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Abstract 

Cyclical carbonate-evaporite successions provide an important record of 

palaeoenvironmental fluctuations in the geologic record. They also have significance as 

economic resources, either as a part of petroleum systems or as an industrial-scale 

source of halite and/or gypsum. Few basins with such carbonate-evaporite stratigraphic 

architectures have been studied in detail, the best known being the Zechstein Basin of 

north-central Europe and the Paradox Basin of the western United States of America. In 

this study, sedimentological and sequence stratigraphical investigations of the late Early 

Miocene deposits of the Fatha Formation at the periphery of the Zagros foreland basin, 

Kurdistan region, NE Iraq, were carried out. To achieve this, nine complete exposures 

of the Fatha Formation were logged and correlated across the study area. This was in 

order to determine depositional environments, a depositional model, and basin 

configuration, in addition to analyse sequence stratigraphic relationships, high-

frequency cyclicities, and to determine average cycle duration. Results are used to 

evaluate the mechanisms that originated the high-frequency cycles, and to compare their 

development with the well-developed high-frequency cycles of the Paradox Basin 

(Pennsylvanian-Permian) in the United States and the Zechstein Basin (late Permian) in 

north-central Europe.  

This study reveals a cyclical arrangement of carbonate-evaporite ramp cycles on the 

north-eastern margin of the Zagros Basin, each recording basinward progradation and a 

shallowing-upward trend from lower energy calcareous mudstone and mudstone-

wackestone carbonate microfacies at the base, to higher energy packstone-grainstone-

rudstone and/or low energy algal mat/stromatolitic carbonate facies at the top. Each 

carbonate unit is capped by evaporite deposits of supratidal sabkha origin. Red clastic 

sediments that advanced south-westward into the basin from the adjacent Zagros 

hinterland overlie each evaporite unit. The investigations reveal inner ramp facies of 

different environments that included normal marine salinity open lagoons, hypersaline 

lagoons, restricted and shallow lagoons, sand shoals, beaches, intertidal and supratidal 

flats, tidal flats, supratidal ponds. These are overlain by the sabkha deposits and above 

these a distal coastal alluvial coastal plain developed that included palaeosols and 

infrequent channel deposits. This south-westwards progradation of the red siliciclastic 

deposits into the Miocene Zagros foreland first occurred during deposition of the Fatha 
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Formation. This progradation and shoreline migration toward the basin caused thickness 

variation and both lateral and vertical facies changes.  

The late Early Miocene carbonate-evaporite cycles of the Fatha Formation display two 

superimposed orders of stratigraphic cyclicity and two different stacking patterns. 

Fourth-order parasequences (17-42 parasequences, each 5-13m thick in the lower part of 

the succession and 1-5m thick in the upper part of the succession, and have a mean 

periodicity of approximately 60,000 years. They are packaged into a third-order cycle of 

accommodation evolution, represented by the 50-300m total thickness and a duration of 

approximately 2.5 Myr. The fourth-order parasequences are composed of the 

shallowing-upward cycles, separated by flooding surfaces, that each grade up from 

more basinal carbonate mudstone facies into normal marine carbonates and then into 

intertidal and supratidal facies, sabkha evaporites and then into fluvial deposits. By 

using Fischer plot analyses, two different stacking patterns are recognized. The 

retrogradational set, comprising 10-20 thick cycles with thicknesses that are more than 

the average cycle thickness, onlaps a sequence boundary at the base of the succession 

and was deposited during a period of relatively high accommodation space generation 

and subsidence. In contrast, a progradational set, including 10-20 thinner cycles with 

thicknesses that are less than the average cycle thickness, prograded toward the SW of 

the basin and was deposited during decelerating accommodation creation and 

subsidence in the upper part of the succession. This systematic variation in thickness of 

fourth-order parasequences, characterised by this thickening upward followed by 

thinning upward trend, defines a third-order accommodation cycle. Both stacking 

patterns and the third-order accommodation cycle are regionally correlative over the 

whole study area, and individual cycles may be correlated throughout the area, 

demonstrating continuity of at least several tens of kilometres. This is a characteristic 

feature of high-frequency glacio-eustatic sea-level fluctuations that are controlled by 

Milankovitch cycles and such depositional geometries unlikely to be controlled by 

tectonic oscillations. Autocyclic controls on the depositional geometries may occur 

within each fourth cycle, in particular in the inner ramp facies associations. 

A secondary, literature-bases analysis has been carried out of two well-developed 

carbonate-evaporite cyclical successions, namely of the Paradox (Pennsylvanian-

Permian) and Zechstein (late Permian) Basins. These are characterised in terms of their 

sedimentological features, vertical facies trends within cycles, and more regional 
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depositional geometries.  These examples are then compared to the cyclical succession 

of the Fatha Formation. Their tectonic settings, palaeo-climates, and stratigraphic trends 

are analysed, as well as their hierarchical divisions and sequence stratigraphic styles. 

The mechanisms that controlled the high-frequency cyclicities are inferred and 

compared those that controlled the Fatha Formation. Climate, glacio-eustatic sea-level 

fluctuation and the tectonic configuration of a basin are considered to be the major 

variables in the determination of the stratigraphic architectures of each carbonate-

evaporite cyclical succession.  The presence or absence of boundstone bioherm 

constructors additionally influences whether a basin margin architecture will remain as 

a gradually sloping ramp, in the absence of such bioherms, or develops a distally-

steepened slope, in the case of coral or algal bioherms being present. The new sequence 

stratigraphic model for cyclical carbonate-evaporite deposition on ramp margins, as 

developed for the Fatha Formation, applies to the former. More classical type-1 

sequence boundaries and associated systems tract geometries remain appropriate for 

describing the latter.    
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Chapter One 

1 Introduction 

1.1 Background 

Carbonate-evaporite cycles that developed on shallow-dipping ramp margins are 

important deposits in both the ancient and modern sedimentary records, providing a 

major record of palaeogeographic, palaeoclimatic and palaeo-environmental change 

(Tucker, 1991). Also, over 50% of the world’s hydrocarbon reserves are found in 

carbonates, and over 60% of these reservoirs are sealed by evaporite deposits (Kendall 

et al., 2009). Many hydrocarbon-bearing reservoirs in the world are associated with 

carbonate-evaporite successions, including in ramp settings, for example the Miocene 

carbonate-evaporite cycles of the Middle East (Beydoun, 1991; Beydoun et al., 1992), 

the carbonate-evaporite cycles of the Paradox Basin in the USA (Peterson and Hite, 

1969; Weber et al., 1995), the second carbonate cycle of the Zechstein Basin (Late 

Permian) (Ingo and Lehmann, 2002), and the Cretaceous carbonate-evaporite cycles of 

the Albian Acatita Formation of NE Mexico (Ingo and Lehmann, 2002). The 

depositional processes that result in the accumulation of cyclical evaporite-prone 

sequences are typically more complex than those involved in the deposition and 

accumulation of carbonate deposits alone. Although numerous important studies have 

been undertaken to consider the origin of and controls upon the accumulation of mixed 

carbonate-evaporite successions in both ancient and modern environments, especially 

on the evaporite elements (Warren and Kendall, 1985; Schreiber et al., 1986; Logan, 

1987; Schreiber, 1987; Tucker, 1991; Sarg, 2001; Warren, 2006), each studied example 

is unique and the number of studied ancient outcrop examples is currently limited. Most 

evaporite successions represent chemical compositions that record precipitation from a 

seawater-derived brine (Kinsman, 1969; Warren, 2006). Consequently, most large-scale 

and long-lived marine evaporite deposits required a water body that was mixed or 

exchanged with ocean waters but with limited circulation, typically in an arid or semi-

arid climatic regime, where evaporation is intensive (Warren and Kendall, 1985; 

Warren, 2006). Marine-derived evaporites are believed to accumulate subaqueously in 

shallow marine shelves and enclosed basins (lagoons and salinas), and subaerially in 

coastal plains (sabkhas) (Nissenbaum, 1980; Warren and Kendall, 1985; Flugel, 2004).  
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The late Early Miocene cyclical carbonate-evaporite-siliciclastic succession of the Fatha 

Formation is well-exposed in Kurdistan, northern Iraq. Until recently it has received 

little attention for political and security reasons. It now offers a chance to re-evaluate 

the architecture and controls upon this type of sedimentary succession. It should be 

considered a significant ancient outcrop example, allowing comparison with those 

systems mentioned above. 

Studies have previously been undertaken of carbonate-evaporite cycles to unveil their 

distribution and architectures in the geologic record, including, as mentioned, the Late 

Permian Zechstein Basin from Europe (Tucker, 1991; Strohmenger et al., 1996a; 

Wagner and Peryt, 1997; Becker and Bechstädt, 2006), the Pennsylvanian Paradox 

Basin from Utah, USA (Goldhammer et al., 1991; Raup and Hite, 1992; Weber et al., 

1995), and also the modern Arabian Gulf (Kendall and Skipwith, 1969; Alsharhan et al., 

1995) (Figure 1.1). Each of these carbonate-evaporite basins required particular 

depositional, tectonic, climatic, and eustatic settings. The evaporites of the 

Pennsylvanian Paradox Basin, for example, were accumulated in a palaeo-tectonic 

depression (Weber et al., 1995) and convergent tectonic setting (Warren, 2010), 

whereas the evaporites of the Late Permian Zechstein Basin are an example of basin-

centre and slope evaporite deposition (Börner, 2004; Warren, 2006). On the other hand, 

the modern evaporites of the Arabian Gulf have accumulated in a supratidal sabkha 

setting at the margins of a shallow-dipping carbonate ramp (Kinsman and Park, 1976). 

The Paradox Basin was developed during the Pennsylvanian to Early Permian at a time 

when the Earth was subject to the effects of major Gondwanan glacial to interglacial 

cyclicity. The deposition of the thick evaporite succession in the Paradox Basin was 

coincident with the main Pennsylvanian glaciation when an arid and dry climate was 

developed across the basin due to its proximity to the palaeo-equator (Baars and 

Stevenson, 1981). The accumulation of evaporites (anhydrite and salt) in the Paradox 

Basin is restricted to the basin centre, whereas the carbonates are accumulated at the 

shelf margin (Hite and Buckner, 1981). The correlation of the evaporite cycles at the 

basin centre with their lateral carbonate equivalents at the shelf margin has been 

conducted over the whole basin (Hite and Buckner, 1981). The deposition of the 

evaporites at the basin centre is coincident with subaerial exposure at the shelf margin 

that is defined as a sequence boundary type1 (Goldhammer et al., 1991). Twenty-nine 

complete evaporite cycles are recorded at the basin centre and they have been correlated 
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to the carbonate equivalent cycles at the shelf margin (Peterson and Hite, 1969; Hite and 

Buckner, 1981). The deposition of the thick evaporite cycles with their lateral carbonate 

equivalents in the Pennsylvanian changes upward to carbonate-siliciclastic cycles in the 

Permian at which time a thick wedge of siliciclastic deposits commenced progradation 

into the basin from a mountain belt developed at its margins (Gianniny and Miskell-

Gerhardt, 2009; Williams, 2009). The Paradox cycles provide a valuable case study 

because they consist of mixed carbonate-evaporite-siliciclastic cycles throughout the 

succession and the deposits were accumulated in a foreland basin. Additionally, the 

depositional architecture reflects the influences of tectonic-uplift, palaeoclimate, and 

eustatic sea-level changes.   

The Zechstein Basin  covered a large part of Central Europe and was developed during 

the Late Permian in an arid and dry climate (Benton et al., 2002). Following the main 

Gondwanan glacial-interglacial cyclicity of the Early Permian, the climate of Central 

Europe changed to arid and semi-arid and then more humid conditions through later 

Permian and Triassic times (Benton et al., 2002). The deposition of evaporites 

commenced as marginal gypsum wedges during sea-level falls that were laterally 

equivalent to subaerial exposure at the shelf margin (Tucker, 1991). Then during 

relative rises in sea-level, carbonates accumulated. Five main cycles are recorded from 

the basin, Z1-Z5 (Ziegler, 1990). The cycles can be regionally correlated over the whole 

basin.  A thick carbonate and evaporite succession accumulated in the lower cycles (Z1-

Z3), whereas in the upper cycles carbonate sedimentation was reduced or ceased due to 

the climate change from arid to humid (Wagner and Peryt, 1997). The Zechstein cycles 

are of significance as a case study because they are dominated by extensive carbonate-

evaporite cycles which reflect the controls of palaeoclimate and eustatic sea-level 

changes.     

The Miocene carbonate-evaporite cycles of the Fatha Formation accumulated in the 

Zagros foreland basin of the Kurdistan region, NE Iraq. This formation is composed of a 

cyclical succession of carbonate, evaporites and siliciclastics. Each cycle typically 

consists of calcareous mudstone, shallow-marine carbonates, evaporites with chicken-

wire fabrics, and fluvial siliciclastic deposits. The nature and thickness of the cycles 

vary from basin margin to basin centre where a thicker succession and maximum cycle 

number accumulated. At the basin margin, 17-42 cycles are recorded in successions of 

50-300 m thickness, whereas at the basin centre fifty cycles accumulated in a succession 

about 600 m thick (Tucker, 1999). These carbonate-evaporite cycles accumulated in an 
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arid and hot climate during the Miocene in this region, but a palaeoclimate which was 

also characterized by climatic fluctuations (Miller et al., 2005).   

 

Figure  1-1 Map showing the distribution of major evaporite basins, including the Miocene, 

Paradox, and Zechstein evaporite basins (Kendall, 1992). 

 

This study focuses primarily on the Miocene carbonate-evaporite cycles from the Fatha 

Formation at the periphery of the Zagros foreland basin, Kurdistan. The study includes 

an assessment of palaeodepositional processes and environments, palaeoclimate, 

sequence stratigraphy, and the accommodation history of the Zagros foreland basin, 

during the Miocene. 

Previous sedimentological and sequence stratigraphical studies of the Fatha Formation 

are documented in a variety of research papers (Shawkat, 1979; Aqrawi, 1993; Tucker, 

1999; Al-Juboury and McCann, 2008). However, no detailed study has previously been 

conducted to investigate the types and distributions of the cycles, with a detailed 

analysis regarding the sequence stratigraphic framework for the high-frequency cycles. 

1.2 Aims and objectives of the study 

The main aim of this thesis is to characterize the sedimentology and depositional 

architecture of carbonate-evaporite cyclical successions, as deposited in ramp settings. 

Variations in architecture will be explored in terms of the regional (tectonic) and global 

(glacio-eustatic and palaeoclimatic) controls that may have led to such variants. 
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The main element of this study is an investigation of the Fatha Formation in Kurdistan, 

predominantly composed of cycles of carbonate and evaporites (Aqrawi et al., 2010). 

The project aims in relation to the formation are to interpret its sedimentology, in 

particular in the more proximal basin margin settings, and to establish the relationship 

between the carbonate and evaporite elements. The study also set out to develop a 

sequence stratigraphic model for the studied succession, providing a framework within 

which to explain their origin of Fatha Formation depositional cyclcities in terms of 

relative sea-level changes. The extensive exposure of these cycles (17-42) in Kurdistan 

makes this area an ideal study locale for characterizing the palaeoenvironments and 

their cyclical variation in a restricted basin during a period of known glacio-eustatic 

fluctuations. 

Recently, after discoveries of oil and gas reserves in Kurdistan, including in Cenozoic 

reservoirs, the Early-Middle Miocene succession has been a target for study and a 

significant focus of attention. This study is therefore topical, given its focus on the 

outcrops of the Miocene Fatha Formation around Sulaimani Governorate and its 

presentation of Miocene lithostratigraphic and chronostratigraphic columns, 

depositional environments, and sequence stratigraphic architecture.  

In addition to the focus on the Fatha Formation, this study aims to analyse and compare 

different carbonate-evaporite basins from the geologic record, in terms of their 

depositional context and development. Through analysis of the carbonate-evaporite 

cycles of the Paradox and Zechstein basins and comparison with the Fatha Formation, 

the aim is to establish general characteristics of cyclical carbonate-evaporite successions 

in ramp settings, and what are the variations in such depositional architectures and the 

explanations for any observed variations.   

Given the aims outlined above, the following list provides a summary of project 

objectives: 

1. Determine sedimentary facies of the Fatha Formation, sedimentary facies 

associations, lateral/vertical variations, microfacies and related sedimentary 

structures to reconstruct the depositional history and present a depositional model 

for the formation. 

2. Present lithostratigraphic and chronostratigraphic columns of the Fatha Formation 

from the basin margin, as well as to evaluate thickness and facies variations from 
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proximal to basin centre locations, so characterizing lateral and vertical facies 

changes 

3. Determine the platform configuration and geometry of the basin, by studying facies 

changes and compositions throughout the succession, contributing to a general 

depositional model of the basin 

4. Determine the sequence stratigraphic division of the Fatha Formation, identifying 

the sequence boundaries, sequences, systems tracts, and parasequences.  

5. Establish the stratigraphic architecture across the NE margin of the Zagros foreland 

basin. This will provide the framework for consideration of the eustatic and/or 

tectonic and sediment supply controls upon sequence development in the late stages 

of Neo-Tethys closure. 

6. Determine the age of the formation and estimate the cycles’ durations, by using the 

strontium isotope relative dating method.  

7. Explore the use of Fischer plots in the evaluation of the major controls on the Fatha 

cyclicities and factors affecting deposition. 

8. Carry out a literature-based comparative analysis of other examples of basins with a 

substantial record of carbonate-evaporitic cyclical sedimentation, with a focus on 

the depositional architectures and settings of the Paradox and Zechstein Basins.  

9. Compare the Miocene carbonate-evaporite cycles of the Fatha Formation with the 

Paradox and Zechstein cycles in terms of depositional architectures, and the 

tectonic, palaeoclimatic, glacio-eustatic or other mechanisms that have determined 

their cyclical character. Then to propose a generalised model to account for the 

effects of various controls on the accumulation of mixed carbonate, evaporite, and 

siliciclastic successions.   

1.3 Thesis structure  

This PhD studentship is financially supported by the Ministry of Higher Education and 

Scientific Research of Kurdistan Regional Government (KRG). The fieldwork was 

conducted in Kurdistan Region, NE Iraq. Thin sections and strontium isotope analysis 

were conducted within the Earth and Environment School, University of Leeds, UK. 

There are four principal topics in this thesis: (1) analysis of sedimentary lithofacies to 

enable the development of a depositional model for the carbonate-evaporite cycles of 
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the Fatha Formation in Kurdistan Region. (2) Analysis of a series of high-frequency 

cycles for the purpose of development of a sequence stratigraphic framework that can 

be used to define and evaluate the mechanisms responsible for cycle development. (3) 

Analysis of high-frequency carbonate-evaporite cycles of the Pennsylvanian-Permian of 

the Paradox and Zechstein basins for the purpose of comparison with cycles of the Fatha 

Formation to present a generalized model for mixed carbonate-evaporite-clastic cycles. 

(4) Finally, estimating these mechanisms that control cyclic-successions and generate 

high-frequency cycles.  

This thesis is composed of seven chapters. This introductory chapter discusses the aims 

and objectives behind this PhD thesis. The organization of the remainder of the thesis 

outlined below. 

 Chapter 2: This chapter discusses, in detail, the geological setting of the Zagros 

foreland Basin, including structure, tectonic, stratigraphy, palaeogeography, 

palaeoclimate, and regional correlation. As well as it introduces the study areas, and 

summarizes the previous research undertaken in the region. 

 Chapter 3: This chapter discusses the sedimentary lithofacies types, their 

arrangement and the distribution of the Miocene carbonate-evaporite cycles of the Fatha 

Formation in Kurdistan Region. Additionally, it considers carbonate microfacies in 

detail, as well as fossil contents of the Fatha Formation. In addition, lateral and vertical 

facies changes of the cycles in the basin margin have been discussed. Moreover, 

depositional environments have been determined and a depositional model has been 

developed. The contents and results of this chapter have been prepared for publication 

in the journal ‘Sedimentary Geology’, (Abdullah, H., Collier, R.E.LI., and Mountney, 

N.P. ‘Variations in carbonate-evaporite ramp facies trends: Late Burdigalian Fatha 

Formation, Kurdistan’). 

Chapter 4: In this chapter the high-frequency cycles of the Fatha Formation have been 

analysed to propose a sequence stratigraphic framework. Types of cycles and their 

spatial distributions have been described. In addition, lateral and vertical changes in 

cycle stacking patterns have been described and discussed. Determination of lateral 

extent and correlation of the cycles has been undertaken based on the presence of 

several marker beds. The significance of Fischer plots, cycle-sets, and systems tracts 

have been discussed. Lastly, the mechanisms responsible for the generation of the 

cycles have been evaluated. The contents and results of this chapter have been prepared 
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for publication in the journal ‘Sedimentary Geology’, (Abdullah, H., Collier, R.E.LI., 

and Mountney, N.P. ‘Third-order accommodation space, parasequence stacking 

patterns, and mechanisms controlling shallowing-upward cycles: The Miocene 

shallowing-upward cycles, Fatha Formation, Kurdistan Region/NE Iraq’). 

 Chapter 5: In this chapter the carbonate-evaporite cycles of the Pennsylvanian-

Permian of the Paradox and Zechstein basins have been reviewed and discussed in 

terms of their developments, palaeotectonics, palaeoclimates, stratigraphy, sequence 

stratigraphy, and cycle analysis. Additionally, the mechanisms that have controlled the 

cyclicities developed in each of these basins have been discussed. The cyclical 

arrangement of assemblages of lithofacies of each of these basins has been compared to 

that of the Fatha cycles. 

 Chapter 6: This chapter discusses the main outcomes of this thesis. As well as, it 

evaluates the main controls on the architectures of the basins. In addition, limitations 

and difficulties of this study are discussed and a number of recommendations for future 

research is presented. 

 Chapter 7: This chapter summarizes the main conclusions of this study. 

 Appendices: In Appendix1, nine stratigraphic logs of the Fatha Formation have been 

presented, including sample locations, lithology, microfacies, water depth, shallowing-

upward cycles, and type of cycles. In Appendix 2, nine tables have been presented in 

which cycle numbers, cycle thicknesses, cumulative thicknesses, and cumulative 

departures of the cycles have been shown. 
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Chapter Two 

2. Geological Settings 

2.1 Introduction 

The location of Kurdistan in North East Iraq, at the north-eastern margin of the 

Arabian Plate, as well as adjacent to the Zagros Mountains, means that it has been 

affected by tectonics throughout much of its geological development. Therefore, 

regional tectonic changes associated with movement of the Arabian Plate and local 

changes in Iraq as well, have each affected the stratigraphy and tectonic evolution 

of Kurdistan. 

The most widely used regional tectonostratigraphic and sequence stratigraphic 

divisions of the accumulated successions on the Arabian Plate are those of Sharland 

et al. (2001) in which eleven tectonic megasequences (AP1-AP11) are documented 

(Figure 2.1).  

During mid-Permian to Early Jurassic times (Tectonic Megasequence AP6) the Arabian 

Plate started to separate from the Sanandaj-Sirjan, central Iran and Afghan plates. As a 

result, the Neo-Tethys Ocean was developed and started to expand and subsidence of its 

passive margins continued through the Cretaceous (Sharland et al., 2001). 

During the Early-Late Jurassic (AP7), the Mediterranean Basin opened due to the 

separation of the Turkish plate as part of the expansion of the Neo-Tethys Ocean 

(Jassim and Goff, 2006; Aqrawi et al., 2010). In the Late Jurassic to Late Cretaceous 

(AP8), the Indian Plate separated from the Arabian Plate and the Indian Ocean began to 

form. In the next megasequence (Late Cretaceous to late Paleogene, AP9), the Arabian 

Plate was affected by compression, which occurred as a result of opening of the Atlantic 

Ocean. At this stage, ophiolite was locally obducted across the north eastern margin of 

the plate. In the next megasequence (Early Paleogene to Latest Eocene, AP10), 

compression continued and the Neo-Tethys Ocean started to close due to Arabian Plate 

movement, and as a result subduction occurred between the Arabian and Iranian plates. 

Initiation of Red Sea rifting occurred in the Oligocene (Sharland et al., 2001; Ziegler, 

2001; Sharland et al., 2004). 
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The last tectonic megasequence (Late Eocene to the Present, AP11) included the period 

when the Red Sea and Gulf of Aden opened and evolved from continental to oceanic 

extension. In addition, the Neo-Tethys Ocean closed during the Oligocene to Early 

Miocene as a result of collision that occurred between the Arabian and Eurasian plates 

(Sharland et al., 2001). Due to the separation of the Arabian Plate from the African 

Plate and the opening of the Red Sea in the late Oligocene (Haq and Al-Qahtani, 2005), 

the Arabian Plate underwent tilting to the northeast (Sharland et al., 2001; Ziegler, 

2001; Sharland et al., 2004). 

The Miocene Fatha Formation is included within the last tectonic megasequence (Late 

Eocene to the Present, AP11) that is bounded by a Late Eocene regional unconformity 

surface at the base (Ziegler, 2001). This unconformity surface is identified in the studied 

areas at the top of the Late Eocene Pila Spi Formation. The deposition of the Miocene 

succession in the Kurdistan Region thus occurred in a position that could be influenced 

by the tectonic setting of the Arabian Plate, as well as the opening of the Red Sea and 

Gulf of Aden (Beydoun, 1991; Beydoun et al., 1992; Sharland et al., 2001; Ziegler, 

2001). This possibility will be assessed in later chapters.   
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Figure  2-1 Tectonic developments and megasequences of the Arabian Plate (Sharland et al., 2001). 
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2.2 Tectonics of the area 

Tectonically, Iraq has been divided into three main tectonic zones: the Stable Shelf, the 

Unstable Shelf and the geosynclinal areas (Buday, 1980). Subsequently, a new tectonic 

division was proposed for Iraq and seven tectonic zones were identified by (Numan, 

1997). The seven tectonic zones were the Rutba-Jazira Zone, the Salman Zone, the 

Mesopotamian sagged basin, the suspended basin, the highly folded zones of the 

foreland basin, the imbrication zone of the foreland basin, and the subduction zones, 

from SW to NE direction. More recently, the tectonic divisions of Iraq were modified to 

distinguish three main zones, which have been termed the Stable Shelf, the Unstable 

Shelf and the Zagros Suture Zone (Jassim and Goff, 2006). The Stable Shelf covers 

most of the south and west of Iraq and extends towards Syria and Jordan to the west and 

Kuwait and Saudi Arabia to the south. The Unstable Shelf is characterized by surface 

folds parallel to the Zagros-Taurus belt and is subdivided into the Foothill Zone (also 

called the Low Folded Zone), the High Folded Zone and the Imbricated Zone. The 

Imbricated Zone includes both the Balambo-Tanjero and Northern (Ora) Thrust Zones, 

whereas the Zagros Suture Zone is subdivided into the Qulqula-Khuwakurk, Penjween-

Walash and Shalair Zones (Jassim and Goff, 2006). Recently in 2010, all the previous 

divisions were compiled and five main tectonic elements were recognized. These 

tectonic elements are the Thrust Zone, the Folded Zone (the High and Low Folded 

zones), the Mesopotamian Zone, the Salman Zone and the Rutbah-Jezira Zone (Aqrawi 

et al., 2010) (Figure 2.2). The Low Folded Zone is characterized by wide and low 

anticlines and wide synclines with Neogene sediments preserved in their cores. 

However, narrow deep synclines and high amplitude anticlines are the main 

characteristics of the High Folded Zone, which covers most of the Iraqi Kurdistan 

Region. Aqrawi et al., (2010) terminology is used throughout the thesis. 

Tectonically, the studied area, which lies in the south and south-east of the Kurdistan 

region, is mostly located in Low Folded Zone plus parts of the High Folded zone. 
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Figure  2-2 Structural elements of Iraq (Aqrawi et al., 2010). 
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2.3 The Zagros foreland basin during the Cenozoic 

The Zagros foreland basin includes the succession deposited since Zagros collision 

(Upper Eocene to Holocene). The basin is ~1800 km in length and 250 to 300 km in 

width (Beydoun et al., 1992). It is known that a 7 to 14 km thickness of sediments 

accumulated along the NE margin of the Arabian Plate (Bahroudi and Koyi, 2004). The 

basin occupies much of Iraq along a NW-SE trend and extends into NE Syria and SW 

Iran. During the Miocene, the basin was split into six discrete sub-basins (Bahroudi and 

Koyi, 2004) and these were separated by palaeo-highs (Figure 2.4). Of these, the Sinjar 

and Kirkuk sub-basins were located in Iraq and were separated by the Mosul high (van 

Bellen et al., 1959; Ziegler, 2001; Bahroudi and Koyi, 2004). 

The Zagros foreland basin includes numerous supergiant oil and gas fields in high-

amplitude structures generated by the Neogene convergence. The basin has been a key 

focal point for a number of evaporite and hydrocarbon studies, mainly due to its 

stratigraphic position and tendency to create seals above the much explored 

hydrocarbon reservoirs (Beydoun, 1991; Beydoun et al., 1992; Aqrawi, 1993). 

The development of the foreland basin resulted from the collision of the Arabian and 

Eurasia continental plates. The oceanic crust of the Arabian Plate was subducted under 

the Eurasian Plate during the Late Cretaceous and then the continent-continent collision 

occurred from the Late Eocene to the present day (Ziegler, 2001). As a result, the 

Zagros mountain range and the Zagros foreland basin were developed, with additional 

stresses from the opening of the Red Sea and Gulf of Aden (extension to the south-west) 

(Beydoun et al., 1992; Sharland et al., 2001).  

2.4 Palaeogeography of Miocene 

The Miocene period spanned deposition of the Euphrates, Jeribe, Fatha (Iraq), 

Gachsaran, Agha Jari (Iran), and Dam, Hofuf, and Hadrukh (Saudi Arabia) formations, 

with massive evaporite and salt deposits (Figure 2.3). These deposits were accumulated 

within the Zagros foredeep and foreland that developed as a result of the strong 

compression between the Arabia and Eurasia (Ziegler, 2001) (Figure 2.3).   
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Figure  2-3 Palaeofacies map of the Miocene spanning deposition of the Jeribe, Fatha and Injana 

formations from Iraq and their time equivalents, the Gachsaran, Mishan and Agha Jari 

Formations in Iran (Ziegler, 2001). 

 

Due to tectonic movements along the Zagros margin at the end of the Oligocene, the 

basin system became restricted that resulted in the deposition of the Basal Anhydrite. 

This is the first indicator of total desiccation of the Miocene basin (Aqrawi et al., 2010). 

Along the northeastern part of the Zagros foreland basin, clastics and evaporites of the 

Fatha Formation (western part) and Gachsaran salt Formation (Iran) were deposited 
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(Sharland et al., 2001; Ziegler, 2001; Aqrawi et al., 2010). Around the Arabian Arch, 

continental to transitional-marine deposits of Hardukh and Dam formations, as well as 

lacustrine deposits of the Hofuf Formation, were accumulated. Large amount of 

conglomerate was incorporated into the Hofuf Formation as a result of uplift of the 

western part of the Arabian shield (Ziegler, 2001). A shallow sea with carbonate 

deposition covered the Gulf of Aden, and the Red Sea was periodically restricted that 

caused to the evaporite deposition during the Middle Miocene. Whereas, the Early 

Miocene deposits in the southern Red Sea is characterized by a deep-marine clastic unit 

riches with planktonic foraminifera (Ziegler, 2001). The Late Miocene sediments are 

characterized by transitional, shallow-marine unit with sabkha deposits. 

In Iraq, the first restriction of the Miocene basin is marked by the deposition of the 

Basal Anhydrite that overlies Ibrahim Formation (Oligocene) and underlies the 

Serikagni Formation. The deposition of the anhydrite was restricted in the centre of the 

Mesopotamian and Sinjar sub-basins (Aqrawi et al., 2010). The Serikagni Formation is 

calcareous and marly sediments that were deposited in the deeper parts of the basin and 

bordered by the shelf carbonate of the Euphrates Formation. These facies passed toward 

the end of the Lower Miocene into lagoonal evaporites of the Dhiban Formation 

(Buday, 1980). The distribution of the Dhiban Formation is similar to the distribution of 

the Basal Anhydrite in the basin centre (Al-Juboury et al., 2007; Aqrawi et al., 2010).  

A new transgression is marked by the deposition of the carbonate and evaporite deposits 

of the Jeribe Formation that has the same distribution of the previous carbonate deposits 

of the Euphrates Formation (Aqrawi et al., 2010). 

The deposition of the Middle Miocene deposits occurred during the Zagros orogeny. 

Evaporites and siliciclastics of the Fatha Formation were accumulated during the early 

stage of regional compression, whereas the overlying siliciclastics of the Injana and 

Mukdadiya formations were deposited during the convergent and suturing (Ziegler, 

2001; Aqrawi et al., 2010). The evaporite facies of the Fatha Formation is restricted in 

two depocentres (Zagros and Sinjar) in Iraq as shown in Figure (2.4). the evaporites are 

restricted in the basin centre and they bordered by carbonate and mudstone toward the 

margin (Goff et al., 1995).  
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Figure  2-4 Palaeogeographic map and palaeofacies distributions of the Middle Miocene Fatha 

Formation (Goff et al., 1995). Two main depocentres were developed in Iraq, including Sinjar sub-

basin that extended to Syria and Zagros sub-basin that extended to Iran where Gachsaran 

Formation was deposited.  
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2.5 Regional Correlation 

The stratigraphy of Iraq is affected by the major tectonic elements of the Middle East 

area, as well as by the structural elements inside Iraq. In addition, most stratigraphic 

units in Iraq extend towards other surrounding countries due to the trend of the Zagros 

Basin.  

The palaeogeographic map of the stratigraphic units of the Miocene basin in Iraq and 

Arabia (Figure 2.8) show that the Miocene basin extended 2000 km from SW Iran into 

north-eastern and central Iraq and towards NE Syria and southern Turkey (Sharland et 

al., 2001; Ziegler, 2001; Jassim and Goff, 2006; Aqrawi et al., 2010). Importantly, 

deposition in this Miocene basin was diachronous, being older in the southwest and 

becoming younger to the northwest (Shawkat, 1979). 

In Iran, the Late Oligocene to Early Miocene Asmari Limestone Formation (a 

significant hydrocarbon reservoir) is equivalent to the Iraqi Euphrates, Dhiban and 

Jeribe Formations, whereas the Euphrates Formation is laterally replaced by continental 

clastics of the Hadrukh Formation in Saudi Arabia and the Ghar Formation in Kuwait 

and southern Iraq (Aqrawi et al., 2010).  

The Middle and Upper Miocene in Iran were previously represented by the Fars Group, 

which included the Lower, Middle and Upper Fars formations but are now represented 

by the Gachsaran, Mishan and Agha Jari formations, respectively (Sharland et al., 

2001). In Iraq, the Middle and Upper Miocene are represented by the Fatha (equivalent 

to the Gachsaran, previously Lower Fars) and Injana (equivalent to the Agha Jari, 

previously Upper Fars) formations, respectively. The Mishan (previously Middle Fars) 

Formation is not recognized in Iraq and it is included within the Injana Formation 

(Sharland et al., 2001; Jassim and Goff, 2006; Al‐ Juboury et al., 2010). The Fatha 

Formation extends towards the Syrian and Turkish borders, but also changes to the Dam 

Formation in Saudi Arabia (Jassim and Goff, 2006). In addition, the Injana Formation is 

equivalent to the Dibdibba Formation in Kuwait and southern Iraq and the Hofuf 

Formation in Saudi Arabia (James and Wynd, 1965). 
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2.6 Palaeoclimate 

From research on sedimentary archives covering the last 65 million years, it is 

increasingly apparent that the Earth underwent a great climatic change from greenhouse 

to icehouse conditions. The greatest greenhouse phase peaked between 59 and 50 Ma, 

during the Mid-Palaeocene to Early Eocene, and declined until present day with a rapid 

cooling stage during the Early Oligocene, with the formation of ice caps at the poles 

(Zachos et al., 2001; Zhao et al., 2001). These interpretations are determined from 

stable oxygen isotope data from benthic foraminifera on a worldwide scale (Zachos et 

al., 2001; Zhao et al., 2001). Based upon oxygen isotopes, palaeoclimate and 

palaeotemperature can be determined (Zhao et al., 2001), as the value of δ
18

O will 

decrease during warm climates, and will increase during cool climates. After the rapid 

increase of δ
18

O during the Oligocene and the formation of significant ice at the poles, 

the δ
18

O value started to decrease, representing warmer conditions during the Miocene 

from about 17 to 14 Ma, which is known as the Miocene climatic warmth or the 

Miocene climatic optimum. However, two cooling phases are recorded during the 

Miocene climatic optimum from 17.2 to 16.8 and from 16.2 to 15.8 Ma, respectively 

(Zhao et al., 2001).  

In terms of palaeoclimate, the Lower to Middle Miocene units were deposited in an arid 

and warm climate, evidenced by deposition of the thick evaporites. From the significant 

deposition of evaporites and warm climate during deposition of the Fatha Formation, 

the formation might be correlated with the Miocene climatic warmth or optimum from 

17-14 Ma (Zachos et al., 2001; Zhao et al., 2001). 

2.7 Study areas 

A thick Early-Middle Miocene succession is reported in Iraq, which extends from the 

marginal area in north Kurdistan Region toward the basin centre to the south west in 

central Iraq. The study area runs very close to the basin margin and is centred on the 

Sulaimani Governorate in the Kurdistan Region. Three main areas were selected: the 

Qishlagh-Sargrma, Garmyan and Darbandikhan areas (Figure 2.5).  

The first study area is located along the Qishlagh-Sargrma Mountain with a NW-SE 

trend. The Sargrma Mountain is an asymmetrical double plunging anticline, of which 

the north-eastern limb is steeper than the south-western limb (Ghafur, 2012). This 
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structure extends to the south-east toward the Golan structure and to the north-west 

toward the Bazian structure. As a whole, the Qishlagh-Sargrma structure extends in 

length for more than 80 km and is 2 to 3 km in width. Three sections have been logged 

along this structure: the Takiya, Basara and Krbchna sections from NW to SE (Figure 

2.5 and Table 2.1). 

The second study area is around Garmyan, which is represented by the Aj Dagh and 

Qara-Wais anticlines. These anticlines are asymmetrical with double plunging folds, 

with a NW-SE trend and with en-echelon fold geometries (Kharajiany, 2008). They are 

parallel to the Qishlagh-Sargrma Mountain. The Aj Dagh anticline is located at the SE 

end of the structure, whereas the Qara-Wais anticline is at the NW end of the structure. 

The Aj Dagh section was logged along the Aj Dagh anticline, whereas the Mamlaha and 

Sangaw sections were logged along the Qara-Wais anticline (Figure 2.5 and Table 2.1). 

In addition, the outlying Kfri section was logged near Kfri town, 57 km SW of the Aj 

Dagh anticline.  

The third study area is located around Darbandikhan town, next to the Darbandikhan 

Dam, along the NE limb of the Qaradagh anticline. The Darbandikhan section was 

logged next to the Darbandikhan Dam, whereas the Chnarah section was recorded near 

Chnarah village (Figure 2.5 and Table 2.1). 

Takiya section. At latitude 35° 39ʹ 07.38ʺ and longitude 44° 57ʹ 28.90ʺ, the Takiya 

section is located 2.5 km NW of Takiya town and 45 km NW of Sulaimani city, along 

the Qishlagh anticline. A number of gypsum quarries are present in this area of the 

Fatha Formation. 

Basara section. At latitude 35° 26ʹ 40.30ʺ and longitude 45° 09ʹ 25.84ʺ, the Basara 

section is situated along the SW limb of the Qaradagh anticline, near the outlet of the 

Basara gorge. 

Krbchna section. At latitude 35° 17ʹ 53.65ʺ and longitude 45° 16ʹ 22.31ʺ and along the 

Sargrma Mountain, the Krbchna section is located 2km NW of Krbchna village, near 

the Sangaw-Qaradagh road. In this section, a 4.5m unit of Oligocene carbonate was also 

recorded. 

Darbandikhan Dam section. At latitude 35° 06ʹ 43.01ʺ and longitude 45° 42ʹ 12.07ʺ, 

this section is located at the Darbandikhan Dam near Darbandikhan town, 53km SE of 

Sulaimani city. 
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Chnarah section. At latitude 35° 08ʹ 37.78ʺ and longitude 45° 41ʹ 24.05ʺ, this section is 

located near Chnarah village along the Darbandikhan-Sulaimani road, 45km SE of 

Sulaimani city. 

Aj Dagh section. At latitude 35° 09ʹ 31.87ʺ and longitude 45° 17ʹ 50.98ʺ, this section is 

located on the NW limb of the Aj Dagh anticline, near Hazar Kani village. 

Sangaw section. At latitude 35° 16ʹ 39.26ʺ and longitude 45° 09ʹ 49.63ʺ, the Sangaw 

section is located 1km SW of Sangaw town, along the Qara-Wais anticline. 

Mamlaha section. At latitude 35° 22ʹ 06.84ʺ and longitude 45° 00ʹ 27.72ʺ, this section 

is located near Mamlaha village and 19km NW of Sangaw town, along the Qara-Wais 

anticline. 

Kfri section. At latitude 34° 42ʹ 04.83ʺ and longitude 44° 57ʹ 53.07ʺ, the Kfri section is 

located along the Bawa Shaswar Dam, 1km NW of Kfri town and 69km S of Sangaw 

town. This area has undergone post-depositional thrust faulting and only the upper part 

of the Fatha Formation crops out. 

 

Table  2-1 Geographical and structural locations of the studied sections. 

Sections Latitude N Longitude E Structure Description 

Takiya 35° 39ʹ 07.38ʺ 44° 57ʹ 28.90ʺ Qishlagh 45 km NW Sulaimani 

Basara 35° 26ʹ 40.30ʺ 45° 09ʹ 25.84ʺ Qishlagh 26 km SW Sulaimani 

Krbchna  35° 17ʹ 53.65ʺ 45° 16ʹ 22.31ʺ Sargrma 32 km SW Sulaimani 

Darbandikhan 35° 06ʹ 43.01ʺ 45° 42ʹ 12.07ʺ Qaradagh 53 km SE Sulaimani 

Chnarah 35° 08ʹ 37.78ʺ 45° 41ʹ 24.05ʺ Darbandikhan 45 km SE Sulaimani 

Aj Dagh 35° 09ʹ 31.87ʺ 45° 17ʹ 50.98ʺ Aj Dagh 18 km SE Sangaw 

Sangaw  35° 16ʹ 39.26ʺ 45° 09ʹ 49.63ʺ Qara-Wais 1 km SW Sangaw 

Mamlaha 35° 22ʹ 06.84ʺ 45° 00ʹ 27.72ʺ Qara-Wais 19 km NW Sangaw 

Kfri  34° 42ʹ 04.83ʺ 44° 57ʹ 53.07ʺ Kfri 69km S Sangaw 

2.8 Data collection 

Nine sections were selected and logged around Sulaimani city from the Miocene Fatha 

Formation. These sections cover all the lithological cycles from the lower to upper part 

of the formation. All the geological features were documented during the logging, 

including lithological variations, thickness measurements, sedimentary structures, 

sedimentary textures and fossil content. Overall, 615 samples of calcareous mudstone, 

carbonate, and evaporite were collected from the studied sections (Table 2.2). 
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Table  2-2 Geographical locations, thicknesses and sample numbers of the studied sections. 

No. Sections Thickness (m) Elevation (m)  Samples  

1 Basara 195 673 70 

2 Takiya 245 954 85 

3 Krbchna  116 1078 80 

4 Darbandikhan 148 511 50 

5 Chnarah 50 754 50 

6 Aj Dagh 182 774 80 

7 Sangaw  171 804 60 

8 Mamlaha 300 582 130 

9 Kfri  120 260 10 

 Total 1527  615 
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Figure  2-5 Location and geological map of the study area in Kurdistan, Sulaimani Government, NE Iraq. The Fatha Formation and the studied outcrop sections are 

illustrated. 
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2.9 The stratigraphy of the studied areas 

A thick Miocene succession is preserved in the Zagros foreland basin, which covers 

most parts of Iraq and SW Iran. The base of the AP11 tectonic megasequence (Sharland 

et al., 2001) is marked by a regional unconformity surface in the Late Eocene, which 

probably represents the first continent collision (Ziegler, 2001). The filling of the 

foreland basin was commenced along the narrow Zagros foredeep. After this became 

filled, sedimentation prograded south-eastwards along the axis of the foredeep, from 

Mesopotamia into the Arabian Gulf (Sharland et al., 2001). By the end of the Pliocene, 

final Zagros closure took place, which caused extensive tectonic folding and thrusting 

of the earlier sediments. 

The Miocene succession in Iraq is represented by the Ghar, Serikagni, Euphrates, 

Dhiban and Jeribe formations of the Lower Miocene, and the Fatha, Injana and 

Mukdadiya formations of Middle-Upper Miocene times (Figure 2.6 and Figure 2.7). 

The continuation of continental collision during the Early Miocene and flexural 

downwarping of the area led to the marine transgression and development of deep 

marine sediment of the Serikagni Formation and its shallow lateral equivalent, 

sediments of the Euphrates Formation (Aqrawi et al., 2010). The short-term 

development of localized, restricted to enclosed basins arose from tectonic stability and 

led to the deposition of the Dhiban Formation (Al-Juboury et al., 2007).  
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Figure  2-6 Chronostratigraphic column for NE Iraq during the Tertiary (van Bellen et al., 1959). 
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Figure  2-7 Chronostratigraphic column of north eastern Iraq from the Eocene to Recent (Karim, 

2010).   

 

A new transgression may have contributed to a deeper facies rich in planktonic 

foraminifera in the deep part of the basin, where the Jeribe Formation was deposited, 

and then the basin progressively infilled, changing to shallow open to variably restricted 

conditions, as also represented on the NE margin of the basin throughout the Jeribe 

Formation (Aqrawi et al., 2010; Hussein 2016). As a result of the continuation of 

regional uplift and the uplift of hinterlands, relatively shallow semi-restricted to closed 

basins were then developed and led to the deposition of the Fatha Formation carbonate-

evaporite cycles. Then, progradation of the Fatha facies began from the north-east 

toward the south-west. The continuation of progradation led to the eventual replacement 

of the carbonate-evaporite deposits by siliciclastic deposits and in the form of the 

deposition of fluvial deposits of the Injana, Mukdadiya and Bai Hassan Formations 

(Aqrawi et al., 2010).  

The deposition of the deep planktonic facies of the Serikagni Formation was restricted 

in the basin centre and there is no Serikagni facies recorded towards the basin margin, 

which is what is represented in the Kurdistan region. However, the lateral equivalents of 
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the Serikagni Formation, the Euphrates Formation, and the younger Dhiban and Jeribe 

formations have been identified in the Kurdistan region (Hussein, 2016). 

The Basal Fars Conglomerate at the base of the Fatha Formation is recognized in 

Darbandikhan areas where a thick siliciclastic deposits, comprising red claystone, 

sandstone, conglomerate, and brecciated carbonate, is documented at the top of the Late 

Eocene Pila Spi Formation. The Early Miocene and Oligocene formations are not 

recorded in Darbandikhan and Chnarah sections. However, the Early Miocene 

formations, including Euphrates and Jeribe, as well as a thin Oligocene unit (4m thick), 

are documented between the Late Eocene Pila Spi and Fatha formations along the 

Qishlagh-Sargrma Mountain. In this area, the Basal Fars Conglomerate is located at the 

base of the Early Miocene formations. Toward the south-west of the studied areas, Azh 

Dagh and Qara-Wais anticlines, the Basal Fars Conglomerate becomes thin, and a thick 

Oligocene succession is documented. Further toward the basin centre, this surface and 

the associated clastics change to a conformable succession in the centre of the basin.  

The stratigraphy of the studied areas can be summarised as follows, as described from 

the base of the succession to the top. 

2.9.1 Late Eocene Pila Spi Formation 

The Pila Spi Formation crops out extensively in the High Folded Zone in the Kurdistan 

region and its lithological composition shows no significant variations. It is 

characterized by well-bedded dolomitic carbonate, chalky in appearance, and includes 

the presence of chert nodules in the uppermost part (Buday, 1980). Benthic foraminifera 

comprising miliolids, chilostomellids and peneroplids are abundant, and they represent 

an inshore lagoonal facies (Buday, 1980). The lower boundary is gradational with the 

red mudstone facies of the underlying Gercus Formation, whereas the upper boundary is 

unconformable with overlying Oligocene or Miocene strata.  

In the studied areas, the Pila Spi Formation is overlain by the Miocene Fatha Formation 

in the Darbandikhan and Chnarah sections where a thick siliciclastic unit (the Basal Fars 

Conglomerate) is recorded between them (Figure 2.8H). However, in the Qishlagh-

Sargrma Mountain region, the formation is overlain by a thin Oligocene unit (4 m thick) 

(Figure 2.8 C, D, and G).   



 

28 

2.9.2 Oligocene formations 

The Oligocene deposits in Iraq are composed of nine formations that have a relatively 

restricted area of distribution. The Oligocene basin was generally restricted to central 

Iraq near the city of Kirkuk where a thick and complete Oligocene succession is 

documented (van Bellen et al., 1959). The Oligocene formations reduce in thickness or 

are absent toward the Kurdistan region. The Oligocene strata are predominately 

composed of carbonate and they were first defined as reef, back-reef, and fore-reef 

facies (van Bellen et al., 1959; Buday, 1980). However, Ghafur (2012) argues that the 

formations accumulated in inner, middle and outer ramp platform settings. 

In the studied areas, the Oligocene units are not recorded in the Darbandikhan and 

Chnarah sections, whereas a thin carbonate unit (4 m) that is rich in corals is 

documented at Sargrma Mountain, near Krbchna village (Figure 2.8G). The Oligocene 

formations become thicker toward the Azh Dagh and Qara Wais anticlines. Both 

underlying and overlying units are unconformably separated from the Oligocene strata. 

2.9.3 Basal Fars Conglomerate  

The Basal Fars Conglomerate was first defined by van Bellen et al. (1959) at the base of 

the Fatha Formation (previously Lower Fars). In the studied areas, this unit is composed 

of thick siliciclastic deposits that comprise conglomerate, sandstone, siltstone, and 

claystone, as well as carbonate conglomerate that channelized within palaeosols (Figure 

2.8H). It is about 10 m thick in the Darbandikhan area at Qishlagh-Sargrma Mountain, 

occurring below the base of the Fatha and Euphrates Formations, respectively (Figure 

2.8 A and C). This unit thins toward the Azh Dagh and Qara Wais areas where it is 

about 4 m thick. 

2.9.4 Euphrates Formation 

The Euphrates Formation is mainly composed of carbonate and contains beds of 

greenish marl, breccia, marly sand, and conglomerate (Buday, 1980). It is characterized 

by chalky, shelly, well-bedded recrystallized limestones, siliceous, oolitic, corraline, 

and coquinas (van Bellen et al., 1959). Based on these variations in lithological 

composition, the formation was divided into three members: a basal cavernous and 

conglomeratic limestone, a shelly carbonate, and a marly and chalky carbonate (van 

Bellen et al., 1959). The formation was deposited in shallow marine lagoons and reef 
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settings (Buday, 1980). The lower boundary is usually unconformable with the 

underlying Oligocene and Late Eocene formations, whereas in some areas, where the 

underlying unit is the Serikagni Formation, it is conformable (Buday, 1980). The upper 

boundary is conformable with the overlying Dhiban Formation. 

In the studied areas, the formation is absent in the Darbandikhan and Chnarah sections 

(Figure 2.8H), whereas it is recorded for the first time along the Qishlagh-Sargrma 

Mountain in this study (Figure 2.8A). The formation is mainly composed of carbonate, 

and it is about 4 m thick (Figure 2.8C, E, and F). It comprises conglomeratic carbonate 

at the base and shelly carbonate at the top. It is composed of miliolid packstones and 

grainstones at the base, and oolitic grainstones at the top. Borelis melo melo as an index 

fossil for the Lower Miocene is identified in the carbonate unit (Figure 2.8B). The lower 

boundary is unconformable with the underlying Oligocene or Late Eocene formations or 

represents a flooding surface over the Basal Fars Conglomerate where present, whereas 

the upper boundary is conformable with the overlying Dhiban Formation. In the Aj 

Dagh area, the formation was first identified by Hussein (2016) (Figure 2.8E). 

2.9.5 Dhiban Formation 

The Dhiban Formation is composed of thick beds of gypsum that  are interbedded with 

thin beds of marls, recrystallized limestone, and dolomite (Buday, 1980). It is 100 to 

150 m in thickness in the subsurface. Fossils are lacking in the formation, and its age is 

determined based on its stratigraphic position, being underlain by the Serikagni or 

Euphrates Formations (Al-Juboury et al., 2007).  

In the studied areas, the formation is recorded in the Azh Dagh-Qara Wais Mountain 

area where it is only 1 m thick. It is underlain and overlain by the Euphrates and Jeribe 

formations, respectively. It is characterized by yellowish evaporitic carbonate. 

However, the formation is locally recognized for the first time in this study along the 

Qishlagh-Sargrma Mountain at the boundary of Euphrates and Jeribe formations. It is a 

thin (10cm) yellowish evaporitic carbonate.   
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Figure  2-8 Field photographs of the Early Miocene Euphrates and Jeribe formations. 

A: The lower boundary of the Euphrates Formation (1) that overlies the Basal Fars 

Conglomerate (BFC) and underlies the Jeribe Formation (2, 3) which is in turn overlain by the 

Fatha Formation; Basara section. B: Thin section photomicrograph of Euphrates Formation 

including the index fossil Borelis melo melo. C: The lower boundary of the Euphrates 
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Formation that is underlain by the BFC which in turn underlain by a possible Oligocene unit; 

Basara section. D: The same boundary in the Takiya section. E: The carbonate unit of the 

Euphrates Formation showing both lower brecciated (red arrow) and upper shelly carbonate 

members; as seen in the Azh Dagh and Mamlaha sections. F: The same carbonate unit of the 

Euphrates Formation, including both brecciated (red arrow) and shelly carbonate members in 

the Basara section. It is underlain by the BFC. G: The carbonate units of the Euphrates and 

Jeribe Formations in the Krbchna section. The Euphrates Formation is unconformably underlain 

by an Oligocene unit that is rich in corals. H: The BFC in the Darbandikhan section. It is 

underlain by the Late Eocene Pila Spi Formation and overlain by the Fatha Formation.  

 

2.9.6 Jeribe Formation 

The Jeribe Formation is composed of recrystallized and dolomitized carbonates that are 

interbedded with evaporite and dolomite. The lower boundary is conformable with the 

Dhiban Formation, whereas it is unconformable with the Serikagni Formation in the 

type area with an evidence of a conglomeratic bed at the base of the formation (Buday, 

1980). The upper boundary is conformable with the Fatha Formation. The formation 

was deposited in lagoons and reef environments (van Bellen et al., 1959). 

In the studied areas, the Jeribe Formation is not recorded in the Darbandikhan and 

Chnarah sections (Figure 2.8H), whereas it is documented in all the other areas (Figure 

2.8A and G). It is first recorded along the Qishlagh-Sargrma Mountain and it is 

underlain by the Euphrates Formation and overlain by the Fatha Formation. It is 8 to 10 

m thick and comprises three cycles of carbonate, marl, and yellowish evaporitic 

carbonate. However, a very thin (10cm) yellowish gypsiferous carbonate bed has been 

locally documented at the boundary of Euphrates and Jeribe formations. This bed may 

represent Dhiban Formation that thins toward the margin of the basin.   

2.9.7 Fatha Formation 

The Fatha Formation (previously termed the Lower Fars Formation) was originally 

defined and described by Busk (1918), and later reviewed by van Bellen et al. (1959), in 

Iran, as part of the Fars Group. The Fars Group from Iran was divided into the Lower, 

Middle and Upper Fars Formations. Lithologically, the Lower Fars Formation (Fatha 

Formation) was also recognized in Iraq and was named after its Iranian equivalent (van 

Bellen et al., 1959; Buday, 1980). Then, a new type section was described in Iraq on the 

south-western flank of Makhul Mountain, in Al-Fatha Gorge. This was used as the basis 

for the definition of the Fatha Formation by Al-Rawi et al. (1993). The type section of 
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the formation is divided into two members based on the absence or presence of red 

mudstone units. The lower member, which lacks the red clastic units, is 220m thick at 

the type section; the upper member, in which red clastic units are present, is 400m thick 

at the type section (Jassim and Goff, 2006). 

In general, the Fatha Formation is characterized by widespread evaporites (gypsum, 

anhydrite and salt) facies, which are interbedded with carbonate, calcareous mudstone 

and red continental clastic units (Buday, 1980). It is a mixed carbonate-evaporite unit 

which shows a cyclic repetition of lithologies, comprising red claystone or sandstone, 

siltstone, mudstone, green marl (calcareous mudstone), gypsum, anhydrite, halite and 

thin beds of limestone (Jassim and Goff, 2006). 

There are no adequate data that fully characterize the presence of halite in the 

formation. However, several halite beds were recorded in the central part of the basin in 

Iraq, in the middle part of the formation (van Bellen et al., 1959), and the halite is 

apparently more extensively developed in the south-eastern part of the basin towards 

Iran (O’Brien, 1957). Moreover, salty water (brine) derived from the subsurface part of 

the Fatha Formation is used as an economic resource for salt production in Mamlaha 

village. In addition, several halite beds are recorded in boreholes in the Sinjar and 

Kirkuk areas in the north of Iraq (Al-Juboury and McCann, 2008). 

Fossils are very rare in the formation; the only fossils that are recorded in the limestone 

beds are miliolids, ostracods, Rotalia beccari, Elphidium sp. and Ostrea Iatimarginata 

(considered to be an index fossil of the formation), which belong to the Middle Miocene 

(Buday, 1980). Recently, some fossil mollusc species have been studied and these have 

been ascribed to a late Lower Miocene (Burdigalian) age (Mahdi, 2007). In addition, 

ostracods from the Fatha Formation have been studied in terms of biostratigraphy, 

palaeogeography and as palaeoecological indicators by many authors (Khalaf, 1988; 

Abdol Rassul and Al-Sheikhly, 2001; Hawramy and Khalaf, 2013). A Middle Miocene 

age for the formation is indicated by all the mentioned authors. 

Grabowski and Liu determined the age of the Fatha Formation, using strontium stable 

isotope dating, for both carbonate and evaporite units. They determined that the 

formation accumulated during the Burdigalian, or more specifically the Middle 

Burdigalian to Lower Langhian stages (18.5 to 15.6 Ma) (Grabowski and Liu, 2009; 

Grabowski and Liu, 2012). 



 

33 

The upper contact of the Fatha Formation is gradational and diachronous with the 

overlying Injana Formation (Buday, 1980; Jassim and Goff, 2006). In addition, the 

Fatha Formation is diachronous at a regional scale, being older toward the SE of the 

basin (SW Iran) but younger towards the NW of the basin (Iraq to Syria) (Shawkat, 

1979). However, Al-Juboury and McCann (2008) consider the last anhydrite bed as the 

top of the Fatha Formation and define it as a sequence boundary with the overlying 

Injana Formation.  

It has been suggested that the Fatha Formation was deposited in a relatively rapidly 

subsiding basin, which was separated by rising ridges from the open sea (van Bellen et 

al., 1959; Buday, 1980). In addition, Ibrahim (1979) and Aqrawi (1993) concluded that 

the basin was supplied by some fluvial and aeolian detritus during deposition. The 

sedimentology and petrography of the formation have been widely studied by Hamid 

(1994) and Ameen and Karim (2007) who concluded that the formation was deposited 

in a semi-restricted lagoonal setting.  

The clastic element, as a main unit, has been studied and a fluvial-dominated bird’s foot 

deltaic environment has been inferred, which represents prodelta, delta front, 

distributary channels, natural levees and crevasse splay components (Al-Juboury et al., 

2001). In addition, Ameen and Karim (2007) state that the formation was deposited in a 

storm-affected evaporitic foreland basin by the presence of Skolithos traces, erosional 

surfaces, graded bedding, and hummocky cross stratification in the carbonate clastic 

units that indicate tempestite deposits. 

The cyclicity of the formation has not been studied in detail in terms of sequence 

stratigraphy. Each cycle is composed of red claystone, marl and evaporites, from base to 

top, and might be accumulated during lowstand, transgressive and highstand system 

tracts, respectively (Ameen, 2006). This author attributed each lithological cycle to 

Milankovitch glacio-eustatic cycles. The cycles were related to eccentricity (ca. 100 

kyr), which was modulated by precession (ca. 20kyr) and obliquity (ca. 41 kyr) 

variations in the orbit of the Earth around the sun. Thus, the repetition of warm and cold 

time intervals was interpreted to have caused the deposition of evaporites and red 

claystones, respectively. This will be explored in more detail in chapter 4. 

The marl unit has been studied in terms of mineralogy and petrography (Al-Kawaz and 

Al-Juboury, 2006; Al-Juboury and Al-Kawaz, 2008). These authors observed two 
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different colours of the marl unit; red and green. In addition, the authors stated that the 

marl beds include quartz grains, carbonate fragments and clay minerals. These 

components from the marl beds with evaporitic associations have led to the conclusion 

that the marls were deposited in hypersaline and semi-restricted lagoonal environments. 

In different studies, the formation was investigated in terms of petrography, mineralogy 

(including heavy and clay minerals) and provenance. These studies revealed that the 

provenance for the clastics in the formation were from ophiolite groups, with igneous 

and metamorphic rocks from the north-eastern margin of the Zagros Zone and mostly 

Cretaceous rocks from the High Folded Zone. This interpretation was reached because, 

during the Miocene, most of this highly folded and thrusted area was uplifted and so 

sourced the Miocene sediments, which were deposited in arid to semi-arid climatic 

conditions (Al-Juboury et al., 2001; Aghwan, 2004; Al-Kawaz and Al-Juboury, 2006; 

Jassim and Goff, 2006; Kassim, 2006; Al-Juboury, 2009; Al-Juboury et al., 2009).  

The high-frequency cycles of the Fatha Formation resulted from a rapid change in 

accommodation space in various palaeoenvironmental settings, ranging from open to 

restricted marine environments to continental sabkha and fluvial environments (Al-

Juboury and McCann, 2008). The authors argued that the formation as a whole 

represents a transgressive – regressive third order sequence. 

The preserved thickness of the formation changes from the basin centre towards the 

north-eastern part of the basin. Furthermore, the general components and thicknesses of 

limestones and evaporites vary in the same direction (Dunnington, 1958). In the Zagros 

Basin, in the Sinjar sub-basin and around Kirkuk, the formation reaches its maximum 

thickness (600 to 900 m), whereas along most anticlines around Sulaimani city the 

formation is 200 to 500 m thick (Jassim and Goff, 2006). 

The depositional environments of the formation and the associated thick evaporites are 

controversial. Some authors concluded that the marl, limestone and evaporite units of 

the formation were deposited in subtidal, intertidal and sabkha supratidal settings, 

respectively (Shawkat and Tucker, 1978; Shawkat, 1979; Tucker, 1999). This 

interpretation was largely based upon the recognition of stromatolites and algal mats in 

the formation at Shaikh Ibrahim in NW Iraq. By contrast, other authors stated that the 

lack of sedimentary features typical of sabkha deposits (e.g. stromatolites and 

dolomites), is the main reason to infer that the evaporite was deposited in a marine to 
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restricted lagoonal environment, rather than including sabkha environments (Ajel, 

2004). On the other hand, Aqrawi (1993) stated that subaqueous evaporite may have 

occurred together with subaerial sabkha evaporite in the Fatha Formation. This is a main 

question of this PhD study, to investigate the depositional environments of the 

evaporites and related deposits.   

2.9.8 Injana Formation 

The Injana Formation conformably overlies the Fatha Formation. It is composed mostly 

of red silty marlstones, claystone, siltstone, and sandstone. In addition, limestone, 

gypsum, and shale also occur in the lower part of the formation (van Bellen et al., 

1959). The lower boundary is mostly gradational with the Fatha Formation, whereas the 

upper boundary is defined by the first pebbly sandstone bed of the Mukdadiya 

Formation (Buday, 1980). In the studied areas, the Injana Formation is composed of 

cycles of red claystones and sandstones, and it shows a gradational transition from the 

underlying Fatha Formation. 
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Chapter Three 

3. Variations in carbonate-evaporite ramp facies trends: Late 

Burdigalian Fatha Formation, Kurdistan 

3.1 Introduction 

Carbonate ramps were originally defined by Ahr (1973) as low-angle inclined platforms 

that extend toward the basin without any slope break. High-energy packstone and 

grainstone facies typically dominate the landward (inner) part of ramps; low-energy and 

mudstone and wackestone facies tend to dominate in the basinal (outer) parts of ramps 

(Ahr, 1973). Most high to moderate energy ramps are dominated by a strandplain 

complex or a barrier-lagoon shoreline, whereas low energy ramps tend to be dominated 

by tidal flats and lagoons (Tucker, 1992a). The Trucial Coast in the Arabian Gulf is an 

example of a modern carbonate ramp with barrier, lagoon and tidal flat elements. 

Cyclic sequences on carbonate ramps are documented from different basins and many 

examples of high-frequency shallowing upward cycles are recorded (Ginsburg, 1975; 

Wilson, 1975; Grotzinger, 1986a; Grotzinger, 1986b; Goldhammer et al., 1987b; 

Alsharhan and Kendall, 2003; Khalifa et al., 2004). In arid climates, evaporites may be 

deposited along the intertidal and supratidal (sabkha) zones (e.g. the Arabian Gulf). 

However, evaporites are not associated with carbonate ramps in more humid climate 

settings, such as South Florida (Bosence and Wilson, 2003). Many shallowing-upward 

cycles record evidence for emergence in their upper part, whereby a mixed carbonate-

evaporite cycle is produced; for example in the Trucial Coast in Abu Dhabi (Kinsman 

and Park, 1976; Kendall et al., 2002; Warren, 2006). In addition, in the proximal (i.e. 

basin margin) areas, continental siliciclastic fluvial and aeolian deposits are commonly 

mixed with the carbonate-evaporite cycles. 

Models of carbonate ramps tend to emphasize two-dimensional facies trends, from 

proximal to basinal (Burchette and Wright, 1992). However, changes in rates of 

deposition and environmental controls that vary both spatially across a ramp system and 

temporally due to changes in, for example, carbonate production, relative sea level and 

climate, lead to microfacies variations in the sedimentary succession (Flugel, 2004), 

thereby potentially preserving complex arrangements of lithofacies within multiple 

depositional cycles. 
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The Miocene Fatha Formation in Kurdistan region and its time-equivalents record an 

example of an ancient mixed carbonate-evaporite ramp which covered most of the 

northeast margin of the Arabian plate. This succession forms an important hydrocarbon 

seal system in Syria, Iraq and Iran (Aqrawi, 1993; Goff et al., 1995). Between 17 and 42 

depositional cycles of carbonate, evaporitic carbonate, evaporite and in some cases 

siliciclastic red claystone are preserved in the Fatha Formation; these cycles are variable 

in nature and thickness. At the margin of the Zagros foreland basin (Kurdistan area), the 

cycles of the lower part of the Fatha Formation comprise marl (carbonate mudstone), 

carbonate, evaporites and siliciclastic rocks upward throughout each of the cycles. 

However, in the upper part of the formation marine carbonate and evaporite deposits are 

volumetrically less significant, whereas alluvial clastic units are dominant. This 

regressive trend continues into the overlying alluvial Injana Formation, which is 

predominantly terrestrial (fluvial) in origin. Towards the centre of the basin, the lateral 

equivalent of the Fatha Formation cycles comprise marl, carbonate and evaporites, with 

the only occurrence of red clastic mudstone being as minor accumulations in the upper 

part of cycles in the upper member of the formation (Aqrawi et al., 2010). The 

proportions and thicknesses of the units are variable from place to place; the number  of 

cycles characterized by clastic deposits in their upper part increases toward the basin 

margin, whereas the number of cycles dominated solely by carbonate-evaporite units 

increases toward the basin centre. 

The depositional environment of the formation, with its characteristic carbonate-

evaporite cycles, has been the subject of debate. Some researchers concluded that the 

marl, limestone and evaporite units were deposited in subtidal, intertidal and sabkha 

supratidal settings, respectively (Shawkat and Tucker, 1978; Shawkat, 1979; Tucker, 

1999). Evidence to support this interpretation includes the recognition of stromatolite 

carbonate algal-mat deposits and chicken-wire evaporite (anhydrite) in the formation at 

Shaikh Ibrahim, NW Iraq. However, others argued that the formation was deposited in a 

relatively rapidly subsiding basin, which was separated by from an adjacent open 

seaway tectonic barriers (van Bellen et al., 1959; Buday, 1980). Furthermore, Ajel 

(2004) argued that the general paucity of sedimentary features indicative of sabkha 

environments, such as stromatolites and dolomites, suggests that the development of 

sabkha environments was not widespread across the region; an interpretation of a 

marine-connected, restricted lagoonal environment was favoured. Additionally, Aqrawi 

(1993) stated that subaqueous evaporite might be occurred together with subaerial 
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sabkha evaporite in the Fatha Formation. Moreover, another related study proposed a 

model for a semi-restricted lagoon setting for the depositional environment (Hamid, 

1994). A further study argued that the formation accumulated in a storm-affected 

evaporitic basin that was subject to freshwater influxes (Ameen and Karim, 2007). 

Furthermore, other studies have documented a stratigraphic equivalent to the Fatha 

Formation, the Gachsaran Formation in Iran, which is also characterized by shallowing-

upward cycles capped by evaporites that are interpreted to have accumulated in 

supratidal and sabkha environments (James and Wynd, 1965; Gill and Ala, 1972; Pirouz 

et al., 2011). Thus, the origin and environmental significance of the preserved cycles of 

the Fatha Formation remain contentious. 

The aim of this chapter is to determine the depositional environments of the mixed 

carbonate-evaporite cycles of the Fatha Formation and to present a model with which to 

account for the variation in the expected facies trends of ramp systems more generally. 

Specific objectives are as follows: (i) to document the sedimentary facies and determine 

their depositional palaeoenvironments; (ii) to demonstrate variations in the style of 

preserved carbonate-evaporite cycles and ramp facies trends; and (iii) to present a 

depositional model for the formation.  

This study is timely and of broad appeal for the following reasons: (i) it presents the 

evaluation and correlation of the carbonate-evaporite cycles across a regional area 

which can be correlated into the adjacent countries of Iran and Syria, and therefore 

assists in constraining regional palaeogeography in relation to plate tectonic 

configuration across the wider region; (ii) the carbonate-evaporite succession creates a 

significant hydrocarbon system (currently a secondary target in Kurdistan) in which the 

carbonates make a good potential reservoir, sealed by the extensive evaporites, and (iii) 

economically, the evaporites offer an important local source for the extraction of 

gypsum and sulphur. 

In the current study, detailed sedimentary logs, lateral/vertical facies variations and 

detailed sedimentary facies and microfacies studies have been analysed for the Fatha 

Formation for the purpose of interpreting the depositional settings. Detailed sedimentary 

logs for all the sections, including age, thickness measurement, sample locations, water 

depth, lithology and facies descriptions, are illustrated. Detailed descriptions and 

interpretations of the carbonate microfacies are illustrated in Table 3.1 and 3.2. In 
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addition, detailed thin-section photomicrographs and field photographs for all the 

sedimentary facies are included.  

3.2 Methods 

Measured vertical sections were recorded from exposures of the Fatha Formation in the 

Qishlagh, Sargrma, Darbandikhan, Aj Dagh, Sangaw, Qara-Wais and Bawa Shaswar 

anticlines (see Chapter Two, Fig. 2.5; Table 2.1). Nine complete sections totalling 1527 

m in thickness were recorded from the well-developed Miocene succession in the 

Kurdistan region (see Chapter Two, Table 2.2). The 9 sedimentary logs (see Appendix 

1) were measured to characterize lateral and vertical variations in lithofacies and 

associated sedimentary structures. In total, 615 samples were collected from the studied 

sections from different lithological units. From these samples, 300 thin sections were 

studied from the carbonate units for analysis of petrography; twenty additional thin 

sections were studied from the calcareous mudstone and evaporite units. Carbonate 

microfacies were interpreted using the Dunham classification (Dunham, 1962) with the 

modifications of Embry and Klovan (Embry and Klovan, 1971). Microfossils were 

extracted from 50 samples of the calcareous mudstone unit using the H2O2 method 

(Boltovskoy and Wright, 1976), as the following: 

a) The dried field samples were broken into pieces less than a centimetre in diameter. 

b) The samples were transferred in to a 250ml beaker in the fumehood. 

c) The H2O2 solution was diluted to 20% using distilled water. 

d) The rock samples were submerged in the H2O2 solution left to break down for 2-

4hr. 

e) The samples were then washed through a 63µm diameter sieve. 

f) The samples were then gently rinsed in the sieve until the water run clear. 

g) A filter paper was folded and put in a funnel. The sample was transferred to the 

funnel, which was placed in a beaker to drain and dry. 

h) The samples were dried in an oven at approximately 40
o
C. 

i) The samples were ready to be sorted or picked and identified. 

j) The selected fossils were coated with gold and platinum alloys and imaged with the 

scanning electron microscope at the University of Leeds, UK.  
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3.3 Divisions of the Fatha Formation 

The main division of the formation was based on analysis of the section in the area 

around Kirkuk by van Bellen et al. (1959) and it was divided into four informal units, 

from bottom to top : (i) The Transition Beds that rest on the Basal Fars Conglomerate 

and are composed of anhydrite with thin carbonate and mudstone, (ii) The Saliferous 

Beds consisting of anhydrite and salt with mudstone, siltstone and less frequent 

carbonate beds, (iii) The Seepage Beds that are composed of anhydrite beds with 

mudstone, siltstone and carbonates, and (iv) The Upper Red Beds that are composed of 

red mudstone and siltstone with less frequent carbonate and anhydrite. This division is 

easily recognized in Kirkuk area. However, it is not identified in other areas. 

Research groups in the general directorate of geological survey and mineral 

investigation (Al-Mubarak and Youkhana, 1977; Taufiq and Domas, 1977) divided the 

formation regionally into two main members, based on the lack and presence of red 

clastics, which are the lower member (without red clastic) and upper member (with red 

clastic), respectively. The lower member is composed of marls, carbonates and 

anhydrites; the upper member is composed of the same rhythmic alternation as the 

lower part but with the additional presence of red clastics. Based on the current study 

close to the basin margin, the formation can be divided into these two units that are used 

throughout the study, as discussed below. 

3.3.1 The lower evaporite-dominated part 

This unit is mainly composed of cycles of calcareous mudstone (marl), carbonate, 

evaporite (gypsum) and red clastic beds and is 100 to 200 m thick (Figure 3.1A). This 

unit rests on the Basal Fars Conglomerate in the Darbandikhan area and the Jeribe 

Formation in the other areas. The basal part of this unit starts with red claystone in the 

most marginal parts of the studied areas, like Basara, Sargrma, Takiya and 

Darbandikhan. In the Garmian area, the basal part starts with alternations of thin 

evaporite and thin calcareous mudstone beds. 

3.3.2 The upper clastic-dominated unit 

This unit is 100 to 150 m thick and is mainly composed of alternations of thin beds of 

calcareous mudstone and carbonate with thick red clastic unit (red claystone, siltstone 

and sandstone, 2-8m thick) and thin less frequent evaporite beds (Figure 3.1B). The 
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clastic unit is mostly composed of medium grain size sandstone beds including different 

sedimentary structures, such as different types of ripple marks, cross bedding and 

different types of bioturbation (Skolithos and Rhyzolithos traces). Toward the top of this 

unit, the proportion of units of inferred marine origin decreases. These are replaced by 

units of fluvial origin of the Injana Formation. 
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Figure  3-1 Field photographs of the Fatha cycles of the lower evaporite (A) and upper clastic-

dominated (B) units from Basara and Sangaw sections, respectively. 
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3.4 Sedimentary facies 

The characterization of sedimentary lithofacies is the main tool for determining 

palaeodepositional environments. Detailed microfacies analysis and the detection of 

fossil assemblage allow the recognition of depositional settings. In addition, 

sedimentary structures and lateral and vertical variations of the lithofacies aid the 

determination of hydrodynamics and depositional settings. In this section, the results of 

the sedimentary facies analysis are presented in detail, key features of each facies or 

microfacies being summarized. Different fossil associations have been recognized from 

the calcareous mudstone units. Twenty-one carbonate microfacies have been interpreted 

and illustrated in Tables (3.1 and 3.2).        

3.4.1 Calcareous mudstone facies (CM) 

Description 

The calcareous mudstone facies comprises 13 to 24% of the succession, from the most 

distal to proximal parts of the studied areas. It is characterized by bluish to green and 

yellowish colours (Figure 3.10E), fine-grained textures, and is generally structureless, 

though millimetric planar laminations and bioturbation are locally visible. The thickness 

of the unit varies from 0.1 to 4.5 m.  

Petrographically, different minerals, rock fragments and microfossils are identified in 

the samples in a fine muddy matrix (Figure 3.10A-D). The minerals observed are 

quartz, chert, calcite, ferrous dolomite and plagioclase. Quartz is very common in all of 

the samples, comprising 10-30% of the facies. The quartz content increases toward the 

top of each individual cycle, which is also evidenced in the field by lithological change 

to a silty carbonate in some cycles. The quartz grains occur in small sizes (50-100 µm) 

and have irregular shapes, with low interference colours. They also contain small 

inclusions. Carbonate minerals are common in the unit and occur in different types such 

as detritus, chemical and microfossil remains. The detritus carbonate mineral is 

composed of calcite grains, while the chemical carbonate mineral is composed of 

dolomite. The calcite minerals are the most common carbonate minerals and exhibited 

laminar twining. However, the dolomite grains are much less abundant and appear in 

turquoise colours. In addition, the plagioclase feldspar minerals aren’t common and, 

when they appear, they occur in irregular shapes with laminar twining.  
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The main fossils of the unit include rotaliids (Ammonia, Neorotalia, Pararotalia, 

Elphidium and Rotalia) (Figure 3.7A-F), ostracods (Figure 3.8A-F), bryozoans (Figure 

3.9D-F), oysters, bivalves, miliolids (Figure 3.9A-B) and gastropods (Figure 3.9 C). 

The sizes of observed Ammonia and Rotalia are variable. For example, in the base of an 

individual unit they are typically smaller than 200 µm and have low abundance, 

whereas in the top of the unit, they range between 400 and 800 µm in size and have high 

abundance. Moreover, the sizes of ostracods vary from 400 to 800 µm, and their 

morphologies show variations from smooth to moderate/high ornamentations. Miliolids 

and gastropods are also recorded in the samples and associated with rotaliid group. 

The percentages of the fossil components vary in the cycles. In some cycles and 

especially at the base of the individual units, fossils are absent. Petrographically, the 

calcareous mudstone unit includes detrital quartz grains (10%), grains of feldspar 

minerals (2%) and ferrous dolomite grains (5%). The percentage of the detrital quartz 

grains increases toward the top of the individual units to 30% (Figure 3.10C-D). 

Lithological variations include the presence of more marl-prone carbonate in some 

cycles. Planar laminations and bioturbation are common in the units. In the studied 

sections planktonic foraminifer are not recorded, though such forms are recorded from 

similar facies in the basin centre (Shawkat, 1979). In general, the calcareous mudstone 

units from the lower part of the succession include rotaliid group foraminifera, miliolids 

and ostracods within muddy matrices. However, toward the upper part of the 

succession, normal marine bryozoans and oysters are seen. Skolithos ichnofabrics are 

abundant in the upper part of the succession (Figure 3.11C). 

Interpretation 

The association of rotaliids with ostracods and miliolids has been found from different 

parts of modern hypersaline lagoons on the both sides of the Red Sea and Gulf of Suez, 

Egypt by a number of researchers (Abou-Ouf et al., 1988; Gheith and Auf, 1996; Hariri, 

2008; Mohamed et al., 2013). Modern rotaliids live in hypersaline lagoons on the 

eastern coast of the Red Sea at water depths of less than 20 m (Yusuf, 1984; Hariri, 

2008). Furthermore, rotaliids indicate and have an affinity with abnormal environmental 

conditions of saline lagoons and pools (Murray, 1973; Mohamed et al., 2013). The 

genus Ammonia lives in a wide range of settings from normal marine to hypersaline 

lagoon, from 0 to 50 m water depth, in warm water (0 to 30°C). Elphidium lives in 

brackish to hypersaline marsh and lagoon settings (0 to 70 ‰), in water depths of 0 to 
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50 m (Murray, 1991). The variable size of Ammonia likely relates to salinity variations 

(Bradshaw, 1961). With decreasing salinity, the size of Ammonia increases. 

Ostracods occur in fresh, brackish and marine waters and also live in hypersaline waters 

(Scholle and Ulmer-Scholle, 2003). Sizes and morphologies of the ostracods from the 

calcareous mudstone units are variable. The percentages of these fossils, including both 

the smooth and nodded forms, are fluctuating in the cycles. A negative relation between 

ornamentation of ostracods with salinity was previously documented (Bate, 1971; Keen, 

1977; Garbett and Maddocks, 1979; Bodergat, 1983; De Deckker, 2002). However, 

some authors concluded a positive relation between them ostracod ornamentation and 

water salinity (Sandberg, 1964; Vesper, 1975; Van Harten, 2000). On the other hand, 

Bodergat (2008) states that the calcium content of the water, granulometry of the 

substrate, nutrient inputs and pH of the water have to be taken into account to conclude 

whether there is a relationship between ornamentations and salinities. However, Kilenyi 

(1972) and Van Harten (1975) stated that there is no critical relation between salinity 

and ostracod ornamentation. Moreover, Keen (1977) believes that the ornamentation 

variations are related to CaCOз content of the water. Studying the relationship between 

the size of ostracods and water salinity is also a critical subject and it is believed that 

there is a negative relation between the size of the carapaces and salinity (Van Harten, 

1975).  

Bryozoans are colonial and filter-feeding marine benthos organisms. Generally, 

bryozoans live in normal marine water with salinity approximately 35‰, any salinity 

fluctuations causing bryozoas to decline (Boersma, 1978; Haq and Boersma, 1998). The 

Skolithos ichnofacies is common in very shallow coastal environments (Seilacher, 1967) 

and also occurs in brackish water settings (Curran, 1985). 

Overall, the calcareous mudstone units are interpreted to have been deposited in low-

energy muddy hypersaline lagoonal to shallow, normal marine conditions from their 

lower to upper parts of the succession respectively. This is evidenced by the presence of 

abundant rotaliids, ostracods and miliolids, lacking high-energy sedimentary structures, 

the muddy matrix, planar laminations and bioturbations in the lower part, and the 

increase of normal marine bryozoans, oysters and bioturbation in the upper part of the 

succession (Figure 3.2). 
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Figure  3-2 A column diagram showing percentages of the extracted fossils from the calcareous 

mudstone unit from the Mamlaha section. B: bryozoas, O: ostracods and R: rotaliids. The samples 

are stratigraphically ordered. The percentage of rotaliids is relatively high at the lower part of the 

succession. However, it becomes low toward the upper part where bryozoan, oyster and bivalve are 

high. 

 

3.4.2 Carbonate microfacies 

The carbonate units range from 0.10 to 5.0 metres thick and comprise 5 to 15.5% of the 

total succession, from the most distal to proximal parts of the studied areas. They 

include different textures and structures which vary from fine carbonate units of 

mudstone and wackestone at the base to packstone, grainstone and rudstone textures at 

the top. Stromatolite or algal mat structures are present at the top of some carbonate 

units, as are a varied range of sedimentary structures, including planar and wavy 

laminations, trough cross-bedding, ripple marks and bioturbation. 

Based on the sedimentary structures, facies associations, skeletal and non-skeletal 

components and diagenetic processes, 21 carbonate microfacies are distinguished, 

which themselves can be assigned into six microfacies associations: skeletal (SK1-7), 

mollusc dominated (M1-3), non-skeletal (NS1-7), algal mat (AG1-2), dolomite (D1) 

and sandy carbonate (S1) (Tables 3.1 and 3.2).  
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Table  3-1 Microfacies associations and divisions of the carbonate members. 

Group Name Microfacies 

Skeletal Microfacies (SK) 

 

1       Mudstone (SK1) 

2       Ostracods wackestone (SK2) 

3 Rotaliids-ostracods wackestone (SK3) 

4 Rotaliids wackestone/packstone (SK4) 

5 Miliolids wackestone (SK5) 

6 Strongly-micritized bioclastic packstone (SK6) 

7 Echinoids wackestone/packstone (SK7) 

Molluscs Microfacies (M) 8 Bioclastic gastropods-bivalve packstone (M1) 

9 Bioclastic oyster-barnacles floatstone (M2) 

10 Bivalve float/rudstone (M3) 

Non-skeletal Microfacies 

(NS) 

11 Bioclastic peloidal grainstone (NS1) 

12 Faecal pellets grainstone (NS2) 

13 Peloidal-ooidal grainstone (NS3) 

14 Bioclastic ooidal grainstone (NS4) 

15 Ooidal grainstone/packstone (NS5) 

16 Coated grains rudstone (NS6)  

17 Intraclasts packstone (NS7) 

Algal mats (AG) 18 Microbial laminites (AG1) 

19 Stromatolites (AG2) 

Dolomite (D) 20 Dolo-mudstone (D1) 

Sandy carbonate (S) 21 Bioclastic calc-arenite (S1) 

 

3.3.1.1 Skeletal microfacies (SK) 

This group comprises of different microfacies, based on different skeletal associations 

and textures. The SK includes rotaliids, miliolids, ostracods and echinoids as the major 

bioclasts as well as molluscs as minor bioclasts. The bioclasts include both perforated 

bioclasts (rotaliids, echinoids and bryozoas) and porcelaceous imperforated foraminifera 

(miliolids, Peneroplis and Borelis). The microfacies of this group are mostly making up 

the base of the carbonate units in most of the cycles, except the non-fossiliferous 

mudstone sub-microfacies, which occurs at the top. The sediments are mostly of well-

bedded, white, clean, and fine-grained textures of mudstone and wackestone, with few 

packstone textures. Very fine laminations and bioturbations are common sedimentary 

structures in this group. This group of microfacies makes up the lower part of the 

carbonate units and is comprised of about 15% of the total carbonate microfacies of the 

succession. It comprises of seven different associations of benthic foraminifera 
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(rotaliids and miliolids), ostracods and echinoids as the main constituents in different 

percentages, and textures of mudstone, wackestone and packstone (SK1-SK7). 

A. Mudstone microfacies (SK1) 

Description  

This microfacies included both non-fossiliferous and bioclastic mudstone microfacies, 

which are characterised by having a very fine texture. Three different sub-microfacies 

were found within this microfacies, namely Bioturbated mudstone (SK1a), Quartz 

mudstone (SK1b), and Non-fossiliferous mudstone (SK1c) sub-microfacies.  

The SK1a sub-microfacies were common at the base of the carbonate units and was 

characterised by bioturbated homogenous micritic matrix (Figure 3.12A). Ostracods and 

miliolids were seen in this microfacies at less than 5% in a muddy matrix (Figure 

3.12A). The mud matrix was highly bioturbated, with some unidentified micritized 

faunas. The rocks were well bedded, very fine with structureless/non-laminated 

textures. This microfacies was recorded at the base of the carbonate units and it was 

interbedded with bioclastic wackestone and packstone microfacies. 

The SK1b sub-microfacies were characterised by a high percentage of quartz and chert 

grains (20-30% at average) in muddy to micro-sparitic matrices (Figure 3.12B). The 

associated bioclasts were oyster shells, ostracods, miliolids and echinoid plates and 

spines. Bioturbations and pseudomorphs after evaporites weren’t available, while micro 

patches of sparite occurred in some samples. This facies is recorded at the top of the 

carbonate units in few cycles, with planar and wavy laminated sedimentary structures. 

The SK1c sub-microfacies were characterised by laminated fine grain textures without 

any bioclasts. Quartz and calcite pseudomorphs after both gypsum and anhydrite were 

very common, represented by lenticular (Figure 3.12D) and lath (Figure 3.12E) crystals 

for both gypsum and anhydrite, respectively. In addition, large nodular evaporites were 

common and were dissolved and formed large vugs, 1-3mm in size (Figure 3.12C). 

Small detritus quartz grains also occurred at an average of 10%. This microfacies was 

recorded at the middle and top of the carbonate units from Mamlaha and Takiya 

sections. Occasionally, the sub-microfacies were alternating with very thin laminae of 

karst subaerial exposures, about 5mm thick (Figure 3.12G-H), and then grading up to 

stromatolites and algal bindstones at the top of the cycles. Dissolution, dolomitization 

and cementation were the main diagenetic processes. 
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Interpretation 

Paucity of foraminifera in diversity and abundance, high percentage of muds, no 

evidences of subaerial exposures and interbedding with lagoonal microfacies 

(wackestone and packstone) in the SK1a sub-microfacies are evidences for a restricted 

hypersaline lagoonal depositional environment in the inner ramp. High percentages of 

terrigenous materials and low abundance of fossils in the SK1b sub-microfacies are 

indicative of mixed siliciclastic-carbonate rocks in near-coast environments in the inner 

ramp (Flugel, 2004). Planar and wavy laminations with a high percentage of detritus 

quartz indicate a medium/high energy setting in near-coast environments. Authigenic 

evaporite pseudomorphs and fine structureless mud in the SK1c sub-microfacies 

indicate deposition in a hypersaline lagoon during arid climate. The presence of the 

evaporite pseudomorphs without any subaerial exposure indicates that the evaporite 

crystals were probably grown subaqueously because of strong brine refluxes (Becker 

and Bechstädt, 2006).  However, subaerial exposure couplets and interbedding of the 

sub-microfacies with stromatolites and algal mats from the Takiya section indicate 

evaporitic tidal-flat mud in an arid climate. Algal laminites commonly interbed with 

fenestrate mudstone (Nagy et al., 2005). Gypsum-pseudomorphs indicate brine 

concentrations, with prolonged exposure in supratidal settings (Wright, 1986), and they 

are features of arid intertidal sediments (Lasemi et al., 2012). These features are 

characteristic of tidal-flats in the inner ramp. 

B. Ostracods wackestone microfacies (SK2) 

Description 

The major bioclast component present in this microfacies was the ostracods, as they 

comprised around 10% of the total bioclasts. The ostracods were 300-500µm in size 

(Figure 3.12F). The associated bioclasts were miliolids and rotaliids. Quartz and chert 

grains occurred in a lime mud or micro sparitic matrix. Calcite and quartz 

pseudomorphs after evaporites were also present. Bioturbations and organic matters 

occurred in the facies. This facies was common and it was seen in most of the sections 

at the base of the carbonate units. 

Interpretation 
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The abundance of the ostracods was declining from the calcareous mudstone to the 

carbonate units, in which they occurred in wackestone texture and were associated with 

rotaliids and miliolids. Reducing ostracods, as well as foraminifera assemblages, from 

the carbonate units and the associated foraminifera indicate a low energy and 

hypersaline restricted lagoon. In addition, calcite and quartz pseudomorphs, after 

gypsum/anhydrite crystals, and bioturbations infer to that restriction in an arid climate. 

pseudomorphs after evaporites indicate hypersalinity in the depositional environment 

(Paszkowski and Szyd³ak, 1986).  

C. Rotaliids-ostracods wackestone microfacies (SK3) 

Description  

This microfacies includes both rotaliids and ostracods as the major components. These 

bioclasts were dispersed in a lime mud matrix and they comprised about 10% of the 

facies (Figure 3.13B). The bioclasts were 300-600 µm in size. Quartz, chert, organic 

matters and pseudomorphs after evaporites were seen in this facies. Miliolids were also 

present as a minor component. This facies was common and it was recorded in most of 

the studied sections, such as Takiya and Mamlaha, at the base of the carbonate units. 

Cementation was the main diagenetic process, which included both ferro and non-ferro 

calcite cements. 

Interpretation 

The abundance of lime mud with small benthic foraminifera and ostracods indicate low 

energy settings. Presence of quartz and chert grains indicates that the depositional 

environment was shallow and influx of the detritus grains was near. The evaporite 

pseudomorphs indicate an arid climate. Presence of rotaliids and ostracods in a 

wackestone texture in a muddy matrix with evaporite pseudomorphs indicate low 

energy hypersaline shallow lagoon in an arid inner ramp. 

D. Rotaliids wackestone/packstone (SK4) 

Description 

Rotaliids were the main components of this facies (10-30%) in a muddy matrix. They 

were 400-500µm in diameter. The associated bioclasts were miliolids and echinoids, in 
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the wackestone texture (Figure 3.13C-D), and miliolids, ostracods and fragments of 

barnacles, in the packstone texture. Quartz and chert grains were observed in both 

textures, with impregnated grains with organic matters. In addition, quartz 

pseudomorphs after anhydrite are available and the original cleavages of the previous 

anhydrite were preserved. Bioturbations were also common. This facies was common 

and it was seen in most of the sections, such as Mamlaha, Takiya and Basara. 

Cementation, dissolution and silicification were the common diagenetic processes in 

this microfacies. 

Interpretation 

Rotaliids are hyaline perforate benthic foraminifera and occur in very shallow agitated 

water at 0-40m depth (Geel, 2000). The representative genera of this group in the 

carbonate microfacies are Ammonia, Rotalia, Neorotalia, Pararotalia and Elphidium. 

The genus Ammonia lives in a normal marine to hypersaline lagoon environment at 0-

50m water depth and 0-30°C temperature, whereas Elphidium occurs in brackish to 

hypersaline marshes and lagoons at 0-7% salinity and water depth of 0-50m (Murray, 

1991). An association of rotaliids (Ammonia) and miliolids from a modern hypersaline 

lagoon in Brazil was recorded (Debenay et al., 2001). In addition, rotaliids and miliolids 

were recorded separately in two different modern hypersaline lagoons in the Red sea 

(Hariri, 2008). The author concluded that the water depth of the lagoons was the main 

factor affecting the distribution of the benthic foraminifera, as the rotaliids live in the 

deeper (2-14m depth) hypersaline lagoon than miliolids (2m depth).  

The associations of the rotaliids group with ostracods, miliolids, Peneroplis and Borelis 

in the carbonate wackestone and packstone textures in a muddy matrix indicate low 

energy hypersaline condition in the inner ramp. This was also evidenced by evaporite 

pseudomorphs within the microfacies. 

E. Miliolids wackestone (SK5) 

Description 

The SK5 microfacies were very common in most of the studied sections at the base of 

the carbonate units. Miliolids made the main bioclast component in this facies, about 

10-20%, and were 100-300µm in size (Figure 3.13E). The miliolid group observed 

included different genera, such as Triloculina, Quinloculina, Dentritina, Peneroplis and 
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Borelis, which were scattered in a muddy matrix. This facies was characterised by 

highly bioturbations and micritizations. It was difficult to recognise the micritized 

bioclasts. The associated bioclasts were ostracods and rotaliids, which had the same size 

as the miliolids. This facies was associated with peloidal microfacies on most of the 

cycles. Micritization of the bioclasts was the main diagenetic process. However, 

cementation was also common. The lithofacies was of fine to medium texture with 

bioturbations and organic matters. 

Interpretation 

Miliolids are a large group of imperforate porcelaceous foraminifera and live in low-

turbulence and very shallow waters, from subsaline to hypersaline environments. They 

are generally used as an indicator of restricted lagoon and hypersaline (Geel, 2000). In 

addition, miliolids occur in lagoons and shallow nearshore environments down to about 

50m (Flugel, 2004). Where they are abundant, they indicate a connection to open ocean 

(Chassefiere et al., 1969), fore-reefs and shallow lagoons (Schlanger, 1963). In the 

current study, the wackestone microfacies with miliolids occurred mostly at the base of 

the carbonate units and were characterised by the presence of different forms of 

miliolina groups such as Triloculina, Quinloculina, Dentritina, Peneroplis and Borelis. 

Peneroplis, Quinqueloclina and Triloculina occur at water salinities of 3.5-5.3%, 3.2-

6.5% and 3.2-5.5%, respectively (Murray, 1991). Thus, miliolids wackestone 

microfacies represent very shallow hypersaline lagoon in the inner ramp and 

bioturbation and muddy matrix indicate low energy and high nutrition environments. 

F. Strongly micritized bioclastic packstone (SK6) 

Description 

This microfacies is documented from Takiya and Basara sections and is comprised of 

2% of the total carbonate microfacies of the succession. It is characterized by intense 

bioturbation and micritization. The matrix comprises of bioturbated muds and most of 

the bioclasts are difficult to recognize due to the micritization. However, several 

miliolids and ostracods were recognized (Figure 3.13F-G). Fenestrate pores are seen 

between the grains (Figure 3.13F). Micritization and is the main diagenetic process. 

Quartz grains and evaporite pseudomorphs are absent. 

Interpretation 
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Highly micritized bioclasts and benthic foraminifera such as miliolids and ostracods 

indicate low energy and well oxygenated conditions (Flugel, 2004). The presence of 

shallow water foraminifera and low energy mud matrices with fenestrate pores indicate 

a low energy intertidal setting.   

G. Echinoid wackestone/packstone (SK7) 

Description 

This microfacies is comprised of about 2% of the total carbonate microfacies of the 

succession. Echinoid fragments of both spines and plates (10 to 20%) are the main 

bioclasts in a muddy matrix (Figure 3.13H). The echinoids plates are 500 µm to 2 mm 

in size; echinoid spines are <300 µm. The associated bioclasts in wackestone and 

packstone textures are miliolids (2%), ostracods (2%) and rotaliids (5%). Detrital quartz 

and chert grains (5%) occur in this facies. Moreover, cementation of the echinoid spines 

and plates is the main diagenetic process. 

Interpretation 

The high percentage of echinoid spines and plates indicates normal marine salinity for 

the depositional setting (Strasser et al., 1995). The presence of an associated benthic 

foraminiferal assemblage of miliolids and rotaliids, and ostracods indicates a shallow 

lagoon but with connection to open marine conditions on the inner ramp. 

3.3.1.2 Mollusc microfacies (M) 

The microfacies of this group were classified, based on the existence of different 

mollusc types (Table 3.1). The molluscs reported were bivalves (pelecypods and 

cephalopods), oysters and gastropods. Barnacles from Arthropods group were also 

accounted in this group because of their close association with the molluscs. The minor 

associated bioclasts in this group were miliolids, rotaliids, ostracods, red algae and 

serpulid tube worm. The lithofacies were characterised by a coarse to a very coarse 

texture and well to massive bedded fossiliferous carbonate rocks. The molluscs were 

visible and reached a maximum size of 3.0cm, while the smallest molluscs were 400µm 

in diameter. However, this group was characterised by several sedimentary structures 

such as planar and wavy laminations, ripple marks and slight cross-beddings. The 

microfacies of this group were associated with each other and they were mostly 
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interbedded with marl. Oriented bivalves and bioclasts were very common in most of 

the microfacies. Moreover, compaction, dissolution and cementation were very 

common. Moldic was the main type of porosity within this facies by dissolution of the 

shell fragments. 

A. Bioclastic gastropod-bivalve packstone (M1) 

Description 

This facies is comprised of about 5% of the total carbonate microfacies of the 

succession and is seen in the Aj Dagh and Sangaw sections; gastropods and bivalves are 

the main component (50 to 60%) (Figure 3.14A-B). The major associated bioclasts are 

of echinoids and bryozoans and the minor associated bioclasts are miliolids, rotaliids 

and serpulid worm tubes in a micrite matrix. The bivalve shells have been subjected to 

micritization and dissolution. Micritic intraclasts, detrital quartz and chert grains are 

also seen. This lithofacies is characterized as a very coarse (coarse sand size), massive 

fossiliferous carbonate. Micritic envelops around the bioclasts are abundant. 

Cementation and dissolution of the shell fragments are the main diagenetic processes. 

Interpretation 

The presence of gastropods, together with the microfaunal assemblage, indicates 

deposition in shallow lagoonal to intertidal settings (Flugel, 2004). The micritic matrix 

indicates deposition in a low-energy environment. This facies was thus probably 

deposited in a low energy and very shallow lagoonal setting. 

B. Bioclastic oyster-barnacle floatstone (M2) 

Description 

This facies is comprised of about 5% of the total carbonate microfacies of the 

succession. It is characterized by abundant barnacles and oysters (20%) which are 

greater than 2mm in size (Figure 3.14C-D) and associated with bivalves (5%), benthic 

foraminifera (2%), serpulid tube worms (1%), echinoids (2%), gastropods (2%) and 

ostracods (2%) in a micrite matrix. The oysters and bivalves have large and complete 

valves (Figure 3.14E-F). Ostrea is the only genus that is recognized within the oysters. 

The oysters and bivalves are in situ forms and have complete valves, whereas the 
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barnacles are attached to the oysters and bivalves. Micritic intraclasts, and quartz and 

chert grains are also abundant. Micritic envelopes around the barnacle and oyster shells 

are also abundant and the bivalve shells are filled by fine-grained peloidal micrite. The 

rock is characterized by a very coarse carbonate texture with large oyster and barnacles. 

This facies is very common and recorded in all of the sections, with 30 to 50 cm-thick 

carbonate beds. Dissolution and micritization are the main diagenetic processes. 

Interpretation 

The genus Ostrea live in a salinity less than normal marine, typically about 23‰ 

(Hudson, 1963). Barnacles live in intertidal environments (Flugel, 2004; Ghosh and 

Sarkar, 2013). Floatstone textures and the associated bioclasts of oysters, barnacles and 

bivalves in a muddy matrix, together with bioturbation and common micritic envelopes, 

indicate low to moderate energy conditions. The abundance of the oysters indicates 

deposition in less than 50 m depth of brackish, nutrient-rich and poorly oxygenated 

water (Gertsch et al., 2010). In addition, Ostrea live in marine water between depths of 

0 and 35m (Keen and Coan, 1974). The occurrence of barnacles with the oysters 

suggests deposition in intertidal to sublittoral waters (Schmitt, 1957) and the presence of 

micritic intraclasts, quartz and chert grains indicate that the depositional environment 

was relatively close to the shoreline. The presence of micritic intraclasts suggests syn-

depositional erosion of partially lithified sediment and is a common feature of shallow 

subtidal and peritidal carbonates (Flugel, 2004). The oysters and bivalves acted as a 

substrate for the barnacles’ attachment. Micritic envelopes and infilled bivalves indicate 

early marine diagenesis. The association of barnacles and oysters with abundant micritic 

intraclasts suggests deposition in normal marine to low salinity waters in very shallow 

lagoonal to intertidal settings. 

C. Bivalve floatstone/rudstone (M3) 

Description 

This facies is the most common microfacies in this group and is seen in all the studied 

sections that composed of about 5% of the total carbonate microfacies of the succession. 

Bivalve shells are the main component of this facies (80 to 90%). The rudstone 

microfacies is characterized by very coarse, fossiliferous carbonate, rich in bivalves, in 

which the bivalves reach up to 15 mm in size (Figure 3.14G-H). The bivalves are well 
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preserved and many of the bivalves are intact. The associated carbonate components are 

miliolids, rotaliids, ostracods, gastropods, barnacles, oysters and red algae in sparite 

matrices. The floatstone microfacies are characterized by scattered bivalve shells in a 

mud or micro-sparite matrix, with some associated bioclasts comprising echinoid spines 

and miliolids. In addition, dissolved evaporite rosettes and detrital quartz grains occur in 

the floatstone texture. Weak planar laminations and ripple marks are seen in the 

rudstone microfacies. Evidence for dissolution and micritization is very common. The 

dissolved bivalve shells formed moldic porosity and sometimes are filled with evaporite 

minerals and calcite crystals. In addition, micritic envelopes, micro-borings, peloidal 

micrite and detrital quartz grains are very common in this facies. This microfacies is 

associated with the oyster-barnacle floatstone microfacies where it makes up the top of 

a carbonate unit. 

Interpretation 

The presence of large bivalves in a rudstone texture indicates wave-agitated, nearshore 

environments (Flugel, 2004). The lack of mud and presence of ripple marks indicate 

deposition and winnowing above the fair-weather wave base (Flugel, 2004). The 

preservation of large and complete bivalves in combination with oysters indicates in situ 

accumulation of skeletal materials. However, the floatstone textures with evaporite 

rosettes indicate lower energy environmental settings. 

3.3.1.3 Non-skeletal microfacies 

This group of microfacies included non-skeletal and coated grains and micritic 

intraclasts. The NS microfacies were very common in the formation in all the studied 

sections. It was characterised by different textures of packstone, grainstone and 

rudstone. The microfacies were classified based on the type of grains and textures into 

peloids, ooids and intraclasts (Table 3.1). The rocks of this group are recognised by 

coarse and fine grains. In ooid microfacies, the rocks were characterised by a coarse 

texture with the presence of different sedimentary structures such as stylolites, planar 

laminations, ripple marks, trough cross beddings and cross beddings. However, the 

peloid microfacies were characterised by a fine to medium texture and grey to dark grey 

carbonate rocks that contained very fine planar laminations, gradded beddings and 

bioturbations.  



 

57 

The microfacies of the NS group were associated with each other and with skeletal 

microfacies (SK1-SK7) in most of the cycles. The peloidal microfacies were mostly 

making up the middle of the cycles and graded up gradationally to ooidal microfacies at 

the top of the cycles. 

A. Bioclastic peloidal grainstone (NS1) 

Description  

This facies was very common in the formation and it was seen in all of the studied 

sections. The peloids comprise 50-60% of facies components. They were 200-500µm in 

size. Based on the associated bioclasts, three bioclastic peloidal grainstone sub-

microfacies were recognised: 1) Bivalve-peloidal grainstone (NS1a), 2) ostracods-

peloidal grainstone (NS1b), and 3) Bioclastic-peloidal grainstone (NS1c) sub-

microfacies. 

The main components of the NS1a sub-microfacies are peloids and bivalves. The 

bivalves are 2mm in sizes and make 10-20% of the facies (Figure 3.15A). The peloids 

are 100-200µm in size and make up 70-80% of the facies. The peloids and bivalves are 

dispersed in a sparitic matrix. This facies was recorded in Sangaw and Mamlaha 

sections in a laminated massive carbonate unit. Micritic envelopes around the bivalves, 

peloidal micrite and bioturbations were very common. Occasionally, the bivalves and 

peloids were oriented. 

The NS1b sub-microfacies were characterised by presence of poorly sorted and oriented 

ostracod fragments in a sparitic matrix (Figure 3.15B). The ostracods reached 500µm in 

diameter and formed 20-30% of the facies. Peloids were also available and were 

<250µm in size and constituted 60-70% of the facies. The grainstone texture of the 

oriented ostracods and peloids changed to a mudstone texture and an irregular boundary 

separated the two texture types (Figure 3.15C). The sub-microfacies was recorded in 

Takiya and Basara sections in a thin carbonate unit within the calcareous mudstone 

units.  

Different associated bioclasts are available in the NS1c sub-microfacies, which are 

echinoids, miliolids, rotaliids, bryozoas, oysters, barnacles and ooids that are dispersed 

in a sparitic matrix (Figure 3.15D). In some samples, the original structures of the 

bioclasts/ooids were preserved and transitional changes were visible in others (Figure 
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3.15F). The peloids were 200-600µm in size and constituted 30-40% of the facies. The 

major bioclasts were echinoid plates which were partially or totally micritized and were 

>500µm in diameter and formed 30-40% of the facies. The ooids were radial in shape 

and <250 µm in size and constituted around 10% of the facies (Figure 3.15E). In some 

samples, the grains were oriented and formed moderately sorted textures. These sub-

microfacies were recorded in Krbchna section in the upper part of the formation. 

Interpretation 

The peloids resulted from partial or total micritization of bioclasts and ooids. This type 

of peloid resembles the Bahamite peloids in the modern Bahama Banks (Flugel, 2004). 

However, those peloids which originated from micritizing ooids have also been called 

pseudopeloids (Flugel, 2004). High abundance of bivalve shells and peloids and poorly 

sorted fabric in the NS1a sub-microfacies suggests moderately energy conditions in the 

shallow lagoon. The abundance of peloids, micritic envelopes and peloidal micrite and 

lack of mud indicate algal origins and relatively moderate energy. 

The predominance of ostracods, the poor sorting and lack of mud in the NS1b sub-

microfacies are suggestive of a shallow lagoon environment. The irregular boundary 

and facies changes suggest storm deposit between the fair-weather wave base and storm 

wave base. 

The peloids in the NS1c sub-microfacies were probably resulted from micritization of 

the pre-existing bioclasts/ooids as some of these bioclasts/ooids were partially or totally 

micritized. The peloids which were originated by micritizing bioclasts resemble the 

Bahamite peloids in the modern Bahama Banks, while the peloids originated from 

micritizing ooids are called pseudopeloids (Flugel, 2004). The bioclasts indicate normal 

marine salinity by presence of high percentage of echinoids (Strasser et al., 1995). The 

absence of mud, the moderately sorted grain sizes, presence of small foraminifera, 

grainstone texture and highly diversity of different groups of fauna indicate that the 

facies was deposited in very shallow settings within fair-weather wave base. Moreover, 

the absence of mud and the grainstone texture indicate moderate/high energy conditions. 

Imbrications and orientations of the grains in some samples suggest possible proximity 

to wave ripples and relatively shallower positions.   
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B. Faecal pellet grainstone microfacies (NS2) 

Description 

This facies is comprised of about 2% of the total carbonate microfacies of the 

succession and is recorded from the Takiya, Basara and Darbandikhan sections. Faecal 

pellets are characterized by dark, rounded to elongate shapes and medium to well sorted 

grains (Figure 3.16A). The pellets are less than 300 µm in size and make up 80 to 90% 

of the rock. Bioclasts are very rare in this facies; however, a few miliolids and 

Dentritina are noted. Rarely, large micritic intraclasts up to 4 millimetres are seen, with 

large pelleted grains up to 1.5 mm in size. In addition, coarse graded bedding together 

with planar laminations rarely occurs. Authigenic evaporite minerals also occur. This 

facies occurs in three sequential cycles in the upper part of the formation; each cycle 

commences with a calcareous mudstone unit at its base, passing up to a fine calc-arenite 

microfacies, then to the laminated faecal pellet grainstone microfacies (Figure 3.15G-

H). Each of the three cycles is capped by the red continental facies.  

Interpretation 

Pellets are ovoid to ellipsoidal grains of muddy carbonate sediments and range from few 

hundred microns up to several millimetres in size. Faecal pellets may be produced by 

gastropods, worms and shrimps. They commonly form in a wide range of shallow water 

environments and are preserved in lower energy muddy depositional settings. They 

dominantly form in subtidal and lower intertidal coastal settings in low-energy zones 

with a reduced sedimentation rate (Flugel, 2004). Laminated structures in fine to 

medium sand sized pellets indicate moderate to high energy subtidal to intertidal, 

lagoonal to back-shoal settings. The pellet preservation indicates very low 

sedimentation rates and early cementation (Tucker and Wright, 1990). The laminated 

structure of the pellets in the current study is interpreted to indicate low energy 

conditions in a lagoon with low sedimentation rates and early cementation. Associated 

miliolids and Dentritina species lead to the inference of a restricted lagoon. Well 

preserved planar laminations indicate a lack of bioturbation by organisms. 

C. Peloidal-ooidal grainstone (NS3) 

Description 
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This facies is common in most of the studied sections and is comprised of 

approximately 3% of the total carbonate microfacies of the succession. It is 

characterized by micritized and concentric ooids with dark faecal pellets (Figure 3.16B). 

The faecal pellets form 50% and the ooids form 40% of the microfacies in a sparitic 

matrix. The ooids are 200 to 600 µm in size and are moderately sorted. Some of the 

ooids are concentric normal ooids; however, the other ooids are micritic and superficial 

ooids. The nuclei of the ooids are faecal pellets but most of the ooids’ nuclei are 

dissolved and form a good secondary porosity in the rock. The faecal pellets are smaller 

than the ooids (100 to 400 µm) and are dark and rounded, and elongate or rod-shaped. 

Bioclasts and detrital quartz grains are very rare. The rocks of this microfacies is 

characterized by medium to coarse sand-grade carbonates and are associated with the 

NS1, NS4 and NS5 microfacies in most of the sections. This facies comprises the 

middle of the carbonate units of most of the cycles. Stylolitization, cementation, 

dissolution and micritization are the main diagenetic processes. 

Interpretation 

The association of this facies with bioclastic ooidal and ooidal grainstone microfacies, 

the presence of pellets, the lack of mud, the presence of ooids and the poor to moderate 

sorting indicate moderate energy conditions in the shoreface zone or at the edges of 

sand shoals, above the fair-weather wave base on the inner ramp. 

D. Bioclastic ooidal and ooidal packstone and grainstone (NS4-NS5) 

Description 

This microfacies is comprised of approximately 10% of the total carbonate microfacies 

of the succession and is recorded in all the studied sections as outlined in Table 2. 

Generally, two variations of the bioclastic and ooidal grainstone microfacies were 

identified based on the type of matrix; mud (NS4) and sparite (NS5) matrices. The 

bioclastic-ooidal packstone and grainstone (NS4) microfacies are characterized by an 

abundant muddy matrix with different bioclasts (10%) and normal ooids (80 to 90%), 

together with varied sedimentary structures; cross bedding (Figure 3.17E-G) and trough 

cross bedding. In addition, micritic envelopes around the ooids and bioclasts are very 

common, envelopes which show irregular contacts between the micrite and the 

ooid/bioclast surfaces (Figure 3.16C). These irregular contacts represent micro-borings 
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on the surfaces of the ooids/bioclasts. Meniscus cements are occasionally available 

between the grains (Figure 3.16D). 

The ooids (NS4) are mostly between 300 and 500 µm (Figure 3.16E and 3.18A-B). 

They are rounded to ellipsoidal in shape and exhibit medium to good sorting. In 

addition, they are mostly normal ooids (on average 90%) with a few micritized, 

distorted (Carozzi, 1961b) and superficial ooids (10%). However, rarely, the ooidal 

microfacies includes up to 80 to 90% of distorted, superficial, and micritized ooids. The 

ooids have concentric laminae with only a few micritized ooids and they occur in a 

sparite matrix. The distorted ooids (Figure 3.16G) are flattened and joined together in 

pairs or chains (zig zag). Foraminifera (Figure 3.16E), quartz (Figure 3.18A), chert, 

pellets and molluscs make up the nuclei of the ooids, which are mostly dissolved and 

form good secondary porosities. However, the nuclei of some ooids are filled with 

micritic cements (Figure 3.16E). Ooid aggregates (Figure 3.16F) are also seen and these 

are >2 mm in size and include different coated grains and bioclasts. Dissolution, 

micritization, cementation, and pressure solution in the form of stylolites are the main 

diagenetic processes. In addition, micro-stylolites are also seen where thin sections cut 

the ooids along the stylolite surfaces. Meniscus, peloidal and micritic cements are the 

main diagenetic cements in the facies. Partial micritization occurs along the cortices or 

nuclei of the ooids. However, in some samples total micritization has occurred. The 

meniscus cements bridge the ooids and any bioclasts (Figure 3.16H). Micritic cements 

filled the nuclei of the ooids and peloids that are mostly 20 to 40 µm in size are 

dispersed in the sparitic matrix. The rocks of this microfacies are characterized by 

coarse to very coarse carbonates with varied sedimentary structures including planar 

laminations, wavy laminations, ripple marks (Figure 3.17C-D), trough cross-bedding 

(Figure 3.17A-B), together with post-depositional horizontal and vertical stylolites 

(Figure 3.17H). This microfacies is common close to the top of the carbonate units of 

most of the cycles and is associated with microfacies NS1and NS3 in most of the 

sections. 

The ooidal packstone microfacies are not common and are only seen in two cycles in 

the Mamlaha and Takiya sections. It is characterized by the presence of ooids (50 to 

60%, on average) with bivalve shells in a muddy matrix. 

Interpretation 
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Modern ooids are commonly deposited in marine and non-marine settings at water 

depth of 1 to 5 metres, up to a maximum 10 to 15 metres, in subtropical and tropical 

waters at temperature usually between 18 and 20° C (Rameil, 2005), in intertidal and 

upper subtidal environments (Flugel, 2004). They form in high energy wave-agitated 

and lower energy marginal settings. Ooids are common in the studied succession and 

form packstone and grainstone textures, but the grainstone textures are more common. 

The ooids are of different types (concentric, micritized and distorted), with different 

types of cortices (normal and superficial), and matrices (mud and sparite). These criteria 

indicate differing depositional settings for the ooids but normal concentric ooids in 

sparite matrices are the most abundant. Locally, in some samples the ooids are 

superficial in type and form packstone and grainstone textures in muddy matrices 

(NS4). These criteria indicate a more quiet and protected environment. However, most 

of the ooids from the studied succession are rounded in shape, normal and concentric in 

type and from 300 to 500 µm in size (NS5). These features indicate shallow marine and 

high energy conditions, in which the ooids were influenced by wave and current action 

(Flugel, 2004). Field observations of cross bedding, trough cross-bedding, planar 

laminations and ripple marks also indicate deposition above the fair-weather wave base. 

Medium to well-sorted grains and grainstone textures of the ooids are typical of being 

winnowed under wave current action. Meniscus cements between the ooids and 

bioclasts indicate very early diagenetic cementation and meteoric, vadose freshwater 

diagenesis and subaerial exposure (Inden and Moore, 1983; Strasser, 1986; Strasser et 

al., 1995; Flugel, 2004). Peloidal cements and micritic envelopes indicate early marine 

cementation. The presence of micritic envelopes with micro-borings and coated grains 

indicate constant wave action at or above wave base and occur in current-washed sand 

shoals of inner ramp environments (Flugel, 2004). The association of the ooids with 

peloids and benthic foraminifera, the marine-phreatic and meteoric cements, and the 

observed sedimentary structures are, together, indicators that the ooidal microfacies 

accumulated along sand shoals or beaches. 

E. Coated grain rudstone (NS6) 

Description 

This facies is recorded in the Takiya section in the middle part of a carbonate unit and is 

comprised of about 2.5% of the total carbonate microfacies of the succession. This 

microfacies includes 50% bioclastic coated grains, 10% serpulid tube worms, 
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gastropods and bivalve shells (20%) in a sparitic matrix. The other grains are intraclasts. 

The coated grains are irregular and compacted in shape and about 1 to 3 mm in size 

(Figure 3.18C-E). They have thin concentric laminae with dissolved and micritized 

nuclei. Bioturbation, peloidal micrite and micrite envelopes are abundant in this facies. 

The serpulid tube worms are elongate in shape and about 1 to 2 mm in length. The rocks 

of this microfacies are very coarse carbonate rocks in which the coated grains are very 

visible in the field samples. This facies is associated with mudstone, algal laminites and 

stromatolitic microfacies. Dissolution, micritization and cementation are the common 

diagenetic processes. 

Interpretation 

The abundance of large coated grains in sparitic matrix indicates moderate energy in a 

nearshore shallow lagoon of an inner ramp (Flugel, 2004). 

F. Intraclast packstone (NS7) 

Description 

This microfacies is very common in most of the studied areas such as the Mamlaha, 

Darbandikhan, Krbchna and Chnarah sections and is comprised of about 2.5% of the 

total carbonate microfacies of the succession. The micritic intraclasts (20 to 30%) are 

characterized by being poorly sorted, semi-oriented, irregular in shape and of various 

sizes (Figure 3.18F-H). In some samples, intraclasts range from 100 to 1000 µm in size; 

in others from100 to 500 µm. In the former type, the intraclasts are associated with 

gastropods, barnacles, and oysters with a few benthic foraminifera and quartz grains. 

However, in the second type; the intraclasts are mainly associated with benthic 

foraminifera such as miliolids and with ostracods. Fenestrate pores are seen between the 

grains. Quartz grains are absent. Micritization is the main diagenetic process. Evaporite 

pseudomorphs are absent. 

Interpretation 

Intraclasts originate from the syn-depositional erosion of partially lithified sediment and 

are a common feature of shallow subtidal and peritidal carbonates (Flugel, 2004). 

Moreover, fenestrate pores indicate deposition in intertidal settings. The presence of 

larger intraclasts with the associated bioclasts and quartz grains indicate a shallower 
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setting than the smaller intraclasts with benthic foraminifera. Thus, the intraclast 

packstone microfacies were deposited in very shallow lagoonal to intertidal settings in 

the inner ramp depositional environment.  

3.3.1.4 Algal mats 

This group of microfacies was common in the formation and making up the top of the 

carbonate units in the cycles. The rocks of this group were characterised by being thin 

(10-30cm) and dark grey in colour with wavy and planar laminations and dome 

structures. This group of microfacies was associated with dissolved micro nodular 

evaporites and calcite/quartz pseudomorphs after evaporites. Calcite and quartz 

lenticular crystals are pseudomorphs after gypsum, while lath and acicular crystals are 

pseudomorphs after anhydrite. In some cases, a half of the lenticular crystals were 

cemented by calcite while the other half was cemented by quartz mineral. In addition, 

the original cleavages of the gypsum were preserved after replacing by quartz grains. 

Two types of algal mats were recognised based on the algal structures: microbial algal 

bindstone microfacies (AG1) and stromatolites (AG2). 

A. Microbial algal bindstone (AG1) 

Description 

This facies is recognized based on visible laminations which include very small peloids 

(10-30 mm) due to algal activity (Figure 3.19B-C). It is recorded in most of the studied 

sections at the top of some of the carbonate units of the cycles, comprising 5% of the 

total carbonate microfacies of the succession. It is characterized by dark grey, fine-

grained carbonate rocks with planar laminations (Figure 3.19D-F). Calcite and quartz 

pseudomorphs after gypsum and anhydrite are very common in this facies, as are 

fenestrate pore. This facies is associated with stromatolites in the Takiya section, but in 

the Mamlaha section they form thin carbonate units 0.2 to 0.3 m thick below the 

evaporite units. This facies in the Takiya section is associated with thin, vuggy 

carbonates, which represent a short period of exposure at the top of this facies, at the 

base of evaporate units. 

Interpretation 
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This type of rock is a common facies in arid intertidal to supratidal depositional 

settings; for example, it occurs in the arid Trucial Coast (Kinsman and Park, 1976). 

Laminated algal bindstone with authigenic evaporitic minerals, fenestrate structures and 

associations with stromatolites and chicken-wire evaporites indicate upper intertidal 

settings in an arid climate (Kendall et al., 2002; Flugel, 2004). The short-lived subaerial 

exposure above the associated stromatolite with this facies is consistent with an 

intertidal setting. 

B. Stromatolites (AG2) 

Description 

The stromatolite microfacies are recorded at the top of the carbonate unit and comprised 

of about 5% of the total carbonate microfacies of the succession Two types of 

stromatolites are recorded in the current study: the first one (AG2a) is a domal 

fenestrate algal bindstone and is interbedded with mudstone microfacies in the Takiya 

section (Figure 3.20A). The rocks of this facies are characterized by fine, dark grey 

carbonate rocks with visible dome structures and laminations. The fenestrate pores 

become larger toward the top (Figure 3.20B-D). In addition, the laminations are cut by a 

subaerial erosion surface at the top. This type of stromatolite overlies the laminated 

quartz mudstone microfacies (SK1-3) in a thick carbonate unit. The thickness of the 

stromatolite is 10 cm. 

The second type (AG2b) is wavy-laminated, with interbedded couplets of muddy and 

sparite laminae (Figure 3.20F), and with lenticular (Figure 3.20H) and acicular (Figure 

3.20G) evaporitic minerals which indicate authigenic evaporitic minerals, as seen in the 

Mamlaha section. It includes micritized ooids and acicular evaporite crystals in the 

muddy laminae. This type of stromatolite occurs in a cycle which begins with a 

calcareous mudstone unit at the base and passes up to the stromatolite (0.1 m thick) and 

then the overlying evaporite unit (Figure 3.20E). 

Interpretation 

Ancient and modern analogues indicate that stromatolites usually grow in the intertidal 

to supratidal zones, and also the subtidal zone (Tucker and Wright, 1990). They grow in 

the subtidal zone when the activity of the grazers and burrowers is reduced, at a 

maximum depth of 4 to 5 metres. However, intertidal to supratidal stromatolites are 
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characterized by desiccation features, high salinity, and high temperatures which are 

unfavourable for animal grazer activities (Kinsman and Park, 1976; Hoffman, 1976b; 

Tucker and Wright, 1990). Modern flat-laminated structures of stromatolitic and 

microbial origins occur in lower intertidal settings in arid climates in the Persian Gulf 

and Shark Bay (Kinsman and Park, 1976; Hoffman, 1976b; Flugel, 2004). Fenestrate 

structures, subaerial exposure, authigenic evaporitic minerals and associations with 

algal mats and nodular evaporites at the top of the carbonate units all indicate intertidal 

settings in an arid climate (AG2a). The same facies of stromatolites and algal laminites 

was observed in the Fatha Formation in the basin centre (Shawkat and Tucker, 1978; 

Shawkat, 1979). Moreover, fenestrate mudstones, stromatolites and microbial laminites 

are recorded from the Oligocene-Miocene Asmari Formation in Iran by many authors 

(Amirshahkarami et al., 2007; Vaziri-Moghaddam et al., 2010; Amirshahkarami, 2013). 

The second type of stromatolite (AG2b), with no evidence of subaerial exposure, is 

interpreted to have been deposited in a low energy restricted lagoon. 
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Table  3-2 Descriptions and interpretations of the carbonate microfacies.   

microfacies Description  Physical structures and geometries Interpretation 

1- Skeletal microfacies group (15% of the total carbonate microfacies) 

Mudstone 

(SK1) 

SK1a: Bioturbated mudstone sub-microfacies: lime 

mud matrix, ostracods and miliolids.  

Highly bioturbated mud and very fine 

texture, non-laminated and 

structureless. 

Low-energy restricted 

hypersaline lagoon. Inner 

ramp. 

SK1b: Quartz mudstone sub-microfacies: Mud to 

micro sparite matrix. 20-30% of quartz and chert 

grains with oysters, ostracods, miliolids and echinoid 

plates and spines. 

Thin beds of 10-40cm with planar and 

wavy laminations.  

Mixed siliciclastic-carbonate 

coastal environment. Inner 

ramp. 

SK1c: Non-fossiliferous mudstone sub-microfacies: 

lime mud matrix, evaporite pseudomorphs, dissolved 

large vugs of nodular evaporite and quartz and chert 

grains (10%). 

Thin, very fine textures and 

structureless. Exposure couplets and 

planar laminations. 

Hypersaline restricted lagoon. 

Intertidal. Inner ramp. 

Ostracods 

wackestone (SK2) 

Mud and local micro sparite matrix. Major component: 

ostracods (10%). Minor component: miliolids and 

rotaliids. Quartz and chert grains and evaporite 

pseudomorphs. 

20-50cm thick beds. Bioturbations. Low energy hypersaline 

restricted lagoon. Inner ramp. 

Rotaliids-

ostracods 

wackestone (SK3) 

Lime mud matrix, rotaliids and ostracods (10%) and 

miliolids. Quartz, chert and evaporite pseudomorphs. 

20-50cm thick beds. Bioturbations. Low energy hypersaline 

restricted lagoon. Inner ramp. 

Rotaliids 

wackestone/packst

one (SK4) 

Lime mud and local micro sparite matrix. Rotaliids 

(10-30%), ostracods, miliolids and few barnacles. 

Quartz, chert and evaporite pseudomorphs.  

Medium beds 20-40cm thick. 

Bioturbations. 

Low energy hypersaline 

restricted lagoon. Inner ramp. 
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Miliolids 

wackestone (SK5) 

Lime mud matrix, miliolids (10%), ostracods and 

rotaliids. Micritised unidentified bioclasts. 

20-50cm thick beds. Bioturbations and 

micritisation. 

Low energy restricted lagoon. 

Inner ramp. 

Strongly 

micritised 

bioclastic 

packstone (SK6) 

Bioturbated mud matrix, unidentified micritised 

bioclasts with few ostracods and miliolids. 

10-30cm thick beds with highly 

bioturbations.  

Low energy and well 

oxygenated lagoon to 

intertidal. Inner ramp. 

Echinoids 

wackestone/packst

one (SK7) 

Mud matrix, echinoid spine and plates, oysters, 

bryozoas, bivalves, miliolids, ostracods and rotaliids. 

Quartz and chert grains.  

10-20cm thick beds. With local 

bioturbated mud.  

Low energy open lagoon. 

Inner ramp. 

2- Mollusc microfacies group (25% of the total carbonate microfacies) 

Bioclastic 

gastropods-

bivalves packstone 

(M1) 

Micrite matrix. 50-60% gastropods and bivalves. 

Minor component: echinoids, bryozoas, miliolids, 

rotaliids and serpulids. Quartz and chert grains. 

Coarse carbonate facies and 50-60cm 

thick beds. Bioturbations, micritic 

envelopes and micritic intraclasts.  

Low energy shallow lagoon. 

Inner ramp. 

Oyster-barnacles 

floatstone (M2) 

Mud and local sparite matrix. Oysters, bivalves, 

barnacles, serpulids, echinoids and bryozoas. Quartz 

and chert grains.  

40-50cm thick and coarse carbonate 

with bioturbations. Micritic intraclasts 

and micritic envelopes.  

Low energy and low salinity 

conditions. Shallow lagoon to 

intertidal settings. Inner ramp. 

Bivalve 

floatstone/rudston

e (M3) 

Mud and sparite matrices. Bivalves, rotaliids, miliolids, 

ostracods, gastropods, barnacles, oysters and local red 

algae. Local echinoids and evaporite rosettes. Quartz 

grains. 

Very coarse 20-50cm thick carbonate. 

Local planar laminations and ripple 

marks. 

High energy and wave-

agitated skeletal shoreline. 

3- Non-skeletal microfacies group (30% of the total carbonate microfacies) 

Bioclastic peloidal 

grainstone (NS1)  

 

NS1-1: bivalve peloidal grainstone: sparite matrix. 

Bivalves (10-20%) and peloids (70-80%). Few 

miliolids, rotaliids, lithoclasts, quartz, chert, 

Coarse and thick bed (50-60cm) of 

oriented and laminated carbonate bed. 

Bioturbations.  

Moderate energy shallow 

lagoon. Inner ramp. 
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gastropods and barnacles.  

NS1-2: Ostracods peloidal grainstone: sparite matrix. 

Ostracods (20-30%) and peloids (60-70%). 

20-40cm thick beds. Oriented and poor 

sorting grains. 

Moderate energy shallow 

lagoon. Inner ramp. 

NS1-3: Bioclastic peloidal grainstone: sparite matrix. 

Peloids, echinoids, rotaliids, miliolids, ostracods, 

ooids, gastropods, oysters, barnacles and bryozoas. 

 Thick beds (40-50cm) of coarse 

carbonate. Oriented and moderately 

sorting.  

Moderate energy in shallow 

lagoon with open marine 

connection. Inner ramp. 

Faecal pellets 

grainstone (NS2) 

Sparite matrix. Pellets (80-90%). Few miliolids. Local 

evaporite pseudomorphs.  

Thin bed (10-15cm). Planar 

laminations. Well sorting. 

Low energy restricted lagoon 

with low sedimentation rate.  

Peloidal ooidal 

grainstone (NS3) 

Sparite matrix. Peloids/pellets (50%), ooids (40%) and 

rare bioclasts.  

20-40cm thick beds and coarse. 

Slightly cross beddings. Bad sorting. 

Moderate energy, edges of 

sand shoals and shoreface 

zone.  

Bioclastic ooidal 

grainstone (NS4) 

Mud matrix. Ooids (50-60%). Micritic and superficial 

ooids. Bivalves, miliolids, rotaliids and gastropods. 

Ooid aggregates and intraclasts. Meniscus, peloidal 

and micritic cements and micritic envelopes and 

micro borings.  

Beds of 30-50cm thick and coarse 

carbonate. Laminations cross beddings 

and trough cross beddings. Stylolites. 

Moderate energy, edges of 

sand shoals and beaches. 

Inner ramp. 

Ooidal grainstone 

(NS5) 

Sparite matrix. Normal and concentric ooids (80-

90%). Foraminifera, quartz, chert and pellets nuclei of 

the ooids. Meniscus, peloidal and micritic cements 

and micritic envelopes.  

Beds of 30-50cm thick and coarse 

carbonate. Laminations cross beddings, 

trough cross beddings and ripple 

marks. Stylolites. 

High energy sand shoals and 

beaches. Inner ramp. 

Coated grains 

rudstone (NS6) 

Sparite matrix. Coated grains (50%), serpulids, 

gastropods, bivalves and intraclasts. Peloidal micrite 

and micritic envelopes.  

Very coarse carbonate of 30cm thick. 

Bioturbations and laminations. 

Moderate energy shallow 

lagoon. Inner ramp. 
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Intraclasts 

packstone (NS7) 

Mud matrix, intraclasts (50%), gastropod, barnacles, 

oysters, miliolids and oyster. Quartz grains. 

Medium to coarse carbonate bed 

(around 40cm thick). Fenestrate pores. 

Very shallow lagoon to 

intertidal settings. Inner ramp.  

4- Algal mat microfacies group (10% of the total carbonate microfacies) 

Algal bindstone 

(AG1) 

Algal laminites. Fenestrate pores, evaporite 

pseudomorphs and quartz.  

Beds of 10-30cm thick. Dark grey and 

fine carbonate. Planar laminations. 

Exposure surfaces.  

Intertidal zone. Inner ramp.  

Stromatolites 

(AG2) 

 

AG2a: domal fenestrate algal bindstone. Evaporite 

pseudomorphs. Fenestrate pores. Exposure couplets.  

10cm thick beds. Domal and wavy 

laminations. Exposure surfaces.  

Intertidal zone. Inner ramp.  

 

AG2b: Wavy laminated of interbedding couplets of 

muds and sparite laminae. Evaporite pseudomorphs. 

Ooids and acicular evaporite crystals. 

10cm thick bed. Wavy laminations. Restricted lagoon. 

5- Dolo-mudstone microfacies group (5% of the total carbonate microfacies) 

Dolomudstone 

(D1) 

10-20µm dolomite crystals (90-95%). High porosity rock. Intertidal zone. Inner ramp.  

6- Sandy-carbonate microfacies group (15% of the total carbonate microfacies) 

Bioclastic calc-

arenite (S1) 

Mud and sparite matrices. Quartz, feldspar minerals, 

lithoclasts, miliolids, rotaliids, ostracods, barnacles, 

bivalves, echinoids and oyster.  

10cm-1m thick beds. Laminations, 

cross beddings, ripple marks, flute 

casts and load casts. Graded beddings 

and bioturbations.  

Marginal marine and coast 

environments. Inner ramp. 
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3.3.1.5 Dolo-mudstone microfacies (D1) 

Description 

The dolo-mudstone microfacies are characterized by fine dolomite crystals which are 

approximately 10 to 20 µm in size, with high porosities (Figure 3.19A). This facies is 

recorded at the top of the carbonate units from the Takiya and Mamlaha sections and is 

associated with the evaporite units. It is comprised of about 5% of the total carbonate 

microfacies of the succession. 

Interpretation 

The association of dolomite with nodular evaporites and chicken-wire structures is very 

common in the modern upper intertidal and lower supratidal zone of the arid Trucial 

Coast (Alsharhan and Kendall, 2003). Fine grained dolomite and associated evaporites 

in the Fatha Formation are interpreted to indicate the upper intertidal zone. 

3.3.1.6 Sandy carbonate, bioclastic calc-arenite microfacies (S1) 

Description 

This facies is characterized by mixed siliciclastic and carbonate components and is 

comprised of about 15% of the total carbonate microfacies of the succession. The grain 

sizes vary from fine sand to coarse sand and are associated with different bioclasts such 

as miliolids, rotaliids (Figure 3.21C), ostracods (Figure 3.21D), barnacles, bivalves, 

echinoids (Figure 3.21A), and oysters. Quartz (Figure 3.21E) and chert grains, feldspar 

minerals (Figure 3.21E), lithoclasts, bioclasts and organic matters are the main 

components of the facies. The thickest unit of this facies is recorded from the more 

proximal locations represented by the Basara and Darbandikhan sections. Toward the 

more distal, southwest area of the basin, this facies is not preserved. The thickness of 

this facies reaches a maximum in the Basara section of about 3.5m. However, it is just 

0.1 to 0.3 m thick in the Mamlaha section. Toward the Darbandikhan section (proximal 

area) the facies becomes more abundant. The rocks of this facies are characterized by a 

grey-dark grey to greenish colour with micro planar laminations (Figure 3.21G), cross 

bedding, graded bedding (Figure 3.21F), and borings (Figure 3.21B). Additional 

sedimentary structures are flute casts, load casts, asymmetrical mega-ripple marks and 

planar laminations. The amplitudes of the preserved ripple forms are up to 10 cm. 
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Interpretation 

The sandy calcarenite microfacies with these sedimentary structures such as planar 

laminations, cross bedding and ripple marks indicate deposition above the fair-weather 

wave base in an area influenced by wave action in a marginal inner ramp setting 

(Thrana and Talbot, 2006). The predominance of quartz, chert, feldspar minerals and 

lithoclasts with different bioclasts indicates mixed carbonate-siliciclastic facies near the 

shore line and source areas. The presence of high amplitude mega-ripples indicates high 

energy wave agitated, very shallow environments near the coastline. 

3.4.3 Evaporite facies  

Evaporites are an important component within the Fatha Formation, being associated 

with the carbonates and calcareous mudstones within the cycles, and comprising 15 to 

43% of the total succession, from the most distal to proximal parts of the studied area. 

The thickest evaporite succession was deposited toward the basin. The thickness of the 

unit in the cycles is between 1 and 10 metres. The lower boundary of each evaporite 

with underlying units has been observed in detail. In a few cycles the boundary consists 

of interbedding of several thin beds of gypsum and bluish grey calcareous mudstones as 

a transitional zone between the calcareous mudstone and gypsum, whereas in most 

cycles, the boundary is at the top of an underlying calcareous mudstone or carbonate, 

without the transitional zone.  In the formation, two main evaporitic facies are recorded, 

laminated (LE) (Figure 3.23) and nodular gypsum (NE) (Figure 3.22A-D), but as a 

whole, nodular gypsum (comprising chicken-wire, CH and enterolithic, EN textures) is 

more dominant.  

3.4.3.1 Nodular evaporites (NE) 

Description  

The NE is a thick evaporitic body (1.0-10.0m) with nodular appearance and makes up 

the top of the calcareous mudstone and carbonate units. The nodules display variations 

in size (few millimetres to 10cm) and shape, usually irregular and occasionally 

elongated and spheroidal. The colour is generally milky white with patchy bluish grey 

tones. The matrix around the nodules is composed of bluish grey carbonate mudstone. 

In some places, the nodules coalesce to form contorted folded layers of enterolithic 

evaporites (EN). The lower boundary of evaporite with its underlying units has been 
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observed in detail. In a few cycles, the lower boundary with the underlying calcareous 

mudstone consists of several interbedding thin beds of gypsum and bluish grey 

calcareous mudstones as a transitional zone between them (Figure 3.22D). In other 

cycles, the boundary consists of either calcareous mudstone or carbonate without the 

transitional zone. The main evaporitic mineral in the outcrops is gypsum (Figure 3.22F), 

while both halite and anhydrite minerals were recorded from the bore well in the basin 

centre (Al-Juboury and McCann, 2008). Petrographically, the nodular gypsum forms a 

chicken-wire structure between the gypsum mineral and mudstone and forms an 

irregular tight folding in enterolithic evaporites. In some cases, dolomite crystals are 

associated with the nodular evaporites (Figure 3.22E).  

Interpretation 

The depositional setting of the evaporites is controversial because of the presence of 

huge amount of chicken-wire structure. However, not all nodular evaporites are 

deposited in sabkha settings because it might have been formed during burial diagenesis 

(Machel and Burton, 1991). The sabkha nodules must associate with intertidal 

stromatolites, algal laminites, dolomites, fenestrate pores, tepee structures and mud 

cracks. In addition, they interfinger with hypersaline lagoonal deposits, intertidal and 

subtidal deposits (Warren and Kendall, 1985; Warren, 1989). Therefore, the 

depositional settings of the calcareous mudstone and carbonate units are a very 

important tool for determining the depositional environment of the evaporites. The 

nodular evaporites are typical facies of the supratidal portion of a coastal sabkha, which 

grow in highly saturated water pores of the capillary zone (Warren, 2006). The 

distribution and presence of evaporite in the cycles varies in different parts of the basin. 

In the most proximal areas, close to the hinterlands, evaporite is lacked and the cycles 

are more clastic-dominated, for example, in Chnarah section. However, toward the 

basin centre, the evaporite is frequently increased in number and thickness. The Fatha 

succession comprises of approximately 15-43% of evaporite in the studied sections, 

while this ratio is increasing toward the basin centre. In addition, different evaporite 

facies are documented from the basin centre, for example; massive evaporite, selenite 

and satin-spar, nodular evaporite (chicken-wire structure), laminated evaporite and 

halite (Al-Juboury and McCann, 2008).  

Two depocentres, Sinjar (NW Iraq) and Kirkuk (middle of Iraq), were developed during 

the Fatha deposition in Iraq and were extended to Syria and Iran, respectively (Aqrawi 
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et al., 2010). In addition, six syn-tectonic sedimentary sub-basins were recognised along 

the Zagros foreland basin during the Gachsaran deposition (Bahroudi and Koyi, 2004) 

and these sub-basins were separated by palaeo highs. The Fatha Formation and its 

equivalent Gachsaran Formation in Iran were deposited in these sub-basins. The study 

area is situated at the margin of the Kirkuk depocentre. 

Based on the evaporite facies and carbonate microfacies, it can be interpreted that the 

evaporite was deposited in different settings subaerialy and subaqueously. The evaporite 

was deposited subaqueously in a restricted saline basin and subaerialy in a supratidal 

sabkha setting around the basin margin. The position of the evaporite nodules at the top 

of the cycles, interfingering with intertidal stromatolite/algal mats, hypersaline lagoonal 

and shallow coastal deposits lead to the conclusion that the evaporites nodules were 

deposited in supratidal sabkha setting in an arid climate.  

3.4.3.2 Laminated evaporites (LE)  

The laminated evaporite (LE) occurs at the top of the calcareous mudstone/carbonate 

units and was documented just in a cycle from the studied areas (Figure 3.23). This 

facies is about 1m thick in all the studied areas and consists of thin laminae of gypsum 

and carbonate. Individual evaporite/carbonate laminae range in thickness from a few 

millimetres to 1cm (Figure 3.23C-D). The laminae are planar or wavy laminated 

between gypsum minerals and mudstone (Figure 3.23G-H). Under the microscope, the 

laminated evaporite facies consists of thin layers of carbonate mudstone, alternating 

with granular gypsum laminae (Figure 3.22G-H). The gypsum laminae consist of layers 

of granular gypsum of silt to fine sand sizes. This facies is about 1m thick in the whole 

areas and extended laterally along more than 100 km in length and can be used as a 

marker bed for correlation. However, individual laminae are not traceable laterally. 

Interpretation 

Laminated evaporites have been discussed by many researchers. Some authors 

considered a detrital origin for the lamination (Garrison et al., 1978),  while others 

favour reworking of gypsum during storms (Hardie and Eugster, 1971). Kendall 

(1978b) interpreted these laminae as storm deposits which formed during flooding of an 

evaporitic tidal-flat. 
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In the margin of the Miocene evaporitic basin in the current study, the LE was 

documented in just one cycle that extended along the whole areas for more than 100km 

wide. The large covering area of the LE leads to the conclusion that this facies was 

formed during flooding of the sea upon the evaporitic supratidal setting. The sea water 

covered the supratidal sabkha and laminated evaporite was deposited in the flooding 

depressions and pools. The laminated evaporite was also recorded from the Fatha 

Formation in the other parts of the Zagros foreland basin in Iraq and Iran (Shawkat and 

Tucker, 1978; Tucker, 1999; Aqrawi et al., 2010). Moreover, the same facies was 

documented from different part of the world, for instance: Holocene evaporite 

sequences in the Gulf of Suez, Egypt (Aref et al., 1997), coastal hypersaline pools of the 

Red Sea (Kushnir, 1981), the Messinian evaporite of the Mediterranean basin (Ogniben, 

1955; Hardie and Eugster, 1971; Garrison et al., 1978). 

3.4.4 Red clastic facies (RC) 

Description 

This facies is makes up the top of the cycles and comprises 40-78% of the total 

succession, from the most distal to proximal parts of the studied areas. It is comprised of 

red claystone (Figure 3.24A), red or greyish siltstone, and green or red sandstone. The 

thickness of the unit varies from 0.5 to 6 metres in the lower part of the Fatha Formation 

and from 2 to 8 metres in the upper part of the succession. Typical grain size varies 

from the lower to the upper parts of the formation, siltstone and sandstone increasing 

toward the upper part. The claystone and siltstone are characterized by a red colour with 

fine laminations and rare cross bedding in the latter (Figure 3.24B-C). The sandstone is 

characterized by planar laminations, wavy laminations (Figure 3.25A), cross bedding 

(Figure 3.25B-C), ripple marks (Figure 3.25D-F), flute casts (Figure 3.25G) and load 

casts (Figure 3.25H). Bioturbation in the form of vertical, horizontal and inclined 

burrows increases in the upper part of siltstone and fine sandstone beds; recognized 

ichnofacies include Skolithos (Figure 3.24E-G) and Rhyzolithos (Figure 3.24H). 

Generally, different clastic lithofacies may be differentiated: red claystone (C); 

laminated red siltstone (LS); cross bedded sandstone (CS); trough cross bedded 

sandstone (TS); rippled sandstone (RS); massive sandstone (MS); Rhyzolithos-rich 

sandstone (RhS) and highly bioturbated mottled mudstone-siltstone (HM).  

Interpretation 
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The red claystone (C) and laminated red siltstone (LS) lithofacies were deposited in 

continental areas, for which sediment was sourced from the adjacent hinterlands of the 

Zagros Mountains; deposits represent the distal parts of alluvial fans. The sandstone 

lithofacies (CS, TS and RS) were deposited in higher energy fluvial parts of the system, 

and are most commonly developed in the upper part of the succession. The highly 

bioturbated mudstone-siltstone lithofacies (HM) that comprises sandstone with 

Skolithos and Rhyzolithos (RhS), and which is present in the clastic parts of cycles in the 

uppermost part of the succession, may indicate palaeosol development influenced by a 

more humid climate (Seilacher, 1967), possibly on floodplains between the fluvial 

channels. 

3.5 Fatha Formation cyclicity 

The Miocene Fatha Formation in the Kurdistan region is represented by repeated 

carbonate-evaporite cycles, the study of which has been enabled by the detailed analysis 

of widespread outcrops arranged in a NW-SE orientation across the foreland of the 

Zagros Mountains. The nature of the cyclicity of the carbonate-evaporite units is clearly 

observed across the Zagros foreland basin (James and Wynd, 1965). Each cycle is 

defined by a marine flooding surface at its boundary. The arrangement of lithofacies 

within each cycle is indicative of upward shallowing and progradation. 

Cycles in the marginal parts of the basin are characterized internally by bluish-grey to 

greenish calcareous mudstone at their base. This passes up into shallow marine 

carbonate deposits that are themselves capped by nodular evaporite deposits. In the 

proximal areas (studied areas), continental red siliciclastic units prograded basinward to 

form the uppermost parts of some of the cycles. 

In the studied area, completely developed cycles comprise four major units: calcareous 

mudstone (13 to 24%), carbonate (5 to 15%), evaporite (15 to 43%) and continental red 

clastic (40 to 78%) units, from base to top of each cycle (Figure 3.4). However, towards 

the basin centre, to the southwest, the preserved facies expression of cycles is more 

varied and demonstrates that the basin was repeatedly evaporative, such that it 

accumulated thick gypsum, anhydrite and halite deposits (Aqrawi et al., 2010). 

The cycles from the lower member of the basin centre succession (which lacks the red 

siliciclastic deposits) include calcareous mudstones, carbonates and evaporites (Al-
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Mubarak and Youkhana, 1977; Taufiq and Domas, 1977). The evaporite facies change 

from nodular to laminated (bedded) evaporites or salt at the top of the cycles (Tucker, 

1999). In the upper member of the formation in the basin centre (characterized by the 

presence of red siliciclastic deposits), the evaporites are nodular and capped by red 

claystone unit. 

Overall, the analysis of the microfacies demonstrates that the Fatha Formation in the 

studied area represents a shallow marginal and shoaling upwards marine to continental 

succession, both at the scale of individual cycles and at the scale of the entire formation. 

The number of preserved cycles increases from the basin margin towards its centre. 

About to 12 to 40 cycles were identified in the study sites (Figure 3.4). However, in the 

Chnarah section, the site closest to the basin margin, a reduced number of cycles (10 to 

12 cycles) were identified and these were without evaporites (Figures 3.4 and 3.5). 

 

Figure  3-3 Variations of the carbonate-evaporite cycles of the Fatha Formation from the lower to 

upper parts of the succession. The cycles, as well as the marine deposits, become thinner toward 

upper part, and the evaporite deposits are ceasing.  

Significantly, in all the studied sections, the nature of cyclicity changes from the lower 

to the upper part of the succession in terms of both preserved thickness and internal 

facies composition. Notably, the proportion, preserved thickness and grain size of the 

red continental clastic units that define the uppermost parts of the cycles increase 

toward the upper part of the formation, whereas the proportion of marine deposits 

decreases (Figures 3.3 to 3.5). The red continental clastic units vary as a percentage of 

the total formation from the sites closest to the basin margin (78%) to the sites closest to 

the basin centre (40%). Thus, the facies trend of the formation changes from marine 
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dominance in the lower part, to a transitional zone in the upper part, and then to fluvial 

dominance in the Injana Formation that overlies the Fatha Formation. In general, the 

preserved trend is that of a basinal shallowing-upward and associated progradation of a 

shoreline form the basin margin towards its centre. This is observed clearly both within 

each individual cycle and across the multiple vertically to progradationally stacked 

cycles of the entire formation. 

 

Figure  3-4 Two dimensional pie diagrams showing the percentages of the sedimentary facies, which 

are making the cycles from all the studied sections. The percentages of evaporite deposits are 

increasing toward the basin centre. In contrast, the percentages of clastic deposits are decreasing. 

Ma: Mamlaha; Ba: Basara; Ta: Takiya; Aj: Azh-Dagh; Sa: Sangaw; Da: Darbandikhan Dam; Kr: 

Krbchna; Kf: Kfri and Ch: Chnarah sections. 
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Figure  3-5 Bar diagrams between cycle numbers and thickness of the cycles from all the studied 

sections; Ma: Mamlaha; Ba: Basara; Ta: Takiya; Aj: Azh-Dagh; Sa: Sangaw; Da: Darbandikhan 

Dam; Kr: Krbchna; Kf: Kfri and Ch: Chnarah sections. 
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3.6 Variations in carbonate-evaporite ramp models 

The Fatha Formation was deposited as a mixed carbonate-evaporite succession with a 

secondary siliciclastic supply derived from basin margin areas. Based on detailed 

microfacies analysis, several related and more detailed environmental settings have 

been recognized: open lagoon, hypersaline to restricted lagoon, shallow lagoon, sand 

shoals and beaches, intertidal flat, tidal flat, supratidal sabkha, supratidal ponds, alluvial 

coastal plain, channels and alluvial plains with palaeosols. These represent different 

hydrodynamic conditions ranging from low-to-moderate to high wave energies and 

from quiet to storm-affected shorelines and coastal plains. Siliciclastic supply from the 

hinterland to the basin progressively increased over time, as recorded by the increasing 

proportion of continental facies in higher parts of the formation. These variations are 

expressed in the cyclical nature, as well as in the overall progradational nature of the 

formation. 

i.  Lateral variations. Lateral variations within the sedimentary units are revealed 

by the microfacies analysis. Although the carbonate and evaporite units are 

laterally traceable for tens of kilometres between the studied sections, microfacies 

analysis reveals local lateral variations within the sedimentary basin for about 10 

to 15km lateral scale. For this purpose, the carbonate microfacies are analysed in 

detail to detect lateral variations. 

ii.  Change in water depth over time. Evidence for changes in water depth is 

observed throughout the succession, notably in the calcareous mudstone and 

carbonate units. Variations in the microfacies succession of the calcareous 

mudstone units are expressed chiefly by changing fossil content: the rotaliids 

group tends to decline in abundance from the lower to upper part of the formation; 

conversely, the percentage of bryozoans, bivalves and oysters increases toward 

the upper part (Figure 3.2). Ostracods vary in percentage terms in the cycles and 

include both smooth and nodulose forms. Based on the fossil percentages 

represented graphically through the succession in the Mamlaha area (Figure 3.2), 

it can be demonstrated that the water depth that prevailed at the time of 

accumulation of the calcareous mudstone units changed from relatively deep in 

the lower part of the formation to relatively shallow in the upper part, as 

demonstrated by the gradual decline of rotaliids and the increase of bryozoans, 

bivalves and oysters (Figure 3.2). Variation in water depths represented by the 
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carbonate units may also be inferred through the succession. Overall, these 

changed from mainly hypersaline to restricted deeper lagoons in the lower part to 

shallower lagoons and coastal settings in the upper part of the succession. 

iii.  Change in salinity over time. The abundance of rotaliids and miliolids at the 

lower part of the succession, and declining them through the succession are 

possibly indicative of salinity variations through time. Rotaliids and miliolids are 

indicative of hypersaline restricted lagoons and are documented from a number of 

modern hypersaline lagoons (Abou-Ouf et al., 1988; Hariri, 2008; Mohamed et 

al., 2013). This group of microfossils are declining through the succession, and 

stenohaline fauna (bryozoan), normal marine fauna (oyster) and brackish water 

ichnofacies (Skolithos) become abundant toward the upper part of the formation 

(Figure 3.2). 

iv.  Carbonate thickness over time. The carbonate units vary in thickness and 

frequency towards the upper part of the succession. The maximum preserved 

thickness of carbonate units (5 m) is recorded in the lower to middle part of the 

succession. By contrast, carbonate units are only 0.1to 0.2 m thick in the upper 

part. 

v.  Increasing siliciclastic input over time. Siliciclastic units increase in thickness, 

grain size and frequency upwards within the succession, with different types of 

ichnofossil such as Skolithos and Rhyzolithos, and sedimentary structures 

becoming more common. Red claystone (RC) is present in every cycles from the 

lower part of the succession; while towards the upper part, higher energy siltstone 

and sandstone components increase. 

In general, the facies changes observed record a transition from a fully marine 

carbonate-evaporite setting in the lower part, to a transitional between marine to 

fluvial settings in the upper part, and then to fluvial deposits of the Late Miocene 

Injana Formation. These variations are also recorded from the Miocene equivalent 

units in Iran from Gachsaran Formation of supratidal sabkha origin (equivalent to 

the Fatha Formation), to the Agha Jari Formation of fluvial origin (equivalent to 

the Injana Formation) (Pirouz et al., 2011). 
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3.7 Discussion 

The mixed carbonate-evaporite ramp deposits in the proximal areas of the 

Mesopotamian Basin were evidently subject to dramatic and frequent variations in 

depositional settings toward the top of the formation where siliciclastic deposits 

predominate. This variation is clearly observed from the lower to upper part of the 

succession. It records the progradation into the basin of siliciclastic detritus of 

continental origin. This significantly affected carbonate production and evaporate 

precipitation. 

Each cycle from the lower part of the succession typically passes from a calcareous 

mudstone unit at its base, to a shallowing-up carbonate package, and then to massive 

nodular evaporite that is itself capped by a red continental clastic units in many 

examples. This facies trend changes toward the upper part of the succession in which 

the marine deposits are reduced in thickness. 

Based on the results of this study, each cycle is shown to represent a regressive trend 

from calcareous mudstone at its base, grading up to shallow marine carbonates, and then 

to sabkha evaporites. The red clastic deposits prograded toward the basin and capped 

the evaporites at the top of each cycle. A new depositional model has been presented for 

the Fatha Formation for first time in this study and is illustrated in Figure 3.6. The 

depostional model has been constructed based on the outcomes, including the 

interpretations of the sedimentary facies and lateral/vertical variations of the cycles, of 

this study. Moreover, the lateral/vertical variations of the cycles has been shown in the 

model from marginal to basinal part of the basin. The sedimentary facies has been 

summerized as the following:   

The calcareous mudstone units (CM) at the base of the cycles were deposited in a low 

energy hypersaline lagoonal environment, as evidenced by hypersaline benthic 

foraminifera (rotaliids and miliolids) and ostracods. However, this depositional setting 

became gradually shallower through time toward the upper part of the succession, in 

which normal marine water and stenohaline organisms (bryozoa), oysters and brackish 

water ichnofacies (Skolithos) became more abundant.  

The carbonate sediments were deposited in a variety of environments along the basin 

margin including both low and high energy hydrodynamic settings. The detailed 
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microfacies thus represent lateral variations in the extent and morphology of the 

lagoonal complexes developed on the basin margin. The length scale of these variations 

was less than the spacing of the measured sections, as it is not consistently possible to 

trace individual microfacies from one section in any one cycle to the equivalent cycle in 

an adjacent section. This lateral variation in lagoonal and nearshore environments at a 

scale of tens of kilometres is represented in cartoon form in Figure (3.6). 

The skeletal mudstone, wackestone and packstone microfacies (SK1-SK7) at the base of 

the carbonate units represent deposits of still-restricted hypersaline environments as 

evidenced by the presence of restricted foraminifera (rotaliids and miliolids) and 

ostracods with evaporite pseudomorphs that indicate hypersalinity. The mollusc 

microfacies (M1-M3) represent very shallow water systems developed in shallow 

lagoons to intertidal or skeletal shoal settings. The deposition of skeletal peloidal and 

pelleted grainstone microfacies (NS1-NS2) occurred in moderate energy shallow 

lagoons. Sand shoals separated the restricted lagoons from the open ocean where non-

skeletal microfacies (NS3-NS5) were deposited, including peloidal, and ooidal 

packstone and grainstone microfacies. Along parts of the shoreline in protected 

embayments, algal bindstone and stromatolites (AG1-AG2) were deposited in the 

intertidal zone of restricted lagoons. 

The evaporite sediments at the top of the carbonates represent a regressive facies and 

were deposited in a variety of environments. The main abundant evaporite facies is 

nodular; including chicken-wire (CH) and enterolithic (EN) evaporites resulting from 

subaerial deposition in a coastal sabkha. Such nodular evaporites originate from 

repeated arid and high rainfall episodes when the original gypsum crystals formed 

within the capillary groundwater zone undergo repeated hydration and dehydration 

(Schreiber and Tabakh, 2000). Laminated evaporites (LE) were subaqueously deposited 

during flooding over the tidal flat. These emergent evaporates present at the basin 

margin contract markedly with subaqueous evaporites identified previously from basin-

centre settings, where laminated selenite evaporites and halite were deposited (Al-

Juboury and McCann, 2008). 

The initial accumulation of siliciclastic deposits derived from the hinterlands during the 

Miocene occurred during deposition of the Fatha Formation when the red clastic units 

started to prograde south-westward into the basin. The south-westward progradation and 

shoreline migration into the basin through time is represented by the overall variation in 
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thickness of the preserved succession from the basin margin to its centre: a thinner 

succession comprising fewer cycles is recorded at the basin margin. In addition, 

siliciclastic-dominated cycles are preserved around the basin margin and evaporite-

dominated cycles were best developed in the basin centre. The presence of climatically 

wet hinterlands and significant fluvial activity around the basin margin and its late-stage 

progradation towards the basin centre eventually resulted in a progressive termination of 

evaporite deposition, from a basin-margin to a basin-centre setting over time. 

A number of factors acted to influence sedimentation rates and the position of the 

shoreline through time. Marine-marginal sabkha deposits can prograde with a thickness 

of 1m by 1km of shoreline migration per thousand years (Schreiber and Hsü, 1980). 

Progradation may lead to a seaward thickening succession of peritidal facies (Hardie, 

1986). Furthermore, reduced evaporite deposition and increased fluvial activity from the 

basin margin through time – illustrated by coastal progradation – may also have been 

driven by an overall climate change from relatively arid to relatively more humid. 

Overall, progradation of the siliciclastic wedge progressively replaced carbonate-

evaporite sedimentation in the basin and changed the system to an overfilled fluvial 

basin by the late stages of Fatha deposition, after which fluvial facies of the overlying 

Injana Formation became dominant. 

Tectonics, sediment supply and relative sea level determined accommodation in the 

basin and collectively acted to determine the overall progradational (i.e. regressive) 

geometry of the formation. The position of the Miocene foreland basin meant that it was 

subjected to collisional forces between the Arabian and Eurasian plates. Increasing 

siliciclastic supply would have resulted from erosion of the uplifted areas of the 

developing fold and thrust belt. Indeed, the shallowing-upward trend of the Fatha 

Formation is typical of foreland-basin fills, indicating the significance of tectonic setting 

on basin stratigraphy (Baars and Stevenson, 1982; Sami and James, 1994; Brown, 

2002). A high rate of sediment supply outpaced the generated accommodation space 

across the basin.  
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Figure  3-6 The depositional model of the Fatha Formation showing different depositional 

environments on a gently ramp platform. The model is presenting the progradation and migration 

of the Miocene shoreline along three vertical sections A, B, and C. In addition, D and E block 

diagrams are maximized to show detailed depositional settings of two cycles and to represent the 

lateral variation possible within these.  
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3.8 Conclusion 

Deposition of the Miocene carbonate-evaporite cycles in the Kurdistan region from the 

Zagros foreland basin are interpreted to have accumulated in a very low angle ramp 

setting in which only inner ramp facies are recognized in the carbonate phase of each 

cycle. The carbonate ramp is recognized on the basis of lateral and vertical variations of 

the facies from relatively more offshore deposits of calcareous mudstone to shoreline 

and sabkha deposits closer to the basin margin. The main lithofacies divisions are 

calcareous mudstones, carbonates, evaporites and red siliciclastics. These facies are 

arranged in a number of cycles, each of which records a shallow upward trend. Cycles 

are capped by flooding surfaces. Each preserved depositional cycle has a facies 

arrangement which in its lower part is indicative of low-energy calcareous mudstone 

accumulation, and which passes up to moderate- to high energy shallow marine 

carbonates, which are in turn overlain by nodular evaporites and, in some cases, are 

capped by a red siliciclastic unit at the top of the cycle. Different carbonate 

environmental settings are recognized along the basin margin. Shoreline deposits range 

from high energy rippled and cross bedded carbonate grainstones to low energy 

stromatolite facies of protected embayments in a complex and laterally extensive 

lagoonal system. The vertical and lateral variations of the microfacies in an individual 

cycle and between the cycles have features in common. These features include 

microfacies variations in an upward shallowing trend within each cycle. 

The succession overall records a progradational shallowing upward succession. The 

preserved facies trend through the succession can be regarded as being due to a 

combination of variations in sea level, salinity, climate, carbonate-evaporite production, 

siliciclastic supply, tectonic subsidence rate and tidal flat progradation. The cycles can 

be traced and correlated regionally along the NW-SE trend of the foreland basin. The 

overall up-succession variation in facies was driven by increasing siliciclastic supply 

from the uplifting Zagros Mountains due to the collision between the Arabian and 

Iranian plates. As a result, a siliciclastic alluvial depositional system advanced into the 

basin causing regression of the shoreline. This may have been due to a progressive 

increase in relief or, additionally, to an increasingly humid/wet orographic climate 

response that could have been induced by the tectonic growth of the Zagros Mountains.  
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Figure  3-7 Scanning electron photomicrographs of the rotaliids foraminifera from the calcareous 

mudstone units of the Fatha Formation. 

A to E: Different species of Ammonia from different areas. F: An Elphidium species from Mamlaha 

section.  
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Figure  3-8 Scanning electron photomicrographs of the ostracod specimens from calcareous 

mudstone units of the Fatha Formation. 

A: A smooth ornamented ostracod specimen (700µm) from Mamlaha section. B: A highly ornamented 

ostracod specimen (600µm) from Basara section. C: A moderate ornamented ostracod specimen (700µm) 

from Mamlaha section. D: A closer view of the ornamentation of the previous sample (red square) from 

Takiya section. E: A highly ornamented ostracod specimen (1000µm) from Mamlaha section. F: A 

moderate ornamented ostracod specimen (750µm) from Sangaw section.  
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Figure  3-9 Scanning electron photomicrographs of extracted microfossils from the calcareous 

mudstone units of the Fatha Formation. 

A and B: Miliolid specimens (550 and 600µm) from Mamlaha and Basara sections, respectively. C: A 

gastropod specimen from Mamlaha section. D, E, and F: Bryozoa specimens from the upper unit of the 

succession.  
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Figure  3-10 Thin section photomicrographs of calcareous mudstone unit (CM) 

A: A photomicrograph of calcareous mudstone (marl) facies (CM). The sample was taken at the 

base of an individual unit in which fossils are very small and quartz grains are rare. Unstained 

thin section from Mamlaha section.   

B: A photomicrograph of calcareous mudstone (marl) facies (CM). The sample was taken nearly 

at the middle part of an individual unit in which the fossils (rotaliids, the red arrows) and 

quartz grains (the white grains) are moderately abundant and increasing in sizes. 

Unstained thin section from Mamlaha.    

C: A photomicrograph of calcareous mudstone (marl) facies (CM). The sample was taken at the 

middle part of an individual unit where the fossils (the red arrow) and quartz grains (the 

white grains) are increasing. Unstained thin section from Mamlaha. 

D: A photomicrograph of calcareous mudstone (marl) facies (CM). The sample was taken from 

the top of the unit where the fossils (the red arrow), quartz grains (the white grains) and 

feldspar minerals (the blue arrow) are very abundant and large in sizes. Unstained thin 

section from Mamlaha.  

E: A field photograph of the Fatha cycles. The cycles grade up from greenish to bluish-grey 

calcareous mudstone unit (CM) at the base to a thin shallow carbonate and then to 

nodular evaporites (NE). The cycle capes by red clastic unit (RC) at the top of the cycles. 

The photo was taken from Basara section.  
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Figure  3-11 Field photographs and thin section photomicrograph of a thin cycle at the upper part 

of the succession. 

A: A field photograph of cycles at the upper siliciclastic-dominated part of the formation in 

Sangaw section. The cycle passes up from thin greenish-grey calcareous mudstone (10cm) 

at the base with trace fossils (C) to a thin bed of carbonate bed (5cm thick) and then caps 

by red claystone unit. 

B: A photomicrograph of quartz mudstone sub-microfacies (SK1b) of the thin carbonate bed of 

the cycle. 

C: A field photograph and closer view of the calcareous mudstone unit which includes trace 

fossil.  
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Figure  3-12 Thin section photomicrographs of carbonate mudstone microfacies (SK1). 

A: A photomicrograph of bioturbated mudstone sub-microfacies (SK1a) with a micritized 

ostracod (the blue arrow) and a miliolid (the red arrow) within a bioturbated muddy 

matrix. Unstained thin section from Mamlaha.  

B: A photomicrograph of quartz mudstone carbonate sub-microfacies (SK1b). Micro sparite 

matrix with abundant quartz and feldspar grains. Unstained thin section from Sangaw. 

C: A photomicrograph of non-fossiliferous mudstone carbonate sub-microfacies (SK1c). 

Muddy matrix with dissolved nodular evaporites (the arrow). Stained thin section from 

Mamlaha. 

D: A photomicrograph of non-fossiliferous mudstone carbonate sub-microfacies (SK1c). 

Muddy matrix with lenticular pseudomorphs after evaporite (the arrows) which indicate 

original gypsum minerals. Stained thin section from Mamlaha. 

E: A photomicrograph of non-fossiliferous mudstone carbonate sub-microfacies (SK1c). Quartz 

and calcite pseudomorphs after evaporite include both lenticular and lath shaped crystals. 

Stained thin section from Mamlaha. 

F: A photomicrograph of ostracod wackestone carbonate microfacies (SK2). Muddy matrix 

with ostracods (the arrows). Unstained thin section from Basara.  

G and H: A photograph of a carbonate sample (G) with thin section representative (H) non-

fossiliferous mudstone carbonate sub-microfacies (SK1c). Interlaminations of the 

mudstone sub-microfacies (SK1c) (the white arrows) with karst exposure laminae (the red 

arrows).  The sample was taken from Takiya section. 
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Figure  3-13 Thin section photomicrographs of carbonate microfacies. 

A: A photomicrograph ostracod wackestone carbonate microfacies (SK2). Muddy matrix with 

ostracods (the arrows). Unstained thin section from Sangaw.  

B: A photomicrograph of rotaliid-ostracod wackestone carbonate microfacies (SK3). Muddy 

matrix with an ostracod (the red arrow) and rotaliid (the blue arrow). The white grains are 

quartz. Unstained thin section from Basara. 

C: A photomicrograph of rotaliid wackestone carbonate microfacies (SK4). Muddy matrix with 

dispersed rotaliids (the red arrows) and quartz grains (the blue arrows). Stained thin 

section from Mamlaha.  

D: A photomicrograph of rotaliid packstone carbonate microfacies (SK4). Muddy matrix with 

rotaliids (the arrows) and quartz grains (the white grains). Unstained thin section from 

Basara. 

E: A photomicrograph of miliolid wackestone carbonate microfacies (SK5). Muddy matrix with 

miliolids (the arrows). Unstained thin section from Mamlaha. 

F: A photomicrograph of highly micritized skeletal packstone carbonate microfacies (SK6). 

Muddy matrix with unrecognised micritized bioclasts (the white arrow) and a miliolid 

(the red arrow). Unstained thin section from Mamlaha. 

G: A photomicrograph of highly micritized skeletal packstone carbonate microfacies (SK6). 

Muddy matrix with unrecognised micritized bioclasts (the white arrow), an ostracod (the 

blue arrow) and fenestrate pores between the grains (the red arrow) which are filled with 

calcite cements. Unstained thin section from Mamlaha. 

H:  A photomicrograph of echinoid packstone carbonate microfacies (SK7). Muddy matrix with 

echinoid plates (the red arrows), echinoid spines (the yellow arrow), rotaliids (the black 

arrow) and oyster shell (the white arrow). The white grains are quartz. Unstained thin 

section from Basara.  
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Figure  3-14 Field samples with their representatives thin section photomicrographs of carbonate 

microfacies. 

A: A photomicrograph of bioclastic gastropod-bivalve packstone carbonate microfacies (M1). 

Muddy to micro sparite matrix with bivalve shells (the white arrows) and a gastropod (the 

blue arrow) with a barnacle shell (the red arrow). Unstained thin section from Aj Dagh.  

B: A photomicrograph of bioclastic gastropod-bivalve packstone carbonate microfacies (M1). 

Muddy-micro sparite matrix with bivalve shells (the blue arrows) and a gastropod (the red 

arrow). Unstained thin section from Aj Dagh.  

C: A field sample photograph of a carbonate bed from Krbchna section which riches with 

barnacles and oysters. 

D: A photomicrograph of bioclastic oyster-barnacle rudstone microfacies (M2) which is 

indicated from the previous photo. The microfacies include barnacle shells (the red 

arrows) and an oyster shell (the blue arrow) within muddy matrix. Unstained thin section 

from Krbchna. 

E: A field sample photograph of a carbonate unit with bivalves (the arrows). The photo was 

taken from Mamlaha section. 

F: A photomicrograph of bioclastic oyster-barnacle rudstone microfacies (M2) from the 

previous photo. The microfacies includes barnacle shells (the red arrows) and an oyster 

shell (the blue arrow) within muddy matrix. Bivalve shells are also present (not included 

in the photo). 

G: A field photograph of a carbonate bed which riches with bivalves. The photo was taken from 

Sangaw section. 

H: A photomicrograph of bivalve rudstone carbonate microfacies (M3). Sparite matrix with 

bivalve shells (the red arrows), red algae (the white arrow) and micritic envelopes (the 

blue arrow). Stained thin section from Mamlaha.  
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Figure  3-15 Thin section photomicrographs of non-skeletal microfacies (NS1-NS2). 

A: A photomicrograph of bivalve-peloidal grainstone carbonate sub-microfacies (NS1a). Sparite 

matrix with bivalve shell (the arrow) and peloids. Unstained thin section from Sangaw.  

B: A photomicrograph of ostracod-peloidal grainstone carbonate sub-microfacies (NS1b). 

Sparite matrix with ostracods (the arrows) and peloids (the black grains). Unstained thin 

section from Basara. 

C: A photomicrograph of ostracod-peloidal grainstone carbonate sub-microfacies (NS1b). 

Sparite matrix between the ostracods (the red arrows) and peloids (the black grains). An 

erosional boundary (the blue arrow) between the ostracods peloidal grainstone and 

mudstone microfacies indicates storm deposits. Unstained thin section from Basara. 

D: A photomicrograph of bioclastic peloidal grainstone carbonate sub-microfacies (NS1c). 

Sparite matrix with echinoid plates (the red arrows) and a miliolid (the blue arrow). The 

black grains are peloids and the bioclasts are partially micritized. Unstained thin section 

from Krbchna. 

E: A photomicrograph of bioclastic peloidal packstone-grainstone carbonate sub-microfacies 

(NS1c). Closer view of radial ooids grains with partial micritization within sparite matrix. 

Unstained thin section from Krbchna. 

F:  A photomicrograph of bioclastic peloidal grainstone carbonate sub-microfacies (NS1c). 

Closer view of partial micritized grains of an ooid (the red arrow) and a miliolid (the blue 

arrow). Unstained thin section from Krbchna section. 

G: A field sample of planar laminated faecal pellet grainstone carbonate microfacies (NS2). The 

facies is composed of planar laminations. Unstained thin section from Basara.  

H: A photomicrograph of planar laminated pellet grainstone carbonate microfacies (NS2) of the 

previous sample. Unstained thin section from Basara. 
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Figure  3-16 Thin section photomicrographs of non-skeletal microfacies (NS2-NS5). 

A. A photomicrograph of faecal pellet grainstone carbonate microfacies (NS2). The pellet 

grains are both elongated and rounded shaped within sparite matrix. Unstained thin section 

from Mamlaha.   

B. A photomicrograph of peloidal-ooidal grainstone carbonate microfacies (NS3). The black 

grains are pellets and the dissolved grains are ooids within sparite matrix. Unstained thin 

section from Mamlaha. 

C. A photomicrograph of bioclastic ooidal packstone-grainstone carbonate microfacies (NS5). 

Muddy matrix with bivalves shells (the red arrow) and ooids. The ooids are partially 

micritized. The micro borings and micritic envelopes around the grains are common (the 

blue arrows). Unstained thin section from Aj Dagh. 

D. A photomicrograph of bioclastic ooidal packstone-grainstone carbonate microfacies (NS5). 

Closer view of the previous thin section showing micritized ooids (the white arrow) and 

bivalve shells (the red arrows). Meniscus cement between the grains is bridged the grains 

together (the blue arrow). Unstained thin section from Aj Dagh. 

E. A photomicrograph of ooidal packstone-grainstone carbonate microfacies (NS4). The ooids 

are normal concentric within sparite matrix. The ooids are filled with micritic cement as 

nucleus (the blue arrow) and rotaliids nuclei (the red arrow) as well. Unstained thin section 

from Darbandikhan. 

F. A photomicrograph of ooidal packstone-grainstone carbonate microfacies (NS4). The ooids 

are normal concentric with micritic cement nucleus. Ooids aggregates are common (the 

arrows). Unstained thin section from Sangaw. 

G. A photomicrograph of ooidal grainstone carbonate microfacies (NS4). The ooids are 

distorted (the red arrows) and some ooids are normal (the blue arrows). Unstained thin 

section from Sangaw. 

H. A photomicrograph of ooidal packstone-grainstone carbonate microfacies (NS4). Closer 

view of Meniscus cement between the ooids grains (the arrows). Unstained thin section 

from Sangaw. 
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Figure  3-17 Field photographs of non-skeletal microfacies (NS4-NS5) 

A: A field photograph of a carbonate unit showing erosional surface (the red arrows) between 

deposits of lagoon-intertidal setting (the lower facies) and bioclastic ooidal grainstone 

(the upper facies). The ooidal facies is characterised by trough cross beddings (NS4).  

B: A field photograph of the previous carbonate unit and closer view of the trough cross 

beddings within the bioclastic ooidal grainstone microfacies (NS4). 

C and D: Field photographs of carbonate beds with symmetrical ripple marks of ooidal 

grainstone microfacies (NS4) from Chnarah and Darbandikhan sections respectively. 

E: A field photograph of a massive carbonate bed which is slightly cross laminated which 

represents bad sorting bioclastic ooidal grainstone microfacies (NS5). The photo was 

taken from Takiya section.  

F: Thin section photomicrograph of the previous photo which represents bad sorting bioclastic 

ooidal grainstone microfacies (NS5). The ooids (the red arrows) are of different sizes and 

shapes and associated with bivalve shells (the blue arrow). 

G: A field photograph and closer view of the carbonate bed in photo (E). The ooids and the 

bivalve shells are visible at the surface of the bed. 

H: A field photograph of a carbonate unit which represent ooidal grainstone microfacies (NS4). 

The carbonate unit is slightly cross bedded with vertical and horizontal stylolites. The 

photo is taken from Darweshan village near the Basara gorge.  
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Figure  3-18 Thin section photomicrographs of non-skeletal microfacies (NS5-NS7). 

A: A photomicrograph of ooidal packstone-grainstone carbonate microfacies (NS4). The 

nucleus of the ooids are quartz and some ooids nuclei are dissolved. Unstained thin 

section from Takiya. 

B: A photomicrograph of ooidal packstone-grainstone carbonate microfacies (NS4). The ooids 

are normal concentric and filled with micritic cement within sparite matrix. Unstained 

thin section from Sangaw. 

C: A photomicrograph of coated grain rudstone carbonate microfacies (NS6). The grains are 

filled with micritic cement and coated by concentric laminae (the arrow). Unstained thin 

section from Takiya. 

D: A photomicrograph of coated grain rudstone carbonate microfacies (NS6). A skeletal shell 

coated by concentric laminae (the arrows) within a sparite matrix. Unstained thin section 

from Takiya. 

E: A photomicrograph of coated grain rudstone carbonate microfacies (NS6). The grains are 

rounded by micritic cement and coated by concentric laminae. A serpulid tube worm is 

filled with micritic cement (the arrow). Unstained thin section from Takiya. 

F: A photomicrograph of intraclast packstone carbonate microfacies (NS7). The intraclasts are 

irregular micritic grains (the arrows) dispersed within a sparite matrix. Unstained thin 

section from Darbandikhan. 

G: A photomicrograph of intraclast packstone carbonate microfacies (NS7). The micritic 

intraclasts (the red arrows) are dispersed within a muddy matrix with barnacle shells (the 

blue arrow). Unstained thin section from Darbandikhan. 

H: A photomicrograph of intraclast packstone carbonate microfacies (NS7). The intraclasts (the 

arrows) are micritic irregular grains within muddy matrix. Unstained thin section from 

Darbandikhan. 
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Figure  3-19 Thin section and field photographs of algal bindstone and dolo-mudstone microfacies 

(AG1 & D1). 

A: A photomicrograph of dolo-mudstone carbonate microfacies (D1). Small dolomite grains 

form this microfacies. Unstained thin section from Takiya. 

B: A photomicrograph of wavy laminated algal laminites (AG1). Stained thin section from 

Mamlaha. 

C: A photomicrograph of wavy laminated algal laminites (AG1). The white grains are lenticular 

pseudomorphs after evaporites. Unstained thin section from Mamlaha. 

D-F: Field photographs of wavy laminated algal laminites. The carbonate units are about 10-

30cm thick and are overlaid by nodular evaporite (the red arrows). The photos were 

taken from Basara, Aj Dagh, and Krbchna sections, respectively. 
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Figure  3-20 Field and thin section photographs of stromatolite microfacies (AG2). 

A. A field sample of wavy laminated stromatolite (AG2a) (the red arrow) which interlaminated 

with algal laminites (AG1) (the white arrow). The algal laminites are cut by erosional 

exposure (the blue arrow). The sample was taken from Takiya. 

B. Unstained photomicrograph of wavy laminated stromatolite (AG2a) which is indicated in 

the previous photo. The photo represents a part of an erosional exposure at the base of the 

stromatolite from the previous laminae and stromatolite laminae. The small white grains are 

fenestrate pores. 

C. A stained photomicrograph of laminated algal mats (AG1) which is indicated in the 

stromatolite sample in (A). The algal laminae include fenestrate pores (the white grains) 

which are increasing in sizes toward the top. 

D. A stained photomicrograph of erosional exposure at the top of the algal mat from the photo 

sample (A). The aerial exposure includes micritized grains (the dark grains) within a coarse 

sparite matrix. 

E. A field photograph of wavy laminated stromatolite (AG2b). The stromatolite bed is about 

10cm thick and is overlain by nodular evaporite. The photo was taken from Mamlaha. 

F. Unstained photomicrograph of wavy laminated stromatolite microfacies (AG2b) which 

indicated in the previous photo. The stromatolite includes interlaminations of muddy (the 

blue arrow) and sparite (the red arrow) laminae. Micritized peloids (the black grains) and 

the white grains (evaporite pseudomorph) are also included. The photo was taken from 

Mamlaha. 

G. A stained photomicrograph of wavy laminated stromatolite microfacies (AG2b). The photo 

represents the muddy laminae with acicular crystals. The position of the sample is indicated 

in the first photo. 

H. A stained photomicrograph of wavy laminated stromatolite microfacies (AG2b). The muddy 

laminae of the stromatolite with lenticular pseudomorphs after evaporites (the arrows). The 

position of the sample is indicated in the first photo. 
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Figure  3-21 Thin section photomicrographs of sandy carbonate microfacies (S1). 

A: A photomicrograph of sandy carbonate microfacies (S1). The microfacies represent 

bioclastic calc-arenite microfacies. The grains are quartz, chert, feldspar and echinoid 

plates (the arrow). Unstained thin section from Krbchna. 

B: A photomicrograph of sandy carbonate microfacies (S1). The microfacies represent 

bioclastic calc-arenite microfacies. The grains are quartz, chert, micritized grains and 

feldspar with micro borings (the arrow). Unstained thin section from Basara. 

C: A photomicrograph of sandy carbonate microfacies (S1). The microfacies represent 

bioclastic calc-arenite microfacies. The grains are quartz, chert, micritized grains and 

feldspar with rotaliids (the arrow). Unstained thin section from Darbandikhan. 

D: A photomicrograph of sandy carbonate microfacies (S1). The microfacies represent 

bioclastic calc-arenite microfacies. The grains are quartz, chert, micritized grains and 

feldspar with ostracods (the arrow). Unstained thin section from Darbandikhan. 

E: A photomicrograph of sandy carbonate microfacies (S1). The sample includes quartz, chert 

and feldspar (the arrow) grains. Unstained thin section from Basara. 

F: A photomicrograph of sandy carbonate microfacies (S1) with gradded beddings. Unstained 

thin section from Aj Dagh. 

G:  A photomicrograph of sandy carbonate microfacies (S1) includes planar laminations. 

Unstained thin section from Basara. 
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Figure  3-22 Field and thin section photographs of evaporites (NE & LE). 

A: A field photograph showing multiple cycles of calcareous mudstone (CM) and nodular 

evaporites (NE) in Kfri section. These cycles are preserved from the lower carbonate-

evaporitic-dominated part and they are mostly composed of calcareous mudstone (the red 

arrow) and nodular evaporites (the blue arrow). 

B: A field photograph of a thick nodular evaporite (NE) from Aj Dagh section.  

C:  A field photograph of a thick nodular evaporite (NE) from Sangaw section.  

D: A field photograph of thin nodular evaporites (NE), which are interbedded with thin 

calcareous mudstone (CM) beds in Sangaw section.  

E: A photomicrograph of nodular evaporite (NE) in plane polarised light. The gypsum grains 

appear colourless under plane polarised light. The gypsum is associated with dolomite 

crystals (the arrows). Unstained thin section from Mamlaha.  

 F: A photomicrograph of nodular evaporites (NE) in cross polarised light. The grains are 

gypsum minerals which are formed an evaporite rosette. Unstained thin section from 

Mamlaha.  

G: A photomicrograph of laminated evaporite (LE) in plane polarised light. The laminations are 

formed between gypsum laminae (the blue arrow) and mudstone laminae (the red arrow). 

Unstained thin section from Mamlaha.  

H: The same photomicrograph of the previous photo in cross polarised light.  
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Figure  3-23 Field photographs of laminated evaporites (LE). 

A: A field photograph of laminated evaporites (LE) between gypsum laminae (the white 

laminae) and mudstone laminae (the grey laminae). The photo was taken from Mamlaha 

section. 

B: A field photograph of laminated evaporites (LE) between gypsum laminae (the white 

laminae) and mudstone laminae (the grey laminae). The photo was taken from 

Darbandikhan section. 

C: A field photograph of laminated evaporites (LE) (1m thick) (the blue arrow). The laminated 

evaporite is mostly underlain by an enterolithic evaporite bed (EN) (10cm) (the red 

arrow). Both evaporites are separated by a thin calcareous mudstone (CM) bed (10cm) 

(the white arrow) in between. The photo was taken from Mamlaha section. 

D: A field photograph of laminated evaporites (LE) (the blue arrow). The same cycle as (C) was 

seen in Sangaw section where the laminated evaporite (1m) (the blue arrow) is underlain 

by an enterolithic evaporite bed (EN) (10cm). Both evaporites are separated by a thin 

calcareous mudstone (CM) bed (5cm) (the white arrow) in between. These two sections 

are 18km apart.  

E and F: Field photographs of laminated evaporites (LE) from Basara and Krbchna sections, 

respectively (the arrows). The cycles are passing up from calcareous mudstone (CM) unit 

at the base to a thin enterolithic evaporite bed (10cm) then to a thin calcareous mudstone 

bed (10cm) and pass up to the laminated evaporites (LE) (1m) and cap by red claystone 

unit. The laminated evaporite is traceable between two sections (20km apart).  

G and H: Field photographs of laminated evaporites (LE) from Darbandikhan and Sangaw 

sections, respectively. The evaporites compost of wavy laminated gypsum (white 

laminae) and carbonate mudstone (dark laminae). 
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Figure  3-24 Field photographs of red clastic unit (RC). 

A: A field photograph of a cycle in Mamlaha section. The cycle is capped by red claystone (RC) 

at the top of a nodular evaporite (NE) unit (the white bed).  

B: A field photograph of red claystone (RC) beds from the lower carbonate-evaporitic-

dominated part in Sangaw section.  

C: Field photographs of a thin cross bedded sandstone (CS) bed from the lower carbonate-

evaporitic-dominated part in Aj Dagh section. The sets of the cross beddings are 

separated by erosional scours (the red lines).  

D: A field photograph of fine planar laminated red claystone (RC). The photo was taken from 

Sangaw section.  

E: A field photograph of a highly bioturbated bluish-red mudstone-siltstone bed (HM). This 

facies is very common at the upper most part of the succession and interbedded with red 

claystone (RC). The photo was taken from Aj Dagh section. 

F: A field photograph and closer view of Skolithos ichnofacies from highly bioturbated bluish-

red mudstone-siltstone (HM). The ichnofacies include both horizontal (the red arrows) 

and vertical (the blue arrow). The photo was taken from Sangaw section. 

G: A field photograph of interbeddings of highly bioturbated bluish-red mudstone-siltstone 

(HM) with red claystone (RC). The photo was taken from Sangaw section. 

H: Field photographs of plants roots from a sandstone bed at the upper siliciclastic-dominated 

part of the succession. The photo was taken from Mamlaha section. 
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Figure  3-25 Field photographs of siliciclastic sandstone (RC). 

A. A field photograph of a thick and massive green sandstone bed from the upper siliciclastic-

dominated part in Kfri section. The sandstone bed includes planar and wavy laminations. 

B. A field photograph of a channel of cross-bedded sandstone (CS) (the red arrow) within red 

claystone (RC) beds (the blue arrow). The two sets of the cross beddings are separated by an 

erosional scour (the red line). The photo was taken from the upper siliciclastic-dominated 

part in Aj Dagh section.  

C. A field photograph of a green sandstone bed with cross beddings (CS). Four sets of cross 

beddings (the black lines) are formed which are separated by gutter scours (the red lines). 

The photo was taken from Kfri section from the upper siliciclastic-dominated part. 

D. A field photograph of a greenish sandstone bed with wave asymmetrical ripple marks (RS) 

at the surface. The photo was taken from Chnarah section from the upper siliciclastic-

dominated part. 

E. A field photograph of a reddish sandstone bed with wave asymmetrical ripple marks (RS) at 

the surface. The photo was taken in Mamlaha section from the upper siliciclastic-dominated 

part. 

F. A field photograph of a greenish sandstone with current ripple marks (RS). The photo was 

taken in Takiya section from the upper siliciclastic-dominated part. 

G. A field photograph of a thick sandstone unit. The sandstone beds are dark grey in colour 

with planar laminations; flutes cast (the directed photo) on the base of a sandstone bed and 

load casts (photo H, the arrow). The photo was taken in Basara section from the lower 

carbonate-evaporitic-dominated part.  

H. A field photograph and closer view of a part of the previous photo showing load casts. The 

load casts were developed by differential sinking of still soft sandstone in to less dense 

sediment below.  
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Chapter Four 

4. Sequence Stratigraphy of the Fatha Formation 

4.1 Introduction 

Sequence stratigraphy has gradually evolved since the fundamental recognition by 

James Hutton in the late 1700’s that an unconformity surface represents a time gap. It is 

worth mentioning that sequence stratigraphy began as a more formal stratigraphic 

discipline in 1949 when the term sequence was proposed as a stratigraphic unit bounded 

by regional unconformities (Sloss, 1949), and subsequently the concept of sequences 

was further developed (Sloss, 1963). 

Nowadays, sequence stratigraphy is used as a framework within which interactions 

between basin fill processes, tectonics and eustasy may be analysed. In all types of 

sedimentary basins, depositional stacking patterns and stratal geometries are used to 

divide the stratigraphic succession into unconformity bounded sequences, based upon 

the commonly applied definitions (Mitchum and Van Wagoner, 1991). Local and global 

driving forces on sedimentary basin architecture can then be estimated in terms of the 

balance between accommodation space and sediment supply. 

Different sequence stratigraphic models have been proposed for siliciclastic and 

carbonate successions (Van Wagoner et al., 1990; Handford and Loucks, 1993; Sarg, 

2001). This recognizes that sedimentation and sediment supply differ in siliciclastic and 

carbonate deposits. In contrast to siliciclastic deposits, where the sediments come from 

the hinterland under the effects of tectonics and climate and respond to sea-level 

changes, carbonate deposits are formed in situ and are controlled by depositional 

environment, temperature, climate, nutrients and biotic evolution as well as tectonics 

and sea level (Flugel, 2004). Moreover, carbonate platforms and ramps differ 

significantly in their microfacies ranges, in which the former have a wide range of 

microfacies which change markedly across breaks in slope, while the latter tend to 

display gradational changes in microfacies (Flugel, 2004). As previously outlined, 

carbonate ramps are recognized as being developed on low-angle, inclined slopes that 

extend basinwards without any slope break, and where high-energy packstones and 

grainstones are typical landward facies (inner ramp), changing to low-energy muddy 

facies toward the basin (outer ramp). In some cases, high-frequency cyclicity is 
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preserved in carbonate ramps that reflect variations in the controls on carbonate 

productivity and hence stacking patterns. These high-frequency cycles reflect the 

product of changes in sedimentation that may occur across different hierarchical orders. 

The changes in sedimentation are the result of either local or random sedimentary 

process or regular processes of global sea-level and climate change that control the 

cyclicity through astronomical forcing of palaeoclimate variations (Fischer, 1964; 

Arthur and Garrison, 1986; Fischer, 1986; Berger, 1988; Tucker and Garland, 2010).     

The Miocene Fatha Formation is composed of high-frequency carbonate-evaporite 

cycles which extend approximately 2000km across NW Syria, Iraq and SW Iran (as 

outlined in Chapter 2). The cycles exhibit shallowing-upward trends and are traceable 

for tens of kilometres, distances only being limited by the continuity of outcrop. In more 

proximal locations, each individual cycle includes a calcareous mudstone which passes 

up to a shallow water carbonate facies, and which typically then grades up to nodular 

evaporites above. Fluvial siliciclastic deposits derived from the Zagros hinterlands 

overlie the evaporites in most cycles. In the basin centre, each cycle is composed of thin 

calcareous mudstones interbedded with thick evaporite or of calcareous mudstone, 

carbonate and evaporite. Variations in thickness of the whole succession and in the 

individual cycles and cycle numbers are observed over the entire basin (Figures 3.4 and 

3.5, Chapter Three). In general, each cycle may be interpreted to represent a regressive 

or shallowing-upward trend which passes up from the mudstone and carbonate 

mudstone/wackestone to carbonate packstone/grainstone, and then to evaporite and 

fluvial deposits (as detailed in Chapter 3).  

The sequence stratigraphic correlation of sedimentary facies and the carbonate-

evaporite cycles in the Fatha Formation allows variations in cycle thickness and cycle 

character across the basin, and hence the controls thereon, to be analysed. This is the 

principal aim of this chapter. Whilst the sedimentology of the succession has been 

studied in Iraq and the Kurdistan region previously (Shawkat, 1979; Aqrawi, 1993; 

Ajel, 2004), as well as in Iran (Gill and Ala, 1972), sequence stratigraphic studies 

regarding the nature and reasons for the cyclicity have not been carried out in detail 

until now.    

The main aim of this chapter is to characterize the environmental context and variations 

in environmental conditions that controlled the architecture of the Miocene Fatha 

Formation carbonate-evaporite cycles at the scale of the whole formation and at the 
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scale of the individual cycles. To achieve this, the following objectives were set, listed 

in the order in which they are dealt with in this study: 

1- To use the excellent and extensive outcrops of the Fatha Formation to identify cyles 

and bounding surfaces (as presented in chapter 3). 

2- To determine the total time elapsed for deposition of the Fatha Formation by using 

the strontium isotope relative dating method and so allow estimation of the time 

duration of individual cycles. 

3- To review and critically assess sequence stratigraphic methods, identifying 

approaches and definitions appropriate to the characterisation and interpretation of 

the Fatha Formation. 

4- To identify parasequence types and their distribution within the Fatha Formation. 

5- To use parasequence stacking patterns and representations of these in the form of 

Fischer Plots to analyze the long-term changes in accommodation space and hence 

establish larger scale systems tracts and the sequence-scale architecture of the Fatha 

Formation. 

6- To discuss the sequence stratigraphic variables that may have controlled the 

observed cyclicity. 

4.2 Methods  

The Fatha Formation was studied in the north-eastern marginal areas of the Zagros 

Basin through characterization of a number of surface sections (Figure 1.2). As 

mentioned previously, the succession includes a number of high frequency carbonate-

evaporite-clastic cycles that are continuous across the entire basin. The lateral and 

vertical sedimentary facies variation within the formation, as presented in Chapter 3, 

forms the framework for determining the architecture of the formation at a variety of 

scales, and for considering the impact of sea level variations through time and other 

environmental controls upon stacking patterns. Because the studied areas are marginal 

and basinal facies were not studied directly, previous studies were used as the basis for 

correlating the marginal to the basinal facies, notably after the publications of (Tucker, 

1999; Al-Juboury and McCann, 2008; Aqrawi et al., 2010). Consideration of the rocks 

that underlie and overlie the Fatha Formation, which are represented by the Euphrates 

and Jeribe Formations from the Early Miocene and the Injana Formation from the Late 

Miocene, respectively, has allowed characterisation of the nature of key stratal surfaces 

and bounding conformities or unconformities.  
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4.2.1 Strontium isotope 
87

Sr/
86

Sr method 

The Fatha Formation includes large benthic foraminifera but largely comprises 

unfossiliferous rocks, including the thick evaporites, which makes an accurate 

biostratigraphic age determination impossible. However, a Middle Miocene age has 

been determined by using the biostratigraphy of ostracod species (Khalaf, 1988; Abdol 

Rassul and Al-Sheikhly, 2001; Hawramy and Khalaf, 2013). Also, a late lower Miocene 

(Burdigalian) age has been estimated by using index fossils of mollusc species (Mahdi, 

2007). 

The most accurate methods for determining the age of rocks and sediments are 

radiometric dating methods, which determine ages numerically. Other relative dating 

methods are then tied to absolute radiometric dating records. Among these methods, the 

strontium isotope ratio Sr
87

/Sr
86

 method has been used for determination of the age of 

Oligocene-Miocene rocks in the Kurdistan region (Grabowski and Liu, 2009; 

Grabowski and Liu, 2012). A duration from the middle Burdigalian to lower Langhian 

(Bur.3 to Lang.1) was determined for the Fatha Formation, of between 18.5 and 15.6 

Ma. To further assess the age of the Fatha Formation, in this study twenty two samples 

of either carbonate or evaporite were chosen for isotopic measurements, including four 

samples of bivalve and oyster shells (see Appendix 1, for sample positions in the 

measured Mamlaha section). Before the isotope measurements were carried out, thin 

sections were made for each of the samples and the samples were carefully examined 

under a polarized microscope for evidence of preservation, diagenesis and 

recrystallization. Approximately 50µg of carbonate or evaporite powder (including for 

the shell samples) was collected for 
87

Sr/
86

Sr measurement at the University of Leeds. 

The McArthur procedure was used for the leaching method (McArthur et al., 2000). In 

this method, the sample powders were submerged into 0.9ml 18MΩ water and then 

0.2ml of 0.4M acetic acid was added and centrifuged for 5 minutes. After that, up to 

1ml of the leached solution was removed, leaving the remaining insoluble residue. 

Then, 1ml of 1.7M acetic acid was added to the insoluble residue to achieve total 

dissolution before the liquid was evaporated until dry, at 80°C for 1 hour. From this 

process, a white carbonate/evaporite residue was obtained and this was re-dissolved in 

1.5ml of 2.5 M HCl solution and then centrifuged. After that, the solution was taken to 

the separation columns and strontium was separated via the standard chromatography 

method using Eichrom Sr-resin. The purified solution was dried at 80°C and then the 
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Sr-extract was re-dissolved in ultrapure weak HCl acid and then added onto tungsten 

wire with softly dried TaCl5 ionization cocktail. Finally, the 
87

Sr/
86

Sr ratio was 

measured on a Thermo-Finnegan Triton-series thermal ionization mass spectrometer 

(TIMS). The measured 
87

Sr/
86

Sr ratio was corrected and used for calculating the age by 

using the LOWESS 5 database (McArthur et al., 2000). The Sr
87

/Sr
86 

ratios and 

numerical ages obtained are shown in Table 4.1.  

Table  4-1 Sr
87

/Sr
86 

ratios and inferred numerical ages of the carbonate and evaporite samples from 

the Fatha Formation, sampled in Mamlaha section. 

No. Sample 

type 

Sample 

ID 

Sr
87

/Sr
86

 Error Correction Normalized to 

NBS 987 STD 

Age (Ma) 

(LOWESS 5) 

1 Shell  M19 0.708615 -/+ 7 -31x10
-6 

0.708584 17.99 

2 Evaporite G 0.708581 +/- 5 +8x10
-6

 0.708589 17.71 

3 Carbonate M21 0.708631 -/+ 26 -31x10
-6

 0.708600 17.70 

4 Carbonate  M28 0.708249 +/- 5 No need 0.708249 22.96 

5 Carbonate M29 0.708673 +/- 23 No need 0.708642 17.15 

6 Carbonate M30 0.708847 -/+ 72 -31x10
-6

 0.708816 13.20 

7 Carbonate M31 0.708604 +/- 7 No need 0.708604 17.06 

8 Carbonate M32 0.708629 -/+ 5 -31x10
-6

 0.708598 17.70 

9 Carbonate M43 0.708728 -/+ 6 -31x10
-6

 0.708697 16.40 

10 Evaporite M43B 0.708718 +/- 39 -31x10
-6

 0.708687 16.55 

11 Evaporite M51C 0.70867 +/- 8 +8x10
-6

 0.708678 16.65 

12 Evaporite M52 0.708683 +/- 11 +8x10
-6

 0.708691 16.45 

13 Shell M57 0.708695 +/- 21 No need 0.708695 16.40 

14 Evaporite M57C 0.708682 +/- 3 +8x10
-6

 0.708690 16.44 

15 Shell M68 0.708717 -/+ 6 No need 0.708717 16.15 

16 Evaporite  M70 0.708622 +/- 26 +8x10
-6

 0.708630 17.30 

17 Carbonate M75 0.70877 -/+ 5 -31x10
-6

 0.708739 15.81 

18 Shell M83 0.708796 -/+ 10 -31x10
-6

 0.708765 15.45 

19 Carbonate M107 0.708694 -/+ 5 -31x10
-6

 0.708663 16.85 

20 Evaporite PX 0.708644 +/- 7 +8x10
-6

 0.708652 17.00 

21 Carbonate M114 0.708662 +/- 4 No need 0.708662 16.83 

22 Carbonate M115 0.708668 +/- 4 No need 0.708668 16.81 

 

4.2.2 Age of the Fatha Formation from strontium isotope dating 

The strontium isotope ratio, Sr
87

/Sr
86

, was measured for the carbonates, evaporites and 

preserved shells of bivalves and oysters from the Fatha Formation. Two of the 

carbonate samples have anomalous results outside the range (22.97 and 13.20 Ma) and 
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are not plotted on the curve (Figure 4.1 and Table 4.1). The other samples have been 

plotted with the LOWESS 5 record of variation in Miocene sea water Sr
87

/Sr
86

. For 

determination of the age range of the Fatha succession, the minimum and maximum 

points, which were 15.45 and 18 Ma, were taken. Therefore, a duration from the late 

Burdigalian to early Langhian was estimated to be approximately 2.55my. This 

approximately confirms the previously published age range. A maximum 40 cycles 

were identified in the studied section of the Mamlaha area and encompassed by the 22 

samples that were analysed. Hence, by dividing the total duration of 2.55my by the 

number of cycles, a maximum of 40, the average duration of each cycle is estimated to 

have been ~60ky. However, as shown in Figure 4.1 the inferred ages of cycles are not 

all in sequence. The numbered cycles denote the stratigraphic order of the samples 

cycles in the Mamlaha section (see Appendix 1, Mamlaha section). The fact that the 

stratigraphic order is not replicated in the records set against an approximately linear 

increase in Sr
87

/Sr
86

 ratio through time implies that there are errors, probably arising 

from sample contamination or isotope remobilisation, beyond the counting errors 

associated with the laboratory method itself. Where samples may contain unrecognized, 

detrital (isotopically old) carbonate, an age greater than the real age of the sample will 

result. Thus, for example, samples 16 and 19-22 may include some detrital material. 

 

Figure  4-1 Comparison of Miocene strontium-isotope ratios (Sr
87

/Sr
86

) from the Fatha Formation 

(blue rectangles) with the Lowess 5 Miocene strontium-isotope ratio Sr
87

/Sr
86

 curve (red line). The 

value of Miocene sea water Sr
87

/Sr
86

 has increased through time and the Sr
87

/Sr
86

 values of the 

Miocene Fatha Formation have matched the curve.   
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4.3 Review of sequence stratigraphy methods 

Sequence stratigraphy is a discipline in the field of sedimentary geology which has 

served to integrate stratigraphy and sedimentology to help understand facies changes 

and facies relationships in response to base level and other environmental changes 

(Embry, 2009). Thus, sequence stratigraphy is used alongside other geological 

disciplines to interpret the mechanisms that control the evolution of the fills of 

sedimentary basins, such as sea-level and climate changes, subsidence, sediment supply, 

tectonics and basin physiography (Van Wagoner et al., 1988). Moreover, sequence 

stratigraphy is a field of research that is still being developed with ongoing debates 

regarding its application (Embry, 2001; Neal and Abreu, 2009; Abreu et al., 2014). 

Sequence stratigraphy has been defined as ‘the study of rock relationships within a time-

stratigraphic framework of repetitive, genetically related strata bounded by surfaces of 

erosion or no deposition, or their correlative conformities’ (Posamentier et al., 1988; 

Van Wagoner, 1995) or ‘the recognition and correlation of stratigraphic surfaces which 

represent changes in depositional trends in sedimentary rocks. Such changes were 

generated by the interplay of sedimentation, erosion and oscillating base level and are 

now determined by sedimentological analysis and geometric relationships’ (Embry, 

2001).  

Sequence stratigraphy allows a stratigraphic succession to be divided into time-

equivalent sequences that in turn consist of systems tracts. Each system tract may 

contain smaller units that are known as parasequences.   

4.3.1 Sequence 

The fundamental unit of sequence stratigraphy is the sequence, which was originally 

defined by Sloss (1963) as an unconformity bounded unit and revived by Exxon 

researchers in their development of the discipline in the late 1970s and early 1980s and 

its application to seismic interpretation, when they added the concept of the correlative 

conformity to the unconformity bounded unit. The sequence thus became ‘a relatively 

conformable succession of genetically related strata bounded by unconformities or their 

correlative conformities’ (Mitchum et al., 1977). 

The first definition of a depositional sequence was published in AAPG Memoir 26 

(Payton, 1977) and SEPM Special Publication 42 (Wilgus et al., 1988). The 
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depositional sequence was defined as a unit bounded by unconformities and correlative 

surfaces in the margin and basin respectively, and included the Lowstand System Tract 

(LST), Transgressive System Tract (TST) and Highstand System Tract (HST). Two 

types of depositional sequence were defined based on the nature of the unconformity 

bounded surfaces (Vail and Todd, 1981). A type 1 sequence boundary represents a 

significant episode of subaerial exposure along the basin edge, shelf margin and upper 

slope, and a correlative conformity in the basin centre. This resultant sequences include 

the Lowstand System Tract (LST), Transgressive System Tract (TST) and Highstand 

System Tract (HST) (Figure 4.2). A type 2 sequence boundary represents a relatively 

minor subaerial exposure, which does not reach the shelf edge and bounds a sequence 

that includes a Transgressive System Tract (TST), Highstand System Tract (HST) and 

Shelf Margin System Tract (SMST). 

4.3.2 System Tract 

Sequences are subdivided into different smaller units termed “system tracts” 

(Posamentier and Vail, 1988; Van Wagoner et al., 1988), a concept that was originally 

defined by Brown and Fisher (1977) as a  ‘linkage of contemporaneous depositional 

systems’. System tracts “are defined by their position within the sequence and by the 

stacking patterns of parasequence sets and parasequences ˮ (Van Wagoner et al., 1988). 

A new definition of a system tract was proposed by Embry et al. (2007) as ‘a 

component unit of a sequence which is bound by sequence stratigraphic surfaces’. 

Thus, each specific component of system tracts is defined based on its own sequence 

stratigraphic boundaries and correlative conformities.  
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Figure  4-2 A general sequence stratigraphy model, including type-1 sequence boundary, systems 

tracts, and parasequences. LST: Lowstand System Tract, TST: Transgressive System Tract, and 

HST: Highstand System Tract (Van Wagoner, 1995).    

 

4.3.3 Parasequences and their bounding surfaces 

The further subdivision of system tracts into smaller units bounded by marine flooding 

surfaces (FS) generates parasequences, originally defined as ‘a relatively conformable 

succession of beds or bedsets bound by marine-flooding surfaces’ by Van Wagoner et 

al. (1988). The bounding surfaces of parasequences were defined as ‘a surface 

separating younger from older strata across which there is an abrupt increase in water 

depth’ (Van Wagoner et al., 1988). Further information was added to define marine 

flooding surfaces and parasequences and they were defined as a unit of shallowing-

upward beds bounded by transgressive surfaces and facies which mark transgression 

(Van Wagoner et al., 1990). Parasequence stacking patterns, including aggradation, 

retrogradation and progradation, are first defined by Mitchum and Van Wagoner (1991) 

(Figure 4.2). Catuneanu (2006) recommends using parasequence concepts for the 

interpretation of prograding successions from marginal to shallow marine environments, 

where indications of abrupt marine transgression and deepening can be found.  

Spence and Tucker (2007) proposed an alternative definition for a parasequence based 

upon detailed microfacies variation in a carbonate peritidal cycle as ‘a regionally 

significant meter-scale sedimentary package characterized by a succession of facies 
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that may shallow-up, deepen-up then shallow-up, aggrade, or reflect constant water 

depth. Bounding surfaces between each parasequence are sharp and defined by abrupt 

changes between genetic relays, genetic assemblages, paleowater depth and/or facies. 

Bounding surfaces need not always correspond to flooding surfaces’. In this definition, 

the flooding surfaces can occur within a parasequence or at the parasequence 

boundaries. The problem with this approach is that it introduces subjectivity in 

interpretation as it allows alternative picks of the parasequence boundaries. The 

approach followed in this study is to pick the resolvable flooding surface as the 

parasequence boundary and, where possible, to distinguish the transgressive and 

regressive elements in each cycle. As detailed in the following sections, most of the 

recorded cycles comprise a shallowing-up or regressive trend separated from the next 

cycle by a flooding surface. 

In general, a parasequence can be attributed to a number of mechanisms, including a 

rapid change in subsidence or a high-frequency eustatically controlled relative sea-level 

rise or an autocyclic shift in depositional location in siliciclastic successions, such as a 

lateral shift in the position of a delta lobe through time (Mitchum and Van Wagoner, 

1991). 

4.4 Sequence stratigraphic model of high-frequency carbonate-evaporite cycles 

and mechanisms of their origins 

Deposition of evaporite occurs when evaporation exceeds inflow at times of increased 

aridity in different environmental settings, from subaerial supratidal to subaqueous 

saline, as seen, for example, in the Zechstein, Paradox and Delaware Basins (Tucker, 

1991; Sarg, 2001). Thick basin centre evaporites have been deposited in isolated basins, 

where these have been separated from the world’s oceans by barriers, so reducing open 

circulation. Evaporites will not deposit or will be rare in open basins with open 

circulation and without barriers (Sarg, 2001). In most cases, carbonate is deposited 

around the basin margins when there is open connection and free circulation with the 

ocean (Tucker, 1991).  

A number of sequence stratigraphic models for carbonate-evaporite cycles have been 

proposed for both ramp and rimmed platform profiles. For example, Tucker (1991) 

developed a sequence stratigraphic model for a carbonate-evaporite rimmed profile and 

applied it to the Zechstein Basin in NE England. Based on this model, during 
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incomplete drawdown, sequences start with a lowstand gypsum wedge at the basin 

margin, which pass laterally into gypsum-carbonate laminites in the basin centre, and 

then shift upwards to early TST sabkha/lagoonal gypsum. Then, during the late TST and 

HST, carbonate would be deposited. Deposition of evaporite may occur during the late 

HST in the upper most part of the sequence. However, during complete drawdown, i.e. 

when sea-level falls below the barrier, the basin is filled by a thick halite during the late 

lowstand. Then, the sequence passes up to the evaporite and carbonate of the TST and 

HST, respectively. Different sequence stratigraphic models have been proposed for the 

Zechstein cycles (Strohmenger et al., 1996a; Wagner and Peryt, 1997; Becker and 

Bechstädt, 2006) and Paradox cycles (Weber et al., 1995; Williams, 2009), and the 

origins in these cyclical architectures have been evaluated (Goldhammer et al., 1991; 

Goldhammer et al., 1994; Geluk, 2000a).  This will be returned to as the focus of the 

comparative study outlined in Chapter 5. 

Handford and Loucks (1993) proposed different sequence stratigraphic models for a 

variety of carbonate platforms in different climatic situations. They proposed a model 

for arid carbonate-evaporite ramps and stated that carbonate and evaporite are best 

developed during transgressive and highstand conditions, respectively. In addition, 

according to Sarg (2001) , evaporite precipitation may occur in all the system tracts, 

depending upon the climatic and palaeo-oceanographic conditions of the basin but the 

best developed thick evaporite successions occur during the sea-level lowstands.  

Small-scale shallowing-upward cycles have been described in a number of carbonate 

successions (Ginsburg, 1975; Wilson, 1975; Hardie, 1986; Grotzinger, 1986a; 

Grotzinger, 1986b; Goldhammer et al., 1987a; Mitchum and Van Wagoner, 1991; 

Osleger, 1991; Strasser et al., 1995). These shallowing-upward cycles are laterally and 

vertically variable. Microfacies analysis may highlight variations in an individual cycle 

when traced laterally and between cycles vertically (Tucker and Wright, 1990). 

Microfacies analysis and sequence stratigraphical investigations have been undertaken 

for peritidal shallowing-upward cycles in carbonate-dominated successions, including 

those representing subtidal, intertidal and supratidal settings (Read and Goldhammer, 

1988; Montanez and Osleger, 1993). In some cases, these shallowing-upward cycles 

terminate with evaporite deposition during arid climate episodes, and numerous modern 

and ancient carbonate-evaporite cycles have been recorded (Alsharhan and Kendall, 

2003; Nagy et al., 2005). The supratidal evaporites are deposited in arid supratidal 
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sabkha and associated with shallow marine carbonate deposits of hypersaline lagoons 

and intertidal environments (Kendall and Patrick, 1969; Kinsman and Park, 1976). 

There have been a number of reviews of the origins of cyclicity (Crevello, 1991; 

Osleger, 1991; Montanez and Osleger, 1993; Sami and James, 1994; Bosence et al., 

2009). A number of mechanisms have been invoked to interpret the origin of these 

cycles, namely variations in subsidence, tectonics, sedimentary processes, sediment 

supply and eustatic controls (Tucker and Wright, 1990). Each mechanism may control 

cyclicity alone or in combination.  

Eustatic variation has been a widespread explanation for cyclicity through sea level 

changes related to the three Milankovitch cycles of precession (~20 kyr), obliquity (~40 

kyr) and eccentricity (~100 kyr). When eustacy is the main control on cyclicity, the 

cycles should be traceable regionally along any extensive platform, and even globally, 

whereas poorly correlated cycles would suggest a local tectonic or autogenic origin 

(Tucker and Wright, 1990). In addition, cycles characterised by regular changes in 

accommodation, cycle type, stacking patterns and thickness all imply a eustatic control 

(Bosence et al., 2009).  

Tectonic mechanisms have a major role in the development of a basin fill stratigraphy 

and configuration (Miall, 2010). Syn-sedimentary faults during deposition of a cyclic 

succession result in the generation of differential subsidence or uplift (Bosence et al., 

2009), which in turn control accommodation creation. In this case, cycles which are 

laterally non-continuous with variable thickness would be generated (Tucker and 

Garland, 2010).  

The tidal-flat progradation model of Ginsburg was developed to explain the origin of 

tidal-flat progradation (Ginsburg, 1975). A number of shallowing-upward cycles may 

be generated by progradation of tidal-flat facies belts across a platform. Subtidal or 

shallow lagoons are places of high carbonate production, and they may feed sediments 

to tidal-flat belts of nearly zero production, by current, wave and storm reworking. In 

the model, the high carbonate production in subtidal and shallow lagoons causes 

progradation of the tidal-flat belts basinward that in turn kills carbonate production and 

stops progradation. As a result, the next cycle will start with a new transgression. This 

process generates a number of shallowing-upward cycles that are capped by fine-

grained deposits (Read et al., 1991; Flugel, 2004) (Figure 4.3). Autogenic sedimentary 
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processes, including tidal-flat progradation, may thus generate laterally impersistent 

shallowing-upward cycles (Tucker and Garland, 2010). In addition, variability in cycles 

thickness, section thickness and stacking patterns are also indicative of such autogenic 

origins (Bosence et al., 2009). 

 

Figure  4-3 Tidal flat progradational model on a carbonate ramp. Each cycle terminates with a 

disconformity surface (heavy line) and is capped by tidal flat deposits. Subtidal deposits onlap the 

disconformity surface toward the margin, and then tidal flat deposits start to prograde toward the 

basin and continue to extend completely across the platform (Read et al., 1991).   

 

4.5 Review of vertical facies variations within the Fatha Formation 

Each cycle of the Fatha Formation typically passes up from calcareous mudstone to 

shallow water carbonate and then grades up to nodular evaporite. The red alluvial unit 

that was sourced from the marginal hinterlands then caps each cycle, before a flooding 

surface marks the start of the next parasequence. During fieldwork investigations and 

microfacies studies (Chapter Three), vertical facies variations were observed and 

interpreted. For the purposes of this chapter, the vertical facies associations seen in each 

sedimentary facies are summarised as follows: 
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4.5.1 Vertical facies variations within the calcareous mudstone unit 

The calcareous mudstone unit in the lower part of each cycle was investigated during 

fieldwork. The vertical facies variations included changes in colour, thickness and 

lithology. In each individual calcareous mudstone unit, a vertical change in lithology 

was observed from pure calcareous mudstone to marly carbonate at the top. In addition, 

this variation was also observed through thin section examination, in which quartz 

percentages increase toward the top. Furthermore, vertical variations were also observed 

within the extracted microfossils from different parts of each individual unit. For this 

purpose, samples were taken from the base, middle and upper parts of each individual 

unit. The extracted microfossils (rotaliids, miliolids and ostracods) from the base of an 

individual calcareous mudstone unit are very small, mostly 100µm in size, with low 

abundance and diversity. Toward the middle part of the unit, the extracted microfossils 

are moderately sized (200µm), with moderate abundance and diversity. However, 

toward the top of the unit, the extracted microfossils are large (300µm) in size with high 

abundance and diversity.  

These variations in facies vertically reflect changes in water depth and salinity. There is 

a negative relation between size and water depth, as well as salinity (Bradshaw, 1961; 

Van Harten, 1975). The calcareous mudstone unit from an individual cycle becomes 

shallower toward the top. In addition, the percentage of bivalves, oysters and bryozoans 

increases with siliciclastic input.  

4.5.2 Vertical facies variations within the carbonate unit 

The carbonate members are the major sedimentary facies in the Fatha cycles and 

include different microfacies that represent different environmental settings (Chapter 

Three).  Based upon the observed carbonate microfacies (Chapter three), seven facies 

associations were recognized within the cycles as illustrated in Table (4.2), as follows: 

1- Ooid capped carbonate microfacies (OCCM) 

This facies association passes up vertically from carbonate skeletal mudstone to 

wackestone/packstone microfacies (SK1-SK7) with evaporite pseudomorphs, to ooidal 

grainstone microfacies (NS4-NS5) at the top.  
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2- Peloid-ooid capped carbonate microfacies (POCCM)  

This facies association passes up from skeletal wackestone-packstone (SK2-SK7) to 

peloidal-ooidal grainstone microfacies (NS3) and then grades up to ooidal grainstone 

microfacies (NS4-NS5) at the top. In some cases, the ooidal grainstone microfacies is 

modified by meteoric water diagenesis and capped by the red claystone units.  

3- Stromatolite-algal mat capped carbonate microfacies (SACCM) 

The carbonates of this cycle pass up from carbonate skeletal wackestone-packstone 

microfacies (SK2-SK7) to carbonate mudstone microfacies with subaerial laminae 

(SK1c) and then grade up to algal mats (AG1) and stromatolites (AG2) at the top with 

evaporite pseudomorphs, fenestrate pores and subaerial exposure laminae. This type of 

cycle is capped by nodular evaporites and then by the red claystone units. In a few 

cases, the carbonate constitutes a thin algal mat (AG1) or stromatolite (AG2) carbonate 

microfacies with evaporite pseudomorphs and fenestrate pores. This cycle is common 

throughout the succession. 

4- Bivalve-barnacle-oyster capped carbonate microfacies (BBOCCM)  

This cycle motif passes up from carbonate grainstone to floatstone/rudstone microfacies 

rich in bivalves, barnacles and oysters (M2-M3). The bivalves have complete valves and 

are in situ, while the oysters are commonly attached to the bivalves. This cycle is 

common throughout the succession. 

5- Carbonate mudstone capped carbonate microfacies (CMCCM) 

The carbonate of this cycle is composed of a thin carbonate mudstone microfacies unit 

(SK1b) and is capped by the red claystone unit. This cycle is common at the upper part 

of the succession.  

6- Laminated pellet grainstone capped carbonate microfacies (LPCCM) 

This cycle comprises multiple interbedded layers of thin calcareous mudstones and thin 

laminated pelletal grainstone microfacies (NS2) and then are capped by the red 

claystone units. This cycle is common at the upper part of the succession. 
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7- Bioclastic peloidal grainstone capped carbonate microfacies (BPCCM)  

This type of cycle is composed of the bioclastic peloidal grainstone microfacies (NS1c) 

and it is overlain by the red claystone unit. This cycle is common in the upper part of 

the succession. In general, these vertical variations in the carbonate units represent 

shallowing-upward trends. The shallowing-upward changes within the carbonate 

microfacies are from mudstone to skeletal wackestone microfacies at the base, up into 

skeletal packstone microfacies and then these pass up into non-skeletal grainstone or 

mollusc rudstones or algal mats/stromatolites at the top. This means that the water depth 

of the carbonate units are diminishing toward the top.  
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Table  4-2 Shallowing-upward facies changes within the carbonate microfacies of the Fatha Formation. 

Carbonate  

Cap 

Characteristics Occurrence 

 

OCCM Carbonates represent restricted to semi-restricted hypersaline conditions at the base and 

shallow lagoons and sand shoals at the top. They show increases in circulation and 

hydrodynamics, and diversity of organism, and decreases in salinity upward through the 

cycles. The thickness of the carbonates is about 1-3 metres. 

Common in all the studied areas. 

Particularly abundant in the lower part of 

the succession. 

POCCM Carbonates represent restricted to semi-restricted hypersaline conditions at the base, then 

shallow lagoon and sand shoals at the top. They show increases in circulation, 

hydrodynamics and diversity of organisms, and decreases in salinity upward through the 

cycles. Thickness is about 2-4 metres. 

Common in all the studied areas. It is 

abundant in the middle part of the 

succession. 

SACCM Carbonates are thin (10-30cm). Generally, they comprise intertidal algal bindstone or 

intertidal stromatolite, while occasionally they represent restricted hypersaline lagoon 

and shallow lagoon conditions at the base and intertidal algal bindstone and stromatolite 

conditions at the top. In a few cases, they just comprise a thin carbonate (20cm) of 

restricted stromatolite facies. 

Very common and abundant throughout 

the succession. They were recorded in all 

the studied areas.  

BBOCCM Carbonates represent shallow lagoonal conditions at the base intertidal conditions at the 

top. They show increase in faunal diversity and circulation. Thickness is about 10-50 cm. 

Very common and abundant in both parts 

of the succession. 
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CMCCM The carbonates are thin (10-20cm) and represent mixed coastal carbonate-siliciclastic 

shallow lagoon conditions. 

Very common in the upper part of the 

succession. 

LPCCM The carbonates are thin (10-20cm) and they are interpreted as shallow lagoon deposits in 

the basal parts and intertidal towards their tops.  

Common in the Takiya and Basara 

sections in the lower part of the 

succession. 

BPCCM The carbonates are thin (20-50cm) and they are interpreted as shallow normal water 

lagoon toward the base and intertidal toward the top. They show increase in faunal 

diversity and circulation upward through the cycle. 

Common in all the studied areas and 

particularly abundant in the upper part of 

the succession.  
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4.5.3 Vertical facies variations within evaporite unit 

The vertical facies variations within the evaporite were also observed. The carbonate 

unit is vertically overlain by thick evaporite. The evaporite is mostly composed of 

nodular, while it is vertically passing to laminated evaporite and salt, in some cycles. 

This trend in the evaporite unit also represents shallowing-upward trend that is part of 

the regressive cycles. 

4.5.4 Vertical facies variations within red clastic unit 

Vertical facies trend within the clastic unit was clearly observed throughout the 

succession or individual cycles. Siliciclastic deposits become abundant toward the upper 

succession in which sandstone is increasing. Furthermore, in each individual cycle, the 

clastic unit is passing up from claystone to siltstone and then to sandstone. In addition, 

the thickness of the unit is increasing toward the upper succession. There are several 

cycles of claystone and sandstone at the upper succession. This trend continues and 

becomes fully siliciclastic in the Injana Formation.  

Overall, a shallowing-upward trend was observed from the largest scale of the whole 

succession of the Fatha Formation to the smallest individual bed or unit within the 

cycles. There is a regressive or shallowing-upward trend throughout the succession, in 

which marine deposits become missing toward the top of the succession. Furthermore, 

the succession constitutes a number of regressive cycles; each cycle represents a 

shallowing-upward trend from calcareous mudstone to shallow water carbonate and 

then evaporite and fluvial deposits. Shallowing-upward trend is one of the most 

observed features, not only in individual cycles and succession but rather in an 

individual sedimentary unit. It was observed in all the sedimentary facies such as 

calcareous mudstone, carbonate, evaporite and red clastic units.  

4.6 High-frequency cycles of the Fatha Formation 

A number of carbonate-evaporite shallowing-upward cycles are preserved from the 

Zagros foreland basin that extended along the margin of the Arabian Plate. At the basin 

margin, each cycle records an upward transition from calcareous mudstone (marl) at the 

base, which, as just detailed, grades up to or is interbedded with the shallow marine 

carbonate that changes from mudstone/wackestone at the base, to packstone/grainstone 
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or algal mat/stromatolite at the top. Occasionally, thin carbonate units (10-20cm thick) 

are interbedded with the calcareous mudstone unit. The carbonate unit then typically 

grades up to a thick nodular evaporite unit (1-10m) and this is capped by a red alluvial 

unit, at the top of the cycle (Figures 4.4 and 4.5). The red alluvial unit was sourced from 

the uplifted areas around the margin. However, in the basin centre, the majority of the 

cycles in the lower part of the succession are composed of interbedded thin calcareous 

mudstone or carbonate at the base, grading up to a thick evaporite (1-20m). However, 

toward the upper part of the succession, the cycles are composed of interbeddings of 

calcareous mudstone, carbonate and evaporite, from base to top respectively. The red 

alluvial to fluvial unit appears at the top of the cycles in the uppermost part of the 

succession. Occasionally, laminated evaporite (bedded evaporite) and salt cap the cycles 

in the basin centre (Tucker, 1999; Al-Juboury and McCann, 2008). 
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Figure  4-4 A representative schematic log of vertical facies variations of a high-frequency 

shallowing-upward cycle of the Fatha Formation. The facies variations form a high-frequency 

shallowing-upward package that is repeated throughout the succession.   
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Figure  4-5 Lithostratigraphic correlation of the shallowing-upward parasequences from basin 

margin to basin centre in the lower and upper part of the succession. The evaporite thickens 

toward the basin centre (Al-Juboury and McCann, 2008) and the fluvial unit progrades toward the 

basin. 
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The calcareous mudstone and carbonate units become thinner toward the basin centre, 

whereas the evaporites becomes thicker. The proportion of the red alluvial/fluvial input 

increases toward the top of the succession and caps the basin centre cycles in the upper 

part of the succession (the Upper Member as defined in Figure 4.10). Moreover, salt is 

also documented at the top of the evaporite in some cycles in the basin centre. The salt 

was not documented from outcrops because it was dissolved out or probably was not 

deposited in marginal locations. Laminated evaporite (bedded evaporite), interpreted as 

subaqueously deposited evaporite, was recorded in one cycle only from the studied 

outcrops but in multiple cycles from the basin centre (Tucker, 1999).  The thicknesses 

of the cycles and of the succession as a whole decrease from the basin centre to the 

basin margin. The succession was documented to be 400-650m thick in the basin centre 

(Al-Juboury and McCann, 2008); however, at the studied areas on the basin margin the 

thickness was around 50-300m thick. In addition, the maximum number of cycles, 55 

cycles, is preserved in the basin centre (Tucker, 1999), whereas 30-40 cycles were 

recorded at the basin margin. Furthermore, the thickness of the cycles varies from lower 

to upper parts, and a number of thick cycles were preserved in the lower part. In contrast 

to the lower part, the cycles in the upper part become thinner.  

4.7 Correlation panels and lateral facies changes 

During fieldwork, several thick carbonate units were chosen and followed for more than 

20km. These carbonate units were traced between the logged sections. In addition, the 

laminated evaporite was also followed between the sections for more than 10km. Based 

on these correlatable carbonate and evaporite units, all cycles have been correlated 

across the whole area, “hung from” these initially correlated units. As a result, two 

correlation panels have been constructed along two different trends. The first is along 

the Qishlagh-Sargrma-Darbandikhan Mountains, including the Takiya, Basara, 

Krbchna, Darbandikhan and Chnarah sections (Figure 4.6). The second follows the Aj 

Dagh-Qara-Wais anticlines, and includes the Aj Dagh, Sangaw, Mamlaha and Kfri 

sections (Figure 4.7). The correlated cycles from these two panels show consistent 

lateral and vertical facies changes. These changes include an overall vertical 

shallowing-up trend from evaporite-dominated cycles in the lower part, to siliciclastic-

dominated cycles in the upper part. In addition, the thickness of the cycles is greater in 

the lower part of the succession than the upper part. However, the thickness of the 

succession and the number of cycles increases toward the SW of the studied area, where 
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the succession is about 320m thick and includes 40 cycles. In addition, the thickness of 

the succession becomes very thin (50m) in the most proximal areas (e.g. Chnarah), 

where it also becomes more siliciclastic-dominated. Hence, variations from the lower 

part to the upper part of the succession are clearly observed. The cycles within the lower 

part have been correlated between the sections. Some sections have a higher number of 

cycles when they were correlated laterally. The cycles from the Takiya and Basara 

sections for example, have a higher number of cycles distinguished in the lower part 

than the Krbchna section, and the Krbchna section has a higher number of identified 

cycles than in the Darbandikhan area. Lastly, the Chnarah section has the minimum 

number of cycles. This suggests that some cycles may have limited expression and have 

been missed between the sections, or more probably that they onlap onto underlying 

surfaces and pinch out between sections. 

Cycle correlations based on sedimentary facies reveal that most of the cycles can be 

traced between the sections for distances of more than 50km. However, samples 

collected from a number of individual cycles reveal that any particular microfacies 

within an individual cycle cannot be traced for a distance greater than 20 km. This 

constrains the lateral continuity of cycles but the lateral variability of microfacies. 

The high-frequency cycles of the Fatha Formation have previously been described as 

high-frequency sequences bounded by type 2 sequence boundaries in two studies 

(Tucker, 1999; Ameen, 2006), but with no any identified subaerial exposure. In 

contrast, in another study, the cycles are interpreted as high-frequency parasequences 

that are bounded by flooding surfaces (Al-Juboury and McCann, 2008). In this study, 

the key stratigraphic surface recognized in each cycle is the flooding surface 

representing a rapid transgression where calcareous mudstones overlie pre-existing red 

alluvial claystones. Above the flooding surface and carbonate mudstones, the cycle 

typically grades up to shallow water carbonate and then passes up to evaporite. A red 

alluvial/fluvial unit then progrades over the evaporite toward the basin. Therefore, each 

cycle is typically capped by the red fluvial unit at the top, and each cycle represents a 

regressive and shallowing-upward trend, which progrades toward the basin. The next 

cycle starts with a new flooding surface. Importantly, there is no any indicator of 

subaerial exposure or sea-level fall identified and observed at the top of the evaporite. 

This study therefore follows standard sequence stratigraphic terminology (Van Wagoner 
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et al., 1988), such that the Fatha Formation cycles are termed parasequences, being 

conformable packages of beds bound by marine flooding surfaces. 
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Figure  4-6 Lateral and vertical correlations of the studied cycles along the Qishlagh-Sargrma-Darbandikhan Mountains. The cycles are traceable for tens of kilometres 

but the microfacies within the individual cycles vary laterally. A higher number of siliciclastic-dominated cycles are recorded along these sections. 
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Figure  4-7 Lateral and vertical correlations of the studied cycles along the Aj Dagh-Qara-Wais anticlines. The cycles are traceable for tens of kilometres but the 

microfacies within the individual cycles vary laterally. A higher number of evaporite-dominated cycles are recorded in the thicker successions. 
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4.8 Types of parasequences 

A variety of internal architectures of parasequences is observed, as outlined below. The 

distribution of these variants is then considered in terms of their lateral and vertical 

position in the Fatha Formation. This intra-parasequence variation is then considered 

together at the scale of the log correlation panels, to characterize the detailed spatial and 

temporal variation in parasequences through the formation (Figure 4.8 and Table 4.3). 

4.8.1 Type A  

This type of parasequence is represented by a calcareous mudstone unit overlying the 

basal flooding surface, which passes up to a thin bed of enterolithic evaporite (5cm) and 

then passes up again to a thin calcareous mudstone (5cm) and finally to a ca. 1m thick 

bed of laminated evaporites at the top. It is then capped by the red clastic unit (Figure 

4.8). Occasionally, thin carbonate beds (10cm thick) are interbedded within the 

calcareous mudstone units. During field work, the laminated evaporite could be traced 

from the Takiya to Krbchna sections, a distance of approximately 70 km (Figure 4.9A-

B). As described previously, the laminated evaporite has therefore been used as a 

marker bed for correlation, because of its lateral continuity and consistent stratigraphic 

position in all of the sections where it is seen. As a result, it was inferred that the cycles 

at the base of the succession onlap the sequence boundary toward the margin. In other 

words, the laminated evaporite is recorded at a relatively high stratigraphic position in 

the Mamlaha, Sangaw and Aj Dagh sections compared to the Darbandikhan area, and it 

is missing in the Chnarah section (the most proximal area). This type of parasequence is 

only recorded from one cycle in the measured sections. However, it has been described 

as a common signature in the basin centre (Figure 4.10), where nodular evaporites are 

capped by either halite or laminated evaporites in multiple cycles (Tucker, 1999). 

4.8.2 Type B  

Type B parasequences grade up from a calcareous mudstone unit (0.5-1.5m) to thick 

nodular evaporites (3-5m) and these are then capped by a red clastic unit (Figures 4.8 

and 4.9C). This type of cycle is not common in the marginal areas and it was only 

documented in 2-3 cycles. However, it is a common cycle style of the Lower Member in 

the basin centre (Figure 4.10), but where it is not capped by the red clastic unit.  
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4.8.3 Type C 

Type C parasequences pass up from a shallow water carbonate unit above the basal 

flooding surface to thick nodular evaporites and these are then capped by a red clastic 

unit (Figures 4.8 and 4.9D).  This type is not common in the marginal area but it is 

common of the Lower Member in the basin centre (Figure 4.10), but where it is not 

capped by the red clastic unit. 

4.8.4 Type D 

Type D parasequences pass up from calcareous mudstone units above the basal flooding 

surface to a thick shallow water carbonate unit (1-3m) and then grade up to a thick 

nodular evaporite (1-10m) which is generally capped by a red clastic unit (Figures 4.8 

and 4.9E-F). Occasionally, the calcareous mudstone unit at the base of the cycle is 

interbedded with thin carbonate beds (10cm). The carbonate unit constitutes different 

microfacies that shallow up from carbonate mudstone/wackestone to 

packstone/grainstone or algal mats/stromatolite at the top. The majority of the cycles in 

the lower part of the formation are composed of this type. However, in a few cycles, the 

red clastic unit is missing and the cycle is overlain by a flooding surface and the 

calcareous mudstone unit of the next cycle.   

4.8.5 Type E 

This type of parasequence is very common in the marginal areas, in which evaporites 

are missing (Figures 4.8 and 4.11A-B). This type also becomes more common toward 

the upper part of the succession and most of the cycles from the Darbandikhan area near 

Birke village and the Chnarah section are of this type of cycle. The cycles pass up from 

a calcareous mudstone unit at the base to shallow water carbonates (0.2-3m in 

thickness) and are then capped by a red clastic unit.   

4.8.6 Type F  

Type F parasequences pass up from shallow water carbonate rocks above the basal 

flooding surface to red claystone or sandstone beds at the top (Figures 4.8 and 4.11C). 

This cycle is very common in the upper clastic-dominated part of the formation toward 

the basin margin. The carbonate unit is mostly composed of grainstone textures. 
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4.8.7 Type G 

This is a common parasequence type in the upper clastic-dominated part, toward the 

marginal areas. Above the basal flooding surface, a shallow marine silty calcareous 

mudstone unit passes up into red clastic or sandstone beds. The sandstone beds are 

enriched with Rhyzolithos ichnofacies (Figures 4.8 and 4.11D). 

4.8.8 Type H 

This type is also common in the uppermost part of the succession. Above each flooding 

surface, subaqueous highly bioturbated and mottled bluish-red mixtures of silt and marl 

are observed, and these contain various horizontal ichnofacies and vertical Skolithos 

(Figures 4.8 and 4.11E-F).These deposits pass up into red claystone beds in the upper 

part of the parasequence. 

 

Figure  4-8 Types of parasequences and their distribution from the lower carbonate-evaporite-

dominated part to the upper siliciclastic-dominated part.   
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Figure  4-9 Field photographs of parasequence types in the lower part of the succession.  

A and B: Parasequences of type A with calcareous mudstone at the base, shallowing up 

to laminated evaporite, followed by a red alluvial unit, from the Mamlaha and Basara 

sections, respectively. C: Parasequences of type B with calcareous mudstone at the base, 

shallowing up to nodular evaporite; Kfri section. D: A parasequence of type C, with 

nodular evaporite of the previous parasequence followed by a carbonate unit of the next 

and then shallowing up to nodular evaporite; from the Mamlaha section. E and F: 

Parasequences of type D with calcareous mudstone at the base, shallowing up to 

carbonate and then continuing the regressive trend to nodular evaporite and then a red 

alluvial/fluvial unit; from the Mamlaha and Basara sections, respectively.  
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Figure  4-10 Representative logs of the shallowing-upward cycles or parasequences, type of cycles, 

their thickness ranges and distributions from the lower to upper parts of the succession and from 

the basin margin to basin centre. Overall, the cycles vary from evaporite-dominated in the lower 

part to siliciclastic-dominated in the upper part. Basin centre parasequence styles are after 

(Tucker, 1999). 
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Figure  4-11 Field photographs of cycle (parasequence) types in the upper part of the succession.  

A and B: Cycles of type E with calcareous mudstone at the base, shallowing up to 

carbonate and then followed by a red fluvial unit; from the Mamlaha and Chnarah 

sections, respectively. C: Cycles of type F with shallow marine carbonate at the base, 

shallowing up to red fluvial/alluvial units: from the Krbchna section. D: Cycles of type 

G with silty calcareous mudstone at the base, shallowing up to thin sandstone beds with 

Rhyzolithos ichnofacies; from the Mamlaha section. E and F: Cycles of type H with 

highly bioturbated mixed bluish-red siltstone at the base, shallowing up to red 

claystones; from the Takiya and Sangaw sections, respectively.  
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Table  4-3 Types, characteristics, occurrences of the cycles of the Fatha Formation.  

Cycle-type Characteristics Occurrence 

(basin margin) 

Occurrence 

(basin centre) 

Type A It is passing up from calcareous mudstone to laminated 

evaporite (1m) and then grades up to red clastic unit. 

Occasionally, thin carbonate (10-20cm) and enterolithic 

evaporite (5cm) are interbeddings with the calcareous 

mudstone. The thickness of the cycle is about 3.5-5m.  

It is not common and it was just 

documented in one cycle in all 

the studied areas in the lower 

part. 

It is common and it was 

documented in a multiple cycles 

in the lower member (without 

the red clastic unit).  

Type B It is grading up from calcareous mudstone unit at the base to 

thick nodular evaporite and then it is capped by red clastic unit. 

The thickness of the cycle is about 5-7m. 

It is not common and it was just 

recorded in 2-3 cycles in the 

lower part. 

It is the most common type in 

the lower member (without the 

red clastic). 

Type C The cycle is compost of interbeddings of calcareous mudstone 

at the base and thick nodular evaporite at the top. Then, the red 

clastic unit capes the cycle. The thickness of the cycle is about 

6-8m. 

It is not common and it was just 

recorded in 2-3 cycles in the 

lower part. 

It is common in the lower 

member of the succession 

(without the red clastic). 

Type D The cycles are passing up from calcareous mudstone at the base 

to carbonate and then grades up to thick nodular evaporite and 

it is capped by red clastic unit. It is the thickest type 5-13m. 

This is the most common type in 

the lower part of the succession.  

It is common in the middle part 

(without the red clastic) and in 

the upper member (with the red 

clastic). 
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Type E The cycles are passing up from calcareous mudstone at the base 

to carbonate and then grades up to red clastic unit. Thickness of 

the cycles is about 8-10m.  

It is common type in the upper 

part of the succession. 

It is not common. 

Type F It is passing up from shallow carbonate at the base to red clastic 

unit at the top. Thickness of the cycles is about 4-6m. 

It is common in the upper part of 

the succession. 

It is not common. 

Type G It is passing up from silty calcareous mudstone at the base to 

red clastic unit at the top. Thickness of the cycle is about 1-4m. 

It is not common and it was just 

recorded in 2-3 cycles. 

It is not common. 

Type H It is passing up from highly intensive bioturbated and mottled 

bluish-red mixtures of silt and marl at the base to red clastic 

unit. It is thin and is about 1-3m. 

It is very common in the upper 

most part of the succession. 

It is not common. 
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4.9 Parasequences and Fischer plots - methods 

Examination of cycle thicknesses and variations in vertical facies trends help to 

constrain variations in accommodation space and relative sea-level changes, and Fischer 

plots are particularly useful visualisation tools for this purpose. Fischer plots were 

developed to present data on cyclic successions, with cycle number or a time dimension 

on the horizontal scale being plotted against cumulative departure from mean cycle 

thickness on the vertical scale (Fischer, 1964; Goldhammer et al., 1987a; Read and 

Goldhammer, 1988). This type of plot was first introduced by Fischer in 1964 and used 

for the characterisation of peritidal carbonate cycles, in which a constant rate of 

subsidence and similar duration for each cycle were assumed. The vertical lines on the 

plots represent the thickness of each cycle, whereas the average thickness is represented 

by the diagonal lines on the plots (e.g. Figure 4.12). The subsidence rate (neglecting 

unknown compaction effects) is determined from the total thickness of the cyclic 

succession divided by total time duration of the succession. Whether 

chronostratigraphic constraints are available or not, original Fischer plots simply use 

cycle number on the horizontal scale, and so assume a constant time interval for each 

cycle. Sadler et al. (1993), for example, preferred this approach. In peritidal carbonate 

cycles (Fischer, 1964) and in regressive carbonate cycles (Tucker, 1999), it is the 

recognition that each cycle shallows upward to sea level that allows the Fischer plot to 

represent changes in accommodation through time, when averaged over the total 

duration of the stratigraphic interval being characterized. 

Positive slopes on Fischer plots are produced by upward increases in the cycle 

thicknesses, when these are greater than the average thickness. However, thin cycles, 

which are less than the average thickness, generate falling slopes. The heavy line along 

the top of the cycles that is rising and falling thus reflects changes in accommodation 

space available to the depositional system. The conceptual basis behind these changes in 

the slope on the plots is exemplified by sets of thin cycles being represented by a 

downward slope, and these having been formed during decelerating accommodation 

space generation. Whereas, stacks of thick cycles are formed during a net 

accommodation space increase.  

An alternative to the assumption that cycles are of equal time duration is to make the 

assumption that the sedimentation rate is constant from one cycle to the next. This is 
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achieved using the “modified Fischer plot” of Tucker (1999). In this, cumulative 

departure from mean cycle thickness is again plotted on the vertical scale with the 

thickness of each cycle plotted as a vertical line, but with the stratigraphic thickness of 

each cycle represented on the horizontal axis.  

Assuming that background tectonic subsidence, if varying, was varying on a longer time 

scale than the high frequency parasequences, then a positive slope on the plot can be 

interpreted as an increase in accommodation space which was generated during relative 

sea-level rise. The high accommodation space was filled by thick carbonate and 

evaporite cycles. However, the falling parts on the plots are still positive and indicate 

decreasing accommodation space at the upper part that was generated during sea-level 

highstand. The decelerating accommodation creation on the falling parts of the plots are 

evidenced by decreases in cycle thicknesses. 

Systematic vertical changes in cycle (parasequence) thickness and cycle type give a 

valuable data set for distinguishing the components of larger scale sequences, i.e. 

system tracts, through the variations in accommodation space that may have produced 

them (Mitchum and Van Wagoner, 1991). In addition, differences in stacking patterns 

give high resolution information for correlating and identifying the system tracts on 

broad platforms (Montanez and Osleger, 1993). Moreover, the Fischer plot is a useful 

tool for determining the origin of the parasequences by allowing examination of the 

regularity of the cycle thicknesses. Where the cyclicity was produced by orbital forcing, 

then one would expect regular patterns, and the Fischer plot may show a bundling of the 

cycles. In contrast, if the cyclicity was accumulated by autocyclic sedimentary 

processes, then a random pattern of cycle thickness would be expected on the Fischer 

plots (Tucker and Garland, 2010). Furthermore, the Fischer plot becomes more useful 

still where it is incorporated with facies analysis and vertical facies changes of the 

parasequences, as in this study. In this case, it can be used to examine and contrast the 

facies variations on the rising (high accommodation space) and falling (low 

accommodation space) slopes of the Fischer plot. 
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Figure  4-12 Standard curve of Fischer plot constructed between cumulative departure from mean 

cycle thickness and cycle number (Sadler et al., 1993).  

 

4.9.1 Results of Fischer plot analysis  

The thick succession of mixed carbonate-evaporite-clastic cycles from the Fatha 

Formation shows dramatic variations in metre-scale cyclicities, dominant lithofacies and 

vertical facies trends. These are represented in Figures 4.13-4.21. 
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Figure  4-13 Fischer plot of the carbonate-evaporite cycles of the Fatha Formation from Kfri 

section. The plots represent the standard Fischer plot as constructed between cumulative departure 

of mean cycle thickness and cycle number (upper plot), as well as revised Fischer plot as presented 

between cumulative departure of mean cycle thickness and cycle thickness (lower plot).  
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Figure  4-14 Fischer plot of the carbonate-evaporite cycles of the Fatha Formation from Mamlaha 

section. The plots represent the standard Fischer plot as constructed between cumulative departure 

of mean cycle thickness and cycle number (upper plot), as well as revised Fischer plot as presented 

between cumulative departure of mean cycle thickness and cycle thickness (lower plot).  
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Figure  4-15 Fischer plot of the carbonate-evaporite cycles of the Fatha Formation from Aj Dagh 

section. The plots represent the standard Fischer plot as constructed between cumulative departure 

of mean cycle thickness and cycle number (upper plot), as well as revised Fischer plot as presented 

between cumulative departure of mean cycle thickness and cycle thickness (lower plot).  
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Figure  4-16 Fischer plot of the carbonate-evaporite cycles of the Fatha Formation from Sangaw 

section. The plots represent the standard Fischer plot as constructed between cumulative departure 

of mean cycle thickness and cycle number (upper plot), as well as revised Fischer plot as presented 

between cumulative departure of mean cycle thickness and cycle thickness (lower plot).  
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Figure  4-17 Fischer plot of the carbonate-evaporite cycles of the Fatha Formation from Basara 

section. The plots represent the standard Fischer plot as constructed between cumulative departure 

of mean cycle thickness and cycle number (upper plot), as well as revised Fischer plot as presented 

between cumulative departure of mean cycle thickness and cycle thickness (lower plot).  
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Figure  4-18 Fischer plot of the carbonate-evaporite cycles of the Fatha Formation from Takiya 

section. The plots represent the standard Fischer plot as constructed between cumulative departure 

of mean cycle thickness and cycle number (upper plot), as well as revised Fischer plot as presented 

between cumulative departure of mean cycle thickness and cycle thickness (lower plot).  
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Figure  4-19 Fischer plot of the carbonate-evaporite cycles of the Fatha Formation from Krbchna 

section. The plots represent the standard Fischer plot as constructed between cumulative departure 

of mean cycle thickness and cycle number (upper plot), as well as revised Fischer plot as presented 

between cumulative departure of mean cycle thickness and cycle thickness (lower plot).  
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Figure  4-20 Fischer plot of the carbonate-evaporite cycles of the Fatha Formation from 

Darbandikhan section. The plots represent the standard Fischer plot as constructed between 

cumulative departure of mean cycle thickness and cycle number (upper plot), as well as revised 

Fischer plot as presented between cumulative departure of mean cycle thickness and cycle thickness 

(lower plot).  
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Figure  4-21 Fischer plot of the carbonate-evaporite cycles of the Fatha Formation from Chnarah 

section. The plots represent the standard Fischer plot as constructed between cumulative departure 

of mean cycle thickness and cycle number (upper plot), as well as revised Fischer plot as presented 

between cumulative departure of mean cycle thickness and cycle thickness (lower plot).  
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Standard Fischer plots are presented of the cyclic succession of the Fatha Formation 

(Figures 4-13 to 4-21). These are constructed with cumulative departure from mean 

cycle thickness on the vertical scale and cycle numbers on the horizontal scale.  Revised 

Fischer plots are also presented with cumulative departure from mean cycle thickness 

on the vertical scale and cycle thicknesses on the horizontal scale. The rising slopes in 

the left-hand part of each of the graphs represent the thicker cycles of the lower part of 

the succession, whereas the falling slopes at the right-hand side of each of the graphs 

include the thinner cycles of the upper part of the succession. The Fischer plots 

presented show nearly similar trends in all the studied sections; an increase and then a 

decrease in slope (i.e., positive rising and negative falling). This means that the thicker 

cycles on the rising slopes of the graphs were deposited during increasing, higher 

accommodation space generation, whereas the thinner cycles on the falling slopes of the 

graphs were accumulated during a phase of relatively reduced accommodation space 

generation. It can be concluded that the Fatha Formation was deposited during 

transgressive (rising slopes) to highstand (falling slopes) system tracts and the Fischer 

plot reveals elements of a 3rd order depositional sequence, which started with a rise in 

sea-level and evolved to a highstand (stillstand).  

4.9.2 Parasequence sets 

A parasequence set comprises a number of parasequences that accumulated during a 

specific phase of sea-level change. Therefore, by detecting parasequence stacking 

patterns, system tracts can be interpreted. In general, the Fatha Formation was deposited 

during a sea-level rise in the lower part and evolved toward a 3
rd

 order highstand sea-

level in the upper part. This is consistent with the formation being divided into two 

parasequence sets on the plots; transgressive and highstand parasequence sets.  

1. Retrogradational parasequence set 

A retrogradational parasequence set is defined by farther landward deposition of 

successively younger parasequences or cycles, in which the rate of accommodation 

generation is more than the rate of deposition. Transgressive system tracts are 

characterized by retrogradational parasequence sets, which onlap and downlap onto pre-

existing surfaces in landward and basinward directions, respectively (Van Wagoner et 

al., 1987). However, if sedimentation rates are higher than the accommodation creation, 
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then progradational stacking patterns may be preserved within a transgressive system 

tract. 

This type of stacking pattern is recognized at the base of the Fatha Formation by 

landward onlap of the underlying sequence boundary by successive parasequences. 

Thus a retrogradational stacking pattern has been observed. On Fischer plots, the 

positive slope represents the transgressive system tract, which was generated by upward 

thickening of stacked cycles during a prolonged period of high accommodation space 

generation. The thicknesses of the cycles are greater than the average thickness. In this 

parasequence set, a thick carbonate-evaporite succession was deposited that are 

consistent with the high rates of accommodation space generation. Therefore, these 

cycles are interpreted to have been deposited during the relative sea-level rise of a third 

order transgressive system tract.  

2.  Progradational parasequence set 

A progradational stacking pattern is defined by farther basinward deposition of 

successively younger parasequences (cycles), in which the rate of accommodation 

generation is less than that of the rate of deposition. This is a characteristic of the 

highstand system tract that may start with one or more aggradational cycle and passes 

up to progradational cycles with prograding geometries (Van Wagoner et al., 1987). 

There is a maximum flooding surface between the retrogradational transgressive system 

tract and the aggradational early highstand system tract. However, the recognition of the 

maximum flooding surface is complicated in high frequency sea-level events. 

Therefore, stacking patterns have been used to identify this transition. In these cases, a 

maximum flooding zone (MFZ) and sequence boundary zone (SBZ) have been invoked 

by some authors (Montanez and Osleger, 1993; Tucker, 2003).  

On Fischer plots, this zone is located at the falling part of the curve. Correlated Fischer 

plots from the Fatha parasequences show a transition from thick cycles of carbonate-

evaporite facies to thinner cycles. This transition is gradational and rounded in most of 

the studied sections. This parasequence set is characterized by the falling slope on the 

Fischer plot and thinning upward, in which the thicknesses of the cycles are smaller 

than the average. This indicates decelerating accommodation creation and a high rate of 

deposition. Therefore, these cycles were deposited during a relatively slow relative sea-

level rise of the early highstand system tract. In this part of the plot, the evaporite unit is 
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typically missing and the marine deposits become very thin with occasional evidence of 

meteoric diagenesis. 

Table  4-4 Descriptions and definitions of the high-frequency cycles, cycle-set, and 3
rd

-order 

sequence of the Late Burdigalian Fatha Formation. 

Hierarchy Lateral 

extent (km) 

Thickness (m) Time 

(k.y.) 

Definition 

High-

frequency 

parasequences 

˃10 5-10, up to 13 60 Shallowing-upward cycles, 

passing up from hypersaline 

lagoonal deposits into shallow 

carbonate deposits, then to 

supratidal and fluvial deposits. 

Cycle-set Basin-wide 100-150 1-1.5 Distinguished by changes in 

stacking patterns and cycle 

thicknesses. 

3
rd

-order 

sequence 

Basin-wide 50-300 2.5-3 3
rd

–order accommodation 

creation. 

 

4.9.3 Distributions of the parasequences on the Fischer plots 

Fischer plots have been applied for correlation across a large area to explore the effects 

of tectonics and long-term accommodation space creation during deposition of a cyclic 

succession (Grotsch, 1996). In the current study, each parasequence had different ranges 

of thickness and was documented from different parts of the succession or different 

parts of the basin (Figures 4.22 and 4.23). However, in general, they all have some 

significant criteria in common, which represent shallowing-upward changes. 

Type D parasequences are the most common parasequence in the studied areas. This 

type constitutes the majority of the parasequences in the lower part of the succession, 

while types A, B and C cycles occur sporadically. This means that these three types are 

not common at the basin margin. However, they are more common in the basin centre.  

On the Fischer plots, these four types are located on the rising limb of the plot (Figures 

4.22 and 4.23). However, the types of parasequence show greater variations on the 

falling limb (HST) of the Fischer plot. These variations exhibit decreasing thickness, 

missing evaporites and increasing siliciclastic deposits. On this part of the Fischer plot, 

type E and type F parasequences are more abundant, while type G and type H 

parasequences become abundant in the uppermost part of the succession and at the end 

of the falling slope of the Fischer plot. Toward the uppermost part of the succession, the 
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marine deposits become a lesser component until the succession becomes a fully fluvial 

deposit in the Injana Formation.    
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Figure  4-22 Correlation of the Fischer plots from the studied sections and distributions of 

parasequences types along the plots. The shape of the plots are nearly similar in all the studied 

sections. Most of the parasequences at the lower succession are of type-D, whereas type-H is 

predominate at the upper succession. The dotted blue line is the position of the laminated evaporite. 
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A high number of type D cycles were observed in the lower part of the succession. For 

example, more than 15 cycles were documented in the lower part of the succession in 

the Mamlaha area, while the number of type D parasequences reduces to approximately 

10 cycles in the Basara and Takiya areas and less than 8 parasequences at Krbchna and 

Darbandikhan. It is absent in the Chnarah section where the majority of the 

parasequences are composed of type E parasequences. However, the majority of the 

parasequences in the Lower Member of the basin centre are composed of type A, B and 

C parasequences, followed by type D parasequences (lack or presence of red clastic 

deposits) in the Upper Member (after (Tucker, 1999; Aqrawi et al., 2010)). A number of 

type B parasequences are preserved in the Kfri area in the SW of the study area.  

The high abundance of type D parasequences in the lower part of the succession and on 

the rising slope of the Fischer plot indicates higher accommodation space and 

subsidence. During that time a number of thick cycles were accumulated. However, the 

abundance of types E, F, G and H in the upper part of the succession and on the falling 

limb of the Fischer plots suggest relatively low accommodation creation and 

subsidence. In this context, relatively thin parasequences are preserved. The reduced 

number of type D parasequences in the Krbchna and Darbandikhan areas and their 

absence in the Chnarah section allow an inference of very low subsidence during 

deposition close to the hinterlands. Reduced numbers of parasequences in an individual 

set from Basara and Takiya to Krbchna and Darbandikhan areas suggest missed cycles 

in between. This could be the result of very low subsidence or uplift around the margin. 
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Figure  4-23 Schematic illustration of the distribution of parasequence types on a Fischer plot. 

Thick carbonate-evaporite parasequences are located in the lower part of the succession with high 

accommodation space creation; however, the parasequences in the upper part of the succession 

become thinner due to decelerating accommodation space. Furthermore, siliciclastics become 

abundant and evaporites are missing. 

 

4.10 Sequence boundaries 

Sequence stratigraphy may be used to divide genetically related units into system tracts 

and parasequences based on hierarchical cycles of relative sea-level change. Moreover, 

it is an important tool that links stratigraphy, basin analysis and aspects of petroleum 

geology. In order to create a sequence stratigraphic description of the Fatha Formation, 

the lower and upper boundaries need to be defined, as well as sedimentary facies, and 

the nature of parasequences which have been described in detail.  

4.10.1 The lower boundary 

In all previous studies it have been suggested that the lower boundary of the Fatha 

Formation at the basin margin with the underlying Late Eocene Pila Spi Formation is 

unconformable. A Basal Fars Conglomerate (BFC) was described at the boundary 

without any recognition of early Miocene and Oligocene formations (van Bellen et al., 

1959; Buday, 1980; Al-Juboury and McCann, 2008; Aqrawi et al., 2010). However, the 

Early Miocene formations (e.g. Euphrates, Dhiban and Jeribe) and Oligocene 
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formations have recently been identified by a number of authors in Kurdistan region 

(Kharajiany, 2008; Khanaqa et al., 2009; Ghafur, 2012) Hussein, 2016).    

In the current study, the Basal Fars Conglomerate (BFC) is recognized in the 

Darbandikhan area below the Fatha Formation, where a thick fluvial unit (9m) of 

conglomerate, breccia, claystone and sandstone is recorded between the Late Eocene 

Pila Spi and Miocene Fatha Formations (Figures 4.24 and 4.25). However, this fluvial 

unit is also documented below the Early Miocene formations (Euphrates, Dhiban and 

Jeribe) in the Garmian areas. It thins (to 1.5-2m) toward the Garmian area, where the 

Mamlaha, Sangaw and Aj Dagh sections have been logged. It is absent toward the basin 

centre.   

The Early Miocene formations (e.g. Euphrates, Dhiban and Jeribe) have not previously 

been recorded along the Sargrma-Qishlagh Mountains. However, in the current study, 

three packages of carbonates and green marls were recorded along the Sargrma-

Qishlagh Mountains just below the Fatha Formation whilst they are absent toward the 

Darbandikhan area. So, the Basal Fars Conglomerate is located below these carbonate 

packages along the Sargrma-Qishlagh Mountains. The first carbonate unit, which is 

about 4m thick, may be the Euphrates Formation by indicating the Early Miocene index 

fossil Borelis melo. However, the two carbonates and green marl packages above the 

first carbonate unit may represent the Jeribe Formation. These results were determined 

by studying all the sedimentary facies and microfacies of the packages and correlating 

them to the Euphrates and Jeribe Formations along the Aj-Dagh and Qara-Wais 

anticlines, SW of Kurdistan region (Aj Dagh, Sangaw and Mamlaha sections), which 

were recently recorded by Hussein (2016). In addition, these carbonate packages have 

also been studied in Basara gorge and their age is determined to be between Late 

Oligocene and Early Miocene by using index fossils (Khanaqa et al., 2009). As a result, 

the Early Miocene and Fatha Formations must have diachronously onlapped the 

unconformity surface (BFC) toward the basin margin. 

In the basin centre, the lower boundary of the Fatha Formation is conformable with the 

Early Miocene Jeribe Formation, the boundary being marked by a change from 

carbonate of the Jeribe Formation to the basal anhydrite of the Fatha Formation. 

However, elsewhere the boundary is unconformable on the Euphrates Formation 

(Buday, 1980). 



 

175 

4.10.2 The upper boundary 

The upper boundary of the Fatha Formation is graditional and conformable with respect 

to the overlying Injana Formation (van Bellen et al., 1959; Buday, 1980). In the current 

study, the boundary is taken to be the transition from marine deposits of the upper part 

of the Fatha Formation to fluvial deposits of Injana Formation. Therefore, the boundary 

is a diachronous lithostratigraphic boundary and becomes younger towards the basin. 

There is no subaerial unconformity present.    

4.10.3 The upper boundary of Injana Formation 

The upper boundary is of the Injana Formation is unconformably overlain by the 

Mukdadiya Formation (previously termed the Lower Bakhtiari Formation), as indicated 

by the first pebbly sandstone of the Mukdadiya Formation (Al-Rawi et al., 1993) and 

local angular unconformity (Pirouz et al., 2011).  

 

Figure  4-24 Lower boundary of the Fatha Formation with the Early Miocene formations 

(Euphrates, Dhiban and Jeribe). There is an unconformity surface toward the margin that 

represents a sequence boundary at the Oligocene-Miocene boundary. Both the Early Miocene 

formations and the Fatha Formation onlap the sequence boundary.  
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Figure  4-25 3
rd

 order sea-level changes including system tracts during deposition of the Fatha 

Formation marginal deposits, and variations in cycle types throughout the regressive succession.  

 

The Fatha and Injana Formations were deposited during a 3
rd

 order depositional 

sequence, which is bounded by sequence boundaries at the base and the top. The 

sequence boundaries are characterized by subaerial exposure at the basin margin and 

correlative conformities within the basin depocentre. In addition, the Fatha depositional 

sequence includes a number of high-frequency parasequences.  

4.11 Mechanisms controlling the Miocene high-frequency parasequences 

The most important variables that affected high-frequency relative sea-level changes are 

eustatic sea-level change, climate, tectonics and depositional rate. These factors may 

separately or all together control the depositional architecture of a sedimentary basin. 

Eustatic sea-level changes have an effect on accommodation space for sediment 

accumulation, while tectonics is a major control on accommodation but also on 

sedimentation, through hinterland uplift processes which influence erosion and sediment 

supply rates, and which may control changes of the basin configuration during 

subsidence and uplift. In addition, deposition rate can change the geometry and form of 

stacking patterns within the basin.  
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In the current study, three main controls were recognized on Fatha deposition, these 

being sedimentary process, glacio-eustasy and tectonics, as discussed below. 

4.11.1 Glacio-eustasy and orbital forcing 

Eustatic sea-level variations have been estimated on different time scales: (i) long-term 

scale (10
7
 to 10

8
 years) that is influenced by variations in sea-floor spreading; (ii) 

million-year time scale that is recognized by seismic stratigraphic methods and 

regionally correlatable sequence boundaries; and (iii) 10
4
-10

5
 year time scale that is 

influenced by climate changes and Milankovitch cycles (Vail et al., 1977; Haq et al., 

1988; Kominz, 2001; Miller et al., 2005; John et al., 2011). In general, variations in 

eustatic sea-level are controlled by changes in the volume of the ocean basins (tectono-

eustasy) and volume of water in the oceans (glacio-eustasy) (Kominz, 2001; Coe and 

Church, 2003; Miller et al., 2005). The main driving force causing variation in the 

volume of the ocean and long-term sea-level change is tectonic, which changes the 

volume and shape of the ocean basins. For example, during collision of the Indian and 

Asian continental plates and generation of the Tibetan Plateau and the Himalayan 

Mountains, sea-level has probably fallen about 70m over the last 50 million years 

(Kominz, 2001). Moreover, collision, subduction, sea-floor ridge development, rifting, 

large igneous province evolution, and transient mantle upwelling all contribute to 

controlling the long-term sea-level changes.  However, variations in the water volume in 

the oceans can be largely attributed to climate changes. Palaeo-climate can be estimated 

by observing oxygen-18 to oxygen-16 ratios in the tests of dead organisms. The 

variation in O
18

/O
16

 from microfossil remains allow the inference of a general cooling 

over the last 50 million years (e.g. Zachos et al., 2001).  

The Miocene ranges between 23 and 5.3 Ma. It represents a period of long-term cooling 

that continues today, as estimated from deep-sea oxygen-isotope records (Zachos et al., 

2001; Haupt and Seidov, 2012). The earliest Oligocene glaciation event was suggested 

as a major change in climate from long-term warming to the long-term cooling that 

continues today. The long-term cooling since the earliest Oligocene alternated with 

warming episodes, such as the latest Oligocene and the mid-Miocene Climatic Optimum 

that lasted 10
4
-10

6
 years (Haupt and Seidov, 2012). 

There was a cooling event at the Oligocene-Miocene boundary (Figure 4.26), which 

caused a period of ice growth in the Antarctic (Miller et al., 1991). This event at the 
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Oligocene-Miocene boundary resulted in a global sea-level fall, known as the ice 

growth maximum (Mi-1) (Miller et al., 1991). This event can be correlated with the 

Oligocene-Miocene sequence boundary on the Arabian Plate at a regional scale and in 

this studied area on a local scale.  

The second ice growth (Mi-1a) and associated sea-level fall occurred during the late 

Aquitanian to early Burdigalian and are separated from the previous cooling phase (Mi-

1) by a minor sea-level rise, which is indicated by a shift in oxygen-isotope ratios. 

These events were succeeded by a warmer period, known as “the Mid-Miocene 

Climatic Optimum”, which lasted from the middle Burdigalian to the Langhian and was 

separated by two glacial maxima (Mi-1b and Mi-2). This was followed by a lowering of 

temperatures, including the Mi-3 to Mi-7 glacial maxima, a cooling trend which has 

continued until today (Miller et al., 1991; Rasmussen, 2004). In general, the marine 

oxygen isotope record during the Miocene records several climatic fluctuations or warm 

spikes and sea-level rises (Zachos et al., 2001; Rasmussen, 2004). But overall, large ice 

sheets in East Antarctica have developed at least since the Oligocene, driving a sea-level 

change equivalent to at least 35m (Zachos et al., 1994). These fluctuations of climate 

created metre-scale to decametre-scale high-frequency cyclical sea-level changes, 

expressed in stratigraphic records, at the three different periodicities of orbital forcing 

that are known as the Milankovitch cycles. These three episodes have rhythms of 

precession (ca. 20kyr), obliquity (ca. 40kyr) and eccentricity (ca. 100 and 400 kyr). 

These changes in orbital forcing cause variation in temperature and solar radiance 

reaching the Earth, which in turn affect ice volumes and hence sea-level. Therefore, 

there is a significant relationship between climate and sea-level. The magnitude of sea-

level fluctuations has been greater during icehouse climatic phases than during 

greenhouse phases, due to the increased availability of polar ice during icehouse 

conditions. For example, sea-level has fluctuated by about 100m during eccentricity 

phases of the icehouse maximum during the Pleistocene (Miall, 2010). A good example 

of probable Milankovitch cyclicity is seen in the Turonian succession within the 

Western Interior Basin, between Utah and Kansas. Elder et al. (1994) have correlated 

two major shallowing-upward successions; one from Utah that comprises shallowing-

upward cycles of marine mudstone to siltstone and shoreline sandstone, while the 

second from Kansas comprises couplets of marl and carbonate. They attributed these 

two successions as being controlled by Milankovitch timescale climatic fluctuations. 

They interpreted that during cold/wet periods, the rate of sediment supply would have 
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increased and led to coastal progradation, whereas during hot/dry periods, the rate of 

sediment supply would have decreased, leading to carbonate-rich sediments being 

deposited in the basin centre (Elder et al., 1994).  Thus the climatic variability may be 

expressed either as shifts in the position of coastlines due to sea-level fluctuations or to 

differences in sediment supply rates and progradation rates. 

The presence of high-frequency cyclicity with periodicities of less than one million 

years and which can be traced over large areas regionally, even globally, and correlated 

across different tectonic and/or climatic situations, provide the main evidence for the 

Milankovitch climatic-forcing control of stratigraphic architectures (Tucker and Wright, 

1990; Tucker and Garland, 2010) (Figure 4.27). High-frequency cyclicity is very 

common in the Miocene worldwide. It occurs in a carbonate-siliciclastic succession in 

the Lorca Basin, SE Spain (Thrana and Talbot, 2006); a mixed siliciclastic-carbonate 

shelf in the Guadix Basin, Spain (García-García et al., 2009); Messinian evaporites in 

the Mediterranean Basin (Manzi et al., 2012); siliciclastic cycles in Western Louisiana 

and Central Texas (Ye et al., 1995; Hentz and Zeng, 2003), and in shallow marine, 

fluvio-deltaic and lacustrine sediments of the Vienna Basin (Paulissen and Luthi, 2011). 

The Miocene high-frequency carbonate-evaporite-clastic cycles in the current study are 

extend to Syria and Iran and are continuous over about 2000km, and are well preserved 

throughout the entire basin. The cycles are traceable for tens of kilometres, this distance 

usually only being limited by outcrop continuity. This is strong evidence for orbital 

forcing having been a control on the basin stratigraphy. Other strong evidence of orbital 

forcing and a eustatic control is the regularity of the cycles and the correlation of 

parasequence sets across the region. This is has been indicated by the correlation of the 

parasequence sets expressed in the Fischer plots.  

The total duration of the deposition of the Fatha Formation was estimated to be 5.0 Myr 

by its stratigraphical position (van Bellen et al., 1959; Buday, 1980; Jassim and Goff, 

2006). The number of cycle that were recorded from the basin-centre is about 50 cycles 

(Tucker, 1999). By dividing the total duration of the deposition by the number of cycles, 

in the basin-centre, 100Kyr is the inferred average cycle duration. However, a 

radiometric strontium isotope study calculated the total duration of deposition of the 

formation to be 3.0 Myr (Grabowski and Liu, 2009; Grabowski and Liu, 2012). Now, a 

similar strontium isotope study has been conducted in this study for calculating the total 

duration of the formation, and the duration is determined to be 2.55Myr. Moreover, the 
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cycles were completely preserved in the basin-centre, whereas toward the basin-margin, 

due to onlapping of the cycles, not all the cycles are preserved. As a result, 17 to 42 

cycles were recorded in the basin-margin, whereas 50 cycles were documented in the 

basin-centre. By dividing the total duration of the formation (3.0Myr) by the number of 

cycles in the basin-centre (50), a mean cycle duration of 60Kyr is obtained. These 

values fall in the vicinity of the Earth’s short eccentricity cycle that is modulated in the 

range from 95 to 123 k.y. (Berger, 1977). This means that a mix of obliquity and 

eccentricity-forced cycles are probably being expressed. This assumes that the 

amplitude of eccentricity insolation variation is bigger than the amplitude of insolation 

variations forced by obliquity variations  (of ca. 40 Kyr periodicity) are that these are in 

turn bigger than precession-forced variations (of ca. 20 Kyr periodicity).  

The 3
rd

-order accommodation cycle represents the whole Fatha succession and is a 

longer-term, low frequency cycle, including a number of 4
th

-order cycles. This long-

term trend is described by the vertical stacking patterns of the 4
th

-order cycles, which 

progressively thin from the lower part of the succession (5 to 15m thick) to the upper 

part (1 to 5m thick). This accommodation cycle is probably developed in response to 

long-term subsidence patterns. The thicker 4
th

-order cycles at the lower part of the 

succession were accumulated during a higher subsidence rate phase when higher rates 

of accommodation space generation occurred. Whereas, the thinner 4
th

-order cycles in 

the upper part of the Fatha Formation were deposited when the rate of accommodation 

space generation and therefore probably subsidence rates decelerated.    

It can be concluded that the Oligocene-Miocene was a time of high-frequency climatic 

changes and basin margin sequence architectures were largely controlled by glacio-

eustatic sea-level changes (Kominz, 2001; Miller et al., 2005; John et al., 2011), 

including in the studied area. The Miocene succession in the Zagros foreland basin is 

characterized by a high-frequency cyclicity, with an average periodicity of about 60 kyr, 

which probably means that a mix of obliquity and eccentricity-forced cycles are 

expressed. Over the Fatha Formation as a whole, alternations of warm and cold periods, 

and associated sea level fluctuations, occurred during the mid-Miocene Climatic 

Optimum. This was followed by high frequency climatic alternations during a period 

when globally there was a gradual decrease in temperature and net sea-level fall. This 

event resulted in the deposition of the thick fluvial succession (Injana Formation and 

younger deposits) that prograded toward the basin throughout the rest of the Miocene 



 

181 

and Pliocene. During the mid-Miocene Climatic Optimum, in the hot/dry periods, 

carbonate and evaporite were deposited, whereas during the cold/wet periods, 

siliciclastic supply from the hinterlands was enhanced causing progradation and 

regression of the coastal facies belt.  

To conclude, the nine logged sections of the Miocene cycles show consistent patterns of 

coincident changes in stacking patterns, accommodation space and a distribution of 

cycle types that support control by high frequency eustatic sea-level changes and 

associated climatic variation that governed sediment supply rates. 

 

Figure  4-26 Eustatic sea-level estimations and global oxygen isotope ratios between 50 Ma and the 

present. The eustatic sea-level estimations are after Haq et al., (1987, the green curve), Miller et al., 

(2005, the blue curve), Haq and Al-Qahtani (2005, the black curve) and Kominz et al., (2008, the 

red curve). The Haq et al. curve estimates higher amplitudes of sea-level variations. In contrast, the 

other curves of Kominz et al., and Miller et al., estimate lower amplitudes. The global oxygen 

isotope curve is after Zachos et al. (2001), against which Fatha Formation deposition occurred 

during the mid-Miocene Climatic Optimum (from ca. 18.0 to 15.5 Ma, the purple line).    
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Figure  4-27 Components of orbital forcing of the earth, showing their periodicities and causes.  

 

4.11.2 Tectonics 

A number of geological processes can affect the subsidence evolution of a sedimentary 

basin, e.g. rifting, thermal relaxation, sediment loading and intraplate stresses. These 

processes work on subsidence evolution in low frequency (thermal relaxation) and 

relatively high frequency (intraplate stress and rifting) time scales (Cloetingh, 1988; 

Nottvedt et al., 1995; Nielsen et al., 2002).  

The Arabian plate has undergone a complex tectonic history as well as eustatic sea-level 

changes since the Proterozoic era, which have caused changes in subsidence rate that in 

turn caused significant new accommodation space, or led to the development of 

erosional unconformities  (Haq and Al-Qahtani, 2005). The subsidence evolution of the 

Zagros foreland basin during the Cenozoic era has been assumed to be influenced by 

tectonics of the Arabian Plate margin, obduction and final continent-continent collision 

between the Arabian and Iranian Plates (Koop et al., 1982). In addition, possible 

reactivation of the basement Khanaqin fault (KHF) and Hail Ga’ara lineament (HRA) 

during the Miocene, and development of the Kirkuk and Sinjar salt sub-basins in Iraq 

could have influenced the subsidence of the Fatha sub-basins (Bahroudi and Koyi, 

2004) (Figure 4.28). These basement faults are syn-sedimentary tectonic structures that 
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separated the Fatha basin in to six sub-basins along the north eastern part of the Zagros 

foreland Basin. The  presence of palaeo-highs that have separated the sub-basins have 

affected the distribution of sedimentary facies, thickness variation, subsidence and the 

development of accommodation space in the Fatha cycles across the Zagros Basin. 

These effects on the Fatha cycles are evidenced by increasing thickness further away 

from the palaeo-highs (Al-Juboury and McCann, 2008), whereas thicknesses decrease 

toward the basin margin due to lower subsidence. It is clear from Figure (4.29) that the 

rate of subsidence decreased from the lower to the upper part of the succession and that 

this in turn created higher accommodation space in the lower part of the formation.   

 

Figure  4-28 Isopach map of the Fatha (Gachsaran) Formation on the Arabian Plate. The (possibly 

syn-sedimentary) basement Khanaqin fault (KHF) and Hail Ga’ara lineament (HRA) are shown in 

the context of the separate Sinjar and Kirkuk salt sub-basins in Iraq (Bahroudi and Koyi, 2004). 

 

Whilst basement faults and lineaments may have determined the geographical location 

of depocentres, and regional thickness variations, they had no apparent influence on 

stratigraphic cyclicity. The distances over which correlations of the high-frequency 

cycles of the Fatha Formation are possible make it unlikely that the cyclicity originated 

as a result of these tectonic activities. However, the deposition of the first red fluvial 

claystone in the Miocene happened during the deposition of the Fatha Formation. This 

means that the Zagros Mountains had probably started to grow in the late Burdigalian 
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and continued throughout the Miocene and Pliocene. This is evidenced by an apparent 

increase in sediment supply upward through the Fatha succession, as well as in the 

Injana and Mukdadiya Formations in the upper Miocene. Additionally, climatic cooling, 

accompanied by increasing rainfall, followed the Mid-Miocene Climatic Optimum, and 

this probably resulted in increased clastic deposition represented by the upper Miocene 

and Pliocene siliciclastic deposits.  

4.11.3 Sedimentary process 

Autogenic sedimentary processes that include tidal-flat progradation, have previously 

been used to explain the origin of sedimentary cyclicity (Ginsburg, 1975). This is not 

excluded in the Miocene cyclicity of the studied area because of the presence of tidal-

flat and supratidal deposits at the top of many cycles. Typical cycles from the studied 

area pass up from low energy hypersaline conditions to shallow water carbonate of 

variable depositional environments and then pass up to supratidal evaporite and an 

alluvial/fluvial unit above. In general, the Fatha Formation cycles have laterally 

persistent pattern in cycle thickness, accommodation space and stacking patterns that all 

indicate a regular eustatic control. However, in tracing one cycle or a set of cycles 

laterally, some cycles are missing between the sections. For example, the Takiya and 

Basara sections have a higher number of cycles in the lower part than the Krbchna 

section. A possible explanation is that such duplications or omissions of cycles may be 

indicative of an autogenic sedimentary mechanism contributing to the control of 

cyclicity (Tucker and Garland, 2010).   
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Figure  4-29 The effects of relative sea-level changes and subsidence on the Fatha cyclicity, based on the Mamlaha section. The subsidence is high at the lower succession, 

where the thicker cycles were deposited. Whereas, it shows a dramatic decrease in subsidence upward through the upper succession. 
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4.12 Conclusion  

The late Burdigalian carbonate-evaporite deposits of the Fatha Formation were studied 

in the periphery of the Zagros foreland Basin in Kurdistan Region/NE Iraq. For this 

purpose, nine outcrop sections were studied around Slemani city to investigate sequence 

stratigraphic studies and analysis the carbonate-evaporite cycles. The formation is 

composed of a stacked succession of carbonate-evaporite shallowing-upward cycles that 

represent a long term accommodation history. Approximately 17 to 42 shallowing-

upward cycles are recorded and defined as parasequences that are bounded by flooding 

surfaces. Shallowing-upward trend in an individual cycle is evidenced in all the 

particular facies by changing microfacies, fossil size and abundance, and lithology. 

These changes record environmental variations that include upward shoaling and 

salinity changes.   

Standard and revised Fischer plots are constructed for the Fatha parasequences. The 

Fischer plots record a systematic variation in parasequence stacking pattern that can be 

used to define system tracts, parasequence set, and sequence boundary. The plots 

presented for all the studied sections have the same shape, an increase, and then a 

decrease in slope. The parasequences of the Fatha Formation form retrogradational and 

progradational parasequence sets, the individual parasequences ranging in thickness 

from 5-13 and 1-5 metres, in the lower and upper parts, respectively. They can be traced 

laterally for tens of kilometres at outcrop. Each parasequence in the lower part of the 

Fatha Formation has onlapped landward, overstepping pre-existing parasequences, 

whereas the parasequences in the upper part have prograded farther basinward relative 

to the previous parasequences. In this way, the upper part of the succession prograded 

basinward and created a diachronous relationship between the basinal and marginal 

facies belts and the fluvial wedge represented by the Injana Formation above. This 

means that the thicker cycles at the lower succession (rising slopes of the Fischer plots) 

were deposited during a higher accommodation space that was probably created by 

tectonic subsidence. Whereas, the thinner cycles at the upper succession (falling slopes 

of the Fischer plots) were accumulated during a relatively reduced accommodation 

creation that was probably enhanced by tectonic uplift. The high accommodation space 

at the lower succession was created during transgressive system tract (TST), whereas 

accommodation space at the upper succession was reduced during highstand system 

tract (HST). The transgressive system tract at the lower succession was recognized by 
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onlapping parasequences landward on a sequence boundary. By this way not all the 

parasequences were preserved at the margin.   

Each individual cycle and the whole succession have some criteria in common. For 

example, firstly, both individual cycles and the succession represent a shallowing 

upward trend that indicates a decrease in water depth. Secondly, each cycle starts with a 

rapid increase in accommodation space generation and terminates with a decreasing rate 

of accommodation space generation. This criterion is also seen in the whole succession 

with high accommodation space generation in the lower part compared with 

progressively less accommodation space generation toward the upper part.  Two types 

of parasequence sets resulted, in part seen as an increase and a decrease in the cycle 

thicknesses from the lower to upper parts of the succession, respectively. 

The components and thicknesses of the parasequences change from basin margin to 

basin centre. Eight different types of parasequences (A to H) are recognized in the 

studied areas. These types of parasequences are plotted on the Fischer plots that are 

correlated across the studied areas. Type-D parasequence that is composed of calcareous 

mudstone, carbonate, evaporite, and red claystone, from base to top, is the thickest 

parasequence and most common type in the lower succession. Whereas, type-G and 

type-H parasequences are the thinnest and most common type in the upper succession 

where evaporite is missing and siliciclastic becomes predominant.    

Strontium isotope method was used to determine the total duration of the whole 

succession and the origin of the evaporite deposits. The total duration of the deposition 

of the whole succession is calculated to be 2.55 m.y., as well as the duration of an 

individual parasequence is estimated to be 60 k.y. by dividing the total duration of the 

whole succession into the maximum cycle number.  Additionally, all the evaporite 

samples show the Miocene marine signal. This means that the evaporites are originally 

marine deposits. 

After an evaluation of eustatic, tectonic, and sedimentary mechanisms for the generation 

of the Fatha cyclicity, it can be called on high-frequency glacio-eustacy as their origins. 

This conclusion follows from (1) the extensive correlation of the parasequences for tens 

of kilometres, (2) systematic variation of stacking patterns (retrogradational and 

progradational), and (3) the high probability of glacio-eustacy in the Miocene 

worldwide. Secondly, tectonic had an impact on sedimentation that is evidenced by (1) 
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thickness variations of the succession that probably reflect the influence of tectonic 

uplift on the sedimentary record, (2) the first appearance of siliciclastic deposits with the 

deposition of the Fatha Formation, (3) increase of siliciclastic input upward through the 

succession, and (4) reactivation of basement faults during deposition and formation of 

several restricted sub-basins. This means that the Zagros Mountains had probably 

started to grow in the Miocene. Additionally, the climate varied from hot and arid 

during the deposition of the Fatha Formation into cold and wet during the Injana 

Formation in the upper Miocene. This is evidenced by ceasing evaporite deposition and 

increasing siliciclastic deposits from the Zagros Mountains. Lastly, sedimentary 

mechanism, including tidal flat progradation, is also included that follows by (1) the 

presence of supratidal and tidal flat deposits, and (2) missing of some cycles laterally 

between the studied sections.   

It can be concluded that the Miocene period was a time of high-frequency climatic 

changes and basin margin sequence architectures were largely controlled by glacio-

eustatic sea-level changes. Over the Fatha Formation as a whole, alternations of warm 

and cold periods, and associated sea level fluctuations, occurred during the mid-

Miocene Climatic Optimum. This was followed by high frequency climatic alternations 

during a period when globally there was a gradual decrease in temperature and net sea-

level fall. This event resulted in the deposition of the thick fluvial succession (Injana 

Formation and younger deposits) that prograded toward the basin throughout the rest of 

the Miocene and Pliocene. During the mid-Miocene Climatic Optimum, in the hot/dry 

periods, carbonate and evaporite were deposited, whereas during the cold/wet periods, 

siliciclastic supply from the hinterlands was enhanced causing progradation and 

regression of the coastal facies belt.  
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Chapter Five 

5. Comparison of carbonate-evaporite cyclical successions of the 

Zechstein, Paradox and Zagros Basins 

5.1 Introduction 

Cyclic deposition may be defined as a systematic arrangement of a group of 

sedimentary facies that is regularly repeated several or many times through an 

accumulated succession (Tucker, 2003). Cyclic successions of sedimentary strata are 

locally recorded during most geological times but during a few specific time intervals 

they are widespread, and at these times cyclic successions accumulated with worldwide 

distribution (Goldhammer et al., 1994). For example during the Pennsylvanian and 

Permian, widespread cyclic deposition of mixed carbonate, evaporite, and siliciclastic 

rock types occurred over large parts of Europe (e.g. the Zechstein Basin, late Permian) 

and the United States (e.g. the Paradox Basin, SW USA, Pennsylvanian-Permian) 

(Baars, 1976; Baars and Stevenson, 1982; Tucker, 1991; Brown, 2002; Becker and 

Bechstädt, 2006). In these basins, up to 1.5 and 2 km of predominately evaporites were 

accumulated, respectively (Baars and Stevenson, 1982; Geluk, 2000b). Facies analysis 

and distribution of the sedimentary facies in these basins reveal shelf depositional 

configurations (Tucker, 1991; Weber et al., 1995) where the evaporite deposition, 

comprising both anhydrite and salt deposits, was restricted to the basin centre, whereas 

the carbonate deposition accumulated on the shelf at the basin margins. In contrast, the 

Miocene carbonate-evaporite cycles of the Fatha Formation of Kurdistan were 

accumulated on a gently sloping ramp. The carbonate ramp and shelf configurations, as 

well as tectonic settings and eustatic sea-level fluctuations, each exerted an important 

role in controlling the accumulation and distribution of the sedimentary facies. 

One of the important features to consider in comparing the Miocene succession of 

Kurdistan to the Pennsylvanian-Permian successions of NW Europe and SW USA is the 

well-developed carbonate-evaporite cyclicity in these basins. Climate, tectonics, and 

glacio-eustatic sea-level fluctuations, as well as sedimentary mechanisms, were likely 

controls on these cyclic arrangements. The main aim of this chapter is to review the 

developments of the Zechstein and Paradox Basins and then to compare the fill of the 

Miocene carbonate-evaporite cycles of the Fatha Formation with the carbonate-
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evaporite cycles of the Pennsylvanian to Permian Basins. Specific research objectives 

are as follows: (i) to review the development histories, tectonics and palaeoclimates, as 

well as depositional configurations of the Zechstein and Paradox basins; (ii) to 

summarize their depositional facies and their distributions in the carbonate shelf 

settings; (iii) to review the components of the cycles, and their correlations across the 

basins; (iv) to present the hierarchies of the cycles in term of sequence stratigraphic 

frameworks; (v) to compare the Miocene cycles to the Zechstein and Paradox cycles in 

term of depositional facies, basin configuration, tectonics, and climates, as well as local 

and global mechanisms that controlled the cyclicities.  

This chapter comprises three main sections: the first section reviews the characteristics 

and context of the Zechstein Basin and the second section similarly examines the 

Paradox Basin, whereas the third section includes a comparison and analysis of the 

Miocene cycles of the Fatha Formation in the Zagros Basin with the other two case-

study examples.  

5.2 Zechstein Basin 

One of the most interesting areas where high-resolution basin analysis has been 

undertaken is the carbonate-evaporite cycles of the late Permian (Lopingian) Zechstein 

Basin in NW Europe. The basin extends from northern England, across the North Sea 

through the Netherlands, Denmark, Germany and Poland, with a length of 2500 km and 

a width of 600 km (Roscher and Schneider, 2006) (Figure 5.1). The name Zechstein 

Group is defined in Nederlandse Aardolie Maatschappij and Rijks Geologische Dienst 

(1980). The Zechstein Group developed in the late Permian (Lopingian)  and was 

deposited after the Late Carboniferous Variscan Orogeny (Geluk, 2000a; Geluk, 2007). 

The Zechstein deposits formed in a major epicontinental shallow marine basin that 

covered much of Central Europe, and which had a connection of restricted size with the 

upper Permian open marine sea through a narrow strait between Greenland and the 

Scandinavian Peninsula. The strait was narrow and over 1000 km long; its development 

was originated by tectonic evolution of the Greenland-Norwegian Sea rift (Wagner and 

Peryt, 1997). The formation of the rift led to a sudden transgression over the low-lying 

southern and northern Permian basins (Ziegler, 1990; Taylor, 1998) (Figure 5.1). The 

main depocentre in the southern Permian basin was located in the northeastern and 

northern part of the offshore Netherlands territorial waters of the present-day North Sea.  
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Figure  5-1 Late Permian palaeogeography of the Zechstein Sea, including both Northern Zechstein 

Basin (NZB) and Southern Zechstein basin (SZB). The shallow and deep water areas of 

sedimentation are also included (Taylor, 1998). 

 

In general, the Zechstein Group consists of carbonate and evaporite cycles with thin 

claystone intercalations (Taylor, 1998). The carbonates were deposited in platform, 

slope and basin settings, whereas the evaporites, which consist of anhydrite and rock 

salt, accumulated principally down in the basin in shallow-water lagoons. However, 

toward the edge of the basin, claystone and sandstone gradually replace the evaporites 

and, to a lesser degree, the carbonates. The upper boundary is gradational with the 

Lower Triassic Sherwood Sandstone Group onshore and the Bacton and Heron groups 

offshore, whereas the lower boundary is unconformable with the Carboniferous strata of 

the Upper Rotliegend Group. The Zechstein Group is divided into five evaporite-

bearing cycles (Z1-Z5) (Taylor, 1998). The Z1 and Z2 cycles were deposited in various 

settings from lagoon to sabkha/mudflat at the margin, to deep marine in the basin 

centre. A very thick salt layer was deposited during the Z2 cycle. The Z3 cycle was 

deposited in a shallow marine setting. However, toward the higher cycles (Z4 and Z5), 

marine deposits are less common; carbonates are not present and alternations of 

claystone and halite are more common; these were deposited in a playa lake 

depositional setting. The Zechstein Upper Claystone Formation, at the top of the group, 

rests on the underlying cycles with an unconformable relationship (Geluk, 2007). 
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5.2.1 Tectonic development of the Zechstein Basin 

The development of the Permian Basin followed the Variscan Orogeny, and it 

originated largely by thermal subsidence (Smith, 1979), although tectonic processes 

were locally significant, as outlined below. During the latest Carboniferous to early 

Permian, Central Europe was occupied by the collapsing Variscan mountain chain and 

adjacent basin development was accompanied by thermal destabilization of the 

lithosphere and intense magmatism (McCann, 2008). Strike-slip fault movements, 

crustal stretching, and igneous activity were the main characteristics of this stage. At 

this stage, the late Variscan Orogeny led to the development of trans-tensional rifting 

and formation of a number of pull-apart basins where clastic and volcanic detritus of the 

Lower Rotliegend Group were accumulated (Ziegler, 1990). Then, the Saalian Orogeny, 

which was a deformation phase (post-Carboniferous-Early Permian) (Schulmann et al., 

2014), terminated the deposition of the Lower Rotliegend Formation in most of the NW 

European Basin and resulted in a lengthy period of uplift, and erosion of hundreds to 

thousand metres of deposits (Ziegler, 1990). This unconformity surface is known as the 

Saalian unconformity (Ziegler, 1990) or Basal Permian Unconformity (Geluk, 2007). A 

broad continental depression was developed during the Permian and was repeatedly 

flooded during the Zechstein (Ziegler, 1990). Continental rifting, thermal subsidence 

and magmatic activity after the Saalian Orogeny resulted in the development of the 

Northern and Southern Permian Basins that stretched from England to Poland (Ziegler, 

1990). The Mid-North Sea, Ringkobing-Fyn, and Texel structural highs separated these 

basins with axes that trended WNW-ESE (Geluk, 2000a). Continental to marginal 

marine deposits of the Upper Rotliegend Formation were accumulated in these 

intermountain basins with basinal halite-dominated evaporitic sequences (McCann, 

2008). On gently inclined platform margins along the southern edge of the basin, a 

cross-laminated sandstone-dominated desert unit (the Yellow Sand in England) 

accumulated, overstepping the Saalian unconformity surface (Benton et al., 2002). 

During the late Permian to Mid-Triassic times, subduction of the Palaeotethys Ocean 

and rifting of the Norwegian-Greenland Sea continued and the Neotethys Ocean started 

opening (Roscher and Schneider, 2006). The development of a rift zone between 

Greenland and Scandinavia and global glacio-eustatic sea-level rise in the late Permian 

resulted in a rapid transgression into the low-lying Northern and Southern Permian 

Basins where the Zechstein cyclic succession of carbonate-evaporite and minor clastic 
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detritus accumulated (McCann, 2008). The Southern Permian Basin is divided into sub-

basins due to tectonic activity that resulted in variations in composition and thickness of 

the Zechstein deposits (Geluk, 2007). The depocentre of this basin was located in the 

northern offshore and northeastern Netherlands where thick salt sequences of the Z2 and 

Z3 cycles were accumulated (Geluk, 2005). The basin was bordered by the Mid-North 

Sea and Ringkobing-Fyn Highs to the north, and the Texel High to the south. 

Siliciclastic deposits derived from these highs are locally included within the cycles 

(Geluk, 2007). Toward the margins of the basin, claystone and sandstone deposits 

replaced the evaporite members (Ziegler, 1990). During the deposition of the Z1 to Z3, 

a thick succession of halite-dominated evaporitic deposits accumulated, whereas 

towards the end of the late Permian, the basin became filled, and evaporite precipitation 

was less widespread (Geluk, 2005; Geluk, 2007). 

The deposition of the thick evaporite cycles of the Zechstein Basin played a crucial role 

during post-Zechstein structural development when the ductile salt beds migrated in 

response to changing stress fields (Roscher and Schneider, 2006), leading to the 

development of a series of salt-walled mini-basins that influenced later Triassic 

sediment distribution patterns (Geluk, 2000b).  

5.2.2 Permian climate in Central Europe 

The Carboniferous-Permian strata, including siliciclastic and carbonate deposits, were 

succeeded by deltaic, swampy and often non-marine red-bed deposits, indicate a falling 

trend in sea-level (McCann, 2008). This eustatic sea-level lowstand was the result of the 

Carboniferous-Permian glaciations on Gondwana, and was emphasized by Variscan 

tectonic uplift. The absence of marine influence on earliest Permian deposition in many 

parts of the Europe was the result of this combined tectono-eustatic condition (McCann, 

2008). Later in the Permian, eustatic sea-level rise, combined with initial rifting in the 

North Atlantic or North Sea areas and denudation of the Variscan highs, resulted in 

marine transgression comprising, lastly, the development of the Zechstein Sea (Roscher 

and Schneider, 2006). A combination of climate changes, basin dynamics and eustatic 

sea-level fluctuations controlled the sedimentary history and distribution of facies of the 

Zechstein Sea (McCann, 2008). Eustatic sea-level changes during the sedimentation of 

the Zechstein Limestone resulted in episodic subaerial exposure of the carbonate 

platforms and extreme meteoric diagenesis. The following regression in the latest 
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Permian occurred simultaneously with the eustatic sea-level lowstand (Haq and 

Schutter, 2008), the Pangaea coalescence and the incipience of more humid climates.   

The desert-dominated facies of the Upper Rotliegend Group indicates an arid to semi-

arid climate (Roscher and Schneider, 2006). At the southern basin margin, alluvial and 

aeolian dune facies are preserved, whereas evaporitic lake deposits occur in the basin 

centre. In addition, Roscher and Schneider (2006) state that the Permo-Carboniferous 

climate was characterized by a trend towards increasing aridity that was interrupted by 

multiple wet stages. These wet stages were the result of the waxing and waning of the 

Gondwana icecap and can be recognized in all major European and North African 

basins. Later, the Zechstein Transgression occurred as a rapid flooding event governed 

by a eustatic sea-level highstand and ongoing rifting (Benton et al., 2002; McCann, 

2008). These events exerted a marine influence on the otherwise highly continental 

climate of northern Pangaea. Additionally, no large glacial deposits are found in the late 

Permian and the climatic belts were spread out latitudinally at that time, which is 

inferred from the presence of forest in the Antarctic Continent, comprising cold 

temperate and humid vegetation (Cúneo, 1996).   

In general, the Zechstein carbonate-evaporite cyclothems resulted from transgressive-

regressive cycles of different duration and intensity. The supply of new sea-water was 

coincident with transgression and carbonate deposition, whereas the lack of new sea-

water or restricted inflow during regression resulted in anhydrite and salt deposition 

(Wagner and Peryt, 1997). Generally, the climate was very dry and the intensity of 

aridity was variable. The more arid phases of the second Zechstein cycle (Z2) alternated 

with less dry periods of the third Zechstein cycle (Z3). At the end of accumulation of 

the Z3 cycle, the climate changed to become more humid. Consequently, in the latest 

Zechstein cycles (Z4-Z5), the arid phases were interrupted by humid ones due to the 

increasingly reduced connection of the Zechstein Sea with the Late Permian Ocean 

(Wagner and Peryt, 1997). This reduction in connection resulted from the Late Permian 

global regression that in turn resulted in the cessation of carbonate deposition and the 

onset of accumulation of a new type of siliciclastic-evaporitic cycle. In arid periods, 

evaporites – mainly halite and with minimal amounts of anhydrite – were precipitated. 

By contrast, during humid phases siliciclastic and siliciclastic-saline deposits were 

accumulated. In the lowermost part of the Z4 cycle connection with the open sea was 

completely cut off, resulting in the deposition of clayey-saline deposits in the 
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continental salt pan during relatively humid periods and the deposition of clayey rock 

salt in the dry phase. Finally, fluvial siliciclastic deposits prograded out to the palaeo-

shorelines of the salt lakes (Wagner and Peryt, 1997). 

5.2.3 Zechstein stratigraphy 

The Permian stratigraphy includes three groups, the Lower Rotliegend (early to mid-Permian), 

Upper Rotliegend (middle into the late Permian), and Zechstein (late Permian). The boundary 

between the Lower Rotliegend and the overlying strata (whether the Upper Rotliegend or 

Zechstein), as well as the boundary of the Upper Rotliegend Group and the overlying Zechstein 

Group are unconformable (Geluk, 2007). The high-frequency carbonate-evaporite cycles are 

related to the Zechstein Group. The Zechstein Group was originally divided into five carbonate-

evaporite cycles (Z1-Z5) (Figure 5.2), each of formation rank, and these can be correlated as 

equivalent carbonate-evaporite cycles from the UK to the Netherlands, Germany, Denmark 

and to Poland (Van Adrichem Boogaert and Kouwe, 1994; Taylor, 1998). The Zechstein 

Upper Claystone Formation overlies the carbonate-evaporite cycles unconformably. 

 

Figure  5-2 Lithostratigraphic diagram of the Zechstein cycles, including five carbonate-evaporite 

cycles (Z1-Z5). The Upper Claystone Formation overlies the Zechstein cycles unconformably (Van 

Adrichem Boogaert and Kouwe, 1994). Two thick halite deposits were accumulated during the Z2 

and Z3 cycles, and carbonate deposition ceases toward the upper cycles.  
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5.2.4 Zechstein cycles 

The late Permian Zechstein deposits are traditionally divided into five main carbonate-

evaporite cycles, Z1 to Z5 (Tucker, 1991; Geluk, 2000a). Each cycle includes clastic 

deposits (claystone) at the base, followed by carbonates, sulphates and rock salt. 

Depending on the palaeogeographic position and subsidence state of the basin at the 

time of accumulation, the thickness of each cycle ranges from a few tens to several 

hundreds of metres (Geluk, 2000a).   

5.2.4.1 First Zechstein cycle: Z1 

Deposition of the Z1 cycle began with the finely laminated claystone of the Coppershale 

or Kupferschiefer (Marl Slate in England) (Figure 5.3A), which was deposited in a 

stratified anoxic sea, inferred to have been about 200m deep (Tucker, 1991). This 

deposit marks the first Zechstein transgression over the underlying desert sands and 

playa lakes (Yellow Sand in England). Above this, the cycle comprises of the Z1 

carbonate, Z1 anhydrite and Z1 salt (Tucker, 1991; Becker and Bechstädt, 2006). Up to 

300 m of rock salt was deposited in a series of locally fault-bounded depressions in the 

anhydrite platform (Ziegler, 1990). However, toward the southern part of the basin the 

formation consists of claystone. The platform and slope deposits of the Z1 carbonate 

comprise a thick (200m) marl and carbonate succession, in contrast to a thin carbonate 

unit in the sediment-starved basin centre. The Z1 carbonate (Ca1) unit in England is 

represented by the Raisby, Ford, and Cadeby Formations (Tucker, 1991), whereas their 

lateral equivalents in the Netherlands and Germany are  represented by the equivalent 

Werra Formation (Geluk, 2007). The Raisby Formation is generally dolomitized and 

consists of lime mudstone and bioclastic and bioturbated wackestone (Figure 5.3B). In 

Tyne and Wear County the top of the formation is marked by a major slide-slump 

horizon (Tucker, 1991) (Figure 5.3F). The Ford Formation is characterized by shelf-

margin reef and back-reef facies (Figure 5.3B-E). In addition, the Z1 anhydrite (A1) in 

England consists of the Hartlepool and Hayton anhydrites, whereas the lateral 

equivalent in the Netherlands and Germany is the Werra Anhydrite (Geluk, 2000a; 

Becker and Bechstädt, 2006).   
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5.2.4.2 Second Zechstein cycle: Z2 

The Z2 cycle consists of a basal carbonate unit (Ca2), followed by the basal anhydrite 

(A2) and a thick salt layer (Tucker, 1991; Becker and Bechstädt, 2006). The carbonates 

of the second Zechstein Z2 cycle are represented by the Roker Dolomite (shelf facies, 

50m thick) and the Concretionary Limestone (foreslope facies, 110m thick) (Figure 

5.3F), as well as the Edington Formation (shelf lagoon facies) in the Durham Province 

in England, whereas it comprises the Kirkham Abbey Formation (shelf-margin and 

foreslope facies) in the Yorkshire province (Tucker, 1991). The lateral equivalent of the 

second carbonate cycle in the other countries comprises the Stassfurt Formation (50 to 

700 m thick). The shallow-shelf facies of the Roker Dolomite in England commonly 

consists of cross-bedded bioclastic oolite (Figure 5.4A-B) (Tucker, 1991). In the area of 

Blackhall Rocks in England, stromatolites and microbialite domes (Figure 5.4C-D) are 

developed and pass up to oolites (Figure 5.4A-B), whereas, the slope carbonate facies of 

the Roker Formation consists of laminated dolomite and dedolomite (Figure 5.4F) and 

turbidites (Figure 5.4E) (Tucker, 1991). Similar to England, three facies realms 

(platform, slope, and basin) are identified in the Z2 carbonates in the Netherlands 

(Geluk, 2007). The deposition of the second carbonate was followed by evaporites (the 

Fordon Evaporite in England and the Stassfurt Evaporite in other countries) that 

completely filled the basin (˃300m thick) and then was succeeded by the deposition of 

several hundred metres of halite (>600m) (Tucker, 1991).  
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Figure  5-3 Field photographs of the Zechstein carbonate units in England.  

A: The first Zechstein unit the Z1 Marl Slate (Copper Shale), the first transgression of the 

Zechstein Sea over the desert facies of the Yellow Sand (Upper Rotliegend Group) from 

Claxheugh Rock, Sunderland. B: Well-bedded carbonate unit of the lagoonal facies of the Z1 

Raisby Formation, overlain by the massive carbonate of the reef facies of the Z1 Ford 

Formation from Claxheugh Rock, Sunderland. C and D: The massive carbonate unit of the reef 

facies overlain by or laterally changed to the well-bedded carbonate unit of the back-reef facies 

Z1 of the Ford Formation from Sunderland. E: Old abandoned quarry in the lagoonal facies of 

the Z1 Ford Formation, Wingate Quarry. F: Well-exposed megabreccia slide deposits of the 

uppermost Z1 Raisby Formation overlain by the Trow Point Bed (10cm thick, equivalent to the 

Ford Formation) and then followed by the collapse-brecciated carbonate of the Z2 

Concretionary Limestone of the Roker Formation. These two units are separated by a sequence 

boundary with the residue of the Hartlepool Anhydrite. 
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5.2.4.3 Third Zechstein cycle: Z3 

The Z3 cycle began with the deposition of a thin clay unit (Illitic Shale in England, 

Grey Salt Clay in the Netherlands and Grauer Salzton in Germany) that represents an 

important regional marker bed (Tucker, 1991; Strohmenger et al., 1996a; Geluk, 2007). 

This basal bed is followed by the third cycle Z3 carbonate, the Seaham and Brotherton 

Formations in England, comprising peloidal mudstone-packstone and bioclastic/ooidal 

grainstone with cross-lamination and storm-generated bedding features. These facies 

represent quiet, relatively shallow aggraded shelf deposits (Tucker, 1991) with 

occasional storm activity. Stromatolitic mudstone and several sabkha parasequences are 

identified in the upper part of the Seaham Formation. The Z3 carbonate in the 

Netherlands (Leine Formation) consists of a thin, dark-coloured limestone (basinal 

facies), laminated and bioturbated mudstone (slope facies), and grey microcrystalline 

dolomite and algal boundstone (platform facies). These carbonate facies were followed 

by the deposition of evaporite and salt. The evaporite deposits (Billingham Anhydrite 

(0-20m) and Boulby Halite (50m) in England) indicate subaerial (sabkha) to shallow 

subaqueous (lagoonal) deposition (Tucker, 1991).  

5.2.4.4 Fourth Zechstein cycle: Z4 

The Z4 cycle was initiated with a thin carbonate member (the Upgang Formation, ˂1m 

thick) in England, whereas it began with a thin claystone (Red Salt Clay) in the 

Netherlands. The carbonate unit (Upgang Formation) comprises sandy oolitic dolomite 

and argillaceous dolomite that represent hypersaline conditions, as indicated by the lack 

of marine fossils (Tucker, 1991). The cycle is then characterised by the deposition of 

anhydrite and salt. The Z4 Pegmatite Anhydrite in the Netherlands has a wide 

distribution while the Z4 Salt is only accumulated in the depocentres (Geluk, 2000a). 

The Z4 Sherburn Anhydrite (in England) is just 0 to 9 m thick and probably 

accumulated in a shallow hypersaline sea (Tucker, 1991). The anhydrites were followed 

by the deposition of the Z4 Salt (Sneaton Halite in England) that ranges from 0 to 60 m 

in thickness in England (Tucker, 1991), whereas in the Netherlands, it reaches 150m 

thick (Geluk, 2000a; Geluk, 2005). Along the basin margins, sabkha facies and coarse-

grained fluvial sandstone were deposited (Geluk, 2005).  
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5.2.4.5 Fifth Zechstein cycle: Z5 

The Z5 cycle became restricted in the depocentres and started with the Littlebeck 

Anhydrite in England (Tucker, 1991), and a thin claystone in the Netherlands (Geluk, 

2000a). The claystone was followed by the deposition of the Z5 Salt (up to 15m thick), 

whereas the  Littlebeck Anhydrite was followed by the deposition of claystone, siltstone 

and sandstone (Roxby Formation) of distal alluvial fan, coastal plain and shallow 

lagoonal environments (Tucker, 1991).    
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Figure  5-4 Field photographs of the Zechstein carbonate units in England.  

A: Cross-bedded oolitic shelf-margin facies of the Z2 Roker Formation from Seaburn, 

Sunderland. B: Close-up view of the cross-bedded oolitic facies of the previous photo. C and 

D: Microbial dolomite and stromatolites of the Z2 Roker Formation from Blackhall Rocks. E: 

Lower slope turbidite facies of the Roker Formation from Marsden Bay. F: Dedolomitized 

foreslope facies of the Roker Formation underlying the oolitic shelf-margin facies, a lateral 

equivalent of the Concretionary Limestone, at Seaburn, Sunderland.  
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5.2.5 Sequence stratigraphy of the Zechstein cycles 

Lithostratigraphically, the Zechstein Group comprises five main carbonate-evaporite 

cycles (Figure 5.2). Each begins with a basal claystone followed by carbonate, anhydrite 

and rock salt at the top. Various sequence stratigraphic models are proposed for the 

Zechstein cycles from different parts of the basin that show some differences (Tucker, 

1991; Strohmenger et al., 1996a; Wagner and Peryt, 1997; Becker and Bechstädt, 

2006). The entire Zechstein depositional event represents a 2
nd

-order cycle, whereas 

each depositional sequence may be considered a 3
rd

-order sequence with well-developed 

system tracts. In addition, 4
th

- and 5
th

-order shallowing-upward parasequences are also 

identified (Tucker, 1991; Wagner and Peryt, 1997). 

A new approach to Zechstein stratigraphy was proposed by Tucker (1991) for the 

English succession, identifying seven depositional sequences separated by regional 

sequence boundaries on the western edge of the Northern Zechstein Basin (Figure 5.5). 

The first depositional sequence was interpreted to start with a type 1 sequence boundary 

at the base of the lowstand facies of the Yellow Sand. The Marl Slate facies (Copper 

Shale) represents deposit of the first transgression of the Zechstein Basin and can be 

correlated across the Netherlands (Geluk, 2007), Germany (Becker and Bechstädt, 

2006), and Poland (Wagner and Peryt, 1997). Then the succeeding carbonate deposits 

(Raisby Formation) represent the deposits of the HST. Similarly, the other depositional 

sequences each commence with a sequence boundary at their base with a well-

developed lowstand facies accumulated in the basin depocentre regions (anhydrite and 

halite), and then succeeded by the TST and HST, mainly of carbonates. The sequence 

boundaries are well developed at the top of the carbonate members with evidence of 

subaerial exposure. According to this model, the sequence boundaries are placed at the 

base of evaporites, and carbonates were not originally linked chronostratigraphically to 

the following evaporites. In addition, in the Tucker (1991) model, each depositional 

sequence commences with evaporites which originated as a marginal lowstand gypsum 

wedge and basin halite-fill during the period of relative sea-level fall and sea-level low. 

These evaporites are followed by carbonates deposited as the TST and HST. More 

carbonates were accumulated in the lower sequences, whereas the upper sequences are 

dominated by evaporate accumulation.  
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Figure  5-5 Sequence stratigraphy and lithostratigraphy of the English Zechstein group (Tucker, 

1991).  

Seven depositional sequences (ZS1-ZS7) are identified that are separated by sequence 

boundaries (red lines). BFH: basin-fill halite, LSW-G: lowstand wedge, SW: slope wedge, LST: 

lowstand system tract, TST: transgressive system tract, HST: highstand system tract, A: 

anhydrite, H: halite, sq.b.1: sequence boundary type1, sq.b.2: sequence boundary type2, and 

ZS1-ZS7: depositional sequences.   

 

Wagner and Peryt (1997) considered that the lower four of Tucker’s sequences (ZS1-

ZS4) should be treated as 3
rd

-order sequences, whereas the upper three sequences (ZS5-

ZS7) could be parasequences of one 3
rd

-order sequence. Goodall et al. (1992) argued 

that the duration of the entire Zechstein succession (5 to 7 Myr) could lie within the 

range of a single 3
rd

-order sequence (duration of 1 to10 Myr), thereby indicating that the 

3
rd

-order sequences defined by Tucker are more logically assigned as 4
th

-order 

sequences. Tucker (1992b) recognized that the entire Zechstein succession is more 

carbonate-dominated at its base and more evaporite-dominated at its top. This is 

consistent with these packages having accumulated during a 2
nd

-order relative sea-level 

rise and fall, respectively. 

The first sequence stratigraphic division of the German Zechstein cycles was proposed 

by Strohmenger et al. (1996a) and they divided the succession into sequences and 
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parasequences (Figure 5.6). According to this model, and in contrast to Tucker’s (1991) 

model, the evaporites are not correlated with the lowstand deposits and the carbonates 

with the transgressive and highstand deposits. In addition, they conclude that these is no 

indication of subaerial exposure at the top of Ca1 carbonate platform in this region, and 

the Z1 evaporites (A1) are mainly HST deposits and not LST as placed by Tucker. 

Strohmenger et al. (1996a) put a maximum flooding surface at the top of the Ca1 and 

the A1 is interpreted as a HST deposit. The main significant differences in the 

Strohmenger et al. (1996a) model is the presence of LST deposits in the upper part of 

the Main Dolomite unit. 

 

Figure  5-6 Lithostratigraphic cycles and chronostratigraphic division of the Zechstein cycles in 

German and sequence stratigraphic comparison of the Zechstein succession in German, England, 

and Poland. 

 

Another sequence stratigraphic model of the Zechstein cycles, from Poland, was 

proposed by Wagner and Peryt (1997) (Figure 5.7). The main significant difference 
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between the Poland Zechstein and the surrounding countries is the development of 

evaporitic-terrigenous cycles in the upper part of the Zechstein Group and the complete 

absence of carbonate deposits in this eastern region of the Southern Zechstein Basin. 

This contrasts with the thin carbonate deposits that were deposited in England, in the 

western Northern Zechstein Basin (Upgang Formation) (Tucker, 1991; Taylor, 1998). In 

their model, Wagner and Peryt (1997) divided the Poland Zechstein cycles into four 3
rd

-

order sequences (PZS1-PZS4), and they identified three climatic sequences (PZS4-C1 

to PZS4-C3) within the uppermost (youngest) of these sequences. These climatic 

sequences reflect the climatic changes and interruption from humid conditions – when 

terrigenous sediments were accumulated – to arid conditions – when halite was 

precipitated. The origin of the halite that precipitated in the lower two climatic 

sequences in the youngest 3
rd

 order sequence (PZS4-C1-PZS4-C2) is from the sea-water 

whereas this condition changed significantly in the last climatic sequence (PZS4-C3) to 

a continental source supplied to the salt lakes and playas (Wagner and Peryt, 1997).  
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Figure  5-7 Chronostratigraphic division of the Zechstein cycles in Poland showing the four 3
rd

-

order sequences (PZS1-PZS4) (Wagner and Peryt, 1997). 

 

5.2.6 Origin of cyclicity  

The origin of the Zechstein carbonate-evaporite cyclicity has been traditionally 

interpreted as controlled by initial transgression, succeeded by regressive phases with 

evaporite precipitation (Richter-Bernburg, 1955). That the initial transgression was 

unusually rapid is evidenced by the presence of the initial transgressive deposit of the 

Marl Slate with little or no diachroneity (Smith, 1979). These cycles have been 

described as genetic stratigraphic sequences, bounded by flooding surfaces (MFS) of 
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Galloway (1989). Two main mechanisms may have controlled the cyclicity of the 

Zechstein Basin: glacio-eustatic sea-level changes and tectonics. 

5.2.6.1 Glacio-eustatic sea-level changes 

Broad continuity of the Zechstein cycles across the basin can be interpreted as being 

controlled by global sea-level fluctuations (Baars and See, 1968; Ziegler, 1990; Cúneo, 

1996; Roscher and Schneider, 2006; Geluk, 2007; Mawson and Tucker, 2009). The 

duration of the whole Zechstein deposition is considered to be 5 Myr (Menning et al., 

1988) or 7 Myr (Menning and Commission, 2002) that would represent a second-order 

cycle (Tucker, 1991). In addition, the determined duration of approximately 2 Myr for 

the Zechstein 1 (Z1) cycle (Menning and Commission, 2002) is on the scale of third-

order cycles.  The cycles may be further subdivided into higher frequency orders, if so 

developed, with five orders of eustatic sea-level changes being described by Plint et al. 

(1992). 

The aeolian and evaporitic deposits of the pre-Zechstein Group and the thick evaporitic 

cycles of the Zechstein Group were influenced by arid to semi-arid climatic conditions 

that were characteristic of large parts of Europe during the late Permian (Legler and 

Schneider, 2013). However, high-frequency climatic fluctuations were recorded during 

the deposition of the lower Zechstein cycles and were interpreted to be related to the 

waxing/waning cycles of ice shields (Glennie, 1986) and to occur within the 

Milankovitch frequency bands.  

Richter-Bernburg (1985) identified laminated and mosaic-like anhydrite cycles, 

recording the various varve laminae in the Zechstein carbonate-anhydrite laminites and 

these were interpreted as Milankovitch band cycles, of duration approximately 50-100 

k.y. In addition, Mawson and Tucker (2009) interpreted the interbedded turbidites and 

laminated lime-mudstones of the Z2 carbonate (Roker Formation) unit in England and 

they distinguished well-developed cyclicity of thinning-upward and thickening-upward 

packages of turbidite facies. Four orders of cyclicity are revealed and were interpreted 

as being induced by Milankovitch-style orbital forcing and associated glacio-eustasy, 

including short-eccentricity (100 kyr), precession (20 kyr), semi-precession (10 kyr), 

and sub-Milankovitch, millennial-scale cycles. The origin of these turbidite cycles is 

concluded to be controlled by relative sea-level changes in response to climate and 
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environmental changes, which in turn influenced carbonate productivity. Tectonic 

controls on cycles of these short durations are considered unlikely.     

Cyclicity is a very common of sedimentation during the Permian and numerous cyclic 

successions are documented worldwide, for example: in Texas (Fracasso and Hovorka, 

1986; Borer and Harris, 1991; Eide, 1993), in Australia (Michaelsen and Henderson, 

2000), in Tunisia (Soua, 2012), in Pakistan (Ghazi et al., 2015), and in Antarctica 

(Fielding and Webb, 1996). In addition, the development of the Paradox Basin cycles in 

Utah and Colorado continued into the Permian (Condon, 1997; Jordan and Mountney, 

2012; Venus et al., 2015). These cyclical successions are all consistent with a 

significant control of marginal marine successions by glacio-eustacy and by climatic 

fluctuations that would have been occurring over similar timescales. 

5.2.6.2 Tectonic controls 

Tectonic or syn-sedimentary, fault-related uplift may control sedimentary basin fill and 

play a major role in basin configuration (Miall, 2010). These tectonic controls could 

also provide a local influence on sedimentation. In the case of the late Permian 

Zechstein Basin, active tectonic control, on a large or broad scale, is inferred to be 

unlikely; however, it is likely evidenced on a small scale. For example, Mawson and 

Tucker (2009) found evidence implicating syn-sedimentary, fault-related uplift on the 

cyclic turbidite packages of the Z2 Roker Formation at Marsden Bay in England. 

However, these turbidite packages are traceable throughout the Roker Formation, or 

even throughout the whole basin, indicating that basin-wide relative sea-level changes, 

not local tectonic changes, may be the more likely dominant control upon cyclicities.      

5.3 Paradox Basin 

The Paradox Basin is located mostly in SE Utah and SW Colorado, and extends into NE 

Arizona and NW New Mexico (Baars and Stevenson, 1981) (Figure 5.8). It is bordered 

to the west by the Circle Cliffs Uplift, in the northwest by the San Rafael Swell and in 

the east by the tectonically uplifted Uncompahgre Plateau (Baars and Stevenson, 1982). 

It is a large elongate and asymmetric foreland basin that is oriented NW to SE and 

extended for approximately 300 km in length, and 150 km in width (Nuccio and 

Condon, 1996). The basin started development in the Early Pennsylvanian (Condon, 

1997), covered an area of about 28,500 km
2
 in which more than 4,600 m of sedimentary 
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strata was accumulated in the depocentre (Brown, 2002). It contains complex, mixed 

open marine carbonate, evaporite and siliciclastic deposits in cyclic sedimentary 

deposits. Because it contains thick salt sequences, salt tectonics has played a major role 

in the post-Pennsylvanian tectonic deformation of the basin and its later infill. The basin 

occupied an equatorial setting between five degrees north and south of the palaeo-

equator at time of deposition. As the basin developed, a 2 km-thick succession of  

evaporite sediments accumulated during an episode of extremely arid climate in the 

Desmoinesian (Baars and Stevenson, 1982). 

 

Figure  5-8 Structural and location map of the Paradox Basin and basement lineaments showing 

north-western Olympic-Wichita Lineament and north-eastern Colorado Lineament with bounding 

uplifts (Baars and Stevenson, 1982). 
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5.3.1 Development of the Paradox Basin 

The Paradox Basin is a palaeo-tectonic depression of the Palaeozoic Era. The pre-

Pennsylvanian depositional facies accumulated in a relatively stable and extensive shelf 

depositional setting of shallow water carbonate and clastics (Baars and Stevenson, 

1982). By the Early Pennsylvanian epoch (Atokan), the basin covered most of east-

central Utah and SW Colorado and into NW New Mexico and NE Arizona (Figure 5.8). 

It was created as a structurally subsiding, elongate NW-SE oriented basin. The basin 

was bordered by low-lying emergent barriers of the Zuni, Defiance, Monument, Circle 

Cliffs and Emery highs to the south, west, and north respectively (Baars and See, 1968). 

In Early Pennsylvanian time, the Uncompahgre high underwent a major tectonic uplift 

and this resulted in the onset of rapid subsidence of the basin, leading to the 

development of the eastern and north-eastern depositional border of the basin (Brown, 

2002). The Uncompahgre uplift was the most significant structural element and it this 

mountain belt supplied the great majority of the siliciclastic deposits to the proximal 

part of the basin, resulting in the south-westward progradation of a large clastic wedge 

(Weber et al., 1995; Williams, 2009). This palaeo-uplift occupied the same location as 

the current Uncompahgre Mountains (Raup and Hite, 1992). Thus, the Paradox Basin 

developed proximal to the south-western bounding faults of the Uncompahgre highland 

where it was affected by oblique, right-lateral divergent activity along the Olympic-

Wichita Lineament (Baars, 1976). 

The basin development during Desmoinesian to Permian times underwent three stages 

of deposition, which are a) terminal basin fill during the Desmoinesian-lower 

Missourian, b) reconfiguration of the basin during the upper Missourian, and c) south-

westward progradation during late Pennsylvanian-Permian times (Williams, 2009).   

5.3.2 Palaeo-tectonic setting 

Two older, major rift systems traverse the Paradox Basin and they form a conjugate set 

(Baars and Stevenson, 1981) (Figure 5.8). They were tectonically active at about 1700 

Ma during the Late Precambrian. One of them is the NW-trending group of faults that 

extends from the San Juan Mountains (SW Colorado) to NW Vancouver Island and 

extends toward the SE (Oklahoma’s Wichita aulacogen). It is called the Olympic-

Wichita Lineament (Baars, 1966). The second is the NE-trending swarm of faults that 

extends from the Grand Canyon and Arizona through the Colorado Mineral Belt to Lake 
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Superior, and this is termed the Colorado Lineament (Warner, 1978). The Olympic-

Wichita and Colorado Lineaments displaced the basement rocks with right and left 

lateral strike-slip offsets, respectively (Hite, 1975). The timings of their displacements 

are dated at 1780 to 1460 Ma and about 1700 Ma, respectively.  

The southern Rockies and Colorado Plateau were relatively quiescent during the early 

Palaeozoic Era (Baars, 1966; Baars and See, 1968), however, during Cambrian, 

Devonian and Mississippian times, a minor rejuvenation along the  Olympic-Wichita 

Lineament occurred in the basin (Baars and Stevenson, 1981; Baars and Stevenson, 

1982). Despite the fact that the early Palaeozoic tectonic activity on the faults was 

minor, some vertical movement took place and led to development of local shoaling 

conditions and an alteration in composition of the sedimentary facies (Goldhammer et 

al., 1991). This structural activity resulted in the isolation of  offshore sand bars in the 

Elbert Formation during the Upper Devonian and provided sites for the development of 

the crinioidal bioherms of the Mississippian Leadville Formation on the fault block 

highs (Baars and Stevenson, 1982). The relatively calm tectonic activity of the early 

Palaeozoic changed dramatically by the Middle Pennsylvanian (Atokian). The basement 

faults of the Paradox Basin and southern Rockies were displaced vertically throughout 

the Middle Pennsylvanian (Desmoinesian). During this time, the major uplifts of the 

Ancestral Rockies developed and became major sources of siliciclastic sediments. The 

Uncompahgre highlands were uplifted nearly a thousand metres, yielding clastic debris 

into the subsiding Paradox Basin to its south-west (Goldhammer et al., 1994). About 

4,500 to 6,000 metres of coarse siliciclastics were shed from the uplift into the 

developing eastern trough of the basin.  

It was in Early Desmoinesian times that cyclic successions of carbonates began 

accumulating along the extensive western and south-western shelf of the Paradox Basin, 

and they covered much of what is now southern Utah and north-western New Mexico 

(Baars and Stevenson, 1982). The cyclic deposition of shallow marine carbonate shelf 

sediments throughout the Desmoinesian combined with the exposure of the low-lying 

barriers that dramatically restricted the basin downdip caused an evaporite basin to 

develop across a broad and gently sloping shelf (Baars and Stevenson, 1981). 

Development of the major structures in the proximity of the Paradox Basin had been 

completed by the end of the Pennsylvanian, except for the development of major salt 

diapirs, generation of which commenced in the late Pennsylvanian to early Permian 
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(Trudgill, 2011; Banham and Mountney, 2013) and were still effectively developing 

into the Mesozoic. Tectonic activity in the vicinity of the Uncompahgre Uplift 

commenced during the Atokan and it had possibly reached its zenith by the Permian 

(Baars and Stevenson, 1981). However, the middle (north-western) segment of the 

uplift continued its uplift and underwent denudation well into the Permian (Baars and 

Stevenson, 1982). In addition, the north-western segment did not begin yielding clastic 

deposits to the basin until the Desmoinesian. Finally, the Nacimiento, Zuni, and 

Defiance basement uplifts, the Emery uplift and most of the salt diapirs were 

progressively buried by Permian red-bed sediments derived from the Uncompahgre 

uplift (Baars and Stevenson, 1981; Baars and Stevenson, 1982).  

5.3.3 Stratigraphy  

5.3.3.1 Mississippian  

The stratigraphy of the Paradox Basin comprises Carboniferous strata of Mississippian 

and Pennsylvanian age. The Mississippian stratigraphy is represented by the Leadville 

Formation, a single carbonate unit that is mostly composed of dolomite (Baars and 

Stevenson, 1982; Brown, 2002). It also contains carbonates, especially in the upper part. 

Based on presence of an intraformational disconformity, the Leadville Formation is 

divided into Lower and Upper Members. The Leadville Formation is composed of 

crinoid mound buildups and represents restricted shallow water deposits (Brown, 2002). 

The Leadville Formation is underlain by the Ouray Formation which grades up into it, 

and overlain by the red palaeosol of the Molas Formation (Baars and Stevenson, 1982). 

This palaeosol records the result of post-Leadville weathering that altered the carbonate 

unit due to reactivation of Precambrian basement faults. A significant unconformity 

surface separates the Mississippian from the Pennsylvanian unit (Baars and Stevenson, 

1982). This surface left a gap in the stratigraphic record for approximately 20 Myr 

(Brown, 2002). 

5.3.3.2 Pennsylvanian  

As previously mentioned, the Paradox Basin developed adjacent to the Uncompahgre 

uplift, and the deepest part of the basin was located adjacent to the uplift (Figures 5.9; 

5.10). During the Middle Pennsylvanian, evaporites were deposited throughout the 

Desmoinesian due to a restricted exchange of water with the open ocean along the 



 

213 

margins of the basin (Weber et al., 1995). Chemical deposition occurred of saline 

facies, with 1500 to 2400 metres of salt, in the deeper faulted troughs, characterised by 

cyclical accumulations in the evaporite basin (Raup and Hite, 1992) (Figure 5.9). The 

basin was continuously sinking along the active extensional basement faults due to the 

continuous or episodic rising of the Uncompahgre uplift through the Pennsylvanian 

(Baars and Stevenson, 1982). The open Middle Pennsylvanian sea entered the evaporitic 

basin through several entryways to recharge the salt supply to the Paradox Formation 

(Brown, 2002). The entryways were through the Palaeo-San Juan Basin from the south, 

through the Fremont embayment between the Embry highlands and Circle Cliffs from 

the west, through the Oquirrh Basin from the northwest, and another possible 

connection was through the palaeo-Black Mesa Basin, from the southwest (Stevenson 

and Baars, 1988).  

 

Figure  5-9 Structure and stratigraphic cross-section of the Paradox Basin showing the north-

eastern evaporitic basin, and the south-western shelf carbonates (Baars and Stevenson, 1982).  

 

The carbonate and evaporite, including the thick salt, are related to the Paradox 

Formation. The shelf carbonate of the Paradox Formation has very diverse lithofacies 

that reflect combinations of clastic, physiochemical and biochemical sedimentation 

(Weber et al., 1995). This diversity in the carbonate lithofacies resulted from the 
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shallow-water environment of the shelf together with minor sea-level changes 

(Goldhammer et al., 1994). The abrupt lateral facies changes within the carbonate 

lithofacies could resulted from the palaeo-topographic configuration of the seafloor 

(Baars and Stevenson, 1981). In general, the Pennsylvanian stratigraphy is represented 

by the large evaporite succession of the Hermosa Group, which includes the evaporitic 

Paradox Formation and its carbonate equivalents, the Barker Creek, Akah, Desert 

Creek, and Ismay Members (Weber et al., 1995) (Figure 5.9). These formations are 

overlain by the Honaker Trail Formation, which is a siliciclastic-dominated succession. 

The Hermosa Group was first subdivided into three members by Baker et al. (1933), 

namely the Lower, Paradox and Upper Members. These units were later elevated to 

formation status and renamed the Pinkerton Trail, Paradox, and Honaker Trail 

formations, respectively, by Wengerd and Matheny (1958). This group is conformably 

overlain by the Cutler Group that is in turn unconformably overlain by the Kaibab 

Limestone (Condon, 1997). 

The Pinkerton Trail Formation (Early to Middle Pennsylvanian) overlies the red 

palaeosol of the Molas Formation, and is composed of a succession of marine carbonate 

with shale and minor detrital deposits. The deposition of this marine succession reflects 

a new transgression after the Mississippian regression. Coarse siliciclastic deposits are 

lacking in the formation, which suggests that the early development of the 

Uncompahgre Uplift had little effect on Pinkerton Trail Formation deposition (Baars 

and Stevenson, 1981). 
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Figure  5-10 Stratigraphic relationships of the Paradox Basin during Pennsylvanian to Permian 

times (Wengerd and Matheny, 1958; Baars and Stevenson, 1981). The basin overfilled with the 

Pennsylvanian carbonate-evaporite cycles, and then the siliciclastics, derived from the 

Uncompahgre Uplift, prograded south-westward into the basin through time. 

 

The Paradox Formation (Desmoinesian) is the evaporitic unit of the group. It is 

composed of interbedded evaporites with open marine carbonate deposits and shoaling-

up carbonate buildups to the west, and siliciclastic deposits to the north-northeast. The 

evaporites form a cyclic succession and interbed with black marine shale. The 

evaporitic-dominated cycles in the north-northeastern part of the basin are laterally 

correlated to the open marine carbonate-dominated cycles on the platform top at the 

west and south of the basin. The carbonate-dominated succession on the platform top is 

stratigraphically divided into the Baker Creek, Akah, Desert Creek and Ismay Members. 

The thickness of the formation reached its maximum in the deepest, north-northeastern 

part of the basin, at approximately 1500-1800 metres (Baars and Stevenson, 1981). 

The Honaker Trail Formation (Missourian) is a siliciclastic-dominated succession and it 

is composed of interbedded marine carbonates and siliciclastic alluvial fan-fan delta 

successions. It is underlain by the salt cycles of the Paradox Formation (Figure 5.10). 

The boundary is defined by a colour change from grey-dark grey and black in the 

Paradox Formation to reddish brown, red and buff in the Honaker Trail strata (Williams, 
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2009). The Paradox-Honaker trail contact is placed at the top of the uppermost halite 

cycle. The loading of the Honaker Trail Formation on the evaporitic part of the basin is 

believed to have led to early salt diapirism that was still active until the Jurassic 

(Peterson and Hite, 1969; Baars and Stevenson, 1982; Rasmussen and Rasmussen, 

2009; Jordan and Mountney, 2012; Venus et al., 2015).  

The Cutler Group (Permian) overlies the Hermosa Group and encompasses the lower 

Cutler beds (formally the Elephant Canyon Formation), Cedar Mesa Sandstone, Organ 

Rock Formation, White Rim Sandstone, De Chelly Sandstone, and the undifferentiated 

Cutler Group (Condon, 1997; Jordan and Mountney, 2012) (Figure 5.10). The Cutler 

Group is a mixed siliciclastic-carbonate cyclic succession. The lower Cutler beds are 

dark reddish-brown and are dominated by aeolian dune, fluvial (braided stream and 

flood plain) and shallow marine carbonate sediments (Jordan and Mountney, 2012; 

Wakefield and Mountney, 2013). The fluvial systems of the Cutler Group episodically 

prograded south-westward into the basin and loaded the underlying salt, which in turn 

moved to develop salt deformation structures and finally resulted in the successive 

development of a series of salt-walled mini-basins (Rasmussen and Rasmussen, 2009; 

Trudgill and Arbuckle, 2009; Trudgill and Paz, 2009). Even though the first salt 

movement probably  commenced in Late Pennsylvanian times, the first notable phase of 

salt migration and consequent influence on the development of fluvial systems likely 

occurred in the early Permian (Trudgill and Paz, 2009). Salt migration and mini-basin 

development continued, periodically, into the Jurassic (Lorenz and Cooper, 2009). 

5.3.4 Palaeoclimate  

The Carboniferous climate was characterized by the main Gondwana Glaciation (Haq 

and Schutter, 2008) (Figure 5.11). This glaciation came to an end in the early Permian 

and is marked as an eustatic sea-level fall at the Mississippian-Pennsylvanian boundary 

(Haq and Schutter, 2008). During the Pennsylvanian to the Jurassic, the Paradox Basin 

was located near the west coast of Pangaea (Ziegler et al., 1983). It migrated northward 

from a position approximately 20° south of the palaeo-equator in the Pennsylvanian to a 

location nearly 30° north of the palaeo-equator in the Jurassic (Ziegler et al., 1983). The 

Paradox cycles tend to support the assumption of expanding and contracting equatorial 

areas proposed by Sarnthein (1978). When continental ice cover expanded in the 

southern hemisphere, very arid conditions expanded in equatorial areas. The climate of 

the Paradox Basin at this stage was dry and cool, and sea-level was low, resulting in the 
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development of restricted basins with evaporite precipitation (Rueger, 1996). In 

contrast, during each inter-glacial period when glacial melting predominated, the result 

was a global sea-level rise. The Paradox Basin at this stage was warmer and wetter. The  

relationship between the Paradox cycles and climate is inferred to have been as follows 

(Rueger, 1996): The deposition of black shale was coincident with the wet and warm 

climatic conditions (transgressive phase), whereas the evaporite deposition occurred in 

the cooler and drier conditions (regressive phase). During the cool and dry phases the 

temperature did not decrease sufficiently to stop the evaporite deposition.   

During the early Permian, the basin was located five degrees north of the palaeo-equator 

(Baars and Stevenson, 1981). Permian stratigraphic records in the Paradox Basin reveal 

evidence of aridity comprising well-developed aeolian dunes, aeolian sand sheets, and 

sabkha facies (Roscher and Schneider, 2006). Although the evidence of aridity is 

abundant, periodical input of moisture is revealed by the presence of fluvial and 

floodplain deposits that contain palaeosols and rhyzolith facies (Loope, 1984; Loope, 

1988; Stanesco et al., 2000). These features, including a repeated upward change from 

aeolian deposits into fluvial facies, indicate alternating dry and wet phases (Stanesco et 

al., 2000). This is clearly recognized in the Pennsylvanian to Permian succession of the 

Cutler Group in Utah (Jordan and Mountney, 2012). 
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Figure  5-11 Carboniferous to Permian eustatic sea-level curve, including long- and short-term sea-

level fluctuations, showing eustatic rise in the latest Pennsylvanian, and eustatic falls at the 

Mississippian-Pennsylvanian boundary and in the latest Permian (Haq and Schutter, 2008). The 

eustatic fall at the Mississippian-Pennsylvanian boundary was related to the main Gondwana 

Glaciation. The magnitude of sea-level changes during the Palaeozoic is estimated to have varied 

from a few tens metres to nearly 125 metres.   
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5.3.5 Paradox cyclicity  

The cyclic sedimentation first developed during deposition of the Pinkerton Trail 

Formation occurred as cyclic deposition of clastic and carbonate layers. Progressively, 

the cycles show a vertical increase in carbonate content, and eventually grade through 

dolomite and black shale into the overlying Paradox evaporite cycles (Weber et al., 

1995). The overlying carbonate and evaporitic parts of the basin succession belong to 

the Paradox Formation, which includes the basinal evaporite cycles (north-northeast) 

and their laterally equivalent carbonate shelf cycles (west-southwest). The evaporite 

cycles of the Paradox Formation, and their equivalents – the shelf carbonate cycles – are 

overlain by carbonate and siliciclastic cycles of the Honaker Trail Formation that are 

somewhat similar to the pre-Pennsylvanian carbonate and siliciclastic cycles (Pinkerton 

Trail Formation) (Weber et al., 1995; Williams, 2009). The carbonate and siliciclastic 

cycles continued to the Lower Permian, and the succession eventually grades upward to 

entirely siliciclastic cycles (Peterson and Hite, 1969).  

Goldhammer et al. (1991), Goldhammer et al. (1994) and Weber et al. (1995) divided 

the Paradox cycles into a number of hierarchally arranged third- and fourth-order 

sequences that are each bounded by regional unconformities or subaerial exposure 

surfaces. In addition, they identified fifth-order cycles that are bounded by either 

flooding surfaces or diastem. Twenty-nine regionally correlative shale-evaporite cycles 

of Desmoinesian age are identified in the Paradox depocentre of the Paradox Formation 

(Peterson and Hite, 1969). These evaporite cycles are laterally correlated to the 

carbonate shelf cycles that decrease in number toward the shelf due to onlapping of the 

lower cycles. To calculate the correct duration of these cycles, the total number of the 

basinal evaporite cycles (29) is divided by the total duration of the Desmoinesian, for 

which estimates range from 4 My (Odin and Gale, 1982) to 10 My (Van Eysinga, 

1975). The average periodicity of the cycles is thus between 138 and 345 kyr per 

sequence, falling in the 4
th

-order range (Goldhammer et al., 1991). These 4
th

-order 

sequences contain a number of 5
th

-order shallowing-upward cycles (average 9 cycles). 

By dividing the periodicities of the 4
th

-order sequences (138 to 345 kyr) by the average 

number of 5
th

-order cycles (9 cycles), a duration of approximately 15 to 38 kyr would 

be obtained for the 5
th

-order cycles. Thus the 4
th

 and 5
th

 order cyclicities are consistent 

with being a response to 1) eccentricity- and 2) obliquity and/or precessional 

Milankovitch orbital forcing of climate changes. 
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The rapid rise of the Uncompahgre Uplift, cyclic restriction of circulation, and 

increasing evaporation within the semi-enclosed basin resulted in deposition of three 

types of cyclic successions: 1) evaporitic cyclic deposition (in the basin centre) that 

includes salt, anhydrite, dolomite, and black shale; 2) shelf carbonate cycles (in the 

south-western basin) that include mound-like buildups of biogenic carbonates; and 3) 

siliciclastic (arkosic) cycles, which accumulated in narrow belts close to the 

Uncompahgre Uplift (in the north-eastern part of the basin) (Raup and Hite, 1992). 

5.3.5.1 Evaporitic cycles 

Hite (1960) first numbered the evaporite cycles of the Paradox Formation into 

sequences from the lowest (oldest) to the uppermost (youngest) and identified twenty-

nine halite-bearing cycles in the deep part of the basin. Each idealized evaporitic cycle 

(basinal cycle) of the Paradox Formation is about 45 to 60 metres in thickness and is 

composed of lower transgressive and upper regressive parts (Figures 5.12 and 5.13). 

The lower part has been characterised as beginning with a rapid transgression that is 

marked by a disconformity surface at the top of the salt bed of the previous cycle. This 

grades upward from transgressive laminated anhydrite at the base into nodular anhydrite 

that is overlain by dolomite and then by marine black shale (Raup and Hite, 1992). By 

contrast, the upper regressive part of each cycle begins with dolomite deposition at the 

base that grades up to anhydrite and then into salt at the top (Peterson and Hite, 1969; 

Raup and Hite, 1992). The black shale units are traceable shelf-ward to equivalent 

carbonate cycles. The lower parts of the cycles were initiated in response to a rapid rise 

in relative sea-level and an inflow of sea water into the basin. The rise in sea level 

reached its maximum during the black shale deposition, at which time the deeper parts 

of the basin were largely sediment starved (Raup and Hite, 1992). Consequently, in the 

latter stage of each cycle, evaporite deposition rapidly overrode the basin subsidence 

and overfilled the basin with thick anhydrite and salt deposits (Raup and Hite, 1992; 

Goldhammer et al., 1994).  
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Figure  5-12 Stratigraphic logs of an idealized carbonate and evaporitic cycle bounded by 

disconformities. Each cycle represents a full cycle of sea-level change and salinity variations (Hite 

and Buckner, 1981; Trudgill and Arbuckle, 2009).  

 

5.3.5.2 Shelf carbonate cycles 

An idealized carbonate platform cycle ranges from 10 to 40 metres in thickness 

(average 35m) and consists of a thin, transgressive black shale or dark carbonate 

mudstone at the base, overlain by a regressive (shallowing-upward) succession of shelf 

carbonates (Raup and Hite, 1992; Weber et al., 1995), as represented in Figures 5.12 

and 5.13. The regressive carbonate succession includes thick phylloid algal bioherm 

facies capped by ooid grainstone facies. The cycles are each separated by 

unconformities, with evidence of subaerial exposure at the bounding surfaces (Figure 

5.12). The carbonate cycles show three cyclo-stratigraphic orders with a systematic 

vertical succession of facies, cycle, and sequence stacking patterns (Goldhammer et al., 

1991; Weber et al., 1995; Grammer et al., 1996). Fifth-order cycles (inferred to be of 

ca. 29 kyr duration) are packaged into fourth-order sequences (ca. 257 kyr duration), 

which in turn are grouped to define third-order sequences (ca. 2-3 Myr) (Goldhammer et 

al., 1991).  
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Figure  5-13 Correlation of depositional cycles showing three types of cycles from tectonically-active 

siliciclastic-dominated through basinal evaporite-dominated cycles to shelf carbonate cycles (Weber 

et al., 1995). 

 

5.3.5.3 Arkosic (siliciclastic) cycles 

The arkosic cyclic facies reached maximum thickness toward the southeastern edge of 

the basin during the Atokian and Desmoinesian, and along the northeastern part of the 

basin during the Late Pennsylvanian (post-Desmoinesian) and Permian (Figure 5.13). 

The post-Desmoinesian siliciclastic deposits are represented by the Cutler Group that 

comprises a mixed siliciclastic-carbonate succession (Rankey, 1997; Jordan and 

Mountney, 2012). The considerable influx of siliciclastic debris into the basin occurred 

simultaneously with maximum growth of the Uncompahgre Uplift (Peterson and Hite, 
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1969). Eventually, during the late Pennsylvanian and Permian, the siliciclastic deposits 

from the Uncompahgre Uplift prograded south-westward across the basin (Loope, 1984; 

Mountney, 2006). Field investigations indicate that most of these deposits were 

transported and deposited by streams, probably of braided type (Cain and Mountney, 

2009). 

The Cutler cyclic succession is characterized by mixed siliciclastic-carbonate deposits 

during the Permian. Each cycle passes up from a basal sandstone of exclusively aeolian 

dune origin into a fluvial deposit of both channel and floodplain origin. Shallow marine 

carbonate forms the capping unit of each cycle (Rankey, 1997; Jordan and Mountney, 

2012). Each cycle varies from non-marine-dominated deposits (aeolian and fluvial) 

towards the northeastern (landward) part of the basin to marine-dominated deposits 

southwest-wards towards the basin centre. 

5.3.6 Sequence stratigraphy of the Paradox succession 

Weber et al. (1995) divided the Desmoinesian succession into five 3
rd

-order composite 

sequences, comprising lowstand, transgressive, and highstand systems tracts, each 

composed of higher-order sequences (4
th

-order sequences). The total duration of the 3
rd

-

order composite sequences was estimated to range between 800 kyr to 2 Myr and these 

are included within a 2
nd

-order transgressive-regressive “super-sequence” in the 

terminology of these authors. A type 1 sequence boundary is recognized at the base of 

the lowstand system tract, and is characterized by exposure of the shelf and erosion on 

the slope (Raup and Hite, 1992; Weber et al., 1995) (Figure 5.14). The basinal 

correlative conformity of this surface is characterized by the presence of an evaporitic 

wedge that onlaps the sequence boundary. The transgressive surface (TS) between the 

lowstand and transgressive systems tracts is defined by an upward change from basinal 

restricted siltstone facies to skeletal lime mudstone/wackestone facies (Weber et al., 

1995). The transgressive facies are in the form of the black laminated mudstone that is 

traceable across the whole basin. The maximum flooding surface (MFS), separating the 

transgressive system tract from the overlying highstand system tract, is composed of a 

marine condensed section in basinward areas that is associated with a hardground 

(Peterson and Hite, 1969; Weber et al., 1995). In platform settings, it is defined by the 

top of a silty dolomudstone/wackestone facies that sits above the early transgressive 

black shale (Weber et al., 1995). The highstand facies is represented by a thin lime 

mudstone/wackestone facies in the basin, whereas on the platform it consists of thick 
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phyloid algal mounds and peloid/ooid packstone/grainstone facies (Goldhammer et al., 

1994). Each systems tract comprises a set of high-frequency 4
th

-order sequences 

(Goldhammer et al., 1991; Goldhammer et al., 1994; Weber et al., 1995) which in turn 

include packages of 5
th

-order parasequences.  

 

Figure  5-14 Sequence stratigraphic model for the carbonate-evaporite cycles of the Paradox Basin 

(Weber et al., 1995). 

The lower two composite sequences are represented by the Pinkerton Trail and Baker 

Creek formations, and exhibit stratal geometries which backstep in a  landward 

direction, whereas the upper three sequences are represented by aggradational (Akah 

and Desert Creek Formations) to progradational geometries (of the Ismay and Honaker 

Trail Formations) (Weber et al., 1995). Each sequence begins with a lowstand evaporite 

unit (lowstand wedge) in the basin centre, which is equivalent to the subaerial exposure 

of the shelf carbonates. Three 4
th

-order sequences and nineteen 5
th

-order parasequences 

are recognized (Goldhammer et al., 1991; Goldhammer et al., 1994; Weber et al., 

1995).   
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5.3.7 Origin of cyclicity 

Analysis of cycles in term of facies architecture, broad lateral correlation of the cycles, 

and variations in cycle types are commonly used for analysing the origin of the cycles. 

Two main mechanisms are inferred to have controlled the cyclicity of the Paradox 

Basin, these being glacio-eustatic sea-level changes and tectonics. 

5.3.7.1 Glacio-eustasy sea-level changes 

Numerous examples of Pennsylvanian to Permian cyclicity have been recorded, and 

their origins have been evaluated as due to climatic and glacio-eustatic controls on their 

deposition (Busch and Rollins, 1984; Driese and Dott Jr, 1984; Algeo and Wilkinson, 

1988; Corrochano et al., 2012; Alasad et al., 2014; Khodjanyazova et al., 2014). 

Interpretations of the origin of the Paradox cycles generally relate these to glacio-

eustatic sea-level fluctuations that were triggered by the southern hemisphere glaciation 

of Gondwana. This interpretation has been supported by the broad lateral correlation of 

the cycles, subaerial exposure events, and the asymmetric nature of the internal facies 

architecture (Goldhammer et al., 1994).   

More specifically, the major control on the carbonate and evaporite cyclicity in the 

Paradox Formation has similarly been attributed to periodic sea-level changes in 

response to retreat and advance of Gondwanaland glaciers during the Pennsylvanian 

(Raup and Hite, 1992). During interglacial stages, sea-level rose due to glacial melting 

leading to increases in accommodation space across the shelf and resulting in a lowering 

of salinity and an increase in circulation of the basin waters. In contrast, during glacial 

stages, sea-level fell resulting in a restricted circulation and a rise in the brine salinity. 

The composite stratigraphic cyclicity of the Paradox Formation, including fifth-order 

cycles, fourth-order sequences, and third-order accommodation cycles are interpreted as 

a composite of fourth- and fifth-order glacio-eustatic cycles (Goldhammer et al., 1991). 

These authors evaluated two viable scenarios for the formation: a) a model dominated 

by long eccentricity and obliquity cycles, versus b) a model dominated by short 

eccentricity and precession cycles. In the first model, the duration of the fourth-order 

sequences ranges from ca. 216 to 345 kyr, a periodicity which approaches that of the 

Earth’s long eccentricity cycle (413 kyr). Additionally, each fourth-order sequence 

includes approximately nine fifth-order cycles, with each cycle approximately 38 kyr in 
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duration, close to the Earth’s obliquity cycle. In the second model, the minimum 

duration of the fourth-order sequences is 138 kyr, which is close to the Earth’s short 

eccentricity cycle (dominant periodicities of ca. 95 and 123 kyr). By dividing the time 

duration of the fourth-order sequences (138 kyr) by the 9 fifth-order cycles, 

approximately 15.33 kyr is obtained and this is close to the Earth’s precession cycle.  

Additionally, the major interpretation of the development of the mixed siliciclastic-

carbonate cycles from the Cutler Group during Permian times that these are considered 

to be both climatic and eustatic in origin (Jordan and Mountney, 2012). The non-marine 

aeolian and fluvial units at the base of the cycles may represent an external climatic 

influence on the depositional system, whereas the presence of marine deposits at the top 

of the cycles demonstrates rhythmic episodes of relative sea-level change of likely 

eustatic origin (Jordan and Mountney, 2012). Deposition of the aeolian dune deposits 

occurred during sea-level lowstand episodes and climatic aridity, whereas deposition of 

the fluvial deposits were coincident with sea-level rise and climatic humidity. 

Additionally, carbonate deposition occurred during sea-level highstand and maximum 

humidity.   

5.3.7.2 Tectonic mechanism 

Baars and Stevenson (1982) state that small-scale oscillating vertical displacements 

occurred along the basement faults throughout early Palaeozoic time, and they suggest 

that the same structural activity was responsible for the distribution of the Middle 

Pennsylvanian carbonate lithofacies. This structural activity resulted in the formation of 

positive fault blocks favourable to shallow-water carbonate production. However, 

Goldhammer et al. (1991) and Goldhammer et al. (1994) state that there are no 

indicators of any syn-Desmoinesian faulting across the southwestern Paradox shelf and 

they insist that localized tectonics (gentle uplifts) were responsible for the distribution 

of the algal mound development. Additionally, extensive correlation of the high-

frequency cycles is a feature unlikely to have formed from tectonic oscillations.   

5.4 Comparison between basin types and their evolution 

5.4.1 Basin-fill stratigraphy  

The late Permian basin in Central Europe was developed after the Variscan orogeny 

which was succeeded, or probably occurred with, an east-west relative movement 
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between the Gondwanan and Laurasian continents (McCann, 2008). This resulted in 

right-lateral wrench movements of its northern foreland between Poland and Britain and 

the Variscan fold belt. These wrench movements caused a rapid collapse of the Variscan 

fold belt. At the time of the collapse of the Variscan fold belt, its northern foreland also 

underwent east-west tension. Tension and regional stresses affected many parts of 

Europe, resulting in volcanic extrusions in the North German-Polish plain, and dyke and 

sill intrusions in NE Britain. These volcanic activities belong to the Lower Rotliegend 

Group. Eventually, the east-west trending Northern and Southern Permian Basins 

developed as a result of the regional extension followed by thermal subsidence of the 

earlier areas of subsidence. These two basins were separated by the Mid North Sea-

Ringkobing-Fyn palaeohigh and are together called the Rotliegend Basin. The 

Rotliegend Basin is characterized by fluvial, aeolian, lake-sabkha, and desert lake 

deposits (Benton et al., 2002). These deposits indicate a hot and dry climate (Glennie, 

1986). The late Permian transgression of the Zechstein marks a main and rapid 

transgression over the aeolian deposits. The hot and arid climate continued through the 

late Permian and resulted in the deposition of a cyclic succession of carbonate-evaporite 

cycles (Geluk, 2007). The Zechstein stratigraphy represents a transgressive-regressive 

cycle during overall eustatic sea-level rise and fall, respectively (Glennie, 1986). The 

thick carbonate cycles of the Z1-Z3 were deposited during the transgressive phase while 

the regressive phase is characterized by the disappearance of carbonate deposits, and 

deposition of thin terrigenous-halite cycles (Wagner and Peryt, 1997). Toward the upper 

cycles (Z4-Z5), the marine deposits were reduced in significance and ephemeral fluvial 

environments, salt lakes and playas were predominant. This condition continued until 

the Triassic which is dominated by terrestrial conditions and is completely lacking in 

marine fossils (Słowakiewicz and Gąsiewicz, 2013). Through time, the marginal coarse 

sediments prograded basinwards. 

The Paradox Basin comprises a thick succession that passes up from the evaporite 

cycles, in the Paradox trough itself, and their shelf carbonates, at the shelf margin, of the 

Paradox Formation into carbonate-siliciclastic cycles of the Honaker Trail Formation. 

Consequently, the formation is followed by or changes laterally to siliciclastic-

dominated units of the Halgaito Shale, Elephant Canyon, and Cedar Mesa Sandstone 

Formations (Williams, 2009) (Figures 5.15; 5.16).  A number of sedimentary facies, 

including cherty mudstone to wackestone, skeletal wackestone to packstone, planar to 

wavy bedded sandstone, amalgamated carbonate-quartz, laminated carbonate-
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siliciclastic, large scale, cross-bedded sandstone, and mottled heterolithic 

sandstone/shale facies are documented in the Honaker Trail and lower Cutler beds 

(formerly the Elephant Canyon Formation) (Williams, 2009). These sedimentary facies 

were interpreted to have accumulated in peritidal settings that include deep-subtidal, 

shallow-subtidal, upper shoreface, intertidal, supratidal, and flood-plain settings, 

respectively.  

The cycles of the Paradox (A cycle-set of Williams, 2009) and the lower part of the 

Honaker Trail (B cycle-set of Williams, 2009) formations expand north-eastward to the 

original Paradox trough. This is evidenced by facies trends of the cycle-sets, cycle 

thicknesses, and observed upward changes in facies diversity, bed thickness, and 

evidence of subaerial exposure. However, the cycles of the middle part (C cycle-set of 

Williams, 2009) of the Honaker Trail Formation preserve a reversal in the overall 

direction of sediment transport being from the northeast to being from the southwest. 

Finally, the cycles of the upper Honaker Trail and Elephant Canyon formations, 

including D and E cycle-sets, record overall south-westward expansion (Williams, 

2009) (Figure 5.15). 

In general, the stacking patterns and northeastern stratal expansion of the A-B cycle-sets 

indicate Paradox Basin infilling, whereas the southwestern stratal expansion of the C 

cycle-set indicates a stage of reconfiguration of the basin towards the southwest. 

Finally, the stacking patterns and south-westward palaeo-current directions of the D-E 

cycle-sets suggest filling of the basin and shifting of the available accommodation space 

to the southwestern part of the basin, as represented by the southwest-wards 

progradation (Williams, 2009) (Figure 5.15). 
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Figure  5-15 Cross-section through Cataract Canyon showing cycle sets, high-frequency cycles, and tectonic settings of the Pennsylvanian-Permian of the Paradox Basin, as 

well as the approximate location of the measured logs (Williams, 2009). The red dash-lines represent the cycle-set boundaries, and black dash-lines are cycle boundaries. 

The basin underwent three tectonic stages of basin-fill, basin-reconfiguration, and basin progradation.    



 

230 

 

Figure  5-16 Stratigraphic logs of the Pennsylvanian-Permian cycles of the Paradox Basin in Utah 

(Williams, 2009), showing the carbonate-siliciclastic cycles. the dotted red line is the boundary 

between cycle-sets C and D. 
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5.4.2 Basin configuration 

The Miocene Fatha Formation was accumulated on a gently sloping ramp; this is 

evidenced by the gradual changes of the carbonate microfacies from basin margin 

towards the basin centre. The accumulation of carbonates with packstone and grainstone 

microfacies at the basin margin, changing to mudstone and wackestone microfacies 

downdip in the formation are the indicators of the presence of this carbonate ramp. In 

addition, the lack of abrupt lithological changes or collapse-brecciated carbonates 

indicate that no steep depositional slope was developed.  As has been described 

previously, the identified sedimentary facies in the formation as seen at outcrop, 

including the twenty-one carbonate microfacies, are interpreted to have accumulated in 

the inner ramp setting (Chapter Three). 

By contrast, both the Paradox and Zechstein successions were accumulated in shelf 

carbonate to basinal depositional settings. The presence of a deep evaporitic trough just 

beside the Uncompahgre Uplift in the Paradox Basin and its shelf carbonate equivalents 

are consistent with a shelf or distal-steepened ramp carbonate depositional setting. In 

addition, the presence of collapse-brecciated carbonate, the Concretionary Limestone, 

and a lowstand gypsum wedge in the Zechstein Basin strongly indicate a significant 

slope in the depositional environment. Moreover, the restriction of the evaporite 

deposition toward the basin centre in both the Paradox and Zechstein Basins, and the 

presence of subaerial exposure on the shelf carbonate suggest shelf settings. However, a 

ramp-like depositional setting was locally developed along the margins of the Zechstein 

Basin, for example the carbonates of the Z2 Roker Formation in England and Poland 

(Tucker, 1991; Słowakiewicz and Tucker, 2012). These carbonates are dominated by 

stromatolites and peritidal facies that are interbedded with oolitic grainstone 

microfacies. Different microbial and oolitic lithofacies of subtidal, oolitic shoals, tidal 

flat, tidal-channel, intertidal, and supratidal settings are recognized within the formation 

(Słowakiewicz and Tucker, 2012). Moreover, several evaporitic facies, comprising 

nodular, chicken-wire structure, irregular anhydrite, and pseudomorphs after lenticular 

gypsum, are recognized in the German Zechstein and are interpreted to have 

precipitated in supratidal sabkha (Betzler and Pawellek, 2014).    
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5.4.3 Stratigraphy  

In the Miocene Zagros foreland basin, the Early Miocene units rest on the Oligocene-

Miocene sequence boundary that changes from an unconformity surface (presumably 

with incised valleys updip) at the basin margin, where the Oligocene and Early Miocene 

units are missing, to the correlative conformity in the basin centre, where the Early 

Miocene is underlain by a thick Oligocene unit. The Early Miocene Serikagni 

Formation records the first Miocene transgression over the regional unconformity 

surface or its correlative conformity, and it is characterized by a deep calcareous 

mudstone facies that riches with planktonic foraminifera (Aqrawi et al., 2010). The 

formation grades up or laterally to the carbonate-dominated facies of the Euphrates 

Formation which then grades up to carbonate-evaporitic-dominated facies of the 

Dhiban, Jeribe and Fatha formations. The deposition of the Fatha Formation records the 

first progradational geometry by the red siliciclastic unit, derived from the emerging 

Zagros mountain hinterlands, southwest-wards towards the basin, and this progradation 

continued up into the Upper Miocene-Pliocene when the previous carbonate-evaporite 

depositional settings changed to completely siliciclastic deposits of fluvial facies (of the 

Injana, Mukdadiya and Bai Hassan Formations) (Figure 5.17).  

This stratigraphic trend, from dominantly carbonate facies to carbonate/evaporite and 

then to siliciclastic facies, is also clearly documented in the Paradox Basin (Williams, 

2009) (Figure 5.15). The Pennsylvanian units rest on the regional unconformity surface 

that is underlain by the red shale and siltstone facies of the Molas Formation. This unit 

grades up to the carbonate unit of the Pinkerton Trail Formation, which then grades up 

to evaporitic-dominated facies of the Paradox Formation and its carbonate equivalent at 

the shelf. The Paradox Formation is overlain by the carbonate-siliciclastic cycles of the 

Honaker Trail Formation which in turn is overlain by the coarse grained clastic unit of 

the Cutler Group.  
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Figure  5-17 Stratigraphic relationships between the Miocene formations showing the final stage of progradation of the Zagros foreland basin and conceptual location of 

the measured logs from basin margin. Approximate horizontal scale (from basin margin to basin centre): 200km. 
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The siliciclastic unit was derived from the Uncompahgre Uplift and prograded towards 

the basin centre in the Permian (Peterson and Hite, 1969; Gianniny and Miskell-

Gerhardt, 2009; Williams, 2009). 

The late Permian stratigraphic trend of Central Europe in some ways resembles the 

Miocene and Pennsylvanian basins. It is underlain by the Lower and Upper Rotliegend 

groups, which are volcanic and siliciclastic dominated facies. The basal Marl Slate 

(Copper Shale) of the late Permian time is defined as the first Zechstein transgression. 

The Zechstein cycles start with a thick carbonate and evaporite (predominately salt) 

package in the lower three cycles (Z1-Z3), whereas the proportion of carbonate and 

evaporite facies is reduced up into the upper two cycles (Z4-Z5). The deposits in the 

upper cycles become shallower and consist of terrigenous-salt couplets that indicate the 

deposits of fluvial, lakes, rivers, and playas (Wagner and Peryt, 1997). The deposition 

of these terrestrial deposits continued into the Triassic when further progradation 

continued toward the basin.  

Overall, the pattern of deposition of these basins records progressive filling of the 

basins and progradation. These conditions are evidenced by overall shallowing in the 

basins, decreasing, or in some parts of the basin disappearance, of carbonate deposits, 

and increasing fluvial siliciclastic deposits at the last stage of their deposition and 

accumulation.  

5.4.4 Sedimentary facies 

Three main sedimentary facies assemblages were predominant during the development 

of the Pennsylvanian-Permian and Miocene basins, these essentially being made up of 

evaporite, carbonate, and siliciclastic facies.   

5.4.4.1 Evaporite facies 

1- The Miocene evaporites of the Fatha Formation comprise mainly chicken-wire 

structure gypsum units that overlie shallow-marine carbonate facies. These 

evaporites are interpreted to have accumulated in supratidal sabkha which in turn are 

overlain by the red fluvial units. In some cycles, especially in less proximal areas, the 

chicken-wire evaporite is overlain by either a bedded (laminated) evaporite or a thick 

salt layer (Tucker, 1999). This upward transition represents the shallowing-upward 

trend of the cycles. The laminated evaporites were subaqueously precipitated in 
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shallow lagoons. The upward transition from laminated anhydrite to nodular 

anhydrite at the base of the evaporite cycles in the Paradox Formation possibly 

resulted from a new influx of sulphate and calcium into the basin during sea-level 

rise (Raup and Hite, 1992). During the early phases of the influx, when the salinity of 

the brine in the basin was still very high, the laminated anhydrite would have been 

precipitated. The inflowing brine was mixed with the higher salinity brine that was 

already in the basin (Raup and Hite, 1992).  This could have resulted in changes of 

the brine from a higher to a lower salinity. However, the nodular anhydrite was 

possibly formed as the result of early diagenesis. The nodules may have formed 

when the original gypsum changed to anhydrite, as evidenced by the presence of 

traces of laminations through the nodules. This indicates a secondary origin of the 

nodules that resulted from the diagenesis of the primary laminated gypsum (Raup 

and Hite, 1992). By contrast, the laminated evaporite and carbonate in the Zechstein 

Basin are interpreted to have accumulated as a condensed section in the basin centre. 

2- The evaporite deposition in the Paradox Formation was trapped in a deep, relatively 

narrow depression (the Uncompahgre Trough), and a shallow shelf along the western 

margins of the basin inhibited access to the open ocean. The lack of indicators of 

complete desiccation, mud cracks and ripple marks, in the Paradox Basin’s 

evaporites indicates an absence of subaerial exposure, and shallow-water deposition 

along the basin margin. However, the Miocene evaporite in the Zagros Basin 

accumulated subaerialy in a flat and wide marine-derived sabkha.  

3- The evaporitic cycles of Paradox Basin, similar to those of the Zechstein evaporites, 

are terminated by thick halite deposits that were restricted to the basin centre. These 

deposits are interpreted to have been precipitated subaqueously from the brine 

waters. However, in the Zagros Basin, not all the Miocene cycles are terminated by 

halite deposition, but the Miocene cycles are generally capped by halite in the basin 

centre. These halite deposits are related to have precipitated from the final remnants 

of the shrinking sea and were probably deposited in salinas or salt pans (Al-Juboury 

and McCann, 2008).  

4- The Paradox and Zechstein evaporites, including anhydrite and salt, are interpreted to 

have been precipitated subaqueously from shallow-restricted waters.  However, 

several evaporitic facies, comprising nodular, chicken-wire structure, irregular 

anhydrite, and pseudomorphs after lenticular gypsum, are recognized in the German 

Zechstein cycles by (Betzler and Pawellek, 2014) and are interpreted to have been 

formed subaerialy in a sabkha setting. These sabkha evaporitic facies are widespread 
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around the basin. Nodular, chicken-wire structure, and pseudomorphs after lenticular 

gypsum are also abundant in the Miocene Fatha Formation. The pseudomorphs after 

lenticular gypsum are very common in the Fatha carbonate members and can be 

interpreted to have accumulated in intertidal settings.  

5- The main evidence supporting the depositional setting of the Fatha evaporite as 

sabkha facies are the abundant nodular and chicken-wire structures and their 

associations with intertidal facies. Specific recognizable features of the intertidal 

facies in the Fatha carbonates are the presence of fenestrate pores, pseudomorphs 

after lenticular gypsum, and algal mats and stromatolites. Such evidence from within 

the carbonates, as well as their associations with nodular and chicken-wire 

evaporites, and with fluvial deposits strongly support the inference of a sabkha 

depositional setting for the evaporites.   

5.4.4.2 Carbonate facies  

The Pennsylvanian carbonates of the Paradox Basin were deposited along a shelf and 

are characterized by the presence of phylloid algal bioherms. These facies were 

accumulated on relatively high structural blocks as a result of basement fault 

movements. Abrupt changes in carbonate facies are documented which are inferred to 

have been due to the tectonic activity. These carbonates are equivalents of the evaporitic 

cycles of the Paradox Formation downdip in the basin. The proportion of carbonate 

components declines upwards into the Honaker Trail Formation in which siliciclastic 

deposits entered the basin. The carbonates of the Zechstein Basin accumulated along the 

shelf and on a distally-slope, as well as in a condensed section in the basin centre. 

Different carbonate facies of shelf margin, reef, back-reef, slope, and shelf lagoon are 

recognized in the carbonates of the English Zechstein (Tucker, 1991). The amount of 

the carbonate components decreases to zero toward the upper cycles. By contrast, the 

carbonates of the Miocene succession of the Zagros Basin are characterized by 

deposition in a variety of shallow marine depositional environments.  

Unlike the Paradox and Zechstein carbonates, no evidence of subaerial exposure is 

recognized at the top of the Miocene carbonates. Subaerial exposures, including 

karstification, leaching, and erosion, are recognized at the top of the Paradox and 

Zechstein carbonates,  indicating the presence of a Type 1 sequence boundary. In 

contrast, there is a gradational change between the carbonates and the overlying 

evaporites in the Miocene succession. In addition, the carbonate microfacies record 
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gradational changes from mudstone and wackestone, at the base, into packstone and 

grainstone or algal mats and stromatolites, at the top, describing a shallowing-up 

regressive trend.  

5.4.4.3 Siliciclastic facies  

In all the basins the siliciclastic facies increase in proportion and thickness toward the 

upper part of the succession as a result of progradation. Different fluvial facies, 

comprising alluvial fans, rivers, lakes, playa, deserts, and palaeosols are recognized 

within the siliciclastic deposits. These deposits are composed of claystone, siltstone, 

sandstone, and conglomerate.  

The main sources of the siliciclastic deposits into the Paradox Basin were the 

Uncompahgre Uplift to the east and the San Luis Uplift near the southern periphery of 

the basin (Trudgill and Arbuckle, 2009), whereas the clastic supply into the Miocene 

Basin in Kurdistan was from the Zagros and Torus Mountains to the northeast and 

north, respectively.  

5.4.5 Carbonate-evaporite cycles 

Although carbonate-evaporite cyclicity is a common feature in the Paradox, Zechstein, 

and Miocene Basins, some differences occur. First of all, in contrast to the Paradox 

cycles, according to the sequence stratigraphic investigations that have been done on the 

Zechstein carbonate-evaporite cycles, the carbonates (largely highstand deposits) were 

not laterally equivalent to the evaporites that defined as the lowstand deposits. 

Therefore, the carbonates and evaporites are not time-related. However, the carbonates 

of the Paradox Basin are interpreted to be laterally time-equivalent to the evaporites in 

the basin centre. On the other hand, the carbonates of the Miocene Fatha Formation 

cycles gradationally pass up into the evaporites at the top of each cycle’s regressive 

phase, with no subaerial exposure at the top of the carbonates. 

Secondly, the carbonate-evaporite cycles of these basins are different in terms of 

hierarchy and thickness. For example, the Zechstein succession reaches a thickness of 

2km (Taylor, 1998) and individual halite and anhydrite bodies are up to 600 and 280 m 

thick, respectively (Van den Belt and de Boer, 2007). Similarly, the carbonate-evaporite 

succession of the Paradox Basin reaches a thickness of 2km, and an individual cycle is 

up to 300m thick (Catacosinos et al., 1990). On the other hand, the Miocene Fatha 
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Formation succession reaches a maximum total thickness of 600 to 900 m in the basin 

centre, whereas it is 100 to 300 m thick toward the basin margin, in this study’s field 

area. In contrast to the Miocene cycles, the carbonate-evaporite successions of the 

Paradox and Zechstein Basins are defined as 2
nd

-order “super-sequences”, and the 

individual carbonate-evaporite cycles as 3
rd

-order sequences. Additionally, a number of 

high-frequency cycles are also recognized and defined as 4
th

-order sequences and 5
th

-

order parasequences. This contrasts with the Miocene Fatha Formation succession 

which is interpreted in this study to represent a 3
rd

-order sequence, and the individual 

cycles are defined as 4
th

-order parasequences.   

Thirdly, the evaporitic cycles of the Paradox Formation in the basinal trough can be 

correlated into the carbonate cycles at the shelf margin. This can be applied by the 

correlation of the transgressive black shale over the basin. In addition, Hite and Buckner 

(1981) correlated the carbonate and evaporitic cycles across about 40 km and they were 

able to correlate the 29 evaporitic cycles of the Paradox Formation with the carbonate 

cycles of the Ismay, Desert Creek, Akah, Barker Creek, and Alkali Gulch formations. 

Lateral correlations of the cycles over a large distance can be applied with little 

difficulty. This extensive correlation over a large distances is similarly a common 

feature in the Zechstein cycles that can be correlated over England, Germany, Poland, 

and the Netherlands. Moreover, the lateral correlations of the Fatha cycles in the Zagros 

Basin have been conducted between the studied sections over tens of kilometres in 

distance.  

5.4.6 Palaeoclimate 

The major Gondwana glaciation was initiated in the Carboniferous period and the major 

icehouse phase terminated during early Permian times. After that the climate throughout 

the Permian and Triassic times became mainly hot and arid at the palaeo-latitudes of the 

Paradox ad Zechstein Basins. Most of the classic Permo-Triassic strata in England and 

Europe comprise of red beds that indicate hot conditions either in rivers and lakes or 

deserts (Benton et al., 2002).A lowstand 1
st
-order cycle has been suggested in the Late 

Palaeozoic (Fischer, 1984). In addition, Vail et al. (1977) inferred a 2
nd

-order lowstand 

at the end of the Mississippian, whereas the Pennsylvanian was marked by 2
nd

-order 

transgression (Haq and Schutter, 2008).  
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The proximity of the Paradox Basin to the palaeo-equator during the Pennsylvanian 

resulted in the high rates of evaporation and the development of high salinity brines. 

High rates of evaporation in the late Permian Zechstein Basin were also a response to 

hot and arid climatic conditions. On the other hand, the Zagros Basin in the Miocene 

period is characterised by high-frequency climatic fluctuations and a number of climatic 

cycles, arid-humid couplets, are recognized. The high rates of evaporation represented 

in the Miocene successions across the Middle East relate to hot and arid climates, 

especially during the deposition of the Fatha evaporites that were accumulated during 

the Miocene Climatic Optimum.  

It is believed that the arid climate, together with sea-level changes, had direct influence 

on the rate of the evaporation in Zechstein seawater, and resulted in a gradual salinity 

increase in the seawater. This salinity trend, due to climatic influence, is clearly 

documented in the carbonate members also. The first carbonate cycle of the Zechstein 

Basin was deposited under normal marine water, evidenced by abundant normal marine 

fauna, while the second and third carbonate cycles were accumulated under higher 

salinities, evidenced by restricted fauna (Słowakiewicz and Gąsiewicz, 2013). However, 

the aridity became less intensive through time and interrupted by humid phases. This is 

clearly observed in the upper Zechstein cycles in the form of reduced evaporite deposits 

and increased terrigenous sediments. A comparable climatic trend is inferred as being 

recorded in the Miocene strata of the Zagros Basin, where the thickest evaporite 

deposits accumulated during the Early-Middle Miocene due to the high evaporation rate 

and arid climate, whereas the evaporation rates and aridity decreased through the Upper 

Miocene and Pliocene.  

5.4.7 Mechanisms controlling cyclicity 

Three main mechanisms, including glacio-eustatic sea-level fluctuations, tectonics, and 

sedimentary autocyclicity have invoked to explain high-frequency cyclicity in different 

basins (Grotzinger, 1986a; Grotzinger, 1986b; Goldhammer et al., 1987a; Tucker and 

Garland, 2010). Facies analysis and depositional environments, cycle and cycle-set 

extensions, and stacking patterns are the tools that can be used to determine the 

controlling mechanisms on cyclicity. 
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5.4.7.1 Glacio-eustatic sea-level fluctuations  

Global sea-level fluctuations and climate changes are reflected in the sedimentary rock 

records by sediment composition and cyclicity. Correlation of thin stratigraphic units or 

an individual cycle over large distances is one of the main feature of glacio-eustatic 

control. This has been documented in all the Paradox, Zechstein, and Zagros Basin 

cycles. The Pennsylvanian and Permian cycles of the Paradox Basin have been analysed 

and can be traced over significant distances from the basinal areas to the shelf areas 

(Raup and Hite, 1992; Goldhammer et al., 1994; Williams, 2009; Jordan and Mountney, 

2012). Additionally, the transgressive black shale deposit has been traced from the 

evaporitic cycles of the Paradox Formation, in the basin trough, into the shelf 

carbonates, at the shelf margin (Baars and Stevenson, 1982; Goldhammer et al., 1994). 

Moreover, regional and local tectonics, sediment availability and supply, climate, 

subsidence, and glacio-eustatic sea-level fluctuations resulted in the development of the 

observed cyclicity within the Paradox Formation (Trudgill and Arbuckle, 2009). These 

authors believed that the eustatic sea-level fluctuations, as a main factor influencing the 

Paradox cyclicity, were the result of the Gondwana Glaciations. Of greater lateral 

extent, reflecting the grater dimensions of the basin, the carbonate-evaporite cycles of 

the Zechstein Basin have been studied and correlated widely over Germany 

(Strohmenger et al., 1996a), Poland (Wagner and Peryt, 1997), the Netherlands (Geluk, 

2000a), and England (Tucker, 1991).  

Different orders of eustatic sea-level fluctuations, including 2
nd

, 3
rd

, 4
th

, and 5
th

 orders, 

have been documented in both the Paradox and Zechstein Basins (Goldhammer et al., 

1991; Tucker, 1991). Additionally, orbital forcing are interpreted on the timescales of 

Milankovitch cycles, including precession (ca. 20kyr), obliquity (ca. 40kyr), and 

eccentricity (ca. 100kyr and 400kyr), are recognized within the higher frequency orders 

(4
th

 and 5
th

 orders) from both basins (Goldhammer et al., 1991; Mawson and Tucker, 

2009). 

These features are similarly documented from the Zagros Basin Miocene Fatha 

Formation cycles, in which cycles (or parasequences) can be traced over large distances. 

The cyclicity in the Fatha Formation is widely documented in its equivalents in 

surrounding countries, including Iran and Syria, and it is a predominant Miocene feature 

in the Middle East, as well as worldwide. In addition, the correlation of the cycle-sets 

(parasequence sets) from the Fatha Formation, including retrogradational and 
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progradational cycle-sets, is widely traceable over all the studied areas. What does vary 

is the number of cycles in an individual cycle-set, which is variable from place to place. 

This is not documented in the analysis of cycle-sets from the Paradox Basin (Williams, 

2009). Instead, here five cycle-sets are consistently correlated over a large distance from 

the evaporite and carbonate-siliciclastic cycles of the Paradox, Honaker Trail, and 

Elephant Canyon Formations (Williams, 2009).   

Overall, glacio-eustatic sea-level fluctuations appear to have generated a dominant 

stratigraphic signal in all the Paradox, Zechstein, and Zagros cycles.   

5.4.7.2 Tectonic mechanism  

Tectonic mechanisms exert a major influence on the configuration of a sedimentary 

basin and a first order control upon the distribution of the sedimentary facies. In 

addition, syn-sedimentary faults or tectonic activity could make local changes in a 

basin. These tectonic conditions have been clearly observed in the shelf carbonates of 

the Paradox Basin. The presence of a thick phyloid algal bioherm and abrupt 

lithological changes within the shelf carbonates in the Paradox Basin indicate local 

tectonic and syn-depositional reactivation of the basement faults (Baars and Stevenson, 

1981; Goldhammer et al., 1994). However, the extensive correlation of the high-

frequency cycles of both the Paradox and Zechstein Basins is unlikely to be controlled 

by such local tectonic activity. 

A similar condition is seen in the Miocene Fatha Formation of the Zagros Basin. There 

is evidence for syn-sedimentary tectonic activity on basement faults in the region. 

Movement on tectonic basement faults created a number of palaeo-highs which in turn 

cut the Miocene basin into several sub-basins (Bahroudi and Koyi, 2004). Two main 

sub-basins, comprising the Sinjar and Kirkuk depocentres, are located in Iraq while the 

other depocentres extend into Iran. However, this tectonic activity apparently exerted 

only a minor influence on local Fatha Formation cyclicity. This can be concluded by the 

extensive correlation of the high-frequency cycles of the Fatha Formation. This feature 

of extensive continuity of high-frequency cycles in the Paradox, Zechstein, and Zagros 

Basins indicates that, with the expectation indicated above, local tectonic activity had 

only minor effect, if any, on depositional geometries.    
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5.5 Conclusions 

In this chapter, the carbonate-evaporite cycles of the Paradox and Zechstein Basins have 

been compared to the Miocene carbonate-evaporite cycles of the Fatha Formation in the 

Zagros Basin. The comparisons have been made in terms of basin configurations and 

development, tectonics, stratigraphy, lateral and vertical facies variations, the nature of 

the carbonate-evaporite cyclicities, and the mechanisms that have led to these 

cyclicities. The Carboniferous-Permian Paradox Basin is a long and asymmetric 

foreland basin that extends in a NW-SE direction. The basin covered most of east-

central Utah and SW Colorado and into NW New Mexico and NE Arizona, and was 

bordered by several palaeo-highs. The most significant palaeo-high was the 

Uncompahgre Uplift to the northeast of the basin that was a main source for terrigenous 

deposits. A thick evaporite cyclical succession accumulated in the basin centre to the 

east, whereas a carbonate cyclical succession was deposited on the shelf margin to the 

west. 

By contrast, the late Permian Zechstein Basin developed in a broad epicontinental 

shallow marine basin that covered much of north-central Europe and had a small 

connection with the upper Permian open sea through a narrow strait between Greenland 

and the Scandinavian Peninsula. In this basin five main carbonate-evaporite cycles were 

accumulated and extended from northern England, across the North Sea through the 

Netherlands, Denmark, Germany and Poland.  

Unlike the Miocene succession of the Fatha Formation in the NE Zagros Basin, which 

was accumulated on a gentle ramp, the Paradox and Zechstein successions were 

deposited on shelf platforms or distally-steepened ramps. However, some local, more 

continuously sloping ramp-like depositional settings were formed around the margins of 

the basins, where they are characterized by shallow-water carbonate and evaporite 

facies of peritidal and sabkha settings. 

Similar in stratigraphic character to the Miocene succession of the Zagros Basin, the 

Paradox succession passes up from the carbonate facies of the Pinkerton Trail 

Formation, at the base, into the evaporite cycles of the Paradox Formation and its lateral 

carbonate equivalents of the Barker Creek, Akah, Desert Creek, and Ismay Formations. 

These pass up to the carbonate-siliciclastic cycles of the Honaker Trail Formation and 

finally to the siliciclastic-carbonate cycles of the Cutler Group. This stratigraphic trend 
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suggests basin-filling and progradation into the basin in a south-westward direction. 

This is similarly seen in the Miocene Fatha Formation, with the Zagros Basin 

undergoing progradational basin-filling from north-east to south-west. 

The deposits of the Paradox and Zechstein Basins form thick cyclical successions; each 

reaches about 2km in thickness, whereas the Miocene Fatha Formation reaches 900m in 

thickness at the basin centre. Unlike the Miocene succession, which is composed of a 

number of shallowing-upward cycles that are bounded by flooding surfaces, the 

Paradox and Zechstein successions are characterised as sequences that define cycles of 

sea-level change, but in which each cycle is bounded by regional sequence boundaries 

that define each depositional sequence.      

Extensive correlation of the Paradox and Zechstein cycles and also the Fatha Formation 

cycles are possible over large distances. This suggests that the carbonate-evaporite 

cycles of the Paradox, Zechstein and Zagros Basins have originated primarily as a result 

of glacio-eustatic sea-level fluctuations and climate changes. Pennsylvanian-Early 

Permian times were characterized by the main Gondwana Glaciation that resulted in a 

fall in sea-level but the proximity of the Paradox Basin to the palaeo-equator created an 

arid and hot climate and resulted in the deposition of the thick evaporitic succession. 

However, the intensity of the glaciation reduced in the early Permian and the climate 

changed to hot and arid condition throughout the Permian at low latitudes. The 

evaporitic succession of the Zechstein Basin was developed in this arid and hot context 

during the late Permian.     

Overall, it can be concluded that climate has a dominant role in the deposition of the 

studied carbonate-evaporite cyclical successions. Evaporite deposition needs an arid to 

semi-arid climate and a restricted basin that has some connection to an open ocean. This 

climatic condition is observed in all the carbonate-evaporitic successions. In the case of 

cyclical successions of carbonate-siliciclastic character, both tectonic uplift, as a source 

of siliciclastic sediments, and climate are believed to have major roles in their 

development. 
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Chapter Six 

6. General Discussion 

Cyclical carbonate-evaporite successions are important deposits in the sedimentary 

record, whether in terms of being an archive for the study of sedimentary processes and 

palaeoenvironmental change or for hydrocarbon exploitation, or for economic geology 

such as the widespread extraction on salt, as for example in the case of the Zechstein 

Basin. This has motivated geologists to study these deposits worldwide. In this PhD 

project, an investigation has been carried out of the carbonate-evaporite cycles of the 

late Burdigalian-Langhian Fatha Formation from the periphery of the Zagros foreland 

basin in the Kurdistan region of Iraq. Cycles have been analysed and their origins 

evaluated, largely based upon the detailed characterization of outcrop sections which 

have been logged close to the palaeo-basin margin, and through the comparison of these 

logs with published records of cycles from the basin centre. This Zagros Basin cyclical 

succession has then been compared to the carbonate-evaporite cycles of the Paradox and 

Zechstein Basins. In this chapter, the controls that interacted to determine depositional 

architectures in each of these basins are discussed, to try to assess which controls or 

combination of controls were the dominant factors determining architectures in each of 

these cases. From this, lessons can be drawn for the interpretation of carbonate-

evaporite successions elsewhere. Methodological issues and preliminary implications 

for understanding and predicting the hydrocarbon reservoir geometries in these and 

similar successions will also be discussed. 

Controls on architectures of cyclical carbonate-evaporite successions: The first and 

main control on carbonate-evaporite basins is the tectonic setting, which determines 

basin physiography (Table 6-1). The Zagros Basin is a foreland basin that developed as 

a result of the tectonic compression between the Eurasian and Arabian plates. This 

tectonic setting developed a broad depression in the Early Miocene with gently sloping 

ramps around its margins. In the north-east of the basin, in the studied area, the ramp 

dipped southwestwards toward the basin centre. Similarly, the Paradox Basin 

(Pennsylvanian to Early Permian) also formed as a foreland basin. The basin was 

tectonically controlled by the shortening and growth of the Uncompahgre Uplift to the 

northeast of the basin and the concurrent formation of a deep trough which allowed the 

accumulation of the evaporites and marginal carbonates. In this example, favourable 
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conditions for the development of algal bioherms on the margin resulted in distally-

steepened carbonate ramp or platform geometries around the margin of the basin. In 

contrast, the Zechstein Basin developed as a much broader depression, largely as a 

result of thermal subsidence. The accumulation of carbonate and evaporites in these 

three basins was largely controlled by their tectonic settings. The carbonates of the 

Paradox Basin at the shelf margin, for example, were mainly controlled by the basement 

block movements that created favourable places for algal bioherm colonisation and 

aggradation. The carbonates of the Zechstein Basin are largely composed of reefal 

bioherms and grainstones around the margin, with laterally equivalent laminated 

mudstones in the basin centre. However, bioherms and corals are not developed on the 

Zagros carbonate ramp. This could be due to slightly elevated salinities or to highly 

energetic hydrodynamic conditions toward the edge of the basin inhibiting colonisation 

by reef-builders. Instead, gastropods, bivalves, and benthic foraminifera (rotaliids and 

miliolids) were common in the Zagros Basin. The latter, high energy marginal 

environment interpretation is not really supported by the sparse sedimentary structures 

that are preserved, therefore the elevated salinities model is preferred. 

The second major control on carbonate-evaporite successions is climate. Climate is an 

important factor for the deposition of evaporites that need evaporation to match or 

exceed marine water recharge, typically hot and dry conditions. The palaeoclimatic 

context of the Paradox Basin during the Pennsylvanian was that deposition was 

occurring across the peak of the main Gondwanan ice-house event, a palaeoclimatic 

phase that diminished through the early Permian. The deposition of the Paradox 

evaporites occurred during this main Pennsylvanian glaciation, but the position of the 

basin very close to the palaeo-equator meant that during high frequency episodes of 

high insolation the climate was hot and arid and led to evaporite deposition.  By the late 

Permian palaeoclimate was in the late stages of the broad Pennsylvanian-Permian 

glaciation, but the climate at the palaeolatitudes of central Europe, where the Zechstein 

Basin developed, was arid and hot. But there appears to have been little expression of 

the high frequency (4
th

 order) insolation fluctuations seen in the earlier Paradox Basin. 

The palaeoclimate during the Miocene in what is now NE Iraq was in the early stages of 

global ice-house development, but at this location the climate of the Zagros foreland 

basin was hot and arid. However, the arid/hot climate was cyclically interrupted by a 

shift towards increased marine water recharge compared to evaporation rates that 

resulted in relative sea-level rise, a return from hypersalinities toward more normal (but 
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perhaps still slightly elevated) marine salinities, and the deposition of the carbonates 

and shales. In the case of these late Burdigalian-Langhian Fatha Formation cycles, the 

high frequency cycles included increasingly wet/humid phases around the basin margin 

bordered by the Zagros Mountains. This led to cessation of the deposition of sabkha 

evaporites around the margin and increased siliciclastic input and progradation. This 

inference of a climatic evolution toward increasingly significant wet and humid 

conditions may also be recorded in the late stages of the Paradox Basin, when the 

carbonate and more siliciclastic-rich cycles developed and prograded toward the 

southwest within the basin. So regional increases in humidity are implied in the later 

stages of both the Zagros and Paradox Basins’ evolution. It is possible that this records 

an orographic effect of increased rainfall in response to growing mountain belt 

elevations and/or widths. The problem is that increased mountain elevations and hence 

relief also promote enhanced erosion rates, even for a stable climatic state, such that it is 

not possible to invoke an absolute increase in humidity with high levels of certainty.
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Table  6-1 Comparison of three carbonate-evaporite basins, including Zagros, Zechstein, and Paradox, in terms of their depositional developments, climates, and tectonics. 

Factors\Basins Zagros Basin Zechstein Basin Paradox Basin 

Age  Late Burdigalian-Langhian  Lopingian (late Permian) Pennsylvanian to Cisuralian (early 

Permian) 

Tectonic setting Early foreland basin Mainly thermal subsidence (local 

early  rifting-related basins) 

Foreland basin 

Palaeoclimate context  Early ice-house Late ice-house Peak ice-house 

Local climate context Arid, probably with developing 

humidity over growing mountain 

belt 

Arid, probably with developing 

humidity in later stages 

Arid (close to palaeo-equator), 

probably with developing humidity 

into the Cisuralian (early Permian), 

after uplift phase of the 

Uncompahgre Mountains 

Basin-margin physiography Ramp  Distally-steeped ramp (after Read, 

1985), evolving to ramp  

Distally-steeped ramp 

Stratigraphic context of 

evaporites 

Regressive sabkhas in margin 

(highstand and falling stage) and 

basinal lowstand gypsum and halite 

(falling stage and/or early 

transgressive) 

Few marginal sabkhas in late 

highstand (e.g. Z3 Seaham 

Formation) and basinal falling 

stage/lowstand evaporites (gypsum 

and halite) 

Lowstand evaporites (gypsum and 

halite) and highstand carbonate 

Basin width 500 km (northeast to southwest) ˃1000km (northeast to southwest 

length)  

150km (northeast to southwest) 

Lateral extent (proximal to 

basinal) of proximal facies 

(whether upper to lower ramp or 

shelf to slope) 

Tens of kilometres Tens to hundreds of kilometres Tens of kilometres 

Carbonate dominant types Packstones/grainstones Reefal bindstones and grainstones Algal bioherms and grainstones 

Siliciclastic progradation Late  Very late (minor) Late  

Cycle frequencies Third-order sequences and 4
th

-order 

(and probably also 5
th

 order) 

Third-order sequences and some 

4
th

-order parasequences 

Third- and fourth-order sequences 

and 5
th

-order parasequences 
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parasequences 
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Lateral extent of carbonate-evaporite cycles: Another important point to discuss is the 

distances over which lateral correlation of high-frequency cycles is possible, which has 

implications for the origins of the cycles. Three main factors have invoked to explain 

their origins, these being glacio-eustasy, tectonics, and sedimentary autocyclicity. The 

first factor can be recognized by evaluating the lateral extent and continuity of the 

cycles, where high continuity would support a galcio-eustatic origin. Local tectonic 

activity, on the other hand, is not likely to develop such laterally extensive, traceable 

cycles. The distances over which cycles might be developed would likely be controlled 

by the spacing of tectonic features, separating areas undergoing accommodation growth 

from areas undergoing concurrent accommodation reduction and so having different 

depositional geometries. Lastly, sedimentary factors that might develop high-frequency 

cycles, but of limited lateral extent, might include for example the progradation and 

autocyclic lateral switching in the position of tidal flat deposits along a basin margin. 

These three factors have been evaluated for the late Burdigalian-Langhian cycles of the 

Zagros Basin for the first time in this study. There are two critical observations which 

have been used to conclude that the Fatha Formation cycles originated as glacio-eustatic 

effects. These are: 1) the extensive correlation of the depositional cycles for many tens 

of kilometres, and 2) this being consistent with the glacio-eustatic fluctuations recorded 

worldwide during the Miocene. These three factors have been evaluated for Paradox 

and Zechstein Basins as well. In both cases, the presence and lateral continuity of high-

frequency cycles (Table 6.1) of these basins, and their occurrence during known periods 

of global palaeoclimate variability, allow the inference that the principal control on their 

cyclical sedimentary architectures were similarly a result of glacio-eustatic sea-level 

fluctuations and associated regional, high frequency palaeoclimate fluctuations.  

Implications for sequence stratigraphic models of carbonate-evaporite successions: In 

term of sequence stratigraphy, different models have been proposed for carbonate-

evaporite deposits (Tucker, 1991; Handford and Loucks, 1993; Weber et al., 1995; 

Strohmenger et al., 1996a; Sarg, 2001). Most of these models have been applied to the 

Paradox and Zechstein deposits. The position of carbonate and evaporite deposits in the 

basins have been critically analysed in term of system tracts and sequence boundaries 

(see Chapter Five). Each of individual cycle (Z1-Z3) in the Zechstein Basin represents a 

third-order sequence that is bounded by type-1 sequence boundaries (Tucker, 1991). 

This type-1 sequence is recognized based on the evidence of sea-level falling to below 

the level of a shelf break. However, in the upper cycles (Z4-Z5), the sequence 
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boundaries change to type-2 sequence boundaries (Tucker, 1991). This is due to 

evolution of the basin margin (on the western margin of the Northern Zechstein Basin) 

from a shelf slope (or over-steepened ramp to use original terminology of Read, 1985) 

to a carbonate ramp. On the other hand, 3
rd

 order type-1 sequence boundaries are 

recognized throughout the Paradox cycles (Weber et al., 1995).  These differences in the 

type of sequence boundary are probably due to the basin margin physiography that is 

largely controlled by tectonic setting but also by the presence or absence of slope-

steepening coral or algal bioherms.  

The Fatha Formation cycles have been interpreted as parasequences that developed 

within a 3
rd

 order transgressive-regressive sequence (TST-RST). This interpretation has 

been made based on vertical facies changes within the individual cycles that are 

dominated by of shallowing-upward/shoaling-up RST trends. These shallowing-upward 

parasequences are bounded by flooding surfaces that can be placed at the base of the 

calcareous mudstones. Each cycle starts with a flooding event and then shoals up, and 

then progrades toward the basin. Over the formation as a whole, progradation is clearly 

evidenced by the first appearance and then progradation of the red siliciclastic deposits, 

derived from the Zagros Mountains, during the deposition of the Fatha Formation. This 

may also imply the progressive filling to overfilling (completed in the succeeding Injana 

Formation) of the basin and the tectonic growth of the Zagros Mountains during the late 

Burdigalian. The marginal evaporites of the Fatha cycles were accumulated during 

highstand system tract and falling stage in a broad supratidal sabkha setting. Lowstand 

evaporites do also occur in the basin centre. In contrast, the bulk of the Paradox and 

Zechstein evaporites were subaqueously deposited within lowstand system tracts. The 

deposition of lowstand evaporite simultaneously occurred with subaerial exposure of the 

shelf margin. This is clearly observed in all the Paradox cycles and some of the 

Zechstein cycles (Tucker, 1991; Weber et al., 1995).  

A new depositional model has been presented for the carbonate-evaporite cycles of the 

Fatha Formation in Chapter 3 and is summarised in Figure (3-6). This model is a 

significant departure from previously published carbonate-evaporite sequence 

architectures (Handford and Loucks, 1993; Weber et al., 1995; Strohmenger et al., 

1996a; Sarg, 2001) and is necessitated by the recognition of the exclusively carbonate 

ramp geometry, without any over-steepened slope, that characterised the north-eastern 

margin of the Zagros Basin at time of deposition. 
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Uncertainties in the analysis of carbonate-evaporite successions: The first point that is 

worth mentioning is that the sedimentological and sequence stratigraphical 

investigations on the Fatha facies have been undertaken at the basin margin where not 

all the cycles are preserved. This creates difficulty in the interpretation and correlation 

of cycles from the margin to the basin centre because of the proximal-distal variabilities 

that have been seen in the cycles. These variabilities include both lateral variations from 

north-east to south-west and upward variations through the succession. The majority of 

the cycles in the lower part of the basin margin succession comprise four main 

depositional facies, these being from base to top; calcareous mudstone, shallow-marine 

carbonate, nodular evaporite, and red siliciclastic units. Whereas, the cycles vary the 

basin centre are composed of calcareous mudstone\carbonate and evaporites (anhydrite 

and halite). These variabilities are due to the siliciclastic input to the basin around the 

margin as a result of the tectonic growth of the Zagros Mountains, and to the restriction 

of the basin toward the basin centre, most notably during the relative lows in sea-level. 

In addition, the variabilities of the cycles upward through the succession, including 

decreasing cycle thicknesses, missing evaporite deposits, decreasing marine deposits, 

and increasing siliciclastic facies, are due to the progradation and migration of the 

shoreline south-westwards into the basin. These trends have been interpreted as 

representing progressive shallowing throughout Fatha Formation deposition. This 

shallowing-upward trend has been enhanced by progradation of the siliciclastic deposits 

from the basin margin to the SW of the basin. This resulted in the migration of the 

shoreline through time that in turn resulted in the formation of the variations in the 

cycles around the margin where not all the cycles are preserved.  

The second point that is worth mentioning is the interpretation of extensive chicken-

wire and nodular evaporites in the Fatha Formation. The best evidence that leads to high 

levels of certainty in the primary origin of the Fatha evaporites can be listed as the 

follows: 1) Lack of diagenetic origin of the evaporite: Secondary nodular evaporites 

originate from diagenesis of pre-existing laminated evaporites, and so traces of the 

original laminations are likely still to be preserved locally. This is used as a good 

indicator for the detection of secondary nodular evaporites. However, such traces of 

original laminations have not been observed in the Fatha Formation evaporites. Only 

one depositional parasequence includes laminated evaporite facies and these are 

consistently well preserved. 2) The association of the nodular evaporites above 

shoaling-upwards shallow-marine carbonates and intertidal facies is another factor 
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increasing certainty in the primary origin of the nodular evaporites. The intertidal facies 

are composed of algal mats and stromatolites that include fenestrate pores and evaporite 

pseudomorphs. 3) The last factor confirming the primary sabkha origin of the proximal 

evaporites is the continuation of the vertical facies trend into overlying red siliciclastics 

(the red claystones), which are consistent with a continuing regressive trend with 

clastics over-riding the marginal sabkha environments. 

It is worth mentioning that palaeo-salinities appear to have varied upward through the 

individual Fatha Formation cycles, as well as through the whole succession. The 

calcareous mudstone units, at the base of each cycle, were deposited during 

transgression in intially hypersaline conditions. This is indicated by the presence of 

hypersalinity indicator fossils, including rotaliids and miliolids. This elevated salinity 

may have only applied around the laterally extensive shallow basin margin due to 

locally high evaporative conditions in shallow waters, whereas toward the basin centre, 

the calcareous mudstone represents a deeper water facies that contains planktonic 

foraminifera and therefore probably more normal marine salinities (Shawkat, 1979). 

Salinities increase upward through an individual cycle where restricted lagoonal 

environments are recorded, as evidenced by the presence of evaporite pseudomorphs in 

restricted carbonate microfacies. More normal marine carbonate microfacies are 

developed around the shoals. However, overall the salinity decreases upward through 

the succession as indicated by the increasing presence of normal marine fossils, 

including bryozoas and oyster. This would be consistent with a decrease in the ratio of 

evaporation to recharge, whether marine or freshwater input. The consistent marine 

signal in the strontium isotope record does not, however, resolve a freshwater source or 

increasing freshwater input through the Fatha Formation succession. 

Methodological issues: The Fischer plot methodology has been used to show the 

variation in high-frequency parasequence architecture in the Fatha Formation. It is a 

useful method to aid interpretation of the stacking patterns, systems tracts, and 

correlation of the cycles (Sadler et al., 1993). It can be used it to evaluate the lateral 

extension of the cycles that in turn can be used to evaluate the origins of the cycles. 

Importantly, Fischer plots are best used for the characterisation of successions of 

shallowing-upward cycles and it is recommended that it be applied where at least 50 

cycles are developed. However, it is worth mentioning that compaction of the sediments 

will introduce an error in the plots that in turn affects the amount of the accommodation 
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space inferred through time. It is because the cycles are similar in lithological character 

that such errors are considered likely to be a second order effect in the context of the 

overall plot trends. Fischer plots have not been generated for the Paradox Basin and 

Zechstein Basin cycles due to the lack of availability of published continuous detailed 

logs in the Chapter 5 secondary study, and because of the poor chronostratigraphic 

constraint of top and base of each succession. 

Implications for hydrocarbon reservoir geometries: The association of carbonates and 

evaporites in cyclical successions can have significance in petroleum systems. The 

carbonates can act as good reservoirs, if either good or well-connected primary 

porosities or good and well-connected secondary or fracture porosities are developed, 

whereas the evaporites may provide good cap rocks. Recently, Cenozoic carbonate 

reservoirs have been investigated in Kurdistan and north-central Iraq. The lateral extent 

of these potential carbonate reservoirs on the margins of Burdigalian-Langhian Zagros 

Basin, traceable for tens of kilometres basinward and potentially hundreds of kilometres 

parallel to the basin margin is significant. . The sabkha evaporites could act as extensive 

intraformational seals, capping the carbonate facies of each cycle. This would mean that 

the formation as a whole will behave as a series of separated reservoir units, with 

potentially high lateral permeabilities and connectivity, but much lower vertical 

permeabilities and connectivity due to the presence of the mudstones and the evaporites 

in each cycle. Moreover, the regularity in the stacking patterns that are correlated across 

the whole area would be another important point in any evaluation of the carbonate 

reservoirs and evaporite seals. 

Suggestions for future work: Throughout this PhD project, sedimentological and 

sequence stratigraphical tools have been used to study the carbonate-evaporite cycles of 

the Late Burdigalian-Langhian Fatha Formation. However, the studied outcrops have 

been logged in detail only around the basin margin where the succession has reduced 

thickness and numbers of cycles compared to in the basin centre. In addition, there was 

no available detailed characterization of basinal facies that could be used to aid 

correlation of basinal facies to the facies of the basin margin. In order to study the 

succession in the whole basin, these recommendations should be considered for future 

work: 1) Using well logs, cores and seismic profiles to extend the study to cover both 

marginal and basinal facies, over the whole basin. This would allow the development of 

a depositional model for the whole basin. It is worth mentioning that analysis of the 
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cycles in terms of lateral correlation and sequence stratigraphic interpretation would 

require a complete section in the basin centre. This would allow correlation the cycles 

basin-wide and further evaluation of the origin of the cycles. 2) Hydrocarbon potential 

and reservoir characterization would be another topic worthy of further investigation, 

with respect to the carbonates as reservoirs and evaporites as regional hydrocarbon seal. 

This would require petrophysical studies of the carbonate facies, including the links 

between porosity and permeability and primary facies, together with analysis of any 

secondary diagenetic or fracture modification of porosity and permeability distributions, 

that would then allow rock typing (in the sense of Hollis et al. (2010)) and mapping of 

rock types. 3) Geochemistry of the evaporite units could further help understanding of 

the precipitation history and origin of the evaporites. This may also need detailed core 

sampling of evaporites to observing the structure of the evaporites. Lastly, 4) an 

approximate water depth has been determined from the benthic foraminifera around the 

margin of the basin. However, the water depth in the basin centre has yet to be 

characterized by studying benthic and planktonic foraminifera. This is another tool 

which would allow estimation of the variation in the water depth from the basin margin 

to the basin centre. 
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Chapter Seven 

7. Conclusions 

This study has aimed to investigate the variations in cyclical carbonate-evaporite 

depositional systems of three main cyclic successions, comprising the late Burdigalian-

Langhian Fatha Formation in the Zagros Foreland Basin, the Pennsylvanian to Permian 

of the Paradox Basin in the USA and the late Permian of the Zechstein Basin in north-

central Europe. The focus of the study was to determine the depositional settings and to 

analyze the high-frequency cyclical geometries of the carbonate-evaporite succession of 

the Fatha Formation on the margin of the Zagros Foreland Basin in the Kurdistan 

region. The second aim was to analyze the carbonate-evaporite cycles of the Paradox 

and Zechstein Basins and then to compare them to the carbonate-evaporite cycles of the 

Miocene Fatha Formation.  

The Miocene Fatha Formation at the periphery of the Zagros Foreland Basin comprises 

of a number of carbonate-evaporite cycles and crops out extensively in the Kurdistan 

region. Nine outcrops of the Fatha Formation were selected in in the vicinity of the city 

of Sulaimani and nine sedimentary sections were logged. Thin section preparation and 

analysis, microfacies analysis, fossil extractions, and the characterization of lateral and 

vertical facies variations, as well as cycle analysis, have been conducted for this 

purpose. These investigations have produced the following conclusions. 

At the margin of the Zagros Foreland Basin, the Fatha Formation overlies either the 

Jeribe Formation conformably or Oligocene/Late Eocene sediments unconformably, 

further to the north-east. The Lower Miocene formations, including the Euphrates, 

Dhiban, and Jeribe Formations, are recognized for the first time in this study area along 

the Qishlagh-Sargrma Mountain below the Fatha Formation. Oligocene rocks have also 

been recognized locally. 

At the margin of the Zagros Basin in the Kurdistan region the Fatha Formation 

comprises 17 to 42 carbonate-evaporite cycles. A typical cycle passes up from a 

calcareous mudstone unit into a shallow-marine carbonate member and this passes up 

into a nodular evaporite deposit. Each cycle is typically capped by a red siliciclastic 

unit. The boundaries between the calcareous mudstones and the following carbonates, 

as well as the carbonates and the succeeding evaporites, are gradational. However, there 
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are typically abrupt changes between the evaporites and the overlying red siliciclastic 

units. Additionally, there is an abrupt change between the red siliciclastic unit with the 

overlying calcareous mudstone unit of the next cycle. 

The calcareous mudstones, in the lower part of the succession, were deposited in 

hypersaline conditions, perhaps 20-30m deep, whereas toward the upper part of the 

succession they were accumulated in normal marine waters in relatively shallow 

settings. Twenty-one carbonate microfacies were identified that were deposited in a 

variety of environments, including hypersaline lagoons, restricted lagoons, shallow-

lagoons, sand shoals and beaches, sand shoal edges, intertidal, tidal-flats, and coastal 

settings. These carbonates shoal up to supratidal sabkha evaporites that are 

characterized by nodular and chicken-wire structures. Occasionally, laminated 

evaporites are subaqueously deposited in shallow-lagoons. The overlying red 

siliciclastic deposits that occur above the evaporite unit within each cycle are composed 

of detritus derived from the Zagros Mountains to the northeast of the basin, and were 

deposited in different alluvial depositional environments of a distal alluvial plain, as 

river channel deposit, palaeosols, but probably also with significant aeolian dust input in 

an arid coastal setting. These results allow the inference that the depositional settings 

record accumulation mainly in an inner ramp setting, on a continuously and gradually 

dipping ramp that generally dipped from north-east to south-west. 

The cycles show variations from the basin margin to the basin centre. The margin of the 

basin has covered approximately 50km of the area where the cycles comprise 

interbeddings of calcareous mudstone, carbonate, evaporite, and red siliciclastic 

deposits upward throughout each of the cycles. In contrast, the cycles at the basin centre 

are predominately composed of interbedded calcareous mudstone/carbonate and 

evaporite with the only occurrence of red siliciclastics being as minor accumulations in 

the upper part of cycles in the upper member of the formation. A number of significant 

observations can be made with respect to the carbonate-evaporite cycles, as well as the 

succession as a whole: (i) the preserved thickness of the formation decreases from the 

basin centre towards the basin margin. At the basin margin it is between 50 and 300m 

thick, whereas in the basin centre it is between 600 to 900m thick; (ii) the number of 

cycles decreases toward the margin where 12 to 40 cycles are documented, whereas 

about 50 cycles have been recorded in the basin centre; and (iii) the thickness of each 
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cycle is 5 to 13 m in the lower part of the formation, but only 1 to 5 m in the upper part 

of the formation. 

The succession reveals a stack of high-frequency shallowing-upward cycles. Each cycle 

is passes up from hypersaline conditions, through shallow marine packstones and 

grainstones to shallow-lagoons, sand shoals or beaches, and intertidal deposits, into the 

supratidal sabkha and distal alluvial plain deposits. This trend varies toward the upper 

part of the succession where the evaporite component is reduced or missing, marine 

deposits including calcareous mudstone and shallow marine carbonate deposits decline, 

and siliciclastic deposits become predominant. These changes in depositional 

components toward the upper part of the succession indicate an overall shallowing-

upward or regressive succession that prograded toward the basin, to the south-west. The 

cycles prograded through time which in turn resulted in the migration of the shoreline 

toward the southwest of the basin. The progradation continued throughout the Miocene 

and into the Pliocene, when fluvial deposits of the overlying Injana and Mukdadiya 

Formations covered the whole region. Thickness variations in the cycles, as well as of 

the whole succession, from the basin margin into the basin centre, reflect this 

progradation and migration of the shoreline. This resulted in the preservation of a 

minimum number of cycles and thinner succession around the basin margin, whereas a 

thicker succession was accumulated at the basin centre. The preservation of only a 

reduced number of cycles at the basin margin was also due to onlapping the cycles onto 

a sequence boundary at the base of the succession that resulted in the whole succession 

not being preserved at the basin margin.   

The deposition of the thick evaporite succession of the Fatha Formation was a response 

to hot and arid climatic conditions during the Miocene that is known as the Miocene 

Climatic Optimum, in the early stages of the longer-term Neogene-Quaternary ice-

house. However, the reduction or absence of evaporites in the upper part of the Fatha 

Formation succession may record an increasingly wet and humid climate around the 

north-eastern margin of the basin (close to the growing Zagros mountain range), this 

decrease in the intensity of the aridity toward the upper part of the succession being 

different from the time-equivalent, highly evaporative conditions in the basin centre 

where evaporites were still accumulating. The more humid climate is clearly also 

reflected in the upper Miocene to Pliocene fluvial deposits of the Injana and Mukdadiya 
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Formations, which are predominately composed of fluvial deposits with very minor 

marine deposits.    

Sequence stratigraphic investigations and isotope dating of the Fatha Formation reveal 

that it was deposited during a 3
rd

-order accommodation cycle (50-300m thick, 2.5 Myr 

duration) that is in turn composed of a number of 4
th

-order parasequences (12-40 cycles, 

each approximately 60,000 years in duration). The Fatha Formation was deposited 

between about 18 and 15.45 million years ago. The 3
rd

-order sequence is bounded by a 

sequence boundary at the base that is characterized by an erosional unconformity at the 

margin, and correlative conformity in the basin centre. The parasequences are 

characterized by shallowing-upward cycles that are bounded by flooding surfaces. The 

parasequences in the lower part of the Fatha Formation succession onlapped the 

sequence boundary and form a retrogradational stacking pattern, whereas the 

parasequences in the upper part of the succession form a progradational stacking 

pattern. The correlation of the parasequences reveals that (i) the individual 

parasequences may be correlated over at least several tens of kilometres across the 

studied sections, (ii) several carbonate marker beds are extensive and may be used for 

correlation, (iii) two main retrogradational and progradational cycle-sets are recognized 

and extensively correlated over the whole studied area, and (iv) the number of cycles in 

each cycle-set varies from place to place and a few cycles pinch out laterally,  possibly 

as the result of autogenic sedimentary mechanisms. The retrogradational parasequence 

set accumulated during increasing accommodation creation due to either sea-level rise 

or increased subsidence rates, whereas the progradational set was deposited during 

decelerating accommodation space as a result of high sediment supply and/or possibly 

lower subsidence rates. Systematic variations in thickness define a third-order 

accommodation cycle that is regionally correlative over the whole studied area. The 

lateral extent of the 4
th

-order stacking patterns are characteristic of glacio-eustatic sea-

level fluctuations during the Miocene. These glacio-eustatic sea-level fluctuations are 

generated as a result of waxing and waning of glaciation due to orbital forcing of 

climate variations. In addition, the extensive correlation of the parasequence sets is 

unlikely to be the result of tectonic oscillations. However, overall thickness variations 

away from palaeo-highs are probably the result of syn-sedimentary tectonic activity 

(regional variations in subsidence rates) or of subtle compaction differentials due to 

underlying stratigraphic thickness variations. 
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The Paradox Basin (Pennsylvanian-Permian, USA) and the Zechstein Basin (late 

Permian, Central Europe) are well-known examples of cyclical carbonate-evaporite 

successions with high-frequency and composite orders of cyclicity and have been the 

focus of a number of high-resolution sequence stratigraphic studies. Comparison of 

these with the carbonate-evaporite cycles of the Fatha Formation helps to explain the 

interactions of the various factors that influenced and controlled the architecture of these 

basins. Among these factors, palaeo-climate variations, tectono-stratigraphic trends, and 

basin configurations have been the main influences and controls on these basins’ 

depositional architectures. Glacio-eustatic sea-level fluctuations are inferred to have 

been the main mechanism that generated the higher-frequency cyclicities in each case. 

These basins have some criteria in common: (i) they contain high-frequency composite 

orders of carbonate-evaporite parasequences, (ii) the parasequences, as well as 

parasequence sets and lower order sequences, are regionally correlative across the 

whole of each basin, (iii) they all include sites of accumulation of thick halite deposits, 

and (iv) they were developed during arid and semi-arid climates. In general, the cycles 

of the Fatha Formation more closely resemble those of the Paradox Basin cycles in term 

of stratigraphic trends and stacking geometries, and they were both terminated by the 

progradation of siliciclastics infilling the basin.  

A distinct sequence stratigraphic model for cyclical carbonate-evaporite successions on 

a ramp margin has been developed, based upon the study of the Fatha Formation. It is 

suggested that this may also be applicable to the uppermost cycles of the Zechstein 

Basin, where developed on a gradually dipping basin margin, where sabkha deposits 

developed. Access to more detailed log records of the Zechstein cycles would be needed 

to test this. This new sequence stratigraphic model for cyclical carbonate-evaporite 

successions on a ramp margin may have wider application to similar successions 

elsewhere in the geological record. 
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Appendix 1 - Stratigraphic logs of the study areas 
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Appendix 2 - Tables of number, thickness, cumulative thickness, and cumulative 

departure of the cycles 
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1- Kfri Section 

Cycle 

No. 

Calcareous 

mudstone 

(m) 

Carbonate 

(m) 

Evaporite 

(m) 

Red 

siliciclastic 

(m) 

Cycle 

thickness 

(m) 

Cumulative 

thickness 

(m) 

Cumulative 

departure 

(m) 

0 0 0 0 0 0 0.00 0.00 

1 0 0 3 0 3 3.00 -1.56 

2 0.3 0 7 0 7.3 10.30 1.18 

3 0.3 0 5 0 5.3 15.60 1.93 

4 0.3 0.2 3 0 3.5 19.10 0.87 

5 0 0.2 6 0 6.2 25.30 2.51 

6 0.2 0 1 2 3.2 28.50 1.15 

7 0.3 0.4 6 3 9.7 38.20 6.30 

8 1 0 5 4 10 48.20 11.74 

9 2 0 0.6 1.5 4.1 52.30 11.28 

10 0.2 0 0.4 0.5 1.1 53.40 7.82 

11 1 0.5 1.3 4 6.8 60.20 10.07 

12 0.4 0 1 0 1.4 61.60 6.91 

13 1 0 3 0.4 4.4 66.00 6.75 

14 0.5 0 1 1 2.5 68.50 4.69 

15 2 0 3 1 6 74.50 6.13 

16 0.5 0.3 4 2 6.8 81.30 8.38 

17 0.3 0 1 0 1.3 82.60 5.12 

18 0.5 0.5 0 1.5 2.5 85.10 3.06 

19 0.2 0.5 0 2 2.7 87.80 1.20 

20 4 0.2 0 0.5 4.7 92.50 1.35 

21 1.5 0 1 2 4.5 97.00 1.29 

22 0 0 0 5 5 102.00 1.73 

23 0 0 0 5 5 107.00 2.17 

24 0 0 0 4 4 111.00 1.62 

25 0 0 0 5 5 116.00 2.06 

26 0 0 0 2.5 2.5 118.50 0.00 
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2- Mamlaha Section 

Cycle 

No. 

Calcareous 

mudstone 

(m) 

Carbonate 

(m) 

Evaporite 

(m) 

Red 

siliciclastic 

(m) 

Cycle 

thickness 

(m) 

Cumulative 

thickness 

(m) 

Cumulative 

departure 

(m) 

0 0 0 0 0 0 0.00 0.00 

1 0.8 0 1 7 8.8 8.80 1.70 

2 4 3 5 1 13 21.80 7.60 

3 2 3.5 3 1.5 10 31.80 10.51 

4 1 0.2 5 4 10.2 42.00 13.61 

5 3 0.8 10 3 16.8 58.80 23.31 

6 2.7 0.3 2 3 8 66.80 24.21 

7 5 0.1 3 3 11.1 77.90 28.22 

8 1.5 0.1 1 3 5.6 83.50 26.72 

9 0.2 0 4 5 9.2 92.70 28.82 

10 0.5 1 3 1.5 6 98.70 27.72 

11 1.5 0.5 7 6   15 113.70 35.63 

12 0.5 0.5 10 0 11 124.70 39.53 

13 0.1 0.1 3 0 3.2 127.90 35.63 

14 0 1 4 4 9 136.90 37.53 

15 4 0.8 4 1 9.8 146.70 40.24 

16 0.5 0 1 6 7.5 154.20 40.64 

17 0.5 1 4 3 8.5 162.70 42.04 

18 1 1.5 5 7 14.5 177.20 49.44 

19 0.3 0.5 2 1 3.8 181.00 46.15 

20 1 2.1 1 0 4.1 185.10 43.15 

21 0 0.2 4 3 7.2 192.30 43.25 

22 1 0 3 2 6 198.30 42.15 

23 1 2 5 0 8 206.30 43.05 

24 0 0.5 1 3 4.5 210.80 40.46 

25 1.5 6 0 4 11.5 222.30 44.86 

26 0.1 0.3 0 7 7.4 229.70 45.16 

27 0.5 0.2 1 2 3.7 233.40 41.76 

28 0.5 1 3 3.5 8 241.40 42.67 

29 0 0 0 6.5 6.5 247.90 42.07 

30 3 0.2 0 7 10.2 258.10 45.17 

31 1.5 0.1 3 2 6.6 264.70 44.67 

32 0 0.4 0 3 3.4 268.10 40.98 

33 0 0.5 0 3 3.5 271.60 37.38 

34 0 0.2 0 0.5 0.7 272.30 30.98 

35 0 0.2 0 0.5 0.7 273.00 24.58 

36 0 0.5 0 0.5 1 274.00 18.49 

37 0 0.3 0 4 4.3 278.30 15.69 

38 0 0.3 0 2 2.3 280.60 10.89 

39 0 1.5 0 3.5 5 285.60 8.79 
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40 0 0.3 0 0.5 0.8 286.40 2.50 

41 0.5 0.2 0 6 6.7 293.10 2.10 

42 0 0 0 5 5 298.10 0.00 
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3- Sangaw Section 

Cycle 

No. 

Calcareous 

mudstone 

(m) 

Carbonate 

(m) 

Evaporite 

(m) 

Red 

siliciclastic 

(m) 

Cycle 

thickness 

(m) 

Cumulative 

thickness 

(m) 

Cumulative 

departure 

(m) 

0 0 0 0 0 0 0.00 0.00 

1 0.2 0.7 1.5 0.5 2.9 2.90 -2.44 

2 4 2.5 0 5.5 12 14.90 4.21 

3 6.5 2.5 2 1 12 26.90 10.87 

4 1 0.4 3 1.5 5.9 32.80 11.43 

5 1.7 0.8 4 2 8.5 41.30 14.58 

6 1 0.4 4 1 6.4 47.70 15.64 

7 2 0 2.5 1.5 6 53.70 16.29 

8 0.2 0 3 4 7.2 60.90 18.15 

9 1.6 1.5 0 1.5 4.6 65.50 17.41 

10 0.5 1.5 3 2 7 72.50 19.06 

11 0.5 0 4 2.5 7 79.50 20.72 

12 6 2 0 3 11 90.50 26.38 

13 0 0.5 0 0.5 1 91.50 22.03 

14 3 0.5 0 3.5 7 98.50 23.69 

15 0.3 1 0 4 5.3 103.80 23.64 

16 0.2 1 0 1.5 2.7 106.50 21.00 

17 0.3 0.3 0 2 2.6 109.10 18.26 

18 3.5 1.4 0 7.5 12.4 121.50 25.31 

19 2.5 3 0 5 10.5 132.00 30.47 

20 0 0 0 2.5 2.5 134.50 27.63 

21 0 0 0 1 1 135.50 23.28 

22 0 0 0 2 2 137.50 19.94 

23 2.2 1.5 0 0.3 4 141.50 18.59 

24 0.5 1 0 0 1.5 143.00 14.75 

25 0.5 1 0 2 3.5 146.50 12.91 

26 0 0 0 2 2 148.50 9.56 

27 0 0 0 3 3 151.50 7.22 

28 0 0 0 1 1 152.50 2.87 

29 0.2 0.3 0 4 4.5 157.00 2.03 

30 1 0.5 0 0.5 2 159.00 -1.31 

31 2.5 2.5 0 3 8 167.00 1.34 

32 0 0 0 4 4 171.00 0.00 
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4- Aj Dagh Section 

Cycle 

No. 

Calcareous 

mudstone 

(m) 

Carbonate 

(m) 

Evaporite 

(m) 

Red 

siliciclastic 

(m) 

Cycle 

thickness 

(m) 

Cumulative 

thickness 

(m) 

Cumulative 

departure 

(m) 

0 0 0 0 0 0 0.00 0.00 

1 1 0.2 2 2 5.2 5.20 -0.86 

2 2.4 0.3 0 2.3 5 10.20 -1.92 

3 0 0.3 0 3 3.3 13.50 -4.68 

4 1.5 0.3 5 3 9.8 23.30 -0.94 

5 1.6 0.7 2 4 8.3 31.60 1.30 

6 3 0.5 6 3 12.5 44.10 7.74 

7 1.5 0 2 3 6.5 50.60 8.18 

8 0.5 0 4 3 7.5 58.10 9.62 

9 0.3 1.5 0 4 5.8 63.90 9.36 

10 0.5 0.7 0 4 5.2 69.10 8.50 

11 0.5 0.4 4 2 6.9 76.00 9.34 

12 1 0 4 6 11 87.00 14.28 

13 2 0 6 0 8 95.00 16.22 

14 3.5 1 0 7 11.5 106.50 21.66 

15 4 1 0 4.5 9.5 116.00 25.10 

16 0.3 0.1 3 3 6.4 122.40 25.44 

17 0.2 0.5 0 7 7.7 130.10 27.08 

18 0.2 1.5 4 5 10.7 140.80 31.72 

19 2.5 3 1.5 3 10 150.80 35.66 

20 0 0 0 3 3 153.80 32.60 

21 0 0 0 3 3 156.80 29.54 

22 0 0 0 4 4 160.80 27.48 

23 1 0.3 0 2 3.3 164.10 24.72 

24 0 0.2 0 1 1.2 165.30 19.86 

25 0 0.3 0 4 4.3 169.60 18.10 

26 0.1 0.1 0 0.5 0.7 170.30 12.74 

27 3 2 0 0.5 5.5 175.80 12.18 

28 0 0 0 1 1 176.80 7.12 

29 0 0 0 2 2 178.80 3.06 

30 0 0 0 3 3 181.80 0.00 
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5- Takiya Section 

Cycle 

No. 

Calcareous 

mudstone 

(m) 

Carbonate 

(m) 

Evaporite 

(m) 

Red 

siliciclastic 

(m) 

Cycle 

thickness 

(m) 

Cumulative 

thickness 

(m) 

Cumulative 

departure 

(m) 

0 0 0 0 0 0 0.00 0.00 

1 4.5 0.6 4 1 10.1 10.10 2.90 

2 0.5 0.2 3 3 6.7 16.80 2.39 

3 2.5 0.6 5 4 12.1 28.90 7.29 

4 3 0.6 3 3 9.6 38.50 9.69 

5 3.5 0.3 5 3 11.8 50.30 14.29 

6 2.5 5 1 2 10.5 60.80 17.58 

7 1 0.5 10 3 14.5 75.30 24.88 

8 1 0.3 6 1 8.3 83.60 25.98 

9 1 1 4 2 8 91.60 26.77 

10 0.4 0 6 0 6.4 98.00 25.97 

11 1.5 0 3 0 4.5 102.50 23.27 

12 0.3 0.1 2 3 5.4 107.90 21.46 

13 6 2 4 4 16 123.90 30.26 

14 1 2.5 2 6 11.5 135.40 34.56 

15 0 1.5 6 0 7.5 142.90 34.86 

16 0.5 0 5 0 5.5 148.40 33.15 

17 0.4 0.1 0 3 3.5 151.90 29.45 

18 1 0 0 4 5 156.90 27.25 

19 0 0.4 0 3 3.4 160.30 23.44 

20 1.5 4.5 0 2.5 8.5 168.80 24.74 

21 0 0 0 9 9 177.80 26.54 

22 1 0 0 4 5 182.80 24.34 

23 1 0.5 0 3 4.5 187.30 21.63 

24 2 1.2 0 6.5 9.7 197.00 24.13 

25 0 0 0 9 9 206.00 25.93 

26 0 0 0 2 2 208.00 20.72 

27 0.7 0.2 0 2 2.9 210.90 16.42 

28 0.5 0 0 1 1.5 212.40 10.72 

29 2 0 0 1 3 215.40 6.51 

30 1 0 0 10 11 226.40 10.31 

31 0 0 0 2 2 228.40 5.11 

32 0 0 0 2 2 230.40 -0.09 

33 0.5 0 0 10 10.5 240.90 3.20 

34 0 0 0 4 4 244.90 0.00 
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6- Basara Section 

Cycle 

No. 

Calcareous 

mudstone 

(m) 

Carbonate 

(m) 

Evaporite 

(m) 

Red 

siliciclastic 

(m) 

Cycle 

thickness 

(m) 

Cumulative 

thickness 

(m) 

Cumulative 

departure 

(m) 

0 0 0 0 0 0 0.00 0.00 

1 4.5 0.5 1 8 14 14.00 5.90 

2 2.5 0.6 3 4 10.1 24.10 7.91 

3 2 0.3 5 3 10.3 34.40 10.11 

4 0.6 0.5 1 4 6.1 40.50 8.12 

5 3 0 4 4 11 51.50 11.02 

6 2 4 7 4 17 68.50 19.93 

7 0.7 1.4 1.5 2 5.6 74.10 17.43 

8 0.2 2 5 2 9.2 83.30 18.53 

9 0.4 0.4 7 2 9.8 93.10 20.24 

10 5.5 2 1 4 12.5 105.60 24.64 

11 7 6 0 3 16 121.60 32.55 

12 4.5 5 0 1.5 11 132.60 35.45 

13 0.5 1 0 5 6.5 139.10 33.85 

14 1 2 1 9 13 152.10 38.76 

15 1.5 0.7 0 1.5 3.7 155.80 34.36 

16 1 0.2 0 1 2.2 158.00 28.47 

17 0 0.2 0 1 1.2 159.20 21.57 

18 0 0 0 5 5 164.20 18.48 

19 0 0 0 3 3 167.20 13.38 

20 1.5 1.5 0 1 4 171.20 9.28 

21 0.5 0 0 6 6.5 177.70 7.69 

22 2 1.5 0 3 6.5 184.20 6.09 

23 0.5 0.1 0 5 5.6 189.80 3.60 

24 0 0 0 4.5 4.5 194.30 0.00 
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7- Krbchna Section 

Cycle 

No. 

Calcareous 

mudstone 

(m) 

Carbonate 

(m) 

Evaporite 

(m) 

Red 

siliciclastic 

(m) 

Cycle 

thickness 

(m) 

Cumulative 

thickness 

(m) 

Cumulative 

departure 

(m) 

0 0 0 0 0 0 0.00 0.00 

1 4 0.5 0 2 6.5 6.50 2.98 

2 1.5 0.6 3 2 7.1 13.60 6.57 

3 0.6 0.4 1 3 5 18.60 8.05 

4 2 0.2 4 1.5 7.7 26.30 12.24 

5 2 0.6 1 2 5.6 31.90 14.32 

6 1.5 0.4 4 3 8.9 40.80 19.71 

7 0.5 1.3 1 1 3.8 44.60 19.99 

8 0.5 1 2 0.5 4 48.60 20.48 

9 0.2 0.2 0 2 2.4 51.00 19.36 

10 0.8 1.2 0 1 3 54.00 18.85 

11 2 0 0 1.5 3.5 57.50 18.83 

12 0 0 0 4.5 4.5 62.00 19.82 

13 0.7 0.5 2 1.5 4.7 66.70 21.00 

14 0.5 0.7 0 4 5.2 71.90 22.69 

15 0.7 2.2 0 4 6.9 78.80 26.07 

16 0.3 0.2 0 5 5.5 84.30 28.06 

17 0.5 1.5 0 1 3 87.30 27.54 

18 0.5 0.2 0 1 1.7 89.00 25.73 

19 0 0 0 0.5 0.5 89.50 22.71 

20 0 0 0 0.5 0.5 90.00 19.70 

21 0 0 0 1 1 91.00 17.18 

22 0 0 0 1.5 1.5 92.50 15.17 

23 0 0 0 2 2 94.50 13.65 

24 0 0 0 2 2 96.50 12.14 

25 0 0 0 2 2 98.50 10.62 

26 0 0 0 2 2 100.50 9.11 

27 0 0 0 1 1 101.50 6.59 

28 0.2 0 0 2 2.2 103.70 5.28 

29 0.1 0.2 0 3 3.3 107.00 5.06 

30 0 0 0 2 2 109.00 3.55 

31 0 0 0 2 2 111.00 2.03 

32 0 0 0 3 3 114.00 1.52 

33 0 0 0 2 2 116.00 0.00 
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8- Darbandikhan Section 

Cycle 

No. 

Calcareous 

mudstone 

(m) 

Carbonate 

(m) 

Evaporite 

(m) 

Red 

siliciclastic 

(m) 

Cycle 

thickness 

(m) 

Cumulative 

thickness 

(m) 

Cumulative 

departure 

(m) 

0 0 0 0 0 0 0.00 0.00 

1 0 0 0 4 4 4.00 -1.48 

2 0.1 0.3 0 1.5 1.9 5.90 -5.06 

3 0 0.2 0 3.5 3.7 9.60 -6.84 

4 5 1.6 0 5 11.6 21.20 -0.73 

5 3 0.1 0 3 6.1 27.30 -0.11 

6 0.7 1 0 4 5.7 33.00 0.11 

7 5 1 0 3.7 9.7 42.70 4.33 

8 2 0.4 1 0 3.4 46.10 2.25 

9 0.2 0 1 2 3.2 49.30 -0.03 

10 0.4 0.2 9 3 12.6 61.90 7.09 

11 0.7 1.2 1 2 4.9 66.80 6.50 

12 1 1.2 5 2 9.2 76.00 10.22 

13 0.5 0.1 4 0.5 5.1 81.10 9.84 

14 0.5 0.8 0 2 3.3 84.40 7.66 

15 5.7 2.6 0 3 11.3 95.70 13.48 

16 2 3.5 0 4.5 10 105.70 18.00 

17 0.5 0 0 6.4 6.9 112.60 19.41 

18 2 0.5 0 3 5.5 118.10 19.43 

19 0.2 0 0 3.5 3.7 121.80 17.65 

20 0.5 1 0 5 6.5 128.30 18.67 

21 0 0 0 2 2 130.30 15.19 

22 0.1 0.2 0 3 3.3 133.60 13.01 

23 0 0 0 2 2 135.60 9.53 

24 0.2 0 0 3 3.2 138.80 7.24 

25 0.1 0.1 0 4 4.2 143.00 5.96 

26 0 0 0 3 3 146.00 3.48 

27 0 0 0 2 2 148.00 0.00 
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9- Chnarah Section 

Cycle 

No. 

Calcareous 

mudstone 

(m) 

Carbonate 

(m) 

Evaporite 

(m) 

Red 

siliciclastic 

(m) 

Cycle 

thickness 

(m) 

Cumulative 

thickness 

(m) 

Cumulative 

departure 

(m) 

0 0 0 0 0 0 0.00 0.00 

1 0 0 0 3 3 3.00 0.06 

2 0 0.2 0 3 3.2 6.20 0.32 

3 2 0.1 0 0.5 2.6 8.80 -0.02 

4 1.5 0.1 0 3 4.6 13.40 1.64 

5 0.5 0.1 0 3 3.6 17.00 2.29 

6 1.5 0.4 0 4 5.9 22.90 5.25 

7 2.2 0.7 0 0.5 3.4 26.30 5.71 

8 0 0.2 0 0.5 0.7 27.00 3.47 

9 0 0 0 1 1 28.00 1.53 

10 0 0.4 0 3.5 3.9 31.90 2.49 

11 0.2 0.4 0 1 1.6 33.50 1.15 

12 0.5 0 0 3 3.5 37.00 1.71 

13 0 0 0 5 5 42.00 3.76 

14 0 0 0 1 1 43.00 1.82 

15 0 0 0 1 1 44.00 -0.12 

16 0 0 0 4 4 48.00 0.94 

17 0 0 0 2 2 50.00 0.00 

 


