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II. ABSTRACT 

Abdominal aortic aneurysm (AAA) is an asymptomatic dilatation of the 

abdominal aorta which ultimately leads to rupture without intervention. Rupture 

is typically fatal. Due to the silent nature of the disease, the National Abdominal 

Aortic Aneurysm Screening Programme (NAAASP) has recently been 

implemented in the UK. It is an unprecedented opportunity to explore the nature 

of early AAA development and uncover new targets for therapeutics. 

Smooth muscle cells (SMCs) are the principle component of the arterial wall 

and have the ability to stabilise the pathological remodelling which is 

characteristic of AAA. In AAA tissue, SMCs have been shown to be 

dysfunctional. Phenotypic switching of SMCs has been reported as an early 

event in AAA development. 

The aim of this study was therefore to further characterise an ex vivo porcine 

model of AAA and temporally characterise SMC phenotype. The approach was 

to harvest porcine carotid arteries and subject them to a protease pre-treatment. 

They were then cultured under flow and pressure in a vascular bioreactor for 

specified periods of time to model the early and end stage of AAA. The model 

was then temporally characterised in terms of the structure and function of 

arterial tissue and SMCs. This study directly followed a previous study in our 

laboratory which validated SMCs from the end-stage model with human AAA 

SMCs. 

Histology and immunohistochemistry for SMCs and components of the 

extracellular matrix were used to qualitatively analyse tissue structure in the 

early and end-stage models. Uniaxial tensile testing was used to 

biomechanically characterise the function of the tissue. Whole vessel pressure-

dilation analysis was also evaluated as a method of biomechanical 

characterisation for this model.  

The structure of the SMCs in the early and end-stage models were characterised 

using image analysis and fluorescence microscopy of the actin cytoskeleton. 

SMC circularity was an indication of a change in phenotype. The function of 
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the SMCs was also assessed using proliferation assays, scratch wound migration 

assays, senescence associated beta-galactosidase assays and gelatin 

zymography for matrix metalloproteinase-2 and 9 (MMP-2 and -9). 

It was determined that a combination of the protease pre-treatment and 

bioreactor culture was required to induce the phenotypic switch seen previously 

in the end-stage model. This study managed to reproduce the results seen in the 

previous study; in the end-stage model, protease pre-treatment followed by 

bioreactor culture for twelve days induced an increase in SMC circularity, 

impaired proliferation, elevated levels of senescence and decreased levels of 

MMP secretion. These characteristics are also observed in human AAA SMCs. 

A period of SMC hyperproliferation was also observed in the early-stage model. 

The SMCs had not yet undergone the phenotypic switch characteristic of the 

end-stage model. The SMCs were also more active in terms of MMP secretion 

and had much lower levels of senescence compared to the end-stage model. 

In terms of tissue structure, Sirius Red histological staining revealed a peri-

luminal deposition of collagen in the end-stage model which was not present in 

the early-stage model. It was hypothesised that this was an attempt at an ECM 

stabilisation mechanism. The early-stage model also reached aneurysmal 

dimensions but inwards remodelling of the artery had occurred by the end stage 

of the model. 

Uniaxial tensile testing revealed that culture in the bioreactor caused arterial 

remodelling regardless of pre-treatment. Generally, vessels which received 

protease pre-treatment tended to be thinner, weaker and less compliant then 

those without pre-treatment. 

This study shows that it may not be appropriate to characterise AAA SMCs 

according to classical SMC phenotype. The early-stage model may be used to 

illuminate potential targets which is particularly pertinent given the recent 

advent of AAA screening, providing a window of opportunity for early 

therapeutic intervention.
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CHAPTER 1 INTRODUCTION 

The aims of this project were: to develop an ex vivo model of AAA in a 

bioreactor and use the model to investigate the structure and function of the 

smooth muscle cell with respect to time. 

Abdominal aortic aneurysm (AAA) is a disease prevalent in developed 

countries whereby the abdominal aorta gradually dilates via multifactorial 

biological processes until rupture. Patients are destined for surgery as there are 

no current pharmacological or therapeutic treatments. This chapter will 

examine: the epidemiology and risk factors; the current clinical management 

techniques; the biomechanics and histoarchitecture compared to healthy aortas; 

factors involved with aneurysm formation and progression with emphasis on 

the role of the smooth muscle cell; experimental aneurysm models in terms of 

animal species; the various methods to induce experimental AAA, and the 

limitations.  

 

1.1. ABDOMINAL AORTIC ANEURYSMS 

Abdominal aortic aneurysm (AAA) can be loosely described as an abnormal 

dilation which typically occurs in the abdominal aorta between the renal arteries 

and the iliac branches (Lippincott et al., 2009). It is a condition which affects 

the abdominal aorta whereby it dilates to greater than 3cm in diameter 

(approximately 150% of normal diameter), and is considered for elective 

prophylactic repair when it reaches a diameter greater than 5.5cm: the aneurysm 

must be large enough for the risk of rupture to exceed the perioperative mortality 

risk (Powell, 1998, BHF, 2008, Nordon et al., 2011). These are generally 

accepted thresholds, although definitions such as an aneurysm greater than 4cm 

and an infrarenal to suprarenal diameter ratio of 1.2 to 1.5 can also be observed 

(Golledge et al., 2006). Figure 1.1 shows the distortion of the aneurysmal artery 

in comparison to a healthy aorta. 
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Figure 1.1 Cartoon of the abdominal aorta showing the morphology of left) a 

healthy aorta, and right) a dilated abdominal aorta indicative of AAA (highlighted 

in green).  

 

1.2. EPIDEMIOLOGY 

Regardless of the formal definition of an AAA, the major consequence if left 

untreated is aortic rupture resulting in massive internal bleeding due to the 

inability of the arterial wall to withstand the physiological force exerted by 

blood. Patients with AAA may experience vague symptoms of back pain or 

localised abdominal pain, but a vast majority of AAAs are asymptomatic until 

the point of rupture and diagnosis is often incidental when addressing other 

medical complaints (Sakalihasan et al., 2005). A ruptured AAA carries an 

extremely high mortality rate, which has been documented from a 65% 

mortality rate to as high as 80% for those who reach hospital overall 

(Sakalihasan et al., 2005, Jagadesham et al., 2008). Even undergoing emergency 

repair surgery does not bode well for the patient; 50% of those who will undergo 

emergency surgery for a ruptured aorta will die (Nordon et al., 2009). 

The problem of AAA, especially in developed countries, is significant. It has 

been estimated that aneurysms are prevalent in approximately 5% of men over 

65 years of age and an AAA rupture accounts for 1.5% of the total mortality in 
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males over 55 (Choke et al., 2005, Jagadesham et al., 2008, Michel et al., 2011, 

Nordon et al., 2011). Another estimate placed AAA as the tenth most common 

cause of mortality and responsible for approximately 2% of all deaths (Golledge 

et al., 2006). It has also been argued that the conservative estimates of mortality 

linked with AAA are hindered by low rates of post-mortems and that it is likely 

that some sudden deaths attributed to ruptured AAA are certified as cardiac 

deaths unless a pre-existing AAA was documented (Golledge et al., 2006).  

The National Abdominal Aortic Aneurysm Screening Programme (NAAASP) 

was introduced to the UK in 2010 as an effective way to reduce AAA mortality 

after a pilot study in 2009 (Thompson et al., 2009). This AAA screening is 

currently targeted to men over the age of 65 and has been found to reduce the 

number of deaths related to AAA by half over 10 years (Benson et al., 2016). 

The screening programme offers the unprecedented opportunity to identify 

AAAs more often and earlier on in the development of the disease. 

AAA disease is more common in men than in women (Anidjar and Kieffer, 

1992, Jagadesham et al., 2008, Michel et al., 2011). Incidence rates have been 

estimated to be between 1.3% and 8.9% for men and 0.5% and 2.2% for women, 

or approximately six times greater in men than in women (Sakalihasan et al., 

2005, Nordon et al., 2011, Svensjo et al., 2013). However, although AAA is 

rarer in women, they represent a higher mortality rate in comparison to men 

with increased growth rate, greater likelihood of rupture and rupture at a smaller 

diameter (Heller et al., 2000, Hultgren et al., 2007, Lo and Schermerhorn, 2016).  

Unlike other cardiovascular diseases endemic in industrialised countries, in 

recent times the incidence of AAA is increasing; this may be due to improved 

detection as a result of screening regimes and therefore a greater diagnostic 

efficiency, or even due to improved mortality rates from other cardiovascular 

diseases (Anidjar and Kieffer, 1992, Golledge et al., 2006). However, the 

increase in age standardised mortality indicates a genuine increase in the 

incidence of AAA. For example, a Scottish study found that mortality rates from 

AAA increased 2.6-fold between 1981 and 2000 (Best et al., 2003). The ageing 

population of industrialised countries is likely to be a major contributor to this 
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fact, as the risk of developing AAA increases with age (Sakalihasan et al., 

2005).  

 

1.2.1. RISK FACTORS 

Cigarette smoking is recognised as the strongest risk factor for AAA; Lederle 

et al. found that the association of ever smoking with aortic aneurysm is 2.5-

fold greater than the association of ever smoking with coronary heart disease 

(Lederle et al., 2003). In another large study, smoking accounted for 75% of the 

excess prevalence of AAA greater than 4.0 cm (Perlstein and Lee, 2006). This 

may be due to the fact that cigarette smokers possess increased numbers of 

circulating markers of inflammation or the ability of cigarette smoke to oxidise 

α1-antitrypsin, a protease inhibitor (Perlstein and Lee, 2006, Michel et al., 

2011). Protease inhibition and inflammatory markers will be examined in more 

detail later on in this chapter.  

Ethnicity may have a role to play in the development of AAA; Afro-Caribbean 

ethnicity has been associated with decreased aneurysm susceptibility and there 

is evidence to suggest that AAAs are more commonly found in Caucasians than 

other races (Lederle et al., 1997, Golledge et al., 2006). AAA has also been 

linked with familial history of the disorder (Lederle et al., 1997, Sakalihasan et 

al., 2005, Golledge et al., 2006, Nordon et al., 2011).  

The association of both familial history and ethnicity (inherent genetic factors) 

and smoking (an overtly environmental factor) with AAA indicates that there is 

likely to be an interplay between genetic predisposition and environmental 

factors in aneurysm formation. The Swedish Twin Registry has been used to 

analyse the role of hereditary and environmental factors. Of the 265 pairs of 

twins affected with AAA, genetic effects accounted for 70% and non-shared 

environmental effects for 30% of the phenotypic variance (Wahlgren et al., 

2010). They found that there was no contribution of shared environmental 

effects. 
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1.3. TREATMENT OPTIONS FOR AAA 

Although AAA is a major issue in developed countries, at present there are no 

approved therapeutic or pharmacological treatments for AAA. Prophylactic 

surgical intervention is the certified route, but only once the aneurysm has a 

diameter greater than 5.5 cm (Thompson et al., 2009, Benson et al., 2016). Open 

surgical repair (OSR) involves exposure of the abdominal aorta and replacement 

of the aneurysmal segment with a prosthetic graft (BHF, 2008). Figure 1.2 is an 

image of OSR for AAA. 

Depending on the morphology of the aneurysm, and the patient’s suitability for 

surgery, it may be possible to undergo endovascular aneurysm repair (EVAR). 

EVAR as an alternative to OSR was pioneered by Parodi (Parodi et al., 1991). 

It is a minimally invasive surgery involving insertion of a stent-anchored 

Dacron graft into the femoral arteries where it is passed through the circulatory 

system until it sits inside the aneurysm. It is then sutured to the proximal and 

distal necks of the non-aneurysmal aorta. This excludes the aneurysm from 

systemic blood pressure and thus prevents enlargement or rupture. Figure 1.3 

shows the outcome of EVAR surgery. 
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Figure 1.2 Open surgical repair of AAA. The prosthetic graft used to replace the 

aneurysmal aorta can clearly be seen. Image adapted from Bajardi et al. (2009) 

CC BY 2.0, with addition of labels and arrows. 

 

Figure 1.3 Left) Preoperative CT scan of an AAA with 3D reconstruction. Right) 

Postoperative scan showing endovascular stent within aneurysmal portion of 

artery. Image taken from Schanzer and Messina (2012), CC BY 2.5.  

  

Both OSR and EVAR are major surgical operations, thus the benefits of 

undergoing prophylactic aneurysm repair surgery must outweigh the risk of 

surgery; this explains the ‘cut-off point’ of an arterial diameter greater than 5.5 

cm for elective repair. The risk of rupture is less than 1% in patients who have 

Aneurysmal tissue Surgical patch 

Dacron graft aortic replacement 

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.5/
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an AAA diameter of less than 5.5cm, although this markedly increases to a 

rupture risk as high as 33% once the AAA is above 7cm in diameter (Kent, 

2014). Although the procedure is very effective, OSR has a mean 30-day 

mortality of over 5% in many countries, despite improvements in perioperative 

care (Nordon et al., 2011). EVAR patients have fewer complications and 

decreased intensive-care stay compared to patients undergoing OSR, but no 

difference was found between the treatment options for long term (greater than 

2 years) mortality or AAA-related mortality (Nordon et al., 2011). EVAR also 

carries a risk of re-intervention of 20% at five years, usually as a result of the 

formation of ‘endo-leaks’ between the stent and the arterial wall (Golledge et 

al., 2006). Data from the European Collaborators on Stent/graft Techniques for 

Aortic aneurysm Repair (EUROSTAR) Registry show that following EVAR 

there remained a cumulative risk of rupture of 1% per year with a 2.1% risk of 

late conversion to OSR (Harris et al., 2000). Moreover, EVAR carries 

morphological contraindications; the most widely accepted is the requirement 

of a proximal neck either shorter than 15mm or absent (Sakalihasan et al., 2005).   

Although AAA is only generally considered for surgical repair once it reaches 

a diameter greater than 5.5 cm, rupture can also occur in smaller aneurysms 

(Miller, 2002). A systematic review investigating the effect of small AAA on 

cardiovascular outcomes found that the death of 37 patients out of a total of 

2323 (1.6%) was caused by rupture of small AAA (Bath et al., 2015). Perhaps 

more worrying was the high risk of cardiovascular death associated with small 

AAA (335 out of 2323 patients, 14.5%) which increased by 3% each year after 

diagnosis. There are no generally accepted guidelines for this patient group; 

only once the AAA has reached greater than 5.5 cm in diameter is preventative 

surgery considered an option. This maximum diameter criterion has drawn 

some criticism as it is a blanket ‘one size fits all’ parameter. There is research 

into a more reliable rupture risk predictors such as geometry and peak wall stress 

estimates which are more patient specific parameters (Kontopodis et al., 2016). 

Increasing understanding of the cellular and molecular processes involved in 

the pathogenesis of AAA will enable vulnerability to rupture to be detected 

through a less crude method, potentially utilising biomarkers in the body as a 
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predication of oncoming rupture whereupon the patient will undergo 

prophylactic repair (Hellenthal et al., 2009a), reviewed in (Wanhainen et al., 

2016). 

Surgery is still the sole option offered to AAA patients; there are no approved 

alternative pharmacological or therapeutic treatments. Patients – in particular 

elderly patients – may be deemed unsuitable for surgery due to medical co-

morbidity and in these cases there are no forms of effective treatment. For 

example, out of 251 AAA patients admitted to a specialist vascular unit, 32 

(13%) were deemed unsuitable for surgical intervention (Karthikesalingam et 

al., 2011). Lim et al. reported that 59 out of 334 patients (18%) were not able to 

have intervention within 3 months (Lim et al., 2015). In these cases, it is simply 

a matter of time until rupture or unrelated death of the patient. However, the 

advent of a nationwide AAA screening programme offered to at-risk individuals 

offers the opportunity to detect and diagnose AAAs at an earlier stage. This may 

reveal stages of the disease where it may be appropriate to intervene with 

therapeutics or pharmacological treatments which have not previously been 

identified. 

There is also evidence from animal models that anti-inflammatory and 

immunosuppressive drugs may limit the expansion of AAAs, but as the cellular 

and molecular targets are unknown, research is still ongoing into non-surgical 

treatments for AAA (Jagadesham et al., 2008, Davis et al., 2014). 

 

1.4. ARTERIAL ANATOMY 

Arteries consist of three well-organised connective tissue layers; the tunica 

intima, the tunica media and the tunica adventitia as shown in Figure 1.4 and 

Figure 1.5. The intima lies in proximity to the lumen of the artery. It consists of 

an endothelium, a single layer of cells lying in direct contact with the blood, and 

a small amount of subendothelial connective tissue. The media is the middle 

layer and is the thickest of the layers found within the arterial wall. It is this 

layer which provides the structural support, vasoreactivity and elasticity of the 

vessel. The main body of the media comprises of alternating layers of elastic 
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fibres and smooth muscle cells arranged circumferentially. The outermost layer 

is the adventitia which is the most robust of all the layers. It consists of 

longitudinally arranged connective tissue fibres of both elastin and collagen and 

connective tissue cells such as fibroblasts. (Singh, 2008, D'Souza, 2009).  

 

Figure 1.4 Schematic of healthy arterial wall and its components. Top: cross 

section of arterial wall. Bottom: zoomed in section of arterial wall layers.  
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Figure 1.5 Arterial anatomy (porcine carotid artery) - histological staining of 

healthy arterial wall. IEL = internal elastic lamina (purple stain), TI = tunica 

intima, TM= tunica media, TA = tunica adventitia. A) Sirius red with Miller’s 

elastin co-stain. Elastin fibres are shown blue-purple and are ordered throughout 

the wall. B) Sirius red with Miller’s elastin co-stain viewed under polarised light. 

Collagen fibres (white arrows) are birefringent and are red, green or yellow 

depending on the orientation of the fibres in relation to the polarising filter.  

 

In carotid arteries, used throughout this study and shown in Figure 1.5, there is 

no real distinction of the intima; it is simply a single cell layer of endothelial 

cells. The elastic fibres in the tunica media (as seen in purple in Figure 1.5, blue 

arrows) allow the artery to possess arterial compliance; the artery is able to 

expand during systole storing elastic energy and then recoil during diastole, 

releasing the stored energy back into the blood stream, thus transporting the 

blood through the vasculature. This affects the pressure of the blood throughout 

the cardiovascular system. In addition to elastin, the majority of the extracellular 

matrix (ECM) in the aorta is comprised of Type I collagen (as seen in red in 

Lumen Lumen 

A B 

TM 

TA 

IEL 

TI 

500µm 500µm 
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Figure 1.5, white arrows). Smooth muscle cells (SMCs) form the majority of 

the cellular components and perform both mechanical (e.g. contractile) and 

synthetic (e.g. ECM) functions. The elastin fibres of the ECM allow passive 

arterial regulation, whilst the contraction of SMCs is an active component. By 

periodically relaxing and contracting, the luminal diameter can be controlled 

thus enabling arteries to maintain appropriate pressure levels throughout the 

vasculature (Rensen et al., 2007). SMC contraction is initiated by a calcium 

(Ca2+) dependent phosphorylation of light chain myosin, often triggered by 

mechanical stretch due to transmural blood pressure (Webb, 2003). In addition 

to active vasoregulation, SMCs are responsible for the production of the 

structural proteins in the ECM, and, in addition, are capable of secreting 

cytokines to recruit other cell types. They also play an important role in vascular 

remodelling; SMCs are also able to express ECM degrading enzymes (Curci, 

2009). This is discussed in detail in Section 1.7.1. 

 

1.5. CHARACTERISTICS OF AAA 

1.5.1. HISTOLOGICAL MARKERS 

The development of AAA is intrinsically linked to alterations in the connective 

tissues and cells within the arterial wall. The compliant and viscoelastic 

properties of the aorta are attributed to the elastin fibres (Figure 1.5), whereas 

type I and type III collagen provide the tensile strength and maintain the 

integrity of the aortic wall (Sakalihasan et al., 2005, Shimizu et al., 2006). AAAs 

are characterised by severe elastin fragmentation and loss of smooth muscle 

cells (SMCs), as well as chronic inflammation of the adventitia and media (He 

and Roach, 1994, Henderson et al., 1999, Shimizu et al., 2006). These studies 

utilised human tissue that had been taken at autopsy or during elective repair of 

the aorta, and so are only indicative of the state of the tissue at end-stage 

aneurysm disease. However, perfusion of mouse aortas with elastase will also 

induce AAAs with these same histological markers within 14 days (Pyo et al., 

2000). This characteristic loss of elastin is shown in Figure 1.6. 
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Figure 1.6 Elastin von Gieson staining of intima/media in A) normal aorta and B) 

AAA wall showing elastin loss in AAA compared to healthy aorta. Elastin fibres 

are stained purple/black (blue arrows). Scale bar = 50µm. Image adapted from 

Sano et al. (2014), CC BY 4.0 with additional cropping, rearranging and 

relabelling. 

 

Healthy aortic media comprises of elastin lamellar units interspersed with 

SMCs, collagen and ground substance (non-fibre component of the ECM, 

comprised primarily of water, glycosoaminoglycans and proteoglycans) 

whereas the structure of the aortic media is disrupted in aneurysmal tissue 

(Figure 1.6). 

This loss of elastin has been quantified in aneurysmal aortas; scarce and 

disrupted elastic tissue in comparison to healthy controls was observed. The 

elastin content in the media of tissues taken from AAAs was found to be 8.1% 

± 3.2% (n=11) of the dry, defatted weight; a sharp contrast to that of healthy 

aortic media: 35.0% ± 3.2% (Campa et al., 1987). Studies consistently agree on 

severe elastin deficiency in AAAs, but there are inconsistencies in reports of 

collagen content in aneurysmal tissue. One of the seminal early studies found 

AAA tissue to be deficient in collagen (Sumner et al., 1970). A subsequent study 

found collagen concentration between normal, AAA and atherosclerotic 

occlusive aortas to be indistinguishable and another comparison of the 

Healthy aorta 

Lumen 

Adventitia 

AAA tissue 

http://creativecommons.org/licenses/by/4.0/legalcode
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connective tissue matrix in control vs. AAA aortas found that the collagen 

content was unaltered between the two (Dubick et al., 1988, Gandhi et al., 

1994). On the other hand, an early study found that collagen content was 

significantly increased from 24% ± 5% in healthy aortas to 37% ± 16% in AAA 

tissue and this has since become the accepted view (Rizzo et al., 1989). A more 

recent study aiming to link clinical characteristics with histological features, 

including levels of extracellular matrix proteins found that there was increased 

collagen content in both electively repaired and ruptured AAAs (Hellenthal et 

al., 2009c).  The structure of the collagen in AAA has been reported to be 

disordered with a marked decrease in the ‘waviness’ associated with 

physiological collagen fibre crimping leading to conclusions that in AAA the 

collagen fibres did not act as a coherent network (Gandhi et al., 1994). It is also 

reported that the collagen network in AAA had 350% of the levels of cross-

linking of non-aneurysmal aorta, leading to suggestions that collagen 

accumulates in aneurysmal walls via cross-linking whilst new collagen 

synthesis is defective (Carmo et al., 2002). 

It is not only the extracellular connective tissues of the aortic wall which were 

found to be abnormal in AAAs; a marked decrease in the number of SMCs in 

the media has also been widely observed. One study discovered that AAAs 

lacked the orderly structure of elastic laminae seen in healthy aortic media and 

demonstrated disorganisation of remaining SMCs. A cell count also revealed an 

average 44% (range 25% to 60%) reduction in SMC density in AAA tissue 

(n=29) compared to healthy controls (n=5) (Henderson et al., 1999).  

Inflammatory cell infiltrations are also observed in abundant quantities in all 

layers of the aneurysmal arterial wall (Shimizu et al., 2006, Hellenthal et al., 

2009b). This will be discussed in detail in Section 1.7.4. 

 

1.5.2.  BIOMECHANICAL BEHAVIOUR 

Aortic rupture is the ultimate catastrophic outcome without surgical 

intervention and this is a biomechanical failure of the aortic wall which occurs 

when haemodynamic stresses overcome the tissue strength. The SMCs, found 
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in abundance in the aortic media, define the active mechanical properties of the 

aorta by their contraction mechanism used to pump blood. The ECM acts as the 

passive component. The ECM is comprised of two major proteins: elastin, 

characterised as compliant and eponymously elastic, and collagen, generally 

stiffer and more robust (Raghavan et al., 1996). 

 

1.5.2.1. ARTERIAL BIOMECHANICS 

Elastin enables the large arteries of the body to not only expand during 

ventricular contraction in order to accommodate the surge of blood from the 

heart, but also to impart recoil to the arterial wall. It is comprised of soluble 

tropoelastin monomers cross-linked by lysine residues, rendering the protein as 

a whole insoluble with a half-life of approximately 40 to 70 years (Rucker and 

Tinker, 1977, Shah, 1997). Elastin fibres possess an elastic modulus of 

approximately 0.6 MPa and the ability to stretch as much as 70% of the original 

length (Lasheras, 2007). 

Collagen, in its various forms, is ubiquitous in the connective tissue of the body. 

In the aorta, Type I collagen is the most abundant with Type III collagen 

following this, with a ratio of about 70:30 (Rizzo et al., 1989). Polypeptide 

chains of collagen form into a stable triple helix structure which is only able to 

stretch 2 – 4% of its original, uncoiled length (Goodall et al., 2002a). Collagen 

fibres uncoil during loading, and only begin to bear such loads once the fibres 

have straightened and have been recruited for load-bearing (Sumner et al., 1970, 

Thubrikar et al., 2001). 

The degradation of elastin fibres has been linked with the initiation and 

expansion of AAAs whereas the ultimate failure of the arterial wall, resulting in 

arterial rupture, is associated with collagen (Dobrin and Mrkvicka, 1994, 

Petersen et al., 2002).  

Early studies linked these two proteins of the extracellular matrix with the 

characteristic J-shape stress-strain curves seen in healthy arterial tissue (Roach 

and Burton, 1957, Sumner et al., 1970, Vaishnav et al., 1972). A schematic of 
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such a curve can be seen in Figure 1.7. The vessel is compliant at low strains 

and gradually becomes stiffer as strain increases. 

A modified Maxwell model can be used to demonstrate the physiological 

contributions of the ECM components and the SMCs to the arterial 

biomechanics which explains this characteristic biphasic behaviour (Bank et al., 

1996). A schematic of the model is shown in Figure 1.8. This model highlights 

the strain-dependent elasticity initiated either by external strain (such as blood 

pressure) or by contraction of SMCs. The elastin and the parallel collagen 

component represent the elastic behaviour of the arterial wall when the SMCs 

are completely relaxed. At low strains, elastin governs the biomechanical 

behaviour. At increased strains, the collagen is gradually recruited into load-

bearing hence increasing the stiffness of the tissue (illustrated in Figure 1.8 with 

a hook mechanism). The series collagen component also represents the 

increasing stiffness of the tissue with regards to SMC contraction (Bank et al., 

1996). 
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Figure 1.7 Schematic of a J-curve stress-strain graph of a healthy aorta. Collagen 

fibres are recruited into load bearing via uncoiling due to stretch. 

 

 

Figure 1.8 Modified Maxwell model of smooth muscle and ECM components. 

Maxwell and Voigt models have been combined to represent the series and 

parallel components (Bank et al., 1996). 
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Arterial tissue, much like many soft tissues in the body, shows anisotropic 

behaviour as the fibres which constitute the ECM are organised in preferred 

directions. The collagen fibres that are recruited under higher strains are 

anisotropically arranged (Roach and Burton, 1957, Holzapfel, 2001, Gasser et 

al., 2006). 

Selective enzymatic digestion of arterial ECM components revealed more about 

their role in arterial biomechanics. One study involved selective digestion of 

both elastin and collagen in canine carotid and human iliac arteries and then 

subjected them to ex vivo pressure-dilation studies (Dobrin et al., 1984). 

Elastase treated arteries showed an increase in vessel dilation and reduction in 

arterial compliance. Conversely, collagenase treated arteries showed increased 

arterial compliance but were weaker: all collagenase treated arteries ruptured 

within the 150 mmHg pressure range. The authors concluded that arterial 

integrity was dependent on collagen only, with elastin governing the 

characteristic compliant behaviour. Collagenolytic studies in arteries have 

determined that arterial strength is inversely correlated to degree of collagen 

degradation (Dadgar et al., 1997). It has also been shown that arteries with 

elastin degradation had increased stiffness due to the earlier recruitment of 

collagen fibres in load bearing regimes and an increase in arterial diameter at 

zero-load indicating the existence of compressive pre-stresses within the arterial 

wall (Fonck et al., 2007). 

 

1.5.2.2. BIOMECHANICS OF AAA TISSUE 

Uniaxial tensile testing has been widely used to characterise the biomechanical 

behaviour of AAA tissue as it is a disease characterised by changes to the ECM 

(and therefore the biomechanics). It carries an inevitable endpoint of aortic 

rupture: mechanical failure of the arterial wall due to its inability to withstand 

physiological forces.  

One of the earliest papers to characterise AAA tissue biomechanics using 

uniaxial tensile testing at 8.5%/min strain rate found that the yield strength (σy) 

and ultimate strength (σu) were significantly decreased in aneurysmal tissue: σy 
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= 121.0±32.8 N/cm2 vs. σy = 65.2±9.5 N/cm2, σu = 201.4±39.4 N/cm2 vs. σu = 

86.4±10.2 N/cm2 (p<0.0005) for healthy and aneurysmal abdominal aortae, 

respectively (He and Roach, 1994). Aneurysmal aortas were found to be stiffer 

and less compliant in the longitudinal orientation in comparison to healthy 

aortas; this was attributed to the characteristic loss of elastin in the AAA tissue. 

It is difficult to define a consistent uniaxial tensile testing method applied across 

the literature. Documented strain rates have been defined variously as 0.2 

mm/min (He and Roach, 1994), 10 mm/min (Duprey et al., 2010), 2 mm/min 

(Kobielarz and Jankowski, 2013), 30%/min (Raghavan et al., 2006), 8.5%/min 

(Di Martino et al., 2006). Strain rate has been shown to have an effect on the 

measured mechanical properties of arterial tissue. It has been shown using 

uniaxial tensile testing on human thoracic aortae that the ultimate tensile stress 

increased 2-fold in dynamic (80 – 100 s-1) tests compared to quasi-static tests 

(0.01 – 0.07 s-1) (Mohan and Melvin, 1982). This study also demonstrated that 

the tissue behaved in a more anisotropic manner at high strain rates – the tissue 

was virtually anisotropic at low strain rates. Another study also showed that 

ultimate tensile stress increased with increasing loading rate, demonstrating the 

inherent viscoelasticity of arterial tissue (Stemper et al., 2007a). However, a 

study in fresh human cerebral blood vessels found no such strain rate 

dependence over a strain rate range of four orders of magnitude (Monson et al., 

2003). An absence of strain rate dependence in both the stiffness and failure 

stress of porcine thoracic aortae has also been documented (Miroslav et al., 

2009). The mechanical properties measured using uniaxial tensile testing must 

therefore be considered in the context of the test method as a consensus on strain 

rate dependence for arterial tissue has not yet been reached.  

Uniaxial testing on AAA tissue in varying orientations concluded that 

aneurysms possessed greater stiffness in the circumferential direction than 

longitudinally, and so should not be considered to demonstrate isotropic 

behaviour (Thubrikar et al., 2001). This was expanded upon when a more 

complex biaxial mechanical evaluation of AAA tissue was performed (Geest et 

al., 2006). The circumferential stiffness was found to be significantly increased 

in AAA tissue in comparison to age-matched healthy aortic tissue, which 
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indicated a higher degree of anisotropic behaviour. The authors concluded that 

aneurysmal degradation is associated with an increase in mechanical anisotropy, 

with preferential circumferential stiffening due to loss of elastin in AAA tissue. 

Biomechanical differences have been documented between electively repaired 

and ruptured AAA tissue: it was found that ruptured AAAs were significantly 

weaker in spite of being thicker (Di Martino et al., 2006).  

Advances in biomedical imaging techniques have enabled in vivo measurement 

of AAA biomechanics. An ultrasound phase-locked echo-tracking system was 

used to measure the diameter of healthy abdominal aortas during systole and 

diastole, hence deriving the arterial compliance in the aneurysm (Lanne et al., 

1992). The age range of the subjects was 5 to 71 years old and they concluded 

that the stiffness of the artery increased exponentially with age. Using an 

alternative method, computed tomography (CT) scanning was used to determine 

the aortic distensibility of 67 patients with AAAs (Ganten et al., 2008). 

Distensibility is a measure of the arterial ability to expand and contract and is 

therefore related to stiffness measured during uniaxial tensile testing. Mirroring 

the reports of increased stiffness in AAAs arising from uniaxial tensile testing 

studies, they reported that the distensibility of AAAs were significantly lower 

than in the proximal non-aneurysmal aorta and that there was no correlation 

with AAA size. The authors suggested that the fact that the distensibility of both 

small and large AAAs were indistinguishable may indicate that this reduced 

distensibility (and hence increased stiffness) is an early event in AAA 

development. These findings are comparable to a study which also reported 

reduced distensibility in AAA tissue and no correlation between distensibility 

and diameter (Molacek et al., 2011). A follow-up study of 61 AAA patients 

from a previous study in 1998 reported that the AAA elasticity (as measured by 

ultrasound) showed positive correlation with the annual AAA expansion rate 

(Hoegh and Lindholt, 2009).  
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1.6. ATHEROSCLEROSIS AND AAA 

Historically, atherosclerosis was considered to be a cause of AAA. However, in 

more recent years, there is considerable debate as to whether the relationship 

between atherosclerosis and aortic aneurysm is causal or whether the two forms 

of vascular remodelling simply share common risk factors. Golledge and 

Norman outlined the three philosophies regarding this relationship. Firstly, 

patients who are afflicted with an AAA are likely to also have atherosclerosis 

so it is postulated that atherosclerosis plays a causative role. Secondly, various 

shared genetic and environmental risk factors are causal in the development of 

both atherosclerosis and AAA but the two mechanisms are distinct and 

independent. The third theory is a combination of the previous two; either AAA 

or atherosclerosis can develop first and then promote the development of the 

other (Golledge and Norman, 2010). 

Although patients with AAA are likely to also suffer from atherosclerosis, not 

all patients with atherosclerosis go on to develop an aneurysm; in fact only 9% 

to 16%, of patients with atherosclerotic abdominal aortas develop an AAA 

(Shimizu et al., 2006). At present, there is fervent discussion as to whether some 

sort of defining mechanism between AAA and atherosclerosis exists. The 

Tromsø study, with a large sample size (n=6446) recently found  that 

atherosclerosis was more common in patients with AAA and that it was an 

independent risk marker for AAA, but could not conclude as to whether 

atherosclerosis played a causative role (Johnsen et al., 2010). 

A paradox that has recently emerged is the relationship of AAA and 

atherosclerosis with diabetes. Diabetes is a risk factor for cardiovascular disease 

but there has been an increasingly large amount of evidence that there is, in fact, 

a negative association with AAA whilst it delivers the opposite effect with 

atherosclerosis (Shantikumar et al., 2010, Lederle, 2012, Pafili et al., 2015). 

Although more investigation is required with regards to the exact biological 

mechanism, this paradox provides strong evidence that aneurysmal and 

atherosclerotic disease are separate diseases with separate aetiologies, though 

they may exacerbate each other. The ineffectiveness of pharmacological agents 

commonly used to treat atherosclerosis in treating AAA also suggests that 
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differing biological mechanisms are involved (Ferguson et al., 2010, Golledge 

and Norman, 2010). 

 

1.7. AAA PATHOPHYSIOLOGY 

As previously discussed in section 1.4.1, one of the defining markers of AAA 

is severe elastin degradation in the aortic media. Elastin possesses an extremely 

long half-life of anywhere from 40 to 70 years and so is a highly stable ECM 

protein. The loss of elastin in AAA tissue is therefore almost certainly due to 

active elastolytic processes rather than insufficient synthesis or natural passive 

degradation (Thompson et al., 1995, Shah, 1997, Shimizu et al., 2006).  In basic 

terms, AAA pathophysiology can be divided into several separate, yet 

inextricably linked, processes. Characteristics and physiology of aneurysmal 

arterial wall are shown in Figure 1.9. The subsequent sections of this chapter 

will examine the biological and mechanical mechanisms underlying AAA 

disease. 

 

Figure 1.9 Diagram of changes in AAA wall compared to healthy artery. MMPs = 

matrix metalloproteinases, SMC = smooth muscle cell, PMN = 

polymorphonuclear neutrophils. The media thickens in AAA compared to healthy 

arterial wall and AAA are often found with intra-luminal thrombus (red) present. 
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1.7.1. EXTRACELLULAR MATRIX DEGRADATION 

The number one culprit responsible for the ECM degradation in AAA tissue is 

a family of endopeptidases known as matrix metallo-proteinases (MMPs). 

MMPs are vital in normal body function for organ development, wound healing 

and necessary protein remodelling, but can also contribute to various 

pathological remodelling mechanisms (Galis and Khatri, 2002). 

Various members of the MMP family have previously been identified in the 

aneurysmal aorta, including MMP-2 (gelatinase A), MMP-9 (gelatinase B), 

MMP-3 (stromelysin), MMP-1, MMP-7, MMP-12 and MMP-13 (Shah, 1997, 

Lijnen, 2001, Fontaine et al., 2002, Wilson et al., 2008).  

A study to determine the role of 92kD gelatinase-B (MMP-9) in the formation 

of AAA, with atherosclerotic occlusive (AO) and healthy controls found that 

conditioned medium from AAA tissue in organ culture consistently secreted 

prominent proteolytic activity in comparison to AO and healthy tissue. AAA 

tissue produced 10.5-fold and AO tissue produced 5.9-fold the level of MMP-9 

versus normal tissue (Thompson et al., 1995). It must be noted that MMP-9 is a 

prominent elastolytic enzyme, so this finding is supported by the severe elastin 

degradation observed in AAA tissue.  

Furthermore, an in vivo study investigated the levels of MMP-9 in the serum 

levels of AAA patients. Again, it was found AAA patients had increased levels 

of this enzyme in comparison to AO and normal patients. Severely elevated 

levels were found in 48% of AAA patients in comparison to 7% of AO patients. 

These elevated levels decreased by 92.7%±3.2% following surgical AAA 

repair, indicating a relationship between expanding AAAs and MMP-9 levels 

(Hovsepian et al., 2000).  

Both of these studies used tissue where an aneurysm had already manifested, 

and so was at end-stage disease. Therefore, the role of MMP-9 in initial 

causation of human AAA disease cannot be determined from these cases. The 

role of MMP-9 in AAA formation has been investigated in animals using a 

genetically modified mouse model with targeted MMP-9 and MMP-12 

deficiency. Elastase perfusion in wild-type mice induced AAAs in 91% of 
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cases, whereas the aortic diameter in MMP-9 only and MMP-9 with MMP-12 

deficient animals was markedly reduced at 7 days and 14 days after perfusion. 

MMP-12 deficient only mice exhibited a similar increase in aortic diameter to 

wild-type mice (Pyo et al., 2000). The authors concluded that their observations 

showed evidence that MMP-9 is required for AAA development. 

Biopsies of human AAAs revealed that expression of MMP-2 was predominant 

in smaller, earlier AAAs, and MMP-9 became more prevalent once aortic 

diameter had further increased (Freestone et al., 1995). A positive correlation 

has been documented with regards to MMP-9 expression and aortic diameter 

(McMillan et al., 1997). Elevated serum levels of MMP-1 and MMP-9 in AAA 

patients was associated with imminent aortic rupture (Wilson et al., 2008). 

However, a large cohort study of AAA patients (n=987) found that MMP-9 

serum levels in AAA patients failed to serve as a potential biomarker for AAA 

(Eugster et al., 2005). 

MMPs are secreted by SMCs as a normal physiological remodelling process. 

However, other cell types are implicated in MMP expression in AAAs. Firstly, 

adventitial mast cells (involved in innate and adaptive immunity) have been 

shown to contribute towards progression of AAAs. Significantly increased 

number of mast cells have been found in human AAA tissue showing a positive 

relationship between number and AAA diameter (Tsuruda et al., 2008). 

Additionally, mast cell deficient rats did not develop AAA using a standard 

calcium chloride (CaCl2) animal model. Secondly, mesenchymal stromal cells 

(MSCs) have been implicated in AAA progression through impaired 

immunomodulatory activity and MMP-9 secretion (Ciavarella et al., 2015). 

MSCs were isolated from AAA tissue and were shown to have a 400-fold 

increased expression of MMP-9 compared to MSCs from healthy controls. 

Finally, MMP-9 is readily secreted by infiltrating macrophages in AAA tissue 

which exhibited a 10-fold increased MMP-9 expression compared to normal 

aorta. This was entirely localised to the numerous macrophages in the tissue 

(Thompson et al., 1995) 

The evidence seems to suggest that elevated levels of ECM-degrading MMPs 

are responsible for the formation, expansion and rupture of AAAs. In addition 
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to this, the enzyme inhibitors are compromised. Tissue inhibitors of 

metalloproteinases (TIMPs) have been found to be reduced in AAA tissue, in 

both human and genetically modified animal studies (Brophy et al., 1991, Basu 

et al., 2011). Elevated levels of MMPs are therefore not strictly necessary for 

AAA formation; simply the lack of MMP inhibitors may be sufficient. 

A study of 36 men with small AAAs found that MMP-9 serum levels were 

significantly associated with AAA size (p=0.04) and expansion p=(0.01), but 

overall MMP levels and an MMP:TIMP ratio did not predict either (Lindholt et 

al., 2000). In contrast, a later study did not find a correlation between AAA 

expansion and serum MMP-9 levels in a study of 208 small aneurysm patients 

(Karlsson et al., 2009). Contrasting clinical evidence indicates that the specific 

role of MMPs and TIMPs in vivo must still be investigated further. 

MMPs can also be activated via a biological cascade emanating from plasmin 

activators. Plasmin, either generated from urokinase-type (u-PA) or tissue-type 

plasminogen activator (t-PA), is an enzyme that primarily plays a role in 

fibrinolysis, and has been implicated in the formation of AAAs (Carmeliet et 

al., 1997). Although plasmin possesses a limited elastolytic capability, and so is 

not directly implicated in the severe elastin degradation in AAAs, it is the role 

that it plays in MMP activation which may lead to AAA formation. A study 

using a genetically modified mouse model demonstrated that u-PA activated 

MMPs that led to aneurysm formation (Carmeliet et al., 1997). In a rat xenograft 

model, it was found that aneurysm formation was prevented when a 

plasminogen activator inhibitor is over-expressed (Allaire et al., 1998).  

Collagen degradation occurs simultaneously to this pathological elastolysis. 

The degradation of collagen is mitigated by an increase in collagen synthesis 

during early AAA formation suggesting some sort of stabilising repair process 

(Shimizu et al., 2006). During later stages of AAA development, this collagen 

synthesis is outstripped by the rate of collagen degradation by proteolysis, 

instigating rupture; elevated levels of MMP-1, a collagenase, are associated 

with rupture and mortality (Wilson et al., 2008). 
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1.7.2. ROLE OF THE INTRA-LUMINAL THROMBUS 

In many cases, the blood flow is maintained in AAA formation because a mural 

thrombus develops. This maintains the lumen at normal diameter, in spite of the 

fact that the total aortic diameter is greatly increased. Fontaine et al. provided 

evidence that polymorphonuclear neutrophils (PMN) (an immune response cell) 

were found in greater abundance in the mural thrombus than in the aneurysmal 

arterial wall.  It was shown that PMNs were implemented in ‘trapping’ and 

storing MMP-9 in the thrombus and also that plasminogen and u-PA were 

present (Fontaine et al., 2002). This could possibly cause activation of large 

amounts of plasmin which, as has previously been discussed in section 1.6.1, 

may activate ECM degrading MMPs. Samples used in that study were, however, 

taken from elective AAA repair and so could only give a picture of the disease 

at end-stage.  

This study also demonstrated in vitro that spontaneous thrombosis in human 

blood released pro-matrixmetalloproteinase-9 (pro MMP-9) into the serum, at 

levels four-fold higher than control plasma. When pro MMP-9 is activated, it 

becomes a potent gelatinase and so is associated with the ECM degradation that 

is characteristic of AAA disease. 

 

1.7.3. OXIDATIVE STRESS 

Oxidative stress is the process whereby tissue damage occurs due to increased 

production or decreased destruction of reactive oxygen species (ROS) 

(McCormick et al., 2007). These species can include hydrogen peroxide (H2O2), 

superoxides (O2
−) and hydroxyl radicals (•OH) (Satoh et al., 2011). The levels 

of ROS in AAA tissue have been compared with matched healthy aortic 

specimens; the data suggest that ROS are increased in AAAs (McCormick et 

al., 2007). This, however, does not determine whether increased ROS levels are 

solely found in localized AAA or are found globally throughout the vasculature 

of the AAA patient.  
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A later study measured ROS levels in AAA tissues and compared these to non-

aneurysmal aortic adjacent aortic segments (Miller et al., 2002). It was found 

that levels of ROS – and therefore also oxidative stress – were 2.5-fold higher 

in AAA tissue than in the non-aneurysmal adjacent segments. Again, the 

problem emerges that the tissues used in this experiment were taken from 

patients at elective repair, and so only represented the state of the tissue at end-

stage disease. Therefore no conclusions can be drawn regarding the role of ROS 

in AAA formation or early development. Figure 1.10 presents some of the 

mechanisms by which ROS has the potential to augment aneurysm formation.  

 

 

Figure 1.10 Interactive pathways of possible promotion of aneurysm formation.  

ROS = reactive oxygen species. Blue arrows denote aneurysmal promotion effects 

of ROS.  

 

1.7.4. INFLAMMATION 

Immune response cells involved in the inflammatory process are also found in 

abundance in AAA tissue (Shimizu et al., 2006, Hellenthal et al., 2009b). Figure 

1.11 shows typical AAA histology and highlights the presence of these 

inflammatory cells. 

These dense localisations of inflammatory cells occur more frequently and 

abundantly in AAA tissue than in normal or stenosed atherosclerotic arteries 

(Koch et al., 1990). B-cells are only very rarely found in atherosclerotic aortae, 
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whereas local depositions of immunoglobulin, secreted by B-cells, are 

frequently observed in AAAs (Shimizu et al., 2006).  

 

 

Figure 1.11 Inflammatory infiltrate in AAA (left) compared to healthy control 

aortae (right). Immunostaining for CD68+ cells (brown) shows distribution of 

monocytes and macrophages, common inflammatory cell types.  Image taken 

from Kin et al. (2012), CC BY 2.5. 

 

It was determined that the majority of the inflammatory infiltrate was generally 

located at the medial-adventitial junction and was composed of 

immunophenotypic cells: T-cells, B-cells and macrophages (alongside very 

small numbers of neutrophils) (Satta et al., 1998). The specimens used were 

taken from patients undergoing elective repair and so this is only an insight into 

the inflammatory state of the tissue at end-stage disease. Therefore, it is unclear 

at which stage of arterial wall degeneration this infiltration occurred and its role 

in aneurysm formation. That study also suggested that the degree of 

inflammation in each aneurysm positively correlated with the degree to which 

elastin degradation had occurred, especially with respect to T and B 

lymphocytes and macrophages. 

Adventitial mast cells have also been documented as contributing to AAA 

progression and development. It was found that there was a significant positive 

correlation between this type of cell and the maximum aortic diameter, and that 

the proportion of degranulated mast cells was significantly increased in AAA 

compared to atherosclerotic controls (Tsuruda et al., 2008). Mast cells are also 

involved in the recruitment of T lymphocytes and macrophages via pro-

AAA Control aorta 

http://creativecommons.org/licenses/by/2.5/
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inflammatory mediators. Macrophages contribute to AAA development by 

directly secreting ECM degrading elastases and collagenases (Shimizu et al., 

2006). 

It is theorised that the recruitment of inflammatory cells into the media and 

adventitia of the aneurysm stems from elastin-derived peptide (EDP) induced 

chemotaxis. Elastolysis produces these EDPs which then recruit inflammatory 

cells into the media. The inflammatory cells are then able to secrete additional 

proteolytic enzymes, trapping the artery in a vicious cycle of pathological 

vascular remodelling, resulting in aneurysm (Satta et al., 1998). 

It has been proposed that the inflammatory cell infiltrates that are so pervasive 

in AAA disease are part of a dysregulated autoimmune system response against 

the arterial wall (Jagadesham et al., 2008).  

A current frame of thinking is that inflammatory cell recruitment following an 

unknown instigating factor is the first stage of AAA progression. These cells, 

in addition to SMCs, then produce the proteases required for the observed ECM 

degradation (Ailawadi et al., 2003). 

 

1.7.5. ROLE OF THE SMOOTH MUSCLE CELL IN AAA 

Inflammatory characteristics of AAA have been studied for many years, yet 

relatively fewer studies have considered the role of SMCs in AAA pathogenesis. 

One main aim of this project is to characterise the alterations in SMC function 

over time in an ex vivo AAA bioreactor model. 

 

1.7.5.1. SMC PHENOTYPIC MODULATION 

It has been well documented that vascular SMCs are able to undergo profound 

changes in phenotype in response to alterations in the extracellular environment 

(such as growth factors/inhibitors, mechanical influences, cell-cell and cell-

matrix interactions, and various inflammatory mediators) and are also able to 

exhibit a wide variety of cell phenotypes at different stages of development or 
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disease pathogenesis (Owens et al., 2004). Indeed, the vascular SMC, even in 

adult mammals, is not terminally differentiated. SMCs are subject to a variety 

of mechanical forces in their physiological environment (such as shear stress 

via endothelial modulation, passive blood flow stretch, wall stress and axial wall 

tension) and as such are able to react and adapt to these forces via 

mechanotransduction (Osol, 1995, Lehoux et al., 2006, Lu and Kassab, 2011). 

SMC are generally characterised as having two distinct phenotypes: the 

specialised and differentiated contractile phenotype and the de-differentiated 

secretory phenotype (Rzucidlo et al., 2007, Porter and Riches, 2013, Shi and 

Chen, 2016). A schematic of this phenotypic modulation is shown in Figure 

1.12. 

 

Figure 1.12 SMC phenotype structure and function. Phenotype switch is driven 

by extracellular and environmental cues. 
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The main function of the SMC in the heathy artery is to regulate blood flow and 

pressure via contracting and relaxing to force blood through the artery by 

altering the vessel diameter (Owens et al., 2004, Shi and Chen, 2016). Under 

these circumstances, SMCs possess low turnover and synthetic activity (Porter 

and Riches, 2013). Differentiated SMCs express high levels of smooth muscle 

specific proteins, including α-smooth muscle actin (α-SMA), smooth muscle 

myosin heavy chain (SM-MHC), calponin and smoothelin (Hungerford et al., 

1996, Shi and Chen, 2016). Differentiated SMCs have a spindle morphology 

with highly aligned actin fibres which are reorganised during phenotypic 

modulation (Worth et al., 2001b, Han et al., 2009).  

In response to a multitude of external factors (including arterial injury, 

mechanical forces and atherogenesis) SMCs de-differentiate into a secretory 

phenotype. In contrast to the low SMC turnover often observed in the 

differentiated phenotype, de-differentiated SMCs are highly proliferative and 

migratory and are also able to remodel the ECM with increased secretion of 

MMPs and matrix proteins (Owens et al., 2004, Rensen et al., 2007, Porter and 

Riches, 2013). This process of reversible differentiation is relatively poorly 

understood due to the derivation of SMCs from multiple precursors throughout 

embryogenesis (Majesky, 2007). Extensive studies into the mechanism behind 

SMC differentiation have found that it is orchestrated by a precisely co-

ordinated molecular network which incorporates different environmental cues, 

mechanical forces, signalling pathways, transcription factors, reactive oxygen 

species, extracellular matrix and micro RNAs (most notably miR-145 and miR 

143) (Rensen et al., 2007, Cordes et al., 2009, Alexander and Owens, 2012, Qiu 

et al., 2014, Shi and Chen, 2016) and reviewed in Zhang et al. (2015). 

MicroRNAs are small, non-coding endogenous RNAs which are able to post-

transcriptionally regulate gene expression via RNA silencing and repression in 

a field of study termed epigenetics, reviewed in Alexander and Owens (2012) 

Many studies have detailed the changes that SMCs undergo due to development 

of cardiovascular diseases, such as atherosclerosis, via gene profiling (as 

reviewed in Owens et al. (2004)). However, studies such as this are limited in 

capturing the dynamic nature of SMC phenotypic modulation; for example, 
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SMC proliferation generally increases following early stages of disease, but is 

decreased in mature lesions (Owens et al., 2004, Ailawadi et al., 2009). 

 

1.7.5.2. SMOOTH MUSCLE CELL LOSS AND DYSFUNCTION IN AAA 

As mentioned in chapter 1.4.1, in addition to degradation of the ECM, SMC 

apoptosis is a defining characteristic of AAA. The inflammatory cell infiltration 

of macrophages and T lymphocytes produce significantly increased numbers of 

cell death promoting proteins, such as perforin, Fas and FasL, in end-stage 

aneurysm disease tissue (Henderson et al., 1999). The authors of that study 

suggest that the secretion of mediators of apoptosis may be mainly targeted to 

the inflammatory cells themselves, rather than the SMCs, as a potential 

mechanism of self-limitation of the immune response. The medial SMC and the 

adventitial fibroblasts are principally responsible for the synthesis of collagen 

and elastin in the aortic wall; hence the depletion of medial SMC has the 

potential to be a major factor in AAA development.  

SMCs contribute to the architecture of the aortic wall in addition to their ECM 

remodelling capabilities – a decrease in the number of SMCs will therefore have 

a notable effect on the functional and structural integrity of the aorta. It has been 

shown that there was no significant difference in medial SMC density measured 

via immunohistochemistry for α-SMA and direct cell counts between normal 

(n=5) and atherosclerotic occlusive (AO) aorta (n=6), but a 74% decrease in 

SMC number in AAA tissue (n=10) (Lopez-Candales et al., 1997). Light and 

electron microscopy revealed ultrastructural changes consistent with SMC 

apoptosis and up to 30% of AAA SMC demonstrated fragmented DNA. 

Apoptotic SMC were found solely in the neointimal plaque in AO disease but 

were distributed throughout the degenerative media in AAA tissue.  

The problem remains that the AAA and AO samples were taken from end-stage 

diseases, and so again cannot give any information as to the development of the 

pathology. A decrease in the number of SMCs in the aneurysmal aortic wall 

implies that the rate of ECM synthesis is decreased hence there exists an 

imbalance between proteolytic degradation and matrix synthesis in favour of 
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proteolysis. The potential paracrine effect of SMCs has been demonstrated in 

two studies which both showed that SMC seeding in a decellularised xenograft 

aneurysm model was able to stabilise this proteolytic imbalance (Losy et al., 

2003, Allaire et al., 2004). These data provided the foundations for therapeutic 

treatments for AAA disease. 

SMCs have a protective role against ECM degradation by proteolysis and 

inflammation – two key mechanisms involved in AAA progression 

(Sakalihasan et al., 2005). A guinea pig-to-rat xenograft seeded either with or 

without syngeneic SMCs found that the recellularised graft prevented AAA 

formation after 2 weeks following implantation – aortic diameter increase was 

198.2%±106.6% in non-seeded grafts versus 35.3%±17.8% (p<0.01) (Allaire et 

al., 2002). Seeding of SMCs also prevented elastin degradation and 

inflammation in this study. It is therefore conceivable that SMC apoptosis in the 

early stages of the disease is able to exacerbate the proteolysis imbalance and 

spur on inflammatory cell recruitment, leading to a vicious cycle of pathological 

remodelling.  

In addition to their paracrine effect, SMCs are primarily responsible for the 

synthesis of ECM proteins – severe SMC apoptosis would therefore lead to a 

decrease in ECM synthesis rate, rendering the aorta prone to aneurysm 

progression (Ailawadi et al., 2003). 

Loss of SMCs is thought to occur later in the stages of aneurysm development 

(Ailawadi et al., 2003). However, in a murine elastase induced aneurysm model 

study, SMC phenotypic modulation characterised by protease upregulation and 

SMC marker gene downregulation occurred prior to aneurysm formation at 

fourteen days (Ailawadi et al., 2009). At seven days postoperatively, elastase-

perfused mice showed a 78% and 85% reduction in smooth muscle cell marker 

genes SM22A and SM α-actin respectively compared to saline-perfused 

mammals, but an 80% increase in MMP-2 expression. It has not yet been 

determined as to how this may apply to human AAA, but it offers some 

promising insight into possible pre-symptomatic events.  
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The role of the SMC in the formation and development of AAA may not be 

limited to apoptosis. There is a growing body of evidence which suggests that 

the SMC phenotype found in aneurysms may be unique in comparison to those 

found in healthy aorta as per the in vitro growth characteristics (Lopez-Candales 

et al., 1997, Henderson et al., 1999, Curci, 2009). An earlier study demonstrated 

that SMCs from AAA tissue differ in their response to addition of cytokines in 

comparison to SMCs taken from normal tissue. The addition of interleukin-1 β 

caused an 82% rise in messenger RNA levels for TIMP-1 in aneurysmal SMCs, 

whereas the levels did not change in healthy SMCs (Keen et al., 1994). 

Furthermore, the migration properties of SMCs from the inferior mesenteric 

vein (IMV) of AAA patients have been shown to be enhanced compared to 

SMCs from non-AAA patients (Goodall et al., 2002b). These enhanced 

migration properties of SMCs are ubiquitous in AAA patients and were not 

confined to SMCs from aneurysmal tissue.  

 

1.7.5.3. SMOOTH MUSCLE CELL SENESCENCE 

It is thought that cell senescence also plays a role in the depletion of SMC in the 

aneurysmal aorta: aneurysm incidence is linked with advanced age and so 

suggests that the aging process may be associated with aneurysmal degeneration 

(Thompson et al., 2002). The paucity of SMC in aneurysmal tissue may be due 

to the inability of senescent cells to sustain proliferation to the required level. 

Proliferation of SMCs taken from the aneurysmal aorta of patients undergoing 

elective AAA repair were compared with SMCs taken from the adjacent non-

aneurysmal inferior mesenteric artery (IMA) for use as a control (n=15) (Liao 

et al., 2000). All 15 IMA explants were able to produce a sustainable SMC 

culture, whereas this was only possible in 9 out of 15 AAA explants, as well as 

a prolonged primary explant growth interval in AAA compared to IMA cultures 

(16.4 ± 2 versus 6.4 ± 1 days). SMC growth showed no discernible relation to 

original aneurysm size, gender or patient age. The maximal proliferation of the 

AAA-derived SMC was reduced by 44.2 ± 8% (p< 0.01) when compared to 

IMA-derived SMC. An extremely intriguing outcome was that the morphology 

of the AAA-derived SMC differed greatly to that of the IMA-derived SMC; the 
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cells were a rounder, more rhomboid shape in comparison to the spindle 

morphology typically observed in healthy SMC. IMA-derived SMC continued 

to proliferate beyond passage 20 in serial culture, whilst all AAA-derived SMC 

developed replicative senescence by passage 12.  These observations 

demonstrated that AAA-derived SMCs demonstrate a distinctive morphologic 

appearance in culture, diminished proliferative capacity and a limited life span 

during in vitro culture in comparison to SMCs taken from adjacent, non-

aneurysmal artery. The observations reflect intrinsic changes to SMC growth 

capacity that was independent of patient age. Tissue-specific processes may 

therefore be implicated in the accelerated SMC senescence which contributes 

to the ubiquitous depletion of SMC in the aneurysmal media.  

 

1.7.5.4. SUMMARY  

 The reviewed literature in this Section suggests that alterations in SMC 

phenotype in the abdominal aorta may contribute to the early development of 

AAA, but the mechanisms are not well defined. Temporal characterisation of 

these dynamic changes in the arterial SMC will form the basis of development 

of cell-based therapeutic techniques due to their ability to synthesise ECM 

proteins which are lost in end-stage AAA. One aim of this study is to use an ex 

vivo model of AAA in order to characterise the changes in SMC phenotype over 

time in terms of structure and function. 

 

1.7.6. AAA HAEMODYNAMICS 

In this study, an ex vivo bioreactor model of AAA will be developed. Producing 

a model in a bioreactor will allow greater control of the dynamic environment 

than using an in vivo model. From this, the relationship between various 

haemodynamic factors and the progression of aneurysm or response of SMCs 

may be quantified. 

The arterial wall is subject to three separate fluid-induced forces: internal 

pressure exerted by hydrostatic forces, internal wall stresses and wall shear 
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stress exerted by the flow of blood (Miller, 2002). Circumferential stress is 

calculated approximately as the product of the pressure and the radius of the 

vessel, divided by the wall thickness, according to the law of Laplace (Equation 

1). The assumptions for this equation is that the vessel is a thin walled cylinder, 

where the thickness does not exceed 10% of the radius. AAA tissue may 

therefore not meet this assumption, and so it is only a simple way of modelling 

AAA mechanics. Starting with the law of Laplace, modelling of AAA 

mechanics has become much more complex, incorporating finite element and 

computational fluid dynamics components with less stringent mathematical 

assumptions (Vorp, 2007).  Shear stress is proportional to blood viscosity and 

the flow rate. Pressure is regulated via contraction or relaxation of the SMCs to 

alter the lumen size in addition to the elastic recoil of the artery.  

Equation 1 Law of Laplace 

Circumferential Stress ~ 
(Pressuremean)(radius)

wall thickness
                

(Laplace, 1805) 

 

 

Figure 1.13 Haemodynamic forces involved in blood flow through arteries. P = 

pressure, τ = shear stress, σc = circumferential stress.  

 

 

Figure 1.13 shows the haemodynamic forces relevant to AAA pathology. It 

would be reasonable to assume that the increase in aortic diameter would result 
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in a thinning of the aortic wall. However, Freestone et al. have shown that this 

is untrue, and that it is in fact the larger aneurysms that have a thicker, but 

weaker, wall (Freestone et al., 1995). This may be described as a reaction of the 

vascular remodelling system to reduce the circumferential stress (σc, Figure 

1.13) in the aortic wall – increasing the thickness would theoretically reduce 

this stress, according to Laplace’s law. 

This may indicate why the levels of mediators of vascular remodelling, such as 

MMPs, are found at increased levels in AAA tissue; the remodelling process is 

attempting to normalise the biomechanical stresses. 

Disturbed flow conditions (turbulent flow) contribute to aneurysm development 

via endothelial injury and acceleration of the degeneration of the arterial wall 

(Miller, 2002). An aneurysm will change the physiological haemodynamic 

conditions of the native aorta as the geometry will have been altered. However, 

the extent to which the haemodynamic environment changes depends on the 

shape of each individual aneurysm; clinical studies have shown that flow 

through the aneurysm can either be turbulent or laminar (Bluth et al., 1990).  

Some light can be shed onto the role of mechanical forces in the progression of 

AAA by examining EVAR. EVAR involves insertion of an endovascular stent 

whereby the arterial wall is excluded from circumferential stress, pressure and 

shear stress exerted via blood flow. EVAR is a relatively successful surgical 

technique and is able to prevent further AAA growth: once the mechanical 

forces are removed from the pathological biological environment AAA 

progression is attenuated (Nordon et al., 2011). EVAR graft failure and AAA 

progression even after EVAR is typically caused by endoleaks. These leaks 

allow blood to flow directly next to the arterial wall and can restart aortic 

dilatation (Harris et al., 2000, Golledge et al., 2006). This implies that 

mechanical forces are key to driving the pathological biological processes 

underpinning AAA progression: removing them stops arterial dilatation. The 

haemodynamic environment also plays a role in regulating the behaviour and 

phenotypes of cells, in a process known as mechanotransduction. Vascular cells 

respond to shear stress, by upregulating or downregulating certain genes 
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(Miller, 2002). MMP-2 and -9 are also shear dependent; these are implicated in 

the degradation of the ECM (Grote et al., 2003, Norman and Powell, 2010).  

There is evidence that blood flow dynamics can contribute to the levels of ROS 

in the arterial wall. In a murine aneurysm model study, Nakahashi et al. found 

that ROS levels were reduced in rat aortas with artificially increased flow (flow-

loading via creation of a femoral arteriovenous fistula) compared to non flow-

loaded rats, following elastase perfusion to induce AAA (Nakahashi et al., 

2002). In addition, vascular SMCs cultured in vitro produced mediators of 

oxidative stress (inducible nitric oxide synthase) in proportion to shear stress 

intensity (Gosgnach et al., 2000). It was also found that expression of heme 

oxygenase-1 (HO-1), a mediator of oxidative stress and a ROS, is regulated by 

shear and strain forces in cultured SMCs in vitro (Nakahashi et al., 2002). This 

phenomenon has also been shown to occur in vivo, using a rat model (Hansson 

et al., 1994). The consequent role of ROS in aneurysm development has already 

been shown to be important (Raaz et al., 2014). A study comparing low (iliac 

artery ligation) and high-flow (arteriovenous fistula) experimental AAA in a 

rodent model examined the effect of wall shear stress (WSS) on vascular cells 

(Hoshina et al., 2003). Low-flow AAA reduced WSS by 60% whilst WSS in 

high-flow AAA was increased by 300%. The pressure was the same in both 

groups. Low-flow AAAs were found to be larger, populated with fewer SMCs 

and endothelial cells had lower growth factor production, impaired cell 

proliferation and increased apoptosis compared to high-flow AAA. This may 

indicate that there is some sort of critical point between ceasing shear stress 

application on the aortic wall via EVAR and high flow AAA where progression 

is maximally exacerbated.  

Decreased flow rates in AAA disease may also exert an indirect effect on AAA 

progression by promotion of monocyte binding and mural infiltration. In was 

shown in experimental rat AAAs that WSS inversely correlates with medial 

macrophage densities in addition to levels of proinflammatory cytokines such 

as monocyte chemoattractant protein-1 (MCP-1) and granulocyte-macrophage 

colony-stimulating factor (GM-CSF) (Sho et al., 2004). Computational studies 

conducted with computational have shown that the distribution of inflammatory 
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cell infiltration correlated with areas of low wall shear stress (Hardman et al., 

2010). 

A question also remains as to why the abdominal aorta is such a preferential site 

for the manifestation of aneurysm. Aneurysms of the thoracic aorta are 

approximately five times less common than those of the abdominal aorta 

(Norman and Powell, 2010). A number of reasons may exist for this. Firstly, the 

abdominal aorta differs in anatomy to the thoracic aorta; it contains fewer elastic 

lamellar units than its diameter and thickness would imply and it increases in 

rigidity (reflecting a decrease in elastin and an increase in collagen) from 

proximal to distal (Anidjar and Kieffer, 1992, Dua and Dalman, 2010). 

Secondly, the haemodynamics differ greatly between the two sites. The thoracic 

aorta contains forward blood flow throughout the cardiac rhythm, resulting in 

continuous forward laminar shear stress (Dua and Dalman, 2010). In contrast to 

this, the abdominal aorta possesses lower values of shear stress and reverse flow 

is present during late systole and diastole, and also experiences increased 

peripheral resistance (Dua and Dalman, 2010, Norman and Powell, 2010). 

Norman and Powell state that the specific haemodynamic conditions in the 

abdominal aorta could potentially upregulate inflammatory pathways, 

predisposing it to aneurysm. (Norman and Powell, 2010). In addition, these 

kinds of shear stresses can promote oxidative stress, as explored previously. 

Gaining a greater understanding into the haemodynamics of aneurysms is 

therefore a powerful tool in understanding AAA pathogenesis.  

 

1.8. ANIMAL MODELS OF AAA 

This section will discuss the necessity of animal models in AAA research. Each 

model has its own advantages and limitations and so the use of each depends on 

the nature and direction of the research. An ex vivo model of AAA will be 

developed in a bioreactor during this project and so a review of current animal 

models contextualises the need for such a model. 
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Using human aneurysm tissue to analyse the development and progression of 

the disease seems to be an obvious path for research. However, the nature of 

AAA is that it is not detected until it has actually progressed to a detectable 

stage: it is usually asymptomatic until it has ruptured and is detected through 

screening only when it has begun to increase in diameter (Sakalihasan et al., 

2005). There is a recurrent issue with using human aneurysmal tissue for the 

study of early aneurysm events in that it can only be retrieved from patients 

when surgery to correct it is performed and so it has progressed to late-stage or 

end-stage disease (He and Roach, 1994, Hovsepian et al., 2000, Haskett et al., 

2011, Trollope et al., 2011).  

Animal models have therefore become the focus of early aneurysm 

development research, as they can be examined and manipulated from the 

initiation of the aneurysm, validate therapeutic targets and be used to study the 

stages of AAA pathophysiology. However, naturally forming aneurysms occur 

very rarely in animals; certain breeds of turkey and very small populations of 

squirrel monkeys (approximately 1.5%) have been found to develop them, 

mostly when subjected to certain diets (Gresham and Howard, 1961, Dobrin, 

1999). The aneurysm model should therefore be created artificially in vivo in 

order to examine aneurysm pathogenesis and treatment.  

The ideal animal model should completely mirror the human pathology in 

cellular and biomechanical terms, be reproducible and relatively simple to 

achieve. The model should permit specific investigations into the underlying 

mechanisms underpinning human aneurysms (Trollope et al., 2011). 

 

1.8.1. SPECIES SELECTION 

The species of animal chosen for an experimental AAA model is dependent 

upon the similarities to humans in anatomy, biochemical factors and cellular 

processes. There are distinct advantages and disadvantages associated with each 

species. For example, mice are commonly used for AAA models as the mouse 

genome has been mapped; genetic manipulation is used to determine genetic 

factors in AAA development (Andrews et al., 1975, Daugherty and Cassis, 
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2004). In addition to this, mice have good practical advantages – they are 

relatively simple to handle in large numbers at modest cost. Consequently, 

murine models are the most widely used at present (Zaragoza et al., 2011). Rat 

models are also used, as they are larger and therefore the surgery is less complex 

(Anidjar et al., 1990). Small mammals are, however, limited due to their 

miniature size especially when considering arterial biomechanics. 
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Table 1.1 Summary of small animal species used as models for AAA research. 

Species Advantages  Disadvantages 

Mouse  Easy to handle at low cost in large quantities Miniature vasculature, 

resulting in complex 

surgical manipulation 

  Low husbandry requirements Low tissue yield 

  Genetic manipulation possible (Daugherty and 

Cassis, 2004) 

Distinct cardiovascular 

physiology from 

humans (Argenta and 

Pereira, 2009) 

  Has similar gender susceptibility as in humans 

(Brophy et al., 1988, Reilly et al., 1990) 

 

  Shorter life span, so accelerated time course 

for disease (Haskett et al., 2011) 

  

 

Rat  Easy to handle at low cost in large quantities Distinct cardiovascular 

physiology 

  Low husbandry requirements Miniature vasculature, 

resulting in complex 

surgical manipulation 

  Increased tissue yield compared to mouse Genetic manipulation in 

rats is more complex 

than in mice (Twigger 

et al., 2008) 

  Aneurysms can be induced via multiple 

methods (Anidjar et al., 1990, Allaire et al., 

1998) 

 

  Shorter life span, so accelerated time course 

for disease (Haskett et al., 2011) 

  

 

Rabbit  Relatively easy to handle at modest cost Small vasculature 

  Relatively low husbandry requirements Difficult genetic 

manipulation 

  More closely resemble human AAA compared 

to other small mammals (Zaragoza et al., 

2011) 

 

  Aneurysm development can be monitored 

through femoral artery (Dai et al., 2006)  
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Table 1.2 Summary of large animal species used for AAA research 

Species Advantages Disadvantages 

Dog Lack of spontaneous endothelialisation of 

prosthetic surfaces, as in humans (Kónya et al., 

2008) 

Relatively large 

husbandry requirements 

  Sufficiently large peripheral arteries for 

endovascular graft testing (Chuter et al., 1997) 

 

Relatively high initial 

cost and maintenance 

costs 

 Able to survive prolonged anaesthesia 

(Trollope et al., 2011)  

Extremely potent 

fibrinolytic system 

(Kónya et al., 2008) 

 High ease of handling for a large mammal 

species 

 

 

Sheep Sufficiently large arteries for endovascular 

graft testing (Gorin et al., 1997) 

Large husbandry 

requirements 

 Coagulation pathways are closer to humans 

than that of dogs or pigs (Kónya et al., 2008) 

High maintenance costs 

  Safety issues with 

human transmissible 

diseases (Kónya et al., 

2008) 

 

Pig Sufficiently large arteries for endovascular 

graft testing (Moláček et al., 2009) 

Large husbandry 

requirements 

 Large mammal with the most similarities to 

human arterial morphology (Kónya et al., 

2008) 

High maintenance costs 

Difficult to handle 

(Trollope et al., 2011) 

 

Primate Closely related to humans High maintenance costs 

 Similar fibrinolytic and clotting systems to 

humans (Trollope et al., 2011) 

Difficult to handle 

  More stringent ethical 

regulations (Great 

Britain, 1986) 

 

Pigs have a similar arterial morphology to humans, whereas dogs show a 

comparable lack of spontaneous endothelialisation. Sheep and humans share 

similar coagulation pathways (Kónya et al., 2008). Primates have similar 

anatomy and fibrinolytic systems, but are limited in use due to ethical concerns 

(Abildgaard et al., 1971, Trollope et al., 2011). In contrast to murine models, 

large mammal models are constrained by their practical aspects; they are more 

expensive to house and sustain, they require greater husbandry capacity, 
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increased doses of anaesthetic and have more stringent ethical considerations 

(Yazdani and Berry, 2009).  

As is demonstrated by Table 1.1 and Table 1.2, it is clear that the choice of 

animal for in vivo models is often a trade-off between arterial geometry and 

morphology, physiological comparisons with humans, ease of genetic 

manipulation, availability, and cost. Murine and other small mammal models 

are extremely useful when investigating the cellular and genetic processes 

which contribute to aneurysm development. The pre-clinical testing of 

endovascular stents is, however, virtually impossible in all but large mammals 

due to the discrepancy in size and arterial haemodynamics compared to humans. 

This type of pre-clinical testing is essential in the development and assessment 

of novel devices and technologies, but is heavily limited by the high costs and 

time-consuming protocols associated with research on larger animals, making 

temporal studies routinely prohibitive. The result is that a high number of new 

devices are available for testing, but only a limited number of animals can be 

obtained (Touroo and Williams, 2012).  

Disease models each have a set of advantages and limitations and so the model 

must be chosen carefully considering the nature of the investigation. In vivo 

models are able to directly inform about the underpinning mechanisms and 

processes of the disease as it exists physiologically. However, compounding 

systemic effects are present and, especially where human tissues are used, safety 

and ethical consideration must be upheld. The premise of ex vivo models is that 

the tissue is removed from an organism to an external environment whilst 

attempting to minimally alter the natural conditions. Ex vivo models allow more 

stringent experimental control, may remove compounding factors and safety 

and wellbeing of the organism is less of a concern. These apparent advantages 

are also inextricably linked with the decreased model similarity to the 

physiological condition (Denayer et al., 2014). 

This study aims to develop and use an ex vivo bioreactor model of AAA in 

porcine arteries which would not be subject to the same costs and logistical 

complexities associated with in vivo large animal models. 
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1.8.2. METHODS OF EXPERIMENTAL AAA CREATION 

A wide variety of techniques have been developed in order to create animal 

models of AAA encompassing physical, chemical and genetic manipulations 

each with their own considerations and limitations. 

 

1.8.2.1. SPONTANEOUS MUTATION 

The earliest AAA models included certain strains of species that demonstrated 

a higher level of spontaneous aneurysm formation and rupture than others of 

their kind, such as the broad-breasted bronze turkey and the Blotchy mouse 

strain. These animals develop aortic disruptions that often lead to aortic rupture 

associated with genetic defects in connective tissue structure (Gresham and 

Howard, 1961, Neumann and Ungar, 1973, Brophy et al., 1988). Both animals 

also demonstrate a gender bias in aortic rupture similar to that in humans: 

increased in males in comparison to females (Daugherty and Cassis, 2004, 

Trollope et al., 2011).  

However, the pathologic features of the diseases in these animals bear greater 

resemblance to aortic dissection as opposed to aneurysm (Thompson et al., 

2002). As the animals possess a generalized disorder in their connective tissues, 

compounding factors such as aneurysms in other parts of the vasculature and 

emphysema have limited the usefulness of this type of model (Daugherty and 

Cassis, 2004). Furthermore, the advent of alternative models which are more 

representative of human AAA disease have led to the decrease in use of the 

spontaneous formation model. 

 

1.8.2.2. GENETIC MANIPULATION 

As with the spontaneous formation model, animals are ‘bred’ to develop aortic 

aneurysms that are analogous to the human disease. However, advances in 

genomic understanding and techniques have progressed so that specific genes 

can be omitted in order to understand their role in the pathogenesis of disease. 
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Knockout mice have recently become extremely useful models when 

investigating vascular disease aetiology. This term refers to the targeted 

disruption of one or more specific alleles for which the role of that gene in AAA 

disease can be determined. As discussed in the previous section, this type of 

model is currently only possible with small animals where the genome has been 

sufficiently mapped for genetic manipulation: mice and, more recently, rats.  

Mice lacking the apolipoprotein E (ApoE) gene or low-density lipoprotein 

receptor (hyperlipidemic mice) form aortic aneurysms when subjected to a 

cholesterol-rich diet for prolonged periods of time (Tangirala et al., 1995). The 

purpose of that study was to induce atherosclerotic lesions but aneurysm 

formation was frequently noted in advanced lesions. The links between 

atherosclerosis and aneurysm formation in humans have already been 

previously discussed earlier in section 1.5. 

Subcutaneous angiotensin-II (part of the renin-angiotensin system that regulates 

vasoconstriction) infusion into hyperlipidemic mice has also shown to induce 

aortic aneurysms in mice. This model has several parallels to human AAA 

disease; there is preponderance for aneurysm development in males, luminal 

dilation, medial degeneration, thrombus formation, inflammatory influx, 

consistent localization and cytokine upregulation similar to that observed in 

humans (Manning et al., 2002). Although generally reproducible, some 

hyperlipidemic mice infused with angiotensin-II appeared to be resistant to 

aneurysm formation and displayed aortic diameters indistinguishable from 

control mice. In addition, the aneurysms are consistently localized at the 

suprarenal aorta in mice contrasting with aneurysms commonly found in the 

infrarenal aorta in humans. It is postulated that this may be due to one or all of 

the following factors:  inherent differences in cell properties at this level, the 

ratio of collagen to elastin or the density and subtype expression of the 

angiotensin-II receptor in this region (Manning et al., 2002). Dilation of the 

lumen and degradation of the ECM analogous to human AAA can be observed. 

This model has been used to generate relevant pharmacological and mechanistic 

data for the human AAA, and so has proved useful for determining genetic 

factors implicated in AAA formation and progression (Trollope et al., 2011). 
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The role of MMPs in aneurysm development can also be investigated using 

genetically modified animal models. One group produced AAAs in mice with a 

combined apolipoprotein E and TIMP-1 (tissue inhibitor of MMP-1) deficiency 

(Silence et al., 2002). Aneurysms were more common in mice with combined 

deficiency than those with apolipoprotein deficiency only (23±5.1 vs. 11±3.0 

aneurysms per 100 sections analysed, p<0.001). Atherosclerotic lesions were 

significantly larger in apolipoprotein deficiency only compared to combined 

deficiency (p<0.001). As with human AAAs, a paucity of SMCs was observed 

and the role of MMPs has been implicated in AAA progression. This strain may 

therefore be extremely useful when conducting AAA-specific studies.  

The roles of MMP-9 and MMP-12 in AAA development have been confirmed 

by studies in genetically modified animals. Mice deficient in MMP-9, either 

alone or in combination with MMP-12 deficiency exhibited significant 

reduction in aortic dilatation (Pyo et al., 2000). MMP-12 deficiency in isolation 

did not show a significant difference from wild-type mice. The study used a 

genetically modified animal model to give information about the requirements 

for aneurysms to form. Genetically modified mouse studies have implicated the 

COX-2 gene in AAA development. AAA incidence in wild-type mice was 54% 

(n=24) whereas no aneurysms were detected in COX-2 deficient mice (Gitlin et 

al., 2007).  Inhibition of COX-2 with celecoxib has since been shown to reduce 

AAA incidence by 61% and AAA severity in mice subjected to angiotensin 

treatment, in addition to attenuation of late-stage AAA progression (Ghoshal 

and Loftin, 2012). This shows that COX-2 inhibition may have therapeutic 

potential in the future. 

This type of model is extremely useful in determining molecular events 

involved in aneurysm formation and can aid focus in developing therapeutic 

targets, but can only be used in animals where the genome has been mapped: 

namely mice and rats. 
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1.8.2.3. PHYSICAL MODELS 

Genetic manipulation is not currently feasible in large mammals, but models are 

needed that are more biomechanically relevant to humans as well as being 

sufficiently large to test surgical treatment devices. 

It is possible to induce AAA by surgically weakening a portion of the aortic 

wall in large mammals via crushing or blunt force trauma (Zatina et al., 1984, 

Schmoker et al., 2008). Even lasers have been employed to physically injure the 

wall of a rat common carotid artery, resulting in development of focal 

aneurysms at the injured site (Ammirati et al., 1988). These methods are not 

widely used due to extremely variable size, growth rate and rupture risk as well 

as a tendency to produce saccular aneurysms or pseudoaneurysms which are not 

relevant to human AAA (Tsui, 2010).   

A widely used method of experimental aneurysm creation is the arterial patch 

method; this is an especially common aneurysm creation method in large 

mammals for the testing and development of endovascular stents (Haskett et al., 

2011). The premise of the arterial patch method is that an incision in the arterial 

wall is repaired using a structurally weaker material. A schematic of the surgical 

construction of the AAA is shown in Figure 1.14. 
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Figure 1.14 Schematic of experimental aneurysm creation via the arterial patch 

method. A) a longitudinal incision is made. B) the aorta is ligated (green, arrow) 

and opened up. C) ellipsoid arterial patch is sewn into place. 

 

An aneurysm is created due to the insertion of the arterial patch and the 

postoperative dilation of the graft until an endovascular stent is deployed to 

bypass the experimental aneurysm and prevent further dilation. Various 

materials have been used as arterial patches in the creation of experimental 

aneurysms, including synthetic Dacron (Laborde et al., 1992, Verbin et al., 

1995, Moláček et al., 2009) and ePTFE (Murphy et al., 2007), in addition to 

venous, peritoneal and fascial tissues (Palmaz et al., 1995, Eton et al., 1996, 

Maynar et al., 2003, Lerouge et al., 2004). The use of analogous tissue is 

advantageous in that it allows progressive expansion of the experimental 

aneurysm and furthermore the tendency to rupture can be controlled based upon 

the tissue type used (Haskett et al., 2011). 

A similar method is the graft aneurysm model whereby a whole section of 

abdominal aorta is removed and replaced with a graft forming a conduit. As 

with the arterial patch method, a dearth of graft materials have been used, 

including crimped pre-formed Dacron, and gluteraldeyde-tanned jugular vein 

(Parodi et al., 1991, Whitbread et al., 1996, del Moral et al., 2015). The graft 

A B C 
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method has been interestingly used by one group to create experimental 

aneurysms based on the immune rejection of arterial xenografts, which have the 

gross and histologic features of AAA and have shown that SMC seeding has a 

therapeutic effect on reducing progression of the AAA (Allaire et al., 2002, 

Allaire et al., 2004).  

Both the arterial patch method and the conventional graft method allow the 

formation of either saccular or fusiform aneurysms of comparable morphology 

and geometry to human AAA, and have proved themselves to be extremely 

useful in stent development and surgical experience (Trollope et al., 2011). The 

graft model allows a much greater control of the final size and configuration of 

the experimental aneurysm in comparison to the arterial patch method, but 

conversely, the arterial patch maintains more native arterial tissue and so can 

demonstrate some histologic features of AAA (Moláček et al., 2009). Neither 

method, however, is considered suitable for studying the biological mechanisms 

or mechanical properties of AAA as they incorporate material not found 

naturally within the arterial wall; the processes behind their creation are 

artificial. Histologic features of AAA (such as damaged elastin fibres and 

inflammatory infiltration) found in the arterial patch method are contradicted by 

other histological features, such as increase in number of SMC and arterial 

fibroblasts, suggesting that pathological pathways in this model are different 

and distinct from human AAA development (Moláček et al., 2009, Trollope et 

al., 2011). It is perhaps this reason why there has been reported failure to predict 

late complications in EVAR (Carrell et al., 1999). A large mammal model with 

the same pathophysiological features of human AAA disease may allow more 

valid studies on the long-term effects of EVAR. 

 

1.8.2.4. CHEMICAL MODELS 

Chemical models have been used in both small and large mammal species and 

hence are the most transferable method of inducing experimental aneurysms.  

Over two decades ago, an experimental aneurysm was first produced in rats 

using application of elastase via intraluminal perfusion (Anidjar et al., 1990). It 
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had recently been discovered through clinical trials that elastase may have a role 

in aneurysm pathogenesis due to the increased elastolytic activity and 

degradation of elastin in the media of human AAA. All rats (n=10) that 

underwent elastase perfusion for 2 hours developed macroscopic aneurysms 

within 14 days, along with microscopic characteristics such as medial elastin 

disruption, inflammation, thrombus and fibrous aneurysm wall. The elastase 

perfusion method has since proved to be reproducible and has been used to 

elucidate the effects of hypertension, gender and cigarette smoke on the 

formation and development of aneurysms in mice and rats (Gadowski et al., 

1993, Bergoeing et al., 2007, Cho et al., 2009). In addition, the elastase method 

allows evaluation of the effects of pharmacological agents on aneurysm 

development. Doxycycline (an MMP-inhibiting tetracycline) has been found to 

reduce incidence of AAA in an elastase-induced aneurysm model in rats from 

83% to 8% (Petrinec et al., 1996). Angiotensin-converting enzyme inhibitors 

have been shown to suppress aneurysm development in an elastase-induced rat 

model, and disodium cromoglyate, an inhibitor of mast cell degranulation, 

reduced aortic expansion by 40% in a similar mouse model (Liao et al., 2001, 

Sun et al., 2007). 

Elastase-induced experimental aneurysms in small mammals have been 

established as a successful, reproducible and, most importantly, useful model 

for determining aneurysm aetiology and potential pharmacological treatment 

options. However, there is an inherent issue with small mammal models relating 

to differences in the vascular system (as described previously) and their 

miniature size. The elastase induced aneurysm was at first less successful in 

large mammals, and experienced initial reproducibility issues. 

A 1.66-fold increase in arterial diameter was reported when applying the 

elastase perfusion method to the abdominal aorta in eight dogs, before repairing 

the aneurysm with an endovascular stent (Boudghene et al., 1993). A later study 

was unable to reproduce these results and so explored modifications to 

methodology including longer perfusion times, variations in elastase doses, 

intraluminal inflation of a balloon catheter and combination with collagenase 

perfusion (Strindberg et al., 1998). The combined elastase and collagenase 
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method produced a mean increase in arterial diameter of 65.6 ± 20.8%, with 

irregular dilation. No significant dilation was attained with the method of 

Bhoudghène et al. with inflation of a balloon catheter immediately after 

perfusion or 3 weeks later. The modifications made to the method failed to 

produce an aneurysmal dilation with enough expansion to make it a reliable 

model, although it did produce histopathological characteristics such as loss of 

elastin network, inflammation and mural or intraluminal thrombus. 

The first elastase-induced porcine model was carried out in miniature swine 

(Marinov et al., 1997). Destruction of the elastin network, altered SMC 

phenotype, inflammation and a reduction in the number of medial SMCs were 

observed, consistent with characteristics of human AAA. However, no 

significant aneurysmal dilation was observed in any of the treated animals and 

large numbers of necrotic lesions associated with calcium deposits were present. 

This is a further demonstration of the reproducibility issues with the elastase 

perfusion method in large mammals. 

In more recent years, there have been two successful reports of elastase induced 

experimental aneurysm in a porcine model. Firstly, the researchers surgically 

exposed the abdominal aortas of ten male pigs and introduced an intraluminal 

angioplasty balloon, which was then dilated to 14mm diameter (Hynecek et al., 

2007). Immediately following dilation, the balloon was removed and a solution 

of elastase and collagenase was perfused through the artery for 20 minutes. All 

animals that underwent this treatment developed macroscopic aortic dilation of 

a mean increase in arterial diameter of 62±35% compared to preoperative 

diameter. After six weeks, histological evaluation of the aortae demonstrated 

limited SMC repopulation, persistent elastin degradation and continued 

collagen deposition. The second study used a combination of intraluminal 

elastase perfusion and a stenosing cuff in order to induce turbulent flow to create 

the second instance of successful elastase induced aneurysm in a porcine model 

(Moláček et al., 2009). Elastase was perfused through the surgically exposed 

abdominal aorta of seven pigs for 30 minutes and then removed. The proximal 

aorta was then fitted with a plastic cuff to induce stenosis and hence turbulent 

blood flow. The diameter of the treated aorta was 2.14 times larger, on average, 
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than the pre-treatment diameter 21 days post-operatively. Similar to the first 

model, this model resulted in histological changes concordant with human 

AAA: fragment elastin fibres, inflammatory infiltration and effect on SMC 

proliferation.  

The combination of a stenosing cuff with elastase degradation has emerged as 

a reliable method of experimental AAA formation within 3 weeks and has been 

used to study AAA mechanisms (Turnbull et al., 2011, Houdek et al., 2013, 

Kloster et al., 2015). Experimental AAA have also be induced in a porcine 

model using an arterial stenosing cuff alone, without the need for elastase, but 

was reported to take up to 12 weeks to form (Lin et al., 2013).  

In addition to elastase perfusion, adventitial application of calcium chloride 

(CaCl2) has been used to induce experimental AAAs. The rationale for this 

method is that calcification and the following elastic fragmentation has been 

identified as a major feature of atherosclerosis, and so CaCl2 application mimics 

this pathology (Trollope et al., 2011). Almost three decades ago, this method 

was first described in male rabbit carotid arteries and showed a significant 

increase in diameter, intimal thickening, disruption of elastin fibres and an 

inflammatory infiltrate, comparable to features of human AAAs (Gertz et al., 

1988). More recently, application of CaCl2 in order to induce experimental 

aneurysms has been used to investigate the role of anti-inflammatory agents in 

the attenuation of aneurysm progression in a rat model (Karapolat et al., 2006). 

However, this method has only been used in murine and rabbit models and not 

in large mammals (Haskett et al., 2011). 

Treatment of arterial walls with elastin has been shown to produce aneurysms 

in both small and large animal species and induces histological changes in line 

with AAA without causing physical injury to the arterial wall. In large animal 

models, collagenase has been used in conjuction with elastase in order to induce 

an aneurysmal dilatation (Strindberg et al., 1998, Hynecek et al., 2007). 

Previously in this laboratory, elastase and collagenase alone and in combination 

were used prior to ex vivo culture (Riches et al., 2013). It was discovered that 

only by using a pre-treatment of combined collagenase and elastase prior to 

bioreactor culture for 12 days would the SMCs exhibit similar structural and 
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functional characteristics to end-stage human AAA SMC. Neither elastase nor 

collagenase alone did not have any observable effect on the SMCs. 

 

1.8.2.5. IN VITRO MODELS 

The concept of an in vitro large mammal aneurysm model was introduced as a 

potentially valuable tool in endovascular testing; the cost of animal husbandry 

is all but eliminated and invasive measurement techniques would become 

possible (Dadgar et al., 1997). It was hypothesised that an aneurysm-like 

dilatation may be induced in the thoracic aortae of dogs in vitro by tensile 

loading following enzymatic collagen digestion, hence producing a low cost 

model for endovascular device testing. Collagenase treatment resulted in 

digestion of the endothelium and elastic lamina and a reduction in arterial wall 

thickness. Tensile testing revealed a reduction in stiffness and yield strength. 

Although collagenase treated arteries were weaker and more compliant 

compared to controls, there was no evidence given of a plastic (permanent) 

stretch which may lead to an aneurysm-like dilatation. This in vitro work has 

since been built upon to assess the feasibility of inducing a plastic deformation 

in enzymatically treated porcine thoracic aortae to induce a dilatation analogous 

to AAA (Kratzberg et al., 2009). The effects of partial elastin, complete elastin, 

partial collagen and partial combined elastin and collagen degradation on the 

plastic deformation of tissue were examined. The plastic deformation was not 

significantly different in any of the experimental groups in comparison to 

untreated controls. Maximum plastic strain achieved in one artery was 78.6% - 

far lower than the necessary 150% strain required to induce an aneurysmal-like 

stretch. The authors then concluded that passive stretching, even with ECM 

degradation, was unlikely to produce an in vitro aneurysm model because 

dynamic growth and active remodelling of the arterial wall are essential for 

AAA formation. 

The tissue must be kept viable and subject to mechanical forces in order to 

induce an experimental aneurysm. The induction of an aneurysm in vitro has 

been shown to be unachievable and so research has now gravitated towards to 
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use of ex vivo models in which the artery is maintained in a bioreactor 

attempting to simulate the physiological environment, as will be used in this 

project. Bioreactors are further discussed in section 1.9. 

 

1.8.3. BIOMECHANICAL CHARACTERISATION OF AAA MODELS 

Experimental animal models of AAA have started to be validated and 

characterised in biomechanical terms in addition to histological and geometric 

characterisation. A whole artery pressure-dilation method determined the 

biaxial mechanical properties of the mouse aorta ex vivo, with implications for 

mouse models of AAA (Collins et al., 2011). The authors stressed the 

importance of understanding the evolving mechanical properties in AAA 

models due to the difficulty in obtaining longitudinal AAA patient data. Another 

study characterised the biomechanical response of the commonly used ApoE 

knockout mouse model of AAA ex vivo using a pressure-dilation method 

(Haskett et al., 2013). The authors found that the aneurysm had progressive 

circumferential stiffening and decreasing circumferential strain between 14 and 

28 days after AngII perfusion along with temporal microstructural and 

biomechanical reorganisation which was affected at 14 days but had improved 

by 28 days. Understanding and promotion of such biomechanical remodelling 

may enable translation into therapeutics for human AAAs. The AngII ApoE 

knockout model was compared with the elastase perfusion model in rats and 

mice in terms of morphology and biomechanics over 28 days (Phillips et al., 

2015). In vivo ultrasound imaging was used to characterise these parameters and 

they found that circumferential strain decreased in AAAs, even prior to 

expansion of the aorta and so may be indicative of underlying disease processes 

in the early AAA. Uniaxial tensile testing of a decellularised rodent xenograft 

model has shown that implantation mesenchymal stromal cells (MSCs) is able 

to increase ECM density, attenuate wall stress variations and restore 

biomechanical integrity to the tissue, which show compelling evidence for the 

role of stem cell therapy in AAAs (Zidi and Allaire, 2015). Another study used 

uniaxial tensile testing to biomechanically characterise an elastase AAA model 
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in pigs: the aneurysmal aortic wall had increased stiffness and reduced strength 

compared to controls (Lederman et al., 2014). 

Generally the biomechanical properties of experimental AAAs created in vivo 

through well characterised methods exhibit increased stiffness (with preference 

to the circumferential orientation) which is mirrored in the human disease. This 

study uses an ex vivo porcine bioreactor model of AAA and aims to 

biomechanically characterise the tissue. 

 

1.9. BIOREACTORS IN VASCULAR RESEARCH 

In tissue engineering research, the bioreactor is commonly used to provide an 

optimum growth environment for cells. The chemical requirements of the cells, 

such as oxygen level, nutrients, waste removal, growth factors and pH are met 

and so cells are able to maintain viability and function. However, it is not solely 

the biological environment that invokes cell response. The dynamic mechanical 

environment also plays a major role upon cell function and growth; 

consequently this determines the macrostructure of the tissue. The mechanical 

forces are transformed into biochemical signals by the cells via 

mechanotransduction (Vogel and Sheetz, 2006). Increased wall stress due to an 

increase in blood pressure triggers contraction of vascular SMCs narrowing the 

arteries and so inducing an increase in resistance. The blood flow is therefore 

kept constant in downstream capillaries (Hahn and Schwartz, 2009). SMCs may 

remodel the arterial wall by increasing its thickness if pressure remains elevated 

in order to resist these forces (Hahn and Schwartz, 2009). As the dynamic as 

well as the biochemical environment plays a significant role in the behaviour of 

the vascular cells, bioreactors must mimic these in vitro.  

The viability of vascular constructs and bioartificial heart valves rely on 

haemodynamic shear stresses acting on and influencing the endothelial biology 

(Davies, 1995, Ruel and Lachance, 2009). Transmural pressure, cyclic strain 

from the pulsatile pumping action of the heart, shear stress and wall stress 

modulate the behaviour of SMCs (Osol, 1995). Studies have shown that organ 

culture which mimics the physiological environment enhances mechanical 
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properties and expression of essential cellular functions (Niklason et al., 1999, 

Nerem and Seliktar, 2001, Smith et al., 2001, Hynecek et al., 2007) 

Bioreactors enable control and manipulation of the ex vivo mechanical 

environment in order to achieve the correct structure for specific tissue types. 

Therefore bioreactor designs are numerous and varied in order to meet these 

requirements.  

 

1.9.1. BIOREACTOR MODELS OF AAA 

The creation of an experimental aneurysm ex vivo would abrogate the time and 

cost implications of a large animal model whilst allowing more comparable 

physiology to humans versus a small animal model. Porcine carotid arteries 

were cultured ex vivo in order to assess SMC proliferation in stents used for 

stenotic arteries (Yazdani and Berry, 2009). Healthy porcine carotid arteries 

installed with one of three types of stents were cultured in a pulsatile flow 

environment for seven days in order to compare stent function between the 

designs. The SMCs remained viable after seven days and the effects of the stent 

designs and placement on SMC proliferation and histoarchitecture were 

characterised. This shows that an ex vivo vascular model is quite possible. 

In the context of AAA, a recent study used a bioreactor to culture human SMCs 

seeded into a PTFE graft which had been focally dilated with a balloon (Touroo 

and Williams, 2012). The SMCs proliferated and formed a functional neointima 

over the scaffold after 14 days. Although this model may prove to be a useful 

tool in evaluating endovascular stent delivery, its capacity for analysis of 

interaction between stent devices and the arterial wall is limited in a clinical 

context. Stents are placed into the vasculature of patients with diseased arteries, 

and so, optimally, the model must reflect the biological aspects of the disease. 

There were histoarchitectural differences between the dilated and non-dilated 

parts of the graft, but the ubiquitous AAA characteristics (such as elastin 

disruption and SMC dysfunction) were not present in this model.  
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An ex vivo large animal model of AAA cultured in a bioreactor which reflects 

the biological aspects of the disease will be a useful research tool. This thesis 

aims to develop such a model in order to temporally characterise alterations in 

biomechanics, tissue structure and SMC behaviour in order elucidate the 

mechanisms involved of AAA formation and early disease. 

 

1.10.  CONCLUSIONS 

AAA disease has myriad aspects of pathogenesis and progression, but is usually 

only discovered in humans after aortic dilatation has been initiated. Currently, 

no pharmacological or therapeutic treatments are available for attenuation or 

inhibition of AAA progression and so patients are destined for surgery. The 

instigating factor or factors in development of AAA is unknown, and so this has 

driven researchers to examine the early stages of the disease. However, research 

is limited by the paucity of human aneurysmal tissue which is at an early stage 

of AAA progression. In order to combat this, in vivo animal models are widely 

used; murine models offer a low cost, genetically malleable solution. Small 

mammal models are limited in evaluation of surgical solutions and 

biomechanics due to their miniature size and are not as similar physiologically 

to humans as large mammals. Studies with large mammals are limited due to 

great expense in terms of both time and cost, but ex vivo culturing of the arteries 

of large mammals in a bioreactor may hold the solution to this problem. 

Comparatively fewer studies have been conducted to reveal the role of the SMC 

in AAA pathogenesis versus other aspects of the disease. Given that SMCs are 

known to have an inherently plastic nature, the temporal mapping of alterations 

in SMC phenotype over time in the context of early aneurysmal events may lead 

to the identification of AAA prior to aortic dilatation. Biomechanical analysis 

will investigate the function of the whole artery, as the ECM is maintained by 

the SMCs. Identifying changes in SMCs may also uncover targets for 

therapeutic or pharmacological therapies which have not yet been identified. 
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1.11. PROJECT RATIONALE 

AAA is a progressive dilatation of the abdominal aorta which will lead to 

rupture without intervention. Rupture of an AAA carries an extremely high 

mortality rate. The only treatment options currently available for AAA are 

surgical procedures which leave no treatment options for patients who are 

unable to undergo surgery. Recently, a national programme has been 

implemented whereby AAA screening is offered to individuals considered to be 

at risk of developing the disease. Prior to this, AAAs were often detected 

incidentally to other medical conditions.  

The AAA screening programme offers unprecedented opportunity to study the 

in vivo progression from the early to end-stages of the disease. This may reveal 

earlier stages of the disease where it would be appropriate to intervene with 

therapeutic or pharmacological agents. However, understanding the underlying 

mechanisms behind AAA formation and early development is essential for 

uncovering early therapeutic targets. It is virtually impossible conduct research 

on human AAA tissue in the earliest stages of the disease due to its very nature. 

Therefore, over the past four decades, a wide range of AAA models have been 

developed to order to understand the longitudinal disease and the underlying 

mechanisms which are implicated in AAA. 

SMCs are vascular cells responsible for maintaining the arterial ECM and are 

thought to play a role in AAA development. SMCs from human AAA tissue are 

dysfunctional and SMC seeding has been shown to attenuate AAA progression 

animal models. Given the inherent plasticity of adult SMCs and their ability to 

maintain the ECM they have been identified as an appealing target for study. 

 

 

1.12. AIMS AND OBJECTIVES 

It has been shown that using an ex vivo bioreactor porcine model of end-stage 

AAA causes the SMCs to adopt a phenotype which is comparable to SMCs from 

end-stage human AAA tissue. The main aim of this study was to develop and 
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use this ex vivo model to investigate and characterise the temporal phenotypic 

modulation in SMCs and relate this to function of the whole artery via 

biomechanical testing. This may reveal potential early targets for AAA disease 

which is especially important in the context of the recent implementation of 

AAA screening. 

An early AAA model was developed and the arterial structure and SMC 

morphology and function were characterised and compared to SMC behaviour 

in the end-stage model. The biomechanical behaviour of the end-stage AAA 

model was characterised in order to relate SMC dysfunction to the function of 

the artery as a whole organ. 

 

Specific objectives: 

1 To characterise the structure of the artery in the early- and end-stage 

model 

2 To determine the role of chemical ECM degradation and bioreactor 

culture on SMC morphology 

3 To determine changes in SMC structure and function with respect to 

time 

4 To characterise and calibrate the dynamic environment within the 

bioreactor 

5 To investigate the biomechanical impact of ECM degradation used to 

induce the experimental AAA model 

6 To characterise the biomechanical properties of the end-stage AAA 

model 
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CHAPTER 2 MATERIALS AND METHODS 

 

This chapter describes the materials and methods used to investigate the 

cellular, histological and biomechanical properties of aneurysm model arteries 

and their respective explanted SMCs after two different intervals of time in 

culture. Firstly, details of all reagents and consumables and their suppliers are 

given, along with the general experimental approach used for this study. The 

cell culture and primary SMC explant and isolation techniques are also 

described. 

Secondly, the methods used to characterise the structure and function of the 

tissues and cells are described. Lastly, the methods for biomechanical 

assessment of the ex vivo model are given. The aforementioned biomechanics 

section is separated into two sections: methods for uniaxial tensile testing and 

whole artery dilation testing.  

 

2.1. SUPPLIERS OF MATERIALS AND REAGENTS 

The supplier details for the materials, reagents and equipment used throughout 

this study are listed in Appendix A, categorised in Tables A.1 to A.7. 
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2.2. GENERAL EXPERIMENTAL APPROACH 

The workflow for the overall project is shown in Figure 2.1. Carotid arteries 

were aseptically harvested from a total of 12 pigs by two trained surgeons. 

Animal sacrifice was conducted by technicians from Central Biomedical 

Services under the Humane Killing of Animals under Schedule 1 to the Animals 

(Scientific Procedures) Act 1986.  For each animal, a sample of fresh tissue was 

taken straight after harvest for SMC explant cultures and tissue fixation for 

histology and immunohistochemistry (FRESH). FRESH tissue was taken in 

order to analyse the SMC characteristics of each individual animal with no 

treatment.  

Each of the remaining carotid arteries was either pre-treated with an agar gel 

containing elastase and collagenase (CCE) or a vehicle agar gel (VEH). The 

vehicle gel-treated artery served to act as a control vessel. Each of the treated 

vessels (VEH and CCE) was then divided into two: one length was installed in 

the bioreactor (BIO) and cultured under flow and the other length was cultured 

under static conditions (S) in a 6-well plate. The full details for the gel 

treatments and the culture conditions are included within Chapter 3. 

The time during which the arteries remained as a whole organ in culture was as 

follows: the arteries of three animals were cultured for three days (EARLY) and 

the arteries of two animals were cultured for twelve days (END). It has 

previously been shown using this ex vivo model that SMCs derived from arteries 

which received CCE pre-treatment prior to culture in the bioreactor for twelve 

days had a similar phenotype to human end-stage AAA SMCs (Riches et al., 

2013). In a mouse model, it was shown that 14 days after treatment, an 

aneurysmal arterial dilation was observed, but SMC phenotypic switching was 

present seven days after treatment (Ailawadi et al., 2009). Therefore, the culture 

period in the bioreactor for the EARLY model was chosen to be three days in 

order to explore the behaviour of the SMCs prior to the observed phenotypic 

switch. 

Once the culture time had elapsed, a small segment of each these arteries was 

used for generating explant SMC cultures and the remaining portion was fixed 
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for histological and immunohistochemical analysis. Arteries from an additional 

three animals were cultured for 12 days (END) and were used for uniaxial 

tensile testing for biomechanical analysis once the culture time was complete. 

All of the aforementioned analysis could not all be conducted on every artery, 

as the experiments were limited by the tissue yield per animal. 

Parallel to this, non-sterile carotid tissue was obtained from the abattoir for 

biomechanical characterisation of the effects of CCE and VEH treatment. Each 

carotid artery was bisected and one segment underwent uniaxial tensile testing 

whilst the other segment was subjected to whole artery dilation testing. The 

methods were evaluated as appropriate for the testing of END model tissue. 

 

2.2.1.  EXPERIMENTAL TISSUE GROUPS 

According to specified treatment and culture conditions, the tissue was allocated 

into five groups, detailed in Table 2.1 below. The abbreviations detailed below 

are used for reference to these groups throughout this document. 

Table 2.1 Experimental tissue groups and the corresponding methods of 

treatment 

Group Treatment 

FRESH No gel treatment, no culture 

SVEH Treatment with vehicle gel, static culture in a 6 well plate 

SCCE Treatment with CCE gel, static culture in a 6 well plate 

BIOVEH Treatment with vehicle gel, dynamic culture in bioreactor 

BIOCCE Treatment with CCE gel, dynamic culture in bioreactor 

 

 



65 

 

 

Figure 2.1 Workflow for overall project showing experimental approach and 

SMC experimental groups. The groups are referred to with these abbreviations 

throughout this thesis. 
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2.3. MEDIA AND REAGENT COMPOSITION 

The compositions of media used throughout cell culture are detailed in 

Appendix B. These media were used throughout the project and are referred to 

throughout this document by abbreviations, as follows.  

Table 2.2 Cell culture media compositions 

Media Abbreviation 

10% full growth medium  FGM 

5% sub-maximal growth medium  SGM 

0.4% minimal growth medium  MGM 

Serum free medium  SFM 

 

2.4. CELL CULTURE TECHNIQUES 

All cell culture procedures and techniques were carried out aseptically in a Class 

II laminar flow hood. All culture media and reagents were warmed to 37°C 

before use.  

 

2.4.1. CELL PASSAGING 

Once the cells had formed a confluent layer, the culture medium was aspirated 

from the flasks, along with detached cells and cell debris. The cells were then 

washed in PBS to remove traces of the culture medium. Trypsin/EDTA (2 ml) 

was then added and the flasks incubated at 37°C for 5 to 10 minutes to facilitate 

cell detachment. Detachment was aided by gentle physical agitation and 

monitored via a light microscope. When cell detachment had occurred, medium 

containing serum (SGM) (10 ml) was then added to inhibit the action of the 

trypsin/EDTA, and the cell suspension was transferred to a conical bottomed 

centrifuge tube and centrifuged for 6 minutes at 600g. Following centrifugation, 

the supernatant was carefully poured off. The cell pellet was re-suspended in 

FGM (10 ml) and an equal volume was transferred to three new tissue culture 

flasks. The culture medium was half changed every 3 to 4 days until cell 

confluence had once again been reached. 
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2.4.2. CELL COUNTING 

Cells were detached from the tissue culture flask and centrifuged to attain a cell 

pellet (Section 2.4.1). The cell pellet was then re-suspended in FGM (1 ml). A 

haemocytometer was used to count live cells under a light microscope. Trypan 

blue dye (0.2%; 50 μl) was added to an equal volume of cell suspension and 

mixed carefully with the pipette. Trypan blue is excluded from viable cells 

(which appear white/colourless) but is taken up by non-viable cells (appearing 

blue). Viable cells were counted in one grid on each side of the haemocytometer 

and cell density was calculated as follows: 

Cell density=
sum of viable cell counts × 10

4

volume in ml
 

Volumes of cell suspension were then added to the calculated volume of FGM 

and seeded at the required cell density for each assay. 

 

2.4.3. CELL CRYOPRESERVATION 

Cells were detached from tissue culture flasks and centrifuged to attain a cell 

pellet (Section 2.4.1). The cell pellet was then re-suspended in cryopreservation 

medium (1ml), and aliquoted in 0.5 ml volumes into labelled cryovials. These 

were then immediately placed overnight in a freezing container containing 

isopropanol at -80ºC to ensure a cooling rate of 1°C/minute (optimal for cell 

preservation). The cryovials were then transferred to liquid nitrogen for long 

term storage. 

Due to practical constraints intrinsic to the nature of the study, SMCs were not 

uniformly cryopreserved. The timecycle for this is shown in Figure 2.2.  
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Figure 2.2 Timecycle schematic of SMC cryopreservation. END = End model 

artery, EARLY = Early model artery, (n=3). 
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Particularly for the END model SMCs, the FRESH control had normally 

reached confluency before the BIOVEH and BIOCCE SMCs. This was because 

the FRESH SMCs were explanted on the day of the tissue harvest, whilst 

BIOVEH and BIOCCE SMCs were only explanted from tissue fragments once 

the artery had been cultured in the bioreactor for twelve days. In addition, the 

effect on the proliferation rate of the SMCs was also a factor in the time lag 

between treatment groups. For this reason, and in order to maintain the primary 

cells at a low passage (<p5), some SMC groups were cryopreserved. In addition 

to this, the SMC explanted from arteries which were carried out earlier on in the 

project were cryopreserved in order to allow time to master the techniques 

involved in the functional assay characterisation. This was parallelised in order 

to complete the study within the required timeframe. 

 

2.5. PRIMARY SMOOTH MUSCLE CELL ISOLATION 

Once the tissue had been subjected to necessary specified treatment and culture 

conditions, a small tissue fragment was taken for SMC explant cultures as 

follows. The tissue fragments were transferred to a sterile petri dish containing 

2 ml FGM and minced using a sterile scalpel blade into approximately 1 mm3 

pieces. The minced tissue  and FGM were then transferred together into a 25 

cm2 tissue culture flask, incubated at 37ºC in a humidified incubator  gassed 

with 5% v/v CO2 in air and monitored until cells explanting outwards from the 

tissue fragments could be observed (Figure 2.3).  
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Figure 2.3 Primary SMC explanting from a fragment of porcine carotid artery. 

TF = tissue fragment. Arrows showing explanting SMC. 

 

Supplementary FGM was added in 0.5 ml volumes until the total volume was 4 

ml and then the media was half-changed twice per week until the SMC had 

reached confluence (Figure 2.4). Cells were used for structural and functional 

assays at passages between 2 and 5. 

  

Figure 2.4 Representative image of SMC grown to confluence - cells exhibit 

characteristic 'hill and valley' growth pattern. 

 

Once grown to confluence, SMC explant cultures were used for assessment of 

SMC phenotype and functional SMC assays. SMCs were stored in liquid 

nitrogen as per Section 2.4.3. 

200μm 

TF 



71 

 

2.6. PREPARATION OF ARTERIAL TISSUE 

2.6.1. FIXATION OF ARTERIAL SEGMENTS 

Vessels removed from the bioreactor were divided into three portions 

representing the inlet, centre and outlet portions. These arterial portions, along 

with the portions cultured statically were fixed in neutral buffered 10% 

Formalin for 3 to 5 days. Fixed tissues were then either subjected to tissue 

processing, or were held in 70% ethanol until they were able to be processed in 

order to prevent over-fixation. 

 

2.6.2. TISSUE PROCESSING 

Fixed tissues (see section 2.6.1) were placed in plastic histology cassettes and 

processed using a Leica TP 1020 Tissue Processor (Leica, Wetzlar, Germany) 

on an overnight programme starting through graded alcohols (70%, 1hr; 90%, 

1hr; 95%, 1hr; 100%, 1hr; 100%, 2hrs) then moving to Histo-Clear (3 buckets; 

1hr, 1hr, 1.5hrs) then ending in molten paraffin wax (2 buckets; 2hrs, 2hrs).  

 

2.6.3. PARAFFIN WAX EMBEDDING 

Tissue embedding was performed on a Medite TES99 embedding system 

(Medite, Hannover, Germany). Molten wax was poured into moulds and the 

arterial segments orientated to provide a transverse arterial section on cutting. 

The top of the processing cassette was then embedded into the molten wax 

mould to provide grip for the microtome. The wax blocks were then left to 

harden at room temperature overnight. 

 

2.6.4. SECTIONING OF EMBEDDED TISSUE 

Wax blocks containing embedded tissue were placed on ice prior to sectioning 

in order to increase the quality of the cut. Sections 5 μm thick were cut using a 
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Leica RM2235 microtome (Leica, Wetzlar, Germany) and then floated onto 

distilled water at 50°C to smooth creases in the tissue. Glass slides were placed 

underneath the floating sections so that they adhered to the slide as it was lifted 

out of the water. Slides were then left to dry vertically and then were placed into 

a 50°C incubator overnight to ensure complete adherence of the tissue to the 

glass slide. 

 

2.7.  HISTOLOGY AND IMMUNOHISTOCHEMISTRY 

2.7.1.  ALPHA-SMOOTH MUSCLE ACTIN AND MILLER’S ELASTIN CO-

STAIN  

Alpha-smooth muscle actin (α-SMA) with Miller’s elastin co-stain allows 

visualisation of α-SMA, which is a marker of SMCs, and of the elastin fibres in 

the tissue, respectively. Horse-radish peroxidase methods of 

immunohistochemistry form a brown precipitate in the presence of primary 

antibody binding (α-SMA). Miller’s elastin stains elastin fibres purple. 

Sections were deparaffinised by submerging slides in two changes of Histo-

Clear for 8 minutes each and then rehydrated by passing through a series of 

graded alcohols (100%, 5 minutes; 100% 3 minutes; 90%, 3 minutes; 70%, 2 

minutes) and then tap water for 2 minutes. Endogenous peroxidase activity was 

blocked by submerging the slides in 3% v/v hydrogen peroxide in distilled water 

for 10 minutes. Slides were then briefly washed in still tap water before being 

transferred to 100 μl coverplate chambers for all subsequent steps unless stated. 

Sections were then washed continuously by pipetting 1X Tris buffered saline 

(TBS) (1M Tris base, 1.5 NaCl in distilled water) into the coverplates for 5 

minutes. To block non-specific binding of the primary antibody, 100 μl per slide 

of normal goat serum diluted 1:20 with 1X TBS was added to the coverplates 

and then incubated for 10 minutes. Sections were then incubated overnight at 

4°C with 100 μl per slide of mouse monoclonal anti-alpha smooth muscle actin 

clone 1A4 diluted 1:400 with 1X TBS. Sections were then washed for 20 

minutes by continuous pipetting of 1X TBS into the coverplates, then incubated 
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in horse radish peroxidase-conjugated anti-mouse secondary IgG antibody 

diluted 1:50 with 1X TBS for 30 minutes at room temperature. Slides were once 

again washed continuously with 1X TBS for 20 minutes. Detection of 

subsequent peroxidase activity was carried out using a solution containing 0.7 

mg.ml-1 3,3’-diaminobenzidine (DAB) and 2.0 mg.ml-1 urea hydrogen peroxide 

(SIGMAFASTTM) in deionised water. Formation of brown precipitate was 

monitored closely and 1 – 2 minutes was sufficient for all sections.  

Slides were quickly detached from the Shandon coverplate system and washed 

in still tap water to inactivate DAB action. Slides were then rinsed in 95% 

methylated spirits (5% v/v methanol in ethanol) followed by a rinse in 95% 

ethanol. For the elastin co-stain, slides were then submerged in Miller’s staining 

solution for 20 minutes. The slides were then put through a series of 95% 

ethanol washes in order to remove the surface stain (3 x 3 minute washes). 

Slides were then fully dehydrated by submerging in 100% ethanol (2 x 2 

minutes) and cleared with Histo-Clear for 10 minutes. Slides were then mounted 

with DPX mountant and glass coverslips and allowed to air dry for at least 24 

hours before microscopic visualisation. 

 

2.7.2. PICRO-SIRIUS RED 

Fixed tissue segments from one animal were stained with picro-sirius red in the 

laboratory. All other picro-sirius red staining was completed by Mike Shires of 

the Leeds Institute of Cancer and Pathology. Picro-sirius red allows 

visualisation of collagen fibres under polarised light (appearing red, green or 

yellow depending on fibre orientation). 

Sections were deparaffinised by submerging slides in two changes of Histo-

Clear for 8 minutes each and then rehydrated by passing through a series of 

graded alcohols (100%, 5 minutes; 100% 3 minutes; 90%, 3 minutes; 70%, 2 

minutes) and then running tap water for 3 minutes. The nuclei of the tissue were 

then stained by immersing the slides in Weigert’s haematoxylin (1:1 ratio 

solution A to solution B) for 10 minute. The sections were then washed in tap 

water for 1 minute. The slides were then immersed in picro-sirius red (0.1% w/v 
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aqueous saturated picric acid solution) for 1 hour. The excess dye was then 

removed by washing each slide in distilled water and then blotting dry. The 

slides were then dehydrated by passing them through a series of graded alcohols 

(70% ethanol v/v in distilled water, 5 seconds; 95% ethanol v/v 5% methanol, 

5 seconds; 95% ethanol v/v 5% methanol, 2 minutes; 95% ethanol v/v 5% 

methanol, 3 minutes). Sections were then cleared in Histo-Clear for 10 minutes 

before being mounted with glass coverslips with DPX mountant. Slides were 

allowed to air dry for at least 24 hours before microscopic visualisation. 

 

2.7.2.1. VISUALISATION OF PICRO-SIRIUS RED STAINED SLIDES 

The collagen of picro-sirius red stained sections was visualised using brightfield 

microscopy with a linear polarising filter.  

 

2.7.2.2. LUMINAL PERIMETER 

Analysis of luminal circumference was carried out post-tissue fixation on 

paraffin embedded fixed slides. The luminal circumference of ten 5 μm sections 

from the centre portion of the fixed artery were measured per artery (n=5). 

Whole stained sections were visualised using low magnification brightfield 

microscopy. The ‘Find Edges’ tool in ImageJ was used to emphasise the edges 

of the lumen. The ‘Find Edges’ tool uses a Sobel edge algorithm to complete 

this task, and is commonly used in image processing. The images were then 

converted into a binary image (Figure 2.5) using ImageJ and the ‘magic wand’ 

tool used to select the luminal region (http://imagej.nih.gov/ij/). The perimeter 

of the luminal section was then recorded. 

http://imagej.nih.gov/ij/
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Figure 2.5 Measurement of luminal perimeter. Left: unprocessed image. Centre: 

image converted into a binary image with magic wand selection (green). Right: 

zoom in of magic wand selection (green). 

 

An idealised arterial diameter was calculated via representing the artery as a 

perfect circle with a circumference equal to the measured arterial perimeter. 

This measured perimeter was divided by the ratio π to give the idealised arterial 

diameter by representing the artery as a circle. Transforming measured luminal 

perimeter into idealised diameter allowed the arteries to be subject to the clinical 

definition of AAA, where the arterial diameter is 150% that of the healthy aorta 

(Nordon et al., 2011). This transformation of the measurements to idealised 

arterial diameter is shown in Figure 2.6. Luminal area, unlike luminal perimeter, 

is affected by the shape of the fixed tissue and so could not be used to investigate 

geometrical changes as the tissue was not perfusion-fixed. 
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Figure 2.6 Transformation of measured luminal circumference to idealised 

diameter. A) luminal perimeter was measured according to stated methods. B and 

C) the artery is represented as a perfect circle with circumference equal to the 

measured perimeter. D) the circumference is divided by π to give the idealised 

diameter. 

 

2.7.2.2.1. DATA AND STATISTICAL METHODS 

A total of three animals per model stage was used. Vessels which underwent 

vehicle (VEH) and protease (CCE) treatment were normalised to the mean 

FRESH idealised diameter, in order to ameliorate the effects of inter-animal 

variance. Ten sections were measured per treatment condition per animal, 

giving a total of 30 individual datapoints in each set. A two way ANOVA with 

post-hoc Tukey test was used to determine the effect of model stage 

(END/EARLY) and treatment group (FRESH/VEH/CCE) on the idealised 

luminal diameter in OriginPro 2015 (OriginLab, MA, USA). A p-value of <0.05 

was taken to denote statistical significance. 

 

2.8. CELLULAR CHARACTERISATION 

The smooth muscle cell is able to dynamically contract or relax in order to 

maintain blood flow and pressure throughout the vasculature. Vascular smooth 

muscle cells are not terminally differentiated and are able to undergo profound 

changes in phenotype according to local environmental cues (Owens et al., 

2004, Rzucidlo et al., 2007). SMCs are generally considered to have two major 

phenotypes – contractile and secretory – which influence SMC morphology and 
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function (Porter and Riches, 2013). Switching of SMC phenotype is an event 

which occurs early in the progression of AAA disease, and so one of the aims 

of this project was to elucidate the temporal mapping of  phenotypic switches 

in the ex vivo model (Ailawadi et al., 2009). This section contains the methods 

used to structurally and functionally characterise the EARLY and END stage 

SMCs in the bioreactor model.  

 

2.8.1. MORPHOMETRIC ANALYSIS 

Cells were seeded at a density of 2 x 105 cells per 75 cm2 cell culture flask and 

cultured at 37°C in a humidified incubator gassed with 5% CO2 v/v in air for 72 

hours in 4 ml FGM. Brightfield microscopy was then used to capture at least 10 

fields of view at 100x magnification in a prescribed pattern for every experiment 

in order to remove observer bias (Figure 2.7). The boundary of 50 individual 

cells per condition were traced and the circularity of cells was recorded using 

ImageJ software (http://imagej.nih.gov/ij/). Circularity is a dimensionless 

geometric descriptor value built-in to ImageJ software calculated using the 

formula described in Equation 2. 

circularity=4π (
area

perimeter
2
) 

Equation 2 Circularity 

 

 

Circularity is a scale from 0.0 to 1.0: a value of 1.0 denotes a perfect circle and 

as the value approaches 0.0 it indicates an increasingly elongated polygon (Cox, 

1927, Helmy and Azim, 2012).  

 

2.8.1.1. DATA AND STATISTICAL METHODS 

The assay was performed at a passage which was identical for each animal (p3). 

This gave a total of 150 cell circularity measurements per model stage. A two-

way ANOVA with post-hoc Tukey test was used to determine the effects of 

model stage and treatment group and the interaction between them on mean cell 

circularity. The ANOVA was carried out using OriginPro 2015 software 
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(OriginLab, MA, USA). A p-value of <0.05 was taken to denote statistical 

significance. 

 

Figure 2.7 Pattern of field of view capture in a 75 cm2 flask for morphometric cell 

analysis 

 

2.8.2. F-ACTIN IMMUNOFLUORESCENCE 

The cytoskeletal f-actin microfilament was visualised by staining with 

rhodamine phalloidin fluorescent probe. Cell nuclei were visualised by using a 

mounting medium containing 4’,6-diamidino-2-phenylindole (DAPI), a nuclear 

dye specific to DNA. 

 

2.8.2.1. CELL SEEDING AND FIXATION 

Cells were seeded in a 24-well plate at a density of 1 x 104 cells per well on top 

of sterilised, circular coverslips and cultured in 1 ml FGM at 37°C in a 

humidified incubator gassed with 5% CO2 v/v in air for 96 hours. The media 

was then removed and the cells washed with 1X PBS. Cell fixation was 

achieved by adding 400 – 500 μl per well of 4% paraformaldehyde (PFA) and 

then leaving the plate on a rocker for 20 minutes. The PFA was then removed 

and the cells once again washed with 1X PBS. Wells were then filled with 1X 

PBS and stored at 4°C until staining. 

 

 

 

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 
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2.8.2.2. RHODAMINE PHALLOIDIN STAIN 

Coverslips were washed twice with 1X PBS. SMCs were permeabilised and 

blocked for non-specific binding by incubating with 10% goat serum in 0.05% 

Triton X-100 in PBS for 5 minutes. SMCs were then washed twice again with 

1X PBS. The cells were then incubated with rhodamine-phalloidin diluted 1:40 

in PBS in the dark for 20 minutes and washed twice again with 1X PBS. The 

cells were then mounted using ProLong® Gold Antifade Mountant with DAPI 

to achieve a nucleus stain. Slides were left in the dark overnight to allow the 

mountant to set. The f-actin cytoskeleton was visualised using a Zeiss LSM700 

(Carl Zeiss AG, Oberkochen, Germany) confocal microscope. 

 

2.8.3. CELL PROLIFERATION 

Cells were seeded in a 24-well plate at a density of 1 x 104 cells per well in 1 

ml FGM and incubated at 37°C in a humidified incubator gassed with 5% CO2 

v/v in air for 24 hours. After this period, the media was removed and the cells 

were washed with 1X PBS and then supplemented with 1 ml SFM for 72 hours 

in order to drive the cells into a quiescent state. Cells were then placed back into 

1 ml FGM for the remainder of the experiment. Cell counts were made at days 

0, 2, 4 and 7 with a media change on days 2 and 4. For cell counts, each well 

was aspirated, washed in PBS and trypsinised. Viable cell counts were 

quantified using 0.2% Trypan blue in PBS and a haemocytometer (See Section 

2.4.2. for method in detail). Quadruplicate counts were taken at each time point. 

The proliferation assay was repeated at passages 3, 4 and 5 for every animal. A 

proliferation curve was then plotted using OriginPro 2015 software (OriginLab, 

MA, US) and the area under the curve calculated to determine the proliferative 

capacity of the cells. 

 

2.8.3.1. DATA AND STATISTICAL ANALYSIS 

A quadruplicate cell count per assay and a repeat of three passages comprised 

the dataset for each animal, giving a total of twelve individual data points per 
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day per animal. Each passage of cells from each animal was normalised and 

represented as a percentage of the respective FRESH day 0 count in order to 

mitigate inter-animal and passaging effects. A one-way ANOVA with post-hoc 

Tukey test was used on day 7 count data to determine the effects of the vessel 

treatment within each model stage (EARLY/END). The area under the curve 

was calculated to represent the total growth over the seven day period. A t-test 

was used to determine the effects of model stage within each vessel treatment 

group. The statistical analysis was performed using OriginPro 2015 (OriginLab, 

MA, USA). A p-value of <0.05 was taken as the significance threshold. 

 

2.8.4. SCRATCH WOUND MIGRATION  

Cellular migration in a monolayer was determined as previously described 

(Riches et al., 2009). Prior to plating, migration guidelines were etched into the 

underside of a 12-well plate (Figure 2.8). One vertical line was etched in the 

centre of each well with five horizontal parallel transecting lines approximately 

1 mm apart also drawn. 

 

Figure 2.8 Schematic of etching pattern on underside of one well of a migration 

plate 

 

Cells were then seeded at a density of 1 x 105 cells per well in 1.5 ml FGM and 

cultured at 37°C until confluent. The media was then removed and the cells 

washed with PBS and then supplemented with 1.5 ml SFM for 72 hours in order 

to bring the cells into a quiescent state.  
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The cell monolayer was then wounded in line with the vertical etched line using 

a sterile 10 ml Gilson pipette tip (Figure 2.9). Once an adequate uniform scratch 

wound has been achieved, medium was aspirated and wells were washed in PBS 

to remove cellular debris and replenished with 1.5 ml SFM. 

Images of the four spaces between the transecting horizontal lines were then 

taken using brightfield microscopy at this 0 hour (0h) time point; four images 

were taken per well. The cells were then aspirated once more and placed into 

1.5 ml SGM and incubated at 37°C for 24 hours. This assay was performed in 

SGM as it provides a submaximal stimulus compared to FGM (maximal 

stimulus) and so any subtle changes in migration were not potentially masked 

by the maximal stimulus. After 24 hours, images of each of the same areas were 

taken (24h). 

 

Figure 2.9 Confluent monolayers of SMC wounded to give area clear of cells 

2.8.4.1. DATA AND STATISTICAL ANALYSIS 

Each 0h image was then imported into Microsoft Office along with its 

corresponding 24h image and aligned using the guidelines etched onto the 

underside of the well. The wound edge was traced, duplicated and translated 

1.52 cm towards the vertical etched line – previous study in our laboratory using 

Uniform wound in cell monolayer 

Etched migration guidelines 
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a microscope and a ruler has shown that 1.52 cm is equivalent to 200 μm. The 

number of cells migrated past the 200 μm marker was then recorded. The 

distance (in cm) between the etched horizontal guidelines was measured and 

converted into actual distance in mm on the plate. Data was displayed as the 

number of cells migrated past the 200 μm marker per mm of wound width.  

Each count was performed in quadruplicate in 4 wells per condition. Three 

animals were used per model stage and counts from passages 3, 4 and 5 were 

collected from each animal to give twelve individual data points for each of the 

three animals. The mean migration data calculated from the quadruplicate count 

was expressed as a percentage of the corresponding FRESH mean migration 

data for the same passage in order to mitigate the effects of passaging and 

variations between animals. A two-way ANOVA was performed using 

OriginPro 2015 (OriginLab, MA, USA). A p-value of <0.05 was taken to be 

significant. Effects of SMC orientation were analysed with a one-tailed t-test. 

 

2.8.5. SENESCENCE ASSOCIATED BETA-GALACTOSIDASE STAINING 

The Cell Signalling Senescence-associated β-galactosidase (SA-βgal) Staining 

Kit detects β-galactosidase at pH6, a known characteristic of senescent cells not 

found in presenescent, quiescent or immortal cells. The manufacturer’s 

instructions were followed. Briefly, cells were seeded in a 6-well plate at a 

density of 7.5 x 104 cells per well in 2 ml FGM and incubated at 37°C in a 

humidified incubator gassed with 5% CO2 v/v in air for 24 hours.  

After this period, the culture media was aspirated and the cells were washed 

with 2 ml 1X PBS per well. The cells were then fixed using the kit Fixative 

Solution (20% formaldehyde, 2% gluteraldehyde in 10X PBS). Following two 

washes of 1X PBS, 1 ml per well of β-galactosidase Staining Solution (930 µl 

400 mM citric acid/sodium phosphate, 1.5 M NaCl, 20 mM MgCl2 + 10 µl 500 

mM potassium ferrocyanide + 10 µl 500 mM potassium ferricyanide + 50 µl 5-

bromo-4-chloro-3-indolyl-βD-galactopyranoside (X-gal) in N-N-

dimethylformamide (DMF)) ensuring that the final pH of the staining solution 

was between pH5.9 – 6.1. 1 M hydrochloric acid was used to adjust the pH if 
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necessary. The plate was then incubated at 37°C overnight in a non-humidified 

incubator. For long term storage, the staining solution was removed and the cells 

overlaid with 70% v/v glycerol in distilled water. 

 

2.8.5.1. DATA AND STATISTICAL ANALYSIS 

The level of senescence was determined by ten 40x microscope images per well, 

taken in the exact same pattern for every well in order to remove observer bias 

(Figure 2.10). This protocol was used to determine the senescence levels of 

human AAA SMC previously (Riches et al., 2013) The images were then 

analysed by expressing the number of β-galactosidase positive stained cells as 

a percentage of the total number of cells in each field of view. 

 

Figure 2.10 Schematic of image order pattern for each well to determine 

senescence levels. 

 

Each assay was performed in triplicate for three matched passages to give 30 

senescence images per animal (p3, p4 and p5 for all treatment conditions). The 

senescence level of the treatment conditions within each assay and passage was 

expressed as a percentage of the respective FRESH control in order to mitigate 

the effects of passage and animal related variance. The mean of these relative 

senescence indices was then taken to give a mean relative senescence index for 

each treatment group. The relative senescence level was analysed using a one-
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way ANOVA per treatment group with a post-hoc Tukey test. A p-value of 

<0.05 was taken to denote statistical significance. 

 

2.8.6. GELATIN ZYMOGRAPHY 

Gelatin zymography allows analysis of levels of secreted matrix 

metalloproteinases (MMP) on a gelatin based acrylamide gel. MMP activity is 

visualised by clear bands of lysis on a stained dark background.  

The effect of treatment group and model stage on stimulated, as well as basal 

level, secretion was also investigated in order to explore their effects on reaction 

to normal stimuli. A known stimulus of MMP secretion, phorbol ester (12-O-

Tetradecanoylphorbol-13-acetate), and a more physiologically relevant 

combination of pro-inflammatory cytokines – platelet-derived growth factor 

(PDGF) and interleukin-1α (IL-1α) – were used to investigate changes in 

secretion in response to these stimuli. 

 

2.8.6.1. COLLECTION OF CONDITIONED MEDIA 

SMCs were seeded at a density of 2 x 105 cells per 25 cm2 flask and cultured in 

4 ml FGM in a humidified incubator at 37°C and gassed with 5% CO2 v/v in air 

for 24 hours. Per condition, three separate flasks were needed. The media was 

then removed, the SMCs washed with PBS and then supplemented with SFM 

for 72 hours to bring them into a quiescent state. Each of the three flasks per 

experimental condition was then subjected to either a vehicle control, 12-O-

Tetradecanoylphorbol-13-acetate (TPA) or a combination of PDGF and IL-1α 

as shown in Table 2.3.  
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A volume of 1.4 ml of each treatment was added to each of the flasks and 

cultured at 37°C in a humidified, gassed (5% CO2 v/v in air) incubator for 48 

hours. Conditioned media was then collected from the cells and centrifuged for 

6 minutes at 600 x g and 4°C to remove any remaining cellular debris. The 

supernatant was then aliquoted into 100 μl volumes – to prevent freeze-thaw 

cycle of conditioned media once used – and snap frozen in liquid nitrogen. 

Conditioned media was then stored at -20°C until required. 

 

Table 2.3 Stimuli used on SMC to collect conditioned media for gelatin 

zymography 

 

2.8.6.2. MAKING AND RUNNING GELS 

The polyacrylamide gel constituents for the separating and stacking gels used 

for gelatin zymography are detailed in Appendix C. 

Separating gel (Appendix C) containing a final concentration of 1 mg.ml-1 

gelatin was cast into 1 mm cassettes and allowed to polymerise at room 

temperature (approx.. 30 min) under water-saturated butanol. The water-

saturated butanol was then removed carefully with filter paper and the 

separating gel was overlaid with stacking gel (Appendix C). A 10-well gel comb 

was inserted and the gel allowed to polymerise at room temperature (approx. 15 

min) Conditioned media was then mixed with sample loading buffer (40% 

glycerol, 62.5 mM Tris buffer pH 6.8, 4% SDS and 0.1% bromophenol blue) in 

a ratio of 25 µl to 12.5 µl respectively, and 30 μl volume per well was added to 

result in an end loading volume of 20 µl of conditioned media (as determined 

by calibration curve in Section 5.4.4.1). The loading samples were then added 

to the gel wells and subjected to sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) in running buffer (5 mM Tris base, 50 mM NaCl, 

Flask # Stimuli 

1 10 μl.ml-1 PBS in MGM (Vehicle) 

2 100 nM TPA in MGM 

3 10 ng.ml-1 PDGF + 10 ng.ml-1 IL-1α in MGM 
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0.02% SDS) for 110 minutes at 120 V. The gels were then removed from the 

electrophoresis apparatus and washed three times in 2.5% Triton X-100 for 20 

minutes on a rocker to remove the SDS and allow the MMPs to renature. The 

gels were then incubated with incubation buffer to allow MMP digestion of the 

gelatin substrate (5mM Tris base, 1% CaCl2, 5 mM NaCl, 0.5% Brij-35, pH 7.6) 

for 26 hours in a non-gassed dry incubator at 37°C.  

Visualisation of gelatinolytic activity was achieved by staining the gels with 

Coomassie Blue (25% methanol, 10% glacial acetic acid, 0.02% w/v Coomassie 

Brilliant Blue) for 20 minutes. Gelatinolytic activity was seen as clear bands of 

digested gelatin on a bright blue background of intact substrate.  

 

2.8.6.3. DATA AND STATISTICAL ANALYSIS 

Densitometry of the total levels of gelatin digestion was conducted using the 

Analyze Gels tool in ImageJ (http://imagej.nih.gov/ij/). The total level of gelatin 

digestion was expressed as a percentage of the respective FRESH control for 

each of the three animals to give a relative total MMP level for the EARLY and 

END models. A three-way ANOVA was used to measure significance between 

model stage (EARLY / END), treatment condition (FRESH /BIOVEH 

/BIOCCE), stimulus (VEH /TPA /PDGF+IL-1α) and any interaction between 

the levels. A post-hoc Tukey test was performed for direct means comparison 

and a p-value of <0.05 was taken to denote statistical significance. 

 

2.8.6.4. HT1080 CELL LINE 

Each of the gels were subjected to SDS-PAGE with a well containing a sample 

of conditioned media from the HT-1080 cell line. This is a human fibrosarcoma 

line originally derived from biopsy of a 35 year old Caucasian male in 1972 

who presented with metastatic tumour and received no chemotherapy or 

radiotherapy. These highly invasive tumorigenic cells constitutively secrete 

high levels of MMP-2 and MMP-9 which are involved with basement 
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membrane degradation (Giambernardi et al., 1998). This cell line serves as a 

useful reference for MMP-2 and MMP-9 secretion during zymography. 

 

2.9. BIOMECHANICAL CHARACTERISATION 

As described in Section 1.4, the arterial wall is composed of three distinct layers: 

the intima, media and adventitia. Alongside the individual cell types residing 

within the arterial wall, collagen and elastin fibres form the extracellular matrix 

and contribute to the bi-phasic strain-dependent material behaviour of the 

arterial wall (He and Roach, 1994, Bank et al., 1996, Kobielarz and Jankowski, 

2013). The artery itself exhibits anisotropic behaviour due to the circumferential 

arrangement of cells and extracellular matrix fibres in the media hence it is 

important to evaluate the mechanical behaviour in both directions (Gasser et al., 

2006, Geest et al., 2006). 

In the human disease the effect of aneurysm is to decrease the strength of the 

arterial wall whilst inducing stiffening of the aorta, especially in the 

circumferential direction (He and Roach, 1994, Raghavan et al., 1996, 

Thubrikar et al., 2001, Geest et al., 2006). With this in mind, the aim of this part 

of the study was to characterise the mechanical behaviour of the end-stage ex 

vivo model and validate this against human data reported in the literature. 

Encompassed within this aim was also the characterisation of the protease pre-

treatment so that the state of the biomechanical properties of the artery prior to 

any culture (and therefore any active remodelling role of the SMC) in the 

bioreactor were known and understood. Uniaxial tensile testing in longitudinal 

and circumferential orientations was used in order to understand the inherent 

mechanical properties within the artery. Dilation burst-pressure testing was used 

alongside this to assess the behaviour of the artery as it exists physiologically, 

as a whole organ. 

 



88 

 

2.9.1. CHARACTERISATION OF PROTEASE PRE-TREATMENT 

In order to investigate the effects of the CCE pre-treatment prior to bioreactor 

culture, non-sterile arteries were used. Porcine external carotid arteries used for 

characterisation of the protease pre-treatment were sourced from an abattoir 

from 7-8 month old Large White pigs with a carcass weight of 65 – 85kg. 

Arteries were not considered to be sterile and this method of tissue procurement 

was used as opposed to harvesting fully sterile arteries because this was not 

required if no organ or cell culture occurred. Arteries were removed during 

slaughter and delivered on the day of slaughter. On collection, excess 

connective tissue surrounding the adventitia was removed by blunt dissection. 

Arteries were then washed three times for 30 minutes each in 1X PBS 

containing EDTA (2.7mM; w/v 0.1%) to remove excess blood. After washing, 

any remaining superfluous tissue was removed by blunt dissection. The left or 

right carotid artery was isolated from the ascending aorta and was then stored 

individually at -80°C wrapped in 1X PBS soaked filter paper until required. 

Studies have shown that freezing at such a temperature for up to 3 months has 

no impact on vessel mechanics, including ultimate stress and Young’s modulus 

measurements (Stemper et al., 2007b).  

Prior to mechanical testing, the specimens were allowed to stabilise to room 

temperature. Each artery was bisected and treated according to experimental 

groups as shown in Table 2.4.  

Table 2.4 Experimental groups including fresh control and vehicle control for 

biomechanical testing 

Group (n=6) Treatment 

FRESH No treatment 

VEH Pre-treatment with 1% agar gel 

containing no enzymes (vehicle) 

CCE Pre-treatment with 1% agar gel 

containing 1.5 mg.ml-1 elastase and 3 

mg.ml-1 collagenase  
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Bisection of each artery was carried out to ensure that each specimen was 

subjected to both dilation burst pressure testing and uniaxial tensile testing in 

matched experiments; the workflow for this is shown in Figure 2.11. 

For CCE and VEH groups, each arterial segment was treated either with vehicle 

gel pre-treatment or with CCE pre-treatment as required with additional FGM 

(as fully described in Chapter 3). They were then incubated for 3 hours at 37°C 

in a humidified gassed incubator (5% CO2 v/v in air). Specimens within the 

FRESH group received no pre-treatment but were incubated in parallel in FGM.   

 

 

Figure 2.11 Experimental workflow of biomechanical characterisation of CCE 

pre-treatment with matched specimens for each method. 
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2.9.2. UNIAXIAL TENSILE TESTING 

The specimens destined for uniaxial tensile testing were divided into 

circumferential (C) and longitudinal (L) test strips of at least three per group as 

shown in Figure 2.12. The circumferentially orientated tissue strips were always 

taken from the distal section of the arteries, as this has a slightly larger diameter 

than the proximal part. Longitudinally orientated tissue strips were always taken 

from the proximal part of the artery. This was done as it was necessary for the 

circumference to be at least 6mm with extra for the tissue to be gripped in the 

tensile testing equipment. A tissue cutter of parallel razor blades mounted in a 

cutting block was used to cut the test strips to 3 mm in width and 6 mm gauge 

length (Figure 2.13). Rectangular shaped strips were used as opposed to 

dumbbell shaped tissue strips in order to maximise the tissue yield per artery. 

The dimensions of the tissue testing strips were chosen as these were the 

smallest possible with the existing tissue grips for the tensile testing equipment. 

The thickness of each strip was measured in three places using a digital 

micrometer and the mean value was calculated and recorded. The samples were 

kept moist with PBS during specimen preparation and testing. The tissue strips 

were not subjected to any preload or preconditioning regime. Preload can mask 

the inherent properties in the tissue in the elastin phase by starting the data 

collection at an arbitrary value rather than the true relaxed state of the tissue. 
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Figure 2.12 Tissue strips for uniaxial tensile testing 

 

 

Figure 2.13 Left: tissue cutting block. Right: desired dimensions of tissue strip 

(3mm width, 6mm gauge length). 

 

2.9.2.1. APPARATUS AND TEST METHOD 

Custom-made soft tissue specimen clamps were used together with a small 

piece of fine grade sandpaper on the endothelial side to minimise tissue 

slippage. The specimen clamps were fitted onto a removable gauge block with 

a divider of 6 mm in width which ensured that no loading was imposed onto the 

tissue prior to the start of the test (Figure 2.14). The 6 mm divider was the 

smallest available and so dictated the dimensions of the tissue testing strips. 
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Figure 2.14 Soft tissue grips used in tandem with sandpaper for optimal tissue 

grip during uniaxial testing.  

 

The inferior part of the specimen clamp was fitted into the base of an Instron® 

3365 Machine materials tester equipped with a 50 N load cell which recorded 

the load and displacement at intervals of 0.1 seconds. The crosshead was then 

slowly lowered until the superior part of the specimen clamp was able to slot in. 

The gauge block was then removed prior to testing. All tests were carried out at 

37°C in an Instron BioPuls Temperature Controlled Bath filled with 1X PBS to 

mimic physiological conditions. The tissue was then tested to failure at a 

constant nominal displacement rate of 10 mm.min-1, corresponding to a strain 

rate of 0.028 s-1. Sandpaper was replaced for each new testing strip. Failure was 

defined as complete dissection of the specimen due to tensile load. The 

experimental set up for uniaxial tensile testing is shown in Figure 2.15. 

Gauge 

block  

Sandpaper 
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Figure 2.15 Left: tissue strip installed into soft tissue grips in tensile tester with 

gauge block removed. Centre: Configuration of BioPuls bath. Right: Tissue is 

tested until failure in centre of strip. Arrow indicates direction of load. 

 

2.9.2.2. DATA ANALYSIS 

Data was presented in terms of engineering stress and strain. The data output 

from the materials testing machine was displacement vs. load. This data was 

then transformed into engineering stress-strain via Equation 3 and Equation 4. 

σe= 
F

A0

 Equation 3 Engineering stress 

εe= 
∆l

l0
 Equation 4 Engineering strain 

 

Where F is the applied load, A0 is the initial cross-sectional area (width × 

thickness) and l0 is the initial specimen length.  

A typical stress-strain curve is shown in Figure 2.16. These curves can be 

divided into two approximate main phases (as fully described in Section 1.5.2): 

the elastin region (EE), where the material behaviour is governed by elastin 

fibres and where the majority of collagen fibre recruitment and alignment 

occurs, and the collagen region (EC), in which the fully recruited collagen fibres 

are stretched.  

BioPuls 

bath 

Load 

cell 
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The elastin and collagen regions were defined by fitting a linear regression 

curve with a coefficient of regression value that was at least greater than 0.9 for 

all specimens. The linear regression curve was fitted to each region using a 

script built in MATLAB and the gradient used to determine the stiffness in each 

of these regions (MathWorks, Cambridge, UK). Other outputs from this data 

include the ultimate tensile strength (σuts) and the transition strain (εt) defined 

as the maximum stress and the intercept of the linear regression curves of the 

elastin and collagen regions respectively. 

 

Figure 2.16 Typical stress-strain curve detailing outputs (shown in red).  

 

Load-extension data obtained during testing was exported from the Bluehill® 

operating software (Instron, Bucks., UK) of the Instron® tester to Microsoft 

Excel spreadsheets for further processing. The load-extension data was 

converted to engineering stress-strain data using the formulae described in 

Equation 3 and Equation 4. 

All outputs from this method (EE, EC, σuts and εt) were collected using the 

MATLAB script and are shown in Figure 2.16. The script enables the user to 

select regions of the data which represent the two separate linear slope regions 

(EE and EC). It then draws a linear regression line for the regions of data selected 
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and displays the equation of each of the linear regression lines in the format 

y=mx + c, where m is equal to either EE or EC depending on the region being 

analysed. The coefficient of determination (R2) was also displayed and in all 

cases it was ensured that this was greater than or equal to 0.9. The script also 

displays the maximum stress reached (taken to be σuts) and the strain at which 

the linear regression lines EE and EC intercept (taken to be εt). The script is 

reproduced fully in Appendix D and a representative image of the script output 

is displayed below in Figure 2.17. 

 

Figure 2.17 Representative MatLab script output, showing selections. 

 

2.9.2.3. STATISTICAL ANALYSIS 

Statistical analysis of the results was performed using a one-way ANOVA per 

tissue orientation with a post-hoc Tukey test for means comparison in OriginPro 

(OriginLab, MA, USA). A p-value of less than 0.05 was taken to be significant. 

All data are presented as the mean ± 95% confidence intervals. 
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2.9.3. DILATION BURST PRESSURE TESTING 

One section of each treated artery was tested whole for dilation analysis so as 

to match all data with that from uniaxial tensile testing analysis (Figure 2.11). 

The dilation testing rig is shown in Figure 2.18. 

The artery was left whole and tested for leakage using a syringe filled with 1X 

PBS. If no leaks were apparent in the vessel, it was painted with blue tissue dye 

to ensure high contrast for image analysis. The vessel was then secured to a hose 

barb using cable ties and catgut. The hose barb was then inserted into a push fit 

connector so that the vessel sat within a clear Perspex chamber. A 10 g weight 

was attached to the free end of the vessel to exert a 0.1 N longitudinal pre-load 

to vessel to ensure that it remained horizontal throughout the experiment. 

Previous investigation has shown that 10 g is the optimum weight to use (Jake 

Milton Barker, iMBE SOP). A volume of 120 ml of 1X PBS was syringed into 

the compliance chamber and the air supply tube connected to the rig. A camera 

was set up on a tripod so that both the calibration rule and the digital display of 

the pressure gauge was within the field of view and so the exact pressure at the 

instant the image was taken was recorded. The pressure meter was then set to 0 

mmHg. 

The air supply valve was turned on such that the pressure through the vessel 

slowly increased at a constant rate. Images were taken on the camera at 

approximate 20 mmHg intervals up to 180 mmHg. Post-180 mmHg, the display 

on the pressure gauge was changed to record the maximum pressure reached. 

The pressure was then increased at a constant rate until either rupture of the 

vessel or the pressure reached 5000 mmHg. The burst pressure was then 

recorded and the air supply quickly turned off. 
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Figure 2.18 Dilation testing. Top: schematic of dilation testing rig. Bottom: 

photograph of dilation set-up. 

 

2.9.3.1. DATA AND STATISTICAL ANALYSIS 

The images were taken such that the digital display of the pressure meter and 

the calibration rule were in the field of view. Representative images are 

displayed in Figure 2.19. 
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Figure 2.19 Representative images taken during dilation test. Top: at 0 mmHg. 

Bottom: 203 mmHg. 

 

The images were calibrated within Image-Pro Plus (Media Cybernetics Inc., 

MD, USA) using the calibration rule to determine the number of pixels per 

millimetre. The ‘Trace’ feature in Image-Pro Plus was used to trace along both 

sides of the arterial wall. The tissue dye enhances the contrast for these images 

and enables this feature to work. The average distance between the trace lines 

was then recorded against the pressure seen on the digital display of the pressure 

gauge in the image. The ‘Trace’ feature was then used again to determine the 

average length of the vessel, using the sutures as a reference marker. This value 

was also recorded alongside the pressure. The image analysis method is shown 
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in Figure 2.20. This was completed for arteries from six animals for each 

treatment condition (FRESH/VEH/CCE). 

 

 

Figure 2.20 Representative image of image analysis method used for determining 

vessel dimensions. T1-4: tracelines. HT1: average diameter. VT1: average length. 

Approximate magnification 3x. 

 

The data was then interpolated so that values of average diameter and length 

could be determined at exact 20 mmHg intervals; from 0 – 180 mmHg. This 

was performed so that each vessel could be compared to all other vessels and 

was implemented in MATLAB (MathWorks, Cambridge, UK).  

A one-way ANOVA with post-hoc Tukey test was used to determine 

significance between treatment groups across the pressure range. For matched 

vessels which were subject to non-destructive dilation testing prior to and 

following CCE treatment, a two-tailed paired sample t-test was used to test for 

significance. A p-value of <0.05 denoted statistical significance. 

 

 

2.9.4. CHARACTERISATION OF EX VIVO MODEL BIOMECHANICS 

The biomechanical properties of vessels pre-treated either with the CCE gel 

(BIOCCE) or with a vehicle gel (BIOVEH) and then subsequently cultured in 

the bioreactor for 12 days (as per the end-stage model) were also characterised. 
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This was carried out using the same method for uniaxial tensile testing described 

in Section 2.9.2. 

Three animals were used for these experiments, with both carotid arteries from 

each animal, providing a contralateral control. A total of three arteries were used 

for each treatment group (BIOVEH/BIOCCE).  
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CHAPTER 3 

EX VIVO MODEL OF AAA 
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CHAPTER 3 EX VIVO MODEL OF AAA 

This chapter describes the methodology used to generate an experimental AAA 

model using porcine carotid arteries in a dynamic flow bioreactor. The first 

section details the experimental groups throughout this project, including the 

various controls used for model validation. The vessel pre-treatment used to 

experimentally induce SMC with an aneurysmal phenotype and the 

configuration of the bioreactor are also detailed within this chapter.  

The bioreactor system used in the present study was used to impart flow-related 

mechanical forces through the arterial wall ex vivo in order to mimic the 

physiological forces present in vivo. 

The bioreactor used in this study is existing equipment and was built and 

designed by Sotirios Korossis of the Institute of Medical and Biological 

Engineering at the University of Leeds (Riches et al., 2013). The surgical 

removal of the tissue was carried out by Marc Bailey, Katy Bridge and Kathryn 

Griffin variously in pairs. Animal sacrifice was carried out under Schedule 1 to 

the Animals (Scientific Procedures) Act 1986 by Central Biomedical Services 

technicians and veterinarian.  

 

3.1. INTRODUCTION 

Experimental models of disease are essential for elucidating mechanisms of 

pathogenesis, therapeutics and treatment. Their importance is, perhaps, even 

more significant in AAA disease because its tendency to only be detected 

clinically once the aorta has dilated significantly: at end-stage disease. 

Experimental models are required to investigate the processes involved before 

the artery reaches a critical size where rupture becomes a problem. 

Genetic, physical and chemical animal models have been developed and used 

for investigations for a number of years (Trollope et al., 2011). Almost three 

decades ago, peri-adventitial elastase treatment was first used in mice to induce 

an experimental AAA, and this has since progressed to using a combination of 
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collagenase or flow disturbance and elastase when translating the methodology 

to large animals (Anidjar et al., 1990, Goericke et al., 2009, Moláček et al., 

2009, Kloster et al., 2015). 

Early research concentrated on small animal models due to their relatively low 

cost, genetic malleability and ease of husbandry. Large animal models are 

desirable due to a more closely matched geometry and physiology to humans, 

but these are limited by practical requirements such as housing and handling 

costs. The advent of bioreactors has, in recent years, enabled large animal tissue 

to be studied ex vivo without the practicalities and logistics of keeping large 

animals, by mimicking the physiological environment for a small tissue 

construct (Yazdani and Berry, 2009, Touroo and Williams, 2012).  

The aim of this chapter is to describe the methodology used to create a 

chemically induced ex vivo porcine tissue AAA model in a bioreactor. The 

bioreactor enables media to flow through the lumen of the artery, imparting 

shear stress and intraluminal pressure on the SMCs and endothelial cells, whilst 

maintaining tissue viability for up to 12 days. 

 

3.2. MATERIALS AND REAGENTS 

3.2.1. REAGENTS 

The supplier details for the reagents used to create the ex vivo bioreactor model 

are detailed below, in Appendix A.7.1, Table A.8. Details of media composition 

AAA are given in Table 2.2. 

 

3.2.2. MATERIALS AND CONSUMABLES 

The supplier details of materials and consumables used throughout this chapter 

are detailed in Appendix A.7.2, Table A.9. 
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3.2.3. BIOREACTOR COMPONENTS 

The components for the main bioreactor chamber and the equipment used in 

tandem with the bioreactor are pictured in Figure 3.1 and details are given in 

Table 3.1 and Table 3.2 respectively. 

 

Figure 3.1 Disassembled components of bioreactor. A) Components of main 

bioreactor chamber. B) media reservoir and compliance jar adaptors. Tissue 

paper backing included for photo contrast.  
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Table 3.1 Bioreactor components for single bioreactor system (two are usually run 

in parallel). 

Item Details Qty. 

Bellows 316- stainless steel 1 

Inlet connector 316- stainless steel 1 

Chamber 316- stainless steel 1 

Outlet connector 316- stainless steel 1 

Shaft 316- stainless steel 1 

Shaft adaptor 316- stainless steel 1 

Gasket connector 316- stainless steel  

Compliance chamber 316- stainless steel 1 

Backplate 316- stainless steel 1 

Glass plate Float glass (custom manufactured by 

Instrument Glasses, Enfield, UK) 

1 

Metal overlay 316- stainless steel 1 

Rubber overlay Silicone rubber 1 

Cannula 316- stainless steel 2 

Gasket Silicone rubber (custom manufactured by 

Thomson Bros. Ltd, Newcastle, UK) 

1 

O-rings Silicone rubber (Thomson Bros. Ltd., 

Newcastle, UK) 

10 

Screws (M3 and M6) 316- stainless steel 24 

Media reservoir bottle 1000ml glass bottle (Simax, Czech 

Republic) 

1 

Media reservoir adaptor 316- stainless steel 1 

Compliance jar 500ml glass bottle (Simax, Czech 

Republic) 

1 

Compliance jar adaptor 316- stainless steel 1 

Silicone seal Silicone rubber 2 
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Table 3.2 Bought-in bioreactor components and equipment. 

Item Supplier 

Medical gas cylinder (5% CO2 v/v 

O2) 

BOC Medical, Greater Manchester, 

UK 

Temperature controlled water bath Techne, Bibby Scientific Ltd, Staffs. 

UK 

Variable peristaltic pump (Masterflex 

Model 77200-50) 

Cole-Parmer, London, UK 

Masterflex tubing Phar Med, Saint Gobain, West 

Midlands, UK 

Silicone tubing Cole-Parmer, London, UK 

Electrocardiogram (ECG) machine 

(ECG Triscope Press 8041) 

SW Healthcare, FL, US 

Temperature monitor and probe Eurotherm, West Sussex, UK 

 

3.2.4. MEDIA COMPOSITION 

For whole organ culture, in both the bioreactor and in culture plates, a 30% 

foetal calf serum culture (FCS) medium was used as it has been shown 

previously to preserve whole vessel viability (Porter et al., 1996). Whole organ 

culture medium was composed of 30% v/v FCS, 2mM L-Glutamine, 10 

units/mL penicillin, 10µg/mL streptomycin; 250ng/mL Fungizone® and 0.05% 

v/v Gentamicin. For each bioreactor chamber, a volume of 816.5 ml was used 

(240 ml FCS, 8ml L-Glutamine, 8ml Antibiotic-Antimycotic and 495μl of 

Gentamicin). 

For washing, transport and short term storage of tissue, FGM was used 

throughout the process. 

 

3.3. TISSUE FOR EX VIVO AAA MODEL 

Porcine carotid arteries were selected to be used in order to create the 

experimental AAA as firstly, they provide a relatively long length of artery free 
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from side branches and secondly, there are two of them within each animal 

providing a contralateral control and thereby reducing bias due to inter-animal 

variance. It was necessary for any tissue involved with organ or cell culture to 

be harvested and maintained in complete sterility. Tissue harvesting occurred in 

a sterile theatre setting. 

 

3.3.1. ANIMALS 

All animal procedures were conducted according to UK Home Office 

regulations by trained technicians. A project license was not required as no 

regulated procedures were performed as part of the experiments. Female 65kg 

pigs were sedated with Stresnil (Elanco Animal Health, Hampshire, UK), 

anaesthetised with Hypnovel (Hoffman La Roche, Basel, Switzerland) and 

terminated via Pentoject (Animalcare, Yorkshire, UK) injection according to 

Schedule 1 under the Animals (Scientific Procedures) Act 1986. Both left and 

right carotid arteries (PCA) were harvested under aseptic conditions via anterior 

approach (Figure 3.3). The vessels were then excised of adventitia and 

superfluous connective tissue in a Class II laminar flow cabinet (Figure 3.2). 
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Figure 3.2 Superfluous connective tissue and adventitia were excised from the 

porcine carotid arteries following harvesting. 

 

3.3.1.1. SURGICAL APPROACH 

Surgical extraction of the tissue was performed by a team of two trainee 

surgeons. In all cases an anterior approach to the carotid artery was made 

through the neck of the animal. One incision was made through which both left 

and right common carotid arteries were harvested. The sternohyoideus muscle 

was located and the approach to each carotid artery was located laterally to the 

sternohyoideus on both sides, superior to the salivary gland. The common 

carotid artery lies in close proximity to the vagus nerve and the internal jugular 

vein. Images of the surgical approach used for all tissue harvesting are shown 

in Figure 3.3. Although the carotid artery was selected for this project 

specifically for its relatively long length with lack of side branches, occasionally 

a side branch would be present which is an anatomical peculiarity of singular 

animals. If a side branch was present, it was sutured closed in order to retain 

characterised flow and pressure throughout the carotid artery when installed in 

the bioreactor. 

Carotid artery 

Excised superfluous tissue 
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Figure 3.3 Surgical approach to left common carotid artery used for all sterile 

harvests throughout this study. CCA = common carotid artery, IJV = internal 

jugular vein. Images are in order from A to D in chronological order 
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3.3.2. NON-STERILE DISSECTION OF CAROTID ARTERY 

Porcine aortic arch and carotid artery sections were obtained from 7 – 8 month 

old Large White pigs from a local abattoir. The carotid artery was isolated from 

the segment and all connective tissue and surrounding vasculature was removed 

by blunt dissection removed within 3 to 4 hours of slaughter. Arteries were then 

washed for 30 minutes in PBS containing EDTA (2.7mM; 0.1% w/v) in order 

to remove excess blood. 

 

3.4. BIOREACTOR FOR ORGAN CULTURE 

3.4.1. BIOREACTOR CONFIGURATION 

The bioreactor system used for experimentally inducing AAA ex vivo was 

designed and constructed in the Institute of Medical and Biological Engineering 

at the University of Leeds by Dr. Sotirios Korossis (Riches et al., 2013). The 

system was designed to culture a length of artery under dynamic flow culture 

(with the capacity to be steady or pulsatile flow) and maintain it for up to twelve 

days. Briefly, the bioreactor consisted of four main parts: i) media reservoir and 

gas exchange, ii) variable peristaltic flow pump, iii) compliance chambers and 

iv) the bioreactor chamber itself.  

Media reservoirs of 30% FCS organ culture media were contained within a 

water bath running at 44°C, allowing for heat loss along the system to maintain 

the media in the bioreactor chamber at 37°C. Gas (5% v/v CO2 in O2) was 

supplied into the media reservoir through a hydrophobic sterile 0.22µm filter 

(Millex®, Millipore, Hertfordshire, UK) to maintain sufficient oxygen levels 

throughout the system.  

A variable peristaltic pump (Masterflex Model 77200-50, Cole-Parmer, 

London) forced media from the media reservoir outlet to the compliance jar inlet 

via Masterflex tubing. The peristaltic pumping action of the pump introduced a 

non-characterised pulsatile component into the system flow and so the purpose 

of the compliance jar was to transform it to steady flow (Figure 3.4). The 



111 

 

compliance jar was then connected to the bioreactor chamber inlet with silicone 

tubing. At the inlet, the inlet pressure was monitored using a sterile pressure 

transducer (Argon Medical, TX, USA) and ECG machine. From the inlet, the 

media passed through two cannulae with an inner diameter of 1mm and an outer 

diameter of 3mm, onto which the artery was mounted using sutures of sterile 

catgut. The cannula at the outlet (Figure 3.5) was able to translate back and forth 

to accommodate any changes in length of the artery which may occur, for 

example, due to pressurisation. The media was then pumped from the outlet 

cannula through silicone tubing to a downstream compliance chamber attached 

to the bioreactor chamber. This downstream compliance chamber simulated the 

compliance of downstream vasculature which would be present physiologically. 

From here, the media was pumped into the bioreactor chamber outside of the 

lumen of the artery, enabling gas exchange and nutrient delivery to the 

adventitia. The media was then pumped back to the reservoir through silicone 

tubing. 

 

Figure 3.4 Schematic of bioreactor configuration used to generate ex vivo AAA 

experimental model 
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Figure 3.5 Porcine carotid artery installed into the bioreactor chamber with flow 

direction right to left. Catgut sutures are used to affix the artery onto the 

cannulae. 

 

The bioreactor enabled flow through the lumen of the artery, imparting shear 

stress (sensed through shear stress responsive genes in the endothelium) and 

pressure through the arterial wall in an attempt to mimic the dynamic 

environment which is present physiologically in vivo (Osol, 1995, Miller, 2002, 

Lu and Kassab, 2011). The shear stress was not monitored or quantified in this 

study as it requires a computational fluid dynamics simulation model to 

determine local wall shear stress. 

 

3.4.2. STERILISATION OF BIOREACTOR FOR ORGAN CULTURE 

It was of utmost importance that the bioreactor system and its related 

components were sterilised and able to remain so during the whole procedure. 

During the experiment, the bioreactor was monitored for signs of contamination 

and was immediately dismantled if any were observed. Prior to 

experimentation, all parts of each bioreactor were completely disassembled and 

the various components laid out on metal trays (Figure 3.1). The trays and all 

of the separate components were then autoclaved at 121°C and 15 lb.sq.in for 

20 minutes. After this, the bioreactor was fully assembled with the exception of 

the tubing and the front glass plate in a Class II flow hood. The partly-assembled 

bioreactor was then autoclaved once more prior to the installation of the artery. 

Tubing, the front glass plates, and the media reservoir and compliance jar 

reservoir adaptors were autoclaved separately. 

 Flow 
Inlet Outlet 

Catgut 
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3.5. CREATION OF EX VIVO PORCINE MODEL 

3.5.1. COMBINED COLLAGENASE AND ELASTASE PRE-TREATMENT 

The combined collagenase and elastase (CCE) gel enabled focal application of 

a protease treatment to the artery. The agar gel was produced by making a 1% 

w/v solution of Ultrapure® Low Melting Point (LMP) agar powder (Invitrogen, 

Life Technologies, Renfrewshire, UK) in HBSS. This solution was then 

sterilised via autoclaving prior to the experimental set-up.  

On the day of the experiment, the 1% w/v agar in HBSS gel was then heated in 

a water bath to 70°C until the gel had completely liquefied. The gel was then 

held at a temperature of 40°C in the water bath to maintain its liquid state. 

Solutions of elastase (porcine pancreatic, 50 u.mg-1, MP Biomedicals, Illkirch, 

France) and collagenase (Type IIa, Worthington Biochemical, NJ, USA) in 

HBSS were sterilised via syringe-filtering through 0.22μm Millipore® filters. 

These solutions were added to an equal volume of melted agar gel solution to 

produce a gel with final concentrations of 1.5 mg.ml-1 elastase and 3 mg.ml-1 

collagenase, referred to as CCE treatment gel according to previous work on 

protocols in our laboratory (Riches et al., 2013). The vehicle (VEH) gel was 

produced by adding an equal volume of sterile HBSS to the melted 1% w/v agar 

in HBSS solution. The gels were then left at 4°C until set; generally less than 

five minutes was required. Figure 3.6 shows the solidified treatment gels.  



114 

 

 

Figure 3.6 Vehicle and CCE gels were held at 4°C until they were sufficiently set 

for focal application. 

 

Two rings of tissue were then removed from the end of each artery to provide 

tissue for static culture, histology and FRESH SMC explant culture. The centre 

portion of each artery and the two corresponding rings of tissue were then 

treated with either the CCE or vehicle gel using a sterile swab (Figure 3.7). The 

treated tissue was then incubated for three hours at 37°C in a humidified 

incubator gassed with 5% CO2 v/v in air. 

 

Figure 3.7 Focal treatment with either vehicle (left) or CCE gel (right) on porcine 

carotid artery - treatment incubation set-up. 

 

Following the incubation period, the treatment gel was then gently removed 

using a sterile swab and the tissue was washed with FGM. 
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3.5.1.1. STATIC CULTURE 

The two tissue rings treated with the gel pre-treatment were then placed into a 

6-well plate and supplemented with 4 ml 30% FCS whole organ culture medium 

changed at 3 day intervals. Throughout the culture period, tissue was maintained 

at 37°C in a humidified incubator gassed with 5% CO2 in air. 

 

Figure 3.8 Arterial rings cultured under static conditions in a 6-well plate. Tissue 

treated with left) vehicle gel and right) CCE gel. Tissue rings were either fixed for 

histology or used for SMC explant. 

 

3.5.1.2. BIOREACTOR CULTURE 

Each whole artery was mounted into the bioreactor using two loops of sterile γ-

irradiated catgut at each end. Each bioreactor chamber was supplied with 816.5 

ml of 30% FCS whole organ culture medium (Section 3.2.4) in the respective 

reservoir. Throughout the culture period, the media reservoirs were held at 44°C 

in a water bath, higher than the required 37°C required for the artery in order to 

accommodate heat loss between the reservoir and the chamber. Chamber 

temperature was monitored with a probe installed in the top of the chamber. A 

low-flow rate supply of 5% CO2 v/v in O2 was filtered through a 0.22μm filter 
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and gassed through the media reservoir continuously throughout the culture 

time. The pressure at the inlet was recorded using a sterile pressure transducer 

and an upstream clamp was used to equalise any pressure disparity between the 

separate chambers. The pressure in each of the bioreactors running in parallel 

was maintained approximately the same using an upstream clamp of the 

bioreactor system. 

 

3.6. BIOREACTOR DYNAMIC ENVIRONMENT 

In order to characterise the dynamic environment which the bioreactor 

provided, the flow rate and local pressures at various points around the 

bioreactor were measured. There were four available points in the bioreactor 

system at which the pressure was able to be measured using a transducer 

connected to an ECG machine. These points are shown as red numbers in Figure 

3.9: they correspond to 1) the bioreactor inlet, 2) the lumen of the vessel, 3) the 

shaft of the bioreactor and 4) the chamber outlet. The pressures were measured 

using both an artificial artery (silicone tubing) and a non-sterile porcine carotid 

artery. 

 

Figure 3.9 Bioreactor schematic showing the four available local pressure 

measuring points (shown as red numbers). 
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3.6.1. CALIBRATION OF PRESSURE TRANSDUCERS 

The pressure transducers were connected to the ECG machine and were then 

calibrated using a manual sphygmomanometer (Figure 3.10). During this, the 

pressure was manually increased in 20mmHg increments up to 140mmHg using 

the sphygmomanometer. The pressure reading on the ECG machine was 

recorded at each of the 20mmHg pressure increments. The measured vs. the 

actual pressure was imported in Microsoft Excel 2013 (Microsoft, WA, USA) 

and a linear best fit line determined using in-built least squares regression code. 

The linear equation of the linear best fit line was used as a calibration equation. 

Pressure readings from the ECG machine via the pressure transducer were 

converted to actual readings using this equation. The pressure calibration graphs 

can be found in Appendix E. 

During sterile bioreactor experiments, it was not possible to calibrate the 

pressure transducer prior to initiating the experiment. This would have 

compromised the sterility of the system. A brand new, unused pressure 

transducer was used for each bioreactor experiment. 

 

Figure 3.10 Manual sphygmomanometer used for calibration of pressure 

transducers. 
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3.6.2. MEASUREMENT OF LUMINAL PRESSURE 

The pressure at position 2, in the lumen of the artery, was measured by inserting 

a modified hypodermic needle connected to a pressure transducer through the 

arterial wall. The tip of the hypodermic needle was milled down to achieve a 

flat profile to eliminate the resistance of flow which would be present with a 

standard graduated tip.  

Measurement of the luminal pressure at position 2 was not possible with the 

front glass plate in place on the front of the bioreactor chamber. This was 

overcome by measuring pressures at positions 1, 3 and 4 relative to position 1. 

The glass plate was then removed and the fluid flow diverted so that it returned 

to the media reservoir before reaching the bioreactor chamber. In this way, 

pressures at positions 1, 2 and 3 could be measured and expressed as a pressure 

drop relative to position 1. The two sets of data were then able to be combined 

in a full data set. Figure 3.11 shows the measurement of the luminal pressure at 

position 2 with the glass plate removed from the chamber. 

 

Figure 3.11 Measurement of luminal pressure with front glass plate removed from 

bioreactor chamber. 
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3.6.3. FLOW RATE CALIBRATION 

The pump used throughout the course of this study (Masterflex Model 77200-

50) was controlled with a continuous control dial with arbitrary number 

markings. The actual flow rate was measured by setting up the bioreactor and 

allowing the system to fill up with fluid so that it was returning to the media 

reservoir. The silicone tube leading back to the media reservoir was then 

detached and allowed to empty into a measuring cylinder. The system was left 

to empty fluid into the measuring cylinder for 1 minute before the silicone tube 

was removed. The volume of the fluid in the measuring cylinder corresponded 

to the actual flow rate, given in ml.min-1.  

A porcine carotid artery was installed into the bioreactor and the flow rate was 

measured in triplicate at 7 separate flow rates corresponding to the arbitrary 

numbers on the continuous control knob of the pump: 1, 1.5, 2, 2.5, 3, 3.5 and 

4. Hand drawn lines were added on to the control dial to denote the pump 

reading values at 1.5, 2.5 and 3.5. The results are shown in Figure 3.12. 
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Figure 3.12 Flow rate calibration with porcine carotid artery with linear fit 

trendline (r2=0.99). Graph shows mean ± 95% confidence intervals, (n=3). 

 



120 

 

A linear best fit line was applied to the data using Origin Pro 8.5.1 graphing 

software with in-built linear regression code (OriginLab Corporation, MA, US), 

giving an adjusted R2 value of 0.99 (Figure 3.12). An adjusted R2 value gives 

an indication of the degree of variation explained only by the independent 

variables that actually affect the dependent variable. From this, it was concluded 

that the pump control dial acted to alter the flow rate in a linear manner, rather 

than exponential. This relationship could then be used to determine the required 

flow rate through the bioreactor system. 

The normal carotid flow rate in humans is in the range of approximately 360 – 

720 ml.min-1 (Bogren et al., 1994, Oshinski et al., 2006). However, a much 

lower flow rate of 120 ml.min-1 found throughout the literature was chosen for 

the bioreactor experiments: the ex vivo nature of the experiments demanded that 

the flow rate must allow optimal oxygen perfusion and nutrient delivery for the 

tissue (Swartz et al., 2005, Hahn et al., 2006, Aper et al., 2007, Riches et al., 

2013). Although a relatively large difference between the chosen and 

physiological flow rates was present, both the vehicle control and CCE treated 

arteries were cultured using the same flow rate so the relative differences could 

be analysed. 

 

3.6.4. CHARACTERISATION OF LOCAL PRESSURES 

The local pressures at positions 1, 2, 3 and 4 were measured at three different 

flow rates using a pressure transducer (Argon Medical, TX, US) and an ECG 

machine (SW Healthcare, FL, US). The flow rates corresponded to the arbitrary 

number markings on the control dial on the pump, as a point of reference. The 

mean local pressures at the specified positions when a porcine carotid artery 

was installed are shown in Figure 3.13. 
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Figure 3.13 Mean relative pressures at specified positions around the bioreactor 

at three flow rates with non-sterile porcine carotid artery. (n=5), graph shows 

mean ± 95% confidence intervals. 

 

In all cases, the sharpest pressure drop occurred between position 1 and position 

2, the inlet and luminal pressure respectively. The pressure drop increased when 

the flow rate was increased – from 42.0±3.1 to 133.4±3.1 mmHg at the lowest 

(66ml.min-1) and highest (131ml.min-1) flow rates respectively in the carotid 

artery, which was as expected. 

The proportion of the pressure drop throughout the bioreactor system at the 

three specified flow rates are shown in Table 3.3. The greatest proportion of the 

pressure drop throughout the system occurred between positions 1 and 2, at the 

bioreactor inlet and in the lumen of the artery respectively. At each flow rate, 

the proportional pressure drop at each position was similar. Increasing the flow 

rate up to 131 ml.min-1 in steady flow did not affect the pressure profile of the 

bioreactor system.  
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Table 3.3 Percentage pressure drop between specified bioreactor positions at flow 

rates of 66, 103 and 131 ml.min-1. 

 Flow rate 

Position 66 ml.min-1 (%) 103 ml.min-1 (%) 131 ml.min-1 (%) 

1 - 2 48.0 ± 0.7 46.9 ± 0.7 47.4 ± 4.2 

2 - 3 39.8 ± 2.8 42.9 ± 1.6 39.9 ± 2.0 

3 - 4 12.3 ± 2.3 10.2 ± 2.1 12.7 ± 2.7 

 

The characterisation of local pressures throughout the bioreactor system is 

important as the ex vivo AAA model required the artery to remain sterile in order 

to be cultured as a whole organ for up to twelve days and subsequently derive a 

SMC explant culture for structural and functional assays. In order to maintain 

sterility in the system, it was not possible in the current configuration to measure 

the luminal pressure in the artery (at position 2). The characterisation of the 

pressure drop shown in Table 3.3 enables a calculation of the luminal pressure 

in the artery installed in the bioreactor from measuring the pressure at the inlet 

(position 1). The luminal pressure was a mean 47.4% drop relative to the 

pressure at the bioreactor inlet. The measurement of the pressure at the 

bioreactor inlet was possible during the creation of the ex vivo AAA model 

without compromising sterility. 

 

3.6.5. EX VIVO AAA MODEL PRESSURES 

During the course of this study, nine successful bioreactor experiments were 

completed. The pressure at the bioreactor inlet and the temperature of the media 

in the bioreactor chamber were recorded once per day during the experiments.  

The luminal pressure in the porcine carotid artery was maintained at 

approximately 65 mmHg via monitoring of the ECG machine, the diastolic 

pressure of the carotid artery in humans and within the normal range for pigs  
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(73 – 230 mmHg in systole and 52 – 165 mmHg in diastole) (Hodgkin et al., 

1982, Morgan and Hosking, 2007). In order to accomplish this, the silicone 

tubing returning from the bioreactor chamber to the media reservoir could be 

clamped to increase the upstream pressure throughout the bioreactor system to 

the required value. 

From the data presented in Section 3.6.4, the pressure at the inlet should be 

47.4% greater than 65 mmHg giving the desired inlet pressure at 96 mmHg. The 

inlet pressures taken over the course of eight bioreactor experiments, three of 

which ran for three days, are shown in Figure 3.14. The mean inlet pressures 

between CCE and VEH treated arteries were indistinguishable (94.2±1.6 vs. 

96.0±1.8 mmHg respectively, mean ± 95% confidence intervals, p=0.14, 

normalised 2-sample two-tailed t-test). The two outliers in the data presented 

are from the same animal – the bioreactor system design is such that it is 

complex to manually decrease pressure whereas increasing system pressure is 

simply achieved by clamping upstream. 
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Figure 3.14 Inlet pressures of CCE and VEH treated porcine vessels (n=8). □ = 

outlier (from same animal in both groups). ■ =mean, shaded area = interquartile 

range, centre line = median, whiskers = minimum to maximum. 
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3.7. DISCUSSION 

The method described throughout this chapter enabled aseptic parallel culture 

of viable porcine carotid arteries under steady flow conditions for up to twelve 

days. When CCE treatment was applied to the artery prior to culture, it is 

understood that a SMC phenotype is induced which is comparable to human 

AAA SMCs (Riches et al., 2013). Following CCE pre-treatment, a period of 

three days of bioreactor culture was chosen to model early-stage AAA disease. 

Previously in a mouse model, it was shown that although aneurysmal dilatation 

was observed after 14 days, phenotypic switching of the SMCs was present only 

seven days after elastase perfusion (Ailawadi et al., 2009). The rationale for 

choosing a culture period of three days to simulate early AAA was to elucidate 

any alterations in SMCs prior to switching phenotype. These potential 

alterations may then serve as molecular targets for therapeutics. 

The use of steady flow through the arterial lumen was used in the only other 

AAA bioreactor model to date. However, the methods differ greatly between 

the two studies: Touroo and Williams seeded stromal vascular fraction cells 

onto previously dilated ePTFE scaffolds and then used the bioreactor to 

differentiate the cells and seed the scaffold (Touroo and Williams, 2012). The 

model described in this chapter was not intended to induce differentiation from 

stem cells, but removes the functional organ and cultures it in an ex vivo 

environment. Therefore, the structure of the organ and organisation of the cells 

are exactly as they would exist in vivo as the artery is installed into the bioreactor 

and does not require tissue conditioning. Bioreactors are more commonly used 

for imparting forces onto a scaffold seeded with some type of stem cell with an 

aim of differentiating the cells into the desired phenotypes using 

mechanotransduction (Niklason et al., 1999, Sivarapatna et al., 2015). Although 

pulsatile flow is closer to the physiological haemodynamics, it has been shown 

that steady flow is able to induce an AAA SMC phenotype after 12 days in the 

bioreactor, as validated by human AAA SMCs previously in this laboratory by 

human AAA SMCs (Riches et al., 2013). 

The luminal pressure was maintained at approximately 65mmHg, measured by 

calculating the pressure drop from the bioreactor inlet. This value was selected 
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as it is within the normal range for carotid pressure in pigs and humans 

(Hodgkin et al., 1982, Morgan and Hosking, 2007). This value was, however, 

at the low end of these pressure ranges: the artery once subjected to CCE 

treatment was relatively weak and so a balance was struck between 

physiological pressure and risk of rupture of the arteries. Once rupture of an 

artery had occurred in the bioreactor, the cells in the artery were no longer 

subjected to a known pressure and flow regime, if at all. 

The use of a bioreactor in this model of AAA enables a whole organ culture of 

a porcine carotid artery under simulated physiological conditions. Although 

very widely used, relatively low cost, and relatively simple to implement, a 

common criticism of in vitro models which investigate the behaviour of cells in 

a monolayer is the absence of an extracellular matrix. Recently a burgeoning 

area of research into three-dimensional cell culture has emerged and it is argued 

that a 3D environment better represents the geometry, signalling environment 

and cell-cell interactions which exist in vivo (Lee et al., 2008). The bioreactor 

allowed the culture of arterial cells in a relatively natural state: flow through the 

lumen, pressure imparted transmurally, CO2 and O2 control and physiological 

pressure. In this respect, the ex vivo bioreactor has a benefit over in vitro disease 

models. Additionally, both Dadgar et al. and Kratzberg et al. aimed to induce 

sufficient passive stretch in arterial tissue such that it may form an experimental 

aneurysm (Dadgar et al., 1997, Kratzberg et al., 2009). They concluded that the 

pathological remodelling seen in AAA was an active process and would require 

arteries to remain functional and viable whilst it was induced with elastase or 

collagenase. Again, the bioreactor model of AAA maintained viability of the 

artery and SMCs and enabled this active remodelling after application of the 

CCE treatment.  

The bioreactor AAA model also offers benefits over animal models. The 

porcine arteries used were significantly larger than mouse or rat arteries and 

were more comparable in size and anatomy to humans (Trollope et al., 2011). 

The practicalities and cost of husbandry of large animals is significant: the 

bioreactor AAA model allows the artery to remain viable as a whole organ under 

flow for up to 12 days without the need for additional costs required for 
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husbandry of a large animal. In the first in vivo aneurysm model in swine, 

Goericke et al. noted that high time and monetary costs might limit the routine 

use of this model (Goericke et al., 2009). However, the use of the pig AAA 

model is becoming more common in recent years and has been used to assess 

implantation of mesenchymal stem cells as a therapeutic treatment for AAA 

(Turnbull et al., 2011, Houdek et al., 2013, Lin et al., 2013, Kloster et al., 2015). 

Another benefit that the AAA bioreactor model may offer over in vivo models 

is the ability to manipulate and control the haemodynamic environment. Lin et 

al. induced an AAA in pigs using an arterial stenosing cuff, without the use of 

a chemical agent designed to degrade the ECM (such as elastase) (Lin et al., 

2013). The dynamic environment has been linked to AAA progression, amongst 

other cardiovascular diseases. Turbulent flow contributes to aneurysm 

development via endothelial injury and accelerated degeneration of the arterial 

wall by an increase in oxidative stress (Miller, 2002). Regions of low shear 

stress in the vasculature contribute towards vascular diseases such as AAA and 

atherosclerosis: increased inflammatory cell infiltration, endothelial 

dysfunction and release of MMP-9 and MMP-2 are all correlated with low shear 

stress (Dua and Dalman, 2010, Norman and Powell, 2010, Lu and Kassab, 

2011). Interestingly, altered haemodynamics and AAA formation have been 

associated with vascular complications of lower-limb amputees. Vollmar et al. 

found the prevalence of AAA to be 5 times greater in patients who underwent 

amputation (Vollmar et al., 1989). A bioreactor AAA model offers the 

opportunity to more tightly control the flow rate and pressure through the lumen 

of the artery without the need for using reagents to increase heart rate and blood 

pressure in vivo. A model is able to be used to investigate the relationship of 

pulse pressure, flow rate and flow turbulence with the development of AAA and 

SMC dysfunction.  

As with every disease model, the limitations of using the bioreactor model to 

elucidate AAA development and processes should be considered carefully. 

Firstly, the dynamic environment in which the artery was cultured ex vivo was 

steady flow in this study as opposed to physiological pulsatile flow. It is well 

documented within the tissue engineering and regenerative medicine field that 
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cyclic stretch, coupled with shear stress, is required for differentiation of 

mesenchymal stem cells into vascular cells (Sivarapatna et al., 2015) and 

reviewed in Riehl et al. (2012). The function of the mature smooth muscle cell 

has been shown to be affected by cyclic tensile strain. Perpendicular SMC 

alignment, increased apoptosis and degradation of α-smooth muscle actin (a 

contractile protein), all associated with increased levels of cyclic strain are all 

mediated through the p38 MAPK pathway (Chen et al., 2003, Goldman et al., 

2003, Wernig et al., 2003). Various biochemical markers secreted by SMCs are 

also affected by cyclic strains, including ECM molecules and growth factors 

(Stegemann et al., 2005). A limitation of this model is that the bioreactor 

experiments were conducted under steady flow which does not impart cyclic 

stretch to the artery as it would be subjected to physiologically. This flow 

regime may therefore affect SMC function and so appropriate control groups 

were included throughout the study in order to understand the effect of the 

bioreactor flow without any pre-treatment. Using isolated cultured SMCs 

presents another limitation inherent to in vitro cell culture work and to the 

culture of SMCs in particular. SMCs possess different embryological origins 

and have the ability to undergo phenotypic modulation. It must therefore be 

considered that culturing isolated SMCs in vitro may have an impact on their 

phenotype (Xie et al., 2011). Cell expansion and culture in vitro also does not 

reflect the natural 3D cell environment where cells are surrounded by an ECM 

and other SMCs. Coupled with the intrinsic ability of SMCs to modulate their 

phenotype, the effect of SMC isolation, expansion and culture in vitro may have 

undocumented effects. Certainly, there have been other studies which do 

document this SMC heterogeneity in culture (Huber and Badylak, 2012, 

Proudfoot and Shanahan, 2012). The nature of in vitro study is that the observed 

behaviour of SMCs is comparable to that observed in vivo. However, using the 

selected functional characterisation assays detailed in Chapter 2, this limitation 

is unavoidable. 

It is thought that the inherent structure of the abdominal aorta leads to 

predisposition of the specific site for AAA formation (Norman and Powell, 

2010). One of the structural parameters contributing to AAA formation in vivo 

is the downstream bifurcation of the aorta into the femoral arteries: this causes 



128 

 

turbulent blood flow and concentrated loci of high and low shear stress which 

have been found to correlate with areas of disease (Ku, 1997). Another study 

has found that higher bifurcation angle is associated with AAA (Sharp et al., 

1982). The lack of bifurcation in the bioreactor to induce these physiological 

concentrations of stress in the upstream artery may therefore also be considered 

a limitation of the model. The ex vivo bioreactor AAA model is especially suited 

to studies involving geometry, as it can be controlled precisely which is not 

typically feasible in vivo.  

Once the artery has been removed from the pig, the only cells that are present 

in any significant number in the bioreactor are SMCs and endothelial cells. The 

majority of fibroblasts are removed via blunt dissection (as shown in Figure 

3.2). However, other studies have shown that there are many other types of cells 

contributing to AAA formation. The inflammatory infiltrate of the AAA is a 

well characterised feature: mast cells, leukocytes and macrophages are found in 

greater numbers in AAA compared to occlusive atherosclerotic arteries (Koch 

et al., 1990). Mast cells are considered to play a major role in AAA formation 

via MMP activation and secretion, such that a mast cell inhibitor has recently 

been trialled in AAA patients (Swedenborg et al., 2011, Sillesen et al., 2015). 

Infiltration of leukocytes into the media of the aorta lead to SMC depletion and 

generation of reactive oxygen species (Davis et al., 2015). Macrophages secrete 

inflammatory cytokines and chemokines in AAAs such as monocyte 

chemotactic protein-1 (MCP-1), interleukin-8 (IL-8) and tumour necrosis 

factor-α (TNF-α) (Koch et al., 1993, Satoh et al., 2004). Any compounding 

effects of cells which are not native to the artery but are recruited during AAA 

development on the function of SMCs are eliminated in the bioreactor model of 

AAA. This is at once both a limitation and a benefit of the model: it does not 

exactly simulate the conditions in vivo attributed to other cell types which may 

affect the structure of the arterial tissue and the SMCs, yet the contributions of 

the SMCs to AAA formation can be studied with clarity if they are isolated from 

such compounding factors. 

The ex vivo bioreactor model of AAA allowed culture of a porcine artery for up 

to 12 days under dynamic flow conditions. When the artery was focally pre-
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treated with a combination of collagenase and elastase, the SMCs in the artery 

after 12 days in bioreactor culture are comparable to human end-stage AAA 

SMCs (Riches et al., 2013). The local pressures at positions throughout the 

bioreactor under steady flow have been characterised in order to understand the 

dynamic culture environment. The flow rate through the bioreactor under steady 

flow has also been calibrated with regards to the peristaltic pump. The 

bioreactor AAA model represents a practical and relatively low cost large 

animal model of AAA which has been used to characterise the structure and 

function of SMCs over time and their contribution to arterial biomechanics in 

the subsequent chapters of this thesis. The aim is to uncover therapeutic targets 

of AAA in SMCs in the early-stages of the disease. 
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CHAPTER 4  TISSUE STRUCTURE OF EX VIVO 

AAA MODEL 

This chapter examines the changes in structure of tissue in terms of 

histoarchitecture and luminal perimeter due to the bioreactor AAA model 

methodology described in the previous chapter (Chapter 3). Firstly, the effect 

of dynamic/static culture, CCE treatment and model stage (EARLY/END) on 

tissue histoarchitecture will be examined. The last section details the vessel 

dilation seen in the bioreactor AAA model in terms of luminal perimeter 

(Section 2.7.2.2). 

 

4.1. INTRODUCTION 

A ubiquitous characteristic of AAA is the degradation and fragmentation of the 

extracellular matrix (ECM), most notably the elastin component. The function 

of elastin is to provide the recoiling mechanism of the arterial wall in response 

to blood pressure pulses. The other main component of the ECM is load-bearing 

collagen fibrils; the fate of collagen in response to AAA formation appears to 

be less consistent, with various studies finding levels to increase, decrease and 

remain unchanged. It is, however, the generally accepted view that collagen 

content tends to increase in AAA. These alterations in the composition of the 

ECM are coupled with a loss of SMCs throughout the arterial wall (Lopez-

Candales et al., 1997, Henderson et al., 1999). When considering suitability of 

animal models, often the argument for the success of a model centres around 

the ability to mimic the histological structure of the human disease as opposed 

to a more crude surgical patch model (Daugherty and Cassis, 2004, Tsui, 2010, 

Trollope et al., 2011). The gold standard mark of success for experimental AAA 

models is to be able to induce a progressive dilatation of the artery.  

Exploring the structure of the ECM in the ex vivo model is useful, not only to 

compare it to the structure of human AAA, but also to compare it to other in 

vivo models as a comparator. To do this, histological staining of elastin and 

collagen and immunostaining of α-smooth muscle actin (α-SMA) were 
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undertaken across various treatment groups with various combinations of 

treatment and culture conditions at two different time-points. The effects of the 

CCE treatment and dynamic bioreactor culture alone were investigated, as well 

as the effect of the combination of both. 

Porcine carotid arteries were subjected to either a pre-treatment containing a 

combination of collagenase and elastase or a vehicle gel treatment. The 

treatment was washed off after 3 hours and the arteries were cultured in parallel 

bioreactors. This method is fully described in Chapter 3. The arteries were 

cultured in the bioreactor for either 3 days or 12 days representing the early and 

end-stage disease respectively (Riches et al., 2013). Corresponding arterial rings 

were also cultured statically.  

 

4.2.  CHAPTER AIMS AND OBJECTIVES 

The aim of the work presented in this chapter was to investigate the 

histoarchitecture and gross morphology of the tissues produced using the ex vivo 

bioreactor model of AAA protocol as fully described in Chapter 3. The effect 

of the bioreactor culture and the CCE treatment used alone and in combination 

was examined. In terms of arterial structure, the ex vivo AAA model tissue was 

then compared to human AAA tissue as reported in the literature as an 

evaluation of the model. These changes in gross morphology as a result of 

treatment or culture regime were investigated with respect to time, as 

determined at two time-points representing the early- and end-stage AAA 

disease. 

 

4.2.1. OBJECTIVES 

Specifically, the objectives of this chapter were: 

1 To examine changes in the gross morphology of the whole vessel under 

various treatment and culture regimes at two time-points, 3 days 

(EARLY) and 12 days (END). 
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2 To examine the levels of elastin, collagen and α-smooth muscle actin 

qualitatively at these points 

3 To determine changes in the luminal perimeter of the artery at these 

points 

 

4.3. TISSUE MORPHOLOGY 

Quantitative measurements of the gross morphology of the arteries once 

installed into the bioreactor was not possible, or precise enough, as maintaining 

sterility was of utmost importance during the culture period. Therefore, 

introducing new components into the chamber as a reference for image analysis 

from photographs was not deemed possible. Representative qualitative images 

of the arteries installed into the bioreactor and after removal are shown in Figure 

4.1. In general, the BIOVEH arteries did not show distension, even when 

pressurised. In contrast, CCE treated tissue tended to be much more distended 

when subjected to the same pressure and flow conditions in the bioreactor. 

Often, the wall of the BIOCCE arteries was observed to be translucent – this 

can be seen in Figure 4.1A in the centre of the BIOCCE artery. Once the 

BIOVEH and BIOCCE arteries were removed from the bioreactor, the greater 

degree of distention in the BIOCCE arteries compared to BIOVEH arteries was 

still apparent. 
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Figure 4.1 Observed differences in tissue morphology after culture in bioreactor.  

Representative images of BIOVEH and BIOCCE vessels A) during culture in 

bioreactor and B) after removal from bioreactor chamber after 12 days in culture 

(END). 

 

4.4. HISTOARCHITECTURE OF CULTURED ARTERIES 

Tissue samples from the five experimental groups (details in Table 2.1) were 

fixed and used for histological and immunohistochemical analysis. Briefly, 

these five groups were: FRESH, tissue was fixed immediately following 

harvest; SVEH, tissue was treated with vehicle gel pre-treatment and cultured 

in a 6-well plate; SCCE, tissue was treated with CCE gel pre-treatment and 

cultured in a 6-well plate; BIOVEH, tissue was treated with vehicle gel pre-

treatment and cultured in the bioreactor; BIOCCE, tissue was treated with CCE 

gel pre-treatment and cultured in the bioreactor. 

Each of these static and bioreactor cultured experimental groups was either 

cultured for 3 days, with an aim to mimic early-stage AAA disease (EARLY) 

BIOVEH 

BIOCCE 

A 

B 

BIOVEH 

BIOCCE 
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or for 12 days, mimicking the end-stage AAA disease (END). Tissue sections 

were stained either with Sirius Red for collagen staining or with α-smooth 

muscle actin (α-SMA) and Miller’s elastin. The methods used for 

immunohistochemical and histological analysis are given in detail in Sections 

2.7.1 and 2.7.2 respectively. 

 

4.4.1. STATIC CULTURE 

Qualitative histological analysis did not reveal any considerable alterations in 

SVEH tissue compared to FRESH in both EARLY and END models; both had 

a presence of ordered elastin (stained purple) throughout the media, distinct 

arterial layers and a collagenous adventitia (Figure 4.2, A, B, D, E; Figure 4.3, 

A, B, D, E). EARLY-SCCE tissue displayed fragmented and disrupted elastin 

fibres throughout all three arterial layers, although some elastin fibres were still 

present in the tissue. There were no gross changes in collagen histoarchitecture 

in EARLY-SCCE tissue compared to FRESH (Figure 4.2, D and F). In END-

SCCE a complete absence of elastin fibres was observed alongside punctate α-

SMA staining (Figure 4.3, C). No obvious difference was observed in terms of 

distribution of collagen in END-SCCE compared to FRESH (Figure 4.3, D and 

F). 

The gross morphology of FRESH, SVEH and SCCE sections were all 

comparable to each other with no notable changes in medial thickness or lumen 

size. In both the EARLY model and the END model, SVEH histoarchitecture 

was comparable to FRESH (Figure 4.2, A, B, D, E; Figure 4.3 A, B, D, E). 

However in SCCE tissue there was only a partial loss of the elastin network in 

the EARLY model, yet there was almost a full loss of elastin throughout the 

arterial wall in the END model (Figure 4.2, C; Figure 4.3, C). 
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Figure 4.2 Representative images of α-smooth muscle actin with Miller’s elastin 

co-stain  (left; A, B, C) and Picrosirius Red stain (right; D, E, F) of EARLY 

FRESH (A, D), SVEH (B, E) and SCCE (C, F) tissue. Brown = α-SMA, purple = 

elastin, red/green = collagen. Arrows indicate loss of elastin fibres. Scale bar = 

200µm.  
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Figure 4.3 Representative images of α-smooth muscle actin with Miller’s elastin 

co-stain (left; A, B, C) and Picrosirius Red stain (right; D, E, F) of EARLY FRESH 

(A, D), SVEH (B, E) and SCCE (C, F) tissue. Brown = α-SMA, purple = elastin, 

red/green = collagen. Arrows indicate loss of elastin fibres. Scale bar = 200µm.  

 

4.4.2. BIOREACTOR CULTURE 

In the EARLY model, BIOVEH tissue retained distinct arterial layers with 

abundant α-SMA in the media, an internal elastic lamina next to the lumen and 

an adventitia rich in elastin and collagen: features also found in FRESH tissue 

(Figure 4.4, A and C). Gross morphology of BIOVEH tissue in the EARLY 

model was also comparable to FRESH tissue. The collagen content of BIOVEH 
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tissue was similar to that of FRESH and statically cultured tissue, with uniform 

presence throughout the media and to a greater degree in the adventitia. 

 Even within the time-frame of the EARLY model, BIOCCE tissue had a 

distended shape, with medial thinning and a large lumen (Luminal diameter is 

analysed in Section 2.7.2.2). There is a complete loss of elastin throughout the 

artery and an absence of the internal elastic lamina (Figure 4.4, B and D). 

Throughout the media there was α-SMA actin staining comparable to BIOVEH 

tissue, indicating an abundance of SMC.  Despite considerable changes in gross 

morphology and the loss of the elastin network, the arrangement of collagen 

fibres in EARLY-BIOCCE tissue did not appear different from BIOVEH, 

FRESH or statically cultured tissue, with uniform presence throughout the 

media (Figure 4.4, C and D).  

 

Figure 4.4 Representative images of α-smooth muscle actin with Miller’s elastin 

co-stain (left; A, B) and Picrosirius Red stain (right; C, D) of EARLY-BIOVEH 

(A, C) and BIOCCE (B, D) tissue. Brown = α-SMA, purple = elastin, red/green = 

collagen. Arrows indicate loss of medial elastin fibres and internal elastic lamina. 

Scale bar = 200μm. 
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Figure 4.5 Representative images of α-smooth muscle actin with Miller’s elastin 

co-stain (left; A, B) and Picrosirius Red stain (right; C, D) of END BIOVEH (A, 

C) and BIOCCE (B, D) tissue. Brown = α-SMA, purple = elastin, red/green = 

collagen. B: Arrow shows loss of α-SMA. D: Arrow shows potential periluminal 

collagen deposition. Scale bar = 200μm. 

 

After culture in the bioreactor for 12 days, END-BIOVEH tissue retained its 

elastin network throughout all three arterial layers and the arrangement of 

collagen fibres mirrored in FRESH tissue (Figure 4.5 A and C). END-BIOVEH 

tissue had uniform α-SMA staining, once again indicating the abundance of 

SMC in the media. Much like the EARLY-BIOCCE tissue (Figure 4.4, B and 

D), END-BIOCCE tissue also showed altered gross morphology with medial 

thinning and arterial distention (Figure 4.5, B and D). END-BIOCCE tissue 

appeared to have a complete loss of the elastin network throughout all arterial 

layers, again mirroring the histoarchitecture of EARLY-BIOCCE tissue. The α-

SMA staining was heterogeneous throughout the arterial wall, a phenomenon 

which was not observed in any other experimental groups in either the END or 

EARLY model. The configuration of collagen fibres in END-BIOCCE tissue 

was also unique, with a potential deposition of collagen adjacent to the lumen 

(Figure 4.5, D). Quantification of collagen content by image analysis of Sirius 
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red stained sections was not attempted and so this is only subjective and 

qualitative evidence of this periluminal deposition. 

In summary, application of vehicle pre-treatment did not affect the 

histoarchitecture of the tissue whether it was subjected to either static (SVEH) 

or bioreactor culture (BIOVEH). After both 3 days (EARLY) and 12 days 

(END) in culture in the bioreactor, VEH treated arteries (BIOVEH) had a 

similar architecture to fresh tissue fixed straight after harvest (FRESH). 

Application of CCE treatment disrupted the elastin network in arteries cultured 

statically and in the bioreactor. However, the gross morphology of the tissue 

was only considerably altered when the artery was subjected to both CCE pre-

treatment and bioreactor culture (BIOCCE). This alteration in tissue 

morphology was observable in both the EARLY and END models. It is a 

possibility that after 12 days in culture in the bioreactor, arteries which received 

CCE pre-treatment deposit collagen around the lumen of the artery (END-

BIOCCE), a feature which was not observed in the EARLY model. 

 

4.5. LUMINAL DIAMETER 

The ubiquitous characteristic of the AAA from which its name is derived is 

arterial dilation; to be termed aneurysmal in clinical terms the diameter must 

reach 150% of the original (Powell, 1998, Nordon et al., 2011). Bearing this in 

mind, the luminal perimeter of ten fixed, stained sections from each group was 

measured using ImageJ and idealised as the diameter of a circle with 

circumference equal to this measured luminal perimeter (as described in Section 

2.7.2.2). The results are presented in Figure 4.6. The luminal diameters of 

BIOVEH and BIOCCE vessels are presented as a percentage of the luminal 

diameter of their respective FRESH vessel from the same animal in order to 

mitigate the effects of inter-animal variance. 

The luminal diameter of BIOVEH vessels was not affected by culture time in 

the bioreactor. BIOCCE vessels typically had a greater luminal diameter than 

BIOVEH vessels at both model stages, though this difference was more 

pronounced in the EARLY model compared to the END model. There was a 
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marked decrease in the BIOCCE treated vessel in the END model compared to 

the EARLY model; in the EARLY model, BIOCCE vessels reached the 150% 

aneurysmal threshold. 
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Figure 4.6 Mean luminal perimeter normalised to FRESH tissue per animal. Data 

shown is mean ± 95% confidence intervals, n=3 animals, 10 measurements per 

animal, two-sample t-test for post-hoc two-way ANOVA analysis, ***p<0.001, 

#p=0.06. Dotted line indicates 150% of the FRESH vessel diameter which is the 

commonly accepted clinical threshold of aneurysm. 

 

For statistical analysis, to test the effect of model stage and treatment group on 

the luminal diameter of the arteries, a 2x2 independent ANOVA was used. The 

first factor was model stage (EARLY, END) and the second factor was vessel 

treatment (BIOVEH, BIOCCE). FRESH vessels were not included as the 

BIOVEH and BIOCCE vessels were normalised to the measurements of 

FRESH vessels in order to account for inter-animal variation and therefore the 

statistical tests were performed on logarithmically transformed data. The 

ANOVA showed that model stage had a significant effect on luminal diameter, 

F(1, 96) = 5.97, p<0.05. Vessel treatment also had a significant effect on luminal 

diameter, F(1, 96) = 68.54, p<0.001. The interaction between model stage and 
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vessel treatment also had a significant effect, F(1, 96) = 29.51, p<0.001. To 

explore this interaction, a two-tailed t-test was performed per model stage 

(EARLY/ END) on logarithmically transformed data comparing BIOVEH and 

BIOCCE models. In the EARLY model, BIOCCE vessels had a significantly 

increased idealised luminal circumference compared to BIOVEH vessels (153.9 

± 5.2% vs. 55.5 ±1.6% respectively, p<0.001). In the END model, however, the 

idealised luminal diameters of BIOCCE vessels were not significantly different 

compared to BIOVEH vessels (68.2 ± 1.94% vs. 88.3 ± 2.8% respectively, 

p=0.06). However, this level of significance may suggest a trend towards a 

larger diameter in BIOCCE tissue compared to BIOVEH tissue in the END 

model. 

 

4.6. DISCUSSION 

A common characteristic of AAAs is severe degradation of the extracellular 

matrix and a depletion of SMCs (He and Roach, 1994, Lopez-Candales et al., 

1997). In this chapter, histological and immunohistochemical staining of elastin, 

collagen and an SMC marker (α-smooth muscle actin) were carried out on the 

ex vivo AAA model tissue. 

When subjected to static culture in a 6-well plate, VEH treated tissue did not 

exhibit any notable changes in the histoarchitecture when compared to FRESH 

tissue, in neither the EARLY model nor the END model. The elastin network 

remained intact and there was an abundance of SMCs throughout VEH treated 

tissue. 

Application of the CCE gel pre-treatment prior to static culture in a 6-well plate 

resulted in notable degradation of the elastin network in both the static and 

bioreactor cultured tissue, whereas there was no observed difference in the 

collagen network. In FRESH tissue, collagen was present in a uniform 

arrangement throughout the media and to a greater degree in the adventitia. The 

distribution was mirrored in VEH and CCE treated tissue which had been 

cultured under static conditions. In the EARLY model, CCE treated tissue 

exhibited a fragmented and degraded elastin network, although some elastin 
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remnants remained after 3 days in static culture. However, in the END model, 

there was virtually a complete removal of the elastin network throughout the 

tissue and more punctate α-SMA staining was observed. This punctate staining 

may indicate a slight loss of SMCs in the media in CCE treated tissue. Vessel 

sections from tissue which was cultured under static conditions exhibited no 

obvious changes in gross vessel morphology compared to FRESH tissue (Figure 

3.8).  

The histoarchitecture of the BIOVEH tissue in both the EARLY and END 

models was indistinguishable from FRESH tissue; there was a rich layer of 

SMCs in the media, an intact elastin network, a collagen-rich adventitia, and a 

uniform distribution of collagen throughout the media. This indicates that the 

bioreactor conditions were not causing considerable alterations to the 

composition and configuration of the extracellular matrix. 

In contrast to this, BIOCCE tissue showed virtually complete degradation of the 

elastin network in both the EARLY and END stage models. In the EARLY 

model, BIOCCE tissue exhibited a media rich with SMCs, whereas in the END 

model, the tissue exhibited much weaker SMC-specific staining, suggesting a 

possible loss of SMCs over time. A depletion of SMCs and degradation of the 

elastin network are ubiquitous hallmarks of the end-stage human AAA, and so 

the results presented for BIOCCE tissue suggest that the BIOCCE model was 

able to mimic the human disease (Campa et al., 1987, He and Roach, 1994, 

Lopez-Candales et al., 1997, Henderson et al., 1999). As histology and 

immunohistochemistry are typically a qualitative technique and so any 

conclusions made about an increase or decrease in elastin content should be 

supported with quantitative biochemical assays. An example of such is 

measurement of the elastin crosslink peptides desmosine and isodesmosine with 

enzyme-linked immunosorbent assay (ELISA) or high performance liquid 

chromatography (HPLC) (Osakabe et al., 1995). 

The only tissue in which a difference in the collagen network was observed was 

BIOCCE tissue: a deposition of collagen around the lumen of the artery which 

was not present in any other experimental groups. This may be explained by 

looking towards the end-stage human disease: AAA tissue is typically 
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characterised as being stiffer yet weaker than normal aortic tissue (Thubrikar et 

al., 2001, Geest et al., 2006). This increased stiffness is attributed to the 

increased collagen content found in AAA tissue, as collagen is the component 

of the extracellular matrix which is responsible for the increased stiffness of 

arterial tissue at high strains (Rizzo et al., 1989). It is conceivable that his 

increase in collagen content is an attempt by the SMCs to stabilise the 

mechanical forces of the arterial wall to prevent aortic rupture once degradation 

of the elastin network has occurred. Although collagen degradation is present 

in early AAA, the rate of collagen synthesis is sufficient to balance this (Satta 

et al., 1997). However, over time, the rate of collagen degradation outstrips the 

rate of synthesis leading to a greater propensity to rupture (Shimizu et al., 2006). 

In an ApoE knockout mouse model of AAA, it was shown that an early ECM 

stabilisation mechanism occurred between 14 and 28 days after angiotensin II 

infusion (Haskett et al., 2013). The elastase-perfused abdominal aortae of rats 

have been shown to exhibit per-luminal depositions of collagen in the earlier 

stages of the disease, which was then not present one week later (Deb and 

Ramamurthi, 2014). 

However, it should be carefully noted that the collagen deposition observed in 

END-BIOCCE model tissue was analysed qualitatively and subjectively. In 

order to quantify collagen content using Sirius Red staining, circularly polarized 

light must be used. If linearly polarized light is used for collagen visualisation 

(as was in this study), fibres which are aligned parallel to the transmission axis 

of the polarising filter would appear dark and would not be quantifiable via 

image analysis methods (Whittaker and Canham, 1991, Whittaker et al., 1994). 

For image analysis validation purposes, it would be beneficial in future studies 

to perform quantitative biochemical assays of collagen content alongside 

histological microscopic techniques as there is less sensitivity in the latter 

approach (Segnani et al., 2015). Examples of such may be Western blotting for 

Collagen-1 or a hydroxyproline content assay (Lopez-De Leon and Rojkind, 

1985). It is therefore recommended that further study is undertaken to truly 

quantify changes in collagen content in END-BIOCCE tissue. 
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The possible peri-luminal deposition of collagen in BIOCCE tissue may be the 

first steps in the pathological modelling process found in human AAA disease. 

It suggests that the BIOCCE tissue may behave with increased stiffness 

compared to BIOVEH tissue. Biomechanical analysis of the experimental 

groups was carried out in this study and the results are presented and discussed 

in Chapter 6. 

In both the EARLY and the END model, the gross morphology of the BIOCCE 

tissue was drastically different from that of FRESH or BIOVEH tissue. 

BIOCCE tissue was distended, with a typically thinner media and a much larger 

lumen. Image analysis of the stained sections was able to determine the changes 

in the luminal perimeter of the artery. The clinical definition of AAA is a 

dilatation of greater than 150% of the normal aortic diameter and so some type 

of measurement of the arterial dilatation was thought to be an essential metric 

of the study (Nordon et al., 2011). The justification for converting the measured 

luminal perimeter into an idealised luminal diameter was that the tissue could 

be viewed in comparison with clinical and in vivo studies. However, it must be 

stressed that the tissue was fixed in a non-pressurised state and so effect of 

luminal pressure are not considered using this method. The CCE treatment 

enzymatically digests components of the ECM (elastin and collagen) and will 

therefore alter the material properties of the tissue. As such, it is likely that 

luminal pressure will cause different levels of dilation between VEH and CCE 

treated tissue. One way of overcoming this problem may be to perfusion fix the 

tissue; this was considered but was not implemented due to practical concerns. 

The first concern was the very large amount of tissue fixation agent required to 

go throughout the bioreactor. The second was that it was of utmost importance 

that the tissue in the bioreactor remained viable and its complex shape may 

mean that tissue fixative remains in the system and affects subsequent 

experiments. 

The luminal perimeter of BIOVEH tissue did not change significantly over the 

course of time, though was decreased compared to FRESH tissue (a range of 55 

to 70% of the FRESH luminal perimeter). This indicates that the artery may 

have undergone some degree of remodelling due to the dynamic conditions in 



147 

 

the bioreactor. Physiologically, narrowing of the lumen can be caused by 

decreased flow regulated through the endothelium (Brownlee and Langille, 

1991). A more physiological dynamic environment, perhaps incorporating a 

pulsatile flow component may be a welcome addition to this model and would 

hopefully not induce arterial remodelling through the environment alone. 

Inwards remodelling is an indicator of active adaptation of the vessel in contrast 

to passive outwards stretch due to intraluminal pressure. 

In the EARLY model, BIOCCE vessels reached the aneurysmal threshold of 

greater than 150% the luminal perimeter (if the vessel is assumed to be a circle 

when dilated, the perimeter is the luminal circumference). However, active 

remodelling of the arteries was observed over time and the luminal perimeter 

was decreased in the END model compared to the EARLY model. This supports 

the theory of the peri-luminal deposition of collagen acting as a stabilising 

component. It is likely that the artery attempted to remodel after the degradation 

of the elastin attributed to the CCE treatment and so the SMCs secreted collagen 

and the arterial diameter decreased in order to decrease the wall tension 

(according to the Law of Laplace, Section 1.7.6). This short-term recovery was 

also observed in one of the few longitudinal studies in an ApoE knockout mouse 

model of AAA (Haskett et al., 2013). Microstructural and biomechanical 

reorganisation which was present at 14 days had recovered by 28 days in that 

study. 

Idealised luminal diameter of BIOVEH and BIOCCE tissue was normalised to 

the corresponding FRESH tissue within each animal studied. This was done so 

that the inherent variability in specimens taken from different animals was 

accounted for. Although the END BIOCCE model did not exhibit a luminal 

diameter of greater than 150% that of the FRESH vessel, it suggested that the 

artery was undergoing compensatory remodelling after the initial injury caused 

by the CCE treatment, whereas the BIOVEH artery remained stable over the 

course of the experiment. The histological staining showed that this remodelling 

may have occurred via SMC collagen synthesis and deposition. 

In summary, this chapter gave a histological, immunohistochemical and 

morphological characterisation of arteries either subjected to CCE or VEH pre-
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treatment under static and dynamic culture regimes over a period of up to 12 

days. Bioreactor culture alone (VEH) did not alter the histoarchitecture of the 

artery, but did cause a narrowing of the lumen. BIOCCE tissue showed a loss 

of elastin consistent in both the EARLY and END stage models, whereas there 

was a decrease in SMC density over time. Peri-luminal deposition of collagen 

solely observed in BIOCCE tissue may be part of a compensatory stabilisation 

mechanism, leading the artery to decrease in diameter over time. 

The characterisation of cellular and biomechanical aspects of the experimental 

AAA model was also performed in this study and are found in Chapters 5 and 

6 respectively. 
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CHAPTER 5 STRUCTURE AND FUNCTION OF EX 

VIVO AAA MODEL SMCS 

This chapter describes the structure and function of the SMCs derived from the 

tissues examined in Chapter 4. The SMCs are derived from tissue which aimed 

to model AAA disease in an ex vivo bioreactor model. Firstly, the cellular and 

cytoskeletal structure of the SMCs will be examined. The last section will 

explore the functional capacity of the SMCs in terms of proliferation, migration, 

senescence and MMP secretion. 

 

5.1. INTRODUCTION 

A widely researched property of SMCs is their ability to undergo profound 

changes in phenotype in order to respond to the changing physiological 

environment (reviewed in Owens et al. (2004) and given in more detail in 

Section 1.7.2.1). This change in phenotype brings about changes to the structure 

and function of the SMCs: contractile, differentiated cells have aligned actin 

fibres and low turnover and ECM secretion whereas synthetic, de-differentiated 

cells have a larger, hypertrophic appearance and are able to proliferate, migrate 

and remodel the ECM more readily (Shi and Chen, 2016).  

SMCs in end-stage human AAA disease and a few experimental animal models 

have been characterised and found to be dysfunctional and attenuated in number 

compared to SMCs derived from healthy arterial tissue (Lopez-Candales et al., 

1997, Ailawadi et al., 2009, Curci, 2009, Riches et al., 2013). SMCs in human 

AAA disease taken from tissue removed during surgical repair have higher 

levels of apoptosis (coupled with lower number of SMCs in the tissue), 

increased replicative senescence, are involved with increased levels of reactive 

oxygen species (ROS) and have a decreased ECM synthesis rate (Henderson et 

al., 1999, Liao et al., 2000, Carmo et al., 2002, Miller et al., 2002, Riches et al., 

2013). It was shown in a murine elastase model that phenotypic switching of 

SMCs occurred early on in AAA formation, a study impossible to execute with 

human tissue (Ailawadi et al., 2009). 
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Attention has turned to SMCs in the treatment of AAA disease as they are the 

biological mechanism for stabilising, synthesising and remodelling the ECM 

(degradation of which is ubiquitous in AAA). The paracrine effect of SMCs has 

been demonstrated in animal models, where seeding of SMCs was able to 

stabilise AAA progression (Allaire et al., 2002, Losy et al., 2003). As the SMCs 

are variously (and potentially uniquely) dysfunctional in end-stage human 

AAA, they have come to be viewed as a potential target for AAA therapeutic 

treatment (Riches et al., 2013, Airhart et al., 2014). 

The early phenotypic switch of SMCs in AAA, coupled with the dysfunction 

inherently linked to structure and function has driven one of the main aims of 

this work, to use an ex vivo large animal model to characterise alteration in SMC 

structure and function with respect to time. By investigating the behaviour of 

the SMCs in the early disease, early therapeutic targets may be revealed which 

may have potential to stabilise AAA progression before it has become overtly 

unstable. 

 

5.2. CHAPTER AIMS AND OBJECTIVES 

The aim of this chapter was to characterise the structure and function of the 

SMCs derived from the bioreactor AAA model and to examine the effects of 

CCE treatment and dynamic culture in the bioreactor. The SMCs were also 

characterised at two time-points representing the early- and end-stage of AAA 

disease, with a view to mapping the phenotypic modulation of the SMCs and 

gaining insight into the early, pre-dilating AAA. 

 

5.2.1. OBJECTIVES 

The specific objectives of this chapter were: 

1 To characterise the cellular and cytoskeletal  morphology of the SMCs 

and relate this to the model stage, treatment and culture regime  
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2 To explore the function of the SMCs in relation to model stage, 

treatment and culture regime in terms of proliferation, senescence, MMP 

secretion and migration 

 

5.3. SMOOTH MUSCLE CELL STRUCTURE 

SMCs are able to alter their shape depending on phenotype, therefore an 

analysis of the shape and structure of the SMCs from the various experimental 

groups was carried out. The morphology of a cell is generally mediated through 

changes in the cytoskeleton. Alterations in the morphology of a cell would incur 

a realignment of signalling molecules and thus cause an alteration in cellular 

function (Worth et al., 2001a). In classical SMC phenotypic characterisation, a 

synthetic SMC exhibits rhomboid morphology with high proliferation and 

migration. Conversely, a contractile SMC phenotype exhibits the typical spindle 

morphology with low rates of proliferation and migration (Section 1.7.2.1) (Shi 

and Chen, 2016). 

 

5.3.1. SMC CIRCULARITY 

The shape of the SMCs was characterised using circularity, a dimensionless 

geometric descriptor (Helmy and Azim, 2012). The method of determining 

cellular circularity is detailed in Section 2.8.1. The values lie in between 0 and 

1 where 1 is a perfect circle and as the value approaches 0 the shape is an 

increasingly elongated polygon. The circularity of 50 cells from at least ten 

microscope fields of view during three sequential cell passages was recorded 

and the mean circularity recorded, as depicted in Figure 5.1. A sample size of 

three animals per model stage was used. 
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Figure 5.1 SMC morphology. A: Representative images of FRESH, SVEH, SCCE 

and BIOVEH SMC. B: Representative images of EARLY and END BIOCCE 

SMC. C: Quantification of SMC circularity, (***p<0.001, two way ANOVA with 

post-hoc Tukey test). Graph shows mean ± 95% confidence intervals. Scale bar = 

100μm, (n=3). Left END BIOCCE image courtesy of Gurprit Mudhar. 
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The combination of CCE gel pre-treatment and bioreactor culture for 12 days 

(END) was required to induce a significant increase in SMC circularity. The 

change in BIOCCE-SMC phenotype had not yet occurred in the EARLY model. 

Neither CCE treatment nor bioreactor culture alone induced a change in SMC 

phenotype in the END model; an increase in circularity only occurred in the 

END model when CCE treatment and bioreactor culture were used in tandem. 

In terms of statistical significance, to test the effect of model stage and treatment 

group on SMC circularity, measurements were analysed using a 2x5 

independent ANOVA. The first factor was model stage (EARLY, END) and the 

second factor was SMC group (FRESH, SVEH, SCCE, BIOVEH, BIOCCE). 

The ANOVA showed a significant main effect in model stage, F(1, 

1490)=65.02, p<0.001. Whether the model was EARLY or END stage had a 

significant impact on SMC circularity. The main effect of SMC group was 

significant, F(4, 1490)=132.60, p<0.001. The interaction between model stage 

and SMC group was also significant, F(4, 1490)=112.96, p<0.001. In order to 

explore the nature of the interaction, tests of SMC circularity within each model 

were performed using a one-way ANOVA. In the EARLY model, there was no 

significant difference in SMC circularity across all SMC groups 

(F(4,745)=2.09). The effect of SMC circularity within the END model was 

significant, F(4, 745)=237.79, p<0.001. A Tukey post-hoc test revealed that 

BIOCCE SMC had a significantly increased circularity compared to all other 

SMC groups. The mean circularity for all of the groups is presented in Table 

5.1. 

Table 5.1 Mean circularity measurements, mean±95% confidence intervals. 

***significantly higher circularity in END-BIOCCE SMCs vs. all other groups. 

Treatment condition EARLY END 

FRESH 0.21±0.03 0.21±0.07 

SVEH 0.22±0.03 0.21±0.07 

SCCE 0.24±0.03 0.23±0.08 

BIOVEH 0.22±0.02 0.20±0.07 

BIOCCE 0.24±0.03 0.52±0.11*** 
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5.3.2.  F-ACTIN CYTOSKELETON 

SMCs explanted from END-BIOCCE tissue and the corresponding BIOVEH 

and FRESH controls were stained with DAPI and rhodamine-phalloidin stain in 

order to visualise the cell nuclei and actin cytoskeleton using the method given 

in Section 2.8.2. Representative images are shown in Figure 5.2. 

FRESH-SMCs were spindle shaped with aligned actin fibres reaching from pole 

to pole (Figure 5.2A). BIOVEH-SMCs also exhibited the characteristic spindle 

SMC shape with aligned actin fibres, much like the FRESH-SMCs (Figure 5.2B 

and C, arrows). In contrast to this, END-BIOCCE cells exhibited a rhomboid 

phenotype with a disrupted actin cytoskeleton. Actin fibres were not aligned 

within the cell and were disordered (Figure 5.2D and E, arrows). 

END-BIOCCE SMC had a rhomboid phenotype and a disrupted actin 

cytoskeleton. This was solely a qualitative assessment from observation of 5 

images per treatment condition (FRESH/ BIOVEH/ BIOCCE) per animal (15 

images total). Three animals were used per model stage (45 images total).  
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Figure 5.2 Immunofluorescence of cytoskeleton. Representative images showing 

nuclei (DAPI, blue) and f-actin (rhodamine phalloidin, red) of A) FRESH SMC, 

B and C) END-BIOVEH SMC, D and E) END-BIOCCE SMC. Arrows show: B 

and C) aligned actin fibres; D and E) disrupted actin fibres. 
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5.4. SMOOTH MUSCLE CELL FUNCTION 

In humans, SMCs explanted from end-stage AAA tissue exhibit impaired 

function including increased levels of senescence, impaired proliferation and 

altered MMP release (Chapter 1). The function of the SMCs from the ex vivo 

AAA model was therefore characterised at two time-points in order to develop 

a temporal overview of alteration in SMC function with a view to relating this 

to changes observed in SMC structure (Section 5.3). 

 

5.4.1.  PROLIFERATION 

The proliferation of the SMCs from each of the treatment groups was also 

analysed using cell counting. The method is described in full in Section 2.8.3. 

Each proliferation assay was repeated three times per animal with passage-

matched experiments (p3, p4 and p5). The proliferation curves for each model 

are shown in Figure 5.3 and area under the curve analysis for proliferative 

capacity is shown in Figure 5.4.  

SMC were seeded at a known density, serum-starved to bring them into a 

quiescent state and then grown in 10% FCS FGM for 7 days. Quadruplicate cell 

counts were taken at days 0, 2, 4 and 7.  

Overall, END-BIOCCE SMCs (possessing rhomboid morphology) exhibited 

impaired proliferative capacity compared to controls, similar to the 

characteristics of end-stage human AAA-SMC (Liao et al., 2000, Riches et al., 

2013). In contrast, EARLY SMCs subjected to only 3 days in bioreactor culture 

were observed to be undergoing hyperproliferation. The proliferative capacity 

of BIOVEH SMCs was indistinguishable from matched FRESH controls.  

Statistically, the impact of treatment and culture conditions on SMC 

proliferation was analysed using a one-way ANOVA per model stage (EARLY, 

END). In the END model (Figure 5.3A), the results were significant, F(2, 

213)=15.03, p<0.001. A post-hoc Tukey test revealed that there was no 

significant difference between FRESH and BIOVEH-SMC (1930±209% vs. 

2232±98% of cells at day 0 at day 7 respectively, p=0.35) but BIOCCE-SMC 
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proliferation was significantly impaired (1165±56% at day 7) compared to both 

FRESH (p<0.001) and BIOVEH-SMC (p<0.001). In the EARLY model (Figure 

5.3B), the results were also significant, F(4, 395)=3.39, p<0.01. A post-hoc 

Tukey test showed that, again, there was no significant difference in 

proliferation in BIOVEH-SMC compared to FRESH (1973±57% vs. 1819±48% 

at day 7, respectively, p=0.82) but BIOCCE-SMC was significantly different 

(2648±71% at day 7) compared to both FRESH (p<0.05) and BIOVEH-SMC 

(p<0.05). However, the proliferative capacity of BIOCCE-SMC was increased 

in the EARLY model, in contrast to an impairment of proliferation observed in 

the END model compared to both FRESH and BIOVEH SMCs. 

The two models were then compared by using area under the curve (AUC) 

analysis on the proliferation curves seen in Figure 5.3. The AUC analysis is 

shown in Figure 5.4. There was no difference in the proliferative capacity of 

FRESH and BIOVEH SMCs between the EARLY and END models: only 

BIOCCE SMCs showed an alteration in proliferation. 

AUC analysis and a two-tailed two-sample t-test of model stage per treatment 

group showed that there was no significant difference between the EARLY and 

END models in the FRESH (5799±866 and 6089±1820 for EARLY and END 

respectively, p=0.8) and BIOVEH groups (5609±958 and 7823±3017 for 

EARLY and END respectively, p=0.25).  However, there was a significant 

difference in BIOCCE-SMC proliferation between the EARLY and END 

models (8252±1034 vs. 3307±760 respectively, p<0.001). 
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Figure 5.3 Passage-matched mean proliferation curves. A) EARLY model and B) 

END model. ***p<0.001, *p<0.05. One-way ANOVA with post-hoc Tukey Test. 

Graph shows mean ± 95% confidence intervals (n=3). END proliferation data for 

1 animal courtesy of Gurprit Mudhar. 
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Figure 5.4 Area under curve analysis for proliferation. ***p<0.001, two-sample 

two-tailed t-test. Graph shows mean ± 95% confidence intervals. 

 

5.4.2.  MIGRATION 

A scratch wound migration assay was used to determine the migratory capacity 

of SMCs in the EARLY and END AAA model and the results are presented in 

Figure 5.5. The method used for assessment of cellular migration is given in 

Section 2.8.4. The assay was repeated three times per animal with passage-

matched cells. The cell counts for BIOVEH and BIOCCE-SMC on each plate 

were normalised to the FRESH control in order to mitigate effects of inter-

animal and passage-related variance during each assay and so the FRESH data 

was omitted from the graphs. 

The spread of the migration data was extremely large and so few conclusions 

can be made about the effect of model stage, treatment and culture regime on 

SMC migration (Figure 5.5). 

SMC migratory capacity amongst the groups was analysed using a 2x2 two-way 

ratio ANOVA on data which had been log transformed for normalisation. The 

first factor was model stage (EARLY, END) and the second factor was 

treatment group (BIOVEH, BIOCCE). The ANOVA showed no main effect of 

model stage, F(1, 26)=0.005, p=0.945. The migratory capacity of SMCs did not 
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change with respect to the model stage. The main effect of treatment group was 

also not significant, F(1, 26)=0.08, p=0.78. Treatment group also did not affect 

the migratory capacity of SMCs. The interaction between model stage and 

treatment group was not significant, F(1, 26)=0.64, p=0.43. The mean number 

of cells migrated past 200μm per mm of wound width (expressed as a 

percentage of FRESH-SMC) for BIOVEH-SMC was 159±168% and 

157±168% for EARLY and END models respectively (mean±95% confidence 

intervals). For BIOCCE-SMC the means were 231±247% and 68±38% for 

EARLY and END models respectively (Figure 5.5). 

 

5.4.2.1. EFFECT OF SMC ORIENTATION 

As can be seen in the graph in Figure 5.5, the confidence intervals were 

extremely large, indicating that the values lay within a large data range. It was 

noticed that the orientation of SMC in relation to the scratch wound may have 

affected the migration data. As can be seen in the representative images in 

Figure 5.5, when the SMC aligned in an orientation which was perpendicular to 

the scratch wound (Panel A) the count of cells that migrated past the 200μm 

marker was larger than when the cells laid in an orientation which was parallel 

to the scratch wound (Panel B). 

The hypothesis that SMC orientation affected the outcome of the scratch wound 

migration assay was tested by identifying the scratch wound images within the 

same treatment group (FRESH, BIOVEH, BIOCCE) on the same plate for each 

animal which had the greatest disparity in the count of cells migrated past 

200μm per mm of wound width (Highest, Lowest, n=15). The angle deviation 

from normal to the scratch wound (0°) for each of the images in the Highest and 

Lowest groups was determined using ImageJ (http://imagej.nih.gov/ij/). The 

results for this are presented in Figure 5.6. 
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Figure 5.5 Scratch wound migration analysis. Representative images of A) 

EARLY-BIOCCE SMC and B) END-BIOCCE SMC showing 200μm marker 

(black lines at 0μm and 200μm). C) Quantification of migrated cells. Graph shows 

mean migration counts at 24 hours normalised to FRESH-SMC ± 95% confidence 

intervals (n=3). Two-way ratio ANOVA with post-hoc Tukey test. 
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Figure 5.6 Effect of SMC orientation on migration. A) Representative images of 

greatest cell count disparity within assay with 200μm traceline included. B) 

Significant increase in angle deviation from normal to scratch wound in the lowest 

cell counts vs. highest, ***p<0.001, two sample t-test. Graph shows mean ± 95% 

confidence intervals (n=15). 
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A one-tailed two sample t-test revealed that the mean angle deviation from 

normal to the scratch wound, taken as 0°, was greater in the lowest migration 

cell count compared to that of the highest (63±13° vs. 29±10° respectively, 

p<0.001). There was a mean 53% decrease in deviation angle from the lowest 

cell count to the highest cell count. This effect of SMC orientation on count of 

cells migrated past 200μm per mm wound width was found across all treatment 

groups. 

Despite the large spread of data seen in both BIOVEH-SMC groups and the 

EARLY BIOCCE-SMC groups (Figure 5.5), thought to be attributed to SMC 

orientation, the BIOCCE-SMC group had a consistently low count of cells 

migrated past 200μm per mm wound width. A two-sample one-tailed t-test 

showed that there was a possible trend for the mean migration cell count of 

END-BIOCCE SMC to be generally lower compared to FRESH SMC 

(28.4±14.6 vs. 12.7±5.9 cells migrated past 200μm per mm wound width 

respectively, p=0.08). The results for this are shown in Figure 5.7.   
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Figure 5.7 Mean scratch wound migration cell counts for FRESH and END-

BIOCCE SMC. Graph shows mean ± 95% confidence intervals. Two-sample t-

test, #p=0.08, non-significant trend (n=3 animals). 
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5.4.3.  SENESCENCE 

Cell senescence was determined via β-galactosidase staining at pH 6, a marker 

of cell senescence not found in pre-senescent, quiescent or immortal cells. 

Senescence staining was performed using the method given in Section 2.8.5. 

The assay was repeated three times per animal with passage-matched results. 

Ten microscopic fields of view were taken at 40x magnification and the 

senescence index was represented by calculating the mean percentage of β-

galactosidase stained positive cells within each microscopic image. 

Representative images and the graphed results are shown in Figure 5.8. 

Given the nature of the experiment, it was unsurprising that there was some 

level of increase in senescence in the control model. In the EARLY model, 

BIOCCE SMC senescence was 25.1% greater than in BIOVEH SMC, rising to 

50.9% greater in the END model. There was a significant increase in levels of 

senescence due to the application of CCE gel compared to vehicle control; the 

disparity in senescence levels between BIOVEH-SMC and BIOCCE-SMC 

doubled in the period between the EARLY and END model. 

In order to statistically test the effect of model stage (EARLY, END) and SMC 

group (FRESH, BIOVEH, BIOCCE) on SMC senescence, a 2x3 independent 

ANOVA was used. The results are displayed in Figure 5.8. 

. The ANOVA revealed that there was no effect of model stage, F(1, 

352)=0.00464, p=0.95, but there was a significant effect of SMC group, F(2, 

352)=42.8, p<0.001. The interaction between model stage and SMC group was 

significant, F(2, 352)=12.0, p<0.001. To explore the nature of the interaction, 

additional tests (one-way ANOVA per model stage) were performed. The effect 

of SMC group within the EARLY model was significant, F(2, 266)=9.5, 

p<0.001. A post-hoc Tukey test showed that levels of senescence between 

FRESH and BIOVEH SMC were indistinguishable (p=0.4), whilst there was a 

statistically significant increase in senescence in BIOCCE compared to 

BIOVEH (140±26% vs. 112±20% respectively, p<0.01). SMC group exerted a 

significant effect within the END model, F(2, 86)=33.5, p<0.001. A post-hoc 

Tukey test showed that there was an increase in senescence between both 
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BIOVEH compared to FRESH (218±35% vs. 100±16% respectively, p<0.001) 

and BIOCCE compared to BIOVEH (330±42% vs. 218±35% respectively, 

p<0.01). 

 
Figure 5.8 Senescence analysis with β-galactosidase staining. Representative 

images of A) FRESH, B) BIOVEH, C) EARLY-BIOCCE and D) END-BIOCCE 

SMC. Arrows indicate subtle blue stain. Scale bar = 200μm. E) Quantification of 

β-galactosidase positive cells. One-way ANOVA per model stage, **p<0.01, 

***p<0.001. Graph shows mean ± 95% confidence intervals (n=3). 
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5.4.4.  SECRETION OF MMP-2 AND MMP-9 

AAA is a pathological remodelling disease and so indications of alterations in 

remodelling capability in the ex vivo model were analysed (Galis and Khatri, 

2002). Secretion of MMP-2 and MMP-9 (gelatinases) is an indication of SMC 

protease remodelling activity and they are secreted at higher levels in human 

AAA tissue compared to healthy tissue (Goodall et al., 2002b, Wilson et al., 

2008). Levels of MMP-2 and MMP-9 were measured using gelatin zymography 

of conditioned media obtained from non-stimulated and stimulated SMC from 

three treatment groups (FRESH, BIOVEH, BIOCCE) at two model stages 

(EARLY, END). Samples were incorporated within a gelatin substrate and were 

subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE). They were then analysed using densitometry of clear bands of 

lysis against blue stained gelatin background. Full detail of the method is given 

in Section 2.8.6. 

 

5.4.4.1. SAMPLE LOADING VOLUME CALIBRATION 

A calibration was performed to determine the sample loading volume; optimally 

this would be the greatest volume before saturation of the substrate occurs and 

with any increase in sample loading volume there is no such increase in relative 

densitometry of the bands of gelatin digestion (Figure 5.9). Samples in volumes 

from 5μl to 30μl from two experimental groups (FRESH-SMC from an animal 

in the EARLY group and FRESH-SMC from an animal in the END group) were 

loaded onto a zymogram. It can be seen in Figure 5.9 that the point of saturation 

starts at 20μl of sample volume and so this was chosen as the sample loading 

volume for all further experiments. 
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Figure 5.9 Sample loading volume calibration. A) Volumes of sample (5-30μl) 

were loaded onto zymograms which were incubated for 26 hours. B) Densitometry 

of the clear bands was plotted and from this 20μl was considered optimal. 
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limits of detection in all other arteries, where MMP-2 only was released by the 

SMCs. Representative images of zymograms are shown in Figure 5.10. The 

relative densitometry measurements normalised to a FRESH SMC control 

treated with PBS for each animal are shown in Figure 5.11.  

 

 

Figure 5.10 Representative zymogram images. Top: EARLY model. Bottom: END 

model. Relative densitometry to FRESH SMC treated with no stimulus (PBS) was 

taken. 

 

Total MMP secretion tended to be lower in the END model compared to the 

EARLY model, although this was not statistically significant. MMP secretion 

in FRESH and BIOVEH SMCs was indistinguishable, whereas BIOCCE SMCs 

secreted lower levels of MMPs. Both TPA and PDGF+IL-1α (detailed in 

Section 2.8.6) stimulated MMP secretion to a similar degree.  

In terms of statistics, to investigate the influence of model stage (END, 

EARLY), SMC group (FRESH, BIOVEH, BIOCCE) and stimulation (PBS, 

TPA, PDGF+IL-1α) on relative total MMP levels, a 2x3x3 three-way ANOVA 

on logarithmic transformed values was used. The ANOVA showed that there 
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was not a significant effect of model stage, F(1, 36) = 3.76, p=0.06. However, 

a p-value of 0.06 indicates a possible trend towards a decrease in MMP levels 

in the END model compared to the EARLY model. The effect of SMC group 

on relative MMP levels was significant, F(2, 36) = 8.40, p<0.001. A Tukey post-

hoc test showed that there was no difference in relative MMP levels between 

FRESH and BIOVEH SMCs (p=0.907). There was a decrease in relative MMP 

levels in BIOCCE SMCs compared to both FRESH (p<0.01) and BIOVEH 

SMCs (p<0.01). The effect of the type of stimulant applied to the SMCs on the 

relative MMP levels was also significant, F(2, 36) = 8.89, p<0.001. The Tukey 

test showed that there was an increase in relative MMP levels between PBS 

control and TPA (p<0.001). There was also an increase in relative MMP levels 

in PDGF+IL-1α treated SMCs compared to SMCs treated with PBS (p<0.01). 

The degree of stimulation from TPA and PDGF+IL-1α was not different; there 

was no difference between relative MMP levels in stimulated groups (p=0.923). 

The interaction between model stage, SMC group and stimulation was found to 

be not statistically significant, F(4, 36) = 0.22, p=0.928.  



171 

 

FRESH BIOVEH BIOCCE FRESH BIOVEH BIOCCE
0

50

100

150

200

250

300

350
†† 

**

******

**

**

***

***

***

***

***

.

END

R
el

at
iv

e 
to

ta
l 

M
M

P
 l

ev
el

(%
 F

R
E

S
H

)

Model stage

 PBS

 TPA

 PDGF+IL-1a

EARLY

#

.

***

†† 

 

Figure 5.11 Quantification of relative MMP levels each normalised to FRESH 

SMC control treated with PBS. Three-way ANOVA with post-hoc Tukey test; 

††p<0.01 FRESH vs. BIOCCE, ***p<0.001 TPA vs. PBS, **p<0.01 PDGF+IL-1 

vs. PBS, #p=0.06 EARLY vs. END. Graph shows mean ± 95% confidence intervals 

(n=3).  
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5.5. DISCUSSION 

SMCs are not terminally differentiated and are able to switch their phenotype, 

most commonly from a spindle-shape contractile phenotype to a rhomboid 

secretory phenotype (Owens et al., 2004, Porter and Riches, 2013). It has been 

shown that human AAA cells have a rhomboid shape with significantly 

increased cell area compared to human saphenous vein SMC (Riches et al., 

2013). It was also shown in the aforementioned study that by treating a porcine 

carotid artery with CCE treatment and then culturing this in the bioreactor for 

12 days, the explanted SMCs exhibit a similar increase in cell area to that 

observed in human AAA SMCs.  

In this study, the cell circularity was measured from two time-points in the 

model (EARLY and END) and within that five different treatment groups 

depending on the type of pre-treatment and culture conditions (FRESH, SVEH, 

SCCE, BIOVEH, BIOCCE). When the artery was treated with VEH pre-

treatment, no significant increase in cell circularity was observed in either the 

EARLY or END models, whether it was cultured statically (SVEH) or in the 

bioreactor (BIOVEH). Arteries treated with the CCE pre-treatment and cultured 

statically in a 6-well plate (SCCE) also did not exhibit any significant alterations 

in SMC circularity at either EARLY or END stage. It was shown that, mirroring 

the results seen in the previous study in 2013, BIOCCE-SMC showed a 

significantly increased cell circularity (over 2-fold) compared to FRESH and 

BIOVEH-SMC, but solely in the END model (Riches et al., 2013). In the 

EARLY model, BIOCCE-SMC showed no change in cell morphology 

compared to the other groups. END-BIOCCE SMC not only showed a 

significant alteration in SMC morphology, but also generally exhibited a 

disrupted actin cytoskeleton whereas FRESH and BIOVEH-SMC had 

apparently normal, aligned actin fibres (Figure 5.2). Disorganisation of the 

cytoskeleton may lead to realignment of signalling molecules (Worth et al., 

2001a). This may then alter SMC function in which is associated with 

phenotypic modulation. 

There are two main conclusions that can be made from these findings. Firstly, 

the change in SMC phenotype is only induced when the artery they are 
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explanted from is subject to both CCE pre-treatment and dynamic flow culture. 

The combination of these factors must be present in order to induce phenotypic 

switching. Secondly, the phenotypic switch observed in BIOCCE-SMC after 12 

days culture in the bioreactor had not occurred after 3 days.  

Human AAA-SMC have been observed to exhibit a hypertrophic, rhomboid 

appearance compared to SMCs from non-aneurysmal aorta (Liao et al., 2000, 

Riches et al., 2013). AAA tissue for those studies was harvested during elective 

or emergency repair; once the aneurysm had progressed to a state of real risk of 

rupture or actual rupture. The nature of the disease inhibits the study of human 

AAA-SMC in the early stages of the disease prior to clinical presentation and 

dilatation hence the essential use of disease models for AAA. It has been 

demonstrated in a mouse model that a phenotypic switch in SMC occurs early 

on in the development of AAA (Ailawadi et al., 2009). The data presented in 

this chapter supports the concept of a phenotypic switch in early AAA disease, 

prior to vessel dilatation. In the END model, SMCs exhibited a rhomboid 

appearance with increased circularity whereas SMCs in the EARLY model were 

indistinguishable from FRESH SMCs with a spindle appearance. It is well 

known that SMCs are able to reversibly differentiate as a reaction to the 

extracellular environmental cues and that this process plays a role in various 

cardiovascular diseases (Owens et al., 2004). The ex vivo model supports a 

change in SMC phenotype over the course of the experiments (from the EARLY 

to the END model) as demonstrated by the changes in circularity and the 

disordered f-actin cytoskeleton.  

A change in SMC function in relation to this change in structure with respect to 

time was also observed. In the END model, the SMCs had adopted a rhomboid 

appearance and showed consistently impaired proliferation throughout three 

sequential passages (50% decrease vs. FRESH). Unexpectedly, as no change in 

circularity had occurred at that point, the EARLY model SMCs had a 

consistently higher proliferation rate compared to both matched FRESH (40% 

increase) and BIOVEH controls and END model BIOCCE SMCs. Contrary to 

the typically characterised SMC phenotypes described in Chapter 1, EARLY 
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SMCs exhibited spindle morphology at the same time as having increased 

proliferative capacity.  

The reversible differentiation of SMCs in response to environmental cues is 

typically characterised as switching between a spindle-shaped cell with low 

proliferation and reduced ECM turnover and a large, hypertrophic rhomboid 

shaped cell with increased proliferatory and migratory capabilities (Shi and 

Chen, 2016). In this ex vivo bioreactor model of AAA, a change in phenotype 

was observed between the EARLY and END models though not in the same 

way as classical SMC differentiation. In the END model, SMCs were rhomboid 

with increased circularity yet had significantly impaired proliferation compared 

to the spindle-shaped matched controls. This mirrors the findings of Riches et 

al. and Liao et al. who found that human AAA-SMCs taken from end-stage 

AAA tissue (i.e. during repair) were larger, rounder and had significantly 

impaired proliferation compared to non-AAA SMC (Liao et al., 2000, Riches et 

al., 2013). However, studies on proliferation of AAA-SMCs have been 

inconsistent and others have observed that AAA-SMCs exhibit enhanced 

proliferation (Patel et al., 1996, Gacchina et al., 2011). 

The findings presented in this chapter using an ex vivo bioreactor model of AAA 

may be able to contribute towards a narrative: it has shown that SMC 

proliferation may indeed be both impaired and enhanced during AAA 

progression depending on time. The role of SMC proliferation in AAA 

progression has been linked with the so far unexplained protective effect that 

diabetes mellitus has on AAA. Increased levels of advanced glycation end 

products (AGEs) in patients that are characteristic of diabetes have been shown 

to increase SMC proliferation, hence enabling increased matrix synthesis and 

therefore possibly AAA stability (Sakata et al., 2000, Pafili et al., 2015). 

Intriguingly, the SMCs found in patients with diabetes mellitus also exhibit a 

rhomboid, anti-proliferatory phenotype in vitro (Riches et al., 2014). This study 

demonstrated that this switch in phenotype was able to be controlled by two 

microRNAs; transfection of premiR143/145 into non-diabetic SMCs induced 

the pathological phenotype, whereas transfection of antimiR143/145 into 

diabetic SMCs restored the normal phenotype. The role of microRNAs, 
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including miR143 and miR145 amongst many others, in AAA development has 

inspired a wealth of studies within recent years and as such SMC microRNAs 

are seen as a therapeutic target for AAA (reviewed in (Boon and Dimmeler, 

2011, Albinsson and Sward, 2013)). 

In this study, it was difficult to make conclusions of the migratory capacity of 

the ex vivo AAA model due to the large degree of error in the experiments 

thought to be attributed to orientation of the SMCs with respect to the wound. 

As a note, it is maybe preferable that the migratory capacity of porcine SMCs 

derived from the ex vivo model be analysed using a Boyden chamber technique 

in order to eliminate this complication; as the cells start in a suspension and 

migrate downwards through the membrane, the initial conditions of the cells are 

equal. However, there was a trend in the END model towards impaired 

migration in BIOCCE-SMCs compared to FRESH SMCs which is contrary to 

the mechanism of perceived normal SMC differentiation (Owens et al., 2004, 

Shi and Chen, 2016).  

This chapter also shows that BIOCCE-SMCs had a sharp rise in senescence 

levels between the EARLY and END models, more so than BIOVEH controls. 

This mirrors the human disease: it has been shown that AAA-SMC are typically 

more senescent than SMCs derived from non-aneurysmal aorta (Liao et al., 

2000, Riches et al., 2013). These aforementioned studies directly measured 

markers of senescence in AAA-SMC but it was shown by Cafueri et al. that 

SMCs derived from aneurysmal tissue showed clear signs of telomere attrition 

(Cafueri et al., 2012). Telomeres are structures which are located at the ends of 

chromosomes and are inextricably linked with the mechanisms of proliferation 

and senescence. Each replicative cell cycle (i.e. during proliferation) results in 

a shortening of the length of the telomere until it reaches a critical length, in 

which case the cell becomes senescent (Calado and Young, 2009). Increased 

telomere shortening in AAA tissue may very well be an indicator of a period of 

hyper-proliferation when the tissue remained within the patient, prior to 

extraction for the study. The data presented in this chapter supports this, as the 

SMCs underwent a period of hyper-proliferation in the EARLY model, before 
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reverting to rhomboid senescent SMCs with impaired proliferation in the END 

model. 

MMPs (and their inhibitors) are heavily implicated in the progression of AAAs. 

These proteases are secreted as part of the normal tissue remodelling process, 

but in the case of AAA matrix degradation and synthesis is unbalanced 

(reviewed in Keeling et al. (2005) and Galis and Khatri (2002)). In this study, 

levels of MMP-2 and MMP-9 were examined specifically. Out of the six 

samples analysed, only SMCs from one animal secreted any detectable levels 

of MMP-9. All samples secreted higher levels of MMP-2, including proMMP-

2 and intermediate MMP-2. BIOCCE-SMCs typically secreted lower levels of 

MMPs compared to the matched controls, and secretions of MMPs tended to be 

higher in the EARLY model compared to the END model. It was demonstrated 

that END SMCs have an aberrant phenotype, with impaired proliferation and 

markedly increased levels of senescence. Therefore, it was not unexpected that 

they secreted lower levels of MMPs. 

Due to the increased proliferation in the EARLY BIOCCE SMCs it was 

expected that a similar increase in MMP secretion would have been observed. 

However, there were similar basal MMP levels compared to the matched 

EARLY FRESH and BIOVEH control SMCs. An explanation for this may be 

that SMCs at the same density were left to adhere for less than 24 hours before 

being transferred to serum free media to induce the SMCs into a quiescent state. 

When in such a state, cells will arrest in the G0 phase of the cell cycle where 

they are neither dividing nor preparing to divide. Any contribution of 

proliferation to MMP levels should therefore be minimised as a typical cell 

cycle length for porcine SMCs is 32 hours (Breton et al., 1986). In addition, 

stimuli treatments were carried out in minimal growth media (containing only 

0.4% FCS) and so the SMCs will be minimally proliferating. Therefore, it is 

assumed that MMP levels would have been investigated on a very similar SMC 

density across all groups. It is conceivable that further investigation would 

reveal increased MMP secretion in the EARLY model tissue due to the 

increased SMC number as a result of the observed hyperproliferation. 
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MMP-2 and MMP-9 are found in abundance in human AAA tissue, to the extent 

that attempts have been made to assess their suitability as an AAA biomarker 

(Longo et al., 2002, Eugster et al., 2005, Wilson et al., 2008). MMP-2 is 

typically found to be associated with smaller aneurysms, earlier on in their 

progression, whereas MMP-9 becomes dominant once the aortic diameter had 

increased (Freestone et al., 1995). MMP-2 expression was increased in SMCs 

derived from end-stage human AAA tissue cultured in vitro (Crowther et al., 

2000). AAAs are characterised by considerable overexpression of various 

MMPs. The levels of overexpression in the model may be considered modest in 

comparison however an intra-luminal thrombus (ILT) is not present in the 

model. ILT is commonly found in human AAAs and is a rich source of MMPs 

and pro-inflammatory cytokines (Fontaine et al., 2002). The lack of an ILT in 

this model may therefore be considered a limitation of the model as it plays a 

major role in exacerbation of the pathological remodelling associated with 

AAA. In animal models, ILT are typically only present in angiotensin II 

infusion in ApoE knockout mice and the elastase perfusion method in rats only 

(Wilson et al., 2013). 

In contrast to human AAA tissue, the END model SMCs secreted reduced levels 

of MMPs compared to matched controls. This may be explained by the fact that 

the nature of the model requires arterial cells alone (adventitial fibroblasts, 

SMCs and endothelial cells) are isolated from the animal for culture in the 

bioreactor and so removes the effect of the rest of the entity, most notably the 

immune system. MMPs are secreted not just by SMCs, but also by 

macrophages, B lymphocytes, mesenchymal stromal cells and the intraluminal 

thrombus (Fontaine et al., 2002, Tsuruda et al., 2008, Ciavarella et al., 2015, 

Zhang and Wang, 2015). The origin of MMP-2 in AAAs is SMCs and 

fibroblasts whereas MMP-9 is highly expressed by macrophages, which were 

not present in the ex vivo model (Ailawadi et al., 2003). The removal of these 

compounding factors may explain why increased MMP production is not 

observed in the EARLY and END model SMCs. 

Although their rhomboid morphology is similar, contrary to de-differentiated 

rhomboid secretory SMCs, AAA-SMCs have impaired proliferation and 
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migration and possess increased levels of senescence which are sustained 

through in vitro culture passages. This persistent phenotype may point to the 

role of epigenetic mechanisms and microRNAs in SMC phenotypic modulation 

in AAA disease (Boon and Dimmeler, 2011, Davis et al., 2015). It was shown 

in both previous and current studies in our laboratory that the ex vivo END 

model is able to mimic these criteria in END-BIOCCE SMCs (Riches et al., 

2013).  Conversely, the data presented in this chapter have shown that 

differentiated SMCs with spindle morphology exhibit increased proliferation 

which contradicts the classical characterisation of SMC phenotype (Shi and 

Chen, 2016). Hyperproliferation in SMCs has been documented as a cellular 

response to arterial insult (Owens et al., 2004). It is hypothesised that as the 

SMCs hyperproliferate, they become senescent more quickly as the 

proliferation-associated telomeres are shortened more rapidly resulting in a 

dysfunctional, aberrant and senescent SMC phenotype in the later stages of the 

disease, as described in the END model. Indeed, as mentioned previously, 

shortened telomeres appear to be a feature of human AAA-SMCs (Cafueri et 

al., 2012). The SMCs are unable to proliferate sufficiently to balance their 

descent into senescence and apoptosis, resulting in the observed loss of SMCs 

in AAA tissue (Lopez-Candales et al., 1997). Due to the nature of AAA disease, 

any validation of the EARLY model with human tissue, prior to clinical 

presentation, is virtually impossible. 

Considering the results presented in this chapter, it would be inappropriate to 

include EARLY and END BIOCCE SMCs as part of the classical SMC 

phenotype. As discussed in Chapter 1, SMCs are typically characterised as 

having two distinct phenotypes: a spindle shape contractile phenotype with low 

proliferative and migratory capacity or a hypertrophic rhomboid shape synthetic 

phenotype which is highly proliferative and migratory (Rzucidlo et al., 2007, 

Shi and Chen, 2016). The data indicated that BIOCCE SMCs exhibited a 

distinct phenotype incorporating both classical differentiated and de-

differentiated characteristics. BIOCCE SMCs also entered a state of early 

senescence compared to the experimental control groups and exhibited high 

numbers of senescence-associated β-galactosidase positive cells. In the last two 

decades, a specific senescent cell phenotype has been identified in humans and 
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this was recently characterised in human SMCs and implicated in vascular 

calcification (Coppé et al., 2008, Burton et al., 2010, Liu et al., 2013). This 

senescence associated secretory phenotype (SASP) leads SMCs to display a 

commonly altered secretome similar to a wound healing response, including 

increased levels of TGFβ1, IL-1, IL-6 and IL-8 (Adams, 2009). This state of 

cellular senescence is a protective mechanism triggered by DNA damage in two 

distinct pathways. Telomeres are structures which prevent the ends of the 

chromosome being recognised as a double strand DNA break. Telomeres 

become shorter when cells divide, as mentioned previously, and when they 

reach a critical length they are no longer able to protect against the DNA damage 

response and senescence is triggered. This first mechanism is replicative 

senescence (Burton and Krizhanovsky, 2014). The second mechanism is 

mediated via factors independent of telomere length which involve DNA 

damage, such as ROS or various oncogenes (Nelson et al., 2014). Further 

investigation in our laboratory has revealed that both END BIOCCE SMCs and 

human AAA SMCs have higher numbers of aberrant nuclei and increased levels 

of γ-H2AX, both indicators of DNA damage (unpublished). This is compelling 

evidence showing that the documented structure and dysfunction of human 

AAA SMCs and END BIOCCE SMCs are possibly part of accelerated 

senescence due to DNA damage and so have adopted SASP. 

Previous investigation in this laboratory also found a similar contradiction to 

the classical SMC phenotype in SMCs from patients with Type 2 diabetes 

mellitus. This distinct phenotype was able to be reversibly driven by miR-143 

and 145: transfection of antimiR-143 and 145 into diabetic SMCs restored 

normal morphology and function (Riches et al., 2014). This was characterised 

as a distinct diabetic SMC phenotype, however it may also be found in AAA 

SMCs. It is extremely interesting to note that diabetes is typically considered to 

have a protective effect from AAA disease and so further investigation into this 

link is heavily encouraged. 

In summary, this chapter has characterised the structure and function of SMCs 

explanted from an ex vivo bioreactor model of AAA. CCE treatment and flow 

culture used in combination induce a persistent SMC phenotype similar to that 
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seen in human end-stage AAA tissue. The END model produced SMCs which 

were rhomboid with a disordered cytoskeleton, had an impaired proliferative 

capacity, and had high levels of senescence with low MMP secretion. The 

EARLY model has revealed a period of hyper-proliferation, potentially 

accelerating the onset of general SMC senescence. This may have revealed a 

potential molecular target of early hyperproliferative markers for stabilisation 

of SMC numbers in AAA as a therapeutic treatment. 
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CHAPTER 6 EX VIVO MODEL BIOMECHANICS 

This chapter describes the development of methodology for biomechanical 

testing of the ex vivo model arterial tissues as examined in Chapter 4. The tissue 

was subjected to various treatment and culture regimes, details of which are 

given in Chapter 3. The effects of CCE treatment and bioreactor culture on 

tissue biomechanics were explored in order to validate the END ex vivo 

bioreactor model with human AAA biomechanical data reported in the 

literature. The first section of this chapter gives the results of the whole artery 

dilation testing. Following this, the results for uniaxial tensile testing of the 

END AAA model are given. 

 

6.1. INTRODUCTION 

Once an AAA has developed, the aorta will continue to expand at a rate 

proportional to its diameter until rupture of the AAA will inevitably occur 

unless elective repair is undertaken (Brady et al., 2004, Kent, 2014). Rupture of 

the arterial wall is a mechanical failure whereby the haemodynamic stresses 

exceed the failure strength of the aorta and so biomechanical properties of the 

aneurysmal wall have been widely studied over the years (Sumner et al., 1970, 

Vorp et al., 2003, Kontopodis et al., 2015, Schriefl et al., 2015). Although 

rupture is the catastrophic end-point of AAA, aneurysmal biomechanics are 

relevant throughout the AAA initiation and development process. Alterations in 

the matrix stemming from dysfunction of SMCs – responsible for ECM 

secretion – and high expression of MMPs throughout AAA tissue directly affect 

biomechanics and therefore the function of the aorta (Shah, 1997, Galis and 

Khatri, 2002, Curci, 2009). The typical mechanical behaviour of arterial tissue 

follows a biphasic linear pattern where elastin governs the biomechanical 

behaviour at low strains and during increasing strain collagen fibres are 

gradually recruited through a transition phase. Increasing strain further, the 

biomechanics enter a collagen phase with greater strength and stiffness. This 

typical biphasic curve can be seen in Figure 1.7.  
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Myriad modelling and experimental techniques have been employed to 

investigate the biomechanical properties of AAA. Peak wall stress has been 

modelled variously, from using idealized AAA models with two-dimensional 

analysis right up to patient-specific finite element and fluid structure interaction 

models (Stringfellow et al., 1987, Scotti et al., 2008, Nestola et al., 2016). In 

order to determine bulk material properties of AAA (necessary for 

computational model inputs), experimental work has been used. The simplest 

and most implementable method for determining bulk material properties is the 

uniaxial test. Many studies into biphasic arterial behaviour and the effect of 

aneurysm used uniaxial tensile tests to compare the composition of the matrix 

and its alterations in AAA and their subsequent effect on AAA biomechanics 

(Sumner et al., 1970, Sakalihasan et al., 1993, He and Roach, 1994, Thubrikar 

et al., 2001, Tavares Monteiro et al., 2014, Schriefl et al., 2015) . Ex vivo 

mechanical testing has shown AAA tissue to have a greatly reduced strength 

whilst being stiffer, especially in the circumferential orientation (Vorp et al., 

1996, Thubrikar et al., 2001, Geest et al., 2006). The AAA wall was assumed to 

be linearly elastic and isotropic in earlier studies, though this has since been 

deemed unsuitable for purpose as aneurysmal tissue is materially non-linear and 

undergoes large strains prior to failure (Raghavan and Vorp, 2000, Vande Geest 

et al., 2008). Uniaxial tensile testing is considered to be the least complex and 

simplest test of mechanical properties. For most biological tissues, uniaxial 

tensile testing is usually conducted in two tissue orientations for consideration 

of the anisotropy. However, the simplicity of the uniaxial tensile testing method 

is reflected in the results, as it does not conclusively allow the mechanical 

properties of the whole organ to be determined.  

Uniaxial/biaxial tensile testing techniques require the removal of tissue from the 

patient and so are suited for tissue removed during repair surgery. However, in 

order to investigate the mechanical properties of aneurysms at earlier stages of 

the disease to appreciate temporal changes, development of non-invasive 

methods was necessary. Systemic pressurisation of the AAA in vivo results in 

changes in the AAA diameter during systole and diastole which are able to be 

measured by ultrasound, magnetic resonance imaging (MRI) and computerised 

tomography scan (CT scan). Concordant with ex vivo uniaxial testing, AAAs 
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measured in vivo have been found to have increased stiffness and reduced 

distensibility compared to healthy aorta (Lanne et al., 1992, Ganten et al., 2008, 

Hoegh and Lindholt, 2009, Molacek et al., 2011). These in vivo imaging 

techniques rely on measuring the diameter of the artery in relation to 

characterised pressurisation via imagine techniques. This method can also be 

performed ex vivo as it is a more functional test. Maintaining the artery as a 

whole organ as opposed to manipulating tissue into flat strips would provide 

more informed analysis of the artery functioning as a physiological organ. The 

anisotropic response of AAA tissue is not able to be conclusively assessed using 

the simpler method of uniaxial tensile testing (Vorp and Geest, 2005, Zeinali-

Davarani et al., 2013). Whole artery pressure-dilation techniques for 

determining biomechanical properties of animal AAA models are able to be 

directly compared to in situ human AAAs and so a clinical comparison can be 

made (Tierney et al., 2010). In addition, it may not be practical to segment tissue 

with very low yield such as small animal aortae into strips suitable for uniaxial 

tensile testing (Collins et al., 2011, Haskett et al., 2013).  

Biomechanical validation of experimental AAAs in animal models appears to 

be more commonly used only in recent years. In small animal models, 

uniaxial/biaxial tensile testing and both in vivo and ex vivo whole artery 

pressure-dilation testing have been used to assess arterial biomechanics (Collins 

et al., 2011, Haskett et al., 2013, Phillips et al., 2015, Trachet et al., 2015, Zidi 

and Allaire, 2015). For large animals, there is a smaller body of work which has 

used uniaxial/biaxial tensile testing and ex vivo whole artery pressure-dilation 

testing (Kratzberg et al., 2009, Tierney et al., 2010, Zeinali-Davarani et al., 

2013). 

Investigating the biomechanical behaviour of the ex vivo bioreactor model of 

AAA enables biomechanical validation compared to human disease. It also 

enables the relationship between the dysfunction in the SMCs – responsible for 

secreting and degrading ECM – and the function of the artery as a whole organ 

to be elucidated. 
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6.2. CHAPTER AIMS AND OBJECTIVES 

The aim of this chapter was to characterise the effects of the CCE treatment and 

bioreactor culture, as detailed in Chapter 3, in terms of the arterial 

biomechanics. Two methods were used to achieve this, with the aim of selecting 

the most appropriate method of biomechanical testing for the END AAA model 

tissue. The methods used were whole artery dilation testing and uniaxial tensile 

testing. 

6.2.1. OBJECTIVES 

The specific objectives of this chapter were 

1 To characterise the effects of CCE treatment using whole artery dilation 

testing 

2 To characterise the effects of CCE treatment using uniaxial tensile 

testing 

3 To determine the optimum testing method for testing END model tissue 

4 To characterise the END model tissue in terms of biomechanics 

 

6.3. WHOLE ARTERY PRESSURE-DILATION TESTING 

The purpose of the CCE treatment gel was to disrupt the extracellular matrix of 

the artery by degrading both elastin and collagen. The effects of the CCE gel on 

arterial tissue were therefore characterised so that the biomechanics of the 

vessels at a ‘zero-state’ (the point when arteries are installed into the bioreactor 

following gel pre-treatment) and the effects of bioreactor culture on CCE treated 

and vehicle treated tissue could be analysed. The methods for producing the 

CCE gel are given in Section 3.5.1. 

It was found that there was no significant difference in arterial compliance 

between FRESH, VEH or CCE tissue when the diameter of each vessel was 

normalised to the diameter at 0 mmHg of each respective artery (Figure 6.1A).  

 



186 

 

 

Figure 6.1 Arterial compliance of FRESH, VEH and CCE pre-treatment. A) 

pressure-diameter curve with normalised mean. B) mean raw diameter of vessels. 

(***p<0.001, n=6). Graph shows mean±95% confidence intervals. Statistical 

analysis used was a one-way ANOVA with post-hoc Tukey test for means 

comparison. 

 

However, when the data was not normalised and the raw mean data was plotted 

there was a significant increase in the mean diameter in CCE arteries compared 
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to FRESH arteries (5.6±0.8 mm vs. 4.2±0.3 mm, p<0.001) (Figure 6.1B). There 

was no difference in mean diameter in VEH arteries compared to FRESH 

(4.5±0.3 mm vs. 4.2±0.3 mm) in terms of raw mean diameter. 

 

6.3.1.1. MATCHED VESSEL DILATION TESTING 

In order to confirm that this increase in mean diameter in CCE treated vessels 

was not an artefact of tissue sample selection; the experiment was repeated by 

measuring the diameters of a further six arteries which had not been subjected 

to any pre-treatment over a physiological range of pressures (0 to 100 mmHg). 

This was done so that the extracellular matrix would not be irreparably damaged 

during testing which |would affect results. Subsequently, all of the arteries were 

then treated with CCE gel and then dilation tested once more in a matched 

repeated experiment.  

In this matched experiment, the arteries had a significantly increased mean 

diameter once they had received CCE treatment compared to before 

(6.4±0.4mm vs. 5.3±0.3 mm, p<0.001, n=6) (Figure 6.2). 
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Figure 6.2 Matched dilation experiments before and after CCE treatment. 

***p<0.001, (n=6). Graph shows mean ± 95% confidence intervals. Statistical 

analysis used was a two-tailed paired t-test. 

 

6.3.2.  BURST PRESSURE 

The systemic pressure of the dilation rig was not allowed to exceed 5000 mmHg 

for safety reasons. If the artery did not burst within this range, the burst pressure 

was recorded as 5000 mmHg. 

FRESH and VEH tissue had burst pressures which were indistinguishable 

(3902±463 mmHg vs. 3736±496 mmHg respectively, p=0.85). However there 

was a steep decrease of about 90% in burst pressure of CCE tissue compared to 

FRESH tissue (351±135 mmHg vs. 3902±463 mmHg, p<0.001) (Figure 6.3). 
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Figure 6.3 Burst pressure of non-sterile FRESH, VEH and CCE treated arteries. 

***p<0.001, graph shows mean ± 95% confidence intervals (n=6). Statistical 

analysis used was a one-way ANOVA with post-hoc Tukey test for means 

comparison. 

 

6.4. UNIAXIAL TENSILE TESTING 

The effects of the pre-treatment gel were characterised using uniaxial tensile 

testing methods and, in addition, the biomechanics of the END AAA model 

were also tested. These tissues were obtained from a local abattoir and stored 

for short periods of time before testing could commence hence there was no 

guarantee on the viability of the tissue. 

Three sets of carotid arteries underwent END AAA model protocol (as per 

Section 3.5) and were then subjected to uniaxial tensile testing. Explantation of 

viable SMCs was possible for all arteries once the bioreactor was dismantled 

and so all of the END model arteries tested were viable when tensile testing 

commenced. Each carotid artery in the set was either subjected to vehicle 

(BIOVEH) or CCE (BIOCCE) gel pre-treatment. Each artery was cut into six 

strips; three of circumferential orientation and three of longitudinal orientation 

(Figure 2.10). 
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Data was only considered from tissue strips which had failed in the centre of the 

strip and not at the grips for the tensile testing equipment. This was done so that 

only the true failure of the tissue was taken into account and it was not skewed 

by early failure by physical damage from the grips. Using these criteria, in the 

circumferential orientation three VEH arteries and one BIOVEH artery had only 

two tissue strips truly fail, and one BIOVEH artery only had one tissue strip 

truly fail. In the longitudinal orientation, two FRESH arteries and one artery 

each from VEH, CCE, BIOVEH and BIOCCE experimental groups had only 

two tissue strips truly fail. Low tissue yield, and the circumference of the arteries 

were factors in this. Matched experiments between dilation testing and uniaxial 

tensile testing reduced tissue yield in FRESH, VEH and CCE groups and tissue 

harvesting limitations led to low tissue yield in BIOVEH and BIOCCE groups. 

Arterial circumference was a limiting factor – especially in the circumferential 

orientation – due to the requirement for 6 mm gauge length with additional 

tissue needed for obtaining an effective grip. The results are presented as 

engineering stress and engineering strain as any change in tissue cross-sectional 

area during testing was not recorded and quantified. 

The tissue strips were not subjected to any preload or preconditioning regime. 

Preload can mask the inherent properties in the tissue in the elastin phase by 

starting the data collection at an arbitrary value rather than the true relaxed state 

of the tissue. It was tested with a crosshead displacement rate of 10mm.min-1, 

corresponding to a steady strain rate of 0.028s-1 in 1X PBS maintained at 37°C 

in order to mimic physiological conditions. 

 

6.4.1. TISSUE BEHAVIOUR 

Images were taken during the uniaxial tensile testing of BIOCCE and BIOVEH 

tissue. It was observed that BIOVEH tissue tended to fail at one point in the 

strip at the ultimate tensile strength (Figure 6.4). However, BIOCCE tissue did 

not have as much of a defined failure point in the tissue as BIOVEH tissue. 

BIOVEH tissue generally failed at one point and then propagated across the 

tissue in a defined route.  
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Tissue thickness was also heterogeneous in BIOCCE tissue which may have led 

to predisposed failure points in the tissue strips (Figure 6.5). 

 

 

Figure 6.4 Representative images of tissue strips undergoing uniaxial tensile 

testing. 

 

6.4.2. ARTERIAL THICKNESS 

The mean thickness of each tissue strip was calculated from three separate 

thickness measurements using a digital micrometer. END-BIOCCE tissue was 

non-uniform and areas of translucent tissue where the thickness was especially 

low were visible (Figure 6.5).  

Strain 

BIOCCE 

 

BIOVEH 
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Figure 6.5 Non-uniformity of arterial thickness in END-BIOCCE tissue. Arrows 

indicate translucent areas in excessively thinned tissue. 

 

The application of CCE treatment induced a significant reduction in arterial 

thickness. In addition, bioreactor culture on either VEH or CCE treated arteries 

induced a marked reduction in arterial thickness. 

A one-way ANOVA showed that there was a significant difference in mean 

arterial thickness between experimental groups, F(4, 136)=18.1, p<0.001. The 

results for this are displayed in  

Figure 6.6. A post-hoc Tukey test revealed that the thickness of FRESH and 

VEH arteries did not differ. There was a decrease in thickness in CCE tissue 

compared to FRESH tissue (0.65±0.04mm vs. 0.85±0.06mm respectively, 

p<0.001). The effect of bioreactor culture in both VEH and CCE treated tissue 

was to reduce thickness by a similar degree (0.81±0.09mm vs. 0.66±0.05mm, 

VEH and BIOVEH respectively, p<0.05, 19% reduction; 0.65±0.04mm vs. 

0.52±0.12mm, CCE and BIOCCE respectively, p<0.05, 21% reduction). 
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Figure 6.6 Mean arterial thickness. Shaded columns represent viable tissue. 

Graph shows mean ± 95% confidence intervals. ***p<0.001, *p<0.05 

FRESH/VEH/CCE (n=6), BIOVEH/BIOCCE (n=3). Statistical analysis used was 

one-way ANOVA with post-hoc Tukey test. 

 

6.4.3.  TISSUE BEHAVIOUR 

Representative stress-strain graphs for each of the tissue treatment groups in 

both the longitudinal and circumferential orientations are shown in Figure 6.7. 

The stress-strain data for the rest of the strips are found in Appendix F. 

 The FRESH tissue exhibited characteristic anisotropic biphasic behaviour as 

observed in arterial tissue tests. It was generally stiffer circumferentially in both 

the elastin and collagen regions. This behaviour was mirrored in the VEH tissue 

with similar stiffness in both the elastin and collagen regions, transition strains 

and failure strengths. Tissue subjected to CCE treatment was generally much 

weaker compared to FRESH or VEH tissue, and the longitudinally orientated 

tissue tended to be much weaker than circumferential tissue. It was also more 

compliant in both the elastin and collagen regions in both orientations and 

generally acted more ductile with a higher failure strain. There was usually a 

higher degree of anisotropy in CCE tissue where the longitudinally orientated 

tissue was weaker compared to circumferential tissue typically to a greater 
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degree than in FRESH or VEH tissue. However, CCE tissue did mirror the 

characteristic arterial biphasic behaviour seen in FRESH and VEH tissue. 

BIOVEH tissue again was much weaker and more compliant compared to 

FRESH or VEH tissue. Similar to FRESH and VEH tissue, BIOVEH tissue 

exhibited biphasic elastin-collagen behaviour and strain at failure meaning that 

it possessed a similar degree of ductility. BIOCCE tissue was typically the group 

which had the lowest failure stress and stiffness measurements in both the 

elastin and collagen regions. In the longitudinal orientation in particular, 

BIOCCE tissue was markedly weak and ductile. BIOCCE tissue also tended not 

to have a distinct failure point whereas all of the other groups did. This 

behaviour can be seen qualitatively in Figure 6.4. 
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Figure 6.7 Representative engineering stress-strain graphs for each of the 

treatment groups in both circumferential and longitudinal orientation. 

 

Additionally, in four out of seventeen BIOCCE test strips (almost a quarter of 

total BIOCCE strips) the stress-strain behaviour was not clearly biphasic as 

arterial tissue is commonly characterised. There was no presence of a distinct 

elastin region before the collagen fibres were recruited in the collagen region, 

finally leading to failure of the tissue once the strain increased beyond that. 

Three of the four test strips were circumferentially orientated and one was 
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longitudinally orientated. Three test strips were from the same artery (two 

circumferential and one longitudinal).  

The raw data stress-strain curves for each of the four strips are shown in Figure 

6.8. The values for elastin region stiffness and transition strain for these strips 

were taken to be zero.  

 

Figure 6.8 Raw stress-strain curves for BIOCCE tissue which did not exhibit 

distinct biphasic behaviour with absence of elastin region. 

 

6.4.4. EFFECT OF TREATMENT ON ELASTIN REGION STIFFNESS 

The stiffness of the elastin region is the resistance of the artery in the low strain 

region, as described in Section 1.5.2. The ability of the artery to expand and 

contract to drive to create a pressure pulse which drives blood through them 

relies on the biomechanical properties of elastin. The mean elastin region 

stiffness for the arteries in circumferential and longitudinal orientations is 

displayed in  
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Figure 6.9. The circumferential and longitudinal orientations are presented 

separately due to the well-documented anisotropy found in arterial tissue (Vorp 

and Geest, 2005, Gasser et al., 2006). 

Circ. Long.
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

#.
.
.

.

***

E
la

st
in

 r
eg

io
n
 s

ti
ff

n
es

s 
(M

P
a)

Orientation

 FRESH

 VEH

 BIOVEH

 CCE

 BIOCCE

***

***

***

.

 
Figure 6.9 Elastin region stiffness. FRESH, VEH, CCE (n=6); BIOVEH, BIOCCE 

(n=3); ***p<0.001, #p=0.06. Shaded columns represent viable tissue. Graphs show 

mean ± 95% confidence intervals. Statistical analysis used was a one-way ANOVA 

per orientation with post-hoc Tukey test for means comparison. 

 

Overall, VEH treatment alone did not affect elastin region stiffness in either 

orientation. CCE treatment alone significantly reduced elastin region stiffness 

in both orientations compared to VEH. Bioreactor culture reduced elastin region 

stiffness in vehicle treated arteries in both orientations. Bioreactor culture on 

CCE treated arteries did not have any significant effect in either orientation. 

BIOCCE arteries tended to have a lower elastin region stiffness compared to 

BIOVEH arteries, but this was non-significant. 

To test statistical significance, a one-way ANOVA per tissue orientation was 

used to test for significant effects of treatment on elastin region stiffness and a 

post-hoc Tukey test was used for means comparison. Firstly, the results from 

the circumferential direction will be described. The results were significant, F(4, 

60) = 34.6, p<0.001. There was no significant difference in elastin region 
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stiffness between FRESH and VEH arteries (0.22±0.06 vs. 0.27±0.03 MPa 

respectively). Application of CCE treatment without culture induced 

significantly decreased elastin region stiffness compared to VEH (0.04±0.01 vs. 

0.27±0.03 MPa respectively, p<0.001). The effect of bioreactor culture in VEH 

arteries was to decrease the elastin region stiffness (0.27±0.03 vs. 0.16±0.03 

MPa, VEH and BIOVEH respectively, p<0.01). In CCE treated arteries there 

was no difference between CCE and BIOCCE treated arteries (0.04±0.01 vs. 

0.06±0.05 respectively). There was a non-significant trend towards a decreased 

elastin region stiffness in BIOCCE arteries compared to BIOVEH arteries. 

BIOCCE and BIOVEH arteries (0.06±0.05 vs. 0.16±0.03 MPa respectively, 

p=0.06). 

In the longitudinal orientation, the results were also significantly different, F(4, 

61) = 79.4, p<0.001. The Tukey test showed that elastin region stiffness in 

FRESH and VEH arteries were similar (0.16±0.03 vs. 0.13±0.01 MPa 

respectively). The effect of CCE treatment alone reduced the stiffness in the 

elastin region compared to VEH (0.03±0.003 vs. 0.13±0.01, p<0.001). In both 

VEH treated arteries, the effect of bioreactor culture was to reduce elastin region 

stiffness (0.03±0.01 vs. 0.13±0.01, BIOVEH and VEH respectively, p<0.001). 

There was no effect of bioreactor culture on CCE treated arteries (0.01±0.004 

vs. 0.03±0.003 MPa, BIOCCE and CCE respectively). 

 

6.4.5. EFFECT OF TREATMENT ON COLLAGEN REGION STIFFNESS 

Collagen is the less elastic component of the arterial extracellular matrix and it 

provides strength to the tissue at higher strains. It is formed into fibres which 

are gradually recruited into a load-bearing role as strain is increased (Thubrikar 

et al., 2001). The collagenase contained within the CCE gel treatment would 

have degraded a proportion of the collagen in the artery and so the stiffness in 

the collagen region amongst the treatment groups was analysed. SMCs are also 

able to secret collagen as part of a remodelling process, so the biomechanics in 

the collagen region gave an insight into the function of the SMCs. The mean 
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collagen region stiffness for each of the experimental groups is shown in Figure 

6.10. 

The results for measurements of collagen region stiffness appeared to follow the 

same trend as for elastin region stiffness. VEH treatment did not affect collagen 

region stiffness in either orientation. CCE treatment significantly reduced 

collagen region stiffness in both orientations compared to VEH control. 

Bioreactor culture significantly reduced collagen region stiffness in both 

orientations in VEH arteries, but had no effect in CCE arteries. 

A one-way ANOVA was performed per tissue strip orientation. In the 

circumferential direction, there was a significant effect of arterial treatment on 

collagen region stiffness, F(4, 60) = 27.8, p<0.001. The Tukey test showed that 

there was no difference in collagen region stiffness between FRESH and VEH 

arteries (1.46±0.38 vs. 1.54±0.11 MPa respectively). The application of CCE 

treatment significantly reduced collagen region stiffness compared to VEH 

control (0.36±0.07 vs. 1.54±0.11 MPa respectively, p<0.001). The effect of 

bioreactor culture on VEH treated arteries was to significantly decrease collagen 

region stiffness (0.89±0.10 vs. 1.54±0.11 MPa, BIOVEH and VEH 

respectively, p<0.001). In contrast to this, in CCE treated arteries there was no 

effect of bioreactor culture (0.24±0.09 vs. 0.36±0.07 MPa, BIOCCE and CCE 

respectively). 



200 

 

Circ. Long.
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

.

.

.

***

***

C
o
ll

ag
en

 r
eg

io
n
 s

ti
ff

n
es

s 
(M

P
a)

Orientation

 FRESH

 VEH

 BIOVEH

 CCE

 BIOCCE

***

**.

 

Figure 6.10 Collagen region stiffness. FRESH, VEH, CCE (n=6); BIOVEH, 

BIOCCE (n=3); **p<0.01, ***p<0.001. Shaded columns represent viable tissue. 

Graphs show mean ± 95% confidence intervals. Statistical analysis used was a 

one-way ANOVA per orientation with post-hoc Tukey test for means comparison. 

 

The results in the longitudinal direction mirrored the effects in the 

circumferential direction. The ANOVA revealed that there was a significant 

effect of arterial treatment on collagen region stiffness in the longitudinal 

orientation, F(4, 61) = 35.5, p<0.001. A post-hoc Tukey test was then used for 

means comparison. There was no significant difference in collagen region 

stiffness between FRESH and VEH arteries (1.11±0.16 vs. 1.01±0.07 MPa 

respectively). CCE treatment alone induced a significant reduction in collagen 

region stiffness compared to VEH control (0.12±0.02 vs. 1.01±0.07 

respectively, p<0.001). Bioreactor culture significantly reduced collagen region 

stiffness in VEH treated arteries (0.21±0.04 vs. 1.01±0.07 MPa, BIOVEH and 

VEH respectively, p<0.001). There was no significant effect of bioreactor 

culture on CCE treated arteries (0.04±0.02 vs. 0.12±0.02 MPa, BIOCCE and 

CCE respectively). 
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6.4.6. EFFECT OF TREATMENT ON TRANSITION STRAIN 

Transition strain is the point where the collagen fibres are recruited as such to 

bear a majority of the load applied to the tissue. A shift in transition strain 

amongst any of the experimental groups is evidence for tissue remodelling, as 

the configuration of the collagen fibres will have changed as opposed to being 

passively removed (details of the collagen and elastin configuration are included 

in Section 1.5.2). Analysing changes in the transition strain allows analysis of 

the behaviour of the extracellular matrix (and therefore SMC function). The 

transition strain results are shown in Figure 6.11. 

In summary, there was no change in transition strain in either orientation in any 

of the treatment groups which did not undergo bioreactor culture. Bioreactor 

culture induced a decrease in transition strain in CCE arteries alone in the 

circumferential orientation. In the longitudinal orientation, the fact that there 

was no observed differences between FRESH/VEH and VEH/BIOVEH, yet 

there was a significant difference between FRESH/BIOVEH suggests a 

potential trend towards an increased transition strain in VEH arteries 

undergoing bioreactor culture. The transition strains of arteries which 

underwent bioreactor culture seemed to diverge; there was a marked difference 

in transition strain between BIOVEH and BIOCCE arteries in the longitudinal 

orientation. 

A one-way ANOVA was performed per orientation. In the circumferential 

direction, the effect of arterial treatment on transition strain was significant, F(4, 

60) = 2.91, p<0.05. The Tukey test showed that there was no significant 

difference in the transition strains between FRESH and VEH arteries (0.96±0.17 

vs. 0.92±0.08 respectively). Application of CCE gel alone also did not have any 

observable effect on transition strain compared to VEH control (1.04±0.14 vs. 

0.92±0.08 respectively). Bioreactor culture exerted no effect on VEH treated 

arteries (0.78±0.18 vs. 0.92±0.08, BIOVEH and VEH respectively). In CCE 

treated arteries, bioreactor culture led to a significant decrease in transition 

strain (0.54±0.29 vs. 1.03±0.14, BIOCCE and CCE respectively, p<0.05).  
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Figure 6.11 Transition strain. FRESH, VEH, CCE (n=6); BIOVEH, BIOCCE 

(n=3); *p<0.05, **p<0.01. Shaded columns represent viable tissue. Graphs show 

mean ± 95% confidence intervals. Statistical analysis used was a one-way ANOVA 

per orientation with post-hoc Tukey test for means comparison. 

 

In the longitudinal orientation, the ANOVA showed that there was a significant 

effect of arterial treatment on transition strain, F(4, 60) = 4.12, p<0.01. Post-hoc 

analysis with a Tukey test showed that there was no significant difference 

between FRESH and VEH arteries (1.64±0.17 vs. 1.82±0.15 respectively). 

There was no effect of application of CCE treatment compared to VEH control 

on transition strain (1.54±0.2 vs. 1.82±0.15 respectively). BIOVEH arteries had 

an increased transition strain compared to FRESH arteries (2.63±0.2 vs. 

1.64±0.17 respectively, p<0.05). However, compared directly to its counterpart 

which did not undergo bioreactor culture, BIOVEH and VEH arteries were 

indistinguishable (2.63±0.2 vs. 1.82±0.15 respectively, p=0.13). There was a 

marked reduction in transition strain in BIOCCE arteries compared to BIOVEH 

arteries (0.95±0.37 vs. 2.63±0.21 respectively, p<0.01). 
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6.4.7.  EFFECT OF TREATMENT ON ULTIMATE TENSILE STRENGTH 

The rupture of an AAA physiologically is due to the failure of the tissue at its 

weakest point. The ultimate tensile strength (UTS) is the maximum stress 

reached during the test and would correlate to rupture pressure in the human 

disease; for this reason the UTS was measured for each treatment group. The 

UTS results are shown in Figure 6.12. 

Overall, CCE treatment alone, in the absence of any culturing of the artery, 

significantly reduced the UTS in both orientations. In VEH arteries, bioreactor 

culture led to significantly decreased UTS in both orientations. In the 

circumferential orientation, BIOVEH arteries tended to be stronger than 

BIOCCE arteries, although this trend was non-significant. 

A one-way ANOVA was performed per orientation. In the circumferential 

orientation, the ANOVA showed that there was a significant effect of arterial 

treatment on UTS, F(4, 60) = 36.4, p<0.001. A Tukey test showed that there 

was no change in UTS between FRESH and VEH arteries (1.44±0.34 vs. 

1.70±0.16 MPa respectively). Application of CCE treatment alone induced a 

decrease in UTS compared to VEH control (0.41±0.09 vs. 1.7±0.16 MPa 

respectively, p<0.001). Bioreactor culture induced a significant decrease in UTS 

in VEH treated arteries (0.88±0.11 vs. 1.70±0.16 MPa respectively, p<0.001). 

However, this effect of bioreactor culture was not seen in CCE treated arteries 

(0.30±0.14 vs. 0.41±0.09, BIOCCE and CCE respectively). There was a trend 

towards decreased UTS in BIOCCE arteries compared to BIOVEH, although 

was not statistically significant (0.30±0.14 vs. 0.88±0.11 MPa respectively, 

p=0.06). 
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Figure 6.12 Ultimate tensile strength. FRESH, VEH, CCE (n=6); BIOVEH, 

BIOCCE (n=3); ***p<0.001, #p=0.06. Shaded columns represent viable tissue. 

Graphs show mean ± 95% confidence intervals. Statistical analysis used was a 

one-way ANOVA per orientation with post-hoc Tukey test for means comparison. 

 

In the longitudinal orientation, the results reflected the behaviour in the 

circumferential orientation. The ANOVA showed a significant effect of arterial 

treatment on UTS, F(4, 61) = 48.3, p<0.001. The Tukey test showed that the 

UTS of FRESH and VEH arteries were alike (1.68±0.22 vs. 1.88±0.16 MPa 

respectively). CCE treated arteries had a decreased UTS compared to VEH 

control (0.25±0.04 vs. 1.88±0.16 MPa respectively, p<0.001). The effect of 

bioreactor culture in VEH treated arteries was a significant reduction in UTS 

(0.45±0.07 vs. 1.88±0.16 MPa respectively, p<0.001). This effect of bioreactor 

culture was not observed in CCE treated arteries, where there was no difference 

in UTS (0.06±0.03 vs. 0.24±0.04 MPa, BIOCCE and CCE respectively).  

 

6.5. COMPARISON OF UNIAXIAL AND DILATION TESTING 

As both the whole vessel dilation tests and the uniaxial tensile tests for FRESH, 

VEH and CCE tissue were performed on matched tissue from the same animals, 
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a direct comparison can be drawn. The UTS and the burst pressure (two of the 

most easily comparable parameters) of the arteries were compared. The mean 

UTS of all of the tissue strips tested, both circumferential and longitudinal, was 

calculated and compared with the burst pressure. The data was imported into 

Microsoft Excel (Microsoft, WA, USA) and a linear best fit line was determined 

using in-built least squares regression code. The R2 value gives an indication of 

the correlation between the two parameters and in this case R2 = 0.7686 (Figure 

6.13). This indicates that there is a correlation of failure stress between the two 

methods but it is not strong. The data from all treatment conditions are pooled 

to give a sufficiently large dataset for regression analysis. 

 

Figure 6.13 Comparison of whole vessel burst pressure and uniaxial tensile testing 

parameters (burst pressure vs. mean ultimate tensile strength). R2 = 0.7686 using 

a linear line of best fit. 

 

6.6.  DISCUSSION 

This chapter presented a biomechanical analysis of the effect of the CCE 

treatment and END AAA model tissue behaviour using two different testing 

methodologies. The END AAA model was experimentally produced using the 

methodology outlined in Chapter 3. Briefly, a gel containing a combination of 

collagenase and elastase (CCE) was focally applied peri-adventitially to a 
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porcine artery and left for 3 hours. The treatment was then removed and the 

artery was installed into a bioreactor able to impart luminal pressure and flow 

through the artery for 12 days. The characterisation of the CCE treatment was 

only carried out using non-sterile arteries due to high cost and ease of 

implementation: the tissue did not undergo culture for any length of time and so 

sterility was not necessary. 

Whole artery pressure-dilation testing showed that the burst pressure was 

drastically decreased in CCE tissue compared to FRESH or VEH tissue. It also 

revealed that the tissue compliance between untreated tissue and that which 

underwent VEH or CCE treatment was indistinguishable. Compliance is the 

relationship between a change in pressure and a change in diameter. A 

proportion of the same tissue which underwent CCE characterisation in whole 

artery pressure-dilation testing was used in matched uniaxial tensile testing 

experiments. A disparity between the marked change in CCE tissue 

biomechanics compared to FRESH or VEH controls observed in the uniaxial 

tests compared to no alterations in the tissue in the pressure-dilation tests 

emerged. The mean change in diameter was then examined rather than the 

normalised change in diameter and it was found that the CCE treated tissue has 

an increased mean diameter compared to both FRESH and VEH tissue.  

It was then hypothesised that the CCE treatment induces an increase in mean 

diameter in the range of pressures measured. As a bias of experimental 

groupings of arteries could not be ruled out, a further set of repeated 

experiments was carried out where the tissue was non-destructively tested prior 

to and after CCE treatment. In this second set of experiments it was confirmed 

that CCE treatment significantly increased mean arterial diameter despite 

having no effect on compliance.  

The reason for this may lie within the configuration of elastin and collagen in 

the arterial tissue. Elastin is the component of the ECM which is responsible for 

arterial compliance and is degraded via elastase during application of the CCE 

treatment. In Chapter 4, histological analysis revealed that CCE treated tissue 

exhibited clear elastin loss and so the potential elastic energy residing in the 

tissue would have decreased. Other studies have shown that elastin degradation 
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in arteries leads to an increase in arterial diameter. In selective elastolytic and 

collagenolytic in vitro pressure-dilation arterial studies, Dobrin et al. showed 

that elastase degraded arteries had increased diameter and were stiffer at lower 

pressures whilst collagenase treated arteries were more compliant and weaker 

overall (Dobrin et al., 1984). Subsequent studies concurred that elastin 

degradation leads to an increased arterial diameter with increased stiffness at 

lower pressures and equated this with pre-stresses within elastin present even at 

zero-load (Fonck et al., 2007).  

The significant increase in mean arterial diameter even at zero-load as a direct 

effect of the CCE treatment was shown in repeated experiments on the same 

arterial tissue. The CCE treatment did induce a significant increase in mean 

diameter, but did not induce a change in stiffness at any level of pressure. It is 

thought that this is attributed to the inclusion of collagenase in addition to 

elastase within the CCE treatment. Collagenase degrades collagen which is the 

component of the arterial wall associated with stiffness at higher loads and wall 

strength. Therefore the lack of increased stiffness at lower pressures associated 

with elastinolytic studies when characterising the effects of CCE treatment may 

be attributed to the decreased stiffness associated with collagenase activity. 

Decreased arterial strength and stiffness has also been associated with 

degradation of collagenase (Dadgar et al., 1997). As the burst pressure of the 

CCE treated tissue was severely decreased compared to controls, collagen 

degradation had a significant effect on the mechanical properties of the artery. 

However, the matched uniaxial tensile testing experiments revealed a 

significant decrease in both the elastin and collagen regions which was not 

mirrored in the pressure-dilation experiments. It is thought that this was an 

experimental artefact in the methodology for the CCE tissue: when the PBS was 

allowed to flow into the artery lumen, prior to zeroing the pressure meter, it 

caused a deformation in the weakened tissue. This deformation was not then 

observed during the experiment as it occurred outside the pressure range. 

 Whole artery pressure-dilation testing and uniaxial tensile testing were both 

used for CCE treatment characterisation whereas the END AAA model 

biomechanics were characterised using uniaxial tensile testing only. Although 
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whole artery pressure-dilation testing enables multidirectional mechanics of the 

whole artery, which is a limitation of uniaxial tensile testing, there was a small 

amount of tissue once the artery had been removed from the bioreactor. If the 

artery was punctured in some way during the experimental set-up then it would 

not be feasible to conduct pressure-dilation testing. Up to three strips per artery 

were tested using uniaxial tensile testing, generating a larger dataset than 

pressure-dilation testing. In addition, the experimental artefact due to the 

arbitrary position of zero-state pressure was thought to be a limitation in the 

whole artery pressure-dilation testing method.  

CCE treatment induced a decrease in arterial thickness. As shown by the 

pressure-dilation experiments, the mean diameter of the arteries increased and 

so it is expected that the thickness would decreased via a Poisson’s ratio 

mechanism. Regardless of tissue treatment, bioreactor culture induced a 

decrease in arterial thickness by a similar amount (19% and 21% decrease for 

VEH vs. BIOVEH and CCE vs. BIOCCE respectively). This may be attributed 

to the bioreactor environment inducing a decrease in thickness but may also be 

as a result of experimental practicalities. This decrease in thickness may be 

partly due to changes in the bioreactor environment compared to the 

physiological environment as the tissue adapts to the bioreactor environment. 

The pressure pulse which arterial tissue is subject to in the body was not present 

in the bioreactor flow profile, as the arteries were cultured under steady flow. 

Incorporation of a physiological pulsatile component which exerts cyclic stretch 

and a dynamic pressure gradient on the arterial wall may mitigate this unwanted 

remodelling. The installation of the tissue into the bioreactor and potential 

stretching of the tissue over time (as the shaft of the bioreactor translates 

outwards to accommodate the increase in tissue length once pressurised) may 

also cause longer term visco-plastic relaxation changes in tissue dimension. The 

viscoelastic behaviour of arterial and AAA tissue was not investigated in this 

study but has been relatively widely studied (Holzapfel et al., 2002, Čanić et al., 

2006, Zhang et al., 2008). The manipulation of the tissue once removed from 

the bioreactor should also be considered as a factor in the decreased thickness 

of the tissue. As the elastin has been virtually totally degraded during the course 

of the experiments (as a result of CCE treatment, bioreactor culture or a 
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combination of both), the remaining collagen may therefore become uncrimped 

prior to testing. Ideally, the tissue would not be handled at all prior to testing, 

however this is unavoidable for the chosen method. Therefore, geometric 

alterations in the tissue may not be caused solely by bioreactor remodelling. 

Lastly, an inherent bias may have also existed as generally the largest part of 

the artery was selected for uniaxial tensile testing to ensure sufficient tissue for 

the machine grips. 

The uniaxial tensile testing revealed that CCE treated tissue had overall 

decreased stiffness and strength. This is expected as the components of the ECM 

which contribute to strength and stiffness were degraded by application of the 

CCE treatment. The FRESH arteries had a mean UTS of 1.44±0.34 MPa and 

1.68±0.22 MPa in the circumferential and longitudinal orientations 

respectively. This is comparable to the failure strength of fresh and frozen 

porcine arteries (Stemper et al., 2007b) (1.15 ± 0.39 MPa and 1.32 ± 0.31 MPa 

respectively). The stiffness in both the elastin and collagen regions, the 

transition strain and the ultimate tensile strength of VEH tissue was 

indistinguishable from FRESH tissue. The gel application method alone, 

without the addition of collagenase or elastase, did not alter the mechanical 

properties of the tissue. 

The Young’s moduli of porcine carotid arteries, as tested by Silver et al., were 

0.15 MPa and 1.61 MPa for the elastin and collagen region respectively in the 

circumferential orientation and 0.22 MPa and 1.47 MPa for the elastin and 

collagen region respectively in the longitudinal orientation (Silver et al., 2003). 

The values obtained for the Young’s moduli of FRESH tissue was comparable 

to the study by Silver et al. (0.22±0.06 MPa elastin region, 1.46±0.38 MPa 

collagen region in the circumferential orientation and 0.16±0.03 MPa elastin 

region, 1.11±0.16 MPa collagen region in the longitudinal orientation). 

Generally, CCE treated tissue had a much greater degree of anisotropy in terms 

of arterial strength (Figure 6.7). Longitudinally orientated tissue strips were 

drastically weaker than circumferentially orientated tissue strips. This level of 

anisotropy was greater in BIOCCE tissue compared to CCE tissue. AAA tissue 
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has been associated with a higher degree of anisotropy compared to healthy 

abdominal aortic tissue (Geest et al., 2006). 

The UTS of BIOCCE tissue was 0.30±0.14 MPa and the stiffness of the elastin 

and collagen regions were 0.06±0.05 MPa and 0.24±0.09 MPa respectively in 

the circumferential orientation; the UTS of BIOCCE tissue was 0.06±0.03 MPa 

and the elastin and collagen region stiffness was 0.01±0.004 MPa and 0.04±0.02 

MPa respectively in the longitudinal orientation. Raghavan et al. reported UTS 

values in end-stage human AAA tissue of 0.70±0.12 MPa and 0.65±0.10 MPa 

in the circumferential and longitudinal orientations respectively (Raghavan et 

al., 1996). The stiffness of the elastin and collagen regions were 0.56±0.11 MPa 

and 5.39±0.88 MPa respectively in the circumferential orientation and 

0.42±0.06 MPa and 4.08±0.68 MPa respectively in the longitudinal orientation. 

They reported a modest decrease in stiffness in AAA tissue compared to normal 

aorta, but a drastic decrease in arterial strength. The BIOCCE tissue is 

significantly weaker than FRESH tissue, mirroring the results of Raghavan et 

al., but also has markedly decreased overall stiffness which contradict this 

study. This may be attributed to the time-scale of the ex vivo AAA model: the 

END model has undergone remodelling in the bioreactor for 12 days whereas 

human AAA tissue at elective repair may have been undergoing pathological 

remodelling for a period of many years. The SMCs responsible for ECM 

secretion in the END model have been shown to be dysfunctional and senescent 

in Chapter 5 and so there may be limited opportunity for remodelling to occur 

in the short period where the SMCs are functionally active. 

There was a significant decrease in arterial strength and stiffness in both elastin 

and collagen regions in BIOVEH tissue compared to VEH tissue. In contrast, 

there was no change in arterial strength and stiffness in the BIOCCE tissue 

compared to CCE tissue. Bioreactor culture for 12 days only altered the material 

properties in VEH treated tissue and had no effect on CCE treated tissue. This 

may be linked with the functional properties of the SMCs in the tissue which 

are responsible for ECM secretion: END-BIOCCE SMCs have been shown to 

be dysfunctional whereas END-BIOVEH SMCs are functionally similar to 

FRESH SMCs (Chapter 5). Therefore, the SMCs in VEH treated tissue may still 
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have the ability to remodel the artery whereas the SMCs in CCE treated tissue 

have lost this and become dysfunctional. 

Although there was a decrease in overall stiffness and strength in BIOCCE and 

BIOVEH tissue, there was evidence of active remodelling of the ECM as 

opposed to simple passive degradation of the tissue once in the bioreactor: the 

transition strain of BIOCCE tissue was significantly decreased in both 

orientations. BIOVEH tissue had an increased transition strain in the 

longitudinal orientation which was 2-fold higher than BIOCCE tissue. In 

addition, as detailed in Chapter 4, BIOVEH arteries tended to remodel inwards 

and exhibited a smaller luminal diameter. This evidence of inward remodelling 

may point to active remodelling rather than passive degradation, which would 

result in outwards remodelling as the tissue becomes weaker. Passive 

degradation of the tissue (such as that seen in CCE tissue compared to 

FRESH/VEH) would not alter the point at which the collagen fibres are 

recruited into a load bearing role (as described by the model in Figure 1.8).  

As seen in Chapter 4, collagen staining the arterial sections revealed a possible 

deposition of collagen around the lumen in the END model. The decrease in 

transition strain may also provide evidence of collagen deposition as collagen 

is recruited at lower strains in END-BIOCCE tissue and collagen is deposited 

not in parallel with the native collagen, but so it is able to be recruited in the low 

strain typically elastin governed region. In addition, approximately one quarter 

of the END-BIOCCE tissue strips tested did not have a distinct elastin region 

which again suggests that collagen has been deposited for load bearing in the 

low strain region (Figure 6.8).  These data suggest that the process of arterial 

stiffening and weakening seen in AAA tissue compared to healthy aortic tissue 

may have begun in the END-BIOCCE model. Further study on ECM secretion 

and collagen quantification, alongside longer periods of bioreactor culture is 

therefore recommended to investigate this possibility.  

Unexpectedly, due to the gross appearance of the tissue, there was no significant 

differences in strength or overall stiffness between BIOVEH or BIOCCE tissue. 

There was, however, a persistent trend towards decreased elastin region 

stiffness, collagen region stiffness and ultimate tensile strength in BIOCCE 
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tissue compared to BIOVEH tissue. This highlights a limitation of the study in 

which there were relatively low sample sizes in BIOVEH and BIOCCE arteries 

due to the number of experiments carried out and the low tissue yield per 

experiment. Due to the limited amount of tissue, there was typically not an 

opportunity to test additional tissue strips if one did not truly fail and was 

damaged by the tissue grips. In future, the characterisation of the biomechanics 

of the END-BIOCCE tissue would benefit from additional experiments to 

increase the sample size. 

The END-BIOCCE tissue exhibited clear non-uniformity in arterial thickness 

(Figure 6.5). The mean thickness of three measurements was used in this 

method to calculate the engineering stress (Section 2.9.2.2, Equation 2). It is 

suggested that using force per unit width to calculate the engineering stress in 

future experiments would be advisable, in order to accommodate non-uniform 

tissue thickness. 

Two methods of biomechanical analysis were critically analysed and uniaxial 

tensile testing was selected as the most suitable method for this particular tissue. 

Despite the highlighted differences between the biomechanical properties of the 

END-BIOCCE model tissue and human AAA tissue, the END-BIOCCE model 

showed evidence of ECM remodelling in terms of collagen deposition and a 

decrease in arterial strength which are properties found in AAA tissue. The 

effect of the CCE treatment on the function of the artery has been characterised 

in order to better understand the environment the SMCs reside in during 

bioreactor culture. The function of the SMCs has been linked with the function 

of the artery as a whole organ via such biomechanical analysis.  



 

213 

 

 

 

CHAPTER 7 

DISCUSSION, CONCLUSIONS AND FUTURE WORK 

 

  



 

214 

 

CHAPTER 7 DISCUSSION, CONCLUSIONS AND 

FUTURE WORK 

Abdominal aortic aneurysm (AAA) is a progressive dilatation of the abdominal 

aorta which without intervention results in rupture (Golledge et al., 2006, 

Nordon et al., 2011). With an estimated prevalence of 5% in men over 65 and 

thought to account for 1.5% of the total mortality in males over 55, it is not an 

uncommon disease (Choke et al., 2005, Michel et al., 2011, Nordon et al., 2011).  

Currently, the only treatment available is surgical repair once AAA diameter 

has exceeded 5.5cm: this is considered to be the point where the risk of rupture 

outweighs the surgical risk (Kent, 2014). Endovascular aneurysm repair 

(EVAR) is a minimally invasive procedure, but is not appropriate for every 

patient (Golledge et al., 2006). Open surgical repair (OSR) is a major surgical 

procedure with a mean 30-day mortality rate of over 5% (Nordon et al., 2011). 

AAA progression is typically asymptomatic (Sakalihasan et al., 2005). The 

silent nature of AAA has often led to incidental diagnosis when addressing other 

medical complaints. As such, The National Abdominal Aortic Aneurysm 

Screening Programme (NAAASP) was implemented in the UK in 2010, 

offering AAA screening to all men over 65 years of age(Benson et al., 2016). A 

screening programme offers the unique opportunity to diagnose AAA at an 

earlier stage in its development and gain insight into the progression of the 

disease over time. However, current surgical treatments are still only offered 

once the AAA is determined to have a considerable rupture risk. By 

understanding the early stages of AAA progression, new targets for therapeutics 

may be revealed. 

A hurdle to the study of early AAA disease is the paucity of early-stage human 

AAA tissue which is available. Animal models are therefore widely used in 

AAA research in order to understand the  underlying mechanisms and a wide 

range of techniques are used (Trollope et al., 2011).  
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Smooth muscle cells (SMCs) are the principal cellular component of the arterial 

wall but are depleted and dysfunctional in AAAs (Keen et al., 1994, Lopez-

Candales et al., 1997, Liao et al., 2000, Riches et al., 2013). They exhibit a 

distinct phenotype and this phenotypic switch occurs early on in AAA 

formation (Ailawadi et al., 2009). SMC seeding has shown therapeutic potential 

for AAA in a rat model (Losy et al., 2003, Allaire et al., 2004). Given their 

inherently plastic nature and their seemingly protective role in AAA disease, 

they are an appealing target of study. 

The overall aim of this study was to explore the early stages of AAA disease 

using an ex vivo porcine bioreactor model and to further evaluate the established 

model. The adopted approach was to pre-treat porcine carotid arteries with a 

protease treatment containing a combination of collagenase and elastase (CCE) 

before culture for a specified length of time in a bioreactor under steady flow. 

Following CCE treatment, bioreactor culture for twelve days resulted in SMCs 

which were phenotypically comparable to human end-stage AAA SMCs (END 

model) (Riches et al., 2013). For this thesis, a culture period of three days was 

selected to attempt to simulate early AAA development (EARLY model). In a 

mouse model, although an aneurysmal arterial dilation was observed 14 days 

after treatment, there was evidence that SMCs had undergone phenotypic 

switching only seven days after treatment. Therefore, in the EARLY model, 

arteries were culture for three days in order to investigate the SMC behaviour 

prior to phenotypic switching (Ailawadi et al., 2009).  

Following this, the tissue was either used for histology, immunohistochemistry 

and SMC explant cultures or for biomechanical analysis. The long term strategy 

was envisaged to create a reproducible and logistically simple large animal 

model of AAA which would be able to inform research to develop SMC 

therapeutic targets in early AAA disease.  

During the course of this study, the structure and function of SMCs from the 

early and end-stage AAA model were characterised. The tissue from the end-

stage model was characterised biomechanically in order to understand the 

relationship between the observed SMC dysfunction and the function of the 



 

216 

 

artery as a whole organ. Both early and end-stage models were qualitatively 

characterised using histology and immunohistochemistry. The local dynamics 

in the bioreactor were also characterised using porcine carotid arteries: 

previously, this had only been done using artificial silicone arteries. 

This study directly followed a previous investigation in our laboratory which 

used protease pre-treatment followed by culture under steady flow in a 

bioreactor for twelve days to produce SMCs which were found to be comparable 

to human end-stage AAA SMCs (Riches et al., 2013). In that study, it was found 

that only a combination of collagenase and elastase (neither protease alone) 

prior to bioreactor culture was able to induce this AAA SMC phenotype. It was, 

however, unclear as to the contributions of the bioreactor and the treatment 

alone. The characterisation of the ECM was also limited in that study. In this 

thesis, by including static culture controls, the contributions of the culture 

environment and the protease treatment were able to be separated and explored. 

In addition, biomechanical and histological analysis allowed a greater insight 

into the status of the ECM. An early AAA model was also developed, in an 

attempt to temporally map the SMC behaviour, prior to the phenotypic switch. 

This switch is regarded as an early event in AAA formation (Ailawadi et al., 

2009). In the current study, there were several principal findings. 

 

1. Both CCE treatment and dynamic culture are required to induce SMC 

phenotypic switch 

The previous study investigating the ex vivo bioreactor AAA model showed that 

by treating the artery with a combination of collagenase and elastase, after 

twelve days culture in the bioreactor the SMCs were phenotypically comparable 

to human AAA SMCs (Riches et al., 2013). However, the roles of protease 

treatment and bioreactor culture in SMC phenotype separately were not 

determined in that study. In this study, appropriate vehicle treatment and static 

culture controls were selected and investigated. In cellular terms, it was found 

that the combination of CCE pre-treatment and bioreactor culture was required 

for the SMCs to undergo this switch in phenotype. Neither CCE treatment nor 
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bioreactor culture alone was able to induce this change. The morphology and 

behaviour of SMCs derived from control arteries which were applied with a 

vehicle gel and then cultured in the bioreactor were comparable to fresh SMCs. 

This study was able to reproduce the reduced proliferation, rhomboid, end-stage 

AAA SMC phenotype which was comparable to human AAA SMC. 

 

2. Early and end-stage model SMCs exhibit two distinct phenotypes 

Another finding was revealed when the SMCs from the EARLY model were 

characterised in terms of structure and function. The structure of these EARLY 

SMCs were indistinguishable from control cells and exhibited a typical spindle 

morphology with aligned actin cytoskeleton. According to the classical SMC 

phenotype, this morphology would suggest a contractile SMC with low 

proliferation. However, the EARLY SMCs consistently exhibited 

hyperproliferation; in the END model SMC proliferation was significantly 

impaired. This behaviour, coupled with the finding that senescence levels of 

BIOCCE SMCs was significantly increased in the END model may point to 

accelerated aging with ensuing senescence in the SMCs. Indeed, it has already 

been shown that SMCs and endothelial cells from human AAA tissue exhibit 

shortened telomeres, indicative of early hyperproliferation in the human disease 

(Cafueri et al., 2012). Further unpublished data from our laboratory has also 

shown that human AAA SMCs have increased levels of nuclear aberrancy and 

DNA damage (Riches et al., unpublished). These indications of DNA damage 

are also found in the end-stage BIOCCE SMCs. These observations are not 

without precedent, as SMCs from patients with diabetes mellitus have also been 

shown to exhibit a phenotype which is neither classically differentiated or de-

differentiated (Riches et al., 2014). SMCs may therefore exist within a 

phenotypic spectrum rather than existing between binary differentiated and de-

differentiated phenotypes. 

 The ex vivo model was able to produce SMCs which were phenotypically 

similar to human AAA SMCs indicative of prematurely aged cells. 
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3. BIOCCE SMCs may be attempting to stabilise the ECM 

The EARLY and END model tissue, alongside the experimental control groups, 

were characterised using histology and immunohistochemistry specific to 

SMCs and the components of the ECM, elastin and collagen. The application 

of the CCE treatment resulted in a loss of elastin, but no notable loss of collagen. 

The END BIOCCE tissue also appeared to exhibit a peri-luminal deposition of 

collagen, as shown by increased intensity of Sirius red stain viewed with linearly 

polarized light. Although this deposition was subjective and not quantitative, 

this would be an interesting direction for future study especially as collagen 

content is typically increased in AAAs (Rizzo et al., 1989). It has been reported 

that initial collagen degradation is mitigated by an increase in collagen synthesis 

(Shimizu et al., 2006). This process gradually becomes more unbalanced over 

time and so during later stages of AAA development, the rate of collagen 

synthesis is overcome by the rate of degradation (Satta et al., 1997). This 

increase in collagen is thought to be a mechanism of ECM stabilisation. An 

attempt at ECM stabilisation in an early-stage mouse AAA model has been 

previously reported (Haskett et al., 2013). The EARLY model arteries had a 

diameter which was encompassed within the clinical definition for AAA: 1.5-

fold the healthy diameter of the aorta (Nordon et al., 2011). However, in the 

END stage model, arteries had remodelled inwards and presented a diameter 

which was once again comparable to control arteries. In conjunction with the 

indication of collagen deposition, this may again indicate some sort of ECM 

compensatory stabilising mechanism orchestrated by the isolated SMCs in the 

early stages of the disease.  

 

4. SMCs from the end-stage model exhibit disordered cytoskeleton 

Fluorescence microscopy of the actin cytoskeleton revealed that in addition to 

rhomboid morphology, the end-stage BIOCCE SMCs had a disordered f-actin 

cytoskeleton. It is thought that this reorganisation of the cytoskeleton may 

mediate changes in SMC behaviour associated with phenotypic modulation due 

to the reorganisation of signalling molecules (Worth et al., 2001a). 
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5. The bioreactor caused arterial remodelling, regardless of pre-treatment 

Biomechanical analysis revealed that during bioreactor culture, BIOCCE 

arteries showed a decreased transition strain in both orientations. This also 

supports the previous finding that collagen content may have increased and that 

the arteries were actively remodelling to adapt to the insult to the ECM from the 

CCE treatment. Control arteries which were treated with a vehicle gel only prior 

to culture in the bioreactor also appeared to undergo active remodelling. The 

arterial diameter tended to be decreased compared to control arteries and there 

was a significant increase in transition strain in one orientation. Neither of these 

behaviours are suggestive of passive degradation as changes in transition strain 

are driven by collagen remodelling (Bank et al., 1996). Inwards remodelling of 

the artery is indicative of active remodelling as the luminal pressure was greater 

than the outer pressure – the artery was resisting the pressure gradient. In terms 

of arterial tissue and biomechanics, the control arteries were affected by the 

dynamic environment in the bioreactor. Ideally, a bioreactor would completely 

mirror the in vivo situation and so the addition of a pulsatile component to the 

flow would be a natural development of the model. In this way, the tissue would 

be subjected to cyclic stress and possibly oscillatory shear stress as it would 

physiologically (Osol, 1995). A more complex simulation of physiological flow 

in the bioreactor may lead to the biomechanical behaviour of the tissue to 

behave in a more similar way to fresh tissue. 

 

6. End-stage SMCs showed a loss of remodelling capabilities 

The strength and stiffness of CCE treated arteries was not affected by bioreactor 

culture, unlike vehicle control treated arteries. In addition, there was a trend 

towards decreased levels of MMP secretion which is necessary for arterial 

remodelling. Although there was evidence that at some point during the twelve 

days in culture the SMCs in the CCE treated arteries attempted to stabilise the 

ECM, this was not sufficient to alter the biomechanical function of the artery in 

the end-stage model. The dysfunctional, senescent SMCs indicated a potential 

loss of remodelling capabilities in the end-stage model. Further biomechanical 
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analysis of the early-stage model may elucidate the temporal changes in 

biomechanics; it is conceivable that collagen was secreted when the SMCs are 

still relatively active before the tissue is degraded due to impaired SMC 

function. Although MMPs are greatly implicated in the formation and 

development of AAA, it may be that in the ex vivo model, the cells primarily 

responsible were not present. Adventitial mast cells and macrophages have been 

shown to produce copious amounts of MMPs in AAA tissue (Thompson et al., 

1995, Tsuruda et al., 2008). The intra-luminal thrombus and polymorphonuclear 

neutrophils have also been shown to secrete high levels of MMPs (Fontaine et 

al., 2002). In isolation, once SMCs switch to the end-stage AAA phenotype, 

they are not active and are possibly limited in their ability to secrete MMPs. 

 

Overall, it appears that, from the literature and the data included in this study, 

AAA SMCs do not fit into the classical SMC phenotype, exhibiting 

characteristics from both differentiated and de-differentiated SMCs (Figure 

7.1). A previously identified distinct senescent cell phenotype, senescence 

associated secretory phenotype (SASP), is characterised by an altered 

secretome. An intriguing path of future study would be to characterise the 

secretome of the early and end-stage BIOCCE SMCs in order to investigate if 

they have, or are likely to adopt this distinct phenotype.  
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Figure 7.1 Distinct AAA phenotype outside of classical SMC phenotype 

characterisation. SASP = senescence-associated secretory phenotype  

 

For the first time, this study has characterised SMC structure and function in an 

ex vivo large animal model specifically in the early stages of the disease. It has 

shown that SMCs may undergo a period of hyperproliferation and may attempt 

to remodel and stabilise the ECM. It is conceivable that this hyperproliferation 

in the early-stages of the disease may later lead to widespread cellular 

senescence and DNA damage in AAA disease. Molecular targets for 

proliferation, senescence or DNA damage markers may provide an insight to 

AAA therapeutics. Additionally, this particular ex vivo model has been 

characterised in terms of biomechanics. Biomechanical analysis is an important 

descriptor of arterial function; rupture in AAA is a mechanical failure of the 

arterial wall. Biomechanics analysis characterise the function of the arterial wall 

and changes to the ECM mediated through SMCs via MMP secretion. 
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7.1. STRENGTHS AND LIMITATIONS 

The ex vivo nature of the model presents as a double-edged sword, with unique 

strengths and weaknesses. Firstly, the SMCs are able to be virtually isolated 

from confounding factors allowing sole exploration of the role of SMCs in AAA 

development. Such confounding factors may be differences in the dynamic 

culture environment that may exist between individual animals or patients or 

the presence of immune cells (such as mast cells, macrophages, neutrophils) 

which likely contribute to AAA formation (Satta et al., 1998, Sun et al., 2007, 

Tsuruda et al., 2008, Lai et al., 2016). Therefore, although the SMCs are 

removed from the physiological environment when cultured ex vivo, it enables 

their exact role to be established. In addition, an ex vivo model is logistically 

more practical compared to in vivo models. Although not within the scope of 

this current project, the ex vivo nature also allows more direct control of the 

dynamic culture environment. This would enable some investigation into the 

role of haemodynamics in AAA development even outside of safe physiological 

parameters for living subjects. 

The non-physiological steady flow may have had an effect on the behaviour of 

the SMCs (Osol, 1995, Hoshina et al., 2003, Lehoux et al., 2006, Hahn and 

Schwartz, 2009). Although the SMC phenotype in the end-stage model has been 

previously validated with human AAA SMCs, it was not feasible to also validate 

the early-stage model due to scarcity of human AAA tissue in the earliest stages 

of development. Further to this, the arteries in the end-stage model displayed no 

significant dilatation, as they did in the early-stage model (Chapter 4). This was 

thought to be some sort of ECM stabilisation mechanism. However, the clinical 

definition of AAA is a focal dilatation of the arterial wall; the end-stage AAA 

model does not technically meet this criterion (Nordon et al., 2011). An 

intriguing future study would be to maintain the arteries in the bioreactor for 

longer than twelve days. Another limitation is that little is known about the 

nature of the flow through the vessel in the bioreactor. Turbulent and low-shear 

flow is known to exacerbate (or potentially even cause) vascular dysfunction, 

and so this may provide an insightful view into AAA pathogenesis with the ex 
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vivo model (Davies, 1995, Miller et al., 2002, Lin et al., 2013). Ideally, the same 

technique used clinically for flow analysis, magnetic resonance angiography 

(MRA), would be used to visualise the flow through the bioreactor. However, 

the bioreactor was constructed primarily of stainless steel and so MRA analysis 

is not possible. A combination of ultrasound with computational fluid dynamics 

(CFD) modelling may, however, enable better understanding of the bioreactor 

flow in various conditions (Scotti et al., 2008, Vande Geest et al., 2008). Peak 

wall shear stress (WSS) has been shown to be a promising indicator of AAA 

growth and rupture; building knowledge of the flow would enable WSS analysis 

(Vorp and Geest, 2005, Scotti et al., 2008, Xiong et al., 2008, Kontopodis et al., 

2015). 

 

7.2. RECOMMENDATIONS FOR FUTURE WORK 

1. Investigation into control of dynamic culture environment and its effect 

on arterial and cellular behaviour  

One of the advantages to using a bioreactor ex vivo model over an in vivo model 

is that the dynamic culture environment can be more tightly controlled in terms 

of flow type, flow rate, pressure and various pulsatile waveforms. The scope of 

this study was to identify the point at which the SMCs underwent a switch in 

phenotype and so a temporal analysis was undertaken. However, in terms of 

paths for future study, the bioreactor ex vivo model is perfectly suited to the 

effect of the dynamic environment on AAA progression. For example, 

comparing arterial tissue and SMC phenotype in arteries cultured under 

physiological and high pressure may provide an insight into the role of 

hypertension in AAA, already thought to play a role (Nordon et al., 2011). 

Higher flow rates or an addition of downstream resistance may be able to model 

increased stiffness in the vasculature due to the effect of aging or smoking, and 

also be able to look at AAA progression in more ‘aged’ arteries. Age and 

smoking are major risk-factors for development of AAA (Lederle et al., 2003, 

Sakalihasan et al., 2005). 
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2. Biomechanical analysis of the early-stage model 

Time and resource limitations meant that it was not feasible to undertake 

biomechanical analysis of the early-stage model. For future study, the uniaxial 

tensile testing method employed in this thesis to characterise biomechanics of 

the end-stage model arteries could be used for the early-stage model. This would 

be a natural progression of the model and also may illuminate further the 

possible ECM stabilisation by peri-luminal collagen deposition seen in this 

study and its effects on the arterial function. 

 

3. Analysis of secretome in early and end-stage model 

Senescence-associated secretory phenotype cells (SASPs) are characterised 

through an altered secretome. Analysis of the secretome of the SMCs from the 

early and end-stage models would enable more conclusions to be made about 

the true phenotypic nature of the SMCs in this model. If a combination of 

dynamic culture and protease degradation induces a classical SASP SMC, then 

this may be able to inform future therapies for early AAA development 

involving slowing of vascular aging and stabilisation or replenishment of 

functional SMCs. 

 

4. Investigation into role of DNA damage in SMC senescence 

Some further work to this thesis has already commenced (Riches et al., 

unpublished). Nuclear aberrancy and γ-H2AX, a marker of double-stranded 

DNA damage, are both significantly increased in human AAA SMCs and end-

stage SMCs in the ex vivo model. The role of DNA damage on SMC structure 

and function using the ex vivo model and possible methods of mitigating this 

damage would be a very exciting path of future research. 
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5. Inhibition of proliferation and localisation of proliferation markers 

This study identified an early period of hyperproliferation which may explain 

the onset of increased SMC dysfunction and senescence. Therefore, a natural 

progression of the project would be to investigate the role of inhibition of SMC 

proliferation on AAA development. Proliferative markers, such as Ki67 could 

be localised using immunohistochemistry in order to visualise this behaviour 

over time using the ex vivo model.  

 

6. Characterisation of flow through bioreactor and computational 

modelling of peak wall shear stress 

The nature of the flow through the artery in the bioreactor is currently not 

known. A study involving computational simulation of the bioreactor and 

construction of a computational fluid dynamics (CFD) model would enable 

more insight into the dynamic environment in which the artery is cultured. A 

computational model would potentially also allow the rupture locations and 

pressures to be investigated using peak wall shear stress (WSS) measurements. 

This would then be validated using the ex vivo model. 

 

7. Increased culture period for the ex vivo AAA model and the effects on 

arterial and SMC function 

The ex vivo model was shown to exhibit a clinically aneurysmal dilatation of 

1.5-fold normal arterial diameter in the early model, but then fall back below 

this value in the end-stage model, thought to be an attempt at stabilisation. 

Therefore the extension of length of culture time would provide more 

information as to the effects of SMC dysfunction further on the arterial 

structure. Tissue viability over a longer period of time may be the major hurdle 

to this proposed future work, therefore this would have to be further evaluated 

in terms of establishing conditions to retain viability. 
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8. Characterisation of microRNA expression in ex vivo model SMCs and 

reversibility potential 

MicroRNAs (miRs) are non-coding RNAs which are able to regulate gene 

expression. They are heavily implicated in AAA formation and progression, 

reviewed in (Raffort et al., 2016). The identification and expression levels of 

miRs in the early and end-stage ex vivo model could be carried out using a 

microarray. The rhomboid, anti-proliferative and senescent phenotype found in 

the end-stage model was similar to the diabetic SMC phenotype also 

characterised previously within this laboratory (Riches et al., 2014). It was 

found that elevated expression levels of miR-143/145 were responsible for 

driving this diabetic phenotype and overexpression or inhibition of these miRs 

were able to reversibly control the SMC phenotype. Future work on the ex vivo 

model may enable identification of differentially regulated miRs, and then 

progress onto miR-driven restoration of a healthy phenotype to dysfunctional 

AAA SMCs and therefore may inform research into therapeutics. 

 

7.3. THESIS SUMMARY AND CONCLUSION 

In this study, an ex vivo bioreactor model of early-stage AAA was developed 

and the structure and function of arterial tissue and SMCs were characterised. 

The biomechanics of the end-stage model tissue were also characterised. A 

summary of the findings of this thesis and some suggested directions for future 

work are shown in Figure 7.2. 

In this ex vivo model, the behaviour of the SMCs is not aligned with classical 

characterisation of SMC phenotype and so AAA SMC may exhibit a distinct 

‘aneurysmal’ phenotype outside of this. Manipulation of this phenotype in the 

early stages of AAA prior to manifestation of SMC dysfunction may therefore 

provide a novel prospect for therapeutics. The advent of AAA screening has 

provided a window of opportunity for early-stage therapeutics. 
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Figure 7.2 Summary of principal thesis findings and directions for future work. 

Cross section of top: VEH artery and bottom: CCE artery. Principal findings = 

solid lines, black text. Future work = dotted lines, teal text. CFD = computational 

fluid dynamics. miR=microRNA. Elastin = purple, collagen = red. 
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