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Abstract
In this thesis we consider, from a computability perspective, the question of what order-

theoretic properties of a partial order can be preserved under linear extension. It is well-

known that such properties as well-foundedness or scatteredness can be preserved, that

is, given any well-founded partial order you can find a well-founded linear extension and

mutatis mutandis for scattered partial orders.

An order type σ is extendible if a partial order that does not embed σ can always be

extended to a linear order that does not extend σ. So for example “given any well-founded

partial order, you can find a well-founded linear extension” is equivalent to saying that ω∗

is extendible. The extendible order types were classified by Bonnet [3] in 1969.

We define notions of computable extendibility and then apply them to investigate the

computable extendibility of three commonly used order types, ω∗, ω∗ + ω and η.

In Chapter 2 we prove that given a computably well-founded computable partial order,

you can find a computably well-founded ω-c.e. linear extension, and further that this

result doesn’t hold for n-c.e. for any finite n. In Chapter 3 we show how to extend these

results for linearisations of computable partial orders which do not embed ζ = ω∗+ω. In

Chapter 4 we prove the analogous results for scattered partial orders.
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Chapter 1

Introduction

1.1 Notations and Conventions

We begin by setting out the notation and conventions that we will be working in, in order

to avoid confusion with some of the historical conventions which may differ from the

modern standards. We will mostly follow the conventions laid out in Cooper [10], Soare

[49] and other standard texts.

We denote the set of natural numbers by N = {0, 1, 2, . . . } and its order type

under the usual ≤ ordering by ω. We will use lower-case Roman characters to denote

natural numbers, and upper-case Roman characters to denote subsets of N. We will use

lower-case Greek characters to denote order types, ω for the order type of the natural

numbers, η for the order type of the rational numbers, and a star ∗ to denote a reverse

type, so for example ω∗ denotes the reverse of the order type of the natural numbers or

the order type of the negative integers. We will use ≡ to denote isomorphism between

order types.

Given a (possibly partial) function f , we use the notation f(n) ↓ if f is defined at
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n, and f(n)↑ if f is not defined at n. If f and g are functions, and the domain on which

f is defined is a subset of the domain on which g is defined, and f(n) = g(n) for all n

on which f is defined, then we say f ⊆ g. If for some n, f(n)↓6= g(n)↓ then we say the

functions are incompatible.

We use the standard bijective pairing function 〈·, ·〉 : N × N → N, 〈x, y〉 =

x2+2xy+y2+3x+y
2

, and if necessary we can nest it to get a bijection from Ni → N for any i.

We use the standard listing {We}e∈N of computably enumerable sets, where by the

Normal Form Theorem, We is the domain of ϕe, the eth partial computable function

in a standard computable listing of partial computable functions {ϕe}e∈N. We have the

standard approximations {We[s]}e,s∈N associated to the We. We[s] denotes the set of

natural numbers enumerated into We by the end of stage s of a computation. Turing

functionals will be denoted by upper case Greek letters.

1.2 Computability Theory

Computability Theory, also known as Recursion Theory, is based in the study of

effectiveness. Intuitively we think of an algorithm as an effective process for calculating

a function or deciding a question like whether a number is in a specific set. What it means

for a process to be effectively calculable, and whether some algorithms are in some sense

more effectively calculable than others, are questions we ask in Computability theory.

The notion of effectively calculable can be formalised in different ways, including

“general recursive”1 (Gödel and Herbrand 1931 [17]), “λ-definable” (Church 1932 [6]

1This notion was also just called “recursive”, particularly by Church and Kleene after 1934/5.
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1936 [8] 1940 [9])2, and “computable”3 (Turing 1936 [52]). These different models of

computation were proved to be equivalent by Church and Turing [7] and the idea that

they capture the intuitive notion of effectively calculable is known as the Church-Turing

Thesis, stated for example in Turing’s PhD thesis [53].

Turing computability, using Turing’s “automatic machines”4 provides a useful way

of talking about computable functions. We assume familiarity with the technical details

of Turing machines and their use, further details can be found in the texts listed at the end

of this section.

The functions we consider in computability theory are conventionally functions of

natural numbers, with a domain of A ⊆ N and a codomain of N. It is useful to distinguish

the case when A = N and functions which are defined on all natural numbers are called

total functions, and partial functions otherwise. When we talk about the computability

of a subset A ⊆ N, we identify the set with its characteristic function, the function

fA : N→ {0, 1} such that

fA(n) =

1 if n ∈ A

0 if n /∈ A.

And then the computability of A is defined as the computability of fA. Given the usual

equivalence between subsets of N and binary reals, this also allows us to talk about the

computable complexity of individual real numbers, in terms of the oracle strength needed

to compute them.

2The original system published in 1932 was shown to be inconsistent by Kleene and Rosser [26], so in

1936 Church published what is now known as the untyped lambda calculus, and in 1940 the simply typed

lambda calculus.
3This notion is now known as Turing computable
4Turing [52] used the terminology “automatic machines” or “a-machines”. We now know these

constructs as “Turing machines”.
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The oracle Turing machine, introduced by Turing in 1939 [53] allows us to talk

about functionals. Functionals are partial or total functions which range over functions

of numbers and return numbers, in an effective sense. The functional F (α0, . . . , αn, ~x)

is a partial computable functional if it can be obtained from partial functions α0, . . . , αn

and the initial functions by composition, primitive recursion and µ-recursion, where the

partial functions α0, . . . , αn correspond to oracles in the Turing machine implementation

of the functional.

Each partial computable functional F (α0, . . . , αn, ~x), considered as a functional of

a variable α0, is computable uniformly5 in α1, . . . , αn, ~x, and so we can construct an

effective listing of partial computable functionals {Fe(α0)}e∈N. This allows us to list all

possible Turing machines, since we can assign a Gödel number n to a Turing machine Ψ,

then list the machines Ψ1,Ψ2, . . ., which compute Fm for some m. For ease of use, we

say that if n is not the Gödel number of a Turing machine, then Ψn is a Turing machine

running the empty program.

Given such a list of Turing machines, Turing showed that we can find a partial

computable functional F (x, y) = Ψx(y), which we can use to simulate any of the Turing

machines in the list. We call such a machine a Universal Turing Machine.

We write Ψ(B) = A to mean that the Turing machine Ψ can compute the set A

when given the set B as an oracle, and we use this notion to define the relation A ≤T B

if there exists a Turing machine Ψ such that Ψ(B) = A, and we call the relation ≤T
“Turing reducible to”. The relation ≤T induces an equivalence relation ≡T on sets of

natural numbers; A ≡T B if A ≤T B and B ≤T A (so there are Turing functionals

Ψ,Ψ′ such that Ψ(A) = B and Ψ′(B) = A). We call the equivalence classes of this

relation Turing degrees as defined by Post [39]. Formally, the Turing degree of a set A is

5By which we mean that the computation is the same, just with different inputs.
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deg(A) = {X ⊆ N | X ≡T A}, often denoted by a.

Further, as shown by Post [39] there is an induced partial ordering ≤ on the Turing

degrees obtained by setting a ≤ b if there is some A ∈ a and B ∈ b such that A ≤T B.

We can use this partial ordering to define the Turing degree structure D = (D,≤), which

is a major object of study in Computability Theory.

The list of Turing machines allows us to define the halting set K = {x |

Ψx(x) is defined}, which is not computable. Using the list of Turing machines, we

can define a corresponding list of setsWe = {n|Ψe(n) halts}, which gives us the standard

listing of what are called the computably enumerable sets. Clearly K = We for some

e ∈ N.

Kleene and Post [25] relativised the halting set, KA = {x | Ψx(A;x) ↓}. This

notion defines the jump operator, KA is A′, the jump of A, and the n + 1th jump of A

is An+1 = KAn
= (An)′. It naturally follows that the jump of a degree is a′ = deg(A′)

and the jump function f : D → D, f : a 7→ a′ is a well defined and strictly increasing

function on the Turing degrees. Of particular interest is the degree 0′, the degree of the

jump of a computable set, which is also the degree of K.

The arithmetical hierarchy of sets of natural numbers classifies the complexity of

the formulae needed to define such sets. A formula with only bounded quantifiers is

in both the classes Σ0
0 and Π0

0. Then we inductively define the hierarchy as follows, in

the manner due to Kleene [22] and (independently) Mostowski [33], using the Prenex

Normal Form of Kuratowski and Tarski [27].
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• A formula is in the class Σ0
n if it is logically equivalent to a formula of the form

∃x̄ϕ(x̄), where ϕ(x̄) is in the class Π0
n−1.

• A formula is in the class Π0
n if it is logically equivalent to a formula of the form

∃x̄ϕ(x̄), where ϕ(x̄) is in the class Σ0
n−1.

Then a set is in the class Σ0
n if it can be defined by a Σ0

n formula, and similarly for Π0
n.

The intersection of the classses Σ0
n and Π0

n is called ∆0
n. The Turing computable sets

are exactly those in class ∆0
1, and the computably enumerable sets are exactly those in

Σ0
1. The arithmetical hierarchy on degrees is defined in the obvious way, a degree is in

Σ0
n if it contains a set in Σ0

n and the same for Π0
n. In this thesis, the superscript 0 will be

assumed, and for simplicity of notation will be suppressed.

The degrees below (Turing reducible to) 0′ are called the local degrees, and are

exactly those in the class ∆2 (by Post’s Theorem [38]). In general the ∆n+1 sets are

precisely those Turing reducible to 0(n). The sets in the local degrees will be of particular

interest in this thesis, and we will need to define a finer-grained hierarchy on these sets.

1.3 The Ershov Hierarchy

The Ershov hierarchy, also known as the difference hierarchy, or the hierarchy of α-c.e.

sets, characterises the ∆2-definable sets by exploiting the Shoenfield Limit Lemma, which

approximates ∆2 sets in a limit computable way.

Lemma 1.1 (Shoenfield Limit Lemma, 1959 [45]).

A set A is ∆2 if and only if there is a computable binary function f : N2 → {0, 1} such

that for all n ∈ N there are cofinitely many stages s at which χA(n) = f(n, s), (where χA

is the characteristic function of A) that is that lim
s→∞

f(n, s) exists and is equal to χA(n).
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The n-c.e. hierarchy for finite n was introduced by Putnam (1965 [41]) and Gold (1965

[18]), then it was extended to transfinite α-c.e. by Ershov (1968-70 [13] [14] [15]).

Intuitively we think of a c.e. set as a set which can be approximated by a function

A(s, x) : N2 → {0, 1}, where A(0, x) = 0 for all x, i.e. we start by guessing that x /∈ A

at stage 0, then if at some time t we enumerate x into A, we have A(t, x) = 1, and

A(t′, x) = 1 for all t′ > t. Notice that the approximation changes at most once for a

given x as s increases.

If we allow the approximation to change more than once, we can approximate a

larger class of sets, and for each n, we call the class of sets which can be approximated

by allowing the approximation as discussed above to change up to n times for each x, the

class of n-c.e. sets. This informally defines the finite levels of the Ershov hierarchy, and

we can give a formal definition as follows.

Definition 1.2.

A set A ⊆ N is n-computably enumerable if either n = 0 and A = ∅ or n > 0 and there

are c.e. sets R0 ⊇ R1 ⊇ · · · ⊇ Rn−1 such that,

A =

bn−1
2 c⋃
i=0

(R2i \R2i+1) (if n is odd then set Rn = ∅).

Or equivalently, if there is a computable binary function f : N2 → {0, 1} such that for all

x, f(0, x) = 0 and A(x) = lim
s→∞

f(s, x), and |{s | f(s+ 1, x) 6= f(s, x)}| ≤ n.

Following the notation introduced by Ershov, we call the class of n-c.e. sets level Σ−1n of

the Ershov hierarchy, with the complements of those sets constituting level Π−1n and the

intersection of Σ−1n and Π−1n is called ∆−1n .

It is obvious that Σ−1n ⊂ Σ−1n+1, since any n-c.e. set is also an (n + 1)-c.e. set.
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But the inclusion is strict because for every n > 0 there is an (n+ 1)-c.e. set which is not

n-c.e., and which has a complement which is (n + 1)-c.e. and not n-c.e, so Σ−1n ( Σ−1n+1

and Π−1n ( Π−1n+1. Then obviously we have the hierarchy theorem that for all n > 0,

Σ−1n ∪ Π−1n ( Σ−1n+1 ∩ Π−1n+1.

We define Σ−1ω , the first infinite level of the Ershov hierarchy, in a similar way.

Definition 1.3.

A set A ⊆ N belongs to level Σ−1ω of the Ershov hierarchy, if there is an ω-sequence of

uniformly c.e. sets {Re}e∈ω such that A =
∞⋃
n=0

(R2n+1 \R2n).

Then Π−1ω is the class of complements of sets in Σ−1ω , and ∆−1ω = Σ−1ω ∩ Π−1ω , and we

describe the sets in∆−1ω as ω-c.e. The ω-c.e. sets can be characterised in a number of

different ways, which may be more or less useful depending on the situation. We present

some of these characterisations below, following Arslanov [1].

Theorem 1.4 (Arslanov [1]).

Let A ⊆ N, then the following are equivalent:

1. A is ω-c.e.

2. There exists an ω-sequence of uniformly c.e. sets {Re}e∈ω such that
⋃
e∈N

Re = N

and A =
∞⋃
n=0

(R2n+1 \R2n).

3. There exist computable functions f, g such that for all s, x ∈ N, A(x) =

lim
s→∞

g(s, x) and |{s | g(s, x) 6= g(s+ 1, x)}| ≤ f(x).

4. There is a partial computable function ϕ such that for all x ∈ N, A(x) =

ϕ(µt(ϕ(t, x) ↓), x).

5. A is tt-reducible to 0′.
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For further background on Computability Theory we refer the reader to standard texts

such as Cooper [10], Nies [35], Odifreddi [36] [37] and Soare [49]. For further details on

the Ershov hierarchy we refer to Arslanov [1], Ershov [13] [14] [15] and Stephan, Yang

and Yu [50].

1.4 Priority Arguments

Priority arguments are one of the key tools of computability theory, used in proofs in

all areas of computability. They are used to construct a structure (or several structures)

with some particular properties in a computable way. The idea is to break the property

down into infinitely many requirements, and then come up with a strategy to satisfy each

requirement individually, and then a method to combine all of the strategies. In order

to deal with clashes when combining the strategies, we put a priority ordering on the

requirements, so that if at any point two or more requirements are in conflict then the

requirement with highest priority takes precedence. Once the construction ends and the

argument is completed, we have a verification to show that the argument is sound, and

the construction satisfies the properties that we want.

Priority arguments originated with Kleene and Post [25] who gave the first use of

this method in the proof of Theorem 1.5.

Theorem 1.5 (Kleene and Post 1954 [25]).

There exist incomparable degrees below 0′

Note that in this argument each requirement is satisfied without injuring any other

requirements. This is the simplest type of priority argument, a more complicated

argument allows requirements to injure requirements of lower priority, by which we mean

cause them to become unsatisfied if they have been satisfied before the higher priority
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requirement. This type of priority argument was independently developed by Friedberg

[16] and Muchnik [34] to prove Theorem 1.6.

Theorem 1.6 (Friedberg 1957 [16] and Muchnik 1956 [34]).

There exist incomparable c.e. degrees.

There is an important distinction to be drawn between arguments which allow

requirements to be injured infinitely often, and arguments which only allow finite injury.

The theorems in this thesis will only use finite injury priority arguments, so we will not

go into detail on how infinite injury works. To give an example of the use of the finite

injury priority method related to linear orderings, we prove the following well-known

theorem, following the proof as presented by Downey [11]. This is not the simplest

proof, it is possible to prove this result without using the priority method, but we hope

this will be illustrative of how it works.

We first need to define the concept of a mathematical structure (in this case a linear order)

being 1-computable. A structure A is 1-computable if any logical sentence with one

quantifier can be effectively decided in the structure. Note that this is stronger condition

than A being computable, which just means that the order relation is computable.

Theorem 1.7 (Folklore, see for example Downey [11] Theorem 2.11).

There is a computable linear orderingA of order type ω with S(x), the successor function,

not computable. Hence, A is not 1-computable since the adjacency relation is not

computable.

Proof. We build a computable linear order A as the union of finite linear orderings ∪sAs.

The two properties that we want A to have are that it has order type ω and S(x) is not

computable in A. We can split each property into infinitely many requirements. Labelling

the elements of A as a0, a1, a2, . . ., and using a standard computable listing of partial

computable functions {ϕe}e∈N, we get the requirements as follows, for each e ∈ N.
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Ne: ae has finitely many predecessors.

Pe: ϕe is not the successor function on A.

Where clearly the N requirements ensure A has order type ω, and the P requirements

ensure that S(x) is not computable.

In order to satisfy Pe, we choose some x = x(e) and wait for a stage s such that

ϕe,s(x)↓. If this never happens then ϕe is not total and Pe is satisfied. If there is some

s such that ϕe,s(x)↓ then we place a new point between x and ϕe(x), ensuring that

ϕe(x) 6= S(x). This strategy for satisfying Pe is called the basic module for Pe.

This has the potential to cause problems for Ni, as if infinitely many P requirements are

allowed to place new points below ai then Ni will not be satisfied. In order to avoid this,

we use the priority ordering N0 � P0 � N1 � P1 � N2 � P2 � · · ·. Thus only finitely

many P requirements have higher priority than a given N requirement Ni, and so only

finitely many can place a new point below ai. If we ensure that each Pe with e <N i only

injures Ni finitely many times, that is only places finitely many new points below ai, then

Ni will be satisfied.

The strategy we use to combine the basic modules for the Pe is just to ensure that

we choose x(e) so that it is not below ai for i ≤N e. Then Pe will not add a predecessor

of ai if i ≤N e. In the construction we will say that Pe requires attention at stage s + 1

if either Pe has not chosen an element x(e), or Pe has chosen x(e) and ϕe,s(x(e))↓ and

ϕe,s(x(e)) = S(x(e)).

The construction proceeds by stages. At Stage 0, we set A0 = {a0}. At the start

of stage s + 1, we have ≤As as some linear order on the set {a0, . . . as}. We search for

the least e ≤ s such that Pe requires attention. We know that there will be at least one
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Pe with e ≤ s which requires attention, as we cannot have chosen x(e) for e = s. If Pe

requires attention because there is no x(e), then define As+1 by placing as+1 above all

ai for i <N s + 1 and declare that x(e) = as+1. Alternatively, if Pe requires attention

because ϕe,s(x(e)) ↓ and ϕe,s(x(e)) = S(x(e)) then define As+1 by placing as+1 between

x(e) and S(x(e)). Then proceed to Stage s+ 2.

It is clear that each Pe requires attention at most twice, each time adding one element to

the linear order. Hence, each Ni requirement will be satisfied because only finitely many

points can be added as predecessors to ai, since only Pe for e < i can add such points.

This means that Ni can only be injured finitely often, and therefore all the requirements

will be satisfied, and A will have the desired properties.

1.5 Order Theory

The theory of ordering is based on the highly intuitive notion of some numbers being

bigger than others. If we abstract this notion to a general notion of an order on a set, we

can define an ordering P as a set P equipped with a binary relation≤P with the following

properties. We choose here for convenience to use a non-strict ordering, which conforms

to the usual notion of ≤, rather than a strict order which conforms to the notion of <.

• Reflexivity, ∀p ∈ P , p ≤P p.

• Antisymmetry, ∀p, q ∈ P , if p ≤P q and q ≤P p then p = q.

• Transitivity, ∀p, q, r ∈ P , if p ≤P q and q ≤P r then p ≤P r.

These properties define a partial order, and if we further require that any two elements

are comparable, then we define a linear order, also known as a total order.
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In general partial orders are defined on any set, but for the purposes of this thesis

we will only be using countable domains, in particular N or subsets of N.

An order type is a equivalence class under order isomorphism of partial orders,

though we will often refer to it as if it is a partial order of that type. Order types will

be denoted by lower case Greek letters, for example, ω is the order type of the natural

numbers. Ordinals are a subset of order types, and we will use an extension of ordinal

arithmetic on order types.

If σ and τ are order types, then σ + τ is the order type formed by concatenation

of σ and τ , and στ is the order type formed by replacing every point in τ by a copy of σ.

Also we denote the reverse ordering of σ by σ∗.

There are several properties of orderings which we will be concerned with in this

thesis and which I will introduce now. The most well-known property is that of being

well-founded, this means that every non-empty chain of P has a ≤P -minimal element.

Equivalently, we say that an ordering is well-founded if it contains no infinite descending

chain, that is, it does not embed ω∗, the order type of the negative integers.

Another key property of orderings is that of being scattered. An ordering is scattered if

it contains no dense chain, with density here being defined as follows. If P = (P,≤P )

is a partial ordering, and given a chain Q ⊆ P , then Q is dense in P if for all p, q ∈ Q

with p ≤P q, there is some r ∈ Q such that p <P r <P q. Equivalently we can say an

ordering is scattered if it does not embed η, the order type of the rational numbers.

We say a linear order L is indecomposable if whenever we can write L = A + B for

some linear orderings A,B, either A or B embeds L. We say L is right-indecomposable

if whenever L = A + B and B is not empty, then B embeds L. Similarly we say L is
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left-indecomposable if whenever L = A+ B and A is not empty, then A embeds L.

We call a partial order P = (P,≤P ) computable, if P is a computable subset of

N and ≤P is a computable subset of N2, using a suitable coding. Then we can classify

non-computable orderings by the complexity of the order relation, as all orderings we

will discuss in this thesis will have a computable set as the domain, in fact we will mostly

consider orderings on N.

1.6 Extensions

Given a partial order P = (P,≤P ), we say that L = (L,≤L) is a linear extension, or

linearisation of P , if L is a linear order, P = L and ≤P⊆≤L. We know that due to an old

theorem of Szpilrajn, linear extensions always exist, and in fact this can be effectivised.

Theorem 1.8 (Szpilrajn 1930 [51]).

Every partial order has a linear extension.

Theorem 1.9 (Folklore, see for example Downey 1998 [11]).

Every computable partial order has a computable linear extension.

There has been a lot of work in the area of preservation under linearisation of various

properties of partial orders such as those discussed above. Considerable work was done

here by Bonnet, Pouzet, Jullien, Galvin, McKenzie and others (see [5]) on the question

of whether partial orders without a countable subordering of a certain order type must

always have a linear extension which also has no suborderings of that type. If an order

type can be avoided in such a way, then we call it extendible.

Definition 1.10.

If α is a countable order type, we say α is extendible if any partial order P which does

not embed α can be extended to a linear order L which does not embed α.
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This culminated in the complete classification of countable extendible order types by

Bonnet in 1969 [3]. This includes the order type ω∗, the avoidance of which makes a

partial order well-founded, and the order type η, the avoidance of which makes a partial

order scattered.

Definition 1.11.

We define a family of order types, by transfinite induction over the countable ordinals, i.e.

the ordinals below ω1.

• π1 = ω.

• For a successor ordinal α + 1 < ω1, πα+1 = π∗αω.

• For a limit ordinal λ < ω1, πλ =
∑
α<λ

π∗α.

Theorem 1.12 (Bonnet 1969 [3]).

A countable order type α is extendible if and only if:

• α ≡ η, or

• α ≡ πν for some ν < ω1, or

• α ≡ π∗ν for some ν < ω1, or

• α ≡ π∗ν + πν for some ν < ω1.

We must note that the definition of partial order that was used here is not the same as ours,

in particular Bonnet considered partial orders over any set as the domain, not just partial

orders on countable domains. If we restrict to partial orders on a countable domain, then

we get a different classification, as proved by Jullien [21]. We use the formulation of

Theorem 1.15 given by Montalbán [32] rather than Jullien’s original theorem, but it is

equivalent, as Montalbán showed.
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Definition 1.13.

A linear order type α is weakly extendible, when α is countable and any countable partial

order that does not embed α can be extended to a linear order that does not embed α.

Definition 1.14. A segment B of a linear ordering L = A+B+C is essential if whenever

we have L ≤ A+B′+C for some linear ordering B′, then it must be the case that B ≤ B′.

Theorem 1.15 (Jullien 1969 [21]).

A scattered linear ordering L is extendible if and only if it does not have an essential

segment B such that

• B = R+Q, whereR is right-indecomposable and Q is left-indecomposable, or

• B = 2.

There has been a lot of work carried out on linear extensions of partial orders, other than

concerning extendible order types. We give some examples here to show the context for

the work on extendible types. We are still concerned here with classes of partial orders

which have particular properties, and whether or not they can be guaranteed to have

linear extensions with those properties, or possibly other properties.

In some unpublished notes, Miller [31] proved some interesting results about the

computational power of scattered extensions, in particular the existence of scattered

partial orders such that any scattered extensions can compute various sets.

Definition 1.16.

Given sets A and B, a separator of A and B is a superset of A which is disjoint from B.

Theorem 1.17 (Miller 2015 [31]).

Let A,B be disjoint Σ1
1 sets. There is a scattered computable partial order such that any

scattered linear extension computes a separator of A and B.
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Theorem 1.18 (Miller 2015 [31]).

Let A,B be disjoint c.e. sets. There is a scattered computable partial order such that any

linear extension either computes a suborder of itself of type η or computes a separator of

A and B.

Theorem 1.19 (Miller 2015 [31]).

Let A,B be disjoint Σ0
2 sets. There is a scattered computable partial order such that any

(classically) scattered linear extension computes a separator of A and B.

Pouzet and Rival [40] investigated extensions of partial orders with the family of

properties around chain-completeness.

Definition 1.20.

We say a linearly ordered subset (chain) of a partial order is saturated if no element of the

partial order between two elements of the chain can be added to the subset without losing

the property of being linearly ordered. A stronger property is a chain being maximal,

which is when no element can be added without losing the property of being linearly

ordered, even at the top or bottom of the subset.

Definition 1.21.

We say a partial order P is chain-complete if every maximal chain of P is complete, that

is, every subchain of a maximal chain has both an infimum and a supremum. We say P

is locally chain-complete if every interval in P is chain-complete. If P is a chain and it is

locally chain-complete then we call it locally complete.

Theorem 1.22 (Pouzet and Rival 1981 [40]).

• Every locally chain-complete ordered set in which all antichains are finite has a

locally complete linear extension.

• Every countable, locally chain-complete partially ordered set has a locally complete

linear extension.
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In response to an unpublished question of Łoś, Rutkowski found some necessary

conditions and some sufficient conditions for a partial order to have a linear extension

of order type η.

Theorem 1.23 (Rutkowski 1996 [44]).

• If P is a partial order which has a linear extension of order type η, then P contains

an infinite antichain or a nontrivial dense saturated chain.

• If P is a countable partially ordered set which contains a maximal chain C of order

type η, such that for each p ∈ C, the set {q ∈ P | ∀c ∈ C, (c <P p ⇐⇒ c <P

q and p <P c ⇐⇒ q <P c)} is either equal to {p} or has an extension of order

type η, then P has a linear extension of order type η.

• If P is a countable partially ordered set which satisfies the property that if X ,Y

are finite antichains in P such that no element of X is ≤P -above any element of

Y , then there exists an element p ∈ P which is neither in the upward cone of X

or the downward cone of Y . Then P will have a linear extension of order type η.

Moreover ≤P is the intersection of all such extensions.

Slaman and Woodin further investigated the question of when a partial order has a linear

extension of order type η, and showed that it has no easy answer.

Definition 1.24. IfX is a subset ofN, then consider {e}X as a suborder of ω<ω and define

Ł(X) = {e | {e}X is a partial order on N and has a linearisation of order type η}.

Then let Ł = {〈e,X〉 | e /∈ Ł(X)}.

Theorem 1.25 (Slaman and Woodin 1998 [48]).

There is a computable function f such that for all e,X , {e}X is a well-founded subtree

of ω<ω if and only if f(e) /∈ Ł(X).

By a theorem of Kleene [24], the collection of well-founded subtrees of ω<ω is Π1
1-

complete hence, Ł is a complete Σ1
1-predicate, and therefore not a Borel set.
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In model theory, Ramakrishnan and Steinhorn [42] extending work of Macpherson and

Steinhorn [30] proved the following theorem concerning classes of first-order structures

in which definable partial orders have definable linear extensions.

Theorem 1.26 (Ramakrishnan and Steinhorn 2014 [42]).

LetM = (M,<, . . . ) be a first-order structure which is weakly o-minimal, o-minimal,

quasi-o-minimal, well-ordered, or elementarily equivalent to a structure with one of those

properties, in which the symbol < is a linear order on M . Then if P = (P,≺) is a partial

order on a subset P ⊆Mn for some n which is definable inM, then P will have a linear

extension definable inM.

1.7 Reverse Mathematics

There has also been a lot of recent interest in the proof-theoretic content of the theorems

about extendibility of order types, investigated using the methods of reverse mathematics.

The idea is to determine, for a given theorem, the minimal axiomatic system which

is sufficient to prove it. In particular we consider the strength of set comprehension

needed to prove the theorem. A comprehension scheme is the collection of axioms

∃X∀n(n ∈ X ↔ ϕ(n)), for all formulae ϕ in some particular class.

It is the size of the class of formulae needed which we use to classify the strength

of the theorem. Typically classes used are defined by allowable quantifier depth, we

consider for example ∆0
1-comprehension and Π1

1-comprehension amongst others, but

other measures of formula complexity are also used.

As a base, we use the finite axioms of Peano Arithmetic (i.e. PA without the

induction schema) along with the Σ0
1-induction scheme, which means that for all Σ0

1

formulae ϕ, (ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x+ 1)))→ ∀nϕ(n).
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On top of this base system, Simpson [47] describes five successively stronger systems,

which are generally known as the Big Five (see, for example, Hirschfeldt [19]). These

systems are all frequently used in reverse mathematics. The list below gives the axioms

which need to be added to the base system to get each of the Big Five, and are listed in

order of strictly increasing proof-theoretic strength.

It turns out that many classical theorems are equivalent to one of the above Big Five

systems, and much work in reverse mathematics involves proving that a given theorem is

weaker, stronger or equivalent to one of the above. Significant work has been done on

placing the theorems which state the extendibility of certain key order types in the reverse

mathematics classification, although precise equivalences have not been found in all cases.

Recursive comprehension axiom RCA0 ∃X∀n(n ∈ X ↔ ϕ(n)) for ∆0
1

formulae ϕ.

Weak König’s Lemma WKL0 Every infinite binary tree has an

infinite path.

Arithmetical comprehension axiom ACA0 ∃X∀n(n ∈ X ↔ ϕ(n)) for

arithmetical formulae ϕ.

Arithmetical transfinite recursion ATR0 Any arithmetical operator can

be iterated tranfinitely along any

countable well-order.

Π1
1 comprehension axiom Π1

1-CA0 ∃X∀n(n ∈ X ↔ ϕ(n)) for Π1
1

formulae ϕ.
The research that has been conducted into the question of determining the proof-theoretic

strength of the statement of the extendibility of various order types can be summarised as

follows.
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Theorem 1.27 (Downey, Hirschfeldt, Lempp and Solomon 2003 [12]).

• “ω∗ is extendible” is provable in ACA0.

• “ω∗ is extendible” proves WKL0 over RCA0.

• “ω∗ is extendible” is not provable in WKL0.

Theorem 1.28 (Downey, Hirschfeldt, Lempp and Solomon 2003 [12]).

• “η is extendible” is provable in Π1
1-CA0.6

• “η is extendible” is not provable in WKL0.

Theorem 1.29 (J. Miller 2015 [31]).

• “η is extendible” implies WKL0 over RCA0.

• “η is extendible” implies ATR0 over Σ1
1-CA0.

Theorem 1.30 (Montalbán 2006 [32]).

• “η is extendible” is provable in ATR∗7.

Theorem 1.31 (Downey, Hirschfeldt, Lempp and Solomon 2003 [12]).

• “ζ is extendible” is equivalent to ATR0 over RCA0.

Another interesting reverse mathematical result in the field of extendible order types

involves Jullien’s classification of weakly extendible order types (Theorem 1.15) and

Fraı̈ssé’s conjecture8. We recall Jullien’s result from Theorem 1.15 and the statement

of Fraı̈ssé’s conjecture below.
6Downey et. al. actually proved that “η is extendible” is provable in Π1

2-CA0, which was then improved

to Π1
1-CA0 with Becker, in the same paper.

7ATR∗ is the system ATR0 with Σ1
1-induction.

8Proved by Laver 1971 [28].
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Theorem 1.32 (Fraı̈ssé’s conjecture, Laver 1971 [28]).

The class of countable linear orderings, quasiordered by the relation of embeddability,

contains no infinite descending chain and no infinite antichain.

Theorem 1.33 (Montalbán 2006 [32]).

Jullien’s theorem is equivalent to Fraı̈ssé’s conjecture over RCA0 + Σ1
1-IND.

It should be noted that Shore [46] had previously proved that Fraı̈ssé’s conjecture is proof-

theoretically strong, indeed it implies ATR0 over RCA0, so Montalbán’s result shows that

Jullien’s theorem is also strong.

1.8 Thesis Outline

In this thesis we consider the computable content of Bonnet’s Theorem (Theorem

1.12), extending previous work of Rosenstein, Statman and Kierstead [43], Downey,

Hirschfeldt, Lempp and Solomon [12] and Cooper, Lee and Morphett [29].

The question is whether given a computable partial order which does not computably

embed some extendible computable order type, what is the lowest level of complexity at

which we can always find a linear extension which also does not computably embed that

order type?

In Chapter 2 we look at well-founded orderings, i.e. orderings which do not embed ω∗,

and improve the lower bound proved by Rosenstein and Kierstead to show that the upper

bound previously proved by Cooper, Lee and Morphett is the best possible result.

Theorem 1.34 (Theorem 2.8, Theorem 2.14, Corollary 2.19).

If P is a computably well-founded computable partial order, then P has a computably

well-founded ω-c.e. linear extension. However, there is a computably well-founded
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computable partial orderP which has no computably well-founded n-c.e. linear extension

for any n ≥ 1.

In Chapter 3 we consider the order type ζ = ω∗ + ω and prove an analogous result for

n-c.e. extensions, but then show that this in fact extends to ω-c.e. and ∆2 extensions.

Theorem 1.35 (Theorem 3.9, Theorem 3.5).

There is a computable partial order P which does not computably embed ζ and has no

n-c.e. linear extension which does not computably embed ζ for any n ≥ 1. There is

a computable partial order P which does not computably embed ζ and has no ω-c.e.

linear extension which does not computably embed ζ . There is a computable partial order

P which does not computably embed ζ and has no ∆2 linear extension which does not

computably embed ζ .

In Chapter 4 we consider the case of scattered orderings, i.e. orderings which do not

embed η. We show that the order type η behaves similarly to ω∗.

Theorem 1.36 (Theorem 4.14, Theorem 4.18, Corollary 4.22).

If P is a computably scattered computable partial order, then P has a computably

scattered ω-c.e. linear extension. However, there is a computably scattered computable

partial order P which has no computably scattered n-c.e. linear extension for any n ≥ 1.
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Chapter 2

Well-founded orderings

We consider what is known about linearisations of well-founded partial orders, and the

computable content of those theorems in the Ershov hierarchy. We look at the previously

proved bounds on the complexity of linearisations which preserve well-foundedness, and

prove a new lower bound, closing the gap to give a sharp result.

2.1 Background

We know from the Szpilrajn Extension Theorem (Theorem 1.8) that any partial order

has a linear extension, so it is an obvious line of inquiry to ask whether a partial order

which has a particular order-theoretic property must have a linear extension which shares

that property. The most well known order theoretic property is probably that of well-

foundedness. It is often defined as the property that any suborder will have minimal

elements, but here we will use the following equivalent definition.

Definition 2.1.

A partial order P is well-founded if there is no infinite descending sequence under ≤P ,

i.e. P contains no subordering of type ω∗.
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Classically, it is known that well-foundedness can be preserved by linearisation, due to a

result of Bonnet. This is relatively easy to see, as we demonstrate below.

Theorem 2.2 (Bonnet 1969 [3]).

Every well-founded partial order P = (P,≤P ) has a well-founded linear extension. I.e.

ω∗ is extendible.

Proof. Inductively define a partition of P as follows: let P0 be the set of ≤P -minimal

elements of P , then let Pα be the set of ≤P -minimal elements of P \
⋃
β<α Pβ . This

process will terminate for some Pδ = ∅. Clearly each Pα is an antichain in P , so let

L(Pα) be a well-founded linear extension of Pα, then
∑
α<δ

L(Pα) is a well-founded linear

extension of P .

Kierstead and Rosenstein [43] demonstrated a version of Bonnet’s result for computable

orderings, but at the same time Rosenstein and Statman [43] showed that a version with

a computable version of the well-foundedness property does not hold. We use the notion

of computable well-foundedness, as introduced by Rosenstein.

Theorem 2.3 (Kierstead and Rosenstein 1984 [43]).

Every well-founded computable partial order has a well-founded computable linear

extension.

Proof. Suppose P = (P,≤P ) is a computable partial order, and that it is well-founded.

Then we construct a computable linear extension L = (P,≤L) of P as follows.

Suppose at the start of stage n we have already defined whether a ≤L b holds for

all a, b <N n, and ≤L,n−1 is a linear ordering of {1, 2, . . . , n − 1} which extends

≤P �n−1. At stage n we must decide where n should be placed in the ordering that we are

constructing. We choose to place n as high as possible whilst extending the ordering of

P , that is we place it immediately below the≤L,n−1-smallest number which is≤P -greater
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than n.

In Figure 2.1 we depict the linear order on the first n − 1 elements, and have

circled the elements which are ≤P -greater than n and squared the elements which are

≤P -less than n. The arrow then shows where n will be placed in the linearisation.

Figure 2.1: Construction of the linear extension

It is clear that this method will produce a computable linear extension of P . Now

suppose that L is not well-founded, so there exists some infinite descending

chain x0 >L x1 >L x2 >L · · ·. Without loss of generality we can assume that

x0 <N x1 <N x2 <N · · · and we know that for all i <N j we must have either xi >P xj or

xi |P xj . Since we assume that P is well-founded, by Ramsey’s theorem we can assume

that xi |P xj for all i, j, by ignoring some of the sequence if necessary.

Therefore, for each i > 0 we know that xi |P x0, xi >N x0 and xi <L x0, and

hence there must be some yi such that yi <N x0 and xi <P yi <L x0. Since each yi <N x0

there must be some y0 <N x0 such that xi <P y0 <L x0 for infinitely many xi, and hence

we may assume that y0 is chosen minimally with this property, and by eliminating other

xi we may thus assume that xi <P y0 <L x0 for all i > 0.

If we continue to inductively define yi for all i ∈ N, we build a sequence y0, y1, y2, . . .

such that for all i, j ∈ N such that i >N j, we have xi <P yj <L bj and that all the yj are

chosen minimally (i.e. such that there is no z <N yj with xi <P z for infinitely many xi).

We know that none of the yi are equal and in fact y0 <N y1 <N y2 <N · · ·, because of the

minimality and since yi <L xi <P yj for all i >N j.
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Since yj+1 <L xj+1 <P yj , we have yj+1 <L yj . If yj+1 |P yj , then since

yj+1 >N yj , there must be some z <N yj such that yj+1 <P z <L yj . But then

xi <P yj+1 <P z <L yj for all i >N j+ 1, which contradicts the minimality of the choice

of yj . Hence, yj+1 <P yj for all j, which contradicts the well-foundedness of P .

Therefore, no such chain x0 >L x1 >L x2 >L · · · exists and Lmust be well-founded.

This theorem is only partially effective. We can also effectivise the embedding of ω∗, by

using the following definition instead of just wellfoundedness.

Definition 2.4.

A partial order A is defined to be computably well-founded if there is no computable

infinite descending sequence under ≤A, i.e. A contains no computable subordering of

type ω∗. Equivalently, if any computable suborder has a least element.

Theorem 2.5 (Rosenstein and Statman 1984 [43]).

There is a computably well-founded computable partial order which does not have a

computably well-founded computable linear extension.

Proof. The counterexample that we construct is a computable binary tree T known as

a Kleene Tree [23]. We start by computably generating the full downward-branching

binary tree, labelling the nodes by natural numbers coding binary strings, as in Figures

4.11 4.11. And simultaneously enumerating all computably enumerable sets We. If at

some time we have enumerated the first e elements of We and they form a descending

chain in the tree, then we “kill” the node corresponding to the eth element of We, by

which we mean that no new nodes will be added below it, so that the tree below that

point remains finite. Note that this construction doesn’t halt at a finite stage, because at

each level of the tree there are more nodes than c.e. sets that can possibly kill nodes at

that level. So the tree constructed will be infinite.
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This tree, whilst by König’s Lemma, clearly contains an infinite descending sequence, by

construction cannot contain a computable infinite descending sequence, and is therefore

computably well-founded.

Now, let L be any computable linear extension of T . We will show that L is not

computably well-founded by constructing a computable infinite descending chain in L.

Let x0 be the root of the tree, and P0 be the set of immediate T -predecessors of

x0. At the beginning of stage n, we assume we have already defined a sequence of

elements x0, x1, . . . , xn−1 and a set Pn−1. We further assume as part of the induction

hypothesis that the sequence x0, x1, . . . , xn−1 forms a terminal part of the tree, that is if y

is above xi in the tree, then y = xj for some j < i, and that Pn−1 consists of all the of the

immediate T -predecessors of all of the xi, apart from x0, x1, . . . xn−1.

Now, we define xn to be the L-greatest element of Pn−1, and Pn to be Pn−1 without xn

but with the T -predecessors of xn added. We now argue that the sequence x0, x1, . . . has

order type ω∗ in L.

Clearly all xi are distinct, since xi /∈ Pi but xi+1 ∈ Pi. Suppose that xi <L xi+1,

then xi+1 /∈ Pi−1, as otherwise it would have been chosen as xi, so xi+1 must be a

T -predecessor of xi, and therefore xi+1 <T xi, which is a contradiction of L being

a linear extension of T . We therefore have xi+1 <L xi for all i and hence L is not

computably well-founded.

The Kleene Tree is a natural example, though it is by no means the only way of

constructing an infinite computable binary tree with no computable path, and indeed

any such object would suffice to prove the theorem. It should be noted that this

counter-example also gives the result for computably enumerable linearisations, because
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a computably enumerable linear order with a computable domain, will in fact just be

computable. Although Rosenstein did not claim this corollary, it immediately follows

from Theorem 2.5.

Corollary 2.6.

There is a computably well-founded computable partial order which does not have a

computably well-founded computably enumerable linear extension.

Theorem 2.5 is the first negative result, showing that there is a partial order which does

not allow preservation of the given property under computable linear extension. This

establishes the negative lower bound, and prompts us to look for a positive upper bound.

Rosenstein and Statman also gave a positive result, that is they gave an upper bound on

the complexity of the computation necessary to obtain a computably well-founded linear

extension of a computably well-founded computable partial order.

Theorem 2.7 (Rosenstein and Statman 1984 [43]).

A computably well-founded computable partial order has a computably well-founded ∆2

linear extension.

Proof. Given some computably well-founded computable partial order P , we construct

a linearisation L which is computably well-founded. In order for L to be computably

well-founded, it suffices to show that no c.e. set We enumerates an infinite descending

sequence in L.

We can ensure this for each We in turn if we can ask an oracle if We is infinite. If

We is finite it will clearly not enumerate an infinite descending sequence, but if it is

infinite then we may need to construct L in such a way as to avoid an ω∗-sequence. Of

course if We is infinite then we will have the opportunity to do this, because since We

cannot enumerate an ω∗-sequence in P , it must contain infinitely many P-incomparable

suborderings, which can be enumerated into L to not build an infinite descending
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sequence.

“Is We infinite?” is a Π2 question, but in fact we can use a simpler Σ1 oracle

which answers the question “Does We have another element?”, and hence the constuction

of L in order to be computably well-founded is computable in a Σ1 set, or in other words,

P has a ∆2 linearisation which is computably well-founded.

2.2 The upper bound

Downey, in his 1998 survey article on Computability and Linear Orderings [11], asked

whether this ∆2 bound of Rosenstein and Statman could be improved. In Lee’s PhD

thesis [29], he presented a result, jointly with Cooper and Morphett, which improves the

bound using the Ershov difference hierarchy.

Rosenstein’s argument in the proof of Theorem 2.7 uses a 0′ oracle, but it is unclear

on whether there is a computable bound on the number of times the oracle is queried,

i.e. whether the construction is tt-reducible to 0′ and therefore ω-c.e. (c.f. Theorem

1.4). Cooper, Lee and Morphett re-cast this construction as a full-approximation priority

argument, giving an improved bound of ω-c.e.

The proof we give here is a slight modification of the Cooper, Lee and Morphett

proof, in particular we use a stronger restraint to make the proof easier to adapt for results

in later chapters.

Theorem 2.8 (Cooper, Lee and Morphett 2011 [29]).

A computably well-founded computable partial order has a computably well-founded ω-

c.e. linear extension.

Proof. Let P = (N,≤P ) be a computably well-founded computable partial order. We
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build a linearisation L of P as the limit of a uniformly computable sequence of finite

linear orderings (Ls = (N�s,≤L,s))s∈ω, such that the limit lim
s→∞

≤L,s=≤L exists and is a

linear extension of ≤P .

By examining the construction, we shall show there is a computable bound on the

number of changes to each element of ≤L,s, that is the set of s such that ≤L,s does not

agree with ≤L,s+1 on given a, b ∈ N is bounded by a computable function in a and b (and

so in 〈a, b〉). Hence, the limit ≤L= lim
s→∞

≤L,s is ω-c.e.

Let We be the e-th computably enumerable set, under the standard listing, and let

xe0, x
e
1, x

e
2, . . . be the elements of We in the order they are enumerated. Clearly, if (yi)i∈ω

is a computable sequence, then there is some e such that yi = xei for all i.

To ensure that L is computably well-founded, it suffices to ensure that no sequence

(xei )i∈ω defines an ω∗-sequence in L. As in the proof of Theorem 2.7 we achieve this for

each infinite We by finding some xei , x
e
i+1 ∈ We such that xei <P xei+1 or xei |P xei+1 and

xei >L xei+1 so we can change the order in the linearisation. Then We cannot define an

ω∗-sequence as it contains an ascending pair.

If We is infinite then such xei , x
e
i+1 must exist as otherwise We would define an

ω∗-sequence in P , contradicting the assumption that P is computably well-founded.

2.2.1 Requirements

The construction will satisfy the following requirements, for e ∈ ω,

N : L is a linear extension of P .

Re: We does not define an ω∗-sequence in ≤L.
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To satisfy the requirements we place them in a finite injury construction, with the

requirements in the priority ordering N � R0 � R1 � R2 � · · ·.

2.2.2 Strategy

We ensure that L is a linear extension of P by defining at every stage Ls to be a linear

extension of P �s. Then to ensure that the limit lim
s→∞
Ls exists, we restrain the requirement

Re from acting on ≤L,s�e. So only finitely many requirements can modify any part of

≤L,s, and since we will show each requirement can only act finitely often, the limit

exists. This also gives a computable bound on the number of changes, and hence that the

ordering ≤L is ω-c.e.

For each requirementRe, we set a restraint threshold te[s], which is theN-greatest number

which Re needs preserved from future alteration in order to ensure it remains satisfied, at

the beginning of stage s. We also define Te[s] = {n ∈ N | n ≤N max{te′ [s] | e′ < e}},

which is the portion of ≤L,s which Re is not permitted to alter, in order to avoid injuring

higher priority requirements.

To satisfy Re, we look for elements xei , x
e
i+1 ≥N e, such that either they are ≤P -

comparable and xei <P xei+1 or they are ≤P -incomparable and such that we can make

them an ascending pair in L without affecting ≤L,s+1 on Te[s], and therefore without

injuring the restraint of any higher priority requirement, in particular such that there is

no element of Te[s] between them. We will argue that if We is infinite, then we will

eventually find some suitable pair of elements.

In the first case, if we find a pair of elements which prevent We from enumerating

an infinite descending chain, then we say that Re has been discharged, and move on.
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In the second case, we plummet the element xei , called the plummet witness, ≤L,s-

below xei+1 as follows. Suppose that xei+1 = ck ≤L,s−1 · · · ≤L,s−1 c1 is a list in Ls−1 of

the finite set

{c | c ∈ Ls−1 and xej ≤L,s−1 c <L,s−1 x
e
i and c �P x

e
i}

and notice that clearly cn |P xei for all cn (and therefore cn is also ≤P -incomparable with

any element ≤P -comparable to xei ), since ≤L,s−1 extends ≤P on the elements already

enumerated.

Now, for any c1 ≤L,s−1 d ≤L,s−1 xei , we must have that d ≤P xei but by

definition c1 �P xei and therefore c1 �P d. Hence, c1 can be moved past d.

Denote by xei + 1 the immediate successor of xei in Ls−1 if it exists and move c1 until

xei ≤L,s c1 ≤L,s xei + 1. Then by the same argument, we can repeat the process for all ci

to get xei ≤L,s ck ≤L,s · · · ≤L,s c1 ≤L,s xei + 1. If the successor xei + 1 does not exist then

just move c1 to immediately above xei and then proceed as if c1 = xei + 1.

Notice that since xej ≤L,s−1 xei at stage s − 1 and xej ∈ {c1, . . . , ck}, at the end of

stage s we have xei ≤L,s xej , and hence We,s is not a descending sequence. Now set

te[s + 1] = max{xei , xei+1}. After we have completed the plummeting, we say that Re is

discharged.

2.2.3 Construction

At stage 0, set te[0] = 0 for all e.

At stage 2s + 1 we enumerate the number s into Ls, as high as possible whilst

ensuring that L2s+1 is a linear extension of P �s, and so the transitive closure of L2s+1∪P

is a partial order, because of the “high as possible” constraint.
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We say that Re requires attention at stage s if the elements of We,s describe the

start of an ω∗-sequence in ≤L, and Re can be satisfied at stage s, i.e. there are two

elements xei , x
e
i+1 >N Te[s] which are ≤P -incomparable, greater than e and there is no

n ≤ Te[s] between xei and xei+1 in L[s].

At stage 2s + 2 we find the least e such that Re requires attention (if no such e

exists then end the stage and go on to stage 2s + 3). Then take the elements xei , x
e
i+1

as described above and plummet the element xei ≤L,2s+2-below xei+1 by defining

xei ≤L,2s+2 x
e
i+1 as described above. Set te[2s + 1] = max{xei , xei+1} and te′ [2s + 2] = 0

for all e′ >N e. This ensures that We does not define an ω∗-sequence, because it contains

at least one ascending pair xei , x
e
i+1, but L2s+2 is still a linear extension of P �s.

2.2.4 Verification

Lemma 2.9.

L is a linear extension of P .

Proof. At every stage Ls is defined to be a linear extension of P �s, and any finite

initial segment of the linearisation is fixed after a finite number of stages, so the limit

lims→∞ Ls = L exists, and is a linear extension of P .

Lemma 2.10.

L is computably well-founded.

Proof. If L were not computably well-founded then there would be some computable

subchain of L which had order type ω∗. And so there would be some computably

enumerable set We which enumerated this subchain as an ω∗-sequence, and so the

requirement Re would not be satisfied.
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Let s0 be a stage such that Te[s] is fixed for all s ≥ s0, which exists because the

requirements with higher priority can only act a finite number of times. We can show this

by induction on e. Obviously R0 only acts at most once, so we have the base case, then

assuming for induction that the requirements Re′ for e′ < e act finitely often, we see that

Re must act at most once more than the combined number of actions of all Re′ , which

will also be finite. Hence, s0 exists. We now argue that Re is satisfied after s0.

We suppose that We is infinite, because if We is finite then Re is trivially satisfied.

If the finite part of We which has been enumerated by stage s0 does not define a

descending sequence, then Re will be satisfied, so suppose it does. Then if Re is never

satisfied, the enumeration of We after stage s0 must go on to define a ω∗-sequence, and

never require attention, because if it did then Re would act to satisfy itself with highest

priority, since all requirements of higher priority are satisfied by stage s0. Therefore it

must be the case that there is no pair xei , x
e
i+1 ≥N Te[s0] which is incomparable in P ,

greater than e and such that there is no n ≤N Te[s0] between xei and xei+1 in L[s0].

Te[s0] is finite, and so then there will an ≤L-least element and since We is infinite

and descending there will be an infinite subset of We which is ≤L-below all elements

of Te[s0]. This infinite subset then defines a computable ω∗-sequence in P , which

contradicts the fact that P is computably well-founded.

Hence, all requirements Re are satisfied and L is computably well-founded.

Lemma 2.11.

L is ω-c.e.

Proof. If Re acts at stage s, it will remain satisfied and will not act again at a subsequent

stages, unless it is injured by a requirement with higher priority. Hence, any requirement
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will act at most 2e times. Since Re cannot make changes to ≤L,s for numbers ≤ e, ≤B,s�e
can change at most 2e − 1 times, and so changes in ≤L are computably bounded, and L

is ω-c.e.

This completes the proof of Theorem 2.8.

2.3 Computable extendibility

We now consider extendibility from a computable point of view, beginning by defining

the appropriate notions of computable extendibility.

Definition 2.12.

A computable order type α is computably extendible if any computable partial order P

which does not computably embed α can be extended to a computable linear order L

which does not computably embed α.

A computable order type α is computably 2-c.e.-extendible (resp. ∆2-extendible,

ω-c.e.-extendible, n-c.e.-extendible) if any computable partial order P which does not

computably embed α can be extended to a 2-c.e. (resp. ∆2, ω-c.e., n-c.e.) linear order L

which does not computably embed α.

Theorems 2.5, 2.7 and 2.8 above can now be re-stated more concisely using this

terminology.

Theorem 2.13.
ω∗ is not computably extendible. [Rosenstein and Statman 1984 [43]]

ω∗ is computably ∆2-extendible. [Rosenstein and Statman 1984 [43]]

ω∗ is computably ω-c.e.-extendible. [Cooper, Lee and Morphett 2011 [29]]
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2.4 The lower bound

We now show that Cooper, Lee and Morphett’s result is in fact the best possible, and the

bound cannot be lowered to n-c.e. for any finite n, because we can exhibit a counter-

example, for any given n of a computably well-founded computable partial order, which

cannot be extended to a computably well-founded n-c.e. linear extension. We will

initially prove this in the case of n = 2 (note that the case n = 1 is just Corollary

2.6) and then show how to generalise that case to any n.

Theorem 2.14.

There exists a computably well-founded computable partial order P which has no

computably well-founded 2-c.e. linear extension. That is, ω∗ is not computably 2-c.e.-

extendible.

Proof. We construct as a witness a computable partial order P = (N,≤P ) as the disjoint

union of sub-partial orderings Pe = (Pe,≤P �Pe) such that each Pe forms a connected

component of P , and in particular every element of Pe is incomparable to every

element of every other Pf where e 6= f . We will assume a computable listing of 2-c.e.

sets, {Re}e∈N, where R〈i,j〉 = Wi \ Wj , and an associated computable approximation

R〈i,j〉[s] = Wi[s] \Wj[s]. Then the purpose of Pe is to show that if Re is a linearisation of

≤P , then there exists a computable ω∗-sequence in Re. By construction, such a sequence

will be made up of elements of Pe.

We will construct Pe in such a way that any ω∗-sequence in Pe computes the halting set

K, and is therefore not computable. Since there are no ≤P -comparabilities between the

components and each component is computably well-founded, we have that P as a whole

is computably well-founded.

At each stage s of the construction we define an approximation P [s] with domain
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some finite initial segment of N, we also compute the approximations Re[s] for e < s

and an approximation K[s] of the halting set, to be used in the construction. At stage 0,

P [0] = ∅, then at stage s + 1 we add up to four new elements to each Pe[s] with e < s

and four new elements to Ps[s]. When a number n enters the construction at a stage s, all

of the ≤P -comparabilities of n with k < n are set at stage s and do not change at any

later stage. So each Pe is computable because if we wish to compute≤P relative to a pair

of numbers (n,m) then it suffices to run the construction until stage s = max{n,m}+ 1

and the approximation to≤P relative to (n,m) at stage s will be the true value, and hence

P is computable.

We now fix some e ∈ N and consider the construction of Pe. At all stages s ≤ e,

Pe[s] = ∅, then at stage s = e+ 1, four new elements are added to define Pe[s+ 1], with

the comparabilities b−1 <P y <P a−1 and b−1 <P x <P a−1 as shown in Figure 2.2.

We define (b−1, a−1) to be the Level 1 active interval and also to be the Level 2 active

interval.

a−1

xy

b−1

Figure 2.2: The first four elements of Pe, added at stage e+ 1

The labels y and x are temporary and will be reused many times during the construction

for different elements before they are given a permanent label.
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Definition 2.15.

We call a stage s > e + 1 a good stage for e if Re[s] linearises Pe[s]. The construction

of Pe will only proceed at good stages for e. Note that the set of good stages for e is

computable.

Definition 2.16.

If s is a good stage for e, then for m,n ∈ Pe[s] we say that mRe n is computed at stage s

if 〈m,n〉 ∈ Re[s]. Since s is good for e andRe[s] is therefore a linear order, this obviously

means that 〈n,m〉 /∈ Re[s].

Definition 2.17.

• We say that mRe n is 1-computed at stage s if it is computed at stage s and there is

no earlier good stage at which nRem is computed.

• We say that mRe n is 2-computed at stage s if it is computed at stage s and there is

an earlier good stage at which nRem is 1-computed.

Note that for a pair m,n ∈ Pe, nRem can only be computed at a good stage for e, so

from now on when we say that mRe n is computed (or 1-computed, 2-computed, etc) at

stage s we mean by definition that s is a good stage for e.

For some Re it may be the case that mRe n is 1-computed at stage s and there

has been an earlier stage t < s such that (n,m) ∈ Re[t], and it may even be the case that

(m,n) ∈ Re[t] as well. However, this just means that by definition t is not a good stage

for e, and hence neither mRe n or nRem was computed at stage t.

We now consider the simple case in which there is no stage s and pair k, l ∈ Pe

such that k Re l is 2-computed at stage s. In effect we are initially proving the case for

n = 1, which is a reproof of Corollary 2.6. We will then consider the case where there
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are 2-computed pairs, and show how the construction nests.

Now, suppose that s is the first good stage for e, and without loss of generality

suppose that y Re x is 1-computed at stage s. Then relabel x as b0 and y as c0, and we

add four new elements a0, d0, y, x into Pe[s + 1] such that b0 <P y <P a0 <P a−1,

b0 <P x <P a0 <P a−1 and b−1 <P d0 <P c0, as shown in Figure 2.3. and we define the

Level 1 active interval to be (b0, a0).

a−1

b0c0

d0

b−1

a0

xy

Re

Figure 2.3: After the first good stage for e

At subsequent stages s, the construction will continue in the interval (b0, a0) for as long

as 0 /∈ K[s]. However, if at stage s, 0 ∈ K[s] then (d0, c0) will become the Level 1 active

interval and the construction will restart there.

If we assume that 0 /∈ K[s] for the time being, then at the next good stage s′, if

without loss of generality m0Ren0 is 1-computed at stage s′ then relabel n0 as b1

and m0 as c1, and we add four new elements a1, d1, y, x into Pe[s′ + 1] such that

b1 <P y <P a1 <P a0, b1 <P x <P a1 <P a0 and b0 <P d1 <P c1, as shown in Figure

2.4, and we define the Level 1 active interval to be (b1, a1).

We will then continue the construction in the same way at the subsequent good
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stages for e in the interval (b1, a1), unless 1 is enumerated into K, at which time the

construction will move to the interval (d1, c1), and we will define that as the new Level

1 active interval, or if 0 is enumerated into K in which case the construction moves to

(d0, c0) as mentioned above.

a−1

b0

d1
c0

b−1

a0

d0

b1c1

Re

a1
xy

Re

Figure 2.4: After the second good stage for e

Definition 2.18.

When the elements ai are added we say they are active, and we say that a0 is 0-coloured,

a1 is 1-coloured etc., referring to the number they are testing for membership in K. If i

is enumerated into K, then the construction interval will move and all of the j-coloured

elements, for j > i will be deactivated, and new j-coloured elements will be defined as

the construction continues.

During the construction there may be up to 2i indices n at each Level of the construction

such that an is i-coloured, but at a given stage s there is at most one n at each Level such

that an is i-coloured and active, for each number i.

If i is enumerated into K[s], and there is some an ∈ Pe[s] which is i-coloured and active,

then the Level 1 active interval will change, as mentioned above, and any am which are

j-coloured, for j > i, will no longer be in the Level 1 active interval and are said to
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become inactive.

So for example if 0 is enumerated into K then any an, n ≥ 1 which have been

defined will all be deactivated, the construction moves to the interval (d0, c0) and restarts

with a new an+1 which is active and 1-coloured.

When the Level 1 active interval is redefined due to a number being enumerated

into K[s], we add two new elements to the new Level 1 active interval (di+1, ci+1) and

<P -incomparable to each other, and call them y and x1.

Then at the next good stage t for e, if without loss of generality y Re x is 1-computed

at stage t then relabel x as bn+1 and y as cn+1, where n + 1 is the least index for which

an+1, bn+1, cn+1 have not been defined, and we add four new elements an+1, dn+1, y, x

into Pe[t + 1] such that bn+1 <P y <P an+1 <P ci+1 and bn+1 <P x <P an+1 <P ci+1

and di+1 <P dn+1 <P cn+1, as shown in Figure 2.5, and we define the Level 1 active

interval to be (bn+1, an+1). Note that an+1 is active with colour j + 1, where j is the

number which was enumerated into K and caused the Level 1 active interval to be

redefined.

ai+1

di+1

ci+1 bi+1

bn+1

cn+1

dn+1

an+1

xy

Re

Re

Figure 2.5: After a general good stage for e

1If there are already numbers in the construction labelled y and x then we can ignore them as they are

no longer relevant to the construction.
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The construction in the case where no pair is 2-computed is then a simple nesting of

the above process. It should be noted that the sequence of an defined will be such that

an+1Re an for all n, i.e. they form a descending sequence in Re, and that if an is active

and has colour k, then the Level 1 active interval will be within (or all of) either (bn, an)

or (dn, cn).

In particular, if the Level 1 active interval lies within (bn, an) and k is seen to be

in K, then the Level 1 active interval will be redefined to be (dn, cn), and any ap which

have been defined for p > n will be deactivated. Although given the nested nature of the

construction, some of those may have already been deactivated at an earlier stage.

If there are only finitely many good stages, then Pe will be finite, and the necessary

conditions for the theorem trivially hold, as it contains no ω∗-sequence, and Re is not a

linearisation of Pe. Indeed if Re is a linearisation of Pe then there will be infinitely many

good stages for e, at each of which either two or four elements were added to Pe, and

hence Pe would be infinite.

If Pe is infinite, still under the supposition that there is no pair which is ever 2-

computed, then the an form an infinite descending sequence in Re, and for each i ∈ N

there is exactly one an which is i-coloured and active at all good stages for e after some

finite stage si. We call this the test witness for i.

Suppose then that there is some ω∗ sequence {xn}n∈N in Pe. If there is any k

such that b0 <P xk then 0 /∈ K and if there is any k such that xk <P c0 then 0 ∈ K.

Only one of these can be true, since b0 <P y and z <P c0 implies that y|P z, but all xn

must be <P -comparable, and since elements are only put in the intervals (b0, a0) and

(d0, c0). Therefore, if we know the location of the sequence (or in fact any element of the

sequence), relative to b0 and c0, we know whether 0 ∈ K or 0 /∈ K.
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Then by simulating the construction above, we can find the test witness for 1, and

depending on where we can find an element of {xn}n∈N, compute whether 1 ∈ K. And

so on for any number i we can use the position of the xn to compute whether i ∈ K

and hence there is an algorithm defined uniformly in e which computes K with oracle

{xn}n∈N. So any ω∗ sequence {xn}n∈N in Pe computes K and hence Pe is computably

well-founded.

If Re linearises Pe, then we can find a computable ω∗-sequence in Re. In fact by

construction, {an}n∈N is a computable descending sequence in Re, which will be infinite

as we know that Re linearising Pe means that Pe will be infinite, and therefore Re is not

computably well-founded. This concludes the proof of the simpler case in which there is

no pair which is ever 2-computed.

Now, suppose that in fact there is at least one pair n,m ∈ Pe such that nRem is

2-computed at some stage s. Note that without loss of generality we can in fact assume

that the 2-computed pair is cn, bn for some n, because if any pair is 2-computed then there

will be some cn, bn that is 2-computed, by inspection of the construction. Thus during

the construction below we only need to search for the least index k such that bk Re ck is

2-computed at stage s+ 1.

a−1

b−1

cn = b′0 bn = c′0
Re

a′0

d′0

x′

y′

Figure 2.6: After the first stage at which a pair is 2-computed
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So, suppose we are at the first stage at which some cn, bn is 2-computed, and suppose

that n is the least index of a 2-computed pair. Then we relabel cn as b′0, bn as c′0 and

add four new numbers a′0, d
′
0, y
′, x′ to Pe[s + 1] such that b′0 <P y′ <P a′0 <P a−1,

b′0 <P x′ <P a′0 <P a−1 and b−1 <P d′0 <P c′0, as shown in Figure 2.6. Then we define

(b′0, a
′
0) to be the Level 1 active interval and also the Level 2 active interval.

It is important to note here that a′0 is active and 0-coloured, and all previous active

elements have been deactivated at this stage. So if at some stage s′ > s we have that

0 ∈ K[s′], then both the Level 1 active interval and the Level 2 active interval will move

to (d′0, c
′
0).

The Level 1 construction then restarts from scratch in the new Level 1 interval,

building a new an sequence until such a time as there is another stage t at which some

pair is 2-computed. Assuming that m is the least index of such a 2-computed pair bm, cm,

we redefine bm as c′1 and cm as b′1 and add a′1, d
′
1, x
′, y′ such that b′1 <P y

′ <P a
′
1 <P a

′
0,

b′1 <P x′ <P a′1 <P a′0 and b′0 <P d′1 <P c′1 as shown in Figure 2.7. (Assuming that

0 /∈ K[s− 1], if 0 ∈ K[s− 1] then replace a′0, b
′
0 by d′0, c

′
0 respectively.)

The Level 2 active interval is now redefined to be (b′1, a
′
1), and a′1 is 1-coloured

and active.
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a′0

b′0

cm = b′1 bm = c′1
Re

a′1

d′1

x′

y′

Figure 2.7: After the second stage at which a pair is 2-computed

It should be noted here that a′1 is directly below a′0, and not below any other elements

which may have been added at stages between s and t. Those elements are now irrelevant,

and incomparable to the rest of the construction. Any coloured elements apart from a′0

and a′1 are deactivated.

Then the Level 1 construction restarts as before in the new Level 1 active interval

(b′1, a
′
1) (or (d′1, c

′
1) if 1 ∈ K[t + 1]). We see that if there are only finitely many stages at

which the Level 2 active interval is redefined, then from some stage s all activity in the

construction will be at Level 1, and we get the same outcomes as in the first case. Namely,

if Re is a linearisation of Pe, then it contains a computable ω∗-sequence {an}n∈N in the

eventually permanently active Level 2 interval. And any ω∗-sequence in Pe will compute

K, by performing the same analysis as earlier but within the eventually permanently

active Level 2 interval, since we know that the construction outside of that interval will

be finite and hence there will be an infinite part of any ω∗-sequence within the interval.

So as before we compute K by performing tests relative to the relevant (bn, cn) pairs in

the interval to determine if k ∈ K for any k ∈ N.

Alternatively the Level 2 active interval may be redefined infinitely many times, or
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in other words there may be infinitely many stages at which there is a 2-computed pair.

In this case, if Re is a linearisation of Pe, then the sequence {a′n}n∈N is a computable

ω∗-sequence in Re and we still have that any ω∗-sequence in Pe is not computable,

because we can again use the location of (any element of) the sequence relative to the

b′i, c
′
i pairs to compute K.

To show that {a′n}n∈N is a computable sequence, notice that the pairs (b′n, c
′
n) which

are 2-computed, can be found by a uniformly computable search, and hence there is

an algorithm which computes the sequence of such pairs in order, and therefore also

computes a′0, a
′
1, a
′
2, . . ..

To show that any ω∗-sequence in Pe computes K, let {xn}n∈N be such a sequence,

then in the same way as we computed K in the earlier case, we can compute K in this

case by using the b′n and c′n, which are computable as discussed above, and simulating

the construction to perform tests in the same manner as before but at the higher level.

Since e was arbitrary, we see that P has no computably well-founded 2-c.e. linear

extension, and any infinite descending sequence in P computes K and hence P is

computably well-founded. But we have also seen that the construction of P is entirely

computable. This concludes the proof of Theorem 2.14.

This construction is significantly more complex than the Kleene Tree counterexample

of Theorem 2.5. The Kleene Tree is a nice natural example, but cannot be used in this

case because it is possible to construct a 2-c.e. linearisation of the Kleene Tree which

has no computable infinite descending sequence. This can be done using the method of

diagonalising against the c.e. sets and plummeting elements, similarly to the proof of

Theorem 2.8.
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We now show how to generalise this proof to give a construction of computably

well-founded computable partial order which has no computably well-founded n-c.e.

linear extension, for any given n ∈ N.

Corollary 2.19.

For every n ≥ 1, there exists a computably well-founded computable partial order P

which has no computably well-founded n-c.e. linear extension. That is, ω∗ is not

computably n-c.e.-extendible, for any n ∈ N.

Proof. A computably enumerable 1-c.e. linearisation of P will be computable. We

proved the n = 1 case as the first part of the proof for n = 2, and of course the Kleene

Tree constructed by Rosenstein and Statman as a witness to Theorem 2.5 also proves

this case. We now show how to generalise the proof of the n = 2 case above to any n ∈ N.

Consider the n = 3 case. We perfom the construction as with n = 2, but with an

extra layer. The construction can now define Level 3 active intervals. When a Level 3

active interval is defined or redefined all Level 2 and Level 1 construction is restarted

from scratch in the new Level 3 interval. At Level 3 we will be building a computable

sequence a′′n, descending in Re, when pairs b′′n, c
′′
n are 3-computed.

We will assume a computable listing of 3-c.e. sets, {Re}e∈N, where R〈i,j,k〉 = (Wi \Wj)∪

Wk, and an associated computable approximation R〈i,j,k〉[s] = (Wi[s] \Wj[s]) ∪Wk[s].

We define 3-computation in the obvious way. We say that mRe n is 3-computed

at stage s if it is computed at stage s and there is an earlier good stage at which nRem is

2-computed. And in general, if Re is a k-c.e. set, then we say that mRe n is r-computed

at stage s, for some r ≤ k, if it is computed at stage s and r = 1 or r > 1 and there is an

earlier good stage at which nRem is r − 1-computed and there is no good stage ≤ s at

which nRem is r + 1-computed.
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The construction in the case where there is 3-computation works in the same way

relative to 2-computation as 2-computation works relative to 1-computation. For example

when the first pair is 3-computed this is because a 2-computed pair (b′n, c
′
n) has been

found such that b′nRe c
′
n is 3-computed at this stage s (and n is the least index of such a

pair). So we enumerate new elements a′′0, d
′′
0, x, y and redefine b′′0 = c′n and c′′0 = b′n, as

shown in Figure 2.7.

a−1

b′′0c′′0

d′′0

b−1

a′′0

xy

Re

Figure 2.8: After the first pair is 3-computed

Then the construction at Level 2 and Level 1 restarts from scratch in the new Level 3,

2 and 1 active interval (b′′0, a
′′
0). It behaves as a nested version of the construction in the

Theorem above, but with the difference that the Level 3 active interval can be redefined

either finitely or infinitely often.

We take the greatest t ∈ {1, 2, 3} such that the Level t active interval is redefined

infinitely often. If the Level 3 active interval is redefined infinitely often then if Re

linearises Pe then the a′′n form a computable infinite descending chain in Re, and if

{xn}n∈N is an ω∗-sequence in Pe then it computes K. If it is redefined only finitely often,

then after some finite stage it will be fixed, and the remainder of the construction will be

at Level 2 and Level 1. So the outcomes are the same as in the n = 2 case.
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The case for n-c.e. is then a straightforward generalisation of this; take a computable

listing of n-c.e. sets Re and associated approximations Re[s], and define n-computation

as above. Work through the construction as in the n − 1 case, but when something is

n-computed we define the points a(n−1)i , b
(n−1)
i , c

(n−1)
i , d

(n−1)
i and redefine the Level n

active interval. If Re linearises P then will then be some 1 ≤ t ≤ n such that the Level

t active interval is redefined infinitely often. Then is t is the greatest of those, if Re

linearises Pe then the {a(t−1)n }n∈N will be a computable ω∗-sequence in Re.

However, any ω∗-sequence in Pe will compute K in the same way as discussed

above, since the construction at the t level is computable and so we can use the position

of the sequence relative to the {at−1n }n∈N to determine membership of elements of K.

Then for any n we can construct a witness P which is computable and computably

well-founded, but has no computably well-founded n-c.e. linearisation.

It is interesting to note the reasons why this construction fails for ω-c.e., which is

because if there is no fixed bound on the number of times a pair can be changed in the

linearisation, then there will not necessarily be a greatest t such that the Level t active

interval is redefined infinitely often. In fact we could have no such t and just keep

redefining intervals of greater and greater Level, but only finitely often. Thus we cannot

build the computable ω∗-sequence necessary in Re and the argument fails.

Whilst in the proof of this theorem, we construct a separate counterexample for

each n ≥ 1, it is in fact possible to build one witness which proves the theorem for all

n ≥ 1. To do this, we need a listing of all n-c.e. sets, for all n ≥ 1, which we define

{R〈n,e〉}n,e∈N with uniform approximations {R〈n,e〉[s]}n,e,s∈N.
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Let g : N3 → N be a computable function such that

Wg(n,e,k) =


⋂

0≤i≤k

Wei if 0 ≤ k ≤ n (where e = 〈e0, e1, · · · , en−1〉),

∅ if k > n.

Note that n determines the length of the tuple coded as e, and if n = 0 then we use the

convention that e = 〈e〉, so e0 = e.

Then

R〈n,e〉 =

bn2 c⋃
i=0

Wg(n,e,2i) \Wg(n,e,2i+1),

and R〈n,e〉[s] is defined using the stage s approximations to all the of c.e. sets involved.

The construction then proceeds in the usual way, with P〈e,n〉 being the component

of the witness which shows that if R〈e,n〉 is a linearisation of P then there exists a

computable ω∗-sequence in R〈e,n〉. Notice that because n is encoded in the index of

P〈e,n〉, we can computably determine which algorithms from the above proofs to use

in the construction, and hence the construction remains computable. In effect we

simultaneously perform the constructions for the proof for each n ≥ 1.
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Chapter 3

The order type ζ

The order type of the integers ζ = ω∗ + ω is another key order type, which we

will investigate the extendibility of in this chapter. Unlike the order types considered

in Chapters 2 and 4, there have not been any bounds previously established on the

complexity of linearisations which do not computably embed ζ of computable partial

orders which do not computably embed ζ . So in this chapter we will establish such

bounds from scratch.

3.1 Background

We do have the starting point that ζ is classically extendible, by a theorem of Jullien [21]

and independently of Galvin and McKenzie (unpublished).

Theorem 3.1 (Jullien 1969 [21]).

The order type ζ is extendible.

Proof. Let P be a partial order that does not embed ζ . Define I = {x ∈ P |

ω∗ does not embed in P(x)} and F = {x ∈ P | ω does not embed in P∗(x)}, where
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P(x) = {y ∈ P | y ≤P x} and P∗(x) = {y ∈ P | y ≥P x}. Then clearly I ∪ F = P .

Obviously ω∗ does not embed in I and ω does not embed in F , and so there are

linear extensions L(I) and L(F ) such that ω∗ does not embed in L(I) and ω does not

embed in L(F ), since ω∗ is extendible by Theorem 2.2, and the dual of an extendible

type obviously also being extendible. Then the lexicographic sum L(I) + L(F )�P\I is a

linear extension of P which does not embed ω∗ + ω.

The effective content of this theorem has not been discussed in the literature. Given the

other results in this Chapter, whilst parallels can in some cases be drawn from the well-

founded case, we see that this is not necessarily always so. Hence we do not conjecture

about the result for computable orderings, but note that it is an open question.

Open Question 3.2.

Does every computable partial order which does not embed ζ have a computable

linearisation which does not embed ζ?

In Theorem 2.5, Rosenstein and Statman used a Kleene Tree as a witness of a computably

well-founded computable partial order with no computably well-founded computably

linearisation. Or in other words, that ω∗ is not computably extendible. We can use a

similar witness here as a counterexample to the computable extendibility of ζ .

Theorem 3.3.

The order type ζ is not computably extendible.

Proof. We build a partial order P as a copy of the Kleene Tree KT ≤P -below the dual

of the Kleene Tree KT ∗ to witness the theorem. Then if this partial order contains a

computable suborder of the type ω∗ + ω, we must have that KT contains a computable

ω∗-sequence and KT ∗ contains a computable ω-sequence. But by construction that

cannot happen, so we know that P cannot computably embed ω∗ + ω.
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If L is a computable linearisation of P then it consists of the order sum of a

computable linearisation of KT and a computable linearisation of KT ∗. We know

that any computable linearisation of KT must contain a computable ω∗-sequence, and

similarly any computable linearisation of KT ∗ must contain a computable ω-sequence,

so L contains a computable ω∗ + ω-sequence as required.

As before, this result immediately gives the same theorem for computably enumerable

linearisations, because a computably enumerable linear order with a computable domain

is computable. Thus this corollary follows directly from Theorem 3.3.

Corollary 3.4.

The order type ζ is not computably c.e.-extendible.

3.2 The lower bound

We can improve the lower bound from c.e. (Corollary 3.4) to n-c.e. for any n ≥ 1, by

combining the structure of the proof of Theorem 2.14 with the idea of the counterexample

in the proof of Theorem 3.3.

Theorem 3.5.

The order type ζ is not n-c.e. extendible for any n ≥ 1.

Proof. In the same way as before, we will demonstrate that ζ is not computably 2-c.e.

extendible, and then generalise to all n.

For the n = 2 case, we construct as a witness a computable partial order P = (N,≤P )

as the disjoint union of sub-partial orderings Pe such that each Pe forms a connected

component of P , and in particular every element of Pe is incomparable to every
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element of every other Pf where e 6= f . We will assume a computable listing of 2-c.e.

sets, {Re}e∈N, where R〈i,j〉 = Wi \ Wj , and an associated computable approximation

R〈i,j〉[s] = Wi[s] \Wj[s]. Then the purpose of Pe is to show that if Re is a linearisation of

≤P , then there exists a computable ζ-sequence in Re. By construction, such a sequence

will be made up of elements of Pe.

We will construct Pe in such a way that any ζ-sequence in Pe computes the halting set

K, and is therefore not computable. Since there are no ≤P -comparabilities between the

components and each component has no computable ζ-sequence, we have that P as a

whole has no computable ζ-sequence.

At each stage s of the construction we define an approximation P [s] with domain

some finite initial segment of N, we also compute the approximations Re[s] for e < s

and an approximation K[s] of the halting set, to be used in the construction. At stage 0,

P [0] = ∅, then at stage s+ 1 we add up to six new elements to each Pe[s] with e < s and

eight new elements to Ps[s].

When a number n enters the construction at a stage s, all of the ≤P -comparabilities

of n with k < n are set at stage s and do not change at any later stage. So each Pe is

computable because if we wish to compute ≤P relative to a pair of numbers (n,m) then

it suffices to run the construction until stage s = max{n,m} + 1 and the approximation

to ≤P relative to (n,m) at stage s will be the true value, and hence P is computable.

We now fix some e ∈ N and consider the construction of Pe. At all stages s ≤ e,

Pe[s] = ∅, then at stage s = e + 1, eight new elements are added to define Pe[s + 1]. Pe
in this construction will consist of a copy of the construction from Theorem 2.14 and a

copy of the dual of that construction. We call these copies De and Ue respectively, and

everything in Ue is ≤P -greater than everything in De.
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De has four elements with the comparabilities bD−1 <P yD <P aD−1 and

bD−1 <P xD <P aD−1, and Ue has four elements with the comparabilities

aU−1 <P y
U <P b

U
−1 and aU−1 <P x

U <P b
U
−1 as shown in Figure 3.1.

aD−1

xDyD

bD−1

bU−1

xUyU

aU−1

≤P

Figure 3.1: The first eight elements of Pe added at stage e+ 1

We then proceed to simultaneously construct both parts of the partial order as in the proof

of Theorem 2.14 and dually as appropriate. We then get the outcomes as follows. If there

are only finitely many good stages, then Pe will be finite, and the necessary conditions

for the theorem trivially hold, as it contains no ζ-sequence, and Re is not a linearisation

of Pe. Indeed if Re is a linearisation of Pe then there will be infinitely many good stages

for e, at each of which either two or four elements were added to Pe, and hence Pe would

be infinite.

If Pe is infinite, and Re linearises P , then we will have by construction a computable

ζ-sequence in Re, just by combining the sequences that we construct in each part of

Pe. The construction builds a computable ω∗-sequence σ in L(De) and a computable

ω-sequence τ in L(Ue). Thus σ+ τ is a computable ζ-sequence in L(Pe) and so in L(P).

Of course the sequences σ and τ may be extracted at different levels - i.e. σ may be

computed at Level 1 and τ computed at Level 2, or visa versa. But this does not matter
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for the proof.

In Ue we can show that that below any given any element there are only finitely

many elements in Ue itself, and similarly above any element in De. So any ζ-sequence in

Pe must lead to an ω∗-sequence in De and an ω-sequence in Ue, each of which computes

K by construction.

Then as before, we can see that since e was arbitrary, we can see every 2-c.e.

linear extension of P computably embeds ζ , and any suborder of P of order type ζ must

compute K. And we have also seen that the construction of P is entirely computable.

This concludes the proof of the n = 2 case.

The generalisation to n-c.e. then occurs in exactly the same way as before, take a

computable listing of n-c.e. sets Re and associated approximations Re[s], and define n-

computation as above. Work through the construction in each part as in the n−1 case, but

when something is n-computed we define the points aD(n−1)
i , b

D(n−1)
i , c

D(n−1)
i , d

D(n−1)
i or

a
U(n−1)
i , b

U(n−1)
i , c

U(n−1)
i , d

U(n−1)
i and redefine the Level n active interval as appropriate.

If Re linearises P then will then be some 1 ≤ t ≤ n such that the Level t active interval

is redefined infinitely often. Then is t is the greatest of those, if Re linearises Pe then the

{a(t−1)n }n∈N will be a computable ζ-sequence in Re.

However, any ζ-sequence in Pe will compute K in the same way as discussed

above, since the construction at the t level is computable and so we can use the position

of the sequence relative to the {atn}n∈N to determine membership of elements of K.

Then for any n we can construct a witness P which is computable and does not

computably embed ζ , but has no n-c.e. linearisation which does not computably embed

ζ .
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This construction fails for ω-c.e. for the same reasons as before. If there is no fixed

bound on the number of times a pair can be changed in the linearisation, then there will

not necessarily be a greatest t such that the Level t active interval is redefined infinitely

often. In fact we could have no such t and just keep redefining intervals of greater and

greater Level, but only finitely often. Thus we cannot build the computable ζ-sequence

necessary in Re and the argument fails.

Again, in the proof of this theorem, we construct a seperate counterexample for

each n ≥ 1 for reasons of clarity. But it is in fact possible to build one witness which

proves the theorem for all n ≥ 1. To do this, as before, we need a listing of all

n-c.e. sets, for all n ≥ 1, which we define {R〈n,e〉}n,e∈N with uniform approximations

{R〈n,e〉[s]}n,e,s∈N.

Let g : N3 → N be a computable function such that

Wg(n,e,k) =


⋂

0≤i≤k

Wei if 0 ≤ k ≤ n (where e = 〈e0, e1, · · · , en−1〉),

∅ if k > n.

Note that n determines the length of the tuple coded as e, and if n = 0 then we use the

convention that e = 〈e〉, so e0 = e.

Then

R〈n,e〉 =

bn2 c⋃
i=0

Wg(n,e,2i) \Wg(n,e,2i+1),

and R〈n,e〉[s] is defined using the stage s approximations to all the of c.e. sets involved.

The construction then proceeds in the same way as before, with P〈e,n〉 being the

component of the witness which shows that if R〈e,n〉 is a linearisation of P then there

exists a computable ζ-sequence in R〈e,n〉. Notice that because n is encoded in the index
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of P〈e,n〉, we can computably determine which algorithms from the above proofs to

use in the construction, and hence the construction remains computable. In effect we

simultaneously perform the constructions for the proof for each n ≥ 1.

We can improve this result, pushing the bound further up using a similar type of

proof. In order to do so, we need a way of ∆2-approximating the sets of a wider class

than n-c.e. and so we take the following definition and lemma from Badillo and Harris

2014 [2].

Definition 3.6.

A class of sets C ⊆ P(N) is uniform ∆2 if there is a binary function f ≤T ∅′ such

that the class F of characteristic functions of C satisfies F = {fe|e ∈ N}. Hence C is

uniform ∆2 if and only if there exists a uniform ∆2 approximation {Ae,s}e,s∈N such that

C = {Ae}e∈N.

Note that this definition corresponds to the notion of ∅′-uniform in the notation used by

Jockush [20].

Lemma 3.7 (Ershov 1968 [13]).

For any computable ordinal α, the class of α-c.e. sets is uniform ∆2.

Corollary 3.8.

The class of ω-c.e. sets is uniform ∆2.

Given the existence of a uniform ∆2 approximation of the class of ω-c.e. sets, we can

now improve the bound to ω-c.e.

Theorem 3.9.

The order type ζ is not ω-c.e.-extendible.

Proof. We construct as a witness a computable partial order P = (N,≤P ) as the disjoint

union of sub-partial orderings Pe such that each Pe forms a connected component of P ,
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and in particular every element of Pe is incomparable to every element of every other

Pf where e 6= f . We will assume a listing of ω-c.e. sets, {Re}e∈N, and an associated ∆2

approximation {Re[s]}e,s∈N, since we know that the class of ω-c.e. sets is uniform ∆2 by

Corollary 3.8. Then the purpose of Pe is to show that if Re is a linearisation of ≤P , then

there exists a computable ζ-sequence in Re. By construction, such a sequence will be

made up of elements of Pe.

At each stage s of the construction we define an approximation P [s] with domain

some finite initial segment of N and we also compute the approximations Re[s] for e < s.

At stage 0, P [0] = ∅, then at stage s+ 1 we two new elements to each Pe[s] with e ≤ s.

When a number n enters the construction at a stage s, all of the ≤P -comparabilities

of n with k < n are set at stage s and do not change at any later stage. So each Pe is

computable because if we wish to compute ≤P relative to a pair of numbers (n,m) then

it suffices to run the construction until stage s = max{n,m} + 1 and the approximation

to ≤P relative to (n,m) at stage s will be the true value, and hence P is computable.

We now fix some e ∈ N and consider the construction of Pe. At all stages s ≤ e,

Pe[s] = ∅, then at stage s = e + 1, to incomparable elements ae, be are added to define

Pe[s+ 1].

Then at future stages s where Re[s] decides the order of ae, be (i.e. exactly one of

aeRe[s]be and beRe[s]ae holds), add two new points. Assuming without loss of generality

that aeRe[s]be, we add a new point which is ≤P -above be and all points which are

≤P -above be, and another point which is≤P -below ae and all points which are≤P -below

ae. I.e. extending a chain above be and a chain below ae.

{Re[s]}s∈N is a ∆2 approximation, so it eventually settles on the order of ae, be,
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and if Re is a linearisation then there will be infinitely many points in Pe. So if Pe is

infinite then it looks like an ω chain and an ω∗ chain which are mutally incomparable, but

form a computable ζ chain in Re.

Then as before, we can see that since e was arbitrary, we can see the P does not

embed ζ but every ω-c.e. linear extension computably embeds ζ . And we have also seen

that the construction of P is entirely computable, and this concludes the proof.

In fact this result can be further improved to ∆2, although the class of ∆2 sets is not

uniform ∆2, so the same proof will not work. We have to modify it slightly.

Lemma 3.10 (Lee, Harris and Cooper 2011 [29]).

For any Σ2 set A of codings of computable ordinals1, the class of Ac.e. sets Σ−1A =⋃
a∈A Σ−1a is uniform ∆2.

Theorem 3.11.

The order type ζ is not ∆2-extendible.

Proof. Whilst the class of α-c.e. sets is uniformly ∆2 approximable for any computable

ordinal α, the class of ∆2 sets is not. However, we can construct a Σ2 approximation to

the class of Σ2 sets, noting that a Σ2 linear order with computably presented domain is in

fact ∆2 (just as Σ1 linear orders with computably presented domain are computable).

Specifically we construct a uniform Σ2 approximation {Re[s]}e,s∈N of the sets

Re = {n | ∃s∀t ≥ sRe(n)[t] = 1} such that R is an infinite ∆2 set if and only if R = Re

for some e. In the context of orderings, the approximation will eventually decide that

aReb, but may also switch between bRea and b 6Rea infinitely often, though if it does

converge, then it will be on b 6Rea.

1The coding is performed using Kleene’s O, but we suppress the details as they are not needed here.



Chapter 3. The order type ζ 63

The construction is much the same as above, but has some vital differences. We

construct as a witness a computable partial order P = (N,≤P ) as the disjoint union of

sub-partial orderings Pe such that each Pe forms a connected component of P , and in

particular every element of Pe is incomparable to every element of every other Pf where

e 6= f . We will use our Σ2 approximations {Re[s]}e,s∈N. Then the purpose of Pe is to

show that if Re is a linearisation of ≤P , then there exists a computable ζ-sequence in Re.

By construction, such a sequence will be made up of elements of Pe.

At each stage s of the construction we define an approximation P [s] with domain

some finite initial segment of N and we also compute the approximations Re[s] for e < s.

At stage 0, P [0] = ∅, then at stage s+ 1 we two new elements to each Pe[s] with e ≤ s.

When a number n enters the construction at a stage s, all of the ≤P -comparabilities

of n with k < n are set at stage s and do not change at any later stage. So each Pe is

computable because if we wish to compute ≤P relative to a pair of numbers (n,m) then

it suffices to run the construction until stage s = max{n,m} + 1 and the approximation

to ≤P relative to (n,m) at stage s will be the true value, and hence P is computable.

We now fix some e ∈ N and consider the construction of Pe. At all stages s ≤ e,

Pe[s] = ∅, then at stage s = e + 1, to incomparable elements ae, be are added to define

Pe[s+ 1].

This is the point at which the proof diverges from the proof of Theorem 3.9. At

stage s, if aeRe[s]be and ae 6Re[s− 1]be then two new points are added, one directly above

be and not above any other point above be, and one directly below ae and not below any

other point below ae. However, if aeRe[s]be and aeRe[s − 1]be then two new points are

added, one above the point added above be at stage s− 1, and one below the point added

below ae at stage s− 1.
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Similarly, at stage s, if beRe[s]ae and be 6 Re[s − 1]ae then two new points are

added, one directly above ae and not above any other point above ae, and one directly

below be and not below any other point below be. However, if beRe[s]ae and beRe[s−1]ae

then two new points are added, one above the point added above ae at stage s − 1, and

one below the point added below be at stage s− 1.

The reason for this construction is that Re may change its mind on the order of

ae, be infinitely often, and if we used the construction in Theorem 3.9, we would have ζ

embedding in Pe. But if we start a new chain every time Re changes its mind, we avoid

this possibility, since by the nature of the approximation, at most one pair of chains can

be infinitely long, and this occurs exactly when Re is a linear extension of Pe.

Hence, we cannot embed ζ in Pe and hence we cannot embed ζ in P , but if Re

linearises P then it contains a computable embedding of ζ , constucted in the same way as

before. Recall that a Σ2 linear order is in fact ∆2, and we have that any ∆2 linearisation

of P computably embeds ζ , and P is a computable partial order which does not embed

ζ , as required.
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Chapter 4

Scattered orderings

In this chapter we consider orderings which are scattered, that is have no dense suborder.

There is less previously known in this area, but we show that in fact the same bounds

apply as to well-founded orderings. Every computably scattered computable partial

order has a computably scattered ω-c.e. linear extension, but for any n ∈ N, there is

a computably scattered computable partial order which has no computably scattered n-

c.e. linear extension.

4.1 Background

Definition 4.1.

We call a partial order P scattered if P does not embed η, the order type of the rational

numbers. We say P is computably scattered if there is no computable embedding of η in

P .

The classical result was proved by Bonnet and Pouzet, and independently by Galvin and

McKenzie (unpublished), in the late 1960’s as part of a larger program. The proof we
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give is not from the original paper, but from Bonnet and Pouzet’s 1981 survey of linear

extension theory [5].

Definition 4.2.

If P is a partial order, and I is a suborder of P , we say that I is an initial segment of P if

for any x, y ∈ P , if y ∈ I and x ≤P y then x ∈ I .

Definition 4.3 (Corominas).

A non-empty partial order P is called an η-kernel if no non-empty initial or final segment

of P (with the induced order) has a scattered linear extension.

Lemma 4.4.

If P has no scattered linear extension, then it contains an η-kernel.

Proof. Let G(P) be the set of initial segments I of P which have scattered linear

extensions L(I). Then if A ⊆ I ∈ G(P), we must have that A has a scattered linear

extension, although it may not be an initial segment and hence may not be in G(P).

Also, if I,J ∈ G(P), then I ∪ J is an initial segment of P , and it has a scattered linear

extension, which we construct by the order-theoretic sum of the scattered linear extension

of I and the scattered linear extension ofJ \I. Hence,G(P) is closed under finite unions.

Also if (Iα)α<δ is a well-ordered increasing sequence of elements of G(P) then

the union I =
⋃
α<δ Iα is in G(P), since it has scattered linear extension built by the

order-theoretic sum of the scattered linear extensions of the partial unions. Hence, G(P)

is closed under arbitrary unions, since they will be finite unions of unions of chains of

initial segments, and so has a largest element Î =
⋃
G(P).

Similarly, there is a largest final segment of P which has a scattered linear extension, call

it F̂ . Let N = P \ (Î ∪ F̂) with the induced order, and then N is an η-kernel. Note that

N is not empty, because otherwise P = Î ∪ F̂ and then P would have a scattered linear

extension.
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Lemma 4.5.

If P contains an η-kernel then it is not scattered.

Proof. Let P 1
2

be a partial order containing an η-kernelN 1
2
. Choose an element x 1

2
∈ N 1

2

and let P 1
4

= {x ∈ N 1
2
| x ≤P 1

2

x 1
2
} and P 3

4
= {x ∈ N 1

2
| x ≥P 1

2

x 1
2
}, with the induced

orderings.

Since N 1
2

is an η-kernel, P 1
4

and P 3
4

have no scattered linear extensions, and hence

contain non-empty η-kernels N 1
4

and N 3
4

respectively, from which we choose elements

x 1
4

and x 3
4

and continue the process to define a sequence (xd)d∈D of elements of P 1
2

where the indexing set D is the set of dyadic numbers1. These elements form a subset of

P 1
2

with order type η, and hence P 1
2

is not scattered.

Theorem 4.6 (Bonnet and Pouzet 1969 [4]).

Any scattered partial order has a scattered linear extension. I.e. η is extendible.

Proof. The proof of this theorem then immediately follows by a contrapositive argument

on the conjunction of the two lemmas.

This forms part of the general classification by Bonnet [3] of countable order types τ such

that a partial order which does not embed τ can always be extended to a linear order which

does not embed τ . The effective content of this theorem differs slightly from the well-

founded case, as Corollaries 4.9 and 4.8 to the following theorem of Downey, Hirschfeldt,

Lempp and Solomon demonstrates.

Theorem 4.7 (Downey, Hirschfeldt, Lempp and Solomon 2003 [12]).

There is a scattered computable partial ordering such that every computable linear

extension has a computable densely ordered subchain.

1The dyadic numbers are those rational numbers with a denominator which is a power of 2, so D =

1
2 ,

1
4 ,

3
4 ,

1
8 , . . .
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Proof. We show that, given a sequence X0 ≤T X1 ≤T · · · of uniformly low, uniformly

∆0
2-sets, there is a scattered computable partial ordering P = (P,≤P ) such that for

any i ∈ ω, any Xi-computable linear extension ≤L of ≤P contains a densely ordered

≤L-subchain, computable in ≤L.

We construct P using a finite-injury priority argument, as the disjoint union of Pi,e
for i, e ∈ ω. Each Pi,e will be a connected component of P , when P is viewed as a

directed graph, and has the purpose of showing that if the e-th binary Xi-computable

relation Li,e = LXi
e is a linear extension ≤L of ≤P then there is a set of elements of Pi,e

which form a densely ordered subchain in ≤L which is computable in Li,e. Since we are

assuming that Xi is low, uniformly in i, we may assume that LXi
e is either total or finite,

and thus ≤L can be effectively approximated.

Note that any dense ≤P -subchain in P must be contained in one Pi,e and so we

show that this in fact cannot happen, and therefore P is scattered. We do this by

constructing Pi,e such that for any x ∈ Pi,e, there are either only finitely many elements

≥P x or only finitely many elements ≤P x.

Fixing i and e, we construct Pi,e in stages, the full construction will computably

interleave the constructions of each part. At stage 0 take three≤P -incomparable elements

a0, a1, a2, call them 0-critical and wait for Li,e to decide the ≤L-ordering on them.

Assume without loss of generality (relabelling as necessary) that a0 ≤L a1 ≤L a2 and

then place a1 into a set C, and call (−∞, a0) and (a2,∞) the 0-active intervals.

At stage s + 1 we enumerate three new ≤P -incomparable elements within each s-

active interval, look for the ≤L-ordering on them, put the middle one into C and define

the s + 1-active intervals as between the outer two of the s + 1-critical elements and

the ends of the s-active interval. Note that if at any stage Li,e does not converge on the
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≤L-ordering of the s-critical elements then Pi,e will just be finite.

The approximation of Li,e may make finitely many mistakes before converging. Each

time the approximation LXi
e [s] changes its mind on a critical interval, the construction

throws away the elements that depended on a0 ≤L a1 ≤L a2 and starts the construction

again from that point.

If Pi,e is infinite then this process builds C to be a ≤L-computable densely ≤L-

ordered chain, and hence L is not scattered, but for any element x ∈ P , there are either

only finitely many elements ≥P x or finitely many elements ≤P x, and so P is scattered.

Because ≤L can be effectively approximated (because it is computable in a low

set), the construction of Pi,e, and hence the construction of P , will be computable, as if

Li,e is a linearisation of P then it will converge on the order of the elements we add at

each stage, and otherwise Pi,e will just be finite.

Since i, e were arbitrary, we see that P has no dense suborder, and any Xi-computable

linear extension ≤L of ≤P contains a densely ordered ≤L-subchain, computable in

≤L.

We can simplify this, since we don’t actually need to use the sequence of uniformly low,

uniformly ∆2 sets, as we’re not interested in what is implied by WKL0. Instead just let

P be the disjoint union of Pe, where each Pe ensures that the e-th computable binary

relation either is not a linear extension of ≤P or contains a computable dense subchain.

Theorem 4.7 immediately implies the following two corollaries, just by weakening

the conditions in the statement in one way or another.
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Corollary 4.8 (Downey, Hirschfeldt, Lempp and Solomon 2003 [12]).

There is a scattered computable partial ordering that has no scattered computable linear

extension.

Corollary 4.9 (Downey, Hirschfeldt, Lempp and Solomon 2003 [12]).

There is a computably scattered computable partial ordering that has no computably

scattered computable linear extension.

Corollary 4.8 shows a key difference relative to the situation for well-founded orderings,

for which we have that any well-founded computable partial ordering has a well-founded

computable linear extension, by Theorem 2.5 of Rosenstein and Kierstead [43]. Corollary

4.9, on the other hand, is analogous to the well-founded case proved by Rosenstein and

Statman [43].

The difference between Corollary 4.8 and Theorem 2.3 raises the question of at

what level of complexity there is always a scattered linear extension of a scattered

computable partial order. A bound must exist here and we conjecture that a bound of ∆2

should be provable, although it is more difficult to construct a scattered linearisation than

a computably scattered linearisation. This is because we cannot diagonalise against a list

of c.e. sets, so different machinery would be needed.

Conjecture 4.10.

Every scattered computable partial order has a scattered ∆2 linear extension.

Regarding scattered orderings, Rosenstein [43] claims the following Theorem 4.13 for

the computable case, suggesting that the proof is by a similar argument to his theorem for

computably well-founded orderings, but not providing it. Downey mentions the theorem

in [11], citing Rosenstein [43] but also does not give the proof. We provide a proof below,

but it has subtleties compared to the well-founded case which Rosenstein did not mention.
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It seems Rosenstein intends to use the c.e. sets We and for each, if it is infinite,

find a ≤P -incomparable pair and force them to be a ≤L-successive pair, with nothing

in the linearisation in between them. However this runs up against the problem of

recognising when a c.e. set will in the limit be dense, since naively at any finite stage,

any ordering looks like it may be eventually dense. In order to get around this problem,

which Rosenstein did not address, we introduce the concept of η-sequences.

Definition 4.11.

Let P = (N,≤P ) be a partial (possibly linear) ordering. If We is infinite, and

xe0, x
e
1, x

e
2, . . . is a canonical enumeration of We, then say We defines a η-sequence in ≤P

if the xei form a chain in P , and they are enumerated into P in the following way.

We use the standard binary tree coding of {0, 1}∗, as shown in Figure 4.1, and

define a bijection b : N → {0, 1}∗ by setting b(n) = σ ⇐⇒ [1_σ]2 = n + 1. That is,

b(n) = σ if and only if appending the bit 1 to the beginning of σ gives the binary number

equal to n + 1. Figure 4.2 shows the tree after the map from finite binary sequences to

natural numbers.

∅

0 1

10 110100

000 001 010 011 100 101 110 111

Figure 4.1: Coding of finite binary strings on a binary tree
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0

1 2

5 643

7 8 9 10 11 12 13 14

Figure 4.2: Coding of indices on a binary tree

Now, we say that We defines a η-sequence in ≤P if the indices of the elements of We in

the order in which they are enumerated, fit the pattern on the tree. That is odd-indexed

elements xe2n+1 are added to the chain as immediate ≤P -predecessors of the element

indexed by the number immediately above 2n+ 1 on the tree, and even-indexed elements

xe2n are added to the chain as immediate ≤P -successors of the element indexed by the

number immediately above 2n on the tree.

So for example, the first 10 elements of a We which defines an η-sequence will be

enumerated into P with the ordering

xe7 <P x
e
3 <P x

e
8 <P x

e
1 <P x

e
9 <P x

e
4 <P x

e
0 <P x

e
5 <P x

e
2 <P x

e
6.

Lemma 4.12.

A computable partial ordering P = (N,≤P ) is computably scattered if and only if for all

e ∈ N, We does not define a η-sequence in ≤P .

Proof. IfD is a computable dense subordering ofP without endpoints, then a computable

subset of D can be enumerated as a η-sequence. Conversely a c.e. set which enumerates

a η-sequence in P contains a dense computable set.

This idea essentially gives us a “canonical” enumeration of η, in the sense that we only
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need look for one particular computable enumeration of η to ensure there is no computable

copy of η present.

Theorem 4.13 (Rosenstein and Statman 1984 [43]).

Any computably scattered computable partial order has a computably scattered ∆2 linear

extension.

Proof. Given a computably scattered, computable partial order P = (P,≤P ) (and

assuming for simplicity that P = N) we construct a linearisation L to be computably

scattered, and consider how complicated it need be.

We construct L by enumerating numbers in turn as high as possible into L whilst

respecting P . To ensure that L is computably scattered it suffices to guarantee that no

We enumerates a η-sequence in L. In order to ensure that the subordering induced on We

is not a η-sequence, we find some xei , x
e
i+1 which are either ≤P -comparable and witness

that We does not define an η-sequence or that are ≤P -incomparable. If We is infinite then

we will always be able to eventually find some xei , x
e
i+1, and place them into L to prevent

We from defining an η-sequence, as otherwise We will be a dense subordering of P .

We can use the first xei , x
e
i+1 enumerated that are≤P -incomparable for this purpose, if the

enumeration of We up to that point looks like a η-sequence. For any infinite We there will

be some finite stage in its enumeration at which there will either be a ≤P -incomparable

pair, or a pair which stops We from looking like a η-sequence, due to the fact that P is

computably scattered.

So, as in the proof of Theorem 2.7, the oracle we need is one to tell us whether

We is infinite. So we again get the construction of L being computable in a Σ1-set, and

the result follows.
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4.2 The upper bound

We can use the concept of η-sequences and adapt the argument of Theorem 2.8 to the

scattered case in a mostly straightforward way, to lower the upper bound from ∆2 to

ω-c.e. analogously to the well-founded case in the previous chapter.

Theorem 4.14.

The order type η is computably ω-c.e.-extendible. That is, every computably scattered

computable partial order has a computably scattered ω-c.e. linear extension.

Proof. Let P = (N,≤P ) be a computable partial order that is computably scattered. We

build a linearisation L of P as the limit of a uniformly computable sequence of finite

linear orderings (Ls = (N�s,≤L,s))s∈ω, such that the limit lim
s→∞

≤L,s=≤L exists and is a

linear extension of ≤P .

By examining the construction, we shall show there is a computable bound on the

number of changes to each element of ≤L,s, that is the set of s such that ≤L,s does not

agree with ≤L,s+1 on given a, b ∈ N is bounded by a computable function in a and b (and

so in 〈a, b〉). Hence, the limit ≤L= lim
s→∞

≤L,s is ω-c.e.

Let We be the e-th computably enumerable set, under the standard listing and let

xe0, x
e
1, x

e
2, . . . be the elements of We in the order they are enumerated. Clearly, if (yi)i∈ω

is a computable sequence, then there is some e such that yi = xei for all i.

By Lemma 4.12, to ensure that L is computably scattered, it suffices to ensure that

no sequence (xei )i∈ω defines a η-sequence in L. As in the proof of Theorem 4.13 we

achieve this for each infinite We by finding some xei , x
e
i+1 ∈ We such that either they

are ≤P -comparable and are not part of an η-sequence, or xei |P xei+1 and swapping them

around to ensure that We cannot define a η-sequence.
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If We would define an η-sequence in L if we did not act to prevent it, then such

xei , x
e
i+1 must exist as otherwise We would define an η-sequence in P , contradicting the

assumption that P is computably scattered.

4.2.1 Requirements

The construction will satisfy the following requirements, for e ∈ ω,

N : L is a linear extension of P .

Re: We does not define a η-sequence in ≤L.

The requirements are ordered in the priority ordering N � R0 � R1 � R2 � · · ·.

4.2.2 Strategy

We ensure that L is a linear extension of P by defining at every stage Ls to be a linear

extension of P �s. Then to ensure that the limit lim
s→∞
Ls exists, we restrain the requirement

Re from acting on≤Ls�e. So only finitely many requirements can modify any part of≤Ls ,

and since we will show each requirement can only act finitely often, the limit exists. This

also gives a computable bound on the number of changes, and hence that the ordering ≤L
is ω-c.e.

For each requirement Re, we set a restraint threshold te[s], which is the N-

greatest number which Re needs preserved from future alteration in order to

ensure it remains satisfied, at the beginning of stage s. We also define the restraint

Te[s] = {n ∈ N | n ≤N max{te′ [s] | e′ < e}}, which is the portion of ≤L,s which Re is

not permitted to alter, in order to avoid injuring higher priority requirements. In fact we

restrict Re from changing the order of any element of the linearisation with any element
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of the restraint.

To satisfy Re, we look for elements xei , x
e
j ≥N e, such that either they are ≤P -

comparable and prevent We from defining a η-sequence, or they are ≤P -incomparable

and such that we can swap them around without affecting <L,s+1� Te[s], in particular

that there is no element of the restraint between them, and therefore without injuring the

restraint of any higher priority requirement. We will argue that if We is infinite, then we

will eventually find some suitable pair of elements.

In the first case, if we find a pair of elements which prevent We from defining a

η-sequence, then we say that Re has been discharged, and move on.

In the second case, we plummet the element xei , called the plummet witness,≤L,s−1-below

xej as follows. Suppose that xej = ck ≤L,s−1 · · · ≤L,s−1 c1 is a list in Ls−1 of the finite set

{c | c ∈ Ls−1 and xej ≤L,s−1 c <L,s−1 x
e
i and c �P x

e
i}

and notice that clearly cn |P xei for all cn (and therefore cn is also ≤P -incomparable with

any element ≤P -comparable to xei ), since ≤L,s−1 extends ≤P on the elements already

enumerated.

Now, for any c1 ≤L,s−1 d ≤L,s−1 xei , we must have that d ≤P xei but by definition

c1 �P xei and therefore c1 �P d. Denote by xei + 1 the immediate successor of xei in

Ls−1 if it exists and move c1 until xei ≤L,s c1 ≤L,s xei + 1. Then by the same argument,

we can repeat the process for all ci to get xei ≤L,s ck ≤L,s · · · ≤L,s c1 ≤L,s xei + 1. If

the successor xei + 1 does not exist then just move c1 to immediately above xei and then

proceed as if c1 = xei + 1.

Notice that since xej = ck, at the end of stage s we have xei ≤L,s xej , and hence
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We,s is not an η-sequence. Now set te[s + 1] = max{xei , xej}. After we have completed

the plummeting, we say that Re is discharged.

4.2.3 Construction

At stage 0, set te[0] = 0 for all e.

At stage 2s + 1 we enumerate the number s into Ls, as high as possible2 whilst

ensuring that Ls is a linear extension of P �s, and whilst not placing s inbetween any pair

of elements which is witnessing some Re.

We say that Re requires attention at stage s if the elements of We,s describe the

start of a η-sequence in ≤L, and Re can be satisfied at stage s, i.e. there are two elements

xei , x
e
j >N Te[s] which are ≤P -incomparable, greater than Te[s]and do not have an

element of the restraint for e between them in Ls−1, or if there is a pair of elements

xei <P xej which prevent We from defining an η-sequence and We has not been already

discharged.

At stage 2s + 2 we find the least e such that Re requires attention (if no such e

exists then end the stage and go on to stage 2s + 3). If We requires attention because

there is a pair of elements xei <P x
e
j which prevent We from defining an η-sequence, then

say Re is discharged and move on to stage 2s+ 3.

Otherwise take the elements xei , x
e
j as described above and if, without loss of generality,

xei ≤L,s xej , then plummet xej as described above in order to get xej ≤L,s+1 xei . This

ensures that We does not define a η-sequence, but Ls+1 is still a linear extension of P �s.

2Enumerating elements as high as possible is an arbitrary choice, it would be equally valid to enumerate

as low as possible or in some other way as long as it is compatible with the partial order.
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Then say Re has been discharged and move on to stage 2s + 3. Note that it is possible

that a higher priority requirement will act later to undo this switch, and in that case Re

stops being discharged and may again require attention.

4.2.4 Verification

Lemma 4.15.

L is a linear extension of P .

Proof. At every stage Ls is defined to be a linear extension of P �s, and any finite

initial segment of the linearisation is fixed after a finite number of stages, so the limit

lims→∞ Ls = L exists, and is a linear extension of P .

Lemma 4.16.

L is computably scattered.

Proof. If L were not computably scattered then there would be some computable

subchain of L which had order type η. And so there would be some computably

enumerable set We which enumerated this subchain as a η-sequence, and so the

requirement Re would not be satisfied.

Let s0 be a stage such that Te[s] is fixed for all s ≥ s0, which exists because the

requirements with higher priority can only act a finite number of times. We can show this

by induction on e, obviously R0 only acts at most once, then assuming that Re′ , e′ < e

act finitely often, we see that Re must act at most once more than the combined number

of actions of all Re′ , which will also be finite. Hence, s0 exists. Then we argue that Re is

satisfied after s0.

We suppose that We is infinite, because if We is finite then Re is trivially satisfied.
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If the finite part of We which has been enumerated by stage s0 does not define the start of

a η-sequence, then Re will be satisfied, so suppose it does. Then if Re is never satisfied,

the enumeration of We after stage s0 must go on to define a η-sequence, and never require

attention (because if it did then Re would act to satisfy itself with highest priority), and

so it must be the case that there is no pair xei , x
e
j ≥N Te[s] which is incomparable in P

and without any number less than Te[s] between them in L. But then since Te[s] is finite,

there will be a dense subset of We which is entirely between two successive points in the

threshold Te[s]. This subset will define a computable η-sequence in P , which contradicts

the fact that P is computably scattered.

Hence, all requirements Re are satisfied and L is computably scattered.

Lemma 4.17.

L is ω-c.e.

Proof. If Re acts at stage s, it will remain satisfied and will not act again at a subsequent

stage, unless it is injured by a requirement with higher priority. Hence, any requirement

will act at most 2e times. Since Re cannot make changes to ≤Ls for numbers ≤ e, ≤B,s�e
can change at most 2e − 1 times, and so changes in ≤L are computably bounded, and L

is ω-c.e.

This completes the proof of Theorem 4.14.
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4.3 The lower bound

The n-c.e. lower bound result also carries over from well-founded to scattered orderings,

but the proof simplifies considerably, because rather than needing any dense suborders to

compute the Halting set, we can just construct the witness to have no dense suborders.

We couldn’t, in the well-founded case, create the order without any infinite descending

chains because of König’s Lemma, but here we can construct a partial order such that

any element has either only finitely many predecessors or only finitely many successors,

using a similar technique to that of Downey, Hirschfeldt, Lempp and Solomon [12] to

prove Theorem 4.7.

Theorem 4.18.

The order type η is not computably 2-c.e.-extendible. That is, there exists a computably

scattered3 computable partial order P which has no computably scattered 2-c.e. linear

extension.

Proof. We construct as a witness a computable partial order P = (N,≤P ) as the disjoint

union of sub-partial orderings Pe such that each Pe forms a connected component of P ,

and in particular every element of Pe is incomparable to every element of every other Pf
where e 6= f .

We will assume a computable listing of 2-c.e. sets, {Re}e∈N, where R〈i,j〉 = Wi \ Wj ,

and an associated computable approximation R〈i,j〉[s] = Wi[s] \Wj[s]. Then the purpose

of Pe is to show that if Re is a linearisation of ≤P , then there exists a computable

η-sequence in Re. By construction, such a sequence will be made up of elements of Pe.

We will construct Pe in such a way that every element has either only finitely

many predecessors or only finitely many successors, and thus Pe cannot contain any

3In fact classically scattered, as noted above.
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η-sequences. Since there are no ≤P -comparabilities between the components and each

component is computably scattered, we have that P as a whole is computably scattered.

There is a key difference here from the proofs of Theorems 2.14 and 3.5, in that we do

not need to construct P such that any η-sequence in P computes K, i.e. such that it is

computably scattered but not necessarily scattered. We will in fact construct P so that we

have the stronger condition that P is scattered, which simplifies the proof considerably.

At each stage s of the construction we define an approximation P [s] with domain

some finite initial segment of N, we also compute the approximations Re[s] for e < s. At

stage 0, P [0] = ∅, then at stage s + 1 we add up to two new elements to each Pe[s] with

e < s and four new elements to Ps[s].

When a number n enters the construction at a stage s, all of the ≤P -comparabilities

of n with k < n are set at stage s and do not change at any later stage. So each Pe is

computable because if we wish to computer ≤P relative to a pair of numbers (n,m) then

it suffices to run the construction until stage s = max{n,m} + 1 and the approximation

to ≤P relative to (n,m) at stage s will be the true value, and hence P is computable.

We now fix some e ∈ N and consider the construction of Pe. At all stages s ≤ e,

Pe[s] = ∅, then at stage s = e+ 1, four new elements are added to define Pe[s+ 1], with

the comparabilities b−1 <P y <P a−1 and b−1 <P x <P a−1 shown in Figure 4.3. We

define (b−1, a−1) to be the Level 1 active interval and also to be the Level 2 active interval.

The labels y and x are temporary and will be reused many times during the construction

for different elements before they are given a permenent label.
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a−1

xy

b−1

Figure 4.3: The first four elements of Pe, added at stage e+ 1

Definition 4.19.

We call a stage s > e + 1 a good stage for e if Re[s] linearises Pe[s]. The construction

of Pe will only proceed at good stages for e, note that the set of good stages for e is

computable.

Definition 4.20.

If s is a good stage for e, then for m,n ∈ Pe[s] we say that mRe n is computed at stage s

if 〈m,n〉 ∈ Re[s]. Since s is good for e andRe[s] is therefore a linear order, this obviously

means that 〈n,m〉 /∈ Re[s].

Definition 4.21.

We say that mRe n is 1-computed at stage s if it is computed at stage s and there is no

earlier good stage at which nRem is computed.

We say that mRe n is 2-computed at stage s if it is computed at stage s and there

is an earlier good stage at which nRem is 1-computed.

Note that for a pair m,n ∈ Pe, nRem can only be computed at a good stage for e, so

from now on when we sat that mRe n is computed (or 1-computed, 2-computed, etc) at

stage s we mean by definition that s is a good stage for e.
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For some Re it may be the case that mRe n is 1-computed at stage s and there

has been an earlier stage t < s such that (n,m) ∈ Re[t], and it may even be the case that

(m,n) ∈ Re[t] as well. However, this just means that by definition t is not a good stage

for e, and hence neither mRe n or nRem was computed at stage t.

We now consider the simple case in which there is no stage s and pair k, l ∈ Pe

such that k Re l is 2-computed at stage s. In effect we are initially proving the case for

n = 1, which is a reproof of Corollary 4.9 (since as in the well-founded case we have

that the result for computably enumerable linearisations immediately follows from the

result for computably linearisations). We will then consider the case where there are

2-computed pairs, and show how the construction nests.

Now, suppose that s is the first good stage for e, and without loss of generality

suppose that y Re x is 1-computed at stage s. Then relabel x as a0 and y as b0, and we

add two new ≤P -incomparable elements y, x into Pe[s + 1] such that b−1 <P y <P b0

and b−1 <P x <P b0, as shown in Figure 4.4, and we define the Level 1 active interval to

be (b−1, b0).

a−1

b−1

a0b0

y

x

Re

Figure 4.4: After the first good stage for e

At each subsequent good stage s for e, we will define ai and bi, redefine the Level 1 active



Chapter 4. Scattered orderings 84

interval and add two new elements y, x. When we want to know where to put the pair

y, x and the new Level 1 active interval, we use a coding similar to that in Definition 4.11.

Again we create an tree of indices and an isomorphism to the standard tree of finite binary

strings, as shown in Figures 4.5 and 4.6.

∅

0 1

10 110100

000 001 010 011 100 101 110 111

Figure 4.5: Coding of finite binary strings on a binary tree

0

1 2

5 643

7 8 9 10 11 12 13 14

Figure 4.6: Coding of indices on a binary tree

We add 1 to the index of the last a, b pair, and find the corresponding position on the tree.

Then place the pair y, x <P -above bj and <P -below ak, where j is the first index above

and to the left on the tree, and k is the first index above and to the right on the tree. Using

either j or k is −1 if they don’t exist.

In Figure 4.7 we see what Pe looks like after several good stages, notice the how

we can see the η pattern of pairs building up. The next Level 1 active interval (b−1, b7)is

marked by a dotted line, where the next y, x pair will be added.
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b0 a0

a−1

b−1
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a1b1
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b14

a13

b13

a12

b12

a11

b11
a10

b10

a9

b9

a8

b8

a7

b7

Re

Re

Re

Re

Re

Re

Re

Re

Re

Re

Re

Re

Re

Re

Re

Figure 4.7: After the first few stages

If there are only finitely many good stages, then Pe will be finite, and the necessary

conditions for the theorem trivially hold, as it contains no η-sequence, and Re is not a

linearisation of Pe. Indeed if Re is a linearisation of Pe then there will be infinitely many

good stages for e, at which elements were added to Pe and Pe would be infinite.

If there are infinitely many good stages for e and Pe is therefore infinite, still under the

supposition that there is no pair which is ever 2-computed, then the sequence {an}n∈N
forms a computable dense suborder of Re, but not of Pe. This is because any given an
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has finitely many elements ≤P below it, since once an is defined, at no stage will any

new element be enumerated into Pe directly below an.

We note that similarly for the bn, once they are defined there will not be any new

elements placed directly above bn, and so every element of Pe has either finitely many

elements above it or below it, and therefore Pe is scattered.

If Re linearises Pe, then we can find a computable η-sequence in Re. In fact by

construction, {an}n∈N is a computable η-sequence in Re, which will be infinite as we

know that Re linearising Pe means that Pe will be infinite, and therefore Re is not

computably scattered. This concludes the proof of the simpler case in which there is no

pair which is ever 2-computed.

Now, suppose that in fact there is at least one pair n,m ∈ Pe such that nRem is

2-computed at some stage s. Note that without loss of generality we can in fact assume

that the 2-computed pair is an, bn for some n, because it is clear by inspection of

the construction that if any pair is 2-computed then there will be some an, bn that is

2-computed. Thus during the construction below we only need to search for the least

index k such that bk Re ck is 2-computed at stage s+ 1.

So, suppose we are at the first stage at which any an, bn is 2-computed, and suppose that

n is the least index of a 2-computed pair. Then we relabel an as b′0, bn as a′0 and add two

new numbers y′, x′ to Pe[s + 1] such that b−1 <P y′ <P b′0 and b−1 <P x′ <P b′0. Then

we define (b−1, b
′
0) to be the Level 1 active interval and also the Level 2 active interval.

We then restart the Level 1 construction inside the Level 2 active interval.

The Level 1 construction then restarts from scratch in the new Level 1 interval,

building a new an sequence until such a time as there is another stage t at which some
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pair is 2-computed. As further pairs are 2-computed, we do the same thing, labelling

them as a′i, b
′
i and then restarting the Level 1 construction in the new Level 2 interval,

which is defined in the correct place using the same coding as in the Level 1 construction

to so that the 2-computed pairs as they appear, form an η-sequence.

The construction continues as above. We see that if there are only finitely many

stages at which the Level 2 active interval is redefined, then from some stage s all activity

in the construction will be at Level 1, and we get the same outcome as in the first case.

Namely that if Re is a linearisation of Pe then there is a computable dense suborder in

Re, and by construction the an form such a suborder. And Pe is still constructed to be

scattered.

Alternatively the Level 2 active interval may be redefined infinitely many times, or

in other words there may be infinitely many stages at which there is a 2-computed pair.

But then the {a′n}n∈N form a computable dense suborder of Re.

To show that {a′n}n∈N is a computable sequence, notice that the pairs (a′n, b
′
n) which

are 2-computed, can be found by a uniformly computable search, and hence there is

an algorithm which computes the sequence of such pairs in order, and therefore also

computes a′0, a
′
1, a
′
2, . . ..

We see that P is still scattered because any element either has only a finite number of

elements above it or below it in P .

Since e was arbitrary, we see that P has no computably scatttered 2-c.e. linear

extension, and P is scattered. But we have also seen that the construction of P is entirely

computable. This concludes the proof of Theorem 4.18.
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Corollary 4.22.

The order type η is not computably n-c.e.-extendible for any n ≥ 1. That is, for every

n ≥ 1, there exists a scattered computable partial order P which has no computably

scattered n-c.e. linear extension.

Proof. A computably enumerable (1-c.e.) linearisation of P will be computable. We

proved the n = 1 case as the first part of the proof for n = 2, and of course the

partial order constructed by Downey et. al. as a witness to Theorem 4.7 also proves

this case. We now show how to generalise the proof of the n = 2 case above to any n ∈ N.

Consider the n = 3 case. We perfom the construction as with n = 2, but with an

extra layer, the construction can now define Level 3 active intervals. When a Level 3

active interval is defined or redefined all Level 2 and Level 1 construction is restarted

from scratch in the new Level 3 interval. At Level 3 we will be building a computable

η-sequence a′′n in Re, when pairs b′′n, c
′′
n are 3-computed.

We will assume a computable listing of 3-c.e. sets, {Re}e∈N, where R〈i,j,k〉 = (Wi \Wj)∪

Wk, and an associated computable approximation R〈i,j,k〉[s] = (Wi[s] \Wj[s]) ∪Wk[s].

We define 3-computation in the obvious way, we say that mRe n is 3-computed at

stage s if it is computed at stage s and there is an earlier good stage at which nRem is

2-computed. And in general, if Re is a k-c.e. set, then we say that mRe n is r-computed

at stage s, for some r ≤ k, if it is computed at stage s and there is an earlier good stage

at which nRem is r − 1-computed and there is no earlier good stage at which nRem is

r + 1-computed.

Then the construction in the case where there is 3-computation works in the same

way relative to 2-computation as 2-computation works relative to 1-computation. For

example when the first pair is 3-computed this is because a 2-computed pair (b′n, a
′
n) has
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been found such that b′nRe a
′
n is 3-computed at this stage s (and n is the least index of

such a pair). Then we enumerate new elements x, y and redefine b′′0 = a′n and a′′0 = b′n, as

shown in Figure 4.8.

a−1

b−1

a′′0b′′0

y

x

Re

Figure 4.8: After the first pair is 3-computed

Then the construction at Level 2 and Level 1 restarts from scratch in the new Level 3,

2 and 1 active interval (b′′0, a
′′
0). It behaves as a nested version of the construction in the

Theorem above, but with the difference that the Level 3 active interval can be redefined

either finitely or infinitely often.

We take the greatest t ∈ {1, 2, 3} such that the Level t active interval is redefined

infinitely often. If the Level 3 active interval is redefined infinitely often then if Re

linearises Pe then we define a sequence of a′′n which will be a computable η-sequence in

Re. If it is redefined only finitely often, then after some finite stage it will be fixed, and

the remainder of the construction will be at Level 2 and Level 1. So the outcomes are the

same as in the n = 2 case, either the a′n defined form a computable η-sequence in Re (if

Re linearises Pe), or after a finite time there is only Level 1 activity, and the an form a

computable η-sequence in Re (if Re linearises Pe).

The case for n-c.e. is then a straightforward generalisation of this, take a computable

listing of n-c.e. sets Re and associated approximations Re[s], and define n-computation
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as above. Work through the construction as in the n − 1 case, but when something is

n-computed we define the points a(n−1)i , b
(n−1)
i and redefine the Level n active interval.

There will then be some 1 ≤ t ≤ n such that the Level t active interval is redefined

infinitely often. Then if t is the greatest of those, if Re linearises Pe then the {at−1n }n∈N
will be a computable η-sequence in Re.

Then for any n we can construct a witness P which is computable and computably

scatttered, but has no computably scattered n-c.e. linearisation.

Again, we note that this construction fails for ω-c.e., because if there is no fixed bound

on the number of times a pair can be changed in the linearisation, then there will not

necessarily be a greatest t such that the Level t active interval is redefined infinitely

often. In fact we could have no such t and just keep redefining intervals of greater and

greater Level, but only finitely often. Thus we cannot build the computable η-sequence

necessary in Re and the argument fails.

As in the previous chapter, we could have proved this by building one witness which

proves the theorem for all n ≥ 1, rather than constructing a seperate counterexample for

each n ≥ 1. To do this, we need a listing of all n-c.e. sets, for all n ≥ 1, which we define

{R〈n,e〉}n,e∈N with uniform approximations {R〈n,e〉[s]}n,e,s∈N.

Let g : N3 → N be a computable function such that

Wg(n,e,k) =


⋂

0≤i≤k

Wei if 0 ≤ k ≤ n (where e = 〈e0, e1, · · · , en−1〉),

∅ if k > n.

Note that n determines the length of the tuple coded as e, and if n = 0 then we use the

convention that e = 〈e〉, so e0 = e.
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Then

R〈n,e〉 =

bn2 c⋃
i=0

Wg(n,e,2i) \Wg(n,e,2i+1),

and R〈n,e〉[s] is defined using the stage s approximations to all the of c.e. sets involved.

The construction then proceeds in the usual way, with P〈e,n〉 being the component

of the witness which shows that if R〈e,n〉 is a linearisation of P then there exists a

computable η-sequence in R〈e,n〉. Notice that because n is encoded in the index of

P〈e,n〉, we can computably determine which algorithms from the above proofs to use

in the construction, and hence the construction remains computable. In effect we

simultaneously perform the constructions for the proof for each n ≥ 1.
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[35] André Nies, Computability and randomness, Oxford Logic Guides, Oxford

University Press, 2009.

[36] Piergiorgio G. Odifreddi, Classical recursion theory, volume I, Elsevier, 1989.

[37] Piergiorgio G. Odifreddi, Classical recursion theory, volume II, Elsevier, 1999.

[38] Emil L. Post, The two-valued iterative systems of mathematical logic, Annals of

Mathematics Studies, Princeton University Press, 1942.

[39] Emil L. Post, Recursively enumerable sets of positive integers and their decision

problems, Bull. Amer. Math. Soc. 50 (1944).

[40] Maurice Pouzet and Ivan Rival, Which ordered sets have a complete linear

extension?, Canadian Journal of Mathematics 33 (1981).

[41] Hillary Putnam, Trial and error predicates and the solution to a problem of

Mostowski, Journal of Symbolic Logic 30 (1965).

[42] Janak Ramakrishnan and Charles Steinhorn, Definably extending partial orders in

totally ordered structures, Mathematical Logic Quarterly 60 (2014).

[43] Joseph G. Rosenstein, Recursive linear orderings, Orders: Description and Roles,

Proceedings of the Conference on Ordered Sets and their Applications (Château de

la Tourette, l’Arbresle, France) (Maurice Pouzet and Denis Richard, eds.), 1984.



BIBLIOGRAPHY 97

[44] Aleksander Rutkowski, Which countable ordered sets have a dense linear

extension?, Mathematica Slovaca 46 (1996).

[45] Joseph R. Shoenfield, On degrees of unsolvability, Annals of Mathematics 2 (1959).

[46] Richard A. Shore, Logical methods: In honor of Anil Nerode’s sixtieth birthday,

ch. On the strength of Fraı̈ssé’s conjecture, 1993.
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