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Abstract 
 

Chinese hamster ovary (CHO) cells are the predominant host cell type used in the 

production of recombinant therapeutic proteins. They are chosen as hosts, because of 

their ability to create, fold and modify proteins in a manner that makes them compatible 

with the human immune system. Moreover, CHO cells are tried and tested model 

organisms for bioprocess platforms, meaning regulatory body approval for new 

therapeutics is relatively easy to achieve. CHO cells are inherently genetically unstable, 

which can lead to a decline in productivity and poses a threat to product quality 

heterogeneity of stable cell lines. The primary aim of this thesis was to characterise 

genomic instability of a CHOK1SV cell line and measure directly the impact this 

genetic instability has on the fidelity of recombinant plasmid copies. The impact of this 

would be two-fold: Firstly, an accurate quantification of genetic instability type and 

frequency would be established. Secondly, the techniques used to characterise genetic 

instability would be evaluated as tools for the detection of instability in cell line 

development processes.  

 

Microsatellite analysis and karyotype analysis were used to assess CHO cell genomic 

instability at the base pair / gene copy number (GCN) level and the chromosome level 

respectively. Microsatellites were found to be effective markers for genetic drift and cell 

line relatedness. However, there was no substantial evidence of microsatellite 

mutational change, and so it could not be concluded that microsatellites are an effective 

marker for deficient DNA replication / DNA damage or mismatch repair. Microsatellite 

change did not correlate with changes in GCN or cell specific productivity (qP). There 

was substantial evidence of chromosomal aberration from Karyotype analysis, which 

showed considerable levels of aneuploidy and chromosome breakage/fusion events. It 

was concluded that CHO cells have an inherent chromosomal instability and that 

karyotyping is a promising tool for genetic instability cell line development 

assessments. However, there was no substantial association found between changes in 

CHO karyotype and changes in qP or GCN. 

 

In order to generate a stable GFP cell line for the investigation of recombinant plasmid 

genetic instability it was necessary to optimise an electroporation protocol. Preliminary 



	 xvii	

experiments indicated that standard industry conditions were suboptimal and so a 

Design of Experiments (DoE) – based strategy was used to optimise electroporation. 

Final optimal conditions (termed 320-26) improved transfection efficiency by 17%. 

 

The final results chapter outlines a novel single-molecule real time (SMRT) sequencing 

analysis platform, which maximises the sensitivity of the technology, enabling mutation 

calling from individual molecules at a 0.01% frequency. One mutation was present at 

high levels throughout the study, a C à T transition in the bacterial origin of 

replication, which is assumed to have originated from the original plasmid stock. There 

was no evidence of mutations arising in plasmid cloning or as a result of the pre-

integration CHO cell environment. Substantial levels of point mutation were found in 

recombinant plasmid copies. Mutations were randomly distributed along the length of 

the plasmid and were apparently not influenced by natural selection.  G and C residues 

were mutated to a greater extent than A and T residues, with G.C à A.T transitions 

predominating. This final assessment of CHO cell genetic instability shows the 

requirement for product quality checks during cell line development.
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Chapter 1 

 

Introduction 
 

 

This chapter will present the wider subject knowledge surrounding the work presented 

in this thesis in order to provide context and reason for it. A summary of 

biopharmaceutical industry development, production processes and example 

achievements are given to highlight how advances have been made, processes have 

been optimised and some of the areas in which processes can still be improved upon. 

The chapter is written to broadly introduce the biopharmaceutical industry with a 

skewed focus towards the concepts investigated and discussed in this thesis and outlines 

how advancement of these areas could lead to the production of better drugs, more 

quickly and cheaply. A brief review of the more specific material surrounding each 

chapter will be presented in more detail at the start of each chapter.  

 

1.1. The Biopharmaceutical Industry 

 

Biological sources have long been exploited for therapeutic use, such as the use of the 

smallpox virus by Edward Jenner in 1796 to combat cowpox, which established 

vaccination therapy as a medical treatment (Baxby, 1999); the serendipitous discovery 

of penicillin in Staphylococcus by Alexander Fleming in 1928 marking the advent of 

antibiotic medicine (Ligon, 2004); the therapeutic potential of naturally occurring 

proteins such as insulin and antibodies (Walsh, 2000). These biological sources have 
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been shaped by millions of years of evolution, and harnessing them can offer a novelty 

and high degree of specificity to medical treatment. 

 

Cell cultivation methods have been developed over the last century to such an extent 

that they can be used as production factories for these biologics. The creation of 

permanent and immortal cell lines, which are able to be grown and phenotypically 

manipulated in sub-culture has enabled the progression of large-scale industrial 

bioprocesses (Kretzmer, 2002). The development of mammalian cell culture on this 

scale was largely driven by the need for human viral vaccines in the 1950s and has 

continued to be the primary cell type used for the production of biological therapeutics. 

This is because the specific protein folding and modification systems they employ are 

compatible with human cellular components and immune system (Butler, 2005, Dinnis 

and James, 2005).  

 

Initially only products native to cell type could be produced, so just a small range of 

usable molecules were obtainable and only at the low concentrations yielded naturally. 

Therefore, only a limited number of therapies could be established (Kretzmer, 2002; 

Walsh, 2000). However, during the early 1970’s techniques were developed to 

covalently link DNA molecules regardless of their base-pair sequence, giving rise to 

recombinant DNA technology. Insertion of target DNA into mammalian cell hosts 

became possible, facilitating the linkage of exogenous and endogenous DNA within the 

cell (Lobban and Kaiser, 1973, Kretzmer, 2002). Moreover, the fusion of continuously 

proliferating myeloma cells with antibody producing lymphocytes gave rise to 

hybridoma cells capable of both continuous proliferation and antibody production 

(Kretzmer, 2002, Kohler and Milstein, 1975). Through genetic engineering or fusion, 

using specific antibody-producing lymphocytes, many more proteins could be produced 

and on a larger scale, which meant that recombinant therapeutic proteins found greater 

medical application. The first recombinant therapeutic protein to be made available 

from recombinant DNA technology was human insulin (Humulin, Genentech) for 

diabetes treatment in 1982, produced in Escherichia coli (E. coli). However, many 

therapeutic proteins have a higher, cell type-specific, structural and molecular 

complexity than insulin, and so need to be cultivated within a mammalian host; the first 

of these products was tissue plasminogen activator (tPA) in 1987, which is an 
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anticoagulant primarily used in the treatment of heart attack and stroke (Butler, 2005, 

Kretzmer, 2002, Pineda et al., 2012). 

 

Furthermore, engineering strategies have enabled proteins to be refined by modification, 

which led to the production of more therapeutically efficient products. For example, 

changes to the sequence of insulin stopped the interaction of insulin molecules with 

each other, thus creating a faster acting and more efficacious product (Kretzmer, 2002, 

Walsh, 2000, Olsen et al., 1996). Since the development of these technologies and the 

identification of more biomolecules with potential therapeutic applications a wider 

range of biologics have been produced in sufficient quantities to allow their medical 

application (Walsh, 2000). 

 

The modern definition of a biopharmaceutical is an engineered protein or nucleic acid 

which can be used for in vivo diagnostic or therapeutic purposes (Walsh, 2002). The 

biopharmaceutical industry is currently thriving with 212 products on the market 

(Walsh, 2014). The top ten products in the USA are presented in Table 1.1a. In the USA 

alone sales in 2012 reached $63.6 billion, which was an 18.2% increase from 2011 

(Aggarwal, 2014). This illustrates the scale of growth in this industry. The major targets 

of these therapeutic products are cancer, infectious diseases, autoimmune disorders and 

cardiovascular disease (Walsh, 2005). A wide range of therapeutic molecules (Table 

1.1b) are used, the five most common being monoclonal antibodies (mAbs), hormones, 

growth factors and fusion proteins and cytokines. In particular, monoclonal antibodies, 

which generate $24.6 billion in US sales (approximately 39% of total biopharmaceutical 

sales), dominate the biopharmaceutical market (Aggarwal, 2014, Dinnis and James, 

2005). 
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Table 1.1. Biopharmaceutical Sales of Top Selling Products 
Therapeutics are given in terms of therapeutic names (a), product types (b) and biotech 
companies (c). (Adapted from Aggarwal, 2014) 
 

 

Nearly 50% of new biopharmaceutical products being approved are biosimilars (Walsh, 

2010), which are alternative versions of already existing products. When patents on 

biopharmaceutical products expire, competing biotech companies (top ten – Table 1.1c) 

are permitted to create their own version of a product. In some cases drugs are 

engineered to be more efficient than the original and can often be produced more 

cheaply. These drugs are called biobetters (Barbosa, 2011). Furthermore, the release of 

this information can advance general understanding and lead to the discovery of novel 

products (Covic and Kuhlmann, 2007, Mellstedt et al., 2008). The first of these products 

was Omnitrope (Sandoz), a biosimilar of the human growth hormone somatroptin 

(Moran, 2008). 

 

Biological therapeutics, such as mAbs, have aided the treatment of a large number of 

conditions and had a positive impact on the quality of life of many patients. Clearly, 

there is a high demand to make therapeutic proteins cheaper, more efficient and of high 

A  B  C  

Product 
Sales 

($ Billions) 
Product Type 

Sales 

($ Billions) 
Company 

Sales 

($ Billions) 

Humira 4.6 mAb 24.6 Roche 13.2 

Lantus 4.51 Hormones 16.1 Amgen 12.9 

Enbrel 3.9 Growth Factors 8.1 Sanofi 5.1 

Remicade 3.6 Fusion Proteins 5.8 Novo Nordisk 4.9 

Rituxan 3.5 Cytokines 4.9 J&J 4.7 

Neulastsa 3.5 Therapeutic 

Enzymes 

1.4 Abbott 4.6 

Novolog 2.97 Blood Factors 1.2 Biogen Idec 3.9 

Avastin 2.8 Recombinant 

Vaccines 

1.1 Lilly 3.6 

Humalog 2.08 Anti-coagulants 0.4 BMS 1.7 

Herceptin 1.9   Merck 0.9 
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quality to ensure that success in treatment can continue to be improved upon and 

become as widespread as possible (Dinnis and James, 2005, Shukla and Thommes, 

2010). 

 

1.2. Recombinant Protein Expression: Expression Systems 

 

The production of biologics by biopharmaceutical companies is governed by certain 

aspects of the production process, such as cost-effectiveness, efficacy, effectiveness, 

time to market and safety, amongst others. Therefore it is important to use expression 

systems flexible enough to provide a manufacturing platform capable of fulfilling all of 

these criteria for multiple biologics at an individual level (Ferrer-Miralles et al., 2009, 

Li et al., 2010). Due to the large variation in recombinant proteins with potential 

therapeutic functions and the additional complexity of protein folding and post-

translational modifications (PTMs), it is unlikely that there will be a naturally occurring 

expression system capable of making all biologics. Different expression systems are 

metabolically diverse from one another. Therefore particular expression systems are 

better adapted for particular applications (Andersen and Krummen, 2002, Ferrer-

Miralles et al., 2009). The cell types harnessed for biopharmaceutical production show 

great amenability to a range of culture conditions and desirable phenotypes, through 

both adaptive evolution and engineering techniques. This enables the production of a 

vast amount of biopharmaceuticals from a single organism (Mohan et al., 2008, Davies 

et al., 2013). 

 

1.2.1. Non-mammalian Systems and Important Characteristics. 

 

Prokaryotes have been utilised as biologic expression platforms for many applications, 

such as the production of Humulin by E. coli. Much of our initial understanding of 

molecular biology was centered around E. coli, so it is extremely well characterised. 

Therefore, our understanding of molecular genetics and the development of genetic 

tools for engineering were established in a prokaryotic background and so generating an 

engineered production organism is relatively straightforward. Moreover, it is easy to 

rapidly culture bacteria and produce large yields of recombinant product. Simple 

molecules such as hormones, interferons and interleukins are amongst the approved 

therapeutic products synthesised by E. coli (Ferrer-Miralles et al., 2009). However, 
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generally, their ability to produce complex humanised proteins is limited, because they 

naturally process proteins differently to a eukaryotic cell and so lack the ability to carry 

out complex eukaryotic processes. A humanised protein must be folded in the correct 

conformation and attain the correct PTMs, such as acetylation, carboxylation, 

amidation, glycosylation and phosphorylation. Such modifications affect the efficacy of 

a protein through properties such as specificity, stability and activity (Walsh and 

Jefferis, 2006). The differences between proteins produced by prokaryotes and 

eukaryotes is enough to cause an immunogenic reaction when a potential therapy is 

administered, because the immune system would likely recognise these differences and 

elicit an immune response (Ferrer-Miralles et al., 2009).  

 

Glycosylation is the most influential PTM in terms of therapeutic specificity, because it 

is the most commonly found PTM in eukaryotic organisms, with over 50% of all human 

proteins being glycosylated (Walsh and Jefferis, 2006). Protein glycosylation affects 

protein folding, secretion, degradation, cell signaling, immune function and 

transcription, so is likely to have a significant impact on a proteins therapeutic function. 

The potential variation in glycosylation profiles makes it a more varied and 

consequently more complicated attribute than the proteome itself, which means that 

each organism’s glycosylation profile can be extremely specific (Lauc et al., 2010). 

Therefore, it is essential to make sure a host expression system is capable of producing 

a recombinant protein with a glycosylation profile compatible with humans so it does 

not provoke an immune response (Ferrer-Miralles et al., 2009). Protein glycosylation 

pathways do exist in prokaryotes, and these can be engineered into, and implemented, in 

an E. coli system. However, there are distinct differences between this form of 

glycosylation and that which occurs in a mammalian system. If prokaryotes could be 

engineered to produce humanized glycosylation forms then they would likely come to 

the fore in biopharmaceutical production (Abu-Qarn et al., 2008, Valderrama-Rincon et 

al., 2012). 

 

Therefore, for the time being, eukaryotes are better candidates for the production of 

therapeutic proteins, especially complex ones, because their metabolism allows them to 

produce these proteins with the correct specificity in structure and PTMs so not to elicit 

an immune response (Walsh and Jefferis, 2006, Ferrer-Miralles et al., 2009, Andersen 

and Krummen, 2002). The eukaryotic production systems able to carry out the protein 
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folding and PTMs needed to produce humanised proteins are yeast, insect, plants and 

mammalian cells (Walsh, 2006). Plants can be utilised as production vehicles for 

recombinant proteins both in the form of transgenic plants and plant cell culture. 

Commercially, plants have been able to successfully produce animal proteins. 

Recombinant plant technology offers high yields, low cost, low chance of pathogen 

contamination and the protein can be produced in storage organs such as seeds to ease 

purification (Sharp and Doran, 2001, Giddings et al., 2000). However plant-based 

recombinant technology is less developed than other expression systems and attaining 

regulatory approval for engineered plants is a challenge. Until a robust, tested and 

trusted infrastructure is in place it is unlikely that plants will challenge mammalian cells 

as a production platform (Hellwig et al., 2004, Fischer et al., 2012).  

 

Yeasts, like plants, are able to produce high yields of recombinant protein at a low cost. 

Furthermore, like E. coli they exhibit quick growth and are extremely well characterised 

and understood, because they formed the basis of our understanding of the eukaryotic 

cell cycle, amongst other processes. The two most utilised strains for recombinant 

protein production are Saccharomyces cerevisiae (S. cerevisiae) and Pichia pastoris (P. 

pastoris) (Demain and Vaishnav, 2009). The glycan structure in mammalian and yeast 

cells is the same as it arrives at the Golgi. However, the mammalian Golgi elicits 

various trimming and extension reactions, resulting in a sialylated glycan structure. On 

the other hand, rather than trim, yeast adds further mannose groups thus resulting in 

recombinant protein unsuitable for therapeutic use. Despite this, P. pastoris is a 

promising expression system. Through a series of engineering strategies it is capable of 

producing proteins with humanized glycosylation profiles. This along with its good 

growth characteristics and protein secretory mechanisms makes P. pastoris a capable 

production system. It has already been successfully engineered to produce proteins such 

as insulin precursor, interleukin 2 and tumour necrosis factor amongst others 

(Macauley-Patrick et al., 2005, Demain and Vaishnav, 2009, Berlec and Strukelj, 2013, 

Hamilton and Gerngross, 2007). 

 

Whilst these expression systems have all shown promise they are not yet producing to 

the same quality or quantity as the industry standard of mammalian cells (Dinnis and 

James, 2005). Non-mammalian cells are more likely to stimulate an immune response, 

because of their lack of specificity in PTMs (Raju, 2003). For example, plants 



Chapter 1: Introduction 

	 8	

consistently add α1,3-fucose and β1,3-xylose sugars, which elicit immunogenic 

responses in humans (Walsh and Jefferis, 2006). Furthermore, there needs to be further 

development and understanding before these alternative expression systems could offer 

a potential replacement to mammalian cells. For example, P. pastoris, which is arguably 

the best non-mammalian production system, still needs a great deal of process 

optimisation. Yields produced are still three to five-fold less than the gold standard of 

mammalian cell systems and the heterogeneity and stability of glycosylation is still 

something that needs to be proven in its consistency. However, it is believed that yeast 

systems will reach these standards, the confidence of which is reinforced by the 

endorsement of the technology by Merck & Co by taking over Glycofi technology in 

2006 (Beck et al., 2010). Although these technologies show promise, it is mammalian 

systems that predominate the production of humanised therapeutic proteins, despite 

being expensive and slow in comparison to alternative systems (Demain and Vaishnav, 

2009). Moreover, it is likely that process outputs would need to show considerable 

improvements for companies to consider the replacement of the mammalian systems for 

which the industry has been moulded upon. 

 

1.2.2. Mammalian Expression systems 

 

Mammalian cells currently dominate the biopharmaceutical market with 60-70% of 

recombinant therapeutic proteins being produced by mammalian cell culture. To put this 

into context, biopharmaceutical sales currently constitute 27% of total drug sales and 

are growing at a rate 7-fold higher than the pharmaceutical sales overall (Wurm, 2004, 

O'Callaghan and James, 2008, Walsh, 2014, Aggarwal, 2014). Therefore mammalian 

cell culture is a hugely important platform in the drug market. As described previously 

this is largely due to their ability to correctly fold and assemble large, complex 

molecules and carry out the appropriate PTMs to make a protein suitable for therapeutic 

application in humans both in terms of their therapeutic activity and safety. Also, as 

higher eukaryotes, mammalian cells are able to recognise secretion signal sequences in 

the recombinant gene and the mammalian cell machinery is able to mediate the 

successful secretion of the recombinant gene product (Barnes et al., 2000, Page, 1988). 

A great amount of research and development has, and continues, to be carried out on 

mammalian cell culture, cell biology and cell engineering. There are a variety of 

mammalian cell types currently being used and developed for recombinant protein 
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production, including Chinese Hamster Ovary (CHO), Mouse Myeloma (NS0), Baby 

Hamster Kidney (BHK) and Human Embryonic Kidney (HEK-293) (Wurm, 2004). The 

choice of cell line is largely down to its ease of large-scale culture, high growth rates, 

cell specific productivity (qP), titers and their ability to produce a efficacious and safe 

product (O'Callaghan and James, 2008). CHO expression systems are the most widely 

used, which is due not only to their protein folding and PTMs, but also to their ability to 

be cultured quickly and robustly on a large scale, their simplicity in transfection and 

recombinant gene integration, and their ease of product approval by the FDA (Jayapal et 

al., 2007, Wurm and Hacker, 2011, Wurm, 2004). 

 

Cell line engineering is an area of research and development that has resulted in process 

improvements in the manufacturing of biological therapeutics in mammalian cells in 

terms of increased recombinant gene expression, product quality and cell attribute 

improvement. For example increased sialylation was achieved by increased expression 

of sialyl transferase and the production of non-fucosylated products by creating FUT8 

knockout cell lines. These changes have led to the production of specific and more 

efficacious proteins, increasing their therapeutic potential (Zhu, 2012, Bork et al., 2009, 

Shields et al., 2002, Iida et al., 2006, Wong et al., 2010). In another example, 

engineering against late cell culture conditions that can induce apoptosis, such as 

nutrient and oxygen depletion and the accumulation of harmful bi-products, was 

achieved by overexpression of Bcl family members and E1B-19K. This significantly 

increased mAb productivity and created cells that are more robust to these conditions 

(Dorai et al., 2010, Dinnis and James, 2005, Zhu, 2012). In a further example, 

engineering strategies have been used to improve production of difficult to express 

proteins. This could serve to increase the number of proteins with therapeutic potential 

finding commercial application. Pybus et al. (2014) varied the mAb LC: HC ratio and 

the expression of foldases, chaperones and unfolded protein response (UPR) 

transactivators to subvert UPR induction, thus increasing mAb productivity in a product 

specific manner. In general, as the understanding of the mechanistic processes of the 

cell increases more engineering targets can be identified and researched (Dinnis and 

James, 2005). 
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1.3. Recombinant Protein Expression: The Process in Mammalian Cells 

 

1.3.1. Stable Gene Expression 

 

Stable gene expression (SGE) is the term used to describe permanent expression of a 

recombinant protein by a cell host. This is achieved by introducing a plasmid DNA 

vector containing the recombinant gene of interest, which facilitates its integration into 

the host organism’s genome. Subsequently, highly expressing clonal populations are 

generated, expanded and used for screening and further analysis (Makrides, 1999).  

 

There is a very well established platform (Figure 1.1) for the stable expression and 

subsequent production of recombinant proteins in mammalian cells (Jayapal et al., 

2007, Wurm, 2004). After a potential therapeutic product has been identified its DNA 

sequence is determined and the gene of interest is inserted into a plasmid along with a 

selection gene, which will give recombinant cells a survival advantage to ensure their 

propagation.  Carefully optimised genetic regulatory elements are included to govern 

gene expression. Mammalian cells are transfected with multiple copies of this plasmid 

and a small number of these will integrate into the mammalian host genome (Wurm, 

2004, Li et al., 2010). After a brief recovery period a selection agent is administered to 

the cells so that only cells with the selection gene, and subsequently the recombinant 

gene, survive. Therefore non-recombinants are gradually removed from the population. 

After selection the cell population will consist of a heterogeneous stable pool of 

expressing cells. Clonal populations are made by isolating single cell survivors, which 

are cultivated and expanded into, theoretically, homogenous cell lines. The clonal cell 

lines are tested for attributes desirable in a recombinant protein-expressing cell line. 

These attributes include high qP, growth characteristics in shaking flask and bioreactor 

conditions, and product quality. Eventually one cell line is taken forward for long term 

large-scale production and a cell bank is generated and frozen for future use. This 

process can take more than 6 months. Despite the success of this platform research, 

development and optimisation continue to improve this process (Wurm, 2004, Jayapal 

et al., 2007, Li et al., 2010, Kim et al., 2012, Birch and Racher, 2006). During this 

process clonal cell lines are expanded over multiple passages and go on to be cultured in 

laboratory-scale bioreactors to assess and optimise growth in these conditions. 
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Eventually, the cultures are scaled up to industrial bioreactor size for commercial 

production (Jayapal et al., 2007). 

 

This thesis focuses on upstream processes. However, for completeness, a brief summary 

of downstream processes is given here. It is important that optimised upstream methods 

are followed by efficient extraction and purification of recombinant proteins from cell 

culture. A large proportion of yield can be gained or lost by effective downstream 

methods and as a result have a large impact on manufacturing costs (Shukla et al., 

2007). The final product must be free from any impurities of the cell, bioreactor or the 

purification procedure itself. These impurities include protein A, media components, 

DNA, host cell protein, viruses and endotoxins (Shukla et al., 2007, Kelley, 2007). The 

downstream process will differ with each product, but there is a common industrial 

approach used. Briefly, the standard platform for mAb purification is as follows: Cells 

and cell debris are removed through centrifugation and depth filtration, which is 

referred to as cell culture harvesting. After this the mAb is captured directly by protein 

A affinity chromatography, binding specifically to the Fc region of the antibody and 

removes cell impurities such as DNA and host cell protein. This provides more than 

98% purity in a single step and is responsible for a large reduction in volume. Elution is 

carried out using low pH, serving as a viral inactivation step. The solution is neutralised 

before the polishing steps. Polishing typically consists of ion-exchange 

chromatographic techniques that help remove leftover impurities. After a viral filtration 

step an ultrafiltration/diafiltration process mediates the transfer of the product into its 

formulation buffer (Shukla et al., 2007, Shukla and Thommes, 2010). 
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Figure 1.1: Stable Cell Line Generation 
The figure briefly summarises the stable cell line generation process, as described in the 
text. 
 

 

1.3.2. Transient Gene Expression 

 

Transient gene expression (TGE) is an alternative method to generate producing cells, 

which offers very quick production of small amounts of protein rather than slow 

production of large amounts of protein. It is the quickest and least expensive way of 

producing recombinant protein (Wurm, 2004, Makrides, 1999). In TGE the ability of 

the multiple plasmid copies to produce recombinant protein extrachromosomally is 

utilised in order to rapidly assess aspects of the production process such as vector 

design and product efficacy. Therefore, this process is quick because there is no need to 

screen for successful genome integrations. TGE lasts around 10 days, because 

expression is rapidly lost when the plasmid copy number becomes diluted due to cell 

division and lost in line with plasmid half-life (Rita Costa et al., 2010, Barnes et al., 

2003, Baldi et al., 2007). Generally, TGE is used for initial analysis and characterisation 
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of the cell line, recombinant protein and the plasmid vector used to express it, so that 

the process can be reviewed before taking a system and product into long-term cell 

culture. For example, different combinations of vector elements such as promoters and 

enhancers can be tested and optimised (Makrides, 1999). Process evaluation using the 

TGE process can take as little as three days and the parameters, which are evaluated as 

having been most successful, are taken on to produce long term stable cell lines (Wurm, 

2004). TGE is also being developed as a recombinant protein production method in its 

own right, being able to produce milligram to gram quantities in just a few days via 

large-scale transfection processes (Derouazi et al., 2004, Wurm, 2004, Zhu, 2012). If it 

can be done on a larger scale TGE can be used more in product process development 

meaning that SGE is not needed until the later stages of the bioprocess. This means that 

development can be done more quickly and is less resource intensive (Steger et al., 

2015). 

 

HEK293 and CHO cells are the most commonly used cell lines for TGE, with HEK293 

cells having the ability to produce the highest titers of recombinant protein. However 

even between two mammalian cell types, such as HEK293 and CHO, growth 

characteristics can differ and varied products can be manufactured from the same 

construct, because of the specific processing that occurs in an organism (e.g. PTMs). 

Most manufacturing is done via SGE and ideally the host system should be consistent 

throughout the production process. Due to the fact that CHO produce the majority of 

recombinant products via SGE, a great amount of research and development is trying to 

improve yields from TGE in CHO so that consistency can be maintained for the best 

producing mammalian cell type. For example, engineered CHO cell lines expressing T 

antigen and the presence of genetic elements such as OriP or SV40 Ori allows the 

prolonged episomal presence of the plasmid. Also, culturing cells with DMSO and in 

hypothermic conditions has helped raise the yields achieved through TGE in CHO cells 

(Agrawal et al., 2013, Makrides, 1999, Wurm, 2004). 

 

1.3.3. Expression Vector and Selection System 

 

The expression vector primarily used for gene expression in mammalian systems is a 

DNA plasmid, which exists extrachromosomally and is designed to contain various 

elements that enhance transcription and translation (Wurm, 2004). A plasmid is often 
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linearised before transfection to enhance integration efficiency, but this is not essential, 

as it will be linearised in the nucleus before integration (Rita Costa et al., 2010, Wurm, 

2004). Typically, the plasmid will contain strong promoter and enhancer elements 

upstream of the gene of interest to drive its high expression. The function of a promoter 

is to be bound by transcription factors to initiate transcription. One such promoter is the 

cytomegalovirus (CMV) promoter and is the most widely used to drive strong 

expression in industrial platform processes. Promoters can be constitutively active, 

induced or repressed if a finer level of control is required over gene expression. 

Enhancer sequences are positioned further upstream and influence the activity of the 

promoter (Rita Costa et al., 2010, Makrides, 1999). Genetic elements are often included 

to elicit desirable RNA processing and stability. For example the SV40 Poly (A) tail is 

included to increase RNA stability as well as its role in transcription termination (Rita 

Costa et al., 2010). Moreover, genes in plasmid vectors do not contain introns like a 

regular gene would, but one is usually inserted to ensure transport of the mRNA from 

the nucleus to the cytoplasm, increasing the rate of translation. This is because during 

pre-mRNA splicing into mRNA the exon junction complex is added, which is thought 

to enhance the mRNA’s transport from the nucleus into the cytoplasm (Tange et al., 

2004, Wurm, 2004). Different organisms have a specific tRNA pool in their cells, which 

means that some anticodons are more common than others. Therefore to optimise 

translation gene sequences are usually codon-optimised to enhance protein production 

(Wurm, 2004). Sequences will also be altered so they do not contain cryptic poly(A) 

tails or splice sites and will be carefully assembled in such a way to avoid unwanted 

RNA folding (Birch and Racher, 2006). The expression of the selection gene will be 

driven by a weak promoter to make the selection process more stringent. Thus any 

given cell will need to contain recombinant plasmid copies capable of high expression. 

One example of this is the SV40 promoter (Kim et al., 2011, Rita Costa et al., 2010). 

The plasmid also contains bacterial elements such as antibiotic resistance gene and 

origin of replication for plasmid replication in a bacterial host prior to mammalian cell 

introduction (Birch and Racher, 2006, Rita Costa et al., 2010). 

 

In monoclonal antibody assembly the reaction kinetics are greatly influenced by the 

stoichiometric ratio of the heavy and light chains. To ensure efficient ratios the delivery 

of each gene can be optimised.  Typically, two methods have been used to attempt this: 

In the first, two plasmids can be used each containing one of the light or heavy chains 
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and the ratio is maintained by proportion of each plasmid going into the cell via co-

transfection. The problem with this method is that the plasmids will integrate into 

different genomic regions that are capable of different levels of gene expression. This is 

known as the position effect and will be discussed later in this section. Therefore, gene 

delivery of optimal gene ratios does not necessarily lead to optimal ratios of gene 

expression (Wurm, 2004, Rita Costa et al., 2010). The second method uses a single 

vector containing both genes, which can be under the same promoter or promoters with 

slightly different expression capabilities to try and encourage an optimal ratio for any 

given antibody. The problem with this method is that there is not yet a diverse enough 

range of readily available promoters for use in these vectors. However, recent studies 

have identified a range of synthetic promoters that could offer bespoke stoichiometric 

gene expression for any given protein (Brown et al., 2014). Moreover, the plasmid 

sequence often undergoes recombination resulting in gene loss. The choice of method 

differs in different systems and with different products (Rita Costa et al., 2010, Kim et 

al., 2011).  

 

A common system used industrially utilises the glutamine synthetase (GS)- vector 

(Figure 1.4), in which the gene for the GS enzyme is used as the selection gene (Barnes 

et al., 2000). For monoclonal antibody production this plasmid contains codon-

optimised genes for the antibody light and heavy chains and for GS. It also contains the 

strong viral CMV promoter upstream of the light and heavy chains and the weaker 

SV40 promoter upstream of the GS gene. Poly(A) tails are positioned downstream of 

each gene and introns are included to facilitate mRNA processing as mentioned 

previously. The β-lactamase ampicillin resistance gene (Amp) and the bacterial origin 

of replication are included for selection and replication in bacteria prior to transfection 

(Kim et al., 2011, Brown et al., 1992). GS is an enzyme which catalyses the production 

of glutamine from glutamate and ammonia and this is the only enzyme capable of 

glutamine synthesis in the cell. Therefore, cells cultured in media lacking glutamine will 

have more efficient growth when they have obtained the plasmid vector sequence (Jun 

et al., 2006). NS0 cells are often used with this system because they do not produce 

glutamine. CHO cells, on the other hand, can produce endogenous glutamine. However, 

the application of methionine sulphoximine (MSX), an inhibitor of GS, means this 

system is still applicable to CHO cells. The sequential addition of MSX to the cultured 

cells steadily increases the cell’s need for more GS to overcome MSX’s inhibitive 
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effect, which causes the GS gene to be amplified within surviving cell population. 

Therefore the sequential addition of MSX indirectly amplifies the gene copy number of 

the mAb genes, which will result in the generation of more cells capable of producing 

higher amounts of recombinant protein. This is because cells, which do not contain 

amplified copies of the recombinant construct will not survive. (Jun et al., 2006, Barnes 

et al., 2001, Brown et al., 1992). More recently, CHO GS-knockout cell lines have been 

generated in order to prevent endogenous GS production. This removes the reliance 

upon the selection pressure to generate productive cell lines and has led to shorter 

process development times and higher levels of production (Fan et al., 2012). 

 

 

Figure 1.2: GS vector  
Each gene contains the coding region, intron and poly(A) tail. The SV40 viral promoter 
is used for the GS gene, whereas the CMV promoter is used for the light chain (LC) and 
heavy chain (HC) genes. The ampicillin resistance gene and bacterial origin of 
replication elements are contained for bacterial selection and replication. (Taken, with 
permission, from Kim et al., 2011). 
 

 

 

Another system utilizes the dihydrofolate reductase (DHFR) gene, which codes for an 

enzyme involved in nucleotide metabolism. In this case, specific CHO cell lines have 

been engineered to be DHFR-deficient. In the same way as MSX in the GS system, 

methotrexate (MTX) concentration in cell culture is sequentially increased in the DHFR 

system. This inhibits the production of hypoxanthine and thymidine, which are essential 

to the cell. Therefore, the DHFR and recombinant gene are amplified within the 

surviving cell population due to this treatment. The GS system is favoured because only 

one round of amplification is needed, so the process only takes 3 months, whereas the 

DHFR system, needing multiple rounds of amplification to achieve the required 

silencing by methylation. Methylation of cytosines within
promoter CpG islands may inhibit transcription factor
binding to cognate DNA sequences (Siegfried and Simon,
2010). Methylated CpG’s also recruit methyl-CpG-binding
proteins that inhibit transcription through recruitment of
transcriptional co-repressors and chromatin remodeling
(Clouaire and Stancheva, 2008; Klose and Bird, 2006; Wade,
2001). Alternative mechanisms of transgene silencing have
also been reported, such as (in amplified cell lines) repeat-
induced gene silencing (Garrick et al., 1998; McBurney et al.,
2002), or more generally histone modifications (hypoace-
tylation) (Richards and Elgin, 2002).

To design improved strategies for the generation of stable
cell lines, and to enhance our ability to distinguish stable
from unstable cell lines early in the cell line development
process, it is clear that we require an enhanced under-
standing of the underlying causes of production instability.
This study is a detailedmolecular analysis of 12 GS-CHO cell
lines, 2 producing a recombinant IgG1 monoclonal antibody
(Mab) and 10 producing a total of 5 different recombinant
IgG2 Mabs during extended sub-culture in the presence
of selective pressure. We demonstrate that production
instability derives from two primary mechanisms: (i)
epigenetic—methylation-induced transcriptional silencing
of the CMV promoter driving Mab gene transcription and
(ii) genetic—progressive loss of recombinant Mab gene
copies in a proliferating CHO cell population. The latter
mechanism is far more prevalent than the former, although
production stability is clearly a cell line-specific phenom-
enon, where discrete mechanisms may overlap to yield a
unique inter-relationship between epigenetic modification,
genetic stability and productivity.

Materials and Methods

Cell Line Construction

Twelve suspension-adapted GS-CHO cell lines (A1-A2, B1-
B10) each producing a recombinant Mab were generated

using standard methodology (Porter et al., 2010). Briefly,
transfections were performed by electroporations of the host
cell line CHOK1SVTM (Lonza Biologics) with a linearized
plasmid vector (Lonza Biologics) encoding the glutamine
synthetase (GS) selection marker, Mab light chain (LC) and
Mab heavy chain (HC) genes in that order 50 to 30 (Fig. 1).
After transfection and initial selection in 50mMmethionine
sulphoximine (MSX; Sigma-Aldrich, Poole, UK), single cell
clones were generated either by capillary cloning (cell lines
A1, A2, B3–B10) or by single cell sorting using FACS (cell
lines B1, B2). Both cloning processes have been validated at
Pfizer to result in a> 95% probability of clonality. Cell lines
B1 and B2 express an IgG1 Mab, whilst the remaining cell
lines express a total of 5 different IgG2Mabs. Mab expression
vector constructs differed with respect to HC sequence,
where cell lines A1, A2, B1, B2, B3, and B7 utilized a non-
codon optimized HC sequence and cell lines B4, B5, B6, B8,
B9, and B10 were generated using a HC sequence that had
been codon-optimized along the entire sequence. Mab LC
constant domain and GS sequences were identical in all cell
lines.

Routine Culture Conditions

All cell lines were routinely sub-cultured in CD-CHO
medium (Invitrogen, Paisley, UK) supplemented with
25mM methionine sulphoximine (MSX; Sigma-Aldrich,
Poole, UK) in vent-capped Erlenmeyer flasks (Corning
Incorporated, Acton, MA). Cell lines A1 and A2 were seeded
at 2! 105 cells mL"1 and sub-cultured every four days and
maintained at 378C under 5% (v/v) CO2 in a shaking
incubator. Cell lines B1–B10 were sub-cultured every three
or four days and were seeded at 3! 105 viable cellsmL"1 and
maintained at 36.58C under 5% (v/v) CO2. Cell count and
viability was determined using a Vi-CELLTM Cell Viability
Analyzer (Beckman Coulter, CA). Cell line generation
number (i.e., population doublings) was calculated as
described in Greenwood et al. (2004). For the purpose of this
study the generation number was set to zero when cells were

Figure 1. Schematic representation of the vector(s) used to generate recombinant IgG-producing GS-CHO cell lines A1–A2 and B1–B10. Two Mab expression vector
constructs were used to generate the cell lines, each based on the construct shown. The vector constructs consisted of heavy chain (HC) and light chain (LC) cDNA cassettes each
under the control of separate human cytomegalovirus (CMV) promoters (PCMV), with the glutamine synthetase (GS) selection marker driven by the SV40 promoter (PSV40). The two
vectors differed only in the HC sequence; the vector used to generate cell lines A1–A2 and B1, B2, B3, and B7 contained the non codon-optimized HC sequence, whereas the vector
used to generate cell lines B4, B5, B6, B8, B9, and B10 contained the optimized HC sequence which had been codon optimized along the entire length of the HC sequence. For all
vectors the LC sequence was identical. Intron and polyA sequences are indicated, as are the b-lactamase ampicillin resistance gene (Amp) and the bacterial origin of replication
(Ori). For all cell lines the vector was linearized prior to transfection using a single restriction enzyme site located within the Amp gene.

2 Biotechnology and Bioengineering, Vol. xxx, No. xxx, 2011
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productivity, is a 6 month process (Barnes et al., 2000, Barnes et al., 2001, Jun et al., 

2006, Wurm, 2004).  

 

1.3.4. The Position Effect 

 

The site at which plasmid DNA integrates into the mammalian cell genome has a large 

impact on the expression of the recombinant gene, which subsequently has a large 

impact on recombinant protein production. This is known as the position effect, which 

is largely due to epigenetic effects (Wurm, 2004). Epigenetic characteristics are 

heritable components of an organism’s genome, which can change expression, but are 

not coded by the DNA sequence itself. Gene expression depends on the DNA sequence 

of a coding regions regulatory elements, such as the promoter and enhancers, their 

activation and the structure of the chromosomal location at which those DNA sequences 

are located (Wolffe and Matzke, 1999). Indeed, the structure of chromatin can be open 

and easily accessible to transcription factors (euchromatin) or condensed by various 

modifications and bound proteins, leaving it far less accessible to transcription factors 

(Richards and Elgin, 2002, Mutskov and Felsenfeld, 2004).  

 

Therefore, the location at which a recombinant gene integrates with the host genome 

can greatly influence its level of expression (Wurm, 2004). There has been successful 

development of approaches to combat negative position effects (Wurm, 2004). For 

example boundary elements, such as insulators, are DNA sequences that surround the 

coding region and prevent interaction with outside effectors of expression, such as 

enhancers and heterochromatin. Therefore, these coding regions can function as an 

independent genetic unit within a chromosome (Geyer, 1997). Anti-repressor elements 

can be used to flank coding regions and stop the spread of heterochromatic features like 

methylation and hypoacetylation in order to preserve gene expression. Boundary 

elements such as these have been shown to enable the stable and long term expression 

of recombinant genes (Kwaks et al., 2003, Wurm, 2004). That being said, integration 

within heterochromatic regions and certain regions of euchromatin will still cause 

dampened or no expression (Lattenmayer et al., 2006). Therefore it is widely accepted 

that the successful development of gene integration targeting methods, whereby the 

plasmid DNA is targeted to a specific transcriptionally active genomic location 

(approximately 0.1% of the CHO genome), could make high gene expression more 
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consistent. This could greatly reduce the need for time consuming and expensive 

selection and screening steps (Lattenmayer et al., 2006, Zhou et al., 2010). 

Recombinases can be used to recombine sequences inserted into the plasmid with 

sequences in the genome known to be located in highly expressed areas (Wurm, 2004). 

Research in this field has shown promise, as shown by Zhou et al. (2010). In this work a 

reporter plasmid was transfected and single-copy gene expression was selected for in 

order to generate a cell population with transcriptionally active insertion sites. Next, a 

second plasmid, containing the gene of interest, was targeted to the initial insertion site 

using the FLP-FRT system. Successfully targeted integrants contained a second 

selection gene, reconstituted from sequences from both plasmids. Therefore, selection 

of desirable integrants could propagate the gene of interest within a transcriptionally 

active site. Finally, the DHFR system was used for gene amplification to produce high 

producing clones after very few rounds of amplification (Zhou et al., 2010). 

 

1.3.5. Transfection 

 

Transfection is the general term given to the introduction of nucleic acids into host cells 

and is used to promote expression of an exogenous product. Transfection can be termed 

stable or transient depending on whether the non-self DNA is expressed permanently 

(as described previously) or for a short period of time, respectively. Broadly, 

transfection methods are categorized into three types: biological, chemical and physical. 

None of these methods are considered the best for all systems, as each have their 

advantages in different situations (Wurm, 2004, Kim and Eberwine, 2010).  

 

Biological methods of transfection are carried out through viral delivery. Clearly 

viruses, by nature, have an evolved inherent ability to introduce foreign DNA to a host 

and typically this is done with a high transfection efficiency (Kim and Eberwine, 2010, 

Douglas, 2008). Despite this efficiency, gene delivery has moved away from viral-

mediated transfection methods due to safety concerns with viral toxicity, manufacturing 

limitations and plasmid size constraints (Douglas, 2008, Mehier-Humbert and Guy, 

2005). 

 

Chemical methods of transfection rely on the interaction of positively charged 

chemicals and negatively charged DNA, leading to the formation of DNA-chemical 
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complexes. Examples of this include DNA-Calcium phosphate co-precipitation, cationic 

lipid complexes, such as with lipofectamine, and cationic polymer based transfection 

such as with polyethylenimine (PEI). In each case the ratio of DNA to the chemical of 

choice needs to be optimised for any given system (Douglas, 2008, Rita Costa et al., 

2010). These complexes are able to form electrostatic interactions with the cell 

membrane, possibly with the help of cell surface proteins and other moieties, to enter 

the cell via endocytosis. The exact mechanism for this is yet to be elucidated. Indeed, 

the mechanism by which the chemical-DNA complexes leave the endosomes is also yet 

to be discovered. In the case of lipofection it is thought the complexes bind or 

destabilize the membrane in order for translocation to take place (Rita Costa et al., 

2010, Rehman et al., 2013). Whereas, it is thought that PEI soaks up protons within the 

endosome due to its large buffering capacity, leading to an increase in endosomal pH. 

This causes an osmotic swelling of the endosome due to the rapid influx of protons and 

chloride ions, which subsequently causes it to burst and release the PEI-DNA 

complexes into the cytosol. Moreover, it is postulated that the buffering capacity of PEI 

protects PEI-DNA complexes once they reach the liposomes by neutralizing the 

lysosomal compartment. Therefore the nucleases, which are active at a low pH, do not 

degrade the complexed DNA. It is also believed that PEI may facilitate the entry of 

DNA vector into the nucleus (Rita Costa et al., 2010, Tait et al., 2004, Akinc and 

Langer, 2002). The calcium phosphate method is relatively cheap, can be applicable to 

many cell types and generates cells with high productivity (Rita Costa et al., 2010). 

However, despite being able to transfect a high plasmid copy number, the efficiency 

with which this method can create recombinant cell lines is low (0.05-0.1%), even with 

attempts at increasing efficiency with DMSO. Moreover, it cannot be used in serum-

free processes, such as with CHO cells, which is the largest biologic producer. 

Therefore, the calcium phosphate method it is not as widely used in the 

biopharmaceutical processes described in this chapter (Rita Costa et al., 2010, Chenuet 

et al., 2008). Lipofection and PEI mediated transfection are simple techniques, which 

can be carried out in serum or serum-free conditions with high transfection efficiencies. 

PEI is the preferred choice for large-scale bioprocesses due to its comparatively low 

cost (Rita Costa et al., 2010, Rehman et al., 2013, Baldi et al., 2007, Reed et al., 2006).  

 

There are a variety of physical transfection methods used for gene delivery. For 

example, mechanical methods such as microinjection and particle bombardment have 
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proven useful in single cell and tissue work respectively. However the laborious, costly 

and low throughput nature of these techniques are amongst the reasons they have not 

been popularized in the bioprocesses described in this review (Mehier-Humbert and 

Guy, 2005). Electroporation is a simple and very quick method for gene delivery into 

the host cell. It involves subjecting the cells to a pulsed electric field in order to disrupt 

the membrane potential (voltage gradient) across the plasma membrane. As a result, 

aqueous pores are created and exist transiently in the lipid bilayer, through which 

plasmid DNA can enter the cell (Canatella et al., 2001, Rita Costa et al., 2010). 

Electroporation is the transfection methodology used in this thesis and will be discussed 

in detail in the next section. 

 

Different transfection procedures are typically used for transient gene expression and 

stable gene expression. Electroporation is a commonly used transfection methodology 

for stable gene expression due to its ease, cost and potential for high-throughput. DNA-

PEI polymers are more commonly used for transient transfection. The main reason for 

this difference is that electroporation typically transfects DNA into milliliter quantities 

of cell culture, which can be cloned and scaled up. On the other hand transient gene 

expression is short-lived, because extrachromosomal plasmid DNA becomes diluted 

and eventually lost. Therefore, to fulfill high yield needs production must be 

instantaneously large-scale. PEI mediated transfection can be carried out on a large 

scale and immediately yield large volumes of transiently producing cells and as a result 

is predominantly used to fill this niche (Zhu, 2012). However, recent advances in flow 

electroporation technology, as with the MaxCyte® transfection system, allow for 

scalable electroporation to take place that offers a closed, sterile and disposable system 

(Fratantoni et al., 2003). Cells are suspended in a buffer and electroporation can be 

optimised on a relatively large scale at high efficiencies resulting in gram quantities of 

antibody (Fratantoni et al., 2004, Steger et al., 2015), which is in line with other leading 

transient systems (Bandaranayake and Almo, 2014).  

 

1.3.6. Electroporation 

 

Electroporation is a transfection methodology, which uses an electric field pulse(s) to 

transiently permeabilise the plasma membrane of a cell. This process is utilised in order 

to introduce molecules such as DNA into the cell (Gehl, 2003). For this to happen the 
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transmembrane potential needs to reach a threshold level, in which it is estimated that 

the electrical field across the membrane is approximately 108 V/m for a standard 

membrane width of 5 nm. To achieve this the minimum electrical field that needs to be 

applied is reported to be around 0.2-1V (Chen et al., 2006). When the threshold is 

reached the structure of the membrane is reconfigured and pores form, through which 

molecules can travel into the cell. Confirmation of these pores has been achieved by 

electron microscopy (Chen et al., 2006, Bio-Rad, n.d.). In the case of DNA, loading of 

the cell occurs through electrophoretic movement rather than by osmosis, because DNA 

is negatively charged. Therefore, there is a more direct relationship between the 

intensity of the electric field and the efficiency of DNA transfection than with 

uncharged molecules (Gehl, 2003, Sukharev et al., 1992). Furthermore, DNA interacts 

with the plasma membrane and helps facilitate pore formation during electroporation 

(Spassova et al., 1994, Gehl, 2003, Escoffre et al., 2009). In this study DNA is 

linearised to promote higher levels of genome integration. Linear DNA has lower 

transfection efficiencies than circular and supercoiled DNA and so may need stronger 

optimal electroporation conditions (Schmidt et al., 2004). As stated, the transmembrane 

potential must be increased for the destabilisation of the membrane to take place. A 

variety of factors have an impact on this (Gehl, 2003). One of these factors is electrical 

field strength. This is the measurement of electrical intensity within the electroporation 

chamber and is affected by the voltage applied to the chamber and the distance between 

the two electrodes. This is summarised by equation 1.1, where E is electric field 

strength (V/cm), V is Voltage and d is the distance between electrodes (cm) (Gehl, 

2003, Bio-Rad, n.d.). 

 

 

! = #/%                                      Equation 1.1. Electric Field Strength 

 

 

Also, cells with different radii have different transmembrane potential thresholds. 

Larger field strengths are needed to permeabilise smaller cells (Escoffre et al., 2009, 

Gehl, 2003). The angle between the membrane and the electrode (i.e. the electric field) 

also affects the dynamics of electroporation. The inside of the cell is negatively charged. 

Therefore the pole of the cell facing the anode will be permeablised first and to a greater 

extent, because this is where the transmembrane potential will be exceeded earliest. The 
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pole facing the cathode will be permeabilised second and to a lesser extent. Even though 

overall permeabilisation is greater at the cell pole facing the anode, DNA enters the cell 

to a greater extent at the pole facing the cathode due to the direction of electrophoretic 

forces. The permeabilised area increases in size with higher field strengths and the 

extent of permeabilisation within this area is determined by the duration, and number of 

pulses (Gehl, 2003, Escoffre et al., 2009). The temperature at which electroporation is 

carried out affects the dynamics of the transfection process. A lower temperature may 

help increase cell viability due to the heating effect caused during electroporation. 

Moreover, the process by which pores are resealed would be slowed and so DNA, 

potentially, has longer to enter the cell. However, a higher temperature would facilitate 

pores to reseal more quickly, which might in turn increase overall cell viability. 

Moreover, differences in temperature result in differences in conductivity and 

subsequently sample resistance. Therefore, it is important to use an optimal temperature 

which strikes a balance between these characteristics (Bio-Rad, n.d.). Although the 

extent to which these factors impact on electroporation are reasonably well defined, the 

exact mechanisms by which the membrane is destabilised and DNA traverses the 

membrane are yet to be fully elucidated (Bio-Rad, n.d., Escoffre et al., 2009). 

 

Typically, there are two waveform types that are used for DNA electroporation: 

exponential decay and square wave (Jordan et al., 2008, Jordan et al., 2013) (Figure 

1.3). In exponential decay electroporation the voltage rapidly increases to a peak and 

decreases exponentially over time (Equation 1.2.): 

 

 

#& = 	#(	[*+
,
-. ]                         Equation 1.2. Exponential Decay Waveform 

 

 

Where Vt is voltage at time = t (msec), V0 is the voltage upon discharge, R is circuit 

resistance (ohms) and C is circuit capacitance (µF). The time voltage takes to decrease 

is dependent upon the capacitance and resistance of the circuit (Jordan et al., 2013, Bio-

Rad, n.d., Jordan et al., 2007). The total resistance is a product of the resistance of the 

electroporation system being used and the resistance of the sample. The sample 

resistance is affected by a number of factors. Essentially, these factors impact on the 
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overall consistency of the sample being electroporated. They include sample volume, 

temperature, inter-electrode gap, ionic-strength of the extracellular medium, 

conductivity of the cell membrane and cytoplasm, cell density and the purity, 

concentration and size of nucleic acid being transfected. The resistance will impact on 

the transmembrane potential and as a result the voltage delivery parameters required to 

destabilise the membrane (Escoffre et al., 2009, Jordan et al., 2007). The resistance of 

the electroporation system being used can be set manually, and in the case of this work, 

is in line with manufacturer instructions. The capacitance of the circuit describes the 

ability of the circuit to store electric charge and is used as the changeable variable when 

experimentally altering the length of an exponential pulse. This is also manually set 

(Bio-Rad, n.d.). The time constant (τ) (Equation 1.3.), given in milliseconds, is the term 

used to describe the rate of voltage decay and is given as the time taken for the pulse to 

reach approximately 37% (1/e) of its initial intensity, which is derived from equation 

1.2. This is the standard measure of pulse length for exponential decay electroporation 

(Bio-Rad, n.d., Jordan et al., 2007). 

 

 

τ = R	x	C                                           Equation 1.3. Time constant 

  Figure 1.3. Electroporation Waveforms 
A) This plot depicts the decay of an exponential pulse derived from Equation 1.2, 

whereby the voltage is decreasing at an exponential rate, influenced by the 
capacitance and resistance of the circuit. The time constant (τ) is given as the 
numerical measurement of pulse length (Equation 1.3.). 

B) This plot depicts the square wave waveform, derived from Equation 1.4., with 
two pulses. A voltage is discharged for a determined amount of time (t). The 
pulse droop is represented by the dotted line and is derived from Equation 1.5. 

 (This figure is adapted from Bio-Rad (n.d.), page 47, Figure 4.1.) 

A B 
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Square wave electroporation involves the active truncation of a pulse, which is 

maintained at the same voltage for a set amount of time and provides the option of 

delivering multiple pulses (Equation 1.4.) (Bio-Rad, n.d., Jordan et al., 2008). 

 

 

ln #( − #& = 	 &
7	8	9                                      Equation 1.4. Square Wave Waveform 

 

For square wave electroporation the pulse length is not given as the time constant, but is 

instead given as an actual pulse length in milliseconds that has been set manually with 

the electroporation device. The pulse truncation gives a squared waveform rather than 

the curved waveform of an exponential decay pulse. In reality the voltage at the end of a 

square wave pulse is always slightly less than the initial voltage. This slight voltage 

decay is referred to as the droop (%) and is largely influenced by the resistance and 

capacitance of the circuit, as well as the time set for the pulse length (Equation 1.5.) 

(Jordan et al., 2007, Bio-Rad, n.d.). 
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                                      Equation 1.5. Square Wave Droop 

 

 

1.4. CHO Cell Genetic Instability 

 

The Chinese Hamster (Cricetulus griseus) has long been used as a laboratory example 

specimen. In 1957 Theodore Puck isolated and cultured cells from the ovary of a 

Chinese Hamster. They were found to be robust, quick and easy to culture and so CHO 

cells became an established immortal cell line. Genetic instability has always been an 

inherent feature of CHO cells and they were often used as a model system in studying 

karyotype heterogeneity and chromosomal aberrations (Jayapal et al., 2007). 

 

Immortal mammalian cell lines are typically genetically heterogeneous (Wurm, 2004). 

In the cell culture environment, as opposed to a mammalian cell’s natural environment 

in the organ of the organism itself, the selection pressures are different. Initially, the 

only genes under evolutionary constraint are those that influence cell growth and 
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viability. Therefore, many genes, which do not have a great influence on these growth 

characteristics, become neutral in the context of evolution. Subsequently, these genes 

are no longer fixed by natural selection, meaning that when mutations occur they may 

be more likely to remain in the subsequent generations. These genes will become 

polyallelic and survival of alleles will be random. This is known as genetic drift 

(Kimura, 1955, Kimura, 1979). This inherent ability to develop genetic heterogeneity 

allows for the straightforward and quick evolution of cells towards particular 

phenotypes, which are desirable for the process of producing recombinant proteins, by 

imposing particular constraints. Indeed, these genomes are relatively malleable and so 

can be moulded to fit many purposes. For example, cells have been evolved to be 

cultured without serum with high cell densities and viabilities, which is desirable 

because of the potential immunogenic contaminants found in serum (Sinacore et al., 

2000). Cells have also been adapted to be able to grow in the presence of compounds 

such as lactate and ammonia, so that when they are produced as bi-products of the 

production process cells are not affected by their toxicity (Prentice et al., 2007). The use 

of a selection gene and an inhibitor (discussed in the section 1.3.3) is another example 

of exploiting this rapid evolution to produce cells which have more expressive or 

greater number of copies of the recombinant gene to achieve higher yields of 

recombinant protein production (Wurm, 2004). Through many generations of cell 

culture and adaptive evolutionary engineering strategies, a number of phenotypically 

and genetically distinct CHO cell lines have been created, which exhibit drastic genetic 

differences to the original Chinese hamster genome (Derouazi et al., 2006, Wurm, 

2013). 

 

In the process of stable cell line generation a cloning step is carried out to create 

homogenous populations of cells, through the generation of new populations from a 

single cell. Despite this process there is a great deal of phenotypic variability observed 

between cells in these apparently clonal cell populations, because rapid phenotypic drift 

generates a mixed population (Barnes et al., 2006). Genetic heterogeneity is a relatively 

uncontrollable and unpredictable phenomenon, which can greatly affect host cell 

performance in the production process (Kim et al., 2011). When a population of cells is 

evolved towards a particular phenotype, such as protein production or to optimise 

growth characteristics, it stands to reason that the cells selected for use in the production 

process are those cells that achieve the desirable phenotype first and can do it most 
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efficiently (Figure 1.4). To achieve this change in phenotype there has to be a change in 

the genetic elements of the cell capable of causing differential expression. The selected 

cells have achieved this change in genetic elements first and so are likely to be the most 

genetically unstable. Therefore, potentially, instability itself is selected for and so 

perhaps it is no surprise that during long-term culture cells tend to deviate from what is 

desirable, because they are inherently unstable (Heller-Harrison et al., 2009). 

Alternatively, this could be due to a particular cell acquiring “high-producing” 

mutations where other cells have acquired less high-producing mutations, because 

mutation is random. However, if cells are heterogeneous for the many attributes tested, 

then it is likely that cells are also heterogeneous in terms of genetic stability. It is likely 

that the properties of a high-producer are attributable to both of these factors. This 

theory is supported by findings from Liu et al. (2010), in which a dysfunctional state of 

DNA mismatch repair was induced for the purpose of creating a pool of genetically 

diverse cells for subsequent phenotypic selection. Inherent instability is a desirable 

characteristic in the generation of a cell line, but becomes undesirable in the latter stages 

where desirable phenotypes can be lost. A better understanding of instability is required 

before this problem can be screened for or solved. 

 

Indeed, CHO cells are believed to have a so-called “mutator” phenotype (Kim et al., 

2011). In particular, CHO cells are very karyotypically unstable in the form of 

homologous recombination-based rearrangements, especially in response to gene 

amplification steps (Yoshikawa et al., 2000, Derouazi et al., 2006). Instability has also 

been seen through the loss of recombinant gene copies (Kim et al., 2011), and at the 

base pair level (Zhang et al., 2015), which has been shown to contain a plethora of 

single nucleotide polymorphisms (SNPs) (Lewis et al., 2013). A large number of cell 

doublings are required to create a working cell bank of a recombinant protein-producing 

cell line that is suitable for the start of long-term cell culture, and then subsequently to 

scale up cell numbers for production processes. The inherent instability of these cell 

lines often causes productivity to be greatly decreased or even lost during this period, 

which can subsequently lead to rejection of cell lines for production purposes (Heller-

Harrison et al., 2009, Barnes et al., 2003). Clearly this is unwanted, because a lot of 

resources have gone into a cell line’s development (Barnes et al., 2003). Changes in 

productivity have been firmly correlated with changes in the transcript level of the 
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recombinant gene, which can be a result of changes in gene expression or changes in 

recombinant gene copy number (Yang et al., 2010, Kim et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1.4. Selection of Genetic Instability Phenotype 
The schematic illustrates three populations of two different cell lines at different times 
over the course of a screening process for a desirable phenotype (red). Cell line 1 is 
more genetically unstable, so acquires mutations more quickly, which generates genetic 
heterogeneity. Some of these mutations are lost (yellow - neutral) or retained (red – 
desirable) through random sampling or selection. Cell Line 2 is more genetically stable 
so acquires mutations at a slower rate and as a result will take longer to achieve the 
desirable phenotype. Cell line 1 is more likely to be chosen for production processes, 
but may be more likely to lose productivity further down the line, because of its 
inherent genetic instability. Perhaps Cell line 2 would be more likely to retain a 
desirable phenotype once it has been achieved. 
 

Time 
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Epigenetic regulation is responsible for some of this change in gene expression. For 

example, it has been shown that DNA methylation correlates with loss in protein 

productivity. Specific CpG islands within the CMV recombinant gene promoter can 

become methylated in regions used as transcription binding sites, which has the result of 

diminishing gene expression (Yang et al., 2010, Kim et al., 2011). Some studies show 

that loss in productivity is almost solely down to loss in gene expression through 

methylation (Yang et al., 2010), whereas others show that the predominant cause is 

recombinant gene loss (Barnes et al., 2007). Kim et al. (2011) showed that a reduction 

in recombinant gene copy number has been correlated to loss in productivity. In this 

study instability was present in high and low producing cell lines, such at gene copies of 

the heavy chain, light chain and GS gene were uneven, despite the initial 1:1:1 ratio in 

the plasmid vector. In the productively unstable cell lines light chain genes were lost to 

a greater proportion than heavy chain and GS genes. Potentially, this is because the light 

chain gene is surrounded by more repetitive sequences, so a homologous recombination 

event is more likely to happen around this gene than the others (Kim et al., 2011). 

 

The position effect could influence both of these factors that cause changes in gene 

expression. Plasmid integration near inactive regions can make the transgenic region 

itself become inactive through silencing (Wurm, 2004). The position effect could also 

impact on gene copy number; For a plasmid to become integrated there needs to be a 

gap created by genomic breakage for the plasmid sequence to integrate. There are 

certain hot spots for DNA damage and subsequently for areas creating these genomic 

gaps. Therefore, plasmids could be more likely to insert into a region prone to genomic 

breakage and thus be more at risk of rearrangements. Insertion sites are likely to have 

different levels of inherent stability and capacity for gene expression (Denissenko et al., 

1997, Barnes et al., 2007, Kim et al., 2011). 

 

Once some cells within the population have acquired lower productivity attributes it is 

thought they have a growth advantage over high producing cells because of the lessened 

metabolic burden of not producing recombinant protein. Therefore, these low producing 

cells can take over the population because of their growth advantage, causing the cell 

line’s overall production to decline. If genetic instability can be understood and 

controlled then this phenomenon can be prevented (Barnes et al., 2007). 
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This instability does not only impact upon cell productivity, but can also have adverse 

effects on product quality. During the cell line development process cell lines are 

assessed for product quality attributes, such as protein aggregation, charge variants, 

glycosylation variants, and sequence variants, in line with regulatory body requirements 

(Ren et al., 2011, Zhu, 2012). It is crucial that these attributes remain consistent to 

ensure the safety and efficacy of a recombinant therapeutic product (Zhang et al., 2015). 

An underlying instability can lead to phenotypic heterogeneity in all if these quality 

attributes (Ren et al., 2011, Davies et al., 2013). Other than sequence variants, which 

will be analysed in this thesis (chapter 5), an example of one of these influential 

phenotypes is glycosylation. It has been shown that cell lines become heterogeneous in 

N-glycan processing of recombinant products, which can have an impact on the 

pharmacokinetics and biological function of a recombinant protein (van Berkel et al., 

2009, Zhu, 2012, Davies et al., 2013). Sequence variants have been discovered in a 

large proportion of clonal cell lines, and have been shown to directly cause changes to 

the amino acid sequence of a recombinant protein (Zhang et al., 2015). Evaluation of 

these product quality attributes on product efficacy and immunogenicity presents a 

technical challenge and so if cell lines carrying these undesirable attributes can be 

identified early in cell line development, they can be eliminated as a candidate cell lines 

for production processes (Zhang et al., 2015, Davies et al., 2013). 

 

 

1.5. Advancements and Future Directions 

 

Advancements in the production of biological therapeutics can be measured in different 

ways, such as increased product titers, increased cell qP, product quality consistency, 

time to market and the variety of products able to be produced by a given system, 

amongst others. This chapter has already summarised some of the key areas in which 

changes have been, and continue to be, made. For example; vector design for an 

increased and tailored production, cell engineering strategies to boost productivity and 

growth, transfection method variety and optimization, advancements in TGE for more 

insightful and faster screening processes, research into targeted integration for more 

consistent and predictable levels of gene expression, improvement of downstream 

methodologies for higher titers and product purity, and improvements in gene selection 

systems such as the GS knockout cell line. These improvements have already led to 
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volumetric productivity being increased from 0.5 to 2-10 g/L in large-scale bioprocesses 

(Datta et al., 2013). 

 

1.5.1. Systems Biology and Omics technology 

 

The overall concept of systems biology is the shift from looking at biological organisms 

purely at the molecular level to investigating whole-organism biology. Clearly, 

molecular techniques are needed to study processes mechanistically and in detail, but 

the idea is to integrate all of these defined isolated reactions and processes into a 

working model of a dynamic cellular network (Westerhoff and Palsson, 2004). As well 

as integrated analysis, development of high-throughput technologies has allowed the 

study of cellular functions on a global scale in which large datasets can be analysed 

together. The term ‘omics’ is used to describe this (Westerhoff and Palsson, 2004, 

Kildegaard et al., 2013). Omics includes the study of the entirety of a cell’s genes 

(genomics), mRNA (transcriptomics), proteins (proteomics), metabolism 

(metabolomics), metabolic flux (fluxomics) and glycosylation profiles (glycomics) 

(Datta et al., 2013, Kildegaard et al., 2013). All of this information together allows for a 

better understanding of cellular complexity in a way that is more than just a sum of its 

parts, but as the interacting and ever-changing environment that it is. Discoveries here 

can lead to a wide range of useful engineering targets to facilitate cell line 

improvements (Kildegaard et al., 2013; Westerhoff and Palsson, 2004).  

 

1.5.2. Synthetic Biology 

 

Synthetic biology aims to apply understanding of genetic elements and their interactions 

to the engineering of novel genetic constructs that offer novel or improved functionality 

to a host (Lienert et al., 2014). Logical parallels were derived from electrical circuit 

design such that genetic circuits could be built in a similar modular fashion with 

functional components such as switches, oscillators and feedback loops (Khalil and 

Collins, 2010, Lienert et al., 2014). These so-called building blocks can be taken from 

different organisms and combined in a way that would not occur naturally to create 

truly novel functions. This can be achieved through the interaction of different genes 

and recombinant proteins, and through the creation of advanced proteins that contain 

sequence components from different origins (Purnick and Weiss, 2009, Lienert et al., 
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2014). In one study a library of synthetic promoters was created based upon a 

bioinformatics sequence analysis of promoter sequence abundance. It was determined, 

via the use of synthetic reporters, that promoters designed in this fashion could reach 

expression at twice the level of the CMV promoter and could consistently and precisely 

control gene expression in CHO cells over two orders of magnitude. Through doing this 

the importance of different promoter sequence components were accurately defined 

(Brown et al., 2014).  

 

1.5.3. Screening Tool 

 

There is a rising demand for a wider variety of therapeutics that can be produced in 

abundance. Therefore, as our understanding and capacity for process optimisation 

increases it is important that there is the capability of assessing production platform 

attributes in a high throughput manner quickly and cheaply (Browne and Al-Rubeai, 

2009). For example, an essential step in the production process is the transition from a 

heterogeneous pool of producing cells to the generation of clonal cell lines, which can 

be assessed for desirable attributes. Initially, this was achieved by limited dilution 

cloning methods, which are slow and laborious (Browne and Al-Rubeai, 2007). 

Fluorescence-activated cell sorting (FACS) methods allowed for a more high-

throughput process and enabled the selection of cells by their productivity through the 

assessment of cell surface protein expression, saving time in the clonal screening 

process (Browne and Al-Rubeai, 2009). More recently clone picking has been 

automated through the use of mechanical systems such as the ClonePix from Genetix. 

The ClonePix quantifies secreted protein immoblised in semi-solid medium on a single 

cell level, providing a better indication of total cellular protein than protein expressed 

on the cell surface as with FACS (Nakamura and Omasa, 2015, Browne and Al-Rubeai, 

2009). After clonality has been established multiple clones are grown and assessed for 

their growth and productivity characteristics in a high-throughput plate format. The best 

of these clones are taken forward for expansion and further testing (Le et al., 2015, Noh 

et al., 2013). Cell line stability and heterogeneity as well as product quality are also key 

attributes of concern at this stage and will be discussed separately in chapters 4 and 5. 

 

TGE, as discussed previously, is an extremely useful process in which process 

parameters can be optimised quickly and cheaply, because it is not as laborious or 
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expensive as SGE. This means that new candidates and their variants can be tested, 

different cell lines compared, vectors can be varied and optimised and different media 

formulations can be analysed in a high-throughput manner. This is an extremely useful 

platform in predicting how processes will function in stable production (Pham et al., 

2006, Baldi et al., 2007, Andersen and Krummen, 2002). Clearly, the development of 

screening tools in TGE processes can help streamline the production process.  

 

 

1.6. Project Aims 

 

This chapter has summarized the platforms and bioprocesses utilised for the production 

and recovery of recombinant therapeutic proteins with a focus on genetic instability. As 

described, there are still many gaps in our biological and process knowledge, the 

understanding of which can facilitate the improvement and optimisation of these 

processes. As our knowledge base widens the number of options for bioprocesses 

increases. For example, a wider variety of proteins can be produced, through a number 

of engineering strategies, different vector designs, via different transfection 

technologies and using different selection methods. Options are also increased in that 

bioprocess characteristics can be more acutely tested and analysed at each stage of the 

process. Clearly it is important that we have the ability to test these attributes 

efficiently.  

 

This thesis focuses on the characterisation and understanding of three aspects of the 

bioprocesses described above and the potential application of the findings through more 

optimised methodologies or potential bioprocess screening tools. 

 

Chapter 3 discusses the effect of CHO cell genetic instability and heterogeneity on 

therapeutic protein production bioprocesses. The chapter aims to characterise the extent 

of this stability at the base pair and chromosomal level and demonstrate the potential 

need for a screening tool for genetic stability of clonal protein-producing cell lines. 

 

Chapter 4 shows the optimisation of electroporation, which was needed for the 

generation of stable GFP cells in chapter 5. In doing this it was discovered that standard 
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industry conditions could be vastly improved in a product and platform specific manner 

using design of experiments (DoE) methodology. 

 

Chapter 5 discusses the difficulties in maintaining product quality throughout the 

production bioprocess, specifically in the form of sequence point mutation. Firstly, the 

chapter aims to assess recombinant DNA sequence integrity at different stages in 

generating a GFP-producing cell population. The second aim is to validate an 

alternative analysis of the Pacific Biosciences PacBio RSII single-molecule sequencing 

platform to facilitate a higher resolution of mutation detection. 
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Chapter 2 
 

Materials and Methods 

 
This chapter provides a detailed description of the materials and methods used to 

complete the experiments described in results chapters three, four and five.  

 

Microbial work and molecular biology techniques were carried out in a separate lab to 

mammalian cell culture to ensure cell culture sterility. Any materials or vessels to be 

used in culturing of mammalian cells were sterilized with 70% ethanol and work was 

conducted within a laminar flow hood. Materials used were of high purity and, where 

necessary, underwent appropriate filtering and autoclaving procedures.  

 

2.1. CHO Cell Culture 

 

2.1.1. Cell Culture Maintenance 

 

CHOK1SV derived suspension cells (cell line CHO269M, Pfizer, NY, USA) were 

cultured in CD-CHO medium (Thermo Fisher Scientific, MA, USA) supplemented with 

6mM L-glutamine (Thermo Fisher Scientific, MA, USA) in vented Erlenmeyer flasks 

(Corning, Surrey, UK). Cell culture volumes used were 20-25% of Erlenmeyer flask 

total volume. Flasks were incubated at a temperature of 37 °C, in 5% (v/v) CO2 and 
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shaking at 140 rpm. Cells were routinely subcultured at a seeding density of 0.2 x 106 

cells/mL on a 3-4 day schedule. A Vi-Cell cell viability analyser (Beckman-Coulter, 

High Wycombe, UK) was used to determine the average cell viability, concentration 

and diameter via an automated Trypan Blue exclusion assay in which non-viable cells 

are permanently stained. Cells were subcultured up to a maximum of 25 times in order 

to minimise genetic diversity, apart from for the generation of stable cell lines (detailed 

in section 2.6) 

 

The cell culture growth characteristics; cell doubling time (equation 2.1.), generation 

number (equation 2.2.) and cell specific growth rate (µ) (equation 2.3.) were calculated 

using the equations below: 

 

Cell	Doubling	Time = /01	/2 	345
67 89: /0167 89: /2

                             Equation 2.1. 

 

Generation	Number = /0∙67 89: /0167 89: /2
/01/2 345                Equation 2.2.   

 

A = 67 89: /0167 89: /2
/01/2

                                                             Equation 2.3. 

 

Where t is time, f is final and VCD is viable cell density.  

 

2.1.2. Cryopreservation and Cell Bank Generation 

 

Master and working cell banks were created for the CHO269M cell line received from 

Pfizer (NY, USA); Two days after subculture (mid-exponential phase) cells were 

pelleted by centrifugation at 130 x g for 8 minutes and resuspended at a concentration of 

1 x 107 cells/mL in CD-CHO media containing 7.5% DMSO (Sigma Aldrich, Dorset, 

UK). 1 mL aliquots were assorted into NUNC cryovials (ThermoFisher Scientific, MA, 

USA) and stored in a “Mr. Frosty” container (Nalgene, Roskilde, Denmark), filled with 

100% isopropanol, at -80 °C overnight to allow slow freezing of cell solutions. 

Cryovials were then transferred to a liquid nitrogen freezer (-196 °C) for long-term 

storage. To revive cells from liquid nitrogen storage, cells were rapidly thawed at 37 °C. 

Subsequently, the cell solution was added to 30 mL of pre-warmed media and a sample 
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taken for determination of viability and VCD. Cells were then incubated at standard 

culture conditions. These cells are labeled “Day 0”.  Cells are subcultured after two 

days of subculture and subsequently follow the standard subculture regime. Cells are 

acclimatised to these conditions for three subcultures before being used for any 

experimental work. 

 

2.2. Plasmid DNA Amplification and Preparation 

 

2.2.1. Transformation and Plasmid Amplification 

 

A phCMV C-GFP FSR Vector (Genlantis, CA, USA) plasmid was transformed into 

Library Efficiency® DH5α™ Escherichia coli (E. coli) competent cells (Thermo Fisher 

Scientific, MA, USA); DH5α™ cells were thawed on ice and mixed with 25 ng of 

plasmid DNA, incubated for 30 minutes on ice, heat shocked at 42 °C for 45 seconds 

and then returned to ice incubation for a further 2 minutes. Cells were then diluted 1:10 

in LB-Broth (Thermo Fisher Scientific, MA, USA) and incubated for 1 hour at 37 °C. 

The cells were then spread on to LB-Agar (Thermo Fisher Scientific, MA, USA) plates 

containing Kanamycin (Sigma Aldrich, Dorset, UK) at a concentration of 50 ug/mL. 

Plates were incubated at 37 °C overnight. A colony was picked and used to inoculate 5 

mL LB-Broth containing 50 ug/mL Kanamycin to generate a starter culture, which was 

incubated at 37 °C, 200 rpm for 8 hours. Starter cultures were then used to inoculate 

larger volumes of Kanamycin containing LB-Broth for bulk amplification, which were 

incubated at 37 °C, shaken at 200 rpm for 12-16 hours.  

 

2.2.2. Plasmid Extraction and Purification from E. coli  

 

A Gigaprep kit (Qiagen, Manchester, UK) was used to lyse E. coli cells and purify 

amplified plasmid DNA, following the manufacturers protocol. Briefly; kit buffers are 

used between centrifugation steps to lyse cells via alkaline lysis and precipitate a large 

proportion of cellular components. The remaining supernatant is applied to an anion 

exchange resin column, which binds plasmid DNA and the remaining impurities are 

removed through wash steps. The plasmid DNA is then eluted using nuclease free water 

(Thermo Fisher Scientific, MA, USA) for short-term storage or Tris-EDTA buffer 

(Thermo Fisher Scientific, MA, USA) for long-term storage, both at -20 °C. 
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2.2.3. Caesium Chloride Extraction from Transfected Mammalian Cells 

 

Cells were pelleted by centrifugation at 2500 x g for 5 minutes, washed in PBS (Sigma 

Aldrich, Dorset, UK), resuspended in 250 uL of a resuspension solution (50 mM Tris-

HCl - Thermo Fisher Scientific, MA, USA; 10 mM EDTA - Thermo Fisher Scientific, 

MA, USA; 100 ug/mL RNase – QIAGEN, Manchester, UK) and lysed with 250 uL 

1.2% SDS (Sigma Aldrich, Dorset, UK) supplemented with 20 uL Proteinase K 

(Thermo Fisher Scientific, MA, USA). The solution was mixed by inversion and 

incubated at room temperature for 5 minutes before adding 350 uL precipitation 

solution (3M CsCl - Sigma Aldrich, Dorset, UK; 1M potassium acetate - Sigma 

Aldrich, Dorset, UK; 0.67M acetic acid - Thermo Fisher Scientific, MA, USA). The 

precipitation solution was mixed by inversion, incubated for 15 minutes on ice and 

centrifuged at 15,000 x g for 15 minutes. Supernatant was applied to a Miniprep column 

(Qiagen, Manchester, UK) and centrifuged at maximum speed for 1 minute. 750 uL 

wash buffer (80 mM potassium acetate - Sigma Aldrich, Dorset, UK; 10 mM Tris-HCl 

ph7.5 - Thermo Fisher Scientific, MA, USA; 40 uM EDTA - Thermo Fisher Scientific, 

MA, USA; 60% ethanol - Thermo Fisher Scientific, MA, USA; diH2O) was added to 

the column and centrifuged at maximum speed for 1 minute. DNA was eluted from the 

column using 50 uL nuclease-free water (Thermo Fisher Scientific, MA, USA) via a 

final centrifugation at maximum speed for one minute. Samples were pooled using the 

miVac DNA concentrator (Genevac Ltd, Ipswich, UK). 

 

2.2.4. BluePippin Purification 

 

Validation of the Blue Pippin system (instrument and reagents - Sage Science, MA, 

USA) was carried out with the assistance of demonstration from a Sage Science 

representative, Will Deacon. Purification was carried out using pulsed field 

electrophoresis cassette BLF7150, which uses a 0.75% agarose gel and an external S1 

marker. The instrument was set to purify DNA of a target length of 5.3 kb, with a 

maximum range of purification between 4.25 kb and 6.35 kb. Target DNA was purified 

after 145 minutes of running the gel. For purification of DNA samples to undergo 

sequencing, Blue Pippin purification was carried out by GATC Biotech (Konstanz, 

Germany), which targeted 5 kb DNA fragments, with a maximum range of purification 

of 3 kb. 
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2.2.5. Restriction Digestion of Plasmid DNA 

 

500 ug plasmid DNA, 1x CutSmart™ Buffer (New England Biolabs, UK) diH2O and 

2000U AflII restriction endonuclease (New England Biolabs, UK) were mixed and 

incubated for 2 hours at 37 °C. The endonuclease was denatured by incubating the 

restriction solution at 65 °C for 25 minutes. An ethanol precipitation was carried out to 

purify the linearised plasmid DNA, which was resuspended in Tris-EDTA buffer 

(Thermo Fisher Scientific, MA, USA) at a concentration of 1.3 mg mL-1 for storage at -

20 °C.  

 

2.3. Post-preparation Assessments of Plasmid DNA 

 

2.3.1. Agarose Gel Electrophoresis 

 

Plasmid DNA was run on 0.8% agarose Tris-acetate-EDTA (TAE) (Sigma Aldrich, 

Dorset, UK) gels mixed with ethidium bromide (Sigma Aldrich, Dorset, UK)  for ~90 

minutes alongside a Hyperladder I (Bioline, UK) molecular weight ladder. Images were 

taken under UV light using a Biospectrum Imaging System (UVP, CA, USA). 

 

2.3.2. Nanodrop Quantification of DNA 

 

A Nanodrop 2000 (Thermo Scientific, MA, USA) was used to determine DNA 

concentration and purity. The Beer Lambert Law (Equation 2.4) calculates the 

absorbance of a DNA sample, which in turn can be used to calculate the concentration 

of DNA samples (Equation 2.5), using light path length and extinction coefficient of 

DNA (0.02 ug ml-1 cm-1) at a wavelength of 260 nm. 

 

B =∈ DE                                                 Equation 2.4 

 

E = FGH2
I.I5                                                    Equation 2.5 
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Where A is absorbance, ε is molar extinction coefficient (L mol-1 cm-1), b is path length 

(cm) and c is concentration (mol L-1). The purity of samples was determined by the 

260/280 ratio, where a ratio between 1.8 and 1.9 was indicates purity. 

 

2.4. Electroporation 

 

CHO cells were centrifuged at 130 x g for 8 minutes two days after subculture, at which 

point they had reached a VCD between 0.8 x 106 and 1.2 x 106. Cell pellets were then 

washed with 20 mL CD-CHO (Thermo Fisher Scientific, MA, USA) and centrifuged 

again at 130 x g for 8 minutes. Cells were resuspended in pre-warmed media (CD-CHO, 

L-Glutamine - Thermo Fisher Scientific, MA, USA) at a concentration of 1.68 x 106 

cells mL-1. 40 uL (50 ug) linearised phCMV C-GFP plasmid DNA (Genlantis, CA, 

USA) in Tris-EDTA (Thermo Fisher Scientific, MA, USA) buffer was added to a 4 mm 

electroporation cuvette (Bio-Rad Laboratories, CA, USA) followed by 595 uL cell 

solution (1 x 106 cells). During preliminary parameter optimisations to determine the 

constant conditions of the optimisation process, cells were electroporated using standard 

Pfizer Conditions: 300 V, 900 uF, exponential decay pulse. Post-optimisation, 

electroporation was conducted using 320-26 conditions: 320 V, 26 ms, exponential 

decay (time constant protocol). All electroporations were carried out on the Gene Pulser 

Xcel electroporation system (Bio-Rad Laboratories, CA, USA). Electroporated cells are 

immediately diluted with 500 uL media and transfered to a 6-well plate (ThermoFisher 

Scientific, MA, USA) containing 2 mL pre-warmed media for static, humidified 

incubation at 37 °C and 5% (v/v) CO2 for 24 hours. 

 

2.5. Generation of Stable GFP Cells 

 

The phCMV C-GFP plasmid contains a neomycin resistance gene. Therefore G418, a 

neomycin analogue, can be used to select for cells with genome-integrated plasmid, so 

that over time the cell culture will be populated only by stably producing GFP cells. 

Protocols were derived from a combination of the electroporation protocol optimised 

above, Lonza reference guides and an in-house GFP stable cell line generation protocol 

(Lonza, 2012). 

G418 is known to have batch to batch and cell line to cell line inconsistencies, so a dose 

response study was carried out to ascertain the minimum concentration needed to 
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prevent cell growth for each batch used. A dose response study was set up in which 

CHO cells were subcultured at 0.2 x 106 cells/mL into 50 mL Cultiflasks (Sigma 

Aldrich, Dorset, UK) containing CD-CHO (ThermoFisher Scientific, MA, USA), 6mM 

L-glutamine (ThermoFisher Scientific, MA, USA)  and G418 disulphate salt (Sigma 

Aldrich, Dorset, UK) at concentrations spanning 0-1.5 mg/mL. Cultiflasks were 

incubated at 37 °C, 5% (v/v) CO2, shaking at 170 rpm. Cell viability and concentration 

were determined daily for 5 days. 

 

Electroporation was carried out using 320-26 conditions, using 1 x 107 cells and 

transferred into T-75 flasks (ThermoFisher Scientific, MA, USA) for static, humidified 

incubation. After 24 hours, 0.8 mg/mL and 0.9 mg/mL G418 disulphate salt (Sigma 

Aldrich, Dorset, UK) was added to cultures for G418 batches 1 and 2 respectively. 

G418 is known to be relatively unstable at 37 °C, so during this static incubation phase, 

media was replaced every 3-4 days. When cultures reached a viable cell density of > 0.5 

x 106 cells/mL, cells were transferred to 30 ml Erlenmeyer flasks with 0.2 x 106 

cells/mL for standard shaking conditions, supplemented with G418 and 1x HT 

supplement (ThermoFisher Scientific, MA, USA). Cell viability and VCD was 

measured using the Vicell and GFP fluorescence was recorded by flow cytometry after 

each subculture. Fluorescence-activated cell sorting (FACS), carried out at the 

University of Sheffield Flow cytometry core facility, was used twice for the top 90% 

and 20% of GFP positive cells respectively in order to generate a high-producing cell 

population. 

  

2.6. Flow Cytometry 

 

Cells were centrifuged at 130 x g for 8 minutes and resuspended in PBS (Sigma 

Aldrich, Dorset, UK) for flow cytometric analysis. An Attune® Autosampler 

(ThermoFisher Scientific, MA, USA) flow cytometer and Attune® Autosampler 

software (ThermoFisher Scientific, MA, USA) was used to analyse cell samples for 

GFP fluorescence via excitiation with a 488 nm laser, and detection with a 530/30 band 

pass filter. Photomultiplying tube (PMT) sensors were optimized at 900 mV for GFP 

detection and 1200 and 2400 for forward scatter (FSC) and side scatter (SSC) 

respectively. A viable cell population was gated in accordance with FSC and SSC. Non-

transfected cells were used to measure cell auto-fluorescence and used to set a bi-
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marker gate to distinguish between GFP and non-GFP producing cells, so that 99% of 

cells were in the negative gate in a non-transfected cell sample (Figure 2.1). For each 

sample 10,000 cells were measured. 

 

 

Figure 2.1. Flow Cytometry Gating Example 

Viable cells were gated using FSC and SSC (A). Bi-marker gates were set according to 
cell auto-fluorescence of negative controls (B) to ascertain the percentage of cells that 
are fluorescing in positive samples (C). 
 

 

 

2.7. Response Surface Methods 

 

Design expert 9.0.4 was used to design and analyse experiments for the optimisation of 

electroporation parameters. For one preliminary experiment for the optimisation of 

sample volume was carried out using a one factor RSM model. The remaining RSM 

optimisations were carried out using rotatable central composite designs. For each 

model the data is analysed in this order: 1. In terms of the response range ratio, which 

reveals if any data transformations would make data easier to interpret. In this case a 

A 

B C 
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Box-Cox plot for power transforms would instruct on which type of transformation to 

carry out. 2. A fit summary is presented in terms of a sequential model sum of squares 

(SMSS), lack of fit tests and model summary statistcs (MSS): standard deviation, R 

squared, adjusted R squared, predicted R squared and predicted residual sum of squares 

(PRESS). This fit summary suggests which type of model best fits the data in terms of 

polynomials. 3. Based on this information the appropriate model is set to fit the data. 4. 

An ANOVA describes the significance of the model and the significance of each factor 

within this model. Moreover, the lack of fit is again presented. 5. Diagnostic tests are 

viewed and analysed to check for residual abnormalities. 6. Graphical representations of 

the models are plotted for visualising the response surface. 7. The optimisation function 

then utilises the predictive capacity of the model to generate an optimal set of 

parameters for a given set of requirements. 

 

2.8. Microsatellite Analysis 

 

2.8.1. Stable Cell Line Generation – 2  

 

Ten GS-CHOK1SV cell lines (B1-B10), producing recombinant mAb were generated 

by Peter M. O’Callaghan and Minsoo Kim as desbribed in Kim et al. (2011), according 

to standard methodology (Porter et al., 2010). CHOK1SV (Lonza Biologics) cells were 

electroporation with a linearised GS vector containing a mAb light and heavy chain (LC 

and HC). Cells containing genome-integrated plasmid were selected for by 50 uM 

methionine sulphoximine (MSX; Sigma-Aldrich, Dorset, UK). Clones were made by 

capillary cloning (B3-B10) or by FACS-facilitated single cell sorting (B1 and B2). Cell 

lines B1 and B2 expressed IgG1 mAb, whereas cell lines B3-B10 expressed a range of 

different IgG2 mAbs. Cell lines B4, B5, B6, B8, B9 and B10 were transfected with a 

codon-optimised HC sequence along its entire length, whereas cell lines B1, B2, B3 and 

B7 were transfected with a non-codon optimised HC sequence. LC and GS genes were 

identical throughout. 
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2.8.2. Cell Culture 

 

Cells were cultured by Peter M. O’Callaghan and Minsoo Kim in the conditions 

described in (Kim et al., 2011). Briefly, cell lines B1-B10 were subcultured using a 3-4 

day regime, in which they were seeded at 0.3 x 106 viable cells/mL. CD-CHO medium 

(ThermoFisher Scientific, MA, USA) with a supplement of 25 uM MSX (Sigma-

Aldrich, Dorset, UK) was used. Cells were incubated at 36.5 °C. All other cell culture 

conditions are in line with those described in section 2.1.1. 

 

2.8.3. Microsatellites and Primers 

 

Peter O’callaghan and Claire Bennett identified and designed primers for six 

microsatellites in the CHO genome (Table 2.1). 

 

Microsatellite Sequence Forward Primer Reverse Primer Source 

10.1 (CA)n GCCTAGGCTCAAAC

AAGCAC (20) 

TATAAGACACAAG

TAGTGAGTG (22) 
(Aquilina et al., 

1994) 

11.1 (CA)n TTTTCCAAGTATGTG

CTTCCCTG (20) 

AAACAAGGTTCAG

TGGGATAGC (22) 
(Aquilina et al., 

1994) 

21.1 (CA)n TTTCCCAAAGAAGTC

ATATGCC (22) 

CCTTCCTGCAATCT

CAAGATG (21) 
(Aquilina et al., 

1994) 

GNAT2 (TTC)n CAATGTTACTCTATC

CCATCCTGG (24) 

GTAAGGCTCCTGTC

TGTGAGACAG (24) 
(Baron et al., 1996) 

GT-23 (CA)n ATCTGAAGTTAAAAT

GAAGTTG (22) 

CTCTGTGGGTATGC

ACATAG (20) 
(Hinz and Meuth, 

1999) 

BAT25 (T)n GAGGAGTGCCACAA

ATCAAAGCTAG (25) 

CCCAGATTTTCAGA

TTTTAACCATG (25) 
(Liu et al., 2010) 

 

Table 2.1. Microsatellites and Primers 
The table contains a list of the microsatellites used in this study, their base composition, 
the forward and reverse primer sequences used for each microsatellite and the literary 
source, which provided a previous example of microsatellite use. 
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2.8.4. Sample Preparation 

 

Genomic DNA samples from 1 x 108 cells were prepared using the Agilent DNA 

extraction kit (Agilent Technologies, CA, USA) according to manufacturer instructions. 

PCR was carried out using the Hot Start Taq plus kit (QIAGEN, Manchester, UK) 

according to manufacturer instructions, using the primers shown in table 2.1 to amplify 

microsatellite DNA. 

 

2.8.5. Capillary Gel Electrophoresis 

 

This was outsourced to Steven Haynes of the Core Genomics Facility at the University 

of Sheffield Medical School. The following was a protocol provided: 1 ul of PCR 

amplified sample was mixed with 8.7 ul of formamide and 0.3 ul of LIZ600 size 

standard per sample, which was then transferred to plates and centrifuged to the bottom 

of each well. The plate was then transferred on to the heating block, heated to 95°C, for 

3 minutes. The plate was then incubated on ice for 5 minutes. The 3730 genetic analyser 

(ThermoFisher Scientific, MA, USA) was used to separate fragments by size using 

automoated capillary gel electrophoresis. 

 

2.8.6. Statistical Analysis in R 

 

Statistical analysis using ANOVAs, Tukey’s multicomparisons tests, F tests, power 

transformations (Box-Cox plots), T-tests and graphical representation was carried out 

using R software.  

 

2.9. Karyotype Analysis 

 

Genomic samples were prepared as described in section 2.9.4. Karyotype analysis was 

outsourced to Duncan Baker of the Sheffield’s Children’s Hospital genetic diagnostics 

service in which for each cell line 30 cell squashes were viewed by giemsa staining, and 

karyotypes were noted when they existed in 3 or more of the cells within this squash, 

because this is the number thought to be enough to represent a new clone of cells. 
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2.10. Single Molecule DNA Sequencing 

 

2.10.1. Sample Preparation 

 

The linearised stock and transfected / non-integrated samples discussed in chapter 5 

were prepared using protocols described in sections 2.2.2 and 2.2.4 respectively. The 

transfected / non-integrated sample underwent an additional purification step using 

BluePippin (Sage Science) technology as described in section 2.2.5. For integrated 

genomic recombinant plasmid DNA samples genomic DNA was prepared using a 

Blood and Cell Culture DNA kit (QIAGEN, Manchester, UK) according to 

manufacturer protocols. Briefly, cells were centrifuged, washed and resuspended in PBS 

(Sigma Aldrich, Dorset, UK). Cells were then lysed and DNA purified using the buffers 

and Genomic-tip 20/G column provided. Recombinant plasmid DNA was then 

amplified via PCR. Primers (Table 2.2) were designed using SnapGene software (GSL 

Biotech LLC, Chicago, USA) to amplify the plasmid sequence in quarters to generate 

~1.25 kb fragments. 

 

Fragment Forward Primer Reverse Primer 

1 TTAAGGCGTAAATTGTAAGCGTTAAT

ATTTTG 

CGCTTCAGTGACAACGTCGAG 

 CAATAGGCCGAAATCGGCAAAATCC CAATAGCAGCCAGTCCCTTCC 

2 GCTCGACGTTGTCACTGAAGC GGAAGGGACTGGCTGCTATTG 

 CACTAGAAGGACAGTATTTGGTATCT

GC 

GTGGCCTAACTACGGCTACAC 

3 GAGCTACCAACTCTTTTTCCGAAGG  GAATCCGCGTTCCAATGCAC 

 GGTTTGTTTGCCGGATCAAGAG CGTTCCAATGCACCGTTCC 

4 GTGCATTGGAACGCGGATTC  GATACATTGATGAGTTTGGACAAACC

AC 

 GGAACGGTGCATTGGAACG GATACATTGATGAGTTTGGACAAACC

ACAAC 

Table 2.2. phCMV C-GFP Plasmid Primers 
(Sigma Aldrich, Dorset, UK) 
 

 

The PCR mix contained: 250 ng plasmid DNA, 0.5 ul Phusion high fidelity DNA 

polymerase (New England Biolabs, UK), 1 ul NTP mix (New England Biolabs, UK), 10 



Chapter 2: Materials and Methods 

	 47	

ul Polymerase Buffer (New England Biolabs, UK), 2.5 ul of forward and reverse 

primers, diH2O to make final volume 50 ul. The Veriti 96-well thermal cycler 

(ThermoFisher Scientific, MA, USA) was used for PCR. Samples were heated to 98 °C 

for 30 seconds, then cycled 40 times through 98 °C for 10 seconds, 65.4 °C for 30 

seconds and 72 °C for 38 seconds, followed by a final heating of 72 °C for 10 minutes 

before being held at 4 °C. Amplified DNA fragments were then purified using a 

QIAquick PCR purification kit (QIAGEN, Manchester, UK) according to manufacturer 

instructions. Briefly, DNA is purified using a series of centrifugation steps facilitated by 

the use of the buffers and spin column provided. The success of the PCR and 

purification was checked by agarose gel electrophoresis. Resulting samples were 

resuspended in Tris-Hcl (pH 8.0) buffer (Sigma Aldrich, Dorset, UK) and pooled 

together for DNA sequencing. 

 

2.10.2 PacBio RSII SMRT Sequencing 

 

Single molecule real time (SMRT) sequencing was outsourced to GATC Biotech 

(Konstanz, Germany). Briefly, samples are ligated to hairpin adapter sequences to 

create a SMRTbell template. Individual SMRTbell templates are sequenced by a single 

polymerase to generate sequence reads containing multiple versions of the template (see 

explanation in chapter 5). Sequencing is conducted using a PacBio RSII instrument 

(Pacific Biosciences, CA, USA). 

 

2.10.3 SMRT Sequencing Analysis 

 

Primary analysis was outsourced to Phillip Lobb of Pacific Biosciences (CA, USA) who 

generated consensus sequences from individual molecules. Secondary analysis. BLASR 

software was used to align these consensus sequences to the reference sequence. R was 

used to call mutations and comment on coverage. The script can be found in Figure 

A26. Details of this analysis can be found in chapter 5. 
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Chapter 3 
 

CHO Cell Genomic Instability and 

Heterogeneity 
 

 

3.1. Introduction 

 

3.1.1. Chapter Summary 

 

This chapter provides further introduction to the subject of genetic instability, which 

was discussed in section 1.5. The chapter focuses on the inherent genomic instability 

and heterogeneity of CHO cells, and so looks into genetic changes on a global scale. 

The development of methodologies that are capable of characterising and quantifying 

this genomic instability would be extremely useful for cell line development platforms, 

because it would enable the detection and elimination of cell lines with a predisposition 

to genetic instability and so reduce the chance that production cell lines suffer declines 

in productivity over long-term cell culture. This study aimed to characterise genomic 

instability at the base pair and gene copy number level through microsatellite analysis, 

and at the chromosomal level using karyotype analysis.  Ten monoclonal antibody-

producing cell lines, which had previously been shown to suffer changes in cell 

productivity as a result of changes in recombinant gene copy number, were used so that 
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the genetic changes discovered in this study could be directly compared with changes in 

productivity and gene copy number found in a previous study (Kim et al., 2011). 

 

There was significant microsatellite allelic variation between the ten cell lines, and there 

were marginal changes in microsatellite allele frequencies across different generations 

of individual cell lines. However, this variation could only be attributed to genetic drift, 

rather than mutational change, and so the study did not provide sufficient evidence to 

suggest that microsatellites could be used as markers for mutational change. There was 

substantial karyotypic change found in this study, both in the form of changes in 

chromosome number and breakage / fusion events. This genetic instability was not 

shown to directly correlate with changes in productivity or gene copy number, but it 

was concluded that karyotyping could be a useful tool to eliminate genetically unstable 

cell lines during cell line development. 

 

3.1.2. Forms of Genetic Instability 

 

If a cell is genetically unstable it undergoes genomic changes at a higher rate than a 

normal cell would, which can come in a variety of forms. There can be: sequence 

changes involving base substitution, insertion or deletion of one or a few nucleotides, 

gene copy loss, chromosome number changes from the loss or gain of a chromosomes 

resulting in aneuploidy, chromosome breakage resulting in loss of chromosome parts, 

chromosome translocations where two chromosomes fuse, and gene amplification 

(Lengauer et al., 1998). Cell proliferation is a tightly regulated process with many 

processes to coordinate. One of these aspects is DNA replication and segregation. DNA 

needs to be replicated accurately and efficiently segregated in order to maintain 

genomic integrity throughout many generations (Aguilera and Gomez-Gonzalez, 2008). 

There are many DNA damage sense and repair pathways and mechanisms to ensure this 

is the case and if it is not done efficiently mutations and aberrations occur (Jackson, 

2002). Clearly this can have its disadvantages, but on the other hand for selection or 

genetic drift to drive evolution there has to be genetic variation. Therefore mutation is 

needed for the evolution of cell lines towards desired phenotypes (Hastings et al., 2009, 

Aguilera and Gomez-Gonzalez, 2008, Sinacore et al., 2000). Unfortunately,  

information on the specific causes of genetic instability in CHO cells is lacking. 
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In the case of CHO cells and developing a producing cell line, genetic instability is an 

attribute that should be closely monitored. Protein folding, PTMs, protein expression 

and amino acid sequence are some of the key attributes which could be affected by 

genetic instability, which could have implications for product quality as well as gene 

expression (O'Callaghan and James, 2008). It has been shown that loss in recombinant 

gene copy number correlates with a decline in cell specific productivity. Perhaps it is 

this underlying genetic instability of CHO cells that causes recombinant gene loss and 

causes observed losses in productivity (Kim et al., 2011). Markers of genetic instability 

can be used to characterise the extent and type of genetic instability of a given cell line, 

which include the measure of chromosomal instability, point mutations and the cells 

response to DNA damage (Lengauer et al., 1998, Jackson, 2002). This study involves 

the investigation into chromosomal instability and microsatellite instability, which can 

be used to estimate changes at the base pair level, changes in gene copy number and be 

used for cell line identification. 

 

Chromosomal instability is a hallmark of the cancer phenotype, a marker of an unstable 

cell and has been shown to propagate further genetic instability (Mitelman et al., 2007). 

Chromosomal instability has been shown to cause defects in a wide range of cellular 

functions such as protein synthesis, protein folding, changes in cellular metabolism, 

gene expression, cell proliferation and increases in point mutations (Gordon et al., 

2012). One form of chromosome instability is aneuploidy, which is the alteration in 

chromosome number and involves the loss or gain of chromosomes in a daughter cell 

compared to its mother cell. This is predominantly due to a decline in mitotic fidelity, 

meaning that the cell is less able to carry out equal chromosome segregation (Thompson 

and Compton, 2011, Lengauer et al., 1998). Another form of chromosomal instability 

results in the rearrangement of chromosomes, which can come in the form of deletions, 

insertions, translocations, duplications, inversions, the formation of isochromosomes 

and the formation of marker chromosomes. These types of changes result from breakage 

and fusion of chromosomes (Thompson and Compton, 2011). Chromosome aberrations 

can cause changes in gene copy number and gene expression, which will inevitably 

influence cell homeostasis (Thompson and Compton, 2011, Gordon et al., 2012). CHO 

cells are known for their chromosomal instability, so it is a logical marker to use when 

measuring the genetic instability of a potential producing cell line (Derouazi et al., 

2006). 
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Microsatellites are short (1-6 nucleotide) DNA motifs repeated in tandem and are 

interspersed throughout the genome. They are very common, highly variable sequences 

with many length-based polymorphisms, and are a popular genetic marker (Ellegren, 

2004). Mutations causing changes in the number of repeats, and thus causing 

polymorphic lengths of microsatellite, are relatively frequent. They occur through a 

mechanism called slippage (Figure 3.1.). Due to the repetitive and homologous nature 

of microsatellites, complementary strands can misalign after denaturation during DNA 

replication. This can cause expansion or contraction of repeats depending on the 

orientation of the misalignment relative to the template strand, because the DNA 

polymerase does not synthesise the microsatellite to a length consistent with the 

template (Lai and Sun, 2003). If this mistake is not recognised by the DNA mismatch 

repair (MMR) systems then the new allele is carried through to subsequent generations. 

This causes a large amount of variation within populations. Microsatellite 

polymorphism is commonly used as measure of relatedness between subjects and can be 

used as a method of cell line identification. Moreover, microsatellite slippage is more 

common than other base pair-level mutation. Therefore, it is a sensitive marker of MMR 

fidelity and so can be used as a proxy for all genetic instability at this level i.e. base 

substitution and insertion / deletion mismatches, as well as gene copy number changes. 

Base-pair level mismatches can have a wide range of deleterious effects on cellular 

metabolism and so studying their frequency can give useful information on the genetic 

stability of a given cell line and its ability to sense and repair that damage (Lengauer et 

al., 1998, Kurzawski et al., 2004, Lai and Sun, 2003, Kunkel and Erie, 2005, Aquilina et 

al., 1994, Yu et al., 2015). 
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Figure 3.1. Replication slippage. 
Each numbered block represents one repeat of a microsatellite. The figure illustrates 
how DNA strands can become misaligned and as a result the microsatellite can undergo 
expansion (left) or contraction (right). 
 

 

3.1.3.  Chapter Aims and Hypotheses 

 

This investigation aims to characterise the extent of genetic change at the base pair, 

copy number and chromosome level through microsatellite and karyotype analysis. 

Hypotheses: 

• There would be significant nucleotide-level change over long-term cell culture. 

• There would be significant karyotype-level change over long-term cell culture. 

• This genetic change would correlate with observed changes in cell specific 

productivity and gene copy number 

• Heterogeneity would be present between cell lines and would be seen to develop 

over time. 

 

3.2 Results 

 

The hypothesis generated by Kim et al (2011) was that repetitive sequences within the 

GS vector are subject to homologous recombination-based gene loss. This was 

supported by the fact that light chain genes, which are surrounded by more repetitive 
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elements, were lost to a greater extent than heavy chain and GS genes. Vector design, 

genomic location of recombinant gene integration (position effect) and underlying cell 

line genomic stability are all postulated to influence this phenomenon. The work 

presented here aims to build on the work of Kim et al (2011), with an investigation into 

the hypothesis that the underlying background genetic instability is significant and 

could strongly influence recombinant gene loss and, subsequently, a decline in qP. The 

same ten (B1-B10) GS-CHOK1SV mAb-producing cell lines used in the Kim et al. 

(2011) study, sampled at the same low and high generation numbers, were used to 

analyse cell line genetic instability at the base pair and chromosome level. A brief 

summary of the workflow of the experiments and analysis carried out in this chapter is 

provided in figure 3.2. 

Figure 3.2. Chapter 3 Workflow 
The flow chart begins with the chapter premise, which originates from the 10 cell lines 
studied by Kim et al. (2011) and the need to assess their genomic instability. This is 
done at the base pair / GCN level by microsatellite analysis and at the chromosome 
level by karyotype analysis. Microsatellite analysis involved the study of allelic 
heterogeneity amongst the 10 cell lines and how allele frequency changes over time. 
Karyotyping considers changes in chromosome number and form. Both of these tools 
are then assessed in their ability to report on genomic instability as well as their 
correlation with changes to qP and GCN. 
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3.2.1. Microsatellite Analysis 

 

Microsatellite instability was used as a marker of overall genetic instability at the base 

pair level to assess the heterogeneity of these cell lines and their genetic stability over 

time. Six microsatellites (GNAT2, 10.1, 21.1, 11.1, GT-23 and BAT25) were used as 

markers to genetically characterise each of the ten cell lines (B1-B10). Samples from 

each cell line were taken at both a low and high number of generations after cloning. A 

summary of the exact sampling generations, production stability and gene copy number 

(GCN) is shown in Table 3.1.  Microsatellites were amplified by PCR and analysed by 

capillary gel electrophoresis in order to determine the extent of microsatellite 

polymorphism in each cell line. Genemapper® (Applied Biosystems) and Peak 

Scanner® (Applied Biosystems) software were used to determine the number (number 

of peaks) and frequency (peak height) of alleles for each microsatellite (Figure 3.3). 

Peak height is sample specific and so cannot be compared between different samples. 

Therefore, peak heights were converted to percentages to normalise the data. This 

profile of different allele frequencies in a given cell line will hereafter be referred to as 

the allele frequency distribution. Table 3.2 shows the number of alleles for each 

microsatellite. Each microsatellite was sampled in duplicate, except for GT-23, which 

was sampled in triplicate. Due to sampling errors there is no data available for 

microsatellite 11.1 in cell line B6. 



 

	

 

 
Table 3.1. Gene Copy Number and qP Changes in Cell Lines B1-B10 
The data in this table is adapted from data generated in (Kim et al., 2011). The table shows the generation number for each cell line, referred to as 
“low” or “high”, changes in qP both as a percentage and rate, and changes in gene copy number for the heavy chain, light chain and GS gene in 
terms of percentage and rate. 

 Generation Number Change in qP Recombinant GCN Change (%) Recombinant GCN Change (rate) 

(generation-1 x 103) 

Cell Line Low High Percentage Rate 

(generation-1 x 102) 

HC LC GS HC LC GS 

B1 20 72 - 32.6 - 0.80 - 17.9 - 48.1 - 13.6 - 3.8 - 12.6 - 2.8 

B2 20 84 - 24.7 - 0.46 - 11.5 - 38.9 - 1.8 - 1.9 - 7.7 - 0.3 

B3 16 57 - 3.7 - 0.09 0 8.7 - 5.6 0.0 2.0 - 1.4 

B4 23 103 - 23.8 - 0.31 - 15.4 - 34.9 - 12.9 - 2.1 - 5.3 - 1.7 

B5 19 95 0.0 0.00 - 20.0 - 31.3 - 22.8 - 2.9 - 4.9 - 3.4 

B6 14 82 - 1.8 - 0.03 - 11.1 - 9.6 - 15.9 1.6 - 1.5 2.2 

B7 2 77 - 13.9 - 0.22 - 13.8 - 7.9 - 19.2 - 2.0 - 1.1 - 2.8 

B8 16 76 - 44.4 - 0.93 - 43.2 - 57.5 - 45.9 - 9.4 - 14.2 - 10.2 

B9 12 93 - 70.7 - 1.47 - 72.8 - 83.2 - 81.0 - 15.9 - 21.8 - 20.3 

B10 11 92 6.3 0.07 24.1 3.0 19.7 2.7 0.4 2.2 
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Figure 3.3. Peak Scanner Software Allele Frequency Determination 
The figure illustrates how the allele frequencies for each microsatellite were determined 
using Peak Scanner® software. The three main peaks show that there are three alleles of 
the microsatellite GNAT2 (126bp, 129bp, 132bp). The peak height (H) determines the 
frequency of each allele (2305, 100675, 14066) in this cell line (B3 High). These were 
converted to percentages to enable comparisons between samples (8.5%, 39.5%, 52%). 
 

 

 

 

 

 

 

 

 

 

 
Table 3.2. Number of Alleles per Microsatellite 
The table shows how many alleles were detected for each microsatellite as determined 
by Genemapper® (Applied Biosystems) and Peak Scanner® (Applied Biosystems) 
software. 
 

 

3.2.1.1. Microsatellite Heterogeneity Between Cell lines 

 

This first set of analyses gives an insight into the variation between cell lines within a 

given generation, which provides information on genetic drift and cell line 

heterogeneity. Subsequently, it was investigated whether any observed heterogeneity is 

Microsatellite Number of Alleles 

GNAT2 3 

10.1 4 

21.1 3 

11.1 6 

GT-23 6 

BAT25 4 
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seen to increase over long-term cell culture by comparing the variance at low and high 

generation numbers. 

 

It was decided that this analysis would be carried out on an allele-by-allele basis and so 

the dataset was split into 52 data subsets by categories of microsatellite, generation and 

allele. So, for example, one subset contained all the percentage values of total GNAT2 

microsatellite copies for allele 1 in each cell line at low generation number (GNAT2 – 

Low – Allele 1: 20 data points, two for each cell line). Before analysing the variance 

within these data subsets, it was necessary to establish whether their residuals were 

normally distributed in order to determine whether to carry out a parametric or non-

parametric variance test. A Shapiro-Wilk test was carried out to test for normality 

(Table A41), which shows data is normally distributed when p > 0.05. 6 of the 52 data 

subset residuals were not normally distributed and so Box-Cox plots for data transforms 

(Figure 3.4) were generated to ascertain the power transformation most likely to yield 

normal residuals in each case. The following power transformations were carried out: 

 

• BAT25 – High – Allele 1 1.57 

• 10.1 – Low – Allele 1 0.44 

• GT-23 – High – Allele 2 -9 

• 10.1 – High – Allele 3 -36.42 

• 10.1 – High – Allele 4 31.1 

• GT-23 – Low – Allele 6 -9.73 

 

Using these transformed percentage values the Shapiro-Wilk test was used again to 

check for data subset normality (Table A42). The data transformations resulted in five 

out of the six data subset residuals being normally distributed. However, one data subset 

(10.1 – High – Allele 4) still had non-normally distributed residuals. To assess 

microsatellite heterogeneity between cell lines, one-way ANOVAs were conducted for 

all data subsets to assess differences in allele frequency distribution, except for data 

subset 10.1 – High – Allele 4, which was assessed using a non-parametric equivalent 

rank test, the Kruskal-Wallis one-way analysis of variance. The p-values were then 

adjusted using a Benjamini Hochberg adjustment, to nullify the type I error risk from 

using multiple ANOVAs. 
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Figure 3.4: Box-Cox Plots for Power Transforms: Non-Normal Microsatellite Data 
The plots show the value of lambda (directly under peak) for a power transformation 
most likely to yield a normally distributed dataset. 
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A) BAT25 – High – Allele 1 B) 10.1 – Low – Allele 1 

C) GT-23 – High – Allele 2 D) 10.1 – High – Allele 3 

F) GT-23 – Low – Allele 6 E) 10.1 – High – Allele 4 
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Table 3.3 shows the p-values from all 52 variances tests, highlighting those that were 

significant (p < 0.05). 4 out of the 6 microsatellites (GNAT2, 21.1, 11.1, BAT25) show 

significant variance in allele frequency distributions between the low generation cell 

lines and between high generation cell lines. Figure 3.5 contains plots illustrating the 

allele frequency distributions, in which cell lines are represented by differentially 

coloured plot lines in individual plots for all microsatellite-generation number 

combinations. The plots show that the significant microsatellite variation revealed by 

the ANOVAs (GNAT2, 21.1, 11.1 and BAT25) is not randomly distributed.  

 
 

 
Table 3.3: Microsatellite Polymorphism: Variance Between Cell Lines 
The table contains the p-values from ANOVA tests describing the microsatellite allelic 
variance between B1-B10 cell lines at a low (A) and high (B) generation number. * 
represents significant variance. 
 
 
 

A) Low Generation      

Microsatellite Allele 1 Allele 2 Allele 3 Allele 4 Allele 5 Allele 6 

GNAT2 * 1.07E-07* 1.09E-10* 2.45E-11*    

10.1 0.738 0.738 0.738 0.738   

21.1 * 1.45E-04* 1.52E-08* 5.18E-12*    

11.1 * 5.46E-05* 2.78E-07* 1.59E-08* 1.05E-06* 5.48E-07* 2.47E-07* 

GT-23 0.854 0.854 0.854 0.854 0.854 0.854 

BAT25 * 6.80E-09* 7.03E-12* 7.31E-12* 2.32E-09*   

B) High Generation      

Microsatellite Allele 1 Allele 2 Allele 3 Allele 4 Allele 5 Allele 6 

GNAT2 * 8.87E-11* 6.08E-11* 8.12E-12*    

10.1 0.603 0.603 0.499 0.603   

21.1 * 9.09E-09* 1.23E-12* 6.59E-15*    

11.1 * 4.51E-06* 4.77E-06* 3.01E-06* 0.002* 1.61E-05* 6.01E-07* 

GT-23  0.060 0.094 0.094 0.094 0.094 0.094 

BAT25 * 1.24E-11* 5.49E-11* 1.12E-11* 2.69E-12*   



 

	

Figure 3.5: Allele Frequency Distribution  
The plots show allele frequency for each cell line: Colours: B1 (black), B2 (blue), B3 (green), B4 (orange), B5 (dark gray), B6 (red), B7 (brown), 
B8 (cyan), B9 (dark green), B10 (yellow). The letters represent different clusters of cell lines that are similar in allele frequency distribution. 
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Instead, it is due to an apparent clustering phenomenon, whereby subgroups of cell lines 

have similar allele frequency distributions, which differ significantly to the allele 

frequency distributions of the other subgroup(s). Cell lines that belong to the same 

cluster with one microsatellite do not necessarily belong to the same cluster for other 

microsatellites. However, it is noteworthy that cell lines B1 and B2 as well lines B4, 

B5, and B8 are always the same cluster. Significantly variable microsatellites present 

the following clusters: 

• GNAT2: Low and High 

o A) B3, B6, B7, B9, B10. 

o B) B1, B2, B4, B5, B8.  

• 21.1: Low and High 

o A) B1, B2, B3, B6, B7, B9, B10. 

o B) B4, B5, B8. 

• 11.1: Low 

o A) B1, B2, B3, B4, B5, B8. 

o B) B7, B9, B10. 

• 11.1: High 

o A) B1, B2, B3, B4, B5, B8, B9. 

o B) B7 

o C) B10 

• BAT25: High and Low 

o A) B1, B2, B4, B5, B8. 

o B) B3, B6, B7, B9, B10. 

The clusters within these variable microsatellites remain the same from low to high 

generation, except for microsatellite 11.1, in which cell line B9 appears to change from 

cluster B to cluster A and cell line B10 forms its own cluster (C) in high generation 

cells. The plots illustrating those microsatellites that exhibited no significant 

microsatellite variation in the ANOVAs (10.1 and GT-23) show all 10 cell lines in the 

same cluster. As well as clustering, the shapes of clusters shift between low and high 

generations, which is indicative of change over long-term cell culture. For example, 

GNAT2 cluster A cell lines are more widely spread in the high generation plot in 

comparison with the low generation plot. 
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To further analyse the ANOVA results a Tukey’s multiple comparisons test was carried 

out to give a cell line by cell line breakdown of comparisons for each microsatellite. In 

the case of data subset 10.1 – High – Allele 4 a Kruskal Nemenyi test was carried out, 

which can be used in the same manner as a Tukey’s test for non-parametric data. These 

results are presented in Tables 3.4-3.9, whereby each comparison is represented by how 

many of the total alleles for each microsatellite were significantly different (p < 0.05) 

between cell lines. The tables support the conclusions drawn from Figure 3.6, whereby 

the significant variation shown by the ANOVAs is not randomly distributed, but is 

mostly down to an apparent clustering phenomenon, in which subgroups of cell lines 

have similar allele frequency distributions, which differ significantly to the allele 

frequency distributions of other subgroups. However, these tables also show that there 

is significant variation within these clusters as represented by the black and red dashed 

borders for clusters A and B respectively. Moreover, these tables show that, on a cell 

line-by-cell line basis, there is no significant variation between low and high generation 

cell lines for microsatellites 10.1 and GT-23. Microsatellites GNAT2, 21.1, 11.1 and 

BAT25 had significant generational allelic changes over long-term cell culture (orange 

shaded boxes), having 6, 11, 15 and 3 changes in the number of cell line-by-cell line 

allelic differences respectively. These allelic changes appear to be randomly distributed 

in microsatellites GNAT2, 21.1 and BAT25, whereas the changes appear exclusively in 

cell lines 9 and 10 in microsatellite 11.1. This supports the conclusions drawn from 

figure 3.6 and indicates that microsatellite change may have led to a breakaway of these 

cell lines from the initial clustering identified in low generation cell lines. Box plots 

illustrating these cell line-by-cell line differences are included in the appendix (Figures 

A27-32). Interestingly, these box plots reveal that the size of residuals for 

microsatellites 10.1 and GT-23 could be the reason for finding a lack of significant 

variance in the ANOVAs. 
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(3 Alleles) 3.4 

(4 Alleles) 3.5 
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(3 Alleles) 3.6 

(6 Alleles) 3.7 
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Tables 3.4-3.9: Tukey’s Multiple Comparisons Tests 
The tables provide the number of significantly different alleles for each cell line-cell 
line comparison at low and high generation numbers for each microsatellite. Low and 
high cell line comparisons are shown above and below the blacked-out cells 
respectively. The orange highlighted values represent the allele number values that have 
changed over long-term cell culture. Black and red dashed borders represent variations 
within A and B clusters respectively. 

(6 Alleles) 3.8 

(4 Alleles) 3.9 
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So far the analysis has indicated that cell line microsatellite heterogeneity may have 

increased from low to high generation. For example, the ANOVA p-values generally 

decreased from low to high generations, figure 3.5 showed greater dispersion of cell 

lines for higher generations and generally Tukey’s tests revealed that higher generation 

cell lines were more significantly different than lower generation cell lines. To confirm 

the validity of these inferences, an F Test was carried out to compare variances between 

low and high generation cell lines. The F test results are summarised in table 3.10. 

Generally, there was no significant difference in variances between low and high 

generations, except on two occasions with 10.1-Allele 3 and GT-23-Allele 1. Variance 

in microsatellite 10.1 and GT-23 was deemed not to be significant, so significant 

changes in variance here were not counted. This indicates that variance has not changed 

over long-term cell culture. 

 

Microsatellite Allele 1 Allele 2 Allele 3 Allele 4 Allele 5 Allele 6 

GNAT2 0.738 0.673 0.690    

10.1 0.211 0.117 0.031* 0.987   

21.1 0.787 0.971 0.974    

11.1 0.109 0.069 0.397 0.860 0.348 0.146 

GT-23 0.0398* 0.318 0.056 0.206 0.304 0.162 

BAT25 0.911 0.524 0.724 0.705   

Table 3.10: F Test for Variance Comparison Between Generations 
The table contains p-values generated from comparing variances between allele 
frequencies across low and high generations by F Tests (Table A43 contains the full set 
of p-values with variance ratios). * represents a significant change in variance. 
 

However, it has already been established that the main cause of significant variation 

between cell lines is due to the clustering phenomenon described previously and it could 

be the case that significant changes in variance between low and high generation were 

being masked by this large source of variation. Therefore, F Tests were carried out to 

assess the significant differences in variances between the clusters of cell lines 

identified in the low generation. The results of these F Tests are summarised in table 

3.11. This method was more able to identify significant variance differences between 

generations and the results show that heterogeneity appears to increase over long term 

cell culture. Differences in variance appears to be partially present for all 

microsatellites, apart from microsatellite 11.1 for which cluster B has significant 

differences in variance for all alleles. This supports the greater amount of change 
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determined previously in microsatellite 11.1 in comparison to other microsatellites. 

Again, for those variances deemed not significant by ANOVAs (10.1, GT-23, 

significant changes in variance should not be counted. 

 

 
Table 3.11: F Test for Variance Comparison Between Generations by Cluster 
The table contains p-values generated from comparing variances between allele 
frequencies across low and high generations by cluster, using F Tests (Table A44 
contains the full set of p-values with variance ratios). * represents a significant change 
in variance. 
 

 

3.2.1.2. Cell Line-specific Microsatellite Changes Over Time 

 

A more direct analysis, using T-TESTs, was carried out to assess the differences in 

allelic frequency distributions between low and high generations of individual cell lines. 

A Benjamini Hochberg p value adjustment was carried out to minimise type I error. A 

p-value less than 0.05 indicated a significant allele frequency distribution difference 

between early and late generations of a cell line. Table 3.12 shows the results of the T-

TEST in terms of how many alleles per cell line changed significantly for each 

microsatellite.

Microsatellite Cluster Allele 1 Allele 2 Allele 3 Allele 4 Allele 5 Allele 6 

GNAT2 A 0.088 0.086 0.049*    

 B 0.060 0.768 0.952    

10.1 A 0.211 0.117 0.031* 0.987   

21.1 A 0.007* 0.267 0.340    

 B 0.193 0.385 0.103    

11.1 A 0.006* 0.785 0.115 0.819 0.275 0.058 

 B 0.007* 0.002* 0.001* 0.003* 0.008* 0.001* 

GT-23 A 0.040* 0.317 0.056 0.206 0.304 0.162 

BAT25 A 0.115 0.939 0.874 0.165   

 B 0.011* 0.330 0.478 0.007*   



 

	

 

 
Cell Line 

Changed Cell Lines (%) 

By Number Weighted Stability 

Microsatellite  Alleles B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 R N R N  

GNAT2  3 0 0 0 0 0 3 0 0 0 0 10 11.9 10 11.9 SS 

10.1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 

21.1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS 

11.1 6 0 0 0 0 0 0 0 0 2 0 10 10 3.33 3.33 NS 

GT-23 6 0 1 0 0 0 0 0 0 0 0 10 12.7 2.8 3.5 NS 

BAT25 4 0 1 0 0 0 0 0 0 0 0 10 12.7 10 12.7 SS 

Cell Line 

Change (%) 

R 0 33.3 0 0 0 16.7 0 0 16.7 0  

 
 
  

N 0 42.2 0 0 0 19.9 0 0 16.7 0 

Weighted 

Change (%) 

R 0 6.9 0 0 0 16.7 0 0 5.6 0 

N 0 8.7 0 0 0 19.9 0 0 5.6 0 

Stability S NS S S S SS S S NS S 

Table 3.12: T tests for Cell line-specific Microsatellite Changes over Time 
The table summarises cell line specific microsatellite allele frequency percentage comparisons and microsatellite-specific change between low 
and high generations. Cell line microsatellite stability is represented by percentage of microsatellite change and by weighted percentage change, 
which takes into account allele number. Percentages are given in raw (R) or normalised (N) (by generation number) form. Microsatellite stability 
is represented in the same manner. Stability categories based on normalised weighted percentages: (S – 0%), nearly stable (NS – 0-10%) and 
semi-stable (SS – 10-20%).  
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The percentage of cell line change in microsatellite was calculated using the number of 

microsatellites showing any instability (Cell Line Change (%)) and the weighted 

percentage of cell line microsatellite change was calculated by averaging the percentage 

of significantly unstable alleles for each microsatellite (Weighted Change (%)).  These 

percentage values (R) were then normalised (N) for generation by using the highest 

generation number as a reference point (B9 and B10 – 81 generations) Cell lines were 

categorized into stable (S – 0% change: B1, B3, B4, B5, B7, B8, B10), nearly stable 

(NS – 0-10%: B2, B9) and semi-stable (SS – 10-20%: B6) groups based on their 

normalised weighted percentage changes. As can be seen in Table 3.12 there was only a 

small amount of significant cell line-specific microsatellite change between low and 

high generation, which ranging between 0 – 19.9% weighted normalised percentage. 

Changes exhibited some cell line specificity, indicating that some cell lines were more 

genetically stable than others. It should be noted that figure 3.5 shows little change 

between early and late generations in allele frequency distribution, which is in line with 

the level of change shown in the T Tests. Individual microsatellite instability was 

calculated in the same manner, using percentage of cell lines (By Number) exhibiting 

change and a weighted (Weighted) percentage using an average of significantly unstable 

alleles. Microsatellites differed in their stability, ranging between 0-17% weighted 

normalised percentage, which would indicate that genetic instability is microsatellite 

(locus) specific. It should be noted that there were many T Test p – values that fell 

within the 0.05-0.1 range, meaning that they were nearly deemed to show significance 

(Table A45). More repeats may have revealed a higher level of microsatellite change. 

 

A correlation analysis was carried out using Pearson’s product moment correlation 

coefficient to establish whether the microsatellite instability observed in this study 

correlates with the qP and GCN changes observed by Kim et al. (2011) (Table 3.1). 

Both weighted and non-weighted percent changes in microsatellite were used for this. 

Table 3.13 contains the p-values from these correlation analyses, which show that there 

is no significant correlation between the observed microsatellite instability and changes 

in qP or GCN. 



Chapter 3: CHO Cell Genetic Instability and Heterogeneity 

	 71	

  

 Normalised Microsatellite 

Change 

Weighted Normalised 

Microsatellite Change 

Rate of HC GCN Change 0.688 0.950 

Rate of LC GCN Change 0.525 0.946 

Rate of GS GCN Change 0.763 0.895 

Rate of average GCN Change 0.635 0.971 

Rate of qP Change 0.543 0.919 

 
Table 3.13. Microsatellite Stability Correlation Analysis 
The table contains p-values from Pearson’s product moment correlation coefficients 
when comparing microsatellite changes with changes in GCN and qP. 
 

 

3.2.2. Karyotype Analysis 

 

CHO cells are known for having an unstable karyotype, which perhaps is not surprising 

considering it was originally isolated and cultured to study different forms of 

chromosomal aberration, amongst other things. Chromosomes can change in number to 

form aneuploid cells, or can change in form via breakage and fusion events with 

different chromosomes. The karyotypes of cell lines B1-B10 both at low and high 

generation were attained by viewing giemsa-stained cell squashes of cells from these 

populations. Approximately 30 cell squashes were analysed per sample. This was 

carried out by the Sheffield’s Children’s Hospital. Each chromosome was characterised 

and annotated in line with the methodology used by (Derouazi et al., 2006), which 

follows criteria set out in the established system for the karyotyping of CHO cells (Ray 

and Mohandas, 1976) and the International Standard Committee on Human Cytogenetic 

Nomenclature (Mitelman, 1995). Karyotypes of the ten cell lines were compared to the 

karyotype of parental CHO cell lines (Figure A33) as a standard. Chromosomes were 

identified and are referred to using the following nomenclature: 

 

• Numeric: According to wild type hamster chromosomes. 

• Derived (der(y)): Structurally rearranged chromosome derived from a known 

chromosome, where y = the name of the known chromosome type. In the case of 

chromosomal fusion, resulting in a chromosome made from two known 
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chromosomes, y is given as the known chromosome that is the largest 

constituent of the derived chromosome. 

• Isochromosome (Iso): Chromosome made from two identical arms of known 

origin. 

• Additional material of unknown origin (Add(y)): A chromosome in which 

chromosome y has fused with unidentifiable chromosomal fragment(s). 

• Z: Specific groups of morphologically altered chromosomes that have been 

previously identified in CHO cells. 

• Marker (Mar): Unclassifiable chromosome. 

 

The karyotype of the parental cell line contains 19 chromosomes. Even in the relatively 

small sample size of ~30 cells per culture sample, cell lines B1-B10 clearly deviate 

from the standard 19 chromosomes per cell (Table 3.14). Indeed, only three culture 

samples (B7 Low, B9 High and B10 Low) show complete homogeneity in chromosome 

number. This aneuploidy indicates that DNA replication is error prone, either in the 

form chromosome number moderation during mitosis or in the form of chromosome 

breakage or fusion events that generate modified chromosomes. Figure 3.6 shows the 

composite karyotype containing every chromosome type seen in cell lines B1-B10 

within this investigation, differentially colour-labeled according to whether they exist in 

wild type hamster cells (blue), are considered as common CHO chromosomes (i.e. 

parental - red), or are chromosomes novel to this investigation (black) (NB. “novel” 

chromosomes were counted as chromosomes not seen in the parental CHO karyotype 

and chromosome duplication events that appear to have occurred during stable cell line 

generation within this investigation). Figure 3.6 shows that these cell lines have 

undergone vast chromosomal change and show that this collection of cell lines have 

diverged from the parental cell line karyotype with 18 novel chromosomes being 

presented here, both in the form of duplications of common CHO chromosomes and 

modified chromosomes. There are 4 cases of novel (black) chromosome duplication, as 

indicated by the ‘+’ symbol. Novel chromosomes labeled ‘add’, ‘iso’, ‘der’ or ‘Mar’ 

represent those chromosomes that are generated as a result of breakage and fusion 

events. Marker (Mar) chromosomes in particular are postulated to derive from multiple 

breakage or fusion events, because their constituents cannot be recognised as a 

previously seen chromosome. This shows that improper segregation moderation and 
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breakage / fusion detection and repair are a consistent phenotype of these cell lines. A 

full list of cell line karyotypes can be found in table A46. 

 

 

Cell Line 

Number of Metaphase Cells with Chromosome Number n 

17 18 19 20 21 22 23 24 25 

B1 Low  1 28 1      

B1 High 1 3 20 5 1     

B2 Low  1 25 4      

B2 High  3 27       

B3 Low  1 27      1 

B3 High  2 28       

B4 Low   28 2      

B4 High   28 2      

B5 Low  2 27 1      

B5 High   29 1      

B6 Low 1 1 26 1 1     

B6 High  2 26 4 1     

B7 Low   30       

B7 High   15 14 1     

B8 Low   17 2 1     

B8 High  8 21 2 1     

B9 Low 1 3 21 2      

B9 High   30       

B10 Low   26       

B10 High  1 28 1      

 
Table 3.14: Chromosome Number in Cell Lines B1-B10. 
The table contains the chromosome numbers from the ~30 cell squashes obtained from 
cell culture samples of cell lines B1-B10 at both low and high generation numbers. 
 
 

 



 

	

Figure 3.6: Composite CHO Karyotype from Cell Lines B1-B10 
The figure contains all chromosomes identified in the investigation. (Colours and terminology described in text) 
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Table 3.15 provides a summary of the chromosomal differences between the parental 

cell line and cell lines B1-B10. It contains all the novel chromosomes that were 

generated during the course of this investigation and also chromosomes that were 

present in the parental karyotype, but absent in some of cell lines B1-B10 (i.e. they have 

been lost - distinguished by *). Therefore, the table gives an impression of how unstable 

each cell line is in terms of how many abnormal chromosomal observations it contained 

(crosses) and how many changes in karyotype were observed between low and high 

generation numbers (orange highlight). In the instances where there was more than one 

karyotype observed in a given population of cells, the karyotype subpopulations are 

distinguished numerically aside the cell line-generation label. Data from Kim et al. 

(2011) regarding changes in qP are included in the right-hand columns. This table 

demonstrates that there were a large amount of abnormal chromosomes generated and 

that there have been many changes from the parental karyotype. There were no cell 

lines that maintained the parental karyotype in either generation. Moreover, 70% of cell 

lines B1-B10 showed changes in karyotype from low to high generation number. This 

indicates that CHO cells are largely unstable at the chromosome level, which has caused 

genetic heterogeneity between and within clonal cell lines. Interestingly, the cell lines 

that did not show any karyotypic changes between low and high generations showed 

some of the lower changes in qP and the two cell lines that demonstrated the largest 

changes in karyotype exhibited the largest changes in qP. However, this data is 

qualitative, and so firm conclusions regarding correlations cannot be made for potential 

cause and effect relationships. It is perhaps noteworthy that all cell lines lacking the 

marker10 chromosome showed no karyotypic changes in long-term culture, whereas 

add8 chromosome was found to be present in all of these non-changing cell lines. 

Moreover, chromosomes 1(x2), 2, der(4), 5, 8 / add8, 9, Z13 / isoZ13, Z8, Z4 /addZ4, 

Z2, marker1 and marker3 were found in all cell lines, so could perhaps be essential or 

contain essential elements. Also, no structural changes to original CHO chromosomes 

(blue) were observed in chromosomes 1, 2, 5 and 9, which may indicate that they 

contain essential genes and so if changed could have lethal results. Indeed, no 

duplication events are observed for chromosomes 1 and 9, which may indicate that 

changes in gene balance of these chromosomes cannot be tolerated.  
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-32.6

-24.7
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-23.8

0
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-13.9

-44.4

-70.7

6.3

-0.8

-0.46

-0.09

-0.31

0

-0.03

-0.22

-0.93

-1.47

0.07

Table 3.15: Cell Lines B1-B10 – Differences to Parental Karyotype 
The table contains all the chromosomal differences between cell lines B1-B10 and the parental karyotype (Explained in text) 
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Table 3.16 presents the karyotype data slightly differently, whereby all the cell line 

populations / subpopulations with the same karyotype are grouped into the same 

‘cluster’. “L” and “H” refer to low and high generation cell lines respectively. Cell line 

sub populations with different karyotypes are distinguished in the same numerical 

format as in table 3.15. 

 
 

 
 
Table 3.16. Unique Karyotype Clusters 
The table combines together all cell line subpopulations with the same karyotype. 
Clusters that appear in both low and high generation cell lines, only low generation cell 
lines or only high generations are distinguished by orange, white and blue shading 
respectively. 

Cluster Cell Line Subpopulations 

1 B1-L, B2-L, B1-H-1, B2-H-1  

2 B3-L, B3-H 

3 B4-L, B5-L, B4-H, B5-H 

4 B6-L 

5 B7-L, B7-H-1 

6 B8-L-1, B8-H-1 

7 B8-L-2 

8 B9-L 

9 B10-L 

10 B1-H-2 

11 B2-H-2 

12 B6-H-1 

13 B6-H-2 

14 B7-H-2 

15 B8-H-2 

16 B9-H-1 

17 B9-H-2 

18 B10-H 
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The table shows that there were 18 distinct karyotypes present within cell lines B1-B10 

over the course of this investigation. Five of these karyotypes were only present in low 

generation cell lines (white), five karyotypes were present in both low and high 

generation cell lines (orange), and nine karyotypes are only present in high generation 

cell lines (blue). Therefore, in total there were fourteen distinct changes of karyotype 

between low and high generations (5 lost, 9 gained). Again, this supports the conclusion 

of gross genetic change at the chromosome level and demonstrates how this has led to 

an increased heterogeneity between cell lines B1-B10. 

 

The observed changes in karyotype and microsatellite frequency distribution were 

compared and there appears to be no apparent commonalities in terms of instability. For 

example, cell line B8 had several abnormal chromosomes in low generation cells and 

displayed karyotypic changes from low to high generation, but it was completely stable 

in terms of microsatellites. On the other hand, cell line B3 did not change in karyotype 

from low to high generation, but showed significant microsatellite instability (8.7% 

normalized weighted change). 

 

 

3.3. Discussion 

 

Phenotypic instability has been observed in the form of a decline in recombinant protein 

productivity and generation of product variants over long-term cell culture, which is a 

common and costly trait of current bioprocess platforms. Unfortunately, at present there 

are no predictive tools capable of indicating whether a given cell line may go on to 

show these undesirable traits (Kim et al., 2011, Derouazi et al., 2006; Zhang et al., 

2015). Clearly, it would be a great benefit if a cell line could be marked as stable or 

unstable in the developmental stages of testing new recombinant therapeutic candidates 

and their production, rather than investing time and resources into a cell line before 

discovering that it is productively unstable. This would save time, money and increase 

the overall efficiency of bioprocesses in terms of time to market and gaining consistent 

production titers. For such a tool to be put into place, there needs to be a firm 

understanding of the traits that can cause a cell to decrease in its productive capacity. 

Detectable markers of these instability-related traits, that are consistent and can be 
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called with confidence, need to be established to make it possible to efficiently evaluate 

and predict the relative stability of candidate cell lines.  

 

Broadly speaking, the molecular basis of production instability has most commonly 

been attributed to recombinant gene loss and a decline in the transcription of the 

recombinant gene (Kim et al., 2011). The relationship of gene copy number with 

productivity is relatively straightforward, whereby loss in gene copies correlates with a 

loss in productivity. This relationship may not be strictly linear, because the location of 

recombinant plasmid insertion dictates the expression capabilities of a given construct, 

but the correlation has been established. A decline in transcription of the recombinant 

gene is more complex. This can be due to methylation-based transcriptional silencing, 

changes to expression-determining sequences (promoter, open-reading frame and 

enhancer elements), translocation events to less active chromosomal regions, changes to 

other elements that impact upon transcription (transcription factors) or global 

transcriptional regulation changes.  

 

3.3.1. Microsatellite Analysis 

 

This study investigated microsatellite instability as a genetic marker for all mismatch 

repair-related changes, such as point mutations, insertions and deletions (Kunkel and 

Erie, 2005). Moreover, the slippage mechanism by which microsatellites are altered is 

similar to the proposed mechanism of recombinant gene loss suggested by Kim et al. 

(2011), whereby repetitive elements of sequence within the plasmid vector are subject 

to homologous recombination-based events, causing gene loss. Here, microsatellite 

instability was used to assess cell line-specific changes over time (two generational time 

points) and the relatedness of cell lines B1-B10, which were derived from the same 

parental cell line to measure developed heterogeneity.   

 

Microsatellite changes were analysed through the measurement of allele frequency 

distributions on an allele-by-allele basis. ANOVAs showed that amongst the low 

generation cell lines microsatellites GNAT2, 21.1, 11.1 and BAT25 showed significant 

variation in allele frequency distributions. It was shown that separate clusters of 

microsatellite-based relatedness were predominantly responsible for this observed 

variation, which indicates that most of this heterogeneity may have been derived from 
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the cell population of the parental cell line. These clusters were not the same in their cell 

line content for all microsatellites. However, cell lines B1 and B2 as well as cell lines 

B4, B5, and B8 were always in the same cluster, which is indicative of a closer level of 

relatedness between these cell lines compared to others. All cell lines remained 

within the same cluster from low to high generation number, except for microsatellite 

11.1. In microsatellite 11.1 cell line B9 changed from cluster B to cluster A and cell line 

B10 formed its own cluster, C, over long-term cell culture.  

 

A cell line-by-cell line analysis (Tukey’s multicomparisons test) confirmed the presence 

of these clusters, but also revealed that were was significant variance between some cell 

lines within certain clusters, which indicates development of heterogeneity that cannot 

exclusively be attributed to parental cell line derivation. Moreover, in cases where cell 

line-to-cell line comparisons changed in the number of significantly different alleles 

from low to high generation number, these changes were predominantly to an increased 

number of differences, which again would indicate an increasing heterogeneity over 

long-term cell culture.  

 

F tests were carried out between clusters at different generational time points to 

statistically measure for a change in heterogeneity over time. There was a significant 

generational difference between cluster variances, especially for microsatellite 11.1, 

which supports the conclusion that heterogeneity had developed over long-term cell 

culture, with microsatellite 11.1 showing the most dramatic change.  

 

T tests were used to determine cell line-specific changes in allele frequency distribution 

over long-term cell culture. These tests showed that there were minimal significant cell 

line-specific and microsatellite-specific changes in allele frequency distributions over 

long-term cell culture. Whilst this shows that cell lines differ in their level of stability, it 

is difficult to draw any firm conclusions from a dataset reporting so little change. 

Further study into these microsatellites with many more repeats may generate results 

that show more significant change. This is supported by the number of p – values 

generated from T Tests, which could be seen as ‘nearly significant’ (p = 0.05-0.1). 

Moreover, the fact that the different microsatellites showed different levels of instability 

supports the idea that genomic location impacts upon stability. Therefore, if 

microsatellites as stability markers were validated then they could elucidate ‘stable’ 
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targets for targeted recombinant DNA integration. The changes observed in 

microsatellite allele frequency did not correlate with changes in recombinant gene copy 

number or changes in cell specific productivity, which indicates that these 

microsatellites could not be used as a predictor of gene copy and production instability 

in these cell lines. However, this is not surprising given the small amount of change that 

was observed. 

 

This study has shown that microsatellite allele frequencies vary marginally, but 

significantly, over time and so, with further validation, could be used as a general 

marker of genetic instability. However, the variation was not an effective tool for 

predicting recombinant product stability. There were significant cell-line specific 

differences in microsatellite changes, which would indicate that microsatellites can 

distinguish stability between cell lines. Most of the change reported here is likely to be 

as a result of the slow but progressive nature of genetic drift, which gradually causes 

cell lines to differ in their allelic frequency distributions. Essentially, this is just an 

effect of random sampling over the generations (Kimura, 1955, Kimura, 1979). 

Therefore, microsatellites are a useful marker of allele frequency changes over time. 

Only microsatellite 11.1 showed signs of replication slippage occurrence, because of the 

more dramatic cluster changes observed. However, this cannot be concluded 

definitively, because no novel alleles of a different microsatellite length were detected, 

but rather a putative slippage event occurred causing a microsatellite change to a length 

that had already been seen. Therefore, no conclusive evidence was given that 

microsatellites could be used as a marker for base pair substitution.  

 

The fact that there was no correlation between microsatellite changes and changes in 

GCN or qP would indicate that these microsatellites are not a reliable marker of genetic 

instability at the gene copy number level and that base pair level changes did not 

significantly impact gene expression in these cell lines. However, the genomic location 

of a microsatellite has an impact on its stability just as the integration site of a 

recombinant plasmid has an effect on its production stability (Barnes et al., 2007). 

Therefore, given the fact that the genomic location of these microsatellites is not known 

and that their genomic context is likely to be different to that of integrated plasmid 

DNA, perhaps it is the case that microsatellites can be markers for overall genomic 

instability (Kurzawski et al., 2004), but cannot predict stability of integration sites 
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specifically. Furthermore, six microsatellites may not be enough to confidently assess 

instability at the base-pair level for a whole genome. This study showed that 

microsatellites adeptly showed the relatedness between different cell lines, as 

demonstrated by Yu et al., (2015). The allele frequency distribution plot (Figure 3.5) is 

the best illustration of this. These six microsatellites were able to characterise the ten 

cell lines through the adherence to frequency distribution clusters. Perhaps the use of 

more microsatellites would enable an exclusive identification pattern for each cell line. 

Overall, this study has highlighted the ways in which microsatellites can be analysed for 

markers of genetic instability in commercial cell lines and provides a useful platform for 

processing of future datasets, which might be more elucidating. 

 

3.3.2. Karyotype Analysis 

 

Cell lines B1-B10 were also assessed for their generational differences and cell line 

heterogeneity at the chromosome level through karyotype analysis. Both low and high 

generation cell lines were shown to be heterogeneous in terms of chromosome number, 

exhibiting a range of 17-25 chromosomes per cell. In all cases the modal chromosome 

number was 19, which was the parental cell line chromosome number. Cell lines B1-

B10 at low and high generations all contained chromosomes that were not present in the 

parental cell line. There were a total of 18 of these chromosomes generated within the 

cell culture period of this study.  70% of cell lines showed karyotype changes over long-

term cell culture, with a total of 14 distinct karyotype changes over long-term cell 

culture. It is difficult to compare GCN and qP instability with this genetic instability, 

because this data is qualitative. The number of chromosomal changes seen here does not 

necessarily correlate with changes in productivity, because it is difficult to quantify the 

impact of any single chromosomal aberration. Therefore, it is not feasible to directly 

project the chromosomal changes seen here on to the phenotypic changes observed 

these cell lines. Indeed, the genes that are affected by these aberrations and the  

subsequent downstream affects are not easy to interpret. Genetic and epigenetic effects 

can impact gene expression when genes are moved into different genomic locations 

(Gordon et al., 2012).  

 

Clearly this study has shown that these CHO cell lines are extremely unstable at the 

chromosome level, which is a hallmark of immortal and cancer cell lines. It has been 
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shown that chromosomal instability begets further chromosomal instability (Duesberg 

et al., 1998), so it is perhaps no surprise that changes were seen over long-term cell 

culture in cell lines that had already undergone karyotype change. In some cases 

chromosomal instability has been shown to be a predecessor for gene mutation and 

enzyme imbalance (Duesberg et al., 1998), which could also lead to production 

instability over long-term cell culture. As previously stated, CHO cells were initially 

used for the investigation of chromosomal aberrations (Jayapal et al., 2007) and since 

the start of their use in industrial bioprocesses have been manipulated, engineered and 

evolved towards desirable phenotypes, potentially at the cost of genetic fidelity 

(Sinacore et al., 2000, Heller-Harrison et al., 2009). Therefore, this instability is likely 

to be an inherent feature of all CHO cell lines. This may contribute to production 

instability, because hotspots of the CHO genome for DNA double-strand breaks are 

more likely to be integration targets for plasmid DNA. This could be a source of 

instability further down the line.  

 

It may be possible to engineer or evolve cell lines towards phenotypes that exhibit less 

genetic instability, but this is challenging, because the underlying mechanisms behind it 

are not fully understood. Practically speaking, assessments that enable the early 

detection of genetic instability may allow for the selection of cell lines less likely to 

undergo drastic genetic changes throughout the production process. Also, it has been 

shown here that some genomic regions including whole chromosomes, such as 

chromosome 1, are somewhat immune to the chromosomal instability presented here 

and microsatellite analysis has shown that some loci may be less prone to base pair 

change than others. Therefore, targeting plasmid insertion to these relatively stable 

regions may lead to a cell line more able to keeping its productive capacity. However, 

this may be a simplistic view, because recombinant protein production relies upon many 

genes, in terms of the level and the fidelity of their products, which are likely to be 

situated in different genomic loci. 

 

3.3.3. Conclusion 

 

This study aimed to characterise and quantify CHO cell genomic instability at the base 

pair and gene copy level through microsatellite analysis and at the chromosomal level 

using karyotype analysis, for the assessment of their validity as tools in the cell line 
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development process to minimise phenotypic instability. Overall, significant allelic 

variation in microsatellites could only be attributed to genetic drift, rather than 

mutational change, and so in this format is not suitable for assessing global instability. 

Potential studies, outlined in section 3.3.4, may provide more insight into the usefulness 

of microsatellites for this purpose. On the other hand, karyotype analysis showed that 

there is substantial change at the chromosome level, both in terms of chromosome 

number and breakage / fusion events. This high level of chromosome instability did not 

directly correlate with changes in qp or GCN, but it was concluded that karyotype 

analysis could be used to eliminate unstable cell lines during the cell line development 

process. 

 

3.3.4. Future Work 

 

This study has shown that microsatellites may be able to be utilised as a marker for 

genetic instability for mismatch repair related instability, such as point mutations, 

insertions and deletions. However, as stated in section 3.3.1, six microsatellites cannot 

fully diagnose instability at this level. A more comprehensive microsatellite instability 

analysis of the genome may allow for an increased resolution in investigating genomic 

instability at this level, in which a higher number of microsatellites would be used. A 

large number of microsatellites would need to be identified and characterized in terms 

of genomic location to ensure that genome coverage is as comprehensive as is possible.  

 

Section 3.3.1 also highlighted the difficulty in correlating a genome-wide state of 

instability with a locus-specific instability such as plasmid-related gene expression. 

Therefore, even if a large number of microsatellites were identified that covered the 

whole genome at an informative resolution, it would be difficult to validate their use as 

a genetic instability marker by investigating the stability of a single locus (i.e. an 

insertion site). Perhaps instead of using recombinant DNA expression to validate 

microsatellite instability a more global analysis using transcriptomics could be used, 

because logically a marker for global stability can be better verified by a global output. 

If transcriptomic analysis was carried out on cell lines B1-B10 at low and high 

generation then a quantification of overall gene expression change could be determined. 

If this change was to correlate with microsatellite instability using a comprehensive 

genome-wide array of microsatellites then this would validate microsatellite instability 
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as a marker for gene expression instability and it would heavily indicate that mismatch 

repair, or a lack thereof, impacts significantly upon gene expression. From this, an array 

of microsatellites could be used to assess cell line instability in the developmental stages 

of the production process with an aim to weed out unstable candidates. Furthermore, the 

transcriptomic data could be used to analyse genes known to be involved in the 

regulation of DNA replication and its fidelity to see whether expression rates differ 

from what might be expected. This could lead to engineering or evolution-based 

strategies to generate more stable cell lines. 

 

A stated above, the experimental format used in this study is perhaps not the best 

indicator of production stability, because this phenomenon is likely to be locus specific. 

One use of microsatellite instability analysis for a locus-specific purpose could be to 

design a plasmid vector carrying a recombinant protein that was also carrying 

microsatellites. If it is indeed a reliable marker for genetic instability, microsatellite 

change could be used as a tool, in this setting, to more accurately assess whether 

observed decline in recombinant protein production is due in any part to mismatch 

repair fidelity and gene loss through repeat induced recombination events. Moreover, 

this system could be used to assess the stability of a given integration site with the aim 

of identifying sites for targeted integration efforts. As well as microsatellites, this 

probing plasmid could be littered with other types of repetitive sequences that might 

better imitate the repetitive nature of a plasmid that is used commercially, such as with 

the GS vector system, to assess whether repetitive sequences are responsible for 

recombinant gene loss. 

 

Another avenue of research could be to sequence cell lines, such as B1-B10, which 

show production instability to ascertain whether there is evidence of recombination-

based gene loss around repetitive elements in recombinant plasmid DNA. Also, 

sequencing may identify point mutations in the recombinant plasmid sequence in 

elements that could affect gene expression (promoters and enhancers) or elements that 

may affect processing downstream, such as translation or protein folding. Chapter 5 

provides an in depth analysis of mutation in recombinant plasmid DNA. 

 

This study also showed that the CHO cell karyotype is extremely unstable and 

changeable. As stated in section 3.3.2 it is difficult to draw correlations between a 
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changeable karyotype phenotype and changes in productivity. Each change in karyotype 

may have a unique impact on the productivity phenotype and so to gain a true 

understanding of how a given chromosomal change impacts upon recombinant protein 

expression then a single cell analysis of protein production is required, which could be 

done through techniques such as FACS single cell sorting. Perhaps if the location of 

genomic insertion was ascertained through methods such as fluorescent in-situ 

hybridization (FISH) and compared with the observed chromosomal changes then it 

could be established whether changes in productivity could be attributed to changes in 

genomic location. However, this may be a reductive theory, because changes in 

productivity could be a result of the changes in gene expression of other influential gene 

products, which are spread throughout the genome. Again, a transcriptomic analysis 

could assess globally for changes in gene expression for a correlation analysis with 

changes in productivity and it could be determined whether genes responsible for the 

regulation of chromosomal stability have changed in their gene expression. Indeed, 

sequencing may even uncover mutations in these genes.  

 

If further analysis led to the confirmation of the conclusions in this study, that the CHO 

cell karyotype is unstable and could be responsible for global genetic instability, then 

the implementation of a high-throughput karyotyping system into the bioprocesses 

involved in the production of recombinant proteins may be able to be used as a 

predictive tool for genetic instability of cell lines with the aim of eliminating unstable 

candidate cell lines from the developmental process. Moreover, it may be possible to 

evolve or engineer cell lines towards more karyotypically stable phenotypes. 

 

As mentioned above, chapter 5 provides an in depth analysis of point mutations in 

recombinant plasmid DNA. This study required the generation of stable CHO cells to 

acquire recombinant plasmid DNA. Therefore, it was necessary to optimise an 

electroporation protocol to facilitate the transfection of plasmid DNA. Preliminary 

analysis revealed that industry electroporation conditions could be vastly improved 

upon and so chapter 4 shows the DoE-based electroporation optimization carried out.  
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Chapter 4 
 

Electroporation Optimisation Using 

DoE Methodology 
 

 

4.1. Introduction 

 

4.1.1. Chapter Summary 

 

As mentioned in section 3.3.4, it was necessary to generate a stable CHO cell line in 

order to investigate the fidelity of recombinant plasmid DNA and to assess whether 

there is a substantial level of DNA mutation that could impact upon product quality. 

Preliminary experiments revealed that the standard electroporation conditions used in 

industry were suboptimal. Therefore, it was decided that a comprehensive optimisation 

process would help provide more effective electroporation conditions for the generation 

of stable CHO cells and could also provide a framework for future, product-specific, 

transfection optimisation for CHO bioprocesses.  

 

This chapter demonstrates the effectiveness of DoE methodology for the optimisation of 

bioprocess-related protocols and how it offers a higher level of precision and insight as 

to how different parameters contribute towards the experimental output. The results 
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showed that an increase in the level of electroporation parameters (voltage, pulse length, 

DNA load) increased transfection efficiency and decreased cell viability. This inverse 

relationship of transfection efficiency and cell viability was found to be somewhat 

predictive and was utilized in the optimisation process. The DoE strategy was to start 

with a wide range in electroporation parameters and to gradually narrow towards an 

optimal region of the design space. This narrow region was then experimentally tested 

to yield the final, optimal set of electroporation conditions. These conditions (320-26) 

increased transfection efficiency by ~17% compared to standard industrial conditions, 

without a substantial detriment to cell health. The optimal conditions could then be 

taken forward to generate a stable CHO cell pool. It was concluded that DoE, or other 

modelling methodologies, could be used in the same manner demonstrated here to 

quickly optimise electroporation for the generation of producing stable cell lines in a 

product-specific manner. 

 

4.1.2. DoE for Electroporation Optimisation  

 

All the variables discussed in section 1.3.6 should be considered when optimising an 

electroporation protocol. Different cell types and applications will have different 

optimal conditions for electroporation (Jordan et al., 2008). Typically, two output 

factors need to be maximised when optimising electroporation: Transfection efficiency, 

a marker of protein expression, and cell viability (Pucihar et al., 2011), which is 

decreased by DNA electroporation-mediated apoptosis (Shimokawa et al., 2000).  There 

is an inverse correlation between the two, because stronger conditions will facilitate 

greater membrane permeabilisation (i.e. DNA entering the cell), but at a greater cost to 

the health and recovery of a population of cells. Therefore an optimal trade-off needs to 

be made to ensure the maximum transfection efficiency without compromising cell 

viability (Andreason and Evans, 1989). For each new biopharmaceutical product being 

developed, the cellular reaction to electroporation may change in terms of transfection 

efficiency or cell viability. For example cell types will differ in their tolerance to 

electroporation parameters (Jordan et al., 2008), the metabolic burden on the cell may 

vary from product to product (Kim et al., 2011), or vector types and sizes can be 

interchangeable each having a different effect on an electroporation process and gene 

expression (Jordan et al., 2007, Wurm, 2004). Each of these factors will impact on cell 

viability and transfection efficiency and so electroporation parameters could be adapted 
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to cater for the different features of each new product – cell – vector combination. 

Median fluorescence will be used as a secondary measurement of gene expression in 

this study, which is a measure of expression intensity rather than expression by cell 

number. It has a more variable output than transfection efficiency and so is less reliable 

for comparing parameter settings. Median fluorescence is more valuable when 

considering transient expression systems, in which immediate high levels of expression 

are required. Average cell diameter (ACD) will be used as a secondary assessment of 

cell health, because electroporation causes cells to shrink through loss of cellular 

content, which is likely to be a stressor (Chang and Reese, 1990). 

 

Typically, an optimisation procedure like this would be carried out using a one factor at 

a time (OFAT) approach in which one factor is varied while the others are kept constant 

to measure its effect on the system. All factors are independently measured in this 

manner. Alternatively, DoE methodology mathematically models the response in a 

multifactorial manner and statistically analyses the model for significance. It offers a 

better estimate at optimal conditions with fewer experimental runs and all factors can be 

tested simultaneously. Furthermore, DoE offers insight into how different factors 

interact within a system, which OFAT fails to do. DoE methodology is a proven tool for 

the optimisation of transfection methods. Two examples of which are the optimisation 

of PEI-mediated transfection for transient production by (Thompson et al., 2012) and 

the optimisation of microporation by (Madeira et al., 2010). Design Expert 9.0.4 

software was used to facilitate DoE experimental design and analysis. 

 

As described above there are many variables that contribute to the efficiency of an 

electroporation protocol, both within the sample itself and by the electroporation device 

parameters that are set. A complete DoE analysis would first assess all of these 

variables in a factorial design, whereby all factors would be varied simultaneously at 

high and low levels to determine whether they have a significant impact on the 

response. Subsequently, these high-impact variables would be taken forward using 

response surface methods (RSM) to give a three-dimensional map response in which the 

output can be visualised in detail. However, the number of variables that would need to 

be analysed by an initial factorial design is extensive. The literature (section 1.3.6) has 

already defined how these factors interact in a typical electroporation system and can 

indicate which factors have the greatest effect on transfection efficiency and cell 



Chapter 4: Electroporation Optimisation Using DoE Methodology 

	 90	

viability (equations above). Moreover, the interactive nature of these factors means that 

a balance of factor levels is needed, which could be in the form of a number of optimal 

sets of parameters. For example, a sample with a low resistance would require a 

different voltage and pulse length to a sample with a high resistance. Varying sample 

resistance or parameter settings to calculated extents could achieve the same balance 

and subsequently the same transfection efficiency and cell viability. Therefore, it is 

unnecessary to vary all influential factors to discover an optimal output. Furthermore, in 

reality, the factors affecting the samples response to electroporation, including DNA 

vector, cell type, media and recombinant protein, will have already been carefully 

designed for each product. So, to apply DoE optimisation to electroporation universally, 

it would be more practical to optimise with electroporator parameter settings (voltage, 

pulse length, waveform) to achieve this balance, rather than to factor electroporation 

into design of sample components. Therefore, because of this logistical practicality and 

the level of definition electroporation already has, it was decided to proceed directly to 

RSM based methods of analysis with only a subset of factors. 

 

The electroporation factors investigated in this work were voltage, pulse length, 

waveform and to a lesser extent, DNA load. Other factors were kept constant 

throughout the study. The work demonstrated in this chapter uses Central Composite 

Designs (CCDs) (Figure 4.1.) to model electroporation responses. In a CCD each factor 

is measured at two initial levels, the low factorial and high factorial, which determine 

the boundaries of the design space being investigated. Center points are measured 

repeatedly to estimate the pure error of the model, and to estimate the curvature of the 

responses. Two levels outside of the design space are measured for each factor to enable 

the model to fully estimate the quadratic nature of the system in terms of each factor 

individually. These are called the low and high axial factors. CCDs can only adequately 

model up to and including quadratic terms, because the number of experimental runs is 

not enough for anything higher and so leaves cubic and quartic terms aliased. The 

procedure for analyzing these statistical models is clearly outlined by the design expert 

software. Firstly, diagnostics are carried out regarding normality and suggestions are 

made for data transformation and data point elimination, which might lead to a more 

accurate interpretation of the data. A fit summary is then provided, using sequential 

model sum of squares (SMSS) and model summary statistics (MSS), which suggests the 

order of model to be used. A model is then fit and is subsequently analysed using an 
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ANOVA to identify the experimental factors which have a significant impact on the 

response variable. It also provides statistics such as: Lack of fit, which informs the user 

if the model fits the data to an acceptable level of statistical significance; R-squared, 

which informs the user of the proportion of variance in the response that can be 

explained by the model; The predicted R-squared, which informs the user on the 

accuracy of the model in terms of its predictive capacity; ‘Adeq Precision’, which 

informs the user as to whether the signal to noise ratio of the response is strong enough 

for the model to adequately model the design space (>4). The model response to the 

independent variables can then be visualized using a response surface plot. The model 

terms and the response plot give the user a clear idea of the type and intensity of the 

relationship of the independent variables and the response, and indeed whether any of 

the independent variables interact in terms of their relationship with the response. 

Lastly, the optimisation function, which uses an inbuilt desirability function within the 

software, can then be used to combine response models to provide the user with a final 

set of optimal independent variable levels to use for future use, according to the 

priorities and thresholds set regarding the importance of each of the independent 

variables. So, for example, transfection efficiency might be given a higher priority than 

median fluorescence and cell viability can be set at a minimum value of 65% when 

determining optimal conditions. 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. Central Composite Design 
This figure illustrates a 3-factor CCD. Each dimension of the cube represents a different 
factor in terms of factorials (black dots), center points (grey dot) and axial points (stars). 
Figure adapted from Anderson and Whitcomb (2005). 
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4.1.3 Chapter Aims and Hypothesis 
 
The hypotheses of the investigation were that: 

•     A balance would need to be met between applied voltage and pulse length to 

give maximal transfection efficiency whilst maintaining high cell viabilities and 

that these optimal parameters would vary with waveform. 

•     DoE methods would be able to identify a number of parameters that met this 

balance and, ideally, would identify those that were more optimal than others. 

•     DNA load would also need to be balanced in the same manner, with increased 

loads enabling higher transfection efficiencies with a cost to cell viability. 

•     The optimal parameters determined by DoE methodology would achieve higher 

transfection efficiencies than industrial parameter settings (Pfizer conditions). 

•     The optimal parameters generate would be used to generate stable CHO cell 

pools in future work. 

 

4.2. Results 

 

It was decided that the investigation would involve a succession of RSM-based 

experiments in which the factor level ranges would progressively narrow towards 

narrow optimal range. This optimal range would then be tested to ascertain the most 

optimal parameter settings. The phCMV-CGFP plasmid (Figure 4.2.) was linearised 

using restriction enzyme AflII. Gene expression responses were analysed via GFP 

fluorescence detection by flow cytometry in terms of transfection efficiency (percentage 

cells expressing GFP) and median fluorescence (level of GFP expression). Cell health 

measurements were taken in the form of cell viability (%) and average cell diameter 

(ACD) (um), which were assessed using a ViCell. All assessments were carried out 24 

hours after electroporation. 
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Figure 4.2. phCMV C-GFP Vector 
The vector contains a GPF ORF surrounded by the plasmid multiple cloning site 
(MCS). The GFP ORF is flanked by a CMV promoter and an SV40 polyA tail. Genes 
coding for Kanamycin and Neomycin (Kan/Neo) are included for bacterial and 
mammalian selection respectively. The Kan/Neo open reading frame is under the AmpP 
and SV40p promoters and followed by the HSV PolyA tail. pUC ori is included for 
bacterial replication. 
 

The factors tested were field strength, pulse length / time constant, DNA load (initial 

RSM only), waveform and pulse number (square wave only). Field strength is typically 

measured in V/cm, but will hereafter be referred to in terms of its voltage unless 

specifically stated (Equation 1.1. can be used to calculate actual field strength), because 

this is the measurement set on the electroporation device. Other electroporation 

variables described in section 1.3.6 were kept constant: The distance between electrodes 

was kept at 0.4 cm; The media and cell type were used in line with Pfizer standard 

protocols as described in chapter 2; DNA was suspended in TE buffer and consistently 

administered in 40 ul; All experiments were carried out at room temperature. 

 

This optimisation is directed towards application in stable cell generation processes and 

so the responses are analysed differently to how they would be for transient expression 

optimisation. Clearly, for both TGE and SGE a high transfection efficiency is desirable, 

but it is more crucial in a TGE setting that cell recovery is fast, because of the short 

window for production. Whereas, with SGE a fast recovery is less crucial, because 

inevitably only one cell is used as a source to generate a new cell line. Therefore a 

greater compromise on post-electroporation cell viability was accepted here, because it 

would mean more vector copies have the chance to integrate with the CHO genome. In 

this study a cell viability lower than 50% was used as a cut off for conditions that were 

deemed to be too harsh (Canatella and Prausnitz, 2001). 
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4.2.1. Cell Number Optimisation 

 

Cell number is another factor that affects sample resistance. A standard Pfizer 

electroporation protocol for generating stable cell lines involves the electroporation of 1 

x 107 cells, whereas other protocols and instruction manuals (Terefe et al., 2008, Lonza, 

2009, Bio-Rad, n.d.) describe processes using 1-2 x 106 cells. Clearly, this optimisation 

procedure needs to be catered towards bettering existing protocols for stable cell line 

generation in an industrial setting, but lower cell densities are more practical for 

enabling a high-throughput optimisation process. Therefore a preliminary experiment 

was carried out to test the effect of cell number, using Pfizer standard pulse settings, on 

transfection efficiency, median fluorescence and cell viability (Figure 4.3A, 4.3B and 

4.3C respectively). One-way ANOVAs followed by Tukey’s multicomparisons tests 

were used to call significant variation between means and pairwise variation between 

conditions respectively. ANOVAs showed significant variation between means for all 

three responses (p < 0.0001). There was no significant difference in transfection 

efficiency or median fluorescence when using 1 x 106 cells or 1 x 107 cells for 

electroporation. However, there was a small, but significant increase in viability when 

using 1 x 107 cells (74%) compared to 1 x 106 cells (69.5%) (p < 0.05). The cell number 

taken forward for subsequent experiments was 1 x 106 cells to enable a more high-

throughput approach with the caveat that cell viability would be a slight underestimate 

of standard conditions. When cell number was changed to 1 x 106 cells, but the cell-to-

DNA ratio was kept the same as Pfizer conditions by changing DNA load to 5 ug, 

transfection efficiency and median fluorescence were significantly (p < 0.05) lower (by 

46.7% and ~12.8-fold respectively) and cell viability was significantly (p < 0.05) higher 

(by 10.4%) than Pfizer standard conditions. This indicates that a consistent cell to DNA 

ratio is not necessarily an important factor to balance, but rather that DNA 

concentration in a given volume is more influential. Therefore, despite the 10-fold 

change to cell number compared to Pfizer standard conditions, the DNA load in 

optimisation would be held at standard levels (50 ug). 
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Figure 4.3. Cell Number Optimisation 
Cell number (1 x 106 or 1 x 107) and DNA load (5 ug or 50 ug) were varied and 
responses were measured for A) Transfection efficiency, B) Median Fluorescence and 
C) Cell Viability. * relates to the significant differences referred to the in the text. 
 

4.2.2. Sample volume Optimisation 

 

Sample volume is another factor effecting sample resistance. In standard Pfizer 

conditions 700 ul of sample is used for electroporation, whereas the Bio-Rad gene 

pulser Xcell standard conditions for mammalian cell electroporation uses 400 ul (Bio-

Rad, n.d.). A one-factor RSM experiment was carried out to determine the sample 

volume to be used in this study, in which the design space to be tested spanned between 

400-800 ul (factor A). The electroporation parameters set were in line with Pfizer 

standard conditions. The Design Expert software analysis interface guides the user 

through analysis. 
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 Response Model Summary 

Response Transform 
(l) 

Model 
Order 

Model 
Terms 

Lack of 
Fit (p) 

Adjusted
R2 

Predicted 
R2 

Adeq 
Precision 

Transfection 
Efficiency -- Cubic A2 A3 0.7171 0.9458 0.8786 12.686 

Cell 
Viability -- Quadratic A A2 0.5227 0.7749 0.5513 7.101 

Table 4.1: Sample Volume – Response Model Outputs 
The table contains the lambda value for data transformation, the order of the model, the 
significant terms of the model, the lack of fit p-value of the model, the adjusted R-
Squared, the predicted R-squared and the “Adec Precision”.  
 

 

 

Models were generated for the transfection efficiency and cell viability response to 

changes in sample volume:  

 

Transfection Efficiency = + 65.81 + 4.23*A – 5.91*A2 – 12.24A3  (Coded Factors) 

 

Cell Viability = + 82.33 + 2.51*A – 4.14*A2                                    (Coded Factors) 

 

 

The models were deemed to fit the data and describe an acceptable proportion of the 

response variance. Data residuals were normally distributed. The models and their 

response surfaces show (Figure 4.4 and 4.5) that an increase in sample volume results in 

very little change in transfection efficiency (approximately constant at 65%) until 

volumes exceed 650 ul, at which point transfection efficiency starts to decline. Cell 

viability increases with sample volume from 400 ul to 650 ul, at which point cell 

viability starts to decrease. Cubic and quadratic terms were the most influential for 

transfection efficiency and cell viability respectively. Transfection efficiency and cell 

viability were maximized with equal priority using the optimisation function, which 

recommended an optimal sample volume of 649.97 ul. Therefore, it was decided to 

proceed using 650 ul sample volume in future experiments. A summary of important 

model statistical outputs are shown in table 4.1 and further information is provided in 

tables A1-A4 and figures A1 and A2. 
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Figure 4.4. Sample Volume: Transfection Efficiency: 
The graph shows transfection efficiency change with sample volume. The black line 
represents the data trend, red dots represent the actual data points and the blue dotted 
lines represent the 95% confidence range for each point. 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 4.5. Sample volume: Cell Viability 
The graph shows the cell viability response to changing sample volume. The black line 
represents the data trend, red dots represent the actual data points and the blue dotted 
lines represent the 95% confidence range for each point. 
 
 

 

Due to the optimisation of cell number and sample volume and other factors influencing 

sample resistance being kept constant, we could assume that sample resistance was 

relatively consistent throughout the investigation. The approximate resistance for each 

sample was 30 ohms. 
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4.2.3. Electroporation Optimisation: Wide Parameters 

 

A review of Bio-Rad protocol optimisations (Terefe et al., 2008), other literature and 

Pfizer standard conditions (see section 2.5.) was carried out to determine the initial 

electroporation parameter ranges to be investigated with the idea of starting with wide 

ranges in order to completely characterise how these parameters effect the CHO cell 

response at their extreme levels. The aim was to discover areas of the design space that 

yield high transfection efficiencies and gene expression, whilst maintaining a high cell 

viability. Voltage, pulse length and DNA load are numerical factors, whereas waveform 

is a categorical factor. It was decided that experiments for exponential decay and square 

wave electroporation would be conducted side-by-side rather than integrated into the 

same CCD. 

 

4.2.3.1. Exponential Decay Wide 

 

A three-factor (Voltage, pulse length, DNA concentration), two level, rotatable CCD 

was set up with the Design Expert software, inputting the axial values instead of 

factorial values for practicality (keeping factors above 0). This generated a 20-run 

experiment including 8 factorial points, 6 center points and 6 axial points. The levels for 

each factor are laid out in Table 4.2. The four responses modeled were transfection 

efficiency, median fluorescence, cell viability and ACD. 

 

Table 4.2. Initial Exponential Decay Parameter Ranges 
The table shows the parameters and their unit ranges used in the experiment, including 
the factorial, center and axial (a) points. ‘+’ and ‘-‘ refer to upper and lower 
respectively. 
 

 The following models for the responses analysed had a significant lack of fit:  

•  Transfection Efficiency – F value = 28.31, p = 0.0009. 

• Average Cell Diameter – F value = 19.79, p = 0.0026 

 

Factor Name Units -1 Factorial +1 Factorial Center - a + a 

A Field Strength V 89.05 320.95 205 10 400 

B Pulse Length ms 8.91 32.09 20.5 1 40 

C DNA Load ug/mL 41.34 159 100.5 1 200 
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This means that the model could not sufficiently describe the relationship between the 

experimental factors and the responses with any statistical significance. This is likely to 

be a result of the large range in experimental parameters investigated. In large design 

spaces such as this, different areas of the design space could have vastly different 

responses, causing the response variation to be large. With so few values within a large 

design space being experimentally tested this is problematic, because the experimental 

design does not have the resolution to model the response adequately. Moreover, only a 

small area of this large design space will be ‘useful’ for transfection, which means that 

responses will drastically change within this area. This means the variance is different 

for different areas of the design space. The center points of a CCD are used to infer the 

pure error of a model, but cannot do so adequately here because pure error will not be 

consistent (Figure 4.6.). However, these models report detection signals above a 

threshold that would be expected from noise alone (‘Adeq Precision’ statistic > 4), and 

still seem to explain some of the design space variance. Therefore, the models can still 

be used, with caution, to spot associations and indications as to how these factors 

impact responses. This was done through ANOVA “significance” values that were 

instead called as indicative or associative. Furthermore, the models were still used to 

derive a set of narrower parameter ranges for future experiments. A narrower parameter 

range, closer to the optimal range for transfection, is much more likely to be modeled 

effectively. This is because the center point-based estimation of pure error is more 

likely to be reflective of design space variance as a whole. Even though significantly 

fitted models were generated for median fluorescence and cell viability, it is still true 

that a large design space provides a low resolution analysis. It might be that these two 

responses are more straightforward in their relationship with the experimental factors, 

or that the experimentally tested values may have been positioned more optimally for 

these responses by chance. Due to the significant lack of fit and low resolution of these 

wide range CCDs, only general trends will be commented upon and model details, such 

as adjusted R-squared and predicted R-squared, will not be used in these analyses.  
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Figure 4.6. Variance Inconsistency in a Large Design Space 
The schematic illustrates the inconsistency in variance over the large design space, in 
which intense colour represents greater variance. The smaller cube illustrates the 
narrower design space designed using conclusions based upon the larger design space 
output. This smaller design space is more likely to be consistent in response variance. 
 
 

 

Although the accuracy is compromised by the large design space, as reflected by the 

lack of fit in two of the responses, there are still clear trends to be seen in the data from 

this CCD. Table 4.3 contains the transformation and model information for the four 

responses in this experiment. Transfection efficiency, median fluorescence and cell 

viability data were transformed according to the lambda values in table 4.3 and outliers 

were removed from the median fluorescence response according to advisory software 

diagnostics (Figure A5). The following models were generated: 

 

(Transfection Efficiency) 0.69 =  + 8.09 + 5.86*A + 2.48*B + 1.75*C + 2.01*AB + 

1.08*AC – 0.77*BC 

                     (Coded Factors) 

 

(Median Fluorescence)-0.02 = + 1.08 + 0.019*A + 7.690E-003*B + 5.688E-003*C + 

7.655E-003*AB + 4.596E-003*AC + 4.308E-004*BC + 3.904E-003*A2 – 2.695E-

003*B2 – 3.225E-003*C2 

         (Coded factors) 
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(Cell Viability) 2.86 =  + 4.379E+005 – 1.494E+005*A – 68511.94*B – 34325.26*C – 

76478.43*AB – 35674.56*AC + 23039.14*BC – 65982.96*A2 – 8770.35*B2 – 

5173.46*C2  

         (Coded Factors) 

 

Average Cell Diameter =  + 15.14 – 1.16*A – 0.55*B – 0.18*C – 0.86*AB – 0.22*AC 

+ 0.11*BC – 0.73*A2 – 0.065*B2 – 0.026*C2 

        (Coded factors) 

 

 

 Response Model Summary 

Response Transform 
(l) 

Model 
Order 

Model 
Terms 

Lack of 
Fit (p) 

Adjusted
R2 

Predicted 
R2 

Adeq 
Precision 

Transfection 
Efficiency 0.69 2FI A B C AB 0.0009 0.8605 0.6307 16.498 

Median 
Fluorescence -0.02 Quadratic 

A B C AB 
AC A2 B2 

C2 
0.0732 0.9885 0.9524 43.225 

Cell 
Viability 2.86 Quadratic A B C AB 

AC A2 0.1008 0.9685 0.8843 26.035 

ACD -- Quadratic A B AB 
A2 0.0026 0.8505 0.4142 12.103 

Table 4.3 Exponential Decay: Wide – Response Model Outputs 
The table contains the lambda value for data transformation, the order of the model, the 
significant terms of the model, the lack of fit p-value of the model, the adjusted R-
Squared, the predicted R-squared and the “Adec Precision”.  
 
 

Despite model inaccuracies, there are clear trends within the dataset. An increase in all 

independent variables leads to an increase in the gene expression responses and a 

decrease in cell health responses. Field strength appears to have the largest impact on 

the response, followed by pulse length and then DNA load. There appears to be 

interaction between field strength and pulse length and between field strength and DNA 

load. This design space yields transfection efficiencies between 1% and 80% and cell 

viabilities ranging from 1% to 100%. Gene expression appears to peak sharply at a 

specific point within the design space, with very little activity being detected below 

~260 V for a duration of ~17 ms. ACD ranges from 10 um to 16 um. Because these 

models are not completely informative response surfaces are only included in the 

appendix, along with fit summary statistics, the ANOVA statistics and normal 

distribution plots (Tables A5-A12 and Figures A3-A10). 
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The numerical optimisation function of the design expert software was used as a guide 

to generate a narrower set of electroporation parameters to be tested. In doing this 

criteria can be set for each factor and response and the model will provide predictions 

based upon these desired criteria inputs. DNA load was kept constant at 76.92 ug/ml (50 

ug – Pfizer conditions) and transfection efficiency and cell viability were both 

maximised with a minimum cut off of ~60%. The suggestion given was to use 

electroporation parameters of 309.09 V and 32.09 ms. To further analyse the cell 

response to a design space centering around these suggested conditions, cell viability 

was investigated in more detail. Voltages in a range of 260 – 400 V and pulse lengths of 

27 ms, 32 ms and 37 ms were tested and viability was measured 24 hours post-

electroporation (Figure 4.7). 

 

 

 

 

 

 

 

 

 
Figure 4.7. Exponential Decay: Cell Viability Optimisation 
Cell viability was assessed in response to incremental changes in voltage (260-400 V) at 
three different pulse lengths (27, 32 and 37 ms). 
 

So far this study has agreed with others of its kind in that transfection efficiency and 

cell viability have inverse responses electroporation. Therefore, it is logical to postulate 

that transfection efficiency and cell viability could have a direct inverse correlation, 

such that changes in either could predict the electroporation response of the other. For 

this reason it was decided that the parameter settings resulting in cell viability changes 

here could be used to guide new experimental parameter ranges for subsequent CCD 

designs. Taking the software optimisation and viability study into account, centering the 

next response surface model parameter around 310 V was deemed appropriate. The 

upper limit was set to 360 V, because this is where viabilities were below 50% at each 

pulse length in the viability study. Therefore the next CCD design ranged between 260-

360 V in its axial points, centering around 310 V. The initial indication from the 
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software optimisation function was to use a pulse length of ~32 ms. However, the 

viability plot shows that the viability around the 310 V center is lower (~55%) than 

model prediction at this pulse length. Therefore, the lower pulse length of 27 ms was 

used as the center point, spanning a range of 24-30 ms (axial points). 

 

4.2.3.2. Square Wave Wide 

 

Due to the issues encountered using a large design space, the wide square wave 

parameters were only analysed for transfection efficiency and cell viability to help 

derive a narrow parameter range for further analysis. Square wave electroporation offers 

the option to use more than one pulse and so this analysis will compare electroporation 

with one or two square wave pulses. All other factors had the same ranges as with the 

exponential decay analysis and were repeated for one and two pulses. Table 4.4 shows  

 the levels used for each factor. 

 

 
 
Table 4.4. Initial Square Wave Parameter Ranges 
The table states the parameters and their unit ranges used in the experiment, including 
the factorial, center and axial (a) points. ‘+’ and ‘-‘ refer to upper and lower 
respectively. 
 

 

Both the models for the transfection efficiency and cell viability responses had 

significant lack of fit: 

•  Transfection Efficiency – F value = 36.5, p < 0.0001 

•  Cell Viability – F value = 3.01, p = 0.0418 

Therefore, as explained in the previous section, statistical significance cannot be derived 

from these models, but instead just associative inference. 

 

Factor Name Units -1 Factorial +1 Factorial Center - a + a 

A Field Strength V 89.05 320.95 205 10 400 

B Pulse Length ms 8.91 32.09 20.5 1 40 

C DNA Load ug / mL 41.34 159 100.5 1 200 

D Pulses Numerical  One or two pulses used 
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 Response Model Summary 

Response Transform 
(l) 

Model 
Order 

Model 
Terms 

Lack of 
Fit (p) 

Adjusted
R2 

Predicted 
R2 

Adeq 
Precision 

Transfection 
Efficiency 0.19 Quadratic A C A2 B2 

C2 <0.0001 0.7350 0.4291 10.242 

Cell 
Viability 2.49 Quadratic 

A B C D, 
AB BC 

A2 
0.0418 0.9425 0.8795 25.974 

Table 4.5 Square Wave: Wide – Response Model Outputs 
The table contains the lambda value for data transformation, the order of the model, the 
significant terms of the model, the lack of fit p-value of the model, the adjusted R-
Squared, the predicted R-squared and the “Adec Precision”.  
 

 

Although the accuracy is compromised by the large design space, as reflected by the 

lack of fit in the two responses, there are still clear trends to be seen in the data from 

this CCD. Table 4.5 contains the transformation and model information for the two 

responses in this experiment. Transfection efficiency and cell viability data were 

transformed according to the lambda values in table 4.5 and outliers were removed from 

the cell viability response according to advisory software diagnostics (Figure A13). The 

following models were generated: 

 

 

(Transfection Efficiency) 0.19 = + 2.1 + 0.43*A + 0.086*B + 0.15*C + 0.036*D – 

0.075*AB + 0.039*AC +2.128E-003*AD + 0.019*BC – 0.011*BD + 5.846E-003*CD 

– 0.15*A2 – 0.16*B2 – 0.14*C2 

          (Coded Factors) 

 

 

(Cell Viability) 2.49 = + 67716.96 – 28638.97*A – 12326.14*B – 4854.42*C – 

3331.83*D – 13377.86*AB – 2575.12*AC – 641.53*AD + 3920.6*BC + 1199.41*BD 

– 895.35*CD – 8409.94*A2 + 1347.79*B2 – 691.88*C2 

          (Coded Factors) 
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As with the exponential decay CCD, transfection efficiency increases with an increase 

inthe electroporation parameters field strength, DNA load, and additionally, pulse 

number. However, transfection efficiency peaks around the midrange of pulse length 

delivery, which would indicate that the optimum pulse length was in the region of 20 

ms. Cell viability, again, decreases with an increase in all independent variables, which 

is the inverse response to transfection efficiency. Within this design space, modeled 

transfection efficiency ranged from ~10% to 120%, which illustrates the model lack of 

fit, because transfection efficiency cannot exceed 100%. However, one conclusion that 

could be made was that 80% of the tested points in the design space that yielded high 

transfection efficiencies were those in which 2 pulses were administered. Therefore, 

square wave protocols from this point onwards would be carried out with 2 pulses only. 

Cell viability ranged from ~10% to 100%. The independent variables appeared to have 

the following order of influence: Field strength > pulse length > DNA load > pulse 

number. Again, because of the lack of fit if these models, the response surfaces are only 

included in the appendix, along with the fit summary statistics, the ANOVA statistics 

and normal distribution plots (Tables A13-A16 and Figures A11-A14). 

 

The software optimisation function was used to guide the next set of experimental 

parameters. DNA was kept constant at 75.92 ug/mL (50ug). Transfection efficiency and 

cell viability were maximised with minimum threshold values of 60%. The software 

predicted that 302.98 V, 15.44 ms with two pulses were optimal conditions for the 

criteria given. As with exponential decay, a viability response study (Figure 4.8) was 

undertaken to probe further into these conditions. Two square wave pulses were used 

with field strength and pulse length ranging 260-400 V and 10-20 ms respectively. The 

response study was in agreement with the software in terms of voltage (~300 V for the 

center), but for pulse length 15 ms caused too much cell death, so an additional 

experimental run using 12.5 ms was used to determine a more optimal center. It was 

decided that a pulse length center point of 11.5 ms would be used with the prediction 

that its response would fall between the 10 ms and 12.5 ms responses. The axial ranges 

of field strength and pulse length were to be set at 271.7-328.3 V and 8-15 ms 

respectively. 



Chapter 4: Electroporation Optimisation Using DoE Methodology 

	 106	

 

 

 

 

 

 

 

 
Figure 4.8. Square Wave: Cell Viability Optimisation 
Cell viability was assessed in response to incremental changes in voltage (260-400 V) at 
four different pulse lengths (10, 12.5, 15 and 20 ms). 
 

4.2.4. Electroporation Optimisation: Narrow Parameters 

 

4.2.4.1. Exponential Decay Narrow - 1: 

 

A two-factor (field strength and pulse length), two-level, rotatable CCD was devised 

using the parameter ranges determined in the section 4.2.3.1. DNA load was kept 

constant at 50 ug. The factors and their ranges are laid out in Table 4.6 This generated a 

13-run experiment, measuring the four responses: transfection efficiency, median 

fluorescence, cell viability and ACD. The aim of this CCD was to provide insight into 

the electroporation parameters that yield optimal transfection responses. The hypothesis 

was that this parameter range would provide a higher resolution analysis around the 

dynamic range of optimal responses and that this set of models would better fit the data 

than with the previous wide range analysis. 

 

Factor Name Units -1 Factorial +1 Factorial Center - a + a 

A Field Strength V 274.6 345.4 310 260 360 

B Pulse Length ms 24.88 29.12 27 24 30 

Table 4.6. Exponential Decay: Narrow Parameter Ranges - 1 
The table states the parameters and their unit ranges used in the experiment, including 
the factorial, center and axial (a) points. ‘+’ and ‘-‘ refer to upper and lower 
respectively. 
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 Response Model Summary 

Response Transform 
(l) 

Model 
Order 

Model 
Terms 

Lack of 
Fit (p) 

Adjusted
R2 

Predicted 
R2 

Adeq 
Precision 

Transfection 
Efficiency 3 Quadratic A AB A2 

B2 0.4359 0.9536 0.8887 19.046 

Median 
Fluorescence 0.84 Quadratic AB A2 B2 0.5121 0.9465 0.8717 15.38 

Cell 
Viability -- Quadratic A B A2 0.2363 0.9681 0.9071 26.43 

ACD -- Linear A 0.8799 0.8724 0.8375 19.066 

Table 4.7 Exponential Decay Narrow – 1: Response Model Outputs 
The table contains the lambda value for data transformation, the order of the model, the 
significant terms of the model, the lack of fit p-value of the model, the adjusted R-
Squared, the predicted R-squared and the “Adec Precision”.  
 

 

Table 4.7 contains the transformation and model information for the two responses in 

this experiment. Transfection efficiency and median fluorescence data were transformed 

according to the lambda values in table 4.7 and outliers were removed from the median 

fluorescence response according to advisory software diagnostics (Figure A16). The 

following models were generated: 

 

(Transfection Efficiency) 3 = + 6.636E+005 -35018.98*A + 17119.18*B – 

53342.77*AB – 2.168E+005*A2 – 35059.3*B2 

          (Coded factors) 

 

(Median Fluorescence) 0.84 = +24951.96 – 1628.93*A + 66.79*B – 6115.63*AB – 

10220.63*A2 – 4262.72*B2     (Coded Factors) 

 

Cell Viability = + 63.29 – 24.19*A – 4.73*B – 1.72*AB – 8.23*A2 – 2.47*B2 

         (Coded Factors) 

 

Average Cell Diameter = +12.83 – 1.32*A + 0.055*B 

 

The statistics displayed in table 4.7, along with supplementary information in Tables 

A17-A24 and Figures A15-A18 , were used to assess the models. The models predicting 

the four responses are all deemed to significantly fit the data (lack of fit) and explain a 

large proportion of variance (R2) in the response. Statistically, the predictive capacity of 
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these models is deemed to be high (Predicted-R2), which validates the accuracy of the 

model and its usefulness in describing the response in the given design space. 

Transfection efficiency (Figure 4.9a) appears to increase with field strength up until ~ 

305 V, at which point it starts to decrease. Field strength and pulse length interact in 

their effect on transfection efficiency, which is can be seen by a positive correlation of 

pulse length with transfection efficiency at low voltages, but a negative correlation at 

high voltages. Transfection efficiency ranges from ~70% to ~85% in this CCD. The 

same result is seen in the median fluorescence response (Figure 4.9b), which shows a 

peak in expression around the middle of the design space (305 V, 27 ms). The cell 

health responses, cell viability and ACD are both negatively correlated with field 

strength and cell viability is also negatively correlated with pulse length (Figures 4.9c 

and 4.9d) and their predicted range is from ~20% to ~80% and ~11 um to -14 um 

respectively according to the response surface plots. This could perhaps be the reason 

for the change in response-factor associations in transfection efficiency and median 

fluorescence responses, such that with harsher electroporation conditions the health of 

the cell is diminished to the point that its capacity for protein production is lessened. 

Again, these models indicate that field strength has a larger impact than pulse length on 

the electroporation response. 
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Figure 4.9. Exponential Decay: Narrow 1 –Response Surfaces 
The response surface depicts the relationship between the transfection efficiency (A), 
median fluorescence (B), cell viability (C) and ACD (D) with both experimental factors; 
field strength and pulse length. 
 
 
 

 

 

 

 

 

 

 

 

 

A B 

C D 



Chapter 4: Electroporation Optimisation Using DoE Methodology 

	 110	

4.2.4.2. Square wave Narrow 
 

A two-factor (field strength and pulse length), two-level, rotatable CCD was devised 

using the parameter ranges determined in the previous section. DNA load was kept 

constant at 50 ug and pulse number was kept constant at 2. The factors and their ranges 

are laid out in Table 4.8 This generated a 13-run experiment, measuring the four 

responses: transfection efficiency, median fluorescence, cell viability and ACD. The 

aim of this CCD was to provide insight into the electroporation parameters that yield 

optimal transfection. The hypothesis was that this parameter range would provide a 

higher resolution analysis around the dynamic range of optimal responses and that this 

set of models would better fit the data than with the previous wide range analysis. 

 
 

 
Table 4.8. Square Wave: Narrow Parameter Ranges 
The table states the parameters and their unit ranges used in the experiment, including 
the factorial, center and axial (a) points. ‘+’ and ‘-‘ refer to upper and lower 
respectively. 
 

 

Table 4.9 contains the transformation and model information for the two responses in 

this experiment. Transfection efficiency and median fluorescence data were transformed 

according to the lambda values in table 4.9. The following models were generated: 

 

(Transfection Efficiency) -2.55 = + 64747.49 + 15441.15*A + 11525.43*B 

         (Coded Factors) 

 

(Median Fluorescence) 0.17 = + 6.78 + 0.78*A + 0.46*B – 0.051*AB – 0.16*A2 – 

0.15*B2 

         (Coded Factors) 

 

Cell Viability = + 77.93 – 12.03*A – 12.36*B – 7.36*AB – 4.5*A2 – 6.08*B2 

         (Coded Factors) 

Factor Name Units -1 Factorial +1 Factorial Center - a + a 

A Field Strength V 280 320 300 271.7 328.3 

B Pulse Length ms 11.5 9.03 11.5 8 15 
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(ACD) -3 = + 3.943E-004 + 6.706E-005*A + 1.061E-004*B + 8.037E-005*AB 

+2.971E-005*A2 + 1.424E-005*B2 

         (Coded Factors) 

 

 

 Response Model Summary 

Response Transform 
(l) 

Model 
Order 

Model 
Terms 

Lack of 
Fit (p) 

Adjusted
R2 

Predicted 
R2 

Adeq 
Precision 

Transfection 
Efficiency 2.55 Linear A B 0.2934 0.8484 0.7765 17.132 

Median 
Fluorescence 0.17 Quadratic A B A2 B2 0.4934 0.9586 0.9062 23.426 

Cell 
Viability -- Quadratic A B AB 

A2 B2 0.1259 0.9565 0.8578 22.359 

ACD -3 Quadratic A B AB 
A2 0.3659 0.9678 0.9173 29.605 

Table 4.9. Square Wave Narrow: Response Model Outputs 
The table contains the lambda value for data transformation, the order of the model, the 
significant terms of the model, the lack of fit p-value of the model, the adjusted R-
Squared, the predicted R-squared and the “Adec Precision”.  
 
 
The statistics displayed in table 4.9, along with supplementary information in tables 

A25-A32 and figures A19-A22, were used to assess the models. The models predicting 

the four responses are all deemed to significantly fit the data (lack of fit) and explain a 

large proportion of variance (R2) in the response. Statistically, the predictive capacity of 

these models is deemed to be high (Predicted-R2), which validates the accuracy of the 

model and its usefulness in describing the response in the given design space. Increases 

in field strength and pulse length result in higher transfection efficiency and median 

fluorescence, but lower cell viabilities and ACD (Figure 4.10a-d). Predicted transfection 

efficiency,  ranged from ~65% to ~90%, cell viability ranged from ~30% to ~85%, and 

ACD ranged from ~11 um to ~15 um according to the response surface plots. Again 

field strength had larger impact upon the response than did pulse length and there was 

significant interaction between the two independent variables. 
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Figure 4.10. Square Wave: Narrow –Response Surfaces 
The response surface depicts the relationship between the transfection efficiency (A), 
median fluorescence (B), cell viability (C) and ACD (D) with both experimental factors; 
field strength and pulse length. 
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4.2.4.3. Optimisation - 1 

 

After using the optimisation function for the exponential decay narrow dataset, in which 

transfection efficiency and cell viability were maximised with minimum threshold 

values of 80% and 60% respectively, the suggested voltage for optimal responses was ~ 

300 V. Given this output it was decided to run another RSM model-based experiment 

for exponential decay electroporation using the same voltage range as the narrow square 

wave experiment, because it would allow for a better comparison between the two 

waveforms in terms of actual voltages and data range resolution. Therefore, as well as 

the above criteria for transfection efficiency and cell viability, using the optimisation 

function, voltage was set at 300 V for optimisation to generate a new center point for 

pulse length. The suggested pulse length was 26-27 ms, so it was decided to center the 

new experiment around 300 V and 26 ms. The factors and their ranges are laid out in 

table 4.10. 

 

 

4.2.4.4. Exponential Decay Narrow – 2 

Table 4.10. Exponential Decay: Narrow Parameter Ranges - 2 
The table states the parameters and their unit ranges used in the experiment, including 
the factorial, center and axial (a) points. ‘+’ and ‘-‘ refer to upper and lower 
respectively. 
 
 
Table 4.11 contains the transformation and model information for the two responses in 

this experiment. Transfection efficiency and median fluorescence data were transformed 

according to the lambda values in table 4.9. The following models were generated: 

 

(Transfection Efficiency) 3 = + 6.016E+005 + 1.590E+005*A + 63563.37*B + 

27385.12*AB – 30514.23*A2 – 19458.31*B2 

         (Coded Factors) 

 

Factor Name Units -1 Factorial +1 Factorial Center - a + a 

A Field Strength V 280 320 300 271.7 328.3 

B Pulse Length ms 24 28 26 23.17 28.83 
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(Median Fluorescence) 2.53 = + 2.637E+012 + 8.610E+011*A + 4.782E+011*B – 

4.477E+010*AB – 4.688E+011*A2 – 6.313E+011*B2 

         (Coded Factors) 

 

(Cell Viability) 1.5 = + 583.94 – 95.73*A – 81.07*B – 11.92*AB – 39.00*A2 + 3.29*B2 

         (Coded Factors) 

 

(ACD) 1.75 = + 102.08 – 8.15*A – 8.64*B – 2.89*AB – 5.29*A2 +0.13*B2 

         (Coded Factors) 

 

 

 Response Model Summary 

Response Transform 
(l) 

Model 
Order 

Model 
Terms 

Lack of 
Fit (p) 

Adjusted
R2 

Predicted 
R2 

Adeq 
Precision 

Transfection 
Efficiency 3 Quadratic A B A2 0.1143 0.9665 0.8891 27.035 

Median 
Fluorescence 2.53 Quadratic A B A2 B2 0.1931 0.8323 0.4902 9.598 

Cell 
Viability 1.5 Quadratic A B A2 0.4198 0.9281 0.8248 17.748 

ACD 1.75 Quadratic A B A2 0.4027 0.8838 0.7120 14.608 

Table 4.11. Exponential Decay Narrow 2: Response Model Outputs 
The table contains the lambda value for data transformation, the order of the model, the 
significant terms of the model, the lack of fit p-value of the model, the adjusted R-
Squared, the predicted R-squared and the “Adec Precision”.  

 

 

The statistics displayed in table 4.11, along with supplementary information in tables 

A33-A40 and figures A23-A26 , were used to assess the models. The models predicting 

the four responses are all deemed to significantly fit the data (lack of fit) and explain a 

large proportion of variance (R2) in the response. Statistically, the predictive capacity of 

these models is deemed to be high (Predicted-R2), which validates the accuracy of the 

model and its usefulness in describing the response in the given design space. However, 

this was not true for median fluorescence, whereby the model had a diminished 

predicted R-squared (0.4902) compared to the other responses. Increases in field 

strength and pulse length result in higher transfection efficiency and median 

fluorescence, but lower cell viabilities and ACD (Figure 4.11a-d). Predicted transfection 

efficiency, ranged from ~70% to ~92%, cell viability ranged from ~55% to ~80%, and 
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ACD ranged from ~12 um to ~15 um according to the response surface plots. Again 

field strength had larger impact upon the response than did pulse length and there was 

significant interaction between the two independent variables. This lack of interaction 

could potentially be explained by the increase in the lower ends of the cell viability 

response. In previous CCDs, in which harsher conditions led to extreme lows in cell 

viability, the interaction between field strength and pulse length was more substantial. 

One explanation for this could be that low cell viabilities prohibit protein production 

and that the combination of high voltages and longer pulse lengths diminish cell 

viability to such an extent that the correlations between higher levels of electroporation 

and gene expression is reversed. 

 

 
 

 
Figure 4.11. Exponential Decay: Narrow 2 –Response Surfaces 
The response surface depicts the relationship between the transfection efficiency (A), 
median fluorescence (B), cell viability (C) and ACD (D) with both experimental factors; 
field strength and pulse length. 
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4.2.4.5. Optimisation – 2 

 

The design expert software optimisation function was used to determine the optimal 

electroporation conditions for exponential decay and square wave waveforms. 

Transfection efficiency was maximised, with a minimum threshold value of 80% and 

viability was targeted towards 65% with a minimum threshold value of 60%. For the 

exponential decay waveform the optimisation function suggested using 310.8 V and 

25.9 ms for field strength and pulse length respectively. The software predicted a 

transfection efficiency of 87.7% and cell viability of 65% using these conditions. For 

the square wave waveform the optimisation function suggested using 320 V and 11 ms 

for field strength and pulse length respectively. The software predicted a transfection 

efficiency of 82.8% and a cell viability of 65% using these conditions. A second set of 

criteria, in which cell viability was sacrificed for higher transfection efficiency, was 

then tested. Transfection efficiency was maximised with a minimum threshold value of 

90% and cell viability targeted towards 55% with a minimum threshold value of 50%. 

For the exponential decay waveform the software suggested using 317.8 V and 27.3 ms 

for field strength and pulse length respectively. A prediction of 91.6% transfection 

efficiency and 55% cell viability was given for these criteria. For the square wave 

waveform no solutions were offered when using these criteria. The highest achievable 

predicted transfection efficiency with this viability setting was 86%, when using 320 V 

and 12.73 ms for field strength and pulse length respectively. Therefore, it was 

concluded that the exponential decay waveform was better suited for this platform and 

would be taken forward for use in future experiments. 

 

4.2.5. Optimal Electroporation Conditions Testing 

 

Design of Experiments software allowed for a complete dissection of the 

electroporation response across a wide range of parameter settings and led to the 

elucidation of parameter settings, which were predicted to result in highly efficient 

transfection. However, model predictions are not sufficient and outputs need to be 

tested. The software optimisation function was used to predict transfection responses 

using two sets of criteria for exponential decay electroporation: 

1. > 80% transfection efficiency and 65% cell viability = ~310 V and ~26 ms. 

2. > 90% transfection efficiency and 55% cell viability = ~318 V and ~27.5 ms. 
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In order to test the model and decide upon optimal conditions to take forward a more 

traditional OFAT approach was used to investigate this small range of parameter 

settings. Field strengths of 310 V, 315 V and 320 V with pulse lengths of 25 ms, 26 ms, 

27 ms and 28 ms were tested. It was also important to experimentally test this range of 

settings, because the resolution of the electroporation device is such that it cannot 

precisely achieve input settings and exact conditions can vary from sample to sample. 

Therefore the predicted optimum settings may differ from the actual optimum settings. 

In terms of the fluorescence characteristics, transfection efficiency (Figure 4.12a) and 

median fluorescence (Figure 4.12b), there appears to be a general upward trend with 

increased electroporation strength, with the 320 V – 26 ms setting (hereafter referred to 

as 320-26) transfecting the most cells and having the highest gene expression. 

Fluorescence characteristics decrease with harsher settings than 320-26. A one-way 

ANOVA showed the differences among the means were statistically significant for both 

transfection efficiency and median fluorescence (both < 0.0001) and a Tukey’s multiple 

comparisons test showed that 320-26 was significantly superior to all other conditions 

(all p < 0.05). In terms of cell health measurements, cell viability and average cell 

diameter, there does not appear to be a significant trend in the results. A one-way 

ANOVA showed the differences among the means were statistically significant for both 

cell viability and ACD (both p < 0.0001), but a Tukey’s multiple comparisons test 

showed that there is no significant difference between the 320-26 and any other 

condition (all p > 0.05). Therefore, there is no cell health disadvantage to using these 

superior transfection conditions, which had an average transfection efficiency of 93.7% 

and average cell viability of 56.3%. Interestingly, cell viability only decreases by ~10% 

for mock transfection compared to the negative control, which means that DNA is the 

main contributor to low cell viability rather than electroporation intensity itself. 
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Figure 4.12. Electroporation Optimal Range OFAT 
The figure shows the electroporation responses in terms of A) Transfection Efficiency 
(Y-axis altered for clarity between bars), B) Median Fluorescence, C) Cell Viability, 
and D) Average Cell Diameter. The field strengths tested were 310 V, 315 V and 320 V. 
The pulse lengths tested were 25 ms, 26 ms, 27 ms and 28 ms. Mock transfections were 
run at the harshest condition (320 V, 28 ms). * relates to a significant difference of the 
320-26 condition. 
 

31
0 V

, 2
5 m

s

31
0 V

, 2
6 m

s

31
0 V

, 2
7 m

s

31
0 V

, 2
8 m

s

31
5 V

, 2
5 m

s

31
5 V

, 2
6 m

s

31
5 V

, 2
7 m

s

31
5 V

, 2
8 m

s

32
0 V

, 2
5 m

s

32
0 V

, 2
6 m

s

32
0 V

, 2
7 m

s

32
0 V

, 2
8 m

s

Neg
ati

ve
 C

ontro
l

Mock
 Tr

an
sfe

cti
on

0
10
20
30
40
50
60
70
80
90

100

Electroporation Parameters

C
el

l V
ia

bi
lit

y 
(%

)

C) Cell Viability

310 V, 2
5 m

s

310 V, 2
6 m

s

310 V, 2
7 m

s

310 V, 2
8 m

s

315 V, 2
5 m

s

315 V, 2
6 m

s

315 V, 2
7 m

s

315 V, 2
8 m

s

320 V, 2
5 m

s

320 V, 2
6 m

s

320 V, 2
7 m

s

320 V, 2
8 m

s

Negativ
e C

ontro
l

Mock Transfectio
n

12

14

16

18

Electroporation Parameters

Av
er

ag
e 

Ce
ll 

Di
am

et
er

 (u
m

)

D) Average Cell Diameter

31
0 V

, 2
5 m

s

31
0 V

, 2
6 m

s

31
0 V

, 2
7 m

s

31
0 V

, 2
8 m

s

31
5 V

, 2
5 m

s

31
5 V

, 2
6 m

s

31
5 V

, 2
7 m

s

31
5 V

, 2
8 m

s

32
0 V

, 2
5 m

s

32
0 V

, 2
6 m

s

32
0 V

, 2
7 m

s

32
0 V

, 2
8 m

s

Neg
ati

ve
 C

ontro
l

Mock
 Tr

an
sfe

cti
on

0

50000

100000

150000

B) Median Fluorescence 

Electroporation Parameters

M
ed

ia
n 

Fl
uo

re
sc

en
ce

 (M
FU

)
310 V, 2

5 m
s

310 V, 2
6 m

s

310 V, 2
7 m

s

310 V, 2
8 m

s

315 V, 2
5 m

s

315 V, 2
6 m

s

315 V, 2
7 m

s

315 V, 2
8 m

s

320 V, 2
5 m

s

320 V, 2
6 m

s

320 V, 2
7 m

s

320 V, 2
8 m

s

Negativ
e C

ontro
l

Mock Transfectio
n

0

80

85

90

95

100

Electroporation Parameters

Tr
an

sf
ec

tio
n 

Ef
fic

ie
nc

y 
(%

)

A) Transfection Efficiency

  * 
 * 



Chapter 4: Electroporation Optimisation Using DoE Methodology 

	 119	

320-26 was then compared to Pfizer conditions and to conditions used for transfection 

in the generation of stable cell lines, using 1 x 107 cells instead of 1 x 106 cells (referred 

to as ‘320-26 scaled-up’ conditions). Each response was analysed by an ANOVA 

followed by a Tukey’s multiple comparisons test (significant when p < 0.05). All 

responses had a significant difference between sample means (p < 0.0001 for 

transfection efficiency, cell viability and ACD, p = 0.0001 for median fluorescence). 

There was no significant difference in transfection efficiency (Figure 4.13a) between 

320-26 and 320-26 scaled-up conditions and both 320-26 conditions were significantly 

higher than Pfizer conditions (~75%) by ~17%. There was a significant decrease in 

median fluorescence (Figure 4.13b) between 320-26 and 320-26 scaled-up conditions 

(0.7-fold), but both were significantly higher than with Pfizer conditions (3.6-fold and 

2.5-fold respectively). Cell viability (Figure 4.13c) for 320-26 scaled-up conditions 

(75.8%) and Pfizer conditions (82.3) are both significantly higher than 320-26 (64%), 

but are not significantly different from one another, meaning the increase in transfection 

efficiency does not come at the cost of decreased cell viability compared to Pfizer 

conditions. ACD (Figure 4.13d) is significantly increased in 320-26 scaled-up 

conditions (14.4 um) compared to 320-26 (13.3 um) and significantly lower than with 

Pfizer conditions (15.1 um). Therefore, despite not having a significant difference in 

cell viability from Pfizer conditions, using scaled-up 320-26 does appear to have a 

significant physiological impact on the cell, which may indicate a slight decrease in cell 

health compared to Pfizer conditions. 
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Figure 4.13. 320-26 Scale-up and Pfizer Conditions Comparison 
This figure illustrates the differences in electroporation responses for 320-26 scale up to 
the stable cell line-generating cell number (1 x 107) and compares these optimised 
conditions to Pfizer conditions. The responses analysed are A) transfection efficiency, 
B) median fluorescence, C) cell viability, and D) ACD. Mock transfections were 
electroporated using 320-26. 
  

4.3. Discussion 

 

The aim of this chapter was to investigate an industrial cell line response to varying 

electroporation conditions in order to improve industrial standard electroporation 

conditions. Field strength, pulse length, waveform and initially DNA load and pulse 

number (square wave only) were the variable factors tested. The response was analysed 
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in the form of transfection efficiency (percentage of cells producing GFP), median 

fluorescence (intensity of GFP expression), cell viability (percentage of live cells), and 

ACD (a marker of physiological stress). The hypothesis was that DoE methodologies 

would provide a more complete analysis of electroporation and as a result would be 

more able to identify the optimal dynamic range of activity for the generation of optimal 

electroporation protocols. Firstly, the results will be discussed in terms of the success of 

using DoE methodologies for optimisation purposes and then, in terms of the effects of 

the experimental factors on the cell response. 

 

4.3.1. DoE in Process Optimisation 

 

The Design Expert 9.0.4 software package offers an easy to use interface for 

mathematical modeling of a predefined design space, in which a response is measured 

against all experimental factors simultaneously (Anderson and Whitcomb, 2005, 

Anderson, 2007). This study utilised CCDs whereby two levels for each factor were 

tested, which defines the limits of the design space. A central point is repeated multiple 

times in order to estimate the pure error of the output and provides information on 

response curvature. Axial points (values outside of the design space) are also tested to 

provide more information on the response within the design space, which provides 

factor-specific information on response curvature. The output provides information on 

factor interaction as well as individual factor effects in the form of a response surface 

that can be visualised in 3D and statistically validated. This utilises the information 

provided by experimental runs and the subsequent model to provide a prediction for 

individual responses throughout the whole design space. The software optimisation 

function can then be used to integrate the response models and suggest optimal 

parameter settings based on criteria of the users choosing (Anderson and Whitcomb, 

2005, Anderson, 2007). 

 

As was seen in this work with the initial wide parameter setting experiments, DoE 

methodologies are not completely accurate when faced with a large design space. This 

is likely to be due to two reasons. Firstly, a relatively small proportion of the design 

space showed high levels of activity in terms of transfection responses. A large design 

space means it is likely that this activity will not be described accurately, because 

experimentally tested values are too far apart to provide a high-resolution analysis. 
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Secondly, the center points are used to estimate the pure error of the whole design 

space. If there are pockets of the design space that show more activity than other areas, 

then pure error will not be consistent throughout and thus cannot be estimated 

accurately from testing only one point (Box and Draper, 1959). These traits of a large 

design space clearly had a large impact on the model lack of fit in this study. Despite 

the fact that such models were defined statistically as being ineffective predictive tools, 

the outputs were still able to sufficiently guide the next set of experiments in the form of 

narrow range CCDs. This guidance was tweaked via assistance from viability response 

experiments. It was found that the optimisation function suggested settings that were 

too strong, causing more cell death than the models had predicted, and so suggested 

pulse lengths were altered accordingly for subsequent narrow CCD experiments. The 

error estimation and resolution problems faced in the initial experiments were 

apparently minimised in these narrow range design spaces, such that all subsequent 

models were deemed to fit the data well, statistically. For square wave electroporation 

the wide CCD output and cell viability responses study generated narrow parameter 

ranges that seemed to describe the dynamic range of activity for electroporation with 

reasonable resolution. For exponential decay electroporation, two narrow range CCDs 

were needed. The CCD output from wide parameter settings and the cell viability 

response study provided slightly wider parameter settings than with square wave 

electroporation. Therefore, the initial attempt at a narrow parameter range was used as a 

guide to generate a second narrow range CCD, which had a similar resolution to the 

square wave experiment. Investigating each waveform using similar parameter range 

settings enabled better comparison between the two. Two sets of criteria, in which cell 

viability was sacrificed to varying degrees for increased transfection efficiency, were 

then used to generate a final set of parameter settings to be tested using a OFAT 

approach. These final settings were all capable of higher transfection efficiencies than 

with Pfizer standard conditions and one setting was identified as being significantly 

better than the others (320-26). 

 

Clearly, this study shows the benefits of using DoE-based modeling for process 

optimisation. It provides information on factor-response relationships in the form of 

relationship order and factor interaction and it does this with fewer experimental runs 

than would be needed with a OFAT approach. Moreover, the study delivered a new 

parameter setting, which was a significant (~17%) improvement on Pfizer industrial 
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standard settings, which arguably could not have been done using OFAT methodology, 

especially in this timeframe. However, as stated previously, this approach is not without 

its limitations. Pure error must be consistent throughout the design space and the sparse 

distribution of experimentally tested points in large design spaces could mean useful 

information is missed. Moreover, the strategy used in this study involved the generation 

of CCDs, in which ranges became progressively narrower. Whilst, this resulted in 

successful optimisation, a strategy in which all of this data could be included in a single 

model might be more informative. Furthermore, using an iterative model that could be 

built upon and fine tuned with further data might increase its predictive capacity and 

would mean the model could be more applicable to optimisation processes involving 

different components. This will be discussed further in section 4.3.3. 

 

4.3.2. The Electroporation Response 

 

Before starting the optimisation process it was important to ensure that all factors that 

could impact on electroporation responses were kept constant at appropriate levels. 

These were factors that could impact on sample resistance. For the most part conditions 

for these variables were ascertained from Bio-rad protocols (Bio-Rad, n.d.) and Pfizer 

standard conditions. However, these sources gave contradictory information on cell 

number and sample volume and so it was necessary for them to be optimised before 

proceeding. It was found that a ten-fold decrease cell density did not have a significant 

impact on electroporation responses besides causing a slight decrease in cell viability 

and so it was decided to proceed using 1 x 106 cells to enable more high-throughput 

experiments to be a carried out. This cell number was then tested with a ten-fold 

decrease in DNA load, causing transfection efficiency and cell viability to have a 

significant decrease and increase respectively. This shows that the cell-to-DNA ratio is 

not an important factor to keep constant for electroporation, but rather the concentration 

of DNA in a given sample volume. However, as stated in section 1.3.6, the cell 

membrane interacts with DNA and DNA then actively enters the cell by electrophoresis. 

Therefore, fewer cells provide less membrane surface for DNA to interact with and may 

result in a greater number of DNA molecules interacting with each cell. This is 

supported by figure 4.13B, in which median fluorescence is higher at a lower cell 

density. A greater number of DNA molecules per cell could lead to a greater number of 

integration events per cell, which would be advantageous in electroporation procedures 
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for the generation of high-producing stable cell lines. So perhaps the use of lower cell 

numbers would better suit the needs of industrial bioprocesses. It was also found that a 

lower sample volume decreased cell viability and did not affect transfection efficiency 

until sample volume exceeded ~ 700 ul, with slight peaks at ~ 400 ul and ~ 550 ul. So it 

was decided to proceed with a sample volume of 650 ul.  

 

The DoE results throughout generally agreed with the hypothesis that stronger 

electroporation conditions and higher DNA loads are positively correlated with 

transfection efficiency and high gene expression, but negatively correlated with cell 

viability and average cell diameter. As expected, for optimisation of electroporation, a 

tradeoff was needed between DNA entry to the cell and cell health (Andreason and 

Evans, 1989). Field strength and pulse length are the experimental factors that control 

the intensity of electric charge delivered to the sample and they do this in different 

ways. Field strength controls the membrane surface area that becomes permeabilised 

and pulse length and pulse number control the extent of permeabilisation within this 

area (Gehl, 2003, Escoffre et al., 2009). Clearly, both an increased permeabilised area 

and extent of permeabilisation will be influential in transfection. A combination of these 

two factors is needed to facilitate successful transfection of DNA. Both of these factors 

impact on the transfection response by altering the plasma membrane, which means 

they are linked. Therefore a balance needs to be found to ensure their additive effect is 

not too harsh. Indeed, this study confirmed their interaction through modeling. 

Generally, field strength had a larger effect on the responses than pulse length, meaning 

that the surface area of permeabilisation is more influential in transfection than 

permeabilisation intensity. However, permeabilisation intensity, or more specifically 

pore diameter, must reach a certain level to facilitate the transfection of DNA molecules 

of a particular size, so pulse length must remain high enough for transfection to occur. 

For these reasons field strength was considered a higher priority and pulse length was 

optimised around it. Transfection for the purposes of stable gene expression is less 

concerned with immediate cell viability, because the cell population is given time to 

recover. Subsequently, desirable cells are selected for clonal cell line generation. 

Perhaps with transient gene expression, in which cells are needed to be actively 

producing recombinant protein sooner, a higher priority would be given to pulse length 

and pulse number to ensure higher immediate cell viabilities. However, transient 

electroporation would be with circular DNA, which is not as difficult to transfect 
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(Schmidt et al., 2004), and so conditions are not required to be as strong to reach high 

transfection efficiencies.  

 

As expected, DNA load was positively correlated with gene expression and showed 

toxicity to CHO cells (Winterbourne et al., 1988). Moreover, it was shown to interact 

with field strength (area of cell permeabilisation), which supports the idea that reducing 

cell number may increase the number of DNA molecules entering the cell and, 

subsequently, integration events. However, it is difficult to draw firm conclusions for 

the effect of DNA load, because it was only investigated in a wide design space, in 

which models were not fit with significance. Analysis of the effect of pulse number on 

square wave electroporation showed no significant relationship with transfection 

efficiency. However, the response surface and individual data points indicated that two 

pulses led to cells having a higher transfection efficiency than with one pulse. Pulse 

number was negatively correlated with cell viability. Again, it is difficult to draw firm 

conclusions on pulse number from this study, because it was only investigated in the 

large design space.  

 

The final CCDs for exponential decay and square wave electroporation allowed for a 

direct comparison of the two waveforms through the use of models that significantly fit 

the data. Two criteria were used for optimisation: maximising transfection efficiency 

with a minimum threshold value of 80%, whilst targeting cell viability to 65% with a 

minimum threshold value of 60%, and; maximising transfection efficiency with a 

minimum threshold value of 90%, whilst targeting cell viability to 55% with a 

minimum threshold value of 50%. The results showed that exponential decay was the 

superior waveform in this study, predicting a peak transfection efficiency of 91.6% 

using 317.8 V and 27.3 ms. A narrow range of values derived from this final 

exponential decay CCD were experimentally tested to ascertain which electroporation 

parameter setting was optimal. All of these parameter settings achieved transfection 

efficiencies > 84%. The 320-26 condition achieved 93.7% transfection efficiency, only 

2.1% higher than model prediction, which indicates that model prediction was accurate. 

Median fluorescence was also significantly higher than other parameter settings when 

using this condition. There appeared to be no significant differences in cell health 

responses when testing these settings, which indicates that there is no health 

disadvantage in using this condition. When the 320-26 parameter settings were applied 
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to 1 x 107 cells (as used in stable transfection), there was no significant change in 

transfection efficiency and cell health characteristics were marginally improved. The 

optimised conditions were superior to Pfizer conditions. 

 

This study agrees with the literature in terms of the inverse correlation between 

transfection efficiency and cell viability (Andreason and Evans, 1989). It was shown 

that the transfection response shows a dramatic increase in activity when experimental 

factors reached a certain threshold level. These thresholds were approximately the same 

for both transfection efficiency and cell viability (260 V, 17 ms for exponential decay 

electroporation). Therefore, it could be likely that transfection efficiency and cell 

viability are extremely linked and that their inverse relationship could be used as a 

predictive tool. This was the case in the first round of optimisations, whereby a cell 

viability response study helped provide a set of electroporation parameters for the next 

set of experiments. The resulting design spaces covered the dynamic range of optimal 

transfection efficiency well. Therefore, in this case, cell viability was an accurate 

predictor of optimal transfection efficiency. If the relationship between transfection 

efficiency and cell viability were to be more thoroughly defined then cell viability may 

be able to be used as a predictor of transfection efficiency in the optimisation of 

electroporation for new expression systems. This would be advantageous, because it 

would greatly reduce the workload in an electroporation optimisation procedure by 

minimising the need for protein expression assays. If electroporation optimisation 

procedures were to be implemented into the development of new biopharmaceuticals it 

would increase the number of plasmid copies entering the host cell. In the case of stable 

cell line generation this is advantageous, because it could increase the number of 

integration events and subsequently the number of high producing clones detected in 

screening. Therefore, optimised electroporation might lead to integration of more 

plasmid copies in to desirable genomic locations. In the case of transient gene 

expression, conditions could be discovered that may increase gene expression without 

having a diminishing effect on cell viability. 

  

4.3.3. Future Work 

 

This study provides evidence that industrial standard conditions for electroporation can 

be vastly improved by using modeling approaches. Moreover, these approaches allow 
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for a more global explanation as to how electroporation factors interact in their impact 

on the cell response. However, the optimised conditions derived here are likely to be 

unique to this system. So for these optimisation strategies to find commercial 

application, the conclusions found here need to be consistent across all potential 

permutations of the bioprocesses. For example, a change in vector size would impact on 

plasmid DNA entry into the cell via electrophoresis. Larger vectors may need stronger 

electroporation conditions to enter the cell, which may come at the cost of decreased 

cell viability. Also, different vector designs will be capable of variable levels of gene 

expression, which would impact upon transfection efficiency and the level of gene 

expression per cell. The recombinant product will also impact on the optimisation 

process. Some products will be more of a metabolic burden than others, which will 

impact on cell viability and growth. Whereas, other proteins are more difficult to 

express, which will impact on gene expression capabilities of a given system. In 

addition, different cell lines are likely to have different reactions to electroporation, in 

terms of gene expression and health characteristics and so may need to be uniquely 

optimised. 

 

For further investigation of electroporation parameter settings, analyses similar to those 

carried out in this study should be conducted, but with more experimentally tested 

points to provide a higher resolution analysis. Indeed, higher levels of experimental 

repetition and an increase in the number of experimentally tested points would increase 

experimental accuracy and the estimation of systematic error. In particular, square wave 

electroporation and DNA load in this study were not tested fully and a more detailed 

study may reveal that altering their input values would have a positive impact on 

transfection. Indeed, it could be the case that different bioprocess conditions (as 

mentioned above) might be more suited to electroporation settings that are different to 

what would be predicted by this study.  

 

As mentioned in section 4.2.1, the DoE methodology used with the design expert 

software may not be the most efficient and informative modeling method to do this, 

because a model which cannot be integrated or built upon is limited. Moreover, as 

described in section 4.1.2 and shown in these results, the factors influencing transfection 

are interactive and so a single model that fully integrates all variable aspects of 

electroporation and bioprocess variations would be more informative and have a higher 
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accuracy in predicting optimal parameters across the complete range of bioprocess 

needs. By utilising a modeling strategy that is open ended, the predicted response across 

the entire design space could be experimentally tested and the results fed back into the 

model to improve it. This data-rich and iterative process would lead to a more accurate, 

experimentally tested and predictive model. This is something the design expert 

software is unable to do. 

 

All of these variations would paint a detailed picture as to how each factor in a new 

biopharmaceutical system might affect the electroporation response. When a new 

product is being developed a new combination of cell line, vector and product type will 

need to be tested. The model would use this information to provide predicted optimal 

electroporation conditions and responses to them. Then an experimental test, centered 

around this prediction, would be carried out to ascertain the actual optimal set of 

electroporation parameters. Each new product that was tested would provide more data 

for the model to improve is accuracy. Eventually, a database of information could be 

generated, containing electroporation responses to all previous permutations of the 

bioprocess, which could serve as a useful repository for future optimisations. 

 

A fully integrative model such as this would provide a complete analysis into how 

bioprocess factors and electroporation parameters interact, providing useful insight into 

their relationships. Arguably, the most useful definition generated by the model could 

be the relationship between transfection efficiency and cell viability. If this relationship 

were to be accurately defined then only cell viability may need to be measured in an 

optimisation process. An end product for this modeling system could be in the form of 

an electroporation 96-well plate, in which cells are tested with new vectors and products 

against many electroporation conditions for a high resolution assessment. The viability 

response to these conditions could then be used to predict the relative gene expression 

response and provide optimal parameter settings.  

 

As mentioned at the start of the chapter, the primary purpose of this chapter was to 

optimise an in-house electroporation protocol in order to generate a stable GFP CHO 

cell pool and so the immediate future work to be carried out is to generate these stable 

pools and carry out mutational analysis on recombinant plasmid DNA. 
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Chapter 5 
 

Plasmid DNA Mutation Analysis 

 

5.1. Introduction 

 

5.1.1 Chapter Summary 

 

This chapter takes a different approach to investigating the genetic instability 

phenomenon described in CHO cells. In chapter 3, two whole-genome methods were 

used to analyse CHO cell genomic instability at the base pair, gene copy and 

chromosomal level. The work carried out was not able to validate microsatellite analysis 

as a potential marker for instability detection at the base pair level. Even though further 

work with microsatellites might have yielded more informative results it was decided to 

use DNA sequencing as a tool to measure base pair change directly. Despite the 

importance of CHO cell whole-genome stability this chapter focuses on the fidelity of 

recombinant DNA specifically and the potential threat of sequence variants to product 

quality, as well as providing a commentary on base pair change as a whole. 

 

As will be described in detail in the next section sequence variants, resulting from non-

synonymous DNA mutations are a threat to product quality and, in some cases, are 

estimated to be present in approximately a quarter of protein-producing clones. The aim 

of this chapter was to develop a secondary analysis tool for PacBio SMRT sequencing, 

which would enable a higher sensitivity in mutation calling compared to the sensitivity 
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being reported in the literature. This DNA sequencing platform would then be used to 

sequence plasmid DNA at various points in the process for generating stable GFP pools, 

which previously has only been carried out on clonal or nearly clonal cell populations. 

This would enable a more comprehensive characterization and of the frequency, type 

and biases of the mutation that is seen in recombinant DNA. 

 

Development of the secondary analysis platform for SMRT sequencing allowed 

mutations to be called from single DNA molecules at coverages reaching 10,000X, 

meaning that mutation detection was carried out to a 0.01% level. Apart from one 

mutation originating from the manufacturer, no or very little mutation was detected in 

plasmid stocks or DNA that had been transfected into CHO cells, but not integrated into 

the genome. A high level of low frequency mutation was detected in recombinant DNA, 

such that approximately a quarter of all plasmid copies contained at least one mutation. 

The mutations detected were predominantly in C and G base pairs (85%), but there were 

no positional biases, with an even distribution of mutation being detected across the 

length of the plasmid. Mutation was deemed to be unaffected by natural selecetion.  

 

5.1.2. Sequence Variants 

 

This study is focused on sequence variants as a product quality attribute and their 

identification in heterogeneous cell lines, in which sequence variants are likely to be 

present at low frequencies. Many studies have identified sequence variants in 

recombinant products through peptide mapping, mass spectrometry, capillary isoelectric 

focusing and other protein analytical techniques. These variants have been shown to 

derive from DNA level mutations (Harris et al., 1993, Ren et al., 2011, Zhang et al., 

2015) and amino acid misincorporation during protein synthesis (Wen et al., 2009, Yu 

et al., 2009). Mostly, these sequence variants have been identified through first 

establishing the mutation at the protein level, which can then be used to target the 

culpable DNA mutation at the corresponding locus. Cell line Transcripts are routinely 

reverse-transcribed to cDNAs for sanger sequencing analysis, but this is a relatively low 

resolution sequencing technology and is not likely to detect low level sequence variants 

(Zhang et al., 2015). Next-generation sequencing (NGS) has been used to identify 

sequence variants at the DNA level, but again these studies were targeted towards 

regions corresponding protein sequences that are known to be polymorphic (Zeck et al., 
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2012, Victoria et al., 2010). To our knowledge, Zhang et al. (2015) carried out the first 

NGS-based analysis for novel sequence variant identification in recombinant protein-

producing CHO cells. Using RNA-seq this group were able to successfully identify low 

level sequence variants, some of which were confirmed as being generated during long 

term cell culture. More than 25% of cell lines were shown to carry sequence variants. 

Vector stock sequencing, also using NGS (usually carried out by low resolution sanger 

sequencing), confirmed that these mutations did not originate from plasmid stocks. 

Zhang et al. (2015) were able to establish that at least one of the detected mutations was 

derived from a replication error during long-term cell culture. This means that the 

mutation event occurred after plasmid integration into the CHO genome. This supports 

the ideas discussed in chapter 3 regarding CHO cells having a mutator phenotype, 

which was shown here to extend to changes at the base pair level. Indeed, it has been 

shown previously that CHO cells are extremely prone to mutation at the base pair level. 

In one study it was shown that over 300,000 new SNPs were detected in the generation 

of the C0101 mAb-producing cell line from its CHO-S parent (Lewis et al., 2013).  The 

Zhang et al. (2015) study was unable to determine whether some of the observed 

sequence variants derived from changes before genome integration. Various studies 

have shown that plasmid DNA sequences being transfected into mammalian cells 

undergo variety of changes such as deletions, insertions and point mutations prior to 

genome integration. This has been observed in monkey, mouse and human cells (Hauser 

et al., 1987, Lebkowski et al., 1984). Studies have indicated that the cause of this 

plasmid DNA instability results from damaging agents both in the cytosol (Lechardeur 

et al., 1999) and in the nucleus (Lebkowski et al., 1984). It is noteworthy that point 

mutations predominantly occur at G:C base pairs, which could indicate towards their 

source of origin (Miller et al., 1984, Hauser et al., 1987). To our knowledge there have 

been no studies to investigate the potential mutation of transfected DNA before genome 

integration. 

 

5.1.3. Single Molecule Sequencing 

 

This study uses PacBio RS II Single-Molecule Real-Time (SMRT) sequencing to 

further study sequence variants in recombinant CHO cells at the DNA level. This 

technology utilises zero-mode waveguides (ZMWs), which are nanoholes 70 nm in 

diameter (McCarthy, 2010, Levene et al., 2003). The small size prohibits light waves 
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from traversing the ZMW, which leads to only the bottom of the ZMW (20-30 nm) 

being illuminated. A DNA polymerase molecule is fixed to the bottom of the ZMW and 

a single DNA molecule is used as a sequencing template (McCarthy, 2010, Gupta, 

2008, Levene et al., 2003). Nucleotides labeled with different fluorophores are 

incorporated into the synthesised DNA strand which, because incorporation occurs at 

the bottom of the ZMW, is detected by laser illumination. The incorporated nucleotide 

is bound for the time (milliseconds) it takes to create a phosphodiester bond, which is a 

greater amount of time than other, non-bound, nucleotides might diffuse in and out of 

the detection volume (microseconds). This enables the distinct detection of the 

incorporated nucleotide (Gupta, 2008, McCarthy, 2010). The fluorophores are attached 

to the DNA phosphate group as opposed to the base, which is the point of attachment 

for most sequencing technologies. This means that before the next base can be 

incorporated, the fluorophore must be cleaved. Therefore, an efficient system is 

achieved, whereby bases are detected quickly one at a time, allowing for a more 

definitive distinction between bases.  

 

There are tens of thousands of ZMWs per sequencing reaction, allowing for a high 

coverage and single molecule analysis (Gupta, 2008). The PacBio SMRT technology is 

such that a consensus sequence can be called from a single ZMW, which means that a 

consensus sequence is generated from a single DNA molecule. This is made possible by 

circular consensus sequencing (CCS) of a SMRTbell template (Figure 5.1a) (Roberts et 

al., 2013, Travers et al., 2010). The SMRTbell template consists of the linear, double 

stranded target sequence (insert template), which is ligated to looped, single stranded 

hairpin adapters at both ends. Sequencing primers hybridise with the adapter sequence 

and a strand-displacing polymerase facilitates the sequencing of the SMRTbell 

template, whereby the template is sequenced as a single-stranded circle until the 

polymerase detaches naturally (Figure 5.1b) (Travers et al., 2010). The current P6-C4 

chemistry allows a polymerase to sequence for an average of 10-15 kb (so-called read 

length) before strand displacement with some reactions reaching ~ 60 kb, which means 

multiple rounds of this circular sequence can be completed (Rhoads and Au, 2015). The 

resulting sequencing read (Figure 5.1c) is comprised of sense and antisense strand 

sequences, interspersed with adapter sequences. Both sense and antisense sequences are 

then used as individual sequence subreads to generate a consensus sequence (Figure 

5.1d). The utilisation of both sense and antisense information helps eliminate sequence 



Chapter 5: Plasmid DNA Mutation Analysis 

	 133	

context-based sequencing errors. The number of passes of a given template molecule is 

defined as the number of subreads used to generate the consensus sequence, which is 

determined by template length and read length (Travers et al., 2010). A single pass of 

the SMRT template has a high median error rate of ~11%, but the level of error is 

significantly lowered with each pass (Korlach, 2013, Travers et al., 2010).  
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Figure 5.1. Circular Consensus Sequencing 
The figure illustrates the SMRTbell template (a) and how, by the use of a strand-
displacing DNA polymerase (grey) and a primer (green) complementary to the hairpin 
adapter (red), it is sequenced in a circular fashion as a single-stranded molecule. The 
resulting sequence is comprised of alternating sense (blue) and antisense (orange) 
sequences, interspersed with hairpin adapter sequences (c). A consensus sequence (d) 
(yellow) is generated from these subreads. 
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SMRT sequencing does not require PCR, the technology has been shown not to have 

sequence bias, and there is no signal degradation over time, which means lower error 

rates are achieved and that any errors are randomly distributed along the template 

sequence. This means that CCS can successfully overcome the single pass error rate of 

~11%. Circular consensus accuracy increases with pass number, but this relationship 

starts to reach a plateau around 5 or 6 passes where accuracy starts to level off towards 

QV40 (Phred-type quality value) (99.99%) (Travers et al., 2010).  > 99.999% (> Quality 

Value 60 – QV60) accuracy can be achieved with this technology (Travers et al., 2010, 

Korlach, 2013, Roberts et al., 2013). The top level of accuracy is achieved by forming a 

final consensus sequence from a combination of the CCS consensus outputs. However, 

in order to analyse the sequence output from individual molecules, this study did not 

combine ROIs, so that low-level variants could be detected beyond the 1% frequency 

detection limit reported by Pacific Bioscience (CA, USA) (Dilernia et al., 2015).  

 

5.1.4. Chapter Aims 

• Develop a high resolution SMRT sequencing analysis platform for point 

mutations. 

o Build consensus sequences from individual DNA molecules by using 

only high template pass numbers. 

o Eliminate sequencing and other error to ensure maximum accuracy 

• Investigate the assumption that plasmid stock DNA does not contain sequence 

variants. 

• Determine the extent of mutation in transfected / non-integrated plasmid DNA, 

to establish whether the CHO cell cytoplasmic or nuclear environment is 

mutagenic to plasmid DNA. 

• Assess and characterise the extent and type of mutations that occur in 

recombinant plasmid DNA during the generation and long term cell culture of a 

GFP stable CHO cell line, including: 

o Mutation frequency. 

o Mutation Distribution across the plasmid in terms of nucleotide position 

and potential biases towards coding and non-coding sequences. 

o The type of nucleotide changes. 

o Assessing the level of synonymous and non-synonymous mutations. 
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5.2 Results 
 

This study investigated three potential sources of point mutation: Plasmid DNA stocks, 

the pre-integration cellular environment and the genomic environment (Samples: Low 

and High generation). The phCMV C-GFP plasmid (Genlantis) was used again here to 

assess this genetic instability. Figure 5.2. depicts the process by which stably producing 

CHO cells are generated and highlights (red arrows) the time points within this process 

that DNA samples were taken for SMRT sequencing analysis. The plasmid stock 

analysis aimed to reveal any errors that were present from initial synthesis of the 

plasmid and errors that may have been introduced during cloning in E. coli DH5α cells. 

The general assumption (Zhang et al., 2015) is that plasmid stocks do not carry point 

mutations, so as well as verifying this assumption, this sample will likely serve as a 

negative control for mutation to give an estimate of error levels in this novel analysis 

platform. The investigation into point mutations in DNA prior to integration will reveal 

whether the cytosolic, nuclear or electroporation environment is mutagenic. Any 

mutations present here are likely to be extremely rare, because plasmid DNA is not 

replicated in this environment, as opposed to the other samples, in which DNA had been 

replicated by E. coli or mammalian cell genomic replication. Therefore it was necessary 

to use a method of DNA extraction without the use of PCR, because PCR-based errors 

could present as a false positive for point mutation. Finally, the two genomic samples 

taken at two time points over long-term cell culture aimed to reveal whether the fidelity 

and in vivo error rates of the CHO polymerase and mismatch repair system are 

responsible for introducing point mutations over long-term cell culture. Samples were 

sequenced by GATC biotech (Konstanz, Germany). 



 

	

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 5.2 Stable Pool Generation 
The illustration shows the process by which stable CHO cells are generated. Firstly, linearised plasmid DNA is transfected into cells. Some of 
this plasmid DNA will be present in the nucleus and an extremely small proportion of plasmid molecules will integrate into the host genome. 
Cells will then be treated with a selection agent to enrich the cell population for cells containing integrated plasmid DNA. This results in the 
generation of a pool of stably producing cells. The red arrows highlight the time points at which DNA samples were taken for SMRT sequencing 
analysis. The two arrows pointing towards the stable pool of cells represent the two cell culture time points that samples were taken. Each arrow 
is labeled with the sample name. 
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5.2.1. Sequencing Analysis Platform Workflow  

 

Figure 5.3 shows the workflow and decision making process for this analysis platform 

and is described in detail in the text below. 

 

 
Figure 5.3: Sequencing Analysis Platform Workflow 
In primary analysis, subreads are used to generate ROIs from single DNA molecules 
and filtered by length, at multiple pass numbers and predicted accuracy. ROIs are then 
aligned to the reference sequence with 95% minimum identity. Error removal is carried 
out assessing the effect of increased pass number, error-prone ROI removal, Phred (Q) 
score, and then positional and base pair biases are removed by only counting mutations 
occurring in more than one ROI. Nucleotide differences compared to the reference 
sequence, which pass these filtering criteria are then called as variants. 
 

 

Primary analysis was carried out by Philip Lobb (Pacific Biosciences, CA, USA). This 

involves the generation of consensus sequences from each ZMW, whereby a so-called 

read of insert (ROI) is generated from the total number of subreads from each well. 
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ROIs that were < 800 bp in length or had a predicted accuracy < 90% were eliminated 

from analysis in order to reduce the abundance of error-prone ROIs. This dataset was 

then provided to us after 0, 5, 10, 15 and 20 – pass filter permutations in FASTA and 

FASTQ formats, so that an in-house assessment of pass number error reduction could 

be conducted. Other important statistics generated at this stage include average ROI 

length, read qualities and average number of passes. 

 

Each dataset was aligned to the reference plasmid sequence using the BLASR sequence 

alignment tool. A ROI was only aligned when it showed a minimum of 95% identity to 

the reference sequence to allow for further error-prone ROI elimination. The BLASR 

output for subsequent sequence processing was in the human readable format, whereas 

the output for the processing of ASCII (American Standard Code for Information 

Interchange) characters relating to a quality score for each given base was in the SAM 

(Sequence Alignment/Map) format. Processing of the aligned sequences and subsequent 

analysis was carried out in R.  

 

SMRT sequencing errors are predominantly indel miscalls (Carneiro et al., 2012), so 

this platform would be likely to show inaccuracies when calling insertions or deletions. 

Therefore, only point mutations were to be assessed. Each ROI was then aligned against 

the reference to enable a total coverage count, mutation count and mutation type to be 

scored at each plasmid position. Upon visual inspection of ROIs containing multiple 

mutations it was found that these mutations were located in small regions of these ROIs, 

which also contained multiple insertions and deletions (Figure A25). These error-prone 

regions were deemed to more likely be a result of individual ZMW error, rather than 

genuine mutation. Therefore, ROIs containing >3 mismatches were removed from 

subsequent analyses. A pass number error filtering step was imposed at this point and is 

explained in section 5.2.2. The ASCII characters were converted to Phred quality (Q) 

scores (Equation 5.1). 

 

!ℎ#$%	'()*+,-	./0#$ = 2.344	563	07$#),+89	:-:,$;	8(;<$# − 33	  Equation 5.1 

 

Nucleotides with Phred score of < Q25 (99.7% accuracy) (Fichot and Norman, 2013) 

were eliminated from further analysis to ensure high accuracy in base calling (Q score 

filter). The mutations called here were used to comment upon mutation frequency. 
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However, a further filter that eliminated mutations only present in one ROI (“>1” filter) 

was imposed to comment upon base pair and positional baises of the mutations 

detected, to ensure that errors unque to one ZMW were eliminated.  

 

The data will be presented here in terms of estimations of error, mutation frequency, 

nucleotide change type, plasmid position, sequence bias, and mutational impact on 

protein sequences. The coding for this platform can be found in figure A26. 

  

5.2.2. Estimation of Removed Error 

 

As described previously, SMRT sequencing allows for a consensus sequence to be 

derived from multiple passes of a single DNA molecule. The accuracy of this consensus 

sequence increases with the number of passes used to derive it. However, this effect of 

increased accuracy reaches a plateau after a certain number of passes and so there is a 

tradeoff between increasing accuracy by using a high pass number, and the loss of 

useful data caused by the pass number filter being too strict. This plateau threshold has 

previously been reported at 5 or 6 passes (Travers et al., 2010).  However, because this 

study is not building a consensus between different molecules, a greater importance was 

imposed upon single molecule accuracy. Therefore an analysis of error elimination 

through pass number filtering was carried out in order to determine which pass number 

dataset to use for this analysis (Figure 5.4). Datasets for all 5-pass filters were analysed 

using the secondary analysis platform outlined in the previous section. As stated 

previously, it was assumed that the plasmid stock sample would not contain large 

amounts of mutation, which was confirmed by this analysis. Therefore, it was used as a 

mutation negative control / representation of error to determine the number of passes to 

proceed with in this data analysis. There is a clear decrease in the number of observed 

mutations with increasing pass number. This decline is steep until 10 passes, at which 

point the trend starts to plateau. The sharp change in the gradient of decline indicates 

that this is the point at which the phenomenon of sequencing error elimination by 

increased pass number stops. The more gradual decline seen between 10 and 20 passes  
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Figure 5.4. Pass Number Effect 
The figure shows the number of mutated plasmid positions (out of 4966 bp of the total 
plasmid) that were shown to have at least one mutation across all ROIs for 0, 5, 10, 15 
and 20 passes. 
 
 

 

was assumed to be due to the loss of mutation calls from a decreasing number of ROIs 

that meet the filter criteria (i.e. decline in coverage). The average number of passes for 

this sample was 17.8. Therefore, it is extremely unlikely that the sharp change in 

gradient was due to an abrupt change in sequence coverage. It was decided to proceed 

with the 10 – pass filter for subsequent analysis, because this is the pass number that 

seemed to meet the accuracy – coverage loss tradeoff described above. This pass 

number analysis clearly shows the large amount of error from SMRT sequencing that 

needs to be filtered out by imposing a pass filter. 

 

Removal of further error was facilitated by the Q score and > 1 filters. Figure 5.5 shows 

the number of mutated plasmid positions (normalised by average sample coverage) that 

were called as mutated for the three differently filtered datasets, for all four samples. 

Both filters greatly reduce the number of mutations being called for each sample. These 

filters, especially the >1 filter, are strict and it is likely that genuine mutations will not 

be called as a result. However, this is a necessary precaution to ensure that any trends 

that are found in these data are as genuine and error-free as possible. There is clearly 

more mutation in plasmid DNA that has been integrated into the CHO genome when 
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compared to the plasmid stock and transfected / non-integrated samples. This will be 

discussed later in the chapter. 

Figure 5.5. Error Filters 

The figure shows the reduction in normalised mutated plasmid positions for the plasmid 
stock, transfected / non-integrated, Low genomic and High genomic samples using a 10 
– pass filter after the imposition of the Q score and >1 filters. 
 

 

 

 

 

Two other filters used to reduce potential error were the 95% minimum percentage 

identity in the BLASR alignment and the elimination of ROIs that contained more than 

3 mismatches. These did not have a large impact on the results. The percentage identity 

filter reduced ROIs from 29775 to 29540, from 15196 to 15063, from 43191 to 41965, 

and from 41902 to 40968 in the plasmid stock, transfected / non-integrated, Low 

genomic and High genomic samples respectively. The >3 mismatch filter reduced ROIs 

from 29540 to 29533, from 15063 to 15060, from 41965 to 41910, and from 40968 to 

40924 in the plasmid stock, transfected / non-integrated, Low genomic and High 

genomic samples respectively.  
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5.2.3. Mutation Analysis of Linearised Plasmid DNA Stocks 

 

The phCMV C-GFP plasmid vector (Genlantis) was amplified using Library Efficiency 

DH5α E. coli cells, purified using a GigaPrep kit (QIAGEN) and linearised using 

restriction enzyme AflII, as described in chapter 2. Plasmid fragmentation and SMRT 

sequencing of linearised plasmid DNA was carried out by GATC biotech. The 

fragmentation step prior to sequencing selected 1 kb fragments for sequencing in order 

to increase the number of sequencing passes per molecule. Primary sequencing analysis 

by Philip Lobb (Pacific Biosciences) generated a 10 – pass – filtered dataset containing 

29705 ROIs, an average ROI length of 1119, a mean ROI quality of 0.9941 and a mean 

of 23.485 passes. BLASR alignment software aligned 29540 ROIs to the reference 

sequence with a minimum percentage identity of 95%. The number of ROIs was 

decreased to 29533 after fragments containing more than 3 mutations were excluded. 

These ROIs were taken forward to secondary sequencing analysis. Figure 5.6 shows the 

sequencing coverage of the plasmid in the linearised plasmid stock sample. The mean 

coverage of this sample was 6600, ranging from 0 to 9041. Aside from two outlier 

bases, covered 1 and 0 times respectively at positions 3434 and 4653, the minimum 

coverage was 3426. Coverage decreases from the start to the end of the plasmid 

sequence and spikes around base pair ~800 and ~4000. 

 

 

Figure 5.7a shows the complete collection of point mutations detected by the secondary 

sequencing analysis platform in terms of plasmid location and frequency. Overall there 

were 92 mutated plasmid positions detected. One of these point mutations, a C à T 

transition in the bacterial origin of replication (position 2539), is present in 6783 of 

6788 fragments (6754 out of 6758 after filtering). We assume here that a mutation 

called at this frequency is genuine. As can be seen, the other detectable mutated plasmid 

positions in this sample have a much lower mutation frequency. Figure 5.7b shows the 

same dataset, but scaled in for examination of the low frequency mutations. After Q 

score filtering (Figure 5.7c) only 48 mutated plasmid positions were detected. With the 

exclusion of the mutation detected at position 2539, there were 47 mutated plasmid 

positions, which had an accumulation of 58 mutation events. 
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Figure 5.6. Plasmid Stock Sample Coverage 
The figure illustrates the coverage of each base pair across the 4966 bp – long GFP 
plasmid in the linearised plasmid stock sample. 
 
 

 

After the data was >1 filtering (Figure 5.7d) only 8 mutated bases were detected. 

Excluding mutation 2539, 7 mutated plasmid positions were detected, which had an 

accumulation of 16 mutation events. The total number of called bases that passed the 

quality score filter was 32,416,625. Therefore, depending on filtering stringency, the 

mutation rates within the low frequency mutation dataset were 1 in 5.6 x 105 and 1 in 

2.0 x 106 for the Q score and >1 filters respectively.  Whilst it is possible that some of 

these point mutations could be genuine, this mutation frequency will be used as an 

estimate of error for this sequencing analysis platform. The overall conclusion was that 

there was genuine mutation found in the plasmid stock sample (position 2539), which 

was present in nearly all ROIs covering this base. Within the low frequency mutations, 

although some of these mutations could be genuine, they are more likely to be 

representative of systematic error in this sequencing platform. 
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Figure 5.7. Plasmid Stock Mutation Frequency 
This figure shows the frequency and locations of detected point mutations in the 
plasmid stock sample. All observed (A), low frequency (B), low frequency quality 
filtered (C) and low frequency quality filtered and >1 filtered (D) point mutations are 
shown. 
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5.2.4. Mutation Analysis of Transfected Non-Integrated Plasmid DNA 

 

Plasmid DNA was used from the same plasmid stock as was used in section 5.2.3 and 

transfected into CHO269M cells using 320-26 electroporation conditions. A modified 

Hirt method protocol (Section 2.2.4) was used to extract linearised plasmid DNA from 

CHO cells 24 hours after transfection as devised by (Arad, 1998). Agarose gel 

electrophoresis was used to confirm the successful extraction of the 5 kb plasmid DNA 

molecules and to assess whether plasmid DNA remains intact in the mammalian cell 

environment (Figure 5.8). The modified Hirt method successfully extracted plasmid 

DNA from CHO cells. However, samples also contained, what appear to be, large 

fragments of genomic contaminant DNA and unidentified smaller DNA fragments. 

Controls demonstrate that these smaller fragments are only present when DNA (linear 

or circular) is transfected into CHO cells and that the electric current alone does not 

cause this phenomenon.  

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8. Transfected DNA Purification 
The figure shows gel images of purified plasmid DNA from CHO cells, containing 
hyperladder I (Lane 1), a mock transfection contol (Lane 2), two purified plasmid 
samples (Lanes 3 and 4), a mock transfection + spiked plasmid DNA control (Lane 5), 
DNA in 320-26 conditions (Lane 6), plasmid DNA (Lane 7), and transfected non-
linearised plasmid DNA (Lane 8).  

				1       2       3       4                    5         6        7                    8          
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Therefore, the electric current alone is not responsible for plasmid or genomic 

fragmentation. These smaller fragments could be the result of plasmid digestion or 

fragmentation in the CHO cell environment or could be a fragmented genomic DNA 

occurs after DNA transfection. This will be discussed further in section 5.3. Clearly it is 

undesirable to sequence DNA samples containing DNA that may not be plasmid DNA, 

because it will lead to reduced sequence coverage. Therefore it was necessary to purify 

the plasmid from this unidentified DNA. SMRT sequencing requires that samples have 

not been in contact with DNA intercalating agents in their preparation, meaning 

common gel extraction techniques cannot be used for purification. Blue Pippin 

technology offers automated gel purification without the need for intercalating agents 

(Sage Science, MA, USA). To validate the use of BluePippin technology for this 

purpose, it was tested in-house. A target purification size of 5.3 kb was used and DNA 

within the maximum range of 4.25 kb and 6.35 kb was collected. This approach was 

successful in removing any visually identifiable (by agarose gel electrophoresis) 

contaminants from the plasmid sample (Figure 5.9). 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.9. BluePippin Purification 
The figure shows the agarose gel image of a Blue Pippin purified CHO plasmid extract 
(Lane 2) with Hyperladder I (Lane 1). 
 

     1           2 
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Therefore, Blue Pippin purification was carried out by GATC Biotech (Konstanz, 

Germany) before sample fragmentation. Unfortunately, GATC Biotech (Konstanz, 

Germany) were unable to use the Blue Pippin instrument at the same resolution as was 

carried out in the validation of the technology. A 5 kb target purification was carried 

out, but with a wider range of 3 kb around this target. SMRT sequencing was carried 

out under the same conditions as with the previous sample. 

 

Primary analysis filtering for ROIs with a minimum of 10 passes, 99% predicted 

accuracy and a minimum length of 800 bp generated 30,824 ROIs, with a mean length 

of 1473 bp, a mean quality of 0.9958 and a mean pass number of 20.012. BLASR 

alignment software aligned 15,063 ROIs to the reference sequence with a minimum 

percentage identity of 95%. This is approximately half of the total number of ROIs 

generated from the primary sequencing analysis. Therefore, it is likely that the Blue 

Pippin purification step was not efficient in removing genomic contaminant DNA. Blue 

Pippin purification with the size range used in the validation study (Figure 5.9) may 

have reduced the amount of non-plasmid DNA in the sample. However, it might be the 

case that there are genomic fragments that are too close in size to plasmid DNA to allow 

for complete purification using this method. The number of ROIs was decreased to 

15,060 after fragments containing more than 3 mutations were excluded. The remaining 

ROIs were taken forward to secondary sequencing analysis. 
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Figure 5.10 shows the sequencing coverage of the plasmid in the non-integrated / 

transfected plasmid DNA sample. The mean coverage of this sample was 4319, ranging 

from 0 to 4919. Two bases with low coverage in the plasmid stock sample, at positions 

3434 and 4653, were covered 0 times in this sample. This could be a result of the 

polymerase having difficulty reading these particular nucleotides within this specific 

sequence. Aside from these outlier bases the minimum coverage was 2975. As opposed 

to the plasmid stock sample, which showed a gradual decrease in coverage across the 

plasmid length, there was no detectable increase or decline in coverage in this sample. 

There are two clear spikes in coverage in line with the coverage spikes seen in the 

linearised plasmid stock sample at ~ 800 bp and 4000 bp respectively. The coverage in 

this sample was less than in the plasmid stock sample, which is presumably due to the 

apparent presence of contaminating DNA that the Blue Pippin instrument failed to 

remove. This would indicate that the unidentified contaminant DNA was not 

fragmented plasmid DNA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 5.10. Transfected / Non-Integrated DNA Sample Coverage 
The figure illustrates the coverage of each base pair across the 4966 bp – long GFP 
plasmid in the non-integrated / transfected plasmid DNA sample. 
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Figure 5.11a shows the complete collection of mutated plasmid positions detected by 

the secondary sequencing analysis platform in terms of plasmid location and frequency. 

Overall there were 90 mutated plasmid positions detected. As was seen in the plasmid 

stock sample, a C à T transition in the bacterial origin of replication (position 2539), 

was present in 3986 of 3988 fragments (3974 out of 3974 after filtering). Again, we 

assume here that a mutation called at this frequency is genuine. As can be seen, the 

other detectable mutated plasmid positions in this sample have a much lower frequency. 

Figure 5.11b shows the same dataset, but scaled in for examination of the low frequency 

mutations. After Q score filtering (Figure 5.7c) only 45 mutated plasmid positions were 

detected. With the exclusion of the mutation detected at position 2539, there were 44 

mutated plasmid positions, which had an accumulation of 45 mutation events. After >1 

filtering (Figure 5.7d) only 2 mutated bases were detected. Excluding mutation 2539, 1 

mutated plasmid positions were detected, which was observed twice in total. The total 

number of called bases that passed the Q score filter was 21,246,529. Therefore, 

depending on filtering stringency, the mutation rates within the low frequency mutation 

dataset were 1 in 4.7 x 105 and 1 in 1.1 x 107 for the quality score and >1 filters 

respectively.  As with the plasmid stock sample, it is possible that some of these point 

mutations could be genuine, but it is more likely that this mutation frequency represents 

an estimate of error for this sequencing and analysis platform. It should be noted that 

the coverage for the non-integrated transfected sample was considerably less (65.4%) 

than the coverage for the plasmid stock sample and so low frequency mutations are less 

likely to be detected. Figure 5.5 shows mutation levels after being normalised for 

coverage, in which the mutation frequency in the non-integrated transfected sample was 

marginally higher than for the plasmid stock sample, but not to an extent that indicates 

this is due to anything other than random sampling. Both of these samples are relatively 

low in comparison with the genome-integrated samples. Therefore, the conclusion was 

that there was not convincing evidence that non-genomic cellular environment caused 

mutation of the plasmid DNA.  
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Figure 5.11. Transfected / Non-Integrated Plasmid Mutation Frequency	
This figure shows the frequency and locations of detected point mutations in the 
transfected / non-integrated plasmid sample. All observed (A), low frequency (B), low 
frequency quality filtered (C) and low frequency quality filtered and >1 filtered (D) 
point mutations are shown.	
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5.2.5. Stable GFP Cell Line Generation 

 

In order to investigate the occurrence of point mutation of integrated plasmid DNA, 

GFP stable cell lines were generated. CHO269M cells were transfected using 320-26 

electroporation conditions and cells containing integrated plasmid DNA were selected 

using the neomycin analogue G418 in order to generate a population of plasmid-

containing cells. The Kanamycin / Neomycin resistance gene on the phCMV C-GFP 

vector provides resistance against G418 and thus selects for cells containing integrated 

plasmid DNA, which is detectable through GFP measurements by flow cytometry. 

Some studies have shown that G418 alone is not sufficient to facilitate selection and so 

FACS was used as a supplementary technique to increase the number of recombinants 

in the population (Zhang et al., 2006). FACS was carried out by Kay Hopkinson at the 

University of Sheffield flow cytometry core facility. 

 

Due to the batch – to – batch variation in G418 disulphate stocks, it was necessary to 

carry out a dose response experiment for each batch. Two batches were used during the 

selection process. G418 concentrations 0.1-0.2 mg/mL above the concentration which 

led to complete cell death after 8 days of batch culture were selected for cell line 

selection (Lonza, 2012). Cell viability and VCD were used in making this decision. For 

batch 1 it was decided to proceed using 0.8 mg/mL G418, (Figure 5.12) and for batch 2 

it was decided to proceed using 0.9 mg/mL (Figure 5.13). 

 

A brief summary of transfection, the selection process and cell culture of the stable cell 

line is as follows. 1 x 107 CHO269M cells were transfected with 50 ug of phCMV C-

GFP plasmid using 320-26 electroporation conditions and then immediately transferred 

into T75 flasks containing 40 ml media (detailed in section 2.6). T75 flasks were 

incubated in a humidified static incubator. After 24 hours recovery (Day1) transfection 

efficiency (94%), cell viability (84%) and VCD (0.16 x 106 cells.ml) were in line with 

optimised values presented in chapter 4, and so G418 was added to begin recombinant 

cell selection. Cells were transferred into E125 flasks for shaking incubation on day 7, 

from which time they were passaged on a standard 3-4 day regime. 
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Figure 5.12. G418 Dose Response: Batch 1 
The figure shows the cell viability (A) and VCD (B) response to a range of G418 
concentrations ranging from 0 – 1 mg/mL over 8 days of batch culture. 
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Figure 5.13. G418 Dose Response: Batch 2	
The figure shows the cell viability (A) and VCD (B) response to a range of G418 
concentrations ranging from 0 – 1.5 mg/mL over 8 days of batch culture. 
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Cells were sorted for GFP production using a low threshold (top ~90% of GFP positive 

cells) on day 39 and then at a higher threshold (top ~20% of GFP positive cells) on day 

46. A cell bank was made using cryopreservation protocols (section 2.1.2) from stable 

cells on day 59, which was used to generate the “Low” generation sample for DNA 

sequencing. Cells were cultured until day 126, at which point cell banks were made and 

samples taken for the “High” generation sample for DNA sequencing. Figure 5.14 

shows VCD, cell viability and GFP positive cell measurements over the course of stable 

cell line generation and cell culture. As can be seen VCD is slow to increase at the start 

of the selection process, because of the growth inhibition of non-recombinants. Another 

dip in VCD can also be seen around the two FACS events. This is because the FACS 

imposes a strict population bottleneck, which reduces the population of cells and so 

time is needed for VCD to return to normal levels. Cell viability is initially seen to be 

lower, because of electroporation recovery and cell selection. Viability then returns to 

higher levels, but appears to oscillate during each cell subculture. This is due to an 

apparent culture artifact of G418 – containing media, such that viabilities are counted as 

lower towards days 3 and 4 and when cells are replenished with fresh media viabilities 

return to normal levels (~98%) and so were assumed to be healthy. Inspection of Vi-

Cell images reveals artifacts within the culture that are called as dead cells. Initial GFP 

positive cell measurements were high due to transient gene expression, which subsides 

in line with plasmid degradation and dilution. GFP positive measurements then 

remained consistent at ~7% in line with the expectation that G418 may not be a 

sufficient selector (Zhang et al., 2006). The first round of FACS led the GFP positive 

cell measurements ~60% and the second round of FACS led to GFP positive cell 

measurements ~93%. Once this was determined to be stable, the Low generation cell 

bank was generated. GFP positive cell measurements remained fairly consistent, apart 

from a slight decrease around day 85. When high generation samples were taken GFP 

positive cell measurement was ~90%. Generation number for low and high samples was 

~57 and ~133 respectively. 
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Figure 5.14. GFP Stable Cell Line Generation 
The figure shows cell growth (VCD - A) along with cell viability (%) and GFP positive 
cells (%)  (B) over the 126 day selection and culture period of the stable GFP cell line.  
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5.2.6. Genome – Integrated Plasmid: Low Generation  
 
Genomic DNA was extracted from low generation stable GFP cells using a Blood and 

Cell Culture DNA kit (QIAGEN, Manchester, UK). In order to provide a sufficient 

quantity of recombinant plasmid DNA that was free from other CHO genomic DNA, it 

was necessary to carry out PCR. The fragmentation process carried out by GATC 

biotech prior to DNA sequencing could not be carried out on PCR products. Therefore, 

to ensure the sequencing of plasmid templates with sizes allowing for multiple passes it 

was decided to carry out four separate PCR’s, which were designed to amplify four 

overlapping plasmid regions (~1.3 kb) covering the entire plasmid length. PCR was 

carried out using the Phusion High Fidelity DNA polymerase (New England Biolabs, 

UK) and the subsequent samples were quantified using a Nanodrop, so that the four 

PCR products could be pooled together in equal quantities into one sample. SMRT 

sequencing of this sample was carried out by GATC Biotech. Primary analysis filtering 

for ROIs with a minimum of 10 passes, 99% predicted accuracy and a minimum length 

of 800 bp generated 41,500 ROIs, with a mean length of 1338 bp, a mean quality of 

0.9935 and a mean pass number of 22.306. BLASR alignment software aligned 41,965 

ROIs to the reference sequence with a minimum percentage identity of 95%. The 

number of ROIs was decreased to 41,910 after fragments containing more than 3 

mutations were excluded. These ROIs were taken forward to secondary sequencing 

analysis. 

 

	
Figure 5.15 shows the sequencing coverage of the plasmid in the Low generation DNA 

sample. The mean coverage of this sample was 10,525, ranging from 0 to 23,957. The 

coverage here is clearly different to the coverage in the plasmid stock and non-

integrated transfected samples. The pooling together of four separate PCR reactions 

resulted in four predominant plasmid sequence coverage frequencies. The coverage at 

the start of the sequence (positions 1-77) is approximately a 3-fold lower than the rest of 

the sequence from the same PCR reaction. The overlapping regions between the 

separate PCR-based sequences result in spikes of coverage, where plasmid regions are 

being covered by two PCR templates. Again, the coverage of plasmid positions 3,434 

and 4,653 are extremely low, being covered 0 and 4 times respectively. The vast 

majority of the plasmid positions within this data reside within the four predominant 

PCR-based frequency populations, which range in averages from 6,370 to 13,768.	
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Figure 5.15. Low Generation Sample Coverage	
The figure illustrates the coverage of each base pair across the 4966 bp – long GFP 
plasmid in the low generation recombinant plasmid DNA sample. 
 
 

Figure 5.16a shows the complete collection of point mutations detected by the 

secondary sequencing analysis platform in terms of plasmid location and frequency in 

the low generation genomic sample. Overall there were 2783 mutated plasmid positions 

detected. As was seen in previous samples, a C à T transition in the bacterial origin of 

replication (position 2539), was present in 16098 of 20676 fragments (16013 out of 

20016 after filtering). Again, we assume here that a mutation called at this frequency is 

genuine. As can be seen, the other detectable mutated plasmid positions in this sample 

have a much lower frequency. Figure 5.16b shows the same dataset, but scaled in for 

examination of the low frequency mutations. After quality score filtering (Figure 5.7c) 

2104 mutated plasmid positions were detected. With the exclusion of the mutation 

detected at position 2539, there were 2103 mutated plasmid positions, which had an 

accumulation of 4214 mutation events. After the data was filtered for mutations 

occurring more than once (Figure 5.7d) only 739 mutated bases were detected. 

Excluding mutation 2539, 738 mutated plasmid positions were detected, which had an 

accumulation of 2456 mutation events. Mutation seems to be randomly  
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Figure 5.16 Low Generation Recombinant Plasmid Mutation Frequency	
This figure shows the frequency and locations of detected point mutations in the low 
generation recombinant plasmid sample. All observed (A), low frequency (B), low 
frequency quality filtered (C) and low frequency quality filtered and >1 filtered (D) 
point mutations are shown.	
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distributed along the full range of the plasmid. The total number of called bases that 

passed the quality score filter was 51,635,389. Therefore, depending on filtering 

stringency, the mutation rates within the low frequency mutation dataset were 1 in 1.2 x 

104 and 1 in 2.1 x 104 for the quality score and >1 filters respectively.  These mutation 

rates are approximately 47-fold and 95-fold higher than those seen in the plasmid stock 

negative control for the Q score filter and >1 filter mutation rates respectively. There 

are mutations in more plasmid positions and with higher frequencies than seen in the 

plasmid stock control. This is strong evidence of mutations occurring during the 

generation of the stable GFP cell line and subsequent cell culture for ~57 generations. 

The coverage of plasmid bases in this sample was considerably higher than the plasmid 

stock negative control, but this does not impact on the differences found between the 

two datasets (Figure 5.5). Depending on filter stringency, the mutation rates given here 

suggest that 1 in every 2.4 or 4.2 of the 5 kb plasmids used here contain a point 

mutation. 

 

As stated previously, the >1 – filtered dataset is more likely to result in the detection of 

genuine mutations, because it overcomes the sources of error that are unique to 

individual ZMWs as well as being filtered for quality. The Q score – filtered dataset 

was considered sufficient to comment on mutation frequencies, but not for drawing 

conclusions regarding the type of the mutations detected, because inaccuracies here may 

skew the results.  Therefore, only the >1 – filtered dataset will be used for this purpose. 

 

Table 5.1 contains all the genetic elements of the phCMV C-GFP plasmid and the 

percentage of mutations that fall within each element from the >1 – filtered dataset. 

Where two or more elements overlap, a separate element is designated so not to count 

mutations more than once. If mutation is assumed to be random, then a base within one 

genetic element is equally likely to be mutated as a base within another genetic element. 

Therefore, the longer a genetic element, the more likely it is that it will have been 

mutated at some point along its length. In order to determine whether mutation is 

targeted towards particular genetic elements, mutation percentage was normalised to 

element length to correct for this potential bias. All but two of the sequence types noted 

here were mutated. The two mutation-free sequences were the polyadenylation signal 

sequences for the Kan / Neo GFP genes, which perhaps are conserved through natural 

selection. However, this may also be due to polyadenylation signals being short and are 
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less likely to be hit by random mutation. Of the mutated elements, there appears to be 

no substantial difference between coding and non-coding DNA, which may be an 

indication of random mutation, not greatly affected by natural selection. MCS’s in 

particular appear to be more heavily mutated than other sequences. 

 

	
	
	
	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Table 5.1. Low Generation Sample: Mutated Genetic Elements 
The table contains the percentage of mutations that fall within each genetic element of 
the phCMV C-GFP plasmid and the normalized mutation value relative to the length of 
each genetic element. The sequence elements are as follows: Ampicillin resistance gene 
promoter, SV40 promoter, Kanamycin / Neomycin resistance gene, HSV Thymidine 
Kinase polyadenylation signal, pUC origin of replication, Human CMV promoter 
enhancer and intron, overlapping region of Human CMV promoter enhancer and intron 
plus the multiple cloning site upstream of the GFP open reading frame, T7 promoter 
priming for sequencing, multiple cloning site upstream of GFP open reading frame, 
GFP open reading frame, multiple cloning site downstream of GFP open reading frame, 
SV40 polyadenylation signal sequence and non-coding DNA. 
	
	
	
	 	 	
	
 

 

Sequence Element Mutation Frequency 
(%) 

Mutation Frequency 
(Normalised by 
element length) 

pAmp 0.4 13.79 
pSV40 4.7 20.43 
Kan / Neo 16.9 21.26 
HSV_TK_PolyA 0 0 
Puc_Ori 13.7 21.27 
phCMV + Intron 14.9 21.72 
phCMV + Intron + MCS1 0.9 18.75 
pT7 0.3 18.75 
MCS1 1.5 30 
GFP ORF 18.4 25.56 
MCS2 3.1 44.29 
SV40 PolyA 0 0 
Non-Coding 25.2 15.68 
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Table 5.2 shows the frequency of each type of point mutation, along with a total 

frequency of changed nucleotides, from the >1 – filtered dataset. There is a clear 

predominance in point mutations of G and C nucleotides, showing 41.96% and 43.98% 

of changes respectively. More specifically, by far the most frequent types of changes are 

G.C à A.T transitions (C à T (24.9%), G à A (19.22%)) and C.G à A.T 

transversions (C à A (18.54%), G à T (22.6%)). The GC content of the plasmid 

reference sequence is 50.7%, so will not have influenced these results.  

	

	
Table 5.2. Low Generation Sample: Nucleotide Changes	
The table shows the percentages of each type of nucleotide change seen within this 
dataset, the sum of which are used to give the total percentage change for each 
nucleotide. 
 

 

 

The phCMV C-GFP plasmid contains two open reading frames (Kan / Neo and GFP). 

The >1 – filtered dataset was used to determine whether the observed DNA point 

mutations were synonymous or non-synonymous in terms of the resulting amino acids 

coded for. For the Kan / Neo open reading frame there were 105 (76%) non-

synonymous changes and 33 (24%) synonymous changes and for the GFP open reading 

frame there were 115 (75%) non-synonymous changes and 38 (25%) synonymous 

changes. Given that the probability of a random mutation causing a synonymous or non-

synonymous change is 24% and 76% respectively (generated by mathematical 

simulation), the data in this sample show that the observed amino acid changes are 

random. Despite these probabilities mutation studies, generally, do not usually uncover 

point mutations in line with the ratio of synonymous to non-synonymous mutations 

observed here. This is because non-synonymous mutations are more likely to be 

deleterious and result in changes that prohibit the natural selection of these mutation-

containing genes, and so it is more common to find synonymous mutations. Therefore, 

this would indicate that the mutations found in this study are not under the influence of 

	 	 To 
	  A T C G Total 

 

From 

A -- 0.41 0.41 7.44 8.26 
T 0.81 -- 4.74 0.27 5.82 
C 18.54 24.9 -- 0.54 43.98 
G 19.22 22.6 0.14 -- 41.96 
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natural selection. This is likely to be due to their extremely low frequency. It is highly 

likely that a given cell will contain more than one copy of recombinant plasmid DNA, 

because this is a trait that will be selected for through G418 resistance and FACS events 

and so if one of these plasmid copies contains a mutation that effects phenotype then it 

can be compensated for by other, unchanged, plasmid copies.  

 

5.2.7. Genome-Integrated Plasmid: High Generation Number 

 

High generation DNA samples were prepared using the same protocols as with the low 

generation sample, in which genomic DNA was purified, four recombinant plasmid 

DNA regions were amplified through PCR and pooled together into one sample. SMRT 

sequencing of this sample was carried out by GATC Biotech. Primary analysis filtering 

for ROIs with a minimum of 10 passes, 99% predicted accuracy and a minimum length 

of 800 bp generated 40,315 ROIs, with a mean length of 1336 bp, a mean quality of 

0.9935 and a mean pass number of 21.936. BLASR alignment software aligned 40,968 

ROIs to the reference sequence with a minimum percentage identity of 95%. The 

number of ROIs was decreased to 40,924 after fragments containing more than 3 

mutations were excluded. These ROIs were taken forward to secondary sequencing 

analysis. 

 

Figure 5.17 shows the sequencing coverage of plasmid DNA in the high generation 

DNA sample. The mean coverage of this sample was 10,253, ranging from 0 to 22,570. 

The coverage seen here is clearly different to the coverage seen in the plasmid stock and 

non-integrated transfected samples. Again, the pooling together of four separate PCR 

reactions resulted in four predominant plasmid sequence coverage frequencies. The 

coverage at the very start of the sequence (positions 1-77) is approximately a 2-fold 

lower than the rest of the sequence from the same PCR reaction. The overlapping 

regions between the separate PCR-based sequences result in spikes of coverage, 

because these plasmid regions are being covered by two PCR templates. Again, the 

coverage of plasmid positions 3,434 and 4,653 are extremely low, being covered 0 and 

2 times respectively. The vast majority of the plasmid positions within this data reside 

within the four main PCR-based frequency populations seen in figure 5.17, which range 

in averages from 7,521 to 13,290.	
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Figure 5.17. High Generation Sample Coverage	
The figure illustrates the coverage of each base pair across the 4966 bp – long GFP 
plasmid in the high generation recombinant plasmid DNA sample. 
	
	
	
	
	
	
Figure 5.18a shows the complete collection of point mutations detected by the 

secondary sequencing analysis platform in terms of plasmid location and frequency in 

the high generation genomic sample. Overall there were 2550 mutated plasmid 

positions detected. As was seen in previous samples, a C à T transition in the bacterial 

origin of replication (position 2539), was present in 15,010 of 18,097 fragments (14,922 

out of 18,746 after filtering). Again, we assume here that a mutation called at this 

frequency is genuine. As can be seen, the other detectable mutated plasmid positions in 

this sample have a much lower frequency. Figure 5.18b shows the same dataset, but 

scaled in for examination of the low frequency mutations. After quality score filtering 

(Figure 5.18c) 1724 mutated plasmid positions were detected. With the exclusion of the 

mutation detected at position 2539, there were 1723 mutated plasmid positions, which 

had an accumulation of 3095 mutation events. After the data was filtered for mutations 

occurring more than once (Figure 5.7d) only 512  
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Figure 5.18 High Generation Recombinant Plasmid Mutation Frequency	
This figure shows the frequency and locations of detected point mutations in the high 
generation recombinant plasmid sample. All observed (A), low frequency (B), low 
frequency quality filtered (C) and low frequency quality filtered and >1 filtered (D) 
point mutations are shown.	
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mutated bases were detected. Excluding mutation 2539, 511 mutated plasmid positions 

were detected, which had an accumulation of 1590 mutation events. Mutation seems to 

be randomly distributed along the full range of the plasmid. The total number of called 

bases that passed the quality score filter was 50,279,121. Therefore, depending on 

filtering stringency, the mutation rates within the low frequency mutation dataset were 1 

in 1.6 x 104 and 1 in 3.2 x 104 for the Q score and >1 filters respectively.  These 

mutation rates are approximately 35-fold and 63-fold higher than those seen in the 

plasmid stock negative control for the Q score filter and >1 filter mutation rates 

respectively. Again, there are mutations in more plasmid positions and with higher 

frequencies than seen in the plasmid stock control. Mutation frequencies for both filters 

are approximately 1.3-fold lower in the high generation same when compared to the low 

generation sample. Figure 5.5 confirms that these trends are still apparent when 

mutation frequencies are normalised by sequence coverage. By number, using the >1 

filter, there are 227 more mutated plasmid positions in the low generation sample when 

compared to the high generation sample. This difference can be broken down into 251 

maintained mutated positions, 528 lost mutation positions and 278 gained mutation 

positions. This is further evidence of mutations occurring during ~76 generations 

between sampling over long-term cell culture. Depending on filter stringency, the 

mutation rates given here suggest that 1 in every 3.2 or 6.4 of these 5 kb plasmids 

contain a point mutation. The average rate of mutation found across the two genomic 

samples is 1 in 4 plasmids (5 kb). 

 

Table 5.3 contains all the genetic elements of the phCMV C-GFP plasmid and the 

percentage of mutations that fall within each element from the >1 – filtered high 

generation dataset. As with the low generation dataset, where two or more elements 

overlap, a separate element is designated so not to count mutations more than once. 

Mutation percentage was normalised to element length to correct for the potential bias 

of element sequence length. In this sample mutations were detected in all element types, 

apart from the Kan / Neo polyadenylation sequence. Again, there was not a substantial 

difference in mutation frequencies between coding and non-coding DNA. MCS 2 had a 

substantially higher mutation frequency than other plasmid sequence elements. 
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Sequence Element Mutation Frequency 

(%) 
Mutation Frequency 

(Normalised by 
element length) 

pAmp 0.2 6.9 
pSV40 6.8 29.57 
Kan / Neo 15.6 19.62 
HSV_TK_PolyA 0 0 
Puc_Ori 14.8 22.98 
phCMV + Intron 17 24.78 
phCMV + Intron + MCS1 0.6 12.5 
pT7 0.6 37.5 
MCS1 1 20 
GFP ORF 14.3 19.86 
MCS2 3.7 52.86 
SV40 PolyA 0.8 15.69 
Non-Coding 24.6 15.31 
	
	
Table 5.3. High Generation Sample: Mutated Genetic Elements 
The table contains the percentage of mutations that fall within each genetic element of 
the phCMV C-GFP plasmid and the normalised mutation value relative to the length of 
each genetic element. The sequence elements are as follows: Ampicillin resistance gene 
promoter, SV40 promoter, Kanamycin / Neomycin resistance gene, HSV Thymidine 
Kinase polyadenylation signal, pUC origin of replication, Human CMV promoter 
enhancer and intron, overlapping region of Human CMV promoter enhancer and intron 
plus the multiple cloning site upstream of the GFP open reading frame, T7 promoter 
priming for sequencing, multiple cloning site upstream of GFP open reading frame, 
GFP open reading frame, multiple cloning site downstream of GFP open reading frame, 
SV40 polyadenylation signal sequence and non-coding DNA. 
	
	
	
Table 5.4 shows the frequency of each type of point mutation, along with a total 

frequency of changed nucleotides, from the >1 – filtered high generation dataset. Again 

there is a clear predominance in point mutations of G and C nucleotides, showing 

42.19% and 41.21% of changes respectively. Upon closer inspection, the frequency of 

mutation types seen here differ from those in the low generation sample. G.C à A.T 

transitions were predominant, but G.C à A.T transition (C à T (29.3%) and G à A 

(29.69%)) mutations were more common than C.G à A.T transversion (C à A 

(11.13%) and G à T (11.91%)) mutations. Again, it should be noted that the GC 

content of the plasmid reference sequence is 50.7%, so will not have influenced these 

results.  
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Table 5.4. High Generation Sample: Nucleotide Changes 
The table shows the percentages of each type of nucleotide change seen within this 
dataset, the sum of which are used to give the total percentage change for each 
nucleotide. 
	
	
The >1 – filtered high generation dataset was used to determine whether the observed 

DNA point mutations were synonymous or non-synonymous in terms of the resulting 

amino acid sequences coded for by the two open reading frames, Kan / Neo and GFP. 

For the Kan / Neo open reading frame there were 54 (67%) non-synonymous changes 

and 27 (33%) synonymous changes and for the GFP open reading frame there were 55 

(71%) non-synonymous changes and 22 (29%) synonymous changes. The ratio of 

synonymous to non-synonymous mutations deviates slightly more from the ratio 

expected from completely random mutation (24%:76%) than the low generation sample, 

but still vastly deviates from ratios commonly found in mutational studies, which 

indicates that natural selection has not solely impacted upon the mutation frequencies 

observed here. However, the increase in the percentage of synonymous mutations may 

indicate that natural selection is slowly acting upon this population, but this could be a 

result of random fluctuations between samples. 

 

5.2.7. PCR-based error 

 

Overall, the results here have shown that point mutations predominantly occur after 

plasmid integration. However, sample preparation of genome-integrated samples 

involved PCR, whereas the pre-integration samples did not. Therefore, PCR error 

needed to be eliminated as a potential source of these observed mutations. The reported 

error rate of the Phusion polymerase when using the High Fidelity buffer is 1 in 4.4 x 

107 (Ingman and Gyllensten, 2009). Using the ThermoFisher Scientific online PCR 

Fidelity Calculator (Thermo Fisher Scientific, n.d.), with inputs of the length of the 

PCR product (an average of 1338 and 1336 bp for the low and high generation samples 

respectively) and the number of PCR cycles (40) used, the approximate PCR error rate 

	 	 To 
	  A T C G Total 

 

From 

A -- 0.2 1.37 7.62 9.19 
T 0.59 -- 6.84 0 7.43 
C 11.13 29.3 -- 0.78 41.21 
G 29.69 11.91 0.59 -- 42.19 
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was calculated for the two genomic samples. It was calculated that approximately 

2.35% of ROIs in the low and high generation samples would contain 1 error. This 

percentage was used in comparison with the Q-score-filtered dataset. For the low 

generation recombinant sample, an error rate of 2.35% in 51,635,389 bases from ROIs 

with an average length of 1338 would yield 907 PCR-originating point mutations. For 

the high generation recombinant sample, an error rate of 2.35% in 50,279,121 bases 

from ROIs with an average length of 1336 would yield 884 PCR-originating point 

mutations. The mutation frequencies observed in these samples are 4.7-fold and 3.5-fold 

higher than the estimated level of PCR-based errors, for low and high generations 

respectively, and so are likely to be a result of genuine occurrences of point mutation. 

Even though the majority of mutations uncovered in this study are likely not to be a 

result of PCR error, PCR-based errors may still be frequent enough to skew the dataset. 

A previous study regarding the fidelity of the Phusion polymerase, which confirmed the 

reported manufacturer error rate, revealed that errors were predominantly transitions 

(~60%) rather than transversions (Kinde et al., 2011) and further manufacturer in-house 

data has revealed a predominance of C à T and G à A transitions (personal 

correspondence with New England Bioscience technical support), which is the same 

predominance shown in this study. However, various studies have shown that these 

types of mutations are also predominant in CHO and other mammalian cell DNA 

replication (Dejong et al., 1988, Gojobori et al., 1982, Hauser et al., 1987). Therefore, 

although it may be exacerbated by PCR, the trends found in base-pair bias are likely to 

be genuine trends of point mutation occurrence in CHO cells over long-term cell 

culture. 

 

 

5.3. Discussion 

 

5.3.1 Summary and Conclusions 

 

As stated in the introduction to this chapter, recombinant protein-producing CHO cell 

lines have been shown to produce product variants in the form of amino acid sequence 

changes. Many of these changes have been attributed to non-synonymous point 

mutations in the recombinant DNA sequence (Harris et al., 1993, Ren et al., 2011). A 

number of these point mutations have been shown to originate during long-term cell 
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culture of stable cell lines after the plasmid, coding for the protein of interest, has 

integrated into the host genome (Zhang et al., 2015). Other studies have shown that 

point mutations were found to occur in plasmid DNA immediately after transfection 

into mammalian cells, before genome integration (Hauser et al., 1987, Lebkowski et al., 

1984, Lechardeur et al., 1999). Therefore, it is possible that point mutation-derived 

product variants in recombinant CHO cell lines could result from DNA polymerase 

replication error of genomic DNA or the potential mutative environment of the cell 

cytosol or nucleus.  

 

To our knowledge only one study (Zhang et al., 2015) has investigated point mutations 

in recombinant CHO cell lines using NGS without prior knowledge of sequence 

variants. The Zhang et al. (2015) study was carried out on 11 CHO cell populations, 

derived from limited dilution transfectant, clones, and subclones, in which 3 mutations 

were identified. So, although the Zhang et al (2015) study provides insight into 

recombinant DNA point mutations in CHO cell populations and a novel use for RNA-

seq in mutation identification, the restrictions in cell heterogeneity (dilution, cloning 

and subcloning) limit the number of observable mutations. The use of clonal, or nearly 

clonal, cell populations in these types of studies ensure the frequency of a unique 

mutation is high enough to be detected by NGS technologies, because it ensures that 

DNA samples contain many copies of the same ‘version’ of a plasmid. There have been 

reports of Illumina-based sequencing detecting mutations at < 5% frequency (Spencer et 

al., 2014) and the Pacific Biosciences lower limit to PacBio standard variant calling is 

reportedly 1% (Dilernia et al., 2015). Previous studies, presumably, have been devised 

around these reported detection sensitivities. Without the imposition of cell 

heterogeneity restrictions (e.g. in a non-diluted transfectant pool), many more 

recombinant plasmid ‘versions’ would be sequenced. Indeed, the frequency of any 

given mutation would be lower, but there would be a higher number of unique 

mutations present. This was the premise behind the analysis platform devised in this 

study, which can detect these low frequency mutations and provide a more in-depth 

characterisation of them. This study aimed to push the limits of SMRT sequencing by 

maximising the accuracy in the sequencing of individual molecules. Consensus 

sequence generation between molecules was avoided, so that rare mutations were not 

diluted to the extent that they could not be detected. 
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Sequencing was carried out on DNA from linearised plasmid stocks, transfected but not 

integrated linearised plasmid, and genome integrated plasmid from two time points in 

long-term cell culture (low and high generation). SMRT sequencing was carried out on 

fragments (through fragmentation or PCR) of the ph-CMV C-GFP vector. Primary 

analysis generated ROIs with a minimum predicted accuracy of 99% and a minimum 

length of 800 bp. This was carried out for a range of minimum pass numbers (0, 5, 10, 

15, 20) required to generate a consensus sequence. Using BLASR, sequences were 

aligned to a plasmid reference sequence with 95% matched identity, generating data on 

sequences, sequence coverage, and sequence quality. A novel secondary analysis 

platform was then used to report all called nucleotides at each plasmid position, using 

various stringencies of error-eliminating filters (Removal or error-prone ROIs, Q score 

filtering and > 1 filtering). Plasmid mutation was then assessed for frequency, position, 

type and impact on amino acid sequences. Final analysis and conclusions were drawn 

from the 10 – pass datasets, because they delivered the highest coverage from the 

datasets deemed to have low error frequencies.  

 

The average coverage of samples varied: linearised plasmid stock – 6,600; transfected / 

non-integrated plasmid – 4,319; Low genomic sample – 10,525; High genomic sample 

– 10,253. These values of coverage are derived from 10 – pass ROIs and so arguably 

are more accurate than 1x coverage in other sequencing methods. The discrepancy 

between total ROIs (30,824) and aligned ROIs (15,063) in the transfected / non-

integrated sample is the reason for the lower coverage seen in this sample. This was due 

to the inability of the Blue Pippin instrument (Sage Science, MA, USA) to remove non-

plasmid DNA from the sample. Carrying out Blue Pippin purification using the same 

conditions as the validation study would be more likely to remove a greater proportion 

of non-plasmid DNA and result in increased sequence coverage. Coverage from PCR-

derived samples was noticeably different from non-PCR-derived samples, in that the 

four PCR-fragments had distinct coverages, presumably due to the their relative 

concentrations within the pooled samples. Interestingly, two plasmid positions (3434 

and 4653) were consistently covered at low frequencies (ranging 0 to 4), which could be 

due to an inherent issue with sequencing at this position. 

All samples were found to have a high frequency C à T transition in the bacterial 

origin of replication (plasmid position 2539) in > 99.9% of fragments covering this 

position. The same plasmid stock was used throughout this study. We assume here that 
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this mutation was present in the initial plasmid stock from the manufacturer. However it 

is possible that the mutation originated from a DNA replication error during E. coli cell 

divisions during plasmid cloning, but the error would have had to of occurred during an 

extremely early plasmid replication. 

 

Other than the 2539 mutation, the observed mutation frequency in the linearised 

plasmid stock sample was extremely low (Q score filter: 1 in 5.6 x105, >1 filter: 1 in 2 x 

106). Although it is possible that here we are observing genuine low frequency mutation 

as a result of rare E. coli DNA replication errors, it was deemed more likely that these 

were representative of false positive call rates within this sequencing analysis platform. 

Therefore, this sample was used as a negative control sample for point mutations in this 

study.  

 

The level of mutation observed in the transfected / non-integrated plasmid sample (Q 

score filter: 1 in 4.7 x105, >1 filter: 1 in 1.1 x 107) did not substantially surpass the level 

seen in the negative control and so the conclusion drawn here is that the pre-integration 

cellular environment did not cause point mutations in plasmid DNA. However, previous 

studies investigating the putative mutagenic environment of a mammalian cell utilised 

protocols, in which transfected plasmid extracts were then transformed into a bacterial 

host to identify mutations. It was hypothesised that mutations are a result of DNA 

damage in the mammalian cell environment, such as Cytosine damination, depurination 

of Guanine residues or through nuclease attack (Hauser et al., 1987, Lebkowski et al., 

1984). These transformed DNA molecules are presumably replicated or transcribed by a 

DNA polymerase before assessing the DNA for mutation. Theoretically, a mutation will 

only be present once this DNA damage is misread by a replicase or polymerase. In this 

study the DNA in the transfected / non-integrated sample was deliberately left 

unamplified due to concerns that PCR-based errors may be at a greater frequency than 

mutation itself, which may have only been present as a single copy. However, perhaps 

there were DNA damage events, which had, in essence, marked a given nucleotide for 

point mutation, but there was a lack of replication to consolidate this change before 

sequencing and so they were left undetected. The PacBio sequencing polymerase will 

not have served this purpose, because a DNA damage repair step in sample preparation 

removes DNA damages such as cytosine deamination and oxidative damages, so that 

the polymerase does not stall during sequencing (Pacific-Bioscience, 2010). Therefore, 
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these mutations were unlikely to have been detected in the transfected / non-integrated 

sample in this experimental design. It might be the case that some mutations detected in 

the genome-integrated samples (Low and High) were caused by pre-integration damage. 

So, although the sequencing of this sample determined that there is no observable point 

mutation occurring before genome integration, it was unable to address the hypothesis 

that DNA is somehow marked for mutation upon replication.  

 

As mentioned in chapter 4 in regards to cell viability and average cell diameter 

responses to transfection, electroporation of plasmid DNA has a substantial impact on 

cell health in that it is known to cause apoptosis, which is presumed to be due to a 

cellular response in line with the response to a viral attack (Shimokawa et al., 2000). 

One observation of this apopotic response is genomic DNA fragmentation, which gives 

rise to gel banding patterns not dissimilar to the unidentified contaminant DNA in the 

transfected non-integrated sample (Nagata, 2000, Ioannou and Chen, 1996). This is a 

heavy indication that a proportion of cells in this study were undergoing apoptosis. Not 

all cells undergo apoptosis-mediated cell death as a result of DNA electroporation, but it 

might be the case that cells elicit a response as a result of electroporation stress. Indeed, 

it could be worthwhile to investigate the global cellular response to electroporation. 

Mammalian cells are known to detect the presence of foreign DNA and have been 

shown to silence transfected plasmid DNA (Orzalli and Knipe, 2014). Furthermore, the 

redox state of the cell is known to change as a result of apoptosis (Slater et al., 1996, 

Bustamante et al., 1997). Changes such as this to the cellular environment could play a 

role in the putative mutations that occur as a result of pre-integration damage, meaning 

point mutation is an indirect cellular response to electroporation. 

 

The level of mutation observed in the genome-integrated plasmid copies was 

considerably greater than in the linearised plasmid stock negative control. Mutation 

frequency was higher in the low generation sample (Q score filter: 1 in 1.2 x 104, >1 

filter: 1 in 2.1 x 104) than in the high generation sample (Q score filter: 1 in 1.6 x 104, 

>1 filter: 1 in 3.2 x 104). The mutations observed here were predominantly observed 

between 1 and 20 times and were shown to be well above the level of mutation expected 

from PCR-based errors alone. Indeed, the assumption that these mutations are genuine 

is made more likely by the fact that the 11% error rate of a single pass in SMRT 

sequencing is predominantly due to indel errors (Carneiro et al., 2012). Upon closer 
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inspection, this difference was a result of hundreds of mutation gains and losses, and so 

it is difficult to establish whether the difference in mutation frequency between these 

two samples is due anything other than random fluctuations of observed mutations in a 

given sample. The data here clearly show strong evidence of mutation in recombinant 

plasmid DNA, which are most likely a result of DNA replication errors. Generally, it 

would appear that there is no evidence to strongly suggest that mutation is anything 

other than randomly distributed across the plasmid, with genetic elements and non-

coding regions showing no observable difference in mutation frequency. Mutations 

were observed in all genetic elements other than the polydenylation signal sequence 

(HSV_TK_PolyA) for the Kanamycin / Neomycin resistance gene, which could be a 

result of sequence conservation through natural selection. On the other hand, this 

sequence is only 19 bp long and may not have been mutated due to the random 

distribution of mutations across the length of the plasmid. MCS sequences appeared to 

be mutated to a greater extent than other sequences, but again, this could be down to 

chance. There was a clear bias in the type of mutation seen in these samples. G and C 

residues (~85%) were mutated to a far greater extent than A and T residues (~15%). In 

the low generation sample G.C à A.T (19.22%, 24.9%) transitions and G.C à T.A 

(22.6%, 18.54%) transversions were the predominant mutations observed, whereas in 

the high generation sample the G.C à A.T (29.69%, 29.3%) transitions became more 

predominant than G.C à T.A (11.91%, 11.13%) transversions. A and T residue 

changes also showed a higher level of transition mutation than transversion mutation. 

The rates of mutation type seen here are in line with mutation occurrences reported in 

other mammalian cells, both as a result of genome replication and pre-integration 

mutation (Dejong et al., 1988, Gojobori et al., 1982, Hauser et al., 1987).  

 

The observed point mutations were then used to determine the subsequent amino acid 

sequences of the Kan / Neo and GFP ORFs. The Kan / Neo ORF was subject to 138 and 

81 mutations, of which 76% and 67% were non-synonymous changes, for low and high 

generation numbers respectively. The GFP ORF was subject to 153 and 77 mutations, 

of which 75% and 71% were non-synonymous changes, for low and high generation 

numbers respectively. Generally speaking, in most mutation studies the rate of 

synonymous mutation is far higher than the rate of non-synonymous mutation, because 

non-synonymous mutations are likely to be deleterious and as such are selected against 

evolutionarily. On the other hand synonymous mutations are neutral, or at least nearly 
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neutral, and so their rate of prevalence and fixation is subject only to random genetic 

drift (Nei and Gojobori, 1986, Kimura, 1979). Indeed, a recent study into CHO cell 

SNPs revealed that only 0.15% of discovered SNPs were non-synonymous (Lewis et 

al., 2013). The raw probabilities of the occurrence of non-synonymous and synonymous 

mutations are 76% and 24% respectively. The mutations identified in this study seem to 

adhere closely to the raw probabilities of non-synonymous and synonymous mutation 

occurrence and are apparently not being affected by natural selection. This is most 

likely explained by the extremely low frequency that these mutations reside within the 

total population. It is likely that many of the cells harvested for recombinant plasmid 

contain more than one copy of plasmid DNA, because these cells are more likely to 

have been included in the high producers that were selected during FACS. Therefore, if 

one of these copies contained a non-synonymous point mutation, any deleterious affects 

could be compensated by other gene copies. Moreover, after these sorting events the 

only genes on which a selection pressure is imposed code for elements influencing cell 

growth.  Therefore, after FACS, changes to the GFP ORF are not influenced by natural 

selection. In theory, the Kan / Neo ORF sequence should be constantly fixed by natural 

selection, because it is essential to the growth and survival of the cell in G418 media. 

However, as was shown during stable cell line generation, G418 selection was not 

sufficient for cell line selection. Either, cells had become resistant to G418 irrespective 

of plasmid copies or the resistance achieved by a proportion of cells could provide 

resistance to many of the remaining cells of the population. This could due to resistance 

protein secretion. Therefore, as long as there is plentiful supply of resistance protein 

within the population, cells can tolerate deleterious mutations.  

 

In summary, this study has shown that ~25% of the plasmid copies used in this study 

were mutated over long-term cell culture and that there was no evidence of mutation 

occurring before integration. Due to their low frequency, natural selection does not 

impact strongly on the prevalence or fixation of these mutations, which means they can 

reside anywhere along the length of the plasmid and result in non-synonymous changes 

more often than would be expected (~72% of the time). G and C residues were found to 

be mutated more frequently than A and T residues, with G.C à A.T transitions being 

predominant. This appears to be in line with mutation patterns that have been found to 

occur in other studies into mammalian cell mutation. The novel analysis platform used 

in this study adeptly identified mutations at a resolution beyond what is generally 



Chapter 5: Plasmid DNA Mutation Analysis 

	 176	

reported in NGS studies, using careful and logical elimination wherever possible. Due 

to the necessity for high resolution accuracy is sacrificed, despite this error elimination. 

However, the conclusions here were made using trends on the dataset as a whole, which 

adds a certain level of confidence to the findings. This study has confirmed the need for 

sequence variant screens in cell line development. Despite the success of this high-

resolution platform, it is far more practical in terms of cost and time to screen clonal cell 

line candidates, which need lower resolution sequencing technologies. However, this 

platform could find other avenues for application, such as checking the homogeneity of 

gene therapy DNA stocks or for a higher resolution analysis of cancer genetic 

heterogeneity. 

 

5.3.2. Future Work 

 

The DNA sequencing secondary analysis platform outlined in this chapter has been 

shown to effectively detect extremely rare mutations. However, there are experiments 

that could be carried out to further validate its efficacy. The calculations to rule out 

PCR-based error in this study showed that the mutation detected in the low and high 

genomic samples was genuine. However, a plasmid stock negative control, which has 

undergone PCR would more effectively quantify the exact level of PCR-based error that 

made it through the error filters put in place. Changes to the PCR process, such as the 

use of less PCR cycles or the use of a more high fidelity DNA polymerase, such as Q5 

polymerase (New England Biolabs, UK), would also help quantify this source of error 

more accurately. 

 

Further validation of this platform could be carried out through mutagenesis studies, 

whereby DNA mutations are deliberately induced to different extents, using techniques 

such as UV radiation or error-prone DNA polymerases. Different samples would have 

different levels of random mutation, which, in theory, should be quantified using this 

analysis platform. Moreover, a study could be conducted using a similar format to 

(Spencer et al., 2014), in which a DNA template is synthesised with a range of known 

mutations along its length in comparison to the non-mutated reference. Through 

dilution, samples are then made from these sequences, with varying proportions of the 

mutated version. This would offer a precise evaluation of platform accuracy. Although 
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this would not involve the discovery of unknown mutations, it would offer a more 

accurate insight into the top end of resolution that can be achieved using this platform.   

 

A mutation detection analysis of the dataset used in this study with the Pacific 

Bioscience variant caller would provide an accurate evaluation of the difference in 

resolution between the platform devised in this study and the standard platform used for 

SMRT sequencing. 

 

As discussed in this chapter, the experimental setup in this study may not have been 

sufficient to identify mutations that were caused as a result of DNA damage before 

plasmid integration into the host genome, because the DNA used was unreplicated and 

was subjected to DNA repair before sequencing. A future study could consist of 

purifying plasmid DNA from CHO cells as it was done in this chapter, but then 

transforming the DNA into E. coli DH5α cells for replication, which was shown to be 

relatively error-free in the sequencing of the plasmid stock sample. If multiple clones 

from this transformation were pooled together to prepare DNA for sequence then a large 

collection of these putative mutations could be detected. 

 

Finally, as was discussed in this chapter, it is difficult to discern whether an individual 

mutation discovered in this study is genuine or a result of sequencing or PCR-based 

error. To characterise genuine mutations, a number of clones or extremely diluted 

cultures could be generated from the working cell banks of the low and high generation 

stable GFP cell line samples. These clones / cultures would contain a much smaller 

number of plasmid versions compared to the whole cell population. Sequencing of the 

plasmid DNA derived from these cultures would lead to the identification of genuine 

mutations, because they are present at a much higher frequency. 
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Chapter 6 
 

Concluding Remarks 

 

This chapter will give a brief summary of the findings, conclusions and the impact of the 

work presented in this thesis. 

 

 

6.1. Chapter 3 – Genomic Instability 

 

Genetic instability is an inherent feature of CHO cells lines. The lack of evolutionary 

constraint within the cell culture environment leads to genetic drift within the CHO 

genome, whereby genomic sequences that do not directly influence growth 

characteristics are not heavily influenced by natural selection in terms of their 

consistency through generations of cell culture (Kim et al., 2011, Kimura, 1955, 

Kimura, 1979). Therefore allele frequencies will gradually change and the propagation 

of, potentially detelerious, genetic changes is more likely. This instability means that 

CHO cells can be moulded into cell factories with a range of desirable phenotypes, 

which is put to good use through evolution and engineering strategies in the generation 

of commercial cell lines (Sinacore et al., 2000, Prentice et al., 2007). However, this 

phenotype, whilst desirable for these evolutionary strategies, becomes problematic in 

the long-term cell culture of productive cell lines. Phenotypic drift causes these 

desirable cell lines to deviate from the phenotypes by which they were once selected. 

Indeed, this instability means that it is difficult to maintain consistent phenotypes for the 
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duration of the production process. Despite undergoing cloning procedures, cell 

heterogeneity an inherent feature of CHO cell lines, which often leads to a decline in 

productivity and concerns over product quality (Barnes et al., 2006, Kim et al., 2011, 

Ren et al., 2011, Davies et al., 2013). CHO cells have been said to have a mutator 

phenotype (Kim et al., 2011), which has been shown to be the case at the chromosome 

level (Yoshikawa et al., 2000, Derouazi et al., 2006), through recombinant gene copy 

loss (Kim et al., 2011), and at the base pair level through the appearance of sequence 

variants and a plethora of SNPs (Zhang et al., 2015, Lewis et al., 2013). If 

understanding of these genetic changes was further elucidated, then there could be 

potential for engineering strategies to generate more stable cell lines, such as to bolster 

proof reading capabilities or to select slower adapting cell lines in an attempt to select 

for genetic fidelity. On the other hand, instability may not be trait of cells in culture that 

is easy, or even possible, to eliminate. In this case, efficient screening tools to quickly 

identify unstable or error-containing cells lines may be able to eliminate candidate cell 

lines from production pipelines. In this chapter genetic instability was measured at the 

base pair level, via microsatellite analysis and at the chromosomal level via karyotype 

analysis.  

 

The microsatellite analysis showed the slow, progressive change in allele frequencies by 

genetic drift and allowed for the relatedness of cell lines to be established through 

microsatellite allele similarities and differences. There was an indication, but no 

conclusive evidence, of a physical change to microsatellite length through replication 

slippage. Therefore, it could not be concluded that this selection of microsatellites were 

able to be used as a successful marker for changes at the base pair level. There was no 

correlation between cell line genetic drift and changes in cell specific productivity. 

Microsatellites differed in their level of change, which shows that different genomic loci 

are more changeable than others. For microsatellite analysis to be validated as a useful 

marker and screening tool for base pair level genetic instability and drift, a greater 

number of microsatellites, spanning the whole genome, at a high resolution would need 

to be used. 

 

Karyotype analysis revealed that chromosomal instability is substantial, with changes in 

chromosome number and chromosome breakage / fusion events both contributing to 

this instability. Over long-term cell culture 70% of cell lines were shown to change in 
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karyotype, which included the generation of 18 chromosome types that were not seen in 

parental cell lines. Karyotype analysis is not quantitative, so we were unable to establish 

whether chromosomal instability correlated with observed changes to cell specific 

productivity. Some chromosomes or chromosomal regions, such as chromosome 1, 

remained unaltered for the duration of the study, which could be due to an evolutionary 

conservation effect. Perhaps targeted integration to these, stable, regions might lead to 

greater phenotypic stability in important production process attributes. Again, further 

study here may lead to evolution, engineering or screening / selection strategies to 

facilitate the use of more stable cell lines for production pipelines. 

 

6.2. Chapter 4 – Electroporation Optimisation 

 

Chapter 4 presented a complete optimisation of plasmid DNA delivery into CHOK1SV 

cells by electroporation. Electroporation is a key part of the bioprocess, because it 

marks the start point of the generation of a stably producing cell line. It is also used in 

bioprocess development, whereby new therapeutics are tested for performance attributes 

in transient production platforms (Jayapal et al., 2007, Wurm, 2004, Makrides, 1999). 

Therefore, techniques that deliver the ability to fine tune this process for the bespoke 

requirements of any given therapeutic production platform could be put to good use in 

an academic or industrial setting. The need for bespoke parameters become apparent 

when comparing the requirements of different stages of bioprocesses. For example, in 

the generation of a stable cell line an increase in plasmid copy numbers entering the cell 

could lead to an increased number of integration events, which in turn could lead to a 

greater probability of generating high producing cell lines from a cloning procedure.  

Moreover, with TGE, increasing the number of plasmid copies entering the cell will 

increase the level of plasmid copies capable of gene expression. However, during the 

SGE process, cells are allowed the time to recover from electroporation during 

recombinant cell selection and enrichment, whereas in transient platforms cells are 

required to achieve high culture densities and productivities immediately (Wurm, 2004, 

Rita Costa et al., 2010). Therefore, optimum TGE platforms will require higher levels of 

cell viability and growth post-electroporation, whereas a lag time in electroporation 

recovery might be a worthwhile sacrifice in SGE platforms. Moreover, cells are 

typically transfected with linear DNA for the generation of stable cell lines, whereas 

TGE is carried out with circular plasmid. Linear DNA is more difficult to transfect, and 
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so electroporation parameters will likely differ between the two platforms (Schmidt et 

al., 2004).  

 

When optimising a bioprocess for a new therapeutic candidate, in many cases a number 

of variables will differ compared to other therapeutics, such as vector elements and size, 

cell type, product expression and product impact on growth and viability (Wurm, 2004, 

Jordan et al., 2007, Jordan et al., 2008, Kim et al., 2011). Therefore, an electroporation 

optimisation platform that enables the quick and easy assessment of protocol 

permutations will allow for the easy implementation of bespoke conditions for each new 

candidate. This study clearly provides such a platform. Using a simple DoE strategy, a 

range of parameters (310 – 320 V, 25-28 ms, exponential day time constant protocol) 

resulting in positive range of transfection response activity, was discovered for the 

phCMV C-GFP plasmid being used.  After this range was tested experimentally, one 

parameter setting was clearly seen to offer the best response (320-26). These conditions 

resulted in an improvement of 17% transfection efficiency, which was achieved without 

greatly sacrificing on the health of the transfected cells. These optimised conditions 

were shown to be successful in chapter 5 when generating a stable cell line for DNA 

sequencing analysis. Not only were conditions improved, but a DoE analysis allowed 

for the interactive nature of the different electroporation parameters to be identified. 

Indeed, field strength, pulse length and DNA load were all found to interact in their 

effect on the transfection response. Moreover, the relationship between transfection 

efficiency and cell viability was reasonably well defined, to the extent that cell viability 

alone was able to successfully predict a design space that would yield a high level of 

gene expression. If this work was to be taken further, whereby a number of different 

protein products, cell types and DNA vectors were used then, not only would the 

relationships discussed in this study be more acutely understood, but a certain level of 

predictability may be possible for the optimisation of future platforms. For example, the 

optimisation process for a new therapeutic gene, contained within a well defined vector 

of a particular size, being transected into a well characterised cell type could be started 

within a much narrower range of electroporation parameters, because a model-based 

information repository could accurately provide the predicted parameter range that 

would yield positive results. Indeed, this narrow range of parameters may only need to 

be assessed using a cell viability output, because the relationship between cell viability 

and gene expression could be characterised to the extent that it is completely predictive. 
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A scenario such as this would lead to a high-throughput and cost-effective platform for 

electroporation optimisation. 

 

6.3 Chapter 5 – Recombinant DNA Sequence Analysis 

 

Regulatory bodies require that the therapeutics produced by bioprocess platforms are of 

a certain quality. Therefore, product variants, such as aggregates, charge variants, 

glycosylation variants and sequence variants must be reduced to minimal levels, 

because of concerns over product safety and efficacy (Zhang et al., 2015, Ren et al., 

2011, Zhu, 2012). As discussed in chapter 4, genetic instability is a regularly observed 

phenomenon in CHO cells, and this is seen to manifest in point mutations. These point 

mutations have been shown to occur in recombinant DNA (Zhang et al., 2015) and in 

CHO genomic DNA, through the appearance of SNPs (Lewis et al., 2013). Non-

synonymous point mutations in recombinant DNA cause sequence variants, which 

result in unwanted heterogeneous protein products. Mostly, these sequence variants 

have been identified at the protein level, and traced back to DNA sequence changes 

(Zeck et al., 2012, Victoria et al., 2010). Zhang et al. (2015) used NGS to identify DNA 

point mutations without prior knowledge of protein sequence changes, but this was only 

carried out in clonal or diluted cell populations. Therefore, only a small range of 

mutations were identified, and so detailed information on mutation position, type and 

raw frequency is lacking. The reported resolution of NGS does not allow for analysis on 

non-diluted or non-clonal cell populations, because mutations need to be at a certain 

frequency within a DNA sample to be detected (Spencer et al., 2014, Dilernia et al., 

2015).   

 

In this study SMRT sequencing was used with an altered analysis platform, in which 

high-coverage CCS reads were used in order to generate information on point mutations 

from individual molecules. Various filtering strategies were employed to eliminate 

error-prone ROIs and individual nucleotide reads. One point mutation, a C à T 

transition in the bacterial origin of replication, was found to be present at high levels in 

all samples, which was presumed to have been present in the initial plasmid stock 

received from the manufacturer, or was a result of a point mutation occuring in an early 

generation of bacterial cloning. Other than this mutation, it was concluded that plasmid 

stocks showed no substantial evidence of mutation. The low frequency changes 
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observed in the plasmid stock sample were used as a base level of error for this 

sequencing analysis platform. There was no evidence of mutation in samples derived 

from transfected, non-integrated, plasmid DNA. However, further investigation might 

reveal that DNA is damaged within this pre-integration period, but converted into a 

mutation upon DNA replication, and so would not be called as a mutation in the 

experimental platform used here. Other studies have shown that point mutation of 

plasmid DNA within this period does occur in mammalian cells (Hauser et al., 1987, 

Lebkowski et al., 1984), so this might be a worthwhile avenue for research. A 

substantial level of low-frequency point mutation was covered after sequencing 

recombinant DNA, sampled from two time points in long-term cell culture. On average, 

25% of 5 kb plasmid molecules were found to contain at least one point mutation. 

Mutations were found to be randomly distributed along the length of the plasmid 

sequence, showing no bias towards coding or non-coding localisation.  85% of point 

mutations occurred with G and C nucleotides, with G.C à A.T transitions being the 

predominant type of change observed. This bias is in line with mutation frequency 

observations of mammalian cell DNA replication (Dejong et al., 1988, Gojobori et al., 

1982). On average, within the two plasmid open reading frames, Kan / Neo and GFP, 

72.25% of mutations were non-synonymous. This proportion of non-synonymous 

mutations is in line with the raw probability of a non-synonymous mutation occurring, 

rather than with the proportion of non-synonymous mutations found in nature (Lewis et 

al., 2013). The results presented here indicate that natural selection does not greatly 

impact upon these low-frequency point mutations, but rather that their existence and 

prevalence is random.  

 

Overall, this chapter showed the preliminary validation of a novel SMRT sequencing 

secondary analysis platform in the identification of low-frequency mutations from 

individual DNA molecules. This validation could be built upon with a small set of 

quantitative controls. Moreover, protein sequence variant-causing DNA point mutations 

were characterised at a frequency and resolution that, to our knowledge, has not been 

seen previously. 
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6.4 Future Directions for Genetic Instability 

 

As has been discussed throughout this thesis, genetic instability of CHO cells poses a 

threat to cell line development processes and biopharmaceutical production. This 

instability causes phenotypic drift in cell lines that have been carefully selected for 

attributes suitable for bioprocesses, such as fast growth rates and high productivity. 

Instability, gives rise to heterogeneous cell populations, which is clearly an undesirable 

trait for a ‘clonal’ cell line. One form of phenotypic drift commonly encountered is a 

decline in cell productivity over long-term cell culture (Wurm, 2004). This has been 

shown to be due to epigenetic changes as well as genetic changes, such as changes in 

recombinant gene copy number (Kim et al., 2011). The seemingly random nature of a 

cell line’s disposition to decline in productivity makes it extremely difficult, if not 

impossible, to predict. Moreover, it is not the case that genetic instability can be traced 

back to a specific point mutation in DNA replication / repair machinery or a common 

chromosome breakage, but rather genetic instability seems to be an almost inevitable 

global attribute of an immortalized cell line and so prediction or elimination of genetic 

instability is not straightforward. This is because an immortalized cell line growing in 

culture is almost in a state of evolutionary freefall, whereby the only genes to be 

monitored by natural selection are those which contribute to growth and cell division. 

Other genes, which do not directly impact upon growth and division, are neutral, or at 

least nearly neutral, in the context of evolution and so are relatively free to change. 

Therefore, continuous cell culture facilitates an environment in which DNA replication 

becomes a process that is not constrained to high standards of fidelity and so over time 

DNA replication becomes an error-prone process and genetic change is commonplace 

(Kimura, 1955, Kimura, 1979). Conceivably, this process is quickened by cell line 

evolution and engineering strategies guide cells towards desirable attributes, such as 

growth, productivity, growth in serum-free media, and adaptation to growth in a late-

stage culture environment (Sinacore et al., 2000; Prentice et al., 2007). This is because 

genetic instability is likely to also be a heterogeneous phenotype and so when a 

particular cell is selected for a desirable trait it is because that cell has changed 

genetically to present this phenotype. Therefore, genetic change is being selected for 

and so the process of selection is likely to increase the likelihood of a genetic instability 

phenotype. It is perhaps unsurprising that these types of cells would lose the ability to 

produce recombinant protein, because these cells are simply adapting towards a more 
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desirable phenotype, such that they are able to thrive and grow in a given environment 

without the metabolic burden of producing a complex protein, such as a Mab (Kim et 

al., 2011). 

 

The karyotype analysis in chapter 3 and sequencing analysis in chapter 5 illustrate the 

high frequency and randomness of this genetic instability phenotype at the 

chromosomal and sequence level respectively. It seems unfeasible that such a global 

and consistent phenomenon could be targeted by any direct genetic engineering strategy 

that might attempt to reconstitute a cells ability to accurately segregate chromosomes 

upon cell division, limit chromosome form changes or increase the fidelity of DNA 

replication, because it is likely to be a phenotype that has a different origin in any given 

case and is likely to persist regardless of any tinkering to gene content. It seems far 

more pertinent to try and development genetically stable cell populations through 

selection strategies, because selection, as opposed to engineering, is likely to draw upon 

a whole-cell-based solution. Of course, the ability to select for a pool of genetically 

stable cells would depend upon a set of robust selection markers for genetic stability. 

One such marker, as proven in chapter 3, is cell karyotyping (Derouazi et al., 2006). 

Selection for cells that are less changeable in their karyotype could be a method for 

generating cell populations better able to maintain a homogenous cell number and that 

are less subject to changes in chromosome form. As well as a method for generating 

novel, genetically stable cell lines, periodic karyotype screens during cell line 

development could serve as a quality control step to prevent or detect the onset of 

chromosomal instability. Chapter 5 showed that NGS can serve as a selection marker 

for the fidelity of DNA replication and DNA damage repair. Perhaps a strategy 

involving the selection of cell populations containing fewer of the low frequency 

mutations detected in this study would serve to generate cell populations with an 

improved accuracy in DNA replication. Moreover, sequencing throughout cell line 

development could serve as a useful supplementary tool for protein sequencing methods 

to ensure that product quality is maintained. Despite progress being made in enabling 

high-throughput sequencing of recombinant DNA at a cheaper price (Zhang et al., 

2015), NGS is an expensive and relatively time consuming process and so development 

of cheaper tools, using markers that could stand as proxy for point mutation would 

make this a much more feasible ambition. Chapter 3 attempted to do this using 

microsatellite analysis, but was unable to prove its worth as a marker for genomic 
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instability. However, as mentioned in section 3.3.4 further investigation with a larger 

number of microsatellites, or microsatellites within a recombinant plasmid may be more 

informative.  

 

As mentioned above, it is could be the case that genetic instability within CHO cell 

lines is an inevitable bi-product of continuous cell culture and so perhaps attempts to 

generate cell lines that have a higher level of inherent stability is a futile exercise. 

Therefore, perhaps a more promising direction would be to accept the unstable 

landscape of the CHO genome and try to work around it. For example, the karyotype 

analysis in chapter 3 found that chromosome 1 was unchanged throughout the study and 

it was postulated that this likely to be because it contains essential genes. There is 

progress being made into targeted integration of plasmid DNA into genomic sites that 

are more likely to facilitate high gene expression (Wurm, 2004). Perhaps attempts to 

target genetically stable sites would lead to the development of cell lines more likely to 

maintain consistent productivity over long-term cell culture. Strategies like this, in 

combination with regular quality control measures, such as the karyotype and sequence 

screens mentioned above, would help to decrease genomic instability manifesting in 

changes to product yields or quality. 
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Table A1: Sample Volume Transfection Efficiency Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS. 

 

 

 

 

 

 

 

 

 

Table A2: Sample volume Transfection Efficiency ANOVA table 

Table of ANOVA output statistical terms and values. 

 

 

 

 

 

 

 

 

 

 

 

Figure A1: Sample Volume Transfection Efficiency Normal Plot of Residuals 
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Table A3: Sample Volume Cell Viability Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 

 

 

 

 

 

 

 

 

Table A4: Sample volume Cell Viability ANOVA table 

Table of ANOVA output statistical terms and values. 

 

 

 

 

 

 

 

 

 

 

Figure A2: Sample Volume Cell Viability Normal Plot of Residuals 
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Table A5: Exponential Decay: Wide – Transfection Efficiency Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table A6: Exponential Decay: Wide – Transfection Efficiency ANOVA table 

Table of ANOVA output statistical terms and values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A3: Exponential decay: Wide – Transfection Efficiency Normal Plot of 

Residuals 
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Figure A4. Exponential Decay: Wide – Transfection Efficiency Response Surface 
Response surfaces of the transfection efficiency response to changes in field strength 
and pulse length at different levels of DNA load: Low Factorial (A), Center point (B) 
and Upper Factorial (C). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A) DNA load: 41.34 ug/ml B) DNA load: 100.5 ug/ml 

C) DNA load: 159.66 ug/ml 
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Table A7: Exponential Decay: Wide – Median Fluorescence Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Table A8: Exponential Decay: Wide – Median Fluorescence ANOVA table 

Table of ANOVA output statistical terms and values. 
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Figure A5. Exponential Decay: Wide – Median Fluorescence Data Manipulation 
The figure shows the identification of non-normality (A) and the outlier responsible (B) 
as highlighted by a data point falling outside of a threshold level difference (red line). 
The Box-Cox plot (C) highlights a recommended transformation (green line). After 
ignoring the outlier and transformation the data residuals are normally distributed (D). 
 

A B 
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Figure A6. Exponential Decay: Wide – Median Fluorescence Response Surface 
Response surfaces of the median fluorescence response to changes in field strength and 
pulse length at different levels of DNA load: Low Factorial (A), Center point (B) and 
Upper Factorial (C). 
 

A) DNA load: 41.34 ug/ml B) DNA load: 100.5 ug/ml 

C) DNA load: 159.66 ug/ml 
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Table A9: Exponential Decay: Wide – Cell Viability Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A10: Exponential Decay: Wide – Cell Viability ANOVA table 

Table of ANOVA output statistical terms and values. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure A7: Exponential decay: Wide – Cell Viability Normal Plot of Residuals 
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Figure A8. Exponential Decay: Wide – Cell Viability Response Surface 
Response surfaces of the cell viability response to changes in field strength and pulse 
length at different levels of DNA load: Low Factorial (A), Center point (B) and Upper 
Factorial (C).  
 

A) DNA load: 41.34 ug/ml B) DNA load: 100.5 ug/ml 

C) DNA load: 159.66 ug/ml 
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Table A11: Exponential Decay: Wide – ACD Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A12: Exponential Decay: Wide – ACD ANOVA table 

Table of ANOVA output statistical terms and values. 

 
 
 
 

 
 
 
 
 
 
 
 
 

  
Figure A9: Exponential decay: Wide – ACD Normal Plot of Residuals 
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Figure A10. Exponential Decay: Wide – ACD Response Surface 
Response surfaces of the ACD response to changes in field strength and pulse length at 
different levels of DNA load: Low Factorial (A), Center point (B) and Upper Factorial 
(C).  

 

C) DNA load: 159.66 ug/ml 

B) DNA load: 100.5 ug/ml A) DNA load: 41.34 ug/ml 
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Table A13: Square Wave: Wide – Transfection Efficiency Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A14: Square Wave: Wide – Transfection Efficiency ANOVA table 

Table of ANOVA output statistical terms and values. 

 

 
 
 
 
 
 
 
 
 
 
Figure A11: Square Wave: Wide - Transfection Efficiency Normal Plot of 
Residuals 
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Figure A12. Square Wave: Wide – Transfection Efficiency Response Surface 
Response surfaces of the transfection efficiency response to changes in field strength, 
pulse length, at different levels of DNA load (A&B, C&D, E&F) and with one (A,C,E) 
or two (B,D,F) pulses. 
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Table A15: Square Wave: Wide – Cell Viability Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A16: Square Wave: Wide – Cell Viability ANOVA table 

Table of ANOVA output statistical terms and values. 
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Figure A13. Square Wave: Wide – Cell Viability Data Manipulation 
The figure shows the identification of non-normality (A) and the outlier responsible (B) 
as highlighted by a data point falling outside of a threshold level of residual (red line). 
The Box-Cox plot (C) highlights a recommended transformation (green line). After 
ignoring the outlier and the power transformation the data is normal (D). 

A B 

C D 
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Figure A14. Square Wave: Wide – Cell Viability Response Surface 
Response surfaces of the cell viability response to changes in field strength, pulse 
length, at different levels of DNA load (A&B, C&D, E&F) and with one (A,C,E) or two 
(B,D,F) pulses. Transformation had to be carried out manually, so the Y-axis is the 
transformed data scale.  
 

2 Pulses	 1 Pulse	 
DNA load: 41.34 ug/ml 

 DNA load: 100.5 ug/ml 

 DNA load: 159.66 ug/ml 
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Table A17: Exponential Decay: Narrow – Transfection Efficiency Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table A18: Exponential Decay: Narrow – Transfection Efficiency ANOVA table 

Table of ANOVA output statistical terms and values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A15: Exponential Decay: Narrow – Transfection Efficiency Normal Plot of 

Residuals 
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Table A19: Exponential Decay: Narrow – Median Fluorescence Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A20: Exponential Decay: Narrow – Median Fluorescence ANOVA table 

Table of ANOVA output statistical terms and values. 
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Figure A16. Exponential Decay: Narrow – Median Fluorescence Data 
Manipulation 
The figure shows the identification of non-normality (A) and the outlier responsible (B) 
as highlighted by a data point falling outside of a threshold level of residual (red line). 
The Box-Cox plot (C) highlights a recommended transformation (green line). After 
ignoring the outlier and transformation the data is normal (D). 
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Table A21: Exponential Decay: Narrow – Cell Viability Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table A22: Exponential Decay: Narrow – Cell Viability ANOVA table 

Table of ANOVA output statistical terms and values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A17: Exponential Decay: Narrow – Cell Viability Normal Plot of Residuals 
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Table A23: Exponential Decay: Narrow – ACD Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 
 

 
 
 
 
 
 
 
 
 
 
Table A24: Exponential Decay: Narrow – ACD ANOVA table 

Table of ANOVA output statistical terms and values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A18: Exponential Decay: Narrow – ACD Normal Plot of Residuals 
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Table A25: Square Wave: Narrow – Transfection Efficiency Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table A26: Square Wave: Narrow – Transfection Efficiency ANOVA table 

Table of ANOVA output statistical terms and values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A19: Square Wave: Narrow – Transfection Efficiency Normal Plot of 

Residuals 
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Table A27: Square Wave: Narrow – Median Fluorescence Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
Table A28: Square Wave: Narrow – Median Fluorescence ANOVA table 

Table of ANOVA output statistical terms and values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A20: Square Wave: Narrow – Median Fluorescence Normal Plot of 

Residuals 
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Table A29: Square Wave: Narrow – Cell Viability Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table A30: Square Wave: Narrow – Cell Viability ANOVA table 

Table of ANOVA output statistical terms and values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A21: Square Wave: Narrow – Cell Viability Normal Plot of Residuals 
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Table A31: Square Wave: Narrow – ACD Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table A32: Square Wave: Narrow – ACD ANOVA table 

Table of ANOVA output statistical terms and values. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A22: Square Wave: Narrow – ACD Normal Plot of Residuals 
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Table A33: Exponential Decay: Narrow 2 – Transfection Efficiency Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table A34: Exponential Decay: Narrow 2 – Transfection Efficiency ANOVA table 

Table of ANOVA output statistical terms and values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A23: Exponential Decay: Narrow 2 – Transfection Efficiency Normal Plot 

of Residuals 
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Table A35: Exponential Decay: Narrow 2 – Median Fluorescence Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS. 

 

 

 
 
 
 
 
 
 
 
 
 

Table A36: Exponential Decay: Narrow 2 – Median Fluorescence ANOVA table 

Table of ANOVA output statistical terms and values. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure A24: Exponential Decay: Narrow 2 – Median Fluorescence Normal Plot of 

Residuals 
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Table A37: Exponential Decay: Narrow 2 – Cell Viability Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table A38: Exponential Decay: Narrow 2 – Cell Viability ANOVA table 

Table of ANOVA output statistical terms and values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure A25: Exponential Decay: Narrow 2 – Cell Viability Normal Plot of 

Residuals 
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Table A39: Exponential Decay: Narrow 2 – ACD Fit Summary 

Showing suggested model fit summary data for A) SMSS, B) Lack of fit and C) MSS. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table A40: Exponential Decay: Narrow 2 – ACD ANOVA table 

Table of ANOVA output statistical terms and values.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A26: Exponential Decay: Narrow 2 – ACD Normal Plot of Residuals 
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MS Passage Allele W-statistic P-value Normally_Distributed 
BAT25 High 1 0.895646285 0.034199133 FALSE 

 GNAT High 1 0.955992723 0.467212562 TRUE 
 GT23 High 1 0.971771309 0.588696645 TRUE 
 MS.10.1 High 1 0.936382757 0.204689835 TRUE 
 MS.11.1 High 1 0.899093069 0.055405989 TRUE 
 MS.21.1 High 1 0.994787502 0.999987622 TRUE 
 BAT25 Low 1 0.96528812 0.653911998 TRUE 
 GNAT Low 1 0.980223251 0.936951501 TRUE 
 GT23 Low 1 0.95515801 0.2318533 TRUE 
 MS.10.1 Low 1 0.897088704 0.036380816 FALSE 
 MS.11.1 Low 1 0.984519137 0.984522183 TRUE 
 MS.21.1 Low 1 0.978412725 0.91199442 TRUE 
 BAT25 High 2 0.997320982 0.999999986 TRUE 
 GNAT High 2 0.953212688 0.418500308 TRUE 
 GT23 High 2 0.927206732 0.041412929 FALSE 
 MS.10.1 High 2 0.94470569 0.293768813 TRUE 
 MS.11.1 High 2 0.985465071 0.98880964 TRUE 
 MS.21.1 High 2 0.968981519 0.733234678 TRUE 
 BAT25 Low 2 0.944752948 0.294362489 TRUE 
 GNAT Low 2 0.948800272 0.349245936 TRUE 
 GT23 Low 2 0.976101988 0.715171958 TRUE 
 MS.10.1 Low 2 0.952588214 0.408093338 TRUE 
 MS.11.1 Low 2 0.901202793 0.060299815 TRUE 
 MS.21.1 Low 2 0.949498502 0.359541652 TRUE 
 BAT25 High 3 0.973529861 0.82695169 TRUE 
 GNAT High 3 0.961268927 0.569501156 TRUE 
 GT23 High 3 0.986332045 0.957634808 TRUE 
 MS.10.1 High 3 0.761632736 0.000244157 FALSE 
 MS.11.1 High 3 0.942050863 0.314051686 TRUE 
 MS.21.1 High 3 0.97229543 0.802428827 TRUE 
 BAT25 Low 3 0.949802048 0.364094987 TRUE 
 GNAT Low 3 0.971701901 0.790342261 TRUE 
 GT23 Low 3 0.947660783 0.1463017 TRUE 
 MS.10.1 Low 3 0.990947843 0.999047513 TRUE 
 MS.11.1 Low 3 0.989889003 0.998695 TRUE 
 MS.21.1 Low 3 0.97305754 0.817676017 TRUE 
 BAT25 High 4 0.924725022 0.122193565 TRUE 
 GT23 High 4 0.980311649 0.833781078 TRUE 
 MS.10.1 High 4 0.883302838 0.020295718 FALSE 
 MS.11.1 High 4 0.991767305 0.999688775 TRUE 
 BAT25 Low 4 0.940775101 0.247997664 TRUE 
 GT23 Low 4 0.940063733 0.091318917 TRUE 
 MS.10.1 Low 4 0.933929475 0.183729819 TRUE 
 MS.11.1 Low 4 0.981347061 0.962832437 TRUE 
 GT23 High 5 0.969105742 0.515004932 TRUE 
 MS.11.1 High 5 0.980370064 0.953750386 TRUE 
 GT23 Low 5 0.949635713 0.165302526 TRUE 
 MS.11.1 Low 5 0.971079941 0.817737857 TRUE 
 GT23 High 6 0.978254395 0.77748186 TRUE 
 MS.11.1 High 6 0.988504169 0.997050654 TRUE 
 GT23 Low 6 0.92262145 0.031384188 FALSE 
 MS.11.1 Low 6 0.956221066 0.530639633 TRUE 
  

Table A41: Shapiro Wilk Test for Normality 1 
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MS Passage Allele W-statistic P-value Normally_Distributed 
BAT25 High 1 0.914534023 0.077807028 TRUE 

 GNAT High 1 0.955992723 0.467212562 TRUE 
 GT23 High 1 0.971771309 0.588696645 TRUE 
 MS.10.1 High 1 0.940145989 0.241308698 TRUE 
 MS.11.1 High 1 0.899093069 0.055405989 TRUE 
 MS.21.1 High 1 0.994787502 0.999987622 TRUE 
 BAT25 Low 1 0.96528812 0.653911998 TRUE 
 GNAT Low 1 0.980223251 0.936951501 TRUE 
 GT23 Low 1 0.95515801 0.2318533 TRUE 
 MS.10.1 Low 1 0.990640822 0.993910437 TRUE 
 MS.11.1 Low 1 0.984519137 0.984522183 TRUE 
 MS.21.1 Low 1 0.978412725 0.91199442 TRUE 
 BAT25 High 2 0.997320982 0.999999986 TRUE 
 GNAT High 2 0.953212688 0.418500308 TRUE 
 GT23 High 2 0.96471322 0.641622583 TRUE 
 MS.10.1 High 2 0.937627722 0.216181175 TRUE 
 MS.11.1 High 2 0.985465071 0.98880964 TRUE 
 MS.21.1 High 2 0.968981519 0.733234678 TRUE 
 BAT25 Low 2 0.944752948 0.294362489 TRUE 
 GNAT Low 2 0.948800272 0.349245936 TRUE 
 GT23 Low 2 0.976101988 0.715171958 TRUE 
 MS.10.1 Low 2 0.952588214 0.408093338 TRUE 
 MS.11.1 Low 2 0.901202793 0.060299815 TRUE 
 MS.21.1 Low 2 0.949498502 0.359541652 TRUE 
 BAT25 High 3 0.973529861 0.82695169 TRUE 
 GNAT High 3 0.961268927 0.569501156 TRUE 
 GT23 High 3 0.986332045 0.957634808 TRUE 
 MS.10.1 High 3 0.944002359 0.285058017 TRUE 
 MS.11.1 High 3 0.942050863 0.314051686 TRUE 
 MS.21.1 High 3 0.97229543 0.802428827 TRUE 
 BAT25 Low 3 0.949802048 0.364094987 TRUE 
 GNAT Low 3 0.971701901 0.790342261 TRUE 
 GT23 Low 3 0.947660783 0.1463017 TRUE 
 MS.10.1 Low 3 0.990947843 0.999047513 TRUE 
 MS.11.1 Low 3 0.989889003 0.998695 TRUE 
 MS.21.1 Low 3 0.97305754 0.817676017 TRUE 
 BAT25 High 4 0.924725022 0.122193565 TRUE 
 GT23 High 4 0.980311649 0.833781078 TRUE 
 MS.10.1 High 4 0.892273963 0.029615721 FALSE 
 MS.11.1 High 4 0.991767305 0.999688775 TRUE 
 BAT25 Low 4 0.940775101 0.247997664 TRUE 
 GT23 Low 4 0.940063733 0.091318917 TRUE 
 MS.10.1 Low 4 0.933929475 0.183729819 TRUE 
 MS.11.1 Low 4 0.981347061 0.962832437 TRUE 
 GT23 High 5 0.969105742 0.515004932 TRUE 
 MS.11.1 High 5 0.980370064 0.953750386 TRUE 
 GT23 Low 5 0.949635713 0.165302526 TRUE 
 MS.11.1 Low 5 0.971079941 0.817737857 TRUE 
 GT23 High 6 0.978254395 0.77748186 TRUE 
 MS.11.1 High 6 0.988504169 0.997050654 TRUE 
 GT23 Low 6 0.95041019 0.173390193 TRUE 
 MS.11.1 Low 6 0.956221066 0.530639633 TRUE 
  

Table A42: Shapiro Wilk Test for Normality 2 



 

	

 

Figure A27: GNAT2 Box Plots for Allele Percentage 



 

	

 

Figure A28: 10.1 Box Plots for Allele Percentage 



 

	

 

Figure A29: 21.1 Box Plots for Allele Percentage 



 

	

 

Figure A30: 11.1 Box Plots for Allele Percentage 



 

	

 

Figure A31: GT-23 Box Plots for Allele Percentage 



 

	

 

Figure A32: BAT25 Box Plots for Allele Percentage
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Microsatellite Allele 
 Variance 
Ratio P-value 

BAT25 1 1.053519542 0.910714013 
GNAT 1 1.168340239 0.738009019 
GT23 1 2.180148051 0.039847612 
MS.10.1 1 1.794863861 0.211487385 
MS.11.1 1 2.221055888 0.109459607 
MS.21.1 1 1.13393719 0.78694436 
BAT25 2 1.345976545 0.523510817 
GNAT 2 1.216823155 0.673184772 
GT23 2 1.456597188 0.316784346 
MS.10.1 2 2.089612921 0.116870231 
MS.11.1 2 2.481139237 0.069350219 
MS.21.1 2 0.983106051 0.970765138 
BAT25 3 1.178428529 0.724121937 
GNAT 3 1.203642153 0.690330612 
GT23 3 2.060195742 0.056227015 
MS.10.1 3 0.358176031 0.030520912 
MS.11.1 3 1.519576052 0.396990224 
MS.21.1 3 0.984898839 0.973890062 
BAT25 4 1.192579588 0.704995678 
GT23 4 1.610278191 0.205559438 
MS.10.1 4 1.007585909 0.987030567 
MS.11.1 4 1.091005427 0.859576507 
GT23 5 1.47114654 0.304239528 
MS.11.1 5 1.589758002 0.348423574 
GT23 6 1.692691268 0.162388698 
MS.11.1 6 2.062425191 0.145617444 

 
Table A43: F Test for Variance Comparison 
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Microsatellite Allele Cluster Variance Ratio P-value 
BAT25 1 B 6.383817457 0.010896608 
GNAT 1 B 3.792108002 0.059966717 
MS.11.1 1 B 0.055724458 0.006565282 
MS.21.1 1 B 3.526929437 0.192822575 
BAT25 2 B 1.960644011 0.330298003 
GNAT 2 B 0.816529564 0.767626887 
MS.11.1 2 B 0.034675437 0.00215426 
MS.21.1 2 B 0.437317369 0.385135243 
BAT25 3 B 1.629828318 0.478147605 
GNAT 3 B 0.959709717 0.952157213 
MS.11.1 3 B 0.028750666 0.001376396 
MS.21.1 3 B 0.200640004 0.102565016 
BAT25 4 B 7.278209634 0.006822434 
MS.11.1 4 B 0.03878704 0.002810799 
MS.11.1 5 B 0.061016215 0.008091691 
MS.11.1 6 B 0.02484157 0.000968192 
BAT25 1 A 3.02136691 0.115060971 
GNAT 1 A 0.300187716 0.087627839 
GT23 1 A 2.180148051 0.039847612 
MS.10.1 1 A 1.794863861 0.211487385 
MS.11.1 1 A 6.04734176 0.005890824 
MS.21.1 1 A 5.009211792 0.006584751 
BAT25 2 A 0.949020826 0.939151236 
GNAT 2 A 0.298619757 0.086328269 
GT23 2 A 1.456597188 0.316784346 
MS.10.1 2 A 2.089612921 0.116870231 
MS.11.1 2 A 1.183059249 0.785348098 
MS.21.1 2 A 1.881562855 0.267458264 
BAT25 3 A 0.896757427 0.873710087 
GNAT 3 A 0.247367721 0.049372885 
GT23 3 A 2.060195742 0.056227015 
MS.10.1 3 A 0.358176031 0.030520912 
MS.11.1 3 A 0.371301268 0.115100147 
MS.21.1 3 A 1.7198411 0.340459352 
BAT25 4 A 2.63592155 0.164966524 
GT23 4 A 1.610278191 0.205559438 
MS.10.1 4 A 1.007585909 0.987030567 
MS.11.1 4 A 0.868286166 0.818976664 
GT23 5 A 1.47114654 0.304239528 
MS.11.1 5 A 0.506560007 0.2746497 
GT23 6 A 1.692691268 0.162388698 
MS.11.1 6 A 3.32393671 0.058192121 

 
Table A44: F Test for Variance Comparison by Cluster 
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Microsatellite	 Cell.line	 Allele	 P	Value	
BAT25	 2	 1	 0.012674149	
BAT25	 2	 2	 0.058691898	
GT23	 2	 4	 0.012387279	
GT23	 2	 5	 0.072504019	
GNAT	 3	 3	 0.074524779	
MS.21.1	 3	 2	 0.099746573	
MS.21.1	 3	 3	 0.07776738	
GNAT	 6	 1	 0.023002864	
GNAT	 6	 2	 0.023002864	
GNAT	 6	 3	 0.023002864	
GNAT	 7	 2	 0.083405626	
GT23	 9	 3	 0.072477286	
GT23	 9	 6	 0.072477286	
MS.11.1	 9	 1	 0.056022967	
MS.11.1	 9	 2	 0.056022967	
MS.11.1	 9	 3	 0.056022967	
MS.11.1	 9	 4	 0.040308138	
MS.11.1	 9	 5	 0.056022967	
MS.11.1	 9	 6	 0.04256647	
MS.11.1	 10	 6	 0.057723343	

 
Table A45: TTEST Results (p < 0.1) 
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Figure A33: Parental Cell Line Karyotype 
Karyotype: 
19: 1,+1,2,4,5,8,9, der(X), +der(4), der(6), der(7), +der(8),+z13,+z4, +z8, +z2, +Mar1, 
+Mar2, +Mar3. 
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Table A46: List of Karyotypes. 

Table containing all the karyotypes seen in the investigation and which cell line / 

generation they were in. The ‘karyotype’ column presents chromosomes that differ from 

wild type hamster. In cases where there are subpopulations of a cell line with differing 

karyotypes, both are listed with a ‘/’ to separate them. Numbers at the start of each 

karyotype refer to the number of chromosomes there are. Numbers in square brackets 

show how many cells had a particular karyotype. The ‘karyotype change as compared to 

parental line’ column shows how cell lines differed from the standard CHO karyotype. 

The ‘karyotype change from late to early’ column shows differences between early and 

late generation cell lines. 
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Figure A34: Example Heavily Mutated ROI Region 
When ROIs were found to contain many mismatches, generally these matches were 
found to be within error-prone regions, containing both mismatches and indels. It was 
assumed that this phenomenon was likely to be due to sequencing error in a given ZMW 
and so a threshold filter was imposed, whereby ROIs with >3 mismatches were 
eliminated from analysis.  
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Figure A35: R scripts for the SMRT secondary analysis platform. # precedes 
explanatory information or acts to split up separate script phases. Red script 
refers to file names or directory names unique to this study and should be changed 
when using a different computer or file name. 
 
 
 
Figure A35a: The following R script is used to convert BLASR Human readable 
format output into a useable CSV file containing information regarding query 
sequence, matches, target sequence, ROI name and positional information. 
###################################################################### 
###################################################################### 
# This Script converts BLASR output into readable csv file 
# Inputs: 1) CSV file the raw output from BLASR with header limited to Query, 
QueryRange, TargetRange 
# Output: 1) CSV named in input 2 that contains the query header information and 
concatonated  
# sequences for target query and match. 
###################################################################### 
###################################################################### 
 
###################################################################### 
# Set working directory and clear the working directory and load required packages. 
setwd("/Users/josephcartwright/Google Drive/shared folder-JLongworth & 
JCartwright/R scripts") 
rm (list=ls()) 
###################################################################### 
 
###################################################################### 
# Load in inputs and set input variables 
data=read.csv("BLASR CSVs/High_20pass.csv",head=F) 
output_name="processed_data/New CSVs/new_High_20_800_2.csv" 
###################################################################### 
 
###################################################################### 
#Set some empty variables and counting variables used in out for loop 
Query_list=c() 
QueryRange_list=c() 
TargetRange_list=c() 
Query_seq_list=c() 
Match_seq_list=c() 
Target_seq_list=c() 
Full_Query_seq_list=c() 
Full_Match_seq_list=c() 
Full_Target_seq_list=c() 
l=1 
Query_count=0 
Current_Query_count=0   
###################################################################### 
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###################################################################### 
# Initiate for loop taking data line by line. Assuming the start of a sequence entry extract 
the header information into variable lists. Skipping though the next two header lines 
with an empty else if recognise the start of the sequence section by setting query count 
being out of sync and set l to 1 to identify the start of the three lines of sequence match 
information. 
for(i in 1:nrow(data)){ 
    if (grepl("Query:",data[i,])){ 
    Query_list=c(Query_list,as.character(data[i,])) 
    QueryRange_list=c(QueryRange_list,as.character(data[(i+1),])) 
    TargetRange_list=c(TargetRange_list,as.character(data[(i+2),])) 
    Query_count=Query_count+1 
  }else if(grepl("QueryRange:",data[i,])){ 
  }else if(grepl("TargetRange:",data[i,])){ 
  }else if(l==1 & Query_count!=Current_Query_count){ 
###################################################################### 
   
###################################################################### 
# Add the concatenated sequence derived from the previous sequence entry to the list of 
all sequence entries and empty these variables. 
    Full_Query_seq_list=c(Full_Query_seq_list,Query_seq_list) 
    Full_Match_seq_list=c(Full_Match_seq_list,Match_seq_list) 
    Full_Target_seq_list=c(Full_Target_seq_list,Target_seq_list) 
    Query_seq_list=c() 
    Match_seq_list=c() 
    Target_seq_list=c() 
###################################################################### 
 
###################################################################### 
# Increase Current Query count ready to identify next sequence entry. Using Reg 
expression to identify the start point of the sequence information rather than the numeric 
point as this varies with the number whether the total sequence length is greater than 
1000 or less. Last two lines of this section fix an error occuring if there are none of any 
of the possible start point characters. 
    Current_Query_count=Current_Query_count+1  
    first_character=c(regexpr("A",as.character(data[i,])), 
                      regexpr("C",as.character(data[i,])), 
                      regexpr("T",as.character(data[i,])), 
                      regexpr("G",as.character(data[i,])), 
                      regexpr("-",as.character(data[i,]))) 
    first_character[first_character==-1]=NA 
    first_character=min(first_character,na.rm = T) 
###################################################################### 
     
###################################################################### 
# Having prepped for concatonation of the three sequences the first sequence is added to 
the appropriate variable then progresses on through the else if for the rest of the three 
sequence as Query_count was set to equal current query count. This continues until a 
new sequence entry is recognised by the header information. 
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Query_seq_list=paste(Query_seq_list,substring(as.character(data[i,]),first_character),se
p="") 
                l=2 
  }else if(l==1 & 
Query_count==Current_Query_count){Query_seq_list=paste(Query_seq_list, 
                                      substring(as.character(data[i,]),first_character),sep="") 
                 l=2 
  }else if(l==2){Match_seq_list=paste(Match_seq_list, 
                                      substring(as.character(data[i,]),first_character),sep="") 
                l=3 
  }else if(l==3){Target_seq_list=paste(Target_seq_list, 
                                       substring(as.character(data[i,]),first_character),sep="") 
                l=1 
  }} 
###################################################################### 
 
###################################################################### 
#Add the final concatenated sequence to the list of sequneces. 
Full_Query_seq_list=c(Full_Query_seq_list,Query_seq_list) 
Full_Match_seq_list=c(Full_Match_seq_list,Match_seq_list) 
Full_Target_seq_list=c(Full_Target_seq_list,Target_seq_list) 
###################################################################### 
 
###################################################################### 
# Bind together all the extracted data into a dataframe and store as named input 2 
new_data=cbind(Query_list,QueryRange_list,TargetRange_list,Full_Query_seq_list,Ful
l_Match_seq_list, 
               Full_Target_seq_list) 
write.csv(new_data,output_name) 
###################################################################### 
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Figure A35b: The following R script converts CSV information generated by the 
script in figure A27b into three matrices for sequence, match and quality 
information, respectively. The matrices contain information for individual 
nucleotides in individual matrix cells. 
###################################################################### 
###################################################################### 
# This Script creates a binary system for mismatches and aligns to whole plasmid 
sequence so that mutations can be counted at each position and creates a query sequence 
matrix for base calling 
# Inputs: 1) Formatted output from 'alignment conversion to fasta' R script (Figure 
A27a) 
#             2) List of Target strand orientations for each query sequence  
#             3) SAM output from BLASR, containing Quality score information 
# Output: 1) CSV named in input 3 that contains the match/mismatch matrix 
#              2) CSV named in input 3 that contains the sequence matrix 
#              3) CSV named in input 3 that contains the Quality matrix 
###################################################################### 
###################################################################### 
 
###################################################################### 
# Set working directory and clear the working directory and load required packages. 
setwd("/Users/josephcartwright/Google Drive/shared folder-JLongworth & 
JCartwright/R scripts") 
 
rm (list=ls()) 
###################################################################### 
 
###################################################################### 
# Load in inputs and set input variables & bind target strand data to main dataframe 
data.1=read.csv("processed_data/New CSVs/new_Ecoli_15_800_2.csv") 
data2=read.csv("Target CSVs/Ecoli_15passTARGET.csv", header=F) 
data3=cbind(data.1,data2[,3]) 
names(data3)=c(names(data.1),"Target_Strand") 
FASTQ=read.delim("FASTQ BLASR/Ecoli_15_Q",header = F,quote="") 
FASTQ=FASTQ[5:nrow(FASTQ),] 
data=cbind(data3,FASTQ[,11]) 
names(data)=c(names(data3),"Q-scores") 
output_name="processed_data/Matrix CSVs/Ecoli_15/matrix_Ecoli_15_800_2.csv" 
output_name2="processed_data/Matrix 
CSVs/Ecoli_15/QUERY_matrix_Ecoli_15_800_2.csv" 
output_name3="processed_data/Matrix 
CSVs/Ecoli_15/Q_matrix_Ecoli_15_800_2.csv" 
###################################################################### 
 
###################################################################### 
# Taking the data line by line create variables a and b containing the sequence for the 
'Query' and 'Match' respectively. These are then separated into strings with one base 
reported per element 
# If query sequence is in opposite orientation it is converted into the proper orientation 
and 
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# complement and match data is reversed 
Perc=seq(from=1, to=nrow(data),by=100) 
Perc2=c(Perc,nrow(data)) 
i=1 
j=1 
full_matrix=matrix(,nrow=nrow(data),ncol=4965) 
full_matrix2=matrix(,nrow=nrow(data),ncol=4965) 
full_matrix3=matrix(,nrow=nrow(data),ncol=4965) 
matrix=matrix(,nrow=1,ncol=4965) 
matrix2=matrix(,nrow=1,ncol=4965) 
matrix3=matrix(,nrow=1,ncol=4965) 
for(i in 1:nrow(data)){ 
  a=as.character(data[i,5]) 
  b=as.character(data[i,6]) 
  c=as.character(data[i,9]) 
  if (data[i,8]==0){ 
    a=as.character(substring(a,c(1:nchar(a)),c(1:nchar(a)))) 
    b=as.character(substring(b,c(1:nchar(b)),c(1:nchar(b)))) 
    c=as.character(substring(c,c(1:nchar(c)),c(1:nchar(c))))} 
  if (data[i,8]==1){ 
    a=as.character(rev(substring(a,c(1:nchar(a)),c(1:nchar(a))))) 
    b=as.character(rev(substring(b,c(1:nchar(b)),c(1:nchar(b))))) 
    c=as.character(substring(c,c(1:nchar(c)),c(1:nchar(c))))} 
  if (data[i,8]==1){ 
    a=(unname(sapply(a, switch,  "A"="T.", "T"="A.","G"="C.","C"="G.","-"="-")))} 
  if (data[i,8]==0){ 
    a=unname(sapply(a, switch,  "A"="A.", "T"="T.","G"="G.","C"="C.","-"="-"))} 
     
###################################################################### 
 
###################################################################### 
# having created stings for each sequence this loop looks at each element in the 
sequence and asks the question is it a match thus scoring 0, a mismatch scoring 1, a 
deletion scoring NA, or a insertion scoring nothing (to avoid matrix misalignment) this 
score is built up into x_list. 
# The same information is used to create y_list and z_list, containing the query 
sequence without insertions. 
x_list=c() 
for(n in 1:  length(b)){ 
  #i=1} 
  if (b[n]=="|"){x=0 
  }  else if (b[n]=="*"){x=1 
  }  else if (b[n]==" "&a[n]=="-"){x=NA 
  }  else if (b[n]==" "&a[n]!="-"){x="X"} 
   
  if (is.na(x)){x_list=c(x_list,x) 
  }  else if (x==0|x==1){ 
  x_list=c(x_list,x)} 
} 
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  y_list=c() 
  for(n in 1:  length(b)){ 
    #i=1} 
    if (b[n]=="|"){y=(a[n]) 
    }  else if (b[n]=="*"){y=(a[n]) 
    }  else if (b[n]==" "& a[n]=="-"){y=NA 
    }  else if (b[n]==" "& a[n]!="-"){y="Y"} 
     
    if (is.na(y)){y_list=c(y_list,y) 
    }  else if (y=="A."|y=="T."|y=="C."|y=="G."){ 
      y_list=c(y_list,y)} 
  } 
   
  z_list=c() 
  k=1 
  for(n in 1:  length(b)){ 
    if (b[n]=="|"){z=(c[k]);k=k+1 
    }  else if (b[n]=="*"){z=(c[k]);k=k+1 
    }  else if (b[n]==" "& a[n]=="-"){z=NA 
    }  else if (b[n]==" "& a[n]!="-"){z="NULL"} 
     
    if (is.na(z)){z_list=c(z_list,z) 
    }  else if (z!="NULL"){ 
      z_list=c(z_list,z)}   
  } 
###################################################################### 
 
###################################################################### 
# Start and end positions relative to the target are calculated for the query sequence and 
matches.  This determines the number of NA's to be added to the front and the end of 
the sequence to give full length comparable to the full target sequence. The full 
sequence length is made of 'head' NA's at the start of the sequence, the sequence itself, 
and then 'tail' NA's until the end of the sequence. This is carried out for matches and 
query sequences to generate full matrices for all match and sequencing data 
 
start=c() 
end=c() 
  if (data[i,8]==0){ 
   start=as.numeric(strsplit(as.character(data[i,4])," ")[[1]][4]) 
   end=as.numeric(strsplit(as.character(data[i,4])," ")[[1]][6])} 
  if (data[i,8]==1){ 
    start=4965-as.numeric(strsplit(as.character(data[i,4])," ")[[1]][6]) 
    end=4965-as.numeric(strsplit(as.character(data[i,4])," ")[[1]][4])} 
    
 
head_NA=start 
tail_NA=4965-end 
matrix=c(rep(NA,head_NA),x_list,rep(NA,tail_NA)) 
matrix2=c(rep(NA,head_NA),as.character(y_list),rep(NA,tail_NA)) 
matrix3=c(rep(NA,head_NA),as.character(z_list),rep(NA,tail_NA)) 
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full_matrix[i,]=matrix 
full_matrix2[i,]=matrix2 
full_matrix3[i,]=matrix3 
 
if (i==Perc2[j]){ 
  print(i/nrow(data)*100,digits = 3);j=j+1} 
} 
 
full_data_frame=as.data.frame(cbind(data[,2],full_matrix)) 
full_data_frame2=as.data.frame(cbind(data[,2],full_matrix2)) 
full_data_frame3=as.data.frame(cbind(data[,2],full_matrix3)) 
###################################################################### 
 
###################################################################### 
# Save the compiled matrices to csv files 
write.csv(full_data_frame,output_name) 
write.csv(full_data_frame2,output_name2) 
write.csv(full_data_frame3,output_name3) 
###################################################################### 
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Figure A35c: The following R script removes error-prone ROIs from the analysis 
pipeline and provides a preliminary analysis on the extent of fragment mutation 
###################################################################### 
###################################################################### 
# This Script creates a modified matrices with removed error prone fragments and 
analyses the number of fragments that are mutated 
# Inputs: 1) Sequence matrix 
#             2) Match/mismatch matrix 
#             3) Quality matrix 
# Output: 1) Sequence matrix with error-prone fragments removed 
#              2) Match/mismatch matrix with error-prone fragments removed 
#              3) Quality matrix with error-prone fragments removed 
#              4) Statistics regarding the frequency of mutations in the fragments 
###################################################################### 
###################################################################### 
 
###################################################################### 
# Set working directory and clear the working directory and load required packages. 
setwd("/Users/josephcartwright/Google Drive/shared folder-JLongworth & 
JCartwright/R scripts") 
rm (list=ls()) 
###################################################################### 
 
###################################################################### 
# Load in inputs and set input variables 
data=read.csv("processed_data/Matrix CSVs/High_10/matrix_High_10_800_2.csv") 
Query.data=read.csv("processed_data/Matrix 
CSVs/CHO_10/QUERY_matrix_CHO_10_800_2.csv") 
Q.data=read.csv("processed_data/Matrix 
CSVs/CHO_10/Q_matrix_CHO_10_800_2.csv") 
output_name="processed_data/Matrix CSVs/CHO_10/matrix_CHO_10_800_3.csv" 
output_name2="processed_data/Matrix 
CSVs/CHO_10/Query_matrix_CHO_10_800_3.csv" 
output_name3="processed_data/Matrix 
CSVs/CHO_10/Q_matrix_CHO_10_800_3.csv" 
output_name4="processed_data/Mutated Fragment 
Data/MUTFRAG_CHO_10_800_2.csv" 
###################################################################### 
 
###################################################################### 
#Remove unwanted columns 
# Remove all rows whose sum is greater than 3 - fragments seem to show sequencing 
error 
data2=data[,-c(1,2)] 
rSUMS=rowSums(data2,na.rm=T) 
data3=cbind(data,rSUMS) 
data4=data3[data3[,4968]<=3,] 
data5=data4[,-4968] 
 
Query.data2=Query.data[,-c(1,2)] 
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Query.data3=Query.data2[data3[,4968]<=3,] 
 
Q.data2=Q.data[,-c(1,2)] 
Q.data3=Q.data2[data3[,4968]<=3,] 
###################################################################### 
 
###################################################################### 
# Write altered dataset to csv 
write.csv(data5,output_name) 
write.csv(Query.data3,output_name2) 
write.csv(Q.data3,output_name3) 
###################################################################### 
 
###################################################################### 
# View deleted fragments in terms of number of detected mutations 
delsum=sort(data3[,4968], decreasing = T) 
head(delsum, n = 10) 
###################################################################### 
 
###################################################################### 
# calculate number mutated fragments, their % of total and the number of fragments 
with 1,2 or 3 mutations. Bind together. 
Mutated_Fragments=nrow(data4[data4[,4968]>0,]) 
Percent_Mutated_Fragments=Mutated_Fragments/nrow(data4)*100 
Mutated_Fragments1=nrow(data4[data4[,4968]==1,]) 
Mutated_Fragments2=nrow(data4[data4[,4968]==2,]) 
Mutated_Fragments3=nrow(data4[data4[,4968]==3,]) 
MUTFRAG=cbind(Mutated_Fragments,Percent_Mutated_Fragments,Mutated_Fragme
nts1,Mutated_Fragments2,Mutated_Fragments3) 
###################################################################### 
 
###################################################################### 
# write csv for mutated fragment data 
write.csv(MUTFRAG,output_name4) 
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Figure A35d: The following R script generates statistics and plots for mutation 
frequency along the length of the plasmid sequence. It also calculates nucleotide 
coverage 
###################################################################### 
###################################################################### 
# This Script generates statistics and plots for plasmid mutation frequency and plasmid 
position 
# Inputs: 1) Match/mismatch matrix 
# Output: 1) Table containing number of mutations and coverage at each target position. 
#              2) Statistics regarding plasmid mutation 
#              3) Plots for plasmid mutation and coverage 
###################################################################### 
##################################################################### 
 
###################################################################### 
# Set working directory and clear the working directory and load required packages. 
setwd("/Users/josephcartwright/Google Drive/shared folder-JLongworth & 
JCartwright/R scripts") 
rm (list=ls()) 
###################################################################### 
 
###################################################################### 
# Load in inputs and set input variables 
data=read.csv("processed_data/Matrix CSVs/High_10/matrix_High_10_800_3.csv") 
output_name="processed_data/Mutation Tables/mutations_MOD_High_10_800_2.csv" 
output_name2="processed_data/Mutated Plasmid 
Data/MUTPLAS_MOD_High_10_800_2.csv" 
output_name3="processed_data/Mutated Plasmid Data/Av_COV_High_10_800_2.csv" 
PDFPath = "/Users/josephcartwright/Google Drive/shared folder-JLongworth & 
JCartwright/R scripts/processed_data/Plots/plots_MOD_High_10_800_2.pdf" 
###################################################################### 
 
###################################################################### 
#Remove unwanted columns 
data2=data[,-c(1:3)] 
###################################################################### 
 
###################################################################### 
# Calculate the sum for all base pairs across the plasmid length.  
# Create data frame of sums where 0 = NA for clarity in plots 
# Create subset dataframe of this, only including obserbed mutations 
# Calculate the Coverage at each base pair position 
SUMS=colSums(data2,na.rm=T) 
 
COVER=c() 
for (i in 1:ncol(data2)){ 
  x=data2[,i] 
  cove=length(na.omit(x)) 
  COVER=c(COVER,cove)} 
Av.cov=mean(COVER) 
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write.csv(Av.cov,output_name3) 
plasmid=c(1:4965) 
MFREQ=as.data.frame(cbind(SUMS,plasmid,COVER)) 
MFREQ[MFREQ==0]=NA 
 
Mutations=as.data.frame(MFREQ[complete.cases(MFREQ),]) 
names(Mutations)=c("Mutations","Base number","Coverage") 
 
Coverage_T_Test=t.test(MFREQ[,3],Mutations[,3]) 
Coverage_Mean_Difference=mean(MFREQ[,3],na.rm = T)-mean(Mutations[,3]) 
###################################################################### 
 
###################################################################### 
#calculate minimum and maximums of SUMS and COVER datasets to establish y axis 
limits for plots 
max(SUMS) 
min(SUMS) 
max(COVER) 
min(COVER) 
head(sort(MFREQ[,1],decreasing=T)) 
###################################################################### 
 
###################################################################### 
# Plot coverage and sums and write out to pdf 
# For sum plots create one for overall and another for lower frequencies (higher 
resolution plot) 
# Write mutations to csv 
pdf(file=PDFPath) 
par(mfrow=c(1,1)) 
plot(COVER,pch="*",ylim=c(0,11000),ylab="Base Coverage",xlab="Base Pair 
Number") 
plot(MFREQ[,1]~MFREQ[,2],pch="*",ylim=c(1,7000),ylab="Mutation 
Frequency",xlab="Base Pair Number") 
plot(MFREQ[,1]~MFREQ[,2],pch="*",ylim=c(1,30),ylab="Mutation 
Frequency",xlab="Base Pair Number") 
dev.off() 
write.csv(Mutations,output_name) 
###################################################################### 
 
###################################################################### 
# Calculate the number of mutated positions of plasmid 
# Does coverage differ between mutated positions compared to all positions 
# Normalise number of mutated positions by sequence coverage 
# Write this data to csv 
Mutated_Positions=nrow(Mutations) 
Coverage_Mutation_Significance=Coverage_T_Test$p.value 
Normalised_Mutated_Positions=Mutated_Positions/mean(na.omit(MFREQ$COVER)) 
MUTPLAS=cbind(Mutated_Positions,Coverage_Mean_Difference,Coverage_Mutation
_Significance,Normalised_Mutated_Positions) 
write.csv(MUTPLAS,output_name2) 
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Figure A35e: The following R script generates an annotated list of mutations with 
mutation frequencies for all, Q score filtered and >1 filtered mutation sets. 
###################################################################### 
###################################################################### 
# This Script provides an annotated list of observed mutations for all, Q score filtered 
and >1 filtered data 
# Inputs: 1) sequence matrix 
#             2) Quality matrix 
#             3) GFP target sequence 
#             4) Quality character --> Phred score key 
#             5) List of mutations from mutation frequency table 
#             6) Mutation table generated in Analysis 2 
# Output: 1) Base type count at each plasmid position and corresponding target 
sequence 
#              2) Updated Mutation table containing the base changes. 
#              3) Updated Mutation table containing the base changes (Q score filtered). 
#              4) Updated Mutation table containing the base changes (>1 filtered). 
###################################################################### 
###################################################################### 
 
###################################################################### 
# Set working directory and clear the working directory and load required packages. 
setwd("/Users/josephcartwright/Google Drive/shared folder-JLongworth & 
JCartwright/R scripts") 
rm (list=ls()) 
###################################################################### 
 
###################################################################### 
# Load in inputs and set input variables 
data=read.csv("processed_data/Matrix 
CSVs/High_10/QUERY_matrix_High_10_800_3.csv") 
data3=read.csv("processed_data/Matrix 
CSVs/High_10/Q_matrix_High_10_800_3.csv") 
GFP=read.csv("processed_data/GFP.csv",header = F, stringsAsFactors = F, colClasses 
= c("character")) 
Mutations=read.csv("processed_data/Mutation 
Tables/mutations_MOD_High_10_800_2.csv") 
FASTQ.CHAR=read.csv("FASTQ.VALUES.csv") 
output_name="processed_data/Base counts/BASE_High_10_800.csv" 
output_name2="processed_data/Mutation 
Tables/FINALmutations_MOD_High_10_800_2.csv" 
output_name3="processed_data/Mutation 
Tables/FINALmutations_MOD.Q_High_10_800_2.csv" 
output_name4="processed_data/Mutation 
Tables/FINALmutations_MOD.Q_>1_High_10_800_2.csv" 
PDFPath = "/Users/josephcartwright/Google Drive/shared folder-JLongworth & 
JCartwright/R scripts/processed_data/Plots/plots_Q_High_10_800.pdf" 
###################################################################### 
 
###################################################################### 
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# remove information that is not sequence 
data2=(data[,-1]) 
qmat=(data3[,-1]) 
rm(data) 
rm(data3) 
###################################################################### 
 
###################################################################### 
# Alter the quality score matrix, so that each quality character is replaced by 
corresponding Phred score value 
 
FASTQ.CHAR=as.matrix(FASTQ.CHAR) 
 
QMAT2=as.matrix(qmat) 
QMAT3=matrix(,nrow=nrow(qmat),ncol=ncol(qmat)) 
for (j in 1:nrow(QMAT2)){ 
  QMATM=QMAT2[j,] 
  for (i in 1:nrow(FASTQ.CHAR)){ 
    x=FASTQ.CHAR[i,1] 
    y=FASTQ.CHAR[i,2] 
    QMATM=replace(QMATM,QMATM==x,y) 
  } 
  QMAT3[j,]=QMATM 
  print(j) 
} 
 
### Anything with Phred score lower than 25 (99.5% accuracy) changed to NA 
### Corresponding base in nucleotide matrix replaced with NA so it is not counted. 
 
data3=as.matrix(data2) 
QMAT4=QMAT3 
QMAT4[QMAT4<25]=NA 
 
for (i in 1:nrow(data3)){ 
  x=data3[i,] 
  x[is.na(QMAT4[i,])]=NA 
  data3[i,]=x 
  print(i) 
} 
###################################################################### 
 
###################################################################### 
# Base_count table created from number of A's, T's, C's or G's at each postion, along 
with the target sequence. 
# Save this as CSV file 
Adenosine=c() 
Thymine=c() 
Cytosine=c() 
Guanine=c() 
ad=c() 
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th=c() 
gu=c() 
cy=c() 
for (i in 1:ncol(data2)){ 
    ad=as.data.frame(summary(as.factor(data3[,i])))["A.",1] 
    th=as.data.frame(summary(as.factor(data3[,i])))["T.",1] 
    cy=as.data.frame(summary(as.factor(data3[,i])))["C.",1] 
    gu=as.data.frame(summary(as.factor(data3[,i])))["G.",1] 
  Adenosine=cbind(Adenosine,ad) 
  Thymine=cbind(Thymine,th) 
  Cytosine=cbind(Cytosine,cy) 
  Guanine=cbind(Guanine,gu)} 
 
GFP=as.matrix(GFP[1,]) 
 
Base_counts=rbind(Adenosine,Thymine,Cytosine,Guanine,GFP) 
rownames(Base_counts)=c("A","T","C","G","Seq")   
colnames(Base_counts)=c(1:4965) 
 
write.csv(Base_counts,output_name) 
###################################################################### 
 
###################################################################### 
# Create an updated mutation table containing the target base changed and the base it 
has changed to create 3 of these tables: 
#           1) Containing all mutations observed 
#           2) Mutations removed by quality filtering 
#           3) Mutations occuring only once removed 
# plots for these 
# save to CSV 
 
Basenames=as.numeric(colnames(Base_counts)) 
 
Targ=c() 
Target=c() 
for (i in 1:nrow(Mutations)){ 
  Targ=Base_counts[5,Basenames[Mutations[i,3]]] 
  Target=rbind(Target,Targ)} 
Mutations2=cbind(Mutations,Target[,1]) 
 
Empty.changes=matrix(0,nrow=nrow(Mutations2),ncol=4) 
colnames(Empty.changes)=c("A","T","C","G") 
for (i in 1:nrow(Mutations)){ 
  if(is.na(Base_counts[1,Basenames[Mutations[i,3]]])==F & Mutations2[i,5]!="A"){ 
Empty.changes[i,1]=as.numeric(Base_counts[1,Mutations[i,3]])} 
  if(is.na(Base_counts[2,Basenames[Mutations[i,3]]])==F & Mutations2[i,5]!="T"){ 
Empty.changes[i,2]=as.numeric(Base_counts[2,Mutations[i,3]])} 
  if(is.na(Base_counts[3,Basenames[Mutations[i,3]]])==F & Mutations2[i,5]!="C"){ 
Empty.changes[i,3]=as.numeric(Base_counts[3,Mutations[i,3]])} 
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  if(is.na(Base_counts[4,Basenames[Mutations[i,3]]])==F & Mutations2[i,5]!="G"){ 
Empty.changes[i,4]=as.numeric(Base_counts[4,Mutations[i,3]])}} 
 
Mutations2=cbind(Mutations2,Empty.changes) 
Mutations.2=rowSums(Mutations2[,c(6:9)]) 
Mutations2=cbind(Mutations2[,c(1:2)],Mutations.2,Mutations2[,c(3:9)]) 
Mutations3=Mutations2[,c(7:10)] 
Mutations3[Mutations3==1]=0 
Mutations.3=rowSums(Mutations3) 
Mutations3=cbind(Mutations2[,c(1:3)],Mutations.3,Mutations2[,c(4:6)],Mutations3) 
Mutations4=Mutations3[Mutations3[,3]>0,] 
Mutations5=Mutations4[Mutations4[,4]>0,] 
 
for (i in 1:nrow(Mutations3)){ 
  if (Mutations3[i,5]==2539) 
    RM=i} 
for (i in 1:nrow(Mutations4)){ 
  if (Mutations4[i,5]==2539) 
    RM2=i} 
for (i in 1:nrow(Mutations5)){ 
  if (Mutations5[i,5]==2539) 
    RM3=i} 
 
YLIM1=round(sort(Mutations3[,2],decreasing=T)[2]+5,-1) 
 
pdf(file=PDFPath)    
par(mfrow=c(1,1)) 
plot(Mutations3[-RM,2]~Mutations3[-RM,5],xlim=c(1,5000),ylim=c(0,YLIM1),xlab = 
"Base Pair Number", ylab = "Mutation Frequency",pch="*") 
plot(Mutations4[-RM2,3]~Mutations4[-RM2,5],xlim=c(1,5000),ylim=c(0,YLIM1),xlab 
= "Base Pair Number", ylab = "Mutation Frequency",pch="*") 
plot(Mutations5[-RM3,4]~Mutations5[-RM3,5],xlim=c(1,5000),ylim=c(0,YLIM1),xlab 
= "Base Pair Number", ylab = "Mutation Frequency",pch="*") 
dev.off() 
 
write.csv(Mutations3,output_name2) 
write.csv(Mutations4,output_name3) 
write.csv(Mutations5,output_name4) 
###################################################################### 
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Figure A35f: The following R script calculates the amount of mutation in each 
element of the plasmid. It also calculates the proportion of each type of mutation 
that was observed. It then generates various statistics regarding mutation 
frequency and  an overall mutation rate. 
###################################################################### 
###################################################################### 
# This Script calculates the percentage of mutation that falls within each genetic 
element of the plasmid sequence and calculates the number of each mutation type. Then 
mutation information is normalised by the average coverage of the sample. Overall 
mutation rates are then calculated. 
# Inputs: 1) Mutation table for all mutations 
#             2) Mutation table for Q score filtered mutations 
#             3) Mutation table for >1 filtered mutations 
#             4) Base counts table 
#             5) Average coverage for the sample 
# Output: 1) A table containing the percentage mutation of each plasmid genetic 
element 
#              2) A table containing the percentage of each mutation type 
#              3) A table containing mutation frequency information 
###################################################################### 
###################################################################### 
 
###################################################################### 
# Set working directory and clear the working directory and load required packages. 
setwd("/Users/josephcartwright/Google Drive/shared folder-JLongworth & 
JCartwright/R scripts") 
rm (list=ls()) 
###################################################################### 
 
###################################################################### 
# Load in inputs and set input variables 
Mutation1=read.csv("processed_data/Mutation 
Tables/FINALmutations_MOD_High_10_800_2.csv") 
Mutation2=read.csv("processed_data/Mutation 
Tables/FINALmutations_MOD.Q_High_10_800_2.csv") 
Mutation3=read.csv("processed_data/Mutation 
Tables/FINALmutations_MOD.Q_>1_High_10_800_2.csv") 
Base_counts=read.csv("processed_data/Base counts/BASE_High_10_800.csv") 
Av.cov=read.csv("processed_data/Mutated Plasmid 
Data/Av_COV_High_10_800_2.csv") 
output_name1="processed_data/Mutation Annotation/High_10_position.csv" 
output_name2="processed_data/Mutation Annotation/High_10_Bases.csv" 
output_name3="processed_data/Mutated Plasmid 
Data/High_10_MUTPLAS_NEW.csv" 
###################################################################### 
 
###################################################################### 
# Create dataframe with plasmid annotations 
# Use dataframe to create a table regarding the plasmid positions percentages of 
mutations 
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# Standardise these numbers by dividing by the number of bases in a given element 
Emat=matrix(,nrow=4965,ncol=12) 
colnames(Emat)=c("pAmp","pSV40","Kan/Neo","HSV_TK_PolyA","Puc_Ori","phCM
V_and_Intron","phCMV_and_Intron_MCS.1","pT7","MCS.1","GFP_ORF","MCS.2","
SV40_PolyA") 
Emat[c(527:555),1]="pAmp";Emat[c(639:868),2]="pSV40";Emat[c(990:1784),3]="Ka
n/Neo";Emat[c(2020:2038),4]="HSV_TK_PolyA";Emat[c(2369:3012),5]="Puc_Ori"; 
Emat[c(3153:3838),6]="phCMV_and_Intron";Emat[c(3839:3852),7]="phCMV_and_In
tron_MCS.1";Emat[c(3853:3868),8]="pT7";Emat[c(3869:3902),7]="phCMV_and_Intro
n_MCS.1"; 
Emat[c(3903:3952),9]="MCS.1";Emat[c(3953:4672),10]="GFP_ORF";Emat[c(4673:47
42),11]="MCS.2"; 
Emat[c(4878:4928),12]="SV40_PolyA" 
 
Element=matrix(,nrow=nrow(Mutation3),ncol=1) 
for (i in 1:nrow(Mutation3)){ 
  x=Emat[Mutation3[i,6],] 
  Y=c() 
  for (j in 1:ncol(Emat)){ 
    y=c() 
    if (is.na(x[j])==F){ 
      y=x[j]} 
      Y=c(Y,y)} 
  if (length(Y)==0){ 
    Y="Non-coding"} 
  Element[i,]=Y} 
Mutation.A=cbind(Mutation3,Element)     
names(Mutation.A)=c(names(Mutation3),"Element") 
  
Element_percentages=matrix(,nrow=3,ncol=13) 
colnames(Element_percentages)=c("pAmp","pSV40","Kan/Neo","HSV_TK_PolyA","P
uc_Ori","phCMV_and_Intron","phCMV_and_Intron_MCS.1","pT7","MCS.1","GFP_O
RF","MCS.2","SV40_PolyA","Non-coding") 
 
for (i in 1:ncol(Element_percentages)){ 
Element_percentages[1,i]=round(summary(Mutation.A$Element)[colnames(Element_p
ercentages)[i]]/nrow(Mutation.A)*100,digits=1)} 
 
Element_percentages[1,][is.na(Element_percentages[1,])]=0 
Elengths=matrix(,nrow=1,ncol=12) 
for (i in 1:ncol(Elengths)){ 
  Elengths[i]=length(na.omit(Emat[,i]))} 
NC=4965-sum(Elengths) 
Elengths2=cbind(Elengths,NC) 
Element_percentages[2,]=Elengths2 
 
Enorm=Element_percentages[1,]/Element_percentages[2,]*1000 
Element_percentages[3,]=Enorm 
Element_percentages=round(Element_percentages,digits=2) 
rownames(Element_percentages)=c("Percentage","Element_Bases","Normalised") 
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write.csv(Element_percentages,output_name1) 
###################################################################### 
 
###################################################################### 
# Create a table illustrating the percentage mutation frequency of each base change type 
Base_percentages=matrix(,nrow=4,ncol=5) 
rownames(Base_percentages)=c("A","T","C","G") 
colnames(Base_percentages)=c("A","T","C","G","Total") 
 
Mutation_base=Mutation3[9:12] 
Mutation_base[Mutation_base==0]=NA 
 
Y=c() 
for (i in 1:nrow(Mutation_base)){ 
  x=Mutation_base[i,] 
  y=c() 
  for (j in 1:length(x)){ 
  if (is.na(x[j])==F){ 
    y=colnames(Mutation_base)[j]}} 
    Y=rbind(Y,y)} 
colnames(Y)=c("Change") 
Mutation3=cbind(Mutation3,Y[,1])   
   
A_to_T=Mutation3[Mutation3[,8]=="A" & 
Mutation3[,13]=="T",];Base_percentages[1,2]=round(nrow(A_to_T)/nrow(Mutation3)*
100,digits=2)   
A_to_C=Mutation3[Mutation3[,8]=="A" & 
Mutation3[,13]=="C",];Base_percentages[1,3]=round(nrow(A_to_C)/nrow(Mutation3)
*100,digits=2)   
A_to_G=Mutation3[Mutation3[,8]=="A" & 
Mutation3[,13]=="G",];Base_percentages[1,4]=round(nrow(A_to_G)/nrow(Mutation3)
*100,digits=2)   
T_to_A=Mutation3[Mutation3[,8]=="T" & 
Mutation3[,13]=="A",];Base_percentages[2,1]=round(nrow(T_to_A)/nrow(Mutation3)
*100,digits=2)   
T_to_C=Mutation3[Mutation3[,8]=="T" & 
Mutation3[,13]=="C",];Base_percentages[2,3]=round(nrow(T_to_C)/nrow(Mutation3)*
100,digits=2)   
T_to_G=Mutation3[Mutation3[,8]=="T" & 
Mutation3[,13]=="G",];Base_percentages[2,4]=round(nrow(T_to_G)/nrow(Mutation3)
*100,digits=2)     
C_to_A=Mutation3[Mutation3[,8]=="C" & 
Mutation3[,13]=="A",];Base_percentages[3,1]=round(nrow(C_to_A)/nrow(Mutation3)
*100,digits=2)   
C_to_T=Mutation3[Mutation3[,8]=="C" & 
Mutation3[,13]=="T",];Base_percentages[3,2]=round(nrow(C_to_T)/nrow(Mutation3)*
100,digits=2)   
C_to_G=Mutation3[Mutation3[,8]=="C" & 
Mutation3[,13]=="G",];Base_percentages[3,4]=round(nrow(C_to_G)/nrow(Mutation3)
*100,digits=2)   
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G_to_A=Mutation3[Mutation3[,8]=="G" & 
Mutation3[,13]=="A",];Base_percentages[4,1]=round(nrow(G_to_A)/nrow(Mutation3)
*100,digits=2)   
G_to_T=Mutation3[Mutation3[,8]=="G" & 
Mutation3[,13]=="T",];Base_percentages[4,2]=round(nrow(G_to_T)/nrow(Mutation3)*
100,digits=2)   
G_to_C=Mutation3[Mutation3[,8]=="G" & 
Mutation3[,13]=="C",];Base_percentages[4,3]=round(nrow(G_to_C)/nrow(Mutation3)
*100,digits=2) 
 
Base_percentages[1,5]=sum(na.omit(Base_percentages[1,c(1:4)])) 
Base_percentages[2,5]=sum(na.omit(Base_percentages[2,c(1:4)])) 
Base_percentages[3,5]=sum(na.omit(Base_percentages[3,c(1:4)])) 
Base_percentages[4,5]=sum(na.omit(Base_percentages[4,c(1:4)])) 
write.csv(Base_percentages,output_name2) 
###################################################################### 
 
###################################################################### 
#Create a table summarising the mutation frequencies observed and normalise using 
coverage. 
Mutated_positions=nrow(Mutation1) 
Mutated_positions_Q=nrow(Mutation2) 
Mutated_positions_1=nrow(Mutation3) 
Mutation_number_Q=sum(Mutation2$Mutations.2) 
Mutation_number_1=sum(Mutation3$Mutations.3) 
Mutated_positions_norm=Mutated_positions/Av.cov[1,2] 
Mutated_positions_Q_norm=Mutated_positions_Q/Av.cov[1,2] 
Mutated_positions_1_norm=Mutated_positions_1/Av.cov[1,2] 
Mutation_number_Q_norm=Mutation_number_Q/Av.cov[1,2] 
Mutation_number_1_norm=Mutation_number_1/Av.cov[1,2] 
Plasmid_mutations=cbind(Mutated_positions,Mutated_positions_Q,Mutated_positions_
1,Mutated_positions_norm,Mutated_positions_Q_norm,Mutated_positions_1_norm) 
write.csv(Plasmid_mutations,output_name3) 
###################################################################### 
 
###################################################################### 
# Overall mutation rates 
zxc=Base_counts[c(1:4),c(2:4966)] 
z=0 
for (i in 1:nrow(zxc)){ 
  x=zxc[i,] 
  y=0 
  for (j in 1:ncol(x)){ 
    if (is.na(as.numeric(as.character(x[1,j])))==F){ 
      y=y+as.numeric(as.character(x[1,j]))}} 
  z=z+y} 
 
Q_mut_rate=z/(sum(Mutation2$Mutations.2)-Mutation2[Mutation2[,6]==2539,4]) 
once_mut_rate=z/(sum(Mutation3$Mutations.3)-Mutation3[Mutation3[,6]==2539,4]) 
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Figure A35f: The following R script calculates the number of synonymous and 
non-synonymous mutations in the GFP and Kan / Neo ORFs. It then calculates the 
general probability of a non-synonymous or synonymous mutation occurring. 
###################################################################### 
###################################################################### 
# This Script calculates the percentage of synonymous and non-synonymous mutations. 
It then simulates the raw probability of these occuring for comparison 
# Inputs: 1) Base_counts table 
#             2) Mutation table (>1 filtered) 
#             3) Codon sequence key 
###################################################################### 
###################################################################### 
 
###################################################################### 
# Set working directory and clear the working directory and load required packages. 
setwd("/Users/josephcartwright/Google Drive/shared folder-JLongworth & 
JCartwright/R scripts") 
rm (list=ls()) 
###################################################################### 
 
###################################################################### 
# Load in inputs and set input variables 
Mutation1=read.csv("processed_data/Mutation 
Tables/FINALmutations_MOD.Q_>1_High_10_800_2.csv") 
Base_counts=read.csv("processed_data/Base counts/BASE_High_10_800.csv") 
Codons=read.csv("Amino acid codons.csv",header = F) 
names(Codons)=c("Amino_acid","1","2","3") 
###################################################################### 
 
###################################################################### 
# Create dataframes for open reading frame positions 
Kan_Neo=seq(990:1784)+989 
GFP=seq(3953:4672)+3952 
 
# Create mutation dataframe for Kan/Neo gene only 
Kan_mut=c() 
for (i in 1:length(Kan_Neo)){ 
  x=Mutation1[Mutation1[,6]==Kan_Neo[i],] 
  Kan_mut=rbind(Kan_mut,x)} 
 
# Create mutation dataframe for GFP gene only 
GFP_mut=c() 
for (i in 1:length(GFP)){ 
  x=Mutation1[Mutation1[,6]==GFP[i],] 
  GFP_mut=rbind(GFP_mut,x)} 
 
# Isolate ORF sequences       
Plasmid=Base_counts[5,c(2:4966)]     
Kan_seq=Plasmid[c(990:1784)]     
GFP_seq=Plasmid[c(3953:4672)] 
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names(Kan_seq)=c(Kan_Neo[1:length(Kan_Neo)]) 
names(GFP_seq)=c(GFP[1:length(GFP)]) 
###################################################################### 
 
###################################################################### 
#KAN/NEO GENE 
# Split Kan/Neo ORF into codons by row 
Kan_pos=seq(0,length(Kan_seq)-1, by=3) 
Kan_cod=matrix(,nrow=length(Kan_pos),ncol=3) 
for (i in 1:length(Kan_pos)){ 
  x=as.matrix(Kan_seq[c((1+Kan_pos[i]):(3+Kan_pos[i]))]) 
  Kan_cod[i,]=x} 
Kan_cod=as.data.frame(Kan_cod) 
 
# Annotate each codon with amino acid it codes 
b=c() 
for (i in 1:nrow(Kan_cod)){ 
  x=Kan_cod[i,1]      
  y=Kan_cod[i,2]   
  z=Kan_cod[i,3]    
  a=as.character(Codons[Codons[,2]==x & Codons[,3]==y & Codons[,4]==z,1])  
  b=rbind(b,a) 
  } 
  Kan_cod=cbind(Kan_cod,b[,1])   
 
# Change all base annotations that are 0 to NA in Kan_mut dataframe    
Kan_mut.x=Kan_mut[,c(9:12)]  
Kan_mut.x[Kan_mut.x==0]=NA   
Kan_mut[,c(9:12)]=Kan_mut.x   
 
# add in extra rows to Kan_mut where two mutation types are seen and label each 
change - named Kan_mut2 
Kan_mut2=c() 
for (j in 1:nrow(Kan_mut)){ 
z=Kan_mut[j,c(9:12)] 
y=c() 
for (i in 1:length(z)){ 
  if (is.na(z[i])==F){ 
    x=z[i] 
    y=c(y,x)}} 
 
if (length(y)==1){w=Kan_mut[j,]} 
if (length(y)==2){w=rbind(Kan_mut[j,],Kan_mut[j,])} 
if (length(y)==3){w=rbind(Kan_mut[j,],Kan_mut[j,],Kan_mut[j,])} 
if (length(y)==4){w=rbind(Kan_mut[j,],Kan_mut[j,],Kan_mut[j,],Kan_mut[j,])} 
 
N=names(y) 
u=cbind(w,N) 
Kan_mut2=rbind(Kan_mut2,u) 
} 
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#create a matrix containing all mutated versions of the Kan/Neo seqeunce 
Kan_changes=matrix(,nrow=nrow(Kan_mut2),ncol=ncol(Kan_seq)) 
for (i in 1:nrow(Kan_mut2)){ 
  Kan_changes[i,]=as.matrix(Kan_seq)} 
colnames(Kan_changes)=names(Kan_seq) 
for (i in 1:nrow(Kan_mut2)){ 
  
Kan_changes[i,colnames(Kan_changes)==Kan_mut2[i,6]]=as.character(Kan_mut2[i,13
])} 
 
# Create a numerical position dataframe to mirror codons 
Kan_Neo2=as.data.frame(Kan_Neo) 
Kan_Neo3=t(Kan_Neo2) 
Kan_pos=seq(0,length(Kan_seq)-1, by=3) 
Kan_Neo4=matrix(,nrow=length(Kan_pos),ncol=3) 
for (i in 1:length(Kan_pos)){ 
  x=as.matrix(Kan_Neo3[c((1+Kan_pos[i]):(3+Kan_pos[i]))]) 
  Kan_Neo4[i,]=x} 
Kan_Neo4=as.data.frame(Kan_Neo4) 
 
# Create a dataframe containing reference amino acids and the amino acid seen as a 
result of mutation 
# Append this to Kan_mut dataframe and create an extra Synonymous vs Non-
synonymous column 
Kan_amino_changes=c() 
colnames(Kan_amino_changes)=c(colnames(w)) 
for (i in 1:nrow(Kan_changes)){ 
  a=matrix(,nrow=length(Kan_pos),ncol=3) 
  b=Kan_changes[i,] 
  for (j in 1:length(Kan_pos)){ 
    c=as.matrix(b[c((1+Kan_pos[j]):(3+Kan_pos[j]))]) 
    a[j,]=c} 
  a=as.data.frame(a) 
   
  d=c() 
  z=c() 
  for (k in 1:nrow(a)){ 
    e=a[k,1] 
    f=a[k,2] 
    g=a[k,3] 
    h=as.character(Codons[Codons[,2]==e & Codons[,3]==f & Codons[,4]==g,1]) 
    z=rbind(z,h) 
  } 
  a=cbind(a,z[,1]) 
   
  y=as.character(a[Kan_Neo4[,1]==Kan_mut2[i,6] | Kan_Neo4[,2]==Kan_mut2[i,6] | 
Kan_Neo4[,3]==Kan_mut2[i,6],4]) 
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  x=as.character(Kan_cod[Kan_Neo4[,1]==Kan_mut2[i,6] | 
Kan_Neo4[,2]==Kan_mut2[i,6] | Kan_Neo4[,3]==Kan_mut2[i,6],4]) 
  w=cbind(x,y) 
  colnames(w)=c("Reference","Sample") 
   
  Kan_amino_changes=rbind(Kan_amino_changes,w)} 
   
Kan_mut3=cbind(Kan_mut2,Kan_amino_changes) 
 
 
Kan_change_type=c() 
for (i in 1:nrow(Kan_mut3)){ 
  if (as.character(Kan_mut3[i,14])==as.character(Kan_mut3[i,15])){ 
    x="Synonymous"} 
  else{x="Non-Synonymous"} 
  Kan_change_type=rbind(Kan_change_type,x)} 
 
Kan_mut3=cbind(Kan_mut3,Kan_change_type) 
 
summary(Kan_mut3$Kan_change_type) 
###################################################################### 
 
###################################################################### 
#GFP GENE 
# Split GFP ORF into codons by row 
GFP_pos=seq(0,length(GFP_seq)-1, by=3) 
GFP_cod=matrix(,nrow=length(GFP_pos),ncol=3) 
for (i in 1:length(GFP_pos)){ 
  x=as.matrix(GFP_seq[c((1+GFP_pos[i]):(3+GFP_pos[i]))]) 
  GFP_cod[i,]=x} 
GFP_cod=as.data.frame(GFP_cod) 
 
# Annotate each codon with amino acid it codes 
b=c() 
for (i in 1:nrow(GFP_cod)){ 
  x=GFP_cod[i,1]      
  y=GFP_cod[i,2]   
  z=GFP_cod[i,3]    
  a=as.character(Codons[Codons[,2]==x & Codons[,3]==y & Codons[,4]==z,1])  
  b=rbind(b,a) 
} 
GFP_cod=cbind(GFP_cod,b[,1])   
 
# Change all base annotations that are 0 to NA in GFP_mut dataframe    
GFP_mut.x=GFP_mut[,c(9:12)]  
GFP_mut.x[GFP_mut.x==0]=NA   
GFP_mut[,c(9:12)]=GFP_mut.x   
 
# add in extra rows to GFP_mut where two mutation types are seen and label each 
change - named GFP_mut2 
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GFP_mut2=c() 
for (j in 1:nrow(GFP_mut)){ 
  z=GFP_mut[j,c(9:12)] 
  y=c() 
  for (i in 1:length(z)){ 
    if (is.na(z[i])==F){ 
      x=z[i] 
      y=c(y,x)}} 
   
  if (length(y)==1){w=GFP_mut[j,]} 
  if (length(y)==2){w=rbind(GFP_mut[j,],GFP_mut[j,])} 
  if (length(y)==3){w=rbind(GFP_mut[j,],GFP_mut[j,],GFP_mut[j,])} 
  if (length(y)==4){w=rbind(GFP_mut[j,],GFP_mut[j,],GFP_mut[j,],GFP_mut[j,])} 
   
  N=names(y) 
  u=cbind(w,N) 
  GFP_mut2=rbind(GFP_mut2,u) 
} 
 
 
#create a matrix containing all mutated versions of the GFP seqeunce 
GFP_changes=matrix(,nrow=nrow(GFP_mut2),ncol=ncol(GFP_seq)) 
for (i in 1:nrow(GFP_mut2)){ 
  GFP_changes[i,]=as.matrix(GFP_seq)} 
colnames(GFP_changes)=names(GFP_seq) 
for (i in 1:nrow(GFP_mut2)){ 
  
GFP_changes[i,colnames(GFP_changes)==GFP_mut2[i,6]]=as.character(GFP_mut2[i,1
3])} 
 
# Create a numerical position dataframe to mirror codons 
GFP2=as.data.frame(GFP) 
GFP3=t(GFP2) 
GFP_pos=seq(0,length(GFP_seq)-1, by=3) 
GFP4=matrix(,nrow=length(GFP_pos),ncol=3) 
for (i in 1:length(GFP_pos)){ 
  x=as.matrix(GFP3[c((1+GFP_pos[i]):(3+GFP_pos[i]))]) 
  GFP4[i,]=x} 
GFP4=as.data.frame(GFP4) 
 
# Create a dataframe containing reference amino acids and the amino acid seen as a 
result of mutation 
# Append this to GFP_mut dataframe and create an extra Synonymous vs Non-
synonymous column 
GFP_amino_changes=c() 
colnames(GFP_amino_changes)=c("Reference","Sample") 
for (i in 1:nrow(GFP_changes)){ 
  a=matrix(,nrow=length(GFP_pos),ncol=3) 
  b=GFP_changes[i,] 
  for (j in 1:length(GFP_pos)){ 
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    c=as.matrix(b[c((1+GFP_pos[j]):(3+GFP_pos[j]))]) 
    a[j,]=c} 
  a=as.data.frame(a) 
   
  d=c() 
  z=c() 
  for (k in 1:nrow(a)){ 
    e=a[k,1] 
    f=a[k,2] 
    g=a[k,3] 
    h=as.character(Codons[Codons[,2]==e & Codons[,3]==f & Codons[,4]==g,1]) 
    z=rbind(z,h) 
  } 
  a=cbind(a,z[,1]) 
   
  y=as.character(a[GFP4[,1]==GFP_mut2[i,6] | GFP4[,2]==GFP_mut2[i,6] | 
GFP4[,3]==GFP_mut2[i,6],4]) 
  x=as.character(GFP_cod[GFP4[,1]==GFP_mut2[i,6] | GFP4[,2]==GFP_mut2[i,6] | 
GFP4[,3]==GFP_mut2[i,6],4]) 
  w=cbind(x,y) 
  colnames(w)=c("Reference","Sample") 
   
  GFP_amino_changes=rbind(GFP_amino_changes,w)} 
 
GFP_mut3=cbind(GFP_mut2,GFP_amino_changes) 
 
 
GFP_change_type=c() 
for (i in 1:nrow(GFP_mut3)){ 
  if (as.character(GFP_mut3[i,14])==as.character(GFP_mut3[i,15])){ 
    x="Synonymous"} 
  else{x="Non-Synonymous"} 
  GFP_change_type=rbind(GFP_change_type,x)} 
 
GFP_mut3=cbind(GFP_mut3,GFP_change_type) 
 
summary(GFP_mut3$GFP_change_type)   
 
###################################################################### 
 
###################################################################### 
# Calculate the probability of synonymous vs non-synonymous mutations 
 
Codons2=Codons 
Codons3=Codons 
Codons4=Codons 
Codons5=Codons 
 
Total=c() 
for (i in 1:nrow(Codons2)){ 
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  x=Codons2[i,] 
  for (j in 2:4){ 
    r=c();Codons3=Codons;Codons4=Codons;Codons5=Codons 
    if 
(as.character(x[1,j])=="A"){Codons3[i,j]="T";Codons4[i,j]="C";Codons5[i,j]="G"}  
    if 
(as.character(x[1,j])=="T"){Codons3[i,j]="A";Codons4[i,j]="C";Codons5[i,j]="G"} 
    if 
(as.character(x[1,j])=="C"){Codons3[i,j]="T";Codons4[i,j]="A";Codons5[i,j]="G"} 
    if 
(as.character(x[1,j])=="G"){Codons3[i,j]="T";Codons4[i,j]="C";Codons5[i,j]="A"} 
    
a=as.character(Codons3[i,2]);b=as.character(Codons3[i,3]);c=as.character(Codons3[i,4]
) 
    
d=as.character(Codons4[i,2]);e=as.character(Codons4[i,3]);f=as.character(Codons4[i,4]
) 
    
g=as.character(Codons5[i,2]);h=as.character(Codons5[i,3]);k=as.character(Codons5[i,4]
) 
    l=as.character(Codons[Codons[,2]==a & Codons[,3]==b & Codons[,4]==c,1]) 
    m=as.character(Codons[Codons[,2]==d & Codons[,3]==e & Codons[,4]==f,1]) 
    n=as.character(Codons[Codons[,2]==g & Codons[,3]==h & Codons[,4]==k,1]) 
    if (as.character(Codons3[i,1])==l){o="Synonymous"}else{o="Non-Synonymous"} 
    if (as.character(Codons4[i,1])==m){p="Synonymous"}else{p="Non-Synonymous"} 
    if (as.character(Codons5[i,1])==n){q="Synonymous"}else{q="Non-Synonymous"} 
    r=rbind(o,p,q) 
    Total=rbind(Total,r)}} 
 
Syn=0 
Non=0 
for (i in 1:nrow(Total)){ 
  if (Total[i,1]=="Non-Synonymous"){Non=Non+1}else{Syn=Syn+1}} 
 


