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ABSTRACT 

The cell wall polysaccharides of wheat and rice endosperm represent an important 

source of dietary fibre with up to 50% of the dietary fibre intake in western diets 

deriving from cereal consumption. Plant cell walls are complex structures composed 

of many interlinking polysaccharide chains as well as lignin, phenolics and some 

proteins. The significance of many of these molecules has yet to be elucidated, 

however cell walls have been shown to be rapidly modified during growth and 

differentiation demonstrating that the cell wall is a dynamic structure modified in 

muro to adapt to changing biological constraints. Wheat and rice present near 

synchronous developmental cycles and significantly different endosperm cell wall 

compositions, allowing the localization of these polysaccharides to be related to 

developmental changes. Monosaccharide analysis has been widely used on mature 

endosperm and flour sample in cereal grains to provide an overview of cell wall 

composition, but no previous studies have considered different developmental 

stages. In both wheat and rice four distinct phases of cell wall deposition were 

detected, with 4-8 days after anthesis (DAA) and 12-20 DAA showing the greatest 

levels of depositions in all monosaccharides. After 20 DAA significant deposition of 

pectic polysaccharides was detected in both species, which may reflect preparations 

for grain dehydration. Monoclonal antibodies specific to cell wall polysaccharides 

and immunofluorescence microscopy were used to determine the spatial and 

temporal locations of these polysaccharides. A conserved sequence of 

polysaccharide deposition during cellularisation was also seen in both species, 

matching that reported in barley grains. Arabinogalactan-petides (AGPs) are a 

significant component of wheat and rice grains and through the use of novel wheat 

AGP monoclonal antibodies they were shown to be localised either at the plasma 

membrane or in the cytoplasm, contrary to previous hypotheses that they may be 

cell wall proteins. 
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 CHAPTER 1:  INTRODUCTION 

1.1 General introduction 

Wheat and rice are the staple crops for up to two thirds of the world’s population, 

providing more than 50% of the daily calorific intake to nearly 3 billion people 

(http://faostat.fao.org/site/368/default.aspx). Cereals also contribute up to 50% of 

the total dietary fibre in western diets (Nyman and Bjorck 1989; Bates et al. 2011; 

Bjorck et al. 2012). The major components of cereal grain fibre are cell wall 

polysaccharides, which account for ~2% of the dry weight of white wheat flour or 

polished rice grain but up to 20% of whole grain (Juliano 1985a). An understanding 

of the structures of cereal grain cell walls is therefore of direct relevance to the 

understanding of the role of cereals in human health. The benefits of increased 

dietary fibre intake include improved regulation of blood sugar, reduction in serum 

cholesterol, immune stimulation and decreased risk of some types of cancer 

(Bingham et al. 1985; Cade et al. 2007; Buttriss 2009; Anderson et al. 2009; Slavin 

and Jacobs 2010; Gemen et al. 2011; Bjorck et al. 2012; Threapleton et al. 2013). 

By contrast, lower contents of dietary fibre are required for other end uses with the 

high viscosity resulting from soluble fibre being detrimental when cereals are used 

as feed for monogastric livestock such as pigs and poultry (Hesselman et al. 1981) 

and for the production of ethanol in brewing, distilling and biofuel.   

1.2 Seed development  

1.2.1 Pollination and Fertilization 

Both in wheat and rice plants at anthesis, the styles covering the ovary separate 

allowing the stamens to elongate and shed the pollen that is stored in the anthers. 

The majority of the pollen is shed within the spikelet and some comes into contact 

with the stigmatic surfaces of the styles, where germination may occur if conditions 

are conducive, leading to the formation of a pollen tube, which penetrates the tissue 

of the stigma. The biological material required for the formation and initial extension 

of the pollen tube is readily available within the pollen grain, which is rich in lipid and 

proteins. However in later stages of pollen tube extension, some of the nutrients 

required are sourced from the degradation and digestion of stigma cells via 
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secretion of enzymes into the cells. The nucleus is located at the very tip of the 

pollen tube and it remains in that position throughout extension of the pollen tube 

into the stigma. Two male gametes reside directly behind the tip of the pollen tube 

and are released into the embryo sac via the degradation of the pollen tube nucleus 

and the degradation of the cell wall of the pollen tube once it has extended 

sufficiently in to the micropylar region of the ovule tissues. The first male gamete to 

reach the two polar nuclei, at the far end of the embryo sac, fuses with them and 

forms a triploid nucleus typically 5-6 hours after pollination. The endosperm tissue of 

the new grain originates from this triploid nucleus. After a further 12-14 hours the 

second male gamete fuses with the oosphere and forms a diploid zygotic nucleus, 

from which the embryo will develop. Subsequently the triploid endosperm nucleus 

undergoes several rounds of mitotic division, with a characteristic lack of a cell plate 

separating the daughter nuclei, which generates a multinucleate cell often referred 

to as the endospermatic coenocyte. There is some evidence that phragmoplast 

formation is at least initiated between daughter nuclei in barley coenocytes (Brown 

et al. 1994), and some rudimentary cell wall structures can be identified in wheat 

(Tian et al. 1998) implicating a suppression of complete phragmoplast development 

during this stage, although partial formation of these structures may help to separate 

the daughter nuclei. It has been shown in maize that these nuclei then continue to 

undergo successive rounds of mitotic cell division in the basal cytoplasm of the cell, 

to form a single cell with between 256 and 512 nuclei distributed around the outside 

of the cell (Walbot 1994).  Mitotic division ceases from approximately 48 hours, 

marking the end of the syncytial or coenocytic stage, and this cessation period is 

proposed to allow microtubule development to occur to generate the cytoplasmic 

phragmoplasts between adjacent daughter nuclei which will be the site of anticlinal 

cell wall formation during the following cellularisation phase (Brown et al. 1994). 

 

1.2.2 Endosperm development 

Cellularisation begins at around 2 days after anthesis (DAA) and is defined as the 

formation of cells walls around each nucleus in a multinucleate cytoplasm, 

transforming it into a multicellular structure. This process continues until, by 4-6 

DAA, the entire cavity has been filled with cells (Mares et al. 1975; Brown et al. 

1996a; Sabelli and Larkins 2009). The endosperm, which is the largest tissue in the 

grain, consists of three cell types: the central starchy endosperm cells with comprise 

most of the tissue, the sub-aleurone cells which comprises 2-3 layers of cells 
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immediately below the aleurone and the outer aleurone layer of cells. The starchy 

endosperm comprises large cells packed with storage compounds, which are 

mobilized during germination, predominantly starch but also storage proteins (Toole 

et al. 2009). The aleurone layer in wheat and rice is typically a single layer of cells 

(but may be multi layered in some rice cultivars) that surrounds the endosperm 

excluding transfer cell region and contain spherosomes (or lipid bodies) and protein 

bodies. The growth of the aleurone layer is believed to have an effect on the growth 

and expansion of the endosperm, although the exact effects are still unclear (Olsen 

et al. 1998; Olsen 2001; Becraft and Yi 2011). 

Programmed cell death (PCD) plays an important role in the development of the 

endosperm in both wheat and rice and it is thought to facilitate nutrient hydrolysis 

and uptake by the embryo at germination. PCD starts at about 10 DAA and 

proceeds until 30 DAA when all the endosperm cells have died except the aleurone 

layer which remains alive and plays a role in reserve digestion during germination 

(Young and Gallie 1999; Kobayashi et al. 2013). 

 

Figure 1.1 Schematic representation of the main tissue types in a Weha and 

rice grains. The top images represents longitudinal sections through rice (left 

and wheat (right), the lower images represent transverse sections. Modified 

from (Fincher and Burton 2014) En = endosperm, Em = embryo, NP = nucellar 

projection, VB = vascular bundle, Al = aleurone. 
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1.2.3 Embryo development 

After fertilisation the embryonic cell divides in a pre-programmed sequence: - the 

first division always in the vertical plane to the suspensor, the second is in the 

vertical plane but at 90 degrees to the first and the third is in the horizontal plane at 

90 degrees to both of the first two divisions. This produces 8 equally sized cells, 

which are known as octants. The next division of the octants produces outer cells, 

which will form the epidermal tissues of the embryo, and inner cells, which will form 

the remaining tissues of the developing embryo namely the radicle and hypocotyl 

regions. 

The integument is a protective tissue, which appears to originate at the base of the 

ovule and extends to surround the entire grain. The integument cells are known to 

become thickened with lignin and undergo PCD in order to form the seed coat or 

testa, which protects the developing grain from damage later in grain development. 

 

1.3 Differences in wheat and rice transport pathways 

Despite their relatively close genetic relationship, rice (Oryza sativa) and wheat 

(Triticum aestivum) exhibit distinct structural differences and have different 

assimilate uptake pathways. In both cereals the reproductive ear (all the structures 

above the flag leaf) consists of a central rachis with spikelets arranged alternately at 

regular intervals; however, in rice the rachilla of each spikelet is extended up to a 

length of 3 cm, forming a panicle, whereas in wheat the rachilla is reduced down to 

a few millimetres, so that it is barely distinguishable from the rachis. The 

architecture of the vascular bundle in the stem also differs significantly between the 

two plants. In rice there is a distinctive ring of vascular bundles that are equally 

distributed throughout the parenchymal tissue. These bundles are continuous in 

their length, stretching from one stem node to the next. By contrast, wheat has 

vascular bundles that are typically much shorter in length due to the greater number 

of stem nodes. 
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Figure 1.2 Medial transverse sections of mature wheat (A) and rice (B), stained 

with toluidine blue, showing the hypothesised route of nutrients flow into the 

developing grain.  

Arrows indicate flow of assimilates. NP = nucellar projection, SE = starchy 

endosperm, NE = nucellar epidermis, AL = Aleurone. Scale bars = 500 µm 

 Both rice and wheat have a single vascular trace to supply all assimilates to the 

grain. However, whereas in wheat and related cereals a crease region develops 

around the vascular trace, in rice the vascular trace simply lies on the dorsal side of 

the grain. As shown in Figure 1.1, the pathway of nutrient uptake throughout each 

grain, from the vascular trace to the endosperm, is different between the two 

cereals, as a consequence of their different anatomy (Zee and Obrien 1971b, a; Zee 

and Obrian 1971). In rice, the nutrients leave the vascular bundle and cross the 

transfer cell region, and the region that will become the pigment strand, to reach the 

nucellar epidermis. From here the nutrients travel circumferentially (via the 

apoplastic route) around the endosperm and move radially inwards across the 

nucellar epidermis/endosperm interface (Zee 1972a, b; Oparka and Gates 1981a, b; 

Oparka and Gates 1982). Plasmodesmata ensure symplastic transport between 

cells in the nucellar epidermis and this is also the case in the aleurone cells, but no 

plasmodesmata have been detected allowing transport between the two cell types 

(Oparka and Gates 1981b; Oparka and Gates 1982). By contrast, in wheat all 

assimilates are thought to be transferred into the endosperm cavity via the crease 

region, and to then diffuse radially through the central endosperm into the outer 
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endosperm and aleurone layer. This was indicated by uptake studies of fluorescein 

isothiocyanate (FITC), which is a small membrane-soluble aqueous dye. These 

studies showed that dye applied to the vascular tissue at the base of an isolated 

wheat grain penetrated the grain through a radial diffusion pattern from the crease 

region, whereas in rice the dye was seen to progress along the outside of the 

nucellar epidermis before some traces of fluorescence were seen in the aleurone 

and sub-aleurone cells, as well as radially from the vascular bundle (Wang et al. 

1994; Wang and Fisher 1994).  

 

1.4 Seed protein 

Seed proteins are major storage components of both wheat and rice grains, with 

between 7-22% of dry weight being protein in wholegrain wheat (Vogel et al. 1978) 

and between 5-17% in wholegrain rice (Cagam Cagampang et al. 1966). Many 

types of proteins are present in cereal grains and are often classified on the basis of 

their solubility in different solvents, with albumins being soluble in water, globulins in 

dilute salt solution; prolamins in dilute alcohol, and glutenins in dilute acid or alkaline 

solutions, following the method developed by TB Osborne (1859-1929). However, 

there are often great differences in the structures and functions of the proteins in 

any one of these groups, so although this nomenclature survives to this day, a 

cereal specific classification system has been developed, based on the role of the 

protein within the grain (i.e. storage, structural or protective) (Shewry et al. 2001).  

1.4.1 Storage proteins 

Storage proteins are the most abundant type of proteins in cereal grains and are the 

determinants of cereal grain quality.   

Prolamins are the major storage proteins in wheat, their name reflecting their high 

contents of the amino acids glutamine and proline. They have been classified based 

on their structural and evolutionary relationships into three groups (Shewry et al. 

2001) (Figure 1.2), including their amino acid sequence and specifically the 

presence of cysteine residues. Sulphur-rich prolamins have typically 6 or more 

cysteine residues and comprise both monomeric and polymeric proteins, since they 

can form intra-chain and/or inter-chain disulphide bridges. Conversely, sulphur-poor 

prolamins typically contain no cysteine residues and thus are monomeric proteins. 

High molecular weight (HMW) prolamins are the largest members of the prolamin 

family at roughly twice the size of sulphur-rich or sulphur poor-prolamins. They 
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contain fewer cysteine residues than sulphur rich prolamins but are always 

polymeric. Wheat prolamins contain repetitive domains based on short conserved 

amino acid sequence motifs, which are detailed in figure 1.2. 

 

Figure 1.3. Schematic structures of typical HMW (high molecular weight), S-

rich (sulphur-rich) and S-poor (sulphur-poor) prolamins (based on sequences 

in (Bartels et al. 1986; Anderson et al. 1989; Hsia and Anderson 2001)). 

Repetitive sequences are shaded and disulphide bonds between conserved 

cysteine residues (1–8) in the γ-gliadin shown as lines. -SH denotes the 

positions of cysteine residues in the HMW prolamins taken from Shewry et al., 

2001 with permission.   

Prolamins differ in their spatial distribution across the endosperm of wheat with the 

sub-aleurone being enriched in S-rich and S-poor prolamins, whereas the central 

starchy endosperm is enriched in HMW-prolamins (Shewry et al. 1995; Darlington et 

al. 2000). Rice prolamins differ from those of wheat with no significant sequence 

homology, and are much smaller and lack the characteristic repetitive sequences of 

wheat prolamins. This suggests that rice prolamins have a different origin than the 

prolamins of other cereals, indicating an earlier evolutionary divergence (Okita et al. 

1988; Okita et al. 1989; Xu and Messing 2008). 

Globulin proteins are the major storage protein components in oats and rice, but 

only minor components in wheat. They are concentrated in the starchy endosperm 
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and have been well characterised chemically. Storage globulins are separated into 

two major subgroups based on their sedimentation coefficients on the Svedberg 

scale, and provide no known metabolic or protective function (Shewry et al. 2001). 

In cereals 7S globulins accumulate primarily in the aleurone and embryo, while 11-

12S globulins are present in the starchy endosperm. 11-12S globulins are the major 

storage protein in rice, accounting for up to 70-80% of the total protein (w/w) in the 

starchy endosperm (Kim et al. 1993; Shewry et al. 2001). However, rice 11-12S 

globulins are not soluble in salt solutions and are therefore often referred to as 

glutelins. Rice α-globulin is a third globulin type which can account for up to 12% 

w/w of rice grain protein, being present in vacuolar protein bodies (Protein Body 

type II, PBII), typically in a protein matrix surrounding glutelin crystalloids. α-

globulins have significant sequence homology to wheat prolamins (Bechtel and 

Juliano 1980; Kawagoe et al. 2005).  

Gluten is a proteinaceous complex that confers characteristic viscoelastic properties 

to wheat doughs, and is formed from wheat prolamins: the monomeric gliadins 

(alcohol-soluble) and polymeric glutenins (dilute alkali and acid-soluble). The 

synthesis of gluten proteins starts within a few days (6-8 DAA) after anthesis, and 

deposition increases steadily throughout the grain filling stage. Gluten proteins are 

synthesised on the ribosomes of the rough endoplasmic reticulum, and there are 

thought to be two trafficking pathways for gluten proteins in wheat involving either 

transport to the vacuole via the Golgi apparatus or accumulation within the lumen of 

the ER to form protein bodies that are subsequently internalised into vacuoles by a 

process analogous to autophagy. It has also been suggested that the same 

individual protein could be trafficked by either pathway, possibly depending on the 

stage of development, and that segregation in the deposition of gluten proteins may 

occur, both between and within protein bodies (Tosi et al. 2009; Tosi et al. 2011). 

Monomeric gliadins account for between 30-40% of the total grain protein, and are 

classified into three groups (α-, γ- and ω-) on the basis of their sequences. The α- 

and γ-gliadins are sulphur–rich prolamins while ω-gliadins are sulphur-poor 

prolamins. The polymeric glutenins comprise subunits, which are classified into two 

groups based on their molecular weights (Dupont and Altenbach 2003). The low 

molecular weight glutenin subunits (LMW-GS) represents 20-30% of all wheat grain 

proteins (Gupta et al. 1992). They are S-rich prolamins, are approximately 40 kDa in 

size and have been shown to resemble γ-gliadins in sequence (Muller et al. 1998).  

The high molecular weight glutenin subunits (HMW-GS) are ~90 kDa in size and 
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account for only 5% of total protein. HMW-GS proteins have been suggested to form 

the main backbone of gluten polymers (Shewry et al. 2001; Shewry et al. 2009). 

Storage proteins in cereal grains deposited in protein bodies; in both wheat and rice 

at least two types of protein bodies have been reported. In wheat PB-I (protein 

bodies type I) are derived directly from the endoplasmic reticulum and are enriched 

in high molecular weight glutenin subunits (HMW–GS)(Rubin et al. 1992) whereas 

PB-II are vacuolar aggregations of protein and are enriched in gliadins. In rice, at 

least two types of protein body have been reported based upon their characteristic 

staining pattern with osmium tetroxide when examined with TEM (transmission 

electron microscopy) (Mitsuda et al. 1967). PB-I are small spherical protein bodies 

with a maximum size of 3 μm, they are prolamin-rich and have a lamellar structure 

under TEM visualisation. PB-II are roughly 4 μm in diameter and are not lamellar in 

structure, they are more abundant in the central endosperm tissue of rice grains and 

are highly enriched in glutelin and globulin (Tanaka et al. 1980). Most protein is 

found in the outer 7% by mass of the rice grain (sub-aleurone cells), which contain 

equal proportions of PB-I and PB-II (Ohdaira et al. 2011). In both rice and wheat 

protein deposition occurs slightly later than starch granule deposition, with protein 

bodies first becoming evident at 6-7 DAA in rice and 8-10 DAA in wheat (Harris and 

Juliano 1977; Ugalde and Jenner 1990). Despite both species containing two types 

of protein bodies and similar levels of protein per grain, the composition of the 

storage protein differs between the two species. In wheat prolamins represent the 

primary storage protein type, with only low amount of glutelin being present, 

conversely in rice prolamin are minor components (less then 5% of the total) whilst 

glutelins represent more than 80% of the rice grain storage protein (Palmiano et al. 

1968). There are 3 classes of prolamins in rice separated by their molecular weight, 

10 kd, 13 kd, 16 kd, the 13 kd sub class is the most prominent and can be further 

sub-dived into slightly larger 13a and slightly smaller 13b categories (Ogawa et al. 

1987). These 3 prolamin classes have only been identified in PB-I (Yamagata et al. 

1982). In addition to spatial segregation of storage proteins within protein bodies, 

spatial differences in the distributions of these protein bodies in the wheat and rice 

grain can be observed. (Tosi et al. 2009; Tosi et al. 2011) studied storage protein 

localisation using well-characterised monoclonal antibodies for specific storage 

protein subunits, and reported that HMW-GS were more abundant in the central 

regions of the wheat grain endosperm whereas gliadins and LMW-GS were more 

abundant in the sub-aleurone cells. However, it was noted that even within the 

gliadin subfamily additional spatial gradients were observed, with γ-gliadins showing 
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a similar spatial distribution to HMW-GS in the central endosperm region, rather 

than co-localising with the more closely related α- and ω-gliadins, which were more 

abundant in the outer endosperm regions. Similar experiments have been 

conducted in rice grains by Furakawa (2003) who showed that there appeared to be 

little spatial segregation of 13 kD prolamins, glutelins and gliadins in wild type rice 

grains with all storage proteins appearing to be evenly distributed a throughout the 

endosperm. However in low glutelin cultivars 13 kD prolamins were found to be 

more prevalent in the outer regions of the endosperm.  

 

1.5 Starch  

1.5.1 Starch composition 

Starch is widespread in higher plants where it functions as a carbohydrate storage 

medium. Typically two sites for starch accumulation are found in monocots: in leaf 

tissues, where starch represents a transient (short term) carbohydrate storage for 

product of photosynthesis during daylight hours that can be subsequently digested 

during the dark night period; and in seeds, which represent a long-term form of 

starch storage, for use during seed germination. Starch is deposited in the form of 

granules, which form in plastids referred to as amyloplasts (Tetlow 2011).  Starches 

are the most abundant components of cereal grains, accounting for about 70% of 

dry weight in wheat grains (Dale and Housley 1986) and up to 88% in rice grains 

(Juliano 1985b). Starch is suited to being a storage compound as it is chemically 

inert and water insoluble, allowing for large amounts to be stored without affecting 

the solute potential within the cell (Tetlow 2011). In most cereals the highest rate of 

starch deposition is from ~10 DAA until maturity (Bewley and Black 1994), however 

amyloplasts have been seen to start filling with starch granules almost immediately 

after cellularisation has completed (Yin et al. 2012). Structurally starch is formed 

from α-(1-4)-linked glucose polymer chains with branching at α-(1-6)- positions. 

There are two main types of these glucose polymers in starch: amylose, which is a 

largely unbranched α-(1-4)-linked chain and typically represent less than 25% of the 

starch granule, and amylopectin, which is the major component of starch, 

representing 80-90% of the granule and has α-(1-6)- branches. Typically branching 

occurs about every 20 residues in amylopectin and is likely to facilitate crosslinking 

adjacent linear chains to create a larger macromolecular structure through hydrogen 

bonding between adjacent molecules. At present there are several proposed models 

for starch granule structure, with the cluster model being the most commonly 



32 
 

favoured. In the cluster model it is proposed that relatively short linear amylopectin 

chains associate via hydrogen bonding to form parallel left handed double helices, 

which then in turn pack together into an array to form the lamellae, which are ~9 nm 

long semi-crystalline regions separated by amorphous regions (Robin 1974; French 

1984; Hizukuri 1986; Gallant et al. 1997; Myers et al. 2000) (Fig 1.3). It is proposed 

that these amorphous layers are composed of amylose chains, producing the 

growth ring structure evident in starch granules, which is highly conserved in higher 

plants (Kainuma and Preiss 1988; Zeeman et al. 2002), and is particularly clear in 

potato starch (Gallant et al. 1997). Bertoft (1986) observed that targeted 

degradation of cereal starches with enzymatic treatments, released short glucose 

chains of a length and frequency consistent with the cluster model. The presence of 

amylose in the amorphous layers is still much debated, but it is suggested that the 

amylose chains provide easy access points for enzymatic degradation, as starches 

must be degradable to be a useful storage compound (Fannon et al. 1992; Huber 

and BeMiller 1997). 

 

Figure 1.4. Schematic representation of amylopectin structure according to 

the  “Cluster” model, modified from Nakamura et al 2002. 

Wheat grain starch granules exist in two types (Kim and Huber 2008), the lenticular 

A type which are roughly 15-35 μm in size (Meredith 1981) and the smaller spherical 
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B type which are between 2 and 10 μm (Chiotelli and Le Meste 2002), conversely 

only one type is present in rice, a polyhedral granule which can be between 2 and 8 

μm. The polyhedral structure of the rice starch granule allows the formation of 

compound starch granules where multiple single granules associate to form large 

complexes up to 150 μm in diameter. This compound starch is not limited to rice 

grains but is also found in oat grain starch, but suggests a significantly different 

granular microstructure to that of wheat and other cereal grains despite very similar 

levels of amylose and amylopectin (Tester et al. 2004). Asaoka et al (1985b) report 

that the deposition of both amylose and amylopectin in rice are detectable from 

immediately after cellularisation (5 DAA) and increases steadily until about 18-20 

DAA at which point the starch deposition plateaus. Rice grain starch deposition is 

reported to be temperature sensitive, with high temperatures during grain 

development inducing a decrease in amylose content with the starch granules 

producing a waxy type phenotype with increased crystallinity and brittleness of the 

starch granules (Asaoka et al. 1985a). In wheat the two types of starch granules 

appear to have different deposition kinetics implicating differential genetic regulation 

of starch biosynthesis. A type granules are deposited from 4-15 DAA according to 

Peng et al. (2000), whereas B type granules only begin to accumulate from 15 DAA 

onwards (Darlington et al. 2000). Despite this differential accumulation of starch 

granule types, no differences in the protein sequences extracted from isolated A and 

B type granules have been observed (Ko et al. 2009). In addition to the temporal 

differences in starch granule accumulation there are clear compositional differences. 

A type granules contain about 80-85% amylopectin and 12-18% amylose, whilst B 

type granules contain a lower amylopectin content at 50-70% and higher amylose 

content at 25-46% with B type granules displaying larger variation in composition 

across four cultivars than A type granules (Yin et al. 2012). Jing et al. (2013) have 

recently reported that both amyloplasts and protein bodies are able to enlarge in 

wheat endosperm cells that have undergone PCD. 

1.6 Cell wall components 

Plant cell walls are composites of polymer chains mainly derived from 

monosaccharides and phenolics, with cellulose and lignin as the fibrous 

components alongside sets of matrix polysaccharides. These matrix 

polysaccharides include glucans, heteroxylans, heteromannans (often together 

referred to as hemicelluloses) and pectic polysaccharides, which are often present 

in supramolecules containing a range of pectic domains (Burton et al. 2010). The 

cell walls of the Poaceae species, which include both wheat and rice, exhibit a clear 
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separation in the composition of their cell walls from all other plant species (with 

exception of the Equisetum genus), in the presence of mixed-linkage β-glucan 

(MLG) (Sørensen et al. 2008). Monocots also display much lower contents of 

xyloglucan and pectin and higher levels of MLG and arabinoxylan in the primary cell 

walls of typical vegetative tissues when compared to the model dicot Arabidopsis 

thaliana (Vogel 2008). The secondary cell walls of monocots also display higher 

Arabinoxylan (AX) levels than Arabidopsis but they also show higher levels of lignin 

and slightly less cellulose, although the differences are much less pronounced than 

in the primary cell walls. The endosperm cell walls of the grasses appear to consist 

only of primary cell walls and typically have low levels of cellulose, lignin, xyloglucan 

and pectins and high contents of AX and MLG relative to the cell walls of non-

graminaceous plants. Although the relative amount of AX and MLG can vary 

substantially between cereal species and different grain tissues. Thus, AX 

comprises ~20% total cell wall polysaccharides of the starchy endosperm in barley, 

25% in rice and 70% in wheat while MLG accounts for over 70% in barley and ~20% 

in the other two species. However, rice has significantly higher levels of cellulose 

(23% compared with 2% in wheat and 3-4% in barley) and about 27% pectin, which 

is not significant in wheat or barley grain (Mares and Stone 1973b; Bacic and Stone 

1980; Shibuya et al. 1983; Shibuya and Nakane 1984; Shibuya et al. 1985; Shibuya 

1989). Wheat endosperm cell walls also contain ~7% glucomannan (Mares and 

Stone 1973b)  compared to 3-4% in barley while the presence of low levels of 

xyloglucan has been shown by immunolabelling in both these cereals ( Wilson et al. 

2012; Pellny et al. 2012). 

1.6.1 Arabinoxylan (AX) 

Cereal xylans are predominantly formed of AX and GUX (glucuronoxylan) 

representing around 20% of primary cell wall composition in vegetative tissues and 

up to 70% of wheat endosperm cell wall, and are often the most prevalent 

hemicellulosic components of the primary cell wall. 

AX has a backbone of β-1-4 linked xylose residues that can be mono-substituted 

with arabinofuranose residues at the O-3 or di-substituted at the O-2 and O-3 

positions which are common feature of grass AX (Ebringerová et al. 2005). On the 

contrary, GUX contains arabinofuranose substituted xylan with the additional 

substitutions of glucuronic acid or 4-O-methly glucuronic acid substitutions (Hao and 

Mohnen 2014). The level of glucuronic acid substitutions in GUX is known to vary 
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significantly with the endosperm tissues of cereals, often displaying very low levels 

of GlcA substitution relative to the vegetative tissues (Burton and Fincher 2012). 

 FT-IR spectroscopic analyses have shown that the degree of substitution differs 

between developmental stages and between cells at different positions within the 

endosperm (Toole et al. 2010). The variation in substitution level between mono- 

and di-substituted AX is thought to regulate the hydration status of the cell wall, 

affecting its flexibility and potentially the nutrient transfer rate (Toole et al. 2011). 

The AX of grasses are typically esterified with ferulic acid at the 5 position of 

arabinose residues and this is thought to provide extra structural strength in the cell 

wall matrix through the ability to form ether linkages between ferulic acid residues 

present on adjacent AX chains (Piot et al. 2001). 

  

 

Figure 1.5. A schematic representation of glucuronoxylan and its potential 

monosaccharide substitutions. Modified from Burton et al. (2010b) Ara = 

arabinose; Xyl = xylose; Gal = galactose; GlcA = glucuronic acid; FeA = ferulic 

acid, AcE = acetyl ester. 

A recent study by Busse‐ Wicher et al. (2014) has shown that AX may interact with 

cellulose microfibrils, and in particular the level of substitution with arabinose or 

acetylation may regulate the ability of the AX molecule to form these interactions. 

One current hypothesis is that these interactions can prevent crystalline aggregation 

of cellulose. AXs are thought to play a key role in regulating cell wall strength 

especially in the primary cell walls of cereal endosperms where they are one of the 

most prevalent polysaccharides. Much has been learnt about the biosynthesis of 

AX, predominantly due to the irx (irregular xylem) mutants, as xylem vessels are 

heavily enriched with xylan polymers. Xylan chain biosynthesis appears to be 

regulated by 3 genes, IRX9, 10 and 14, which may act together as part of a 

complex. IRX9 and 14 are members of the GT43 family of glycosyl transferases, 
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and IRX 10 is a member of GT47 family (Lovegrove et al. 2013). They were first 

identified as mutations in Arabidopsis with all 3 mutants showing decreases in xylan 

content and a reduction in average xylan chain length, but without any modification 

or loss of the xylan reducing end sequence (XRES)(Brown et al. 2007; Peña et al. 

2007; Brown et al. 2009; Wu et al. 2009). An IRX10 rice mutant was shown to have 

a modest decrease in xylan content (~10%) but increased potential for the cell wall 

to be saccharified or digested into its consitutent monosaccharides (Chen et al. 

2012b). Whereas IRX9 and 14 overexpression lines in tobacco cell culture lines 

showed induced xylan xylosyl transferase activity (Lee et al. 2012). Together these 

data suggest that these 3 genes are non-redundant in Arabidopsis and likely to be 

involved in the xylan biosynthetic pathway. Anders et al. (2012) have shown that 

TaXat1 a member of the GT61 family is responsible for most of the monosubstituted 

arabinose residues on xylan chains in all grasses. However at least 2 other 

arabinosyl transferases are postulated to be required to generate the O-2, O-3 

disubstituted xylan residues, and are yet to be identified. The glucuronic 

substitutions present in GUX, have been identified as being regulated by GUX1 and 

GUX2 in Arabidopsis stem, where mutant lines were devoid of the glucuronosyl 

substitution. GUX1 decorates the xylan backbone at even number xylan locations 

between 6 and at least 26 residues apart, whereas GUX2 produces more tightly 

clustered substitutions usually on 5, 6, or 7 units between each substitution 

(Mortimer et al. 2010; Anders et al. 2012; Bromley et al. 2013). 

 

Due to the identification of many of the xylan biosynthetic components as being 

located in the Golgi apparatus, it is presumed that all AX synthesis takes place here. 

However several key questions remain to be answered about the first steps of AX 

biosynthesis, as it is unclear whether AX synthesis is initiated from a precursor 

molecule, or whether it is de-novo synthesis with subsequent residues being added 

at the reducing end. AX synthesis is thought to terminate with a terminal reducing 

end sequence referred to as XRES (β-D-Xylp-(1-3)-α-L-Rhap-(1-2)-α-D-Galp-(1-4)-

D-Xylp.) acting as a signalling molecule for termination of the chain length (Peña et 

al. 2007).  

Phenolic acid residues can also be incorporated into the AX of both monocots and 

dicots (Ishii 1997b) with ferulic acid and p-coumaric being the most prevalent 

phenolic components of grass AX. Ferulic acid is thought to be incorporated by 

feruloyl-CoA trasferases encoded by the BAHD gene family, however this remains 

to be proven (Obel et al. 2003; Pellny et al. 2012). This ferulate ester is attached to 
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the O-5 position of an L-arabinosyl residue of AX by an ester bond in the Graminae 

and has been shown to be involved in tissue cohesion, restricting cell expansion 

and modifying the mechanical properties of cell walls in mature tissues (Tan et al. 

1991; Tan et al. 1992; Iiyama et al. 1994; Piber and Koehler 2005). Ferulic acid 

residues on adjacent AX chains are able to undergo oxidative crosslinking via a 

peroxidase to form either dimeric or trimeric complexes stabilised by ether bonds, 

which have been detected in vivo (Ralph et al. 1994; Bunzel et al. 2001; Bunzel et 

al. 2003; Rouau et al. 2003; Funk et al. 2005). Whilst the degree of feruloylation has 

been identified as being at the basis of AX gel properties in vitro, supporting the 

crosslinking model (Carvajal-Millan et al. 2005). 

1.6.2 Mixed-linkage β Glucan (MLG) 

Mixed-linkage glucan was thought to be a unique components of the cell walls of the 

grasses (Buckeridge et al. 2004), however it was recently confirmed that it is also a 

polysaccharide in fern cell walls (Xue and Fry 2012). 

Structurally, mixed linkage β-glucan has been identified as an unbranched and un-

substituted chain of β-glucopyranosyl residues attached by 1-4 linkages, and 

interspersed with 1-3 linkages at regular intervals along the chain length. Utilising an 

endo-(1-3)(1-4-)β-glucanase which cleaves proximally to 1-3 linkages it has been 

shown that mainly trisaccharides or tetrasaccharides are released (Staudte et al. 

1983; Woodward et al. 1983a; Woodward et al. 1983b, 1988) (Fig 1.5). However a 

small fraction of the MLG chain (~10%) is thought to consist of 4 or more contiguous 

1-4 linked residues (Böhm and Kulicke 1999), with no contiguous 1-3 linked 

residues (Lazaridou et al. 2004). The 1-3 linkages have been shown to introduce a 

kink into the linear chain length, which is thought to induce the increased flexibility 

and solubility in the molecule through the disruption of hydrogen bonding which 

generate the aggregation of 1-4 linked glucose in cellulose chains (Kiemle et al. 

2014). 
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Figure 1.6. Schematic representation of MLG structure with a mixture of DP3 

and DP4 glucose chains between each 1-3 linkage. Modified from (Tosh et al. 

2004) 

MLG is abundant in the endosperm and aleurone tissues of oats, barley, wheat and 

rice, making up between 20 and 80% of the cell wall material in these tissues. 

Although the function of MLG has yet to be established, on the basis of its solubility 

it has been postulated that it could represent a storage carbohydrate (Buckeridge et 

al. 2004; Wilson et al. 2006), and may act as an energy source for the germinating 

embryo (Roulin et al. 2002). However MLG has also been shown to be associated 

with both cellulose and AX in muro (Carpita 1984), and it may act to coat cellulose 

microfibrils in the same way as xyloglucan (Carpita et al. 2001).  

MLG has been shown to be assembled at the Golgi membrane (Urbanowicz et al. 

2004), with the current model describing at least a dimeric enzyme complex where 

even numbered units are synthesised by one enzyme and odd numbered units by 

another (Buckeridge et al. 2001; Buckeridge et al. 2004). Cellulose synthase-like 

(CSL) enzymes are thought to be responsible for MLG biosynthesis with the CSLF 

and CSLH families being specific to the grasses (Hazen et al. 2002). Heterologous 

expression of CSLF from rice in Arabidopsis has shown that CSLF alone is capable 

of producing MLG (Burton 2006), but that co-expression of CSLF and CSLH 

resulted in larger amounts of MLG synthesis (Doblin et al. 2009). In vitro synthesis 

experiments with intact Golgi membranes and UDP-glucose have also shown that, 

depending upon the quantity of substrate provided, the MLG product generated 

contained either odd or even numbered residues. (Carpita and Gibeaut 1993; 

Buckeridge et al. 1999, 2001; Urbanowicz et al. 2004). 
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In general, grass MLG contains single 1-3-β-glucan linkages interspersed by 

sections of three and four glucan molecules connected with 1-4-β-glucan linkages 

(Burton and Fincher 2009) although continuous stretches of up to fourteen 1-4 

linkages being reported in wheat bran although these are a minor components (Cui 

et al. 2000) (Fig 1.5). The ratio and distribution of these two types of linkages may 

have profound effects on the structural characteristics, including the ability to form 

inter-chain interactions (Lazaridou and Biliaderis 2007).  

1.6.3 Heteromannans 

The unifying feature of all heteromannans is the presence of a β-1-4 linked 

mannosyl backbone, which is typically acetylated (Scheller and Ulvskov 2010). 

Glucomannans and galactomannans contain both mannosyl and glucosyl residues 

in their backbone in a random pattern, and can subsequently be substituted with α-

1-6 galactosyl residues on the mannose residues which generates galactomannans 

or galactoglucomannans (which contain additional glucosyl substitutions on the 

backbone) (Reid 1997). Heteromannans are synthesised by enzymes encoded by 

the CSLA gene family; genes from this family encode mannan synthases, which are 

bifunctional, adding either GDP-mannose or GDP-glucose (Dhugga et al. 2004; 

Liepman et al. 2005). Yin et al. (2009) reports that CSLD proteins may be galactosyl 

transferases for mannans, in addition to the GT34 family galactosyl transferase 

described in fenugreek (Edwards et al. 1999). Analysis of mannans in ivory nut and 

coconut shows mannans with a very low degree of substitution, which also confers 

very high insolubility. This, together with the observation of a mannosidase deficient 

mutant in coconut which possessed a highly substituted galactomannan (Mujer et al. 

1984), have led to a model in which mannans are synthesised with galactosyl 

substitutions, which are known to increase the solubility of the molecule, and 

subsequently cleaved of their galactosyl residues (Scheller and Ulvskov 2010).  

Galactomannans have long been associated with seed development as a 

carbohydrate storage compound as a cell wall polysaccharide, which is often 

digested during germination (Mujer et al. 1984; DeMason et al. 1985; Spyropoulos 

and Reid 1985; Dhugga et al. 2004), but have also been connected with roles in cell 

signalling, embryogenesis and vascular cell differentiation (Beňová-Kákošová et al. 

2006; Liepman et al. 2007; Moreira 2008; Goubet et al. 2009). 
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1.6.4 Callose 

Callose (1,3-β-glucan) has also been demonstrated to be an essential component of 

the first anticlinal cell wall extensions during cellularisation (Morrison and Obrien 

1976; Fineran et al. 1982; Brown et al. 1997; Wilson et al. 2006) and early cell wall 

development (cell plate deposition) in wheat, rice, barley and other species (Stone 

and Clarke 1992; Samuels et al. 1995; Brown et al. 1997; Verma and Hong 2001) 

where it appears as a transient polysaccharide during cellularisation. Callose is 

associated with wound healing in many plant species, through rapid production of 

callose plugs (Verma and Hong 2001). Plasmodesmata also contain a high degree 

of callose content, and can often be identified in tissue samples through the use of 

aniline blue staining, which binds to callose and is fluorescent under UV light 

allowing easy visualisation (Radford et al. 1998).  

1.6.5 Pectic polysaccharides 

As already mentioned, pectins are very minor components of endosperm cell wall of 

wheat and barley but substantial components of cell wall polysaccharides in rice 

endosperm. Pectic polysaccharides are defined as containing galacturonic acid 

(GalA) residues which are typically 4-linked and can be classified into three main 

types: homogalacturonan (HG), rhamnogalacturonan-I (RG-I), and 

rhamnogalacturonan-II (RG-II) (Fig 1.6); although minor fractions of 

xylogalacturonan and apiogalacturonan also exist, but are not found in cereals. 

These three types of pectin are important polymers of the cell wall matrix (Caffall 

and Mohnen 2009) and are proposed to be covalently linked to one another to form 

a large molecular compex, the structures of which are still poorly understood.   

Pectin content varies dramatically depending upon the tissue examined and the 

species studied. In Arabidopsis for example, leaf cell walls pectin accounts for 50% 

(w/w) of the cell wall (Zablackis et al. 1995) while in wheat endosperm tissue so little 

pectin is present it has only been detected through the use of monoclonal antibodies 

(Chateigner-Boutin et al. 2014) and through the presence of GAUT transcripts 

(Pellny et al. 2012). The ratios of the major pectic components can vary but typically 

values of 65-70% HG, ~20% RG-I and ~10% RG-II have been reported (Mohnen 

2008). These individual molecules are not currently thought of as individual 

elements, but as covalently linked polymers, which form discrete domains within a 

larger pectic structure (Fig 1.6) (Caffall and Mohnen 2009; Burton et al. 2010a).  

Significant functions have been attributed to pectin molecules, which appear to be 

essential for cell expansion and contribute to cell-to-cell adhesion in the middle 
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lamella (Willats et al. 2001a; Øbro et al. 2004; Ogawa et al. 2009). 

Homogalacturonan molecules are capable of dimerization through Ca2+ binding and 

egg box motifs, which would assist cell to cell adhesion but would also modify the 

flexibility of the wall structure. Egg box motiffs are so called becase the two adjacent 

HG chains form zig zag structures with every second galacturonic acid molecule in 

the the chain ionically bonding to the adjacent chain via a Ca2+ ion; these adajcent 

zig zag structures look like the insides of egg boxes. Primary cell walls often contain 

significant proportions of pectic molecules and these are thought to be able to 

support growth through the modification of cell wall flexibility and hydration level. 

(Macquet et al. 2007; Moore et al. 2008a). Significant evidence is also building for 

short pectic oligosaccharides to act as signalling molecules with implications in plant 

development and growth (Ridley et al. 2001; D'Ovidio et al. 2004; Savatin et al. 

2011).  

 

Figure 1.7. Schematic representation of the components of the pectic 

molecular complex. Modified from Leclere et al. (2013) 

1.6.5.1 Homogalacturonan 

Homogalacturonan is a homopolymer of D-GalA linked by α-1,4 linkages which may 

be acetylated on O-2 and O-3 positions and is typically partially methyl esterified on 

O-6 positions. It is the most prevalent pectic polysaccharide, usually representing 
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60-80% of the total pectic fraction within a cell wall (Mohnen 2008). HG is 

synthesised in a methyl-esterified format and then is modified in muro through 

pectin methyl-esterases to modulate the methyl-esterification level of the HG within 

the wall, however to date no method for methyl-esterifying HG in muro has been 

identified. The degree of methyl esterification is thought to influence the ability of HG 

to perform intermolecular interactions. It is known that adjacent HG molecules can 

interact through the egg box motifs and Ca2+ ion bridges but the available data 

suggests that in order for these egg box motifs to form, the stretch of HG must not 

be methyl-esterified (Caffall and Mohnen 2009; Wolf et al. 2009; Peaucelle et al. 

2012). As these sections with ion bridges are thought to provide extra stiffness and 

stability to the pectic matrix within the cell wall it is hypothesised that methyl 

esterification is a method for introducing plasticity into the wall and possibly to allow 

extensibility in cell elongation, as it has been noted that root extension zones label 

strongly with a monoclonal antibody directed to unmethyl-esterified sections of HG 

(JIM5) unlike the walls of adjacent cells, which only label with methyl esterified HG 

specific antibodies (Knox et al. 1990).  

 

1.6.5.2 Rhamnogalacturonan-I (RG-I) 

RG-I structure is known to exhibit extensive variation in both the length of the 

backbone chain, the degree of side chain substitution and the length of the attached 

sidechains. Thus further understanding of the fine details of its structure and how its 

variation affects its role in muro is a key aim of plant cell wall biology. 

RG-I consists of a long backbone molecule made of a homodimer of [-2)-α-L-Rhap-

(1-4)-α-D-GalpA-(1] and can contain more than 100 of these subunit in sequence 

(McNeil et al. 1980) which may be acetylated at the O-2 and O-3 positions of the 

galacturonic acid residues (Ishii 1997a). This alternating backbone typically contains 

sidechains of arabinan, galactan or arabinogalactan (AG-I or AG-II) extending from 

the O-4 position of rhamnose residues (Carpita and Gibeaut 1993), although many 

other neutral sugar moieties have been recorded as contributing to RG-I structure, 

with over 30 different oligoglycosyl sidechains being reported to date (Voragen et al. 

1995). In rare cases, such as for the pectic mucilage of A. thaliana (Penfield et al. 

2001) RG-I has been reported to contain few to no side chains. About half of the α-

L-rhap residues are substituted with neutral sugar sidechains (dp ~6-7), however 

this figure varies dramatically depending upon species and tissue examined (Darvill 

et al. 1985; Lau et al. 1987). These side chains may not be randomly distributed 
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throughout the RG-I backbone as analysis using endogalactanase and 

endoarabinanase enzymes to remove particular sidechains, implicates a clustering 

of sidechains (Sørensen et al. 2000; Skjøt et al. 2002; Vincken et al. 2003). These 

galactan and arabinan side chains are thought to be orientated in both directions 

from the backbone in a random pattern rather than being sterically regulated. 

Arabinan side chains consist of a linear 1-5 linked chain (Nakamura et al. 2001), 

which may be substituted at O-2 or O-3 positions with 1-3 linked α-L-Araf residues 

or short oligosaccharide chains (Carpita and Gibeaut 1993). Highly arabinosylated 

RG-I have been detected in resurrection plants and sugar beet pulp, and have been 

hypothesised to be related to increasing cell wall plasticity by increasing hydration 

potential of the cell wall via inhibition of the formation of egg box motifs between 

adjacent HG regions (Moore et al. 2008b). Galactan side chains are linear chains of 

1-4 β-D-Galp residues and have been shown to correlate with fast growing and 

expanding cell walls in several different species, including Arabidopsis root 

meristem (McCartney et al. 2003) and carrot root-cap apices (Willats et al. 1999), 

although these side chains are also reported to be abundant in potato tubers, 

cucumber mesocarp, sycamore cells, soy bean cotyledons, leek, onion and garlic 

bulbs (Yapo 2011). Arabinogalactan side chains may be present in two forms, the 

simpler, more prevalent AG-I and the more heavily branched AG-II. AG-I is highly 

abundant in sugar beet tubers and leek stems (Yapo 2011) and consists of linear 1-

4 β-D-Galp chains, which have single residue 1-2 or 1-3 linked α-L-Araf 

substitutions. The more varied AG-II contains the same 1-4 linked galactan 

backbone, but is substituted by short chains of 1-6 β-D-Galp, which may be up to 3 

residues in length. Additionally these 1-6 linked galactan residues are also 

substituted at either O-3, O-4 or O-6 positions or are 1-3/1-5 linked α-L-Araf 

residues (McCartney et al. 2000). This extremely variable structure is thought to be 

covalently linked to the RG-I backbone, due to co-extraction and difficulty separating 

the two. However this is yet unproved, and as this heterogeneous structure is 

homologous to that of AGPs it may be the result of a multi-component complex 

(Oosterveld et al. 2002; Immerzeel et al. 2006; Yapo 2011).  

The extremely heterogeneous structure of RG-I makes the study and 

characterisation of this cell wall polysaccharide very difficult, with many questions 

still remaining to be answered about both the structure and function of this molecule. 

Several studies have reported correlations between RG-I and certain biological 

functions ranging from cell wall firmness/elasticity to cell wall elongation and cell 

division. Study RG-I is of key interest to the fruit industry as depolymerisation of the 
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RG-I side chains have been linked to key phases in the maturation of apples, 

strawberries, tomatoes and many other fruits (Gross and Sams 1984; Redgwell et 

al. 1997; Peña and Carpita 2004; Molina-Hidalgo et al. 2013; Ng et al. 2015). This 

loss of arabinan and galactan side-chains appears to result in a reduction in fruit 

firmness, which is hypothesised by Brummell (2006) to occur through increased 

accessibility to HG for pectate lyase. Pea cotyledons have direct correlations 

between the appearance of 1-4 link galactan and the modification of the material 

properties of the cell layers. The galactan enriched cell layers in this legume showed 

a doubling of the compressive firmness compared to the same cell layers before the 

detection of galactan (McCartney and Knox 2002). While there are no definitive 

models for how these RG-I side chains influence mechanical and biological changes 

in the cell wall, it is hypothesised that arabinan is associated with cell wall plasticity 

and hydration state modulation, whilst galactan is thought to be involved with cell 

wall stiffness and elongation. McCartney et al. (2003) have shown that Arabidopsis 

root meristems only contain galactan in the elongation zone, whereas when the 

roots were grown on auxin medium, which will inhibit root elongation, the galactan 

epitope labelling was severely reduced in immunolabelling experiments. This 

observation of galactan association with cell elongation does not agree well with 

other reports of galactan side-chains being involved with cell stiffness, leading to the 

conclusion that other factors such as chain length and ramification may provide 

additional modulation to the structural properties rather than just the neutral sugar 

involved.  

Arabinan sidechains are involved in regulating the cell walls of stomatal guard cells 

in order to produce the cell shape change necessary to open and close the stomata. 

Through experiments using fusicoccin (a chemical inducer of stomatal opening) 

Jones et al. (2003) were able to show that use of an arabinanase treatment 

prevented the stomata of epidermal cells from opening upon application of 

fusicoccin, and that conversely a pre-treatment of the epidermal tissue with LM6 (a 

1-5 arabinan specific mAb) allowed for stomatal opening upon fusicoccin 

application. It was also noted that the double treatment of pectin methylesterase and 

arabinanase had a higher efficacy in preventing stomatal opening, which implicates 

interaction of RG-I arabinan with unmethylesterified HG. Jones et al. (2003) 

hypothesise that the arabinan may provide steric interference between 

unmethylesterified chain sections preventing the formation of Ca2+ cross-linked egg 

box motifs, which are known to increase cell wall stiffness. This is supported by the 

work of Renard and Jarvis (1999) who proposed arabinan side-chains as cell wall 
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plasticizers, and by the work of Moore et al. (2008a) who also suggest arabinan side 

chains as plasticizers of resurrection plant cell walls in periods of severe 

dehydration.  

 

The potential for RG-I sidechains to interact with other cell wall polysaccharides is 

still unclear despite several nuclear magnetic resonance (NMR) studies 

demonstrating clearly that within the apoplastic space arabinan and galactan side-

chains are highly mobile (Fenwick et al. 1999; Ha et al. 2005; Zykwinska et al. 

2006). Evidence for the interaction of RG-I extracted from sugar beet and potato 

tubers and cellulose exists in vitro (Zykwinska et al. 2005), but may be a result of 

the co-extraction of hemicelluloses and cellulose along with the RG-I (Cardoso et al. 

2007). However a recent study using solidstate-NMR has identified contacts 

between pectic complexes and cellulose microfibrils in intact arabidopsis cell wall 

material (Wang et al. 2015). APAP-1 (Arabinoxylan Pectin Arabinogalactan Protein 

1) has recently been characterised as a complex of pectin AX and AGP by Tan et al. 

(2013). APAP-1 appeared to be very minor components of the polysaccharides 

extracted from suspension-cultured Arabidopsis, but was seen to contain a RG-I 

backbone moiety linked to an arabinoxylan chain via a 1-4 linkage, with the AGP 

motif attaching to a GalA residue via a 1-6 linkage. This was the first evidence of 

interaction between these three polymers, although this complex is yet to be 

identified in muro. 

 

1.6.5.3 RG-II 

The structure of RG-II, is very complex, containing 12 different sugar residues 

arranged in 5 regular side chains surrounding a backbone chain (Fig. 1.7). Whilst 

RG-II does contain rhamnose and galacturonan, it does not possess a repeating 

rhamnose-galacturonic acid chain as in RG-I, but a homogalacturonan backbone of 

at least 8 residues in length. This backbone is substituted by 5 side chains at either 

O-2 or O-3 positions (Buffetto et al. 2014), which are highly conserved throughout all 

plants examined to date, ranging from monocots to dicots to bryophytes and 

beyond, suggesting an ancient heritage and significant functional role (Thomas et al. 

1989; Edashige and Ishii 1998; O'Neill et al. 2004). The 5 side chains of RG-II are 

referred to as A-E, with A + B being oligosaccharides which attach to the O-2 of the 

backbone, and C-E being short chain saccharides attaching to O-3 positions on the 

backbone (Melton et al. 1986; Stevenson et al. 1988; Pérez et al. 2003; Ahn et al. 
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2006).  (Fig.1.8). RG-II contains several very rare monosaccharides within its chain 

structure, such as 2-O-methyl-L-fucose, L-aceric acid or xylofuranose (Harholt et al. 

2010). RG-II is thought to play a major role in primary cell walls through the 

formation of dimers via borate ion cross-linking. This crosslinking occurs via a 

1,2,borate-diol ester between the apiosyl residues of chain A on two RG-II 

molecules (Kobayashi et al. 1996; O'Neill et al. 1996; Ishii et al. 1999). In wild type 

plants approximately 95% of RG-II molecules exist as dimers, and as such are 

thought to contribute significantly to strengthening the cell wall matrix (O'Neill et al. 

2001). BOR1 mutants lack a protein associated with boron transport from the root 

pericycle to the xylem, resulting in boron deficiency and severe stunting in the aerial 

portions of the plant. This boron deficiency results in a 55% reduction of RG-II 

dimerization and in a dwarf phenotype, without any other alteration to cell wall 

composition (Noguchi et al. 1997). 

 

  

Figure 1.8. Schematic structure of rhamnogalacturonan II with the 4 side 

chains A-D (O'Neill et al. 2004) 

 

1.6.5.4  Biosynthesis of pectin 

Understanding pectin biosynthesis remains in its infancy, with only a few of the 

postulated 50+ different glycosyl transferases required for the construction of pectin 
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having been identified. HG synthesis was first identified in vitro by Lin et al. (1966) 

however it took 30 further years for the isolation and characterisation of the HG 

synthetic enzymes to begin. These enzymes are referred to as 

galactosyltransferases (GAUTs), as they catalyse the transfer of D-GalA from UDP-

D-GalA to the non-reducing end of the growing HG chain in the Golgi apparatus 

(Scheller et al. 1999; Akita et al. 2002; Ishii et al. 2002), although they often require 

an Mn2+ ion as a catalyst. GAUT1 and its homolog GAUT7, were the first GAUTs 

characterised and were shown to form a complex in vivo in A.thaliana (Mohnen 

2008). Pectin deficient mutants have provided additional detail to the understanding 

of pectin biosynthesis with Quasimodo1 (Qua) and Qua2, shedding light on the HG 

biosynthesis. Qua1 is a mutant in GAUT8, and shows a reduction in pectin content 

(Bouton et al. 2002) in vivo leading to a stunted appearance (hence the Quasimodo 

reference) and shows a specific reduction in the HG-GalA transferase activity, but 

this is confused by the fact that a reduction in xylan synthase activity was also 

observed (Orfila et al. 2005). Qua2 was also identified through the reduction in 

pectin content in vivo, however it was discovered to be a putative methyl-transferase 

rather than GAUT (Mouille et al. 2007). In vitro studies have shown that HG can be 

methyl esterified through s-adenosyl-Met in the Golgi lumen (Goubet and Mohnen 

1999). It is yet to be established if qua2 and the other identified putative methyl 

transferases are indeed directly connected to HG synthesis and how this may affect 

the reduction in pectin content in the qua2 mutant. 

As yet only a few mutants have been identified affecting the biosynthesis of RG-I, 

leaving the genetics of this complex molecule largely unexplored. Currently only 

RHM1 (rhamnose modified) and RHM2 mutants have shown direct effects on the 

RG-I backbone. These mutants were both identified in Arabidopsis and have a 65% 

reduction in rhamnose and 50% reduction of galacturonic acid content of the seed 

mucilage. Subsequently these mutants have been characterised as affecting 

catalytic enzymes in the conversion of UDP-Glc to UDP-Rha (Diet et al. 2006; Oka 

et al. 2007).  Arabinan side chain mutants have also been identified, with ARAD1 

(arabinose deficient 1) being the best characterised, an arabinosyltransferase 

mutant with 46% reduction in leaves and up to 75% reduction in stem tissues of 

Arabidopsis. Significantly no detectable difference in cellular structure could be 

detected by Harholt et al. (2006), including no stomatal problems contrary to what 

may be expected of the stomatal experiments conducted by (Jones et al. 2005). 

Several other mutants have been generated which show some modification in the 

structure of the RG-I content, although these mutants also show changes in pectin 
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networks.  For example many of the MUR (murus) ethyl-methane sulphate 

generated mutants show multiple monosaccharide changes relative to the wild type, 

but these changes are not associated with specific phenotypes in these mutants 

(Reiter et al. 1997). 

Given the complex structure of RG-II the existence of many glycosyltransferases 

has been postulated to account for the additions of all 22 separate linkages between 

the 13 different glycosyl residues, however to date only a few of these enzymes 

have been reported. The best characterised of these are the RGXTs 

(rhamnogalcturonan xylosyltrasferases), 4 homologs of which have been detected in 

Arabidopsis and characterised through heterologous expression in Pichia pastoris, 

which allowed their role in as adding a UDP-xylose to the L-fucose in side chain A to 

be established (Egelund et al. 2006; Egelund et al. 2008; Liu et al. 2011). This 

region of chain A is thought to be relevant to the stabilisation of the RG-II dimer 

formation, as mur1 mutants in which the L-fucose residue is replaced with L-

galactose have a reduction of ~45% in the formation of RG-II dimers, which is 

reversible following endogenous L-fucose application. 

1.6.6 Cellulose 

While cellulose is the most abundant cell wall polysaccharide in the world, 

accounting for up to one third of the total mass of a plant (Somerville 2006), the 

endosperm cell walls of cereal grains have very low cellulose contents with wheat, 

and brachypodium all containing ~2-8% (Guillon et al. 2011). Structurally cellulose is 

a homopolymer of β-(1-4)-glucose, with chains of this polymer arranged into 

microfibrils. Within these microfibrils the cellulose chains are oriented parallel to one 

another, and maintain the form of a flat ribbon through the rotation of every 

subsequent glucose monomer by 180o, producing repeating units of cellobiose. In 

muro, cellulose can be found either as amorphous or crystalline forms, each form 

having specific physical and chemical properties, contributing to the structural 

properties of the cell wall. Crystalline cellulose, which exists in two isoforms 1α or 1β 

(Brown et al. 1996b), is stronger and less malleable than amorphous cellulose and 

possesses a greater resistance to enzymatic degradation. Both isoforms of 

crystalline cellulose are typically found in plants although the relative proportions 

vary from tissue to tissue. The structure adopted is dependent on the opportunity for 

the glucan chains to form both intra and inter molecular interactions through 

hydrogen bonding and Van der Waals forces. Cellulose chain aggregation can occur 

in the presence of these intermolecular interactions resulting in cellulose microfibrils, 
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which are thought to contain between 24 and 36 glucan chains (Fernandes et al. 

2011; Thomas et al. 2013; Newman et al. 2013), Thomas 2013, Newman 2013) 

although cellulose chain length may be species-specific and extend for up to 14000 

glucose residues (Somerville 2006).  

1.6.6.1 Cellulose biosynthesis 

The regular orientation of cellulose chains in a parallel manner has long been a clue 

that the biosynthesis of these glucan chains occurs in a highly coordinated fashion 

(Ha et al. 1998). It is now known that this is the result of cellulose synthase 

complexes (CSC) which have a characteristic 6 complex rosette, with each complex 

(CesA) being proposed to synthesise a single glucan chain. Thus each rosette can 

synthesise 6 glucan chains, so microfibrils in the order of 6, i.e. 24 or 36 are feasible 

(Harris et al. 2010). CesA proteins are widely reported as elements of the CSC and 

were discovered in cotton through homology with a bacterial cellulose synthase 

protein (Pear et al 1996). However it is still unclear whether CesA proteins facilitate 

the formation of hydrogen bonds. CesA are glycosyltranferases family 2 proteins 

(Richmond and Somerville 2000) and are integral membrane proteins containing 

eight transmembrane domains (Somerville 2006), which are predicted to form a 

pore in the membrane to allow passage of newly formed glucan chains (Morgan et 

al. 2013; Slabaugh et al. 2014). Dimerisation of CesA proteins is thought to occur 

through the presence of a c-terminal zinc finger domain in higher plants (Kurek et al. 

2002). The location and regulation of CSCs within the plasma membrane has been 

proposed by Baskin (2001) to be regulated by cortical microtubules adjacent to the 

plasma membrane after the initial model of Staehelin et al. (1991). These 

hypotheses are derived from the observation that the cortical microtubules and 

cellulose microfibrils have very similar orientation (Ledbetter and Porter 1963) and 

has recently been reinforced by the work of (Bringmann et al. 2012), which elegantly 

demonstrated that the CesA complexes can interact with cortical microtubules 

through a intermediary protein POM2/CSI1. 

1.6.6.2 Function 

Cellulose microfibrils are strong and inelastic, and have been shown to interact with 

a range of other cell wall polysaccharides in vivo, such as xylan (Bromley et al. 

2013), pectin (Vignon et al. 2004; Zykwinska et al. 2005) and xyloglucan (Hayashi et 

al. 1987). These interactions are proposed to be through the use of hydrogen 

bonds, although a recent paper has highlighted the importance of acetylation on 
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xylan chains to allow interaction with cellulose microfibrils (Busse‐ Wicher et al. 

2014). 

Cellulose microfibrils have been shown to be deposited in multiple layers with 

consistent orientations. This organised structure would provide resistance to the 

internal osmotic pressure of cells and this turgor pressure in turn would allow plants 

to stand upright. The relationship of cellulose and cell elongation has been explored 

in many experiments in Arabidopsis, with the root elongation zone in dark grown 

hypocotyls being the model system. In the elongation zone, cellulose is deposited in 

a transverse orientation compared to the direction of elongation (Kerstens and 

Verbelen 2002), which then shifts increasingly towards a longitudinal direction as 

cell elongation occurs (Anderson et al. 2010). Roland et al. (1975) predicted such a 

rotation of cellulose microfibril angle in their multi-net growth hypothesis, which 

describes a passive movement of cell wall layers in response to cell growth. 

1.6.7 Lignin 

Lignins are structural cell wall components not comprised of polysaccharides, 

instead it is a phenolic polymer, which is formed from primary hydroxycinnamyl 

alcohol derivatives. These molecules are joined by oxidative polymerisation, to 

produce three major lignin components:- H lignin, p-hydroxylphenyl; S Lignin, 

syringyl; and G lignin, guiacyl (Vanholme et al. 2008). Catechyl or C-Lignin has 

recently been added to the list as a minor lignin component only found in vanilla 

orchid seeds; it derives from a different polymerisation method in which direct 

polymerisation of caffeyl alcohol and 5- hydroxylconiferyl alchol form catechyl and 5-

hydroxyguaiacyl (5H/5-OH-G) (Chen et al. 2012a; Chen et al. 2013). The major 

monolignol components are thought to be produced cytosolically (Donaldson 2001; 

Boerjan et al. 2003) and transported directly to the wall through specific ABC 

transporters (Miao and Liu 2010; Alejandro et al. 2012) rather than via Golgi 

vesicles (Kaneda et al. 2008). Additional modulation of lignin synthesis in muro has 

been shown to be in part due to cell wall localised peroxidases and laccases 

assisting with the polymerisation of the monolignols (Davin et al. 1997; Donaldson 

2001; Berthet et al. 2011). The polymerisation of lignin is thought to begin in the 

middle lamella and functions to stiffen and strength the cell wall by crosslinking to 

pectins and hemicelluloses in muro (Jeffries 1994). Typically lignin is observed in 

cell walls after cell differentiation and expansion (Lewis and Yamamoto 1990) often 

around the time of PCD (Albersheim et al. 2010) in what is referred to as the 

terminal differentiation stage. 
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1.6.8 Arabinogalactan peptides 

Arabinogalactan peptides (AGPs) are heavily glycosylated hydroxyproline rich 

glycoproteins have been typically considered to be an element of the cell wall 

matrix. They have been studied in the context of cell walls since their initail 

discovery due to the very large arabinogalactan motifs that contribute to ~90% of 

AGPs. Due to this significant content of arabinan and galactan, AGPs were 

assumed to be associated with the cell wall matirx in some way and at present no 

known role or cellular location is attributed to the AGP molecules. However AG 

proteins, which have a much larger protein cores (87-739 amino acids), and slightly 

different structures in their AG modules, have been postulated to have a wide range 

of functions from cell signalling to drought tolerance and wound healing (Showalter 

2001; Van Hengel et al. 2002; Brownlee 2002; Johnson et al. 2003; Mashiguchi et 

al. 2004; Lamport et al. 2006; Ellis et al. 2010). However no further explanation of 

how these AG modules may interact with the cell wall matrix has been provided. 

Several other cellular locations are possible if compared with hypothesised locations 

of AG proteins, for example several classes of AG proteins have membrane bound 

anchors and are thought to be involved in calcium ion signalling (Lamport et al. 

2014), or it is possible that they may be cytoplasmic due to the high level of water 

solubility conferred by the AG modules. Whilst numerous localisation experiments 

have been conducted on AG proteins, to date none have been probed the cellular 

location of AGPs in cereals. 

In cereal AGPs, the peptide core is highly homologous 15-25 amino acid sequence, 

containing 3 hydroxyproline residues. The sequence of this peptide is identical to 

the n-terminal sequence of grain softness protein-1 (GSP-1) and is therefore 

assumed to originate as a processing product of GSP-1, as the mature protein lacks 

this 15 amino acid region (Van den Bulck et al. 2005). Additionally specific clades of 

GSP-1 have been reported to be associated with specific clades of peptide 

sequence in specific species indicating that is is highly unlikely that the two evolved 

separately (Wilkinson et al. 2013). The 3 hydroxyproline residues conserved in 

peptide sequence of cereal AGPs are the sites of attachment for very large 

arabinogalactan modules. These arabinogalactan modules consist of a β-(1-3)-

linked galactopyranosyl backbone chains which in turn have -(1-6)-linked 

galactopyranosyl side chains which variable in  length. Both the side chains and 

backbone can be decorated with single arabinofuranosyl substitutions at the O-3 

position and the side chains can in turn be decorated with single arabinopyranosyl 

residues at the O-3 position. The β-1-6 galactan side chains may also be decorated 
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by arabinopyranosyl residues on the arabinofuranosyl residues substitutions 

present. These side chains also appear to contain glucuronic acid residues at the 

non-reducing termini (Tryfona et al. 2010). AG modules typically contain somewhere 

in the region of 100-120 sugar residues.  

1.7 Gradients in grain composition. 

In addition to the spatial gradients in endosperm storage proteins (Tosi et al. 2009; 

Furukawa et al. 2003), gradients in the cell wall components are also observed in 

both wheat and rice. FT-IR and Raman microscopy analysis of cross sections of 

endosperm revealed differences in the degree of arabinoxylan (AX) substitution in 

cell walls across the grain (Piot et al. 2001; Barron et al. 2005; Mills et al. 2005; 

Robert et al. 2005; Barron et al. 2006; Philippe et al. 2006a; Philippe et al. 2007; 

Toole et al. 2007; Barron and Rouau 2008; Toole et al. 2009; Toole et al. 2010; 

Guillon et al. 2011; Robert et al. 2011; Toole et al. 2011).  

At present, little is known about the factors controlling these compositional 

gradients.  Some of these gradients are assumed to be related to cell age and 

lineage, since the sub-aleurone layer derives from periclinal cell division of the 

aleurone layer, occurring later into grain development than divisions of central 

endosperm cells (Olsen et al. 1998; Olsen 2001). A second hypothesis is that there 

are positional cues for cell fate; in particular there is some evidence in maize 

(Becraft and Asuncion-Crabb 2000; Yi et al. 2011) that the endosperm and aleurone 

do not have fixed cellular fates. Upon application of the appropriate external cue 

aleurone cells can switch from one cell type to the other and back again. It is yet to 

be established if this is due to an “outside” signal or if it is the result of a chemical 

gradient across the grain, much like the hormonal gradients that are commonly 

found across meristem tissues, i.e. auxin in meristem development patterning 

(Olsen et al. 1998; Olsen 2001). 

A clear pattern in the deposition of cell wall components can be observed in wheat 

endosperm, a tissue that is still the focus of intense research due to its importance 

in end use quality. In the cellularizing endosperm of wheat, the walls contain callose 

(Philippe et al. 2006b; Wilson et al. 2006; Toole et al. 2010). As development 

continues, callose is replaced by increasing amounts of mixed link β-glucan, and, 

later on, by highly branched arabinoxylan (HB-AX), which in turn is modified, 

typically to produce LB-AX (low- branch AX) (Toole et al. 2007). 
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1.8 Usage and limitations of monoclonal antibodies 

Monoclonal antibodies allow for relatively high resolution and highly specific 

detection of epitopes within a sample material and can detect the presence of 

absence of an epitope with a very high degree of spatial separation (<1 μm). For 

example mAbs directed to specific pectic structures can recognise specific sections 

of cell wall within the cell wall junction whilst no detection is seen along the length of 

the wall (Willats et al. 2001b).  Monoclonal antibodies can be used in many different 

methods to detect their target epitope, typically immunofluoresence microscopy is 

one of the most common uses, as it allows the examination of the spatial 

localisation and separation of the target epitopes. For broader examination of the 

epitopes present in a sample ELISA assays can be implemented, providing 

information about both the relative strength of the interaction between the sample 

and the antibody and which epitopes can be detected in the sample. Further 

examination of the interactions between different epitopes can be probed with the 

use of epitope detection chromatography, which utilises chromatographic 

techniques in conjunction with monoclonal antibodies to examine interactions 

between different polysaccharides. The wide array of available monoclonal 

antibodies provides tools to detect almost the whole range of cell wall 

polysaccharides (Pattathil et al. 2010), which allows for very sensitive analysis of 

cell wall dynamics and the structural heterogeneity within a single cell wall. This can 

be used to study both developmental and spatial dynamics of cell wall deposition, 

maturation and modification in both unfixed and fixed sections. At present the only 

major polysaccharides not detectable by the available array of mAbs available is 

RG-II, despite repeated attempts this polysaccharide remains recalcitrant to 

antibody production, which may be related to its highly complex structure. 

Monoclonal antibodies are limited in several key dimensions though, firstly 

generation of monoclonal antibodies specific to a target molecule can be time 

consuming and it can be problematic to prove that the antibody is specific only to 

the original immunogen. Antibodies can provide semi-quantitative data about the 

amount of epitope present in a sample in immunofluorescence microscopy, and 

detection can be impaired or prevented by steric interference from other molecules, 

as monoclonal antibodies are relatively large structures.  

1.9 Aims of project 

As discussed above, qualitative and quantitative gradients in cell wall 

polysaccharides have been identified across the wheat endosperm, but little is 
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known about the factors controlling these gradients or their biological roles and not 

all cell wall matrix polysaccharides have been studied. It is possible that these 

gradients are related to cell age and lineage, since the sub-aleurone layer is thought 

to derive from periclinal cell divisions of aleurone cells, occurring later into grain 

development than the divisions of central endosperm cells that give rise to the 

central starchy endosperm (Olsen et al. 1998; Olsen 2001). Although the formation 

of cell walls in the developing rice endosperm is well described and the 

polysaccharide composition of the mature grain identified, the sequence of 

deposition of individual cell wall polysaccharides has not been reported. Wheat and 

rice grain present important anatomical differences, first of all, the presence of a 

crease in wheat accommodating the vascular bundle and acting as the sole point of 

entry of assimilates in the endosperm; in rice, on the contrary, nutrients are 

unloaded from the phloem in the nucellar epidermis, can move circumferentially and 

enter the endosperm at different points via the aleurone cells.  Cell wall composition 

and formation dynamics in the two species may therefore reflect this different grain 

physiology. The aim of the present study was therefore to perform a comparative 

analysis and determine the temporal and spatial patterns of polymer deposition in 

cell walls of developing rice grain, focusing on the endosperm, and to compare 

these with the pattern in wheat, which has been more thoroughly described. This 

was achieved by using immunofluorescence microscopy with sets of monoclonal 

antibodies (mAbs) to detect the cell wall matrix polysaccharides, focusing on three 

major time points selected to represent key stages of grain development in both 

species. 

 

To summarise, three major objectives were pursued during this project: 

     To quantify the cell wall polysaccharide content of developing wheat and rice 

grains, in order to correlate changes in cell wall composition with cell physiological 

processes in developing grains. 

     To use monoclonal antibodies to probe the spatial and temporal regulation of 

specific cell wall polysaccharides in developing grains of wheat and rice, in order to 

determine how the cell wall compositions of specific cell and tissue types change in 

relation to cell/tissue development and the biological roles of tissues. 

    To investigate the localisation of arabinogalactan peptides (AGPs), using novel 

monoclonal antibodies, to confirm the presence of AGPs as cell wall components in 

developing wheat and rice grains. 
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 CHAPTER 2: MATERIALS AND METHODS 

2.1 Plant materials 

O.sativa cv. Koshihikari seeds (bred at Fukui Prefectural Agricultural Research 

Facility) were sterilized in 15 ml falcon tubes in 10% (v/v) bleach and shaken for 20 

min. The seeds were then rinsed 5 times in sterile water. Seeds were germinated on 

damp Whatman’s filter paper (Whatmans No.1 90mm diameter filter paper, 

www.whatman.com) in 90 mm petri dishes in darkened conditions at 22oC for 7 

days. Seedlings were transferred to 1 L moldjars (weckjars, weckjars.com) in a pre 

prepared Murashige and Skoog growth media (Sigma Aldrich, m5519-1L). Once 

seedlings had reached 15 cm they were transferred to 15cm diameter pots filled 

with sandy loam soil mixed to a 3:1 ratio with distilled water (Roffey brothers mendip 

loam, www.nmsb.co.uk). Plants were grown in controlled environment cabinets 

(Fitotron, SGC-120) at Rothamsted Research with a 12 h photoperiod (4am-4pm) at 

a day time temperature of 28oC and 22oc night time temperature, relative humidity 

was maintained at 70%. The pots were placed in deep trays of water; approximately 

two thirds of the height of the pot, the water level was maintained by regular 

watering to simulate paddy field conditions. Caryopses were harvested at 4, 6, 8, 

12, 20 and 28 DAA from the middle third of the panicle and immediately prepared 

for microscopy.  Anthesis was defined as the point at which the middle third of the 

panicle had exposed anthers.  

Triticum aestivum cv. Cadenza (bred by Cambridge Plant Breeders Ltd) plants were 

grown in controlled environment rooms at Rothamsted Research at 18oC day/15oC 

night temperature with a photoperiod of 16 hour provided by banks of 400W 

hydrargyrum quartz iodide lamps (Osram Ltd., UK) generating a light intensity of 

~700 µmol/m2/s photosynthetically active radiation at the pot surface. Caryopses 

were harvested at 4, 6, 8, 12, 20 and 28 DAA from the middle third of the spikelet 

and immediately prepared for microscopy.  
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2.2 Immunolocalization of cell wall polysaccharides wheat and rice 

grains. 

2.2.1 Light microscopy and immunofluorescence analysis 

Transverse medial sections of wheat and rice grains (approximately 1 mm in 

thickness) were cut in paraformaldehyde fixative solution (4% w/v 

paraformaldehyde, Sigma-Aldrich 158127) and 2.5% w/v glutaraldehyde (Sigma-

Aldrich, G7776) in 0.1 M Sorenson’s buffer pH7.2 (5.365 g of Na2HPO4∙7H2O in 

100ml dH20 + 3.121g of NaH2PO4∙2H2O in 100 ml dH20 mixed in a ratio of 3.6:1.4 

and diluted to 0.1M with dH20)). Sections were fixed overnight at room temperature 

(RT) in the same paraformaldehyde fixative solution. After three rinses in 

Sorenson’s phosphate buffer the specimens were dehydrated in an ethanol series: 

10% Ethanol (v/v) for 1 h at RT, 30% Ethanol (v/v) for 1 h at RT, 50% Ethanol (v/v) 

for 1 h at RT, 70% Ethanol (v/v) for 1 h at RT, 100% Ethanol (v/v) for 1 h at RT. 

Samples were then slowly infiltrated with LR White resin (medium grade, TAAB 

L012, London Resin Company, London) in increasing concentrations of resin: 25% 

resin (v/v) in absolute ethanol for 1 h at RT, 50% resin (v/v) in absolute ethanol for 1 

h at RT, 75% resin (v/v) in absolute ethanol for 1 h at RT, 100% resin (v/v) for 1 h at 

RT, the final incubation is repeated twice. Subsequently the samples were 

incubated in 100% LR White resin for 7 days (in wheat sections) and 28 days (in 

rice sections), samples were individually encapsulated in flat bottomed 

polypropylene capsules (Agar Scientific, AGG3759) and polymerised at 55ºC in a 

nitrogen gas saturated environment for 48 h. Semi-thin sections of 1 μm thickness 

were cut on an UltraCut Microtome (Reichert-Jung, Austria) using glass knives 

prepared on site, collected in drops of distilled water on multi-well diagnostic slides 

(Menzel-Gläser, X2XER201B#) coated with 1% v/v poly-L-lysine hydrobromide 

(Sigma-Aldrich, P1399), and dried on a hot plate at 40oC.  

2.2.2 Sample preparation for high pressure freezing. 

Transverse thin slices of wheat and rice grains were cut with a razor blade while 

keeping specimens immersed in MES buffer, pH 5.5 (Sigma Aldrich, 117961-21-4);  

2mm punches were taken from the grain slices and loaded into type A planchettes 

previously dipped in lecithin (100mg lecithin in 1 ml of chloroform) and transferred to 

Leica EM ICE instrument (Leica Microsystems) for high pressure freezing. Samples 

were stored in liquid nitrogen until the start of freeze- substitution. Freeze 

substitution was carried out in a Reichert AFS apparatus (Reichert-Jung, Austria, 
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using acetone for subsequent low temperature embedding in LR White resin (Agar 

Scientific, UK) Specimens were brought from -160oC to -85oc in steps of 15 oC h-1, 

then freeze substitution was started using the following programme T1- 85oC 26 h, 

S1 +2oc h-1 12.5 h; T2 -60oC 10.5 h S2 +2oC h-1 15h; T3 -30oC 6 h. 

Samples were take out of planchettes on ice and take from acetone to methanol 

(1:3, 1:1, 3:1 v/v) while kept at -20oC, then gradually embedded in LR White over a 

period of 6 days (25%, 50%, 75%, 100%, v/v). UV polymerisation was carried out at 

-20oC for 24h, followed by another 24h at 0oC Sections were subsequent sectioned 

as per 2.2.1 

 

2.2.3 Indirect immunofluorescence labelling and histochemical staining 

for light microscopy.  

Slides with LR White-embedded grain sections were incubated (50μl per well) in 5% 

(w/v) milk powder (Marvel products, UK) in 1 x PBS at pH 7.0 for 1 h, then 

Washed three times for 5 min each with PBS, then incubated for 2 h in primary 

antibody. The following monoclonal antibodies were used, diluted in PBS containing 

5% (w/v) milk powder: rat probes - LM5 (Jones et al. 1997), LM6 (Willats et al. 

1998), LM19 (Verhertbruggen et al. 2009), LM25 (Pedersen et al. 2012), JIM7 (Knox 

et al. 1990) all diluted 1:5; Mouse monoclonal AX1 (Guillon et al. 2004), anti-callose 

(Meikle et al. 1991) (BioSupplies Australia, Cat No. 400-2), anti- MLG (Meikle et al. 

1994) (BioSupplies Australia, Cat No. 400-3) diluted 1:50; mouse monoclonal INRA-

RU1, (Ralet et al. 2010)(INRA Nantes) diluted 1:5. Slides were rinsed three times for 

5 min with 1x PBS, then incubated for 2 h, in the dark, with secondary antibody 

(anti-rat Alexa 568 conjugated or anti-mouse Alexa 568 conjugated, Invitrogen) 

diluted 1:200 in PBS, 5% (w/v) milk powder (Marvel products, UK). Slides were then 

washed three times for 5min with PBS, and counterstained with 1% (w/v) Calcofluor 

White 2mr (Sigma Aldrich, F3543) solution. Sections were then mounted in Citifluor 

AF-1 glycerol based anti-fade mountant (Agar Scientific, UK) and covered with a 

glass coverslip. Sections were imaged on a Zeiss Confocal LSM 780 on an Axio 

Observer microscope, with 32 channel GaAsP detector and 2 PMT, using Zen 2010 

software and fitted with 405 nm diode laser; 458 nm, 488 nm, 514 nm from an Argon 

ion laser; 561 nm and 633 nm HeNe Laser.  

Table 2.1. Cell wall directed monoclonal antibodies used in this study.  
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Antibody Antigen Reference 

Arabinoxylans 

 
INRA-AX1 arabinoxylan 

(Guillon et al. 

2004)  

LM28 glucuronoxylan in preparation 

Phenolic components 

 
LM12 

feruloylated 

polysaccharides 

(Pedersen et al. 

2012) 

INRA-COU1 coumaric acid 
(Tranquet et al. 

2009) 

Mixed Linkage β 

Glucan 

  
MLG 

mixed linkage β 

glucan 

(Meikle et al. 

1994) 

Minor non-cellulosic 

polysaccharides 

  
Callose 1-3 β-glucan 

(Meikle et al. 

1991) 

LM21 heteromannan 
(Marcus et al. 

2010) 

LM25 xyloglucan 
(Pedersen et al. 

2012) 

Pectic 

Homogalacturonan 

  
LM19 

un-esterified 

homogalacturonan 

(Verhertbruggen 

et al. 2009) 

JIM7 

partially methyl-

esterified pectic 

HG  

(Clausen et al. 

2003) 
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LM20 
methyl-esterified 

pectic HG  

(Verhertbruggen 

et al. 2009) 

Pectic 

Rhamnogalacturon

an-I 

  
INRA-RU1 

rhamnogalacturon

an backbone 

(Ralet et al. 

2010) 

LM5 (1-4)-β-D-galactan 
(Jones et al. 

1997) 

LM6 (1-5)-α-L-arabinan 
(Willats et al. 

1998) 

 

2.2.3.1 Enzymatic unmasking 

Enzymatic unmasking was used to investigate the phenomena of polysaccharide 

masking, via the enzyme pre-treatments on sections. 50 μl of Xylanase GH10 (X10, 

Prozomix, pro-E0007) and Lichenase (Prozomix PRO-E0017) solution (20U of 

Xylanase and 40U of Lichenase in 50 μl of 50mM PBS buffer pH 7.0) was applied to 

each section to digest xylan backbone structures of arabinoxylan, and mixed linkage 

β-glucan and was incubated in a humid chamber (Sigma Aldrich, H6644) for 

overnight at 37oC. 

2.3 Histochemical stains 

2.3.1 General morphology 

For general morphology and staining of protein bodies, the sections were stained 

with 0.1% (w/v) toluidine blue O (Sigma Aldrich, 198161) in 1% (w/v) sodium 

tetraborate, pH 9, for 30 seconds before washing with PBS. Sections were mounted 

in distilled water under a coverslip and imaged on a Zeiss Axiophot microscope 

equipped with a Retiga Exi (Qimaging) camera. 

2.3.2 Protein body staining 

For specific protein body staining, a 1% (w/v) solution Coomassie Brilliant Blue G 

(CBB, Sigma Aldrich, 27815) in acetic acid, the solution was applied for 30 seconds 

at 40oC.  
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2.3.3 Starch granule staining 

For specific starch granule staining an iodine/ potassium iodide solution (IKI or 

Lugol’s solution) was used. For 1-2 µm sections the IKI 1 % (w/v) (Sigma Aldrich, 

32922) was applied for 1min. IKI was removed with distilled water and air dried at 

room temperature. Sections were mounted in distilled water under a coverslip and 

imaged on a Zeiss Axiophot microscope equipped with a Retiga Exi (Qimaging) 

camera. 

2.4 Cell wall chemistry 

2.4.1 Isolation of cell wall material 

2.4.1.1  Non-starch polysaccharide (NSP) preparation, based on Englyst 

et al 1992. 

Non-starch polysaccharide preparations were completed on wheat and rice flours 

from 5 developmental time points (4, 8, 12, 20, 28 DAA) as per Englyst et al. (1992) 

with some amendments.  

150 mg of sample flour from each species and developmental time point  (in 

triplicate) was added to 50 ml capped-pyrex tubes (50ml, Cole-Parmer), 2 ml of 

DMSO was added to each tube and then vortexed repeatedly for 5min. Samples 

were then boiled in a water bath at 100oC for 30 min. Then 8 ml of α-amylase 

solution (100U, A3306, Sigma-Aldrich) in 50 mM Acetate buffer at pH5.5 is added to 

each sample and the samples boiled for a further 10 min. The samples were 

transferred to a water bath at 50oC and allowed to equilibrate before adding 

pancreatin V (1494057, Sigma-Aldrich) and pullanase (40U, P2986, Sigma-Aldrich), 

and incubated for 4 h at 50oC before the enzymes were denatured at 100oC for 10 

min. The samples were cooled and 0.15 ml of 5 M HCL was added and topped up to 

approximately 40 ml absolute ethanol. The cell wall polysaccharides were then 

allowed to precipitate on ice for 2 h. The precipitates were collected by 

centrifugation at 1500g for 10 min and the supernatant discarded. The pellet was 

washed sequentially with 40 ml of acidified 85%(v/v) ethanol (0.15 ml of 5 M HCl per 

40 ml of 85% (v/v) ethanol), absolute ethanol and finally acetone. The samples were 

vortexed and centrifuged between each solvent wash with the supernatant being 

discarded at each step.  Samples dried overnight at RT to ensure no acetone 

remains prior to further analysis 
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2.4.1.2 Alcohol insoluble residue (AIR) protocol 1 (AIR1) 

150 mg of sample flour, milled to less than 150 µm particle size was weighed into 2 

ml microcentrifuge tube, and 1.5 ml of 70% (v/v) ethanol added.  The sample was 

vortexed briefly and centrifuges at 20,000g for 10 min and supernatant removed. 

The pellet was washed with 1.5 ml of chloroform:methanol (1:1, v/v) and vortexed 

before centrifugation at 20,000g for 10 min. The supernatant was discarded and the 

sample dried under a stream of nitrogen. 

2.4.1.2.1 Additional Starch removal step 

The dried AIR pellet was resuspended in 1.5 ml of 0.1 M sodium acetate buffer at 

pH 5.2 (pH adjusted with acetic acid). Then 100 μl of α-amylase solution (a3306, 

Sigma-Aldrich) was added, the sample vortexed and incubated on a shaking heating 

block at 50oC for 16 h. 

2.4.1.3  AIR protocol 2 (AIR2) 

150 mg of sample flour, milled to less than 150 µm particle size was weighed into 2 

ml microcentrifuge tube, and 1.5 ml of 96% (v/v) ethanol at added, vortexed briefly 

and then centrifuged at 20,000g for 15 min. The supernatant was discarded and 1.5 

ml of absolute ethanol was added to resuspend the pellet. The sample was vortexed 

briefly and centrifuged at 20,000g for 15 min before discarding the supernatant. 1.5 

ml of methanol:chloroform (2:3, v/v) was added and the samples shaken for 1 h at 

room temperature. The sample was then centrifuged at 20,000g for 15 min and the 

supernatant discarded. The methanol:cholroform wash and centrifugation was 

repeated. The sample was then sequentially washed with 1.5 ml of 100% ethanol 

(v/v), 65% ethanol (v/v), 80% ethanol (v/v) and 100% ethanol (v/v) with the sample 

centrifuged at 20,000g for 15 min and discarding the supernatant between each 

wash. The remaining pellet was then dried at room temperature in a sample 

concentrator (Concentrator 5301, Eppendorf) overnight (~16h). 

2.4.1.3.1 Additional Starch removal step 

As per chapter 2.4.1.2.1 

2.4.1.4  Lai Protocol 

As per Lai et al. (2007): 150 mg of wholegrain sample flour, milled to less than 150 

µm particle size was weighed into capped pyrex centrifuge tube (50 ml, cole-

parmer) de-fatted by refluxing with 10 ml of 80% (v/v) ethanol for 1 h. The sample 
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was centrifuged at 2,000g for 30 mins and the supernatant discarded. The pellet 

was incubated in 10 ml of 0.05M MES-TRIS (1.952g of MES (2-(N-

Morpholino)ethanesulfonic acid (M8250, Sigma Aldrich)) and 1.22 g of TRIS 

(Tris(hydroxymethyl)aminomethane, T1503 Sigma Aldrich) in 170 ml of dH20, 

adjusted to pH 7.0 with 4 M NaOH and dilute to 200 ml with dH20) buffer at pH7.0 

with 200U heat stable α-amylase (A3306, Sigma-Aldrich) for 30 min at 90oC. The 

sample was transferred to a 60oC water bath and allowed to equilibrate before a 

further incubation of 30 min. Then the pH was adjusted to pH4.0 with HCL prior to 

the addition of 50U of amyloglucosidase (A7095, Sigma-Aldrich) and mixed 

continuously for 30 min at 60oC. The enzymes were denatured in a boiling water 

bath for 15 min. Subsequently 40 ml of 95% (v/v) ethanol was added after the 

samples had cooled to room temperature, and then the samples were left for 2 h to 

allow precipitation of cell wall material. Supernatant was removed via by 

ultracentrifugation (30 mins at 10,000rpm), and the pellet was sequentially washed 

with 40 ml additions of 80% (v/v) ethanol, 95% (v/v) ethanol and finally acetone, 

discarding the supernatant after each wash by ultracentrifugation (30 mins at 10,000 

rpm). Dry cell wall material was isolated via lyophilisation.  

2.4.1.5 Shibuya protocol:- (Shibuya et al. 1985) 

150 mg of sample flour, milled to less than 150 µm particle size was weighed into 

capped pyrex centrifuge tube (50 ml, cole-parmar) de-fatted by refluxing with 10 ml 

of 80% (v/v) ethanol for 1 h. The sample was centrifuged at 2,000g for 30 min and 

the supernatant discarded. The pellet was resuspended in 20 ml of 1% SDS (v/v) 

and 1% DTT (w/v) in HPLC filtered water, mixed thoroughly and left at RT overnight. 

The sample was then centrifuged at 2,000g for 30 min and the supernatant 

discarded. The pellet was resuspended in 30 ml of DMSO (dimethyl sulphoxide) and 

sonicated using a sonic probe for 5 min then left on a shaker overnight at RT. The 

sample was decanted into corex tubes in order to remove the DMSO via 

ultracentrifugation (10,000g for 30 min). The pellet was then washed with 30 ml 

DMSO twice more, repeating the overnight shaking and ultracentrifugation steps. 

After the DMSO washes the pellet was washed three more times with 20 ml HPLC 

filtered water, with removal of supernatant in each wash via ultracentrifugation 

(10,000g for 30 min). Dry cell wall material was recovered by lyophilisation. 
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2.4.2 Monosaccharide analysis via HPLC 

2.4.2.1 Chromatographic method for monosaccharides – neutral sugars 

25 µL of hydrolysed NSP (0.025 µg/µl in dH2O) was injected into a Thermo Dionex 

HPAEC-PAD ICS-5000+ equipped with CarboPac PA20 guard and analytical 

column (3x30 mm – guard; 3x150 mm – analytical) at 0.5 mL/min. Also fitted was an 

Eluent generator with KOH cartridge, CR-ATC continuously regenerated ion trap, 

pulse amperometric detector with Gold/PTFE electrode and reference pH electrode, 

column and detector compartments tempered at 30°C.  

The HPLC run was 23 minutes long with a KOH gradient elution (table 2.1). 

Calibration curve for each monosaccharide was constructed by injecting known 

amounts of standards (125, 250, 375 and 625 pmoles). Peak areas for each 

monosacharide were then collated and absolute quantities of analyte in each 

sample were calculated using appropriate calibration curve. 

 

Time [min] KOH concentration 

[mM] 

0 4.5 

13 4.5 

14 10 

15 13 

16 20 

17 20 

18 4.5 

23 4.5 

Table 2.2 KOH elution gradient for HPLC neutral monosaccharide method. 

  

2.4.2.2 Chromatographic method for monosaccharides – acidic sugars 

20 µL of hydrolysed NSP (0.5 µg/µl in dH2O) was injected into a Thermo Dionex 

HPAEC-PAD ICS-3000 equipped with CarboPac PA20 guard and analytical column 

(3x30 mm – guard; 3x150 mm – analytical) at 0.25 mL/min. Pulse amperometric 
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detector with Gold/PTFE electrode and reference pH electrode, column and detector 

compartments were tempered at 25°C.  

The HPLC run was 60 minutes long with 0.2M NaOH and 0.1M NaOH in 0.5M 

sodium acetate gradient elutions (table 2.2). Calibration curve for each acidic 

monosaccharide was constructed by injecting known amounts of standards (20, 40, 

100, 200, 300 and 400 pmoles). Peak areas for each monosacharide were then 

collated and absolute quantities of analyte in each sample were calculated using 

appropriate calibration curve. 

 

Time [min] 0.2M NaOH 

[%] 

0.1M NaOH in 0.5M 

sodium acetate [%] 

0 5 0 

5 5 0 

30 13.3 0 

40 60 40 

45 100 0 

50 100 0 

52 5 0 

60 5 0 

 

Table 2.3 Elution gradients for HPAEC acidic monosaccharides method. 

 

2.4.3 Megazyme MLG Assay kit method  

2.4.3.1 Glucose Standard curve production 

Glucose quantities ranging from 10 μg to 100 μg (10 μg, 25 μg, 50 μg, 75 μg, 100 

μg) of D-glucose per test tube were produced by dilution of 1mg/ml d-glucose 

solution (0.2% w/v benzoic acid, Megazyme International, Ireland) to a final volume 

of 0.1ml (Table 2.2). To each tube an additional 0.1 ml of HPLC filtered water was 

added to replace the β-glucosidase solution. In order to detect the glucose present, 

3 ml of GOPOD reagent (Megazyme International, Ireland) was added to each tube. 
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The tubes were then incubated for a final 20 min at 40oC prior to decanting the 

solution into polypropylene cuvettes and recording the absorbance at 510 nm. 

 

Glucose content in 0.1ml 

volume 

Volume of 1 mg/ml D-

Glucose solution 

HPLC filtered water 

10 μg 10 μl 90 μl 

25 μg 25 μl 75 μl 

50 μg 50 μl 50 μl 

75 μg 75 μl 25 μl 

100 μg 100 μl 0 μl 

Table 2.4. Glucose standard curve for GOPOD. 

2.4.3.2 Assay of samples with unknown MLG content 

0.5 g of flour (of a known moisture content) milled to pass through a 0.5 mm screen 

was weighed out into 50 ml polypropylene falcon tubes in triplicate. An aliquot of 1.0 

ml ethanol (50% v/v) was added to each tube, followed by 5 ml of sodium phosphate 

buffer (20 mM, pH6.5, Megazyme International, Ireland) and vortexed thoroughly. 

The tubes were incubated at 100oC for 5 min, vortex mixing each tube every 30s to 

prevent formation of gelatinous lumps. The tubes were cooled to 40oC and 0.2 ml of 

Lichenase (10U, Megazyme International, Ireland) was added to each tube prior to 

incubation at 40oC on a thermomixer (Thermomixer Comfort, Eppendorf) for 1 h. 

The tubes were adjusted to a total volume of 30 ml by the addition of 23.8 ml of 

HPLC filtered water to each tube. The tubes were then vortexed prior to 

centrifugation at 1,000g for 10 min in (Eppendorf 5452 Centrifuge). An aliquot of 0.1 

ml of supernatant was transferred to a 10 ml pyrex test tube, prior to the addition of 

0.1 ml β-Glucosidase solution (0.2U in 50 mM sodium acetate buffer, pH4.0, 

Megazyme International, Ireland) to each of the tubes. The tubes were incubated in 

a water bath at 40oC for 15 min. After the incubation 3 ml of GOPOD reagent 

(Megazyme International, Ireland) was added to each tube. The tubes were then 

incubated for a final 20 min at 40oC prior to decanting the solution into cuvettes and 

recording the absorbance at 510nm. The reaction blank consists of a 0.1 ml aliquot 

of HPLC filtered water to replace the sample supernatant, 0.1 ml of sodium acetate 

buffer (50 mM, pH4.0) excluding the β-glucosidase and 3 ml of GOPOD. The 

reaction blank was incubated and vortexed inline with the test samples. 
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2.4.3.3 Optimised method. 

The method was conducted as per chapter 2.4.6.1 with the following exceptions: 

Firstly, sample flour was reduced to 50 mg from 500 mg. Secondly, sample volumes 

were not adjusted to 30 ml after incubation with lichenase. Thirdly, 1 ml of 

supernatant was transferred to new test tubes after centrifugation rather than 0.1 ml. 

These amendments should produce a 2.5x increase in the glucose concentration 

detected in the spectrophotometer from each sample in comparison to the original 

method from Megazyme International, Ireland. 

 

2.4.4 Klason-Lignin Assay 

1 g of sample flour (milled to <250 μm particle size) was weighed into pyrex 

Erlenmeyer flask (125 ml, cole-parmer, 5020-125) and 3 ml of 72% (v/v) sulphuric 

acid was added and the sample incubated at 30oC for 30 min in a water bath and 

sealed each vessel with parafilm. The sample was diluted to a 4% (v/v) sulphuric 

acid solution with the addition of 54 ml of distilled water. The flask was capped with 

aluminium fill and autoclaved the flask at 120oC for 1 h. Whatman’s no.1 filter 

papers were weighed and added to Buchner funnels the sample solution was then 

vacuum filtered through the filter papers a and washed with a further 1 L of distilled 

water per sample. Filter papers were dried overnight at 30oC in an oven. Once the 

filter papers had cooled to room temperature, they were weighed to calculate the 

lignin content of the sample.  

2.4.5 Cellulose assay 

2.4.5.1 Cellulose quantification using anthrone reagent as per Gillmor et 

al. (2002) an amalgamation of Scott Jr and Melvin (1953); Updegraff 

(1969) 

100 mg of sample flour (milled to <250 μm particle size) was weighed into a 2 ml 

Eppendorf microcentrifuge tube and 1 ml of 70% ethanol (v/v) was added and the 

Eppendorf locked with a lid lock before incubation at 70oC for 1 hour. The sample 

was then allowed to cool centrifuged at 20,000g for 10 min and supernatant 

discarded. The sample was then resuspended in 1ml of acetone and mixed for 10 

min, prior to centrifugation at 20,000g for 10 min and removal of supernatant. The 

pellet was then dried using a sample concentrator (Eppendorf concentrator 5301, 

Eppendorf) to remove residual acetone and 1 ml of acetic nitric reagent (150 ml of 
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80% v/v acetic acid + 15 ml of concentrated nitric acid) was added and the sample 

heated at 98oC on a hot block for 30 min ensuring that the lid is securely fastened. 

The samples were allowed to cool to room temperature and internal pressure 

carefully released. The samples were then centrifuged at 14000rpm for 10 min and 

the supernatant removed. The pellet was resuspended in 1 ml of distilled water and 

vortexed before being centrifuged at 14000 rpm for 10 min and discarding the 

supernatant. The sample was then resuspended in 1ml of acetone and centrifuged 

for 5 min at 14000rpm, with the supernatant discarded. The acetone wash and 

centrifugation steps were repeated and the pellet was dried overnight in a sample 

concentrator (Eppendorf concentrator 5301, Eppendorf) at room temperature. The 

pellet was then covered with 100 μl of 67% sulphuric acid and vortexed thoroughly, 

and then 400 μl of distilled water was added. 1ml of anthrone reagent (100 mg in 10 

ml of concentrated sulphuric acid, must be made fresh daily for the assay, Sigma-

Aldrich, 319899) was added and the tubes sealed with a lock lid and boiled on a 

heating block at 100oC for 5 min. Eppendorf tubes were cooled on ice and before 

the contents were decanted into glass cuvettes and the absorbances at 620 nm 

were recorded compared to the reaction blank (100 μl of 67% v/v sulphuric acid, 400 

μl of distilled water and 1 ml of anthrone reagent).  

2.4.5.2 Optimisation  

Both wheat and rice samples were found to be richer in cellulose than anticipated, 

so additional dilution of the pellet was required to bring the absorbances at 620 nm 

into the working range of between 0.1 and 1.1 OD. For whole grain samples the 

method was completed as per chapter 2.1.4.8.1 but the final 500 μl solution prior to 

the addition of anthrone reagent was diluted by a factor of 50. This was achieved by 

a serial dilution of 250 μl aliquot of the pellet/sulphuric acid solution added to 750 μl 

of water, followed by a 250 μl aliquot of this dilution added to 750 μl of water was 

conducted. Then 500 μl of this solution was added to a clean 2 ml Eppendorf tube 

and 1ml of anthrone reagent added as per chapter 2.1.4.8.1 
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 CHAPTER 3: MORPHOLOGY AND DEVELOPMENT OF 

WHEAT AND RICE GRAINS 

3.1 Introduction to grain development and morphology 

While detailed studies on the physiological and biochemical changes undergone by 

the developing grain have been carried out on wheat and barley, less is known of 

the changes occurring in the developing rice grain. Five stages of grain 

development common to all cereals have been described: cellularisation, 

differentiation, expansion and deposition of storage compounds, maturation and 

desiccation. In rice, these phases have been examined in isolation and in differing 

cultivars but no complete study exists from cellularisation to physiological maturity. 

The deposition of starch and protein, which are the major storage compounds in 

developing grains, have been well studied in both species and the progression of 

their deposition is well understood (Harris and Juliano 1977; Bechtel and Juliano 

1980; Oparka and Harris 1982; Yamagata and Tanaka 1986; Nakamura et al. 1989; 

Jenner et al. 1991; Nakamura et al. 1996; Shewry et al. 2001). A recent study by 

Chateigner-Boutin et al. (2014) of the developmental dynamics of cell wall 

polysaccharides using immunofluorescence labelling with monoclonal antibodies 

has expanded our understanding of the development of the wheat grain by showing 

that pectin is an element of the wheat endosperm cell wall matrix. In barley and rice 

studies have focussed on specific developmental phases, in particular 

cellularisation, and mature grains, leaving a gap in knowledge between these two 

time points. Monosaccharide analysis is widely used for cereal grain non-starch 

polysaccharides, with studies focusing on the major hemicellulosic components 

arabinoxylan and MLG. Monosaccharide analysis of cell wall material provides 

details of the relative composition of cell walls. However, it does not provide detail of 

all cell wall components, and it is impossible to separate the relative contributions of 

cellulose, xyloglucan, callose and MLG using this technique alone. These glucose-

derived polymers are all included in a single value for glucose content, which in 

cereal grains can also be affected by the presence of resistant starch. Specific 

quantification techniques are available for MLG and cellulose, and rely upon 

isolating these polymers or fractions of them from the cell wall mixture and then 
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quantifying the glucose present after conversion to monosaccharides. The cell wall 

of cereal grain endosperm tissue provides a good model for the study of primary cell 

wall structure, as there are no reports of secondary cell wall structure in these cells. 

Significant differences exist in the composition of the cell wall between cereal 

species, despite a synchronous grain development cycle with similar biological and 

physical stresses. The study of these differences in wheat and rice and relating 

them to the biological changes occurring in the two grains has provided new clues 

for understanding the biological role played by the individual polymers in the cereal 

cell wall. Thus examining the monosaccharide cell wall composition of both wheat 

and rice grains at 5 key stages within grain development will provide crucial 

information about how the cell wall is established within the developing grain and 

how they correlate with the developmental dynamics taking place at these time 

points. Comparisons of cell wall polysaccharide composition between the two 

species may identify homologous patterns of cell wall deposition and differences 

may indicate how the vastly different final cell wall compositions are established, 

and if there may be any link between developmental stage and cell wall 

differentiation in the two species. Histochemical staining of grain morphology and 

storage product accumulation will allow for accurate tracking of grain development 

in these cultivars, and provide information on the specific changes occurring within 

the developing grains of these two species. 

3.2 Results 

3.2.1 Fixation and embedding of wheat and rice grains for 

histochemical staining  

3.2.1.1 Optimisation of fixation protocol for wheat and rice grains. 

Fixation of fresh tissue samples prior to embedding is essential to ensure the 

preservation of the sample between harvesting and subsequent analysis. 

Appropriate fixation will allow the sample to remain stable and be examined many 

months after the initial collection. Paraformaldehyde/ glutaraldehyde fixation is one 

of the most widely used fixation methods for morphological studies, with the 

glutaraldehyde crosslinking proteins in situ, and the paraformaldehyde crosslinks 

adjacent nitrogen atoms in proteins and DNA. In wheat grains, a relatively short 

fixation period is required in the fixative solution typically 4 hours at room 

temperature depending on the thickness of the sections prepared form the fresh 

tissue and its permeability to the fixative (Tosi et al. 2009). In recent years high 
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pressure freezing (HPF) has also become a relatively popular fixation method for 

plant materials, having been widely used for the fixation of animal tissues over the 

last three decades. HPF allows instantaneous fixation and superior preservation of 

delicate and labile structures within the sample (Dahl and Staehelin 1989; Studer et 

al. 1992; Eshtiaghi et al. 1994; McDonald 1999; Lonsdale et al. 1999). However, it 

requires expensive equipment and it has the limitation that only thin sections (<200 

μm sections) and small areas (<5 mm x 5 mm) of tissue can be preserved. Thus for 

morphological studies at the light microscopy level, chemical fixation is still 

favoured. It was found that rice grains transversely sectioned to 1 mm thick samples 

required 48 h in paraformaldehyde and glutaraldehyde fixation to achieve a 

comparable standard of preservation to that of wheat grains (data not shown).  

In order to facilitate smooth and precise sectioning of the fixed tissue for 

microscopy, samples are typically embedded in a solid medium to immobilise the 

material, typically a specific microscopy resin such as London Resin White (LR 

White) or Spurr resins are used if thin or semi-thin sections are required (<2 μm) or 

paraffin wax is used for thicker sections (>5 μm). Sufficient infiltration of the resin 

throughout the fixed material is essential for structural integrity of the sample when 

sectioning. Following the method of Tosi et al. (2009), which includes a resin 

infiltration period of 7 days, good sectioning could be achieved for wheat grains. 

However, the same method did not give good results for rice grains, with very few 

sections remaining intact during sectioning, a problem that has previously been 

reported by Harris and Juliano (1977). In order to alleviate this problem the fixation 

and embedding steps were repeated with progressively longer infiltration periods in 

L R White resin (14, 21, 28, 35, 50 days).  A progressive increase in structural 

integrity of the sections was noted as the infiltration period increased, until 35 days 

when a maximal structural integrity was reached with 1 section in every 4 cut being 

of sufficient quality.  

 

Several studies have reported the dimensional changes of both wheat and rice 

grains during development (Briarty et al. 1979; Singh and Jenner 1982; Tashiro and 

Wardlaw 1990; Ishimaru et al. 2003; Yang et al. 2002). The synchronous 

development of both wheat and rice grains in terms of DAA allows the direct 

comparison of the developmental stages of the two species. By recording the dry 

weight changes of developing wheat and rice grains, it is possible to calculate the 

average changes of the levels of non-starch polysaccharides from within individual 

grains. The development of both wheat and rice grains appears to follow 4 phases 
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of growth, which coincide with developmental changes within the grains (Figure 3.1). 

After cellularisation, a large increase in size, weight, cross sectional area and 

endosperm cell number is recorded in both wheat and rice until around 8 DAA when 

a second phase of grain growth begins. This second phase, spanning 8 to 12 DAA, 

coincides with the differentiation of aleurone cells from starchy endosperm cells and 

the production of sub-aleurone cells, as well as with beginning of the synthesis of 

storage proteins. A clear reduction in the rate of growth of cell number and grain 

weight can be seen in this phase, by 12 DAA, however the growth rate of both cell 

number grain size and grain weight, has returned to roughly its initial rate of growth. 

This third phase of rapid growth occurs at the same time as the fastest phase of 

deposition of starch and storage protein in both wheat and rice, with increases of 

large increases in wheat and rice. Around 20 DAA a final phase of growth is 

recorded, with almost all metrics levelling off. At this point in grain development 

maturation and preparation for desiccation begins, with synthesis of starch and 

protein beginning to plateau at around 28 DAA. 28 DAA is often referred to as 

physiological maturity in wheat grains, as maximal size and weight have been 

reached by this point, and very little synthesis of starch or protein is recorded from 

that point onwards (Ishimaru et al. 2003; Shewry et al. 2009).   

 

Figure 3.1. Changing grain weight in wheat and rice throughout development, 

extrapolated from the weight of 100 grains at each time point. 
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3.2.2 Morphology of starch/ protein/ cell walls/ nuclei and grain 

structure with histochemical stains. 

The morphological changes undergone by the wheat grain during development have 

been studied in great detail (Briarty et al. 1979; Singh and Jenner 1982; Jenner et 

al. 1991; Young and Gallie 1999; Olsen 2001; Shewry et al. 2012) often utilising the 

histochemical stain Toluidine Blue O. Similar detailed studies were lacking in rice, 

with only few developmental stages having been examined. Thus a direct 

comparison of the five key developmental stages of grain development was carried 

out for wheat (cv. Cadenza) and rice (cv. Koshihikari). In order to fully understand 

the developmental dynamics occurring in the grains during these five phases, four 

histochemical stains were used: Toluidine Blue O to provide general morphology; 

Coomassie Brilliant Blue (CBB) to study protein body deposition dynamics, 

Calcofluor White to determine cell wall morphology and area through staining of cell 

wall polysaccharides, and potassium iodide solution (IKI) to report polysaccharide 

deposition (largely starch). 

3.2.2.1 Staining with Toludine Blue O reveals general tissue 

morphology in the developing grains  

Toluidine Blue O is a histochemical stain that is widely used to study morphology of 

plant tissues in section. It stains proteins, nuclei and carbohydrates in a pH-

dependent manner. 

In wheat, at 4 DAA, the grain forms a characteristic inverted heart shape consisting 

largely of maternal tissue surrounding a small central area representing the recently 

cellularised endosperm (Fig 3.2 a). Unlike in rice the developing grain fills the area 

within the husk. By 8 DAA the grains of both species have enlarged considerably, 

although the wheat grain remains larger than the rice grain throughout development. 

The characteristic crease regions and two lobes become more prominent in the 

wheat grain at this stage, although the lobes are still relatively small. The aleurone 

cells become distinguishable at 12 DAA in both species as regular cuboidal cells on 

the perimeter of the endosperm (Fig 3.2 C, D; Fig 3.3 C, D) adjacent to the nucellar 

epidermis, and will have developed thick cell walls from 20 DAA onwards. The 

collapse of the maternal tissue at 12 DAA is much more pronounced in rice grains 

than in wheat grains, where several cell layers of maternal pericarp are still visible 

(Fig 3.2 C, D; Fig 3.3 C, D). In wheat, in fact, complete compression of the maternal 

pericarp does not occur till much later, at 20-28 DAA, and a few cell layers may 

remain intact especially in the crease region. By 28 DAA both grains have reached 
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their maximal size and display their characteristic shapes. In wheat this consists of 

two round cheek regions either side of a large central crease region and linked by a 

section of endosperm referred to as the prismatic region (Fig 3.3 D). The crease 

region in wheat contains the vascular bundle; rice lacks this characteristic region 

since its vascular trace lies on the dorsal surface side of the grain (Fig 3.2 D). At 28 

DAA the aleurone cells of both species have strong intracellular labelling with 

Toludine Blue O (Fig 3.2 F; Fig 3.3 F), unlike at 12DAA when the aleurone cells are 

only slightly more labelled than the adjacent sub-aleurone or starchy endosperm 

cells (Fig 3.2 D; Fig 3.3 D). However the aleurone cells of wheat label more strongly 

and with a darker hue than those of rice, indicating some differences in the cellular 

contents between these two species.  
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Figure 3.2. Toludine Blue O labelling general morphology of medial transverse 

semi-thin (2 μm) sections of developing rice grains a 4 DAA (A, B), 12 DAA (C, 

D), and 28 DAA (E, F). Micrographs C, E show half a grain section to 

demonstrate overall grain morphology. Micrographs B, D, F shows 

enlargements of the outer endosperm region of micrographs A, C, E. SE = 
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starchy endosperm, SA = Sub Aleurone, Al = Aleurone, M = Maternal pericarp, 

H = Husk, VB = Vascular bundle, NE = Nucellar epidermis. Bars = 100 μm 

 

Figure 3.3. Toludine Blue O labelling general morphology of medial transverse 

semi-thin (2 μm) sections of developing wheat grains a 4 DAA (A, B), 12 DAA 

(C, D), and 28 DAA (E, F). Micrographs A, C, E show half a grain section to 

demonstrate overall grain morphology. Micrographs B, D, F shows 

enlargements of the outer endosperm region of micrographs A, C, E. SE = 

starchy endosperm, SA = Sub Aleurone, Al = Aleurone, M = Maternal pericarp, 

H = Husk, VB = Vascular bundle, NE = Nucellar epidermis. Bars = 100 μm 

3.2.2.2 Cell wall morphology visualised with Calcoflour White 2mr  

Calcofluor White 2mr is a widely used fluorescent dye known to bind to β-glycan 

structures, which are found in cell walls as component of MLG, callose and cellulose 
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(Darken et al 1963; Ruchel et al 2001). As such Calcofluor White stain is used as a 

general cell wall stain allowing the examination of cell wall morphology. At 4 DAA, 

the cell walls of all maternal tissues are clearly distinguishable and show strong 

even fluorescence in both species, while the cells of the cellularising endosperm 

show little to no labelling with this stain (Fig 3.4 A, B). By 8 DAA, all cells of the 

endosperm have become stained by Calcofluor, however the labelling is stronger in 

the central cheek regions and the prismatic region closest to the crease cavity in 

wheat. This labelling pattern persists throughout wheat grain development up to 28 

DAA, with the outer endosperm cells exhibiting much lower fluorescence intensity 

than that of the central cells or the maternal tissues (Fig 3.4 E). The aleurone cells 

of wheat are easily distinguished from 12 DAA by their typical cuboidal shape and 

from the significantly brighter fluorescence labelling than other cells of the starchy 

endosperm (Fig 3.4 C). As the aleurone tissues mature, the characteristic cell wall 

thickening appears and this new cell wall material is also strongly labelled with 

Calcofluor White, indicating that these cells possess more β-glycans, probably in the 

form of cellulose and MLG. The cells of the nucellar epidermis and those of the 

xylem vessels also exhibit a very strong fluorescence staining with Calcofluor White, 

which does not change or diminish during development (Fig 3.4 A-D + G, H). The 

bright fluorescence of the nucellar epidermis in particular is a useful marker to 

distinguish the maternal tissues of wheat from the endosperm (Fig 3.4 A, C, E, G). 

Rice also exhibits extensive staining with Calcofluor White, although the early cells 

of the cellularising endosperm are only weakly stained, unlike in wheat grains. 

Throughout development a similar gradient is observed, with Calcofluor White 

labelling more strongly the innermost endosperm cells than the outer cells and sub 

aleurone tissues; however the difference is less prominent than in wheat grains (Fig 

3.4 D, E). Similarly to wheat, the cells of the nucellar epidermis and aleurone of rice 

exhibit a characteristic strong labelling, providing a reference point to differentiate 

maternal vegetative tissues and those of the starchy endosperm prior to maternal 

tissue collapse at 12 DAA. Developmentally the maternal vegetative tissue of rice 

grains shows a much more rapid compression/degradation than that of wheat grain, 

with only a couple of intact cell layers remaining by 12 DAA (Fig 3.4 D), whereas 2-4 

cell layers can be seen in wheat even in mature grains (Fig 3.4 C, E). By 20 DAA 

the different layers of the rice maternal tissues are largely indistinguishable and are 

often referred to as the crushed layer. By staining with Calcofluor white it is apparent 

that whilst the cells have been crushed, a thick multi-layered cell wall remains 

externally of the aleurone layer, suggesting that the cell walls themselves are not 

degraded in this process (Fig 3.4 F).  
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Figure 3.4. Calcofluor white 2mr staining of cell walls in medial transverse 

semi thin (2 μm) sections of developing wheat (A, C, E, G) and rice (B, D, F, H) 

grains a 4 DAA (A, B), 12 DAA (C, D), and 28 DAA (E - H). Highlighted areas in 

micrographs C and D, represent the crease region and outer endosperm 

regions imaged at 28 DAA in micrographs E-H. SE = starchy endosperm, SA = 

Sub Aleurone, Al = Aleurone, M = Maternal pericarp, H = Husk, VB = Vascular 

bundle, NE = Nucellar epidermis, ETC = endosperm transfer cells, Ph = 

phloem, X = xylem, I = Integuments, Ch = Chalazal region, NP = Nucellar 

projection, Pl = plumule, Me = mesocotyl, S = scutellum, Em = embryo, E = 

epidermis. Bars = 100 μm 

3.2.2.3 Protein body accumulation detected by labelling with 

Coomassie brilliant blue (CBB) 

In wheat the presence of protein bodies in the cells of the endosperm cannot be 

detected at the light microscope at about 8 DAA, the protein bodies are very small 

(<1μm) and very sparsely distributed, until 8-10 DAA when the number and size of 

protein bodies seen increases (Fig 3.6 A-D; Fig 3.7 A, C). From 10 DAA onwards, 

most protein bodies will have a diameter of 2 μm or larger, and the number and size 

of these protein bodies grows throughout development until 28 DAA. During this 

period many smaller protein bodies appear to merge into larger ones rather than a 

just few small protein bodies steadily increasing in size up to a maximal size of 30-

40 μm (Fig 3.6 E, F). Protein body accumulation is more prevalent in the outer 

regions of the starchy endosperm in both the cheek regions and in the prismatic 

cells and includes the sub-aleurone cells from 12 DAA onwards (Fig 3.6 E, F), 

however the distributions is more even throughout the endosperm than in rice 

grains, where up to 70% of the grain protein can be found in the outer 10% of the 

grain.  

In rice, protein deposits can first be seen in the developing endosperm from 8 DAA 

in the form of numerous small circular protein bodies, which reach a maximal size of 

around 10 μm (Fig 3.7 B, D). A higher prevalence of protein bodies is seen in the 

outer cells of the endosperm and the sub-aleurone cells, even more so than in 

wheat (Fig 3.5 C-F). Unlike in wheat, there is no evidence to suggest that the small 

protein bodies in the sub-aleurone or starchy endosperm cells ever fuse to create 

larger protein bodies. On the contrary, from 12 DAA onwards an increasing density 

of small separate protein bodies demonstrates that protein body merging does not 

occur in rice. By maturity almost all the cytoplasm of the sub-aleurone cells is filled 
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with protein bodies and some starch granules, and yet they remain as discrete 

distinguishable bodies with a maximal size of ~10 μm (although high magnifications 

are required to distinguish separate protein bodies due to the density of protein 

bodies). Using light microscopy it is very difficult to distinguish the separate PB 

types in rice, identification of these protein body types via microscopy requires either 

the use of specific fluorescent antibodies for prolamin and glutelin which have been 

shown to be specific for certain protein body types (Furukawa et al. 2003; Ohdaira 

et al. 2011) or relying upon the clear differences seen in TEM after osmium tetroxide 

staining (Tanaka et al. 1980). Protein bodies are more easily detected in rice grains 

at earlier stages than in wheat with rice protein bodies being numerous and 

relatively large (1-2 μm) at 8 DAA (Fig 3.7 B) compared to the sparsely distributed 

and small (<1  μm) PBs of wheat at this stage (Fig 3.7 A). At 10 DAA the difference 

in size between wheat and rice PBs is less noticeable, but the wheat grains still 

possesses fewer PBs than rice (Fig 3.7 C, D). By maturity a similar distribution of 

protein bodies is seen in both species, with similar total protein contents per grain 

being reported (~7% dry weight of wholegrain) 
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Figure 3.5. Coomassie Brilliant Blue (CBB) staining protein in medial 

transverse semi-thin (2 μm) sections of developing rice grains a 4 DAA (A, B), 

12 DAA (C, D), and 28 DAA (E, F). Proteins bodies stain a intense blue colour 

and are approximate 2 μm in diameter larger circular blue staining represent 

nuclei, and prevalent in micrograph B. Micrographs B, D, F shows 

enlargements of the outer endosperm region of micrographs A, C, E. SE = 
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starchy endosperm, SA = Sub Aleurone, Al = Aleurone, M = Maternal pericarp, 

H = Husk, VB = Vascular bundle, NE = Nucellar epidermis. Bars = 100 μm 

 Figure 3.6. Coomassie Brilliant Blue (CBB) staining protein in medial 

transverse semi-thin (2 μm) sections of developing wheat grains a 4 DAA (A, 

B), 12 DAA (C, D), and 28 DAA (E, F). Proteins bodies stain a intense blue 

colour, paler blue circular staining represents nuclei, which are prevalent in 

micrographs B and D. Micrographs B, D, F shows enlargements of the outer 
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endosperm region of micrographs A, C, E. SE = starchy endosperm, SA = Sub 

Aleurone, Al = Aleurone, M = Maternal pericarp, H = Husk, VB = Vascular 

bundle, NE = Nucellar epidermis. Bars = 100 μm 

Figure 3.7. Coomassie Brilliant Blue (CBB) staining protein in medial 

transverse semi-thin (2 μm) sections of developing wheat (A, C, E) and rice (B, 

D, F) grains a 8 DAA (A, B), 12 DAA (C, D), and 28 DAA (E, F) showing the 

deposition of protein bodies in both species. Micrographs B, E, F are counter 
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stained with PAS which stains carbohydrates red. SE = starchy endosperm, 

SA = Sub Aleurone, Al = Aleurone, NE = Nucellar epidermis. Bars = 50 μm 

 

3.2.2.4 Starch accumulation detected using potassium iodide solution. 

Starch deposition in rice endosperm appears to begin slightly before cellularisation 

has been completed, this is in contrast to reports of starch deposition in the Triticae 

where it is commonly accepted that deposition only begins after cellularisation is 

completed. Starch granules can only be seen from 6 DAA onwards in wheat grains 

of cv. Cadenza with light microscopy (Fig 3.9 A, B), corroborating these reports. 

However a recent paper by Yin et al. (2012) has reported amyloplast filling from 4 

DAA when examined with TEM. In rice cv.Koshihikari, the deposition of starch 

granules appears to be more concentrated in the central endosperm region and 

then extends towards the outer regions along a decreasing gradient with the cells of 

the sub-aleurone exhibiting very little starch deposition prior to 28 DAA (Fig 3.8 A, 

C, E). Similarly to rice, starch accumulation in wheat is stronger in the central region 

of the endosperm, particularly in the lobes, although it never shows the density of 

starch granules that can be observed in rice central endosperm (Fig 3.9 C, E). 

Neither wheat nor rice accumulate starch in the cells of the aleurone layer (Fig 3.8 

E; Fig 3.9 E).  
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Figure 3.8. Potassium iodide (IKI) staining of starch in medial transverse semi 

thin (2 μm) sections of developing wheat grains a 4 DAA (A, B), 12 DAA (C, D), 

and 28 DAA (E, F). Micrographs B, D, F shows enlargements of the outer 

endosperm region of micrographs A, C, E. SE = starchy endosperm, SA = Sub 

Aleurone, Al = Aleurone, M = Maternal pericarp, H = Husk, VB = Vascular 

bundle, NE = Nucellar epidermis. Bars = 100 μm 



86 
 

Figure 3.9 Potassium iodide (IKI) staining of starch in medial transverse semi 

thin (2 μm) sections of developing rice grains a 6 DAA (A, B), 12 DAA (C, D), 

and 28 DAA (E, F). Micrographs B, D, F shows enlargements of the outer 

endosperm region of micrographs A, C, E. SE = starchy endosperm, SA = Sub 
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Aleurone, Al = Aleurone, M = Maternal pericarp, H = Husk, VB = Vascular 

bundle, NE = Nucellar epidermis. Bars = 100 μm 

 

3.2.3 Monosaccharide analysis of cell wall polysaccharides (HPLC/GC)  

3.2.3.1 Extraction of cell wall polysaccharides from milled grain material 

While most studies of the composition of cell wall polysaccharides in wheat flour 

have used the same non-starch polysaccharide (NSP) extraction method (Englyst et 

al. 1992; Englyst et al. 1994) giving consistent monosaccharide compositions, the 

same cannot be said for rice, with many different extraction protocols being reported 

together with significant differences in rice cell wall composition. In order to explore 

which method would yield the most complete extraction of cell wall polysaccharides 

from rice flour, five different cell wall extraction methods were compared, using 

commercially sourced polished cv.Koshihikari rice (Sushissushi.com) as a proxy for 

rice flour. Polished rice is >95% starchy endosperm tissue, lacking the outer 

maternal tissues and most of the aleurone layer due to surface abrasion, and once 

milled gives a product which is comparable with white rice flour. The five methods 

selected consisted of two alcohol insoluble residue protocols (AIR 1, AIR 2; Methods 

2.5.1.2, 2.5.1.3), which are two variants of the most common cell wall extraction 

procedure, and two methods taken from Shibuya et al. (1985) and Lai et al (2007). 

These methods will be referred to herein as the Shibuya method and the Lai 

method. Finally a direct comparison to the wheat extraction method was made by 

using a slight modification of the Englyst et al. (1994) method.  

The compositions of three technical replicates of the extraction procedures were 

determined using a Dionex HPLC method (Method 2.5.2). The Englyst method 

extracted the highest amounts of almost every monosaccharide. (Table 3.1.) The 

two AIR protocols appeared promising when in the initial phases of analysis, but due 

to the large amounts of glucose present, which was mainly derived from starch 

degradation, some data was lost due to overlapping peaks on the chromatograms. 

In order to reduce the starch and thus glucose content to a level comparable to the 

other protocols an additional α-amylase digest step was added that was identical to 

that in the Englyst method.  However the inclusion of this additional step appeared 

to cause the loss of significant proportions of many monosaccharides, rendering the 

methods unsuitable for further use without further optimisation of the protocol to 

retain polysaccharides from the α-amylase digest. 
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The modified Englyst protocol was selected as the optimal procedure for the 

extraction of cell wall polysaccharides from the samples of developing wheat and 

rice grains. It has previously proven to be a robust method for wheat grain cell wall 

extraction, and appears to be the best available option at present for rice grains, 

while also allowing for direct comparison with wheat cell wall analyses. 

 

Table 3.1. Comparison of the monosaccharide contents of the rice cell wall 

material extracted from 150 mg of milled polished rice and scaled to ug/g of 

sample material. Monosaccharide contents are quantified via HPLC, the peaks 

on the chromatograph can merge together due to their proximity.  Average of 

3 technical replicates. * indicates xylose peak obscured by the tail of the 

glucose peak. ** indicates mannose peak obscured by the tail of either 

glucose peak due to excessive glucose generarted by incomplete starch 

digestion. 

  Monosaccharide content per gram of milled sample tissue. (μg/g) 

Extraction 

protocol Rha Fuc Ara Gal Glc Xyl Man GalA 

AIR 1 70.36 39.27 525.88 91.43 73940.26 0.00* 

0.00*

* 348.83 

AIR 1 + α-

amylase 66.30 0.00 536.46 130.63 13985.00 708.52 

0.00*

* 658.90 

AIR 2 47.64 17.27 642.79 241.40 

112382.0

6 0.00* 

0.00*

* 369.18 

AIR 2 + α-

amylase 60.74 0.00 575.68 168.55 13508.76 720.82 25.84 806.36 

Englyst 81.07 44.73 685.28 156.24 2725.61 869.47 79.11 553.79 

Shibuya 14.48 0.00 111.29 45.23 25708.32 0.00* 

0.00*

* 287.61 

Lai 16.32 0.00 136.96 52.17 22874.29 0.00* 

0.00*

* 252.48 
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3.2.3.2 HPLC monosaccharide data.  

Monosaccharide analysis using chromatography allows the detection and 

quantification of very small amounts of carbohydrates. Unfortunately both HPLC and 

GC methods have their limitations. In GC analysis, for example, the acidic sugars 

are not labelled by the derivitisation procedure, and thus have to be assayed using a 

separate methodology. HPLC analysis does not require a complicated derivitisation 

protocol, and can detect both neutral and acidic sugars, however, several 

monosaccharides are difficult to separate  (notably xylose and mannose), and large 

quantities of certain monosaccharides (typically glucose in cereal grains) create 

significant tailing, which may interfere with detection of others.  

 

NSP was prepared using the Englyst isolation procedure (chapter 3.2.4) at all five 

developmental stages and analysed using HPLC. The peak areas from the 

chromatograms were correlated with standards of known quantities of 

monosaccharides, and expressed in two ways: as μg of monosaccharide per gram 

of starting ball milled wholegrain material, and as μg of monosaccharide per grain at 

each developmental time point. As the grain weight changes dramatically between 

developmental stages in both species (fig 3.1) the monosaccharide content must be 

converted to a per grain basis to allow monosaccharide dynamics to be examined.  

3.2.3.2.1 Monosaccharide content per gram of sample material shows 

minimal changes in the proportions of developing wheat, but rice 

shows significant changes in the ratio of cell wall composition between 

4-12 DAA. 

 

The contents of most monosaccharides change only subtly during wheat 

development, however arabinose and xylose concentrations decreases from 4748 

μg/g and 6139 μg/g to 3500 μg/g and 3852 μg/g respectively between 4 to 12 DAA, 

before stabilising with xylose showing a slight increase by 28 DAA (Table 3.2). A 

large rise of 432% was also seen mannose between 4 and 12 DAA. All other 

monosaccharides show similar content from 4 DAA to 28 DAA (Fig 3.10). 

In rice, however several changes were seen in the 4-12 DAA period, with arabinose, 

xylose and galactose concentrations falling rapidly before levelling off at 12 DAA, 

whilst fucose, rhamnose and mannose showed a smaller but still large decrease 

over the same period. All other monosaccharides remained consistent from 4 DAA 
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to 12 DAA (Fig 3.11). The period from 4-12 DAA coincides with the period of 

maternal tissue collapse and degradation in the developing rice grain, thus it is likely 

that the loss of cell wall material provided by the maternal tissues is contributing to 

the decline in the concentrations of xylose, arabinose and galactose and pectic 

monosaccharides. In wheat, the maternal cell layers are also seen to degrade and 

disappear throughout grain development, however, the process occurs steadily and 

slowly throughout development compared to rice.  Thus it is probable that in wheat 

the increase in cell wall deposition from the expansion and division of the starchy 

endosperm is at a similar level to the loss of cell wall content from the maternal 

tissue.  

A second phase of monosaccharide changes can be detected in developing rice 

grains, with galacturonic acid, fucose, rhamnose and galactose content increasing 

steadily from 12 DAA to a peak at 28 DAA, with galacturonic acid and galactose 

representing similar levels as arabinose and xylose. This increase in pectin related 

monosaccharides might be a desiccation tolerance modification, the comparable 

increases were detected in fucose and rhamnose concentrations suggest that both 

RG-I content and HG content increase at similar rates during this period. 
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Table 3.2. Average monosaccharide content per gram of milled sample 

material (μg/g) (from three technical replicates), in wholegrain wheat and rice 

throughout the course of grain development and a mature polished white flour 

sample, as detected by HPLC analysis of non-starch polysaccharide. DAA = 

days after anthesis. 
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 Figure 3.10. Monosaccharide content per gram of milled material in 

developing wholegrain wheat. Error bars denote the variance of 3 technical 

repeats. 
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Figure 3.11. Monosaccharide content per gram of milled material in 

developing wholegrain rice. Error bars denote the variance of 3 technical 

repeats. 

3.2.3.2.2 Wheat and rice cell wall deposition appears to follow a 4 phase 

pattern with the periods between 4-8 DAA and 12-20 DAA showing the 

significantly higher rates of cell wall depositon in both species. 

In both wheat and rice, four phases of cell wall deposition can be detected. The 

rates of deposition of different monosaccharides differs slightly, but the four phases 

are still seen across all monosaccharides, however the pattern is more pronounced 

in rice grains than in wheat (Table 3.3; Fig 3.12 - 3.13). The first phase from 4-8 

DAA is characterised by a rapid deposition of cell wall monosaccharides, which may 

be expected in line with the rapid cell division and expansion occurring during this 

phase of grain development. In wheat, most monosaccharides exhibited a large 

increase in content from 4 DAA to 8 DAA with increases upto 58% in arabinose and 

67% xylose and 109 and 122% increases in glucuronic acid and galacturonic acid 
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respectively (Fig 3.12). A greater variation was seen in the rate of increase of 

monosaccharide content in rice grains from 4 DAA to 8 DAA, however, rates were 

higher for rhamnose and galactose, ranging in increases from 106%-109%. 

Glucuronic acid, galacturonic acid and fucose increased at rates of 248%-490% 

increase in rice, however the increase in xylose was noticeably lower and more in 

line with deposition rate in wheat at 64% increase (Fig 3.13). Unexpectedly 

arabinose content only increased 3% in rice but taken with the 490% increase in 

glucuronic acid, this may indicate the deposition of a highly substituted xylan without 

arabinose decoration. The second phase of cell wall deposition from 8-12 DAA 

exhibits both decreases and increases depending of the particular monosaccharide. 

In wheat, only no decreases were detected but galacturonic acid, xylose and 

arabinose and galactose all showed small increases at 19-38%, with all other 

monosaccharides showing larger increases in content on a per grain basis. In rice, 

arabinose, galacturonic acid and glucuronic acid showed modest increases at 6-

24%, while all other monosaccharides showed modest decreases 19-49% although 

the ~15% experimental error may account for some of these decreases. The period 

from 8-12 DAA in wheat and rice is a period of re-differentiation with little grain 

expansion or cell division occurring, which may account for the small changes in cell 

wall content in both species at this developmental stage. The third period from 12-

20 DAA is a second phase of rapid cell wall deposition, however it is not as rapid as 

the 4-8 DAA period. In wheat, increases of 67% to 184% were detected from 12-20 

DAA, which are roughly half the rate seen in wheat from 4-8 DAA given the time 

period is 8 days rather than 4. Xylose arabinose, galacturonic acid and glucuronic 

acid were the monosaccharides with the biggest increase during this period in wheat 

with 108%-184% increases, implicating increases in AX and HG deposition in this 

period. Rice similarly showed pronounced increases in arabinose (86%), xylose 

(109%) and galacturonic acid (184%), with all other monosaccharides showing 

similar large increases (95%-196%). The 4th phase from 20-28 DAA coincides with 

maturation of the grain and it has been hypothesised that desiccation tolerance is 

generated in the grain during this time. This phase of cell wall deposition both in 

wheat and rice grains, shows a mix of increases in some monosaccharides and 

levelling off of other monosaccharides. In wheat, the RG-I components fucose, 

rhamnose, and galactose all show the most prominent increases at this stage 

(190%, 93% and 166% respectively) with the arabinose and xylose content also 

increasing (34% and 42% respectively). Galacturonic acid content also increases 

slightly in this phase (10%) but this is similar to the ~15% experimental error. In rice, 

arabinose xylose and galacturonic acid shows a small increase (14-25%) in content 
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while the RG monosaccharides fucose, rhamnose, galactose all show larger 

increases of 42-72%, but significantly smaller increases than the same 

monosaccharides in wheat at this time point.  The continued deposition of pectin in 

both species, and in particular RG monosaccharides, may indicate a conserved 

adaptation mechanism to provide enhanced desiccation tolerance to the maturing 

cereal grain. (Moore et al. 2008a; Moore et al. 2008b; Moore et al. 2013). 
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Table 3.3. Average monosaccharide content per grain (μg) (from three 

technical replicates), in wholegrain wheat and rice throughout development, 

as detected by HPLC analysis of non-starch polysaccharide. DAA = days after 

anthesis.
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Figure 3.12. HPLC Monosaccharide content per grain in developing wheat 

grains. Average of 3 technical replicates based on an analysis of 100mg of 

milled starting material. Error bars denotes variance. 

Figure 3.13. HPLC Monosaccharide content per grain in developing rice 

grains. Average of 3 technical replicates based on an analysis of 100mg of 

milled starting material. Error bars denotes variance. 
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3.2.4 Quantification of MLG content in developing wheat and rice grains 

with Megazyme MLG colorimetric assay kit. 

3.2.4.1 Optimisation of the Megazyme MLG kit for detection in 

developing wheat and rice. 

Analysis of mixed link β-glucan in cereal grains using conventional GC or HPLC 

monosaccharide analyses is theoretically possible but is practically challenging. The 

primary reason for this is the very high starch content of cereal grains, typically 70-

80% w/w, compared to a total of 1-5% of cell wall monosaccharides. Any starch not 

removed by enzymatic or sequential solvent extraction methods can easily 

contaminate the total glucose content present in the cell wall. Other contamination 

can arise from glucose-based cell wall components such as cellulose, xyloglucan 

and callose or oligosaccharides such as stachyose or raffinose, and other simple 

sugars such as sucrose, which are not completely removed prior to analysis. 

Resistant starch is often undigested by α-amylases and pullanases, and can give 

significant glucose peaks in these chromatographic analyses. The glucose peak will 

also contain contributions from other glucosic polysaccharides. Typically a 

colorimetric technique is employed to avoid these problems, by digesting the MLG 

using lichenase, solubilizing the short glucose oligosaccharides from the cell wall, 

which can then be easily separated from the rest of the sample and converted to 

glucose with β-glucosidase. Colorimetric analysis of the glucose in solution is then 

used to quantify the MLG content. Wheat and rice starchy endosperms are reported 

to have similar levels of MLG at ~20% and 23% of cell wall respectively, but no data 

on how this polymer is accumulated throughout development was available.  

Initial trials with the method provided by Megazyme International with their kit 

(Chapter 2.5.3.1), showed that the method was not sufficiently sensitive to allow 

accurate quantification of the much smaller amounts of MLG in wheat and rice 

compared to oat or barley grain cell walls, which the test was designed for. The 

protocol was tested with the dilution step reduced by 10 fold, and using white 

endosperm flour from wheat and rice as a test material. This allowed detection of 

MLG in both wheat and rice white flours (~0.2% of starting material) while still 

accurately detecting the much higher concentrations of barley and oat flours 

(containing 4.1% and 6% MLG respectively) with an accuracy of ± 0.1% (Chapter 

2.5.3.2).  
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Table 3.4. Detection of D-glucose (25-100 μg per cuvette) with Megazyme MLG 

kit for production of D-glucose standard calibration curve.  

Sample Abs @ 510nm 

Glucose content/ 

μg 

25 μg 0.259 26.98 

25 μg 0.247 25.73 

25 μg 0.264 27.50 

50 μg 0.490 51.04 

50 μg 0.443 46.15 

50 μg 0.474 49.38 

75 μg 0.743 77.40 

75 μg 0.721 75.10 

75 μg 0.751 78.23 

100 μg 0.933 97.19 

100 μg 0.951 99.06 

100 μg 0.956 99.58 

Barley std 0.334 34.79 
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Figure 3.14. D-glucose absorbance response curve at 510 nm with GOPOD 

reagent. 

3.2.4.2 Determination of MLG content of developing wheat and rice 

grain with optimised Megazyme procedure 

MLG content expressed as mg/g of flour in developing wheat and rice grains 

decreases from the earliest stages of development at 4 DAA, when the grain is 

almost entirely composed of maternal tissue, to 28 DAA, when the maternal tissue is 

a minor component of the grain (Fig 3.15). However, when the MLG content values 

are converted to a per grain basis, the dynamics of MLG can be better ascertained. 

Wheat grains demonstrate an increase in MLG content from 4 DAA to 28 DAA, with 

the most pronounced increase being early in development (4-12 DAA) before tailing 

off towards maturity (Table 3.5, Fig 3.16). There is a ~3 fold increase from 4-28 DAA 

in μg / grain of MLG content but the grain enlarges by about 10x (w/w), hence the 

observed reduction in mg/g of flour can be attributed to dilution of the MLG content 

by increases in other flour components.   Rice conversely does not show a large 

change in MLG content per grain throughout the grain development period analysed 

(Fig. 3.16). This conflicts with the immunocytochemical analysis, which clearly 

shows a dramatic increase in the labelling intensity of MLG in the rice endosperm 

with development. Degradation of MLG in outer layers may occur at about the same 

rate as deposition of MLG in the endosperm, effectively masking the deposition of 

MLG when analysing wholegrain rice rather than specific tissue types. 
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Table 3.5. MLG content in developing wholegrain wheat and rice as detected 

with the megazyme MLG assay. 

Sample Days after 

anthesis 

Average 

MLG 

content per 

gram of 

flour  (mg) 

Standard 

deviation 

(mg) 

Average 

MLG 

content per 

grain (μg) 

Standard 

deviation 

(μg) 

Wheat           

  4 23.94 0.74 95.75 2.97 

  8 21.26 0.66 170.07 5.27 

  12 16.67 0.52 200.05 6.20 

  20 9.08 0.28 254.20 7.88 

  28 4.99 0.15 179.70 5.57 

White 

flour - 1.04  0.07 - - 

Rice           

  4 18.10 0.56 37.13 1.15 

  8 5.94 0.18 42.09 1.30 

  12 3.54 0.11 35.31 1.09 

  20 1.85 0.06 36.16 1.12 

  28 2.03 0.06 41.96 1.30 

White 

flour - 0.91 0.03 - - 
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Figure 3.15. Average MLG content per gram of milled wholegrain tissue 

throughout development in wheat and rice, as detected colorimetrically by the 

Megazyme MLG assay kit. Each data point is the average of 3 technical 

replicates using separate tissue samples. Error bars denote 1 standard 

deviation. 

 

Figure 3.16. Average MLG content per wheat or rice wholegrain throughout 

development, as detected colorimetrically by the megazyme MLG assay kit. 
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Each data point is the average of 3 technical replicates using separate tissue 

samples. Error bars denote the variance of the data. 

3.2.5 Colorimetric quantification of cellulose with anthrone reagent. 

Cellulose has previously been reported to be a significant proportion of rice 

endosperm cell walls at around 23% (Shibuya et al. 1985) whereas wheat and other 

cereal crops are reported to be relatively low in cellulose (2-4% in wheat (Andersson 

et al. 2013)) in their endosperm cell walls. These figures are for mature grain 

samples, and no data have been published on the cellulose contents of developing 

cereal grains. To this end an experiment was carried out to quantify the cellulose 

content of developing grains using anthrone reagent. Anthrone reagent has been 

previously used for cellulose quantification due to its well-defined colour change in 

the presence of monosaccharides, although the colour change varies with the 

precise monosaccharide. This was used to construct a colorimetric assay modified 

from the method of Updegraff (1969), where cellulose was isolated from a plant 

material by an AIR prep followed by a acetic acid:nitric acid digestion to solubilize 

the other non-starch polysaccharides. The cellulose is then converted to glucose 

with concentrated sulphuric acid prior to colorimetric detection with the anthrone 

reagent. As anthrone reagent can be used to colrimetrically detect many 

monosaccharides, it is worth noting that the isolation method of the cellulose derived 

glucose is crucial to the specificity of the analysis. 

Table 3.6. Average d-glucose content colorimetrically detected with anthrone 

reagent in concentrated sulphuric acid, of samples of known d-glucose 

concentration to produce a calibration or response curve for the subsequent 

analysis of cellulose content. 

Average 

glucose 

content / nMol 

Abs @ 

620nm ± 

50 0.15 

 100 0.245 

 150 0.333 

 200 0.479 

 300 0.685 

 400 0.84 
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500 1.005 

  

Table 3.7. Colorimetric quantification of cellulose derived d-glucose of whole 

grain wheat and rice using anthrone reagent in a dilute sulphuric acid 

solution. Average results based on 3 technical repeats.  

Sample 

Abs @ 

620nm 

Glucose content in 

cuvette / nMol 

Glucose content 

per gram of flour / 

mg 

Glucose 

content per 

grain / μg 

Wheat 8 0.889 422.37 3.80 30.41 

Wheat 12 1.071 508.82 4.58 54.95 

Wheat 20 0.689 328.12 2.95 91.03 

Wheat 28 0.764 364.00 3.28 118.04 

White flour 0.087 19.14 0.17 - 

Rice 8 0.367 174.46 1.57 11.15 

Rice 12 0.372 177.06 1.59 15.92 

Rice 20 0.309 147.42 1.33 25.88 

Rice 28 0.244 116.48 1.05 21.72 

White flour 0.705 286.90 1.29 - 
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Figure 3.17. d-Glucose standard response curve with anthrone reagent, 

showing the working concentration of anthrone to be between 100 and 

600nMol of d-glucose, based on an average of 3 technical repeats.   

 

  

Figure 3.18. Average cellulose content per gram of milled wholegrain tissue in 

wheat and rice throughout development (based on triplicate technical 

repeats). Colorimetrically assayed using anthrone reagent. 
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Figure 3.19. Average cellulose content per wheat and rice whole grains 

throughout development (based on triplicate technical repeats), 

colorimetrically assayed using anthrone reagent. 
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white flour sample did correlate to this previous report with a figure of 3.25% 

cellulose. The cellulose content determined by these analyses in white rice flour 

(20.0%) is comparable to the 23% cellulose reported for the starchy endosperm by 

Shibuya et al. (1985). The maternal and embryonic tissues in the whole grain 

sample would be expected to be rich in cellulose, thus the 7.25% cellulose content 

in 28 DAA wholegrain rice as determined in this experiment is unexpected. It may 

be the case that these differences may also be accounted for by differences in 

cultivar and growth conditions as (Lai et al. 2007) demonstrated that many other 

monosaccharides showed high variation among rice cultivars. 

3.2.6 Klason-lignin content in developing wheat and rice grains. 

Lignin is a significant component of vegetative plant tissue and in particular of 

vascular bundles. However, no lignin has been reported in the endosperm walls of 

wheat, and there are conflicting reports about the lignification of rice endosperm cell 

walls. Klason lignin was therefore determined in 100 mg of wholegrain flour at 4 

developmental stages, and 1 gram of mature endosperm flour from both species. 

Klason lignin analysis is based on on digesting all other cell wall components with 

12M H2SO4, and measuring the remaining lignin. This is a widely used method to 

detect and quantify lignin, however some lignin is known to be acid-soluble and may 

be lost in this analyses. 

3.2.6.1 Klason-Lignin content increases steadily throughout the 

development of both wheat and rice, but rises at a greater rate in wheat 

than in rice. 

In both wheat and rice white flour no Klason lignin was detected, even when using 

10 times as much starting material as with the wholegrain flours, this suggests that 

there is either very little or no lignin present in the endosperm of either species at 

maturity. Previous reports of lignin in rice endosperm may be a result of greater 

sensitivity, through the use of larger quantities of sample material. However in 

wholegrain flour of both species Klason lignin was detected and a linear increase 

was seen as development progressed (Fig. 3.20). Maternal tissues or aleurone cells 

may therefore be progressively lignified as the grain matures, it may be that the 

aleurone or embryo cells are be the source of this lignification rather than the 

maternal tissues that have degraded into a crushed layer, as it seems unlikely that 

lignification would continue to increase after the maternal layers have undergone 
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PCD. Although there are no specific reports of lignin being present in the aleurone 

layer, as pervious analyses combine maternal and aleuronic tissues together.  

 

Table 3.8. Lignin content of milled wholegrain wheat and rice tissue 

throughout development, and in milled mature polished grains (white 

endosperm enriched flour) using Klason-lignin analysis. 

Sample Starting 

material /mg 

Lignin content / 

mg 

Lignin content 

per grain / μg 

Wheat 8 DAA 100 20.5 164.0 

Wheat 12 DAA 100 20.0 240.0 

Wheat 20 DAA 100 20.3 568.4 

Wheat 28 DAA 100 20.6 741.6 

Wheat White 

flour 

1000 0 0 

    

Rice 8 DAA 100 6.7 47.5 

 

Rice 12 DAA 100 6.9 68.9 

Rice 20 DAA 100 8.6 167.7 

Rice 28 DAA 100 12.0 248.6 

Rice White 

Flour 

1000 0 0 
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Figure 3.20. Klason-Lignin content per whole grain in wheat and rice 

throughout development. Results based on 1 technical repeat due to 

inssuficient material. 

3.2.7 Total cell wall composition quantification in developing wheat and 
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Table 3.9. Table of cell wall composition (μg / grain) in developing wheat and 

rice grain, combining HPLC monosaccharide data, MLG and cellulose data. 
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3.2.7.1 Examining the contribution of each cell wall component as a 

percentage reveals that MLG is the major component of grain cell walls 

from 4-20 DAA in both species. 

In both wheat and rice grains, MLG is the largest single cell wall component in early 

development representing 55% and 44% in wheat and rice respectively at 4 DAA, 

and remains the largest single cell wall component until 20 DAA when arabinoxylan 

becomes the most prevalent polysaccharide in both species. MLG content declines 

steadily during development to represent only 20% and 14% in 28 DAA wheat and 

rice, respectively (Table 3.10). In wheat, this decline is despite a 3-fold increase in 

total MLG content in the developing grain from 4-28 DAA and demonstrates the 

large-scale deposition of all other polysaccharides occurring within the developing 

wheat grain. In rice, MLG content fluctuates slightly throughout development but 

stays close to the initial content: 38 μg per grain at 4 DAA and 41.5 μg per grain at 

28 DAA. Thus the decline in the cell wall percentage is entirely due to dilution by the 

increasing content of other polysaccharides. AX content increases in both species 

throughout development, but the percentage of the cell wall it represents does not 

differ greatly in either species with fluctuations from, from 26% at 4 DAA to 32% at 

28 DAA, compared to rice, from 29% at 4 DAA to 24% at 28 DAA. Pectin, as 

represented by the total of fucose, rhamnose and galacturonic acid, changes 

dramatically in rice increasing from 7.95% at 4 DAA to almost a quarter of the cell 

wall at 28 DAA (21.1%) (Fig. 3.21). In wheat the change is less dramatic, but a 

significant pectin level is detected, with 6.3% of the cell wall consisting of pectin at 

cellularisation and 12.9% at maturity (Fig 3.22). Galactose, which would normally be 

discussed either in terms of RG-I side chains or as part of the AG peptide, 

represents a significant proportion of the mature cell wall in both species, at 7.2% in 

wheat and 16.4% in rice. The contribution of galactose in wheat and rice appears 

higher than expected, especially in 28 DAA rice grain. I suggest that as the galactan 

side chains on RG-I appear to co-localise with expanding and dividing cells in 

immunohistochemical experiments on developing rice grains (Fig. 5.10 g,i,k) that the 

RG-I in the rice embryo may be heavily substituted with galactan side-chains, to the 

extent that the overall grain cell wall composition is skewed by this. It is unlikely that 

a significant proportion of this figure is the result of AG peptides, as comparatively 

little arabinose was detected to make up for the presence of AX and AGP. Cellulose 

accounted for a similar proportion of the mature grain cell wall at 12.9% in wheat 

and 7.3% in rice. The period from 8 -12 DAA showed a noticeable increase in the 

cellulose content of the cell wall, from 7.9% to 12.1% in rice and 6.4% to 11.3% in 
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wheat, despite it being a period of relatively little cell wall deposition. In mature 

endosperms, the cellulose content was 7.3 % of the rice endosperm, whereas a 

larger value of 12.9% cellulose was detected in wheat. Both figures differ with the 

previously published reports (Mares and Stone 1973a; Bacic and Stone 1981; 

Shibuya et al. 1985), but the values reported for the white flour samples which 

should represent mainly mature endosperm tissue correlate closely to the figures 

previously published for wheat and rice endosperms (Shibuya et al. 1985; 

Andersson et al. 2013).
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Table 3.10. Table of cell wall composition by percentage in developing wheat 

and rice grain, combining HPLC monosaccharide data, MLG and cellulose 

data.  
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Table 3.11. Summary table of percentage composition of developing wheat 

and rice grains, showing the relative contribution of the major 

polysaccharides. 

  

  

    Hemicellulose     

    
Total 

Hemicellulose 
MLG AX Pectin Cellulose 

Rice 4 75.54 43.55 29.14 7.95   

  8 56.07 29.67 24.06 13.00 7.86 

  12 51.70 26.63 23.82 13.81 12.14 

  20 43.47 15.24 26.50 19.38 11.17 

  28 40.96 14.01 24.38 21.13 7.25 

  

White 

flour 
37.66 14.11 20.83 25.14 20.02 

Wheat 4 81.83 55.30 25.72 3.44   

  8 73.93 50.13 21.45 3.63 6.30 

  12 67.90 44.13 20.30 3.43 11.35 

  20 64.94 33.15 28.29 5.48 11.87 

  28 55.32 19.69 32.29 5.84 12.94 

  

White 

flour 
85.49 20.73 63.11 8.23 3.25 
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Figure 3.21. Combined cell wall composition of developing wheat grains, 

showing data from HPLC monosaccharide analysis, MLG and cellulose 

assays. Error bars denote 1 standard deviation. 
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Figure 3.22. Combined cell wall composition of developing rice grains, 

showing data from HPLC monosaccharide analysis, MLG and cellulose 

assays. Error bars denote 1 standard deviation. 
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3.3 Discussion 

Wheat wholegrain at 28 DAA is rich in MLG and AX with low contents of cellulose 

and pectin, whereas rice contains a more even distribution of these four major 

polysaccharides. 

Physiologically mature (28 DAA) wheat wholegrain samples contain about 32% AX 

and 20% MLG with 13% cellulose and 6% pectin, 7% galactose and 3% mannose, 

whereas rice contains 24% AX, 14% MLG, 21 % pectin, 7% cellulose and 16% 

galactose. Wheat is enriched in arabinoxylan and MLG compared to rice, which 

contains higher percentages of pectin and galactose. This agrees well with 

previously reported endosperm cell wall analyses of rice (Shibuya et al. 1985; Lai et 

al. 2007) but few complete wholegrain analyses have been reported for wheat or 

rice, to provide direct comparisons. The white flour samples provide a more 

appropriate comparison, to these reports, and with only small discrepencies 

occurring between the published monosaccharide data and the data presented here 

(table 3.11). For example, wheat starchy endosperm cell walls are reported to 

contain 60-70% AX and 15-20% MLG, matching closely to the figures of 63% AX 

and 21% MLG. The high cellulose content reported for the whole grain wheat 

analyses may be expected as maternal and embryonic tissues are likely to have 

higher cellulose contents than endospermatic tissue. Conversely this appears not to 

be the case in wholegrain rice where the cellulose content is much lower than that of 

the endospermatic tissue.  High galactose is present in both species relative to the 

galacturonic acid content, which may be indicative of contamination of the extracted 

cell wall material with AGP and galactose-containing water soluble oligosaccharides 

such as raffinose or stachyose. 

 

3.3.1 Cell wall deposition in wheat and rice grains follows a consistent 

pattern between the five developmental stages examined. 

Four clear phases of cell wall deposition were observed in developing grains of both 

wheat and rice, with each species transitions from one phase to the next at the 

same developmental stage. This suggests a correlation between the pattern of grain 

development in both species and the deposition of cell wall material. This pattern 

can be described as two phases with high rates of cell wall polysaccharide 

deposition (between 100%-500% increase in four days) generally followed by a 

reduced rate of deposition, with some monosaccharides showing a small overall 



118 
 

decrease in content per grain (< ±40%) as summarised in Tables 3.14 and 3.15. 

This pattern of deposition does not agree with the patterns of grain weight increase 

(Fig. 3.1) or of starch and protein accumulation, all of which show a single phase of 

deposition followed by a decrease in rate, which produces a plateau at about 20-24 

DAA. However these four phases of cell wall deposition do match the transitions 

between the five main stages of grain development. The first phase of cell wall 

deposition from 4-8 DAA shows the highest rate of cell wall deposition of all 

monosaccharides and coincides with the greatest change in endosperm size, with 

this phase reported as a period of expansion and cell division. Rapid cell expansion 

and cell division require significant production and deposition of cell wall material in 

order to facilitate these changes. MLG exhibits a small increase in content per grain 

in both species, but the significant deposition of all other polysaccharides at this 

time point results in an overall reduction in the percentage content of MLG in their 

cell walls. The second period form 8-12 DAA is the transition from rapid expansion 

and cell division to cell differentiation, with little cell division being reported and 

micrographs of grain structure showing only a small increase in cell size. These 

decreases in cell expansion and the rate of cell division generate less demand for 

cell wall deposition and this is reflected in the slower rates of deposition of most 

monosaccharides during this phase. From 12-20 DAA the grains of both species are 

depositing significant amounts of storage proteins and starch, and the grain expand 

to their maximal size at 20 DAA. This increase in grain size is due to both cell 

division and cell expansion and this, in addition to cell wall thickening of the 

aleurone cells, may require the significant increase in cell wall content seen from 12-

20 DAA. The final phase from 20-28 DAA is a period of maturation and preparation 

for desiccation and exhibits a small reduction in overall grain size. This is mainly 

attributed to the decrease in grain moisture content between 20-28 DAA in wheat 

and it is likely a similar desiccation occurs in rice grains. The combination of 

reduced grain size and reduced rate of endosperm cell division in this period may 

cause the reduction in the cell wall deposition rate observed from 20-28 DAA in both 

species. Significantly, the pattern of cell wall deposition of two of the polymers does 

not follow this four phase pattern; MLG and cellulose both follow a simple pattern 

with a single deposition rate from 4 DAA to 20 DAA before a plateauing of the 

deposition rate. This may be explained by two scenarios. One possibility is that the 

deposition of these two polymers is differentially regulated from that of the other 

major polysaccharides. Alternatively, it  
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is possible that the explanation lays in the composition of the maternal tissue, which 

provides a high contribution to the overall cell wall composition in earlier stages of 

grain development and is probably rich in MLG and cellulose. Thus changes in the 

amount of maternal cell wall content may obscure the four phase pattern seen in 

other monosaccharides by rapid changes in the MLG content of the maternal tissue, 

as the maternal tissues degrades and are lost between 8-20 DAA. This effect may 

be less evident for other monosaccharides due to their lower proportions in the 

maternal tissues. 

 

Table 3.12. Summary of wheat cell wall component content changes per grain 

during the 4 major grain phases. 

 

  

Developmental 

Phase 

Decrease in 

content  

Large 

decrease 

in content  

>30% 

Increase in 

content  

Large increase in 

content >40% 

Phase 1 (4 – 8 

DAA) 

Rha  Gal All other cell wall 

components (58-

474%) 

Phase 2 (8 – 12 

DAA) 

  Ara, Xyl, 

GalA, Gal, 

MLG 

Fucose, Rha, Man, 

GlcA, Cellulose  

Phase 3 (12 – 

20 DAA) 

  MLG, Rha All other cell wall 

components (67-

184%)  

Phase 4 (20 – 

28 DAA 

GlcA MLG Ara, Man, 

GalA, 

Cellulose 

Fucose, Rha, Gal, 

Xylose 
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Figure 3.23. Summary of the developmental changes in percentage 

composition of wholegrain wheat cell walls in the major 4 polysaccharides. 

Error bars denote 1 standard deviation. 
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Table 3.13. Summary of rice cell wall component content changes per grain 

during the 4 major grain phases. 

  

Developmental 

Phase 

Decrease in 

content  

Large 

decrease 

>30% 

Increase in 

content  

Large increase 

>40% 

Phase 1 (4 – 8 

DAA) 

  Ara, Man, 

MLG 

All other cell wall 

components (~65-

490%) 

Phase 2 (8 – 12 

DAA) 

Rha, MLG, 

Gal, Xyl 

Fuc, Man Ara, GalA, 

GlcA 

  

Phase 3 (12 – 

20 DAA) 

  MLG All other cell wall 

components (~63-

195%)  

Phase 4 (20 – 

28 DAA 

Cellulose  Ara, Xyl, 

GalA, GlcA, 

MLG 

 

Fuc, Rha, Gal, Man 
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Figure 3.24. Summary of the developmental changes in percentage 

composition of wholegrain rice cell walls in the major 4 polysaccharides. 
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polysaccharide, with only AX presenting a higher total content in both species. AX 

content increases between 4 DAA and 28 DAA in wheat with an increase from 

25.7% to 33.3% in wholegrain samples, as shown by the total of arabinose and 

xylose. In rice a small decrease is detected, from 29.1% to 24.4% at 28 DAA. A 

smaller change in AX content is observed in rice grains where MLG and AX 

accounts for only 41.0% of the total cell wall compared to 55.3% in wheat.  

3.3.3 Pectin content increases during grain development, increasing 

almost two-fold during the period from 4-28 DAA in wheat and three-

fold in rice. 

Pectin percentage content is ~4 times higher in rice than wheat grains at 28 DAA. 

Rice also contains higher levels of pectic monosaccharides (21.1%) at 28 DAA 

compared to wheat (5.8%), and similar levels of cellulose (7.3% rice, 12.9% wheat). 

This higher percentage of pectin in rice is a characteristic difference between the 

two species. Pectin content early in grain development (4 DAA) is similar in the two 

species with 7.9% in rice and 3.4% in wheat, indicating that the 4 DAA grain, which 

comprises mainly maternal tissue, is quite similar in composition between the two 

species. This demonstrates that subsequent changes in wholegrain cell wall content 

are a result of the increasing proportions of endosperm and embryonic tissues and 

of the concomitant degradation of the cell walls in the maternal tissues. 

Most of the pectin content is accounted for by homogalacturonan as shown by the 

amount of galacturonic acid in the HPLC monosaccharide analyses. This accounts 

for 77% of 28 DAA wheat pectin (GalA+Rha+Fuc) and 55% of rice pectin not 

including RG-I sidechains. In wheat this value is very close to the figure of 80% 

reported by Mohnen (2008) for the relative contribution of HG in the pectic 

supramolecule, however in rice a larger difference is seen, which may be due to 

larger than expected fucose and rhamnose contents. RG-I side chains are 

impossible to assign accurately using monosaccharide analysis alone, as arabinose 

can contribute to RG-I, AGPs and AX structure, and galactose can contribute to 

both AGP and RG-I and several oligosaccharides.  The galactose content of rice 

grains was determined as up to 16.4% of the total cell wall composition at 28 DAA, 

which is much higher than expected based on previous reports by (Shibuya et al. 

1985) suggesting that the embryo contains the highest proportion of galactose at 

7.8%. The conflicting values from the HPLC analysis require validation.  In wheat 

grain the galactose content was also relatively high at about 7.2% of the total cell 

wall content, which is similar to the galacturonic acid value, and did not vary greatly 
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during development. Substantial proportions of AGP, up to 0.4% of dry weight, have 

been reported for wheat endosperm, which may have affected the analyses. 

Contamination from raffinose, which is a trisaccharide composed of galactose, 

fructose and glucose, would also contribute to higher than expected proportions of 

galactose in monosaccharide analyses. (MacArthur and D'Appolonia 1979; Henry 

1985; Black et al. 1999; Shanmugavelan et al. 2013). Raffinose contamination may 

occur through co-precipitation with monosaccharides in the Englyst extraction 

protocol, as the raffinose is likely to be hydrolysed to the constituent 

monosaccharides along with the cell wall polysaccharides.  

 

3.3.4 Cellulose content increases throughout development and appears 

to be a major component of rice endosperm tissue. 

Total cellulose content increases in both species from 8-28 DAA, but no change is 

seen from 8 DAA to 28 DAA in the percentage contribution of the cellulose to the 

rice cell wall matrix compared with a large increase in wheat (6.3% to 12.9%). 

Cellulose is reported to be a minor component of wheat endosperm tissue at a 2-4% 

so the continued increase in cellulose content throughout grain development is 

unexpected.  By comparing the white flour and wholegrain tissue analyses, it 

appears likely that either the aleurone layer and embryonic tissues accumulate 

significant amounts of cellulose, although (Antoine et al. 2003) report only 1.1-1.5% 

cellulose in the aleurone layer but up to 23.8% in the pericarp tissues. Both Shibuya 

et al. (1985) and Lai et al. (2007) have reported cellulose to be a significant 

component of rice endosperm tissue, which differs from reports for other cereal 

grains, where the levels are low (Knudsen 1997; Guillon et al. 2011). Whilst these 

reports have used different cultivars in their analyses, there are significant 

similarities in percentage compositions between the analyses. The high content of 

cellulose determined for rice white flour indicate that the rice endosperm is 

significantly enriched with cellulose and agrees with the value of 23% reported by 

Shibuya et al. (1985) for rice endosperm. Conversely the analyses of cellulose 

content in developing wholegrain are about half that reported by Shibuya et al. 

(1985) at only 7.3% at 28 DAA. Because the analyses of Shibuya et al. (1985) were 

on harvest mature grain tissues (~45-50 DAA) rather than physiologically mature 

grain tissue (28 DAA) it is possible that the cellulose content continues to increase 

during the period from 28-50 DAA. It is also possible that the cultivar and growth 
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conditions used here resulted in grain with significantly lower cellulose content than 

those analysed by (Shibuya et al. 1985). 

 

3.3.5 The Klason lignin method appears unreliable with the small 

quantities of grain tissue available for analysis. 

The Klason lignin assay is widely used for lignin quantification in plant tissues, 

however it does present some limitations. It does not provide a measure of all the 

lignin present in a given sample, as acid soluble lignin polysaccharides are lost 

during the harsh acid treatments, and additionally some cellular components that 

are not degraded by the acid may contribute to inflate the lignin value. The Klason 

lignin method in Chapter 2.5.4 was followed as it had been used successfully to 

analyse a few Arabidopsis seeds, rather than the larger scale methods typically 

employed which require large quantities (10 g or more) of starting material. However 

it is probable that the difficulty in measuring the small amounts of lignin collected (10 

mg or less, balance accuracy ±0.1 mg) and small fluctuations in the weight of the 

filter papers due to moisture content or other contaminants may have given 

artificially high results, despite efforts to minimise these problems.  Considerably 

more lignin was detected than any other cell wall components at all time points in 

both species, for example in 28 DAA wheat 741 μg of lignin was detected compared 

to 333 μg of xylose+mannose per grain. In addition, insufficient material was 

available for technical replicates. It was therefore decided to exclude the lignin 

values from the analyses of the total cell wall composition in both species. 

 

3.3.6 Deposition of protein and starch granules occur up to 4 days 

earlier in rice than in wheat grains. Whilst endosperm cell wall 

morphology is more uniform between the two species. 

Both storage protein and starch deposition was seen to occur earlier in developing 

rice grains than in wheat, with starch granules appearing widespread in the central 

region at 4 DAA in rice, shortly after cellularisation with comparable levels of starch 

accumulation not appearing till 8 DAA in wheat grains. Protein bodies also 

accumulated much earlier in rice grains (about 6 DAA) compared to wheat (at 10 

DAA) as detected by light microscopy. The onset of deposition of storage 

components in rice begins at an earlier developmental stage despite the overall 

developmental stages of wheat and rice proceeding at a similar rates after anthesis. 
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This indicates that the regulation of protein and starch deposition is likely to be 

controlled in a different way in the two species. The earlier development of starch 

granules in the central region of rice endosperm may be a consequence of the more 

ordered pattern of programmed cell death in rice grains, with the central region 

exhibiting PCD by 12 DAA which subsequently extends towards the aleurone cells. 

It is therefore likely that the cells of the central endosperm are older than those of 

the outer regions. This may also explain the apparent scarcity of protein deposition 

in the central region of the rice endosperm, as at 8 DAA the central cells may be 

preparing for the beginning of PCD. Differences in the rate of cell wall maturation 

were observed in the cell wall thickenings of the aleurone cells, which appeared 

slightly earlier in rice grains at 12 DAA compared to ~14 DAA in wheat, but no other 

visual differences were seen in the development of endosperm cell walls with 

Calcofluor White. The maternal parenchyma cells did show different behaviour 

during grain development in the two cereals, with these cells persisting much longer 

in wheat, at least until 20 DAA, with some cell layers often being seen at 28 DAA. 

Conversely, in rice, the maternal parenchyma cells were completely crushed by 12 

DAA, with only traces of the compressed cell walls remaining. In both species the 

loss of the maternal pericarp is thought to be due to internal pressure created by the 

expanding grain crushing the outer layers against the glumes or palea and lemma 

(modified leaf structures which contain the developing grains and form the husk 

when desiccated) and have been proposed as key limitations in the maximal 

dimensions of the developing grain.  

 

3.4 Conclusion 

Grain development follows 4 key stages, which have previously been described in 

detail, and these appear to be synchronous in wheat and rice. Four distinct phases 

of cell wall deposition can be tracked between the 5 developmental stages 

examined with all non-glucosic polysaccharides displaying the same 4 phases of 

deposition. These phases are largely consistent between both species and 

presumably reflect the changing biological process occurring in the grain. However, 

small differences in the rates of deposition of individual monosaccharides were 

observed between species.  

The percentage of MLG decreased during the development of both wheat and rice 

grains, while AX content increased. Pectic monosaccharides showed the single 
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largest increase of any cell wall components in the developing rice grain, from 7.9% 

to 21.1%, but little change was observed in wheat.  

Wheat cell walls at 28 DAA are dominated by the presence of MLG and AX which 

together account for 55.3% of the total cell wall material, whereas rice grains at the 

same developmental stage have about equal proportions of AX, pectic 

polysaccharides at 24.4% and 21.1% each, with slightly less MLG at 14.0%, with 

cellulose and polysaccharides making up the remaining ~25% in both species.  
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 CHAPTER 4: IMMUNOHISTOCHEMICAL ANALYSES OF 

WHEAT AND RICE 

4.1 Introduction to antibodies and methodology 

Plant cell wall architecture is highly complex while the structure of the cell wall 

matrix remains elusive in both primary and secondary cell wall systems. The cell 

walls of cereal endosperms appear to lack any secondary cell wall features and thus 

present an opportunity to study primary cell wall structure in isolation. Whilst relative 

proportions of cell wall polysaccharides can be routinely ascertained by use of 

chemical analyses, the spatial distribution of cell wall polysaccharides require the 

use of different methods. Few methods are available for the detection and analyses 

of the linkages between polysaccharides in muro, with immunofluorescence 

microscopy being the most used of these techniques; however this still requires the 

production of monoclonal or polyclonal antibodies to particular cell wall 

polysaccharides and their specific structural epitopes. Production of monoclonal 

antibodies (mAbs) can be an arduous and time consuming procedure, requiring the 

isolation and purification of a sample of the polysaccharide of interest, followed by 

the immunisation of an animal host (typically rats, mice or rabbits) with the purified 

sample often conjugated to bovine serum albumin, and subsequently the B cells of 

the host are extracted from the spleen and added to a culture of myeloma cells in 

order to produce hydridomas. Hybridomas are fusions of the B cells and the 

myeloma cells, in practice this can be facilitated in several ways including the use of 

polyethylene glycol or electroporation. Once the hybridomas have been isolated 

they are individually cultured before being characterised on western blot gels and 

probed with a sample of the initial sample to identify which lines are producing 

antibodies, which bind to the sample of interest. Additional characterisation of these 

monoclonal antibodies can be carried out with ELISA assays to quantify the binding 

affinity of the antibodies to the target molecule. However monoclonal antibodies 

have been shown to be very useful (Willats et al. 2001b; Guillon et al. 2004; Wilson 

et al. 2006; Verhertbruggen et al. 2009; Hervé et al. 2009; Chateigner-Boutin et al. 

2014) in examining the structure of cell walls in muro without the potential for the 

truncations and alterations to polysaccharide structure that may occur as a 
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consequence of typical extraction procedures. A wide range of cell wall monoclonal 

antibodies are available at present, which can detect epitopes of almost all cell wall 

polysaccharides, and are often able to provide greater detail about the precise 

structure of a polysaccharide at that precise in muro location. For example, the 

methyl esterification state of HG can be examined by immunofluorescence 

microscopy using LM19 + LM20, which display specificities for low and highly methyl 

esterified HG epitopes respectively(Verhertbruggen et al. 2009). Unmasking of cell 

wall polysaccharides through the use of specific cell wall degrading enzymes is a 

very useful tool to provide further details about the spatial proximity of different cell 

wall polysaccharides in muro. If degradation of a specific polysaccharide, either 

partially or completely, results in a stronger signal from antibodies recognising a 

different polysaccharide, this represents a clue that the two polysaccharides exist 

within the same section of wall and may be in spatial proximity to one another. 

Degradation of one or more polysaccharide may allow the relatively large antibodies 

sufficient space to access epitopes on the other polysaccharide more readily.  

It has previously been shown that plant cell walls are dynamic and adaptable 

structures able to change their architecture to respond to both biological signals and 

mechanical and osmotic stress (Wakabayashi et al. 1997; Verhertbruggen et al. 

2013). In particular it has already been shown that in the early developing 

endosperms of both wheat and barley grains that a pre-set order of callose, 

arabinoxylan and mixed linkage β-glucan deposition takes place (Wilson et al. 2006; 

Pellny et al. 2012). 

 

In the course of the current project we have examined the spatial and temporal 

distribution of cell wall polysaccharides in the developing grains of wheat and rice 

using a combination of monoclonal antibodies and unmasking by a lichenase and 

xylanase double digestion in order to compare and contrast the cell wall 

architectures within of these two poaecea, which have significantly different cell wall 

compositions at maturity.  

As discussed above, gradients in the amounts of some cell wall polysaccharides 

across the wheat endosperm have been identified, but little is known about the 

factors controlling these gradients or their biological roles, and not all cell wall matrix 

polysaccharides have been studied in depth. It is possible that these gradients are 

related to cell age and lineage, since the sub-aleurone layer is thought to derive 

from periclinal cell divisions of aleurone cells, occurring later into grain development 
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than the divisions of central endosperm cells that give rise to the central starchy 

endosperm (Olsen et al. 1998; Olsen 2001). Although the initial formation of cell 

walls in the developing rice endosperm is well described and the polysaccharide 

composition of the mature grain has been reported, the sequence of deposition of 

individual wall polysaccharides has not been reported. Wheat and rice grain present 

important anatomical differences, first of all, the presence of a crease in wheat 

accommodating the vascular bundle and acting as the sole point of entry of 

assimilates in the endosperm. In rice, on the contrary, nutrients are unloaded from 

the phloem in the nucellar epidermis, and can move circumferentially to then enter 

the endosperm at different points via the aleurone cells. Cell wall composition and 

deposition dynamics in the two species may therefore reflect this difference in their 

grain physiology. The composition of the major polysaccharides in rice grain cell 

walls in particular is a matter of some debate in the literature (Mod et al. 1978; 

Shibuya et al. 1985; Lai et al. 2007) with significantly different compositions being 

proposed. The aim of the present study was therefore to conduct a comparative 

analysis to determine the temporal patterns of polymer deposition in cell walls of 

developing rice grain, focusing on the wholegrain, and to compare these with the 

pattern in wheat, which has been more thoroughly described.  

 

Table 4.1. Cell wall directed monoclonal antibodies used in this study.  

Antibody Antigen Reference 

Arabinoxylans 

 
INRA-AX1 arabinoxylan 

(Guillon et al. 

2004)  

LM28 glucuronoxylan in preparation 

Phenolic components 

 
LM12 

feruloylated 

polysaccharides 

(Pedersen et al. 

2012) 

INRA-COU1 coumaric acid 
(Tranquet et al. 

2009) 

Mixed Linkage β 

Glucan 
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MLG 
mixed linkage β 

glucan 

(Meikle et al. 

1994) 

Minor non-cellulosic 

polysaccharides 

  
Callose 1-3 β-glucan 

(Meikle et al. 

1991) 

LM21 heteromannan 
(Marcus et al. 

2010) 

LM25 xyloglucan 
(Pedersen et al. 

2012) 

Pectic 

Homogalacturonan 

  
LM19 

un-esterified 

homogalacturonan 

(Verhertbruggen 

et al. 2009) 

JIM7 

partially methyl-

esterified pectic 

HG  

(Clausen et al. 

2003) 

LM20 
methyl-esterified 

pectic HG  

(Verhertbruggen 

et al. 2009) 

Pectic 

Rhamnogalacturon

an-I 

  
INRA-RU1 

rhamnogalacturon

an backbone 

(Ralet et al. 

2010) 

LM5 (1-4)-β-D-galactan 
(Jones et al. 

1997) 

LM6 (1-5)-α-L-arabinan 
(Willats et al. 

1998) 
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4.2 Results    

Cell wall composition and distribution of polysaccharides within different tissues 

throughout grain development is a largely underexplored area, particularly in rice. 

Several studies exist in wheat documenting either particular phases of grain 

development or focus on particular polysaccharides but a complete examination of 

all the major polysaccharides throughout grain development was absent in both 

wheat and rice. 

The precise spatial and temporal localisation of cell wall polysaccharides was 

probed with an array of cell wall polysaccharide specific monoclonal antibodies 

(table 5.1), in both wheat and rice grains. Grain tissue was carefully harvested and 

examined with immunofluorescence microscopy at 5 developmental time points to 

represent the 5 major phases of grain development; cellularisation (4 DAA), 

expansion (8 DAA), differentiation (12 DAA), storage component deposition (20 

DAA), and maturation (28DAA). Calcofluor White 2mr was applied as a counter 

stain to all antibody labelled sections, this labels all β-glycan linkages in plant cell 

walls to produce fluorescence under UV excitation. β-glycans exist in many cell wall 

polysaccharides in plant cell walls including cellulose, callose, Mixed-link β glucan 

and xyloglucan, this provides a clear structural overview of all the cell walls in grain, 

allowing specific cells and cell types to be distinguished and to see how the grain 

proportions change throughout development.  

 

Figure 4.1. Autoflourescence control imags of 12 DAA rice (A) and 12 DAA 

wheat (B) under 568nm Ar-Kr laser illumination. Al = aleurone, NE = nucellar 

epidermis, En = starchy endosperm. Bars = 100 μm 
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4.2.1 Dynamics of non-cellulosic/non-pectic cell wall matrix glycans 

4.2.1.1 Arabinoxylan (AX as detected with INRA-AX1 increases in 

labelling strength as development progresses in both wheat and rice in 

all tissues and wheat endosperm cell walls lacks the LM28 

glucuronoxylan epitope that is widespread in rice endosperm cell walls  

 

A combination of INRA-AX1 and LM28 monoclonal antibodies were used to detect 

different AX epitopes, LM28 for glucuronosylated xylans and INRA-AX1 for 

arabinosylated xylo-oligosaccharides (Guillon et al. 2004). The spatial patterns of 

AX epitope detection in developing wheat grain have been studied extensively 

(Guillon et al. 2004; McCartney et al. 2005; Philippe et al. 2006b; Robert et al. 2011; 

Dornez et al. 2011; Pellny et al. 2012). However AX distribution in developing rice 

grains has never been investigated with antibodies. In grains of wheat cv. Cadenza 

the INRA-AX1 epitope was detected in the cell walls of the nucellar epidermis and 

nucellar projection closest to the endosperm tissue at 8 DAA, while the modified 

aleurone cells in the crease region labelled strongly at 12 DAA, with weaker 

labelling extending radially across the endosperm towards the outer layer of cells, 

which are differentiated from the aleurone (Fig. 4.2 d). The strength of labelling 

increased towards maturity (28 DAA), when all of the endosperm cells were clearly 

labelled (Fig. 4.2 g). By contrast, in rice, labelling with INRA-AX1 was observed in all 

the starchy endosperm cells from as early as 6 DAA and increased in intensity 

throughout grain development. The aleurone cells displayed particularly strong 

labelling from 16 DAA, after they had visually differentiated with pronounced cell 

wall thickenings (Fig. 4.3 e). The presence of glucuronosylated xylan 

polysaccharides in developing wheat and rice grains was also examined using a 

recently isolated mAb, LM28  (Cornuault et al. 2015), which binds to a glucuronosyl-

containing epitope widely present in heteroxylans, which was used for 

immunolocalisation of glucuronoxylan. However it should be noted that LM28 may 

recognise xylans that are both arabinosylated and glucuronosylated. 
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Figure 4.2. Indirect immunofluorescence detection of AX, callose and MLG in 

medial transverse sections of a wheat grain at 4 (a-c), 12 (d-f), and 28 DAA (g-

i). Immunofluorescence detection of INRA-AX1 (a, d, g) and anti-callose (b, e, 

h) and anti-MLG (c, f, i). Al = aleurone, M = maternal pericarp, NP = nucellar 

projection, SE = starchy endosperm, VB = vascular bundle. Arrowheads 

indicate labelling of anticlinal cell wall extensions. Bars = 100 μm, except D, G 

= 200 μm 
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Figure 4.3. Indirect immunofluorescence detection of AX and callose in medial 

transverse sections of a rice grain at 4 (b), 6 (a), 12 (c, d), and 28 DAA (e, f). 

Immunofluorescence detection of AX (a, c, e) and callose (b, d, f). M = 

maternal pericarp, NP = nucellar projection, NE = nucellar epidermis, SA = 

sub-aleurone, Al = aleurone, SE = starchy endosperm, VB = vascular bundle.  

Bar = 100 μm 

 

In wheat, the GUX epitope was absent from all of the embryonic and endosperm 

tissues examined and at all stages of grain development. Maternal tissues in 

general, and in particular those of the epidermis, and phloem and xylem vessels 
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displayed clear labelling with the GUX mAb (Fig. 4.4 a, c) demonstrating a clear 

demarcation between the cell wall composition of the vegetative tissue of the 

maternal plant and that of the seed. From 20 DAA onwards the epitope was also 

abundant in the residual cell walls of the nucellar epidermis proximal to the aleurone 

tissues, but remained notably absent from the aleurone or endosperm tissues.  

Conversely, in rice grains, the GUX epitope was widespread throughout all tissue 

types examined from the earliest stage examined (shortly after the completion of 

cellularisation at 4 DAA) until the latest stage (28 DAA) (Fig. 4.4 b, d). The labelling 

of the endosperm by LM28 at 4 DAA was uniform and included all endosperm cell 

walls (Fig.4.4 b), however by 8 DAA has already become less distinct and uneven.  

By 28 DAA strong labelling by LM28 was detected only in aleurone and outer 

starchy endosperm cells whilst cells in the central region of starchy endosperm 

showed little or no labelling (fig. 4.4 d). The aleurone cells could be differentiated 

from the endosperm cells from 8 DAA with the presence of strong detection of the 

GUX epitope, which persisted until maturity. 

4.2.1.2 Callose persists beyond cellularisation in the developing 

endosperm of both wheat and rice.  

Callose (1,3-β-glucan) was detected in the extending anticlinal cell walls of both rice 

(Fig. 4.3 b) and wheat (Fig. 4.2 b) at cellularisation, and continued to be observed 

throughout the endosperm at all time points. Stronger labelling of the putative 

aleurone and sub-aleurone cells was also observed, compared with weaker 

punctate labelling of the central starchy endosperm cell walls (Fig. 4.3 d, f and 4.2 e, 

h). These results corroborate the data shown in several other studies (Morrison and 

Obrien 1976; Fineran et al. 1982; Stone and Clarke 1992; Brown et al. 1997; Li et al. 

2003), although the study of Pellny et al (2012) no callose was detected in the 

starchy endosperm after 8 DAA.  
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Figure 4.4. Indirect immunofluorescence detection of glucuronoxylan (GUX, 

LM28) in medial transverse sections of wheat (A, C) and rice (B, D) grains at 4 

DAA (A, B) and 28 DAA (C, D). M = maternal pericarp, NP = nucellar projection, 

Al = aleurone, PS = pigment strand, SE = starchy endosperm, VB = vascular 

bundle, H = husk.  Bar = 200 μm 
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4.2.1.3 Mixed-linkage glucan is absent from the early endosperm cell 

walls of both wheat and rice prior to the detection of AX in both 

species. MLG is absent from the aleurone and nucellar epidermis of 

rice until 20 DAA, conversely in wheat these cells always display the 

strongest labelling for MLG. 

During cellularisation, MLG was only detected in the maternal tissues of both 

species, primarily in the phloem vessels, nucellar epidermis and integuments. 

However, by 8 DAA the MLG antibody labelled the endosperm tissues of both 

species, and this labelling pattern remained throughout development (data not 

shown). Significantly, clear differences between the two species were observed at 

12 DAA (Fig. 4.5). In wheat, the nucellar epidermis and aleurone cell walls are 

clearly labelled but in the labelling of cells immediately below the sub-aleurone layer 

(which are thought to be derived from recent divisions of aleurone cells and hence 

retain aleurone characteristics) was weaker than the central starchy endosperm 

cells (Fig. 4.5 a, c). This pattern is consistent with the previous study of (Philippe et 

al. 2006c).  

By contrast, in rice, the vascular bundle, nucellar epidermis and aleurone cell walls 

were not labelled by the antibody, while labelling of sub-aleurone and starchy 

endosperm cells walls appears even and lack the polarisation exhibited in wheat 

(Fig. 4.5 b, d). By 20 DAA (data not shown) the aleurone cell walls of both species 

were prominently labelled and remained so throughout development suggesting 

significant remodelling, perhaps in response to the developing phases of grain 

development. 
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Figure 4.5. Indirect immunofluorescence detection of MLG in medial 

transverse sections of wheat (a, c) and rice (b, d) grains at 12 DAA. 

Arrowheads indicate absence of fluorescence labelling in the aleurone and 

nucellar epidermis. M = maternal pericarp, NP = nucellar projection, NE = 

nucellar epidermis, SA = sub-aleurone, Al = aleurone, I= Integuments, SE = 

starchy endosperm, VB = vascular bundle, H = husk.  Bar = 100 μm 

 

4.2.1.4 Xyloglucan is detected in the anticlinal cell wall extensions of 

wheat and rice during cellularisation, and persists in the early 

endosperm cell walls, but can only be detected in the aleurone cells of 

rice at maturity. 

The presence of xyloglucan in wheat cell walls has not been shown by biochemical 

analyses, however the study of Pellny et al. (2012) demonstrated the presence 

using the LM15 mAb (Pellny et al. 2012). Examination of wheat cell walls with the 

more recently generated LM25 xyloglucan antibody confirmed the presence of 
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xyloglucan in developing grains with abundant labelling of the walls undergoing 

cellularisation in the syncytial endosperm of both species, particularly those of the 

anticlinal cell wall extensions (Fig. 4.6 a, b). By 12 DAA no xyloglucan epitope was 

detectable in wheat (Fig. 4.6 c-f). However, in rice the cell wall of the aleurone cells 

retained significant labelling until 28 DAA (Fig. 4.6 f) but in wheat no LM25 epitope 

was detected in the aleurone cells at any stage (Fig. 4.6 e).  

 

Figure 4.6. Indirect immunofluorescence detection of xyloglucan in medial 

transverse sections of wheat (a, c, e) and rice (b, d, f) grains at 4 (a, b), 12 (c, 

d), and 28 days after anthesis (e, f). Inset in micrograph a is a 4x enlargement 

of the boxed region, showing immunofluorescence labelling of the anticlinal 

cell walls. M = maternal pericarp, N = nucellus, NP = nucellar projection, NE = 
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nucellar epidermis, SA = sub-aleurone, Al = aleurone, I = integuments, SE = 

starchy endosperm, VB = vascular bundle, ACW = anticlinal cell wall.  

Bar = 100 μm 

 

4.2.1.5 Glucomannan is detected strongly in the endosperm cell walls 

of wheat, but cannot be detected at any developmental stage in rice 

endosperm.  

Biochemical analyses have identified the presence of glucomannan in starchy 

endosperm and aleurone cell walls of wheat (Mares and Stone 1973b; Bacic and 

Stone 1981) and recent analyses with the LM21 heteromannan antibody detected 

heteromannan epitopes throughout development (Pellny et al. 2012). The 

immunolabelling data presented here corroborates the study of Pellny et al. (2012), 

with LM21 showing strong but uneven labelling of starchy endosperm and sub-

aleurone cell walls (Fig. 4.7 a, c). In wheat grain from 12 DAA onwards (Fig. 4.7 c) 

the LM21 labelling was reduced in the aleurone cells with no signal detected at 

maturity. By contrast, no detection of the LM21 epitope in endosperm cell walls of 

rice was observed at any developmental stage, although it was observed in the 

outer maternal tissues (Fig. 4.7 b, d). This agrees with available cell wall 

composition data for rice endosperm, which rarely records mannans as present 

(Shibuya et al. 1985; Shibuya 1989). However, some reports particularly the study 

of (Lai et al 2004) mannans are recorded in small quantities in specific cultivars. 
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Figure 4.7. Indirect immunofluorescence detection of heteromannan in medial 

transverse sections of wheat (a, c) and rice (b, d) grains at 12 DAA. 

Micrographs c and d are 4x enlargements of the outer endosperm regions of 

micrographs a and b to show that the heteromannan signal is present 

throughout the endosperm and sub aleurone tissues in wheat, but remains 

absent in rice. M = maternal pericarp, N = nucellus, NP = nucellar projection, 

NE = nucellar epidermis, SA = sub-aleurone, Al = aleurone, I= integuments, SE 

= starchy endosperm, VB = vascular bundle, ETC = endosperm transfer cells, 

SC = seed coat.  Bar = 100 μm 
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4.2.1.6 Dynamics of pectic polysaccharides 

4.2.1.6.1 The presence of glycan domains of pectic supramolecules was 

studied using sets of antibody probes specific for HG and RG-I 

polysaccharides. Homogalacturonan methylation state appears to be 

cultivar dependant in wheat endosperm tissues, whereas LM19 was the 

major epitope detected in rice endosperm. 

Monosaccharide analyses of wheat grain have not previously reported any pectin 

content. However, the recent study of Chateigner-Boutin et al. 2014 reported 

significant presence of HG and RG-I in the later stages of wheat grain development, 

and also demonstrated that the labelling could be made even stronger by the use of 

lichenase and xylanase to remove both AX and MLG. Using the JIM7 antibody, 

which recognised a methyl-esterified HG epitope, labelling signal could be clearly 

identified in the maternal tissues of wheat (Fig. 4.8). The crease region, in particular, 

was labelled throughout development, with no labelling of the endosperm tissues 

seen at any stage examined. The patterns of localisation of the LM19 epitope 

(specific for un-esterified HG) differed from those observed with JIM7. Specifically, 

the LM19 epitope was restricted to the cells of the nucellar projection, and displayed 

a gradient of labelling that was strongest in the cells closest to the endosperm cavity 

in the early stages of development (4-12 DAA) of wheat (Fig. 4.8 b). However these 

cells are degraded as development progresses and their collapsed walls label 

weakly after 12 DAA. This may be indicative of partially degraded cell walls (Fig. 4.8 

d). The nucellar epidermis of wheat labelled strongly with LM19 at 12 DAA, and 

labelling persisted until 28 DAA (Fig. 4.8 d). By contrast, broader patterns of 

labelling with JIM7 and LM19, including the cell walls of the endosperm, aleurone 

cells as well as all maternal tissues (Fig. 4.8 f, h), were observed in rice. The LM19 

epitope was the major epitope detected in the starchy endosperm of rice grain, 

indicating the presence of an unesterified form of HG.  
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Fig 4.8. Indirect immunofluorescence detection of pectic HG in medial 

transverse sections of wheat (a-d) and rice (e-h) grains at 4 (a, b, e, f) and 28 

DAA (c, d, g, h) using JIM7 and LM19 monoclonal antibodies. Inset in 

micrograph g is a lower magnification image with the boxed region indicating 
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the region imaged for micrographs g and h. M = maternal pericarp, N = 

nucellus, NP = nucellar projection, Ph = phloem, X = xylem, NE = nucellar 

epidermis, SA = sub-aleurone, Al = aleurone, I = integuments, SE = starchy 

endosperm, VB = vascular bundle, E = epidermis, Ch = chalazal region, ETC = 

endosperm transfer cells.  Bar = 100 μm 

 

4.2.1.6.2 Rhamnogalacturonan-I backbone epitope detection is earlier in 

the endosperm of rice at (12 DAA) than in wheat (20 DAA). 

The presence of RG-I was determined using the INRA-RU1 antibody specific for the 

RG-I backbone. In wheat, the cell wall of the starchy endosperm displayed weak 

labelling from 20 DAA with INRA-RU1, increasing in intensity by 28 DAA, but this 

labelling did not extend to the cells of the sub-aleurone and aleurone. A similar 

pattern was observed in rice at 12 DAA, but by 28 DAA the labelling was extended 

to include the cells of the aleurone and sub-aleurone (Fig. 4.9 b, d). Maternal tissues 

of both species exhibited stronger labelling by INRA- RU1 at all time-points, 

especially the cell walls of the vascular regions. This is consistent with the reported 

presence of significant proportions of pectic polysaccharides in these tissues 

(Shibuya et al. 1985; Hay and Spanswick 2006). In the maternal pericarp of wheat 

the RU1 epitope was localised at the triangular cell wall junction zones prior to 12 

DAA, but at later stages these cells have been crushed during grain expansion and 

cannot be distinguished clearly. In rice, however, the INRA-RU1 epitope was more 

widely distributed throughout the walls of all pericarp cells and had no apparent 

specificity for cell wall junctions. 
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Figure 4.9. Indirect immunofluorescence detection of RG-I backbone in medial 

transverse sections of wheat (a, c) and rice (b, d) grains at 12 (a, b) and 28 

days after anthesis (c, d). M = maternal pericarp, NE = nucellar epidermis, SA 

= sub-aleurone, Al = aleurone, I = integuments, SE = starchy endosperm, II = 

inner integuments, H = husk.  Bar = 100 μm  

 

4.2.1.6.3 Galactan (LM5) and arabinan (LM6) RG-I Side chains can be 

detected earlier in development than RG-I back bone epitopes in both 

wheat and rice endosperm 

Rhamnogalacturonan side chains were detected with two antibodies, LM5 for 1,4-

galactan and LM6 for 1,5-arabinan. The only evidence for the presence of RG-I in 

wheat endosperm at early developmental stages is the weak and transient binding 

of LM6 from 8 DAA to 12 DAA (Fig. 4.10 d). However, labelling was absent by 28 
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DAA (Fig. 4.10 f). Conversely rice, shows ubiquitous labelling of arabinan in the 

starchy endosperm at all stages after cellularisation has been completed by LM6. 

The LM5 and LM6 epitopes were weakly detected in the maternal tissues at all 

developmental stages in both species with the LM5 epitope being consistently more 

abundant in the inner pericarp tissues than in the outer pericarp tissues (Fig. 4.9 a). 

In wheat endosperm cells, the LM5 galactan epitope was not detected at any stage, 

whilst it was detected in the cellularising endosperm of rice, with every endosperm 

cell being labelled at 4 DAA (Fig. 4.10 g). Subsequently, the LM5 epitope became 

increasingly restricted to the outer layers of the endosperm, with only the aleurone 

and sub-aleurone being labelled by 12 DAA (Fig. 4.10 I) and only the aleurone cells 

at 28 DAA (Fig. 4.10 k). The LM6 arabinan epitope differed in its pattern of 

distribution in comparison to the LM5 epitope in rice, showing little or no labelling at 

4 DAA (Fig. 4.10 h) then slowly increasing in distribution throughout development 

with weak detection in all endosperm cells by 8 DAA, all starchy endosperm and 

sub-aleurone cells being labelled at 28 DAA. The inner faces of the aleurone cell 

walls proximal to the cell membrane were most strongly labelled at 28 DAA (Fig. 

4.10 l). It was also frequently observed that the LM6 epitope appeared to be 

surrounding circular intracellular structures, which did not appear to be protein 

bodies or nuclei.  
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Figure 4.10. Indirect immunofluorescence detection of pectic arabinan and 

galactan as in medial transverse sections of wheat (A-F) and rice (G-L) grains 
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at 4 (A, B, G, H), 12 (C, D, I, J) and 28 days after anthesis (E, F, K, L), using 

LM5 (A, C, E, G, I, K) and LM6 (B, D, F, H, J, L) monoclonal antibodies. M = 

maternal pericarp, NE = nucellar epidermis, SA = sub-aleurone, Al = aleurone, 

I = integuments, SE = starchy endosperm, S = syncytium, I = integuments, SC 

= seed coat, H = husk, VB = vascular bundle, N = nucellus, NP = nucellar 

projection, E= epidermis.  Bar = 100 μm 

 

4.2.1.7 Developmental dynamics of Phenolic polysaccharides. 

4.2.1.7.1 Ferulic acid epitopes more prevalent in the endosperm cells 

proximal to the crease cavity in wheat grains after 20 DAA, in rice 

ferulic acid labelling was evenly distributed throughout the endosperm.  

In rice, the LM12 epitope was found to be evenly distributed through out all the cells 

of the endosperm and maternal tissue by 12 DAA, with nucellar epidermis, phloem 

and the putative cells of the aleurone layer, displaying stronger labelling (Fig. 4.11 

f). This distribution pattern did not change throughout grain development although 

the strength of the labelling in the endosperm cells increased towards 28 DAA (Fig. 

4.11 g, h). In wheat, LM12 labelled the cells of the starchy endosperm only weakly 

from 20 DAA with those closer to the crease showing more pronounced labelling 

than in the outer regions (Fig. 4.11 c). The endosperm transfer cell region, nucellar 

projection, nucellar epidermis vascular bundle and epidermal tissue all showed 

strong and even labelling from 8 DAA and this persisted throughout development 

(Fig 4.11 b). 
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Fig 4.11. Indirect immunofluorescence detection of feruloylated 

polysaccharides in medial transverse sections of wheat (A-D) and rice (E-H) 

grains at 4 (E), 8 (A), 12 (B, F) and 20 DAA (C, D, G, H) using LM12 monoclonal 

antibody. Micrograph D and H are higher magnifications of C and G. M = 

maternal pericarp, NP = nucellar projection, NE = nucellar epidermis, SA = 

sub-aleurone, Al = aleurone, SE = starchy endosperm, VB = vascular bundle, 

PS = pigment strand.  Bar = 100 μm 

 



151 
 

4.2.1.7.2 p-Coumaric acid is found in both the aleurone and endosperm 

cells at maturity in rice, but is detected only in the aleurone cells of 

wheat grains 

In wheat, the INRA-COU1 p-coumaric acid epitope was initially localised only in the 

maternal tissues, which were labelled strongly, but at 12 DAA when the cells of the 

aleurone layer also became labelled (Fig. 4.12 a, b). This labelling did not initially 

extend to the aleurone cells proximal to the crease region (Fig. 4.12 a, b 

arrowheads), but the INRA-COU1 epitope was detected in these cells by 28 DAA 

(Fig 4.12 c). The distribution of p-coumaric acid in the aleurone cells at 28 DAA was 

restricted to a discrete layer within the wall rather than extending throughout the 

entire width of the wall as did the AX and MLG labelling. In rice, the INRA-COU1 

showed a different pattern of localisation, compared to wheat, first appearing in the 

aleurone cells and endosperm transfer cells closest to the nucellar projection and 

vascular bundle at 12 DAA (Fig. 4.12 f) and then extending through the aleurone 

cells, showing uniform labelling throughout all aleurone cells by 28 DAA (Fig. 4.12 g, 

h). 
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Fig 4.12. Indirect immunofluorescence detection of coumaric acid in medial 

transverse sections of wheat (A-D) and rice (E-H) grains at 4 (E), 12 (A, B, F), 

20 (C) and 28 DAA (D, G, H) using INRA-COU1 monoclonal antibody. 

Arrowheads indicate aleuerone cells unlabelled by INRA-COU1. M = maternal 

pericarp, NP = nucellar projection, NE = nucellar epidermis, SA = sub-

aleurone, Al = aleurone, SE = starchy endosperm, VB = vascular bundle, PS = 

pigment strand, ETC = endosperm transfer cells.  Bar = 100 μm 
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4.2.2 Unmasking of cell wall polysaccharides 

Monoclonal antibodies are relatively large structures and antibodies raised to cell 

wall epitopes may in some cases be unable to bind to an epitope they recognise in 

situ due to the large quantities of other polysaccharides present, which may either 

prevent access directly through steric interference, or through decreasing the 

probability of the antibody making contact with the epitope. In these cases the use 

of enzymes to remove specific cell wall polysaccharides prior to immunolabelling 

can therefore provide additional information about the localisation of epitopes within 

plant cell walls (Marcus et al. 2010; Chateigner-Boutin et al. 2014) by revealing 

additional locations of certain epitopes or by causing their loss of an epitope from 

certain regions, thus providing insight into the possible proximity of the different cell 

wall polysaccharides in muro. 

4.2.2.1 Unmasking of pectic epitopes with a lichenase xylanase (LX) 

dual enzymatic treatment. 

An experiment was carried out to examine the epitope masking of pectic cell wall 

polysaccharides in wheat and rice. Previous work by Chateigner-Boutin et al. 

(2014), in which wheat grain homogalacturonan structure was probed using LM19, 

JIM7 and LM20 antibodies, specific for differing degrees of HG methyl esterification, 

demonstrated epitope masking of all pectic epitopes in the developing wheat grain. 

However, in most cases a combination of lichenase and xylanase (GH11) 

treatments was required to reveal the epitopes, suggesting that in wheat endosperm 

pectin is a minor component tightly associated with the other major polysaccharides, 

since almost all of the cell wall needs to be removed in order for the pectin specific 

monoclonal antibodies to access their epitopes. Lichenase is an enzyme that 

degrades mixed link β-glucan, through the hydrolysis of (1-4)-β-D-glucosidic 

linkages adjacent to (1-3)-β-D-glucosidic linkages. As part of this PhD work, 

lichenase xylanase (LX) double digest was conducted on sections prepared from cv. 

Cadenza wheat grains rather than the cv. Recital used by Chateigner-Boutin et al. 

(2014). While labelling of wheat endosperm cell walls with LM19 and JIM7 was 

observed at 20 DAA, after LX treatment, none was observed for LM20 (Fig. 4.13 e, 

f). This contrasts with what was observed by Chateigner-Boutin et al. (2014) in cv. 

Recital where LM20 was the major epitope recognised in wheat endosperm at a 

similar developmental time point. Labelling with LM20 in cv.Cadenza was restricted 

to the pigment strand in the maternal tissues at this stage. The LM19 epitope was 

concentrated in the endosperm transfer cells and the endosperm cells proximal to 
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the crease cavity, with weaker labelling being seen throughout the endosperm (Fig. 

4.13 d). The JIM7 epitope labelled all endosperm cell walls, with weaker labelling 

proximally to the crease cavity.  

 

Figure 4.13. Indirect immunofluorescence detection of pectic epitopes in 

medial transverse sections of wheat grains at 20 DAA partially digested by 

lichenase and xylanase (LX) labelled with INRA-AX1 (A, B), Anti-MLG (C), 

LM19 (D), JIM7 (E), LM20 (F), LM6 (G), INRA-RU1 (H), LM5 (I) monoclonal 

antibodies. M = maternal pericarp, NP = nucellar projection, NE = nucellar 

epidermis, SA = sub-aleurone, Al = aleurone, SE = starchy endosperm, VB = 

vascular bundle, ETC = endosperm transfer cells, PS = pigment strand.  

Bar = 100 μm 
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RG-I masking in cv. Cadenza was also examined using a LX digest, using INRA-

RU1, LM5 and LM6 to detect the presence of revealed RG-I. Labelling patterns with 

all three antibodies were consistent with those reported by Chateigner-Boutin et al. 

(2014), with labelling by RU1 reported from as early as 12 DAA and was stronger in 

fluoresecent intensity than prior to LX digestion (Fig. 4.12 g). LM6 epitopes were 

revealed to be more widely distributed amongst the starchy endosperm from 8 DAA 

(Fig. 4.12 h). While LM5 was only weakly revealed by enzymatic unmasking of the 

pigment strand, aleurone and some sub-aleurone cells (Fig. 4.12 I). 

 

A comparative study of the enzymatic unmasking of rice pectic polysaccharide 

epitopes with a LX double digestion was also undertaken to see if similar changes in 

labelling patterns and chronology could be detected. Prior to LX digestion, only low 

methyl-esterified HG epitopes were labelled by LM19 in rice endosperm cell walls. 

While LM20 and JIM7 epitopes were both revealed by LX digestion to be evenly 

distributed throughout all starchy endosperm cells from 20 DAA (Fig 4.14 d, g). 

LM19 labelling was strengthened by LX unmasking but no change to its distribution 

pattern was observed. RG-I epitopes were not observed any earlier or across 

different tissues, but the labelling for RU1 and LM6 had a brighter fluorescence 

intensity and displayed less fluorescence noise after LX unmasking. LM5 labelling 

also showed no change in distribution pattern (Fig. 4.14 j), confirming the 

progressive restriction of the LM5 epitope to the outer endosperm and sub aleurone 

cells seen prior to unmasking (Fig 4.10 g, i, k) and thus proving it is not an artefact 

of epitope masking.  



156 
 

 

Figure 4.14. Indirect immunofluorescence detection of pectic epitopes in 

medial transverse sections of rice grains at 20 DAA partially digested by 

Lichenase and Xylanase (LX) labelled with INRA-AX1(A, B), Anti-MLG (C), JIM7 

(D), LM19 (E), LM20 (F), LM6 (G), INRA-RU1 (H), LM5 (I) monoclonal antibodies. 

M = maternal pericarp, NP = nucellar projection, NE = nucellar epidermis, SA = 

sub-aleurone, Al = aleurone, SE = starchy endosperm, VB = vascular bundle, 

PS = pigment strand.  Bar = 100 μm 
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4.3 Discussion 

4.3.1 Callose, arabinoxylan and Mixed link glucan exhibit a conserved 

order of deposition within the cellularising endosperm of wheat rice 

and barley. 

Callose has long been reported to be one of the primary elements of cell plate 

formation during cellularisation in many species, including wheat and rice (Morrison 

and Obrien 1976; Brown et al. 1997). Traditionally it has been reported to be 

transient, most likely being remodelled or remobilised after the end of cellularisation. 

This study confirms that the callose epitope can be detected in the extending 

anticlinal cell wall outgrowths and cell plates in wheat and rice, which occur during 

the syncytial stage of cellularisation, but also that detection remains possible until 

around 12 DAA. Specifically, in 12 DAA wheat, the periclinal cell walls of the 

aleurone cells and sub-aleurone cells were observed to have increased labelling 

intensity in comparison to the anticlinal walls implicating callose as a significant 

polysaccharide in the cell division and re-differentiation of the aleurone cells into 

sub-aleurone cells, which occurs up to at least 15 DAA (Evers 1970; Cochrane and 

Duffus 1981). 

 

The endosperm cell walls of wheat and rice grain have been shown to be primarily 

hemicellulosic in nature, containing mainly AX and MLG, and to contain low to 

moderate levels of cellulose. Whilst wheat and rice have significant differences in 

the proportions of individual hemicelluloses, their spatial locations and kinetics of 

deposition are largely similar. Additionally, if reports of early cell wall deposition in 

wheat and barley (Wilson et al. 2006; Pellny et al. 2012) are considered, it appears 

that all three species follow the same sequence of deposition of callose, AX and 

MLG in the cellularising endosperm, suggesting that the factors regulating this early 

cell wall deposition in these grasses may be derived from a common ancestor. 

Hemicelluloses are likely to play a significant role in the mechanical structure of 

grain cell walls given that the deposition of these polysaccharides is conserved in 

homologous tissues.  

Hemicelluloses have been proposed to be capable of crosslinking cellulose 

microfibrils to generate the basic load-bearing structure of the cell wall matrix 

(Scheller and Ulvskov 2010). However, the number of hemicelluloses, the variety of 

individual structures, and the dynamic modifications that they can undergo, are 
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indicative of a range of specific roles in cell wall matrices during cell wall formation 

and development.  

Endosperm cells walls perform several distinct roles during grain development. In 

the early stages of grain development (4-12 DAA) they must be synthesised rapidly 

to allow grain expansion. Hydration level must also be regulated; allowing cell-to-cell 

exchange of soluble assimilates. Furthermore, their mechanical properties must 

match the changing biological conditions within the grain, by displaying sufficient 

flexibility and strength to accommodate grain expansion and subsequent 

desiccation. Finally, it has been postulated that cell walls may play a role in seed 

dormancy and germination, by acting both as a regulator of grain hydration and 

possibly as a secondary store of readily accessible carbohydrate for the germinating 

seedling. (Finch-Savage and Leubner-Metzger 2006).  

By replacing most of the rigid and indigestible cellulose microfibils with simpler 

hemicellulosic polysaccharides, the cell walls of cereals may be able to respond 

more rapidly and efficiently to the changes occurring within the developing grain. 

AX deposition in the endosperm cell walls of rice follows the well characterised 

deposition pattern in wheat (Philippe et al 2006b) with the first evidence of its 

deposition coinciding with the cessation of the most rapid phase of grain expansion: 

as observed by labelling with the LM11 antibody at about 12 DAA in wheat (Gao et 

al. 1992; Shewry et al. 2012) and 8 DAA in rice (Hoshikawa 1973). However, 

previous studies of developing barley grain have shown that pre-treatment of 

sections with 𝛼-arabinofuranosidase to cleave arabinan side chains from the xylan 

back bone permits detection by LM11 from as early as 5 DAA (end of cellularisation) 

suggesting that a heavily substituted form of AX is initially deposited which cannot 

be recognised by this antibody without specific pretreatment (Wilson et al. 2006; 

Wilson et al. 2012). This would also be supported by reports of a steady decrease in 

AX substitution level in the course of wheat grain development (Toole et al. 2009). 

Rice endosperm appears to show a similar early deposition of AX that is detectable 

only after the use of arabinofuranosidase. In rice the AX also contains glucuronosyl 

substitutions as the LM28 epitope is detected at 4 DAA, significantly earlier than the 

INRA-AX1 epitope that is less sensitive for heavily substituted AX. Glucuronosyl 

substitutions of AX have been reported to be present in the pericarp and seed coat 

tissues of wheat (Fincher and Stone 2004). This study has demonstrated that the 

LM28 GUX epitope is only present in the maternal tissues of the wheat grain 

throughout development. This contrasts with rice, where the LM28 epitope was 

detected in both maternal and endosperm tissues at all stages of development, 
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although the precise pattern and intensity of labelling differed depending upon the 

developmental stage; suggesting a clear difference between the structure of AX in 

wheat and rice endosperm. Strong labelling by the LM12 and LM28 antibodies 

allows discrimination of the rice aleurone cells from the other endosperm cells from 

8 DAA, significantly earlier than with other cell wall antibodies or microscopy stains. 

This suggests that accumulation of glucuronosyl and ferulic substitutions are some 

of the earliest detectable changes in the differentiation of rice aleurone cells. Little to 

no AX can be detected in these cells at 8 DAA with INRA AX-1, suggesting that 

glucuronosyl substitutions may interfere with AX detection with INRA AX-1 or that 

the AX is very heavily substituted. MLG is also deposited by 6 DAA in both wheat 

and rice with similar proportions being present at maturity in both species (~23 and 

25% respectively). Whilst barley displays a much larger proportion of MLG at ~70-

80%, deposition of this polysaccharide is also reported to occur slightly later than 

AX which is also reported in wheat (Wilson et al. 2006) and rice ((Palmer et al. 

2015). The aleurone and nucellar epidermis showed a clear difference in MLG 

detection between wheat and rice, with MLG being undetectable during early 

development in rice (up to 20 DAA), although by 28 DAA the MLG epitope was 

strongly detected in the aleurone cells. Wheat behaves comparably with barley 

(Wilson et al. 2006; Wilson et al. 2012), with these tissues exhibiting clear labelling 

at all stages from 8 DAA. These differences in MLG detection may reflect the 

different assimilate transport pathway in rice where assimilate exchange from the 

vascular bundle to the endosperm cells is partially a circumferential process through 

the nucellar projection and aleurone (Oparka and Gates 1981a, b). By contrast, in 

wheat and barley all assimilates flow from the vascular bundle through the nucellar 

projection to diffuse into the endosperm. An important role of MLG in cell expansion 

of maize coleoptiles (Carpita 1984; Carpita et al. 2001) and root cells (Kozlova et al. 

2012) has also been reported, perhaps indicating some grain expansion may be 

occurring in these cellular locations. 

 

4.3.2 Xyloglucan is detected in the anticlinal cell walls of cellularising 

endosperm in wheat and rice. 

In addition to callose, xyloglucan was present in the cell wall ingrowths in the 

syncytium, with the LM25 xyloglucan epitope being detected readily in both wheat 

and barley. Whilst Pellny et al. (2012) reported the presence of transcripts for 

xyloglucan synthase and immunodetection of xyloglucan in the developing 
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endosperm, xyloglucan has not been reported as a component of mature wheat 

endosperm. The transient detection of xyloglucan in cellularising endosperm is 

consistent with that reported in barley (Wilson et al. 2012) suggesting that there may 

be a conserved mechanism among grasses for the transition from a syncytial state 

to the cellularised endosperm. Although, no LM25 epitope was detected in the 

cellularising endosperm of rice, but since no other xyloglucan antibodies were used, 

the apparent absence may be due to a different xyloglucan structure being present. 

It is possible that xyloglucan may regulate the deposition of callose, in a similar way 

to how it regulates the deposition of cellulose fibrils (Zhou et al. 2007).  

 

Glucomannan is a well-established component of wheat endosperm cell walls 

(Mares and Stone 1973b; Pellny et al. 2012) and its presence represents a 

distinctive difference with rice endosperm where glucomannan has not been 

observed by biochemical analysis or immunodetection, but for which mannose has 

been reported by monosaccharide analysis (Lai et al. 2007). The basis for these 

differences in cell wall polysaccharide composition between the two species will 

become clearer with increased understanding of the specific functions and 

properties of the matrix polymers. 

 

4.3.3 Pectic polysaccharide structure during grain development 

The pectic set of polysaccharides are a diverse and complex set of polymers 

containing domains of HG and RG-I and RG-II (Caffall and Mohnen 2009; Burton et 

al. 2010a), and are hypothesised to require around 50 unique glycosyl transferases 

to facilitate their construction, with Arabidopsis thaliana containing significant 

redundancy with almost 300 pectic glycosyl  transferases in it genome. In 

comparison, the hemicelluloses appear simple and readily understood. 

The presence of pectic polysaccharides in the cell walls of the rice was predicted by 

previous monosaccharide analyses, however the abundance and distribution is 

unique within the endosperm of the common cereal species, with all other species 

examined showing barely detectable levels of pectin (<2%) whilst rice endosperm 

walls are reported to contain 25% pectin. Unexpectedly, given the large proportion 

of pectin within the cell wall, no HG was detected in rice endosperm prior to 28 DAA, 

and then the only low esterified HG LM19 epitope. Maternal tissue at all stages 

displayed a combination of both the LM19 and JIM7 epitopes, which represent 
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partially methyl esterified HG. The JIM7 epitope was more evident in the epidermis, 

nucellar epidermis and vessels of the phloem and xylem, whereas the LM19 epitope 

was more widely distributed although the tissue of the vascular bundle region was 

more heavily labelled than surrounding tissues. In the context of HG biosynthesis, 

these are significant observations as HG is reported to be synthesised in a methyl-

esterified form and then subjected to enzymatic de-esterification in muro (Atmodjo et 

al. 2013). A recent study (Chateigner-Boutin et al. 2014) reported that the enzymatic 

removal of MLG and AX allowed the detection of the highly methyl esterified HG 

epitope LM20 in wheat endosperm cell walls, confirming the presence of pectic HG, 

as previously suggested by the expression of GAUT genes transcripts in wheat 

endosperm; GAUT genes encode enzymes synthesising the HG backbone (Pellny 

et al. 2012).  

4.3.4 LX unmasking of pectic polysaccharides during grain 

development.  

Unmasking using lichenase and xylanase treatments in tandem following the 

method described by Chateigner-Boutin et al (2014) showed that homogalacturonan 

epitopes in both wheat and rice are masked by the presence of both arabinoxylan 

and MLG, with minimal unmasking being seen when either xylanase or lichenase 

are used as isolated treatments. Wheat to show cultivar specific methylation of the 

HG present, with LM20 being the major epitope detected in cv.Recital and a mixture 

of JIM7 and LM19 being seen in the endosperm cell walls of cv.Cadenza at similar 

developmental stages. Differences in AX substitution level have also been reported 

across a range of wheat cultivars in the Healthgrain diversity screen by (Toole et al. 

2011), similar differences were observed with HG esterification levels. In rice, the 

only HG epitope detected prior to unmasking was the LM19 low methyl esterified 

epitope, but after unmasking both JIM7 and LM20 moderate and highly methyl 

esterified HG epitopes were widespread in almost all rice grain tissues, notably 

throughout the endosperm cells. This suggests that a wide range of methyl 

esterification states is present in the rice endosperm cell walls, and that the more 

highly methyl esterified regions of HG may be more tightly associated with AX or 

MLG.  

The RG-I domains of pectic polysaccharides are highly heterogeneous, differing in 

the length of backbone chains, and the presence of numerous arabinan or galactan 

side chains of varying length and degree of branching. Surprisingly, epitopes 

directed towards the side chains of RG-I (LM5 - galactan and LM6 - arabinan) were 
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detected prior to any detection of the RG-I backbone epitope during grain 

development of both species. LM5 has not been shown to cross react with any other 

cell wall polysaccharide, but LM6 is known to cross react with AGP in some 

circumstances, so detection of LM6 at these stages may occur due to AGP, 

although LM5 galactan is indicative of RG-1 presence at these stages. Detection of 

the backbone itself in the earliest stages of development has remained elusive, 

perhaps because  of masking by another cell wall polymer; alternatively structurally 

distinct side chains linked to an acidic backbone may be present, or perhaps INRA-

RU1 is unable to bind to the RG-I back bone if heavily substituted. Unfortunately no 

competitive inhibition ELISA information was published on heavily substituted RG-I 

due to the difficulties in synthesising such complex molecules. Enzymatic 

deconstruction by Chateigner-Boutin et al. (2014) detected RG-I using the INRA-

RU1 antibody from 11 DAA in wheat, suggesting that at least a partial masking may 

occur. Both scenarios point to dynamic remodelling of RG-I polymers during grain 

development and reinforce current views of the role of RG-I in the generation and 

modulation of cell wall mechanical properties (Caffall and Mohnen 2009). In cv. 

Cadenza RU1 epitopes were detected from 12 DAA with unmasking, and was seen 

to label more strongly than prior to unmasking at all subsequent developmental 

stages in the endosperm cell walls. 

The LM5 galactan epitope was detected only in rice endosperm, from cellularisation, 

and was observed to become progressively more restricted to the two or three 

outermost cell layers of starchy endosperm cells, and aleurone and sub-aleurone as 

development progresses. The cells labelled by LM5 are most likely to be exhibiting 

the highest rates of cell expansion, supporting a role for galactan side chains in cell 

elongation, which has previously been reported in the Arabidopsis root (McCartney 

et al. 2003). No changes were seen in the distribution of LM5 labelling after LX 

unmasking, suggesting that the no masking of pectic galactan occurred in the inner 

endosperm cell walls. By contrast, the LM6 linear arabinan epitope was widely 

detected in the starchy endosperm of both species, albeit only up to 8 DAA in 

wheat, again coinciding with a phase of rapid cell expansion. Detection with LM6 

persisted throughout development in rice. The arabinan side chain of pectin has 

been implicated in drought resistance in resurrection plants (Moore et al. 2008a) via 

regulation of the hydration state and water retention capacity of cell walls. A similar 

role may occur in the expanding endosperms of wheat and rice, regulating wall 

flexibility to allow for cellular expansion and tolerance of desiccation. Additionally, 

the LM6 epitope was detected at the inner face of the cell wall/ internal cell 
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organelles (Fig 5.10 l) after 20 DAA; here the epitope may represent linear arabinan 

chains in arabinogalactan-proteins (AGPs) (Lee et al. 2005) rather than RG-I.    

 

4.3.5 Conclusion  

 

The high level of sensitivity provided by mAbs allows the determination of the 

developmental dynamics of minor cell wall components, which are likely to provide 

important modifications to the structures and properties of cell walls. The near 

synchronous deposition of AX, MLG and callose in analogous cellular locations in 

wheat and rice implicates a role for these polymers in specific developmental 

stages, namely cellularisation for callose, and cell differentiation for AX and MLG. 

Xyloglucan can also now be included as a cell wall component at cellularisation. In 

comparative terms, glucomannan is a distinctive feature of wheat endosperm cell 

walls whilst pectic galactan and glucoronosylated arabinoxylan appear distinctive of 

rice endosperm cell walls. Pectic polysaccharides, notably RG-I, may play important 

roles in maintaining cell wall integrity during the rapid cell expansion in the grain 

after the termination of cellularisation.  

 

 



164 
 

 CHAPTER 5: ARABINOGALACTAN PROTEINS: A CELL WALL 

COMPONENT? 

5.1 Introduction 

Arabinogalactan-proteins are a large family of highly glycosylated hydroxyproline-

rich glycoproteins expressed throughout the plant kingdom and have been found in 

leaves, stems, roots, floral parts and seeds (Fincher and Stone 1974; Fincher et al. 

1983; Nothnagel 1997). Arabinogalactans proteins have been attributed a wide 

range of functions, from developmental regulation, cell adhesion, and wound 

healing, to salt and drought tolerance (Showalter 2001; Van Hengel et al. 2002; 

Brownlee 2002; Johnson et al. 2003; Mashiguchi et al. 2004; Lamport et al. 2006; 

Ellis et al. 2010).  

They were originally isolated from the aqueous growth medium of Anogeissus 

leiocarpus cell culture and characterized as arabinogalactan polysaccharides 

(Aspinall and Carlyle 1969; Aspinall et al. 1969; Aspinall and McNab 1969). 

Subsequently it has been shown that they contain a protein core that is heavily 

glycosylated (typically 90-95% of the total structure) on numerous hydroxyproline 

residues (Fincher et al. 1983). Classical arabinogalactan proteins are very large 

molecules (up to 120 kD) containing a protein core, which can range from 87-739 

amino acids in length (Zhao et al. 2002; Showalter et al. 2010). This protein core is 

rich in hydroxyproline, alanine and serine and is generally deficient in tyrosine, 

phenylalanine, tryptophan and cysteine. The hydroxyproline residues are typically 

decorated with arabinogalactan (AG) modules which are currently thought to be 

composed of a β-(1-3)-linked galactopyranosyl backbone chains which in turn have -

(1-6)-linked galactopyranosyl side chains which can display a large range of length. 

Both the side chains and backbone can be decorated with single arabinofuranosyl 

substitutions at the O-3 position and the side chains can in turn be decorated with 

single arabinopyranosyl residues at the O-3 position (fig. 6.1). AG modules typically 

contain somewhere in the region of 100-120 sugar residues. And often represent 

80-90% of the molecular weight of classical arabinogalactan proteins. In classical 

wheat arabinogalactan proteins the AG structure is reported to differ from the 

generic structure, as the β-1-6 galactan side chains may be additionally decorated 
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by arabinopyranosyl residues on the arabinofuranosyl residues substitutions 

present. These side chains also appear to contain glucuronic acid residues at the 

non-reducing termini (figure 6.1, (Tryfona et al. 2010)) 

In contrast to the relatively large protein cores of classical arabinogalactan proteins, 

arabinogalactan peptides (AGPs) contain a small relatively homologous peptide 

core of 15-25 amino acids in length. In cereals a 15 amino acid core containing 3 

hydroxyproline residues is conserved (Wilkinson et al. 2013). These hyroxyproline 

resides are the sites for O-glycosylation with AG modules. The 15 amino acid 

peptide core is identical to the N-terminal pro peptide sequence of the grain softness 

protein GSP-1, and thus is thought to be a processing product of GSP-1.The 

relationship between these AGPs and GSP was demonstrated by Van den Bulck et 

al. (2005) Both AG proteins and AGPs are proteolysis resistant, which is thought to 

result from the substantial carbohydrate network that surrounds the protein or 

peptide core. 
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Fig 5.1. Proposed model of the many possible structures of the carbohydrate 

component of wheat AGPs. Modified from Tryfona et al. (2010). 

AG proteins have long been thought of as a potential cell wall components, largely 

due to the significant presence of cell wall polysaccharides, which are related to cell 

wall components in their structure. However, AG proteins are widely heterogeneous 

in their structure and a recently published work reviewing known AG proteins 

suggests that the majority of AG proteins (~80%) are likely to be found at the cell 

membrane rather than in the cell wall (Lamport et al. 2014).  

Wheat endosperm AGPs are estimated to be present at a similar level, ~0.4% dry 

weight, as water-extractable cell wall arabinoxylan. It has also been shown to be 

present in other cultivated members of the Triticeae tribe e.g. barley (0.28%), rye 

(0.21%), durum wheat (0.28%) and triticale (0.32%) (Van den Bulck et al. 2005). 
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The biological roles and locations of GSP and wheat AGPs remain unknown, 

although they are often assumed to be present in the cell wall due to the large highly 

branched coat of arabinogalactan structures.  GSP has been proposed to affect 

grain hardness phenotype in wheat grains, but this has not been proved. 

 

Fig 5.2. Consensus sequence of wheat arabinogalactan peptide across 

different wheat cultivars, as displayed with the Berkley logo software. 

Modified from Wilkinson et al. (2013). 

Both AG proteins and AGPs can be isolated by the use of β-glucosyl Yariv reagent 

(1,3,5-tris(4-β-D-glcopyranosyloxyphenylazo)-2,4,6-trihydroxybenzene). This has 

been shown to be effective at precipitating the AG Proteins from a solution, 

however, the precise mechanism behind this remains unknown, (Yariv et al. 1962; 

Kitazawa et al. 2013) and some recently discovered AG peptide complexes, such as 

APAP-1 (Tan et al. 2013) cannot be isolated by this method. 

5.2 Results 

 

The cellular location of wheat AGPs has long been discussed in the literature, often 

in the context of them being cell wall proteins. However, no evidence has ever been 

provided for this. Exploiting wheat GSP RNAi lines produced by Dr Mark Wilkinson 

at Rothamsted Research and the two recently developed wheat AG peptide specific 

monoclonal antibodies (LM30 and 2H5/E4) (Wilkinson et al, in preparation), 

immunofluorescence was analyses were conducted to determine the location of 

GSP/AGP in the developing wheat endosperm. The AGP antibodies were 

monoclonal antibodies raised specifically to AG peptide from wheat cv. Cadenza, 

which was extracted by Dr Alison Lovegrove (Rothamsted Research) using the 

method of Loosveld et al. (1997). These antibodies were pre-screened by direct 

ELISA and subsequently by western immunoblots against wheat flour preparations 
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to select those with the highest binding affinities to the water extracted wheat flour 

AGP (Wilkinson et al, in preparation). Wheat caryopses were collected from both 

null and RNAi transgenic lines at 8, 12 and 15 DAA, and were fixed and embedded 

prior to sectioning and labelling with the monoclonal antibodies. Comparison of the 

null and transgenic RNAi lines, which achieved a ~50% knockdown of GSP-1 when 

expressed under the control of the endosperm-specific high-molecular-weight 

glutenin-subunit (HMW-GS) promoter, should provide valuable insight into the 

dynamics as well as the localisation of the AG peptide within developing wheat 

grains. Previous immunofluorescence studies have been conducted using existing 

AG protein mAbs (LM2, MAC207, JIM13 and JIM16) in carrot root tip and 

arabidopsis pollen tube cells which produced both intracellular and membrane 

labelling patterns but provided no evidence for AG proteins as a cell wall matrix 

component. The binding pattern of these existing AG protein mAbs were compared 

with the newly produced wheat specific LM30 and 2H5/E4 antibodies to determine 

the specificity of antibody binding. it was decided to compare the antibodies directed 

to classical AG proteins as they are more likely to recognise the carbohydrate AG 

modules which make up more than 90% of the total, rather than the inaccessible 

protein or peptide cores. 

5.2.1 Production of mAbs to water extractable wheat AGPs. 

A range of monoclonal antibodies were produced by Susan Marcus at the University 

of Leeds, using wheat cadenza AGP isolated by Alison Lovegrove in Rothamsted 

Research using the method of Loosveld et al. (1997). Two monoclonal antibodies, 

LM30 and 2H5/E4 were selected based on having the strongest binding to wheat 

AG peptide in ELISA analysis (data not shown). Further analysis with western blot 

analysis to compare binding of LM30 and LM2 to wheat AGP demonstrated a similar 

binding pattern with a weaker band seen at around 48 kD in both mAb binding 

patterns, however upon the addition of arabinofuranosidase a clear difference in the 

binding sensitivity between the antibodies was seen, with little or no effect on 

binding of LM2, whereas LM30 binding was almost completely abolished (fig 5.3 A). 

This suggests that LM30 likely binds to an arabinose chains of the AG structure.  

The sensitivity of LM30 binding was was further analysed with ELISA, which showed 

that treatment with arabinofuranosidase (Megazyme, E-AFASE) removes almost all 

binding at a concentration of 0.4 μg/ml while a family 51 (GH51) 

arabinofuranosidase also reduced, LM30 binding to AGP but requires nearly 20 

μg/ml to reach a similar reduction (Figure 5.3 B). Almost no binding was observed to 

other commercially available AG protein preparations including larch 
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arabinogalactan, acacia gum Arabic and sugar beet arabinan, indicating that the 

epitope recognise on wheat AGP does not exist in these other arabinogalactan or 

linear arabinan fractions (Figure 5.3 B). All LM30 characterisation was carried out by 

Sue Marcus at the University of Leeds. 

 

Fig 5.3.    Analysis of LM30 binding to wheat grain AGP. A. Western blot of 

LM30 binding to wheat grain AGP (loaded on to SDS-PAGE gel at 15 μg/lane) 

and sensitivity to an arabinofuranosidase (Arabfase) used at 10 μg/ml prior to 

loading. For comparison the LM2 AG protein antibody binds weakly to the 

wheat grain AGP (loaded on to SDS-PAGE gel at 30 μg/lane) and binding was 

unaffected by Arabfase. Ladder shows molecular weight markers in kDa. B. 

ELISA of LM30 binding to wheat grain AGP at 10 μg/ml and sensitivity to 

Megazyme arabinofuranosidase (Arabfase) and a family 51 
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arabinofuranosidase (GH51) used at indicated concentrations in microtitre 

plate wells prior to probing with LM30. LM30 binding was removed by 

arabinofuranosidase action on wheat-AGP. LM30 showed no binding to larch 

arabinogalactan (LAG), Acacia sp. gum Arabic (AGA) or sugar beet arabinan 

(SBA) all coated on to microtitre plate wells 50 μg/ml). Standard deviation of 

absorbance <0.01 units in all cases. Kindly conducted and supplied by Sue 

Marcus.   

 

5.2.2 Immunolabeling of paraformaldehyde fixed sections. 

Two mAb lines were selected based on reactions with an aqueous extract of wheat 

cv. Cadenza flour using ELISA and immunoblotting data from Sue Marcus. The two 

antibodies were given the designations LM30 and 2H5/E4, based on the strength of 

their reactivity against a simple aqueous extract of wheat cv. Cadenza flour. Thin 

sections of resin-embedded 8 and 12 DAA wheat grains fixed using a 

paraformaldehyde:glutaraldehyde solution were probed with mAbs LM30 and 

2H5/E4 in order to locate the AGPs. Both antibodies gave consistent labelling, with 

the epitopes being widely distributed in both maternal and starchy endosperm 

tissues (Fig 5.4). The nuclei showed the strongest labelling, however punctate 

labelling was also observed throughout the outer regions of endosperm cells and 

sometimes surrounding small intracellular objects, which appear to starch granules 

due to the characteristic refractive properties when visualised under brightfield 

microscopy. (Fig 5.4 b, d-f). The 8 DAA sections were labelled in the outer regions 

of the cells, and the starch granules in the maternal tissue were clearly labelled (Fig 

5.4 b, d). By 12 DAA, the intensity of the labelling was reduced in the maternal 

tissues and fewer starch granules were apparent, however these starch granules 

are known to be digested to provide additional assimilates for the developing 

endosperm (Fig 5.4 e, f). However, no protein bodies, Golgi bodies or vacuoles 

were labelled at either time point with either antibody.  
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Figure 5.4. Immunofluorescence labelling of AGPs with LM30 (C, D, F) and 

2H5/E4 (A, B, E) on paraformaldehyde fixed 1 μm thick medial transverse 

wheat grain sections at 8 DAA (A-D) and 12 DAA (E, F). Antibody labelling 

(green) showing the widespread distribution of epitope throughout the 

endosperm and maternal tissues, counterstained with calcoflour white to 

indicate cell walls (blue) where no colocalisation was detected. Arrowheads 

indicate nuclei labelling, SE = starchy endosperm, M = maternal pericarp, NE = 

nucellar epidermis, II = inner integument, VB = vascular bundle. Bars 250 μm 

(A, C), 100 μm (B, D-F). 

5.2.3 Comparison of different monoclonal antibody lines from the initial 

immunisation protocol.  

A selection of both available AG protein antibodies and other mAbs produced by the 

initial immunisation with wheat AGPs were used to probe the null segregant wheat 

grain sections fixed by HPF. HPF fixation was trialled as an alternative to 

paraformaldehyde fixation due to the unexpected antibody labelling seen in the 

paraformaldehyde fixed wheat sections. Further four antibodies from the initial AGP 
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immunisation procedure (4H8, 5C9, 7F3, 8E11) and four commercially available 

antibodies (JIM13, JIM16, LM2, MAC207) were also tested. The antibodies 4H8, 

5C9, 7F3 and 8E11 gave very similar patterns of localisation to that of the 2H5/E4 

and LM30 antibodies, however with significantly lower fluorescence intensities and 

were therefore imaged using slightly longer exposures (1000 ms) rather than the 

one used with 2H5/E4 and LM30 (500 ms). Subtle changes to the localisation 

pattern were also noted between the 6 wheat AGPs antibodies, with 7F3 and 8E11 

showing the lowest levels of labelling of the aleurone cells (Fig 5.7 C, D), and 8E11 

not labelling the integuments (Fig 5.7 D), unlike the other wheat AGPs antibodies. 

The characteristic labelling of the cell membrane was observed with all 6 wheat 

AGP antibodies (Fig 5.6, Fig 6.7 A-D). In contrast, when using JIM13 and MAC207 

antibodies no labelling of endosperm or aleurone cells was observed (Fig 5.7 E, F). 

Labelling was restricted to the maternal tissues with the strongest labelling detected 

in the cross-cells and integuments. However, the internal surface of aleurone cell 

wall and the maternal cells were labelled with LM2 (Fig 5.7 H). Differences in the 

labelling of epidermal cells were detected between LM2, JIM13 and MAC207; LM2 

and MAC207 labelled the cell membrane, whereas JIM13 labelled the outer surface 

of the epidermal cell walls. JIM16 exhibited a labelling pattern that partially 

mimicked that of the wheat AGP antibodies (Fig 5.7 G), with a clear labelling of the 

cell membrane area of most endosperm cells and the aleurone cells, but the 

labelling was very weak (requiring exposures of ~2000 ms to produce an 

appropriate micrograph), and did not include the intracellular labelling visualised by 

2H5/E4 and LM30. 
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Figure 5.5. Immunofluorescence labelling of AGPs with 4H8 (A), 5C9 (B), 7F3 

(C), 8E11 (D), MAC207 (E), JIM13 (F), JIM16 (G) and LM2 (H) on high pressure 

frozen 1 μm thick medial transverse null segregant wheat grain sections at 15 

DAA (A-H). Micrograph G exposed for 2000 ms compared with 1000 ms in all 

other micrographs to demonstrate no weak intracellular labelling is detected. 

SE = starchy endosperm, ETC = endosperm transfer cells, Al = aleurone, I = 

integuments, E = epidermis. Bars 250 μm (A-H) . 



174 
 

5.2.4 Immunolabelling of gsp-1 RNAi Lines 

Monoclonal antibodies LM30 and 2H5/E4 were used to probe high pressure frozen 

(HPF) sections of RNAi seeds and their null segregants at 15 DAA. 

Paraformaldehyde fixation gave a very broad labelling pattern, and the labelling of 

nuclei and starch granules was unexpected, although GSP-1 has been reported to 

be associated with the surface of starch granules. Whilst the N-terminal 15 amino 

acids of GSP-1 is homologous to the amino acid sequence in wheat AG peptides, 

not other link between the two molecules has yet to be identified, although it is 

postulated that the AG peptide sequence is cleaved from the full length GSP-1 

sequence. High pressure freezing (HPF) has been reported to give superior fixation 

of labile cellular component in comparison to standard paraformaldehyde fixation in 

plant tissues (Kiss et al. 1990; Studer et al. 1992; Galway et al. 1993; Kaneko and 

Walther 1995). The immunofluorescence experiment was therefore repeated on 

HPF fixed sections to confirm the binding pattern. Labelling of null segregants with 

both antibodies in the HPF sections was virtually indistinguishable, and showing the 

epitopes to be located at the cell membrane of all cell types, however significant 

labelling was also detected intracellularly in the starchy endosperm cells (Fig 6.5). 

This intracellular labelling appears to be partially surrounding protein bodies and 

starch granules, and is more prominent towards the cell extremities, indicating that it 

is probably cytoplasmic labelling (Fig 6.5 E, G, H). However, unlike the 

paraformaldehyde-fixed sections no labelling was seen in the nuclei of any cell, and 

no co-localization could be detected when the sections were treated with propidium 

iodide (Fig 6.5 B, D) (a histochemical counterstain that labels double stranded DNA) 

(Jones and Kniss 1987).  
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Figure 5.6. Immunofluorescence labelling of AGPs with LM30 (A-H) on high 

pressure frozen 1 μm thick medial transverse wheat grain sections null 

segregants at 15 DAA (A-H). Micrograph D counterstained with propidium 
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iodide, Arrowheads indicate nuclei labelling with propidium iodide. 

Micrographs F-H counterstained with calcofluor 2mr (blue) to demonstrate no 

co-localization of the AGP epitope and the cell wall. SE = starchy endosperm, 

M = maternal pericarp, II = inner integument. Bars 250 μm (A, B), 100 μm (C-H). 

5.2.5 Immunolabelling of HPF fixed gsp-1 RNAi lines reveals labelling is 

restricted to the cell membrane. 

RNAi lines were kindly supplied by Mark Wilkinson. Caryopses were collected at 15 

DAA and fixed by high pressure freezing and sectioned by Paola Tosi. The HPF 

RNAi sections showed the same labelling at the cell membranes as the null 

segregants, however, the labelling appeared weaker and was not always continuous 

around each cell (Fig 6.6). Conversely, no cytoplasmic labelling could be detected 

with either LM30 or 2H5/E4 labelling in the RNAi sections, even with much longer 

exposure settings (1500 ms compared to 500 ms, Fig 6.6 D), suggesting that the 

~50% reduction in AGPs reported by HNMR in the RNAi lines (data not shown) may 

represent removal of the cytosolic AGPs component.  
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Figure 5.7. Immunofluorescence labelling of AGPs with LM30 (A-H) on high 

pressure frozen 1 μm thick medial transverse RNAi gsp-1 wheat grain 

sections at 15 DAA (A-H). Micrograph D exposed for 1500 ms compared with 

500 ms in all other micrographs to demonstrate no weak intracellular labelling 

is detected. Micrographs F-H counterstained with Calcofluor 2mr (blue) to 
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demonstrate no co-localization of the AGP epitope (green) and the cell wall. 

SE = starchy endosperm, ETC = endosperm transfer cells, Al = aleurone, NP = 

nucellar projection, PB = protein body. Bars 250 μm (A), 100 μm (B-H) . 

 

5.3 Discussion 

AG peptides have long been considered to be constituent elements of plant cell 

surfaces and particularly as elements of the cell wall matrix, due largely to their 

characteristic molecular structure, with large levels of O-glycosylation of the central 

peptide chain. However, immunolabelling work carried out as part of this thesis on 

wheat grain sections prepared by HPF and using monoclonal antibodies raised 

specifically to wheat flour AGP demonstrates that, at least in wheat, this is not the 

case: the AG peptide is not associated with cell walls. The AGPs was widely 

distributed throughout all endosperm cells in developing wheat grains, with two 

particular locations being evident. Firstly at the cell membrane/ cell wall face, with 

no co-localisation being observed with the cell wall structure, visualised using a β-

glycan stain (Calcofluor White 2mr), and secondly a strong intracellular location, 

which appears to be cytoplasmic. The cytoplasmic localisation appears to be 

sensitive to the RNAi knockdown of the gsp-1 gene in wheat grains, with no labelling 

at this location being visualised in the RNAi sections. It is unclear at present how or 

why AGPs are localised to the membrane, as there are no known GPI anchors, 

unlike in several wheat and rice arabinogalactan proteins, and no known functions 

for it have been postulated for this location. GPI anchors are common cell 

membrane attachment domains in membrane bound proteins, and have commonly 

been reported in classical AG proteins, It is also possible that these AGP moleucles 

are associated with other membrane bound proteins. The resistance of the labelling 

to RNAi knockdown may be in part due to the promoter selected for RNAi line, an 

HMW-GS promoter that is known to be expressed from about 8-12 DAA and has is 

expressed more strongly in the central regions of the endosperm. It is possible that 

synthesis of the AGPs may begin prior to the activation of the RNAi transcript, with 

the labelling in cell membrane representing AGPs in its final location while further 

AGP expression is reduced by the RNAi transcript. AGPs are known to undergo 

post-translational glycosylation in the Golgi apparatus, and the glycan is likely to be 

further modified in the vacuole. It remains possible that some of the small punctate 

labelling visualised in the intracellular labelling may represent very small vacuoles, 

which have been reported to be numerous in developing wheat endosperm cells. 
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Unlike the full length GSP (which may also be affected by the RNAi transcript) there 

is no  evidence from binding patterns to support AGPs affecting grain hardness 

through interaction with starch granules in the starchy endosperm. However the 

labelling of maternal pericarp starch granules was observed in the 8 and 12 DAA 

paraformaldehyde fixed sections and requires repeating in HPF fixed sections to 

identify if this also an artefact of the fixation protocol. Given the significant amount of 

AGPs present in mature wheat grains 0.4 mg/g (which is similar to wheat soluble AX 

content) it is probable that it plays a significant role. Reports that arabinan and 

galactan chains regulate flexibility and hydration state in the pectic structures of 

resurrection plants (Moore et al. 2008a; Moore et al. 2013), suggest that the broad 

network of arabinan side chains extending from the AGPs may be able to act 

similarly, with the whole molecule acting as an osmoregulator molecule modulating 

grain desiccation and dormancy prior to grain germination. However, AGPs could 

also act as a part of a calcium signalling cascade at the cell membrane as proposed 

by Lamport et al. (2014) for classical AG proteins, or simply as a form of storage 

carbohydrate that is easily digestible during germination.  
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 CHAPTER 6: DISCUSSION 

This project has determined the morphological and compositional changes in the 

developing cell walls of wheat and rice grains, showing that mAbs directed to cell 

wall epitopes can provide detailed spatial and temporal information about the 

location and modification of the major components. Monoclonal antibodies allow for 

relatively high resolution and highly specific detection of epitopes within a sample 

material and can detect the presence or absence of an epitope. The wide array of 

available monoclonal antibodies provides tools to detect almost the whole range of 

cell wall polysaccharides, which allows for very sensitive analysis of cell wall 

dynamics and the assessment of the structural heterogeneity within a single cell 

wall. Grain development in both species follows 4 phases, and the changing 

biological processes at these different phases require changes to the overall 

composition of the cell walls, both in terms of monosaccharide content and in terms 

of specific structures as detected by mAbs. The combination of chemical and 

immunochemical studies of the cell walls in two different grain species across 

development shows that the major components of endosperm cell walls are 

deposited in the same order and that this agrees with previous reports of developing 

barley grains. However, it also provides novel details about the microstructure of the 

cell walls, and through the use of enzymatic unmasking, novel insights into the 

structure and distribution of pectin within both grains. AX and MLG are major 

components of grain cell walls in both species and appear to be deposited and 

regulated in a similar manner, with pectin and cellulose making up significant 

proportions of the rest of the cell wall. However the starchy endosperm cells of both 

species appear to contain polysaccharides, which are not present in the other 

species, wheat endosperm is rich in a mannan epitope whilst glucuronoxylan and 

pectic galactan are widely detected in rice endosperms.  

Gradients of composition in cereal grains are widely reported in wheat, with AX 

substitution level, and protein distribution being clear examples. The work presented 

here shows that gradients in composition also occur in some cell wall components, 

(Toole et al. 2009; Toole et al. 2010), and that the deposition of protein bodies 

appears to be spatially regulated with more protein deposition occurring in the outer 

regions of the endosperm and sub-aleurone cells in wheat grains. AGPs have long 
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been considered to be cell wall components of cereal grains, however, the 

generation and use of mAbs to wheat AGPs has led to the conclusion that AGPs are 

likely to be a found in the cytoplasm or in the membrane/cell wall face in wheat. 

Whilst current reports show a synchronous pattern of grain development in both 

wheat and rice after cellularisation, the use of histochemical stains labelling proteins 

and starch shows that the accumulation of these storage components is not 

synchronous between the two species. Previous studies have examined developing 

grain of the two species in isolation; direct comparisons between equivalent 

developmental stages have not previously being available. Using CBB to stain 

protein deposits, it is clear that both species accumulate protein bodies in a manner 

comparable to that previously reported. Wheat protein bodies cannot be detected 

with light microscopy prior to 8 DAA whilst in rice, numerous protein bodies are 

detected at 6 DAA, showing an earlier initiation of protein deposition in rice 

compared to wheat, however, by 12-14 DAA comparable numbers of protein bodies 

are seen in both species and this persists until maturity. A clear gradient in protein 

deposition can be seen from the earliest stages of protein deposition, with the outer 

regions of the endosperm and putative sub aleurone cells showing the greatest 

concentration of protein while the inner endosperm regions accumulate comparably 

little protein. This pattern is maintained in both species throughout development, but 

the transition from high to low protein content is more pronounced in rice grains 

where a sharp decline in protein content is seen after only a few of endosperm cell 

layers as reported by Ohdaira et al. (2011). Conversely starch content is higher in 

the central region of the endosperm and lower in the sub aleurone cells, with rice 

producing dense starch deposits in the central regions from 6 DAA, whereas 

relatively sparse starch deposits are detected in wheat until after 12 DAA.  These 

differences show that whilst the same patterns of storage product localisation are 

occurring in both species there is asynchrony in the relationship of deposition to the 

developmental phase of the grain between the two species. 

 

Determination of the monosaccharide composition of the cell walls of developing 

wheat and rice grains at 5 key stages, showed clear transitions in all non-glucosic 

polysaccharides between each developmental stage producing 4 phases of cell wall 

deposition within both wheat and rice grains, which occurred synchronously 

between both species.  The 4 phases can be described as a two phases of high 

rates of cell wall deposition (phases 1 and 3; at least doubling the monosaccharide 

content, which coincide with known phases of rapid cell division or grain expansion 
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in both species) interspersed by periods of more moderate cell wall deposition 

(phases 2 and 4; up to 50% increases in monosaccharide contents but small 

declines in some monosaccharides, which coincide with periods of very little grain 

expansion or cell division and re-differentiation). During phases 2 and 4, greater 

variation occurs between monosaccharides with some components showing 

moderate rates of accumulation (as summarised in Tables 3.14 and 3.15). These 

differences are probably due to modulation of cell wall properties to adapt to the 

changing biological requirements within the grain, for example continued deposition 

of rhamnose and fucose and galactose in phase 4 are likely to reflect increased 

pectin content and in particular pectic RG, which has been implicated in generating 

cell wall plasticity and modulating cell wall hydration state (Moore et al. 2008a; 

Moore et al. 2013). The changes in phases phase 2 and 4 may give interesting 

insights into the in muro characteristics of cell wall polysaccharides, which still 

remain relatively obscure. However, the preparation and analysis of tissue-specific 

monosaccharide preparations rather than the wholegrain analyses presented here 

may give significantly different results due to the ratios of tissues differing markedly 

between developmental stages. However, at 28 DAA most of cell wall 

monosaccharides will be derived from endosperm tissue.  

 

Prior to phase 1, cellularisation in cereal endosperms generates the first round of 

endosperm cells. Xyloglucan has previously been reported as a key polysaccharide 

in the cell wall extension during cellularisation in barley by detection with 

monoclonal antibodies and also in angiosperm cell plates (Rodkiewicz 1970; Wilson 

et al. 2012). LM25 binding was seen in both wheat and rice anticlinal cell wall 

extensions, confirming the presence of xyloglucan in the formation of the first cell 

walls during cellularisation. It is likely that cellulose or callose are also deposited in 

conjunction with the xyloglucan, although no callose was detected prior to the 

completion of cellularisation in wheat or barley (Wilson et al. 2012; Pellny et al. 

2012). Xyloglucan was only detected transiently at the earliest stages of grain 

development in both wheat and rice grains, with detection disappearing by 8 DAA. 

This transient detection may reflect its function in accelerating cell wall deposition 

and expansion through the cellulose network during the earliest stages of grain 

development as reported in A. thaliana stems (Kaida et al. 2010). 

The temporal pattern of cell wall deposition within both wheat and rice continued to 

align with that previously reported in barley (Wilson et al. 2012) with all three 

species showing xyloglucan and callose as the first polysaccharides detected during 



183 
 

cellularisation followed by arabinoxylan epitopes shortly after the completion of 

cellularisation and subsequently MLG is first detected between the completion of 

cellularisation and 2 days afterwards (4-6 DAA in wheat and rice grains). This 

conserved sequence of cell wall polysaccharide deposition despite the vastly 

different final cell wall compositions suggests that a conserved sequence exists 

between these 3 species and that it may extend to all cereal grains. If this is the 

case then it is highly likely that it is a process inherited from a mutual ancestor. 

 

Both cellulose and MLG displayed significantly different patterns of deposition to the 

four-phase pattern described above. MLG concentration decreased dramatically 

throughout development in both species. This indicates that the maternal tissues 

surrounding the grain are likely to be highly enriched with MLG and that the decline 

in content can at least in part be attributed to the loss and degradation of these 

tissues during development. Moreover, the rapid expansion of grain weight and 

relatively small increase in cell wall content generates a significant dilution affecting 

the concentration of MLG detected in these samples. However, MLG content per 

grain increases steadily from 4-20 DAA in wheat showing that MLG deposition is still 

a significant part of endosperm development. Rice grains appear to exhibit very little 

change in total grain MLG throughout development which, taken with the 

increasingly strong labelling of MLG epitopes in the immunofluorescence 

experiments, suggests that the MLG deposition may occur at a similar rate to the 

loss of MLG from maternal tissues. MLG content in wholegrain wheat or rice 

caryopses has not been analysed during grain development before, so no 

comparison can be made to help explain this pattern.  

Cellulose also lacks the four-phase deposition pattern with the content of cellulose 

per grain increasing in a relatively linear fashion from 8-28 DAA in both species, 

however this occurred at a much faster rate in wheat than in rice. As both of these 

MLG and cellulose are likely to be very significant components of vegetative cereal 

tissue, their deposition pattern may be heavily affected by the concomitant loss of 

large amounts of maternal tissue and the growth of the embryonic axis (which is 

likely to have a vegetative tissue type of cell wall composition based on reports of 

rice (Shibuya et al. 1985)). 

 

The cell wall composition of the mature whole wheat and rice grains differ 

significantly, with wheat composed of around 75% AX and MLG (50 and 25% 
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respectively) and smaller components of cellulose (12%) and pectin (6%). Rice is 

also mainly composed of AX and MLG ~50%, but also contains large proportions of 

cellulose (23%) and pectin (~25%). It appears that wheat grains have a similar cell 

wall composition as rice grains, based both on the monosaccharide analyses and on 

the identical deposition patterns of AX, MLG, callose and xyloglucan detected 

through immunofluorescence studies (Chapter 5) in early cellularisation. The main 

differences in the cell walls of the two species appear to be a greater accumulation 

of AX in wheat grains with an increase from 32 to 52% (from 4-28 DAA) combined 

with lower levels of pectin and cellulose, whereas rice AX content increased from 

18-24% during the same period. These final cell wall compositions agree well with 

previously reported values for wheat and rice endosperm cell wall composition. 

However, no direct comparisons are available for whole grain analyses and greater 

differences were observed between the two data sets. This is due to the higher 

proportions of maternal and embryonic tissues in whole grain analyses, which are 

likely to contain higher MLG, cellulose and pectin levels than endosperm tissues 

(Shibuya et al. 1985; Antoine et al. 2003; Parker et al. 2005). 

Rice exhibits GUX epitopes widely throughout both maternal and endospermatic 

tissues at all stages of development after cellularisation, and detection of this 

epitope is consistently stronger and earlier than with xylan or arabinoxylan 

antibodies.  GUX epitopes were not detected in wheat endospermatic tissues at any 

stage, but were widely detected in maternal tissues at all stages.  This clear 

separation in the structure of a major cell wall polymer within the grains of both 

species shows pronounced differences of comparable cell walls within both species. 

Glucuronic acid monosaccharides were detected in both species, at all time points, 

however due to the wholegrain makeup of the samples analysed it was not possible 

to separate the endospermatic and maternal tissues, whereas by utilising LM28 

mAb it was possible to discriminate the two tissues and detect the presence of 

glucuronxylan epitopes in wheat maternal tissues only.  It may be possible that the 

much higher percentage composition of AX in wheat allows for greater 

strengthening of the cell wall through more ferulic dimerization compared to the 

GUX type of AX seen in rice grains, where structural rigidity may be generated by 

the significantly larger content of cellulose microfibrils present.   

 

Pectin has only recently been identified as a component of wheat endosperm cell 

walls through immunohistochemical studies utilising unmasking techniques. 

Through the use of monosaccharide analysis, wheat grain pectin can be quantified 
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to 5-6% and this percentage composition remains relatively unchanged in the wheat 

grain throughout development, suggesting that this level may be required to 

correctly form the middle lamellae between cell walls and to maintain cell to cell 

adhesion. Rice has long been reported to have significantly higher pectin contents, 

with previous reports of between 15 and 25 % of the endosperm cell wall (Shibuya 

et al. 1985; Lai et al. 2007).  In the earliest stages of grain development about 6% 

pectin is also determined, when mostly maternal tissues are present, but as 

endosperm development progresses this figure rises steadily to a peak of 23% at 

maturity, indicating that rice endosperm is highly enriched in pectin compared to 

wheat cell walls. The presence of pectin in both species is an important discovery, 

as pectin has yet to be reported in the endosperms of other cereal species, the 

focus of previous research being dominated by AX and MLG. The detection of 

pectin in other cereal species endosperms would strengthen the hypothesis that a 

small proportion of pectin is essential for correct assembly and function of the 

endosperm cell wall. 

Pectin was widely detected with mAbs in wheat and rice grains in all tissue types, 

however detection was only found in the later stages of grain development, prior to 

enzymatic unmasking of grain sections.  This correlates with the study of 

Chateigner-Boutin et al. (2014), which showed enhanced detection of RG-I and HG 

epitopes in wheat grains with a lichenase-xylanase double digestion of the cell wall. 

The methylesterification state of pectic homogalacturonan in cereal endosperms 

appears to be consistently regulated across the grain, although differing 

methlyesterification states were detected between Cv. Recital (Chateigner-Boutin et 

al. 2014) and Cv. Cadenza. The necessity to remove around 80-90% of the 

endosperm cell wall in order to visualise pectin at early stages of grain development, 

suggests that either very little pectin is present in wheat endosperm cell walls or that 

it is very closely spatially associated with other major cell wall polysaccharides 

rendering it inaccessible to relatively large mAb molecules.  

Significantly the RG-I of wheat grains appeared to lack galactan side chains (as 

detected by LM5) at any stage of development. Pectic galactan is detected clearly in 

developing rice endosperm, which diminishes in a sequential pattern from the 

central region first before extending to the outer regions by maturity. This pattern 

was not modified by the use of enzymatic unmasking and appears to correlate with 

the maturation and PCD of endosperm cells within the rice grain, implicating a role 

in cell expansion or regulation of cell wall plasticity.  
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The use of mAbs and enzymatic unmasking has revealed complex and dynamic 

processes of cell wall deposition within both wheat and rice grains, with significant 

similarities between the two species seen at key developmental stages despite very 

different cell wall compositions. Dynamics within each major polysaccharide can be 

seen with significant changes in the fine structure as indicated by epitope detection 

patterns.  

 

The location and function of AGP has long been hypothesised since its first 

discovery in wheat by Fincher and Stone (1974). Many studies have implicated it as 

a cell wall protein, likely embedded in the cell wall matrix with an unknown function 

(Fincher et al. 1983; Showalter 2001; Lamport et al. 2006; Ellis et al. 2010). Through 

the generation of specific monoclonal antibodies to wheat flour AGP extract it can 

be concluded that in wheat grains, AGPs are unlikely to be a cell wall component. 

However the partial cytosolic and cell membrane localisation pattern detected using 

LM30 and 2H5/E4 does continue to raise questions about the significance of AGP 

within cereal endosperms where in wheat it accounts for as much as 0.4% of the dry 

weight of mature grains (Loosveld et al. 1997). Several hypotheses have been 

raised in the past about the function of AGPs, with molecular roles as varied as cell 

wall proteins, to signalling molecules and storage media being presented. No known 

membrane bound anchor exists within wheat AGPs therefore interaction with the 

membrane is likely to be through a different method, perhaps via a protein-protein 

interaction. The AG modules attached to the peptide core confer water-solubility to 

AGP and thus their cytosolic type localisation is logical. It may be the case that the 

AGP directed mAbs are specific for an epitope in the AG coat of the module due to 

the loss of binding after α-arabinofuranosidase treatment. Whilst a high degree of 

specificity has been seen during the characterisation of these mAbs it may be the 

case that the epitope is present on other proteins in wheat, which may contain 

membrane anchors, and this would explain the loss of the cytosolic type labelling in 

the RNAi knockdown lines and minimal effect on the plasma membrane type 

labelling. Another potential explanation for the sole loss of cytosolic labelling in RNAi 

lines may be that the HMW-GS promoter used for the RNAi transcript only begins 

transcription around 7-8 DAA, therefore the cytosolic location maybe a temporary 

transport or modification location, prior to association with the plasma membrane, 

and some AGP may be produced prior to the activation of the RNAi transcript. The 

membrane bound localisation may also represent another membrane bound protein 

exhibiting the epitope recognised by LM30.  
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Immunofluorescence labelling with both LM30 and 2H5/E4 demonstrated that 

significant changes in the localisation pattern existed dependant upon the fixation 

method. The chemical fixation showed widespread distribution of the epitope in 

including surrounding starch granules and heavily labelling cell nuclei. This 

contrasts strongly with the membrane bound and cytosolic labelling seen in the HPF 

sections. It is likely that as chemical fixation is not instantaneous and does not 

preserve labile molecules as well as HPF that the changes in localisation patterns 

are due to imperfect preservation.  

Whilst the structure of AG modules has been studied for some time a definitive 

structure has yet to be identified (Tryfona et al. 2010). Using pre-existing AG protein 

mAbs several differing types of labelling patterns were seen within serial wheat 

grain sections, suggesting that different epitopes are being recognised between the 

different antibodies, and that depending upon the cell type these may be 

differentially regulated. For instance some of these antibodies were restricted to 

labelling maternal tissues with others restricted to endospermatic tissues, 

suggesting that classical AG proteins can be structurally different, with these 

differences probably occurring in the AG coat structure. The spatial regulation of AG 

proteins, which may contain different structural characteristics is a novel discovery 

and may indicate that they have slightly different roles within the grain.  

The role of AGPs and AG proteins still remains unknown, however the clarification 

of the wheat AGPs being localised to the cytoplasm and plasma membrane in 

developing wheat grains, may correlate with some of the previously proposed roles, 

such as signalling molecules, or as osmoregulators, however the plasma membrane 

localisation requires further investigation through the use of Immunogold 

transmission electron microscopy. Whilst Peter Shewry believes that some of the 

punctate cytoplasmic labelling may represent deposition many tiny vacuoles (which 

have previously been reported at this stage of grain development), as it has 

previously been suggested that some modification may occur in vacuoles. The large 

quantities produced within the developing wheat grain may also imply a storage 

product role, as the arabinan and galactan would be a readily transportable, 

digestible sugar source for the germinating embryo. 

 

6.1 Conclusions 

In conclusion, both wheat and rice grains present complex and dynamic processes 

of cell wall deposition, as revealed by our studies based on immunohistochemistry 
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with monoclonal antibodies raised against polysaccharide-specific epitopes and 

enzymatic unmasking. The mature grain of these two cereals present very different 

cell wall compositions, significant similarities between the two species could be 

observed in the pattern of deposition of their cell wall polysaccharides, which occurs 

according to a 4-phase pattern coinciding with the changing developmental and 

biological demands within the grain.  In particular a sequential pattern of 

polysaccharide deposition during cellularisation, previously reported in barley. By 

using newly developed mAbs against wheat AGP we were also able to establish 

that AGPs are not part of the cell wall matrix, as previously proposed; however 

additional analysis is required to conclude whether AGPs are cytosolic or plasma 

membrane bound. 
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