
  

The Development of On-Chip THz 

Time-Domain Spectroscopy 

 

Manoj Kumar (M.Tech) 

 

Submitted in accordance with the requirements for the degree of 

Doctor of Philosophy 

 

 

 

The University of Leeds 

School of Electronic and Electrical Engineering 

 

May 2016 

 

 

 

 

 

 

 

 

 



  

  



  

 
The candidate confirms that the work submitted is his own, except where work which has 

formed part of jointly authored publications has been included, and that appropriate credit 

has been given where reference has been made to the work of others. 

 

 

 

The carrier lifetime measurement discussed in Chapter 3 was published in the article: 

“Study of the effect of annealing temperature on low-temperature-grown-GaAs 

photomixers”. Siddhant Chowdhury, Joshua R. Freeman, Mark C. Rosamond, 

Reshma A. Mohandas, Manoj Kumar, Lianhe Li, Paul Dean, A. Giles Davies and 

Edmund H. Linfield. UK Semiconductor 2015, 2015-07-01 – 2015-07-02, Sheffield, UK. 

Manoj Kumar was responsible for on-chip measurement setup and aligning the laser 

beams focused onto the test sample. Autocorrelation measurements were performed 

by Siddhant Chowdhury and Manoj Kumar. Other authors were responsible for 

fabrication, annealing temperature recipe and supervision work.  

 

 

This copy has been supplied on the understanding that it is copyright material and that no 

quotation from the thesis may be published without proper acknowledgement. 

 

 

© 2016 The University of Leeds and Manoj Kumar 

 

 

 

The right of Manoj Kumar to be identified as Author of this work has been asserted by him in 

accordance with the Copyright, Designs and Patents Act 1988. 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my loving wife 

Suman Bala 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mind is restless and difficult to restrain, but it is subdued by practice. 

 

- Bhagavad Gita 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

 

  



[i]  
 

 

Acknowledgements 

It is with immense gratitude that I acknowledge the guidance and support of my 

supervisors, Prof. John Cunningham, Prof. A. Giles Davies and Prof. Edmund H. 

Linfield throughout the course of this project. Without their continuous optimism 

concerning this work, encouragement and help this study would hardly have been 

completed.  

Also, I would like to acknowledge Dr. Chris Wood and Dr. Andrew Burnett for their 

valuable suggestions during supervisory meetings.   

I would like to express my deepest appreciation to my colleague Dr. Nicholas Hunter 

for providing useful guidance, assistance and helping hand in the cleanroom.  

I owe a special thank you to Dr. Siddhant Chowdhury for giving me constant 

motivation for all these years and assistance with free space THz-TDS measurements.  

I would also like to show my gratitude to Dr. Chris Russell for giving me useful 

guidance in on-chip spectroscopic measurements.  

Finally, I would like to thank all the staff and students at Institute of Microwave and 

Photonics, School of Electronic and Electrical Engineering, University of Leeds. I owe 

my deepest gratitude to Govt. of India for their financial support.  

I am indebted to my parents for being there and for believing in me for all these years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[ii]  
 

 

 

 

 

  



[iii]  
 

 

Abstract 

Since the development of efficient THz sources, THz-TDS has been proved to be a 

promising tool to probe directly the intermolecular modes, rotational motion and 

intermolecular vibrations of molecules in a variety of chemicals capable of extracting 

useful spectroscopic information. In this thesis, an on-chip spectroscopy system based 

on coplanar waveguide (CPW) technology has been designed, optimised and tested, in 

order to probe spectral features of overlaid polycrystalline materials. As proof of 

principle, this system was used to recover the THz spectra of α-lactose monohydrate, 

observing spectral features at ~ 0.53 THz and ~ 1.37 THz.  A significant frequency shift 

in the 1.37 THz feature was observed when the on-chip spectroscopy measurements 

were performed over a variable temperature range of (~ 6-293 K). Spectral features 

obtained from the on-chip system were also compared to those obtained from a free-

space THz-TDS system to highlight the benefits of using an on-chip system over free 

space THz-TDS.  

A theoretical model developed using Ansoft HFSS tool was then used to optimise device 

design parameters in the second generation of CPW devices.  In doing so, the bandwidth 

of the system was enhanced from ~ 0.42 to 1.6 THz and a much higher frequency 

resolution of (~ 2 GHz) was obtained compared to that of the first-generation CPW 

devices (~ 55 GHz) with the modified device design of second generation devices.  

Branching waveguide systems (THz Y-splitter and coupler) were also simulated, 

fabricated and measured in order to investigate THz pulse splitting in branching 

waveguides.  These systems allow the measurement of both a sampled and reference 

pulse.  During these measurements, the splitting of the THz pulses propagating in an 

on-chip THz system was also demonstrated for the first time.  
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Chapter 1   

Fundamentals of THz Time-Domain 

Spectroscopy 

1.1 Introduction 

The Terahertz (THz) spectrum, which is located between the microwave and mid-

infrared frequency bands of the electromagnetic spectrum has been less developed 

compared to its neighbouring frequency ranges and has therefore, sometimes been 

referred to as the “Terahertz-Gap”[1, 2]. Modern THz technology, also referred as 

millimeter-wave technology (as spanning between 3 and 0.03 mm) arguably began with 

the development of THz sources over three decades ago. A major breakthrough in 

technology came with the development of broadband THz sources using ultra-fast 

femtosecond lasers to excite photoconductive switches.  

 

Figure 1.1 Diagram showing the THz region of the electromagnetic spectrum. 

The THz spectrum can be broadly defined as between 0.1 and 10 THz in the 

frequency domain, [3] so bridging the gap between millimetre (electronic) and sub-
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millimetre (photonic) wave technologies. Since the advent of THz spectroscopy in the 

1980s, great attention has been paid to THz frequency range due to its potential in time-

domain spectroscopy and imaging of a wide variety of chemicals (including water, 

paper, plastic, ceramics, wood, biological tissue, carbon mono-oxide, glucose, lactose 

and methanol to name a few), since strong frequency-dependent  absorption features 

can often clearly be seen in this range [4].  

Due to the non-ionising and non-destructive properties of THz radiation, 

prospective applications for THz technology are identified in the fields of security[5], 

Spectroscopy [6, 7], pharmaceutical drugs [8] and investigation of condensed matter 

systems [9].  

1.2 Sources of THz generation and detection: An 

overview 

This section covers a brief introduction to different THz sources with a greater emphasis 

on optical THz sources, which will be used in this project.  Sources of THz generation 

and detection can primarily be divided into the three categories such as electronic, laser 

and optically driven sources as shown in Table 1-1. 

The backward-wave oscillator (BWO), an electron vacuum diode, has been used 

as a THz source for spectroscopic measurements [10, 11], covering a frequency range of 

0.1 to 1.5 THz. However, several BWOs are needed in order to cover full THz range 

because BWOs can only be tuned ± 30% of its centre frequency [12, 13]. In a Gunn diode, 

with a negative differential resistance region, a high CPW bias leads to current 

fluctuations, which eventually become coherent oscillations in the frequency range of 

THz[14]. Gunn diodes with output power ~ 100 mW have been used for THz generation 

up to frequencies of operation around 3 THz. Quantum cascade lasers (QCL) yield a 

relatively high power of up to be 1-Watt at cryogenic temperatures [15]. A limitation 

with QCLs is that they have a maximum operating temperature of 199.5 K[16]. On the 

other hand, photoconductive switches can efficiently be used for both room and 

cryogenic temperatures for THz generation and detection. The term photoconductive 
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switch was first coined by D.H Auston and therefore, photoconductive switches also 

known as Auston switches. 

 

Sources Generation Detection 

Electronic 

 Backward-wave oscillator 

 Gunn diode 

 Resonant tunnelling diode 

 Schottky diode 

 Backward diode 

 HEMT transistor  

 Bolometer (~ 4 K) 

 Golay Cell 

 Pyroelectric detector 

Laser 

 Quantum cascade laser 

 p-type germanium laser 

 Free electron laser 

QCLs by self-mixing 

Optical 

 Photoconductive switch 

 Optical rectification 

 Photoconductive switch 

 Electro-optic sampling 

Table 1-1    An overview of different electronic and optoelectronic THz sources (taken from 

Ref. [17]) 

1.3 Free-space THz generation and detection 

In the previous section, it was discussed that photoconductive switches can be used for 

THz generation and detection. This section discusses the working principle of the 

photoconductive switch to give an insight into underlying physics of THz generation 

and detection.  

1.3.1 THz generation by photoconductive switch 

In a photoconductive switch, THz radiation is generated by exploiting the 

photoconductive properties of semiconductor material. In doing so, a direct band-gap 

semiconductor such as Gallium Arsenide (GaAs) is first DC biased using metal 

electrodes. The Inter-electrode gap (often called as a photoconductive gap) is 
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illuminated by near infra-red (NIR) laser pulses with photon energy greater than that 

of the band gap of semiconductor material (shown in Figure 1.2 b) which promotes 

electrons from the valence band into the conduction band, creating holes in the valence 

band. 

 

 

 

Figure 1.2   An illustration of THz generation a) A photoconductive switch illuminated with 

NIR fs laser pulses. b) The motion of photo-charge carriers in energy bands on the 

application of NIR laser beam. c) Generation of a temporal transient current pulse. 

d)  Transient current pulse leads to the emission of THz field (taken from Ref. 

[18]). 

 

The generated photo-charge carriers are then accelerated by the external field 

provided by a DC bias, resulting in transient current pulses (shown in Figure 1.2 c). If 

the generated transient current pulses vary on a picosecond time-scale, the radiating 

electromagnetic field will be in the THz regime. 
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The radiating field 𝐸𝑇𝐻𝑧  is proportional to the rate of change of the total photocrrent 

density 𝐽𝑝ℎ in  the inter-electrode gap [19] and is given by: 

𝐸𝑇𝐻𝑧(𝑡)  ∝  
𝑑𝐽𝑝ℎ(𝑡)

𝑑𝑡
  1-1 

Where, total photocurrent density 𝐽𝑝ℎ is contributed due to both charge carriers (i.e. 

electrons and holes) and therefore is given as [20]:  

𝐽𝑝ℎ = 𝐽𝑒 + 𝐽ℎ = 𝑒(𝑛𝑣𝑒 + 𝑝𝑣ℎ) 
1-2 

Where, 𝑣𝑒 and 𝑣ℎ are the drift velocities of electron and holes respectively, n and p  

denote the carrier densities of electron and hole respectively and e is the charge of an 

electron.  

The time-derivative of the total photocurrent density 𝑑𝐽𝑝ℎ(𝑡) 𝑑𝑡⁄ , which is proportional 

to the radiating THz field 𝐸𝑇𝐻𝑧  can be expressed as [21]: 

𝑑𝐽𝑝ℎ(𝑡)

𝑑𝑡
= 𝑒 [𝑣𝑒

𝑑𝑛

𝑑𝑡
+ 𝑣ℎ

𝑑𝑝

𝑑𝑡
+ 𝑛

𝑑𝑣𝑒
𝑑𝑡

+ 𝑝
𝑑𝑣ℎ
𝑑𝑡
] 1-3 

Therefore, the THz field 𝐸𝑇𝐻𝑧(𝑡) is given by: 

𝐸𝑇𝐻𝑧(𝑡)  ∝  𝑒(𝑣𝑒
𝑑𝑛

𝑑𝑡
+ 𝑣ℎ

𝑑𝑝

𝑑𝑡
) + 𝑒(𝑛

𝑑𝑣𝑒
𝑑𝑡

+ 𝑝
𝑑𝑣ℎ
𝑑𝑡
) 1-4 

 

The first term (𝑣𝑒
𝑑𝑛

𝑑𝑡
+ 𝑣ℎ

𝑑𝑝

𝑑𝑡
) in the expression 1-4, suggests that generated THz pulse 

depends on the rates of generation of photo-charge carriers, which is determined by rise 

time of ultra-fast laser pulses, illuminating photoconductive gap.  

However, the second term  (𝑛
𝑑𝑣𝑒

𝑑𝑡
+ 𝑝

𝑑𝑣ℎ

𝑑𝑡
) indicates that intensity of generated 

THz pulse depends on the rates of drift velocities of the charge carrier (i.e. acceleration 

of charge carriers under applied DC bias) which is further related to the mobilities of 

photo-charge carriers. The decay time of THz pulse (i.e. falling edge of THz pulse) 

depends on the lifetime or recombination rate 𝜏𝑐  of photo-charge carriers [22]. 

The separation of photo-charge carriers under applied DC bias creates an 

internal field 𝐸𝑖𝑛𝑡 which causes a screening of the applied bias field as shown in Figure 

1.3. Screening due to photo-charge carriers can reduce the effective electric field seen by 
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photo-charge carriers generated subsequently. Therefore, a higher recombination rate 

of photo-charge carriers is of critical importance in order to minimise the screening 

effect. A method of achieving higher recombination rate (i.e. low carrier lifetime) in a 

direct band-gap semiconductor such as GaAs is discussed in the following section.  

 

Figure 1.3   An illustration of THz emission in both forward and backward direction from 

a photoconductive switch. 

It is worth mentioning that the THz radiation generated using photoconductive 

switches radiates in both the forwards (i.e. radiating through semiconductor) and 

backward (i.e. radiating in the opposite direction of laser beam illumination) directions, 

as shown in Figure 1.3. Interestingly, THz field radiated in the backward direction yields 

a substantially higher bandwidth compared to that of radiating in the forward direction, 

which is attributed to attenuation and dispersion losses added while THz field is 

radiating through the semiconductor substrate in the forward direction [23].  

1.3.1.1 Suitable photoconductive materials 

A variety of photoconductive materials have been used for THz generation and 

detection. Generally, photoconductive materials are grown in an molecular-beam 

epitaxy (MBE) process by the precise control of deposition rate (one atomic layer at a 

time). An ultra-high vacuum of ~ 10−10 mbar is required in order to perform molecular-

beam epitaxy.  To achieve the desired epitaxial growth, elements in the form of 
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atomic/molecular beams from a heated crucible are directed at a single host substrate. 

Deposition of the epitaxial layer is controlled by dedicated shutters in front of each 

crucible.  

Photoconductive material 

Carrier 

lifetime 

(ps) 

Mobility 

(cm2/(Vs)) 

Resistivit

y 

( ΩV/cm) 

Band gap  

(eV at 

R.T.) 

Cr:doped ST-GaAs 50 - 100 ≈ 1000 107 1.43 

LT-GaAs 0.3 150-200 106 1.43 

SI-InP 50 - 100 ≈ 1000 4 × 107 1.34 

Ion-Implanted InP 2 - 4.0 200 > 106 1.34 

RD-SoS 0.6 30 - 1.10 

Amorphous Si 0.8 - 20.0 1 107 1.10 

MOCVD CdTe 0.5 180 - 1.49 

LT-In0.52Al0.48As 0.4 5 - 1.45 

Ion-Implanted Ge 0.6 100 - 0.66 

ErAs:GaAs [ BCL+04, 

SBG+03] 
≈ 0.25 > 100 5  × 105 1.43 

Table 1-2   Characteristics of photoconductive materials suitable for THz generation and 

detection (taken from Ref. [24]). 

Photoconductive materials suitable for THz generation-detection are listed in 

Table 1-2. Low temperature grown GaAs has been most widely used among the listed 

materials to fabricate efficient photoconductive switches for THz generation and 

detection due to its property of having a low carrier lifetime. However, MBE-growth of 

GaAs at low temperature (~ 200 °C) creates a significant number of point defects in the 

GaAs lattice with a consequent increase in As atoms incorporated into the wafer. Due 

to these defects, a deep-level donor state is formed [25-27] which substantially decreases 

the carrier lifetime by increasing recombination rate of photo-charge carriers. For 

growth temperature of ~ 200 °C, a carrier lifetime of ~ 90 fs have since been observed 
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[28].  However, the growth of GaAs at a low temperatures introduces a large number of 

donor states, which yields a low resistivity with a consequent increase in dark 

(background) current.   

To circumvent this issue, a post-growth annealing technique is used in which 

LT-GaAs is thermally annealed to reduce the number of point defects which allows the 

resistivity to be increased up to six orders of magnitude for an annealing temperature 

of ~ 600 °C. However, carrier lifetime is also affected by post-growth annealing. 

Therefore, a trade-off between low carrier lifetime and high resistivity needs to be 

reached. In this project, an optimised annealing temperature of ~ 575 °C has been used 

which meets the trade-off between low carrier lifetime and high resistivity for LT-GaAs 

used in device fabrication. 

1.3.2 THz generation by optical rectification 

Optical rectification is a non-linear process in which a laser pulse with broad-spectrum 

interacts with an electro-optic nonlinear crystal causing DC polarisation. Optical 

rectification is a second-order phenomenon (also known as difference frequency 

generation) in which two frequency components within the broad spectrum of laser 

pulse induce dielectric polarisation, which causes THz to be generated from the crystal 

at the beat frequency. 

This can further be understood as when a laser beam consisting of ultra-short 

pulses passes through a non-linear electro-optic crystal; the driving electric field causes 

the atoms to develop an oscillating dipole moment which tends to radiate 

electromagnetic energy.  

The change in optical polarisation due to the incident field can be expressed by Taylor's 

series expansion as: 

𝑃(𝑡) = 𝜀0(𝜒
(1)𝐸(𝑡) + 𝜒(2)𝐸2(𝑡) + 𝜒(3)𝐸3(𝑡) + 𝜒(4)𝐸4(𝑡) +⋯) 1-5 

= 𝑃(1)(𝑡) + 𝑃(2)(𝑡) + 𝑃(3)(𝑡) +⋯ 1-6 

where, non-linear term 𝑃(2)(𝑡) can be represented in frequency domain as [29]: 
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𝑃𝑖
(2)
(𝜔) 𝜀0⁄ = ∫ 𝜒(2)𝐸𝑖(𝜔1)𝐸𝐾(𝜔1 − 𝜔)

𝜔𝑐+∆𝜔 2⁄

𝜔𝑐−∆𝜔 2⁄
𝑑𝜔1 

1-7 

Where, 𝜔𝑐 is the centre frequency of incident laser beam and ∆𝜔 represents the 

bandwidth of the broad spectrum of the laser beam. The bandwidth present in the laser 

pulses determines the frequency components contributing to second order polarization. 

 

Figure 1.4 THz generation from a non-linear electro-optic crystal due to difference 

frequency mixing. 

In Equation 1-5,  𝐸𝑖(𝜔1)𝐸𝐾(𝜔1 −𝜔), the Fourier transforms of electric field's components 

of the laser beam in the frequency domain, indicate that induced polarisation is due to 

difference frequency generation (DFG).   

1.3.3 THz detection by photoconductive switch 

The working principle of THz detection using a photoconductive switch is similar to 

that of THz generation [30-32] in which photoconductive gap is illuminated by ultra-

short laser pulses (referred as probe beam) with energy being greater than band-gap 

energy of the semiconductor in order to generate photo-charge carriers. THz field 

incident on the photoconductive gap acts as a bias to the photoconductive switch in 

order to accelerate photo-charge carriers. A photocurrent then flows through metal 

electrodes, which can be measured by a lock-in amplifier connected in series. 
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Figure 1.5    Detection of the THz field using a photoconductive switch, where an average 

current mapped by time-delayed probe beam is measured my lock-in amplifier 

connected in series with a metal electrode. 

Since the width of the laser pulse is much smaller (~ 100 fs) than that of the 

incident THz pulse, therefore, only a small portion of THz field can only be sampled by 

the photoconductive switch. However, a full THz pulse can be mapped by a time-

delayed probe beam with respect to the incident THz pulse. Also, a short carrier lifetime 

of charge carriers is desirable. 

1.3.4 THz detection by an Electro-optic crystal 

THz detection by an electro-optic crystal exploits the optical property of a non-linear 

material such as ZnTe, GaP, and GaSe [33, 34], which becomes linearly birefringent 

under the influence of an external electric field. This electro-optic effect, producing 

birefringence is known as linear electro-optic effect or Pockel's effect [35]. In order to 

detect THz radiation using this effect, THz pulses are first passed co-linearly with ultra-

short laser pulses (probe beam) through EO crystal as shown in Figure 1.6. The incident 

THz field acts as a bias field for EO crystal which then changes the refractive index of 

the EO crystal (change in the refractive index is proportional to the intensity of the 

incident THz field). 
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Figure 1.6 Detection of THz field using EO crystal as a relative change in field components 

of NIR laser beam (Image reproduced from Ref. [17]). 

This change in the refractive index reflects a change in incident probe beam 

polarisation (from circular to elliptically polarised [36]). The orthogonal field 

components of the probe beam are then separated by using a quarter wave plate and a 

Wollaston prism as shown in Figure 1.6. The orthogonal components separated by 

Wollaston prism are then detected by a pair of photo-diodes, by measuring relative 

intensities of field components. The relative difference between photocurrents (which is 

proportional to THz field intensity [37]) is then measured by a lock-in amplifier. In 

balanced detection, a zero relative difference between the generated photocurrents 

implies that no THz field was present (i.e. birefringence did not occur).  

THz pulse detection using electro-optic sampling technique has been widely 

used for free-space terahertz time-domain spectroscopy (THz-TDS) [33]. However, this 

technique is limited by the thickness of EO crystal as optical dispersion and the 

mismatch between phase velocities of the incident laser pulse, and THz pulse may 

substantially be increased while passing through a thicker EO crystal.   

1.4 Free-space THz time-domain spectroscopy 

 Over the last few decades, free-space THz-TDS has been widely used to obtain 

spectroscopic signatures of a variety of chemicals including explosive drugs and 

biological tissues [38-42].  
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THz-TDS is based on a coherent detection technique; therefore, both the 

amplitude and phase information of detected pulse are readily available, which enable 

us to extract frequency-dependent parameters such as absorption coefficient and 

refractive index from SUT (sample under test such a lactose monohydrate, for example) 

by applying a Fourier transformation on detected time-domain pulses in order to obtain 

their fast Fourier transform (FFT) spectra. In this section, the components of a typical 

THz-TDS are described, and spectral features of lactose monohydrate obtained from 

THz-TDS measurement are discussed. A technique to measure differential THz pulse 

using free-space THz-TDS will also be discussed. 

A typical THz-TDS system consists of the following components: A femtosecond 

laser source to excite photo-charge carriers in the photoconductive gap of a biased 

photoconductive switch (often called as emitter) in order to generate THz pulses; an 

electro-optic crystal for THz detection; a motorised optical delay stage used to time-

delay probe beam to map out incident THz pulses; a mechanical chopper for optical 

modulation and a lock-in amplifier which measures amplitude and phase of detected 

THz pulse as shown in Figure 1.7.  

In Figure 1.7, a laser beam (driven by Ti:Sapphire laser) having ultra-short pulses 

with duration of ~ 100 fs, repetition rate of 80 MHz and centre wavelength of ~ 800 nm 

is first split into a pump and a probe beam by using a 50:50 beam splitter placed at angle 

of 45°. The pump is focused onto a biased photoconductive emitter in order to generate 

the THz field which is then collected and collimated by using a pair of parabolic mirrors. 

The THz field then interacts with SUT and picks up spectral features associated with 

SUT. THz field is, then again, collected and re-collimated by another pair of parabolic 

mirrors in order to focus it onto the detector (an electro-optic crystal ZnTe, for example) 

in coincidence with probe beam. 

A lock-in amplifier measures the THz field intensity as a relative change in 

orthogonal field components of the probe beam sensed by the balanced photodiodes. A 

motorised optical delay stage is then used to change the relative time delay between 

THz pulse and probe beam in order to map out a full THz pulse. A mechanical chopper 

is also employed with chopping frequency set as a reference to the lock-in amplifier in 

order to increase the sensitivity of THz pulse detection (i.e. improving signal-to-noise 
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ratio). 

 

 

Figure 1.7 Free-space THz-TDS system consisting of femtosecond laser source, motorised 

optical delay stage, a mechanical chopper, guiding mirrors, a 50:50 beam 

splitter, mechanical chopper, EO crystal and balanced photodiodes for THz 

detection. 

THz-TDS measurements are performed in the purged environment in order to 

avoid any attenuation due to water absorption [43]. In doing so, nitrogen (N2) gas is 

filled into a sealed chamber of silica glass, which contains the optical components. As 

N2  gas does not absorb the THz field, a much cleaner THz-TDS signal can be obtained 

without water lines. The purge box (covering optical path of THz radiation) is indicated 

by dotted lines in Figure 1.7. The measured THz signal at the detector end can be 

expressed by following expression [44]:  

𝐼(∆𝑡) = ∫ 𝐸𝑇𝐻𝑧 𝑛(𝑡 + ∆𝑡)𝑑𝑡
𝑇

𝑡=0

 1-8 

Where, ∆𝑡 is relative time delay between pump and probe beams, 𝐸𝑇𝐻𝑧  is the incident 

THz field, n is the induced photo-carrier density and T is the sampling time window for 

THz pulse.  
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1.4.1 THz-TDS of polycrystalline lactose monohydrate  

Free-space THz-TDS measurement was performed in order to obtain spectral features 

of lactose monohydrate followed by a comparison with spectroscopy results obtained 

from an on-chip THz-TDS. Components required to perform THz-TDS have already 

been explained. Therefore, a discussion on results obtained from THz-TDS will be 

covered in this section.  

Firstly, lactose monohydrate in the powdered form with 100% purity (weighed 

40 mg) was pressed into a circular pellet inside a copper-O ring using SPECAC Manual 

Hydraulic Press (A detailed description of sample preparation is given in Chapter 5). 

Lactose pellet pressed inside a copper ring can easily be mounted in the THz-TDS setup.  

Similarly, two more test samples of lactose monohydrate were prepared by diluting 

lactose monohydrate power with polytetrafluoroethylene (PTFE) to 75:25 and 50:50 

ratios by weight. PTFE was used as a matrix material due to its property of high 

transparency and featureless spectrum [40]. 

In THz-TDS, THz field generated from a photoconductive emitter is collected 

and collimated by the parabolic mirrors in order to focus onto the SUT (lactose 

monohydrate). A reference time-domain THz pulse was first measured without 

mounting lactose sample in THz-TDS system (shown in inset graph, Figure 1.8 a). 

A lactose pellet was then placed into the sample holder in order to measure a 

sampled THz pulse. For each pellet, five scans were performed in order to reduce noise 

(due to fluctuation of laser intensity, optical, electronic and mechanical noise [45, 46]) in 

the averaged data. The reference and sampled THz pulse traces obtained were truncated 

at a ~ 12 ps time window in order to remove etalons observed in time-domain pulses. 

Traces of measured pulses were. Then zero padded to a length of 250 ps time window 

in order to maintain a frequency resolution of ~ 4 GHz in their respective FFT spectra 

while performing Fourier transformation on measured time-domain pulses.  
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Figure 1.8 Free-space THz-TDS of lactose monohydrate a) A comparison of spectral 

features obtained from three different samples of lactose monohydrate. b) 

Calculated refractive index and absorption coefficient. c) A comparison of 

absorption coefficients calculated from three separate samples of lactose 

monohydrate. 

FFT spectra obtained from sampled THz pulses then revealed two well-known 

absorption features at ~ 0.53 and ~ 1.73 THz respectively, as previously observed [47-

50]. More pronounced spectral features were observed from the FFT spectra of the 100% 

purity lactose sample, suggested a greater interaction of THz field with the lactose 

molecules. On the other hand, diluted lactose samples yielded spectral features of 

relatively lower magnitude compared to the  100% lactose sample as shown in Figure 

1.8 a. 

Frequency-domain  data was then analysed in order to obtain the refractive 

index, the absorption coefficient of measured lactose samples of varying concentration 

(i.e. 25% and 50% diluted by mixing PTFE). Lactose pellets that were pressed into the 
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copper ring assumed to be of quasi-uniform surface and therefore, scattering of THz 

field from the pellet surface was not taken into consideration. Mathematical formulae 

to obtain frequency-dependent  parameters are taken from Ref. [51].  

The refractive index 𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝑣) of SUT, Fresnel reflection coefficient 𝑅(𝑣), 

absorption coefficient 𝛼𝑇𝐷𝑆(𝑣) and the maximum measureable absorption 

coefficient𝛼𝑀𝐴𝑋 can be expressed as: 

 

𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝑣) = 1 +
𝑐

2𝜋𝑑𝑣
[𝜑𝑠𝑎𝑚𝑝𝑙𝑒(𝑣) − 𝜑𝑟𝑒𝑓(𝑣)] 

1-9 

  

𝑅(𝑣) = |
𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝑣) − 𝑛𝑎𝑖𝑟

𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝑣) + 𝑛𝑎𝑖𝑟
|

2

 1-10 

 

𝛼𝑇𝐷𝑆(𝑣) = −
2

𝑑
𝑙𝑛 {

𝐴𝑠𝑎𝑚𝑝𝑙𝑒(𝑣)

𝐴𝑟𝑒𝑓(𝑣)(1 − 𝑅(𝑣))
} 1-11 

 

𝛼𝑀𝐴𝑋(𝑣) =
2

𝑑
𝑙𝑛 {𝐷𝑅

4𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝑣)

(𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝑣) + 1)
2
} 1-12 

 

Where, c is the speed of light, 𝑣 is the frequency, 𝐴𝑠𝑎𝑚𝑝𝑙𝑒(𝑣))and 𝜑𝑠𝑎𝑚𝑝𝑙𝑒(𝑣) and are the 

amplitude and phase of sampled signal, 𝐴𝑟𝑒𝑓(𝑣) and 𝜑𝑟𝑒𝑓(𝑣) are the amplitude and 

phase of reference signal, DR is the dynamic range and 𝑛𝑎𝑖𝑟 is the refractive index of the 

air which is assumed to be 1 [52]. 

In Figure 1.8 b, refractive index and absorption coefficient of 100% lactose 

sample calculated using Equations 1-9, 1-10 and 1-11 are plotted as a function of 

frequency. In Figure 1.8 c, the absorption coefficient of all three lactose samples is 

plotted as a function of frequency. It is evident from the graph that the value of the 

absorption coefficient increases for higher concentration. Despite being a widely used 

system for spectroscopic measurements, one of the major drawbacks of free-space THz-

TDS is that time-domain THz pulses suffer from etalon reflections. 
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Figure 1.9 A comparison of spectral features obtained from free-space THz-TDS with 

on-chip THz-TDS a) A comparison of sampled and reference pulses 

measured from free-space THz-TDS. b)  A comparison of sampled and 

reference pulses measured from On-chip THz-TDS. c) A comparison of FFT 

spectra with and without zero padding (free-space THz-TDS). d) A 

comparison of spectral features of lactose monohydrate obtained from free 

space and On-chip THz-TDS. 

These etalon reflections mainly occur in the form of repetitions of the main pulse 

but with a lower relative amplitude [53]. The origin of such etalon reflection is due to 

the THz pulses travelling back-and-forth between two surfaces [54]. Etalon reflections 

may emerge from the surface of the SUT or the photo-emitter used for THz generation 

or EO crystal while a pulse is being detected [53]. An example of etalon reflections 

occurred in the trace of a THz output pulse is shown in Figure 1.9 a, in which similar 

etalon reflections are observed in both the reference and sample THz pulses suggest that 

reflections mainly emerged from photo-emitter used for THz generation. In Figure 1.9 

c, FFT spectra of the sampled pulse both with and without zero-padding are compared 

in order to emphasise that how sharp reflections in time-domain influence the 

frequency-domain  [55] and cause poor spectral estimation of the sample under test.  
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Also, calculations of the refractive index and absorption coefficient can be erroneous. 

On the other hand, in an on-chip spectroscopy system, unwanted reflections 

caused by waveguide discontinuities can be substantially delayed by modifying the 

device design after knowing the origins of reflections and a very high-frequency 

resolution (~ 2 GHz or higher) can thus be achieved. An example of on-chip 

spectroscopy measurement is shown in Figure 1.9 b, in which no secondary reflections 

with significant amplitude were observed in a time-window of 250 ps. Therefore, no 

zero-padding is required in order to perform a high-frequency resolution Fourier 

transformation. Finally, FFT spectra of the sampled pulses measured using a free space 

THz-TDS, and an on-chip system were compared as shown in Figure 1.9.  These results 

provide confirmatory evidence that on-chip systems can better resolve spectral features 

of a sample under test without modifying time-domain data. Throughout this thesis, we 

will discuss the development of on-chip waveguide systems with the aim of achieving 

higher bandwidth and frequency resolution, subsequently performing on-chip 

spectroscopy of lactose monohydrate using these systems.   

1.4.2 Differential THz-TDS system  

Differential THz-TDS, a time-domain spectroscopy technique which is an alternative to 

conventional THz-TDS, was developed by a group of biophysicists at Rensselaer 

Institute, New York, and first demonstrated in the year 2000 in order to determine the 

refractive index of a 1.8 µm-thin monolayer of the biological cell [56].  To characterise 

such thin films (~ 1 µm), refractive index is measured as a relative phase shift in THz 

signal caused by the biological cell given as: 

∆𝜑 ∝ (𝑛̃ − 1)𝑑 ⁄ 𝜆 
1-13 

Where, 𝑛̃ is the refractive index of the medium, d is the sample thickness and  𝜆 is the 

wavelength present in the THz radiation interacting with sample. 

Conventional THz-TDS system yields a coherence length of about 150 µm with 

a centre wavelength of 800 nm and bandwidth of 2 THz, for example. It would be 

difficult to see phase shifts less than the coherence length of THz radiation [57, 58]. This 
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requires a very high sensitive measurement with the signal-to-noise ratio (>107). To 

overcome this, differential THz-TDS improves the SNR by measuring a differential THz 

signal, which is the difference between THz radiation passing through the biological 

cell and blank substrate subsequently. An illustration of differential THz-TDS system is 

given in Figure 1.10.  

 

Figure 1.10 A differential THz-TDS system (free-space) consisting of femtosecond laser 

source, motorised optical delay stage, a mechanical chopper, guiding mirror, 

a 50:50 beam splitter, mechanical chopper, EO crystal and a mechanical 

vibrator to move the sample in and out. 

A differential THz-TDS system is similar to that of a conventional THz-TDS 

system, except that a mechanical shaker is attached to the sample under test. The 

mechanical shaker is used to vibrate the sample under test, which so acts as a modulator 

in differential THz-TDS, unlike conventional THz-TDS, where a mechanical chopper is 

used to modulate either the pump beam or the THz radiation. In doing so, a sample 

(substrate) partly covered with biological tissue is moved in and out of the focused THz 

radiation using a shaker as shown in Figure 1.10. The frequency of vibration is set as a 

reference for the lock-in amplifier. Therefore, a differential signal (𝐸𝑑𝑖𝑓𝑓(𝑡) ≡ 𝐸𝑓𝑖𝑙𝑚(𝑡) −

𝐸𝑟𝑒𝑓(𝑡) ) is then measured by the lock-in amplifier, yielding a much higher SNR (~ 5 

times) [59].  
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Figure 1.11 An illustrative representation of the THz field passing through the blank 

substrate (Eref) and biological cell (Efilm), where the difference of Eref and Efilm 

will generate a differential THz pulse. 

However, the amplitude the differential signal is found to be much smaller than 

that of a conventional signal.  

 

Figure 1.12 a) A comparison of a conventional difference signal (measured without using 

mechanical vibrator) with a differential THz signal (measured when the sample 

was moving in and out). b) Amplitudes of reference (through the blank 

substrate) and the differential signal (with sample moving in and out) are 

compared (taken from Ref. [56]). 

An example of a differential signal is shown in Figure 1.12 a, in which differential 

signal measured using differential THz-TDS technique is compared with a difference 

signal (difference of reference and sampled signals measured without modulating THz 

field which means shaker was not used). It is clear from the graph that the difference 

signal has more background noise than that of the differential signal. In Figure 1.12 b, a 

differential signal compared with reference signal indicates that amplitude of the 

differential signal is much smaller than that of the reference signal. 
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In this differential THz-TDS technique, relative change in phase of THz radiation 

is given by the ratio of amplitudes of differential and reference signals as [56, 59]:    

𝐸𝑑𝑖𝑓𝑓(𝜔)

𝐸𝑟𝑒𝑓(𝜔)
≈ 𝑖

𝜔

𝑐
𝑑 [𝑛2 − 1+

(𝑛2 − 𝑛1)(𝑛2 − 𝑛3)

(𝑛1 + 𝑛3)
]

− 𝛼(𝜔)𝑑 [1 +
(𝑛2 − 𝑛1)(𝑛2 − 𝑛3)

(𝑛1 + 𝑛3)
] 

1-14 

where, 𝑛1, 𝑛2 and 𝑛3 are the refractive indices of air, substrate and biological cell 

respectively, c is the speed of light, d is the thickness of monolayer biological cell and 𝛼 

is the absorption coefficient.  

In this project, we have used a free-space differential THz-TDS analogy to 

develop an on-chip differential THz-TDS waveguide system in which the conductivity 

of a coupling switch (embedded in the  middle of coplanar waveguide) is modulated by 

means of a mechanical chopper, and ultra-short laser pulses in order to generate a 

differential THz pulse (Son − Soff), and subsequently measured this signal by a lock-in 

amplifier (see Chapter 3).  

1.5 On-chip THz generation and detection  

On-chip THz generation and detection are similar to that of free space THz-TDS except 

that the THz field is confined and guided by a waveguide structure patterned on to a 

dielectric substrate. To gain a better understanding of on-chip waveguide systems, an 

example of a free-standing waveguide which can be employed with a free-space THz-

TDS system in order to couple and guide THz radiation along waveguide surface such 

a metal wire [60, 61], is discussed in the following section.  

1.5.1  Free-standing waveguide system  

Freestanding waveguides were developed with the intention of coupling THz fields 

generated in free-space into a waveguide structure in order to achieve different modes 

of propagation (such as surface wave) of THz field compared to that of free-space 

propagation. Study of these fundamental modes of propagation in a guided medium 

allowed further development of spectroscopy techniques such as on-chip spectroscopy 
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of polycrystalline materials [47, 62-64]. The early efforts in the development of free-

standing waveguides include dielectric ribbons [65], suspended metal wires [60], 

parallel plate waveguides [66].    

Freestanding waveguides made of metal wire were found to be problematic 

because THz field launched in metal wire with transient current pulses varying on a 

picosecond scale causes high radiation and ohmic losses [67]. To overcome ohmic losses, 

waveguides made of plastic ribbon have also been used to couple free-space THz field 

[68]. 

An example of a metal wire waveguide is shown in Figure 1.13 a, in which a 

conical wire tip is used to couple THz field on a metal wire waveguide while the 

cylindrical end of the metal wire connected to the receiver (Rx) is used to detect the THz 

surface waves. Two photoconductive antennae (Tx and Rx) patterned on SOS (silicon-

on-sapphire) with metal electrodes separated by 5 µm gap are used as transmitter and 

receiver for THz generation and detection. The reason for using SOS is that it is an 

optically transparent material, and therefore, the photo-emitter (Tx) can be excited from 

the backside using a pump beam (driven by Ti: Sapphire laser). The receiver (Rx) part 

of waveguide system can freely be moved as it is excited by the probe beam coupled 

with an optical fibre. Metal waveguide consists of a metal wire cut into two pieces W1 

and W2  and separated by 150 µm air gap as shown in Figure 1.13 a. 

The reason for choosing two metal wire segments over continues metal wire is 

to keep the receiver end movable. Also, W2 can be replaced with any wire structure in 

order to further investigate THz pulse propagation in different metal wire waveguides.  

The conical wire tip (diameter ~ 30 µm) was located close to photo-emitter (Tx) so that 

THz pulse can directly be coupled to the metal tip, without using any silicon lens, for 

example. The cylindrical tip (diameter ~ 500 µm) of metal wire (W2) was placed close to 

the receiver photo-antenna (Rx). When THz pulse launched from Tx, propagates along 

the metal wire through 150 µm air gap before being detected at Rx. Finally, field 

intensities of conical wire tip (diameter ~ 30 um) and cylindrical wire tip (diameter ~ 500 

um) were compared in order to observe how the THz field couple with different 

geometry of metal wires.   
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Figure 1.13 a) An illustration of free standing metal wire waveguide in which THz field 

is coupled to metal wire tip. b) Time-domain pulses measured with metal 

wire of different diameters. c) Normalised amplitudes. 

It is clear from Figure 1.13 b and c that metal wire tip with a smaller diameter ~ 

30 µm showed much greater coupling of THz pulse compared to that of the metal tip 

with a diameter ~ 500 µm.  

Another example of a free-standing waveguide similar to the metal wire is 

shown in Figure 1.14 in which a flat dielectric ribbon is attached to two silicon lenses. 

THz field emerging from transmitter chip is coupled to dielectric ribbon using silicon 

lenses. Coupled THz pulses propagate along the dielectric ribbon before being guided 

by another silicon lens in order to direct them to a receiver chip.  Dielectric ribbons made 

from high-density polyethylene [68, 69] and single crystal sapphire [70, 71] have been 

used for pulsed THz transmission.  
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Figure 1.14 An illustration of a ribbon dielectric waveguide coupled with THz field in THz-

TDS system using Si lenses.  

1.5.2 On-chip waveguide system  

In an on-chip waveguide system, photoconductive switches are embedded with a 

waveguide structure in order to generate a THz pulse at the generation switch with 

subsequent detection of the same pulse after a propagation time delay ∆t at the 

detection switch.  

 

Figure 1.15 a) Photoconductive switches along with transmission region patterned on the 

LT-GaAs substrate. b) Photoconductive switches patterned on LT-GaAs 

overlaid onto quartz substrate (selectively etched by epitaxial lift-off 

technique). 

Generation and detection switches are patterned (along with the transmission 

region) either directly onto a photoconductive material such as LT-GaAs (bulk 

substrate) or by selective epitaxial lift-off of a very thin LT-GaAs layer on a host 

substrate such as quartz or BCB (benzo-cyclobutene) [72, 73] as shown in Figure 1.15. 
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An example of on-chip waveguide system for THz generation and detection is 

shown in Figure 1.16, in which a DC biased generation switch is excited by focusing a 

pump laser beam (driven by Ti: Sapphire laser) onto the switch. Generated transient 

current pulses are then directly coupled to the metal waveguide and propagate along 

before being detected at the detector switch. A probe beam (split off from the main 

beam) illuminates the photoconductive gap (~ 5 µm) in the detector switch in order to 

excite photo-charge carriers in the photoconductive gap. THz pulses arriving at the 

detector switch act as a bias voltage to detector switch and therefore, a photocurrent is 

then measured by lock-in amplifier connected in series with detector switch probe arms. 

In order to sample a full THz pulse arriving at the switch, the probe beam is time-

delayed about pump beam. A mechanical chopper is also employed in order to sample 

THz pule. 

     

Figure 1.16 An illustration of on-chip waveguide system for THz generation and detection 

in which photoconductive switches are embedded with a metal waveguide in 

order to transmit THz pulse from the emitter to detector. Components: a 

femtosecond laser source, motorised optical delay stage, a mechanical chopper, 

guiding mirrors, beam splitter, and a lock-in amplifier. 

    On-chip waveguides have several advantages over free-space THz-TDS system as:  

 On-chip waveguides can be designed to integrate the transmission region and 

generation, and the detection switch regions all into one planar geometry.  
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 THz fields can be confined to propagate along a small cross-section which makes 

on-chip waveguide systems much more compact compared to free-space THz-

TDS. 

 A much higher frequency resolution (~ 2 GHz or greater) can be obtained by 

carefully designing device geometry. 

 By choosing a substrate of low dielectric constant, attenuation and dispersion 

can be minimised. 

1.6 Thesis structure 

This chapter has presented a general introduction to techniques of THz generation and 

detection. Also, THz-TDS results obtained from both free-space and on-chip waveguide 

systems were compared to point out their merits and demerits.  

Chapter 2 presents basic building blocks of transmission line theory needed in 

order to develop on-chip CPW devices intended for operation at THz frequencies. 

Electromagnetic simulations are performed using HFSS to extract the characteristics of 

various on-chip CPWs on GaAs and quartz substrate. Further, different CPW 

discontinuities are discussed with particular emphasis on coupling gap discontinuity 

which will further be explored experimentally subsequently in this thesis.   

Chapter 3 discusses on-chip measurements of the first generation of 

conventional and centre gap (CGAP) CPW devices fabricated on both GaAs and quartz 

substrate. On-chip measurements are performed using both two-beam and three-beam 

on-chip systems in order to measure both conventional and differential THz pulses.  

Results obtained from on-chip measurements are then compared to those obtained from 

HFSS simulations. 

Chapter 4 discusses on-chip measurements of second generation CPW devices 

fabricated on a quartz substrate. Optimised device design that was used to increase the 

frequency resolution by delaying secondary reflections is discussed. Further, on-chip 

measurements of a THz Y-splitter and coupler are also discussed.  
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Chapter 5 discusses further optimisation of second generation device design 

required in order to minimising radiation losses with a subsequent increase in 

bandwidth. Further, on-chip spectroscopy measurements of lactose monohydrate using 

optimised second generation CPW devices at both room and low temperature are 

discussed.  
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Chapter 2  

Transmission Line Theory and 

Modelling of On-Chip Waveguides 

using HFSS  

2.1 Introduction 

This Chapter discusses the fundamental concepts of transmission line theory for the 

design and simulation of on-chip waveguide systems operating at THz frequencies.  In 

particular, the transmission properties of commonly used on-chip waveguides such as 

coplanar waveguide (CPW), conductor-backed CPW, stripline, slotline, Goubau-line 

and microstrip-line are discussed.  

Electromagnetic simulations were performed to investigate the interaction and 

propagation of electromagnetic waves (EM) along coplanar waveguide structures at 

THz frequencies. Electromagnetic simulations discussed in this Chapter were 

performed using the Ansoft High-Frequency Structure Simulator (HFSS). Scattering 

parameters are obtained from HFSS simulations, giving an insight into the expected 

signal bandwidth, reflection, attenuation, and the characteristic impedance of on-chip 

CPW waveguides at THz frequencies. 

Further, typical CPW discontinuities such as waveguide step, waveguide bend, 

waveguide T-junction and waveguide coupling gap, and their equivalent circuits are 

discussed. The capacitance and photo-conductive resistance of discontinuities in the 

CPW (referred to here as “coupling-gap” CPWs, or CGAP-CPWs) were calculated from 

an equivalent circuit model using S and Y parameters. 
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 Over the last few decades, coupling gap discontinuities in coplanar microwave circuits 

have been investigated by researchers, for example, in order to perform high-speed 

switching [74, 75], the generation of photo-current [76], and the sampling of microwave 

signals up to 100 GHz. However, CPW discontinuities have not been investigated at 

frequencies ≥1 THz, yet. We, therefore, investigate coupling–gap discontinuities 

bridged by photoconductive switches in the coplanar on-chip waveguide by 

electromagnetic simulations and numerical modelling in THz regime.  The processing 

of THz CGAP-CPWs (centre gap coplanar waveguides) and their measurement using 

ultra-fast laser beams are discussed in Chapter 3.  

2.2 Transmission line theory 

A transmission line consists of two or more conductors connecting a power source to a 

load. At microwave frequencies, typical transmission lines include a coaxial cable, a 

two-wire line and parallel plates. A two-wire transmission line can be represented by a 

distributed network when the length of the conductor is comparable to signal 

wavelength (shown in Figure 2.1). It can be divided into small segments of length 𝑑𝑧 in 

which both phase and magnitude of EM waves can vary. A transmission line is 

characterised by its characteristic impedance, 𝑍𝑜 and propagation constant γ. In this 

section, transmission line theory based on lumped element method for a two conductor 

system supporting a TEM mode is discussed.  

 

Figure 2.1 A two-wire transmission line and its distributed network model. 

An infinitesimal segment (𝑑𝑧) of the transmission line can be modelled as a 

lumped element circuit as shown in Figure 2.2 , where 𝑣(𝑧, 𝑡) and 𝑖(𝑧, 𝑡) are time-

dependent incident voltage and current respectively, R is the series resistance per unit 

length, due to the finite conductivity of the conductor and L is the series inductance per 
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unit length due to self-inductance of the conductor. 

 

 

Figure 2.2 A two conductor transmission line represented as a lumped element model. 

 

When a voltage 𝑣(𝑧, 𝑡) is applied across the transmission line, some electrical 

energy is stored due to the capacitance, C from two conductors. The conductance G is 

responsible for the loss in the dielectric material (lossy by nature) present between two 

conductors [77]. 

Using KVL and KCL circuit theorems, the following equations can be derived from the 

lumped model shown in Figure 2.2: 

𝑣(𝑧, 𝑡) = 𝑅𝑑𝑧 𝑖(𝑧, 𝑡) + 𝐿𝑑𝑧 
𝜕𝑖(𝑧, 𝑡)

𝜕𝑡
+ 𝑣(𝑧 + 𝑑𝑧, 𝑡) 2-1 

𝑖(𝑧, 𝑡) = 𝐺𝑑𝑧 𝑣(𝑧 + 𝑑𝑧, 𝑡) + 𝐶𝑑𝑧
𝜕𝑣(𝑧 + 𝑑𝑧, 𝑡)

𝜕𝑡
+ 𝑖(𝑧 + 𝑑𝑧, 𝑡) 2-2 

By applying limit 𝑑𝑧 → 0, the above equations lead to partial differential equations: 

−
𝜕𝑣(𝑧, 𝑡)

𝜕𝑧
= 𝑅𝑖(𝑧, 𝑡) + 𝐿

𝜕𝑖(𝑧, 𝑡)

𝜕𝑡
 2-3 

−
𝜕𝑖(𝑧, 𝑡)

𝜕𝑧
= 𝐺𝑣(𝑧, 𝑡) + 𝐶

𝜕𝑣(𝑧, 𝑡)

𝜕𝑡
 2-4 

For time-varying voltage and current, we can use the phasor forms:   

𝑣(𝑧, 𝑡) = 𝑅𝑒{𝑉(𝑧)𝑒𝑗𝜔𝑡} 
2-5 

𝑖(𝑧, 𝑡) = 𝑅𝑒{𝐼(𝑧)𝑒𝑗𝜔𝑡} 
2-6 

Where,  𝑉(𝑧) and 𝐼(𝑧) are phasor forms of 𝑣(𝑧, 𝑡) and 𝑖(𝑧, 𝑡) respectively, which lead to 

following equations:  
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−
𝑑𝑉(𝑧)

𝑑𝑧
= (𝑅 + 𝑗𝜔𝐿)𝐼(𝑧) 2-7 

−
𝑑𝐼(𝑧)

𝑑𝑧
= (𝐺 + 𝑗𝜔𝐶)𝑉(𝑧) 2-8 

Differentiating again with respect to 𝑧, we obtain: 

𝑑2𝑉(𝑧)

𝑑𝑧2
= −(𝑅 + 𝑗𝜔𝐿)

𝑑𝐼(𝑧)

𝑑𝑧
 2-9 

𝑑2𝐼(𝑧)

𝑑𝑧2
= −(𝐺 + 𝑗𝜔𝐶)

𝑑𝑉(𝑧)

𝑑𝑧
 2-10 

After substituting the values of 𝑑𝐼(𝑧)/𝑑𝑧 and 𝑑𝑉(𝑧)/𝑑𝑧) from Equation 2-9 and 2-10, the 

following differential equations can be obtained:  

𝑑2𝑉(𝑧)

𝑑𝑧2
= (𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶)𝑉(𝑧) = 𝛾2 𝑉(𝑧) 2-11 

𝑑2𝐼(𝑧)

𝑑𝑧2
= (𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶)𝐼(𝑧) = 𝛾2 𝐼(𝑧) 2-12 

𝛾 =  𝛼 + 𝑗𝛽 = √((𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶)) 2-13 

Where, 𝛾 is the complex propagation constant with the real part α, attenuation constant 

(in Neper/meter) and the imaginary part β is the phase constant (rad/m)). The 

attenuation and phase constants are a function of frequency, ω (2πf) [77]. The 

attenuation constant, α, is a measure of the signal amplitude reduction arising from the 

transmission line. Attenuation arises from three factors, conductor loss 𝛼𝑐 , dielectric 

loss 𝛼𝑑 and radiation loss 𝛼𝑅, which will be discussed in detail in the Section 2.4.3. Phase 

constant β is a measure of change in signal phase along a transmission line at certain 

time intervals.   

Further, second order differential Equations 2-11 and 2-12 yield solution to 

𝑉(𝑧) and 𝐼(𝑧): 

𝑉(𝑧) = 𝑉+(𝑧)𝑒−𝛾𝑧 + 𝑉−(𝑧)𝑒+𝛾𝑧 
2-14 

𝐼(𝑧) = 𝐼+(𝑧)𝑒−𝛾𝑧 + 𝐼−(𝑧)𝑒+𝛾𝑧 
2-15 
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Where, 𝑒−𝛾𝑧 and 𝑒+𝛾𝑧 represent wave propagation in the forward (+z) and backward (-

z) directions, respectively. By differentiating Equation 2-14 with respect to  𝑧 and 

substituting the value of 𝑑𝑉(𝑧)/𝑑𝑧) in Equation 2-7, the following relation can be 

obtained: 

𝐼(𝑧) =
𝛾

𝑅 + 𝑗𝜔𝐿
 (𝑉+𝑒−𝛾𝑧 − 𝑉−𝑒+𝛾𝑧) =  

1

𝑍0
 (𝑉+𝑒−𝛾𝑧 − 𝑉−𝑒+𝛾𝑧) 

2-16 

The characteristic impedance, 𝑍0 is defined as: 

𝑍0 = 
𝑅 + 𝑗𝜔𝐿

𝛾
= 

𝛾

𝐺 + 𝑗𝜔𝐶
 =  √(

𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝑐
) 2-17 

From the above expression, it is clear that characteristic impedance, 𝑍0 depends on the 

distributed parameters R, L, C and G of the transmission line, but not the length. A 

specific value of 𝑍0 can be achieved by altering waveguide design parameters. 

2.2.1 Lossless transmission line  

A transmission line is considered lossless if the dielectric medium separating its 

conductors is lossless (ɛ ≈ 0), and the conductor is perfect conductors (σ ≈ ∞). Therefore, 

for a lossless transmission line, R and G are considered as zero and the 𝑍0 reduces to:  

𝑍0 = √
𝐿

𝑐
 2-18 

2.2.2 Distortionless transmission line   

A signal propagating down the transmission line consists of a band of frequencies. 

Different frequency components propagate at different velocities producing signal 

distortion, known as dispersion. In other words, the information carried by the signal 

spreads across a band of frequencies, and this information gets distorted, as different 

frequency components travel at different velocities.  

In most cases, phase velocity 𝑣𝑝 depends on frequency causing dispersion in signal 

transmission and is expressed as: 

𝑣𝑝 = 
𝜔

𝛽
 

2-19 
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For a distortion-less transmission line, the phase velocity must be frequency 

independent. To achieve that, line parameters need to satisfy: 

𝑅

𝐿
=  
𝐺

𝐶
 

2-20 

Substituting values from Equation 2-20, the propagation constant 𝛾 can be represented 

as: 

𝛾 = 𝑅√
𝐶

𝐿
+ 𝑗𝜔√𝐿𝐶 2-21 

Attenuation coefficient and phase constant can be defined as: 

𝛼 = 𝑅𝑒{𝛾} =  𝑅√
𝐶

𝐿
  ,   𝛽 = 𝐼𝑚{𝛾} =  𝜔√𝐿𝐶 2-22 

The phase velocity for a distortion-less line is thus defined as: 

𝑣𝑝 = 
𝜔

𝛽
= 

1

√𝐿𝐶
 

2-23 

From the above expression, it is clear that phase velocity is frequency independent for 

a distortion-less transmission line. The transmission line is thus non-dispersive. 

2.2.3 Reflection Coefficient  

In a terminated transmission line, the wave propagating down the line may or may not 

be reflected back, depending on the load conditions. In transmission line theory, the 

reflection coefficient Γ is the ratio of reflected and incident wave amplitudes. In 

waveguide design, the reflection coefficient gives an insight into any reflections 

originating from waveguide discontinuities by revealing their magnitude and phase (a 

large value may be caused by breaks and bends in the transmission line, for example). 
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Figure 2.3 Transmission line terminated into a load 𝒁𝑳. 

 

Figure 2.3 shows an incident wave 𝑉+𝑒−𝛾𝑧  propagating down the transmission 

line terminated in a load 𝑍𝐿 (where, 𝑍𝐿  ≠  𝑍𝑜) , at 𝑧 = 0. A reflected wave 𝑉−𝑒+𝛾𝑧  will 

then be excited and propagates back towards the signal generator. A standing wave 

pattern is generated on the transmission line due to interference (constructive or 

destructive) of incident and reflected waves, provided the excitation source is a 

continuous-wave signal. This standing wave pattern yields a succession of maxima and 

minima with a period of 𝜆 2⁄ . 

To obtain the reflection coefficient as a ratio of incident and reflected waves, Equations 

2-14 and 2-16 can be used to solve load impedance 𝑍𝐿 at  𝑧 = 0 as:  

𝑍𝐿 =
𝑉(0)

𝐼(0)
=  (

𝑉+ + 𝑉−

𝑉+ − 𝑉−
)𝑍0 2-24 

Equation 2-24 can further be rearranged as: 

𝛤 =
𝑉−

𝑉+
= 
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

 
2-25 

2.2.4 Different load conditions  

When a transmission line with characteristic impedance 𝑍0 is terminated in a load 

impedance 𝑍𝐿 (provided 𝑍𝐿 = 𝑍0), a matched load condition arises. The generated 

power is transmitted from source to load, and reflection coefficient returns the value  

𝛤 = 0. In case of an open circuit for which the load impedance is assumed to be infinity, 

the entire incident power is reflected back to the source and the reflection coefficient is  
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𝛤 = 1. When a transmission line is short-circuited at one end (when the load is 

removed), the incident power is reflected back (𝛤 = −1) with 180° phase change. 

2.3 Planar transmission lines 

In the last few decades, planar transmission lines have been widely used in modern 

electronics as essential components of microwave integrated circuits [78-80]. Besides 

signal transmission, planar transmission lines can also be used to realise many circuit 

elements such as filters, couplers, resonators, etc. Signals propagating down the 

transmission line are mainly affected by its physical geometry and choice of dielectric 

material.   

 

Figure 2.4   Planar transmission lines with electric field distribution shown in red a) Slot 

line. b) Microstrip. c) Goubau line. d) Strip line. e) Conductor-backed co-planar 

waveguide. f) Coplanar waveguide.  

For designing high-frequency on-chip waveguides consisting of a planar 

transmission line, it is crucial to gain knowledge of their electrical characteristics such 

as characteristic impedance, effective dielectric constant, conductor and dielectric 

losses, etc. This section covers the design and characterisation of commonly used planar 
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transmission lines. 

2.3.1 Slotline 

A slotline waveguide consisting of a narrow gap in the conductive film on one side of 

the dielectric substrate was first discussed by Cohn [81]. They are relatively easy to 

fabricate due to its simple structure. Most of the electric field lines are concentrated in 

the central gap between two metal tracks (shown in Figure 2.4 a) contributing to the 

highly dispersive behaviour. Slotline does not support TEM modes, but rather its 

fundamental mode is a quasi-TEM mode. Since it lacks the ability to suppress higher-

order modes, slotline is not very useful for broadband applications. Also, conductor 

losses are higher than the dielectric losses [82].  

The characteristic impedance of a slotline increases with slot gap width, which 

makes it advantageous for achieving higher impedance, compared to microstrip for the 

same dielectric substrate [83]. Slotline possesses a low-quality factor due to its lossy and 

dispersive behaviour. 

2.3.2 Microstrip 

A single conductor waveguide on a dielectric substrate was invented by Grieg and 

Engelmann at ITT Laboratories [84]. It has been used extensively and is the most 

popular transmission line for high-frequency applications. In microstrip, a ground 

plane on the back of the substrate can be used both as a heat sink and as a device mount. 

Therefore, microstrip is easy to integrate with other solid-state devices. Most of the 

electric field lines are concentrated in the dielectric substrate placed between a single 

conductor and the ground plane. A fraction of the field lines passes through the air 

(shown in Figure 2.4 b), causing a pure TEM mode propagation impossible. Therefore, 

microstrip supports a hybrid TE and TM mode (quasi-TEM mode) of propagation. At 

low frequency, effective permittivity depends on the physical dimensions of conductor 

and a dielectric substrate. At high frequency, higher-order modes are lossy in nature 

can propagate. Its characteristic impedance is given by the expression [77]:  
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𝑍0 =

{
 
 

 
 

60

√ɛ𝑒𝑓𝑓
𝑙𝑛 (

8ℎ

𝑊
+
𝑊

4ℎ
)                                                       

𝑊

ℎ
< 1

 
120𝜋

√ɛ𝑒𝑓𝑓[𝑊 ℎ⁄ + 1.393 + 0.667𝑙𝑛(𝑊 ℎ⁄ + 1.444)] 
,
𝑊

ℎ
≥ 1

 
2-26 

Where, w is the width of the conductor, h is the height of dielectric substrate and 

effective permittivity, ɛ𝑒𝑓𝑓 can be expressed as: 

ɛ𝑒𝑓𝑓 =
ɛ𝑟 + 1

2
+
ɛ𝑟 + 1

2

1

√1 + 12 ℎ 𝑤⁄
 

2-27 

Signal attenuation in microstrip waveguide is mainly due to the conductor and 

dielectric losses. For quasi-TEM mode propagation, conductor and dielectric losses in 

microstrip can be expressed as [85]: 

𝛼𝑐 =
𝑅𝑠
𝑍0𝑊

 , 𝛼𝑑 =
𝑘0ɛ𝑟(ɛ𝑒𝑓𝑓 − 1) 𝑡𝑎𝑛 𝛿

2√ɛ𝑒𝑓𝑓(ɛ𝑟 − 1)
 2-28 

where, 𝑅𝑠 is the surface resistivity given by [86]: 

𝑅𝑠 = √𝜋µ𝑟µ0𝑓𝜌 
2-29 

where 𝜌 is the bulk resistivity, 𝑓 is the frequency of operation and µ𝑟µ0 are relative and 

free space permeability, respectively. 

2.3.3 Goubau line 

Goubau line is a single-conductor waveguide supported by a dielectric substrate with 

no ground plane. An ideal Goubau line is circular metallic wire suspended in free space 

in which surface waves can propagate along the wire. Surface wave on a single wire 

was first investigated by A. Sommerfeld [87]. In 1905, G. Goubau applied Sommerfeld's 

surface wave theory to the single conductor transmission line on a dielectric substrate 

which is now known as planar Goubau line [88]. It supports a low loss quasi-TEM mode 

of propagation, which is also known as Goubau mode. In Goubau line, the 

electromagnetic field extends radially from the conductor (shown in Figure 2.4 c), with 

most of the field lines concentrated in the substrate. 

With the development of on-chip technology, Goubau-line has been modified to 

couple with a CPW in order to excite a specific modes of propagation. Goubau-line can 
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be excited by a CPW fed from a horn antenna [89]. In Goubau-line, a high characteristic 

impedance can be achieved by choosing a substrate with low dielectric constant and 

narrower conductor strip width W. To minimise the conductor losses; the thickness of 

the conductor strip needs to be small in order to reduce the surface resistivity. In order 

to reduce the signal attenuation and dispersion, the substrate thickness needs to be 

small. C. Russell et al. demonstrated that an increase in propagation velocity, and a 

reduction in signal attenuation can be achieved in Goubau-lines by substrate thinning 

[90]. In the same reference, Goubau-lines were used for dielectric sensing and 

spectroscopy of poly-crystalline materials in the THz range.  

2.3.4 Stripline 

The term “stripline” was first coined by R. Barrett in 1950 [91]. It is the earliest form of 

the planar transmission line which supports a pure TEM mode [78]. It consists of a 

central conductor surrounded by a homogeneous dielectric medium sandwiched 

between two parallel ground planes as shown in Figure 2.4 d. The dielectric medium 

used in stripline is a solid material. It provides good electromagnetic shielding and very 

low attenuation losses compared to CPW and microstrip line, which make it suitable for 

low-interference applications. Due to its non-dispersive behaviour, it has a high cut-off 

frequency. 

 One of the main disadvantages of stripline is its complex geometry (conductor 

is sandwiched between two equal slabs of a dielectric medium) which makes fabrication 

process difficult, unlike CPW and microstrip line. Stripline design also presents 

difficulties in realising various circuit elements, which require bias to operate.  

The characteristic impedance of stripline is given by [92]: 

 

𝑍0 ≈
60

√ɛ𝑟
𝑙𝑛 (

4ℎ

0.67𝜋(𝑇 + 0.8𝑊)
) 2-30 

The phase velocity of TEM mode in stripline is given by: 

𝑣𝑝 =
𝑐

√ɛ𝑟
 

2-31 
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2.3.5 Coplanar waveguide 

In the last few decades, CPW has been widely used in the microwave integrated circuits. 

In 1969, coplanar waveguide (CPW) was invented by Cheng P. Wen at RCA’s Sarnoff 

Laboratories [93]. It consists of a centre conductor separated by a narrow gap from two 

ground planes located on either side on a dielectric substrate. Interestingly, at higher 

frequencies, the field is found to be concentrated into slot gaps so that the effective mode 

of propagation is changed from microstrip to a coplanar mode. CPW has to be carefully 

designed, to achieve a single mode of propagation for specific applications. In this 

project, coplanar waveguide working at THz frequencies is studied extensively with the 

help of both electromagnetic simulations and numerical modelling, and necessary 

modifications are made to optimise device design. 

A schematic of a typical coplanar waveguide is shown in Figure 2.5 a.  There are 

two different types of mode of propagation in a CPW. One is the slot line mode, often 

called as the even mode, where electric field lines are extending from one ground plane 

to other (shown in Figure 2.5 c). The other is a coplanar mode which is a quasi-TEM 

mode, often called as odd mode, where electric field lines extend from centre conductor 

to ground planes on both sides (shown in Figure 2.5 b) and are 180° out of phase. 

For coplanar mode, an electric field is tightly confined to slot gaps, which makes 

it less dispersive and the most desirable mode for broadband applications [94, 95]. 

However, a mixed-mode signal (consisting of both odd and even field components) can 

propagate with zero cut-off frequency if the two ground planes are not held at the same 

potential. There is sometimes an additional ground plane placed on the bottom of the 

substrate (shown in Figure 2.4 e) which forms a conductor-backed coplanar (CBCPW) 

structure. For relatively large 𝑊 ℎ⁄  ratios in a CBCPW, the field distribution is similar to 

that of a microstrip waveguide due to the presence of a bottom ground plane [96]. For 

smaller slot gap widths W (where the field is strongly coupled to ground planes on both 

sides), it acts as a typical coplanar waveguide. 

Different air-bridge techniques have been used to suppress the unwanted slot-

mode (even mode) [97, 98]. In this project, the unwanted even mode is suppressed by 

optical excitation of a pair of PC switches and by careful bias arrangements, which will 
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be discussed in detail in Chapter 3. 

 

 

Figure 2.5   Schematic of CPW and its field distribution: a) A CPW geometry with spacing 

(S+2W) between two ground planes. b) The field distribution in coplanar mode 

(odd mode). c) The field distribution in slot line mode (even mode).  

One of the main advantages of choosing CPW over other transmission lines such 

as slot line, microstrip, Goubau line and strip line is that it has more degrees of freedom 

for optimisation. The two design parameters (the centre conductor width S and the slot 

gap width W) allowed optimisation of device design to meet the on-chip spectroscopy 

requirements in this project. 

 

A few other advantages of CPW design are listed as follows: 

 Planar microwave circuits can be realised from CPWs because the centre 

conductor and ground planes are in the same plane.  

 As the field is confined to the slot gaps, CPW can work with arbitrarily thick 

substrates. Therefore, substrate thinning is not needed in CPW [99] while 

Goubau line is highly affected by the substrate thickness and requires substrate 

thinning [90].  



Transmission Line Theory and Modelling of On-Chip Waveguides using HFSS 

41 | P a g e  

 

 Series and parallel connections of active and passive lumped elements can be 

realised in microwave circuits without using via-hole (through substrate) 

techniques.  

 The fundamental coplanar mode of CPW is less dispersive than the fundamental 

mode of microstrip line which makes it more suitable for millimetre (in the range 

of THz frequency) wave circuits. 

 It is possible to design highly condensed (i.e. high packaging density) 

microwave integrated circuits using CPW because the ground planes provide 

shielding between adjacent CPW lines.  

 Fundamental lumped elements and filter elements (High-pass, stop-band, pass-

band, and e.tc.) can be realised by introducing various discontinuities in the 

centre conductor of a CPW.  

Signal attenuation in a CPW mainly occurs due to the conductor, dielectric and 

radiation losses. Frankel et al. [100], Cheng et al. [95] and Zhang et al. [101] investigated 

millimeter-wave  attenuation in CPW using electro-optic sampling technique up to 1 

THz. Dielectric losses 𝛼𝑑 can be minimised by choosing substrate material of low 

dielectric constant such as benzocyclobutane (BCB) and quartz. In this project, GaAs 

and quartz are both used for the waveguide substrate, and the results of electromagnetic 

simulations of CPW in THz range with both GaAs and Quartz substrates are presented 

in Section 2.5.3.2. Conductor losses 𝛼𝑐 in CPW arise due to finite conductivity σ, skin 

depth δ (where δ = √𝜋𝜎µ𝑓 ) and substrate roughness of the conductive material. At high 

frequencies, the field is tightly confined into the slot gaps, and the situation of current 

crowding occurs at the edges of the conductors, which causes a significant increase in 

ohmic losses (also called conductor losses) in CPW [102]. Conductor losses increase for 

narrower gaps. Radiation loss 𝛼𝑅 occurs due to two factors: One is the interference 

between the dominant mode and higher parasitic modes at higher frequencies. The 

other one is due to leakage (often called shock waves) into the substrate when phase 

velocity 𝑣𝑝 of dominant mode is higher than substrate mode [103, 104]. Dispersion in 

CPW is also related to the interference between the fundamental mode and higher order 
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modes propagating at higher frequencies, which can be minimised by decreasing the 

slot gap width W. 

2.3.6 Coplanar waveguide discontinuities 

Type of 

Discontinuity 
Waveguide Geometry Equivalent Circuit Element 

Waveguide 

step 

  

Waveguide 

bend 

 
 

Waveguide T-

junction 

 
 

Waveguide 

coupling gap 

  

Table 2-1  Essential coplanar waveguide discontinuities and their equivalent circuits    (Images 

are reproduced from Ref. [99]). 

A discontinuity in a coplanar waveguide is usually caused by abrupt changes in 

the geometrical parameters. Such abrupt change may arise from lithographic defects 

introduced during the fabrication process, but a discontinuity may also be deliberately 

introduced in the geometry to realise specific circuit elements. In this section, only those 

discontinuities will be discussed that result from an intended change in the geometry of 
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the centre conductor of CPW.  

Both reflections and losses (radiation loss) due to waveguide discontinuities 

increase with frequency of operation [105-107]. Radiation is mainly caused by the 

coupling of the fundamental coplanar mode to substrate modes. Therefore, 

characterisation of discontinuities becomes especially important when the operation 

frequency approaches the THz range. If the fundamental mode (quasi-TEM mode) is 

propagating along a CPW, then both the electric and magnetic field will be scattered at 

the discontinuity, and a mixture of the fundamental odd (coplanar mode) and even 

(slot-line mode) can be excited in the discontinuity region. 

 

Type of 

Filter 
Design Equivalent Circuit Element 

 

High-pass 

filter 

  

 

Stop-band 

filter 

 

 

 

Pass-band 

filter 

 

 

Table 2-2 Fundamental filter elements realised in coplanar waveguide technology (Images are 

reproduced from Ref. [99]. 

Table 2-1, the most common CPW discontinuities are shown, along with their 

equivalent circuit elements, the CPW step, bend, T-junction and a series coupling gap. 

By introducing discontinuities into the CPW, fundamental filter elements can also be 

realised, as shown in Table 2-2. The broad application range of coplanar waveguide 

discontinuities was first recognised by Houdart [108, 109]. 
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In this project, the series coupling gap discontinuity was first investigated 

theoretically (using electromagnetic simulations); experimental results are presented in 

Chapter 3.  Coupling gap discontinuities can be represented as a two-port pi network, 

where 𝐶𝑔 represents series coupling capacitance and two shunt capacitances 𝐶𝑝1 and 𝐶𝑝2 

represent fringing capacitances between centre conductor and ground planes [99]. The 

value of the coupling capacitance 𝐶𝑔 decreases with increasing gap length. For very 

large gaps, coupling capacitance 𝐶𝑔 tends to zero and discontinuity becomes an open-

end circuit.  

A three-dimensional full-wave analysis of coplanar discontinuities using the 

finite difference time domain (FDTD) technique has been given in the literature [106, 

110-112]. However, full wave analysis techniques such as FDTD are computationally 

intensive, and particularly so at THz frequencies. Therefore, an alternative technique 

called quasi-static analysis [96, 113-115] draws the attention of many researchers to 

investigate waveguide discontinuities. In quasi-static analysis technique, a pure TEM 

mode of propagation is considered inside the discontinuity.  Quasi-static analyses of 

conventional and discontinuous (with a coupling gap) CPWs are discussed in detail in 

Section 2.4.2. 

2.4 Quasi-static analysis of coplanar waveguide 

As discussed in the previous section, the fundamental mode of propagation in CPW is 

a quasi-TEM mode. Quasi-TEM parameters such as characteristic impedance (𝑍0) and 

effective permittivity (ɛ𝑒𝑓𝑓) can be derived from quasi-static analysis. In quasi-static 

analysis, conformal mapping techniques have been widely used to determine closed-

form  expressions for ɛ𝑒𝑓𝑓 and 𝑍0 for CPW variants with: infinite ground planes and 

substrate [93], finite substrate thickness and shielding walls [96], finite ground planes 

[116], and multilayer substrates [117]. One of the main advantages of using conformal 

mapping is that open planar structures (CPW, Slot-line, Microstrip, etc.) can be 

transformed into a closed geometry which can further lead to analytical closed-form 

expression for the transmission line characteristics. However, the limitation of 

conformal transformation technique is that it provides analytical solution for static 
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fields only. An introduction to the conformal mapping technique is presented in the 

following section. 

2.4.1 Conformal mapping 

The conformal mapping technique is a powerful mathematical tool for solving two-

dimensional boundary problems in planar structures. It is a geometric technique which 

performs a transformation or mapping between two complex planes z(x, y) and w(u, v) 

using a mapping function f. With this concept, the function f(z) =w  transforms a curve 

or a region containing points (x, y) in the z-plane into another curve or region consisting 

of points (u, v) in the w-plane as shown in Figure 2.6. This geometrical transformation 

or mapping is conformal if the function f is analytical at the point z and its derivative 

𝑓′(𝑧) = 𝑑𝑓 𝑑𝑧⁄ ≠ 0 [78]. A function is analytic at a point z if its derivative is always non-

zero and unique at z. By exploiting conformal mapping technique, complex 

transmission line geometries can be mapped to much simpler structures whose 

solutions can be easily obtained. 

 

Figure 2.6 Function f (z) = w transforms a region in z-plane into w-plane.  

For example, the mapping function,𝑓(𝑧) = 𝑤 = 𝑙𝑛 𝑧 transforms a circle in z-

plane to a line segment in w-plane as shown in Figure 2.7. Using mapping 

function𝑓(𝑧) = 𝑤 = 𝑙𝑛 𝑧 , points on the circle with 𝑟 = 𝑎 and 0 ≤ 𝑣 ≤ 2𝜋 in z-plane are 

mapped to points 𝑢 = 𝑙𝑛 𝑎 and 0 ≤ 𝑣 ≤ 2𝜋 in w-plane. 
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Figure 2.7 Mapping between a circle in z-plane and a line segment in w-plane [78].  

 

The “Schwarz-Christoffel” transformation is the most commonly used 

conformal mapping technique for planar waveguide structures such as the strip line, a 

microstrip line and CPW.  This transformation solves electromagnetic boundary 

problems involving structures with polygonal boundaries. This transformation maps 

the x-axis of the z-plane onto a closed polygon in ζ-plane and the upper half of z-plane 

(y > 0) onto the interior of the closed polygon as shown in Figure 2.8. 

 

Figure 2.8 The Schwarz-Christoffel transformation: a) z-plane. b) ζ-plane. 
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The Schwarz-Christoffel transformation can be written in differential form as: 

𝑑𝑧

𝑑𝜁
= 𝐴(𝜁 − 𝑎)

𝛼

𝜋
−1(𝜁 − 𝑏)

𝛽

𝜋
−1(𝜁 − 𝑐)

𝛾

𝜋
−1………(𝜁 − 𝑥𝑛)

𝜑𝑛
𝜋
−1 

2-32 

And integral form as:  

𝑓(𝜁) = ∫
𝐴

(𝜁′ − 𝑎)1−
𝛼
𝜋(𝜁′ − 𝑏)1−

𝛽
𝜋(𝜁′ − 𝑏)1−

𝛾
𝜋……(𝜁′ − 𝑥𝑛)

1−
𝜑𝑛
𝜋

𝜁

𝜁0

𝑑𝜁′ + 𝐵 2-33 

 

Where 𝑎, 𝑏, 𝑐 … . 𝑥𝑛 are points on the real axis of z-plane and 𝛼, 𝛽, 𝛾….𝜑𝑛 are the interior 

angles of closed polygons such that: 

𝛼 + 𝛽 +  𝛾 +⋯ = (𝑛 − 2)𝜋 
2-34 

A is a complex number which controls the size and orientation of the polygon in 

𝜁-plane and B is an arbitrary constant. 

This type of conformal transformation of planar transmission lines is valid for 

those geometries in which the electric field lies along the air-dielectric interface, and 

magnetic field is normal to the interface so that half-planes above, and below the 

metallization plane can be analysed separately [80].  

2.4.2 Quasi-TEM parameters of coplanar waveguide 

 

Figure 2.9 Schematics of CPW showing line capacitances above and below of metallization 

plane.  
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Quasi-TEM parameters such as the effective dielectric constant (ɛ𝑒𝑓𝑓) and characteristic 

impedance (𝑍0) can be derived from the line capacitances above (air filled) and below 

(dielectric filled) the metallisation plane of CPW as shown in Figure 2.9. The total line 

capacitance of CPW is the algebraic sum of these two capacitances. In order to determine 

these capacitances using conformal mapping (Schwarz-Christoffel transformation), a 

few assumptions are made:  

 Metal thickness (t) is assumed to be zero (t << h).  

 Substrate thickness is assumed as infinite (h >> S+2W). 

 The centre strip width is taken to be 2a and the separation between the two 

ground planes is 2b (see Figure 2.10 a). The ratio 𝑎 𝑏⁄  (defined as the modulus) 

is represented by a parameter k. 

Under these assumptions, the CPW geometry can be represented by a metallization 

plane with zero thickness (shown in Figure 2.10 b) in the z-plane. In Figure 2.10 b, CPW 

dimensions are normalised by ‘a’ which makes centre conductor width ′2′ and the 

separation between ground planes 2 𝑘⁄ . 

 

Figure 2.10 Geometric transformation of CPW a) Schematic of a CPW showing dimensions. 

b) Cross section of CPW with metallisation plane of zero thickness. c) Schwarz-

Christoffel mapping of a CPW with zero thickness into a parallel plate 

capacitor. 
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The upper half of z-plane (air filled) is then mapped onto the rectangle ‘BCDA’ 

(to form a parallel plate capacitor) in the 𝑤-plane with each interior angle of 𝜋 2⁄  and 

vertices at 𝑤 = ±𝑎,±𝑎 + 𝑗𝑏, where 2𝑎 and 𝑏 are the width and the height of the rectangle 

(shown in Figure 2.10 c). The dimensions a and b are determined from one-to-one 

mapping between the points in the z-plane and w-plane. Since the rectangle is 

symmetric about the v-axis, the right half rectangle ‘OCDE’ maps points 𝑤 = 0, 𝑎, 𝑗𝑏 and 

𝑎 + 𝑗𝑏 in w-plane to points 𝑧 = 0, 1,∞ and 1 𝑘⁄  in z-plane. Similar mapping can be 

applied to the left-half rectangle ‘OEAB’. 

Using S-C transformation, Equation 1-33, points in z-plane are mapped into w-plane as: 

𝑤 = ∫
𝐴

(𝑧′ − 1)1−
1
2. (𝑧′ + 1)1−

1
2 . (𝑧′ −

1
𝑘
)
1−
1
2
 . (𝑧′ +

1
𝑘
)
1−
1
2

𝑧

𝑧0

𝑑𝑧′ +𝐵 2-35 

Further simplifying expression, we obtain: 

𝑤 = ∫
𝐴

√(𝑧′ − 1)(𝑧′ + 1) (𝑧′ −
1
𝑘
) (𝑧′ +

1
𝑘
)

𝑧

𝑧0

𝑑𝑧′ +𝐵 2-36 

Mapping point 𝑧 = 0 onto 𝑤 = 0, the constant B becomes zero, Therefore, 

𝑤 = ∫
𝐴

√(𝑧′ − 1)(𝑧′ + 1) (𝑧′ −
1
𝑘
) (𝑧′ +

1
𝑘
)

𝑧

0

𝑑𝑧′ + 0 2-37 

Applying boundary value (𝑧 = 1 𝑎𝑡 𝑤 = 𝑎), we obtain: 

𝑎 = ∫
𝐴′

√(1 − 𝑧′2)(1 − 𝑘2𝑧′2)

1

0

𝑑𝑧′ 2-38 

Where, 𝑘𝐴′ = 𝐴 

Applying boundary value (𝑧 = 1 𝑘⁄  𝑎𝑡 𝑤 = 𝑎 + 𝑗𝑏), we obtain: 

𝑎 + 𝑗𝑏 = ∫
𝐴′

√(1 − 𝑧′2)(1 − 𝑘2𝑧′2)

1 𝑘⁄

0

𝑑𝑧′ 2-39 

= 𝐴′ ⌈∫
𝑑𝑧′

√(1 − 𝑧′2)(1 − 𝑘2𝑧′2)

1

0

+∫
𝑑𝑧′

√(1 − 𝑧′2)(1 − 𝑘2𝑧′2)

1 𝑘⁄

1

⌉ 2-40 
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Using expression 2-38, we obtain: 

 

= 𝑎 + 𝑗𝐴′∫
𝑑𝑧′

√(𝑧′2 − 1)(1 − 𝑘2𝑧′2)

1 𝑘⁄

1

 2-41 

With 𝐴′ = 1, we obtain: 

𝑏 = ∫
𝑑𝑧′

√(𝑧′2 − 1)(1 − 𝑘2𝑧′2)

1 𝑘⁄

1

 2-42 

The values of a and b given by expressions 2-38 and 2-42 are form of a special function 

𝐾(𝑘) called the complete elliptic integral (also called elliptic sine function) of first kind 

[118]: 

𝑎 = 𝐾 = 𝐾(𝑘) = ∫
𝑑𝑧′

√(1 − 𝑧′2)(1 − 𝑘2𝑧′2)

1

0

 2-43 

𝑏 = 𝐾′ = 𝐾(𝑘′) = ∫
𝑑𝑧′

√(𝑧′2 − 1)(1 − 𝑘2𝑧′2)

1 𝑘⁄

1

 2-44 

Where, 𝑘′ = √1 − 𝑘2. 

The ratio of these complete elliptic integrals 𝐾(𝑘) 𝐾(𝑘′)⁄  is widely used in quasi-static 

analysis of various planar transmission lines and can be determined as:  

𝐾(𝑘)

𝐾(𝑘′)
=
𝐾(𝑘)

𝐾′(𝑘)
=

{
 
 

 
 

   

1

𝜋
𝑙𝑛 (2

1 + √𝑘

1 − √𝑘
),      

1

√2
≤ 𝑘 ≤ 1

𝜋

𝑙𝑛 (2
1 + √𝑘′

1 − √𝑘′
)

,       0 ≤ 𝑘 ≤
1

√2

 

2-45 

The capacitance 𝐶𝑎𝑖𝑟  between the centre conductor and ground planes in the upper half 

z- plane (air filled) can be obtained from the parallel plate capacitance formed by 

dimensions ‘2a’ (plate width) and ‘b’ (separation between plates) in the w-plane: 

𝐶𝑎𝑖𝑟 = ɛ0
2𝐾(𝑘)

𝐾(𝑘′)
 2-46 

The lower half (below the metallisation plane) filled with the substrate with a dielectric 

constant ɛ𝑟 , will also contribute a capacitance 𝐶𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 . Due to symmetric structure, 

similar conformal transformation can be used to obtain 𝐶𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 . Therefore, the total 

capacitance of CPW line is algebraic sum of 𝐶𝑎𝑖𝑟  and 𝐶𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 . 

𝐶𝐶𝑃𝑊 = ɛ0
2𝐾(𝑘)

𝐾(𝑘′)
+ ɛ0ɛ𝑟

2𝐾(𝑘)

𝐾(𝑘′)
 =  

1 + ɛ𝑟
2

 ɛ0
4𝐾(𝑘)

𝐾(𝑘′)
 2-47 
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Where, the factor 1 + ɛ𝑟 2⁄  is defined as: 

 
1 + ɛ𝑟
2

 =  ɛ𝑒𝑓𝑓 =  
𝐶𝐶𝑃𝑊
𝐶𝑎𝑖𝑟

  
2-48 

Similarly, the total inductance (𝐿𝑎𝑖𝑟 + 𝐿𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐) can be determined as: 

𝐿𝐶𝑃𝑊 = µ0
𝐾(𝑘′)

4𝐾(𝑘)
 2-49 

It is worth mentioning that both air and dielectric substrate have µ = 1. Therefore, the 

dielectric substrate does not affect the inductance. Further, phase velocity 𝑣𝑝 and 

characteristic impedance 𝑍0 are defined as: 

𝑣𝑝 =
𝑐

√ɛ𝑒𝑓𝑓
    ,   𝑍0 =

1

𝐶𝐶𝑃𝑊 . 𝑣𝑝
 

2-50 

where, c is the velocity of light. Equations 2-47, 2-48 and 2-50 give: 

𝑍0 =
1

𝑐𝐶𝑎𝑖𝑟√ɛ𝑒𝑓𝑓
= 

30𝜋

√ɛ𝑒𝑓𝑓
 .
𝐾(𝑘′)

𝐾(𝑘)
 2-51 

The above expression for ɛ𝑒𝑓𝑓 and 𝑍0 are similar to those given by [93, 119, 120]. 

 

Figure 2.11 Plot of calculated characteristic impedance of CPW as a function of modulus k 

on a) GaAs substrate (plotted in red). b) Quartz substrate (plotted in black).  

In Figure 2.11, characteristic impedance is plotted as function of modulus k which is a 

ratio of CPW dimensions (shown in Figure 2.9 and Figure 2.10) such that:  

𝑘 =
𝑎

𝑏
=

𝑠 2⁄

𝑠 2⁄ +𝑊
 2-52 
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Using analytical expression 2-51, 𝑍0 is calculated for different k values. It is clear from 

the Figure 2.11 that characteristic impedance 𝑍0 of CPW is much higher for larger slot 

gap widths W (smaller k value). 𝑍0 decreases dramatically for narrow slot gaps or 

smaller separation between ground to ground planes. Also, 𝑍0 of CPW on the quartz 

substrate found to be much higher than those of GaAs based. Modulus k is one of the 

key design parameters, which needs to be taken into account to achieve desired 

characteristic impedance. 

2.4.3 Losses in coplanar waveguide 

It is vital to study transmission losses in CPW for the development of low loss on-chip 

CPW for millimeter-wave applications. As mentioned earlier, there are three types of 

transmission losses that cause signal attenuation in coplanar circuits: conductor loss 𝛼𝑐 

, dielectric loss 𝛼𝑑 and radiation loss 𝛼𝑅. In this section, these losses are studied using 

analytical expressions and numerical modelling. 3D-electromagnetic simulations are 

used to evaluate signal attenuation in CPW in Section 2.5.3.2. 

2.4.3.1 Conductor loss 

Conductor loss in CPW is mainly due to the skin depth of material used in metallisation 

plane. The skin depth is defined as the depth of penetration into the conductive material 

at which the current density drops to 1/𝑒  of its initial value. Skin depth is related to the 

surface resistivity and operation frequency, given by: 

𝛿 = √
2𝜌

2𝜋𝑓µ0µ𝑟
 2-53 

Where, 𝜌 is the bulk resistivity, µ0 = 4𝜋 x 10
−7 Henry/meter, µ𝑟  is relative permittivity, 

f is the frequency of operation. 

It is evident from the Figure 2.12 that skin depth drops drastically above 200 

GHz and can reach to a few nanometers above 1 THz. In the above graph, skin depth 

found to be ~ 80 nm at 1 THz. Therefore, the metal (Au) thickness of on-chip CPW 

devices should be more than 80 nm to minimise loss. In this project, the material (Au) 

thickness of 150 nm is used in cleanroom fabrication.      
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Figure 2.12 Skin depth of gold (Au) plotted against frequency of operation. 

 

The conductor loss 𝛼𝑐 in terms of conductor resistance is given by [121]: 

𝛼𝑐 = 8.867
𝑅𝑐 + 𝑅𝑔

2𝑍0
   𝑑𝐵/𝑚𝑒𝑡𝑒𝑟 2-54 

Where, 𝑅𝑐 and 𝑅𝑔 are series resistance of the centre conductor and ground planes 

respectively defined as: 

𝑅𝑐 =
𝑅𝑠

4(2𝑎)(1 − 𝑘2)𝐾2(𝑘)
[𝜋 + 𝑙𝑛 (

4𝜋(2𝑎)

𝑡
) − 𝑘 𝑙𝑛 (

1 + 𝑘

1 − 𝑘
)] 2-55 

 

𝑅𝑔 =
𝑘𝑅𝑠

4(2𝑎)(1 − 𝑘2)𝐾2(𝑘)
[𝜋 + 𝑙𝑛 (

4𝜋(2𝑏)

𝑡
) −

1

𝑘
𝑙𝑛 (

1 + 𝑘

1 − 𝑘
)] 2-56 

Where, k is modulus, 𝐾(𝑘) is elliptical integral of first kind and 𝑅𝑠 is the surface 

resistance 𝑅𝑠 = 1 𝛿𝜎⁄  ohms. 

In Figure 2.13, the conductor loss for CPW on both GaAs and quartz substrate is 

calculated with skin depth of ~ 80 nm at the frequency of 1 THz and gold’s bulk 

conductivity of 4.1 × 107 S/m using expressions 1-52, 1-53 and 1-54. It can be seen from 

the graph in Figure 2.13 that conductor loss increases with increasing modulus k 

(decreasing the slot gap W or increasing centre conductor width s). 
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Figure 2.13 Calculated conductor loss for gold (Au), CPW on both GaAs and quartz 

substrates plotted against modulus k (ratio of CPW dimensions).  

It implies that narrow slot gaps result in an increased conductor loss compared 

to wider slot gaps. This can further be explained by increased current density at the 

edges of conductors when slot gaps are much narrower.  It can also be seen from the 

graph that CPW on GaAs substrate (possess low impedance, see Figure 2.13) is more 

susceptible to conductor losses than CPW on a quartz substrate. 

2.4.3.2 Dielectric loss 

Dielectric loss is related to the substrate conductive properties and is proportional to 

loss tangent of the dielectric material. Therefore, high-quality substrate material with 

low conductivity and loss tangent should carefully be chosen to minimise the dielectric 

loss. 

Dielectric loss 𝛼𝑑 for a CPW is given by: 

𝛼𝑑 = 8.867
tan 𝛿𝑐
𝜆0

ɛ𝑟

√ɛ𝑟

ɛ𝑒𝑓𝑓 − 1

ɛ𝑟 − 1
 dB/meter 2-57 

where, 𝜆0 is the wavelength in free space, tan 𝛿𝑐 is the loss tangent, ɛ𝑟  and ɛ𝑒𝑓𝑓  are the 

relative and effective permittivity and q is the filling factor given by: 

𝑞 =
1

2

𝐾(𝑘1)

𝐾(𝑘1
′ )
 
𝐾(𝑘′)

𝐾(𝑘)
 2-58 
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Where, 𝐾(𝑘) and 𝐾(𝑘1) are the complete elliptic integrals of the first kind with moduli 

𝑘 and 𝑘1 given by: 

𝑘1 =
𝑠𝑖𝑛ℎ(𝜋𝑠 4ℎ1⁄ )

𝑠𝑖𝑛ℎ[𝜋(𝑠 + 2𝑊)/4ℎ1]
  ,   𝑘 =

𝑎

𝑏
=

𝑠 2⁄

𝑠 2⁄ +𝑊
 2-59 

2.4.3.3 Radiation loss 

In CPW geometries, where substrate thickness is comparable to the wavelength of a 

signal propagating down the transmission line, a coupling between CPW mode and 

substrate mode may occur [122]. In this situation, the phase velocity of CPW mode 

exceeds the phase velocity of the substrate mode forcing the electromagnetic fields to 

radiate from the transmission line into substrate region. This radiation starts at a certain 

frequency when the phase velocities of CPW and substrate mode found to be equal and 

above this frequency, more power radiates (radiation loss increases) from transmission 

line with increasing operation frequency [123]. 

2.4.4 Discontinuous (series coupling gap) coplanar waveguide 

The coupling gap discontinuity has been used as a capacitive coupling switch in 

coplanar microwave circuits for high-frequency sampling and switching operations. It 

is a small (order of few microns) gap in the centre conductor (shown in Figure 2.14 a) 

acting as a resonator and can be used as a high-pass filter to suppress low-frequency 

components in transmitted signal [124, 125].   

In few literatures [99, 126-128], the coupling discontinuity has also been reported 

as Metal-Insulator-Metal (MIM) discontinuity due to the presence of a dielectric thin 

film underneath the coupling gap. Therefore, the coupling discontinuity provides a 

method of dielectric characterisation using on-chip coplanar structures. K. Nadaud et. 

al. [128] extracted permittivity of a thin film with the help of mathematical model 

describing the capacitance of coupling discontinuity in the coplanar waveguide. H. S. 

Skulason et. al. [129] extracted grapheme sheet impedance parameter in MIM 

configuration using discontinuous coplanar waveguide system while performing 

measurements from 0.01 to 110 GHz. Despite many advantages of this type of CPW 

discontinuity, only a limited literature is available describing its equivalent capacitive 
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model [99, 105, 106]. 

 

 

 

Figure 2.14 Schematic of CGAP-CPW a) Showing line capacitances above and below of 

metallisation plane. b) Electric field distribution in discontinuity region. c) 

Equivalent capacitive π-model of coupling discontinuity.   

The equivalent capacitive π-network consists of capacitances 𝐶𝑔 , 𝐶𝑝1 , and 𝐶𝑝2 as 

shown in Figure 2.14 c. 𝐶𝑔  represents coupling capacitance of centre conductor 

discontinuity. Two shunt Capacitances, 𝐶𝑝1 and 𝐶𝑝2 represent fringing capacitances 

between center conductor and ground planes [99].  Due to symmetry, the value of shunt 

capacitances must be equal (𝐶𝑝1 = 𝐶𝑝2 ). The value of coupling capacitance 𝐶𝑔  decreases 

with increasing gap length (𝐶𝑔 is proportional to 1 2𝐺⁄ , where 2G is coupling gap length 

shown in Figure 2.14 a). For very large gap, coupling capacitance 𝐶𝑔  tends to zero and 

discontinuity becomes an open-end circuit. 

The coupling discontinuity has been analysed using quasi-TEM three-

dimensional finite difference method (FDM) in the literature [106, 130]. However, S. 

Gevorgian et. al. [131, 132] used conformal mapping technique (see Section 2.4.2) to 

derive closed-form expressions for the equivalent capacitive π-network of coupling 

discontinuity. 
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Figure 2.15 Schwarz-Christoffel transformation of a planar CGAP-CPW into parallel plate 

capacitor [132]. 

Expression for series and shunt capacitances are defined as [132]: 

𝐶𝑔 = 2ɛ0ɛ𝑒𝑓𝑓 [
𝐾(𝑘2)

𝐾(𝑘2
′ )
−
𝐾(𝑘3)

𝐾(𝑘3
′ )
𝐿]𝐾(𝑘)𝑠 2-60 

𝐶𝑝 = 𝐶𝑝1 = 𝐶𝑝2 = 4ɛ0ɛ𝑒𝑓𝑓 [
𝐾(𝑘3)

𝐾(𝑘3
′ )
𝑘(𝑘)𝑠 −

𝐾(𝑘)

𝐾(𝑘′)
𝐿] 2-61 

Where, ɛ𝑒𝑓𝑓 is effective permittivity, 𝐿 is the distance (transmission length) from the 

edge of coupling gap both side (see Figure 2.15 a), s is the centre conductor width and 

𝑘, 𝑘′, 𝑘2, 𝑘2
′ , 𝑘3 and 𝑘3

′  are moduli of the elliptic integrals defined as: 

𝑘 =
𝑎

𝑏
=

𝑠/2

𝑠 2⁄ +𝑊
 ;  𝑘2 = 𝑠𝑛 [

𝐿

𝐿 + 𝐺
𝐾(𝑘1), 𝑘1 ] ; 𝑘3 = 𝑘1𝑘2 2-62 

Where, 𝐺 is the half-length of coupling gap (see Figure 2.15 a). 

𝑘′ = √1− 𝑘2 ; 𝑘2
′ = √1− 𝑘2

2 ;  𝑘3
′ = √1− 𝑘3

2 2-63 

𝑘1 is obtained using inverse Hilbert transform from the relation given as[133]: 

𝐾(𝑘1)

𝐾(𝑘1
′ )
=
𝐿 + 𝐺

𝑠𝐾(𝑘)
 2-64 

For larger values of L (tending to infinity), closed-form expressions are approximated 

by S. Gevorgian et. al. as: 
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 𝐶𝑝 =
4

𝜋
Ԑ𝑜Ԑ𝑒𝑓𝑓 (

𝑠

2
)𝐾(𝑘) [

8

1 + 8𝑒𝑥𝑝 (
−𝜋𝐺
𝑠𝐾(𝑘′)

)
] 

2-65 

 𝐶𝑔 =
2

𝜋
Ԑ𝑜Ԑ𝑒𝑓𝑓 (

𝑠

2
)𝐾(𝑘) [1 + 8𝑒𝑥𝑝(

−𝜋𝐺
𝑠
2𝐾

(𝑘′)
)] 2-66 

 

   

Figure 2.16 The series and shunt capacitances of a CPW as function of coupling gap length 

a) GaAs substrate with dielectric constant ɛ𝒓 =12.9. b) Quartz substrate with 

dielectric constant ɛ𝒓 =3.78.  

 

In this work, approximated expressions are used to calculate shunt and series 

capacitances of CGAP-CPW with design parameters: centre conductor width 𝑠 =

30 µ𝑚, spacing between centre conductor and ground plane 𝑊 = 20 µ𝑚, modulus 𝑘 =

𝑠

2
(
𝑠

2
+𝑊)⁄ , relative dielectric constant of substrate  ɛ𝑟 = 12.9 (GaAs) and 3.78 (Quartz).  

In Figure 2.16, series and shunt capacitances are plotted as a function of coupling 

gap length for both GaAs and quartz substrates. It is clear from graphs that series 

coupling capacitance  𝐶𝑔 decreases with increasing gap width W whereas shunt 

capacitance  𝐶𝑝 (fringing capacitance between centre conductor and ground planes) 

gradually increases with coupling gap length. It is worth mentioning that series and 

shunt capacitances has the same value for the coupling gap length ~ 22 µ𝑚. It is also 

noted that capacitances values for CPW on GaAs substrate are higher than those of 

quartz substrate. 
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2.5 Electromagnetic simulations using High-Frequency 

Structure Simulator (HFSS) 

In this project, a 3D EM simulator called Ansoft HFSS was also used for design 

optimisation and theoretical modelling of CPW structures. HFSS allows the user to 

draw a 3D structure of a waveguide of interest and simulate its EM behaviour over a 

broad frequency range. In this project, most of the EM simulations were performed in 

the THz regime (up to 1.2 THz). The following section gives an insight into working 

principle and underlying physics of HFSS. 

2.5.1 Finite Elements Method and adaptive meshing 

HFSS uses the Finite-Element Method (FEM) to break down the volume of the 3D 

simulation model into smaller elements in order to analyse them. The small elements 

used are tetrahedral mesh elements [134].  

 

Figure 2.17 A large volume of a 3D structure of a CPW decomposed into small elements 

(tetrahedrons). E-field valued are calculated at vertices and edges of a single 

tetrahedron.  

An example of a single tetrahedron is shown in Figure 2.17, where each vertex 

represents a nodal value (electric field component). These individual nodal values are 

used to generate the vector field quantities (solving field inside tetrahedron using nodal 

values). HFSS uses interpolation technique to derive vector field quantities (such as the 

H-field and E-field) from nodal values. 
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After decomposing 3D structure, HFSS identifies material defined in waveguide 

design and boundary conditions (such as radiation boundary, which acts as absorbent 

for E-H field radiation emanating from waveguide). HFSS also identifies wave/lump 

port drawn in 3D structure to assess power in/out to the waveguide structure. HFSS 

then sub-divides the 3D structure with an initial mesh based on solution frequency 

(represents the wavelength to determine the initial tetrahedron dimension) provided by 

the user.  

 

Figure 2.18 Adaptive mesh refinement process based on solution frequency value.  

Using an adapting meshing process (see mesh refining loop in Figure 2.18), 

HFSS generates a solution that is biased on an initial mesh first and then sub-divide the 

area where the finer mesh (denser meshing, shown in Figure 2.18) is required. The 

adaptive meshing process refines the tetrahedral dimensions in areas where the electric 

field gradient is largest. After several iterative mesh refining processes (adapting 

meshing loops), E-field values calculated from the current mesh are compared to those 

of the previous mesh. If the difference is less than or equal to an assigned threshold 

value (often called as delta S), the process is considered, converged and adapting 

meshing loop terminates. Delta S can be defined as: 

∆𝑆 ≥  𝑆𝑖𝑗
𝑁 − 𝑆𝑖𝑗

(𝑁−1) 
2-67 

Where, N is an adaptive pass number, ∆𝑆 is threshold value (or delta 𝑆) assigned by the 

user, 𝑆𝑖𝑗
𝑁 is the value from current adaptive pass and 𝑆𝑖𝑗

(𝑁−1) is the value from previous 

the adaptive pass. It is clear from the expression 2-67 that for smaller values of delta 𝑆, 

denser meshes will be formed to minimise the difference between current and previous 

adaptive pass. However, choosing small values of delta 𝑆 will increase the simulation 
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time.  The default value of delta 𝑆 = 0.02 (can also be modified) provided by HFSS which 

can be, found in driven solution setup. In this work, the default value of delta 𝑆 = 0.02 

is used in the mesh refinement process. In Figure 2.19, HFSS solution process is 

represented with the help of flow-chart, including all the crucial steps: 

 

Figure 2.19 Flow chart showing HFSS’s 3D-field solving steps.  

 After drawing a 3D model of the waveguide structure, the material assignment 

is one of the crucial steps. An extensive material library is available in the HFSS 

modeller. The predefined materials in the library are frequency independent but 

can be customised to make them frequency dependent to meet the user’s 

requirement. Also, new materials can be defined and added to the library by 

assigning parameters such as permittivity, conductivity and loss tangent.  

 There are mainly two types of excitation ports used in electromagnetic 

simulations defined as Waveport and lumped port. Excitation ports are usually 

placed at the ends of a transmission line to feed the electromagnetic power from 

one end and to measure output power at the other end. Lumped ports are 

commonly used in antenna design simulation in which ports are placed 

internally to the structure (usually between conductors). Waveport excitation is 



Transmission Line Theory and Modelling of On-Chip Waveguides using HFSS 

62 | P a g e  

 

commonly used with planar waveguide structures such as CPW, microstrip, 

slotline, Goubau line, etc. Waveports are defined at the outer boundary of 3D 

(perpendicular to the transmission line) structure and coincide with the 

radiation boundary plane. A 2D eigenmode port solver is initiated before the 

adaptive meshing when the port is excited. Port solver computes the port 

impedance and identifies propagating modes that can exist in the transmission 

line. Integration lines (electric field vectors) can be drawn on the ports to specify 

a mode of propagation (such as an odd or even mode). Default incident power 

on the port is set to 1 Watt. 

 A radiation boundary is assigned to all the faces of air box surrounding the 

waveguide structure. It can act as an absorbing wall to the emanating 

electromagnetic radiation and prevents reflections.  

 Once material, excitation ports and radiation boundary are defined, HFSS needs 

solution frequency information (provided by the user) to create an initial mesh 

of the 3D structure. Another crucial parameter which is known as a frequency 

sweep defines the range of frequency over which 3D model is simulated. Solution 

frequency can be chosen 80% of (or equal to) maximum frequency selected in 

the frequency sweep. In frequency sweep, step size will determine the frequency 

resolution of generated S, Y and Z parameters.  

 HFSS reflects simulation results of a waveguide structure in terms of S, Y, Z, γ, 

λ and ɛ parameters in a modal solution data report. With the help of these 

parameters, transmission properties such as the mode of propagation, 

bandwidth, permittivity, attenuation, the extent of the field and characteristic 

impedance can be estimated. S-parameters are discussed in the next section.   

2.5.2 S-parameters 

S-parameters, also often called as “scattering parameters” are convenient mathematical 

tools to describe the electromagnetic behaviour of a transmission line (forming a two-

port network) in terms of reflection (𝑆11) and transmission (𝑆21) coefficients.  
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Figure 2.20 A schematic of the two-port network with reflection and transmission 

coefficients. Incident and reflected waves at port-1 and port-2 are 𝒗𝟏
+, 𝒗𝟐

+ and 𝒗𝟏
−, 

𝒗𝟐
−.  

A schematic of two-port network is shown in Figure 2.20, where incident and 

reflected waves at port-1 and port-2 are 𝑣1
+, 𝑣2

+ and 𝑣1
−, 𝑣2

−. Scattering parameters can be 

defined using a matrix equation as:  

(
𝑣1
−

𝑣2
−) = (

𝑆11 𝑆12
𝑆21 𝑆22

) (
𝑣1
+

𝑣2
+) 2-68 

Further simplifying matrix equation, we obtain: 

𝑣1
− = 𝑆11𝑣1

+ + 𝑆12𝑣2
+   𝑎𝑛𝑑  𝑣2

− = 𝑆21𝑣1
+ + 𝑆22𝑣2

+ 
2-69 

Now, 𝑆11 can be determined as a ratio of magnitudes of reflected wave to incident wave, 

𝑆11 = (𝑣1
− 𝑣1

+⁄ ) at port-1 (assuming output is terminated in a perfect load 𝑍0 and 

therefore, 𝑣2
+ = 0). Likewise, 𝑆21 can be determined as 𝑆21 = (𝑣2

− 𝑣1
+⁄ ). For a symmetric 

two-port network, S-parameters are related as 𝑆11 = 𝑆22 and 𝑆21 = 𝑆12. Although, these 

reflection and transmission coefficients are unitless, they can be converted to their 

decibel (dB) format as 20 log of the voltage ratios as: 

𝑆11(𝑑𝐵) = −20 𝑙𝑜𝑔10(𝑣1
− 𝑣1

+⁄ ) = 𝑖𝑛𝑝𝑢𝑡 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 
2-70 

           𝑆21(𝑑𝐵) = −20 𝑙𝑜𝑔10(𝑣2
− 𝑣1

+⁄ ) = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 
2-71 

Where negative and positive dB value suggests attenuation and gain in the transmission 

line. To determine power loss in a transmission line (for 𝑍𝐿 = 𝑍0), power ratios can also 

be used instead voltage ratios as mentioned in ref [101]: 
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𝑃𝑟
𝑃𝑖
= |𝑆11

2 | ,
𝑃𝐿
𝑃𝑖
= |𝑆21

2 | 
2-72 

Where, 𝑃𝑖 is the incident power, 𝑃𝑟 is the reflected power and 𝑃𝐿 is the power delivered 

to the load. |𝑆11
2 | and |𝑆21

2 | are reflected and transmitted power respectively. 

Further, signal attenuation α can be related to power ratios as: 

𝑃𝑟
𝑃𝑖
+  

𝑃𝐿
𝑃𝑖
= |𝑆11

2 | + |𝑆21
2 | =  𝑒−2𝛼𝑙  

2-73 

By taking log of both sides, we get attenuation constant 𝛼 as: 

𝛼 =  −
1

2𝑙
𝑙𝑛(|𝑆11

2 | + |𝑆21
2 |) 

2-74 

Power loss in dB can be given by: 

𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠 = −10 𝑙𝑜𝑔10(𝑃𝑜𝑢𝑡 𝑃𝑖𝑛⁄ ) 
2-75 

In Table 2-3, Voltage and power ratios are calculated using expression 2-70 and 

2-71 for different roll-off values in dB where zero dB corresponds to a unity 

voltage/power ratio. In ideal situation (no loss condition), 0 dB implies that there is no 

attenuation in the transmission line and 𝑣𝑜𝑢𝑡 = 𝑣𝑖𝑛 or  𝑝𝑜𝑢𝑡 = 𝑝𝑖𝑛. At -20 dB roll off, 

signal amplitude falls to 10% (𝑣𝑜𝑢𝑡 𝑣𝑖𝑛⁄ = 0.10) of its initial value. In terms of power 

ratio, only 1% power is delivered to the load at -20 dB roll off.  

 

Roll off Voltage ratio  Power ratio 

0 dB 1.00 1.00 

-3 dB 0.707 0.501 

-6 dB 0.501 0.251 

-9 dB 0.354 0.125 

-12 dB 0.251 0.063 

-15 dB 0.177 0.031 

-18 dB 0.125 0.015 

-20 dB 0.100 0.010 

Table 2-3  Values of voltage and power ratios against roll off values of signal amplitude in 

dB. 
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To estimate CPW device’s bandwidth from HFSS simulations, -14 dB was used 

as a reference at which signal amplitude falls to 20% (𝑣𝑜𝑢𝑡 𝑣𝑖𝑛⁄ = 0.199) of its initial 

value. The estimated bandwidth was in good agreement with the bandwidth obtained 

from FFT spectra (when signal amplitude gradually falls to the level of noise floor- see 

Chapter 3) of on-chip CPW measurements in the THz lab. 

2.5.3 CPW simulation setup and results 

In this section, the THz transmission properties of a conventional CPW simulated using 

HFSS is discussed. The dependence of substrate materials (GaAs and quartz) on the 

transmission line characteristics (such as bandwidth, characteristic impedance, 

attenuation and loss factor) from sub-THz to the THz frequency range is studied. 

Simulation results obtained for both GaAs and quartz substrate are compared for better 

understanding. Further, CGAP-CPWs are simulated to investigate coupling gap 

characteristics that gives insight into high-pass filtering function (rejecting low-

frequency components) and resonating behaviour of CPW discontinuity. 

2.5.3.1 Simulation setup (Continuous CPW) 

A 3D structure of CPW comprising a centre conductor and ground planes drawn in 

HFSS is shown in Figure 2.21. Au (gold) material with bulk conductivity of 4.1 x 107 

siemens/m selected from HFSS’ material library was assigned to CPW’s metallisation 

plane. CPW dimensions include centre conductor width of 0.03 mm, the slot gap 

between the centre conductor and the ground plane of 0.02 mm wide, and substrate 

thickness of 350 µm. The transmission length of CPW was 1.5 mm (same as CPW device 

fabricated in the cleanroom). The relative permittivity values of GaAs and quartz used 

for simulation are 12.9 and 3.78 (values from the material library), respectively. The 

waveport dimension was chosen carefully to avoid excitation of lossy substrate modes. 

The waveport dimension is determined by using “solve port only” utility in HFSS for a 

given port impedance. The rule of thumb for designing a waveport is that its size should 

not exceed 𝜆 2⁄  in any dimension. Integration lines (electric field vectors) for waveports 

were drawn to specify the mode of propagation in the transmission line. Odd and even 

modes of excitation are shown in Figure 2.21 b and c. 
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Figure 2.21 3D model of CPW with excitation modes: a) An air box surrounding a CPW on 

a dielectric substrate. b) Electric field vectors are showing odd mode excitation 

in waveport. c) Electric field vectors are showing even-mode excitation in 

waveport.  

After defining the design parameters of the CPW, simulations were performed 

in the frequency range (often called as the frequency sweep) of  0.01 to 1.2 THz, with the 

solution frequency set to 1.1 THz. Simulation results were then exported from HFSS to 

Origin (data analysis and graphics software).  

2.5.3.2 Simulation results (continuous CPW) 

The transmission loss parameter 𝑆21 obtained from HFSS simulation is plotted as 

function of frequency in Figure 2.22. It is clear from the graph that CPW on GaAs 

substrate shows higher attenuation (higher roll off) compared to CPW on quartz with 

increasing frequency. The -14 dB point was taken as (discussed in Section 2.5.2) 

reference to estimate bandwidths of CPWGaAs and CPWquartz. The points at which -14 dB 

reference line intersects plots in Figure 2.22, bandwidths of CPWGaAs and CPWquartz are 

obtained at 0.45 and 1.01 THz, respectively. The features appeared at 0.45 THz in 𝑆21 

parameter obtained for CPWGaAs is due to dispersion (excitation of higher-order  hybrid 

modes and coupling between dominant CPW mode and surface waves on the substrate) 

at higher frequencies. 
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Figure 2.22 𝑺𝟐𝟏 parameter for both CPWGaAs and CPWquartz plotted as a function of frequency.  

 

Plotting phase constant β (imaginary part of propagation constant γ) and 

frequency-dependent  effective permittivity ɛ𝑒𝑓𝑓(𝑓) can give an insight into propagation 

of higher-order  modes above certain frequency. At low frequencies, EM field's 

distribution is uniform above and below the metallisation plane and therefore, effective 

permittivity is nearly an average of relative permittivity of substrate and air (ɛ𝑒𝑓𝑓 =

(ɛ𝑎𝑖𝑟 + ɛ𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒) ⁄ 2 ). However, at higher frequencies EM fields tend to couple into the 

substrate in greater proportion (see Figure 2.24) therefore, frequency-dependent  

effective permittivity needs to be taken into account. Frequency-dependent effective 

permittivity ɛ𝑒𝑓𝑓(𝑓) based on dispersion phenomenon in CPW is defined as [135, 136]: 

 

√𝜀𝑒𝑓𝑓  (𝑓) =  √𝜀𝑒𝑓𝑓  +
(√𝜀𝑟 − √𝜀𝑒𝑓𝑓)

(1 + 𝑎𝐹−𝑏)
 2-76 

 

Where, f is the frequency of operation, 𝐹 = 𝑓 𝑓𝑇𝐸⁄  is the normalised frequency, 𝑓𝑇𝐸 =

𝑐 4ℎ√ɛ𝑟 − 1⁄  is the cut off frequency for the first lowest order surface wave TE mode, 

ɛ𝑒𝑓𝑓 is effective permittivity at low frequency (𝑓 → 0)  and 𝑏 ≈ 1.8 is a constant.  
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Figure 2.23 Frequency dependent effective permittivity plotted as a function of frequency 

a) CPWGaAs. b) CPWquartz Phase constant for quasi-TEM mode and the first 

higher mode is plotted. c) CPWGaAs. d) CPWquartz .  

It is evident from Figure 2.23 a and b that the value of ɛ𝑒𝑓𝑓(𝑓) lies between 

effective permittivity  ɛ𝑒𝑓𝑓 (where f → 0) and relative permittivity of dielectric (GaAs 

and quartz) substrates (where f → ∞). We note that ɛ𝑒𝑓𝑓(𝑓) of CPWGaAs changes 

dramatically above 400 GHz while ɛ𝑒𝑓𝑓(𝑓) of CPWquartz reasonably linear up to 600 GHz 

and then gradually increases with frequency. 

Propagation  is related to the wavelength of transmitted signal as = 2𝜋 𝜆⁄  , where 

wavelength 𝜆 can be related to effective permittivity as 𝜆 = 𝑣𝑝 𝑓 = 𝑐 𝑓√ɛ𝑒𝑓𝑓⁄⁄  which 

suggests that phase constant 𝛽 is closely related to effective permittivity as 𝛽 =

𝜔√ɛ𝑒𝑓𝑓 𝑐⁄ . Therefore, at higher frequencies, change in the effective permittivity can be 

attributed to the change in phase constant β. In Figure 2.23 c and d, phase constant 𝛽 for 

both CPWGaAs and CPWquartz is plotted as a function of frequency, where linear phase 

change for quasi-TEM mode is shown in red. It is clear from Figure 2.23 c that first 

higher-order  mode starts to propagate at 460 GHz in CPWGaAs. For CPW on quartz 

substrate, first higher-order  mode starts to propagate at 800 GHz as shown in Figure 
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2.23 d. 

 

   

    

Figure 2.24 EM field’s distribution above and below the metallisation plane a) EM field at 

300 GHz in CPWGaAs.  b) EM field at 600 GHz in CPWGaAs . c) EM field at 600 GHz 

in CPWquartz . d) EM field at 900 GHz in CPWquartz .  

This dispersive behaviour of CPW can further be investigated by plotting EM 

field’s distribution in both CPWGaAs and CPWquartz as a function of frequency as shown 

in Figure 2.24. EM field distribution above and below the metallisation plane in both 

CPWGaAs and CPWquartz is uniform (shown in Figure 2.24 a and c) at lower frequencies (at 

which quasi-TEM mode propagates). However, at higher frequencies (> 460 GHz for 

GaAs and > 800 GHz for quartz) EM fields leak into the substrate (shown in Figure 2.24 

b and d) due to propagation of higher-order  lossy modes. 

Further, attenuation and loss factor in CPW as a function of frequency was 

investigated. As discussed earlier, attenuation in CPW occurs due to the 𝛼𝑐, dielectric 

𝛼𝑑 and radiation 𝛼𝑟 losses that can be defined as 𝛼𝑡𝑜𝑡𝑎𝑙 =  𝛼𝑐 + 𝛼𝑑 + 𝛼𝑟. In Figure 2.25 a, 

attenuation constant is plotted as a function of frequency using expression 2-74 (𝛼 =

 −
1

2𝑙
𝑙𝑛(|𝑆11

2 | + |𝑆21
2 |)). Attenuation for CPWquartz increases linearly with frequency and 

attains a value of 1.5 dB/mm at 1 THz. CPWGaAs  exhibits higher attenuation compared 

to CPWquartz and above 0.45 THz attenuation changes dramatically (possibly due to 

dispersion at higher frequencies). 
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Figure 2.25 a) Attenuation in both CPWGaAs and CPWquartz  b) Loss factor in both CPWGaAs and 

CPWquartz calculated from S-parameters. 

Another figure of merit is loss factor (L.F) which is given by: 

𝐿. 𝐹 =  1 − |𝑆11|
2 − |𝑆21|

2 
2-77 

where, |S11|
2 is reflected power, |S21|

2 is transmitted power and total input power is 

normalised to “1”. In Figure 2.25 b, loss factor for both CPWGaAs and CPWquartz is plotted 

as a function of frequency. For CPWGaAs , loss factor rises to a value of 0.9 at a frequency 

above 0.45 THz. For CPWquartz loss factor is reasonably low compared to CPWGaAs but 

increases rapidly above 0.60 THz. For low loss CPW, loss factor should be as low as 

possible.  

2.5.4 Simulation results (discontinuous CPW) 

The steps defining a 3D simulation model for CPW in HFSS were discussed in the 

Section 2.5.3.1. The only structural difference between conventional CPW and CGAP-

CPW is that a coupling gap discontinuity is engineered in the centre conductor trace of 

CPW. In this work, CGAP-CPW with varying gap length (from 10 to 60 µm) was 

simulated. S-parameters are then analysed to observe how the coupling gap with 

varying length attenuates or couples electromagnetic waves propagating down the 

transmission line. Due to capacitive nature of coupling gap discontinuity, low-

frequency components of EM fields are filtered (or rejected) while high-frequency 

components are coupled to the other half of the transmission line as shown in Figure 

2.26 b and c. 
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Figure 2.26 Schematic of 3D simulation model a) CGAP-CPW. b) EM fields at low-frequency 

c) EM fields at a higher frequency.  

The attenuation at low frequencies in CGAP-CPW can be explained by high-pass filter 

response of the coupling gap. CGAP-CPW makes a high-pass filter circuit (see Table 

2-2) in the transmission line due to line impedance and capacitance (due to the potential 

difference across the gap, a capacitor formed by the gap – shown in Figure 2.14 b). 

Response of a high-pass filter is shown in Figure 2.27, where cut-off frequency 𝑓𝑐 

represents -3 dB roll off in signal amplitude. 

 

Figure 2.27 High pass filter a) Circuit diagram. b) The frequency response of high pass 

filter.  

In Figure 2.27, transfer function of high pass filter can be calculated as: 

𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

=
𝑗𝜔𝐶

1 + 𝑗𝜔𝜏
 

2-78 
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Where, 𝜏 = 𝑅𝐶 and 1 𝜏⁄ = 𝜔𝑜 is cut off frequency in radian/sec. Magnitude and phase of 

transfer function are given by: 

 

|𝐻(𝜔)| =
𝜏𝜔

√1 + 𝜏2𝜔2 
=

2𝜋𝑓𝑅𝐶

√1 + 4𝜋2𝑓2𝑅2𝐶2
 2-79 

∠ 𝐻(𝜔) = 𝑡𝑎𝑛−1 (
𝜔𝑜
𝜔
) 

2-80 

 

In Figure 2.28, transmission loss 𝑆21 parameter (often called as insertion loss) is 

plotted as function of frequency for coupling gap CPWs on both GaAs and quartz 

substrates. 𝑆21 parameter obtained from continuous CPW (on GaAs and quartz) is used 

as a reference in Figure 2.28. Ripples seen in 𝑆21 parameter obtained from CGAP-CPWs 

can be explained by self-resonating frequency of the coupling gap capacitor. When time-

varying EM fields appear across the coupling capacitor, it starts to resonate at a certain 

frequency.  At higher frequency, oscillations (ripples) die out because the coupling gap 

becomes more resistive and less capacitive (as 𝑋𝑐 ∝  
1
𝑓⁄ ). 

We note that for CPW on GaAs, low-frequency components (below 335 GHz) 

are suppressed with a maximum coupling loss of -36, -40, -43, -45, -47 and -50 dB for 10, 

20, 30, 40, 50 and 60 µm gap lengths respectively. Above 335 GHz, EM fields are coupled 

through the gap and CGAP-CPW acts as a continuous CPW reasonably. For CPW on 

quartz substrate, signal attenuation in CGAP-CPWs is observed up to 700 GHz with 

maximum coupling loss of -42, -45, -48, -51, -54, -56 and -57 dB for 10, 20, 30, 40, 50 and 

60 µm gap lengths respectively. Above 700 GHz, a good coupling is observed. However, 

resonance features were also present with a frequency shift of ~ 5 GHz (from 920 to 945 

GHz) with increasing gap length (from 10 to 60 µm). Features above 1 THz are due to 

dispersion (excitation of higher-order  modes) in the CPW.  
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Figure 2.28 𝑺𝟐𝟏 parameter obtained from HFSS simulation for a) CPWGaAs and CGAP- 

CPWGaAs with varying gap length. b) CPWquartz and CGAP-CPWquartz with 

varying gap length and a frequency shift in resonance feature at 920 GHz is 

shown in inset graph.  

2.6 Series and Shunt Capacitances 

Simulation results obtained from HFSS can further be exploited in order to extract 

lumped elements of an equivalent circuit model representing a coupling gap 
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discontinuity. A capacitive pi-circuit model can be represented by Y-parameters as 

shown in Figure 2.29. By solving Y-parameter matrix, values of series and shunt 

capacitances can be calculated in terms of Y-parameters.  

 

Figure 2.29 a) A capacitive pi-circuit model of coupling gap discontiuity. b) An equivalent 

pi-model represented in terms of Y-parameters. 

 

Applying KCL at node1 current I1 can be obtained as: 

𝐼1 =  𝑉1𝑌𝑎 + (𝑉1 − 𝑉2)𝑌𝑏    = (𝑌𝑎 + 𝑌𝑏)𝑉1 − 𝑌𝑏𝑉2   
2-81 

Applying KCL at node2 current I2 can be obtained as: 

𝐼2 =  𝑉2𝑌𝑐 + (𝑉2 − 𝑉1)𝑌𝑏   =  −𝑉1𝑌𝑏 + (𝑌𝑏 + 𝑌𝑐)𝑉2 
2-82 

Using Equations 2-81 and 2-82 , a matrix of admittance parameter (Y) is obtained as: 

[𝑌] = [
𝑌11 𝑌12
𝑌21 𝑌22

] = [
𝑌𝑎 + 𝑌𝑏 −𝑌𝑏
−𝑌𝑏 𝑌𝑏 + 𝑌𝑐

] 
2-83 

Values of series (𝐶𝑔)  and shunt capacitances (𝐶𝑝) can be derived from Equation 2-83 as: 

𝐶𝑔 = −
𝐼𝑚𝑔(𝑌21)

2𝜋𝑓
 2-84 

𝐶𝑝 = 
𝐼𝑚𝑔(𝑌11 + 𝑌21)

2𝜋𝑓
 2-85 

Where, 𝑌21 = −𝑌𝑏  and 𝑌11 + 𝑌21 = 𝑌𝑎 = 𝑌𝑐 

In Figure 2.30, calculated series and shunt capacitances are plotted as a function of 

frequency.  
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Figure 2.30 Capacitance of CGAP-CPW plotted a function of frequency a) Series capacitance 

(GaAs substrate). b) Shunt capacitance (GaAs substrate). c) Series capacitance 

(quartz substrate). d) Shunt capacitance (quartz substrate). 

2.7 Conclusion 

Quasi-TEM parameters (𝑍0, 𝜀0) for CPWLT-GaAs  and CPWquartz were derived from 

theoretical modelling. Modelling results showed a higher characteristic impedance for 

a CPW on the quartz substrate. However, conductor losses in CPWquartz were found to 

be relatively smaller than that of CPWLT-GaAs which suggests that THz field will suffer 

less attenuation on the quartz substrate.  

Coupling and shunt capacitances of the CGAP-CPW device were calculated 

using analytical modelling. Results suggest that coupling capacitance decreases with 

increasing gap length. Also, series and shunt capacitances reach the almost same value 

for a coupling gap length of ~ 22 µm. It was also noted that capacitance's values for CPW 

on GaAs substrate were relatively higher than that of CPW on quartz substrate.  



Transmission Line Theory and Modelling of On-Chip Waveguides using HFSS 

76 | P a g e  

 

 

From the simulations results obtained from HFSS. The bandwidth of CPWLT-GaAs 

and CPWquartz were estimated as 0.45 and 1.01 THz respectively.  
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Chapter 3  

Conventional and Differential On-

Chip THz Systems: Device Design, 

Fabrication and Measurements 

3.1 Introduction 

In Chapter 2, it was discussed that how two different dielectric substrates (GaAs and 

quartz) affect the transmission characteristics such as characteristic impedance, signal 

attenuation and usable bandwidth of a coplanar waveguide. This chapter presents the 

design, fabrication and testing of on-chip CPWs (continuous and centre gap (CGAP)) 

on both GaAs and quartz substrates. The fabrication steps, device design and on-chip 

measurement setup are first discussed. A full characterisation of a first-generation CPW 

devices overlaid onto GaAs and quartz substrates will then be carried out using an on-

chip measurement system.  

The high-pass filter characteristics (i.e. rejection of low-frequency components) 

of CGAP-CPWs with different coupling gap lengths (10, 20, 30 and 40 µm) are measured 

using an on-chip three-beam measurement system. Further, a coupling switch 

modulation or differential measurement technique (a similar technique has been used 

for thin film characterisation in free space, see Chapter 1) for CGAP-CPW devices which 

exploits a three-beam on-chip measurement system to measure differential picosecond 

pulses will also be discussed. 
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3.2 Fabrication of the first generation CPW device on LT-

GaAs substrate 

After analysing electromagnetic simulation results of CPW obtained from HFSS tool, a 

photo-mask for a first generation of THz CPW devices was first designed in AutoCAD 

tool, and CPW devices were then fabricated in a cleanroom.  

 

Figure 3.1 Fabrication steps for first generation CPW on a LT-GaAs substrate a) Deposition 

of photoresist. b) UV exposure through photo-mask. c) A chlorobenzene soak 

process. d) Resist development process e) Metal (Ti/Au) deposition process f) 

A lift-off process. 

For CPW device fabrication, an LT-GaAs wafer (Leeds MBE wafer no. L849) 

consisting of a 2-µm-thick LT-GaAs layer on the top of a 400 nm AlAs layer  (itself grown 

by MBE on a 500-µm thick SI-GaAs at ~ 200°C) was used.  The LT-GaAs wafer was first 

cleaved into 6 mm × 6 mm pieces followed by an annealing ex-situ at 575°C (575°C was 

chosen being an optimised annealing recipe to achieve short carrier lifetime and high 

resistivity- see Section 3.4.1) for 15 minutes.   The wafer was then cleaned in an acetone 

bath using ultra sonication for 5 minutes, and IPA for 3 minutes, and DI-H2O for 2 

minutes before being blow-dried under a flow of N2. After the cleaning process was 

complete, a photoresist (Shipley S1813) was spun-on at 5000 rpm for 30 seconds, 

followed by a hot plate bake at 115°C for 3 minutes in order to obtain a 1.2-µm-thick 
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resist layer (shown in Figure 3.1 a). The sample covered with baked photoresist was 

then exposed to UV light through the CPW photo-mask (shown in Figure 3.1 b) for 7 

seconds at a UV-intensity of 3.7 mW/cm2, then soaked in chlorobenzene soak in order 

to define lithographic pattern. Soaking the sample in chlorobenzene for 2 minutes made 

the resist harder inducing  an undercut to improve subsequent lift-off.  After the 

chlorobenzene soak, the photoresist was developed by immersion in a solution of a MF-

319 developer for ~ 70 seconds (with mild agitation), followed by a rinse in DI-H2O in a 

separate beaker to stop further development and blow dried under an N2 flow. Once 

the lithographic pattern was defined on the sample, oxygen plasma ashing (50 watts, 70 

sec) was used to remove any organic impurities left behind. After CPW lithography, the 

sample underwent a metallisation process in which ~ 150 nm of gold (Au) was deposited 

on the top of a 20-nm-thick titanium (Ti) layer (titanium layer provides good adhesion 

to the gold layer [137]). The sample was then left overnight in acetone to achieve a good 

lift-off (removing metal from unwanted regions). The fabricated CPW devices were then 

mounted on a PCB (designed in AutoCAD and processed in the cleanroom, see Section 

3.3.1) followed by wire-bonding between device’s contacts and PCB’s copper tracks for 

electrical connection allowing on-chip THz measurements as discussed later.  

3.3 First generation CPW device design 

In the first-generation device design, a 1.5 mm long coplanar waveguide was 

engineered along with the parasitic region consists of probing/biasing arms as shown 

in Figure 3.2 a. The probing/biasing arms can be used to provide DC bias and make a 

connection to the PC switch in order to probe the THz pulse. The CPW transmission 

region, 𝑙𝑡 = 1.5 mm consists of a centre conductor (30 µ m wide) and two ground plane 

separated by 20 µm slot gap from the centre conductor (CPW with the same dimensions 

was simulated using HFSS in Chapter 2) as shown in Figure 3.2 a. Parasitic regions 

(extended regions of CPW with lengths 𝑙𝑝1 = 2.89 mm and 𝑙𝑝2 = 1.91 mm at both ends 

of CPW) consisting of bias/probe arms around the centre conductor make a four 

photoconductive-switch layout (S1, S2, S3 and S4 as shown in Figure 3.2 a) for the on-

chip CPW. A magnified view of the switch region is shown in Figure 3.2 b, where the 
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probe arms are separated by switch gaps (S2 and S4) each of 5 µm from the centre 

conductor.  

A four-switch layout allows a range of device characteristics to be obtained such 

as: detection of an “input” pulse (using a pair of switches S1 and S2),  detection of an 

“output” pulse (using a pair of switches S1 and S3, or S2 and S4), detection of odd modes 

(quasi-TEM) signal by simultaneous excitation of a pair of switches S1- S2 by defocused 

pump beam and subsequent detection of the odd-mode signal either at S3 or S4. In a 

first-generation of CPW device design, the THz pulse generated either from the switch, 

S1 or S2 travels a length of 𝑙𝑡 = 1.5 mm in a time 𝛥𝑡, before being detected at the switch 

S3 or S4 (depending on the biasing and probing circuitry). The velocity of the pulse 

arriving at the detection switch (S3 or S4) can then be calculated as, 𝑉𝑝 = 𝑙𝑡/𝛥𝑡. Once the 

velocity of the pulse is known, the origins of reflections appearing in the input and 

output pulses can also be determined. Such reflections may be produced from any 

discontinuities located in the parasitic regions, for example. 

 

Figure 3.2   Photoconductive switch layout with dimensions. b) A magnified view of the  

photoconductive switch region. 

In order to obtain spectral features of a THz pulse over a wide range of 

frequencies (> 1 THz), secondary reflection originating from parasitic regions need to be 

removed from measured THz pulse trace. Therefore, parasitic regions can play a vital 

role in improving on-chip system performance. By employing extended parasitic 

regions at both ends of the transmission line in an on-chip system and carefully choosing 



Conventional and Differential On-Chip THz Systems: Device Design, Fabrication and Measurements 

81 | P a g e  

 

design parameters such as the radius of curvature of bends and length of 

biasing/probing arms, secondary reflections can significantly be delayed or suppressed 

yielding much higher frequency resolution. 

3.3.1 PCB layout  

After the fabrication of on-chip CPW devices, each device was mounted onto a PCB for 

electrical connections and in order to bias the photoconductive switches. In doing so, 

the contact pads (shown in Figure 3.3) of the CPW device were wire-bonded to the 

copper tracks of the PCB as shown in Figure 3.3. Initially, a simple PCB layout as shown 

in Figure 3.3 a, was designed (AutoCAD) and processed in the cleanroom. PCB design 

was then modified to a more compact PCB design compatible with an Oxford 

Instruments Microstat’s cold finger in order to perform low-temperature on-chip 

spectroscopy measurements down to 4K (as discussed in Chapter 5).  

In a modified PCB design, the outer-most copper tracks were used to ground the 

ground planes in the CPW while the remaining copper tracks were used to provide 

electrical connection to biasing/probing arms (shown in Figure 3.3 b).  

 

 

Figure 3.3   a) PCB layout compatible for room temperature measurements. b) A portable 

PCB layout compatible with both room and low-temperature measurements. 
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3.4 On-chip measurements of the first generation CPW 

device (LT-GaAs substrate) 

In this section, we present a characterisation of CPW devices patterned on an LT-GaAs 

substrate using the on-chip THz measurement system. Generation and detection of the 

THz field in an on-chip system are quite similar to that of free space THz-TDS system 

(see Chapter 1) except that THz field is coupled to the guided medium (such as metallic 

transmission line) engineered in an on-chip system whereas in free space THz-TDS 

systems the THz field is guided by the parabolic mirrors under a purged environment 

(to remove water vapour). The working principle of an on-chip THz measurement 

system is described in the Section 3.4.1. 

3.4.1 Experimental setup: Two beams (pump-probe) on-chip 

system 

In Figure 3.4 a, a laser beam driven by a pulsed infrared Ti:Sapphire laser (Tsunami, 

Spectra-Physics), with a 110 fs pulse width, a centre wavelength of 800 nm and 

repetition rate of 80 MHz was split into a pump and a probe beam using a 50:50 beam 

splitter (placed at an angle of 45°).  

The average power of the main laser beam was ~ 700 mW, where the total power 

available to the on-chip THz measurement system was ~ 54 mW (i.e. remaining laser 

power was used to drive two other measurement systems). In on-chip THz system, laser 

intensities of pump and probe beams were controlled by placing neutral density filters 

in the optical path of pump and probe beams as shown in Figure 3.4 a. Neutral density 

filters were then tuned to give an avaerage output power of 10 mW each in pump and 

probe beam.  

In order to optically align pump and probe beams with respect to the generation 

and detection photoconductive switches (with dimensions 5 µm × 30 µm, see Figure 3.2 

b) respectively, guiding mirrors placed (i.e. mounted on an optical bench) in the optical 

path were used. By adjusting the orientation of guiding mirror, pump/probe beam was 

steered and made to propagate along the desired axis.  
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Figure 3.4 a) A schematic of an on-chip THz measurement system consisting of femtosecond 

laser source, motorised optical delay stage, a 50:50 beam splitter, guiding 

mirrors for beam alignment, neutral density filters (NDFs) to control laser beam 

intensity, a pair of lenses (f = 10cm), CCD camera, Keithely source meter for DC 

bias, a mechanical chopper and lock-in amplifier to measure amplitude and 

phase of THz pulse. b) A magnified view of pump/probe beam alignment using 

a pair of lenses. c) An illustration of the THz pulse sampled by the probe beam, 

where an average THz current pulse is mapped out by collecting sampled data 

points at discrete time intervals.  

The movement of pump and probe beams with respect to switches was 

monitored using a CCD camera placed in front of the device under test as shown in 

Figure 3.4 a. In doing so, pump/probe beam was first roughly aligned about 
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photoconductive switch regions, and Keithley source meter was connected across 

generation/detection switch to measure photocurrent from the corresponding switch.   

Each beam was then tightly focused onto generation/detection switch region 

using a 10 cm focal length lens as shown in Figure 3.4 b. In doing so, each beam was 

carefully steered around generation/detection switch using guiding mirrors until a 

maximum photocurrent was measured by Keithley source meter. Typically, it takes 20 

to 30 minutes to get both pump and probe beams well aligned with respect to the device 

under test in order to perform on-chip measurement.    

A motorised optical delay stage (consists of a retro reflector on a linear 

translation stage) was used to introduce an optical time delay ‘Δt’ in the probe beam 

while the pump beam was directly focused onto a DC biased generation switch. The 

probe beam was optically chopped by a mechanical chopper for lock-in detection 

(where the chopper frequency was set as a reference to a lock-in amplifier as shown in 

Figure 3.4 a).  

By employing a pump-probe scheme, the generated THz pulse propagating 

towards the detection switch has an arrival time, 𝑡 = 𝑡0 + 𝛥𝑡, and it is sampled (at 

discrete time intervals 𝜏1… . 𝜏𝑛 as shown in Figure 3.4 c) by a time-delayed probe beam 

at the detection switch. Finally, an averaged THz pulse is mapped out in the time 

domain (measured by a lock-in amplifier). For higher resolution, more data points can 

be sampled (or collected) at discrete time intervals by increasing the scan length (after 

the arrival time,  𝑡0 + 𝛥𝑡) of optical delay stage. In each set of on-chip measurements, a 

Keithley source meter, a lock-in amplifier and a motorised delay stage were controlled 

by a LabVIEW (National Instruments) program through a GBIP interface.  

3.4.2 Annealing temperature and carrier lifetime of LT-GaAs 

material  

In photoconductive switching for THz generation-detection, a short carrier lifetime is of 

critical importance in ensuring that THz pulses are fast enough to accommodate THz-

frequency components. Also, for an on-chip THz spectroscopy system, photoconductive 

switches with high resistivity are desirable in order to suppress any background dark 
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current, and so that a higher signal-to-noise ratio can be achieved subsequently 

revealing better spectral signatures of the sample under test. MBE-growth of LT-GaAs 

at low temperature (~ 200 °C) substantially decreases the carrier lifetime by creating 

point defects in the GaAs lattice (see Chapter 1).  

A trade-off was then observed between the shortest carrier lifetime and higher 

resistivity as the number of point defects can substantially be reduced by a post-growth 

annealing process. Researchers in this research group at the University of Leeds 

performed post-growth annealing of LT-GaAs at different temperatures followed by 

autocorrelation measurements in order to see a trend in the carrier lifetime with 

increasing annealing temperatures [138]. In Figure 3.5 b, bandwidth and carrier lifetime 

obtained from LT-GaAs photo-mixers are plotted as a function of increasing annealing 

temperature. A trade-off between higher bandwidth and shortest carrier lifetime was 

then achieved at an optimum annealing temperature of 575 °C.  

 

 

Figure 3.5 a) An autocorrelation measurement setup. b) Bandwidth and carrier lifetime are 

plotted as a function of increasing annealing temperature (taken from Ref. [138, 

139]). 

 

In this work, we performed autocorrelation measurements on the LT-GaAs 

material used in this project, annealed at the optimised temperature of 575 °C in order 

to measure the carrier lifetime. Calculated value of the carrier lifetime was then used in 

theoretical modelling of photoconductance of various photoconductive gaps (see 

Section 3.7). 
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3.4.2.1 Autocorrelation measurement to determine carrier lifetime  

Carrier lifetime of LT-GaAs material used in this project was measured by performing 

an autocorrelation measurement. For these measurements, CGAP-CPW devices with 20 

µm coupling switches, simultaneously illuminated by the focused pump and probe 

beam using an on-chip system were used (shown in Figure 3.6). A lock-in amplifier was 

connected in series with an applied bias across the coupling switch in order to measure 

correlated photocurrent. Measurements were then performed by varying the applied 

bias across the coupling switch. Four consecutive scans were carried out in order to 

improve the signal-to-noise ratio.  The shape of measured correlated photocurrent was 

found to be dependent on the beam polarisation. Therefore, half-wave plates were used 

to control any substantial polarisation (parallel and orthogonal). 

 

Figure 3.6 A schematic representation of an on-chip system for autocorrelation 

measurement. 

For these measurements, CGAP-CPW devices with 20 µm coupling switches, 

simultaneously illuminated by the focused pump and probe beam using an on-chip 

system were used (shown in Figure 3.6). A lock-in amplifier was connected in series 

with an applied bias across the coupling switch in order to measure correlated 

photocurrent. Measurements were then performed by varying the applied bias across 

the coupling switch. Four consecutive scans were carried out in order to improve the 

signal-to-noise ratio.  The shape of measured correlated photocurrent was found to be 
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dependent on the beam polarisation. Therefore, half-wave plates were used to control 

any substantial change in polarisation (parallel and orthogonal). In autocorrelation 

measurement, photo-charge carriers generated in the photoconductive gap by 

illumination of the pump beam create a local charge field which then screens the carriers 

generated by the probe beam, resulting in an impulse photocurrent [26, 140].  

In autocorrelation measurement, photo-charge carriers generated in the 

photoconductive gap by illumination of the pump beam create a local charge field 

which then screens the carriers generated by the probe beam, resulting in an impulse 

photocurrent [26, 140].  

 

  

  

Figure 3.7  a) Correlated photocurrent measured while pump and probe beam were of 

same polarisation. b) Normalised photocurrent with exponential fit to the 

falling edge of the pulse shown in inset graph. c) Correlated photocurrent 

measured while pump and probe beam were of different polarisation 

(orthogonal). d) Carrier lifetime plotted as function of increasing bias 

voltage. 

 

In Figure 3.7 a and b, the correlated photocurrent was measured while beam 
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polarisations were made parallel, revealing a narrow spike on the top of a hump, which 

was attributed to the coherent interaction of pump and probe beams [141]. This 

coherence interaction was not seen (Figure 3.7 c) when beam polarisations were made 

orthogonal to each other using half wave plate.  A Gaussian fit to the narrow spike 

(Figure 3.7 a) revealed a FWHM of ~ 113 fs which agree well with the FWHM of the fs 

laser pulses used. The correlated photocurrent pulse can be fitted by an exponential 

decay function such as 𝐼(𝑡) = 𝐴1𝑒
−(𝑡/𝑡1) + 𝐴2𝑒

−(𝑡/𝑡2), however, Deng et al [142] 

proposed a modified exponential decay function for best fit as : 

𝑗(𝑡) = 𝛿𝑒−(𝑡/𝜏𝑐) + (1 − 𝛿)𝑒(𝑡
2𝑙𝑛2/𝑇𝐺

2) 
3-1 

Where, 𝛿 is a ratio coefficient, 𝑇𝐺  represents FWHM of laser pulse and 𝑡 is time. 

In Figure 3.7 b, the falling edge of the pulse was fitted by using a fitting Equation 

3-1.  As an alternative to exponential decay fitting, a 𝑠𝑒𝑐ℎ2 fitting can be used to fit the 

correlated photocurrent when the two beam polarisations are orthogonal (i.e. when the 

narrow spike is absent). A carrier lifetime of 0.65 ps at 20 V bias applied across the 

photoconductive switch was obtained using 𝜏𝑐 = 2 ln(2) 𝜏1/2, where 𝜏1/2 is FWHM 

obtained from 𝑠𝑒𝑐ℎ2 fitting [143]. The measured carrier lifetime was found to be bias 

dependent as shown in Figure 3.7 d. 

3.4.3 Characterisation of the first generation CPW device (LT-

GaAs substrate)  

Full characterisation of CPW devices involved DC measurement of photoconductive 

switches, and then the generation and detection of picosecond pulses (input and output 

pulses), extraction of the useful bandwidth present in the picosecond pulse, the bias 

voltage and power dependence of the picosecond pulses, and excitation of specific 

modes of propagation such as the quasi-TEM mode (odd mode), as well as calculation 

of the  pulse velocity from on-chip measurements. Firstly, characterisation of 

photoconductive switches was performed in order to determine the photo-resistance 

characteristic with varying bias and laser power. 

3.4.4 Switch Characterisation 
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IV sweeps for all four photoconductive switches were performed with varying bias and 

laser power. The bias voltage applied across switches was ramped from -30 V to 30 V in 

steps of 0.5 V using a Keithley source-meter controlled by a LabVIEW program while 

recording current. Laser power was then manually changed (using neutral density 

filters) in each set of measurements. In doing so, a laser beam (with pulse energy larger 

than GaAs band gap) was aligned (using mirrors) and focused (using a lens) onto the 

biased photoconductive switch. Laser power was then varied from 1.5 mW to 11.5 mW 

for each set of measurements.    

 

 

Figure 3.8  IV sweep characteristic with varying laser power and bias of all four switches 

a) S1 b) S2 c) S3 and d) S4. 

In Figure 3.8, IV sweeps showed a relatively ohmic behaviour above 10 V (up to 

30 V) bias applied across the switch, with slight non-ohmic behaviour below 10 V.  The 

non-ohmic behaviour is attributed to screening of electrons from the positive anode 

while the laser spot was close to the anode [23, 144]. Also, the net electric field is 
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modified by generated photo-charge carriers in the photoconductive gap.  The non-

linear response can also be attributed to the MIM (metal-insulator-metal) diode-like 

characteristic of the photoconductive switch at low bias. 

The non-ohmic behaviour is attributed to screening of electrons from the 

positive anode while is laser beam spot is close to the anode [23, 144].  Also, the net 

electric field is modified by generated photo-charge carriers in the photoconductive gap.   

The non-linear response can also be attributed to the MIM (metal-insulator-metal) 

diode-like characteristic of the photoconductive switch at low bias. A dark resistance of 

~ 480 MΩ was measured with no illumination. Photoconductive switches S2, S3 and S4, 

showed a photo resistance of ~ 5 MΩ at 30 V with 1.5 mW of laser power. S1 showed 

relatively lower photo-resistance of ~ 3 MΩ, which may be due to slight variation in one 

of the processes involved during fabrication (contamination or defect).  

3.4.5 Input pulse detection  

Input pulse detection was carried out by focusing the pump and probe beams onto 

photoconductive switches S1 and S2 respectively. The photoconductive switches S1 and 

S2 are separated by the centre conductor only 30 µm wide as shown in Figure 3.9. When 

the switch S1 biased at 30 V was illuminated by the pump laser beam with 10 mW 

power, the THz pulse so generated was detected at the switch S2, with its probe arms 

connected to a lock-in amplifier, and by delaying the probe beam with respect to the 

pump beam using an optical delay stage.  

Input pulses detected at the switch S2 are shown in Figure 3.10, for which 

FWHM (full-width at half maximum) was calculated as 4.25 ± 0.03 ps using a Lorentz 

fit to the  main pulse. Although pulse was detected at the switch, S2 but generated THz 

pulse keeps travelling further in all possible directions before being reflected back from 

a discontinuity formed in parasitic regions.    In a time-window of 60 ps, three reflections 

(occurred at 26.13, 33.86 and 40.8 ps) after the main pulse were observed.   
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Figure 3.9 Schematic of the input pulses generation/detection in an on-chip CPW device, 

where the origins of reflections are indicated as A, B and C. 

 

The origins of reflections (as shown in Figure 3.10) was then calculated by 

multiplying the pulse velocity (see Section 3.4.7) with the time differences relative to the 

main pulse. In Figure 3.9, the origins of reflections are pointed out as A, B and C, 

suggesting that first reflection occurred after the main pulse comes from the switch 

region formed by the gaps at S3 and S4. The first reflection in the input pulse trace is 

attributed to the higher impedance offered by switches S3 and S4 under dark conditions 

(as S3 and S4 are not illuminated by the laser beam). 

The second reflection occurring in a 60 ps time-window is due to impedance 

mismatch from the device’s contact pad discontinuity (an abrupt change in dimensions) 

indicated by point B in Figure 3.9. The occurrence of the third reflection is due to a bend 

discontinuity (at bends, a fraction of THz pulse is reflected back depending on the 

radius of curvature) pointed out by C in the parasitic region. 
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Figure 3.10 Trace of an input THz pulse in a time-window of 60 ps, where reflections are 

pointed out by red dots and calculated FWHM is shown in the inset graph. 

 

It is also worth mentioning that pulse propagating through a bend discontinuity 

can experience a slight difference between physical and its actual electrical length of 

propagation due to the change in pulse velocity (as the THz pulse slows down at bend 

discontinuities) [145]. 

To characterise the input THz pulse, the bias across the switch S1 was varied 

from -30 V to 30 V in 5 V increments while the laser power was fixed at 10mW in each 

set of measurements. The bias-dependence characteristic of the input pulse is shown in 

Figure 3.11 a, for which we note a linear dependence on the applied bias (plotting the 

maximum pulse amplitude at different bias). Interestingly, A slight change in the 

FWHM, i.e., a broadening of the input pulses with increasing applied bias across the 

switch. S1 was observed (see inset graph in Figure 3.11 a). 
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Figure 3.11 An input THz pulse trace a) As a function of varying bias. b) As a function 

of varying laser power. Peak amplitude is linear fitted, and FWHM is non-

linear curve fitted in the inset graphs. 

Only the falling edge of input pulse (which is a defined by carrier lifetime or 

recombination rate of charge carriers - see Chapter 1) was affected by increasing applied 

bias, and therefore, the change in FWHM (from 3.93 at 5 V to 4.25 at 30 V) is attributed 

to a change in charge carrier dynamics at higher bias (see Section 3.4.2.1) as the carrier 

lifetime increases with increasing bias. In Figure 3.11 b, input pulse shows a linear 

dependence on laser power varying from 2.5 mW to 12.5 mW while the bias voltage was 
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fixed at 30 V. We also note a slight change in the FWHM (relatively lower than that with 

increasing bias) of the input pulse (see inset graph in Figure 3.11 b) with varying laser 

power, which can be attributed to heating of LT-GaAs due to illumination at higher 

laser power [146]. It is clear from Figure 3.11 that input pulse has a linear dependence 

on both the laser power and the applied bias across the switch.  

3.4.6 Output pulse detection  

Output pulses were detected by focusing a time-delayed probe beam (synchronised to 

pump beam) onto the switch S3 while bias was applied across the switch S1 as shown 

in Figure 3.12. As discussed earlier in the Section 3.4.4, this generated a THz pulse at the 

switch S1 which travels in both possible directions, and therefore, the output pulse is a 

result of detection of time-delayed input pulse (travelling from the switch S1 to S3). 

 

Figure 3.12 Schematic of an output pulse detection in an on-chip CPW device, where origins 

of reflections are indicated as A and B. 

A lock-in amplifier was connected to the probe arms  ofthe switch.  S3 to measure 

the amplitude and phase of output pulse arrived atthe switch  S3.  In Figure 3.13, a trace 

of an output pulse followed by reflections in the time-window of 60 ps is shown. A 

substantial decrease in pulse amplitude (compared to the input pulse) is attributed to 

attenuation while the pulse is propagating fromthe switch  S1 to S3 over the length of 

1.5 mm. Interestingly,  the first reflection that occurred (at 26.13 ps) in the input pulse 

trace (as shown in  Figure 3.10) was substantially reduced (almost disappearing) in the  
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output pulse trace (Figure 3.13) measured athe switch h S2.  Suppression of the first 

reflection is attributed to simultaneous illumination of photoconductive switches (S1 

and S3) situated at both ends of the transmission line (minimise the impedance 

mismatch ) by pump-probe beams. In the 60 ps time-window, only two reflections 

(pointed out as A and B in Figure 3.12) occurred, at time differences of 34.13 and 40.7 ps 

relative to the main pulse. However, the origin of these reflections remains the same as 

those calculated for the input pulse trace, due to the symmetric device design.   

 

Figure 3.13 Trace of a THz output pulse in a time-window of 60 ps, where reflections are 

pointed out by red dots and calculated FWHM is shown in inset graph. 

A FWHM of 4.8 ± 0.02 ps was calculated by a Lorentz fit to the main pulse 

detected in the output pulse trace. The increased FWHM (compared to FWHM of input 

pulse) is attributed  to two main reasons: i) the generated THz pulse has a hybrid mode 

of propagation (combination of quasi-TEM and slot line mode) in which slot-line mode 

is found to be more dispersive (see Chapter 2), and therefore, the FWHM increases due 

to dispersion at higher frequencies. ii) Change in the FWHM is also attributed to 

attenuation losses such as dielectric, conductor and radiation losses added to the THz 

pulse over the length of propagation. 
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Figure 3.14 An output THz pulse trace a) As a function of varying bias. b) As a function of 

varying laser power. Peak amplitude is fitted by a straight line as a guide to the 

eye, and the  

To investigate the bias dependence characteristics of the output THz pulses, the 

bias applied across the switch S1 was varied from -30 to 30 V while the pump beam 

power was fixed at 10 mW and similarly, for power dependence characteristic, bias was 

fixed at 30 V while pump beam power was varied from 2.5 to 12.5 mW. Similar to the 

input pulse, the output pulse shows a linear dependence on both the applied bias and 

power. A slight change in pulse width was also observed at higher biases applied across 

the switch due to similar reasons as mentioned before.   
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To investigate the frequency response of the CPW on LT-GaAs substrate, an FFT 

(Fast-Fourier Transform) was performed on the time-domain output pulses detected at 

the switch S2. In doing so, the time-domain pulses were first truncated at 30 ps (just 

before the first reflection) to remove reflections (if not removed, artefacts occurred in 

the FFT spectra) in the trace of the output pulse and then zero padded to improve the 

frequency resolution (the actual frequency resolution is limited up to 33 GHz). In Figure 

3.15, the FFT spectra showed a useful bandwidth of ~ 420 GHz, in good agreement with 

the estimated bandwidth of ~ 450 GHz obtained from HFSS simulation results (see 

Chapter 2).      

 

Figure 3.15 FFT spectra of an output pulse detected at switch S2, where the noise floor is 

indicated by red dotted line to distinguish useful bandwidth present in the 

signal. 

3.4.7 THz Pulse velocity (GaAs substrate) 

The velocity of generated THz pulse  can be determined by knowing the propagation 

delay of the input pulse (time elapsed in propagation from S1 to S3) when it arrives at 

the detector switch S3 and the transmission length travelled by pulse, since 𝑉𝑃 = 𝑙𝑡 ∆𝑡⁄ , 

where 𝑉𝑃 is propagation velocity, 𝑙𝑡 is transmission length and ∆𝑡 is the propagation 

delay. However, this method requires the detection of input and output pulses in the 

same time-window in order to find the propagation delay.  
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Figure 3.16  Schematic of input-output pulse detection in the same time-window by moving 

probe beam between switches S2 and S3. 

An illustration of this method is shown in Figure 3.16, where the probe beam 

was first focused onto the switch S2 in order to detect an input pulse. The probe beam 

was then focused onto the switch S3 by moving it from S2 to S3 (using a guiding mirror) 

in order to detect an output pulse. 

In doing so, the probe beam path length is changed from 𝑑1 to 𝑑2 , due to which 

the total propagation delay ∆𝑡 becomes ∆𝑡 =  𝑙𝑡 𝑉𝑃⁄ + (𝑑1 − 𝑑2 𝑐⁄  ), where 𝑑1 − 𝑑2 is path 

difference, and 𝑐 is speed of light in free space [64]. Therefore, calculation of the pulse 

velocity using this method requires an accurate measurement of beam path lengths and 

their respective angles in order to determine path differences. Nevertheless, an 

alternative method which compares two output pulses detected (in two consecutive 

scans) in the same time-window at the switch S1 and S3 respectively by swapping their 

electrical bias and probing connections was used as shown in Figure 3.7 a and b. The 

velocity of pulse was then calculated as:  

𝑉𝑃 = 2𝑙𝑡 ∆𝑡𝑟⁄  
3-2 

Where, 𝑙𝑡 is the transmission length between switches and ∆𝑡𝑟 is the relative time 

difference between detected pulses.  

Traces of two output pulses (moving away from zero time delay point, where 

zero time delay represents the origin of input pulse generation) with a relative time 
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difference of 26.54 ps detected at the switch S1 and S3 respectively are shown in Figure 

3.17 c.  The velocity of the pulse is then calculated as, 𝑉𝑃 = 2 × 1.5 26.54⁄ = 1.13 ×

108 𝑚/𝑠. In Figure 3.17 d, traces showing the input and output pulses with a relative 

time delay of 13.33 ps were detected in the same time-window. 

 

  

  

Figure 3.17 Forward and reverse detection of output pulses a) Pulse generation-detection 

at S1 and S3 respectively. b) Pulse generation-detection at S3 and S1 

respectively by swapping biasing and probing connections. c) Traces of two 

output pulses detected in the same time-window. d) Traces of input and out 

pulses detected in the same time-window. 

3.4.8 Mode excitations  

As discussed earlier, the THz pulse generated propagates with a hybrid mode 

consisting of odd mode (symmetric field pattern, see Chapter 2)  and even mode (anti-

symmetric field pattern) modes of propagation in which anti-symmetric even mode 

(dispersive in nature) causes broadening in the pulse travelling down the transmission 

line. However, the unwanted even mode can be suppressed by the optical excitation of 

a pair of generation switches (e.g. switch S1 and S2) by defocusing pump beam 

(covering both switch regions) and careful bias arrangement (similar technique has 

previously been demonstrated [94, 147, 148]) as shown in Figure 3.18. 
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Figure 3.18 Excitation of the symmetric odd mode by optical excitation of a pair of switches 

S1 and S2 in which the pump beam is defocused to cover both switch regions. 

A symmetric mode (odd mode) can be launched from a pair of generation 

switches (S1 and S2) by applying an equal bias (with similar polarity, shown in Figure 

3.18) across the switch S1 and S2 and simultaneously illuminating both switches by 

defocused pump beam. In doing so, the even mode is suppressed as both ground planes 

of CPW are at the same potential while the symmetric mode starts propagating down 

the transmission line (with field lines extending from the centre conductor to ground 

planes, see Chapter 2). The symmetric mode is less dispersive in nature as the field is 

tightly confined in slot gaps of CPW.   

Similarly, the “anti-symmetric (even) mode” can be deliberately launched by 

applying an equal bias with opposite polarity across switches S1 and S2 and the 

simultaneous illumination of switches by a defocused pump beam. With opposite 

polarity applied to the switches, the ground planes in CPW are set at different potentials 

and therefore, an anti-symmetric mode is launched with field lines extending from 

ground to ground (with few field lines touching the centre conductor, see Chapter 2). 

The anti-symmetric even mode radiates more power due to its larger field distribution 

(similar to a slot line) and therefore, suffers greater losses (especially at higher 

frequencies).   
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3.4.8.1 Coplanar mode (Odd mode) 

An example of “symmetric odd mode” excitation (with an equal bias of +30 V applied 

across the switch S1 and S2 and simultaneous illumination by the pump beam) is shown 

in Figure 3.18, where an output pulse was first detected at the switch S3  by focusing 

probe beam onto the switch S3 and then was detected at the switch S4 by focusing probe 

beam onto the switch S4 (this requires two consecutive scans). The detected output 

pulses were of similar shape and polarity, which suggest propagation of a symmetric 

mode (a symmetrical field around the centre conductor) in the CPW. Lorentz fit to “odd 

mode-output pulse” revealed a FWHM of 4.67 ± 0.2 ps (see inset graph, Figure 3.19) 

which suggests that pulse broadening was reduced (compared to FWHM of 4.8 ps 

output pulse with the hybrid mode of propagation, discussed in the Section 1.4.4.2) due 

to suppression of dispersive “even mode”. An increased bandwidth of ~ 500 GHz was 

revealed by FFT spectra of the “odd mode-output pulse” suggesting that odd mode is 

less dispersive.  

 

Figure 3.19 Detection of an output pulse at switch S3 and S4 (in two consecutive scans)  in 

odd mode excitation. Lorentz fit to main pulse and FFT spectra of output pulse 

are shown in inset graphs. 

3.4.8.2 Slot line mode (Even mode) 

An even mode pulse was launched by applying an equal bias of -30 V across switches 

S1 and S2 with simultaneous illumination by defocused pump beam. Two consecutive 

scans were then performed to detect the “even-mode” output pulse first at the switch 
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S3 by focusing probe beam onto S3 and then at S4 by focusing probe beam onto the 

switch S4. Traces of the output pulses were of the same shape, but opposite polarity is 

showing the propagation of the anti-symmetric mode in CPW.  

A Lorentz fit to the main pulse revealed an increased FWHM of ~5.52 ± 0.4 ps 

indicating pulse broadening relative to that of measured from the odd mode. Also, a 

substantial reduction in useful bandwidth (from ~ 500 to ~ 390 GHz) was observed 

from FFT spectra of the even mode-output pulse. 

 

Figure 3.20 Detection of an output pulse at switch S3 and S4 (in two consecutive scans) in 

even-mode excitation. Lorentz fit to main pulse and FFT spectra of output pulse 

are shown in inset graphs. 

3.5 On-chip measurements of the first generation CGAP-

CPW device (LT-GaAs substrate) 

After characterising a conventional CPW (with no discontinuity present in a centre 

conductor) device using the two-beam (pump-probe) on-chip system, a CGAP-CPW 

(with a gap discontinuity introduced in the centre conductor) device was measured 

using a three-beam (pump-pump-probe) on-chip system. The working principle of the 

three beam system is similar to that of the two-beam system except a third beam is 

added (split off from the pump beam), where the third beam is used to modulate the 
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conductivity of a coupling switch (a lithographically defined switch in the centre 

conductor of a conventional CPW) by changing the carrier concentration while a THz 

pulse passes through the discontinuity region before being detected at the detector 

switch. The addition of the third beam to an existing system allows us to manipulate 

THz pulse (such as Gaussian to mono cycle pulse and vice-versa) by controlling the 

third beam optical power using an ND filter.  Also, this will allow us to perform ultra-

fast switching in which coupling switch goes through a series of on/off transition states 

by modulating the conductivity of LT-GaAs (underneath coupling switch region).   

3.5.1 Experimental setup: Three-beam on-chip system 

 

Figure 3.21 Schematic of the three-beams on-chip system, where the third beam split 

from pump beam is used to illuminate coupling switch. A and B indicates 

the position of the mechanical chopper while performing conventional and 

differential pulse measurements respectively. 

A three-beam system was realised by splitting the existing pump (using a beam splitter) 

beam into two independent beams each able to illuminate a photoconductive switch. 

The path length of the third beam was controlled by the addition of a motorised optical 

delay stage (referred to as delay stage 2, shown in Figure 3.21) in order to synchronise 

the third beam with the existing pump-probe system. The third beam guided by a 

mirror was then focused onto the coupling switch in order to perform three-beam on-

chip measurements. 
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Throughout the three-beam measurements, the mechanical chopper was moved 

from position A to B (as indicated by blue circles) depending on the experiment being 

performed. Chopper position A is referred to as conventional two/three beam 

measurements, where the probe beam is chopped at a frequency used as a reference to 

the lock-in amplifier, in order to map-out THz pulse arriving at the detector switch. 

Chopper position B is referred to as a differential pulse (or modulated pulse) 

measurement, where the third beam, illuminating coupling switch is chopped in order 

to generate a differential signal Son − Soff, directly measured by a lock-in amplifier. 

Therefore, chopper positions (A and B) play a vital role in distinguishing conventional 

two/three beam measurements from differential (modulated) pulse measurement.  

3.5.2 Characterisation of the first generation CGAP-CPW (LT-

GaAs substrate)  

Initially, a CGAP-CPW device (with 20µm gap discontinuity) was measured using the 

three-beam on-chip system in order to test any substantial change in THz pulse 

characteristics while propagating along a discontinuous CPW. In doing so, input and 

output THz pulses were measured with and without third beam in operation. Further, 

odd and even mode excitations were tested in order to investigate mode propagation in 

the discontinuous system.  

3.5.3 Switch Characterisation  

Firstly, IV sweep measurements of photoconductive switches S1 and S3 (used as 

generation and detection switch) were performed by varying applied bias across 

switches and by then varying laser power intensities (controlled by an ND filter) in each 

set of measurements. IV sweeps of the switch S1 revealed a photo-resistance of 4.5 MΩ 

at 30 V bias applied across the switch with the laser power fixed at 1.5 mW. IV sweeps 

of the switch S2 was similar to S1, with a slight increase in photo-resistance (from 4.5 to 

4.8 MΩ) at 30 V and 1.5 mW laser power. The value of the photo-resistance was reduced 

to 1.5 MΩ as the laser power was increased from 1.5 to 11.5 mW as shown in inset 

graphs, Figure 3.22.  A similar non-ohmic behaviour up to 10 V bias (as discussed in 

Section 3.4.4) was observed from IV sweep curves.  
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Figure 3.22 IV characteristics of photoconductive switches a) S1. b) S3. 

After characterising photoconductive switches S1 and S3, IV sweep 

measurements of the coupling switch were performed using a similar method (varying 

bias and laser power). IV sweep of the coupling switch showed a relatively higher 

photo-resistance of  ~ 11 MΩ at 30 V bias applied across the centre conductor of the CPW 

(see  Figure 3.23 a and c) at 1.5 mW laser power. The high photo-resistance is attributed 

to the large aperture (20 × 30 µm) of the photoconductive switch formed by 20 µm gap 

discontinuity.  

It is clear from Figure 3.23 that  IV characteristic of the coupling switch is similar 

to that of obtained from the switch S1 and S3 except a higher value of photo-resistance 

obtained for same laser beam power, and bias applied. To further study the 

characteristics of the coupling switch,  bias arrangements were made as shown in Figure 

3.23 a and b, in which bias was applied across a centre conductor (with 20 µm gap) while 

illuminating the coupling switch with the third beam in operation, (referred as direct 

coupling). Bias was then applied across the centre conductor and ground plane as 

shown in Figure 3.23 b while the third beam was in operation; this is referred to as lateral 

coupling.   

Interestingly, IV sweeps showed a higher photo-current in lateral coupling 

(indicating a greater coupling) compared to photo-current measured from direct 

coupling (indicating a weaker direct coupling) as shown in Figure 3.23 d. 
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Figure 3.23 Coupling switch IV and slot gap leakage current. a) Schematic representtion of 

photocurrent measurement while the coupling gap is illuminated by the laser 

beam. b) Measurement of leakage photocurrent due to later coupling between 

the centre conductor and ground planes. c) Coupling switch IV curves. d) A 

comparison of photocurrents due to direct and lateral coupling. 

A greater coupling between the centre conductor and the ground plane is 

attributed to the formation of a photoconductive gap (due to overlaid CPW pattern onto 

2 µm thick LT-GaAs layer ) between the centre conductor and the ground plane 

(separated by 20 µm –shown in Figure 3.23) along the length of CPW. A higher lateral 

coupling also indicates that spot size ‘W’ of the third beam in operation is larger than 

the aperture of the coupling switch and therefore, can excite photo-charge carriers in 

the photoconductive gap between the centre conductor and the ground plane. To 

further investigate this, a knife-edge experiment was performed to measure the spot 

size of the laser beam (W). Knife edge experiment is discussed in the following section.  

3.5.4  Knife edge experiment to determine the spot size 

The focused spot size ‘W’ of the laser beam was measured using a surgical scalpel blade 

mounted on an XYZ manual translation stage. In doing so, a power metre was placed 
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behind the knife-edge (as shown in Figure 3.24) in order to measure any substantial 

change in beam power and lens (focal length of 10 cm) was used to focus the beam over 

a distance of 10 cm. The beam profile was then measured by moving the scalpel knife 

(in steps of 0.1 mm), and the beam power was measured as a function of the knife. Edge 

position.  

 

Figure 3.24 Knife-edge experiment: a surgical scalpel blade mounted on an XYZ manual 

translation stage. 

The measurement was repeated for several distances, and the measured beam 

power was plotted as a function of knife edge position as shown in Figure 3.25 a. A 

Gaussian beam profile (defined by Gauss error function  [149] ) was then obtained from 

the first derivative of the measured average beam power. Finally, a Gaussian fit to first 

derivate yields the beam radius by extracting the half width at 1 𝑒2⁄  of the peak value 

(shown in Figure 3.25 a).  

A Gaussian error function 𝑃(𝑥) =
𝑃𝑜

2
{1 ± 𝑒𝑟𝑓 [

√2(𝑥−𝑥𝑜)

𝑤𝑥
] } can be used to fit the 

first derivative obtained from average beam power, where 𝑒𝑟𝑓 is the error function,  𝑃𝑜 

is measured  power, 𝑤𝑥 is 1 𝑒2⁄  radius of the Gaussian beam, and 𝑥𝑜 is the offset in the 

centre coordinate [149]. In Figure 3.25 c, the first derivatives (indicating beam intensities 

at different positions in the Z-axis) of the average power measured as a function of knife 

edge position in X-axis while incrementing the position of the XYZ stage in z-axis in 

each set of measurements.It is clear from the graph that the Gaussian beam profile and 

intensity changes (increases) as the knife edge reaches to the point where beam spot size 

is smallest (or beam waist is narrowest). Gaussian fit to the first derivative revealed a 

FWHM of ~ 30.43 µm and spot size was then calculated as W= 2  = ~ 25.8 µm (as shown 
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in Figure 3.25 a and d).  

 

 

  

  

Figure 3.25 Laser beam spot size measurement. a) Average beam power measured and 

its first derivative plotted as a function of knife edge position in X-axis b) 

FWHM of Gaussian beam profile plotted as a function of knife edge 

position in z-axis c) Intensity of Gaussian beam  by taking the first 

derivative of average power plotted as function of knife edge in x and z-axes 

d) An example of beam spot size calculation for the  FWHM of the Gaussian 

profile.  

 

The beam-spot size calculated from knife-edge experiment suggests that photo-

charge carriers can be excited in the photoconductive gap formed between the centre 

conductor and ground plane while the coupling switch is illuminated by the third beam. 

The lateral coupling can be avoided by placing an LT-GaAs layer underneath the photo-

conductive regions and then removing (by selective etching using a chemical etch 

process) the unwanted regions (where the photoconductive switch pattern is not 

overlaid).  
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3.5.5 Input pulse detection 

Input pulse detection in the CGAP-CPW devices was performed by focusing the pump 

and probe beams (without the third beam) on to switches S1 and S2 respectively. A bias 

of 30 V was then applied across the switch. S1, and probing circuitry was connected to 

the lock-in amplifier in order to measure the probed THz pulse as shown in Figure 3.26.  

 

Figure 3.26  A schematic showing generation-detection of an input pulse in a CGAP-CPW 

device. 

An input THz pulse was then mapped out by the delaying probe beam using an 

optical delay stage. Traces of the input pulse showed a reflection with much larger 

amplitude (compared to secondary reflections- shown in Figure 3.27) which can be 

attributed to the coupling gap discontinuity introduced in the centre conductor of CPW.   

It is worth mentioning that main pulse and first reflection in the input pulse are 

in the same phase which is due to reflection of the input pulse from an open-ended 

discontinuity (this situation is similar to the ‘no load’ condition of the transmission line, 

where the signal reflects back with the same phase and a reflection coefficient of  Γ=1, 

see Chapter 2). Also, the baseline of the input pulse trace was somewhat increased, 

which is attributed to constructive interference between generated THz pulse at the 

switch S1 and the reflected pulse travelling back in the opposite direction. Reflections 

occurring at 26.48, 33.86 and 40.48 ps delay after the main pulse (pointed out as B, C and 

D in Figure 3.26) come from the same discontinuities which were discussed in Section 
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3.4.5.  The FWHM of input pulse was not calculated as fitting to the main pulse was not 

feasible.  

 

Figure 3.27 A trace of an input pulse, where the main pulse followed by three reflections 

is shown in a 50 ps time-window. 

Traces of the input pulse taken by varying bias applied across switch S1 showed 

a linear dependence on the bias as shown in Figure 3.28.  

 

Figure 3.28 Multiple traces of an input pulse taken by varying bias applied across switch 

S1, where a linear dependence is obtained by fit to the pulse amplitudes. 

3.5.6 Output pulse detection 

Output pulse detection CGAP-CPW was carried out by focusing the pump and probe 

beams onto switches S1 and S3 respectively, with a bias applied across the switch S1 as 

shown in Figure 3.29. The probe arms of the switch S3 were connected to a lock-in 
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amplifier. Traces of output pulses were taken with and without third beam in operation 

(to illuminate the coupling switch). There was no substantial change in amplitude 

observed when multiple traces of output pulse were taken as shown in inset graph, 

Figure 3.30. This can be attributed to a lateral coupling between the centre conductor 

and ground planes of CPW. 

Therefore, removal of LT-GaAs from unwanted regions is found to be necessary 

in order to see any significant change due to third beam illumination onto the coupling 

switch. A Lorentz fit to the main output pulse trace revealed a FWHM of ~ 5.36 ± 0.01 

ps indicating a pulse broadening. Interestingly, the FWHM of the output pulse is very 

close to the FWHM of ~ 5.52 calculated for the output pulse in even-mode excitation in 

conventional CPW, which further suggests propagation of an anti-symmetric field 

(avoiding the centre conductor) along the CPW. 

 

 

Figure 3.29 Output pulse detection in a CGAP-CPW device, where third beam (not 

chopped) is focused onto coupling switch. 

The output pulse could only consist of even mode field components because odd 

mode excitation (symmetric field) is mainly supported by the centre conductor while 

odd mode fields can propagate along ground-to-ground.  
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Figure 3.30 A trace of an output pulse detected at photoconductive switch S2 and multiple 

traces shown in inset graph, taken while coupling switch is illuminated by the 

third beam.   

3.5.7 Mode excitation  

Odd and even modes were excited in CGAP-CPW in order to investigate any substantial 

change in pulse amplitude while the coupling switch was illuminated by a third beam 

(synchronised with the other two beams). 

 

Figure 3.31 A schematic representation of odd/even mode excitation in a CGAP-CPW device 

by a defocusing pump in order to excite a pair of switches (S1 and S2) while the 

coupling switch is illuminated by the third beam. 
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3.5.7.1 Co-planar mode (Odd mode) 

An “odd mode” was excited in a CGAP-CPW device by illuminating photoconductive 

regions S1 and S2 by a defocused pump beam while an equal bias voltage of the same 

polarity was applied across the switch S1 and S2 (shown in Figure 3.31). Odd mode 

signals launched from S1-S2 were detected by illuminating the focused probe beam on 

to switch S3. A substantial change in the shape of the detected output pulses was 

observed. A change in the shape of the output pulse is attributed to the high-pass filter 

characteristic of the coupling switch (see Chapter 2). One of the characteristics of HPF 

(high-pass filter pass filter) is to suppress low-frequency components and allowing 

high-frequency components above its cut-off frequency (often called as “-3 dB” 

frequency) in the frequency domain.   

  

Figure 3.32 a) An odd mode excited output pulse detected at switch S3 and multiple scans 

of odd mode pulse taken while coupling switch was illuminated by the third 

beam are shown in inset graph. b) An output THz pulse and it first derivative 

plotted as a function of time delay. 

However, in the time-domain, a HPF effectively performs the first-order 

derivative on a signal passing through it. Therefore, in a CGAP-CPW device, a first-

order  derivative of the odd mode pulse propagating along CPW is obtained. First-order 

derivatives performed on THz pulse by HPF (Gaussian in nature) changes its shape to 

a monocycle pulse [150-152]. To further investigate it, an output pulse is plotted with its 

first derivative (performed numerically), indicating a monocycle pulse kind of shape 

formation as shown in Figure 3.32 b. An illustration of conversion of a Gaussian pulse 
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into a monocycle pulse (by performing differentiation) is shown in Figure 3.33.  

 

Figure 3.33 An illustration of conversion of a Gaussian THz pulse into monocycle pulse by 

performing differentiation operation. 

In “odd mode” excitation, symmetric field propagates along CPW with fields 

extending from the centre conductor to ground planes ensuring most of the THz field is 

passing through the centre conductor. Therefore, odd mode-output pulse is 

substantially affected by HPF characteristic of coupling discontinuity. 

By illuminating a coupling switch using a focused third beam should allow us 

to effectively tune the R and C value of HPF by changing the carrier concentration of 

the LT-GaAs underneath (and hence changing switch impedance and capacitance). 

However, CGAP-CPW devices on LT-GaAs substrate suffer from lateral coupling, and 

therefore, no substantial change was observed in the odd mode pulse. 

3.5.7.2 Slot-line mode (Even mode) 

The “even mode” was launched in a CGAP-CPW by reversing the polarity of 

the bias of 20 V applied across the switch S2 so that the ground planes remain at a 

different potential.  Switches S1 and S2 were illuminated by a defocused pump beam in 

order to excite both photoconductive switch regions (S1 and S2) as shown in Figure 3.31. 

Switch S3 was then illuminated by the probe beam in order to detect THz pulse 

launched by even-mode excitation. Probe beams were then focused on to switch S4 to 

detect an “even mode-output pulse“ in the following scan.  Traces of output pulse 

detected at the switch S3 and S4 were of opposite polarity suggesting an anti-symmetric 
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mode of propagation along the CPW. 

 

Figure 3.34 Traces of an output pulse measured at S3 and S4 respectively by exciting an 

even mode at switch S1 and S2, FFT spectra and Bigaussian fit to main are 

shown in inset graph. 

Also, a trace of the output pulse is similar to that of the conventional CPW in 

Section 1.4.4.4.2.  A Bi-Gaussian fit (Gaussian fit was not feasible) to the main pulse 

revealed a FWHM  of ~ 6.18 ± 0.2 ps (shown in Figure 3.34) suggesting further 

broadening in pulse width, owing to higher radiation losses produced by gap 

discontinuity at higher frequencies [67]. FFT spectra revealed a reduced bandwidth of ~ 

380 GHz (see inset graph, Figure 3.34) indicating that dispersion had increased in 

CGAP-CPW device.  

3.6 First generation CPW devices on quartz substrate 

In Section 3.5, it was discussed that the coupling efficiency of a coupling switch in 

CGAP-CPW on LT-GaAs substrate is affected by lateral ground-to-ground coupling. 

The lateral coupling can be minimised (or removed completely) by selective etching and 

transferring the LT-GaAs material on to a low permittivity dielectric substrate material 
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such as quartz. Also, electromagnetic simulations using HFSS discussed in Chapter 2 

showed a much higher bandwidth (~ 1.01 THz) for CPW formed on the quartz substrate 

compared to CPW on GaAs substrate (~ 0.45 THz). In this section, the fabrication steps 

and on-chip measurements of CPW on quartz substrates are therefore discussed, and 

bandwidth extracted from FFT spectra of time-domain picosecond pulse detected from 

on-chip measurements is compared with simulation results obtained from HFSS.  

3.6.1 Fabrication of the first generation CPW on quartz substrate  

Fabrication steps for CPW on the quartz substrate were first based on the recipe used 

for Goubau line device fabrication [90, 153, 154] by the Leeds research group, but were 

then improved by several iterative improvements to the existing process. 

 

Figure 3.35 Transfer process for thin LT-GaAs layers on to quartz substrates in CPW device 

fabrication: a) LT-GaAs layer on SI-GaAs separated by AlAs layer. b) LT-GaAs 

covered with black wax. c) Removal of wax from outer edges. d) AlAs layer 

etched away by HF. e) Sample placed onto quartz chip f) Black wax removed 

from LT-GaAs. 
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In the fabrication process, 350 nm thick LT-GaAs material (was grown on a 500 

µm thick SI-GaAs wafer separated by 100 nm AlAs sacrificial layer at ~ 180 °C using 

molecular beam epitaxy) was chemically etched and then transferred to quartz material 

before CPW lithography. In doing so, the LT-GaAs material was first cleaved into 3 mm 

× 3 mm size chips large enough to cover both photoconductive switch regions, followed 

by sonication (5 minutes each) in acetone, IPA and Di-H2O to clean the wafer. LT-GaAs 

wafer samples were then annealed at 575 °C for 15 minutes to achieve high resistivity. 

The next step was to etch away the 100 nm AlAs sacrificial layer in order to separate the 

350 nm top LT-GaAs layer from the 500 µm thick SI-GaAs. In the etching process, the 

top LT-GaAs layer was first covered with black wax (by melting it on a hot plate at ~ 

120 ° C ) in order to protect it from the chemical etch (shown in Figure 3.35 b). Black wax 

was then removed from the outer edges (about ~ 0.5 mm) of samples,  and LT-GaAs 

layer (not covered by wax) was etched down (using H2SO4:H2O2:H2O solution in the 

volumetric ratio of 1:40:80) to the AlAs layer as shown in Figure 3.35 c in order to expose 

100 nm AlAs layer in HF etching process.  The next step was to etch away the 100 nm 

AlAs layer by chemical etching.  In doing so, HF solution was diluted in DI- H2O in the 

volumetric ratio of 40(DI- H2O):10 (HF), and samples were then submerged in solution 

at ~ 4 °C in order to achieve a slow etch rate to avoid micro-cracking in the separated 

thin LT-GaAs layer.  

Samples were then transferred onto 15 mm × 15 mm quartz chips (already 

cleaved and cleaned) and left to dry for 3 to 4 days to produce Van der Waals bonding 

between the thin LT-GaAs layer and the quartz substrate. Once the LT-GaAs samples 

were bonded with quartz, the wax was removed from the top of the LT-GaAs layer 

using trichloroethylene in order to perform lithography for photoconductive switches. 

As a final step towards the LT-GaAs transfer, the sample was heated in a vacuum oven 

for 15 hours in order to enhance bonding (desorb any moisture trapped at the 

quartz/GaAs interface) between the LT-GaAs and the quartz substrate.  

A separate photo mask was used to pattern (lithographically) photoconductive 

switches on to the transferred LT-GaAs. Lithography for photoconductive switches was 

performed using the same CPW lithography recipe discussed in Section 3.2. Once the 

switch pattern was defined, excess LT-GaAs was etched away by the chemical etching 
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(for ~ 4 minutes in H2SO4: H2O2: H2O in a volumetric ratio of 1:8:950) process. It is worth 

mentioning that transferred LT-GaAs is very fragile and can be knocked off by etching 

and cleaning process involved in the whole fabrication process. Therefore, an extra 

precaution in sample handling and precise time-control in a chemical etch is needed.  

 

Figure 3.36 a) A good quality LT-GaAs transfer b) LT-GaAs lifted-off after an etching and 

sample cleaning process. 

An example of good and poor-quality  LT-GaAs transfer (after etching and 

cleaning process) is shown in Figure 3.36 a and b. 

 

Figure 3.37 CPW lithography on a quartz substrate a) Deposition of bilayer resist on quartz. 

b) UV exposure through device mask. c) Development of resist in developer 

MF319 d) LOR development. e) Deposition of Ti/Au in metallisation process. 

f) Lift-off process. 

In the final phase of processing CPW on quartz, the CPW pattern was defined 

lithographically onto the prepared sample. In doing so, a bi-layer photo-resist (shown 
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in Figure 3.37 b) technique was used to achieve well-defined undercuts to the sidewalls, 

which makes metal come off more easily during the lift-off process compared to a single 

layer resist technique. In the bi-layer resist technique, Microchem LOR 3A was first spun 

onto the sample at 2000 rpm for 30 seconds and baked for 5 minutes using a hot plate at 

200 °C. Spinning at 2000 rpm for 30 seconds gives a ~ 420 nm thick layer of LOR 3A. 

After deposition of the first layer of resist, the S1813 photoresist was spun at 4000 rpm 

for 30 seconds followed by baking at 115 °C for 3 minutes. UV light was then exposed 

for 17.5 seconds using a mask aligner in order to pattern CPW device design onto the 

sample.  

The sample was then baked again (post exposure bake technique) at 110 °C for 

30 seconds in order to reduce rippling effects (caused by the high reflectivity of the 

quartz substrate) of resist and crosslinks formed between positive and negative resist. 

The sample was then developed in MF319 photoresist developer for 30 seconds 

followed by a rinse in DI-H2O to stop further development. The sample was baked again 

(this time, to reflow S1813 resist to get a well-defined undercut) at 150 °C for 1 minute 

followed by second development in MF319 for 30 seconds. 

 

Figure 3.38 A schematic representation of LT-GaAs transfer on quartz substrate followed 

by CPW metallisation process. 

After defining the lithographic pattern of the CPW on the quartz, 20 nm Ti 

(titanium) followed by 150 nm Au (gold) was deposited in a metallisation process. The 

sample was then immersed into cyclopentenone and left overnight for metal to lift off 
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from unwanted regions (slot gaps) of CPW.  Next day, the sample was taken out and 

cleaned with acetone and IPA.  

In Figure 3.38, a schematic of CPW overlaid onto a quartz substrate, showing 

how LT-GaAs is selectively etched and transferred onto a quartz substrate (to go 

underneath photoconductive regions) followed by the CPW metallisation process.   

3.6.2 Characterisation of the first generation CPW (quartz 

substrate) 

Characterisation of CPW devices on a quartz substrate was again carried out by 

detecting the input and output THz pulses, testing bias and power dependence of THz 

pulses, and extraction of the useful bandwidth of the THz pulses by performing FFT on 

time-domain signal and excitation of even and odd modes. 

3.6.3 Switch Characterisation  

IV sweep measurement was performed on the photoconductive switches S1 and S4 by 

varying applied bias (-30 to +30 V) across switches with laser power varied (0 to 10 mW) 

in each set of measurements.  IV sweep curves showed a relatively ohmic behaviour (for 

a whole range of bias applied) compared to photoconductive switches patterned onto 2 

µm thick LT-GaAs layer on an SI-GaAs substrate (see Section 3.4.4). 

  

Figure 3.39 IV characteristics of switch S1 and S4 with varying bias and laser power. 

The dark resistance of photoconductive switches was measured as being of the 

order of few GΩ, much higher than those formed on a LT-GaAs substrate (~ 500 MΩ). 

Due to the high dark resistance, the background DC photo-current was completely 
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suppressed in quartz devices. Interestingly, a much higher photo-resistance  (in order 

of 22 - 25 MΩ)  of photoconductive switches was measured on a quartz substrate, owing 

to a thin layer (350 nm) of LT-GaAs transferred onto a quartz substrate by epitaxial lift-

off (often referred as free standing LT-GaAs switches [155]). 

The photo-charge carriers generated in photoconductive switches on a bulk 

GaAs substrate have a higher carrier lifetime compared to switches on the quartz 

substrate [156] (transferred by an epitaxial lift-off). Due to higher dark resistance and 

low carrier lifetime, free standing LT-GaAs switches can provide a higher bandwidth 

[157] and larger signal-to-noise ratio in order to perform on-chip spectroscopy of 

overlaid polycrystalline material onto CPW device (see Chapter 5).  

 

 

Figure 3.40 a) A pair of photoconductive switches fabricated by epitaxial lift-off of LT-

GaAs. b) Switches damaged by electrostatic discharge. c) A small patch of LT-

GaAs is forming a coupling switch. d) A damaged coupling switch. 

Initial testing of CPW on the quartz substrate revealed that free-standing 

photoconductive switches were sensitive to electrostatic discharge, unlike conventional 

photoconductive switches.  Free standing LT-GaAs switches were damaged by 

electrostatic discharge while performing wire-bonding using a ball bonder (which uses 

an electric spark in a bonding process) are shown in Figure 3.40. Therefore, a wedge 
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bonder (which uses mechanical pressure to form wire-bonds) was used in order to avoid 

any further damage by electrostatic discharge.  

3.6.4 Input pulse detection 

The measurement setup for input pulse detection has already been discussed in 

previous sections. Therefore, only analysis of input pulses generated at the switch S1 

(by applying a bias of 20 V) and detected at the photoconductive switch S2 by focusing 

a probe beam onto the switch S2, are discussed throughout this section.  

 

Figure 3.41 A trace of input THz pulse consisting of the main pulse at zero ps followed by 

secondary reflections. FWHM calculated by Lorentz fit to the main pulse is 

shown in inset graph. 

In a time window of 40 ps, the input pulse traces showed the main pulse with a 

much narrower FWHM of 1.29 ps followed by secondary reflections as shown in Figure 

3.41. The reduced FWHM is attributed to a lower carrier lifetime of the generated photo-

charge carrier in free standing LT-GaAs switches and suppression of background dark 

current. Interestingly, secondary reflections occurred (at 16.9, 21.92 and 26.18 ps) in 

input pulse trace appear a little earlier compared to that of measured from CPW on LT-

GaAs substrate, suggesting THz pulse travels at a higher velocity in CPW on a quartz 
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substrate. Higher velocity of THz pulse is attributed to low effective permittivity 𝜀𝑒𝑓𝑓 =

2.39 for quartz substrate as phase velocity is related to effective permittivity as 𝑣𝑝 =

𝑐 √𝜀𝑒𝑓𝑓⁄  , where c is speed of light. The velocity of generated THz pulse will be 

calculated in the following sections. The origins of reflections remain same as that of 

measured for CPW on LT-GaAs substrate due to similar device design. 

 

 

Figure 3.42 Input THz pulse a) A linear bias dependence shown by linear fit in inset graph. 

b) A linear power dependence shown by linear fit in inset graph. 

Bias and laser power dependence characteristic of the input pulse is shown in 

Figure 3.42 a and b respectively. A linear dependence on both bias and power was 

observed with a very small change in FWHM (a spreading in falling edge of THz pulse 

was noticed -see inset graph, Figure 3.42 a, was observed with increasing applied bias, 
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suggesting a bias dependence on carrier lifetime.  

3.6.5 Output pulse detection 

In a time-window of 40 ps, a typical output pulse trace showed the main pulse followed 

by two secondary reflections, occurred at 21.81 and 26.12 ps delay after the main pulse. 

Origins of reflections can be calculated by multiplying respective time delay relative to 

the main pulse to the velocity of the pulse.  

 

Figure 3.43 A trace of an output pulse, where the main pulse occurred at zero time delay is 

followed by two secondary reflections occurred at 21.81 ps and 26.12 ps 

respectively and Lorentz fit to the main pulse is shown in inset graph. 

 

Lorenz fit to the main pulse revealed a FWHM of 1.41 ± 0.01 ps, which is 

relatively less broadened pulse width compared to that of measured for CPW on LT-

GaAs substrate. Less broadened pulse width attributes to low effective permittivity of 

the waveguide on the quartz substrate due to which THz pulse experiences less 

dispersion. Traces of output pulse taken by varying applied bias (-30 to + 30V) and 

varying laser power (0.1 to 12.5 mW) showed a linear dependence on both applied bias 

and laser beam power as shown in inset graphs, Figure 3.44. 
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Figure 3.44 Traces of output pulse taken at different bias and laser powers showing a linear 

dependence by a linear fit to pulse amplitude shown in inset graph. 

Also, dielectric losses are minimised by using quartz substrate instead of a LT-

GaAs substrate as quartz has a lower relative permittivity of 𝜀𝑟 = 3.78. Less broadened 

pulse width also ensures a higher bandwidth present in the THz pulse.   

To ensure a higher bandwidth, 10 consecutive scans of output pulse were 

performed, and FFT was then performed on each time-domain pulse (by applying a 

truncation window just before the first reflection followed by zero padding). An average 

of FFT results was then plotted against standard-deviation. This method revealed the 

noise level present in FFT spectra as shown in Figure 3.45. A much higher bandwidth 

of  ~ 1.10 THz was observed compared to that of measured from CPW on LT-GaAs 
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substrate (~ 0.42 THz). A higher bandwidth measured from CPW on the quartz 

substrate indicates that quartz devices can be used to perform on-chip spectroscopy of 

polycrystalline material overlaid onto the transmission line.   

 

Figure 3.45 An average of ten FFT spectra plotted against standard deviation to reveal noise 

level present in the signal. 

However, quartz device suffers from the low-frequency resolution of 55 GHz 

whereas LT-GaAs device showed a frequency resolution of 33 GHz. Low-frequency 

resolution in a quartz device is attributed to secondary reflections occurred in output 

pulse trace arriving earlier than that of observed in CPW on LT-GaAs substrate, 

indicating THz pulse propagates at a higher velocity in a quartz device. To circumvent 

this situation in the quartz device, a modified geometry with long parasitic regions in 

order to further delay any secondary reflections coming from discontinuities, is 

required. A second generation CPW device with long parasitic regions will be discussed 

in detail in Chapter 4. 

3.6.6 Pulse velocity (quartz substrate) 

Pulse velocity of THz pulse propagating along CPWquartz was determined by using a 

similar method as discussed in Section 3.4.7 . Traces of two output pulses detected at S1 

and S3 by swapping their biasing and probing connection are shown in Figure 3.46. The 



Conventional and Differential On-Chip THz Systems: Device Design, Fabrication and Measurements 

127 | P a g e  

 

relative time delay between two output pulses was found to be 17.25 ps. The velocity of 

the pulse was then calculated as 2 × 1.5 17.25⁄ = 1.74 × 108 𝑚/𝑠. It is clear from pulse 

velocity calculation that THz pulse propagating at higher velocity of  1.74 × 108 𝑚/𝑠 in 

a quartz device whereas velocity of THz pulse in the LT-GaAs device was calculated as 

1.13 × 108 𝑚/𝑠.  

 

Figure 3.46 Traces of two output pulse detected at switch S1 and S3 respectively, where zero 

time delay represents the origin of input pulse generation. 

3.6.7 Excitation of odd (co-planar) mode 

“Odd mode” was excited by simultaneously illuminating S1 and S2 using a defocused 

pump beam while the probe beam was focused onto S3 and S4 in two consecutive scans. 

A Lorentz fit to “odd mode-output pulse” revealed a FWHM of ~ 1.37 ps which is 

slightly shorter than that of measured from the hybrid mode-output pulse, indicating 

suppression of anti-symmetric fields propagating along CPW. Pulse shape and polarity 

of detected output pulses were found to be similar, indicating propagation of a 

symmetric mode with field extending from the centre conductor to ground planes. An 

average FFT spectra of ten consecutive output pulses (odd mode excitation) plotted 

against standard deviation, revealed a bandwidth of ~ 1.15 THz. 
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Figure 3.47 An average of ten FFT spectra of an “odd mode-output pulse” plotted against 

standard deviation to reveal noise level present in the signal. 

3.6.8 Excitation of even (slot-line) mode 

 

Figure 3.48 Trace of an “even mode-output pulse” detected at switch S3 and S4 in two 

consecutive scans. 

 



Conventional and Differential On-Chip THz Systems: Device Design, Fabrication and Measurements 

129 | P a g e  

 

“Even mode” was excited by reversing the polarity of bias applied across the switch S2 

and switches S3-S4 were then illuminated by the focused probe beam in two consecutive 

scans in order to detect an even mode signal. Detected“even mode-output pulses” were 

of different polarity, ensuring propagation of anti-symmetric field along CPW. Lorentz 

fit to the main pulse revealed a FWHM of 2.52 ps, suggesting pulse broadening. FFT 

spectra of “even mode-output pulse” revealed bandwidth of ~ 950 GHz. Therefore, even 

mode pulse was found to be more dispersive than that of measured from odd mode 

excitation. 

3.7 Theoretical modelling of coupling gap 

Before performing on-chip measurements of CGAP-CPW devices on a quartz substrate, 

a theoretical modelling of the coupling switch embedded (lithographically) into the 

centre conductor of CGAP-CPW was carried out in order to have a better insight into 

coupling switch characteristics.  

3.7.1 Photo-conductance 

As discussed in Chapter 2 that a coupling gap discontinuity can be represented 

by a pi-capacitive model, where 𝐶𝑔 was represented as coupling capacitance of the 

coupling switch. However, an illuminated coupling switch behaves differently as the 

conductivity of LT-GaAs can substantially be increased by laser beam illumination. 

With increased conductivity, coupling switch should essentially be modelled as time-

varying photoconductor with conductance G(𝑡), connected in parallel with the coupling 

capacitor 𝐶𝑔. In this work, we will assume that coupling switch is purely resistive 

(capacitance is ignored) when illuminated with a focused laser beam. Now, if a bias 𝑉𝑜 

is applied across coupling switch, photocurrent 𝑖𝑐 flowing through the switch will then 

be given as: 

𝑖𝑐 =
𝑉𝑜

𝑍0 + 𝐺(𝑡)−1
 

3-3 

Where 𝑍0 is the characteristic impedance of CPW and 𝐺(𝑡)−1 is photo-resistance of the 

coupling switch under illumination. Time-varying photoconductance depends on 
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several factors such as: effective illumination area A, the optical power of the laser beam 

𝑃𝑜𝑢𝑡 , carrier lifetime τ𝑐 , the reflectivity of LT-GaAs material R, optical the absorption 

coefficient of LT-GaAs, the wavelength of the optical beam etc. W. plattle et al. [158] 

derived a mathematical expression for calculating photoconductance (by taking above-

mentioned parameters into account) of a photoconductive switch using conformal 

mapping techniques (see Chapter 2 for conformal mapping technique).  

However, derived mathematical expression was further simplified by C. T. Canseliet et 

al. [159] given as: 

𝐺(𝑡) =  
𝑊𝛥𝜎𝑝ℎ

𝐿𝑔
(
1

𝛼
− 𝐿

∝ 𝐿2 + 𝑣𝑠  𝜏

𝐿 + 𝑣𝑠𝜏
) (1 − 𝛼2𝐿2)−1 3-4 

where, photoconductivity 𝛥𝜎𝑝ℎ is given as : 

𝛥𝜎𝑝ℎ = (
𝑒𝜆

ℎ𝑐⁄ )(
𝑃𝑜𝑝𝑡

𝐴
⁄ ) (µ𝑛 + µ𝑝)𝜂𝛼𝜏(1 − 𝑅) 3-5 

where, α is an optical absorption coefficient of LT-GaAs, 𝜆 is the wavelength of the 

optical beam, 𝜏 is carrier lifetime, L is diffusion length, 𝑣𝑠   is Surface recombination 

velocity, Popt  is optical power, A is effective illumination area, 𝜂 is quantum yield, R is 

the surface reflection coefficient, 𝐿𝑔 is gap length, W is gap width, µn, µp are  electron and 

hole mobilities respectively. 

Using expressions 3-4 and 3-5, photoconductance was calculated with following 

parameters:  a carrier lifetime of ~ 0.65 ps (measured by autocorrelation technique-see 

Section 3.4.2.1), optical power of 10 mW, centre wavelength of the optical beam  ~ 800 

nm, effective illumination area was calculated from FWHM of optical beam waist 

measured by knife-edge experiment, reflectivity of LT-GaAs was assumed 30% (of total 

illumination), coupling switch length 𝐿𝑔 and width 𝑊 were taken from device geometry 

(see  Figure 3.49 b), quantum yield of the photoconductive switch was assumed 𝜂 = 1 

and the values of absorption coefficient 𝛼,  carrier diffusion length L, surface 

recombination velocity, mobility of the charge carrier (µ𝑛 + µ𝑝) were taken from 

ref. [159].  

The values of photoconductance calculated using expression 3-4 and 3-5, are 

plotted as a function of varying gap size of the photoconductive gap in Figure 3.49 b. It 



Conventional and Differential On-Chip THz Systems: Device Design, Fabrication and Measurements 

131 | P a g e  

 

is clear from Figure 3.49 that for a smaller gap of 5 µm, photoconductance is much 

higher and decreases drastically with increasing gap length. We note that 

photoconductance does not change much for a gap larger than 30 µm as beam spot size 

(spot size of ~ 25.8 µm was estimated by knife-edge experiment, see Chapter 2) is not 

able to cover the whole photoconductive region of the photoconductive gap.   

 

 

Figure 3.49 a) A capacitive pi-equivalent circuit model of coupling gap discontinuity, 

where a photoconductance G(t) is added in parallel to coupling capacitor 

under illumination condition b) Photoconductance plotted as fucntion of 

gap length.  

It is worth mentioning that IV characteristics obtained for photoconductive 

switches from IV sweep measurement yield an average photo-current (an average of 

peak photocurrent generated by fs pulses at discrete time intervals) at fixed DC bias 

applied across the switch.  Therefore, an estimation of time-varying photo-current (and 

photo-resistance) is desirable. 

 

Figure 3.50 An illustration of ultra-fast fs pulses with a repetition rate of 80 MHz and pulse 

width of 110 fs.  

We estimate the time-varying photo-current by taking peak photocurrent 

generated per fs pulse, into account. An illustration of fs pulses emitting from ultra-fast 
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femtosecond laser is shown in Figure 3.50, where fs pulses emitted with a repetition rate 

(frequency) of 80 MHz and pulse width of 110 fs. With given frequency, the period was 

calculated as ∆𝑡 = 1 repetition rate⁄ , revealing a value of 12.5 ns. On-duty cycle ∆𝑡𝑜𝑛  was 

then calculated by dividing duration (pulse width) of single fs pulse by total time period 

as ∆𝑡𝑜𝑛 = pulse duration total time period⁄ = 8.80 µ𝑠. A typical value of an average 

photocurrent measured by applying DC bias of 30 V across photoconductive switch 

using kiethley source-meter is ~ 2.5 to 3 µA (depending on switch resistance). A peak 

current (photo-current per pulse) was then calculated as 𝑖𝑝𝑒𝑎𝑘 =

 avg. photocurrent on duty cycle⁄ =  0.34 𝐴, where the on-duty cycle the is the period in 

which photoconductive switch is illuminated by fs pulses. The value of peak photo-

current was found to be much higher than the average photo-current  measured from 

keithley source-meter.  The resistance of the photoconductive gap was then calculated 

as 𝑅𝑝 =  DC Bias peak photocurrent⁄  = ~ 88.23 Ω.  

3.8 On-chip measurements of the first generation CGAP-

CPW device on quartz substrate 

CGAP-CPW devices with different coupling gap lengths on a quartz substrate were 

characterised using the on-chip measurement system. Lateral coupling (showed by 

CPW on LT-GaAs devices) was circumvented completely by using an epitaxial transfer 

of thin LT-GaAs layer underneath the coupling switch gap.   

3.8.1 Switch characterisation  

IV sweep measurement performed on photoconductive switches S1 and S3 of a CGAP-

CPW device, revealed IV characteristics of S1 and S3 as shown in Figure 3.51.IV curves 

showed relatively ohmic behaviour with varying bias from -20 to +20 V. Switch S3 

showed relatively higher resistance, which may be due to a difference in the quality of 

LT-GaAs transferred onto quartz in an epitaxial lift-off process. It was not feasible to 

maintain the same quality of thin (320 nm) LT-GaAs layer for all the photoconductive 

switches throughout the fabrication process. 
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Figure 3.51 IV sweep characteristics of a) Photoconductive switch S1. b) Photoconductive 

switch S3. 

3.8.2 Detection of input and output pulse 

Input and output pulses were measured in order to characterise CGAP-CPW devices 

with different coupling gap lengths. Measurements were performed with and without 

third beam in operation in order to observe any substantial change in pulse shape and 

amplitude by modulating the conductivity of the coupling switch.  

3.8.2.1 Input pulse detection 

Input pulse measurement was performed for all four CGAP-CPW devices (10, 20, 30 

and 40 µm gap length). In doing so, the power of the third beam focused onto coupling, 

which was varied from 0 to 13 mW. The mechanical chopper was fixed at position A 

while performing the three-beam measurement. The relative position of the third beam 

was controlled by optical delay stage 2 in order to synchronise it with pump beam 

focused onto the generation switch S1. Generated THz pulse was detected at the switch 

S2 by focusing time-delayed probe beam (using optical delay stage 1) onto the switch 

S2.  

Traces of input pulse showed the main pulse followed by a secondary reflection 

(CPW on the LT-GaAs device) originated from coupling gap discontinuity, in a time-

window of 30 ps as shown in Figure 3.52. The base line of input pulse was somewhat 

uplifted due to constructive interference between main pulse and reflection coming 

from gap discontinuity.   
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Figure 3.52 A waterfall model of input pulse trace measured from four CGAP-CPW 

devices (10, 20, 30 and 40 µm coupling gap), where a relative change in peak 

amplitude of secondary reflection is demonstrated by increasing third beam 

power from 0 to 13 mW. 

Interestingly, reflection in input pulse trace gradually decreases with increasing 

third beam power (0 to 13 mW), suggesting a drop in coupling switch impedance (as 

the reflection was caused by an impedance mismatch), allowing a fraction of generated 

THz to pass through the coupling gap. This can further be understood by considering a 

formation of a local plasma of charge across the coupling gap by illumination LT-GaAs 

embedded with coupling switch. At sufficiently high laser beam power, the local plasma 

created by photo-charge carriers starts to bridge the coupling gap, allowing THz pulse 

to propagate along discontinuous CPW. It is clear from Figure 3.52 that relative change 

in amplitude of secondary reflection decreases with increasing coupling gap size, 

suggesting a greater impedance mismatch offered by larger coupling gap. 10 µm gap 

device showed a substantial relative change in amplitude of the first reflection as shown  

in Figure 3.52.  

In order to have a good observation of change in relative amplitude of the first 

reflection, a normalised trace of input pulse (illuminated by the third beam at 0 and 13 
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mW power)  for all gap devices plotted as a function of time delay as shown in Figure 

3.53.  We note a maximum relative change of 24.8 % in the amplitude of the first 

reflection for a 10 µm gap device, suggesting a stronger coupling through the gap. 

However, 30 and 40 µm gap devices showed a relatively a smaller change in amplitude 

of the first reflection, suggesting a weaker coupling through the gap. 

Further, it was noted that first reflection coming from coupling gap 

discontinuities of different gap lengths occurred at relative time-differences, indicating 

that first reflection is coming from metal-semiconductor interface and arrival time of 

first reflection changes with increasing  gap lengths as pointed out by ∆t in graphs, 

Figure 3.53. 

 

 

Figure 3.53 Normalised input pulse traces for 10, 20, 30 and 40 µm gap devices, where 

the relative amplitude of the first reflection compared at 0 and 13 mW power 

of the third beam. 

3.8.2.2 Output pulse 

Output pulse detection in the CGAP-CPW device was performed by focusing probe 

beam onto S3 while THz pulse generated at S1 (a hybrid mode pulse consists of odd-
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even field components) at S1 propagating along discontinuous CPW. A third beam 

(synchronised with pump beam) was then focused onto the coupling switch in order to 

observe any substantial change in pulse amplitude.  

 

Figure 3.54 Traces of output pulse detected at switch S3 in a CGAP-CPW device with 

coupling gap length of 10 and 20 µm. 

As discussed in previous sections that THz output pulse generated in hybrid 

mode was not affected significantly by coupling discontinuity as broadened FWHM 

indicates that major field component present in the pulse was an even mode (anti-

symmetric field). Therefore, output pulse in CGAP-CPW devices is of dispersive nature, 

propagates along ground-to-ground coupling ignoring centre conductor. 
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However, a small fraction of the field can pass through the coupling gap.  Traces 

of output pulse detected (for 10 and 20 µm gap devices) at the switch S3 are shown in 

Figure 3.54. A small change in pulse amplitude can be attributed that a small fraction of 

THz is passing through the coupling gap when illuminated by the third beam. 

However, it did not reveal much information about coupling efficiency of switch and 

therefore, output pulse measurement was not performed for all the gap devices.  

3.8.3 Co-planar mode (Odd mode) 

“Odd mode” pulse was launched by illuminating a pair of switches S1-S2 followed by 

detection of THz pulse at S3 by focusing probe beam onto S3 while third beam (chopper 

position A) was focused onto the coupling switch.  

As discussed in last few sections that symmetric field of an odd mode pulse 

propagates along the centre conductor (extending fields from the centre conductor to 

ground planes) in a CPW device. Therefore, a major portion of THz pulse generated in 

odd mode excitation affected by conductivity modulation of the coupling switch. 

It was also discussed that shape of a Gaussian THz pulse passing through a HPF 

can substantially be changed into a monocycle pulse. This change in the pulse shape 

occurred due to derivative properties of HPF consists of the coupling capacitor and line 

impedance. Capacitance and impedance parameters of HPF can substantially be 

changed or tuned by modulating the conductivity of the coupling switch by third beam 

illumination with varying laser power.  

For 10 µm gap device, shape of the monocycle pulse detected at 0 mW ( the third 

beam was blocked) is gradually changing into a Gaussian THz pulse when illuminated 

by 13 mW power (i.e. coupling switch illuminated by the third beam and chopper was 

set at position A), suggesting that capacitive nature of the coupling switch is dominated 

by switch impedance due to formation of local plasma of photo-charge carriers, 

bridging the coupling gap. Therefore, discontinuity in the centre conductor behaves as 

a continuous conductive film. 

Since the monocycle pulse has shorter duration compared to a Gaussian pulse,  

monocycle pulses gained much interest over the past few years and have been used for 
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UWB (ultra-wideband) wireless technology (radio frequency range) for transmission of 

data at a higher rate [160, 161]. However, to date, manipulation of THz pulses (Gaussian 

to monocycle or vice-versa) at ultra-fast switching rate, using a femtosecond laser has 

not yet been reported in any literature to the best of our knowledge. Therefore, studying 

monocycle THz pulses, opens up a new field of research, in which manipulation of THz 

pulses can further be studied. 

 

 

Figure 3.55 Traces of output pulse in odd mode excitation in a CGAP-CPW device a) 10 

µm gap device. b) 20 µm gap device. c) 30 µm gap device. d) 40 µm gap 

device.   

Profile of the THz pulse changing from monocycle to Gaussian is shown in 

Figure 3.55 for all four 10, 20, 30 and 40 µm gap devices. It is evident from the graphs c 

and d, Figure 3.55 that a complete Gaussian profile of THz pulse was not fully recovered 

from the monocycle shape with increasing laser beam power for a coupling gap larger 

than 20 µm. Furthermore, the coupling loss occurred in the switching (on to off state)  

of the coupling switch (with different gap lengths) is estimated in the following section.  
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3.8.4 Coupling loss 

When the state of the coupling switch was changed from ‘on’ to ‘off’, the coupling loss 

(in dB) occurring during the pulse transmission can be estimated by plotting dB values 

against frequency as shown in Figure 3.56. We note that the coupling loss occurred at 

lower frequencies (below 400 GHz) increases with increasing gap length, suggesting 

that larger gap lengths are more susceptible to coupling losses. Coupling losses at low 

frequencies were estimated as 14.5, 22.9, 25.2 and 27.4 dB for 10, 20, 30 and 40 µm gap 

devices respectively.  

   

  

Figure 3.56 dB values obtained from FFT performed on Son and Soff output pulses 

obtained under dark and illumination condition, plotted as a function of the 

frequency of operation. 

However, coupling loss decreases with increasing frequency as capacitive 

reactance 𝑋𝑐 (decreases with frequency as 𝑋𝑐 = 1 𝑗2𝜋𝑓𝑐⁄ ) of the coupling discontinuity 

is dominated by impedance during the switching of states from Soff  to Son with 

increasing laser power.  
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Figure 3.57 An average of ten FFT spectra plotted against standard deviation to reveal noise 

level present in the signal. 

3.9 On-chip differential THz pulse measurement using 

CGAP-CPW (quartz substrate) 

As discussed in Chapter 1 that a free-space differential THz-TDS was developed from 

conventional THz-TDS system, in which a test sample partly covered with thin film was 

moved in and out of THz beam (using a shaker as a modulator), resulted in a differential 

signal Edifferential (i.e. a portion of the THz field transmitted when the sample is blank (Eref), 

subtracted by the THz field transmitted when the sample is covered with thin film 

(Efilm)).   

This section discusses a potential use of the coupling switch embedded in 

CGAP-CPW device as a modulator by employing a mechanical chopper and the three-

beam on-chip measurement system in order to generate differential THz pulses. 

3.9.1 Experimental setup 

The experimental setup for the differential measurement was similar to that of the three-

beam on-chip measurement system except that the chopper was moved to position B, 

allowing third beam (i.e. used to illuminate coupling switch) to be chopped while a 

differential THz pulse was detected at the switch S3 by a lock-in amplifier. Before 

performing the differential (modulated) THz pulse measurement, the third beam was 

synchronised to pump beam using optical delay stage-2.  
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Figure 3.58 An illustration of three-beam measurement setup in which the mechanical 

chopper is moved to position B in order to perform the differential pulse 

measurement. 

Throughout this work, THz pulse measured by the three-beam system, in which 

third beam illuminating coupling switch is chopped (i.e. chopper position B), is referred 

as a modulated or differential THz pulse. However, chopper position A would indicate 

the detection of a conventional THz pulse (i.e. THz pulse mapped by the chopped probe 

beam at the detector switch S3 or S4). 

3.9.2 Generation and detection of differential THz pulse 

An example of the differential pulse measurement is shown in Figure 3.59 in which a 

differential THz pulse was detected by focusing a time-delayed probe beam onto the 

switch S3 while a DC bias of 20 V was applied across the switch S1.  

In doing so, the pump beam was focused onto the biased switch S1 in order to 

generate a THz pulse. The generated THz pulse passes through the coupling switch 

while propagating along the transmission region. The third beam (split from the main 

pump beam) chopped by mechanical chopper was then focused onto the coupling 

switch in order to generate a modulated THz pulse (Son - Soff). Since the chopping 

frequency of the chopper was set as a reference to the lock-in amplifier connected in 

series with probe arms of the detector switch S3, a modulated THz signal was measured. 
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Figure 3.59 a) A schmatic showing differential pulse measurement using three-beam 

measurement system. b) A trace of detected differential pulse in the time-

window of 40 ps.  

The detected modulated signal essentially being the difference of signals Son and 

Soff corresponding to “on” and “off” states of the modulated coupling switch Sc, is 

referred as a differential signal (Son ‒ Soff). In Figure 3.59 b, a trace of differential THz 

pulse showed first reflection occurring at 8.52 ps delay after the main pulse. A Lorentz 

fit to the main pulse revealed a FWHM of ~ 1.25 ± 0.2 ps. The origin of the first reflection 

was found to be the coupling gap discontinuity, and indicates that differential pulse 
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travels one-half of the transmission region (~ 740 µm) before being detected at the switch 

S3. Other reflections seen in the differential pulse trace were found to be originated from 

bend discontinuities located in parasitic regions (as discusses in Section 3.4.6).   

To further investigate the origin of the differential pulse, two different on-chip 

measurements (differential and conventional) were performed as shown in Figure 3.60 

a and b. Firstly, a differential pulse was detected at the switch S3 using a differential 

measurement setup as shown in Figure 3.60 a. The one-half of the centre conductor was 

then used to DC bias the coupling switch in order to generate a THz pulse at Sc using 

the conventional two-beam setup as shown in Figure 3.60 b.   

 

  

  

Figure 3.60 a, b) Differential (modulated) and conventional pulse measurement setup. c) A 

comparison of conventional and differential pulse. d) A comparison of FFT 

spectra obtained from differential and conventional pulses. 

The generated THz pulse was detected by focusing probe beam onto the switch 

S3. THz pulses detected from the differential and conventional setup were found to be 

of similar shape and same polarity (shown in Figure 3.60 c), suggested that origin of 

both differential (modulated) and conventional pulse is same (i.e coupling switch 

region). However, the amplitude of differential pulse was found to be comparatively 
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smaller than that of the conventional pulse which is attributed to the relative difference 

between amplitudes of Son and Soff THz pulses passing through the coupling switch.  

Although, both differential (modulated) and conventional pulses traveled an 

equal distance propagating from Sc to S3, calculated FWHM of the differential pulse (~ 

1.25 ps) was found to be smaller than that of the conventional pulse (~ 1.34 ps). Also, a 

comparatively higher bandwidth of ~ 1.6 THz compared to ~ 1.35 THz for the 

conventional pulse, was observed from the FFT spectra of the differential pulse.  The 

reduced broadening in the differential pulse width is likely to be caused by two possible 

reasons: i) The differential pulse propagating along one-half of the transmission region 

only carries a fundamental quasi-TEM mode of propagation (i.e., dispersive even mode 

with anti-symmetric field lines is not present) ii) the differential pulse has a relatively 

higher signal-to-noise ratio compared to conventional pulse.   

  

  

Figure 3.61 a) A comparison of  “Odd mode” output pulses under dark and with laser 

illumination. b) A difference signal Son-Soff was obtained by subtracting Soff 

from Son c) A comparison of difference and differential pulses d) A comparison 

of FFT spectra obtained from difference and differential pulses. 
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In order to gain an insight into the characteristics of the differential pulse, THz 

pulses Son (i.e. transmitted when switch Sc is illuminated) and Soff (i.e. transmitted when 

switch Sc is under dark condition) were separately measured with an “odd mode” 

excitation which ensures a symmteric field is propagating along the centre conductor. 

In doing so, the chopper was moved to position A and switch S3 was illuminated 

by a focused probe beam. Switches S1 and S2 were then DC biased with the same 

polarity and simultaneously illuminated by a defocused pump beam. This allowed an 

“odd mode” pulse to be launched. Two consecutive scans of “odd mode” output pulse 

taken with and without third beam illumination (i.e. 13 mW and 0 mW beam power) 

resulted in output pulses Son and Soff respectively as shown in Figure 3.61 a.  A difference 

pulse was obtained by subtracting “odd mode” pulse Soff from Son. Obtained difference 

pulse was then compared with differential pulse directly measured from a differential 

on-chip measurement setup. A closer look at the data indicates that both difference and 

differential pulses are of similar shape and polarity. However, FWHM of differential 

pulse ~ 1.25 ps is shorter than that of the difference pulse (~ 1.32 ps). Also, the signal-to-

noise ratio of difference pulse was found to be lower than that of the differential pulse. 

This was investigated by plotting FFT spectra in order to compare their noise levels. 

The results mentioned above provide confirmatory evidence that differential 

THz pulse generated at Sc is due to a difference of THz pulses Son and Soff, taking place 

at coupling switch Sc, owing to the switch modulation.  The reduced noise level in the 

differential pulse can be attributed to the reduction in common mode noises associated 

with Son and Soff while the coupling switch is modulated.  

3.9.3 Mode testing 

To investigate the mode of propagation of a differential THz pulse, two different sets of 

measurements were performed. In the first scheme, “odd” and “even” modes were 

excited by illuminating a pair of photoconductive switches S1-S2 by a defocused pump 

beam while DC bias applied across S1 and S2 as shown in Figure 3.62. The coupling 

switch was modulated using third beam illumination and chopper.  
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Figure 3.62 a) A schematic in which odd/even modes are launched by biasing a pair of 

switches and illumination with defocused pump beam b) A coupling switch 

filters out even mode componenet of field from the hybrid mode launched from 

switch S1 c) Output pulses measured from both measurement configurations 

are compared and FFT spectra of output pulses are compared in inset graph.  
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The generated differential pulse was then detected at the switch S3. In the second 

scheme, a hybrid mode pulse was launched by focusing pump beam onto DC biased 

switch S1, and coupling switch was then modulated in order to generate a differential 

pulse with subsequent detection of a pulse at S3.  

Interestingly, normalised output pulses measured from both measurement 

schemes were found to be of the same shape, yielding equal FWHM, suggested 

propagation of symmetric field (odd mode) in both measurement schemes. Also, even 

mode output pulse much smaller in amplitude (about ~ 5% of odd mode) compared to 

the odd mode pulse was detected at the switch S3 in the first measurement scheme, 

suggested that excitation of the coupling switch only allows symmetric fields to 

propagate along one-half of the transmission region and anti-symmetric fields (ground 

to ground coupled) are not supported by the centre conductor.  

  

Figure 3.63 a) A comparison of differential pulses measured from CGAP-CPWs of different 

gap lengths (10, 20, 30 and 40 µm) b) A comparison of FFT spectra. 

In Figure 3.62 a, differential pulses measured from 10, 20, 30 and 40 µm gap 

CGAP-CPWs are compared. A comparison of time-domain differential pulses showed 

a relative time difference in the occurrence of pulses, which can be attributed to varying 

coupling switch length. In most cases, a THz pulse is launched from the metal-

semiconductor interface, but it would not be feasible to pinpoint the exact location of 

the origin of the generated pulse within the photoconductive gap. FFT transformation 

performed on differential pulse yielded a useful bandwidth of ~1.65 THz.  
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3.10 Conclusion 

Device design and fabrication techniques for both CPWLT-GaAs and CPWquartz were 

discussed. An on-chip measurement (two-beam/three-beam) was explained in detail. 

On-chip measurements performed on first-generation  CPWLT-GaAs and CPWquartz 

demonstrated a full characterisation of these on-chip waveguide systems. From I-V 

characteristics of photoconductive switches patterned onto GaAs bulk substrate, an 

average value of ~ 5 MΩ of photoresistance was observed. However, a much higher 

photo resistance of ~ 25 MΩ was seen in epitaxially lifted-off free standing LT-GaAs 

switches patterned on a quartz substrate. Measurement of input and output THz pulses 

allowed us to measure the propagation velocity of a THz pulse in an on-chip waveguide. 

The propagation velocity of THz pulse in CPWLT-GaAs was calculated as ~1.13 × 108 𝑚/𝑠. 

A relatively higher pulse velocity of ~1.74 × 108 𝑚/𝑠 was calculated for CPWquartz. 

Higher pulse velocity in CPWquartz is attributed to lower relative permittivity of quartz 

substrate as phase velocity is related to effective permittivity as 𝑣𝑝 ∝
1
√𝜀𝑒𝑓𝑓
⁄ .  

Initial three-beam on-chip measurements performed on CGAP- CPWLT-GaAs 

showed a stronger lateral coupling of THz field between centre conductor and ground 

planes.  Lateral coupling issue was then circumvented by employing free standing LT-

GaAs switches and patterning CPW device on the quartz substrate. An useful 

bandwidth of 0.42 and 1.10 THz were observed from FFT spectra of output pulse 

measured from CPWLT-GaAs and CPWquartz using an on-chip measurement system. CGAP- 

CPWquartz devices demonstrated a potential use of the coupling switch as a high-pass 

filter (differentiator)  by manipulating THz pulses. Also coupling efficiency of coupling 

switch with varying gap length (10, 20, 30 and 40 µm) was tested using a three-beam 

on-chip system. A differential THz-TDS on-chip system was realised using the analogy 

of free space differential THz-TDS. The differential THz pulse showed a useful 

bandwidth of 1.65 THz.    
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Chapter 4  

On-Chip Measurements of Second 

Generation CPW Devices 

4.1 Introduction 

In Chapter 3, it was demonstrated that coplanar waveguide (CPW) devices transferred 

onto a quartz substrate (CPWquartz) yield a substantially higher bandwidth of ~ 1.10 THz 

compared to that of measured from those formed on LT-GaAs (CPWLT-GaAs ~ 0.42 THz). 

However, the frequency resolution of THz pulse in CPWquartz was found to be lower (~ 

55 GHz) than that of observed in CPWLT-GaAs (~ 33 GHz) as secondary reflections 

observed in the output pulse traces occurred little earlier compared to that of observed 

in CPWLT-GaAs, owing to a higher propagation velocity of THz pulse in CPWquartz. 

Therefore, a second generation CPW with long parasitic regions, designed in AutoCAD 

tool followed by the processing in the cleanroom was used in order to delay any 

substantial secondary reflections coming from discontinuities in the parasitic region. A 

THz pulse with high-frequency resolution will allow us to perform on-chip 

spectroscopy and to resolve THz spectral signatures in polycrystalline material overlaid 

onto the transmission line. Device design and characterisation of this second generation 

CPW device using an on-chip system will be discussed in following sections.  

Further, we will discuss a low loss (~ 5 dB) THz Y-splitter (a branching 

waveguide system) and a Y-coupler which can both provide the spectral signatures of 

SUT (sample under test) and a reference signal measured from the same waveguide 

(using a second probe arm) in order to distinguish between spectral features, owing to 

sample under test and artefacts appearing due to reflections in the reference THz pulse. 

The differential (modulated) THz pulse measurements in a Y-coupler using a three 

beams excitation will also be discussed.  
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4.2 Second generation CPW device design 

In the second generation device design, a transmission region of 1 mm was designed 

along with parasitic regions consisting of biasing/probing arms. As discussed in 

Chapter 3, attenuation losses are added to THz pulse over the length of propagation, 

and therefore, a shorter transmission length of 1 mm compared to that (1.5 mm) of the 

first-generation CPWquartz device was chosen in order to minimise attenuation loss, and 

to obtain higher bandwidth. Results obtained using the Ansys High-Frequency 

Structure Simulator (HFSS) on CPWs with different transmission lengths are discussed 

in Chapter 5.  

 

 

Figure 4.1  The second generation CPW device a) A magnified view of the parasitic 

region. b) A four photoconductive switch layout with parasitic regions. c) A 

magnified view of photoconductive switch regions. 
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4.3 PCB layout 

The second generation CPW device, after cleanroom processing, was then mounted on 

to a modified portable PCB chip (compatible with both room and low-temperature 

measurements) for electrical connections. In this modified PCB design, the outermost 

copper tracks were used to ground the ground planes in the CPW, while the remaining 

copper tracks were used to provide electrical connection to biasing and probing arms as 

shown in Figure 4.2. 

 

Figure 4.2 A PCB layout for the second generation CPW device and mounting PCB 

compatible with both room and low-temperature operation.    

4.4 Characterisation of the second generation CPW 

device (quartz substrate) 

This section will give an overview of the on-chip measurements performed on the 

second generation CPWquartz device in order to obtain the device characteristics.  A full 
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characterisation involves DC measurements of the photoconductive switches, 

generation, and detection of THz pulses, the bias voltage and power dependence of the 

THz pulses and excitation of odd/even modes. Firstly, switch characterisation was 

performed as discussed in the following section.  

4.4.1 Switch characterisation 

IV sweep measurements were performed on the photoconductive switch S2 and S4, 

used as generation and detection switch respectively, by varying the applied bias (-20 

V to + 20 V) across the switches. Laser power was then varied from 0 to 10 mW for each 

set of measurements. The dark resistance of photoconductive switches S2 and S4 was 

measured as being of the order of few GΩ. This high dark resistance ensures 

suppression of background DC photocurrent as seen in CPWLT-GaAs. IV curves showed 

relatively ohmic behaviour for a whole range of bias applied across the switch. 

Photoconductive switch S4 showed a relatively high photo-resistance (~ 28MΩ) 

compared to switch S2 (~ 24 MΩ). 

    

Figure 4.3 IV characteristics of switch S2 and S4 with varying bias and laser power. 

4.4.2 Input pulse detection 

Input pulses were detected at the switch S2 by focusing the pump and probe 

beams onto the switch S1 and S2 respectively. A bias voltage of 20 V was then applied 

across the switch S1. In a time-window of 120 ps, traces of input pulses showed the main 

pulse followed by only a single secondary reflection occurring at 11.2 ps, showing that 

the other reflections, seen in traces of the input pulse measured in the first-generation 
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CPW device (see Chapter 3) were indeed being delayed by the long parasitic regions in 

the second generation CPW as shown in  Figure 4.5. 

 

Figure 4.4  a) Magnified view of transmission region in which a reflection coming from the 

photoconductive switch region S3-S4 is shown by the blue dashed line. b) 

Overall schematic of input pulse detection for the second generation CPW 

device.  

The origin of this single reflection was found to be the photoconductive switch 

region formed by S3-S4 as those switches were not illuminated while an input pulse was 

detected at the switch S2. Therefore, switch region S3-S4 offers a higher impedance 

(compared to switch region S1-S2) to the incoming input pulse, resulting in a pulse 

reflection (shown in Figure 4.4).  

 

Figure 4.5   Trace of an input pulse in a time-window of 120 ps, in which the main pulse 

is followed by a secondary reflection occurring at 11.2 ps after the main 

pulse and a Lorentz fit to the main pulse is shown in inset graph.    
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A Lorentz fit to the main pulse revealed a FWHM of 1.27 ± 0.02 ps. The shorter 

FWHM (compared to that of CPWLT-GaAs) in the quartz CPW device is attributed to the 

higher dark resistance of free standing photoconductive switches on a quartz substrate. 

To further characterise the detected input pulse, measurements with varying 

bias and laser power were performed. The bias and power dependence characteristics 

of the input pulse are shown in Figure 4.6 a and b respectively. A linear dependence on 

both the bias and applied power were observed as shown by the linear fit to peak 

amplitude of the main pulse shown in the inset graphs in Figure 4.6. 

  

Figure 4.6  Traces of the input pulse in a time-window of 60 ps a) Amplitude of input 

pulse as a function of varying bias. b) The amplitude of input pulse as a 

function of varying the laser power and a Lorentz fit to peak amplitude is 

shown in inset graphs.    

4.4.3 Output pulse detection 

Output pulses were detected by focusing a time-delayed probe beam onto the switch S4 

while a bias of 20 V was applied across the switch S1. The pump beam was then focused 

onto the switch S1 in order to generate a THz pulse.  As discussed in the previous section 

reflections could here be potentially delayed, owing to the long parasitic regions.  

Therefore, a longer scan (250 ps time-window) was performed by time delaying the 

probe beam using a longer optical delay stage. A trace of the output pulse in a time-

window of 250 ps showed the main pulse followed by a secondary reflection with 

substantially reduced amplitude occurred at 126 ps delay after the main pulse as shown 

in Figure 4.7. The origin of this reflection was found to be the ohmic contact pad of 

parasitic region B and (represented as X-X’, shown in Figure 4.1).  
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A Lorentz fit to the main pulse revealed a FWHM of ~ 1.36 ± 0.02 ps, suggesting 

less broadening of pulse compared to that of measured from the first generation (~ 1.41 

ps) CPWquartz. The less broadened pulse width is attributed to the shorter transmission 

region (1 mm compared to 1.5 mm in first-generation CPW) in second generation CPW 

devices. 

 

 

Figure 4.7    A trace of an output pulse, in which the main pulse is occurring at zero time 

delay is followed by a minor reflection occurred at 126 ps and Lorentz fit to the 

main pulse is shown in inset graph. 

 

As no secondary reflections with significant amplitude were observed in the 

output pulse trace, data points were not truncated before performing the FFT in order 

to estimate useful bandwidth present in the output pulse. To investigate the useful 

bandwidth, an FFT was then performed on the output pulses measured across ten 

consecutive scans. An average of the FFT results was then plotted against standard 

deviation as shown in Figure 4.8. 
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Figure 4.8   A trace of an output pulse detected in a time-window of 500 ps and an average 

of ten FFT spectra plotted against standard deviation in inset graph. 

 

A useful bandwidth of ~ 1.2 THz was observed in the FFT spectra taken as the 

point where the signal few below the level of the noise present in the FFT spectra. As 

data points were not truncated before performing the FFT, a frequency resolution of ~ 2 

GHz was obtained for the 500 ps time-window.  

 

  

Figure 4.9  Traces of output pulses a) A linear bias dependence shown by a linear fit to 

peak amplitude in inset graph. b) A linear power dependence shown by a 

linear fit to peak amplitude. 

Traces of the output pulses measured by varying applied bias (-30 to +30 V) and 

varying laser power (2 to 12 mW) showed a linear dependence on both applied bias and 

laser power as shown in Figure 4.9 a and b. 

 



On-Chip Measurements of Second Generation CPW Devices 

157 | P a g e  

 

4.4.4 Pulse velocity (quartz substrate) 

Traces of two output pulses were detected (in the same time-window) at S2 and 

S4 by swapping their biasing and probing connections. In Figure 4.10, the relative time 

difference between two output pulses was found to be 11.48 ps and zero time delay 

point indicated the origin of generated input pulse. Velocity of pulse was then 

calculated as, 𝑉𝑝 = 2𝑙𝑡 ∆𝑡⁄ = 1.74 × 108 𝑚/𝑠. Therefore, velocity of THz pulse remains 

same (1.74 × 108 𝑚/𝑠) between the first and second generation CPWquartz devices, as 

expected. 

 

Figure 4.10  Traces of two output pulses detected at switch S2 and S4 respectively, where 

zero time delay represents the origin of input pulse generation. 

4.4.5 Coplanar mode (Odd mode) 

“Odd mode” output pulses were detected at the switch S3 and S4 in two consecutive 

scans by focusing the probe beam onto the switch S3 and S4 respectively. A pair of 

photoconductive switches S1-S2 were simultaneously illuminated by a defocused pump 

beam while a bias voltage of 20 V (with the same polarity) was applied across both S1 

and S2 in order to excite an odd mode pulse. The detected output pulses were both of 

the same polarity, indicating propagation of a symmetric field along the CPW. 
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Figure 4.11 Detection of an output pulse at switch S3 and S4 (in two consecutive scans) in 

odd mode excitation. Lorentz fit to main pulse and FFT spectra of output pulse 

are shown in inset graphs. 

 

A Lorentz fit to the main pulse revealed a FWHM of ~ 1.32 ps, slightly shorter 

than that of measured from hybrid mode-output pulse (~ 1.36 ps), suggesting dispersive 

even-mode field components were suppressed. Further, a useful bandwidth of 1.25 THz 

was observed from FFT performed on “odd mode” output pulse without applying a 

truncation window.  

4.4.6 Slot line mode (Even mode) 

For completeness, the even mode was then excited by reversing the polarity of bias 

applied across the switch S2, and “even mode” output pulses were then detected at the 

switch S3 and S4 in two consecutive scans. The detected “even mode” output pulses 

were of different polarity as was expected from an anti-symmetric field propagating 

along the CPW. The FWHM was calculated by a Lorentz fit to the main pulse as ~ 2.51 

ps, which was broader than that of measured from the “odd mode” output pulse, 

suggesting even mode pulses were more dispersive in nature. A useful bandwidth of 1 

THz was observed from FFT spectra of the “even mode” output pulse.  
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Figure 4.12  Detection of an output pulse at switch S3 and S4 (in two consecutive scans) in 

even-mode excitation. Lorentz fit to main pulse and FFT spectra of output pulse 

are shown in inset graphs. 

4.5 THz Y-splitter and coupler 

In on-chip THz spectroscopy of polycrystalline materials, it is vital to compare the 

sampled pulse (interacted with a sample under test) with a reference pulse in order to 

distinguish their spectral features in frequency-domain. In an on-chip spectroscopy 

measurement, SUT such as polycrystalline material (lactose) can potentially be overlaid 

onto the transmission region and the spectral signature of the SUT then extracted from 

the sampled THz pulses. However, the SUT may need to be removed in order to 

measure a reference pulse again or to perform spectroscopy of a different material.  In 

doing so, some residue of SUT may remain on the top of the transmission region of the 

on-chip waveguide, not permitting the reference pulse to be measured correctly. 

Therefore, an on-chip waveguide with multiple transmission regions is desirable in 

order to measure the reference and sampled pulses separately. Nevertheless, using a 

branching waveguide structure such as a Y-splitter or coupler capable of splitting the 

THz pulses allows pulses to be directed to different branching waveguides.  The 

reference and sampled pulses can then be measured separately as shown in Figure 4.13. 
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Figure 4.13 An illustration of THz pulse splitting (sampled and reference pulses) in an on-

chip spectroscopy measurement a) Y-splitter loaded with SUT. b) Y-coupler 

loaded with SUT. 

Over the last few decades, a planar Y-splitter design has been used in a variety 

of applications such as power splitters, Mach-Zehnder interferometers, and photonic 

crystal splitters [162-165] at a frequency of operation up to few GHz. However, planar 

Y-splitters operating in the THz frequency range (for broadband applications) have not 

yet been studied. We, therefore, here investigate a THz Y-splitter engineered in an on-

chip CPW, capable of splitting THz pulses. We also investigate a Y-coupler, which can 

re-direct a THz pulse (by modulating the conductivity of coupling switch using the third 

beam) from one branching waveguide to another, unlike straight waveguide structures 

which allow pulse propagation only in one direction. The Y-coupler was engineered in 

such a way that the two branching waveguides are separated only by a 20 µm gap.  

4.5.1 Device Design  

In this Y-splitter device design, a low branching angle of 30° was chosen as larger 

splitting angles would be likely to cause more losses [166, 167], and in order to keep 

transmission losses low while the THz pulse is being split, as shown in  Figure 4.14. 

Branching waveguides each of 2.18 mm long were engineered by connecting two arcs 

with a radius of curvatures of 600 µm and 615 µm in series. A symmetric design of Y-

splitter ensures the equal splitting of the THz pulse between the two branching 
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waveguides. On-chip measurements of splitter CPW devices fabricated on both LT-

GaAs and quartz substrates were performed. 

 

 

Figure 4.14 A schematic representation of THz Splitter device design. 

 

A Y-coupler was engineered by separating branching waveguides (YA and YB) 

by a 20 µm coupling gap as shown in Figure 4.15. The Y-coupler CPW was first 

fabricated on a quartz substrate in order to incorporate free-standing LT-GaAs switches 

for THz generation and detection.  In this Y-coupler CPW, the waveguide branch YB acts 

as a continuous CPW, allowing THz pulses to propagate from the generation switch (S1 

or S2) to detection switch S4. On the other hand, the branching waveguide YA placed at 

an angle of 30° with respect to YB acts as a coupler. THz fields propagating along YB may 

be coupled to YA through the coupling gap (provided the coupling waveguide is 

properly grounded). The degree of THz field coupling can then be controlled by 

modulating the conductivity of coupling switch Sc (fabricated by epitaxial lift-off LT-

GaAs layer) using a three-beam on-chip system.  
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Figure 4.15  a) Schematic representation of a Y-coupler fabricated on a quartz substrate. b) 

Detail, in which free standing LT-GaAs switches are pointed as S1, S2, S3, S4, 

and Sc.   

4.5.2 Simulation model of Y-splitter and coupler 

Before performing on-chip measurements, electromagnetic simulations (HFSS) were 

carried out to investigate the frequency response of the Y-splitter and coupler.  In doing 

so, a 3D model of the Y-splitter comprising the centre conductor and ground planes was 

simulated in HFSS. The Y-splitter dimensions were chosen to align with the proposed 

device design such that the centre conductor width was 0.03 mm, the slot gap between 

the centre conductor and ground plane was 0.02 mm wide, and the splitting angle (often 

called as branching angle) was 30°. Three waveports were assigned to the Y-splitter in 

order to obtain the scattering parameters from the branching CPWs as shown in Figure 

4.16. After defining the design parameters of Y-splitter CPW, simulations were made in 

the frequency range of 0.01 to 1.1 THz with a solution frequency set to 1 THz. In Figure 

4.16 b and c, the transmission and reflection parameters S21 and S31 obtained for both 

GaAs and quartz substrate are plotted as a function of frequency. 
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Figure 4.16 a) 3D simulation model of a Y-splitter. b) Scattering parameters obtained from 

Y-splitter on a GaAs substrate. c) Scattering parameters obtained from Y-

splitter on a quartz substrate. 

It is clear from the graph (Figure 4.16) that EM-energy fed on waveport-1 was 

equally split and transmitted along branching waveguides. Scattering parameters 

obtained from Y-splitter on GaAs substrate showed higher attenuation compared to that 

of obtained from the quartz substrate, owing to the higher permittivity of GaAs (12.9). 

Also, a resonance feature was observed at ~ 530 GHz, owing to excitation of higher-

order modes. An insertion loss of ~ 5 dB was observed for both GaAs and quartz 

substrates, attributed to the splitting angle of 30° in the Y-splitter CPW. The insertion 

loss could be further minimised by choosing a small branching angle, but this could 

have the effect of increasing coupling between the two branches. We take the -14 dB roll 

off (the point at which the signal amplitude falls to 20% of its initial value - see Chapter 

2) as a reference to estimate the bandwidth of the Y-splitter on both GaAs and quartz 

substrate. As shown in the plots in Figure 4.16 b and c, the bandwidths of the Y-splitter 
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so estimated as 350 and 720 GHz for GaAs and quartz substrates respectively.   

Furthermore, a Y-coupler with 20 µm coupling gap was also simulated on a 

quartz substrate in order to estimate coupling efficiency. Design parameters were 

similar to that of chosen for Y-splitter except that branching waveguide YA was 

separated by a coupling gap of 20 µm.  

 

 

 

Figure 4.17 EM-field a) An equal EM-field splitting between YA and YB shown in the Y-

splitter, simulation model. b) A weak coupling between straight CPW and YA 

of EM-field shown in a Y-coupler simulation model. c) Scattering parameters 

𝐒𝟐𝟏 and 𝐒𝟑𝟏 obtained from port 2 and port 3 respectively in a Y-coupler. 

 

A relatively weak coupling of the EM field (compared to the branching 

waveguide YB) with a coupling loss of ~ -30 dB at low frequencies was observed in 

branching waveguide YA from simulation results as shown in Figure 4.17 c. 
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4.6 On-chip measurements of Y-splitter CPW (LT-GaAs 

substrate) 

On-chip measurements of the Y-splitter were performed using a pump-probe beam on-

chip system in order to extract the characteristics of the split THz pulses.  

4.6.1 Input pulse detection 

In the Y-splitter, the input pulse was detected at the switch S2 by focusing pump and 

probe beams onto the switch S1 and S2 respectively. In doing so, a bias of 30 V was also 

applied across the switch S1 while the probe arm of the switch S2 was connected in 

series with the lock-in amplifier in order to measure the generated THz pulses as shown 

in Figure 4.18 a.  

   

Figure 4.18 Input pulse detection a) A schematic representation of generation and detection 

of an input pulse in Y-splitter waveguide. b) Trace of an input pulse, in which 

the main pulse is followed by two secondary reflections occurring at 34.6 and 

41.3 ps after the main pulse.   

A trace of the input pulse measured in the time-window of 50 ps, showed the 

main pulse followed by two secondary reflections occurred at 34.6 and 41.3 ps after the 

main pulse, as shown in Figure 4.18 b. The origin of the first reflection was found to be 

the ohmic contact pad in the parasitic region (marked “a” in Figure 4.18 a). The origin 

of the second reflection was found to be the high impedance of photoconductive switch 

regions S3 and S4 (marked as “b” and “ b’ ”) since they were not illuminated while input 

pulse measurement was performed. Interestingly, the amplitude of the second 
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reflection was found to be much higher than that of the first reflection in input pulse 

trace, probably owing to the constructive interference of the reflections coming 

simultaneously from both switch regions S3 and S4 as shown in Figure 4.18 a. Lorentz 

fit to the main pulse showed a FWHM of ~ 4.3 ps.  

To further characterise the input pulse, the bias across the switch S1 was varied 

from -30 to +30 V while the laser power was fixed at 10 mW in each set of measurements. 

A linear fit to the peak amplitude showed a linear dependence on the bias as shown in 

Figure 4.19 a. A linear dependence on laser power (as it varied from 2.5 to 12.5 mW) was 

observed in Figure 4.19 b, while a fixed bias of 30 V was applied across the switch S1.  

 

Figure 4.19 Traces of the input pulse measured from a Y-splitter waveguide a) Traces of 

input pulse as a function of varying bias. b) Traces of input pulse as a function 

of varying laser power, a linear fit to peak amplitude is shown in inset graphs. 

4.6.2 Pulse detection for a split output 

Split THz pulses were detected by focusing a time-delayed probe beam onto switches 

S3 and S4 in two consecutive scans. In doing so, the lock-in amplifier was moved from 

the switch S3 to S4, (indicated as “A’ “ in Figure 4.20 a). The detected output pulses were 

found to be of the same shape and polarity, suggesting that splitting of the input THz 

pulse did not change its phase, for example.  

However, traces of output showed a relative time difference of ~ 0.2 ps, owing 

to a relative change in path length of the probe beam while moving from the switch S3 

to S4.  The small difference in amplitude of detected output pulses also observed can be 

understood as arising from the photoconductive switches S3 and S4 not being identical. 

In a time-window of 80 ps, traces of the output pulse showed the main pulse followed 
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by the secondary reflections occurred at 26.54, 34.01 and 41.26 ps after the main pulse. 

The FWHM of the output pulse was calculated as 6.78 ± 0.2 ps by fitting a 

Lorentz peak function to the main pulse. The FWHM of the output pulse was found to 

be relatively higher than that measured in the first-generation LT-GaAs CPW devices 

due to the longer transmission region of 2.18 mm (compared to 1.5 mm long 

transmission region of the first-generation CPWs) in the Y-splitter CPW, causing 

additional attenuation to the output pulse. Also, bend discontinuities in the Y-splitter 

can excite higher-order dispersive modes, causing pulse broadening. 

 

 

Figure 4.20 An output pulse detection in a Y-splitter (LT-GaAs substrate) a) A schematic 

representation of detection of split THz pulses in the Y-splitter waveguide. b) 

Traces of output pulses, in which the main pulse is followed by secondary 

reflections occurring at 26.54, 34.01 and 41.26 ps after the main pulse. c) Traces 

of input and output pulses with a relative time difference of ~ 19.38 ps 

measured in the same time-window (~ 70 ps). 
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The origin of the first reflection was found to be a bend discontinuity (indicated 

as “a”) in the parasitic region. The second reflection was found to be the ohmic contact 

pad discontinuity (pointed out as “b”) located in the parasitic region. The origin of the 

third reflection was found to be the photoconductive switch region S1-S2. In Figure 4.20, 

traces of the input and output pulses with a relative time-delay of 19.38 ps were detected 

in the same time-window of 70 ps.  

  

Figure 4.21 Traces of output pulses measured from a Y-splitter a) As a function of varying 

bias. b) As a function of varying laser power; a linear fit to peak amplitude is 

shown in the inset graphs. 

Traces of the output pulses measured by varying applied bias (-30 to +30V) and 

varying laser power (2.5 to 12.5 mW) showed a linear dependence on both the applied 

bias and laser power as shown in Figure 4.21 a and b. 

 

Figure 4.22 FFT spectra of input (shown in red) and output pulses (shown in blue and green) 

measured from the Y-splitter on GaAs substrate.   
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Furthermore, FFT spectra of the input and output pulses (by performing Fourier 

transformation on input and output pulses) were compared in order to estimate 

insertion loss due to the splitting of THz pulse. An insertion loss of ~ -5.58 dB was 

observed from FFT spectra of the input and output pulse plotted (in dB) as a function 

frequency. The observed insertion loss of ~ -5.58 dB (at lower frequencies) was found to 

be in good agreement with the estimated insertion loss of ~ -5 dB from HFSS 

simulations. A frequency resolution of 40 GHz was obtained by truncating the time-

domain output pulses at 25 ps time delay relative to the main pulse. We note that the 

FFT spectra of the output pulse showed a useful bandwidth of ~ 310 GHz, which is 

slightly smaller than that estimated (~ 350 GHz) from the HFSS simulations (shown in 

Figure 4.16 b). 

4.7 On-chip measurements of Y-splitter CPW (quartz 

substrate) 

As discussed in Chapter 3, the free-standing LT-GaAs switches fabricated on a quartz 

substrate by an epitaxial lift-off technique showed a relatively high dark resistance 

(compared to that of fabricated on bulk LT-GaAs) and therefore, improved the signal-

to-noise ratio. Y-splitter CPWs was therefore fabricated on a quartz substrate with free 

standing LT-GaAs switches embedded as the photoconductive regions of the Y-splitter 

using epitaxial lift-off. On-chip measurement of Y-splitter on a quartz substrate was 

then performed, and the results were compared with that of obtained from HFSS 

simulations.  

4.7.1 Input pulse detection 

Input pulse was detected at the switch. S2 by focusing a time-delayed probe beam onto 

the switch S2, and a bias of 20 V was applied across the switch S1. Trace of the input 

pulse measured in a time-window of 35 ps showed two secondary reflections occurring 

at 22.1 and 25.8 ps after the main pulse, as shown in Figure 4.23. The origins of 

reflections were found to be the same as those calculated for the Y-splitter on LT-GaAs 
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substrate (shown in Figure 4.18 a). FWHM of the input pulse was calculated as ~ 1.34 ± 

0.2 ps, suggesting less broadening of the pulse (compared to that of calculated for LT-

GaAs substrate), which is attributed to a lower carrier lifetime in the free-standing LT-

GaAs switches on a quartz substrate. 

 

Figure 4.23 A trace of an input pulse, in which the main pulse is occurring at zero time delay 

is followed by secondary reflections occurred at 22.13 and 25.8 ps. 

4.7.2 Output (split) pulse detection 

Split THz pulses propagating in branching waveguides YA and YB were detected by 

focusing a time-delayed probe beam onto switches S3 and S4 in two consecutive scans. 

Output pulses were with a relative time-difference of ~ 0.18 ps, which is again attributed 

to a relative change in the path length of the probe beam while moving from the switch 

S3 to S4. In a time-window of 40 ps, traces of output pulse showed the main pulse 

followed by two secondary reflections occurring at 21.76, and 25.7 ps after the main 

pulse as shown in Figure 4.24 a. 

Interestingly, the first reflection that was observed in the output pulse (occurred 

at 26.54 ps – shown in Figure 4.20 b) measured from Y-splitter on LT-GaAs somewhat 

reduced, suggesting bend discontinuities offer less resistance to THz pulses travelling 

in a waveguide fabricated on a quartz substrate (low permittivity of 𝜀𝑟= 3.78) . The 

origin of the first reflection in output pulse trace was found to be an ohmic contact pad 
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discontinuity (pointed out as ‘b’ – shown in Figure 4.20 a) located in the parasitic region. 

The origin of the second reflection was found to be the photoconductive switch region 

S1-S2. A Lorentz fit to the main pulse showed relatively higher FWHM of ~ 2.22 ps 

(compared to that of obtained from the first-generation CPWquartz) which is attributed to 

a long transmission region of branching waveguides YA and YB in Y-splitter. In Figure 

4.24 b, traces of the input and output pulses with a relative time-delay of 12.67 ps were 

detected in the same time-window of 40 ps. 

 

  

Figure 4.24 Output pulse detection in a Y-splitter a) Traces of split THz pulses detected at 

S3 and S4 b) Traces of input and output pulses with a relative time difference 

of 12.67 measured in the same time-window of 40 ps. 

FFT spectra of the input and output pulses obtained from Fourier transformation 

were then compared in order to estimate insertion loss in Y-splitter (quartz substrate). 

In doing so, FFT spectra of input and output pulses were plotted on a dB scale. An 

insertion loss of ~ -5.3 dB was observed from FFT spectra of the input and output pulse 

plotted as a function frequency. 

The observed insertion loss of ~ -5.3 dB was found to be in good agreement with 

that estimated (~ -5 dB) from HFSS simulations. The FFT spectra of the output pulse 

showed a useful bandwidth of ~ 750 GHz, which is in good agreement with that of 

estimated (~ 720 GHz) from HFSS simulations (shown Figure 4.16 d). A frequency 

resolution of 50 GHz was obtained by truncating the time-domain output pulses at 20 

ps delay (just before the first reflection) relative to the main pulse.   
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Figure 4.25 FFT spectra of the input and output pulses plotted on a dB scale. 

4.7.3 Pulse velocity 

The velocity of THz pulse in Y-splitter was calculated by knowing the relative time 

difference between forward and reverse pulses detected at the switch S3 and S4 (located 

in branching waveguides YA and YB) and by swapping their bias and probing 

connections. In doing so, a forward output pulse was detected by focusing the probe 

beam onto the switch S4, while a bias of 10 V was applied across the switch S3.  

 

Figure 4.26 Traces of the output pulses detected at S3 and S4 detected in the same time-

window of 120 ps, where zero time delay represents the generation of an input 

pulse. 

The THz pulse generated at the switch S3 propagates along branching 

waveguides YA and YB (passing through Y-junction) before being detected at the switch 
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S4. Similarly, a reverse output pulse generated at the switch S4 travelled along YB and 

YA before being detected at the switch S3. It is worth mentioning that a fraction of THz 

pulse will also propagate along the straight CPW while passing through the Y-junction. 

A relative time difference of 47.8 was observed between the forward and reverse output 

pulses. The velocity of pulse was then calculated as, 𝑉𝑝 = 2(𝑌𝐴 + 𝑌𝐵 ) ∆𝑡⁄ = 1.71 ×

108𝑚/𝑠. The calculated pulse velocity of 1.71 × 108𝑚/𝑠 was thus slightly smaller than 

that measured in the first generation CPWquartz (1.74 × 108𝑚/𝑠), which is attributed to 

the propagation of THz pulses in the curved transmission regions of YA and YB  since the 

bend discontinuities may slow down the THz pulses. The reflection features observed 

(pointed out by “a” and “a’ “- shown Figure 4.26) in output pulses were originated from 

the point where the straight transmission region merges into a curved transmission 

region (~ 250 µm away from the switch).).  

4.8 On-chip measurements of Y-coupler CPW (quartz 

substrate) 

Y-couplers were fabricated on a quartz substrate by the epitaxial lift-off of LT-GaAs and 

transfer of LT-GaAs to form photoconductive switch regions as discussed earlier. On-

chip measurements of Y-coupler were then performed in order to test coupling 

efficiency of 20 µm coupling switch bridging two branching waveguides YA and YB.  

4.8.1 Detection of the output (split) pulses 

As for the splitter, in the Y-coupler, the output pulses were detected by focusing a probe 

beam onto the switch S3 and S4 in consecutive scans while a pump beam was focused 

onto the switch S1. An output pulse of relatively small amplitude (compared to that of 

detected at S4) was then detected at the switch S3 (under dark conditions for the 

coupling switch). 

Under dark condition, the coupling switch offered a much higher impedance to 

the incoming THz pulse. Therefore, a higher proportion of the THz pulse (~ 5 times 

higher than that of propagating along YA) propagated along the continuous branching 
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waveguide YB, before being detected at S4 as shown in Figure 4.27 a. 

 

  

Figure 4.27 a) Detection of the input and output pulses with a relative time difference of 

12.67 in the same time-window of 40 ps. b) A comparison of output pulses 

under dark and illuminated conditions.   

The detected output pulses were of the same polarity but with a slight change in 

pulse shape, which is attributed to the filtering characteristics of the coupling gap 

formed between the branching waveguides YA and YB.  

   

Figure 4.28 a) Detection of an output pulse in Y-coupler while coupling switch is 

illuminated by the third beam. b) FFT spectra of input and output pulses 

plotted on a dB scale. 

However, using a three-beam on-chip system with chopper set at position A 

(shown in Figure 4.28 a), the shape of the pulse was changed to a Gaussian shape when 

the coupling  switch was illuminated by a third beam (synchronised to the pump beam), 

and a substantial increase (~ 41 %) in amplitude of the pulse was observed, which is 

attributed to the higher conductivity of the coupling switch under illumination, which 

allows the THz field to couple through the gap in a higher proportion (shown in  Figure 

4.28 b). 
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FFT spectra of the output pulses were then plotted on a dB scale in order to 

estimate the coupling loss while the THz pulse was split in branching waveguides. A 

coupling loss of ~ 20 dB was observed at low frequencies from FFT spectra as shown in 

Figure 4.28 b. The observed coupling loss was found to be rather smaller than that 

estimated from HFSS simulations (~ 30 dB).  

4.8.2 THz pulse detection using coupling switch modulation  

The modulated THz pulse measurement in a Y-coupler was performed by 

focusing the pump and probe beams onto the switch S1 and S3 respectively while a 

third beam (synchronised with pump beam) was focused onto the coupling switch Sc. 

In doing so, the mechanical chopper was moved from position A to B as shown in Figure 

4.29 in order to modulate the coupling switch.  

 

Figure 4.29 Schematic representation of differential pulse measurement in a Y-coupler 

using three beams on-chip system, where the mechanical chopper was moved 

to position B in order to modulate coupling switch Sc.   

A modulated differential pulse was generated at the coupling switch which was 

then detected at the switch S3. A conventional THz pulse (propagating along YB), split 

from the generated THz pulse while passing through the Y-junction was then detected 

at the switch S4.  

A Lorentz fit to the modulated pulse revealed a FWHM of ~ 1.73 ps, which is 

shorter than that of calculated from the “conventional” THz pulse (~ 2.2 ps) detected at 

the switch S4 (shown in Figure 4.30 ). However, the amplitude of the modulated 

differential pulse was found to be relatively smaller (by ~ 6 times) than that of the 
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conventional pulse, which can be understood as the modulated differential pulse is the 

result of the difference of two THz pulses (Son − Soff) passing through the coupling 

switch while the conductivity of switch is modulated by the third beam (i.e. coupling 

switch acts as an on-off switch - see Chapter 3).  A relatively higher bandwidth of ~ 1.2 

THz compared to that of conventional pulse ~ 0.75 THz was observed from a 

comparison of the FFT spectra obtained from the modulated and conventional pulse, as 

shown in Figure 4.30. 

 

Figure 4.30 Detection of conventional and modulated THz pulses in branching waveguides 

YA and YB respectively in a time-window of 60 ps. FWHM and FFT spectra of 

conventional and modulated THz pulses are compared in inset graphs. 

4.8.3 Initial spectroscopy measurement using Y-coupler CPW 

device 

In the previous section, it was demonstrated that a modulated THz pulse can be 

generated by modulating the coupling switch in a Y-coupler using a three-beam system. 

Also, a higher bandwidth of ~ 1.2 THz and shorter FWHM (relative to conventional 

output pulse) of ~ 1.73 ps was observed from the FFT spectra of the modulated pulse. 

We, therefore, used a Y-coupler to perform on-chip spectroscopy of lactose 

monohydrate (a polycrystalline material). In doing so, a highly concentrated solution of 

lactose monohydrate in DI-H2O was carefully pipetted onto the device, covering both 
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the branching waveguide YA and coupling switch Sc. The device was then left overnight 

to evaporate off the water left after pipetting. An illustration of the on-chip spectroscopy 

measurement of lactose monohydrate using the three beams on-chip system is shown 

in Figure 4.31 in which branching waveguide YA is loaded with lactose monohydrate 

covering photoconductive switch regions S1, Sc, and S3. Front-side illumination of 

switches was not feasible in this geometry. A PCB with optical access (a window was 

milled out - see Chapter 5) was therefore used in order to illuminate the 

photoconductive switches from the back of quartz substrate.  

Modulated pulse measurement was then performed by focusing the pump and 

probe beams onto the switch S1 and S3 respectively while a third beam was focused 

onto the coupling switch Sc. A differential modulated pulse was generated at the 

modulating coupling switch Sc, which then propagates down the branching 

transmission line YA while interacting with overlaid lactose monohydrate. Modulated 

pulses then pick up spectral features associated with lactose monohydrate before being 

detected at the switch S3. 

 

Figure 4.31 A schematic representation of on-chip spectroscopy of overlaid lactose 

monohydrate on branching waveguide YA in a Y-coupler using three beams on-

chip system. 

Periodic reflections in the time-domain pulse were observed, which showed an 

absorption feature, which is referenced in [7, 53, 168], at ~ 530 GHz in FFT spectra of the 

differential pulse as shown in Figure 4.32 a and b. However, absorption feature 

observed in FFT spectra was not of high magnitude. Nevertheless, a stronger absorption 
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feature occurring at ~ 1.37 THz in lactose monohydrate, which is well referenced in the 

literature [47-50] could further be investigated by using second generation CPW devices 

(provided a useful bandwidth of  > 1.4 THz available in THz pulse).  

  

Figure 4.32 a) Reference and sampled output pulses in time-domain. b) A comparison of 

FFT spectra of the reference and sampled pulses.    

The second generation devices were further optimised by reducing the slot gap 

width ‘W’ in order to reduce radiation losses, leading to a significant increase in 

bandwidth (see Chapter 5). 

4.9 Conclusion  

From on-chip measurements, it was observed that second generation CPW devices 

yielded a higher useful bandwidth of 1.2 THz. Also, a much higher frequency resolution 

of ~ 2 GHz was obtained for a time-window of 500 ps, since the secondary reflections 

were substantially delayed relative to the main pulse.   

Furthermore, the splitting of generated THz pulses was also observed from on-chip 

measurements of Y-splitter. The useful bandwidth and insertion loss observed from on-

chip measurements were found to be in good agreement with HFSS results. In pulse 

velocity measurements, detection of the THz pulses across the Y-junction (making a 

round trip from the switch S3 to S4), also suggested that Y-splitter design can be used 

as a multiplexer to combine THz pulses coming from different branched waveguides. 

Additionally, a THz interferometer could be realised in order to study 

constructive/destructive interference of THz pulses at a Y-junction.  
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On-chip measurements of Y-coupler showed that coupling of THz pulse across the 

coupling gap can substantially be increased under illuminated condition.  Differential 

pulses measured from the Y-coupler, using a three-beam on-chip system, yielded a 

useful bandwidth of 1.2 THz.  On-chip spectroscopy measurements of lactose 

monohydrate showed periodic oscillation in time-domain differential pulse and 

showed an absorption feature at ~ 530 GHz in FFT spectra of the differential pulse.  
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Chapter 5  

On-Chip THz-TDS of Lactose 

Monohydrate using Conventional and 

CGAP-CPW Devices at Low-

Temperature 

5.1 Introduction 

In Chapter 4, it was discussed that extending the parasitic regions of second generation 

CPW devices improved the frequency resolution when performing a Fourier 

Transformation by delaying any unwanted reflections from the bond pads. Further 

optimisation of the second generation CPW design was then needed to achieve higher 

bandwidth (> 1.4 THz) in order to perform on-chip spectroscopy of polycrystalline 

materials, such as lactose monohydrate. Spectroscopy of polycrystalline materials 

allows the observation of molecular vibrations, which resonate at sub-THz and THz 

frequencies.  In the sub-THz regime, it is mainly crystalline phonon vibrations, which 

are observed, while intermolecular stretching and torsional modes are typically found 

at THz frequencies [169].  

In this Chapter, steps to optimise the second generation CPW device design 

parameters are discussed, along with electromagnetic (EM) simulations of this system 

made using HFSS.   
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5.2 Slot gap width optimisation and estimation of extent 

of evanescent field 

In the on-chip THz spectroscopy, the sample under test is overlaid onto the transmission 

line. The radiation field associated with the THz pulse propagating through the 

transmission line then interacts with the sample. Hence, it is vital to know the extent of 

the field above the transmission line to ensure proper interaction between the sample 

and the electric field. In this section, a theoretical explanation of how optimising slot 

gap width minimises dispersion and radiation loss is provided. HFSS simulation results 

are then discussed to support the theoretical modelling.   

5.2.1 Theoretical modelling of slot gap width W 

 

Figure 5.1 Electric field lines are shown in coplanar mode (blue) and slot-line mode (red).  

In Figure 5.1, the two possible fundamental modes of a CPW are shown: a) 

coplanar mode (also called the “odd” mode) in which ground planes are at equal 

potential and b) slot-line mode (the “even” mode) in which ground planes have 

potential of different signs but equal magnitude. The coplanar mode is a quasi-TEM 

mode with its very low dispersion. The fundamental coplanar mode of a CPW is usually 

less dispersive than the fundamental mode of microstrip line [99] which makes CPW a 

potentially promising device for on-chip spectroscopy.  

The field distribution around the centre conductor and ground planes mainly 
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depends on the mode of excitation.  In CPW device designs, the width of the centre 

conductor is termed as S, and the spacing between the ground planes is termed as  (S + 

2W) where W is slot gap width. The distance (S + 2W) should then carefully be taken 

into consideration when designing a CPW, as it will define the extent of the evanescent 

field.  To avoid propagation of higher-order lossy modes, the distance (S + 2W) should 

be kept less than 𝜆𝑔/2, and the ground planes should be wider than 5 (S + 2W) on each 

side [170], where 𝜆𝑔 = 𝜆0 √ɛ⁄   is waveguide wavelength and 𝜆0 is the free space 

wavelength. If the distance between the ground planes (S + 2W) is kept much smaller 

than the dielectric wavelength and the substrate thickness, both radiation and 

dispersion losses are minimised [80]. If adequate ground to ground plane distance is 

chosen, interaction between surface wave mode and the coplanar mode is also 

minimised and  tends to become negligible at higher frequencies. Furthermore, at higher 

frequencies, radiation losses are found to be minimum, since the electric field is more 

confined within the slot gaps,  Rutledge et al. [171] relate the attenuation due to radiation 

loss 𝛼𝑟 with the ground to ground separation distance (S + 2W) by Equations 5-1 and 

5-2: 

𝛼𝑟 = 𝑓(𝜀𝑟) (
1

𝜆𝑑
)
3 (𝑆 + 2𝑊)2

𝐾(𝑘)𝐾′(𝑘)
 5-1 

Where, k = S/S+2W, K and K’ are complete elliptical integrals of the first and second 

kinds.  

𝑓(𝜀𝑟) = (
𝜋

2
)
5 1

√2

(1 −
1
𝜀𝑟
)
2

√1+
1
𝜀𝑟

 
5-2 

From the above Equations, it is clear that the radiation loss is proportional to the square 

of the distance (S + 2W) which means that a relatively small increase in gap width can 

lead to significant radiation loss.  

In Figure 5.2 a, attenuation coefficients for different gap widths are calculated 

using Equations 5-1 and 5-2. The value of the attenuation coefficients gradually 

decreases with slot gap width decreasing from 40 to 5 µm.  In Figure 5.2 b, the 

characteristic impedance of the transmission line plotted against decreasing slot gap 
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width shows a strong dependence on slot gap dimensions. It is worth noting that the 

effective permittivity will be independent of CPW dimensions and can simply be 

calculated by taking an average of the dielectric constants of air and the substrate.   

 

 

Figure 5.2 a) Attenuation coefficient is plotted w.r.t slot gap width. b) Characteristic 

impedance and effective permittivity are plotted w.r.t gap width. 

We also quote here two useful standard Equations 5-3 and 5-4 taken from [172], 

which were used to calculate the characteristic impedance and effective permittivity of 

CPW lines as shown in Figure 5.2 b. 

 

𝑍𝑜 =
30 𝜋

√𝜀𝑒𝑓𝑓

 Κ(𝜅′)

Κ(𝜅)
 5-3 

𝜀𝑒𝑓𝑓 =
1 + 𝜀𝑟

 Κ(𝜅′)
Κ(𝜅)

Κ(𝜅𝜄)
 Κ(𝜅𝜄′)

1 +
 Κ(𝜅′)
Κ(𝜅)

Κ(𝜅𝜄)
 Κ(𝜅𝜄′)

 
5-4 

where, 𝜅 = 𝑠 𝑠 + 2𝑤⁄ , 𝜅 = 𝑠 𝑠 + 2𝑤⁄ , 𝜅 = 𝑠 𝑠 + 2𝑤⁄ 𝑎𝑛𝑑 𝜅𝜄 = 𝑡𝑎𝑛ℎ (
𝜋 𝑠

4.0 ℎ
) 𝑡𝑎𝑛ℎ (

𝜋(𝑠+2𝑤)

4.0 ℎ
)⁄  

 

5.2.2 HFSS simulations to find the extent of evanescent field                      

HFSS breaks down a 3D geometry into many small tetrahedral volume elements 

forming a mesh and then uses finite-element techniques to calculate the electric field 

and current in each, using Maxwell’s Equations. In Chapter 2, the working principle of 

the EM simulation tool HFSS was discussed in detail.  

To estimate the extent of the evanescent electric field from HFSS simulations, a 
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3D model consisting of a 1 mm long CPW comprising a centre conductor and two 

ground planes sitting on top of the quartz substrate was designed in HFSS as shown in 

Figure 5.3. The input and output waveports are defined in the model to feed 

electromagnetic radiation into and out of the structure. First, a reference non-model 

polyline (excluded from simulation model) which passed through the slot gap was 

drawn at the centre of the transmission line. The CPW was then simulated at a solution 

frequency of 1 THz for different slot gap widths.  After successful completion of the 

simulation, the electric field was plotted on the non-model polyline for each gap width.  

 

 

Figure 5.3 A 3D model of a CPW in HFSS, where electric field plotted against a polyline in 

blue. 

 

In Figure 5.4, a reference line drawn at 350 µm represents an air-dielectric 

interface, where metal thickness (200 nm) is neglected. The field extending into the air 

is shown on the left to the reference line. It is clear from Figure 5.4 that the field intensity 

for smaller gaps (5 and 10 µm) is much higher than larger gap dimensions (20 and 30 

µm). The field intensity is plotted against gap widths in inset graph, Figure 5.4 for data 

clarity. 
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Figure 5.4 Electric field intensity for different gap widths is plotted against a polyline in 

the perpendicular direction, and field intensity also plotted against gap widths 

for data clarity in inset graph. 

 

To estimate the field extent, all the plots in Figure 5.5 are normalised (0 to 1). It 

is clear that for larger gaps, more field penetrates into the substrate which is shown on 

the right to the reference line at 350 µm in Figure 5.5. Another reference line (0.368 E) 

intersecting plots where field intensity decays to 37% (e-1xE) of its initial value is drawn. 

These points of intersection give the extent of the field into the air. It is shown that extent 

of the field into the air for larger gaps (20 and 30 µm) is approximately 20 µm. As the 

field is more tightly confined within smaller gaps (5 and 10 µm), the extent of field is 

found to be 10 µm approximately.  

This suggests that sample under test should preferably be in direct contact with 

the transmission line to maximise interaction with the THz field. Regarding the CPW 

device design optimisation, however, smaller gaps should be preferred to minimise 

radiation losses. These two considerations offer competing requirements, making 

careful device design and orientation with respect to samples a necessity. 
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Figure 5.5 E-field intensities plots are normalised from 0 to 1 to emphasise the depth of 

penetration of the field into both air and the substrate. 

Another consideration is the manufacturability of devices.  CPW devices with a 

5-µm-wide gap (or smaller) are at the lower limit of standard optical lithography 

equipment. Hence, a 10 µm gap width was chosen for optimisation of the second 

generation CPW devices. 

5.2.3 Improvements in signal bandwidth by optimising 

transmission length 

The THz signal attenuates as it travels down the transmission line. Therefore, the 

bandwidth of the signal is limited by the transmission length, which should be taken 

into account in device optimisation for spectroscopy. Various transmission lengths can 

be simulated using HFSS to estimate the signal bandwidth to a good approximation.  

CPW devices with transmission length ranging from 0.75 to 1.5 mm were 

simulated with a fixed slot gap width of 10 µm while the  S21 scattering parameter was 

compared for each CPW. In practice, the S21 parameter gives information about how 

much power is lost during transmission from port1 to port2. In Figure 5.6, S21 parameter 

extracted from simulation results are plotted with respect to frequency. In the 

simulations, a solution frequency of 1.4 THz was chosen while a frequency sweep from 
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0.3 to 1.8 THz was performed. 

 

Figure 5.6 𝐒𝟐𝟏 scattering parameter plotted on a dB scale against frequency. 

In scattering parameter analysis, 0 dB indicates lossless transmission, which 

means 100 % power has transferred from port1 to port2. -20 dB indicates that only 1% 

power delivered to the load. Using the points at which the -14 dB reference (see Chapter 

2) line intersects plots, the bandwidth of various transmission lengths was estimated. 

Transmission length (mm) 0.75 1 1.25 1.5 

Bandwidth (THz) 1.61 1.45 1.30 1.21 

Table 5-1 Comparing the bandwidth of various transmission lengths. 

Taking theoretical modelling and simulations results into consideration, a slot-

gap width of 10 µm and transmission length of 750 µm were chosen for optimisation of 

the design parameters for the second generation of CPW device.   

5.2.4 Experimental Results: Initial testing of optimised CPW 

device 

In Chapter 3, Improvements in a frequency resolution of the second generation CPW 

(Slot gap width of 20 µm) devices were demonstrated experimentally. However, the 

bandwidth of the THz output pulses was found to be 1.2 THz, which was insufficient 



On-Chip THz-TDS of Lactose Monohydrate using Conventional and CGAP-CPW Devices at Low-Temperature 

188 | P a g e  

 

to extract several high-frequency spectral features of lactose monohydrate from the FFT 

spectra.  

 

 

Figure 5.7 A magnification of PC switches region of the second generation CPW device with 

slot gap width 10 µm and transmission length of 750 µm. 

 

For further improvements in the signal bandwidth, a second generation CPW 

device with optimised slot gap width of 10 µm and long parasitic region was processed 

in the cleanroom. CPW device was then tested at room temperature using an on-chip 

measurement system. A magnified view of PC switches region, slot gap and 

transmission line, is shown in Figure 5.7. 

A time-domain input pulse is detected at the switch S2 using a probe beam while 

the pump beam illuminates PC switch S1, shown in Figure 5.8. The first reflection 

appears ~ 8.2 ps after the main pulse, as shown in Figure 5.9. The first reflection in input 

pulse detection is attributed to the change in impedance at the PC switches S3 and S4 

situated on the other end of the transmission line in their dark state (no illumination). 

The second reflection appears at ~126 ps after the main pulse which is attributed to the 

impedance mismatch due to ohmic contact pads. The total parasitic length travelled (red 

dotted lines) by the THz pulse, and the origin of the reflections (black dotted line, X-X’) 

are shown in Figure 5.8. Calculations to find origins of reflection were discussed in 

detail in Chapter 3. 
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Figure 5.8 A schematic of the second generation CPW showing the origin of first and second 

reflections in pulse detection. 

 

The output pulse is detected at the switch S4 using a probe beam while the pump 

beam is shone onto PC switch S1. It is worth mentioning that the first reflection in the 

output pulse was found to be relatively much weaker than the first reflection seen in 

input pulse. This relative difference in magnitude of the reflections is attributed to the 

lower impedance of PC switches S1 and S4 situated at both ends of the transmission line 

under illumination of pump and probe laser beams shown in Figure 5.8. 

The impedance of PC switches drops drastically when the laser beam is tightly 

focused onto the switch region. The origin of the second reflection in an output pulse is 

the same as that discussed above due to symmetric design of the CPW device.  Input 

and output pulses measured using the on-chip system are compared in Figure 5.9. 

To determine the bandwidth, a fast Fourier transform (FFT) was performed on 

the measured time-domain output pulse. In Figure 5.10, FFT spectra from the output 

pulses measured for CPW waveguides with 10 and 20 µm slot gaps are compared. 
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Figure 5.9 Comparison of the input and output THz pulses detected at switches S2 and S4 

respectively. The output pulse is offset by 20 nA for clarity. 

From the differing slopes of the FFT spectra, it is clear that CPW device with 10 

µm slot gap yields greater bandwidth as expected from HFSS simulations. It is also 

worth mentioning that low-frequency features in the FFT spectra are due to the second 

reflection present in the time-domain signal.  

 

Figure 5.10 A comparison of the bandwidth of output pulses measured from CPWs (10 µm 

and 20 µm slot gaps). 

The ~ 1.6 THz bandwidth of the output pulse was found to be promising for use 

in on-chip spectroscopy, potentially allowing the extraction of high-frequency spectral 

signatures from lactose monohydrate, for example.  Reflections in the output pulse are 
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of much smaller magnitude relative to the main pulse. Therefore, the time-domain 

signal does not need to be truncated while performing Fourier transformation. The 

resolution of FFT spectra here is mainly limited by the scan length of the time-delay 

stage.  Although high resolution can be achieved by longer scans, it would be time-

consuming to do the repeated measurements necessary to reduce noise. Hence, 

measurement scans were performed at a resolution of 2 GHz. 

5.3 Variable temperature on-chip measurements using 

microstat 

Variable temperature on-chip measurements were performed from 6K to 293K using a 

continuous flow helium microstat, in which the device under test was attached to cold 

finger (probe) using thermal conducting paste (GE varnish), with electrical connections 

to the PCB. The Oxford Instruments Microstat system used was fitted with quartz 

windows to provide optical access for the pump and probe beams. It was noted that 

about ~ 12% of laser beam power was lost to absorption by the quartz windows (fitted 

in Oxford instrument microstat for optical access), which is due to multiple reflections 

coming from sample and window interface. The detailed experimental set-up is 

discussed in the next section. 

5.3.1 Measurement set up 

A lactose sample to be tested was drop-cast onto a CPW device mounted on a PCB 

before performing measurements. The PCB on which the CPW device was mounted 

was then attached to a cold finger, and electrical connections to the probe were made 

using a soldering iron. The probe stick was then placed into the cylindrical chamber of 

the microstat.  To create a vacuum around the sample, the microstat was pumped down 

using a vacuum pump as shown in Figure 5.11. 
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Figure 5.11 A schematic of variable temperature setup consisting of; Oxford Instruments 

Microstat, Helium Dewar, transfer tube to transfer helium, ports for electrical 

connection and temperature sensor (EC and TC). 

Liquid helium was transferred from a dewar to the cold finger using a vacuum 

insulated transfer tube. The Microstat cold finger was also fitted with a temperature 

sensor, and a heater controlled by the external temperature controller to maintain the 

desired temperature during measurements. A second pump, connected to transfer tube, 

was used to control the flow of liquid helium. When the desired temperature was 

achieved, the pump and probe beams passing through the quartz window were aligned 

to the PC switches on the device. Since the cold finger contracts/expands with 

temperature, the laser beams had to be re-aligned between each measurement. 

The device usually took up to 1.5 hours to thermally stabilise at base 

temperature. After thermal stabilisation, alignment of PC switches was found not to 

change with respect to laser beams.  

5.3.2 PCB Design for back-side excitation of PC switches 

One of the key requirements for the realisation of on-chip THz spectroscopy is that PC 

switches ideally need to be illuminated from the back of the substrate, to allow samples 

to be aligned as close as possible to the waveguide on the front side; as lactose samples 
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under test were overlaid onto the entire transmission line covering PC switches, front 

side illumination was not feasible.  

 

 

Figure 5.12 (a) PCB for on-chip spectroscopy with a window for optical access. b) A CPW 

device is placed on the top of the optical window for backside illumination. 

To illuminate PC switches from back of the substrate, double side polished 

(350-µm-thick) quartz material was used as a substrate which had negligible optical 

attenuation being almost transparent to laser beams. A PCB, which mechanically 

supported the devices provided electrical connection to the cryostat probe stick, and 

optical access to illuminate PC switches was first designed and then processed in the 

cleanroom using standard optical lithography and copper etch solution.  A window is 

milled out from the PCB to obtain optical access as shown in Figure 5.12 a. CPW devices 

were then glued to the PCB using molten black wax. For PCB connections, the device 

was bonded to copper tracks using a ball bonder. 

5.3.3 Sample preparation 

Two different sample preparation techniques were used to prepare lactose 

monohydrate samples prior to their measurement by on-chip THz spectroscopy. 
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5.3.3.1 Lactose pellet method 

In this technique, lactose monohydrate was pressed into a pellet using a dedicated 

hydraulic pellet press. In this process, 35 mg of lactose monohydrate powder was 

weighed (using an OHAUS Adventure Balance AR0640).  Lactose powder was then 

placed within a copper ring to secure it. Finally, it was pressed into an 8 mm diameter 

and 0.5 mm thick pellet by applying 8 tons of force.  

 

Figure 5.13 a) Compressed lactose pellet in a copper ring. b) Lactose sample overlaid onto a 

CPW device. 

5.3.3.2 Drop casting method 

 

Figure 5.14 a) A concentrated solution of lactose monohydrate in DI water. b) Lactose 

monohydrate drop cast onto a CPW device. 

As an alternative method to the above pellet process, 6 g of lactose monohydrate 

powder were mixed with 2.5 ml DI water to prepare a highly concentrated solution. A 

drop of this solution was then pipetted onto the device, covering the transmission line 
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and photoconductive switch region (the latter on the other side of the substrate) to 

ensure maximum interaction. The sample was left overnight to dry after pipetting, 

leaving a lactose mound surrounding the THz waveguide. It is worth noting that the 

drop casting technique gave much better adhesion between the lactose sample, and the 

CPW device compared to the lactose pellet method. This technique was therefore, 

predominantly used to perform on-chip spectroscopy measurements. We note that a 

similar drop-casting technique was reported previously in the literature to prepare 

polycrystalline films on a parallel-plate metal waveguide [173]. 

5.3.4 Initial spectroscopy measurement using the first generation 

CGAP CPW device 

In Chapter 3, it was demonstrated experimentally that the dispersive slot-line mode in 

a THz CPW can be filtered out by optically modulating a coupling switch in a CGAP-

CPW device. It was also discussed how the noise associated with pulse measurements 

in on-chip systems can be minimised using a differential measurement technique.  

Experimental results discussed in Chapter 3 showed that a first-generation CGAP-CPW 

could yield a bandwidth of 1.65 THz judged from the FFT spectra of the differential 

output pulse. 

In this section, the experimental results for an on-chip differential-THz 

spectroscopy using the first-generation  gap CPW are discussed. In Figure 5.15, A 

CGAP-CPW device is loaded with lactose monohydrate while performing differential 

spectroscopy measurement. 

When the pump beam was focused onto the biased PC switch S1, a THz pulse 

was generated, which then propagated down the transmission line. The coupling switch 

Sc, situated in the middle of the transmission line, was optically modulated by the third 

beam and synchronised with pump beam.  When the coupling switch (Sc) is modulated 

by the third beam, the lock-in amplifier directly measures the part of the signal that is 

transmitted when Sc is in its “on” state, subtracted by the signal when Sc is “off”, 

resulting in a differential pulse (see Chapter 3). 

 



On-Chip THz-TDS of Lactose Monohydrate using Conventional and CGAP-CPW Devices at Low-Temperature 

196 | P a g e  

 

 

Figure 5.15 A schematic of a first-generation CPW device with gap loaded with lactose 

monohydrate for differential modulated pulse spectroscopy measurement 

using the three-beam on-chip system in which coupling switch (Sc) is 

illuminated by 3rd beam. 

A differential modulated pulse travelling from the coupling switch Sc was 

detected at PC switch S2. A reference measurement and lactose spectroscopy 

measurement are compared in Figure 5.16 a, using the differential configuration. 

 

Figure 5.16 a) Time-domain differential (modulated) output pulses (reference and sample). 

Reflections in the output pulse are shown in inset graph. b) A comparison of 

FFT spectra of the reference and sample. 

Due to the short parasitic regions in the first-generation CPW devices, multiple 

reflections can be seen in the detected differential output pulse. Periodic oscillations in 

the output pulse were recorded when the differential signal interacts with a lactose 

sample. These periodic oscillations reflect absorptions in the FFT spectra of the output 

pulse. To avoid these large amplitude reflections, the time-domain signal was truncated 
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at 16.7 ps after the main pulse, yielding a frequency resolution of 60 GHz. To further 

increase the frequency resolution pulse data were zero padded as shown in Figure 5.16 

a. FFT spectra of the reference and the sampled signal are compared in Figure 5.16 b. It 

is difficult to distinguish lactose absorption features due to the presence of artefacts in 

the FFT spectra of the raw data. Artefacts are removed by truncating time-domain 

signal, but absorption features are somewhat smeared when the data is zero padded.  

To better resolve lactose absorption features in FFT spectra, the second 

generation CPW devices were optimised to include longer parasitic regions, offering 

higher-frequency resolution. 

5.3.5 Low-temperature measurement using second generation 

CPW  

To observe higher-frequency resolution and temperature–dependent characteristics, 

optimised the second generation CPW devices were measured using the microstat 

system (see Section 5.3.1). The sample under test was then overlaid onto the CPW device 

to perform variable temperature spectroscopy.  

5.3.5.1 Low-temperature characterisation  

Optimised CPW devices were initially characterised at the low temperatures before 

variable-temperature spectroscopy of lactose monohydrate was performed.  Input and 

output pulses were measured at 30 V bias, and low temperatures ranging from 6 to 292 

K temperature in 50 K increments.  

The full width at half maximum (FWHM) of the input and output pulses were 

then compared. Normalised input-output pulses are shown in Figure 5.17 a and b.  It 

was observed that pulse-width decreased at low temperatures.  The FWHM of the input 

and output pulses is plotted against temperature in Figure 5.17 c. Changes in the pulse 

width are attributed to changes in the carrier concentration at a low temperature. This 

is because the Fermi energy of the LT-GaAs changes as a function of temperature (see 

Equation 5-5), decreasing at low temperatures and therefore, the electron density in the 

conduction band also decreases [174].   
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Figure 5.17 a) Normalised time-domain input pulses measured at different temperatures 

ranging from 6 to 292 K. b) Normalised output pulses measured for different 

temperatures. c) FWHM of the input and output pulses plotted against 

temperature. d) Lorentz fit of the input and output pulses (at room 

temperature), with FWHM of 1.32 ps and 1.41 ps respectively. 

In other words,  more and more electrons are populated in the valence band. 

Therefore, reduced carrier concentration results in low recombination time with 

consequent shortening of FWHM.  

𝑓𝐹(𝐸) =
1

1 + 𝑒𝑥𝑝 (
𝐸 − 𝐸𝐹
𝐾𝐵𝑇

)
 

5-5 

where, 𝐸𝐹  is Fermi energy or Fermi level, 𝑓𝐹(𝐸) indicates the probability that an energy 

level E will be filled by an electron, 𝐾𝐵 = 8.62 × 10
−5 𝑒𝑉 𝐾⁄  is Boltzmann’s constant and 

T is the temperature in Kelvin. 

5.3.5.2 Variable temperature spectroscopy using continuous CPW devices 

Initially, lactose samples were measured at room temperature before being cooled down 

to 6 K using a microstat system. The temperature was then changed before each 

subsequent measurements using a temperature controller. To assess the actual 

bandwidth present in the signal, repeat measurements were performed. The standard 
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deviation of these repeat measurements provides a better estimate of the actual 

bandwidth present in the signal while the averaging process improves SNR of the FFT 

spectra. 

Ten scans of the output pulse transmitting from the switch S1 to S4 were initially 

measured at room temperature. A fast Fourier transform was then performed on the 

recorded time-domain pulses, with an average of 10 scans plotted with their standard 

deviation as shown in Figure 5.18 a. The approximate bandwidth present in the signal 

(judged from the frequency at which the noise floor is reached) is 1.6 THz. As the 

resolution of CPW device is only limited by the scan length of the time-delay stage, the 

time-domain  signal is not truncated before taking the Fourier transform. 

 

Figure 5.18 a) Averaged FFT spectra of 10 scans at room temperature plotted against 

standard deviation (shown in red). Time–domain signal is shown in the inset 

graph. b) Averaged FFT spectra of 10 scans at 6 K with standard deviation is 

shown in red. Time–domain signal is shown in the inset graph. 

The FFT of the output pulse shows two main absorption features; the first feature 

is at 0.53 THz while the second at 1.37 THz. To ensure that absorption features are 

indeed due to overlaid lactose sample, these FFT spectra were compared directly with 

free space THz-TDS results as shown in the Figure 5.18 b. Similar experimental results 

regarding these two resonances have also been reported in the literature (see Refs [63, 

168, 175-178]). 

Although absorption features in lactose were clearly recorded using the second 

generation CPW device at room temperature, other interesting phenomena such as 

frequency shifting and narrowing of absorption features (reduction in FWHM) can also 

be observed as the temperature is reduced. 
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Figure 5.19 Image of drop-casted lactose onto the transmission line of the second generation 

CPW device. The device is mounted on a PCB attached to the cold finger. 

The occurrence of these phenomena is due to a change in the vibrational modes 

of the lactose molecules at lower temperatures [179].  

 

Figure 5.20 FFT Spectra of lactose monohydrate at the room temperature (red) and low 

temperatures (6 K, in blue).  The temperature result is compared with FFT 

spectra obtained by free space THz-TDS (black). Plots are offset for clarity. 

 

The sample was cooled down to 6 K by flowing liquid helium to the cold finger. 

The system was given up to 1.5 hours to reach thermal stabilisation before taking 

measurements. It is worth noting that photocurrent from the emitter switch S1 stopped 
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changing when thermal stabilisation was reached, as the position of the laser relative to 

the device did not change. Ten scans of output pulse transmitting from S1 to S4 were 

initially recorded at 6 K and then scans at different temperatures in the range of 70 – 220 

K in 50 K increments were recorded. Fast Fourier transforms were then performed on 

time-domain pulses, and an average of ten scans plotted against the standard deviation 

in Figure 5.18. The magnitude of the error bars is smaller up to 1.6 THz in the FFT 

spectra, indicating the level of noise rises after 1.6 THz. Figure 5.18 b, Absorption 

features at 0.53 and 1.41 THz are clearly recorded. Room and low-temperature FFT 

spectra are compared in the Figure 5.21. It is clear from this graph that absorption 

features are more pronounced and that the second feature is shifted from 1.37 to 1.41 

THz, when the sample is at 6 K. To verify the frequency shift at low temperature, room 

and low (6 K), temperature FFT spectra are compared with free-space THz-TDS FFT 

spectra.  

The FWHM calculated from the Lorentz fit of the absorption feature at 0.53 THz 

is compared at room and low (6 K) temperature in the inset graph of Figure 5.21. It is 

clear from the inset graph that absorption feature at 0.53 has narrowed at the low 

temperatures. 

At the low temperatures, the position of the absorption feature is slightly 

changed from 0.530 to 0.533 THz, and the FWHM of the absorption feature was reduced 

from 15 GHz to 9 GHz.  In the literature [180], the 0.53 THz absorption feature has been 

attributed to a hindered rotation of the lactose molecule along the b-axis of the crystal 

within the hydrogen bond network.   

Furthermore, the temperature dependence of the absorption features is 

explained by the decreased energy spacing due to the population of more molecules in 

a higher vibrational excited states at room temperature, which results in shifting 

absorption features to lower frequencies. At low temperatures, more molecules are 

populated the ground state, which results in an increase in the average frequency of 

absorption [181].  
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Figure 5.21 FFT Spectra of lactose monohydrate at the room (red) and low (6 K in blue) 

temperature. FWHM of 0.53 THz absorption feature is compared in the inset 

graph. 

The temperature dependence for polycrystalline materials such as purine, 

adenine and α-lactose monohydrate has been studied in the literature [169, 182] where 

a similar shift towards higher frequencies in the absorption features was recorded, as 

shown in Figure 5.22 a. 

 

Figure 5.22 a) Absorption spectra of purine at 4, 54, 105, 204, 253, and 295 K (from top to 

bottom). b) Temperature dependence of the resonance frequency centred at 1.68 

THz (at 4K). Open circles are experimental data, and the solid line is calculated 

by fitting Equation 5-6. The inset shows the best-fitting parameters in units of 

THz, K. (All plots taken from [182]). 
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In this Figure 5.22, the frequency shift in the absorption spectra of purine is fitted 

by empirical expression is given in Equation 5-6 to fit the centre frequency of vibrational 

mode 𝑣0 at different characteristic temperatures 𝑇𝐶  .  

(𝑇) = 𝑣0 −
𝐴𝑇𝐶

𝑒
𝑇𝐶

𝑇⁄ − 1
 

5-6 

Where, 𝑣0 is the centre frequency of vibrational mode at zero K temperature, 𝑇𝐶  is 

characteristic temperature and A is a constant. 

It is clear from Figure 5.22 a and b that the intensities of vibrational modes 

increase as the temperature is reduced.  

 

Figure 5.23 FFT spectra of subsequent measurements at room temperature, 6 K and 

temperatures ranging from 70 – 220 K in 50 K increments are plotted on a 

reciprocal (1/amplitude) scale against frequency. 

 

In Figure 5.23, FFT spectra of subsequent measurements at different 

temperatures ranging from 70 – 220 K are plotted in 50 K increments on a reciprocal 

(1/amplitude) scale against frequency. On this reciprocal scale, high-frequency 

absorption features are emphasised while the noise floor is flattered. On the reciprocal 

scale, frequency shift (1.37 to 1.41 THz) and narrowing (reduced FWHM) of the higher-

frequency spectral features can easily be seen.  There was no significant shift recorded 

in the lower frequency (0.53 THz) absorption feature, but its relative amplitude 

decreases with increasing temperature. 
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Figure 5.24 a) The FWHM of the absorption feature at 1.41 THz plotted against temperature. 

Lorentz fit of the absorption feature is shown in inset graph. b) Shift in 

absorption dip (1.41 THz) plotted against temperature and centre frequency of 

the high-frequency absorption feature is determined by curve fitting using 

Equation 5-6. 

In Figure 5.24 b, the spectral shifting of the higher-frequency absorption (1.41 THz) 

feature is plotted against temperature. The spectral shifting was then fitted with 

Equation 5-6 to calculate the centre frequency 𝑣0 of the vibrational mode and 

characteristic temperature 𝑇𝐶  of lactose monohydrate. The calculated values are shown 

in Figure 5.24 b. The FWHM of the high-frequency absorption feature calculated from 

Lorentz fitting is plotted against temperature in Figure 5.24 a. 

5.3.5.3 Low- temperature spectroscopy using the second generation CGAP 

CPW device 

HFSS provides the flexibility to create or edit material files in its material library. By 

using this feature of HFSS, an absorption model for lactose monohydrate can be 

developed, if frequency-dependent permittivity and loss tangent parameters (extracted 

from free-space THz-TDS of lactose monohydrate) are carefully defined. Simulation 

work by C. Russell et al. [90] suggests that the lactose absorption features can be 

enhanced by increasing the interaction length between the sample under test and the 

THz field travelling down the transmission line as shown in Figure 5.25. 
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Figure 5.25 HFSS simulation results for varying interaction lengths (100 – 800 µm) a) 𝑺𝟐𝟏 

parameters. b) Absorption spectra obtained for a PGL (planar Goubau line) 

loaded with lactose monohydrate. Simulation results are taken from [90]. 

In the previous section, it was experimentally demonstrated that optimised 

(second generation) CPW device yielded a useful signal bandwidth of 1.6 THz. The 

interaction length between lactose samples and the THz pulse is limited by length (750 

µm) of the transmission line, however. If the transmission length is further increased, 

the signal propagating through transmission line will be more attenuated, which will 

yield low bandwidth. In CPW device optimisation, therefore, there is always a trade-off 

between signal bandwidth and the interaction length of the transmission line. 

To circumvent this issue, a CGAP (centre gap) CPW device was designed to 

maintain the signal bandwidth while allowing the transmission length to be increased 

from 750 to 1 mm. In Chapter 3, it was discussed in detail that how a CGAP CPW device 

filters out the dispersive slot-line mode (even mode) and only allows the coplanar mode 

(odd mode) to pass through. Furthermore, it minimises the system noise present in the 

signal by employing the three-beams differential-THz pulse measurement technique, in 

which a coupling switch is optically modulated to generate a difference signal.   

In Figure 5.26 a, the second generation CGAP CPW device is shown in which a 

coupling switch is embedded lithographically 1 mm away from detection switches S3 

and S4. In this scenario, a differential THz pulse propagates down the transmission line 

(1-mm-long) from the coupling switch Sc to detection switch S3.   
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Figure 5.26 a) Differential-THz output pulse measurement (second generation gap CPW) 

using the three-beam on-chip system. b) Conventional output pulse 

measurement (second generation continuous CPW) using the two-beam on-

chip system. 

The pump beam was focused onto PC switch S1 biased at 30 V and the THz pulse 

was generated at the switch. S1 propagated down the transmission line and then passed 

through the coupling switch. The third beam (synchronised with pump beam) and 

chopped by a mechanical chopper was focused onto the coupling switch Sc, and the 

differential signal (Son − Soff) was measured by the lock-in amplifier connected to 

detector switch S3. Since the coupling switch only supports the less dispersive co-planar 

mode in the gap CPW, the FWHM of the differential THz pulse is found be smaller than 

a conventional (i.e. pulse detected using the two-beam on-chip system)THz pulse. The 

output pulse from the 1-mm-long conventional CPW device as shown in Figure 5.26 b 

is measured using two beams in an on-chip system to compare with the differential 

output signal. 

To ensure enhancement in the bandwidth, the FWHM of the differential output 

signal was measured from the gap CPW device and compared with the FWHM of the 
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output pulse measured from a continuous 1-mm-long CPW (referred as a conventional 

pulse) as shown in the inset graph of Figure 5.27 a.  It was found that the FWHM (1.23 

ps) of the differential signal is smaller than that of measured from the conventional 

FWHM (~1.41 ps) output pulse.  

 

 

Figure 5.27 a) A comparison of output pulses measured using two- and three-beam on-chip 

systems. Pulses are offset for clarity. FWHM of output pulses are compared in 

the inset graph. b) A comparison of the FFT spectra of output pulses from the 

different techniques. 

The first reflection in both conventional and differential output pulses occurs 

10.5 ps after the main pulse. The first reflection in a conventional output pulse is due to 

impedance change caused by switch S1 (1 mm away from S3). The first reflection in a 

differential output pulse is due to the first discontinuity (the high impedance of the 

coupling switch) in the transmission line. Both conventional and differential output 

pulses travel the same distance (1 mm) before being detected at the switch S3 but yield 

different bandwidths as shown in Figure 5.27 b. 

FFT spectra of conventional and differential output pulses have a different roll 

off slopes, as shown in Figure 5.27 b. The bandwidth of the differential output pulse is 

found to be 1.5 THz while the conventional output pulse yields a bandwidth of 1.2 THz.  

In Figure 5.28, lactose monohydrate is drop-cast onto the transmission line of 

CGAP CPW devices in order to perform on-chip spectroscopy. PC switches S1, Sc and 

S3, were then illuminated from the back of the substrate. The differential output pulses 

travelling from Sc to S3 then interact with the overlaid lactose sample.  
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Figure 5.28 A schematic of a second generation gap CPW loaded with lactose monohydrate 

for differential spectroscopy measurement using the three-beam on-chip 

system. 

Subsequent measurements of differential THz spectroscopy were then 

performed at room and low temperature ranging from 6 to 220 K in 50 K increments. 

Periodic oscillations in the time-domain signal shown in Figure 5.29 are more noticeable 

compared to the previously described on-chip spectroscopy measurements. Prominent 

oscillations are attributed to longer interaction length between sample under test and 

THz field. These oscillations correspond to the more pronounced absorption features 

seen in the FFT spectra.   

 

Figure 5.29 a) FFT spectra of 10 scans at room temperature plotted against standard 

deviation (shown in red). Differential time–domain signal is shown in the inset 

graph. b) FFT spectra of 10 scans at 6 K with standard deviation is shown in red. 

Differential time –domain signal is shown in the inset graph. 

Ten scans of differential pulse transmitting from switch Sc to S3 were initially 

measured at room temperature. A Fast Fourier transform was then performed on the 
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recorded time-domain pulses, and the average of 10 FFTs were plotted along with the 

standard deviation at each frequency, as shown in Figure 5.29 a. The noise floor was 

reached at ~ 1.5 THz in this data.  In Figure 5.29 a, FFT spectra revealed two absorption 

features at 0.53 and 1.37 THz. A similar shift in the high-frequency absorption feature is 

recorded at the low temperatures, but features are more pronounced than previously 

measured, and their magnitudes are relatively higher than previously recorded 

absorption features. 

5.4 Conclusion 

From the simulation and experimental results, it was observed that dispersion and 

radiation losses in CPW strongly depend on the ground-to-ground spacing (S+2W). 

Optimised second generation CPW (slot gap of 10 µm) device demonstrates higher 

bandwidth than conventional CPW device (slot gap of 20 µm), which enabled us to 

extract high-frequency spectral signatures of lactose monohydrate using on-chip 

spectroscopy technique. It is worth mentioning that CPW design could be further 

optimised by reducing ground-to-ground spacing, but conductor losses become 

prominent at a certain limit which imposes a minimum width requirement on the centre 

conductor line. Furthermore, it is shown how characteristic impedance and effective 

permittivity change in THz on-chip CPWs with changing slot gap width W using HFSS 

modelling. Electric field intensities and attenuation coefficient for the different slot gaps 

were calculated both from HFSS simulations and mathematical modelling. From these 

simulations, it is clear that field intensity increases with decreasing gap width, but the 

extent of field drops because the field is more tightly confined for narrower slot gaps.  

Variable temperature characterisation of optimised CPW device was also 

performed. When the temperature was lowered in the range of from 293 to 6K, a 

decrease in the FWHM of input and output pulses was observed.  

Lactose monohydrate was then loaded onto optimised CPW devices using the 

drop cast technique. At room temperature, on-chip spectroscopy of lactose 

monohydrate revealed two spectral features at 0.53 and 1.37 THz. On-chip spectroscopy 
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results were compared with free-space THz –TDS results to verify the origins of these 

spectral features, which were confirmed to arise from the lactose monohydrate samples. 

CPW devices were also cooled down to 6 K using a microstat allowing variable 

temperature spectroscopy was performed. A shift in the high-frequency spectral feature 

(1.37 THz) of lactose monohydrate was recorded.  

  



Conclusions and Future Work 

211 | P a g e  

 

Chapter 6  

Conclusions and Future Work  

6.1 Conclusions  

The aim of the work discussed throughout this thesis was to optimise on-chip THz 

coplanar waveguide system as a probing tool in order to extract the spectral signatures 

of polycrystalline material in the THz regime. A theoretical model of CPW for THz 

transmission overlaid on different substrates such as GaAs and quartz was first 

developed from HFSS simulations, in order to estimate the useful bandwidth available 

from different CPW geometries. THz CPW on-chip devices were then designed and 

fabricated, and then tested using an on-chip measurement system. A differential on-

chip THz-TDS was also developed inspired by the analogy of free-space differential 

THz-TDS systems. This differential on-chip system allowed us to generate differential 

THz pulses by modulating the conductivity of a coupling switch embedded in the 

middle of a CPW, using a three-beam optical setup. The potential use of branching 

waveguide system (Y-splitter/coupler) capable of splitting THz pulses was also 

explored, both from HFSS simulation work and on-chip measurements. Spectroscopic 

measurements of α-lactose monohydrate overlaid onto on-chip waveguide were 

performed at both room and low temperature, subsequently revealing the spectral 

features of lactose monohydrate.   

6.1.1 First generation CPW devices 

Results obtained from HFSS simulations suggested that a much higher bandwidth of    ~ 

1 THz can be obtained from CPWquartz compared to ~ 0.45 THz in CPWLT-GaAs.  This was 

further investigated by on-chip measurements performed on both CPWLT-GaAs and 

CPWquartz. 



 

 

The first-generation devices were then fabricated on both GaAs and quartz 

substrate. To fabricate CPW on a quartz substrate, an epitaxial lift-off technique was used 

to transfer thin layer (~ 350 nm) of LT-GaAs followed by a selective chemical etching to 

define photoconductive switch regions in CPWquartz. 

From on-chip measurements, it was demonstrated that CPWquartz yields a higher 

bandwidth of 1.10 THz compared to that of CPWLT-GaAs (~ 0.42 THz). The propagation 

velocities of THz pulse in CPWLT-GaAs and CPWquartz were calculated as 1.13 × 108𝑚/𝑠 and 

1.74 × 108𝑚/𝑠 respectively. The difference in pulse velocities was attributed to the 

different relative permittivities of the GaAs (12.9) and quartz (3.78) substrates. In the first-

generation CPWquartz, a frequency resolution of 55 GHz was obtained, taking secondary 

reflections into account, while a Fast Fourier transform was performed on the time-

domain pulse. 

  Differential pulses measured in the first-generation CGAP-CPWquartz using the 

three-beam on-chip system, yielded a much higher bandwidth of ~ 1.65 THz (compared 

to be continuous CPWquartz) while propagating from coupling switch Sc to S3, covering a 

transmission length of 0.75 mm. It has been demonstrated that a coupling switch 

embedded in the middle of transmission region acts like a high-pass filter that only allows 

high-frequency components (i.e. above cut-off frequency) present in a THz pulse passing 

through the coupling gap. It has also been demonstrated that shape of a THz pulse can 

potentially be manipulated (Gaussian to monocycle or vice-versa) by illuminating 

coupling switch with varying laser power. 

Initial spectroscopy measurements performed using the first-generation CGAP-

CPWquartz demonstrated that spectral features seen in FFT spectra (at ~ 0.53 and 1.37 THz) 

due to lactose monohydrate were of rather a small magnitude and were somewhat 

smeared when time domain data was zero padded in order to remove artefacts observed 

in FFT spectra, and therefore, spectral features could not be resolved.  

6.1.2 Second generation CPW devices 

In a second generation of CPWquartz devices, a shorter transmission region of 1mm 

compared to 1.5 mm in the first-generation CPWquartz device, was adopted in order to 



 

 

minimise attenuation loss with a consequent increase in bandwidth (from ~ 1.10 to  1.2 

THz).  Also, the parasitic regions were extended to substantially delay secondary 

reflections coming from discontinuities located in parasitic regions. With long parasitic 

regions, a much higher frequency resolution of ~ 2 GHz was obtained from the second 

generation CPWquartz device. The second generation CPW device was further optimised to 

enhance device bandwidth. HFSS simulations showed that for smaller slot gap width, 

radiation losses can significantly be minimised with a subsequent increase in bandwidth. 

Therefore, a slot gap width of 10 µm and transmission length of 750 µm was adopted in 

the second generation CPW devices. On-chip measurements demonstrated an enhanced 

bandwidth of 1.6 THz while the frequency resolution of ~ 2 GHz was obtained.  The 

enhanced bandwidth of the second generation device was then exploited to perform 

spectroscopy measurements. From spectroscopic measurements performed on optimised 

second generation device, spectral features of lactose monohydrate (occurred at ~ 0.53 and 

1.37 THz) were completely resolved. Also, spectroscopic measurements performed over a 

range of (~ 6 to 293 K) temperatures showed a significant shift in high-frequency spectral 

feature (~ 1.37 THz) of lactose monohydrate.  

6.1.3 Y-splitter/coupler 

From on-chip measurements performed on Y-splitter, it was demonstrated that THz pulse 

propagating towards Y-junction can be split into two identical THz pulses which further 

propagate in branching waveguides. A Y-coupler waveguide allowed us to measure 

differential and conventional THz pulses from the same waveguide. A bandwidth of ~ 750 

GHz (quartz substrate) was observed from FFT spectra of split THz pulses. Initial 

spectroscopic measurements performed on Y-coupler demonstrated that Y-

splitter/coupler could potentially be used for on-chip spectroscopy (provided higher 

bandwidth could be obtained.)     

6.2 Future Work 

In on-chip spectroscopic measurements, it may be desirable to increase the on-chip system 

bandwidth in order to probe spectral features of polycrystalline materials occurring at 



 

 

higher frequencies. Also, it would be useful to fabricate a waveguide system having more 

than two branching waveguides, allowing spectroscopic measurement of a variety of 

materials to be performed using the same waveguide.  

An example of a Y-splitter having more than two branching waveguides is 

discussed in the following sections. In Chapter 4, it has been demonstrated that THz pulses 

can potentially be detected from one branching waveguide to another, and therefore, a Y-

splitter can further be investigated as a THz multiplexer/combiner in order to observe 

interference (constructive or destructive) pattern caused by two THz pulses crossing a Y-

junction.  

6.2.1 Bandwidth enhancement 

In Chapter 5, it has been demonstrated that bandwidth of CPWquartz   can be enhanced by 

reducing the slot gap width ‘W’ (separation between centre conductor and ground plane) 

subsequently reducing radiation loss 𝛼𝑟 (where, 𝛼𝑟 ∝ (𝑆 + 2𝑊)
2). A comparison of 

transmission loss parameters obtained from HFSS simulation for slot gap width 5 and 10 

µm is shown in Figure 6.1 a.  

  

Figure 6.1 a) A comparison of scattering parameters obtained from HFSS simulations 

performed on CPWs with 5 and 10 µm slot gaps. b) Normalised field intensity 

for gap widths 5 and 10 µm plotted against a ployline perpendicular to CPW 

plane.  

On the basis of transmission loss parameters obtained from HFSS, it seems fair to 

suggest that bandwidth of CPWquartz can further be increased from ~ 1.6 to 1.8 THz (shown 

in Figure 6.1 a) by adopting a slot gap width of 5 µm with a consequent increase in design 

complexity. In Figure 6.1 b, the intensity of evanescent field plotted against distance 



 

 

perpendicular to CPW geometry, suggests that extent of the field for 5 and 10 µm slot gap 

CPWs is of the same order (~ 10 µm), therefore, reducing slot gap width should not affect 

spectroscopic measurements.  

6.2.2 Implementation of tunable filters in CPW 

In Chapter 3, a potential use of coupling gap discontinuity as a high-pass filter has been 

demonstrated. However, CPW geometry can further be exploited in order to realise 

fundamental filter elements such as pass-band and stop-band filters (see Chapter 2) which 

can potentially be tuned (i.e. varying capacitive and inductive reactance) by employing a 

free-standing LT-GaAs switch underneath the filter element with subsequent laser beam 

illumination.  

Examples of the proposed “stop-band” (centre frequency ~ 460 GHz) and “pass-

band” filter (centre frequency ~ 275 GHz) designs with their equivalent circuit models are 

shown in Figure 6.2. Stop and pass-band filters can be realised by introducing “series 

short” and “series open” stub (lithographically) in the centre conductor of a CPW 

respectively as shown in Figure 6.2 a and b. 

 

 

Figure 6.2 Implementation of tunable filters in CPW a) A stop band filter formed by the 

series short stub b) A pass-band filter formed by the series open stub c) A 

schematic of proposed CPW device design. 

 



 

 

Resonant frequency of filters mentioned above can be obtained as: 

𝑓𝑜 =
𝑐

√𝜀𝑒𝑓𝑓
(
1

4𝑙
) 

6-1 

Where, 𝑓𝑜  is the resonant frequency, 𝜀𝑒𝑓𝑓 is the effective permittivity of dielectric medium 

and 𝑙 is the length of quarter wavelength (𝜆𝑔 4⁄ ) stub resonator.  

  

        

Figure 6.3 a) A stop band with resonant frequency 460 GHz b) A pass band with centre 

frequency 275 GHz, followed by a stop band with resonant frequency 920 GHz. 

c) EM field simulation of stop band filter showing resonance field around the 

stub region d) Em field simulations of pass-band filter shwoing two resonances 

corresponding to pass-band and stop-band.  

For a series short stub length of 97 µm and width of 6 µm, stop-band filter 

demonstrated a resonance frequency of ~ 460 GHz while simulations were performed over 

the frequency range 0.1‒1.2 THz, using HFSS. For a series open stub, a pass-band 

resonance occurred when the resonator length was found to be 𝜆𝑔 4⁄  and subsequent stop-

band resonance occurred (as shown in Figure 6.3 b) when resonator length was 𝜆𝑔 2⁄ . In 

Figure 6.3 b, centre frequency of “pass-band” filter was obtained by taking the geometric 

mean of lower and upper cut-off frequencies as: 

𝑓𝑐 = √𝑓1 × 𝑓2 
6-2 

 



 

 

In Figure 6.3 d, a closer look at EM-field simulations indicates that two resonances 

occurring in the series open stub region, correspond to “pass-band” and “stop-band” 

resonances respectively.  These resonating fields can potentially be used as sensing tool in 

order to probe any significant variation in effective permittivity due to overlaid sample 

under test [183].    

6.2.3 Future spectroscopic measurements using Y-splitter/coupler 

As discussed earlier, it would be useful to test the functionality of a Y-splitter as a 

multiplexer/combiner system in order to study interference pattern of THz pulses. An 

example of Y-splitter is shown in Figure 6.4, in which biasing and probing connections are 

swapped and a three-beam system is employed in order to generate THz pulse at the 

switch S1 and S2 simultaneously with a subsequent detection of an output pulse (in 

straight waveguide, YS) caused by constructive/destructive interference of THz pulses 

propagating along branching waveguides YA and YB.  

 

Figure 6.4 An illustration of Y-splitter used as a multiplexer/combiner in order to study 

interference pattern.  

In this configuration, it is important to note that if relative time delay between THz 

pulses propagating along YA and YB is varied by means of an optical delay stage, an 

interference pattern can be observed in the pulse detected at the switch S3. 

By employing more than two branching waveguides in a Y-splitter waveguide 

would allow us to perform spectroscopic measurement on more than one SUT (sample 

under test) using the same waveguide. An example of 1×4 Y-splitter comprising cascaded 



 

 

1×2 Y-splitters with arc-shaped branching waveguides is shown in Figure 6.5 a, in which 

branching waveguides YC ,YD and YE are loaded with three different test samples SUT1, 

SUT2 and SUT3 in order to detect sampled THz pulses while unloaded branching 

waveguide YF can be used to detect a reference THz pulse.  

 

 

     

Figure 6.5 An illustration of 1×4 Y-splitter comprising cascaded 1×2 Y-splitters with arc-

shaped branching waveguides in which three branching waveguides are 

loaded with samples under test and the remaining branching waveguide is 

used to measure a reference signal.  

Spectral features of each test sample then can be extracted by performing furrier 

transform on time-domain THz pulses. An illustration of sampled and reference THz 

pulses detected from branching waveguides YC, YD, YE and YF and spectral features 

obtained from their respective FFT spectra is shown in Figure 6.5 b and c.  
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