyoptera; Moths and butterflies, 

Lepidoptera. ). The muscles of insectswhose ancestors evolved more 

recentlm, insert onto the thoracic cuticle. They move the wings 

indirectly by distorting the shape of the thorax (Pringle, 1957) (ie. 

Flies, diptera; Wasps and bees, Hymenoptera; Beetles, Coleoptera; 

Bugs, Hemiptera. ). The importance here is that long tendons 

connecting muscles directly to the wings cause a backlash, or 

hysteresis, limiting the upper frequency at which the muscles can 

drive the wings. The stiffer connection of indirect flight muscles 

results in less backlash, allowing higher wingbeat frequencies. 

The flight muscles of some insects tease into single fibres very 

much more easily than others. On the basis of this differeDce flight 

muscles are termed either fibr-illar- or non-fibr-illar. Cullen (1974) 

investigated the distribution of these muscle types amongst different 

insects (see Table 1-1). 

1) Flies (Diptera) 
2) Bees and Wasps (Hymenoptera) 
3) Beetles (Coleoptera) 
4) Some Bugs (Heteroptera) 
5) Booklice (Psocoptera) 
6) Thrips (Thysanoptera) 

Table 1.1 
Insects with fibrillar flight muscle (from Cullen, 1974). 

It is the reduced membrane system in insects with asynchronous 
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muscle, which makes the fibres easy to separate (Smith, 1966). The 

terms asynchronous, fibrillar are therefore synonymous. 

The high power to weight ratio of fibrillar muscle means that 

once evolved in an insect order it is retained, even when larger 

species, with very low wingbeat frequencies, evolve later (for 

instance "giant", belostomatid bugs, genus Lethocerus (Cullen 1974)). 

IT_ Herein, the term "insect flight muscle" refers only to indirect, 

fibrillar flight muscle type. 

1.6 THE MECHANICAL PROPERTIES OF INSECT FLIGHT MUSCLE :_ 

Initial mechanical experiments were performed on flight muscles 

of the bumble bee, Bombus (Boettiger, 1957) and the Imnellicorn 

beetle, Qry! ýýeý (Machin & Pringle, 1959). Live muscle, still attached 

to the thoracic cuticle, was mounted on a mechanical test apparatus. 

The length and tension of the muscle were monitored simultaneously, 

and the muscle could be activated with suitably implanted electrodes. 

The findings of these experiments are summarised. below : 

1) The stiffness of the relaxed muscle was very much higher than 

that of relaxed vertebrate muscle. 

2) When the activated muscle acted against a suitable inertial 

load, undamped, maintained oscillations in length occured. Using 

a length motor with an electronic feedback circuit which allowed 

the mechanical damping to be controlled, the power output of the 

muscle could be measured directly (Machin & Pringle, 1959) 

3) In response to sudden, step length changes, a large amplitude 

delayed rise in tension occurred, similar to a tetanic 

contraction in vertebrate muscle (Boettiger, 1957) 
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Later, experiments with glycerol-extracted muscle fibres from the 

giant waterbug (genus Lethocerus) were performed. Jewell and Ruegg 

(1966) demonstrated that the mechanical activation is an inherent 

property of the contractile proteins themselves. Skinned muscle 

fibres bathed in a salt solution containing ATP and a small amount of 

"free" calcium performed mechanical work under forced sinusoidal. 

length oscillation. Further, both the mechanical work and usage of 

ATP depended upon the frequency of oscillation (Steiger and Ruegg, 

1969). 

Pringle (1978) discussed the activation of muscle by stretch and 

noted that it is a property of all muscle types but that it is 

especially developed in insect flight muscle. The rate constant of 

the delayed tension transient, observed in length step experiments 

determines the sinusoidal oscillation frequency at which the maximum 

work is obtained. There is a simple formula relating the two types of 

experiment 

r= 2nf 

r= rate constant for delayed tension 
f= oscillation frequency to produce the maximum work 

1.6.1 Models for Stretch Activation : 

Early ideas about how the delayed rise in tension following a 

step change in length arose depended upon an exponential change in the 

amount of calcium bound to the regulatory proteins (Jewell & Ruegg, 

1966 and Julian, 1969). Cross-bridges that were previously "inactivett 

were recruited with an exponential time delay. Julian (1969) produced 

a mathematical model which was based on Huxley's (1957) "two state" 

model. The attachment rate constant now contained a factor with an 

exponential time dependence (refered to as the activation function -r). 
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Thorson and White (1969) realised that the delayed activation of 

insect muscle need not involve a time-dependent calcium binding. The 

exponential delay in tension could be produced by the straightforward 

relaxation kinetics of Huxley's two state model. All that was 

required was for the length change to act as a forcing function upon 

either one of the rate constants (f or g) or by modulating the number 

of available cycling bridges. The time course of the tension 

relaxation is then determined by the sum of the attachment and 

detachment rate constants (f+g). 

White and Thorson (1972) showed that the mechanical kinetics of 

insect muscle fibres were strongly affected by the presence of 

millimolar concentrations of phosphate. In the absence of phosphate 

the tension response to a large amplitude length change (>0.5%) became 

non-linear. This corresponded with the appearance of an additional, 

slow relaxation tension transient (the so called phosphate starvation 

transient or PST). In the presence of phosphate ions the tension 

transient remained very much more linear and the delayed tension 

transient was faster and of a smaller amplitude. White (1973) was 

able to model the PST only with a "three-state" model in which one 

attached state maintained less tension than a previous one. The PST 

arose because upon stretch activation the tension generating state 

became temporarily overpopulated, and decayed on a slow time scale. 

The effect of added phosphate ions was to accelerate this decay. The 

importance here is that the main tension generating state is one in 

which phosphate is still bound to actomyosin. This is not easily 

compatible with the conclusions from caged ATP studies with vertebrate 

muscle. 

It is important to note that the main rationale behind the 

argument for a three state model is that the PST is due to some extra 
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state in the cross-bridge cycle. An alternative argument is that it 

is due to the build up of phosphate ions within the muscle fibre and 

is a diffusion artefact. 

1.6.2 Structural Correlates for Stretch-Activation: 

Any meaningful model must have a biochemical and structural 

correlate. The strongest arguments for how stretch activation arises 

in insect muscle are drawn from comparisons with vertebrate muscle, 

which does not show the effect to the same extent. There are three 

major structural differences between the two muscle types: 

1) Connecting filaments, which contribute significantly to the 

muscle stiffness (White, 1983). 

2) Hollow thick filaments with their paramyosin filling. 

3) A coincidence of the actin and myosin helical repeat 

distance (38.5rm) (Wray, 1979). 

Wray (1979) showed that point 3 provides a very neat explanation 

for how stretch activation might arise. He showed that the register 

of cross-bridges and actin "sites" changes as a thick filament moves 

relative to its neighbouring thin filaments. The sites change from 

mismatch to match following a length change of about 3% (thought to be 

the degree of muscle shortening in vivo, (Boettiger & Furshpan, 1954)) 

see Figure 1.6. Abbott and Cage (1979) performed careful mechanical 

experiments and were able to demonstrate that muscle stiffness had a 

peak at strains of 3% and then again at 6% above rest length. White 

et al. (1988) explain why the expected 3% periodicity of activation is 

not observed more often by other workers. They state that half 

sarcomeres which are "out-of-register" will be unstable. These half 
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sarcomeres generate little tension, and will be stretched by 

neighbouring sarcomeres. Any half sarcomere with cross-bridges and 

actin sites in poor register will therefore "jump" to a length where 

better match is obtained. The system described means that the degree 

of activation will be uniform along the entire length of the myofibril 

although some sarcomeres will have "jumped" and be 3,6 or maybe even 

9Z% longer than others. The function of the connecting filaments may 

be to stop sarcomeres from being greatly overextended. 

1.7 THIS WORK : 

Chapter 3 and 4 of this thesis forms a comparative study of how 

the kinetics of the cross-bridge cycle are adapted to suit the needs 

of insects with widely differing wingbeat frequencies. Chapter 3 

investigates how the rate constant for delayed tension generation 

and the rate limiting step in the cross-bridge cycle in skinned muscle 

fibres are related to the wingbeat frequency of the intact insect. 

In Chapter 4 the cross-bridge kinetics of an insect with a high 

wingbeat frequency (Yýý§pg-ymlgýris) is probed by oxygen exchange. The 

findings are compared with the pattern of exchange found in Lethocerus 

(Lund et al., 1987) and vertebrate muscle (Webb et al.,, 1985). 

There are few people who do not find the speed and agility of 

flying insects remarkable. In Chapter 5 the efficiency and power 

output of insects of different sizes and the adaptations which permit 

this high performance, over a range of environmental temperatures, is 

examined. Power loss, due to the strong temperature coefficient of 

the delayed tension transient, is circumvented by large insects, which 

regulate their thoracic temperature, and is ameliorated by small 

insects, which tune their wingbeat frequency to suit the kinetics of 

their muscles. 
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The genetics of the fruitfly, P12! ý2phila melanogý! sj! ýr are the 

best understood of any eukaryote. The development of techniques used 

to mount very small muscle fibres (only 0.5mm long) have allowed the 

mechanical kinetics of the flight muscles to be studied. Chapter 6 

forms part of a collaborative study; the properties of muscle fibres 

from wild type flies are compared to fibres from flies with mutant 

muscle proteins. The precise nature of the genetic lesions were 

determined (by Drs. Ball and Sparrow, University of York and the 

laboratory of E. A. Fyrberg, Baltimore, U. S. A. ) and so a structure- 

function relationship in the contractile proteins could be 

established. 
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CHAPTER 2: 

MATERIALS AND METHODS 



MATERIALS AND METHODS 

2.1 EXPERIMENTS ON WHOLE INSECTS :_ 

2.1.1 Collection of_Experimental Insects : 

Some of the insects were obtained from cultures; all the 

Pj: 2E2phila species (fruit-flies) were obtained from the laboratory of 

Dr. J. C. Sparrow (University of York) and Call iphora_erythrocepha, la 

and Calliphora vomitoria were hatched from fishing maggots. These 

insects were available throughout the year. Other insects were 

collected locally by netting (Chinery, 1986), and were available only 

at certain times of the year. Finally, insects of the genus 

Lethocerus (giant waterbugs) were imported; ýfýthocerus_griseus from 

Mr. G. Scott (Florida, U. S. A), ý. collosicus, Dr. M. K. Reedy 

(Trinidad) and L, indicus. Dr. R. Sanit (Thailand). The insects were 

kept in fish tanks at York University, being fed on live goldfish. 

Giant waterbugs were available for much of the year. 

2.1.2 Identification of Collected Insect Sptf-ies : 

Locally collected insects were identified to genus and 

occasionally to species with a general field guide (Chinery, 1986). 

All the hoverflies were identified to species using Stubbs and Falk 

(1983). 

2.1.3 Wingýeýl_frýgRepýýy_P! ýtermination 

The sound produced by the beat of an insects wings has a period 

the same as that of the wingbeat. This principle was used by 

Sotavalta, (1947), who had 'perfect pitch' and was able to determine 

the wingbeat frequency by listening to the insect. One of the methods 

used here relies on the same principle; the sound of an insect in 
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free-flight was recorded with a microphone and the electrical signal 

was displayed on a storage oscilloscope (Tektronix 5223) set at an 

appropriate sweep speed. The wingbeat frequency was calculated 

knowing the time taken for the waveform to repeat. Occasionally an 

apparent frequency doubling occurred, this could be due to the wings 

'clapping' at the top and bottom of a wing stroke or by the wings 

getting out of phase with one another (particularly in the non- 

dipteran insects). Because of the difficulty of inducing flight in 

the Lethocer!! § species, the sound of the insect flying in the 

laboratory was recorded on a cassette tape recorder and the sound was 

later played into the oscilloscope (via the headphone output socket). 

One possible source of error with acoustic methods of wingbeat 

frequency determination is the 'Doppler effect'. The observed 

frequency becomes distorted if the sound emitter moves either away 

from or towards the observer (in the same way that a police car siren 

changes tone as the car passes). However, for an insect moving at 6 

ms--I the maximum error would be only ±2%. 

The wingbeat frequency of the very small flies (pK2E2pLila 

species) was measured by glueing the fly to a crystal gramophone 

'pick-up'. The vibrations produced by the flying insect induce a 

small voltage in the 'pick-up'. The voltage was displayed on the 

oscilloscope and the frequency determined as before. This method is 

not as reliable as the first method for two reasons; 1) The wingbeat 

frequency is measured while the insect is tethered, 2) It is not 

certain that the recorded vibrations are of the same time period as 

the wingbeat. However, the values recorded for DrosophiLIg agree well 

with other published values (Greenewalt, 1962 and Laurie-Ahlberg, tt 

al. -, 
1985). 

The third method was to tether insects in front of a stroboscope 
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and to adjust the frequency of the light flashes to the highest 

frequency at which a motionless, single image of the wings was 

obtained. The advantage of this method is that it is certain that the 

true wingbeat frequency is being measured, the disadvantage is that 

the insects are again tethered, which may alter the 'normal' 

frequency. 

2.1.4 Measurement of Thoracic_Ttqnpfýrý! ture in FligLt_: 

A small, bead-thermistor was mounted on the end of a drawn-out 

pasteur pipette, of Imm tip diameter. A Wheatstone-bridge amplifier 

was built with chosen values of resistors in the other arms of the 

bridge to give a linear output in voltage with change in temperature 

of the thermistor (see Figure 2.1a). The output of the amplifier was 

connected to a galvanometer for an instant readout of temperature and 

an external socket provided output to a chart recorder. The 

thermistor was always calibrated before use against a mercury 

thermometer in the range 0-500C. (see Figure 2.1b). The thoracic 

temperature of the medium sized insects (larger flies, bees and wasps) 

was measured either by impaling the thorax of the flying insect on the 

thermistor probe or by inserting the thermistor into the insect thorax 

just after flight termination. The larger insects (giant waterbugs) 

were allowed to fly free in the laboratory and were recaptured as soon 

as possible after flight termination. The thoracic temperature was 

measured for several minutes so that a cooling curve could be plotted 

and extrapolated back to the time when the waterbug was airborne. 

2.1.5 Determination of in vivo Muscle Shortening : 

The thoracic movement of an insect in tethered flight was 

measured. The insect was mounted below a travelling microscope, 
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Figure 2.1a shows the circuit used to measure changes in the 

electrical resistance of the thermistor (Th. 1 The output was 

monitored both on a meter and via external leads to a chart 

recorder. A calibration graph, of output voltage vs. temperature 

is shown in figure 2.1b. 
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fitted with aU objective lens and an eye-piece graticule. The 

insect was illuminated with a stroboscope. The flash frequency was 

adjusted so that the length of the thorax could be measured while the 

wings were 'frozen' at the extremes of the up and down stroke. 

2.2 MUSCLE DISSECTION : 

2.2.1. Very_ýrg! ý Insects_igiant waterbugs) :_ 

Dissection of the indirect flight muscle of giant waterbugs has 

been described previously (Barber & Pringle, 1966). Two longitudinal 

cuts made either side of the thorax allow the dorsal and ventral 

halves to be separated. The dorsal-longitudinal (DIM) indirect flight 

muscles (IFM) remain attached to the dorsal half of the thorax. In 

order to determine the mass of the indirect flight muscles all of the 

fibrillar muscle was scraped from the thorax and weighed on an 

electronic balance (Mettler H20). This muscle was then used either 

for myofibrillar preparations (used by other workers in the 

laboratory), or for cytochrome c determinations (see below). Skinned 

fibres, used for mechanical experiments, were prepared by glycerol 

extraction of the DIMs while still attached to the thorax (see below). 

2.2.2 Medium Sized Insects_jj@rgf flies, 

The head and abdomen of the insect were removed and the gut was 

pulled out of the thorax. The tip of a micro-dissection scissor was 

inserted into the head-end of the thorax and with the thorax held 

firmly, a cut was made all the way around to leave the thorax 

sagittally bisected. Smaller insects were cut in half under a 

dissection microscope, held in place with a pair of watchmakers 

forceps. Flight muscle mass determinations were made by removing all 

the thoracic muscle with a small spatula and weighing the muscle on 

the electronic balance. Muscle mass determinations in small insects 
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were made on the contents of several thoraces. 

2.2.3 Very_Spall Insects_jFrpit_flies)-: 

The smallest fly used was DrosopLijLa_Lnejgn2gMj! ýj:, weighing less 

than lmg with a length of about 1.6mm. The other species D--hydeii 

and D. 
-funebris are about 1.5 and 2.5 times this length (resp. ). 

Specially prepared dissection instruments were required for the 

dissection. Watchmakers forceps were sharpened on carborundum paper 

(C600 grade) under a dissection microscope. Tungsten-wire dissection 

needles were sharpened electrolytically, by passing an alternating 

electric current through the needle while it was slowly withdrawn from 

a saturated sodium nitrite solution. The dissection method for these 

insects was devised by Dr. J. C. Sparrow, University of York. 

piece of plasticene was pushed into a glass embryo-cup and a 

narrow channel made in the surface with the handle of a scalpel. 

Flies were anaesthetised with either diethyl-ether or C02 and placed 

in the plasticene channel, with the dorsal thorax exposed. The insect 

was fixed in place by embedding the wings in the plasticene. A 

longitudinal cut was made along the length of the dorsal thorax with 

the point of one of the tungsten needles and the head and abdomen of 

the insect were removed with a pair of forceps. The thorax was cut 

free of the wings with a pair of micro-dissection scissors and was 

transferred to a small dissection dish containing a 50% glycerol 

solution. The thorax was bisected completely by cutting through the 

ventral surface of the thorax with the dissection scissors, under a 

dissection microscope. The DIM's were then glycerol extracted while 

still attached to the thorax. Just prior to an experiment the DIMs 

from one half thorax were cut free of the thorax at either end using 

the micro-dissection scissors. 
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2.3 WHOLE_MUSC, LE EXPERIMENTS : 

2.3.1 Sarcomere_Lenoth_Determination :_ 

The IFM sarcomere length was measured in two different ways; by 

light microscopy and by measurement of a laser light diffraction 

pattern. 

jj_ýighl-microscopy-: 

Glycerol extracted muscle fibres (see below) immersed in a 

relaxing solution (see below) were viewed under a phase contrast 

microscope fitted with an eyepiece graticule. The length of about 20 

sarcomeres was measured and the average sarcomere length calculated. 

21_ýMej: 
_Iight 

diffraction : 

Sarcomere striations are clearly visible under phase contrast 

microscopy because of the variation in refractive index along the 

sarcomere. At low angles of incident light, 'internal reflection' at 

refractive index interfaces occurs (ie the Z-line). The reflected 

light from the muscle sarcomeres undergoes interference and a 

diffraction pattern is produced (Rudel and Zite-Ferenczy 1979). The 

spacing of the diffraction pattern maxima is related to the sarcomere 

length (see Figure 2-2). 

LsSin 9= nA 

Ls = Sarcomere length 
n=1,2,3... 
9= Angle of nth interference maximum 
(Equation 2.1 is derived in Figure 2.2) 

If all the sarcomeres were aligned precisely along the fibre axis 

and the incident light was normal to the fibre, no diffraction pattern 

would be observed. However, there is a population of orientations, 

centred about the fibre axis, and diffraction maxima are observed on 
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either side of a central maximum. Figure 2.2 shows how a first order 

maximum is produced on one side of the central maximum by a, non- 

axially orientated, sarcomere (exaggerated in the Figure). A fine 

beam of Helium-ineon laser light (0.95mW, 633nm, He-Ne laser, Spectra- 

Physics 155A) was used to create the diffraction pattern. Muscle 

fibres were placed in a droplet of relaxing solution on a microscope 

slide. The diffraction pattern was measured at a known distance from 

the fibre (10-20cm). The angle of the first maximum from the central 

maximum (a in Equation 2.1) was then calculated. 

ý... ý,? 
_gyj2Sýhrome c Determination : 

The respiratory pigment cytochrome c was extracted and assayed 

from the IFMs. The yellowish colour of the IFMs is caused by the very 

high concentration of cytochrome c in this muscle. 

D-Extraction : 

Cytochrome c is loosley bound to the mitochondrial membrane and 

is unique amongst the respiratory pigments in that it is easily 

extracted with a hypertonic solution (Estabrook & Pullman, 1967). 

A known mass of muscle (usually about 20mg) was homogenised in an 

Eppendorf tube in Iml of extraction buffer (see Table 2-1). The tube 

was left to stand at 40C. for 4 hours. The suspended matter was 

removed by spinning in a bench centrifuge (Eppendorf, Bench 

centrifuge, Anderman 5414) for 5 minutes. The solution was pipetted 

into a spectrophotometer cuvette and the optical absorbance was 

measured over the range 600-350nm (Shimadzu, UV-240). The 

cytochrome c was fully reduced by addition of a known volume of 

ascorbate (ascorbic acid, 100mg/ml + potassium carbonate to pH 7.00). 
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KLXC%O 1 0.5 m 
Triton-XlOO 0.5% V/V 
Phosphate buffer 20 mM 
pH 7.00 

Table 2.1 
Cytochrome c extraction buffer. 

-L-Ratimation : 

Cytochrome c has three characteristic absorbaDce maxima; 550Dm, 

520im, and 410im (cc, p and T peaks resp. ). The peak at 550nm is the 

sharpest and also shows a characteristic rise in absorbance upon 

reduction. The absorbance coefficient of cytochrome c at 550nm is 

27.7 (cm2/mol) (Lehninger 1975), the molecular weight = 12,384 (Chan & 

Margoliash, 1965). 

Standard solutions of cytochrome c (Sigma Chemicals) were 

prepared. The optical absorbance of cytochrome c in the extraction 

buffer was the same as the absorbance in water and agreed well with 

the published value (see Figures 2.3 (a & b)). 

2.4 GLYCEROL-EXTRACTION OF THE INDIRECT FLIGHT MUSCLES : 

As described in chapter 1, the purpose of glycerol-extraction is 

to disrupt the muscle membrane systems, leaving the bare muscle 

proteins bathed in a buffered solution of low freezing point. The 

process is otherwise known as chemical 'skinning'. 

2.4.1 Extraction Solution : 

The constitution of the glycerol-extraction solution is given in 

Table 2.1. The solution is similar to that used by White & Thorson 

(1972). The solution was made up in advance and stored at -200C. for 

up to 2 months. 
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Glycerol 50% (V/V) 
Potassium Phosphate buffer 20mM 
(K2HP04 + KH2PO4 (I : 2)) 
Sodium Azide IMM 
DTT IMM 
MgC12 

2mM 
Adjusted to pH 7.0 

Table 2.1. 
Constitution of the glycerol-extraction solution. 

The solution is pH buffered with potassium phosphate. The 

reducing agent dithiothreitol was added to slow the breakdown of the 

muscle proteins by oxidation of the sulfhydryl groups. Magnesium ions 

were added to reduce the enzymatic degradation of the myosin light 

chains (Weeds & Pope, 1977) and sodium azide to reduce bacterial 

contamination. 

2.4.2 GlyS; er2l-Extraction Procedure :_ 

Prior to the extraction procedure the stored glycerol solution 

was allowed to warm up to OOC. The dissected thoraces were immersed 

in the solution and placed on a stirrer in a cold-room (40C. ). The 

solution was stirred by a small magnetic 'flea'. The extraction 

solution was changed after I and 6 hours. After 24 hours the thoraces 

were transferred to fresh solution and stored at -200C. Muscle fibres 

were used after two days and within 2 weeks of extraction, except for 

giant waterbug fibres which were used for up to 2 months. 

2.5 SKINNED FIBRE EXPERIMENTS : 

2.5.1 Experimental Solutions- 

The constitution of the experimental solutions was based on 

those used by White and Thorson (1972). A computer analysis of the 

solutions was made (Perrin, 1967, modified by Dr. D. C. S. White to run 

on the IBM PC) to determine the concentrations of free metal ions and 
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complex species present (see Tables 2.2a-e and Table 2-3). The 

association constants were obtained from Martell and Smith (1974-76, 

1983). Solutions were stored at -20 OC where little or no degradation 

of ATP occurred with time (checked with high performance liquid 

chromatography (HPLC), see below). 

Immediately before each experiment, creatine kinase (Boehringer, 

Mannheim) was added to the solutions (2mg/ml) which contained creatine 

phosphate, to provide an 'ATP backup' system (see Scheme 2.1). This 

reduced the problem of rate-limiting ATP and ADP diffusion in and out 

of the muscle during mechanical experiments. 

creatine phosphate + ADP ; i: == ATP + creatine 

creatine kinase 

Scheme 2.1 
The creatine phosphate/creatine kinase ATP back-up system. 

2.5.2 Fibre Pre__aration :_ 

After glycerol-extraction, bundles of muscle fibres were removed 

under binocular microscope at low power. Under high power, single 

fibres were removed from the bundle. In species where single fibres 

are difficult to isolate the muscle was pared down to a diameter of 

about 80 pm. Either end of the fibre was then carefully crimped in 

aluminium 'T' clips (see Figure 2.4a) (Goldman & Simmons, 1984b). The 

$To clips made it possible to mount very short fibres on the 

mechanical test apparatus (eg. fibres from Drosophila_melanooaster. 

only 0.5mm long). 

The aluminium 'T' clips were manufactured from aluminium kitchen 

foil. Two different techniques were used to make the 'T' clips. The 

first 'T9 clips to be used were produced by a photo-etching process. 
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------------ -- ------- ------ - ------- ----- -- ------- ----- -- ------ - 

(a) (b) (c) (d) 
------------ -- ------- ------ - ------- ----- - -------- ----- -- ------ - Solution Ko Lo Kcp Lcp Kox Lox Ao 

name 
------------ - -------- ------ -------- ----- - -------- ----- -- ------ - 

ATP(Na2) 18.5 18.5 15.0 15.0 15.0 15.0 
MgC12 15.5 15.5 15.0 15.0 14.0 14.0 12.0 
CP(Na2) 8.0 8.0 
KC1 18.0 18.0 50.0 
Histidine 20.0 20.0 20.0 20.0 20.0 20.0 20.0 
EGTA 6.0 6.0 5.0 5.0 
Ca(EGTA) f - 6.0 - 6.0 - 5.0 
pH 7.0 7.0 7.0 7.0 7.0 7.0 7.0 

mg++ 0.7 0.8 1.0 1.1 1.1 1.1 10.7 
pCa - 4.8 - 4.7 - 4.7 

------------ -I -------- ------ : -------- ----- - -------- ----- - - ------ - 
Ionic 123 122 128 128 117 117 98 

strength 
------------ -I -------- ------ -------- ----- - : -------- ----- -- ------ - 

------------- -------------- 

(e) 

------------- -------------- 
Inhibitors: 

------------- -------------- 
NaN3 1.0 

Ap5A 10.0 ým 
Quercitin 0.5 
Oligomycin 1.0 pg1ml 

------------- -------------- 

Ar%5A = PI, P-5-Di(adenosine-5'-)pentaphosphate EW 

Table 2.2 

Constitution of the experimental solutions (all concentrations 
in mM (except where stated); Kn = relaxing, Ln = activating, 
Ao = rigor. 
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------------- ---------------------------------------- 

Solution Lo Lo Lo Lo Lo 
name 10 12 15 18.5 29 

------------- ---------------------------------------- 
ATP(Na2) 10.0 12.0 15.0 18.5 29.0 

id n1RRI , 
MLIC 12 1.1()-() 11-F; 
mgo 25.0 
KCI 55.0 41.0 22.0 -- 
Histidine 20.0 20.0 20.0 20.0 20.0 
Ca(EGTA) 5.0 5.0 5.0 6.0 5.0 
CaC12 o. 2 
DH 7A 7-n 7-n 7-n 7-n 

me + 1.3 1.1 1.2 0.8 0.9 
pCa 4.7 4.7 4.7 4.7 4.7 

------------- ---------------------------------------- 
Ionic 127 124 121 122 125 
strength 

------------- ---------------------------------------- 

Table 2.3 

Constitution of the experimental solutions used in experiments in 
which the concentration of ATP was to be varied (all 

concentrations in mM) 
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However, the process reduced the foil thickness, and so reduced the 

stiffness of the foil. Also the etching process left a sharp leading 

edge on the 'T' clip which tended to cut into the fibre. Better 'T' 

clips were produced by cutting the foil 'by hand'. 

Aluminium kitchen foil was stuck to a microscope slide with 

cellulose nitrate glue. The glue was made by dissolving cellulose 

nitrate centrifuge tubes (Beckman, U. S. A) in acetone. The foil could 

then be cut, without tearing, with a sharp scalpel blade. Figure 2.4b 

shows the sequence of cuts used to produce the 'T' clips rapidly. 

Although more laborious to manufacture than the photo-etched 'T' 

clips, the hand-made 'T' clips were a significant improvement. 

2.6 THE MECHANICAL TESTING APPARATUS : 

The test bed consisted of a mild steel plate which rested on top 

of a motor-cycle inner tube. The inner tube was retained in a 

rectangular former made from 900 aluminium, angle. The mass of the 

steel plate provided damping at low frequencies and the inflated inner 

tube damped the high frequency background vibrations present in the 

building. The mild steel plate was drilled and threaded to accept 

mountings for a tension transducer, bath assembly and length changer. 

The tension transducer and length motor had hooks, which extended into 

the incubation bath, to which the muscle fibres were attached. 

Electrical signals, proportional to the length and tension were 

simultaneously recorded on a digital, storage oscilloscope. The 

storage oscilloscope was connected to an IBM Personal Computer so that 

data could be stored and later analysed by the computer. The general 

layout of the apparatus is shown in Figure 2.5. 

Two sets of mechanical test apparatus were constructed; one set- 

up was used for measuring the mechanical kinetics of skinned fibres 
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the other was used for ATPase determinations. 

2.7 THE TENSION TRANSDUCER : 

The same basic design of tension transducer was used in both 

mechanical set-ups : 

The tension transducer (Akers AE801, SensoNor a. s., Knutsrodveien 

P. O. Box 196,3191 Horten, Norway) consisted of a silicon beam 

(0.5mm X 5mm X 2mm) with two piezoresistive components bonded on 

opposite sides at the base. The silicon beam was critically damped by 

an oil meniscus lying between the transducer and a movable vane 

(Figure 2.6a). Small deflections at the tip of the beam affect the 

resistance of the two resistive components at the base. The two 

resistors were included in adjacent arms of a Wheatstone bridge and 

the change in voltage across the bridge was amplified by a low noise 

amplifier (Burr-Brown 3500E) (Figure 2.7). The circuit cancels out 

noise affecting both transducers equally. A hook, attached to the tip 

of the beam, passed through a slot in the side of the incubation bath. 

Surface tension prevented the solutions from running out. The 

requirement of the hook was that it should be light-weight, stiff and 

thin enough to fit through the slot. A short length of grass stem 

was bonded to the tip of the transducer with araldite, onto which was 

attached a length of fine glass capillary tubing having a fine 

tungsten-wire hook fixed into the far end (Figure 2.6b) with acrylate 

glue. Because of its high density, the length of tungsten wire was 

kept to a minimum. The joint between the capillary tube and the grass 

stem was made with shellac, which was softened with a hot soldering 

iron to facilitate fine angular adjustment of the hook. 

The tension transducer assembly was mounted on a micro- 

manipulator, bolted to the metal base plate, which had a coarse and 
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tungsten hook 

3tass capillary 

shellac (a) 
irass stem 

Akers WE 
strain gauge 

up-down adjust 

cluminium mounting 
bLock 

damping adjust 

1cm 
, --,. oil miniscus 
M 

strain gauge 

(b) 

FIGURE 2.6 

The tension transducer; 2.6a shows how the hook, used to mount 

the muscle fibres, was constructed. 2.6b shows how the transducer 

was fixed to the micromanipulator. 
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Tension Transducer Amplifier 

FIGURE 2.7 

Electrical circuit used to measure Lhe change in electrical 

resistance of the tension transducer caused by forces exerted 

by an attached muscle fibre. The circuit was designad by 

Dr. D. C. S. White. 
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fine adjustment. The tension hook position could be adjusted over a 
large distance with great accuracy. 

The tension transducer was calibrated by hanging known weights on 
the hook to produce a calibration graph (see Figure 2.8). The 

sensitivity of the transducers used was near to 9pN/mV with a noise 
level of 3.5pN. The resonant frequency of the undamped transducer was 

tested both unloaded and loaded with a fibre. In the first instance 

the transducer housing was tapped and the resulting oscillations 

recorded. In the second instance the tension oscillations following a 

sudden step length change made on a fibre were recorded. The undamped 

resonant frequency in both cases was about 8.3kRz (see Figure 2.9a, b). 

The mechanical apparatus used for ATPase determinations had a 

bath system (see Figure 2.10b) which did not allow the tension hook to 

enter the side of the bath. An 'L' shaped piece of capillary tube was 

used so that the hook could enter the top of the bath. This 

modification greatly reduced the resonant frequency but increased the 

sensitivity of the tension transducer. The sensitivity and resonant 

frequency were measured as before; the resonant frequency was 1. IkHz. 

The frequency response of the tension transducer is limited by 

its resonant frequency. The resonant frequency should be at least 10 

times higher than any measured tension oscillation. 

2.8 THE MUSCLE BATHS : 

The bath system for both set-ups was mounted on an X-Y 

micropostioner. This allowed accurate positioning of the baths under 

the mounted muscle fibre. 

2.8.1 Set-LjR_Ljýtd for Measurement of Mechanical Kinetics 

small temperature-regulated perspex bath was constructed (see 

Figure 2.10a). The central muscle bath (volume 80pl) had a slot cut 
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FIGURE 2.8 

Calibration graph for the tension transducer; the calibration 
here is about 8)iN/mV. 
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Tension Transducer, Resonant Frequency (Loaded). 
UllUdIllpeU uscittaTions t-, ýingi. e Letnocerus more in Higor). 

01 %Y( 
0 . 96 ms 

18-3 KHz I 

L50jj 
N'ý 

07 

Time 0-5ms/Div. 

Length 

Tension 

Tension Transducer, Resonant Frequency (Unloaded). 

(1) 

(2) 

8-3 KHz 

20jjN 

d. 

Time 1 ms/Div. 

Tension 
[Undamped] 

Tension 
[Damped] 

FIGURE 2.9 

Determination of the resonant frequency of the tension 

transducer. In (a) the tension oscillations following 

a rapid length change made on a muscle fibre in rigor 

were monitored. In (b) the transducer housing was tapped; 

1 when the transducer was undamped, 2 when it was damped 

by an oil miniscus (see Figure 2.6b). 

(a) 

(b) 
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FIGURE 2.10 

Muscle incubation baths used in (a) mechanical experiments 

(b) experiments where the ATPase activity was measured. In (a) 

the hooks from the test apparatus entered the side of the bath (via 

the slots) in (b) the hooks entered from above. The recess in (b) 

ret, ained a layer of silicone oil. Both bath systems were mounted 

on an X-y micropositioner. 

56 

(ii) Side view 



in each side to allow hooks from the tension transducer and motor to 

enter the bath. The central muscle bath was temperature regulated by 

two side chambers which were circulated with temperature controlled 

water from a water bath (Thermomix, 1442D, B. Braun, Melsungen) 

Incubation solutions could be exchanged by means of two tubes, 

connected to glass syringes (Hamilton, Bonaduz. ). One of the tubes 

entered the base of the muscle bath (supply) the other was connected 

to the top of the bath (drain). 

2.8.2 Set:: Lip_LJsed for ATPase Determinations : 

A row of seven, small (30pl), temperature controlled baths was 

constructed. The baths were milled into a recess in the top of a 

perspex block (see Figure 2.10b). After the baths had been filled 

with the incubation solutions a layer of dry silicone oil was run into 

the top recess. The layer of oil prevented evaporation of the 

incubation solutions. During 'oxygen-exchange' experiments (Chapter 

4) the layer of silicone oil prevented contamination of the 180 water 

incubation solutions with atmospheric 160 water. These baths did not 

have slots cut in the sides to accept the tension and length 

transducer hooks because the low viscosity oil would run out. The 

length and tension transducer hooks were 'L' shaped and entered the 

top of the incubation baths. 

2.9 THE LENGTH MOTOR : 

The purpose of the length motor is to change the length of the 

muscle fibre in response to an input length signal. The input signal 

is a voltage provided either by a waveform generator (TWG300, Feedback 

Ltd. ) or more complicated waveforms produced by the IBM Personal 

Computer. The motor should be able to follow the input waveform as 
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accurately as possible, in order to do this it must have a high 

resonant frequency. 

The motor performance is most conveniently tested by measuring 

the rise time in response to a square wave input. 

The set-up used for the ATPase measurements consisted of a 

commercially available mechanical vibrator (Ling Dynamics, model 101). 

The resonant frequency of this length motor was greatly improved by 

having a driving current controlled by an electrical servo-loop (White 

1983). The fastest measured rise time was just under Ims. 

A new, faster, motor of the same design as that used by Ford et 

al. (1977) was built. This motor was used for experiments to measure 

the mechanical kinetics of skinned muscle fibres. 

The motor consists of coil of aluminium wire suspended on a stiff 

mounting in a magnetic field. The magnetic field is provided by a 

horseshoe magnet attached to two pole pieces combined with an iron 

core. A pyramid of grass stems, glued to the coil, communicates any 

movement of the coil to the work area. Movement is monitored by two 

photodiodes which detect the change in position of a light beam being 

reflected by a mirror attached to the motor coil. 

The motor was constructed in four stages; 

2.9.1 The Coil : 

To minimise weight, the coil was 'formerless' and made of 

varnished aluminium wire (127pm dia', 3.5m long). The central core of 

the motor was used as the former for winding the coil. In order to 

produce an even spacing between the coil and the core, insulating tape 

was wound around the core, three layers on the sides and five layers 

on the top and bottom. Two pieces of perspex were screwed onto the 

front and back of the core to prevent the windings from slipping off. 

Two layers of windings were made, approximately 50 turns in all, 
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leaving about 3.5 cm trailing for later connection to the driving 

electronics. Araldite, diluted in benzene was spread over the winding 

making sure that it flowed between the two layers. The pole pieces 

were coated in two layers of insulating tape and the motor was 

assembled. The motor and coil were then baked at 600C for four hours. 

When the glue was heated it flowed into the coil and any air bubbles 

were displaced. The motor was disassembled while still hot so that 

the insulating tape remained soft and easy to remove. 

2.9.2 Motor Position Detector : 

The lamp and photodiode housings were made of aluminium and 

contained the optics required to direct a beam of light onto a mirror 

attached to the motor coil and back onto a pair of photodiodes. The 

filament of a6 volt, 0.3 amp bulb in the lamp housing was brought to 

a focus at the level of an objective lens after passing through a 

square aperture (2.11a). The aperture was focused on the photodiodes 

after being reflected by a mirror attached to the motor coil. The 

image of the aperture on the pair of photodiodes (PIN spot 2D, United 

Detector Technology, California, U. S. A. ) was the same size as one of 

the photodiodes. The lamp housing was adjusted so that, when the 

motor was switched off, the image of the aperture covered half of each 

of the two photodiodes. Movement of the coil altered the angle of 

the mirror and caused the aperture image to move more onto one or 

other of the two photodiodes. The electrical output from the 

photodiodes was amplified and used to measure the position of the 

coil. 
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FIGURE 2.11 : 

a) Arrangement of the photo-detector for the length position 

signal 
b) Construction of the coil, pyramid and pole pieces. 

[(a) and W redrawn from Ford et al., 19771 

c) The servo-loop electronic circuit; amplifiers 1,2 &3 

are low noise operational amplifiers (LF356BN); amplifier 4 
is a D. C. -coupled audio amplifier (CE 1004, Crimson Elektrik). 

The photodiodes were PIN Spot 2D (United Detector Technology). 
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9. i. 9. I-3-C, 2il_and Pvramid_Ass2mblv_: 

The coil was mounted between the pole pieces of a powerful 

horseshoe magnet. The mounting was made from crossed strip-hinges 

glued to aluminium pegs that were fixed to the top and bottom of the 

coil, with araldite (see Figure 2. Ilb). The strip hinges were bolted 

to the motor housing. The coil, suspended on the mounting hinges was 

able to move freely between the pole pieces. A 6mm square of mirrored 

cover-slip (mirrored by Brashear's process) was glued to the lower 

mounting peg and deliberately off-centered to avoid distortion of the 

reflected image on the photodiodes (Figure 2.11a). 

Dried grass stems coated in araldite were glued together on a 

plasticene former in the shape of a pyramid. The base of the pyramid 

was glued to the aluminium coil. 

Finally, a sharpened tungsten wire hook was glued to the tip of 

the pyramid with acrylate glue. 

2.9.4 The Electronics to Drive the Motor : 

An electronic servo-loop was built which accurately controlled 

the position of the length motor. The position signal from the 

photodiodes, and a signal proportional to the velocity of the motor 

movement was compared with the input signal. The difference was 

amplified and fed to a D. C. -coupled audio amplifier (CE1004, Crimson 

Elektrik, Leicester, U. K. ) which had a power output of up to 100 W. 

The output of this amplifier was used to drive the motor (see Figure 

2.11c). 

A 'position out' or 'length signal' from the photodiode amplifier 

gave a measure of the length hook position. 
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? 
-1-9-L§-M2t2!: -Etrf2rTance : 

The rise time of the motor was improved by using a square-wave 

length signal input with a 200ps ramp at the start and end. Using 

such an input signal the fastest measured rise time was 350ps. The 

electrical components of the servo loop were carefully adjusted to 

obtain a fast rise time and ensure that the length signal did not have 

spurious oscillations. The length signal recorded the movement of the 

mirror attached to the motor coil. An experiment was performed to 

check that the movement of the hook attached to the tip of the pyramid 

was not different from this signal. A light beam was directed from 

above so that the tip of the pyramid cast a shadow on a pair of 

photodiodes below. The pyramid was displaced using a micromanipulator 

and the signal from the photodiodes was found to be linear over a 

narrow range of movement. The signal from these photodiodes was 

compared with the length signal (see Figure 2.12a) using a storage 

oscilloscope. The length position signal gave a reliable measure of 

the position of the tip of the pyramid. 

The length motor was calibrated by changing the D. C. offset (see 

Figure 2.11c) voltage to the servo-loop and measuring the hook 

movement with a travelling microscope. The length position output 

voltage was plotted against the hook movement, measured with an 

eyepiece graticule (Figure 2.12b). The sensitivity was usually about 

150pm/V, with a noise level of 0.14pm 

2.10 DATA ACQUISITION : 

An IBM Personal Computer (PC) was used both to generate length 

signals to drive the motor and to collect, store and analyse data that 

was captured by the digital storage oscilloscope (Tektronix 5223). 

The oscilloscope had front panel controls to set the amplifier gains 
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Length trace 

Hook movement 

(a) 

10 
TIME (ms) 

(b) 

FIGURE 2.12 

The hook movement (monitored by a pair of photodiodes which 

registered the movement of the shadow cast by the hook)was compared 

with the length trace (produced by the circuit of Figure 2.11c) 

in 2.12a. This is discussed in the text. 

2.12b shows the length motor calibration (here approximately 

1 OOI. 1m/V) T, 
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and time base. A General Purpose Interface Bus (GPIB) enabled rapid 
transfer of parallel data to and from the IBM PC. 

The IBM PC was fitted with an interface card (Labmaster, Tec-mar. ) 

which had the necessary timers and digital to analogue converter to 

drive the motor and trigger the oscilloscope. There was also a GPIB 

board (Central Equipment Corporation) linked to the digital 

oscilloscope. 

Muscle experiments were controlled with a BASIC progrwn "MP. BAS" 

which made calls to various machine code routines to transfer, store 

and plot data rapidly (based on Drew, 1984). 

An additional machine code routine was written to plot work loops 

and calculate the loop area. Dr D. C. S. White also made numerous 

modifications to the program. Most importantly a routine was written 

to convert the tension data into a form suitable as input to an 

exponential curve fitting program (Provencher 1976). The length and 

tension data received from the oscilloscope were in binary numbers 

(proportional to the voltage) sampled at regular time intervals (see 

Section 2.11.1, below). 

Every stored data trace (the result of a single sweep of the 

oscilloscope screen) was accompanied by an initial data set and the 

experimental parameters referring to that particular trace. 

Prior to any new set of experiments a test program "SETUP. BAS" 

was run to test the motor performance and make necessary adjustments 

to the servo-loop controls. 

65 



0 
10 
c 

a 

Test run of DISCRETE 
A- 10 + O*is-(-O. OJLt) - B*a-(-n-it: l 

0 20 40 60 so Loa 120 140 160 ISO 200 

Time 
DATA Pit (DISCRZTR) 

14 

13 

12 

11 

10 

9 

8 

7 

14 

13 

L2 

11 

10 

7 

Test run of DISCRETE 
A- 10 + 5*9-(-O. Olt) - S*e-(-O. lt) 

FIGURE 2.13 

Simulated data sets were used to test the effect of "windowing" 

on the quality of fit produced by the program DISCRETE 

(Provencher, 1977). (a) shows that a poor fit to the data is 

obtained when the end point of the slowest transient is not 

represented in the data set. (b) shows a much better fit to the 

same data set but on a slower time scale. 

(a) 

(b) 
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Mechanical Kinetics 

Stored data traces were retrieved and displayed on the computer 

screen. The tension transient data were 'windowed' between two time 

points and analysed by a curve fitting program DISCRETE (Provencher, 

1976), on the university mainframe computer (VAX). The program fits 

data as the sum of upto 5 exponential processes (either rising or 

falling). The windowing of the transient tension data was important 

in determining how good the 'best f its' to the data were. Simulated 

data sets were used as test input files. The most important feature 

was that the data set should include points near to the end-point of 

the slowest exponential process. Results from test runs of the 

program DISCRETE made on a simulated data set are shown in Figure 

2.13. 

2.11.2 OXygen-Exchanoe-: 

Analysis of the fractional distribution of 180 labelled phosphate 

from oxygen-exchange experiments was made with a program written by 

Dr. M. R. Webb (N. I. M. R., Mill Hill). This program was converted to 

VAX BASIC so that data could be analysed at the University of York. 

The program provides a least squares 'best fit' to modelled 

distributions. 

2.12 MEASUREMENT OF WHOLE FIBRE ATPase ACTIVITY :_ 

The specific ATPase activity of skinned fibre preparations was 

determined in terms of ATP molecules hydrolysed per myosin head per 

second by measuring two parameters; 1) the amount of myosin Sl in the 

fibre; 2) its rate of ATP hydrolysis. 
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9,1g. j_Eýqimation of the Fibre_MYosin_Content :. 

Calibrated gel densitometry, was used to estimate the total 

myosin content of the f ibre. Fibre samples were electrophoresed on 

SDS polyacrylamide gels together with 5 rabbit myosin standards. The 

integral absorbance of the stained myosin heavy chain bands was used 

to estimate the amount of myosin in the fibre samples. Details of the 

procedure are given below. 

2.12.2 S!! mje_Prepargion: 

Rabbit myosin standards were prepared from a rabbit myosin 

preparation kindly donated by Drs. White and Kyrtatas. The myosin was 

estimated by measuring the intrinsic protein absorbance at 280nm. An 

aliquot of the myosin was optically scanned against a deionised water 

blank in quartz cuvettes over the range 340-200nm (Shimadzu UV-240). 

The extinction coefficient of a 1% myosin solution is 5.3 (eg. lmg/ml 

has an A2so of 0.53 A. U. ). The molecular weight of myosin = 520 kDa 

(Margossian & Lowey, 1982). Because the ATPase activity of myosin 

resides in the S1 heads of the molecule one mole of myosin contains 

two moles of active sites. Therefore one microgram of myosin contains 

3.85 pmoles of active sites. 

Fibre mass was calculated by assuming that the concentration of 

Sl was the same as found in Lethocerus (0.2mM, Chaplain & Tregear 

1966) and that the density was approximately the same as water i. e. 

re 2x 108 pmole Sl =I kg wet weight. This cT ersion factor was used to 

normalise the measured power outputs to W/kg wet weight. 

Skinned muscle fibres and rabbit myosin standards were dissolved 

in 20pl of sample buffer (see Table 2.2 below) and boiled for 5 

minutes - 
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DTT 1.5% W/V 
SDS 2.0% W/V 
Tris 25mM 
Glycerol 10% V/V 
Bromophenol blue (Sigma) 30pg/ml 
pH 6.8 

Table 2.2 
Constitution of the SDS sample buffer. 

The samples were loaded onto a polyacrylamide gel together with a 

range of myosin standards to provide an internal calibration. The 

range of fibre sizes used here was from 0.5-3.5pmoles (SI/fibre 

preparation). The myosin standards loaded onto the gel were also in 

this size range. 

1 

2.12.3 Polyý! cryam ide Gel-Electrophoresis 

A two phase gel system was used, consisting of a stacking gel and 

below it a separating gel. The stacking gel had 15 wells into which 

the samples were loaded. The gel was run at a constant 200 Volts, for 

about 4 hours, on a slab gel electrophoresis apparatus (LKB 2001). 

The buffer system used was the same as Laemmli (1970). The gel was 

stained with Coomassie Brilliant Blue R (Sig*ina) and destained with 10% 

acetic acid. The constitution of the solutions is given in Table 2.3. 

Stacking-gel : 
Acrylamide* 5% (W/V) 
Tris 125mM 
SDS 0.1% (W/V) 
Ammonium persulphate 2.3mM 
TEMED 6.4mM 

pH 6.8 

ýfpýq: gjing-gfj-: 
Acrylamide* 12.5% (W/V) 
Tris 375M 
SDS 0.1% (W/V) 
Ammonium persulphate 1.5MM 
TEMED 4. OmM 

pH 8.65 

(*Acrylamide = acrylamide + bisacrylm'de (39: 1)) 
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Running_bMff! 2r : 
Glycine 
SDS 
Tris 

(A. R. grade, Fisons) 

Gel staininx-solution 
Acetic acid 
Isopropanol 
Coomassie Brilliant Blue 

Gel destaining_s2lulion 
Acetic acid 

Table 2.3 

400inM 
20% (W/V) 
50inM 

In (V/V) 
25% (V/V) 
0.05% (W/V) 

10% (V/V) 

The integral absorbance of the myosin heavy chain bands was 

determined by either a linear or raster scan. The gel scanning 

apparatus (Chromoscan 3, Joyce-Loebl) was used in transmission mode 

with a wavelength filter of 546nm. The raster scans were rather 

unreliable, the chief cause of this was gel movement during the course 

of a scan. The glass plate on which the wet gel rests is moved very 

rapidly under the light beam and by the end of a scan the gel had 

often moved from its original position. Much more reproducible 

results were obtained by making a linear scan of all the myosin bands. 

The integral absorbance of the linear scan peaks was estimated by 

cutting out and weighing the peaks. 

Figure 2.14 shows that the integral absorbance of the stained 

myosin heavy chain bands is linearly related to the myosin content of 

the sample. Calibration lines were most accurate for total active 

site contents greater than 0.5 pmoles (eg. more than 0.13 pg myosin). 

2.12.4 Estimation of Skinned-Fibre ATPase Rate : 

IT--ing HPLC it is Possible to separate and assay the nucleotide 

species in a solution. There are three aspects of the HPLC method that 

make it very useful as an assay system; 1) it is very sensitive, being 

able to detect picomolar quantities of nucleotide, 2) it is possible 
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FIGURE 2.14 

Gel densitometry calibration graph; the integral absorbance 

of the myosin heavy chain band on the poly-acrylamide gel was 

estimated by performing a linear scan with a gel scanning 

apparatus (Joyce-Loebel, Chromoscan 3). The myosin standards 

were prepared from a rabbit myosin preparation kindly donated 

by Dr. Kyrtatas and Dr. White (university of York). The gel 

system and staining procedure is described in the text. 
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to assay both ADP and ATP accurately in the same sample, 3) 

estimations can be made in about 5 minutes. The importance of point 
2) is that this allows the ATP: ADP ratio to be determined. The 

calculation of the amount of ATP hydrolysed by the fibre in the 

incubation solution is independent of the sample size injected into 

the HPLC. Very small aliquots (1-5pl) could be removed (without 

worrying about pipetting errors) to estimate the rate of ATP 

hydrolysis. Sample "blanks", which had not been used for a fibre 

incubation, were estimated for background ATP hydrolysis at the start 

and end of every experiment. 

A schematic diagram of the HPLC apparatus is shown in Figure 

2.15. 

2.12.5 ExperiMental Protocol : 

Incubations were performed on the mechanical test apparatus 

designed specifically for this purpose (see above). The seven 

incubation baths were filled with known volumes of solution (see 

above) and covered with silicone oil to prevent evaporation. The 

incubation solutions for these experiments did not contain the 

creatine phosphate/creatine kinase ATP backup system. The muscle bath 

was raised so that a skinned muscle f ibre, mounted between the length 

and tension hooks, was immersed in one of the baths. After a known 

period of time (usually about 5-10 minutes) the bath was lowered and 

the muscle removed to the next incubation solution. In this way 

further hydrolysis of ATP by the fibre was immediately stopped and a 

small aliquot of incubation solution could be removed, at will, and 

assayed by HPLC. Aliquots from a control bath (with no muscle fibre 

present) were also assayed to assess the background rate of ATP 

hydrolysis. 
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By filling the baths with different incubation solutions the 

effect of different chemical environments on the ATPase rate could be 

measured. Also the mechanical state of the fibre could be altered. 

By having brief incubation times a single fibre could be used for a 

series o different experiments which negated the problem of fibre-to- 

fibre variation. 

The method by which the rate of ATP hydrolysis was calculated is 

detailed below. The catalytic site activity was determined by 

assaying the amount of myosin active sites in the fibre preparation 

(as above). 

2.12.6 Calculation of the Rate of ATP H drolysis-: 

The optical absorbance of ATP and ADP (A254) as they were eluted 

from the HPLC column (strong anion exchange, 8PSAX10p, Waters) was 

monitored on a paper chart recorder. Because the absorbance 

coefficient of ADP and ATP is similar, the amounts can be estimated 

from the integral area of the absorbance peaks. The appearance of the 

peaks was similar and the relative peak areas proportional to the peak 

height x half height width. Because the ADP retention time is less 

than ATP the half height width was smaller and a 'peak height 

adjustment' was made. The peak height adjustment was determined by 

injecting known amounts of ADP and ATP and recording at a fast chart 

speed (Figure 2.16). Knowing the peak height adjustment for ADP 

(usually a factor of about 1.4) the integral areas could be calculated 

from the ATP and ADP peak heights. 

The rate of ATP hydrolysis in an incubation bath was calculated 

as below (Scheme 2.2) : 

ATP hydrOlYsis ----- 
ADP-Peak- height- Z-1,4 

---------- M (ADP height / 1.4) + ATP peak height 
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FIGURE 2.16 

A peak height adjustment was made by measuring the half 

height width of the ADP and ATP peaks from the HPLC chart 

recorder ouput. This meant that the integral peak areas 

could then be calculated from the measured peak heights. 
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Scheme 2.2 
Calculation of the skinned fibre ATPase activity. 
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CHAPTER 3: 

KINETICS OF FLIGHT MUSCLE FROM INSECTS WITH DIFFERENT WINGBEAT 
FREQUENCIES 



KINETIC-S O-f 
-F-L-IG-HT 

MUSCLES FROM INSECTS WITH DIFFERENT WINGBEAT 

FREQUENCIES 

3.1_INTRODUCTION : 

Small insects usually beat their wings at a higher frequency than 

large insects. For energetic reasons, the wingbeat frequency is close 

to the natural resonant frequency of the wing movement, determined by 

the inertia of the wings and the stiffness of the wing mounting. This 

chapter examines how the kinetics of the cross-bridge cycle are 

tailored to the needs of insects with different wingbeat frequencies. 

The tension response to a sudden length change shows a large 

! Lejýýyfýd tension component (phase 3, Figure 3.1), whose rate constant 

(r3) determines the frequency at which the muscle can deliver maximum 

power to the wings (Equation 1.1). 

1) The rate constant for the delayed tension transient was 

determined in f ibres from insects with a wide range of wingbeat 

frequencies. It was found to be roughly proportional to the 

wingbeat frequency in the flying insect. 

2) The measured ATPase rate is related neither to the rate 

constant for tension production nor to the wingbeat frequency of 

the insect. 

3) The ATPase rate was controlled by the rate-limiting step in the 

cross-bridge cycle. This step was always slower than the rate 

constant for the delayed tension transient. 

4) Insects with widely different wingbeat frequencies have 

muscles with similar mechanical power output. 

See declaration on Page viii. 

77 



Tension transient for the common wasp, Vespa vutgaris 

120pN T 
10/0 Length 

8OpN 
(1 

40jiN 

TIME 
20 ms 40ms 60ms 8oms 

FIGURE 3.1 

Tension transient from the common wasp, Vespa vulgaris 

in response to a sudden 1% length change. 

There is a rapid tension change (phase 1) that occurs 

simultaneously with the length change followed by a rapid 

tension fall (phase 2). The large amplitude delayed tension 

(phase 3) is then followed by a slow tension relaxation 

to a new (higher) steady state tension (phase 4). 

Experiment was performed at 200C. - as described in 

Section 3.2 and 3.2.1. 

78 



The conclusion is that the rate-limiting step in the cross-bridge 

cycle, which limits the ATPase activity, follows the state in which 

maximum active tension is produced, and that a preceding step is 

faster in smaller insects, correlating with the wingbeat frequency. 

3.2 MATERIALS AND METHODS : 

A large variety of insects were obtained, they were either 

captured locally, imported or reared from culture. The range of size 

of insects was from a 12g giant waterbug to a lmg fruitfly. The 

wingbeat frequencies of the different insect species were determined 

at an ambient temperature of 250C. I was not able to induce flight in 

one species of giant waterbug,, ýtlh2cerus colossicus, the wingbeat 

frequency of a similar sized species (L.,. 
_indicUs) was assumed to be 

similar. 

Mechanical and biochemical experiments were performed on single 

demembranated muscle f ibres, or f ibres which had been pared down to a 

diameter of less than 80pm. The initial procedure for all of these 

experiments was the same : 

1) The fibres were mounted on the mechanical test apparatus and 

were immersed in a relaxing solution. Rest length was established by 

adjusting the micromanipulator, which holds the tension transducer, 

until the muscle fibre was just taut (when the measured tension was 

just zero). 

2) The relaxing solution was washed out of the bath with 

activating solution. The tension rise was measured by giving a series 

of brief pulse releases to find the zero tension baseline and/or from 

measurements made on a slow-speed paper chart record. 
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3.2.1-Transient Tension Response to 
_a_Step_Length_Change-: - --------- 

These experiments were performed at two temperatures 150C. and 

200C.. The solutions used are shown in Table 2.2b. The problems of 

neucloetide diffusion were reduced by the CP/CPK back-up system. 

The active transient tension responses to a 1% length step were 

recorded for each species. A suitable oscilloscope timebase was 

selected so that the response could be satisfactorily analysed by a 

curve fitting program. 

3.2.2 Frequency-of Maximum Power-OUtput-: 

The frequency of maximum power output was determined by length 

oscillating the muscle over a range of frequencies (at a 3% p-p 

amplitude). The power output was determined from the area of length- 

tension diagrams. The same fibre was subjected to a step length 

change and the transient tension response was analysed as above. 

3.3 ATPase DETERMINATIONS : 

3.3.1 Diffusion-Limitation Control ExptriMents : 

In the absence of a backup-system (i. e. CP/CPK), skinned fibre 

experiments rely on diffusion for the transport of ATP, ADP and Pi. 

In some instances diffusion becomes rate-limiting and controls the 

activity of the preparation. Under these circumstances the core of 

the fibre is starved of ATP and goes into rigor. The effects of this 

problem are modelled and discussed later. Control experiments were 

performed to test for diffusion-limitation. 

The most obvious sign of diffusion-limitation occurs when the 

fibre enters the 'high-tension state' (Jewell and Ruegg, 1966). 

Muscle tension rises to an unusually high level and the mechanical 

work is reduced or abolished. Experiments in which the high-tension 
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state was observed were abandoned. 

Diffusion limitation will be reduced by : 

1) raising the ATP concentration in the bathing solution, 

2) stirring the solution in the muscle bath, 

3) reducing the fibre diameter (increasing the surface area to 

volume ratio). 

Each of these factors were changed to test for diffusion- 

limitation of the measured ATPase. By using fibres pared down to 

different diameters it was possible to test if fibres from a 

particular species of insect were liable to diffusion limitation. 

Also internal controls on individual fibre preparations were made by : 

1) Monitoring the mechanical performance of the fibre, noting the 

fibre tension and mechanical power output. 

2) Incubating the fibre in solutions with a range of different 

ATP concentrations. 

3) Incubating the fibre in an unstirred and then a stirred bath. 

Control experiments were made under conditions where the fibre 

was maximally activated. Results of experiments to test specifically 

if fibres, of each species of insect tested, were diffusion-limited 

are described later. 

3.3.2 Relaxed and Fully-activated ATPase Measurements : 

The ATPase activity of demembranated muscle fibres under a 

variety of chemical and mechanical conditions was determined using 

HPLC. The solutions used for these experiments contained inhibitors 

for non-myosin ATPase activity (Table 2.2a&e) and did not contain a 
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CP/CPK back-up system. The myosin content of the fibre preparation 

was determined by gel densitometry. 

The row of seven temperature controlled baths were filled with a 

known volume of the incubating solutions. The first bath always 

contained relaxing solution and served as a wash bath to remove the 

skinning solution from the fibre. Zero length was set in this bath, 

as for the mechanical experiments (above). By moving the baths the 

muscle fibre was incubated in sucessive solutions. Fibres were 

incubated for a period of time which allowed approximately 3-5% 

hydrolysis of the total ATP. The mechanical power output of fibres 

which were length oscillated (under optimum conditions) was determined 

as above. 

The calcium activation of fibres oscillated (3% peak-peak 

amplitude) at the frequency of maximum power output was also measured. 

The concentration of free calcium in the incubating solution was 

varied in the range pCa 4.8 to pCa 8.0. Solutions were made by 

mixing activating and relaxing solutions in the ratios below (Table 

3.1). 

Ko (mls) Lo (mls) [Ca]mM [EGTA]mM pCa 
0 + 1 6.0 6.0 4.8 
0.03 + 0.97 5.8 6.0 5.1 
0.12 + 0.88 5.3 6.0 5.53 
0.3 + 0.7 4.2 6.0 6.00 
0.6 + 0.4 2.4 6.0 6.51 
0.8 + 0.2 1.2 6.0 7.00 
1 + 0 - 6.0 8.00* 

Table 3.1 
*, pCa in the absence of added calcium ' B. 00 (Portzehl et al, 1964) 

3.4 RESULTS FROM MECHANICAL EXPERIMENTS :. 

The species of insect used in this study, their measured 

wingbeat frequencies, and rate constants for the delayed tension are 

given in Table 3.2. 
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--- --------------- I 
-- ------- - ----------- - ------------ 

: 'Wingbeat r3 ( s- 1 
Species : frequency: 

(Hz) 150 C 200C 
--- --------------- - 

. 
----------- 

. 
------------- : 1) Lethocerus 

colossicus, 38* 6.2 20.4+ 1 8 
indicus 38a 12.9+ 1.1 . 

gj: iseus 44a 7.7+ 1.5 25.0+ 1.7 
---- --------------- ---- I ------ :- ----------- ------------ 
: 2) TipLaIg spp. 47ab 49.3+17.0 65.5+ 6.7 

63ab 44.2+ 2.6 
--- 

: 3) 
--------------- 

Melolontha 
-- ------- - - ---------- ------------ 

melolontha 48a 46.0 
--- --------------- -- ------- - ----------- ---------- 

: 4) 
I vUlgaris 97ab 111-8+20.3 145.2+ 7.4 
--- --------------- -- ------- - ----------- ------------ 

'5) Cý! Iliphora 

vomitoria 120ac 188.3+13.0 216.0 

--- --------------- -- ------- - ----------- ------------ 
: 6) Lu! gilia 

ceasar 140a 121.5+ 6.1 

--- --------------- -- ------- - ----------- ------ 
: 7) gg! nýus 

terrestris 150ab 135.0+49.0 202.0 

--- --------------- -- ------- - ----------- ------------ 
: 8) ALAS 

mellifera 154ab 138.0 186.0+ 9.8 

--- -------------- - -- ------ -- ----------- ------ 
: 9) ER-isy-rPhEs 

balteatus 165bc 201.0+ 3.0 443.5+48.5 

--- --------------- -- ------- -- ----------- ------------ 
: 10) Pr2s2pLiila 

funebris 180c 386.0+35.2 
! jy! 4e ii 180c 241.8+20.0 

melan2gýýEtej:. ' 200c 232.4+15.4 385.5+40.5 

--- --------------- : -- ------ - -I ----------- 
1) Giant waterbugs 2) Cranefli es 3) Cockchafer 
4) Common wasp 5) Bluebott le 6) Greenbottle 
7) Bumblebee 8) Honeybee 9) Hoverfly 

10) Fruitflies 

Method of WBF determination (See Chapter 2 for details) 

a) Sound in free-flight 
b) Stroboscopic 
c) Glued to gramophone pick-up 
*) Value for L. indicus, assumed. 

Table 3.2 

Wingbeat frequencies and mechanical rate constants for the 
delayed tension active transient (phase 3, Figure 3.1) measured at two 

temperatures, solutions as Table 2.2a&b. Values for r3 are quoted 
+ SEM, except when less than 3 determinations were made where only the 

mean is quoted. 
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3.4.1_Transient Tension Resp2pstý_12_ýj_ý12p apge in Length_: 
_gL 

Figure 3.2 shows the transient tension response for four 

different species of insect. Notice that the timebase in the four 

figures is different. The timecourse of the transient tension 

response was analysed as a sum of exponentials, and the rate constant 

of the 'delayed tension' phase (r3) plotted against wingbeat frequency 

(fwB) (Figures 3.3 and 3.4). The central data point represents the 

mean and the vertical bar the range of results. The fitted lines are 

the least squares linear regressions. A possible reason for the 

nega-tive intercept is discussed later. Relationships between the rate 

constant for tension production (n) and wingbeat frequency JWB) are 

given by: 

15 deg. C 

Ir- 
3 

20 deg. C 

Ir- 
3 

Thoracic Temp. 

1.4 . f' + constant ..... 3.1 
WB 

Thoracic Temp. 

2.2 . -f' + constant ..... 3.2 
WB 

3.4.2 FreSLuencY-of-Maximum Power OutpLit_: 

Length-tension loops and the calculated work per cycle and power 

output are shown for five species of insect in Figure 3.5. The 

length-tension plots cycle anticlockwise when the muscle is delivering 

work into the driving apparatus. The frequency of maximum power, 

fFMAX, occurs at a higher frequency than the frequency of maximum work 

per cycle, 
fWMAX (given by Equation 1.1). 

Figure 3.6 shows the relationship between r3 and fPMAX for a 

variety of insects measured over a range of temperatures. The least 

squares regression line (which was not constrained to pass the origin) 
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FIGURE 3.2 

Transient tension response to a sudden step length change. 
The experiments were performed at 15*C. according to 

Section 3.2 and 3.2.1. The numbered phases are the same 

as those in Figure 3.1 (because of the slow time base used 

in traces for Lethocerus and Tipula phases 1 and 2 are not 

clearly visible). The important point to notice is that 

the time base of the four records is different, the rate 

constant for the delayed tension transient is faster for 

the smaller insects (with higher wingbeat frequencies). 

The dots represent sampling by the digital oscilloscope 

and the solid lines (most clearly visible in the record for 

Drosophila)is the fitted line produced by the curve fitting 

program DISCRETE (Provencher, 1977). 
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CY) 
L- 

300 

200 

100 

0 

WINGBEAT FREQUENCY Hz 

FIGURE 3.3 
Relationship between the rate constant for the delayed 

tension transient (phase 3, Figure 3-1) and the wingbeat 
frequency of the insect from which the muscle fibre came. 

Rate Constant for Delayed Tension Transient 
isor 

Experiments were performed at 15'C., according to 
- 

Section 3.2 and 3.2.1. The filled squares represent the 

mean result and the extent of the lines the spread of the 

data. The fitted line is the best fit to the means. 

The species used were : 

C, I, G: Lethocerus collosicus, indicus and griseus. 

T Tipula Spp. 

v Vespa vulgaris 

Ca Calliphora vomitoria 

B Bombus terrestris 

A Apis mellifera 

s Syrphu_s ribesii 

H, Me : Drosophila hydeii and melanogaster 
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FIGURE 3.4 

Relationship between the rate constant for the delayed 

tension transient (phase 3, Figure 3-1) and the wingbeat 

frequency of the insect from which the muscle fibre came. 

Experiments were performed at 200C., according to 

Sections 3.2 and 3.2.1. The data is presented as for 

Figure 3.3 

The species of insect used were labelled as Figure 3.3, 

with the additional insects .. 
m Melolontha melolontha 

L Lucilia ceasar 

E Episyrphus balteatus 

F Drosophila funebris 
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gives: 

IC3 6.0 
. -FpmAx 

..... 3.3 

3.5_RESULTS_FROM ATPase DETERMINAT. IONS : 

3.5.1 Diffusion-I imitation Control Expfýriments : 
Lethocerus_spp. 

_(giant waterbugsl_: 

Experiments with Lethocerus only very rarely showed signs of the 

'high-tension' state (usually in very fresh fibres 1-4 days after 

extraction). One of the favourable properties of flight muscle fibres 

from the giant waterbugs is their small and consistent fibre diameter 

(70 pm) . 

Hymenoptera_(bees and wasps)-: 

My first experiments with muscle fibres from hymenopteran insects 

were always diffusion limited, they showed the high-tension state and 

produced little or no mechanical work. A contributing factor is the 

large fibre diameter in these insects (from 100-200 pm, Tiegs 1955). 

In order to produce a working preparation the fibres had to be pared- 

down to about the same diameter as a Lethocerus fibre (about 70pm). To 

test specifically the idea that large diameter fibres are prone to 

diffusion-limitation, the normalised ATPase activity was plotted 

against the calculated f ibre radius for results from Vespa_vulgaris 

preparations (Figure 3.7 ). The fibre radius was calculated assuming 

that the fibres were cylindrical and that the concentration of myosin 

Sl in the fibre is 0.2 mM (Chapl-cLin & Tregear, 1966). 1 used 

Vespý! 
_yglgaris 

in this example because this insect had a consistently 

high measured ATPase rate (from 10-20 s-1) and therefore demonstrates 

the 'worst case' for all of the insects in the study. Fibres which 

showed signs of diffusion limitation (either the 'high-tension state' 
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FIGURE 3.7 

Maximum measured fibre ATPase activity plotted against 
the calculated fibre radius (assuming that the fibres were 

cylindrical and that the concentration of myosin S1 = 0.2mM) 

The filled symbols are from experiments in which the fibre 

showed signs of diffusion limitation (low power output or the 

high-tension state). These fibres generally had lower measured 

ATPase activities. The calculated fibre radius was not always 

a reliable indicator that the fibre was subject to diffusion 

limitation (i. e. fibres in the size range 26-32, um radius). 

One experiment was performed at two different temperatures (200 

and 35'C. ) the large increase in the measured ATPase activity 

at the higher temperature implies that the fibre was not diffusion 

limited at the lower temperature. 
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or an increased ATPase activity when the incubation bath was stirred) 

are shown as the filled symbols. Fibre preparations viewed by light 

microscopy were far from cylindrical the calculated fibre radius 

cannot be used as an a priori indicator of diffusion-I imitation. 

An additional diffusion-limitation control experiment was 

performed in which a small diameter fibre was incubated at two 

temperatures, 200C and 350C. 

at the higher temperature. 

Pipiti: ýý-ifliesl_: 

The measured ATPase rate was much higher 

This finding is discussed later. 

The fibre structure in dipteran insects is not as clearly defined 

as in hymenoptera, or hemiptera (Tiegs, 1955). In all cases the muscle 

preparations consisted of pieces of muscle tissue pared down to an 

approximate diameter of 701im. Like the hymenopteran experiments the 

fibre preparations were of a variable diameter. I only observed the 

'high-tension' state once in dipteran muscle (a particularly large 

diameter Tipula preparation). In a series of experiments on 

the hoverfly, gpisyrp4ua_balteatuS (which I performed in collaboration 

with Dr. V. Kyrtatas) we measured the ATPase activity under conditions 

where the concentration of Mg. ATP was varied in the range lOmM to 

29mM (Table 2.3). The results are shown in Table 3.3. There is no 

correlation between the concentration of Mg. ATP and either the 

measured power output or the ATPase activity. This implies that the 

experiments are not diffusion limited at the lowest concentration of 

ATP used (10M). 

Summary of Diffusion-limitation Control Experiments : 

Monitoring the mechanical performance of the fibre preparations 

and incubating in a stirred and a non-stirred bath were the best 
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---------- 

Solution 
-- ----------------- 

Oscillation 
: (Table 2.3 ): Amplitude Frequency 

(mM ATP) M (Hz) 
---------- - ----------- ----------- A 29 2.4 82 

15 2.4 82 
10 2.4 82 
29 2.4 82 
29 ISOMETRIC 
29 2.4 82 

---------- -- ---------- ----------- 
B 29 2.2 70 

18.5 2.2 70 
12 2.2 70 
18.5 2.2 70 
29 2.2 70 

---------- - ----------- ----------- 
C Ko ISOMETRIC 

18.5 ISOMETRIC 
18.5 3.0 82 
29 3. o 82 
18.5 3.0 82 
18.5 ISOMETRIC 

---------- -I ----------- : ----------- I 

---------- 

ATPase 
activity 

3.2 
4.0 
3.9 
3.3 
1.6 
2.9 

3.7 
3.4 
3.3 
3.2 
3.5 

0.8 
2.3 
3.1 
2.8 
2.8 
2.6 

Power 
output 
(W/kg) 

3.2 
5.4 
5.9 
4.4 

3.8 

0.9 
1.3 
0.9 
0.9 
0.9 

2.1 
1.0 
1.9 

Table 3.3 
The ATPase activity and power output of flight muscle fibres from 
the hoverfly, FpisyrpLi!! E_balteatuS, measured under different 
concentrations ýFATP in the incubation solution. The solutions 
were described in Table 2.3, except Ko (Experiment C) in Table 
2.2a. The ATPase activities were determined from the rate of 
accumulation of ADP in the incubation solution (measured by HPLC). 
The power outputs were calculated from tension-length diagram 
recorded during the sinusoidal length oscillation. The myosin 
SI content of the fibres was measured by calibrated gel 
densitometry. 

These experiments were performed in collaboration with 
Dr. V. Kyrtatas, the data was also presented in Kyrtatas (1987). 
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internal controls for diffusion limitation. When any of the internal 

control experiments indicated that a preparation was diffusion-limited 

the measured ATPase activity and power output were excluded from the 

final data set. 

The final data set, presented in the next section, consists only 

of results from experiments which showed no sign of diffusion- 

limitation. 

3.5.2 Fibre ATPase Activities : 

Calcium activation measurements : 

Because of fibre-to-fibre variation the best results were 

obtained by performing a series of incubations with a single fibre. 

It is important to note that the activity of an individual fibre 

usually falls with time and the order in which the incubations are 

performed affect the shape of the apparent calcium activation curve. 

'Carry-over' of solution from one bath to the next can also alter the 

free-calcium ion level. 

Calcium activation of the fibre ATPase was measured for four 

species of insect. ATPase activity is shown as a function of free 

calcium ion concentration in Figure 3.8. In all the species tested 

the free-calcium level that produced half maximum activation was 

between pCa 6.0 and 6.4 (about 0.5ýM free calcium). 

Relaxed and fully-activated ATPase measurements : 

The measured ATPase activity at pCa 8 (relaxed) and while 

producing the maximum mechanical power output at pCa 4.8 (fully 

activated) is shown for a variety of insects in Figure 3.9. The data 

points represent the mean results and the vertical bars show the range 

of values obtained. There is no correlation between the wingbeat 

frequency of the intact insect and either power output or fully 
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FIGURE 3.8 

Calcium activation of the fibre ATPase (during mechanical 

oscillation, 3% peak-peak) for 4 species of insect. In all 

cases the pCa for half, full activation was between 6 and 6.4. 

Experimental details are described in the text (Section 3.3.2). 

The experiments were performed at 200C. 
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activated ATPase activity, and no regression line is given. 

L§A-F-ib-r-e_-'-End-Effect' Control Exp! ýKiment : 

The ATPase activity of the portion of muscle held in the 

aluminium 'T' clips was measured. Five Vespa fibres were crimped and 
the f ibres were cut at the join with the 'T' clips. The Ten 'T' 

clips, containing the small amount of muscle held in the clip were 

assayed for ATPase activity in the usual way. 

The calcium activated ATPase activity was 0.9 s-I and the total 

myosin content of the muscle held in the clips was 2.63 pmoles of SI. 

3.6 DISCUSSION : 

3.6.1 Treatment of Errors : 

One of the aims of this chapter is to compare rate constants 

obtained from mechanical and biochemical experiments. These 

experiments are subject to different sources of error, which are 

worthy of discussion before the data itself is discussed. 

Mechanical rate constants measured from tension transients are 

independent of the amount of muscle used, a single myofibril or the 

whole muscle will produce the same rate constants when tested (but 

with different amplitudes). However, the rate of ATP hydrolysis of a 

single myofibril will be only a small fraction of the whole muscle. 

The rate constant for ATP hydrolysis was stated as the number of ATP 

molecules hydrolysed, per myosin head, per second. This assumes that 

all of the myosin in the skinned fibre preparation is active. The 

best evidence that most of the myosin molecules in a skinned muscle 

fibre are able to cycle is that the amount of active tension produced 

by skinned fibres is very near the values for live fibres (Pringle and 

Tregear, 1969). 
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M-. L? -9j: r2ra_-in--the_Myosin Estimations : 

the gel densitometry is subject to a constant 'noise' (e. g. 

some constant loss of protein or uneven staining/destaining of the 

gels) then myosin determinations on very small fibres will have a 
large percentage error. For this reason I excluded data from fibres 

with a myosin content estimated below 0.5 pmoles SI. Fibres below 

this size gave extremely variable data which I attributed to the large 

errors in the myosin estimations. 

_tl_grrors 
Caused_by_Diffusion-Limitation 

I have modelled the passive diffusion of nucleotide in a manner 

similar to Cooke and Pate (1985) but with the important additional 

effect of bath stirring. The differential equations governing the 

rate of diffusion of a chemical into an infinitely long cylinder have 

been solved (see e. g. Carslaw & Jaegar, 1959). For a muscle fibre in 

steady-state there will be a concentration gradient through the fibre. 

The concentration at a given radius is given by : 

C(r) = C(o) -B (a2 - r2) 

4D 
Where : 

3.4 

C(o) = concentration of chemical outside fibre (M/m3). 
C(r) = concentration at radius r (M/m3). 

a and r= radius of fibre, given radius (m). 
B= rate of use of chemical (M/m3/s). 
D= rate of diffusion of chemical (m2/s). 

For a fibre incubated in an unstirred bath the concentration of 

ATP at a given distance from the fibre is given by : 

C(r2) = C(ri) -B az. ln(ri/r2) 
2D 

3.5 

C(ri )= concentration at a distant point, ri (equal to that of 
the bathing solution) 
C(r2) = concentration at a given innner radius r2 , eg. fibre 

radius. 
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Glyn and Sleep (1985) found that ATP binds very tightly to myosin 
in skinned rabbit muscle fibres. The Km for ATP binding was found to 

be about 17ýM. The following model makes the approximation that the 

ATPase rate is unaffected until the concentration is zero. 

Figure 3.10 shows the concentration gradient through two fibres, 

one with a low ATPase rate and one with a high ATPase rate, both 

bathed in an unstirred solution. We ran see that the ATP 

concentration has fallen to zero in the centre of the second fibre 

(the 'rigor core' described in Section 3.3.1); the second fibre is 

diffusion-limited and its maximum measurable ATPase rate (Bmax) is 

given below under conditions when the bath is perfectly stirred and 

when it is not stirred : 

Stirred : 

Bmax = 4D. C(o) 3.6 
aý2 

Unstirred : 

Bmax = ---- 
4D. C (ol 

----- 
3.7 

a2 + 2aý. In(ri/a) 

Notice that the measured ATPase activity (Bmax) is independent of 

the intrinsic activity (B) in a diffusion-limited fibre. Another 

point to notice from Equations 3.6 and 3.7 is that the measured ATPase 

activity (Bmax)p of a diffusion-limited fibre, is increased by 

stirring the bath, changing the concentration of ATP in the bathing 

solution or reducing the fibre diameter. 

The diffusion coefficient (D) is directly proportional to the 

absolute temperature. The finding that the ATPase activity of a fibre 

measured at two temperatures (Section 3.5.1 - Hymenoptera) showed a 
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The concentration gradient of ATP through the bathing solution 

and muscle fibre in an unstirred muscle bath. Two different 

intrinsic ATPase activities have been assumed. The centre of 

the fibre with an intrinsic activity of 20s- 1 is starved of ATP 

and is therefore in rigor. The degree of bath stirring will 

affect the shape of the concentration gradient in the incubation 

solution. Increased stirring will raise the concentration of 

ATP at the fibre surface. 

The fibre radius was assumed to be 40)1m in this example and the 

diffusion coefficient was taken as 1.2 x 10- 1? 
m2s-1 ) and the 

concentration of myosin active sites within the fibre as 0.2mM. 
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marked increase with temperature, is good evidence that the measured 

activity at the lower temperature was not diffusion-limited. 

3.6.4 End-Effect Errors : 

The part of the muscle fibre held in the 'T' clip contributes 

little to the ATPase activity (being enclosed in the foil it will 

almost certainly be diffusion-limited, and not accessable to 

mechanical activation). The results from Section 3.5.3 indicate that 

the 'T' clips contain about 0.5 pmoles of SI, and that this protein has 

only one tenth of the maximum activity. The average fibre size in all 

experiments was about 1.5 pmoles Sl. The muscle in the 'T' clips, 

with low activity, causes a maximum underestimate of the ATPase 

activity of 50%. No correction was made for this source of error in 

the data presented, because of the difficulty in assessing the error 

in any individual experiment. 

3.6.5 TeLnperature and Phosphate_Concent ration Fluctuations - 

The temperature in the muscle bath used for mechanical 

experiments (measured with the thermistor probe used for thoracic 

temperature measurement) showed brief fluctuations of up to 10C. 

although the mean value was well regulated. This is probably due to 

air currents causing sudden, evaporative cooling. The rate constant 

of the delayed tension transient is very temperature sensitive (Qlo = 

2.9, Chapter 6). Because the mechanical measurements are made over a 

brief time scale they could be subject to a maximinn error of '-10% 

(caused by a IOC. temperature fluctuation). 

The rate constant of the delayed tension transient is dependent 

upon the concentration of phosphate (White and Thorson, 1972). The 

amount of product phosphate accumulating in the skinned fibres 

will alter the rate constant. Effects of this unpredictable variation 
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in phosphate concentration could have been ameliorated by including 5- 

lOmM phosphate in the incubation solution (further accumulation of 

phosphate then has little effect; White & Thorson, 1972). However, 

the delayed tension transient amPlitude is dramatically reduced by 

phosphate (White and Thorson, 1972). Inclusion of millimolar 

phosphate in the incubation solution would have reduced the signal to 

noise ratio in the delayed tension transient records from small 

insects. 

The ATPase measurements were made in an incubation bath that was 

covered with silicone oil. The layer of oil prevents evaporative heat 

loss and confers temperature stability. Also ATPase measurements are 

made over a period of several minutes and are representative of the 

mean bath temperature. 

3.7 THF MECHANICAS PERFORMANCE OF FLIGHT. MUSCLE FROM' DIFFERENT INSECTS - 

For all the species tested the maximum power output occurred at a 

lower frequency than -the wingbeat frequency in the intact insect (see 

Table 3.4, below). 

Species fPMAX fw B 

Lethocerus_griseus 8 44 
T-ipmlýý spp. 17 50 
Y22pý-Ymlorris 30 100 
Apis mellifera 40 160 
gpisyrpLuý balteatus 75 165 

Table 3.4 

Table of measured frequency of maximum power output 
(fpmAx), at 200C. and measured wingbeat frequency (fwB), 

at an ambient temperature of 250C. 

The major explanation for this is temperature. The mechanical 

measurements on the single, skinned f ibres were made at low 

temperatures (15'C. and 200C. ) to minimise problems of nucleotide 
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diffusion across the fibres. However, the wingbeat frequencies were 

measured at an ambient temperature of 250C. Further, the thoracic 

temperature in many insects is known to be raised during flight; this 

is true particularly for the larger insects. The thoracic temperature 

of flying water bugs is 400C (ý.,. 
_indicus, and L. 

_griseus see Chapter 

6), of the bees ýpis and Bombus is 390C and 400C respectively 

(Heinrich, 1974 and 1979) whereas for the small glabrous insects I 

found values of 270C in Tipula and 290C in Vespa. If the rate 

constant r3 were measured at the f light temperature the effect would 

be to reduce the intercept of Figures 3.3 and 3.4 by raising the 

points for larger insects with lower wingbeat frequencies more than 

for the smaller insects with higher wingbeat frequencies. 

If the flight muscle is to develop its maximum, specific power 

output (maximum power weight for weight) in the living insect then 

fPMAX should coincide with the wingbeat frequency. From Equations I 

and 3 we find : 

15 deg. C Thoracic Temp. 

T, 0.23 . T' + constant (8) 
PMAX WB 

and from Equations 2 and 3 we find : 

20 deg. C Thoracic Temp. 

-f 1 0.37 . f' + constant 
PMAX WB 

The constant of proportionality in Equations 8 and 9 will 

approach unity if the temperature difference between the mechanical 

experiments and flight is taken into account. However, there remains 

a discrepancy in the performance of the flight muscle from the small 

dipteran insects whose thoracic temperature in flight is close to 

ambient (250C. ). Another factor which may affect the frequency of 

maximum power output is the waveform of the length changes. The 
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'factors determining the form of the wingbeat are not clearly 

understood but, the motion at the wingtip is often not sinusoidal 
(Miyan and Ewing, 1985), the waveform used to measure power output in 

these experiments. Non-linearities in the transient tension response 
(asymmetry in the response to stretch and release) may limit the work 

produced at high frequencies. The more complex length change waveform 

in vivo might extend the frequency range over which the muscle can do 

work. 

The relatively constant power output and ATPase activity measured 

in species of insect with widely differing wingbeat frequency requires 

that the work per oscillatory cycle in the flying insect be smaller in 

insects with higher wingbeat frequencies. A theoretical study 
89 

(Pennycuicý/Rezende, 1984), based on the energy available from 

mitochondria, suggests that insects with fibrillar muscle should have 

higher mass specific power output with higher wingbeat frequencies, 

requiring the work per cycle to be independent of size. This is 

contrary to the findings here except for Vespa. 

Previous estimates of power output have frequently measured the 

oxygen consumption by the flying insect. The rate of oxygen 

consumption by unrelated species of insect has been measured many 

times (Figure 3.11, from Kammer & Heinrich 1978); no clear 

relationship between power input and insect size is apparent from 

these studies. It is probably not correct that mass specific oxygen 

consumption scales with either mass or wingbeat frequency for insects 

in general. A systematic study of insects of different size, a study 

of the oxygen consumption in hovering euglossine bees, which have 

fibrillar flight muscles, (Casey et al., 1985) showed that the mass 

specific rate of oxygen consumption is much greater in smaller bees. 
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FIGURE 3.11 

Previous studies show that there is no correlation between 

the wingbeat frequency and the rate of oxygen consumption 

by a wide variety of flying insects. (data collected by 

Kammer and Heinrich, 1978). Symbols represent the measured 

oxygen consumption (converted to equivalent mechanical 

power output assuming 20J/ml of 02 and 20% efficiency) 

plotted against the wingbeat frequency of the insect. 
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Perhaps in a restricted group of closely related insects it is 

possible that the specific power output does vary with wingbeat 

frequency. Some of these ideas are discussed in more detail later 

(see Chapter 6). 

3.8 A MINIMAL CROSS-BRIDGE SCHME 

When an activated fibrillar muscle fibre is held at a fixed 

length the cross-bridge cycle settles to a steady-state. The 

concentrations of the intermediaries in the biochemical pathway are 

fixed and there is constant a flux through the pathway. The flux 

through the pathway is controlled by the rate-limiting step which 

determines the ATPase activity of the muscle. The tension that the 

muscle developes depends upon two factors; the number of attached 

cross-bridges and their distortion. If the muscle fibre is stretched 

suddenly, the steady-state is perturbed and a relaxation to the new 

steady-state occurs. The transient tension response reflects changes 

in cross-bridge attachment and/or conformation. The best explanation 

of the tension transient phases (shown in Figure 3.1) is given by 

Thorson and White (1983). 

Phase I: The elasticity of the attached cross-bridges produce a 

tension change that is roughly proportional to the length change and 

occurs simultaneously with the length change. The tension change for 

a given length change (or stiffness) is dependent upon the number of 

attached cross-bridges at the moment before the stretch. 

Phase 2: The increased tension in the attached cross-bridges 

places a constraint upon the bridges. The cross-bridges shift so as 

to relieve the constraintl leading to a transient fall in tension. 

The 'shift V could be either cross-bridge detachment (Podolsky et al., 
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1969) or a conformational change in an attached state (Huxley & 

Simmons, 1971). Thorson and White (1983) provide experimental 

evidence which supports the latter of these two possibilities. 

Phase 3: Insect muscle is activated by stretch; both the cycling 

rate (ATPase) and the tension are increased by stretch. The rate 

constant for the delayed tension transient will be the sum of the 

forward and reverse rate constants leading to the tension generating 

state. If the tension generating state is to be significantly 

populated at steady-state the forward rate constant must be large 

compared to the reverse step. 

The measured maximum ATPase rate, in this study, was always 10 

to 100 times slower than the rate constant for the delayed tension 

transient. With the exception of Vespa there is no significant change 

in the fibre ATPase activity with wingbeat frequency. The rate 

constant leading to the tens ion-generating state in the cross-bridge 

cycle must be relatively fast and correlate with the wingbeat 

frequency of the insect. The rate-limiting step is slower and must 

(if the tension generating state is to be sufficiently populated) come 

after the first tension-generating state and is not correlated to the 

wingbeat frequency of the insect. The findings presented in this 

chapter lead directly to the minimal model of the cross-bridge cycle 

shown in Scheme 3.1. 

Experiments performed in the following chapter (Chapter 4) 

provide information about which states in the biochemical pathway may 

be tension generating and which step is likely to be rate-limiting for 

the cycle. The point in the cross-bridge cycle at which stretch 

activation may act is also discussed. 
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SCHEME 3.1 

A minimal cross-bridge model; States 1 (weakly attached) 

and 4 (detached) are myosin states with low affinity for 

actin; states 2 and 3 are tension generating myosin states 

with high affinity for actin. The rate constants between 

the weak binding states are assumed to be rapid compared 

to the other rate constants in the cycle. The equilibrium 

constants are such that the cycle is traversed clockwise. 

The two strong-binding states are designated "high tension" 

and "low tension" to denote the tension exerted by a cross- 

bridge in those states in the isometric muscle. Stretch 

activation acts to change the rate constants of step 1 or 2i 

the rate constants of step 2 must correlate with the wing- 

beat frequency of the insect. SteP 3 is rate-limiting and 

does not correlate with the wingbeat frequency of the insect. 

108 



CHAPTER 4: 

THE ATPase ACTIVITY OF FIBRILLAR FLIGHT MUSCLE FROM THE COMMON WASP 

, 
VESPA VULGARIS PROBED BY PHOSPHATE WATER OXYGEN EXCHANGE 



THE-ATPase_ACTIVITY OF FIBRILLAR MUSCLE FROM THE COMMON_WASP, 
_ 

VESPA__VULGARIS PROBED BY PHOSPHATE-WATER_OXYGEN-EXCHANGE. 

(The experiments described in this chapter were carried out in close 
collaboration with the following people : Dr. John N. Lund and Dr. 
Martin R. Webb* (University of York, and *N. I. M. R. Mill Hill, London)] 

4.1 INTRODUCTION : 

When ATP is hydrolysed by muscle, an oxygen atom from the solvent 

water becomes bound to the product phosphate. The hydrolysis step in 

the cross-bridge cycle is freely reversible, and the phosphate is free 

to rotate in the catalytic site. From one to all four oxygen atoms 

can be exchanged between the phosphate and the solvent water before 

the phosphate is finally released. This chapter describes experiments 

in which skinned muscle fibres hydrolyse ATP in the presence of water 

whose oxygens are labelled (180). By measuring the distribution of 

labelled oxygen atoms on the product phosphate, information is 

obtained about the rate constant for the reverse hydrolysis step and 

rate constants controlling phosphate release. This method is called 

"oxygen exchange". In a series of experiments I have examined the 

pattern of oxygen exchange in muscle fibres from the common wasp, 

yf§pg ylllgMis, under a variety of different conditions. These 

results are compared to other published results from oxygen exchange 

experiments on flight muscle from the giant waterbug If1hocerus and 

vertebrate skeletal muscle (Lund et al., 1987,1988, Hibberd et al., 

1985 and Webb et al., 1986). 

1) When the muscle is relaxed or only partially activated, a 

minimum of two hydrolysis pathways are required to model the 

distribution of labelled oxygens on the released phosphates. 
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2) The pattern of exchange in fully activated muscle fibres is 

typical of a single pathway for ATP hydrolysis. This means that 

the myosin molecules are behaving in a uniform fashion with 

respect to oxygen exchange. 

3) Results from Vespa show a great similarity to those of 

Lethocerus but the pattern of exchange is consistent with the 

release of phosphate being ten times faster in Vespa. 

4) The ATPase rate in Ve§pa is about ten times faster than in 

Lethocerus. 

5) The oxygen exchange results can most easily be explained if 

the steps controlling phosphate release are limiting for the 

ATPase rate, being about ten times faster in Vespa than 

Lethocerus. 

The conclusion is that the steps controlling phosphate release 

are rate-limiting for the cross-bridge cycle. Therefore, the state 

preceZing phosphate release is the first tens i on-generat ing step in 

the cross-bridge cycle. In vertebrate muscle the first attached state 

following ATP hydrolysis is a weak-binding actomyosin. ADP. Pi 

(AM. ADP. Pi) state, in which no tension is developed, and which is in 

rapid equilibrium with the corresponding detached (M. ADP. Pi) state. 

If this is also the case for insect flight muscle then the first 

tension-generating process must be an isomerisation between two 

AM. ADP. Pi states. 

1. I_Oxy9Lm-9HchM9fL *- 

Exchange of oxygen atoms between the solvent water and terminal 

phosphate of ATP during hydrolysis provides a method for studying the 
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reaction kinetics by a steady-state technique. Product release (ADP + 

Pi) does not occur instantaneously following hydrolysis and for a 

moment there is a chance for the products either to reform in the 

catalytic site (reversal of the hydrolysis step) or to be released. 

The degree of oxygen exchange is a statistical function of 

probabilities for phosphate release and reverse hydrolysis. 

There are three reasons why oxygen exchange can be measured in 

intact muscle fibres. 

Oxygen from the solvent water always binds to the terminal 

(ejected) phosphate of ATP. 

2) The products remain in the catalytic site for some time, 

and reversal of the hydrolysis step may occur. Meanwhile, the 

phosphate is free to rotate and there is an equal probability of 

any of the four oxygens being displaced when a reversal occurs. 

3) The pattern of oxygen exchange can be measured by incubating a 

muscle fibre in 180 water and by analysing the pattern of 180 

incorporation in the product phosphates by mass spectrometry. 

Scheme 4.1 shows how the exchange of labelled (180) for 

unlabelled oxygens on the terminal phosphate of ATP comes about. The 

proportion of phosphate with 1,2,3 and 4 labelled oxygens is given in 

terms of probabilities for the phosphate release and hydrolysis 

reversal steps (p and q, resp. ) below -. 
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Scheme to describe how oxygen-exchange between 

solvent water and the terminal phosphate of ATP 
its 

arises during/hydrolysis by muscle fibres. 

p represents the probability of phosphate being 

released, q is the probability of reversal of 

the hydrolysis step. 

Filled Vs are 
18 0, open are 

16 0; E represents 

the catalytic site (this is strictly either myosin 

alone or actomyosin in muscle fibres). 

From Hibberd and Trentham 1986. 
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Proportion 

0 

0 Pi Fl p 
0 (0.75*q + p) 

o 
0 Pi F2 

(0.5*q (0.75*q + p) 

o 
Pi F3 

-p) (0-25*q + (0.5*q + p) (0.75*q + p) 

Pi F4 
P 
p (0.25*q + p) (0.5*q + p) (0.75*q + p) 

4.1 

The previous equations are simplified by expressing the 

proportions (F1 - F4) in terms of the ratio p/q, denoted by the letter 

'R' (Webb & Trentham, 1981) : 

Fl R/(0.75+R) 

F2 R/(0.5+R) * 0.75/(0.75+R) 

F3 R/(0.25+R) * 0.5/(0.5+R) * 0.75/(0.75+R) 

F4 R/R * 0.25/(0.25+R) * 0.5/(0.5+R) * 0.75/(0.75+R) 

4.2 

The theoretical distributions of oxygen label in released 

phosphate, for various values of R, are plotted in Figure 4.1. For 

values of R>1.5 and R<0.05 there is rather little change in the 

expected distribution of label with change in R. This means that the 

method of monitoring oxygen exchange is most sensitive when the 

phosphate release step is faster than 0.05 times, and slower than 1.5 

times, the rate constant for the reverse hydrolysis step. 

The actual proportions of label in the product phosphate is 

determined by conversion of the product to volatile, triethyl 
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FIGURE 4.1 

The theoretical distributions of oxygen label in the 

released phosphate, for various values of R. 

R is the ratio of the probability of phosphate being released 

against the probability of reverse hydrolysis. (see Equation 

4.2) 
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phosphate and analysis by mass spectrometry. 

4.2 MATERIALS-AND_METHODS : 

4.2.1 Choice_and Collection of Material : 

The common wasp, Yt! Epý! y-! jlgýýris, was chosen as the most suitable 

insect for this study for several reasons: 

1) The muscle preparations were very stable over long periods of 

time, producing good work loops for up to two hours. 

2) The high wingbeat. frequency (100 Hz) of this insect means that 

the mechanical rate constants are 5-10 times faster than 

Lethocerus. 

3) Relatively long lengths of fibre (2-3mm) could be mounted on 

the mechanical test apparatus. This means that sufficient 

phosphate could be collected for analysis by mass spectrometry. 

Diffusion-limitation was a major problem with whole fibre 

preparations from Vespýý flight muscle. A contributing factor is the 

large fibre diameter (1751im). Working preparations were obtained by 

paring down whole fibres to about 70ým diameter, as described in 

Chapter 3. 

The specimen used in these experiments was a locally captured 

queen, Y2§pý! 
-MM,. 

1-9Mris- The muscles were glycerol extracted and used 

after 7, and within 14 days after extraction. 

4.2.2 Mechanical-Experiments and Exptriments on The Intact Insect : 

These experiments were reported in the previous chapter (Chapter 

3); Table 4.1 siumnarises the findings for both Lethocerus and Vespa. 
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L. indicus 

Experiments on the intact insects : 
fW B 

Thoracic 
temperature 

38 Hz 

420 C. 310 C. 
(Ambient temperature = 250C. ) 

Y, yLilgaris 

100 Rz 

Experiments on single skinned muscle fibres : 
fPMAX 4 Hz 30 Hz 
fWMAX 3 Hz 25 Hz 
r3 20* s- 1 160 s-I ATPase 2* s- 1 12 s-1 (fully activated) 
Power (max. ) 5 W/kg 22 W/kg 

(Experimental temperature = 200C. ) 

* Lund et al., 1987 

Table 4.1 
Comparison of the operating conditions and mechanical 
properties of fibrillar flight muscle from Vesp2_yLijgýris 
and Lethocerus indicus (summary of data presented in 
Chapter 3. ) 

The stiffness of both Vespa and Lethocerus muscle was measured in 

three different test solutions; activating, rigor and gluteraldehyde 

fixative, and also during the course of a tension transient following 

a step-length change in activating solution. Two different methods 

were used; a step length change was performed with the oscilloscope 

set on a fast time base and tension versus length was plotted over the 

period of the length change, the gradient of this plot gives the 

stiffness; a high frequency (55OHz), small amplitude (0.1-0.2%) 

sinusoidal length oscillation was superimposed on the length signal, 

the amplitude of the tension oscillations is proportional to the 

dynamic stiffness. 

4.2.3 oxygf! La:: gx! ýhýýpg! ý_gxpeliments : 

The methods for these experiments have been described previously, 

(Lund et al., 1987 and Hibberd et al., 1985) but are included here 
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briefly for completeness. 

4.2.4 Solutions : 

Two solutions were prepared by Dr. John Lund; a 'relaxing' 

solution and an 'activating' solution. The solutions were the same as 

Table 2-2a. One ml of each solution was removed and Iyophilised (in a 

freeze drier). In order to displace 160 water present as water of 

crystal 1 isat ion, a small amount of 180 water was added to redissolve 

the dry matter and the solution was Iyophilised again. Finally, 

one ml of 180 water was added to reconstitute the solution. The final 

concentration of ATP was checked with HPLC. 

4.2.5 ExL)! ýI: imental Protocol :_ 

The experimental set-up was the same as used in the fibre ATPase 

determinations. For all incubations the muscle bath temperature was 

regulated to 200C. 

During the experiments care was taken to avoid contamination of 

the 180 solutions with 160 water. As soon as the solutions had been 

laid out in the muscle baths they were covered with a layer of dry 

silicone oil to prevent condensation of atmospheric 160 water in the 

baths. Prior to incubating the muscle in an experimental bath, the 

fibre was washed in two baths of 60pl of 180 relaxing solution, to 

remove 160 water from the f ibre. In the second of these 'wash baths' 

zero tension was established by stretching the fibre with the tension 

hook micromanipulator until the fibre was just tauL. 

Sequential incubations in the row of baths, each containing 30pl 

of activating solution, were performed under three different 

mechanical conditions; 1) isometric, 2) Oscillated at the frequency 

for maximum work, 3) released by 15-20% so that no tension was 
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developed ('slack'). In addition, two separate experiments were 

performed in relaxing solution. To reduce the incubation time for 

the relaxed treatment, 7 fibres were crimped in parallel, in a strip 

of aluminium foil (diffusion limitation was not a problem because of 
the low ATPase rate in relaxing solution). 

In all cases the muscle was incubated for sufficient time to 

produce 5% hydrolysis of the total ATP (monitored by HPLC) . This 

gave a yield of about 20 nmoles of phosphate in each bath. At the 

termination of each incubation all the solution was evacuated from the 

muscle bath and quenched with I ml of 160 water so that further 

breakdown of ATP would yield unlabelled phosphate. Also, 28 nmoles of 

unlabelled phosphate (known as 'carrier Pi') were added to each sample 

to reduce losses of the sample during triethylation, before mass 

spectrometry. 

4.2.6 Controls : 

Immediately prior to each incubation a small quantity of solution 

(5pl) was removed from the incubation bath and reacted with dry PC15 

(35pl of solution were laid out in each bath to start with). The 

phosphate produced in this way was analysed by mass spectrometry to 

deter-mine the degree of contamination of the solution by 160 water. 

This is known as the 'enrichment' control. 

A control bath (which was not used for a muscle incubation) was 

checked at the end of the experiment for spontaneous hydrolysis of 

ATP. 

4.3 RESULTS : 

4.3.1 Mechanical_Ex eriments : 

The results of experiments to measure the stiffness of Vespýý and 

jft! joýfrus muscle are shown in Figures 4.2 to 4.5. Both Lethocerus 
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and Vespa muscle has a rigor stiffness that is comparable to that of 

gluteraldehyde fixed muscle, being about 3-4 times larger than active 
isometric muscle (this is summarised in Table 4.2). Figures 4.4 and 

4.5 demonstrate stiffness changes during the course of an active 

tension transient, the amplitude of the tension oscillations give an 

estimate of the dynamic stiffness during the course of the transient. 

The stiffness of the active fibres increases during the course of the 

delayed tension transient. The stiffness of a Lethocerus fibre, 

measured during a large amplitude sinusoidal length oscillation 

(Figure 4.6), was in-phase with the muscle tension (unfortunatly no 

Y2spa fibres were available when this technique was used). 

Solution : Rigor Active 
--- Relative stiffness --- 

Species: 
Lethocerus 100% 15.5% 
Vespýý 100% 28.4% 

Table 4.2 
Relative stiffness measurements in Lethocerus 

- 
griseus, 

and Vespa vulxaris (normalised to stiffness in Rigor). 
Values ýýU-Cl-a-te-d-from Figures 4.1 and 4.2. 

4.3.2 Mechanical Performance Durinj4_the_Oxyoen-Exchanoe_Experiment : 

Both the experiments on the activated and the relaxed fibres were 

repeated and similar patterns of oxygen exchange were obtained in the 

repeat experiments. It is inappropriate to average the patterns of 

exchange from different experiments, so data for the best experiment 

only are presented herein. 

Figure 4.7 shows how the power output and work per cycle changes 

with oscillation frequency in flight muscle from the Vespa specimen 

used for this set of experiments. The frequency of maximum work was 

about 25-27 Hz and the maximum power output was obtained at 30-35 Rz. 
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FIGURE 4.2 

Instantaneous stiffness plots for L. griseus made in 

three different test solutions (active, rigor and gluteral- 

dehyde fixative; from left to right, resp. ). The stiffness 

in activating solution is only 15.5% of that in rigor or 

fixative. The stiffness in rigor is comparable to that in 

fixative. 
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FIGURE 4.3 
Instantaneous stiffness plots for V. vulgaris made in 

three different test solutions (active, rigor and gluteral- 

dehyde fixative; from left to right, resp. ) The stiffness 

in activating solution is 28.4% of that in either rigor or 

fixative. The stiffness in rigor is comparable to that 

measured in fixative. 
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ý-Lýth-oCtýLjs cotassicus 

FIGURE 4.4 

Length 

Tension 

Dynamic stiffness measured in L. colossicus during the 

course of an active tension transient. A 0.15% length 

oscillation was superimposed on the length signal 

and the resulting tension oscillations are proportional 

to the dynamic stiffness. 
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FIGURE 4.5 

Dynamic stiffness measured in V. vulgaris during the course 

of an active tension transient. A 0.15% length oscillation 

was superimposed on the length signal and the resulting 

tension oscillations are proportional to the dynamic 

stiffness. 
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Le-Lhocerus g Llseus 
Stiffness During a 

Work Loop, 

100. p N 

(2-0% P-P) 
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1% 
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(0-2 % P- P) 

Stiffness During Work Loop 
L. irrimmilla 

O, p N 

70pN/( 

Time (me) 

(a) 

(b) 

FIGURE 4.6 

Changes in the dynamic stiffness of a single L. griseus 

fibre during the course of a work loop. A low amplitude, high 

frequency length oscillation was superimposed on the length 

signal and the high frequency loops were recorded on a fast 

oscilloscope timebase. The in-phase stiffness component 

was measured and is plotted in 4.6 b. The stiffness changes 

are in-phase with the tension changes. 
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FIGURE 4.7 

Work per cycle and power ouýput calculated from length-tension 

diagrams produced by a single V. vulgaris muscle fibre oscillated 

at 3% peak-peak amplitude. The frequency at which the maximum 

. ed work per cycle is obtainjis about 27 Hz and the frequency 

for optimum power production is higher at about 30-35 Hz. 
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work loop, recorded during the oxygen-exchange experiment is shown 
in Figure 4.8; the power output was slightly above average at 26 W/Kg 

(wet weight). 

The response to a step length change is shown in Figure 4.9. The 

mechanical apparatus used for the ATPase measurements and the oxygen 

exchange experiment has long 'L' shaped hooks, and the ringing on the 

tension trace is unavoidable. The fitted rate constant to this trace 

gave a value of 226 s-I for the delayed tension transient. 

Experiments performed later (on fibres from the same individual) on 

the faster mechanical apparatus gave rate constants between 150-170s-1 
e 

(mean 158s-1). 

The measured ATPase activity under the different incubation 

conditions are given in Table 4.3. 

Relaxed 
slack 

- Active ----------------- 
isometric oscillated Power 

Expt. 1 2.2 s-I 
Expt. 2 1.5 S-1 

12.4 s-I 15.0 S-1 26.4 W/Kg 

Table 4.3 
ATPase activity and power output of VesRa yLilgýris muscle 
fibres during the oxygen-exchange experiment. 
ATPase acivities are moles ATP/mole Sl/second). 

4.3.3 Results of the MasE_ýpectrometfy_j 

The distribution of 1,2,3 and 4 180 phosphates were corrected for 

isotopic impurity (as determined by the PCIs 'enrichment' controls) 

and the peak heights were adjusted for contributions from neighbouring 

peaks. An example of these corrections (for Experiment 1, oscillated) 

is shown below (Table 4.4). 
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Vespý ýLulgarjs - Oxygen Exchange Experiment. 
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FIGURE 4.8 

Power output of the muscle fibre used in the oxygen exchange 

experiment. The power output was slightly above average 

at 26 W/kg (compared to the mean result from Chapter 3 of 22W/kg). 
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. 
Ke-SP. ý iýutgaris - Oxygen Exchange Experiment 
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FIGURE 4.9 

Transient tension response recorded during the 

oxygen exchange experiment. The tension oscillations 

occur because the long IILII shaped hooks used on this 

mechanical test apparatus were not critically damped. 

The fitted rate constant to the delayed tension transient 

was 226s- 1. 
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TEP (mass spec. peaks) 

Injection 1: 
(corrected for) 
a) 153 fragment 
b) water enrichment 
(94.59%) 
c) 155 fragment 
(157 natural abundance) 

New percentages 

CORRECTED VALUES 
Injection 1: 
Injection 2: 
Injection 3: 

MEAN 

S. E. M. 
4* (S. E. M. )2 [157 peak] 

= 0.21 

Best fit (at R 
When X2 = 1.32 

Fl F2 F3 F4 
153 
----- 

155 
-------- 

157 
---- ----- 

159 
-- 

161 163 

3.55 66.83 21.29 
------ 
6.34 

-------- 
1.49 

------ 
0.49 

0.06 69.21 22.07 6.59 1.54 0.52 

0.06 67.97 22.55 7.09 1.68 0.64 

0.19 0.00 21.93 7.09 1.68 0.64 

0.19 0.00 69-84 22.56 5.36 2.05 

69.84 22.56 5.36 2.05 
70.60 22.44 5.18 1.61 
70.44 22.64 5.11 1.62 

70.42 22.59 5.23 1.76 

0.23 0.06 0.07 0.15 

70.70 22.96 5.57 0.77 

Table 4.4 
Analysis of mass spectral data for Experiment 1. calcium 
activated, length oscillated. 

Figure 4.10 shows the corrected results of the four different 

treatments (Oscillated, strained, slack and Relaxed) plotted as 

histogram Using the equations of Section 4.2, the 'best fit' to a 

single value of R was calculated using a computer program to minimise 

the errors (written by Dr. M. R. Webb). When there was a poor fit to a 

single value of R (i. e. "relaxed" and "slack, active" data) the best 

fit produced by two values of R with independent contributions to the 

total flux were used to model the data. The errors in the fit and 

probable errors in the experimental data were assessed (see Section 

4.3.3). Minimal fits that are compatible with the data are shown in 

Figure 4.10 ('Relaxed' data from Experiment 2, 'Active' data from 

Experiment I). The calculated 'best fits' to the experimental data 
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FIGURE 4.10 

The pattern of oxygen-exchange obtained from V. vulgaris 

test when relaxed (-Ca ++ ), active (+Ca ++ ); slack, isometric, 

and length oscillated. 
fitted 

The relaxed and slack distributions can only be =4 by assuming 

two values of R with independent contributions to the total flux, 

while the distributions obtained from active, isometric and 

oscillated incubations are compatible with a single pathway 

for ATP hydrolysis. The fits to a single pathway are shown 

by the symbols (* ) in the figure. 

The values of R and their contributions to the total flux are 

given below : 

RELAXED 

ACTIVE 

SLACK 

ISOMETRIC 

OSCILLATED 

WASP (First Exprnt) 
pi (%) 

R1 Flux 

3.0 80% 

3.56 78% 

2.11 100% 
1.8 100% 
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0.03 20% 

0.17 22% 

234123412341234 
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are shown superimposed on each histogram. The values of R and the 

contribution to the total flux, for each fit is given in the legends 

to Figure 4.10. 

4.4 DISCUSSION AND CONCLUSIONS : 

4.4.1 Definition of 'R' in Terms of Rate Constants : 

In the introduction to this chapter the derivation of the 

parameter R was defined in terms of two probabilites p and q. These 

probabilities can be mapped onto a full acto-myosin pathway to give R 

in terms of rate constants in the pathway. Scheme 4.2 gives the best 

current scheme for the biochemical cycle in intact insect muscle 

(White et al.. 1987). 

I 3A 5* 567 
', AM + ATP AM. ATP AM. ADP. Pi ý=ý AM*ADP. Pi ; F=ý AM*ADP AM. ADP 

24 
M. ATP M. ADP. Pi 

3D 

Scheme 4.2 
(From White et al., 1987) 

- --------------------------------------- 

Part of the above scheme, relevent to oxygen exchange, is 

expanded below. The rapid isomerisation, step 5*, has been omitted 

for simplicity : 

hydrolysis Pi release 

k+ 5 
am*ADP + Pi amATP amADP. pi 

k-3a I 
K4 

mATP mADP. Pi 
k-3d 

Part of Scheme 4.2 
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In the equations below, rate constants for step n are designated 
k+n (forward) and k-n (reverse), with an equilibrium constant Kn. 

Pseudo first-order rate constants are designated k'+n and k'-n. 

Because the actin and myosin molecules are constrained in the 
filament lattice the concept of protein concentration becomes 

inappropria e. The rapid equilibrium (step 4) (Hibberd & Trentham, 

1986; Schoenberg et al., 1984) can be stated in terms of the 

fraction of cross-bridges in each state. Here I have termed the 

proportion in state AM. ADP. Pi, (i) and the proportion in M. ADP. Pi, 

The equilibrium constant K4 = i/j. is dimensionless (a ratio). 

The probability 'p' of phosphate release is given by the pseudo 

first order rate constant k'+5 = k+s * i. The probability 'q' of the 

reversal of the hydrolysis step may occur via two different routes 

either with the myosin bound to an actin (subscript 'a' for attached) 

or on a myosin molecule which is not attached to an actin molecule 

(subscript 'd' for detached); W-3a = k-3a * i, W-3d = k-3d * 

The ratio, R, of probabilities for reverse hydrolysis and 

phosphate release can be stated in terms of rate constants in the 

biochemical scheme (Scheme 4.2): 

or 
R= p/q = k'+5/(k'-3a + W-3d ) 

R= k+5 *i /((k-3a * i) + (k-3d * 

4.2 

4.3 

Dividing Equation 4.3 by i we have : 

R= k+5/(k-3a+(k-3d/K4)) 4.4 

Rosenfeld and Taylor (1984) found that reversal of the hydrolysis 

step (k-3) on the myosin head is not altered by the presence of actin. 

In other words k-3a 
- 

k-3d 
, equation 4 is simplified by using a 

single term k-3 to designate reversal of the hydrolysis step : 

k+s/(k-3(1+1/K4)) 4.5 

The pseudo first order rate constant W+5 for phosphate release 
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is given below : 

k'2 +s= k+ 5* K4 / (1+K4 ) 4.6 

Therefore (from Equation 4.5) : 

R* k- 3 4.7 

The value of k-3 has been determined in both insect and 

vertebrate muscle (White et al., 1986; Webb & Trentham, 1981; 

Rosenfeld & Taylor, 1984). The results for Lethocerus are similar to 

rabbit; k-3 > Jos-' and l5s-1 (resp. ). In the following discussion it 

is assumed that k-3a = k-3d = 10 S-1 for Vespa. 

The number of attached cross-bridges in active insect fibrillar 

muscle has been estimated at between 10-20% (Abbott, 1972; Pybus & 

Tregear, 1972; Armitage et al. 1972). The method used in this 

chapter was to measure the stiffness of skinned muscle fibres. 

Previous estimates indicate that about 70% of the cross-bridges are 

attached in rigor (Lovell et al., 1981, Offer & Elliot, 1978 and 

Kyrtatas, 1987). Using this value the stiffness measurements in Table 

4.2 indicate that the proportion attached in activating solution is 
Awoolvill' 

19% for Vespa muscle, under isometric conditions. Simm 
lat 

the 

equilibrium constant for the hydrolysis step (step 3) in skinned 

fibres is from 5 to 10 (Webb et al., 1986) the myosin-products state 

will predominate. This means that K4 must be < 0.19 for VespLa; I have 

taken a value of 0.1 for simplicity. 

There are two steps in the interpretation of the oxygen exchange 

data. Firstly, the pattern of exchange is fitted using a value for 

R that gives the best fit to the distribution. Sometimes a single 

value of R is not sufficient to model the data and it is necessary to 

fit the distribution assuming that there are two values for R (two 

different pathways) with relative contributions to the total flux. 
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Secondly, modifications to the simple biochemical scheme (Scheme 4.2) 

may be necessary to explain the existence of more than a single 

pathway for oxygen exchange. 

4.5 FITTING THE_DISTRIBUTION OF LABEL_: 

4.. 5.1_SiLmplfý q _Eajhj_ýýys : 

The best fit to the distribution of label will usually be made by 

assuming two values of R with different relative contributions to the 

total phosphate 'pool' (collected product). Theoretical fits are 

consistent with the data when the error in the fit is less than the 

errors in the experimental procedure. Errors in estimation of the 

mass spectrometry peaks were estimated by comparing the results from 3 

injections. Hibberd et al., (1985) suggest that the sums of squares 

of error for the fitted distribution should be less than four times 

(for each of the 4 peaks) the square of the largest S. E. M. for the 

injections (see Table 4-4). However, this procedure takes no account 

of other systematic errors in the experimental procedure (e. g. errors 

in the 'enrichment' estimate), and is the most rigorous test. 

Errors in the 'enrichment' estimate have their largest effect in 

the 161 and 163 peak adjustments. The estimate of the integral peak 

area for very small peaks is very dependent upon the baseline estimate 

for the spectrum. Given these additional sources of error, the data 

of Table 4.4 can be said to be consistent with a single value for R. 

In other words, Scheme 4.2. is sufficient to describe the oxygen 

exchange activity of the maximally activated Vespa fibres in 

Experiment 1. 

4.5.2_Complex PathwMs_: 

In order to fit 'U' shaped distributions (eg. the relaxed and 
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slack activated data presented in Figure 4.10) a minimum of two 

pathways are required. There are two explanations for why a single 

value of R is insufficient to describe the data : 

There are two distinct populations of myosin with different 

kinetics for oxygen exchange, either : 
Y, 

a) Some myosin may behave in an abeýant fashion due to loss 

of regulatory proteins (incomplete inactivation at low 

ca++). 

b) Slack activated insect fibrillar muscle may suffer from 

thick filament end-effects, caused either by thin filaments 

overlap or by thick filaments penetrating the 'Z' line (Zebe 

et al., 1968; Lund et al., 1987). 

2) There is a Gaussian distribution of rate constants on the 

attached pathway caused by a range of distortions of attached 

cross-bridges (Hibberd et al , 1985). The rate constants 

controlling phosphate release could be distortion dependent, 
&4 Kmý 

producing a whole range of R values (which are well ! Fit by two 

theoretical values of R with different contributions to the total 

f lux). 

Using the criteria of Section 4.5.1, all of the data from these 

experiments are compatible with two values of R, with relative 

contributions to the total flux. 

4.6 MODELLING THE 'R' VALUES :_ 

4.6.1 Relaxed Vespý! 
_Fjýj: 

illar Muscle :_ 

The pattern of exchange showed a "U" shaped distribution which 
ks' tbr-ý 

can not be fzi-t by any single value of R (see Figure 4.1). Good fits 

to the data are achieved by assuming two values of R with independent 
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contributions to the total phosphate product : 

------------------ 
RELA 

-- 
X 

------------- 
EDMUS 

-- 
C 

-------------- 
LE 

------------------ - ------------- - : -------------- 
Low exchange High exchange 

pathway pathway 
------------------ - ------------- - -------------- R 3.0 0.03 
------------------ - ------------- - -------------- Flux 80% 20% 

Apparent 
rate constant 
for phosphate 30s-I 0-3s--I 
release 

(if k-3 = IOS-1) 

------------------ - ------------- - -------------- 

It seems likely that the low-exchange pathway in relaxed muscle 

fibres arises from 'damaged' (Ca++, unregulated) myosin heads. The 

rapid apparent rate constant for phosphate release on the low-exchange 

pathway is typical of facilitation of product release by myosin 

binding to actin. 

It is thought that steps controlling phosphate release may 

contribute to rate-limitation in the cross-bridge cycle (Lund et al., 

1987,1988). Because phosphate release is 100 times faster for the 

low-exchange pathway the number of myosin molecules needed to 

contribute 80% of the flux is actually rather small, about 4% of the 

total amount of myosin. The measured ATPase activity of this 

'relaxed' preparation is much higher than would be expected from the 

oxygen consumption of live insects (Kyrtatas, 1987). This observation 

is reconciled by attributing 80% of this activity to a minority 

r population of abe5ant myosin molecules. 

4.6.2 Slack Activated Vespa_Fibr. illar Muscle :_ 

The poor fits to a single pathway for slack activated muscle 
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fibres are difficult to assess. The experimentally determined, best 

fit, dual values of R and their relative contributions to the 

phosphate pool were : 

--- ----------------- ------------- -- -------------- 

SLAC KMUS C LE 
--- --------------- - ------------- I- t -------------- 

Low exchange High exchange 
pathway pathway 

--- --------------- - ------------- - -------------- 
R 3.56 0.17 

--- --------------- - ------------- - -------------- 
Flux 78% 22% 

--- --------------- - ------------- - -------------- 

The muscle fibres were allowed to shorten until no tension was 

developed, shortening to 80% of rest length. The structure of the 

sarcomere in these 'super-contracted' f ibres becomes disorganised 

(Zebe et al., 1968). Any explanations of the observed pattern of 

oxygen exchange are very speculative, and of little value. I have 

attempted to model these 'U' shaped distributions in terms of multiple 

pathways (assuming that there is an even distribution of cross-bridge 

distortions, similar to the models for active vertebrate muscle (Webb 

et al., 1986)). Figure 4.11 is a flow diagram showing how the 

distribution of label in the phosphate pool was determined. Like the 

model for vertebrate muscle, the rate constants controlling phosphate 

release are dependent upon distortion. There are two important 

features of the model presented here; the equilibrium constant K4 

depends upon the distortion of the myosin head from its preferred 

attachment site (Hill, 1974), and the flux through a given pathway 

depends upon the rate-limiting step for that pathway. A point to 

notice is that in both the model used here and that of Webb et al. 

(1986) the forward rate constant, K+s is made to be distortion 

VE64% 
Independent, while k--g is lAdependent 0 distortion (this is vital to 
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Read in Parameters 
k+50 = k+5 (Zero Distortion) 
K40 = K, 
k= X- ness 

4 
Stiff 

a= X-B Stroke Distance 
kstow;: Slow Step 
Range= Range of Distortions 

New Distfl= x 

- kx2/2KT 
K4x K40 e 

- ka(x-a )/2KT 
k. Sx k., 50 e7 

k', 5x k-5x*K4x 
1+ K4x 

flux Slowest Step [kýSx gr kstow I 

Range Rx k'+Sx / k_ 3 
I Pi [abetting F, t0 F4 

Fn = f(Rx) m flux 

Flow diagram showing 

to calculate the dis 

pool. It is assumed 

equilibrium constant 

through each pathway 

Increment X 

FIGURE 4.11 

how the compuýer model worked 

tribution of label in the product phosphate 

that both the rate constant k 
+5 and the 

K4 are distortion dependent. The flux 

(each value of distortion) is determined 

by the slowest step on that pathway either k 
slow 

or k' 
+5* 
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produce the range of R values). The model of Huxley and Simmons 
(1971) contains precisely the opposite assumptions about distortion 

dependency to account for results from rapid mechanical experiments 
(Chapter 1, Section 1.3). 1 have been unable to produce the 'U' 

shaped distributions, typical of slack muscle fibres, with this type 

of model. The problem being that the low value for K4 in insect 

fibrillar muscle means that there is insufficient flux from bridges 

with high distortions (with a small value for K+s and high oxygen- 

exchange). This is perhaps circumstantial evidence that like the 

relaxed muscle there is a bimodal population of myosin molecules 

with different kinetics for ATP hydrolysis, up to phosphate release. 

4-: 6, t. 3_Isometric 
_Vespýjjjýrillar 

Muscle -, 

Calcium activation and strain activation of insect fibrillar 

flight muscle causes a parallel rise in muscle tension and stiffness 

(Figures 4.1-4.6 and White et al, 1979). The simple explanation is 

that there is an increase in the number of attached cross-bridges 

during activation. This could arise because of an increase in the 

equilibrium constant K4. The change in value of K4 will have a direct 

effect on the oxygen exchange pattern (Equation 4.5). The value of R 

should increase upon calcium activation. The value of R in well 

regulated myosin is 0.03 (see above) and upon calcium activation in 

the isometric state this value rises to about 2.1. The change in 

ATPase activity (phosphate flux) of these bridges changes from 0.3s-I 

to over 12s-1. 

In relaxed fibres the calculated apparent rate constant for 

phosphate release 0.3s-I and in calcium activated fibres = 21s-I 

(see Equation 4-7). Values of R>1.5 give rather similar looking 

distributions of label. So, there is a fair correlation between the 
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apparent rate constant for phosphate release and the rate-limiting 

step in the cycle. This implies that for both a 'myosin only' pathway 
(relaxed muscle) and a full actomyosin pathway (calcium activated 

muscle, Scheme 4.3) the steps controlling phosphate release are rate- 

limiting for the cross-bridge cycle. 

4.6.4 Fully_Q§Sýjllation Activated_Vespa_fibrillar Muscle : 

The pattern of oxygen exchange produced by oscillation activated 

Vespa fibres is easily compatible with a single value of R. The 

errors in the fit are within the errors of the experimental 

techniques. In Experiment 1 the best fit value for R=1.8, accounts 

for 100% of the flux eg. 15.8s-1 (the ATPase activity of the fibre). 

As before we can estimate the apparent rate constant for phosphate 

release k'+5 (from Equation 4.7). The calculated value for k'+s = 

l8s-1 which, like the relaxed and isometric calcium activated fibres, 

is close to the measured ATPase activity of the fibre. 

The observed single value of R implies that the rate constants 

controlling the release of phosphate from actomyosin (k'+5) must be 

the same in all cross-bridges. If rate constants on the part of the 

pathway probed by oxygen exchange are distortion dependent then a 

single value of R can arise only if the distortion of all the bridges 

is uniform. At first sight this seems consistent with Wray's (1979) 

idea that cross-bridges are in good register with potential actin 

binding sites in fully activated insect muscle fibres. However, 

closer inspection of Wray's (1979) diagram (Figure 1-6) shows that he 

has allowed cross-bridges to "reach" about l0nm (the size of the open 

circles on his diagram). This is approximately the same size as the 

cross-bridge working stroke (Huxley & Simmons, 1971). Further, a 

large proportion of the cross-bridges (i. e. about half) are completely 
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out of reach of actin sites. The dilemma here is that a distortion of 
10nm must require a large amount of energy (otherwise the cross-bridge 

working stroke would do no significant amount of mechanical work). 
There are two possible solutions : 

1) Unlike vertebrate muscle, steps controlling phosphate release 

are independent of distortion in insect flight muscle i. e. all 

actomyosin products states are weakly bound. 

2) The Wray (1979) diagram must be modified to be consistent with 

the oxygen-exchange data of both Vespa. and Lethocerus. 

There is a simple modification that can be made to Wray's 

diagram: It is reasonable to suppose that force produced by the cross- 

bridge working stroke acts axially therefore the cross-bridge must be 

constrained in this direction. If the IM-HMM "hinge", which allows 

free azimuthal movement, behaved as a "ball-and-socket" joint 

(Mendelson et al. , 1973) then cross-bridges could swivel, freely, in 

an arc. This, more restricted, range of movement would be represented 

as a semi-circle on Wray's diagram. We could take the upper half of 

the circle on his original diagram to designate this more limited 

range of movement. Even with this modification, half of the cross- 

bridges are still out-of-reach of an available actin site. These 

cross-bridges would be "silent" with respect to oxygen- exchange, but 

an adjustment should be made to the "active site" estimation. 

The rate constant for delayed tension generation in Vf§pý! is 

about 160 s-1. Since this rate constant is very much faster than the 

rate-limiting step (and k'+5), the first tension generating step must 

come before phosphate release (step 5* in Scheme 4.3). The rate 

constant for tension generation, following a step length change, will 

be an apparent rate constant given below : 
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k'+s* = (k+s*+k-5* )* K4 
(1+ K4) 

If significant tension is to be generated then k+5* >> k-5* and 

k+5* will be a rapid isomerisation with a rate constant = 700 s-I . 
Lethocerus this rate constant will be about 5-10 times slower. 

The novel property of insect fibrillar flight muscle is its 

ability to perform efficient oscillatory work. Assuming-42 KJ/mole 

In 

ATP (Kushmeric, 1983), the chemo-mechanical efficiency of Experiment I 

was 22%. As stated in Chapter 3 the frequency at which the maximum 

work is obtained from the muscle depends upon the rate constant for 

the delayed tension process. In order for efficient work to be 

performed at this frequency the rate constant for the tension 

generating step should be similar for all cross-bridges (Tregear, 

1967). This prediction is supported by the observed single pathway 

for oxygen exchange found in both fully activated Lethocerus (Lund et 

al., 1987,1988) and Vespa muscle. 

In contrast to insect flight muscle, the axial repeat distances 

of the thick and thin filaments in vertebrate muscle have a vernier 

relationship. Because of this there is always a range of cross-bridge 

distortions within the vertebrate sarcomere. Figure 4.12 shows the 

pattern of oxygen exchange for vertebrate muscle compared to 

Lethocerus and Vesp! ý. As expected the fully activated vertebrate 

muscle has a pattern of oxygen exchange typical of complex pathways 

for ATP hydrolysis. Data from both of the insects is consistent with 

a single pathway for ATP hydrolysis. 

The number of cross-bridges attached in activated vertebrate 

muscle is close to the number attached in rigor (thought to be near 
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FIGURE 4.1? 

The pattern of oxygen exchange measured in vertebrate 

skeletal muscle and flight msucle from two species of insect 

with fibrillar flight muscle. The pattern of exchange in 

vertebrate muscle is typical of multiple pathways of exchange 

while that in insect flight muscle can be modelled assuming 

a single pathway for ATP hydrolysis. 

The rate constant for the reverse hydrolysis steps is 

similar in all three muscle types. There isa range-- of values 

for the apparent rate constant for phosphate release in vertebrate 

muscle and a single value in insect flight muscle, being about 

ten times faster in Vespa than Lethocerus. 

The symbols (*) represent the fits to the data whilst the shaded 

and stripped portions of the distribution for vertebrate muscle 

are the result of a minimum of two values of R with separate 

contributions to the total flux. 
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90%). Figure 4.13 shows the parameters required to model the oxygen 
exchange data of Webb et al., 1986, using the model of Figure 4.11 
(similar to the model proposed by Webb et al., 1986). The cross- 
bridges that generate the most force in the sarcomere (the most 
distorted bridges) have the smallest value of R (highest exchange). 

The flux for these, main tension generating, cross-bridges is limited 

again by the steps controlling phosphate release (k'+5). 

In summary : 

1) The matching axial repeat distance in the thick and thin 

filaments in insect fibrillar flight muscle lead to a homogeneous 

pattern of oxygen exchange. The vernier relationship in the 

axial repeat distance in vertebrate muscle produces a complex 

pattern of oxygen exchange. 

2) The small value of K4 in insect flight muscle, means that the 

value of the term K4/1+K4 (Equation 6) will be modulated by the 

degree of cross-bridge distortion. The effect of negative 

feedback (White et al,., 1986), between sarcomeres within the 

myofibril is to make cross-bridge distortion proportional to 

muscle tension. 

3) The value of K4 in vertebrate muscle is much larger than 

insect flight muscle. The effect of distortion upon K4 expresses 

less effect upon the kinetics of other steps in the cross-bridge 

cycle. 

4) For both insect and vertebrate muscle the steps controlling 

phosphate release can be rate-limiting for the cross-bridge 

cycle - 
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FIGURE 4.13 

Graph showing the variation inthe values of K 4' k 
+5 and the 

flux with cross-bridge distortion. The cross-bridge stiffness 

was assumed to be 2.5 x 10- 
4 

N/m. 

At the point (a) on the graph the value k 
+5 xK4 M+K 4 

(i. e. k' 
+5 

) becomes the slowest step in the cross-bridge 

cycle (and is therefore rate-limiting). 

The pattern of oxygen exchange produced by this model is shown 

inset and agrees closely with the findings for vertebrate 

muscle (based on the model of Webb et al., 1986). 

The point to notice here is that for the most highly distorted 

bridges (those that generate the most force) k' 
+5 

is rate- 

limiting for the cross-bridge cycle. 

Because the value of K4 is large in vertebrate muscle the line 

showing the variation in(k 
+5 

/10) is very nearly the same as 

that for- t4x, - T, change in R. 
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STRATEGIES TO OPTIMISE THE FLIGHT-MUSCLEJERFORMANCE 

IN INSECTS OF DIFFERENT SIZES. 

1 INTRODUCTION-: 

The main constraint on the design of the insect flight 'motor' is 

that its power output per unit weight (or specific power output) 

should be as high as possible at the working frequency. Additionally, 

for an insect to fly for a reasonable length of time, the power output 

of the contractile proteins must be matched by the supply of ATP from 

the mitochondria (Weis-Fogh & Alexander, 1977, Pennycuick & Rezende, 

1984). In this chapter I have investigated the 'power density' of the 

mitochondria by measuring the total amount of the respiratory pigment 

cytochrome c in the muscles of different insects. If the power output 

of the flight muscle is limited by the supply of ATP then the amount 

of respiratory pigment should reflect the specific power output of the 

muscle. Also, if the ATP supply is limiting then the chemo-mechanical 

efficiency will have a strong effect upon the power output (Ellington, 

1985). The chemo-mechanical efficiency was measured directly in 

several different species of insect. 

The power output of the flight muscle depends not only on the 

intrinsic properties of the contractile proteins and mitochondria, but 

also the total amount of muscle present and its operating temperature. 

These two parameters were also investigated. 

One conclusion of Chapter 3 was that the rate constant of the 

tension generating step in the cross-bridge cycle is faster in insects 

with a high wingbeat frequency. Ruegg (1968) observed that the 

velocity of muscle shortening, for a given overall length of muscle, 

will depend upon the sarcomere length. Short sarcomeres, connected in 

series, have a faster shortening speed than a single sarcomere of the 
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same length. This chapter investigates whether insects with high 

wingbeat frequencies exploit this principle as well as having cross- 

bridges that produce tension more rapidly. 

5.2 RESULTS : 

5.2.1 The_Prop2l: lion of Cy, tochrome c Present in Different Muscles : 

Cytochrome c is unusual amongst the respiratory pigments in that 

it is only loosely bound to the membrane and is extracted easily by 

hypertonic salt solutions (Estabrook & Pullman, 1967). The amino acid 

sequence and molecular weight of cytochrome c extracted from moth 

flight muscle has been determined; both were very similar to that 

found for vertebrate muscle (Chan & Margoliash, 1965). The simple 

spectrophotometric assay for cytochrome c used in this study gave 

reproducible results. The amount of cytochrome, c measured in various 

muscles is shown in Table 5.1. Insect indirect flight muscle (IFM) 

contains from 3 to 10 times as much cytochrome c as vertebrate heart 

and skeletal muscle. There is no significant correlation between the 

amount of cytochrome c and the insect size or wingbeat frequency (see 

legend to Table 5.1). Levenbook and Williams (1955) found that the 

amount of cytochrome c in the thoracic muscles of young blowflies was 

correlated both with age and wingbeat frequency. The blowflies tested 

here were reared from culture and were 2-3 days old. The age of the 

other, wild, insects is not known. 

5.. 2.2 Flig]lt scle as a Pro ortion of Body Mass p --------------- 

Table 5.2 shows the proportion of IFM, per total body mass, 

measured in a variety of insects. IFM as a proportion of body weight 

is relatively constant between individuals of the same species but 

varies over a wide range between species. The proportion of IFM does 
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<WBF> Species 

Vertebrata: 
Horse heart 
Horse skeletal 
Rat heart 
Rat skeletal 

Cytochrome c g/kg Reference 
(wet weight muscle) 

Insecta*. 
Lepidoptera 

Samia_cynthi, a 
(silk-worm moth) 

Dictyoptera 
<35>Periplaneta 

americana 
(cockroach) 

Hymenoptera 
<97>Vespa_vulgaris 

(common wasp) 
<150>Bombus terrestris 
<150>B. 

_pratorum (bumble bees) 
<154>Apis_mel. lifera 

(honeybee) 
<160>Andrena sPP. 

(mining bee) 
Hemiptera 

Lethocerus 
<44>gliseus 

(giant waterbug) 
Diptera 

<47>Tipula spp. 
(cranefly) 

<120>Calliphora 
fryfljr2ýýephala 

<145>Phormia_regina 
(blowflies) 

<165>Episyrphus 
balteatus 
(hoverfly) 

0.16 Drabkin 1950 
0.06 Drabkin 1950 
0.45 Drabkin 1950 
0.1 Drabkin 1950 

0.6 Chan & Margoliash 1965 
Thorax = 50% muscle 

Baron & Tahmisian 1948 
0.86 (muscle = 28% dry weight 

Levenbook & Williams 1956) 

1.34±0.07 This study. 

1.04±0.06 This study. 
0.88 

1.31±0.14 This study. 

1.08-+0.08 This study. 

0.63±0.07 This study. 

0.93 This study. 

0.76tO. O3 This study. 

0.76 Levenbook & Williams, 1956 
(Value for 2 day old flies) 

0.90±0.2 This study. 

Table 5.1 
Concentration of cytochrome c present in various muscle tissues. 
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Species Body mass IFN mass % muscle 
(mg) (mg) 

Hemiptera 
ý., 

_gj: 
iseus 

5870 779.6 13.3 
5150 536.4 10.4 
4670 481.0 10.3 
4386 425.0 9.7 
4470 473.8 10.6 

L. colossicus 
& L. 

-indicus 
{Yield from myofibril preparations} 
IFM = 8%-12% of body mass 

11000 13200 - 10 
Hymenoptera. 

B. terrestris 
Q 644.1 125.7 19.5 
Q 670.6 129.2 19.3 
Q 580.7 126.4 21.8* 
Q 651.0 126.4 19.4* 

B., 
__pratorum Q 276.2 53.5 19.4 

Q 240.4 53.0 22.1 
V. vulgaris 

Q 230.0 24.0 10.4 
Q 221.6 20.4 9.2 
Q 335.2 37.1 11.1 
W 182.1 23.7 13.0 

Andrena Spp- 
F 92.0 14.2 15.4 
F 79.8 11.2 14.1 
F 85.8 11.7 13.6 
F 79.8 11.3 14.2 
F 98.5 14.0 14.2 
F 76.9 11.4 14.8 

A. mellifera, 
W 87.1 16.3 18.7 
W 93.2 16.0 17.2 
W 97.5 16.3 16.7 
W 91.6 15.6 17.0 

Diptera 
C. erythrocephýjlý! 

{masses are mean of 3 individuals for each estimate} 
61.6 11.5 18.7 
69.3 15.4 22.3 
44.4 8.2 18.6 
56.7 10.9 19.2 

*Same insect before and after 48 hours feeding on 30% sugar/water. 

Table 5.2 
Whole insect and JFM muscle mass. 
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not correlate with wingbeat frequency or insect order. 

Greenewalt (1962) collected data of the body mass and flight 

muscle mass for a variety of flying animals. He noted that the 

scatter in the data for birds was extremely small. The pectoral 

muscle accounted for close to 15.5% of the body mass in all of the 

birds tested (with the exception of humming birds; 25%). The scatter 

in Greenewalt's data for insects was very much greater. The range of 

values was from 5% to nearly 30%, but again with an average of about 

From the data presented by Greenewalt it was not possible to 

tell if the variation within a given species was as great as that 

between species. This is because many values were quoted for just a 

single individual. 

5.2.3 The Maximum Power_Output_of_Skinned Muscle Fibres : 

The power output of insect flight muscle can be measured directly 

by attaching either intact muscle (Josephson 1985, Machin & Pringle 

1959), or glycerol extracted muscle fibres (Pringle & Tregear 1969), 

to a mechanical test apparatus. The power output is calculated by 

measuring the difference in work done by stretching and releasing 

the activated muscle per unit time. In this study, the lissajous loop 

(of tension plotted against length) area was calculated and multiplied 

by the frequency of length oscillation, as described in Chapter 2. 

The maximum power output of both skinned and live muscle fibres 

depends upon several factors: the amplitude and frequency of the 

length oscillation and the experimental temperature (Josephson 1985, 

Steiger & Ruegg, 1969, Machin et al , 1959, Pringle & Tregear, 1969). 

Figure 5.1 is a family of curves showing how the power output 

of a single skinned L. 
-, 

indicus muscle fibre changes with the frequency 

of length oscillation at 3 different temperatures. Changing the 
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Power output from L. indicus flight muscle-single skinned fibre 
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FIGURE 5.1 

Family of curves to show how the power output 

obtained from a single L. indicus fibre is affected 

by the temperature of the incubation solution. 

The solutions used were those of Table 2.2b, the experimental 

protocol is described in section 5.2.3. 
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temperature of the incubation solution has two important effects: 
1) the frequency at which the maximum power output is obtained rises, 

2) the magnitude of the maximum power output rises. 

A series of experiments was performed on skinned muscle fibres 

from L. 
-griseus. 

The change in frequency at which the maximum power 

output is obtained, and the change in the magnitude of the maximum 

power output are shown as Arrhenius plots in Figure 5.2. This is the 

data from the best experiment, the single fibre was tested at 5 

different temperatures. Above 300C, fibres from this particular 

thorax became diffusion limited and entered the high tension state. 

Because of fibre-to-fibre variation it is not possible to 'pool' the 

power output data obtained from different fibres. However, the pooled 

data, of the 14 fibres tested, for the optimum frequency of 

oscillation, at different temperatures, had a best fit line very 

similar to the results shown in Figure 5.2 (see Figure 5.3). The 

effect of temperature upon the muscle performance is conveniently 

described by the Qio (the proportional change for each 10 degree rise 

in temperature). Using the data of Figure 5.2, the Qlo of the change 

in frequency of maximum power (fPMAX) is 2.9 (at 15-250C. ), the Qlo of 

the maximum power output is 6.9 (at 15-250C. ). 

Another set of experiments were performed to measure specifically 

the maximum power output obtainable from skinned muscle fibres. The 

results of these experiments are shown in Table 5.3. The experiments 

were performed on fibres from a giant waterbug which had flown, 

immediately prior to glycerol extraction, in the laboratories at York 

(this was the same bug that was used in the previous set of 

experiments). 
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FIGURE 5.2 

Arrhenius plots of the power output and frequency of maximum 

power ouput. The solutions were those of Table 2.2b 

Power output. 

Frequency at which the maximum power is obtained. 

Species = L. griseus 
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FIGURE 5.3 

0.00345 0.00355 

Arrhenius plot of the frequency of maximum power ouptut. 

Data points were obtained form experiments with 14 different 

f ibres. 

Solutions were those of Table 2.2b; the number 2 next to 

a datum point means that two points overlap. 

The fitted line is the best fit through all the points. 
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Temperature Frequency Amplitude 
(OC-) 
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(Hz) 

------------ 
M 
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20 
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9.0 

-- - 

--- 
9.0 

25 
-- ------- 

9.0 
--------------- 

5.5 
25 9.0 10.9 
25 16.0 8.5 
25 

---- - 

16.2 

- 
9.1 

-- - 
30 

- ----------- 
15.0 

--------------- 
6.8 

30 15.4 6.6 
30 25.0 5.5 

------------------------------- 

: Operating conditions in life 

,: WBF = 44Hz 
Moracic Temp. = 410C. 

-------------------------------- 
Table 5.3 

Maximum power ou- 
from L. 

_griseus. different f ibre. 
oscillation were 
output possible. 
of Table 2.2c. 

Power output 
(W/kg) 

17.0 

10.9 
13.5 
30.9 
39.5 

32.8 
43.3 
17.8 

tput from single, skinned muscle fibres 
Each experiment was performed on a 
The amplitude and frequency of length 

adjusted to give the maximum power 
The incubation solutions were those 
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ý. t-Z. 1.4_Tht. _qýemo-Mechanical Eff iciency_l 

The chemo-mechanical efficiency may be calculated directly by 

measuring, simultaneously, the power output and ATPase activity of 

skinned muscle fibres. The free energy of hydrolysis of ATP under the 

conditions of the experiments performed here is equal to about -42 

kJ/mol (Kushmeric & Davis, 1969). The calculated efficiencies of the 

top 10% of the data (the highest power outputs) presented in Chapter 3 

are shown in Table 5.4. 

5.2.5 The Thoracic Temperature in_Flighl_: 

Many insects have an elevated thoracic temperature when in flight 

(Heinrich, 1974; 1979; 1987). Some of these insects require a pre- 

flight warm-up before they are able to take-off (Dorsett, 1962; Leston 

et al., 1965; Kammer & Heinrich, 1978). The thoracic temperature of 

some of the insects in this study has not been reported previously. 

It is particularly difficult to induce giant waterbugs to fly. 

Two species, ý. indicus and L. 
_griseus 

flew in the laboratories at 

York, shortly after importation (from Thailand and Florida, 

respectively). In preparation for flight the bugs left the water and 

climbed as high as they were able. They performed a pre-flight 

$ritual' consisting of a rapid (1-5 11z) head movement, presumably 

caused by repeated contractions of the indirect flight muscles. After 

about 20 minutes the bugs reared-up on their hind legs, snapped open 

the elytra and took off. As soon as the bugs landed they were 

recaptured and the thoracic temperature was recorded. 

Figure 5.4 shows three cooling curves which record the change in 

thoracic temperature after flight for three individual bugs. All 

three curves extrapolate to over 400C. at a time when the bugs were 

still airborv%e- Figure 5.5 shows the sound recording of L. indicus 
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Species Power output 
(nW/pMol SI) 

j! j. -griseus 
(250C) 149.6 

87.2 

181.2 
135.4 
120.3 

mellifera 

E. balteatus 

TiRLiLa spp. 

ATPase 
(Mol ATP/Mol SI/s) 

9.4 
4.3 

15.2 
15.8 
10.5 

5.0 
6.2 
3.3 

4.3 
3.9 

7.4 
9.7 

Table 5.4 

Efficiency 

37.9 
48.3 

28.4 
20.4 
27.2 

19.3 
5.6 

10.2 

19.7 
8.1 

6.3 
7.3 

Chemo-mechanical efficiency of IFM from a variety of different 
insects. The efficiencies were calculated assuming that the 
free energy of hydrolysis of ATP is -42 kj/Mol under the 
conditions of the experiments. All experiments were performed 
at 200C. except where stated. 

Species Sarcomere length Method used 
(Pm) 

B. terrestris 2.51 L. L. D. 

L. indicus 2.83 L. L. D. 
2.77 L. M. 

V. vulgjý. ris 2.56 L. L. D. 
2.47 L. M. 

D. melanoggýter 3.0 E. M. 

hpmh spp- 3.6 L. L. D. 

L. D. = Laser light diffraction 
L. M. = Light microscopy 
E. M. = Electron microscopy 

Table 5.5 
Sarcomere length in different insect species; measured 
in relaxing solution or fixed in the relaxed state for 

E. M. - 

40.1 
14.7 
14.1 

35.6 
13.3 

19.7 
29.7 
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Thoracic temperature after free-flight 
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FIGURE 5.4 

Thoracic temperature recorded after flight termination 

in three individual waterbugs. The cooling curves 

can be extrapolated to a time when the bug was still 

airborne, to assertain the thoracic temperature in 

flight. 

The ambient temperature in all three cases was 240C. 
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Wing. beat frequency of L. indicus 
(sound recording in free flight) 

w 
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FIGURE 5.5 

The sound of L indicus in free flight in the laboratory 

was recorded on a cassette tape recorder and the signal 

then replayed into a storage oscilloscope. 

The wingbeat frequency, determined from the record 

above was 38Hz. 
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in flight. Similar records were obtained for L. 
-91: 

iseus; the 

calculated wingbeat frequencies were; ý.,. 
_indicus, 

38Hz and L. 
_griseus, 

44Hz. 

The measured thoracic temperature in two small, glabrous, 

diptera, and were found to 

be only I or 2 degrees above ambient. The common wasp, which is 

larger than the honeybee but has rather sparce thoracic hair had a 

temperature of 29-320C (ambient 240C. ). 

5.2.6 Sarcomere_Lenglh a Muscle Shortening__ 

The sarcomere length of skinned IFM fibres, bathed in relaxing 

solution, was measured either by microscopy or laser light 

diffraction (as described in Chapter 2). The results are shown in 

Table 5.5. 

The degree of muscle shortening was measured in TiPula_oleracea 

viewed under a travelling microscope with stroboscopic illumination. 

The length of the thorax was measured when the wings were illuminated 

in the up and down positions. The difference in length was about 

3.5-4% of the mean thoracic length. Unfortunately, it was not 

possible to induce flight for sufficient time to make the necessary 

measurements in other insects. Boettiger and Furshpan (1954) found the 

degree of flight muscle shortening in the bumble bee to be about 2%. 

5.3 DISCUSSION : 

5.3.1 The_Proportion of _Cyl2Sýh1: 
2me c Present in Different Muscles : 

Keilin (1925) discovered that the highest concentration of 

cytochrome was to be found in the thoracic muscles of flying insects. 

He associated the high concentration of cytochrome with the "peculiar 

activity of these muscles". The high concentration of cytochromes 

gives the IFMs a distinctive yellow colour. 
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The amount of cytochrome c found in all the insects tested is 

much larger than the amounts quoted for vertebrate muscles. The 

amount of cytochrome c found in the muscles of C. 
-erythrocephala is 

consistent with the values for young blowflies quoted by Levenbook and 
Williams (1951). The amount of cytochrome c found in the flight 

muscle of V. 
-vulggris and A. mellifera is double that found in 

Lethocerus, and 30% greater than that found in the other insects. 

If the amount of cytochrome c in the respiratory chain relative 

to the other components is optimised then the flux through the 

respiratory chain will depend upon the amount of cytochrome c present. 

The conclusion from the data presented here is that the rate of ATP 

production (per unit weight of muscle) in Vespýý and Apis is 

approximately twice as great as in Lethocerus. 

The model of Pennycuick and Rezende (1984) predicts that the 

mitochondrial partial fraction in muscles from different insects 

should increase systematically with the wingbeat frequency. The 

finding here that the proportion of cytochrome c present in different 

muscles does not change in a systematic fashion is not easily 

consistent with this model. The comparatively high ATPase rate of 

fully activated skinned muscle fibres from Vespa (Chapter 3) is 

consistent with the high level of cytochrome, c measured in this 

particular insect. 

5.3.2 The_Proportion of Ruscle Found in Different insects : 

The important finding here is that the proportion of flight 

muscle in different insects is relatively constant within a given 

species but varies widely between species. 

increasing the proportion of flight muscle: 

There are two effects of 
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1) The total power output, per unit body weight, will be 

increased. This may be important for insects that carry a large 

payload (ie. queen bumble bees carrying eggs or wasps carrying 

prey) or to provide the necessary power to enable small insects 

to fly when the environmental temperature is low (the subject of 

thoracic temperature is discussed further later). 

2) The cost of making and maintaining the flight muscle will be 

increased. The flight muscles account for a very large 

proportion of the total body protein and resting metabolic rate; 

thus, to reduce these metabolic loads will be advantageous in all 

insects. 

There is a criticism of studies which estimate the specific power 

output of insect flight muscle just by measuring the oxygen 

consumption in the flying insect. Often the proportion of flight 

muscle is assumed to be 15% in all species. For the insects 

investigated here this assumption would lead to a 2-fold error in the 

estimation of the specific power output of the muscle. The high 

oxygen conswuption found in flying euglossine bees (estimation of the 

specific power output was on the basis of the IFM being 15% of the 

insect mass; Casey et al., 1985) can be explained, in part, by the 

more recent finding that these insects contain an unusually high 

proportion of flight muscle (28%) (Gabriel et al. , 1987). 

5.3.3 The Power_OutpLat and Chemo-mechanical Efficiency-: 

The Maximuiv Power Output , 

In Chapter 3 the problem of diffusion limitation of skinned 

muscle fibre experiments was discussed. There is an in vivo correlate 

of diffusion limitation. The maximum sustainable power output of live 
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muscle may be limited not by the properties of the myofibrils but by 

the rate at which the surrounding mitochondria can supply ATP 

(Weis-Fogh & Alexander, 1977). 

In order to estimate the maximum attainable power output in 

Lethocerus, two types of experiment were performed. One was to 

measure the maximum power output directly. The other was to measure 

the power output over a range of temperatures and to extrapolate the 

results to the iri vivo operating temperature. 

The problem with the first approach was that the isolated, 

skinned, fibres became diffusion-limited at the flight temperature of 

400C. Above 300C. the fibres entered the 'high tension state', the 

mechanical power output was then reduced or abolished. The maximum 

measurable power output in L. 
_gEiseus at 25-300C. was around 40W/kg. 

This value was obtained at very large amplitudes of oscillation (6-9% 

peak-peak). 

In experiments where the fibres were oscillated at lower 

amplitudes (2Y, peak-peak) over a wide temperature range the predicted 

power output at 400C. was 45W/kg. If the amplitude of length 

oscillation in vivo is 2% then the predicted power output of the 

muscle in the flying insect would be 45W/kg. However, the in vivo 

muscle shortening is not known and may be nearer to the larger 

amplitudes (6-9%) used in the second set of experiments. The 

predicted power output at 400 C. would then be near 25OW/kg (assuming 

that the Qio at the large amplitudes is also 6.3, as measured at 20- 

300C. in fibres oscillated at 2%) 

The maximum power output measured in live muscle fibres are 

30W/kg for Orygles and 60W/kg in Bombus (Machin & Pringle, 1959), and 

76W/kg for NeoconocfphalM§ (Josephson, 1985). 

The large Qi o measured for the power output compared to the Q1 o 

164 



for the optimum frequency means that the activation energy for the two 

processes is different (being greater for the steps that limit the 

power output of the muscle). This is consistent with the cross-bridge 

model presented in Chapters 3 and 4. The tension generating step, 

which governs the frequency response of the muscle, is faster than, 

and not controlled by, the rate-limiting step. The rate-limiting step 

controls the cross-bridge cycling rate and ATPase activity. The 

mechanical power output is coupled to the cross-bridge cycling rate. 

Chemo-mechanical Efficiency : 

The calculation of chemo-mechanical efficiency here is different 

form the chemo-mechanical coLapling of Steiger & Ruegg (1969) and Pybus 

& Tregear (1975). They measured the difference in the ATPase rate 

between working and non-working fibres. This was then used to 

calculate the net chemo-mechanical efficiency (or coupling). Here the 

work done was divided by the total ATP hydrolysed to give the gr2ss 

chemo-mechanical efficiency. 

important to the live insect. 

It is this gross efficiency that is 

Ellington (1985) has estimated the overall efficiency of insect 

flight muscle. He has calculated the aerodynamic power requirements 

of a flying insect and compared this to the metabolic power input (the 

oxygen consumption rate). 

A break-down of the 

is given in Scheme 5.1. 

power dissipation in insect flight muscle 

In order to compare the muscle efficiency 

measured here with Ellington's calculated values, an assumption about 

the efficiency of ATP production must be made. Wilkie (1968) found 

this to be around 55% efficient. This means that the maximum overall 

efficiency of APis flight muscle would be 20%*55% = 11 X. This 

agrees well with Ellington's estimates for Apis when the storage of 
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SCHEME 5.1 

Scheme to show how metabolic energy is converted into 

aerodynamic energy in insect flight muscle. 

Inertial power, used to accelerate the wings can be 

stored as elastic energy. The chemo-mechanical efficiency 

measured in Apis, in this study, implies that the elastic 

energy storage is about 50% efficient (Ellington, 1985). 
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Energy Transduction in Insect 
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elastic energy in the cuticle is about 50% efficient. 

5.3.4_The_Effect_of_Sarcomere. l, ength_: 

As Ruegg (1968) observed, short sarcomeres connected in series 
will have an increased shortening velocity and a reduced maximum force 

compared to long sarcomeres. The power output of the muscle with 

shorter sarcomeres will be slightly reduced because the 'bare zone', 
(the region in the centre of the thick filament with no cross-bridge 

projections) which generates no force, will be proportionately 

increased. There would seem to be some advantage in the evolution of 

shorter sarcomeres, with increased shortening velocity, and only 

slightly diminished power output, in insects with a high wingbeat 

frequency. However, the measured sarcomere length does not change in 

a systematic fashion with wingbeat frequency. Although the long 

sarcomere length found in TipLilýý is consistent with the unusually low 

wingbeat frequency found in this small dipteran insect. 

According to Wray (1979), stretch activation in insect fibrillar 

flight muscle can be explained by the identity in helical repeat of 

the thick and thin filaments. A filament movement of 3% (37.5 run/half 

sarcomere) in Lethocerus changes the thick and thin filament register 

from one of mismatch to match (or vice versa). The degree of muscle 

shortening required to move the wings of some insects could well be 

different from 3%. If the thick and thin filament repeats are the 

same in different insects, the only way to obtain the same degree of 

activation by this model would be to change the sarcomere length. The 

variation of sarcomere length found in different insects could be a 

means of tuning the activation mechanism to the degree of muscle 

shorteDIDg required to move the Wings. Using the reverse argument for 

-- La, the long sarcomere length, 3.51im, the specific case of TipM1 
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predicts that the optimum shortening distance would be lower than for 

other insects. In fact the measured thoracic movement of 4% is larger 

than the 2% found for bumble bees (Boettiger & Furshpan, 1954). 

5.3.5 Strategies-to-Cope. with a Variable Environmental Temperature 

The maximum power output of insect flight muscle falls sharply as 

the temperature is reduced. Also the frequeDcy at which the maximum 

power is obtained falls. The dramatic effect of temperature upon the 

mechanical performance of insect flight muscle presents a problem for 

these small animals. Many insects need to be able to fly in an 

environment whose temperature can change by 10-200C. in a very short 

period of time. 
a p1to Because of differences in surface area to volume ratio, the rate 

of heat loss from small insects is very much greater than from large 

insects. The very high metabolic rate of the flight muscles during 

flight means that the thoracic temperature of large insects 

necessarily rises above ambient. Many of these insects have 

regulatory mechanisms and maintain a thoracic 'endothermy' (Heinrich, 

1974). The rapid rate of heat loss from small insects, means that the 

cost of endothermy is prohibitive. This means that the thoracic 

temperature of small, glabrous, insects remains near ambient. Clearly 

the strategies used by small and large insects, which allow them to 

fly over a range of ambient temperatures, must be different. 

There appear to be two basic strategies: 

1) Maintain a thoracic endothermy and have an obligatory pre- 

flight warm--up at lOw Mbient temperatures. 

2) Have a wingbeat frequency that can be varied to match the 

frequency of maximum power output of the flight muscles and also 
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carry extra flight muscle to yield sufficient power at low 

ambient temperatures. 

The choice of strategy will be determined by the size of the 

insect. 

Performance of the flight muscles : 

Figure 5.6 shows how a small insect, with a variable thoracic 

temperature, can ameliorate the problem of power loss from the flight 

muscles at low ambient temperatures. The available power from the 

flight muscles will be optimised if the wingbeat frequency is tuned to 

match the frequency for maximum power (fPMAX) of the flight muscles at 

different temperatures. In the example given (Figure 5.6) the 

available power is, approximately, doubled by reducing the wingbeat 

frequency at the lower muscle temperature (the curves of Figure 5.6 

were derived from the power output obtained from a single 

LethoceruE_grlseus fibre measured at the three different 

temperatures). Figure 5.7 provides evidence that just such a 

mechanism operates in D. melanog! ýsjer. This very small, dipteran, 

I insect (mass < lmg) will have a thoracic, and therefore muscle, 

temperature that is very close to ambient. The measured wingbeat 

frequency in D_melanog2ster is well correlated to the ambient 

temperature (Williams & Chadwick 1953). One reason why small insects 

are able to fly over a wide range of environmental temperatures is 

because they can alter their wingbeat frequency and so maximise the 

power output of their muscles. 

cuticle stiffness : 

In order for small insects to change their wingbeat frequency the 

natural resonance characteristics of the wing must be adjustable. The 
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Flight Muscle 
Power Output 25*C 

20*C 

50C 

fwb(15) fWtX25) 

Wingbeat Frequency 

FIGURE 5.6 

Family of curves to show how the power output from the 

flight muscles changes with thoracic (and in the case of 

small insects ambient) temperature, at different wingbeat 

frequencies. 

The thoracic temperature of small insects remains very 

near to the ambient temperature. At low ambient temperatures 

the power ouptut of the muscles will be maximised if the 

wingbeat frequency is reduced. 

The optimum wingbeat frequency at two environmental 

temperatures (150 and 25'C) is shown. 
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Drosophila melanogaster is able to tuneýits wingbeat frequency 

to the frequency of maximum power output of its flight muscles. 

In so doing it is able to obtain sufficient power for flight 

over a wide range of environmental (and therefore thoracic) 

temperatures. 

Data from Chadwick, 1953'. - 
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natural resonance frequency is given by : 

fRES 
= 2Tr FK -/I 

..... 5.1 

fRES 
= Resonant frequency 

K= Stiffness of the wing mounting I= Inertia of the wing 

The thoracic cuticle of the small diptera is braced by (non- 

fibrillar) pleurosternal muscles. Nachtigall and Wilson (1967) showed 
that the function of these muscles is to adjust the resonant frequency 

of the thorax and so change the natural frequency of the wings. 

A compliant thoracic cuticle, whose stiffness is governed by 

tension in the sternopleural muscles would allow the wingbeat 

frequency to be altered over a wide range. 

The thoracic cuticle of Calliphorg is noticebly more compliant 

than the cuticle of a similar sized pubescent honeybee, Apis. The 

hairy honeybee has opted to be endothermic (Heinrich, 1979), and 

requires a pre-flight warm-up on cold days. The significance of the 

stiff thoracic cuticle is that the main method for heat generation in 

this insect is by "shivering". Pre-flight contractions of the flight 

muscles (Kamer & Heinrich 1978) against a stiff cuticle will produce 

'waste' heat faster than against a compliant cuticle, and there would 

be great advantage in being able to warm-up rapidly on cold days. 

A prediction is that insects which have biochemical shunts 

enabling "non-shivering thermogenesis" (Newsholme et al., 1972) may 

also have evolved thoracic cuticles that are less stiff. 

Proportion of fligbt muscle : 

Figure 5.6 shows that even when the wingbeat frequency is tuned to 

fPMAX of the flight muscle fibres there is still a reduction in power 

output with temperature. Small glabrous insects will therefore 

172 



require a proportionately larger mass of flight muscle if they are to 
fly over a wide range of temperatures. There will of course be 

exceptions when a diverse variety of insects are studied, but the high 

proportion of muscle in Calliphora is consistent with this idea. 

Casey et al. (1985) measured the thoracic mass in a closely related 

group of insects (euglossine bees) and found that the proportionate 

weight in the glabrous insects was 10% greater than in the pubescent 

ones. At present this is the best supporting evidence for the 

prediction of the strategy proposed here. 

In SLmmary -. 

Large, pubescent, insects have evolved a stiff thoracic cuticle 

to allow a rapid pre-flight warm-up. The wingbeat frequency of these 

animals will be independent of the ambient temperature. At cool 

ambient temperatures longer pre-flight warm-ups are required. 

Small, glabrous, insects have a flexible thoracic cuticle whose 

stiffness is dramatically affected by tension in the sterno-pleural 

muscles which brace the thoracic box. The wingbeat frequency may be 

adjusted to match the frequency of maximum power output of the 

myofibrils. These insects can fly over a wide range of temperatures 

with no pre-flight warm-up, but fly better at higher ambient 

temperatures. They require additional muscle to provide the necessary 

power for flight at low ambient temperatures. 
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CHAPTER 6: 
THE MECHANICAL PROPERTIES OF DROSOPHILA MELANOGASTER FIBRILLAR 

FLIGHT MUSCLE WITH MUTANT MUSCLE PROTEINS 



THE_MECHANICAL_PROPERTIES 
- 

OF 
- 

DRosopH. rLA WLAiVOGASTER FIBRILLAR 
FLIGHT_MUSCLE WITH MUTANT MUSCLE PROTEINS. 

6.1 INTRODUCTION : 

One approach to the study of muscle contraction is to remove or 

modify a component of the contractile apparatus and measure the effect 

of this alteration on the muscle performance. Using chemical 

techniques it is often difficult to modify or remove a single protein 

throughout the muscle tissue without affecting the other proteins. By 

inducing genetic mutations in muscle protein genes, specific changes 

can be made throughout the tissue. This study investigates the 

mechanical properties of the indirect flight muscle from 

jjý! 
_Tejý! 

p2gMt! ýr with mutant muscle proteins. The genetics of Drosopl], i 

Drosophila are the best understood of any eukaryote and the flight 

muscle of this insect is large enough to be mounted on a mechanical 

test apparatus. 

The dorsal- longitudinal muscle (DLM) of Drosop]2,, iLjýj is shown in 

Figure 6.1, it is one of the two indirect flight muscles (IFM) used to 

power the insect in flight. One advantage of using this fibrillar 

f light muscle for mechanical experiments is that it is one of the best 

studied muscle types. Also, flies with reduced function in this 

muscle are still able to survive and breed (the mutants are 'viable'). 

Altered muscle function caused by specific, conservative, changes to 

the muscle proteins were analysed under three different conditions; 

when the muscle was relaxed, active and in rigor. 

compared to the wild-type response. 

The results are 
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FIGURE 6.1 

Diagram to show the position of the indirect, dorsal 

longitudinal muscles in a sagittally dissected D. 

melanogaster thorax. 

The muscles were glycerol-extracted in situ and cut from 

the thorax prior to mechanical experiments with a pair 

of microdissection scissors. 

Muscle fibres were pared down to a diamEter of about 

80jim and then carefully crimped in aluminium 'IT" clips. 

The fibre could then be mounted on the mechanical 

test apparatus. 
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6.2 LOCATION OF MUSCLE GENES IN THE DROSOPHIL A GENOME 

The Drosophila genome is shown in Figure 6.2, the position of the 
loci coding for some of the muscle-specific proteins are labelled. 

The number and letter code given to each gene is based upon the 

physical location of that gene within the genome. 

6.3 VIABILITY OF MUSCLE MUTANTý -, 

An important feature of Figure 6.2 is that there are several 

different genes coding for actin and these genes are randomly 

dispersed in the genome (Fyrberg et al., 1980). Of the six actin 

genes, only one codes for an IFM specific actin, Act88F. The 

remaining genes; Act5C, Act42A, Act57A, Act87E and Act79B code for 

actins found elsewhere in the fly (Fyrberg et al., 1983). Mutations 

in Act88F result in flies with altered IFM without affecting viability 

of the progeny. 

It is also possible to produce viable flies with mutant IFM 

myosin. The single copy of the myosin heavy chain gene has 

developmentally regulated transcripts (Rozek & Davidson, 1983, 

Bernstein et al., 1986). Regions of the gene are specific to 

particular muscle myosins. This permits non-lethal mutations in 

parts of the gene which are only expressed in the indirect flight 

muscles. However, all the myosin heavy chain mutants available to 

date have grossly aberrant muscle structure. 

All the mutants used in this study were actin mutants. The 

primary amino acid sequence of actin is highly conserved between 

different organisms (Pollard & Cooper, 1986) so, functional changes in 

the mutant Drosophila muscle can be related to other systems. 
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Genome of 
DROSOPHILA 
MELANOGASTER 
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FIGURE 6.2 

The genome of Drosophila melanogaster the position of the 

flight muscle protein genes that have so far been identified 

are shown labelled on the four chromosomes. 

The number and letter code for each gene refers to its 

physical position within the genome. 

------ Chromosomal region ------ 
I 

Chromosome Number Letter (subdivision) 

20 

2L 21 - 40 it 

2R 

3L 

41 - 60 it 

61 - --80 
it 

3R 81 - 100 It 

101 - 102 it 

(i. e. Act88F is located in the most distal part of region 

88, on chromosome 3R) 
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§A-METHODS-: 

The production, isolation and identification of the Drosophila 

TtIM292§121: mutants was performed at York by Drs. E. Ball & J. C. 

Sparrow. 

6.4.1 Production of Flies with Mutant_Fligbt liscle 
-MM 

Flies with IFM specific mutations were isolated by two genetic 

techniques. 

al_RMdom chemical mutagfýpt§is and selective breeding_: 

Drs. E. Ball and J. C. Sparrow, induced mutations with the 

chemical mutagen, ethyl-methane sulphonate (EMS). The level of 

mutagenesis, on average, induced a single base change per chromosome. 

The progeny of these flies were screened for flightlessness and 

analysed for changes in muscle structure and altered muscle proteins. 

The muscles were viewed by phase contrast microscopy and the proteins 

were analysed by two dimensional gel electrophoresis. These methods 

produced an interesting flightless actin mutant Act8ffW342 (The mutant 

is hereafter designated M342) (Ball et al., 1987). 

tj_germ-line transformation to make chimeric_gfýptE_: 

Mutants with chimeric actin genes were obtained from the 

laboratory of Dr. E. A. Fyrberg (Johns Hopkins University, Baltimore, 

U. S. A. ). Chimeric genes were produced by using recombinant DNA 

techniques to splice lengths other actin genes into the Act88F gene. 

The altered genes were then introduced into flies lacking functional 

Act88F copies (Act88F"88) by P-element transformation (Rubin & 

Spradling, 1982). Four chimeras were available, they all contained 

flanking regions of Act88F with inserts from other actin genes - 
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Act 88FIA ct7,9B 
Act88FIAct57A 
ActWlAct42A 

iv) Act88FIYact (yeast actin) 

Dr. Fyrberg's laboratory also provided another mutant mod-. This 

fly was judged as having impaired flight ability (Fyrberg, E. A. Pers. 

comm. ), but was not tested by the method described in Section 6.4.2. 

The mutants lack a protein associated with the post-translational 

modification of IFM actin. 

A spontaneous flightless mutation raised, with a 'wings-up' 

phenotype, was isolated by Ives (1945). This mutant had grossly 

aberrant muscle structure. Mahaffey (1985), partially 'rescued' this 

phenotype by germline transfection with a copy of the wild-type Act88F 

gene. It transpired that the original raised strain contained two 

distinct mutations; one in a non-coding part of the Act88F gene, the 

other mapped to region 97B (see Figure 6.2). The exact nature of the 

97B mutation is still not known (Mahaffey et al , 1985). The 97B 

mutation blocks the post-translational modification of actin isoform 

(found in other muscle tissues) to actin isoform. III (the isoform 

present in the IFMs). For this reason the mutant allele was given the 

abbreviated gene symbol mod- (The mutant is hereafter designated modý. 

The events leading to actin III formation are shown below (Scheme 

6.1): 
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Act88F 

Protein 
synthesis 

ACTIN II 

mod* 

Protein 

------------------ > ACTIN III 
Protein modification 

Scheme 6.1 
Formation of two actin isoforms in the muscles of Drosophila 

Lnejn2gý! §jftr (Mahaffey et al., 1985). 

With the exception of mod, changes in the amino acid sequence 

were determined by DNA sequencing of the coding region of the Act88F 

gene. The changes are summarised in Figure 6.3a and 6.3b. 

6.4.2 A Test of in vivo Muscle Performance :. 

An immediate test of whether the genetic mutations are of 

functional importance consists of flight-testing the adult flies. 

Flight-testing was performed by Drs. E. Ball and J. C. Sparrow. The 

flies were thrown down a 10cm diameter glass cylinder, coated with a 

sticky lining. Flightless flies fall straight down (into a collecting 

jar) and the wild-type flies become stuck to the lining of the tube 

(Green et al., 1986). 

6.4.3 Mechanical Testipg_2f_p- melan2gýý§jtq: _fjjght 
Muscle : 

Skinned fibres from the DIM were used for the mechanical 

experiments. The flies were dissected, the muscles glycerol extracted 

and then mounted on the mechanical test apparatus, as described in 

Chapter 2. The muscle fibres were skinned for a minimum of 4 hours 

and were always used within 2 weeks of extraction. 

Protocol : 

The muscle fibres were first incubated in relaxing solution 

containing a creatine phosphate/creatine kinase ATP backup system 
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EJBHILLAR FLIGHT MUSCLE SPECIFIC-. ACTIN GENE (Act88F) 
0RQýQPHjLA.,, M. EL&NOGA NH2 S TER 

-COOH 
88F/79B 137 277 377 

88F/57A 
85 277 

88F/Yact 
190 

10 
88F/42A 287 

Chimeric Agtin Genes 

93 

Glu * Lys 
M342 

10 76 193 1110 1114 1129 11321135114411661162 1167 1691170 1178 1232 1234 257 260 127112741278 

88F/88F lie lie I Glu I Leu I Ala I Ser IMet I Ala I Ala I Ser IThr IGlu Phe ujAIajThr CyS Ala Ser Ite Val 

88F/79B ITyr Thr 

88F/57A 

88F/yactl LMef I Ser lVat 

8OF/42A lVal lVaj I IThr 
eriSerlThrlVal lAla Ser I It e 

Ser 

ISerlAta jLeuFýj 

(a) 

(b) 

M342 I ILys 

FIGURE 6.3 

Changes to the amino acid sequence in the mutant: M342, 

88F/79B, 88F/57A, 88F/Yact and 88F/42A. 

Part a shows the position of the DNA insects (thin lines) 

and the position of amino acid changes within those inserts. 

Part b shows the nature of the amino acid substitutions. All 

the changes were determined by DNA sequencing of the coding 

region of ACT88F, performed in the laboratory of Dr. Fyrberg 

(Baltimore, USA). 
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(Table 2.2b) 
- The muscle length was carefully adjusted, using the 

tension transducer micromanipulator, until the fibre was just tauL 
(just at zero tension). A series of brief step length changes were 
performed on a fast time base (5ms/division) to establish that the 

muscle was truly at zero tension (by a step release of 1%) and that it 

was well connected (by a step stretch of 1%). The relaxing solution 

was then washed out of the bath with 250pl of activating solution. 

The tension change relative to zero tension was determined with a step 

release (of 1-2%). The fibre was then subjected to a series of length 

step stretches and the delayed tension response, if present, was 

recorded, usually on a time base of 5 or lOms/division. Finally the 

activating solution was washed out of the bath with 4 mls of rigor 

solution and the fibre was left for 5-10 minutes. The tension change 

was determined by a step release and the stiffness by a brief stretch. 

The sequence of length changes is summarised schematically in 

Figure 6.4. 

6.4.4 mod : 

mod was the first mutant to become available. The homozygous 

strain provided by Dr. Fyrberg's laboratory contained an additional 

mutation (as a genetic marker) called 'stubloid'. One unfortunate 

aspect of this mutation is that it causes many of the adult flies to 

have damaged wings. It was therefore not possible to flight test the 

adult flies using the method of Green et al. (1986). Muscle fibres 

from three individuals were tested mechanically. Because it was 

unknown whether the adult flies were able to fly this was a 'blind 

trial' of muscle function. 
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FIGURE 6.4 

Experiments were performed using the solutions of Table 2.2b. 

In order to measure the instantaneous stiffness of the muscle 

fibres, a fast oscilloscope time base was selected and the tension 

change was plotted against length over the course of the length 

step ramp. 

The active response was monitored on a timebase of 5-10ms/div 

this allowed the rate constant of the delayed tension transient 

to be fit by the curve fitting program DISCRETE (Provencher, 1977). 
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§. j. 4, §_Th! t_ghimeras 
_and 

M342_: 

In order to produce self-consistent results, all the chimeras 
were tested in a single series of experiments. A set routine of 
dissection, extraction and mechanical testing was adopted. 

Six individuals of each mutant stock were dissected and the best 

half-thorax of each individual was glycerol-extracted overnight. 
Fibre preparations that did not produce reasonable tensions in 

relaxing solution were discarded. A fibre preparation was tested from 

each of the six individuals. Each preparation was scored by visual 

inspection of the oscilloscope traces obtained in relaxing, activating 

and rigor solutions. With the exception of M342, the mechanical 

measurements were made before the results from the flight testing were 

disclosed. The mechanical results were analysed, therefore, as a 

blind-trial of muscle function. 

Initial experiments showed that the stiffness of M342 muscle 

fibres was very nearly the same in all three test solutions. 

Mechanical experiments were performed on five M342 and five wild type 

f ibres, from separate individuals. The mechanical response of the 

fibres in each solution was tested in the usual way by applying small, 

rapid ("step"), changes of length and recording the resulting 

timecourse of the change in tension. The rise time of the applied 

length change was about 400 ps. The instantaneous stiffness of the 

fibre in any given solution was measured by plotting the tension 

versus the length during the step, and determining the slope at the 

steepest part of the curve. In order to normalise the data the number 

of thick filaments in the fibre cross-sections was estimated. 

At the end of each mechanical experiment the muscle fibre was 

f ixed with gluteraldehyde (3% in 100 mM sodium phosphate buffer, pH 

7.0) while still attached to the apparatus. The fibre was then post- 
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f ixed in 1% osmium tetroxide, dehydrated in a series of acetone 

solutions and embedded for microscopy in Araldite. Thin cross- 

sections were stained with lead citrate and uranyl acetate and 

electron micrographs were taken; from these the average number of 

thick filaments per myofibril was estimated. Thick cross-sections were 

stained with toluidine blue 0 (Sigma); from light photomicrographs the 

total number of myofibrils in each preparation was counted. The 

preparations used had between 400 and 1600 myofibrils. I am indebted 

to Mrs M. Stark (University of York) who performed all of the 

microscopy. 

6.6 RESULTS : 

6.6.1 mod : 

The mechanical response of the muscle preparations from the three 

individuals tested was very similar to wild-type. The active response 

from one of the individuals is compared with wild-type in Figure 6.5. 

The measured rate constant for the delayed tension process was 254s-1. 

Table 6.1 compares the measured rate constants for delayed tension in 

wild type and mod, the significance of these results is discussed 

later - 

Wild-Type mod 

206 s-1 254s-'* 
192 s-I 272s-'* 
195 S-1 273s-1 

169s-1 

Mean ±S-E-M- 197± 4s- '- 242± 25s- 

*Same individual 
Table 6.1 

Measured rate constant for the delayed tension 

transient in activating solution (@150C. ) for 

the mutant mod compared with wild-type. 
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FIGURE 6.5 

Active transient tension response to a step length 

change measured in wild type and the mutant mod. 

The fitted rate constants to the delayed tension transients 

were: Wild type : 192 s- 
1 

mod : 254 s- 
1 
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6.6.2M342 : 

Muscle fibres from M342 behaved very differently upon dissection. 

They were easier to mount than the wild-type fibres because they did 

not fray into myofibrils to such a great extent. Electron micrographs 

of the fibre cross-sections showed that the myofibrils were less 

coherent than the wild type and on average contained fewer thick 

filaments (see Table 6.2). 

The instantaneous stiffness of wild type fibres when relaxed, 

active and in rigor is significantly different (one way Analysis of 

Variance ;P< 1%) (data shown in Table 6.3). There was no 

significant difference in stiffness between M342 fibres measured when 

relaxed and active however the stiffness of fibres when in rigor was 

significantly greater (P < 1%). 

------------------- ------------------- 

WILD TYPE M342 
I 

Mean 

: Relaxed: 31.6 

: Active 47.8 

: Rigor : 125.1 

----- ------- ------ ------ ------- 
SEM Highest: Mean SEM Highest: 
----- ------- ------ ------ ------- 

8.1 81 17.3 5.2 37 
---- ------- ----- ------ ------- 

14.6 149 18.1 5.6 37 

----- ------- ------ ------ ------- 
29.9 386 48.6 24.7 169 

----- ------- ------ ------ ------- 

Table 6.3 

Instantaneous stiffness of Oregon and M342 fibres in the 
relaxed and rigor states. 

Tension versus length plots used to calculate the instantaneous 

stiffness of the fibres are shown in Figure 6.6. 

The full mechanical response of both M342 and wild type fibres is 

shown in Figure 6.7, for each of the three test solutions. When these 

experiments were performed the quality of the data was the best that I 
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---------- 
---------- ------- - 

-------- ----------- --------- M342 Wild type 
MEAN STDEV N MEAN STDEV N 

--------- ----- ----- ------- - -------- ----------- -------- 480 124.4 (15) 946 34.3 (7) 
427 134.9 (12) 994 65.8 (7) 
425 166.3 (17) 864 53.2 (6) 
509 180 (13) 744 84.3 (11) 
756 210.3 (13) 771 20.04 (10) 

1 : 831 76.5 (8) 
831 35.2 (4) 
876 191.5 (4) 

1088 49.2 (4) 

1 : 1048 24.2 (5) 

519 55 (5) 899 35 (10) 
--------- --------- ------- -- -------- ------- - -- -------- 

Table 6.2 

Mean number of myofilaments per myofibril; counted in both M342 
and wild type fibre preparations used for mechanical experiments. 
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FIGURE 6.6 

Tension-length diagrams for D. melanogaster wild type and 

mutant M342. The tension has been plotted during the course 

of the step length change (rise time = 400us). The gradient 

of the lines is equal to the instantaneous stiffness of the 

muscle fibres. 

The stiffness of M342 muscle is the same in activating and 

relaxing solutiong but increassed in rigor. The stiffness of 

wild type muscle increases from relaxed to active to rigor. 

(E3) = Relaxing solution 
( +) = Activating solution 

! g: >) ý Ri gar sollILLon 
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FIGURE 6.7 

Comparison of the relaxed, active and rigor tension transients 

measured in wild type and mutant M342 muscle. 

The delayed tension response is absent in M342, however, 

there is an increase in stiffness in rigor solution in the 

mutant muscle. 
The wild type response shown here is particularly good 

and should not be compared with series of experiments performed 

on other mutants. 
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have obtained and the wild type responses shown here should not be 

compared with mutants tested at other times (i. e. the following 

experiments). 

6.6. 

Act88FIAct88F (wild-type) 

The wild-type response, at the time that these tests were made, 

showed 70% of the preparations to be active (delayed tension). Also, 

85% showed a good rigor response (at least a doubling of stiffness 

over the active level). The wild type, active delayed tension 

response, although not as impressive as for the mod and M342 

experimental series, is still clearly visible. A representative set 

of results is shown in Figure 6.8a. 

Act88FIAct79B 

The 79B actin sequence codes for muscle actin found in adult 

tubular muscle (found in the legs and head of the fruit f ly (Fyrberg, 

1983)). The chimeric actin sequence contains 2 amino acid 

substitutions (see Figure 6.3). The homozygous adults are flighted. 

Four out of the six fibres tested showed a delayed tension transient 

and five showed an increase in stiffness in rigor. A representative 

result from the mechanical testing is shown in Figure 6.8b. 

Act88FlAct57A 

The 57A actin gene codes for muscle actin found in the larval 

body wall muscle (Fyrberg, 1983). The chimeric actin sequence has two 

substitutions (one being the same as in Act8BFIAct79B). Upon flight 

testing, half of these flies were able to fly. Four out of the six 

fibres tested showed delayed tension and five an increase in stiffness 

in rigor. Results from mechanical testing are shown in Figure 6.8c. 
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88F/88F 

18 uN /01ý 
3-30037005. MEL 

I% 

ilk 

7artsion s 119 uN /Div 
0,30037010J13- 

FIGURE 6.8 

RELAXED 

ACTIVE 

RIGOR 

WILD TYPE response obtained at the time the chimeras 

were tested. Note that the delayed tension transient 

in activating solution is present (although of rather 

small amplitude). There is an increase in stiffness 

in rigor solution (note the smaller length change in that 

record). 
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88F/79B 

0124037023.016 
1 

1 18 uN 

0,24037032. RI6 
To-l. n 1 10 uN /Dfý 

Bo24037037. PI6 
7-lon 10 uW /01ý 

RELAXED 

ACTIVE 

RIGOR 

FIGURE 6.8 (b) 

CHIMERA 88F/79B transient tension responses obtained 

in the three test solutions (compare with Figure 6.8(a)) 
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88F/57A 

lUnIon I8 t4 /01v 

1% 

60103764O. A14 
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7onslon 1 113 uN /Div 

1% 

19,3103704S. AI4 

ACTIVE 
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I ! /. 
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.0 

FIGURE 6.8(c) 

CHIMERA 88F/57A transient tension responses obtained 

in the three test solutions (compare with Figure 6.8 (a)). 
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Act88FIyact 

The Yact actin gene is from yeast actin, which is a cytoplasmic 

actin. The chimera has a total of 11 substitutions and the adult 
flies are nearly all flightless. However, some of the small flies are 
able to fly. The muscle tissue teased more easily upon dissection, in 

a manner similar to M342. Two out of the six fibres showed delayed 

tension and five a rigor response. Results from mechanical testing 

are shown in Figure 6.8d. 

88F/42A 

The 42A actin gene codes for cytoplasmic actin in DrosopLija 

(Fyrberg, 1983). There are 9 amino acid substitutions in this 

chimera. None of the fibres showed delayed tension, but four showed a 

rigor response. The adult flies are completely flightless, mechanical 

results are shown in Figure 6.8e. 

The results from the mechanical and in vivo -flight testing are 

summarised in Figure 6.9. 

6.7 DISCUSSION : 

There was a major problem in estimating the cross-sectional area 

of the muscle preparation between the 'T' clips. The very small fibre 

size made sectioning of the fibres very difficult and time consuming. 

For this reason all the measured tensions, except for those in the 

series of experiments performed on M342, were quoted as absolute 

values. The diameter of the fibre preparations was kept as near 

constant as possible (at about 80pm). A further difficulty arising 

from the short muscle length was the effect of 'end compliance'. 

Because of damage, the crimped ends of the fibre are more compliant 

than the rest of the preparation. The length change measured at the 
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1% 
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c -. 

FIGURE 6.8 (d) 

CHIMERA 88F/Yact transient tension responses obtained 

in the three test solutions (compare with Figure 6.8 (a)). 
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FIGURE 6.8 

CHIMERA 88F/42A transient tension responses obtained 

in the three test solutions (compare with Figure 6.8 (a)). 

197 



Strain Relaxed Active Rigor Flight 
W-T ++ ++ ++ ++ 
Mod ++ ++ ++ ? 
79B ++ ++ ++ ++ 
57A ++ ++ ++ + 
Yact ++ + ++ 
42A ++ ++ 
M34? 

_] 
++ ++ 

FIGURE 6.9 

(Small mates fly) 

Summary of results from the mechanical testing and flight testing. 

(++) = Wild type response. 

(--) = Wild type response absent. 

?)= Result unknown 

(+-) = Intermediate response. 

W-T, wild type; 

Mutants : 
MOD : mod 

79B : 88F/79B 

57A : 88F/57A 

Yact: 88F/Yact 

42A : 88F/42A 

M342: M342 
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length hook will be an underestimate of the length change experienced 
in the active central region of the fibre. For this reason a laser 
diffraction, sarcomere length detector was constructed. Unfortunately 
there was insufficient time to incorporate this into the muscle test 

apparatus. The measured length changes in this study are therefore 

subject to error. 

The mechanical measurements on D. 
_melanogaster were not easy to 

perform and sometimes the wild-type muscle would not show an active 

response. The reason for this appeared to be skill in the dissection 

technique. The proportion of working, wild-type, preparations 

increased during the course of a series of experiments. For this 

reason the response of mutant f ly muscle f ibres was compared to the 

wild-type response at that time. 

Hambly et al. (1986) have recently reviewed our present knowledge 

of the structural and functional domains of actin. A figure 

summarising functional significance in the actin amino acid sequence 

is reproduced in Figure 6.10. 

The observation that the amino acid sequence of actin is highly 

conserved implies that most amino acids are of functional or 

structural importance. An interpretation of Figure 6.10 demonstrates 

just such an effect, nearly all of the amino acid sequence has been 

attributed a direct functional significance. 

A criticism of the present study is that specific changes in the 

amino acid sequence may not be of immediate significance but may have 

a disruptive effect on the three dimensional conformation of some 

distant part of the actin sequence. The effects of a single amino 

acid substitution on the 3-dimensional structure of a protein are 

extremely difficult to predict. However, all of the amino acid 
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Variable residues 

Myosin 

Actin 

Tropomyosin 

DNase I i///) 
Profilin 1: ---) 

Depactin 

Nucleotide 

75 150 225 300 375 

NH2- ---COOH 

(Shaded areas designate proposed binding sites) 

FIGURE 6.10 

StructuraL and Functional Domains of Actin 

Hambly et at. (1986) 
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substitutions in the mutants in this study can be classified as 
conservative by the criteria of Doolittle (1985). 

Elect ron-micrographi cal. (E. M. ) studies made on the chimeras and 

M34,9. (Reedy, M. K. pers. comm. ) indicate that all the mutants have 

recognisable thick and thin filaments in the IFMs. The fact that the 

mutant actin can form filaments is good evidence that the 3- 

dimensional structure of the protein is near normal. 

6.7.1 MOD : 

The results from the mechanical testing of IFM from the 

D. melanogý! §j! ýj: mutant mod, predict that the adult f lies should have 

some flight ability when the stubloid mutation-is removed. If 2- 

dimensional electrophoresis of the IFM's show that indeed only actin 

isoform II is present, the conclusion is that actin isoform III is not 

necessary for the formation of functional IFM thin filaments. The 

observed difference in the delayed tension mechanical rate constant 

from wild-type deserves further study. If this difference is genuine 

the delayed tension kinetics would no longer match the resonant 

frequency of the wings. The resulting reduced power output at the 

wingbeat frequency would explain the difference in flight ability 

reported by Dr. Fyrberg. The implications of this finding are 

extremely interesting because the mechanism of strain activation in 

insect flight muscle is still not fully understood. To have a 

mutation which affects the kinetics of this process would provide many 

experimental possibilities. 

6.7.2 M342 : 

Phase-contrast microscopy has shown that the sarcomere structure 

of M34,9 is highly disrupted (Ball, 1987). E. M. investigations (Reedy, 

M. K. & Ball, E. pers. comm. ) showed that the sarcomeres lacked 'Z' 
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discs and the structure was highly disordered, however both thick and 
thin filaments were present. 

The finding that M342 muscle shows an increase in stiffness upon 

entering rigor is consistent with the work of Kyrtatas. (1987). He 

used the method of Lovell and Harrington (1981) to probe, indirectly, 

acto-myosin interaction in M342. One of the sites of tryptic 

digestion of the myosin S1 head is "hidden" when the head is bound to 

actin (i. e. in rigor). He found that, like wild-type muscle, the site 

of tryptic digestion was protected only when the M342 myof ibrils were 

digested in a rigor solution. His work together with the findings of 

this study imply that acto-myosin interaction in rigor occurs in M342. 

The intriguing property of M342 flight muscle then, is although rigor 

cross-bridge formation occurs, that the active response is completely 

abolished. 

There are two aspects to the active response; 1) activation by 

calcium leads to an increase in the number of attached cross-bridges 

in the isometric muscle (increase in the instantaneous stiffness), 2) 

activation by stretch, appearance of the delayed tension transient in 

response to a step length change. 

The stiffness of M342 flight muscle, in both relaxing and 

activating solutions, was comParable to the wild type relaxed 

stiffness. This implies that the muscle is not activated by calcium, 

because of this, stretch activation can then not occur. However, 

because of the gross disruptions to the muscle structure this is 

rather speculative. 

The significance of the single glutamate to lysine substitution 

at position 93 in the amino acid sequence has been discussed by Ball 

et al. (1987). The co-migration of of the muscle protein, Arthrin 
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(Bullard, 1977) and actin III on 2-dimensional gels in M342 is 

evidence that arthrin is a modified version of actin III. Residues 
87-123 of actin have previously (Mimura & Asano, 1987) been implicated 
in mactinin binding. (xActinin is thought to bind the end of the actin filaments to the Z-Iine (Goll et al., 1977). This is consistent with 
the finding that the Z-lines were highly diffuse, or non-existent, in 

the E. M. . 

The passive elasticity of relaxed insect flight muscle has been 

explained by the presenct of connecting filaments (White, 1983) which 

link the thick filaments to the Z line. Relaxed stiffness in M342 can 

be explained either by thick filament continuity (White, 1983; 

Trombitas & Tigyi-Sebes, 1979; Maruyama et al., 1978 and Horowits et 

al., 1986), or by the tangled thick and thin filaments forming a 

structural link. 

6.7.3 The Chimeras -. 

The chimeras Act88F1Act79B and Act88FIAct57A have a very similar 

amino acid sequence. The finding that 50% of the Act88F1Act57A adults 

are flightless is most intriguing. This finding is inconsistent with 

the mechanical testing of the muscle which showed no difference in 

performance between wild-type, Act88FIAct7_9B and Act88FIAct57A. 

However, because the fibre diameters were not accurately determined 

the absolute amplitude of the delayed tensions cannot strictly be 

compared. Further mechanical experiments are required to resolve any 

differences in the magnitude of the delayed tension response. 

The eleven changes in the Act88FIyact chimera fall mainly in a 

region of the actin sequence which has not yet been assigned a 

specific function (Hambly, et al 1986). 

skinned fibres was either poor or absent. 

The active response of the 

However, a good rigor 
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response was obtained. The observed difference in the muscle during 
dissection is consistent with E. M. studies (Reedy, M. K pers. comm. ) 

where a disordered filament lattice was observed. The chimeric actiD 

can still form filaments (Reedy, M. K. Pers. comm. ) and crossbridge 

binding is dependent upon the ATP concentration (this study). 

However, some subtle change in the thin filament structure has caused 

a loss of order in the filament lattice and reduced the active 

response. The only amino acid substitutions that occur in a region 

that has previously been implicated in actin-actin binding (Johnson & 

Stockmal, 1982) are two rather conservative changes (Leu->Met and Ala- 

>Ser) at positions 110 and 114 (see Figure 6.10). 

The chimera Act88FIAct42A contains 9 rather conservative amino 

acid substitutions. The active response is completely abolished in 

this chimera but the rigor response persists. Once again the chimeric 

actin shows an ATP dependent myosin binding. Perhaps, as proposed for 

Act88FIyact, it is the disorganisation of the actin filaments which 

abolishes the active response. The most radical amino acid 

substitution (val->thr) is at position 278, very close to a region 

implicated in actin-actin contact (Figure 6.10). 

The rigor results from the mutants with chimeric actin are 

consistent with the idea that the topography of the myosin binding 

site(s) is similar in the different actins. The rather conservative 

amino acid substitutions in these chimeras does not alter greatly the 

myosin binding site(s). A more quantitative acto-myosin binding study 

with purified actin would be the best approach to examine this effect 

in greater detail (White, 1986). 

The two chimeras containing inserts from cytoplasmic actins have 

impaired active responses. The delayed tension in active insect 

fibrillar flight muscle is probably, dependent upon the organisation 
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of the thin filament lattice (Wray, 1979). The prediction is that X- 

ray diffraction will reveal a change in thin filament order in these 

mutants. The finding that actin and myosin can form tension bearing 

rigor cross-bridges in the mutant Act88FIAct42A and yet the delayed 

tension is completely abolished is evidence that strain activation in 

insect flight muscle is critically dependent upon thick and thin 

filament lattice order. 
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