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Abstract

It is now commonplace for complex physical systems such as the climate sys-

tem to be studied indirectly via computer simulations. Often, the equations

that govern the underlying physical system are known but detailed or high-

resolution computer models of these equations (“governing models”) are not

practical because of limited computational resources; so the models are sim-

plified or “parameterised”. However, if the output of a simplified model is to

lead to conclusions about a physical system, we must prove that these outputs

reflect reality and are not merely artifacts of the simplifications. At present,

simplifications are usually based on informal, ad-hoc methods making it diffi-

cult or impossible to provide such a proof rigorously. Here we introduce a set of

formal methods for generating computer models. We present a newly developed

computer program, “iGen”, which syntactically analyses the computer code of a

high-resolution, governing model and, without executing it, automatically pro-

duces a much faster, simplified model with provable bounds on error compared

to the governing model. These bounds allow scientists to rigorously distinguish

real world phenomena from artifact in subsequent numerical experiments using

the simplified model. Using simple physical systems as examples, we illustrate

that iGen produces simplified models that execute typically orders of magni-

tude faster than their governing models. Finally, iGen is used to generate a

model of entrainment in marine stratocumulus. The resulting simplified model

is appropriate for use as part of a parameterisation of marine stratocumulus in

a Global Climate Model.



Preface

A note to the reader

Every day, scientists create scientific knowledge by modelling physical systems

on computers. Scientists are well aware of the limitations and deficiencies of

their models but they rarely stop and ask themselves “is this the best way of

using a computer to do science?” This report describes a vision of how we ought

to be using computers to do science.

As part of our approach, great importance will be put on the formality of the

proposed methods, and all theoretical claims will be supported by formal proofs.

These are presented at the the end of each relevant chapter rather than in the

main text; thus allowing the reader to get to grips with the main ideas before

getting embroiled with the details of the proofs.

After an introduction, the remaining chapters are written in a ‘top-down’ fash-

ion, starting on the most abstract, theoretical level and gradually getting more

concrete and practical. Chapter 2 is an important chapter but it introduces

some quite abstract concepts. If the reader prefers a ‘bottom-up’ approach,

starting with specifics and gradually generalising on these, they may wish to

skim read this chapter at first and return to it later when the application of the

concepts can be more clearly seen.

1



Chapter 1

Introduction

Sir Francis Bacon1, declared in his Novum Organum (1620) that the purpose of

science is to improve man’s lot on Earth. If climatologists are to live up to this

vision with respect to the humanitarian challenges of climate change then they

must communicate justified beliefs about future climate to policymakers so that

they can make informed policy decisions. If we are to take a decision theoretic

viewpoint (see, e.g. Jeffrey, 1990) the information the policymakers need is

contained in the probability distributions of certain sociologically poignant cli-

mate observables such as average surface temperatures or rainfalls under various

emissions scenarios. Climatologists rely heavily on the use of climate models to

generate beliefs about these observables. If a model simulates, say, a warmer

world under a given emissions scenario then we are inclined to believe that the

world would indeed be warmer if we were to make those emissions. However, a

sceptic may question this deduction. Can we really be sure that the model is

right? What reason does the scientist have to believe in the model projections?

When the stakes are as high as they are in the case of climate change, it is quite

reasonable to insist that there should be a good justification for believing in

climate model results.

Suppose we had a climate model that not only produced climate projections

but also produced bounds on the error and uncertainty in these projections. If

these error/uncertainty bounds could be produced in such a way that we could

justify them with a line of reasoning starting from a set of generally acceptable
1Lord keeper of The great seal and Baron of Verulam
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assumptions then we could be sure that the model results were trustworthy to

within these bounds. In this way we could satisfy any skeptic that our beliefs in

future climate, as informed by the model’s projections, are indeed justified and

provide the policymakers with the information they need. In this article we will

describe how climate models could be generated in order to make this possible.

The problem of simulating the climate can conveniently be split into two parts:

firstly, there is the problem of understanding the physics of the climate system

and describing it as a set of equations, the so called ’equations of motion’.

Secondly, there is the problem of how to use these equations to answer pertinent

questions about the climate (and indeed, to complete the hermenutic circle, to

inform further experiment). The skeptic can be convinced in the equations of

motion by appeal to the scientific method, one would hope. Although there is

much to say about the scientific method and how it manages to justify beliefs

(see, e.g., Chalmers, 1999), the second part of this problem is much less well

understood and is the focus of our interest here.

Even if we are given the equations of motion of the climate system, it is difficult

to answer practical questions about the climate because present day computers

just aren’t powerful enough to directly solve these equations and generate cli-

mate projections. So, climate models instead solve a simplified set of equations.

These simplifications, called ’parameterisations’, are not supported by the same

weight of scientific evidence as the physical equations of motion and so the scep-

tic may ask what reason we have to believe that these simplifications do not

affect the veracity of the model results. Let us look briefly at what arguments

modellers have used to show that the simplifications in global climate models

(GCM’s) are justified. The fourth assessment report of the IPCC (IPCC, 2007)

gives a good review of the literature on this subject, the arguments set out there

are all informal arguments that follow one of the following formats:

1. The algorithm of the GCM is shown from first principles to be a faith-

ful ‘representation’ of the physical processes described by the generally

accepted physical laws.

2. The GCM is shown to agree with a set of observations and a demonstra-

tion given that faithfulness to the set of observations implies a faithful

projection of the required climate observable.

3. The parts of the GCM are shown to more or less accurately agree with
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a set of observations when run in isolation, and a demonstration is given

that the faithfulness of the parts to the observations implies that the GCM

will give a faithful projection of the required climate observable.

4. GCMs from different research groups are compared and shown to give

comparable results.

5. Multi-model ensemble predictions have been shown to perform better than

a single model, supposedly confirming the hypothesis that models are

perturbations of reality.

Beginning with the first argument, all non-trivial parts of a GCM are designed

with some kind of reference to the underlying equations of motion and the

parts are assembled with the intent of representing the whole climate system.

However, as already mentioned, the use of parameterisations means that the

model does not solve the physical equations. Here are some examples of the

simplifications made in models:

False assumptions The physical justifications of many GCM components de-

pend on assumptions that are known to be false, and no proof is given

that such false assumptions do not adversely affect the performance of

the components. Examples include the assumption that the sea has the

viscosity of honey (Chassignet and Garrao, 2001) and cumulus clouds act

like conical plumes (Gregory and Rowntree, 1990).

Unjustified generalisation Many GCM components contain ‘tunable param-

eters’ which are tuned to minimise the difference between the GCM output

and some set of empirical measurements (e.g. Smith, 1990). However, no

justification is given for supposing that this tuning will generalise to give

good agreement with empirical measurements not used in the tuning pro-

cess.

Missing processes Many physical processes which may have an effect on cli-

mate are not simulated by GCMs. For example, many GCM’s do not

include a carbon cycle; when this is included, many important processes

in the cycle are omitted. This and many other missing processes are dis-

cussed in Lemoine (2010), for example.

Logical inconsistencies Different parts of a GCM often make conflicting as-

sumptions, so it is not well defined what the GCM as a whole is simulating.
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For example, all GCMs split the atmosphere into a ’dynamical core’ and

a ’model physics’. The dynamical core treats, say, the temperature field

as a sampled, bandwidth limited field, while the model physics treats the

same field as a Reynolds averaged field. The two interpretations are in-

compatible. See theorem 1.2.1 for more detail.

No proof has been given that these simplifications do not adversely affect model

output. Without this, the argument from physical representation is incomplete.

The second line of argument, that of showing that the GCM correctly predicts

certain observations, is also problematic. The problem turns on the question

“how many correct predictions must a model make before we should be confident

that it is a good model of reality?” In theorem 1.2.2 I present an argument that

shows, perhaps surprisingly, that in the absence of any other information, the

amount of information a model must correctly predict about an observable, o,

before it can be considered to be a good model of o is equal to the length of

the shortest computer program that correctly models o (i.e. the Kolmogorov

complexity of an infinite time series of the observable). It is doubtful that

the amount of mutual information that has been shown to exist between GCM

output and observations of climate exceeds the length of the shortest possible

climate model. Take, for example, the global average surface temperature record

over the last century, as presented in the IPCC fourth assessment report (IPCC,

2007). This gives, accounting for the error between modelled and observed

values, only around 200 bits of mutual information. It seems doubtful that

there exists a climate model that can be expressed in 200 bits of information,

so this falls far short of the amount required.

The third approach, that of separately validating the parts, is perhaps the most

realistic as it would be easier to validate a part against a large set of observations.

However, surprisingly, there has been no formal proof to show how errors in

the GCM parts affect errors in the GCM as a whole. Nor has there been any

investigation into the effects of the contradictory definitions used in the different

parts, as discussed in theorem 1.2.1. Without this, the argument is incomplete.

The fourth and fifth arguments require that the GCMs are perturbations of the

real climate system and that the perturbations in the GCMs from different re-

search groups give rise to noise that is not correlated between research groups.

While GCM design does differ between research groups, a single common ap-
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proximation would break this argument (since it may introduce an error across

all GCMs). Indeed, there are a number of approximations that are common to

all GCMs (consider only the common missing processes, as discussed above).

Moreover, if the noise were uncorrelated we would expect to find that as we in-

crease the number, n, of members in a multi-model ensemble, the error should

tend to zero as 1√
n
. However, this is not found to be the case (Knutti, 2008),

indicating that the errors in the models are not independent. See also Lemoine

(2010) for more discussion on shared model biases.

On the strength of the above, the skeptic could argue that the inter-model en-

semble average equilibrium climate sensitivity, as published by the IPCC (2007),

is an average of simplifications that has no provable connection to the expecta-

tion value of climate sensitivity given our current state of knowledge. He could

argue that the inter-model ensemble average spread is a spread of disagreement

between models that has no provable connection to the standard deviation of the

Bayesian PDF of climate sensitivity given our current state of knowledge. He

could argue, therefore, that the figures on climate sensitivity we, as a scientific

community, are reporting do not give the information necessary for policymak-

ers to make decisions that are informed by scientific knowledge and so climate

models are not fulfilling their primary reason for existence.

Clearly, in order to respond to these arguments, there is a need for much more

rigorous techniques for creating models and parameterisations so that the scep-

tic can be convinced by climate model results and will finally go away. Those

involved in the development of computer models are aware of the problem of pa-

rameterisation but the development of better parameterisations has been slow.

Many models used today rely on parameterisations that were developed 30 to

40 years ago, not because these parameterisations are so accurate they needn’t

be changed but because the development of better parameterisations has been

hampered by the sheer difficulty of the problem. In recent times practitioners

have come to talk of the ‘parameterisation deadlock’ (Randall et.al., 2003): a

perceived state of stagnation in the development of better parameterisations.

As Khun (1962) has pointed out, this stagnation of disciplines has occurred

repeatedly throughout the history of science, and the end of each stagnation

period is marked by a paradigm shift or revolution.

In the remainder of this document I present a means of escape from the parame-

terisation deadlock. My approach is very different from previous attempts so I’ll
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present a new theoretical framework with which to think about modelling. I’ll

describe how this new framework has led to the development of a novel piece of

software that we call ‘iGen’ which automatically generates models and param-

eterisations. Finally I’ll describe how iGen has been applied to the previously

unsolved problem of the parameterisation of cloud-top entrainment in marine

stratocumulus.

Our first step on this journey will be to precisely define the “problem of param-

eterisation”.

1.1 Posing the question

1.1.1 The conventional view of parameterisation

Modellers think of the physics of a computer model as being split into “large-

scale”, “resolved” processes and “small-scale”, “unresolved” or “sub-grid” pro-

cesses. To understand this distinction, consider the way the state of a physical

system is represented in a computer. Certain physical processes, the unresolved

ones, will occur on a scale much smaller than can be captured by the computer

representation, while other processes, the resolved ones, will occur on a scale

large enough to be well represented in the computer. Some unresolved processes

can be left out of the model without affecting the veracity of the simulation.

However, other unresolved processes have knock-on effects on the larger scale,

and it is these effects that must be modelled in some way by the parameterisa-

tions.

Although these unresolved processes can often be modelled with some accuracy

by a high resolution model, this is practical only if computer time is not an issue

and the “small-scale” state of the system is known. However, a parameterisation

must use relatively little computer time and only has access to the large-scale

state of the system contained within the computer’s representation. This leads

us to the traditional definition of the problem of parameterisation: How do we

quickly and accurately calculate the large-scale effects of unresolved processes,

knowing only the large-scale state of the system?

At first glance this looks like a well defined problem, but upon closer inspec-

tion it can be seen that it leaves the problem rather ill defined. For a start,
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how exactly should small and large scale processes be distinguished? For ex-

ample, if a 99km cumulus cloud straddles two 100km gridboxes, is this sub-grid

or large-scale? This is more than just pedantry: many (probably all) GCMs

in use today contain multiple parameterisations that make this distinction in

mutually contradictory ways, leading to model errors (see theorem 1.2.1). How

do we define a “process”? It is clear that in any volume of atmosphere there is a

great deal of interaction between different sub-grid processes. What properties

must a process have in order to make it meaningfully separable from the other

processes with which it interacts? Inattention to this detail has led, for exam-

ple, to the problem of cloud-overlap in GCMs (Collins, 2001). What should a

parameterisation do when the parameterised value is under-determined by the

large scale state? It could be, and often is, the case that the variable to be

parameterised cannot be precisely determined from the information available in

the large-scale variables. Recent parameterisations of convection, for example,

have been taking a stochastic approach (e.g. Buizza et.al. 1999), but this begs

the question “what is a stochastic parameterisation, and how does it differ from

a non-stochastic parameterisation?” Most importantly of all, however, this def-

inition does not give us any idea of how a model that uses a parameterisation

can be used to justify the beliefs that it entails. These are just a few of the

many questions that ought to be answered, or dissolved, if we are to properly

define the problem.

1.1.2 Re-posing the question

Since the conventional view of parameterisation is at best incomplete, we would

like to make a new definition that is complete while ensuring that uncertainty

and error in the parameterised model can be quantified. It is a truism that a

good parameterisation is one that, when used in a particular model, makes a

fast, accurate model. It is also generally appreciated that while a given param-

eterisation may give accurate results in one model, it may give less accurate

results in another. So the accuracy of a parameterisation cannot be quantified

in isolation from its host model, it must be considered in the context of the

model in which it resides if we are to quantify the error it introduces. It is to-

wards the model, then, that we first look to see how a parameterisation should

be designed.
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Our first step, perhaps surprisingly, is to throw out the differential calculus.

We choose not to express the equations of motion of a dynamical system as a

set of differential equations, but rather as a computer program considered in

a special way: Using existing numerical techniques we can easily write a high

resolution, ‘resolve-everything’ model whose output tends to a solution of any

set of equations of motion in the limit of infinite processor time and memory. To

formalise this limit, consider any procedural computer programming language

and add a variable, δ, which has an arbitrarily small value. δ can be used in

the program to calculate, for example, grid spacing or time step. In the limit of

infinite computer resources and precision, the output of the resolve-everything

model tends to a solution to the differential equations as δ tends to zero.

So, any dynamical system can be trivially expressed as a computer program, in

the limit, given its equations of motion. From now on, then, we will consider

a computer program, let’s call it f , to be the dynamical system of interest,

as given to us by our physical understanding. This formalism ensures that

problems are well defined by imposing ‘distinguished limits’ (Klein, 2008) and

will be particularly convenient for our development when we get to chapter 3.

However, f doesn’t immediately tell us what we want to know. As already

mentioned, we would like to know about the probabilities of making particular

observations of the climate system. Let’s say we write a program, o, that simu-

lates the observation; that is, it calculates the result of making the observation

for a given state of the system. So, if the start state of the system is ψ, then

the value of a future observation would be o (f(ψ)). However, we don’t know

the start state of the system. Our knowledge of the current state of the climate

system will generally consist of certain measurements from satellites, balloons

etc. but no matter how many measurements we make, it is quite impossible to

pin down the start state to a single state that we can feed directly into f ; we

simply cannot get at every detail of every turbulent eddy, for example. Instead,

we must settle for a large-scale, coarse description which could be satisfied by a

number of detailed, small-scale states. So, to calculate the probability of making

observation o, we’d have to do a Monte-Carlo simulation on o (f(ψn)) for each

of these small-scale states, ψ0...ψN . Collating the results of this Monte-Carlo

simulation gives us the probability distributions we’re after. This stochastic

formulation of the problem of climate modelling can be traced back at least as

far as Epstein (1969). Since any probability distribution can be described as
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a set of moments we can consider the information we’re after to be contained

within a set of moments of the observable. In addition, since we can consider a

square, or any other power, of an observable to also be an observable we will,

without loss of generality, consider the information we’re after to be contained

within the first moments of a number of observables (or of a single observable, if

we allow an observable to be a vector). If we write another computer program,

µ, that performs a Monte-Carlo simulation on a model for a set of input states,

and returns the first moment of the output then the information we’re after

could be calculated by µ(o(f), B), where B is our knowledge of the start state

of the system.

This is a skeptic-proof model. If we had a computer to run it on, we could

say of any climate projections it made: “well, if you believe in the equations of

motion and in the measurements of the boundary conditions, and you want to be

consistent in your beliefs, then you must also believe in the model’s projection”.

So the output of this model defines the value we’d like to compute. In practice,

as δ gets smaller, memory requirements increase, execution time increases and

the model would execute far too slowly to be of any use.

Hasselmann (1976) was perhaps the first to suggest a way of formally simpli-

fying this model by separating “weather disturbances” from climate variables

using the Fokker-Planck equation, this was later developed by Arnold (2001).

However, this technique has not yet led to a practical way of calculating the

required observables. Another strategy is to use Bayes linear analysis. In this

approach µ is simplified so that the full Bayesian probability is not computed,

but a simpler function is computed instead and an argument given that this

simpler function is a good model of our knowledge of the probability. This is

the approach taken by Goldstein and Rougier (2009) and Oakley and O’Hagan

(2002) for example. The problem with this approach is that Bayes linear in-

ference is not as good a model of inference as the full Bayesian inference. The

hard-line skeptic could argue that this type of inference is not good enough.

Our approach here is to retain the full Bayesian inference as our reference pro-

gram and find an alternative program that executes much faster, but can be

proven to have bounded error with respect to this resolve-everything model.

After being shown the proof that the error is bounded, the skeptic should be-

lieve in the output of this faster model, to within the bounds on error. So the

problem of parameterisation ultimately reduces to the problem of how to find
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this faster model, and how to prove that its error is bounded. This problem is

set down more formally in Definition 1.2.1.

1.2 Mathematical addenda

Theorem 1.2.1. Parameterisations commonly used in models imply contradic-

tory interpretations of the distinction between ‘large’ and ‘small’ scale, and this

leads to model error.

Proof. Consider, for example, the modelling of a conserved quantity, q, accord-

ing to some velocity field v according to:

dq

dt
= −∇ · (vq) .

Turbulence parameterisations depend on the splitting of v and q into a large

scale field (denoted by an over-bar) and a perturbation (denoted by a prime)

such that

v = v̄ + v′

and

q = q̄ + q′

substituting this into the conservation equation gives

d(q̄ + q′)
dt

= −∇ · ((v̄ + v′)(q̄ + q′)) . (1.1)

Let the over-bar operation be Reynolds averaging:

F̄ (x) =
1
v

∫ x+∆x
2

x−∆x
2

F (x′)dx′

where x, x′ and ∆x are vectors, the integration is understood to be over the

hypercube centred on x, and v is the volume of the hypercube. If we now

Reynolds average equation 1.1 and remove zero terms, we are left with:

dq̄

dt
= −∇ · (v̄q̄)−∇ · v′q′ . (1.2)

It is very common practice to interpret the first term in this equation as the large

scale advection term, and the second term as the small-scale, turbulent flux of q.
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Accordingly, the advection scheme calculates the first term and the turbulence

parameterisation calculates the second term from the large-scale fields.

However, if we let F̄ i(x) be the field F after Reynolds averaging in all directions

except xi, then the Reynolds averaging operation can be expressed in the form

F̄ (x) =
∫ xi+

∆xi
2

xi−
∆xi
2

F̄ i(x′i)dx
′
i .

The large-scale advection term in equation 1.2 can now be expressed as

dF̄ (x)
dxi

=
d

dxi

(∫ xi+
∆xi
2

xi−
∆xi
2

F̄ i(x′i)dx
′
i

)

= F̄ i
(
xi +

∆xi
2

)
− F̄ i

(
xi −

∆xi
2

)
(1.3)

where x = v̄q̄ and summation over i is implied. However, in a computer model,

the large-scale fields, q̄ and v̄, are explicitly represented as gridded data or spec-

trally as the lowest n modes of some expansion. Numerical advection schemes

use finite differences or analytic differentiation of the spectral modes to calcu-

late the advection term in equation 1.2. However, this type of differentiation

relies on the assumption that the field does not contain frequencies above the

Nyquist frequency of the grid, or above the highest mode in the spectral expan-

sion. Reynolds averaging does not conform to this assumption. In the case of

differentiation by finite differences, for example, the differential can be expressed

as
dF̄ (x)
dxi

= F̄

(
x+

∆xi
2

)
− F̄

(
x− ∆xi

2

)
subtracting equation 1.3 shows that the error in the finite difference advection

is given by

ε = F̄

(
x+

∆xi
2

)
− F̄ i

(
xi +

∆xi
2

)
− F̄

(
x− ∆xi

2

)
+ F̄ i

(
xi −

∆xi
2

)
there is no reason to suppose that this error is small.

In effect, the advection scheme assumes that the large and small scales are

defined as the frequencies below and above the Nyquist frequency respectively,

while the turbulence scheme assumes the large and small scales are defined as

the Reynolds averaged field and the perturbation2. If we let L(x) denote a

low-pass brick wall filter on a field x with cutoff at the Nyquist frequency, and
2This problem was also noted, in a different form, by Arakawa (2004) and Palmer (2006)
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H(x) be the corresponding high-pass filter then the error introduced by these

contradictory assumptions can be expressed as

ε = ∇ · ((L(v̄) +H(v̄))(L(q̄) +H(q̄)))−∇ · (L(v̄)L(q̄))

= ∇ · ((L(v̄)H(q̄) +H(v̄)L(q̄) +H(v̄)H(q̄)) .

As long as the exact solution contains frequencies just above the Nyquist fre-

quency, there is no guarantee that this error is small.

Appeal is sometimes made to a ‘spectral gap’ at the mesoscale which would

imply that ε could be made small by careful choice of grid spacing. However,

the existence of any such spectral gap has been fairly robustly refuted (e.g.

Nastrom 1984, Nastrom and Gage, 1985).

As a corollary, results reported by Koshyk and Hamilton (2001) show that the

simulated spectral density of kinetic energy in the Geophysical Fluid Dynamics

Laboratory global model becomes unrealistically high as the Nyquist frequency

is approached, showing systematic errors in the dissipation by the model physics,

as would be expected in light of this proof.

It would not be easy to solve this problem by substituting a turbulence param-

eterisation that made the same assumptions as the advection scheme since if we

pass ∇ · ((v̄ + v′)(q̄ + q′)) through a low pass filter, we do not get a clean sepa-

ration of small and large scales, as we do with Reynolds averaging. None of the

terms reduce to zero and we are left with ε = L(∇· (v′q′)+∇· (v̄q′)+∇· (v′q̄)).
Worse than this, with a low pass filter we lose locality; an unresolved feature in

one gridbox can instantaneously affect the filtered field in another gridbox (This

is due to the non-local nature of filtering, rather than any physical transfer of

energy). The physical interpretation of this formal non-locality of parameteri-

sation is explored in Palmer (2001).

Theorem 1.2.2. Given two Turing machines, one (representing reality) runs

program R and the other (the model) runs program M . We observe that both

machines output d as the first n bits of their output. In order for us to have any

confidence in the assertion that R and M compute the same function, n must

be of the same order as the Kolmogorov complexity of R.

Proof. Without loss of generality we consider computer programs executed by a

prefix Turing machine (see, for example, Floyd and Biegel, 1994 for a definition
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of Turing machines). Since we know nothing about the states of the program

tapes R and M , by the principle of insufficient reason we assign equal prob-

abilities to the possible states of the tapes. The probability that a tape will

begin with program p, then, is simply 2−l(p), where l(p) is the length, in bits,

of program p. The probability that a machine will have an output that begins

with d, then, is given by

m(x) =
∑

{p:π(T (p),l(d))=d}

2−l(p)

where T (p) is the output of a prefix Turing machine on program p and π(x, n)

returns the first n bits of x.

From Bayes’s theorem, the probability that T (R) = T (M), conditioned on

evidence d is given by

P (T (R) = T (M)|d) =
m (T (R))
m(d)

.

It is clear that

m(d) > 2(−l(d)−O(1))

since we can always write a program that simply copies d from the program

tape. The coding theorem (see Li and Vitanyi, 1997, p.253) shows that

m (T (R)) < 2(−K(T (R))−O(1)) .

Where K(x) is the Kolmogorov complexity of x. So

P (T (R) = T (M)|d) < 2(−K(T (R))−O(1))

2(−l(d)−O(1))
.

This means that, as long as l(d) is smaller than the Kolmogorov complexity of

T (R), the hypothesis that T (M) = T (R) is not well confirmed by the evidence

d.

This is a short, relatively simple proof but contains many subtleties that take

some time to get to grips with. Anyone with an interest in the foundations of

human knowledge is encouraged to spend some time truly understanding this

proof, as the investment will be repaid. The proof makes use of the intriguing

concept of Kolmogorov complexity (see, for example, Li and Vitanyi, 1997)

and has profound epistemological implications, effectively giving an answer to

the problem of induction (see, for example, Dancy, 1985) and laying down a
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foundation on which the Scientific method can be built (see, for example, Mayo,

1996 for a Bayesian approach to scientific knowledge or Chalmers, 1999, for a

light, general introduction to the problem of scientific knowledge). Solomonoff

(2008) has recently presented a similar approach to inductive reasoning as we

have presented here.

Definition 1.2.1. The problem posed

We suppose that we are given a set of equations of motion of the climate system

describing the orbit of a vector Ω:

∂Ω
∂t

= D(Ω) (1.4)

for all t, subject to

F (Ω) = ∅ (1.5)

where D is a function that includes differential operators in space, F represents

satisfaction of any conservation laws or generalised observations, and ∅ is the

zero vector. These equations may contain stochastic terms which represent any

incompleteness of our physical understanding.

Let ξ(Ω, δ, t, s) be a computer program where Ω is a state of the climate system,

s is a seed for a pseudo-random number generator and the result of executing ξ,

Tξ, is the integration of Ω over t simulated seconds, such that if we let Ω(t) =

limδ→0(Tξ(Ω0,δ,t,s)) then Ω(t) satisfies equations 1.4 and 1.5 for all t > 0. (Given

equations 1.4 and 1.5 it is possible to write a program ξ using standard numerical

techniques and a ’resolve everything’ strategy.)

Let o(Ω) be the result of an observation of the climate system in state Ω and let

B be a multi-set of climate system states which represents our knowledge of the

boundary conditions. Our aim is to calculate the nth moment

µn(B, t) =
∑

Ω0∈B,s∈S

o
(
limδ→0(Tξ(Ω0,δ,t,s))

)n
|B||S|

.

Without loss of generality we can consider only the first moment, n = 1, since

higher moments can be calculated from the first moment of a modified observable

o′(x) = o(x)n. Clearly, it is possible to write a program to calculate µ1 by

executing ξ once for each member of B and summing the results. Call this
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program φ. If we define a metric on functions |Tφ − Tψ| and an upper limit ε,

then we can define the set of programs

Ψ = {ψ|ε > |Tφ − Tψ|}

and the problem is to find a member of Ψ that executes much faster than φ.
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Chapter 2

Splitting models into

modules

In the last chapter we defined our ultimate aim to be that of finding a good,

low-resolution approximation of a high resolution model and we showed how

to construct the high resolution model. We now look at how the construction

of the low-resolution model can be made easier by splitting it into modules

or sub-tasks in various ways, thus reducing a very hard problem into a num-

ber of easier problems. For example, we will probably construct the model so

that a simulation consists of multiple, sequential executions of a single timestep

function. Also, within each timestep we may, for example, have one module

simulating the sea and another simulating the atmosphere. The atmospheric

model may in turn be split into modules dealing separately with convection,

chemistry, advection etc.

If we are to use these modularisation strategies, however, we must ensure that

the errors and uncertainties of each module are correctly accounted for in the

final output. Our strategy for doing this is as follows: The user decides on a way

of splitting the model into modules by defining the physical meaning of each

module. From this we derive a set of ideal modules that minimise the error in

the final result over the expected lifetime of the model. Note that in general

there will not be a way of making the error zero since the modularisation itself

can be a source of error. We term this the “intrinsic” error. In addition to this

error, each module is required to report a bound on its error compared to the

17



ideal module. This error will come from whatever approximations that have

been used to increase the speed of execution of the module so we call this the

“approximation error”.

To calculate the moments of the outputs of the whole model, the output of each

module should be fed into a ‘supervisor’ program that combines the intrinsic

and approximation errors into a specification that describes the probability dis-

tribution of the output. The supervisor program then chooses a state at random

from this distribution and uses it as output of the module. The whole model

should be executed multiple times in a Monte-Carlo simulation, the results of

which will give us probabilistic information about our knowledge of the moments

of the observables.

We now deconstruct a typical real world model to see which modularisation

strategies are commonly used and show how to derive the ideal module and what

intrinsic error each modularisation strategy introduces. Surprisingly, there is no

formal theory of how this can be done. However, the mathematical concepts

described in Lasota and Mackey (1985) and those forming the subject of Ran-

dom dynamical systems (e.g. Bhattacharya and Majumdar (2007) and Arnold

(2002)) give a good start towards this. I have modified these concepts to apply

to our current problem and taken some ideas from Cousot and Cousot (1977)

to create a new theory which I call abstraction theory which can be used to

reason about high and low resolution models. This theory is formally presented

in section 2.3 but in the following section we explain the main results of the

theory in less formal language.

2.1 Abstraction theory: An informal introduc-

tion

The most obvious difference between our resolve-everything model and a real

world model is that the real world model will have a much lower resolution.

This loss of resolution may be a source of error, so we must clarify how error is

generated by loss of resolution. Before we can begin to compare the output of a

low-res model to that of a high-res model, however, we must have some way to

relate high-res states to low-res states. As we have seen, the input and output

of a high-res model, f , consists of a description of every minute detail of the
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Figure 2.1: Graphical representation of the relation between a low resolution

model, F , and a high resolution model f . Ψ and Φ are high resolution states,

while X and Y are low resolution states. γ is the extra program that converts

low to high resolution states.

state of the system. A low resolution model, F , on the other hand, would only

require the large scale details of the system, neglecting the small scale detail. We

compare these different resolutions by considering an extra computer program,

γ, that takes a low-res state as input and turns it into a high-res state (definition

2.3.3). This requires a filling in of the small scale details using a random number

generator. This program represents the conditional probability of finding the

system in some high-res state, given that we know that it’s in some low-res

state.

If we now attach one copy of γ to the input of the high-res model and another

copy to the output of the low-res model (giving f (γ(X)) and γ (F (X)) which,

for simplicity, we write fγ and γF ) we have two stochastic programs, both of

which take a low-res input and return a high-res output (see figure 2.1). It is

evident that if γF has the same output probability distribution as fγ for all

low-res inputs (i.e. γF = fγ), then the two models will always compute the

same moments of any observable, as long as our knowledge of the boundary

conditions can be expressed in terms of the low-res states. What’s more, if γF

is equal to fγ for a single timestep then they will remain equal for any number of

timesteps (theorem 2.3.1). So, if we can prove that γF = fγ over one timestep

of some low-res model F then we have proved that F is error free, despite its

low resolution.
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Unfortunately, if we are to take the prognostic variables of a GCM as our low-

res state, then no low-res model exists that has this property (theorem 2.3.6).

However, for any size of low-res state, there is a set of prognostic variables for

which there does exist a low-res model that has this property (Theorem 2.3.7).

This can and should be interpreted as a call for a new set of prognostic variables

for GCMs, this is left as an exercise for the reader.

In the meantime, however, we must find a way of dealing with GCM prognostic

variables. We proceed by perturbing the high-resolution system so that there

does exist an exact low-resolution model for the variables we’re interested in.

The perturbation is chosen very carefully so as to ensure that the error in any

observable of the resulting low-res model (compared to the un-perturbed high-

res model) is zero when averaged over the lifetime of the model (see section

2.3.4). This has the satisfying consequence that as we increase the expected

lifetime of the model, the attractor of the low-res model tends towards the

attractor of the un-perturbed high-res model (theorem 2.3.10).

This low-res model can be written in the following way: Begin by writing a

program that converts high-res states into low-res ones (i.e. the opposite of γ)

call it α. This is generally quite easy as it simply involves throwing away some

of the information in the high-res state. For example, we may average over

some volume or spectrally filter some field. The other converter program, γ,

can be constructed from α. We show in section 2.3.5 how this should be done

but essentially for any low-res input, γ should output a high-res output with

a probability equal to the conditional probability of finding the system in this

state, given that we know it’s in the low-res state. Given these two programs,

α and γ, we can construct a single timestep of our low-res model by taking

the high-res model and ”wrapping” it in these two extra programs so that γ

is bolted on to its input and α to its output (i.e. αfγ). So, when designing a

low-res model we would like to make its timestep function a good approximation

of αfγ.

It may at first seem a bit pointless to construct a low-res model that requires

the execution of a high-res model but, superparameterisation aside, we aren’t

proposing that this program should be used in a GCM. Instead, it serves as

a constructive definition of what a low-res model should be doing; a reference

against which we can measure our approximations and parameterisations.
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2.2 Splitting programs into modules

We’ve now reduced the problem to the consideration of a single timestep of

a low-res model, but the timestep of a model will itself consist of many sub-

processes and modules. A parameterisation scheme, for example, will generally

run alongside other parameterisation schemes, it may only update some of the

output variables, or may not have any direct contact with the output, instead

sending some kind of flux to another module, for example. In addition, a pa-

rameterisation scheme may be executed many times in one timestep, perhaps

once for each gridbox. All this modularisation may also be a source of error

which must be quantified. Once this is done, we can go on to calculate what

function each module should be trying to calculate in order to minimise error

in the timestep function, and so ultimately in the whole model.

We begin by considering the splitting of the timestep into two sequential opera-

tions on a state. For example, perhaps the convection scheme first calculates a

convective mass flux which is added to the state, then this updated state is used

to calculate, say, detrainment of convective mass flux into layer cloud. If the split

has some well defined physical meaning, then these processes can be calculated

by the high-res model and put together in the same way, i.e. f , can be split into

two operations, g and h, such that f = g(h). However, by insisting on a split

we are, in effect, insisting that the model has a low-resolution representation at

some point in the middle of the timestep, meaning that f ′ = g(αγh). We have

shown (theorem 2.3.3) that in this case if we let G = αggγg and H = αhhγh,

the model F = GH minimises error.

We next consider the splitting of the model into gridboxes, where the informa-

tion available to each gridbox contains only a limited amount of local informa-

tion and the timestep is calculated by separately updating each gridbox. To

do this we imagine the high-res model to be split into separate volumes, each

representing one gridbox. In this case, even if we minimise the error in each

gridbox, the act of splitting into gridboxes may introduce further error. It turns

out that extra error will result unless, in the high-res model, there is no corre-

lation between the states of the different gridbox volumes after one timestep,

given the start state of the whole system (theorem 2.3.4). However, the low-res

gridbox should still calculate the function αgγ where g is the high resolution

model over the volume of the gridbox in order to minimise error. The same
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argument can be used to split a single gridbox into different physical schemes

such as advection, precipitation, convection etc.

Finally, some parameterisation schemes make use of diagnostic variables. In this

case, the high resolution model can be split into two functions f = g(ψ, h(ψ))

and we can minimise error, rather predictably, by letting H = αhγ, G = αgγ

and F = G(X,H(X)).

2.3 Abstraction theory: Mathematical develop-

ment

We now formally develop Abstraction theory. Abstraction theory helps us rea-

son about the links between low resolution models and their high resolution

counterparts. Let p be a high resolution model and U be a two-tape universal

Turing machine and let φ = 〈st+∆t, ∅〉 = Up(〈st, bt〉) be the function calculated

by p, where st is the atmospheric state at time t and bt are the boundary con-

ditions at time t and ∅ is the null boundary condition. Similarly, let P be a

low resolution model and Φ = 〈St+∆t, ∅〉 = UP (〈St, Bt〉) be the function com-

puted by P . We suppose, without loss of generality, that the tape of the Turing

machine is arbitrarily long but finite.

Definition 2.3.1. In the context of abstraction theory we will refer to the high

resolution model as the concrete model, and the low resolution model as the

abstract model.

Definition 2.3.2. A stochastic state vector of a set, X, is a vector whose

dimension is equal to the cardinality of X and whose elements are real numbers

in the interval [0, 1]. The set of all stochastic state vectors of a set X will be

written ~℘(X).

Stochastic state vectors over the states of the concrete and abstract models will

be referred to as concrete and abstract stochastic state vectors respectively.

If the sum of elements of a stochastic state vector of a set X is 1, it can be

interpreted as a probability distribution over the members of X. Representing

this as a vector, rather than a function, will turn out to be very convenient, as

we shall see. In the remainder of this section we will use index notation V x to

denote the xth element of the vector V , and the Einstein summation notation to
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represent linear operators on vectors, for example if O is a matrix whose (x, y)th

element is Oyx then

OyxV
x ≡

∑
x

OyxV
x .

Summation is only implied over pairs of upper and lower indices, so V xW x is

not summed over. To aid notation, concrete stochastic state vectors will be

named using upper-case Greek letters, and their indices will be given lower-case

Greek letters. Abstract stochastic state vectors will be named using upper-case

Latin letters, and their indices will be given lower-case Latin letters.

The key idea of abstraction is that the abstract model is intended to be a

representation of the concrete model and each (non-stochastic) state of the

abstract model must have a fixed meaning, in terms of the states of the concrete

model. This meaning is given mathematical rigour by defining it as a probability

distribution over the states of the concrete model. Once the meanings of the

abstract states are defined, the relation between the behaviour of the abstract

model and the concrete model follows. In full generality, this meaning should be

given by a function from abstract stochastic state vectors to concrete stochastic

state vectors.

Definition 2.3.3. A semantics, γψx is a matrix that transforms abstract stochas-

tic state vectors to concrete stochastic state vectors. The semantics must be

probability preserving, i.e. for all x∑
ψ

γψx = 1

and each element must be in the range [0 : 1].

Definition 2.3.4. Any function, f : Ψ → Φ, defines a power matrix, ℘(f) :

~℘(Ψ) → ~℘(Φ), where ~℘(Ψ) and ~℘(Φ) are the sets of stochastic state vectors on

Ψ and Φ respectively, such that

℘(f)φψ =

 1 if φ = f(ψ)

0 otherwise.

This definition is extended to functions that return random variables as

℘(f)φψ = P (f(ψ) = φ) .
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So, for example, the power matrix of our concrete model, ℘(φ), would be the

timestep function on concrete stochastic state vectors. In this way, the power

matrix of a timestep function is the discrete equivalent of the Perron-Forbenius

operator (see, e.g. Lasota and Mackey, 1985). We will refer to the power matrix

of the concrete model as the stochastic concrete model.

Definition 2.3.5. Given a stochastic concrete model f and a semantics γ, a

function F is said to be an abstraction of f with respect to γ if and only if

γφyF
y
x = fφψγ

ψ
x .

This definition really just embodies what we mean by meaning. Suppose we

have a high resolution computer model f ′ and a low resolution model F ′. If the

meaning of an abstract (non-stochastic) state x is the probability distribution

of concrete states given by γx, and F ′ is to have the same meaning as f ′, we

expect the meaning of F ′(x) (i.e. γF ′(x)) to be the probability distribution, γx,

after it has been passed through the concrete power matrix ℘(f ′).

Abstractions have the important property that after any number of timesteps,

the meaning of their state is exactly the probability distribution that we would

get if we were to run an ensemble of concrete simulations. More formally:

Theorem 2.3.1. Given a stochastic concrete model, f , its abstraction, F , and

a semantics, γ, then γFn = fnγ for all n, where by Fn we mean n iterations

of F (i.e. matrix multiplication, n times).

Proof. By definition

γF = fγ

Suppose now that for some n

γFn = fnγ . (2.1)

In this case

γF (n+1) = fnγF

but from the definition of abstraction

fnγF = f (n+1)γ

so

γF (n+1) = f (n+1)γ .
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From the definition of abstraction, equation 2.1 is true for n = 1 so by recurrence

for any n

γFn = fnγ .

Definition 2.3.6. An abstraction operator αxψ is a transform from concrete

stochastic state vectors to abstract stochastic state vectors. It is the inverse of

γ such that αyψγ
ψ
x = Iyx , where Iyx is the identity matrix, all elements αyψ are in

the range [0 : 1] and α is probability preserving, i.e. for all ψ∑
y

αyψ = 1 .

If the semantics γ is a partition of ψ (i.e. for any given ψ, γψx is non zero for only

one value of x) then there is a unique probability preserving inverse of γ. In this

case we call the abstraction operator a partitioning abstraction operator

and γ is a partitioning semantics.

Theorem 2.3.2. There is a unique abstraction operator of a partitioning se-

mantics γ, defined as

αxψ =

 1 if γψx > 0

0 otherwise.

Proof. By definition

αyψγ
ψ
x = Iyx

so for any x and φ such that γφx 6= 0 then αyφ = 0 if y 6= x since neither α or γ

have any negative elements.

From probability preservation, for any given φ:
∑
y α

y
φ = 1. so it follows that if

γφx 6= 0 then αφx = 1, so

αxψ =

 1 if γψx 6= 0

0 otherwise.

Given α, since

γF = fγ

then

αγF = αfγ
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so, since

αγ = I

then

F = αfγ

and we have a constructive definition of F .

In full generality, the semantics may not be partitioning. However, we will

consider only partitioning semantics here. This does not affect the theory’s rel-

evance to existing GCMs, which all have prognostic variables with partitioning

semantics (i.e. given a microstate of a gridbox, its large scale state is defined).

However, there is a very strong case for abandoning partitioning prognostic vari-

ables in favour of, for example, ranges of the thermodynamic quantities. This

would lead to models that provide provably correct results and obviate the need

for ensemble runs. This would certainly lead to more persuasive model results

and may also lead to more computationally efficient models. An investigation

into this is left for future work.

2.3.1 Abstraction of composite functions

A composite function is a function f(ψ) that can be expressed as a composition

of functions g(h(ψ)). In terms of operators on stochastic state vectors, com-

position becomes matrix multiplication fφψ = gφξ h
ξ
ψ. Composition is important

because it is the basis of time-stepping.

Theorem 2.3.3. If we have a composite function fφψ = gφξ h
ξ
ψ and G = αgγ

is an abstraction of g and H = αhγ is an abstraction of h then GH is an

abstraction of f for all inputs as long as γα = I

Proof. By substitution

GH = αgγαhγ

but since γα = I then

GH = αghγ

but f = gh so

GH = αfγ
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The requirement γα = I is not generally satisfiable. However, if we are averaging

over a large number of time steps, then we have the weaker requirement that

Ψ = αγΨ for the sum of states.

2.3.2 Abstraction of compound dynamic systems

In a GCM, each variable in the state belongs to a gridbox and each gridbox is

considered as a separate subsystem which communicates with the rest of the

system via its boundaries. The usefulness of this is to ‘divide and conquer’ the

problem; it is hoped that it is easier to solve the equations of motion of the

subsystems and join their respective results, than to tackle the whole problem

in one go. In this section we consider this in its most general form as a splitting

of a system into two parts (and by induction into any number of parts) and

consider what must be assumed for this to be formally possible.

For any dynamic system, xt+∆t = F (xt), we can arbitrarily split this system

into two subsystems

at+∆t = g(at, bt)

bt+∆t = h(bt, at)

such that F (T (a, b)) = T (g(a, b), h(a, b)) for some one-one mapping xt = T (at, bt).

a can be considered to be the state of subsystem g and b to be its boundary

conditions; conversely for h.

However, this raises the question of how to construct abstractions of these sub-

systems so as to ensure that the whole abstract system is an abstraction of

the whole concrete system. Put more formally we have a concrete system

fa
′b′

ab = ga
′

abh
b′

ab and would like to construct a stochastic abstract systemGA
′

ABH
B′

AB

which is an abstraction of f . From this, it can be seen that this is only possible

if, for the abstraction of f , A′ and B′ are uncorrelated, given AB. This is not

guaranteed, and is a property of the prognostic variables that we must ensure

is fulfilled. Some thought shows that this property is not fulfilled by the prog-

nostic variables of the current generation of GCMs. For example, gravity waves

which are not captured by the prognostic variables can propagate between grid-

boxes and trigger convection, or the spatial distribution of convection within

a gridbox can affect convection in a neighbouring gridbox by self-organisation

without being reflected in the large scale variables.
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Theorem 2.3.4. Given a compound concrete model fa
′b′

ab = ga
′

abh
b′

ab, a semantics

γabAB and abstraction operators αA
′

a′ and βB
′

b′ , then an abstract system GA
′

ABH
B′

AB

is an abstraction of f if G is an abstraction of g, H is an abstraction of h and,

for the abstraction of f , A′ and B′ are uncorrelated, given AB.

Proof. Let

κA
′

xy = αA
′

a′ ℘(g)a
′

xy

and

λB
′

xy = βB
′

b′ ℘(h)b
′

xy .

Using the notation (c)x = c for all x. Let

(∆κA
′

xy)XY = (κA
′

xy)XY − (κA
′

ij γ
ij
XY )xy (2.2)

and

(∆λA
′

xy)XY = (λA
′

xy)XY − (λA
′

ij γ
ij
XY )xy .

Multiplying through by γ gives

(∆κA
′

xy)XY γ
xy
XY = (κA

′

xy)XY γ
xy
XY − (κA

′

ij γ
ij
XY )xyγ

xy
XY

but because γ gives conditional probabilities, (kXY )xyγ
xy
XY = kXY so from prob-

ability conservation

(∆κA
′

xy)XY γ
xy
XY = κA

′

xyγ
xy
XY − κA

′

ij γ
ij
XY = 0

similarly for ∆λ.

Let F be the stochastic abstraction of the whole concrete system

FA
′B′

AB = αA
′

a′ β
B′

b′ ℘(g)a
′

ab℘(h)b
′

abγ
ab
AB .

Substituting equation 2.2 into F gives

FA
′B′

AB =
(
(κA

′

ij γ
ij
AB)ab + (∆κA

′

ab )AB
)(

(λA
′

ij γ
ij
AB)ab + (∆λA

′

ab )AB
)
γabAB .

Multiplying out and removing zero terms leaves

FA
′B′

AB = κA
′

ij γ
ij
ABλ

B′

kl γ
kl
AB + ∆κA

′

xy∆λ
B′

xyγ
xy
AB

but by definition

GA
′

ABH
B′

AB = κA
′

ij γ
ij
ABλ

B′

kl γ
kl
AB

the last two equations are equal when the last term in the first equation is

zero, but equating this term to zero is equivalent to stating that A′ and B′ are

uncorrelated, given AB.
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2.3.3 Abstraction of Diagnostic variables

Another technique used in GCMs is to calculate first a diagnostic variable, then

calculate the new prognostic variables as a function of the diagnostic variables.

This also helps to divide and conquer the problem. This amounts to splitting

the system into the equations

xt+∆t = g
(
xt, h(xt)

)
we now show how this system can be abstracted.

Theorem 2.3.5. Given a concrete model fx
′

x = ℘(h)x
′

xg(x), a semantics γxX ,

abstraction operators αX
′

x′ and βDd , then the compound system HX′

XDG
D
X is a

stochastic abstraction of f if G is a stochastic abstraction of g and HX′

XD is a

stochastic abstraction of h.

Proof. By definition

HX′

XDG
D
X =

(
αX

′

x′ ℘(h)x
′

xdγ
′xd
XD

) (
βDd ℘(g)dyγ

y
X

)
but for a given x, γ′xdXD must have a deterministic d equal to g(x) (i.e. γ′xdXD =

δdg(x)δ
g(x)
e γ′

xe
XD) so

HX′

XDG
D
X =

(
αX

′

x′ ℘(h)x
′

xg(x)γ
′x
XD

) (
βDd ℘(g)dyγ

y
X

)
.

The abstraction of the whole system is

FX
′

X = αX
′

x′ ℘(h)x
′

xg(x)γ
x
X

so the two are equal as long as

γ′
x
XDβ

D
d ℘(g)dyγ

y
X = γxX

this still allows us some freedom in the definition of γ′xXD, but as long as the

above is satisfied, the compound system is guaranteed to be an abstraction of

the whole concrete system.

2.3.4 Dynamic systems that have no abstraction

Given a concrete function and a semantics, there is no guarantee that there

exists an abstraction. That is, although it is true that if F is an abstraction
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then it must be equal to αfγ, the converse is not true: if F = αfγ, it is not

necessarily true that it is an abstraction. i.e. that γF = fγ. Since this implies

that

γαfγ = fγ

which is not necessarily true. This is the case for the prognostic variables of a

GCM.

Theorem 2.3.6. There does not exist an abstraction of physical reality for a

GCM with today’s prognostic variables.

Proof. Since we have no mathematical definition of γ for GCM states, we must

appeal to our intuitive understanding of the properties of γ in this case.

Suppose that there does exist an abstraction F of f such that γF = fγ. Con-

sider an abstract state X such that Xx = 1 for some state x, now run it back-

wards for some time until αf−nγX is a mixture of abstract states (this is clearly

possible from our intuitive understanding of the meaning of GCM states). Now

consider two of the pure states in that mixture with non-zero probability, call

them A and B (where Aa = 1 and Bb = 1 for some states a and b) and run

them forward through F . Clearly, FnA has a non-zero probability of being in

state X so

(FnA)x 6= 0 .

Again from our intuitive understanding of the meaning of GCM states, it

wouldn’t be difficult to find a concrete state, ψ, in X such that (fnγB)ψ 6= 0

and (fnγA)ψ = 0. Since (fnγB)ψ 6= 0 if F is exact, (γFnB)ψ 6= 0 and since ψ

is in X then γψx 6= 0 but since (fnγA)ψ = 0 then (γFnA)ψ = 0, but since ψ is

in X and γψx 6= 0 then

(FnA)x = 0

in contradiction to our previous deduction. So F cannot be an abstraction for

any semantics that conforms to our intuitive understanding of GCM prognostic

variables.

As an aside, however...

Theorem 2.3.7. For every dynamic system on its attractor and an abstract

state of any size there is a semantics for which there does exist an abstraction.
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Proof. Consider only that the attractor of a computer program is a loop of

states (in the case of non-deterministic computer programs, consider the seed of

a pseudo random number generator as being part of the concrete state). Let N

be the number of states on this loop and ψn be the nth state from some arbitrary

starting point. If L is the number of abstract states, choose the lowest integer,

I, such that N
I is an integer not higher than L. Now let the meaning of the ith

abstract state, Xi, be the set of concrete states {ψn : n = jI+ i, 0 ≤ j < N
I } for

0 ≤ i < I with equal probability, any remaining abstract states mean the null

vector or, to maintain probability preservation, some dummy concrete state.

With this semantics, the timestep function is particularly simple and is given by

F (X) = X + 1. So timestepping is easy, the problem is that it is not clear how

to go from abstract states to observables. It would seem that when designing

an abstract model, the choice of prognostic variables should be made carefully

to trade off ease of integration against ease of calculating observables while

ensuring abstractability. It would be interesting to explore the properties of the

set of semantics that admit of abstractions for a given concrete function, but

for now we’ll call this the end of the aside.

In order to interpret the meaning of models with the usual GCM prognostic

variables we consider an abstract timestep F to be an abstraction of a concrete

model timestep f with a random ‘turbulent noise’ perturbation p. p is chosen

so that F is an abstraction of pf , i.e. γF = pfγ. If we now calculate some

observable o(pf)nγX = oFnX then this is our best guess at the value of o,

given the noise. The uncertainty introduced by the noise will be reflected in an

increase of the variance of the observable. That is, if oσ is the operator giving

the variance of the observable then oσ(pf)nγX should be larger than oσfnγX.

If the problem we’re investigating with our model is well conditioned, then the

observable we’re interested in should have a fairly well defined value given our

knowledge of the boundary conditions so oσfnγX should be small. We would

also expect that the value of the observable is insensitive to small, ‘turbulent’

perturbations. If we find that oσ(pf)nγX is also small, then this confirms the

hypothesis that the observable is insensitive to these small perturbations.

We choose p so that the average perturbation in any observable over the oper-

ational lifetime of the model is zero. So, if Ψ0...N are the concrete states that a
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model will pass through in its operational lifetime then for some observable o

π̄ =
N∑
n=0

oΨn − opΨn = 0

so

0 = o(1− p)
N∑
n=0

Ψn

if we let Ψ̄ =
∑N
n=0 Ψn then the above is true for all observables, o, if

pΨ̄ = Ψ̄ (2.3)

i.e. if the average of all states is an eigenvector of p. This can be satisfied if we

let

p = γα (2.4)

where γ and α are the semantics and the abstraction operator respectively, and

for a given α (which is given by the thermodynamic interpretation of the prog-

nostic variables of the GCM), γ can be derived since, by substituting equation

2.4 into equation 2.3

γψx α
x
φΨ̄

φ = Ψ̄ψ

but, from the definition of α, for any given ψ, γψx is non zero only if αxψ = 1, so

the sum over x consists of only one term of magnitude Ψ̄
αΨ̄

when αxψ = 1. So

γψx = (αT )ψx
Ψ̄ψ

αxΨ̄

i.e. γψx = P (ψ|x), the conditional probability of a system being in state ψ given

that it is in state x (and that the model is in some state in its operational

lifetime). In this case, F = αpfγ = αγαfγ = αfγ and F is unchanged by

the perturbation; the perturbation is entirely sub-grid and undetectable on the

large scale.

This perturbation technique extends to apply to the case of composite and

compound systems in the obvious way. This definition of the semantics leads

to some interesting properties of the abstract function in the case when the

expected lifetime of the model tends to infinite time. To see this, we need to

think about the concrete and abstract models as timesteps of dynamic systems

and about the attractors of these systems.
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2.3.5 Concrete and abstract attractors

The Sun-Earth system is travelling along some portion of its attractor (Palmer,

’99), and all climate simulations will represent a trajectory along some portion

of this attractor so it is the properties of this attractor that we are interested

in. For this reason we take some time now to explore the relationship between

the attractors of concrete and abstract models.

In a dynamic system, the attractor is defined as the points in the phase space of

the system that an orbit passes arbitrarily close to an infinite number of times

as the length of the orbit tends to infinity. In the case of our computer programs

there are always a finite number of states, so we can define the corresponding

concept as the states that an orbit visits an infinite number of times as its length

tends to infinity. Clearly, this must consist of a loop of states. The attractor of

a computer program can be represented as a single stochastic state vector by

defining it as the probability of finding an orbit in a given state as its length

tends to infinity.

It may be argued that by restricting our attention to one-dimensional attractors

we are excluding chaotic systems which have attractors with fractal dimension.

However, the fractal dimension of an attractor, while of some mathematical in-

terest, has no physical significance in the sense that for any finite set of actual

or potential observations of a chaotic system, there exists an indistinguishable

dynamic system with a one dimensional attractor. As a corollary to this, con-

sidering our definition of a dynamic system as a computer program in the limit

that a certain variable, δ, tends to zero. For any finite set of observations there

exists a finite value of δ for which the program output is identical to that in the

limit.

Definition 2.3.7. The attractor, a(x), of a stochastic model, f , for a given

start state, x, is defined as the limit of the average stochastic state of the system

over a number of iterations, as the number of iterations tends to infinity. So,

a(x) = lim
n→∞

∑n
m=1 f

mx

n
.

Theorem 2.3.8. An attractor of a stochastic model, f , is a fixpoint of f .
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Proof. By definition an attractor, a, is given by

a(x) = lim
n→∞

∑n
m=1 f

mx

n

so

fa(x) = lim
n→∞

∑n+1
m=2 f

mx

n

= a(x) + lim
n→∞

fx

n
− limn→∞

fn+1x

n

but both limits in the above equation are zero since all elements of fx and

fn+1x are always fininte, so

fa(x) = a(x) .

Definition 2.3.8. For a given abstraction operator, α, and a concrete state,

Ψ, Let the induced semantics be a semantics that satisfies

γψx = (αT )ψx
Ψψ

αxφΨφ

for all x such that αxφΨ
φ > 0, where αT is the transpose of α.

The induced semantics has a very intuitive interpretation: If we suppose that

Ψ is the prior probability that the concrete system is in some state, then the

induced semantics is P (ψ|x), the Bayesian probability that the concrete system

is in state ψ, given that it is in the abstract state x.

Theorem 2.3.9. For a given abstraction operator, α, and a concrete state, Ψ,

if γ is the semantics induced by Ψ and α then

γαΨ = Ψ .

Proof. By substitution

γαΨ = (αT )ψx
Ψψ

αxφΨφ
αxi

xΨxi

=
∑
x

(αT )φxΨ
ψ

but, from the definition of the abstraction operator, the sum over x results in

the unit vector, so

γαΨ = Ψ .
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Theorem 2.3.10. For a given concrete function f with a fixpoint Ψ and an

abstraction operator α, if F = αfγ, where γ is the semantics induced by α and

Ψ, then αΨ is a fixpoint of F .

Proof. Given that F = αfγ.

FαΨ = αfγαΨ

but, from theorem 2.3.9 γαΨ = Ψ, so

FαΨ = αfΨ

but, by definition, Ψ is a fixpoint of f so

FαΨ = αΨ .

So, an abstract function defined by αfγ will have the same attractor as f .

Theorem 2.3.11. For a set of temporally contiguous states Φ1...ΦN and a

concrete function f , then an abstract function F = αfγ will have zero error in

the first moment of any observable when averaged over the states Φ1...ΦN as N

goes to infinity if γ is the semantics induced by α and Ψ =
P

n Φn

N .

Proof. For a given state, Φ, the error in an observable, o between f and F after

t timesteps is given by

ε = oγF tαΦ− of tΦ .

When averaged over a number of states Φ1...ΦN , the average error is given by

ε =
1
N

N∑
n=1

(oγF tαΦn − of tΦn) = oγF tαΨ− of tΨ

where

Ψ =
∑
n Φn
N

but as N tends to infinity, Ψ tends to the attractor of f so Ψ becomes a fixpoint

of f . Also, from theorem 2.3.10 αΨ becomes a fixpoint of F so

ε = oγαΨ− oΨ

but from theorem 2.3.9 γαΨ = Ψ so

ε = oΨ− oΨ = 0 .
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2.4 Related work

The theory of abstraction presented here is new. However, the transforma-

tion of probability distributions over the phase space of a dynamical system

by a timestep function has been considered before. It is useful to distinguish

two types of timestep functions on probability distributions: deterministic and

random. Deterministic transforms have the property that a delta function is

always transformed to another delta function, and so there is an underlying

deterministic timestep function in the phase space of the system. In this case

the probability transform is known as the Frobenius-Perron operator. Lasota

and Mackey (1985) present many very pleasing mathematical results for such

systems; however, most of these are of very little practical use for the present

project. Random transforms, on the other hand, do not transform delta func-

tions to delta functions and so their underlying timestep operator in the phase

space of the system must have some random element (as is generally the case for

the semantics presented here). This case forms the subject of random dynami-

cal systems, expositions of which can be found in Bhattacharya and Majumdar

(2007) and Arnold (2002).

A stochastic approach to the dynamics of the atmosphere can be traced back at

least as far as Epstein (1969) who realised that this is the proper way to treat

uncertainty in the start state of the atmosphere due to paucity of observation.

However, he did not pursue this very far, deeming it too difficult and computa-

tionally expensive. The first stochastic treatment of the global climate is given

in Hasselmann (1976) who supposed that the prognostic variables of a global

model can be partitioned into two sets: the ‘climate’ variables and the ‘weather’

variables such that the time scale of the weather variables is much smaller than

that of the climate variables, this was later developed by Arnold (2001). The

stochastic approach to parameterisation has attracted much interest recently,

especially in the parameterisation of convection. Buizza et.al. (1999) present

some quite provocative results; see Shutts and Palmer (2007) and references

therein for more.
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2.5 Conclusion

In this chapter we have shown how to correctly modularise a low-res model. We

have developed a theory of abstraction and used it to show that the timestep of

a low-res model should compute the function F = αfγ, where f is the timestep

of a high-res model. This ensures that the meaning of the attractor of F is

the attractor of f . We have shown how to calculate the error introduced by

modularising a model and how to minimise the error in each module. Finally

we have seen how the semantics of each module relates to the semantics of the

whole model.

Given a concrete model, f , it is easy enough to write a computer program that

computes its abstraction F = αfγ. Simply take f and write a wrapper that

transforms its inputs, stochastically, via a simulation of γ and transforms its

outputs via a simulation of α. A Monte Carlo simulation of F would then

reproduce the PDF of outputs for any given input. However, if we did this

we would end up with a low-resolution model that runs slower than the high-

resolution model. So now we have identified ideal computer programs for each

part of a GCM, our next step should be to develop a technique of identifying

computer programs that approximate these ideal programs and execute as fast

as possible. This will be the subject of the next chapter.
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Chapter 3

Approximation of computer

programs

We have now reduced the problem of simulating climate to that of making a

number of modules that each approximate a high resolution code of the form

αfγ where f is a detailed, high resolution model and α and γ form a ‘wrapper’

that ensures that the input and output of the module are of the appropriate, low

resolution form. In this section, we present a method of transforming αfγ into

a much faster program, call it F , that approximates αfγ with some provable

bound on the error. So, F = αfγ + ε where N(ε) < B for some bound B and

some measure of error N .

3.1 Static analysis of computer programs

The basic idea behind our approach is to treat a computer program as a math-

ematical object to be analysed rather than a code to be executed. When a

program is executed, its input variables are assigned particular values and the

program describes a procedure for manipulating these values to produce a set

of output values. In contrast, when a program is analysed, it is the structure

of the program (i.e. its syntax) that is of interest while the values of the input

variables remain unspecified. So, the computer program becomes the object of

analysis and the analysis is an attempt to derive properties of the program that
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hold independently of the input values.

To approximate a program, P , we begin by considering it as a function Y =

UP (X) from a vector of input variables, X, to a vector of output variables, Y , so

that each element ofX or Y represents one input or output variable respectively.

We then show that for each element Yn of Y (i.e. for each output variable of

the program P ) there exist polynomials Q(X) and R(X) such that

Yn =
Q(X)
R(X)

.

We call a function of this form a ‘polynomial rational’. From this, we define a

vector of polynomial rationals, A, so that A(X) = UP (X) for all input vectors

X. That is, for any assignment of values to the input variables, the polynomial

rationals evaluate to the same values as the program’s outputs, and in this way

the vector of polynomials, A, is equivalent to the program, P 1. We then find

an approximation to A in such a way that the error between the approximation

and the original does not exceed some user specified value over some user-

specified range of input values. This approximation is then converted back into

a computer program which approximates the original program.

Since the approximation is derived from the original through a sequence of well

defined mathematical transformations, formal bounds on the actual error intro-

duced by the approximation can be calculated and reported. This describes, in

very rough outline, how programs can be approximated. However, there remain

many details to be filled in and complications to be addressed and we will intro-

duce and deal with these in the following sections. We begin with very simple

examples and work gradually toward more complex, realistic cases.

3.1.1 Approximating arithmetic assignments

Let’s begin by deriving an approximation of the following very simple program:

1Strictly speaking, UP (X) is a vector of floating point numbers, fixed-length integers,

characters and booleans, while the evaluation of A is a vector of real numbers. We consider

a real number, r, to be equal to a floating point number, f , if there does not exist another

floating point number f ′ such that |r − f ′| < |r − f |. Similarly for integers. Characters and

booleans are treated as integers. We leave the properties of the special floating point numbers

inf, -inf and NaN undefined in the symbolic interpretation and allow A to differ from P if

any floating point operation in P returns any of these values.
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input(x)

a = x + 1

y = a*a;

y = y*y;

output(y)

Normally, we would simply execute this program for some input, say x = 0.1.

So, after the first line a = 1.1, after the second line y = 1.1 × 1.1 = 1.21, the

next line y = 1.21× 1.21 = 1.4641. So the output is 1.4641.

However, when analysing the program we don’t want to think of the input and

output as having specific values, like 1.4641, but rather we want to express the

output as a polynomial rational with the input x as an independent variable. To

do this, we consider the variables of the program to be polynomials, rather than

floating point numbers with specific, numeric values. Since polynomials can be

added together and multiplied, our program still has a clear interpretation as

a sequence of operations on polynomials. So, we begin by setting the input

variable x to be equal to the first order polynomial f(x) = x. The first line sets

a to the polynomial a(x) = 1 + x, the second line sets y(x) = (1 + x)(1 + x) =

1+2x+x2, the next line y(x) = (1+2x+x2)(1+2x+x2) = 1+4x+6x2+4x3+x4

so the output of the program can be considered to be the polynomial y(x) =

1 + 4x+ 6x2 + 4x3 +x4. If we evaluate this polynomial at x = 0.1, for example,

we get y(0.1) = 1 + 0.4 + 0.06 + 0.004 + 0.0001 = 1.4641, as we would expect.

Suppose we are now told that x, the program’s input, is always in the range

−0.1 ≤ x ≤ 0.1 and that we can apply simplifications as long as the absolute

error in the output remains bounded by 0.1. The simplest way of approximating

the program in this case is by getting rid of the higher order terms in y(x),

so the approximation becomes y(x) ≈ 1 + 4x with an error given by ε(x) =

6x2 +4x3 +x4. Within the range −0.1 ≤ x ≤ 0.1, ε(x) has a maximum absolute

value of 0.0641 when x = 0.1 so y(x) = 1 + 4x± 0.0641. This converts into the

simplified program:

input(x)

y = 1 + 4*x

output(y)

A better approximation can be made by using the first order Chebyshev ap-
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proximation of y(x), giving y(x) = 1.03004 + 4.03x± 0.0310625.

This method can be applied to any sequence of the four arithmetic operations

+, −, × and ÷, and the result can always be expressed in the form Q
R by using

the following identities:
Q

R
× S

T
=
QS

RT

Q

R
+
S

T
=
QT +RS

RT

−Q
R

=
−Q
R

and
Q
R
S
T

=
QT

SR
.

It should be noted that the resulting polynomials interpret the algebraic opera-

tors in a program as exact operations, rather than the approximate arithmetic

of floating point numbers. So to this extent the evaluation of a polynomial may

differ from the result of executing a program. This can be thought of as replac-

ing all finite precision floating point numbers with infinite precision. However,

a properly written simulation should be insensitive to increases in the precision

of floating point arithmetic. In this case any differences would be dwarfed by

the approximations we are likely to want to introduce, so we do not consider

this to be an issue for our purposes.

3.1.2 Random numbers

In our definition of a wrapped model, αfγ, we specified that γ was, in general,

a stochastic transformation. That is, for any given input, it’s output may take

on any of a number of values with some probability distribution. When written

as a program, this would be implemented by using a pseudo random number

generator. Let’s say the function rand() calls a random number generator whose

output is a floating point number in the range [−1 : 1] with a top-hat probability

distribution. Random numbers with any arbitrary distribution can be generated

from the rand() function by passing it through a function f(rand()) which is

related to the inverse cumulative probability density of the required distribution.

More details are given in theorem 3.3.1 in section 3.3.

Let’s suppose that the input of the program in the previous section represents

some measured quantity and that the measuring device can only measure x to
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within ±0.005. This can be represented by letting γ be the program x = x +

0.005*rand(). So the wrapped program is

input(x)

x = x + 0.005*rand();

a = x + 1

y = a*a;

y = y*y;

output(y)

Random numbers can be dealt with by representing the output of each call to

rand() as a unique, especially tagged, variable, let’s say r0...rn. The moments

of each output can then be calculated by integrating over each of the tagged,

random variables. So, analysing the program above shows the first moment of

y to be

ȳ = 1
2

∫ 1

−1

[
(1 + 4x+ 6x2 + 4x3 + x4)+

(0.02 + 0.06x+ 0.06x2 + 0.02x3)r0+

(0.00015 + 0.0003x+ 0.00015x2)r20+

(5× 10−07 + 5× 10−07x)r30+

6.25× 10−10r40
]
dr0

evaluating the integral gives

ȳ = 1.000050000125 + 4.0001x+ 6.00005x2 + 4x3 + x4 .

3.1.3 Fixed loops

We now look at a more complex program that performs a numerical integration

of the Lorenz equations (Lorenz, 1963):

dX

dt
= σ(Y −X)

dY

dt
= rX − Y −XZ

dZ

dt
= XY − bZ .

Following Lorenz, we let σ = 10 and b = 8
3 . Here, we imagine that r has been

measured to have value rm with an instrument that has an associated error of e.
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We suppose that the measured value lies in the range 0 < rm < 28− e (Lorenz

uses the value r = 28). The following program integrates these equations:

input(rm)

r = rm + e*rand()

X = 0.0

Y = 1.0

Z = 0.0

loop 6 times {

dx_dt = 10.0*(Y-X)

dy_dt = r*X - Y - X*Z

dz_dt = X*Y - (8.0/3.0)*Z

X = X + dx_dt*0.01

Y = Y + dy_dt*0.01

Z = Z + dz_dt*0.01

}

output(X)

The new element here is the loop. To deal with loops that have a fixed number

of iterations, first reduce the body of the loop to a vector of polynomial rationals

in the same manner as we have already done. So, if we place the variables into

a vector (X,Y, Z), then the body of the loop would be equal to the vector

L =


x+ 0.1y − 0.1x

y + 0.01rx− 0.01y − 0.01xz

z + 0.01xy − 0.08
3 z

 .

The loop, then, is equal to the polynomial L6(X,Y, Z) and the output, X, is

just the first element of this. On performing the calculation, the value of X

comes out as

X = −1.09964× 10−15(rm + ei)3 + 5.66995× 10−7(rm + ei)2+

0.00169011(rm + ei) + 0.455595

where i is the value returned by the random number generator.

Using Chebyshev approximation (under the assumption that errors up to 10−4

are acceptable), this can be approximated as

X = 0.00171(rm + ei) + 0.45532± 5.6× 10−5 .
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This can now be easily integrated over i to find the average value of X

X̄ =
∫ ∞

−∞

(
0.00171(rm + ei) + 0.45532± 5.6× 10−5

)
P (i)di

where P (i) is the probability distribution of the random number generator. So,

since by definition ī = 0

X̄ = 0.00171rm+ 0.45532± 5.6× 10−5 .

This equation converts to a computer program

input(rm)

X = 0.00171*r_m + 0.45532;

output(X);

that returns the expectation value of X for any measured value in the range

0 < rm < 28−e in 2 arithmetic operations with an error bounded by 5.6×10−5.

This compares to 90 operations for the original program.

An important point to note here is that in our examples so far the calculation of

the polynomial has proceeded sequentially, in much the same order as it would

during an execution. The loop, L6, however, illustrates that an analysis may

proceed very differently from an execution. During an execution of the loop,

the program pointer would loop round 6 times; during an analysis, however,

we immediately define the meaning of the loop as L6. This can be evaluated

in any way we please. For example, we may evaluate M = L ⊗ L ⊗ L, then

L6 = M⊗M , giving L6 in 3 (albeit polynomial) operations. In some cases, there

exists a closed form solution for a loop Ln in terms of n. As a simple example,

suppose we have a loop with 100 iterations, and the body of the loop evaluates

to L =< 2X,Y + 1 > for an input vector < X,Y >. Ln can be immediately

solved as Ln =< 2nX,Y + n > giving L100 =< 2100X,Y + 100 > without the

need to go through the 100 iterations.

So, when a program is executed, a program pointer moves, step by step, through

the program. When a program is analysed, however, it’s equivalent polynomial

is built up from the structures of the program. There is no program pointer,

structures can be transformed in any order, the end of the program may be

transformed before the beginning.

Finding a closed form solution for a loop Ln is the same as solving a recurrence

relation. Much work has been done on this, for a survey of early work see Lueker
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(1980) and references therein. More recently Bachmann et.al. (1994) introduced

‘chains of recurrences’ as a formal tool for solving recurrences, this was later

developed by van Engelen (2000, 2001, 2004) to analyse loops in programs for

compiler optimisation. Pop et.al. (2005, 2006) developed this idea further into

‘trees of recurrences’ for the same application.

3.1.4 if statements

Consider the following program which roughly simulates a ball bouncing on the

floor in a gravitational field:

input(z) {

g = 10.0;

dt = 0.01;

v = 0.0;

loop 100 {

z = z + v*dt - 0.5*g*dt*dt;

v = v - g*dt;

if(z <= 0) {

v = -0.8*v;

z = 0.0;

}

}

output(z)

}

z is the height of the ball and v is its velocity in the upward direction. The

input is the initial height that the ball is dropped from and is taken to be in

the range [1 : 2].

The new structure here is the if statement. This is dealt with by using the

Heaviside step function, defined as

H(x) =

 1 if x > 0

0 if x < 0
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where H(0) is undefined.

The body of the if statement can be calculated in the usual manner, giving

the polynomial vector P = (0.0,−0.8v). The condition of the if statement can

be calculated by turning the inequality into the homogeneous form B > 0, in

this case we get −z > 0. Applying the Heaviside function to the left hand side

of this inequality gives H(−z) which is equal to 1 if the inequality is true, 0

otherwise. Multiplying the condition by −1 gives H(z) which is the reverse: 0

if true, 1 otherwise. So the whole if statement is equivalent to

F = H(−z)P +H(z)I

where I = (z, v) is the identity polynomial vector (i.e. the nth element is equal

to the nth variable). So, if z < 0 then H(−z) = 1 and H(z) = 0 so F = P . If

z > 0 then H(−z) = 0 and H(z) = 1 so F = I. This is exactly the behaviour

we require for equivalence to the if statement.

So, the whole loop equates to the vector

L =

 H(z + 0.01v − 0.0005)(z + 0.01v − 0.0005)

(1− 1.8H(z + 0.01v − 0.0005)) (v − 0.1)


and the whole program equates to L100.

Strictly speaking, the floating point variable z may equal 0.0 when the if state-

ment is reached, in which case F should equal P according to the if statement.

However, in this case, the analysis, L100 is a function of H(0) which is undefined.

The correct behaviour can be restored by noting that the floating point number

z that forms the input of the program does not denote a single real number

but rather denotes the range of numbers [z − ε
2 , z + ε

2 ], where ε is the smallest

increment to z representable as a floating point number. So, we can associate

some uncertainty to the input value by giving all inputs an implicit uncertainty

of ± ε
2 . All instances of H would then be integrated over this uncertainty. The

case when z = 0 would then be interpreted as an integral of the form∫ ε
2

− ε
2

H(x)P (x)dx

which is formally independent of the value of H(0) (as long as P stays finite)

since the width of the undefined area is infinitely thin2.
2Expressed more mathematically: H is defined ‘almost everywhere’.
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The conditions in if statements may also contain conjunctions && or disjunc-

tions || so that (A && B) is true if and only if A and B are both true, and (A

|| B) is true if and only if A or B or both are true. A disjunction (A || B) is

equivalent to A+B −AB and a conjunction (A && B) is equivalent to AB.

Introduction of the Heaviside step function means that, technically, we can no

longer represent programs as polynomial rationals. However, we consider the

step function to be the limit of an infinite series of polynomial terms, and so

we can still express a program as a polynomial rational, but with the implicit

understanding that this is in the limit of infinite degree polynomials.

3.1.5 Conditional loops and Rice’s Theorem

Conditional loops can be implemented using the structures we have already

described

while(A) {

...

}

is equivalent to

loop M {

if(A) {

...

}

}

for some M that gives the maximum number of times the while loop can iterate

over the domain of inputs.

It may be argued that in full generality one cannot put a finite number on M

since some programs enter infinite loops and never terminate. To make matters

worse it is a well known result of theoretical computer science (Turing, 1936)

that one cannot always tell if a given conditional loop will end up being infinite

or not. Rice’s theorem (Rice, 1953) uses this result to show that it is, in fact,

impossible to construct an analysing machine that can, in full generality, tell us

anything non-trivial about the properties of programs. Here, a trivial property
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is defined as one that is true of either all or no computer programs. This seems

very negative, but we must think carefully about what Rice’s theorem is telling

us: It is not telling us that for a given input program we cannot prove whether

it has a given property; rather, it is telling us that for any given property, there

exists at least one input program for which the analysis machine will either not

terminate, or will end up showing something trivial about the input program.

In addition, by insisting thatM is given a finite value we are, in effect, restricting

ourselves to the subset of computer programs known as ‘basic recursive’. These

are the programs that can be proved to terminate. As it turns out (Solomonoff,

2005), almost all computer programs in practical use happen to compute basic

recursive functions. Since a program that computes a basic recursive function

can be proven to terminate, Rice’s theorem does not apply. These programs

can all be proven to have the kind of properties that we are likely to want

to identify3. Upon reflection, it is not surprising that climate models in use

can be shown to terminate: they are written that way. For example, if it was

even suspected that an algorithm used in a GCM could take more than, say, a

month of computer time to execute one timestep on some input, this would in all

practical respects be considered to be a bad algorithm and would be rewritten or

thrown out of the model4. We therefore restrict ourselves to the consideration

of the basic recursive functions without fear that this will be a restriction for

our proposed application.

3.1.6 Arrays

To complete the description of our analysis technique, we present a method of

dealing with arrays. This is conveniently done by representing the whole array

as a single polynomial with the array’s index variable as its independent variable
3It is the author’s opinion that this is no accident. Rather, it is a side-effect of the fact

that programs are written by humans to do useful things
4The one exception to this is the use of randomised algorithms, some of which may tech-

nically never terminate. However, these algorithms all have the property that the probability

of termination very quickly approaches 1 as the number of iterations of some loop increases.

So, by limiting the number of iterations we effectively take an algorithm with a vanishingly

small probability of not terminating and replace it with an algorithm with a vanishingly small

probability of returning the wrong answer. So when we come to integrate over the random

numbers, there is always a finite M that ensures that the result is the correct answer with a

vanishingly small error.
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(multidimensional arrays can trivially be reduced to one dimensional arrays by

using the address in memory as the index of each element). Suppose we have

an array, A, of size N . We choose the N equidistant points on the interval [-1:1]

xn =
2n

N − 1
− 1

where n is an integer in the range 0 ≤ n < N . From this, we let the Lagrange

basis polynomials be defined as

ln =
∏

0≤i<N,i 6=n

x− xi
xn − xi

.

These polynomials have the important property that ln(xm) = 0 if n 6= m and

ln(xn) = 1. If we let ai be the value of A[i] for all integers 0 ≤ i < N , then

the (N − 1)th degree polynomial

A(x) =
N−1∑
i=0

aili

has the property that for any integer 0 ≤ j < N , A( 2j
N−1 − 1) = ai. So an array

reference A[j] is equivalent to the polynomial

A

(
2j

N − 1
− 1
)
.

If we now define the bi-variate polynomial L(i, x) as

L(i, x) =
N−1∑
j=0

lj

(
2i

N − 1
− 1
)
lj(x)

so that L(i, x) = li(x) for any integer 0 ≤ i < N , then the value of an array

after an assignment operation A[i] = Y is equivalent to the polynomial

A+
(
Y −A

(
2i

N − 1
− 1
))

L(i) .

3.1.7 Related work

The approach described in this chapter can most generally be described as

belonging to the computer science discipline known as ‘static analysis’ which

covers any analysis that treats a computer program as a mathematical object to

be analysed rather than as a code to be executed. Examples of this date back as

far as Moore’s interval arithmetic (Moore, 1966) although a formal treatment of

the idea wasn’t given until 1977 (Cousot and Cousot, 1977), when it was named
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‘abstract interpretation’ since the variables of the program, rather than being

considered as numbers, are considered to be some more abstract mathematical

object that represents, in some way, our knowledge of the variable’s true or

possible values. The main contribution of Cousot and Cousot was the formal

analysis of loops in terms of lattice theory which showed a way of ensuring that

all programs can be analysed in finite time (although, as a corollary to Rice’s

theorem, this may result in a trivial analysis).

Static analysis has now developed into a mature field (Cousot 1996, Hinchey

et.al. 2008) and its techniques are used in a range of applications including

optimising compilers (e.g. Aho et.al. 2007) and to validate safety critical com-

puter systems such as those used to control passenger aircraft or nuclear power

plants (e.g. Blanchet et.al. 2002).

Closest to the approach presented here is the sub-discipline of ‘Symbolic anal-

ysis’ (e.g. Fahringer and Scholz, 2003) which uses symbolic expressions to rep-

resent the values of variables. This has been applied to parallelising compil-

ers (Haghighat and Polychronopoulos, 1996; Kyriakopoulos and Psarris, 2009),

compiler optimisation (Van Engelen, 2001), validation of cryptographic proto-

cols (Bracciali et.al., 2008; Modersheim and Vigano, 2009; Canetti and Herzog,

2010), detection of run-time errors (Bush et.al, 2000; Cadar et.al., 2006) and

execution time analysis (Blieberger, 2002), to give a few examples.

The idea of representing the value of variables as functions, rather than num-

bers, was also proposed by Epstein et.al. (1982a, 1982b) who named it “ultra

arithmetic”. This is of particular relevance to our project as this approach was

used to prove that the output of programs was approximated by some polyno-

mial. Recently Brisebarre and Joldes (2010) have extended this technique to

perform a simple, mono-variate symbolic analysis of various simple functions

by Chebyshev polynomial approximation, although there was no treatment of

division or reciprocation of polynomials so this does not constitute a full arith-

metic. Trefethen, Battles and Platte have also developed a library of functions

called “Chebfun” that allows symbolic analysis with Chebyshev polynomials

(BattlesTrefethen, 2004; Trefethen, 2007; Platte and Trefethen, 2010). How-

ever, this library only allows mono-variate polynomials, does not calculate error

bounds and does not implement any syntactic analysis of programs. The work

presented in this and the remaining chapters develops the approach of these

authors much further. The treatment of random number generators and arrays
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presented here is, to the author’s knowledge, new. In the remaining chapters,

techniques will be described that allows programs of much greater complexity

to be analysed.

3.2 A formal, symbolic semantics of computer

programs

We now present a formal development of the ideas discussed in this chapter. We

begin by describing how a computer program can be converted into a rational

of the form Q
R where Q and R are polynomials. The first stage in our analysis

is to consider a high resolution computer program as a mathematical function.

In order to turn a computer program into a mathematical function we follow

the method of ‘denotational semantics’ (see, e.g. Mosses, 1990). However, to

understand how this can be done we need first to understand syntactic analysis.

3.2.1 Formal syntactic analysis

When syntactically analysing a program, we begin by considering a computer

program as a long list of characters (i.e. a string). While some strings are

meaningful computer programs, others (for example “The third policeman”,

Flann O’Brien, 1993) are not. It is the ‘syntax’ of the computer language that

tells us which strings of characters are computer programs in that language and

which are not. It does this by relying on the observation that all languages are

made up of a finite number of recurring structures. So although there are an

infinite number of possible Fortran computer programs, for example, they are

all made up of a finite number of simple, recognisable structures, i.e. loops,

subroutines, ‘if’ statements etc. Similarly, the English language is made up

of nouns, verb phrases, subordinate clauses, sentences etc. Every string of a

language must be built up from these recurring structures. If a string contains

a structure that is not in the syntax of a language, then it is not part of that

language.

Every programming language has a well defined syntax which can be expressed

as a set of rules called ‘rewrite rules’. Each rewrite rule describes how a given

type of structure can be made up of characters and sub-structures. These rules
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can conveniently be written in a form called Backus Naur Form (BNF) (Backus

et.al., 1963). As a simple example, let’s describe the syntax of arithmetic equa-

tions on integers like 1+1 = 2. Let’s begin by describing the syntax of integers.

This can be expressed in BNF as

Rule 1 <digit> ::= 0|1|2|3|4|5|6|7|8|9

Rule 2 <integer> ::= <digit>

Rule 3 <integer> ::= <integer><digit>.

Here, <integer> and <digit> are called tokens which act as temporary place-

holders for the structures of the language. The first rule states that a <digit>

token can be exchanged for any one of the characters 0,1,...,9. The second rule

states that an <integer> token can be exchanged for a <digit> token. The

third rule states that an <integer> can be exchanged for another <integer>

followed by a <digit>. By repeated application of these three rules, any integer

can be constructed. So, for example, the integer 56 can be constructed in the

following way: Start with an <integer> token, use rule 3 to rewrite this as

<integer><digit>. Rule 1 gives <integer>6. Rule 2 gives <digit>6 and rule

1 gives 56.

Let’s now introduce the arithmetic operators +, −, ∗ and /:

Rule 4 <operator> ::= +|-|*|/

Rule 5 <expression> ::= <integer>

Rule 6 <expression> ::= <integer><operator><expression>.

Adding these rules to the first three, we can now see how the rules can be used to

construct arithmetic expressions: Let’s say we begin with an <expression>, us-

ing rule 6 this expands to <integer><operator><expression>, using rule 5 we

get <integer><operator><integer>, rule 4 gives, for example, <integer>+<integer>

and applying rule 1 twice gives, for example, 1+1.

To complete the syntax we add the equate operator:

Rule 7 <equation> ::= <expression>=<expression>.

Using this rule we get 1+1=<expression> then using rule 5, 2 and 1 gives 1+1=2.
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So these 7 rules can describe all possible arithmetic equations on integers, al-

though for completeness we might want to add a rule for parentheses:

Rule 8 <expression> ::= (<expression>).

This syntax can distinguish between strings that are arithmetic equations on

integers and those that are not: if there exists a way of rewriting an <equation>

token into a given string, s, then s is an arithmetic equation, otherwise it isn’t.

Efficient algorithms exist to check this, most notably the ‘chart parsing’ algo-

rithm (Kay, 1986). However, the syntax admits, for example, 1+1=3 just as well

as it does 1+1=2. That is, syntactic rules can describe the structure of a string

but say nothing about the meaning of that string.

3.2.2 Formal semantics

The meaning of a string can be derived by adding some extra information to

the rewrite rules of the syntax. We introduce the notation mT to denote the

meaning of syntactic token <T> and for each rewrite rule in the syntax we give

a corresponding semantic rule that defines the meaning of the token on the left

hand side of the rule in terms of the meaning of the tokens on the right hand

side. Take, for example, binary strings which can be described syntactically in

a similar way to the decimal integers using the rules

Rule 1 <binarydigit> ::= 0|1

Rule 2 <binarynum> ::= <binarydigit>

Rule 3 <binarynum> ::= <binarynum><binarydigit>

on to these, we add the semantic rules

Rule 1 <binarydigit> ::= 0|1

mbinarydigit = 0|1

Rule 2 <binarynum> ::= <binarydigit>

mbinarynum = mbinarydigit

Rule 3 <binarynum> ::= <binarynum><binarydigit>

mbinarynum = 2 ∗mbinarynum +mbinarydigit
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here, the meaning of a token <T>, mT , is an integer number. As an example,

take the binary string 11. This can be created in the following way: Start

with a <binarynum> token whose meaning is mbinarynum. Use rule 3 to get

<binarynum><binarydigit>. The semantic rule in rule 3 gives the meaning

as 2 ∗mbinarynum +mbinarydigit. Rule 1 gives <binarynum>1 which means 2 ∗
mbinarynum+1. Rule 2 gives <binarydigit>1 which means 2 ∗mbinarydigit+1,

and rule 1 gives 11 which means 2 ∗ 1 + 1 which is equal to 3. So the meaning

of the binary string 11 is the number 3, which is what we would expect.

There is one, perhaps subtle, but very important point to note about Rule 1.

In this rule the 0|1 in the syntax part refers to the characters ‘0’ and ‘1’ (that

is ASCII codes 48 and 49 if the string is stored in ASCII encoding) while in

the semantic part the 0|1 refers to the numbers 0 and 1. So in effect the rule

is saying that ASCII code 48 (the character 0) means the number 0 and ASCII

code 49 (the character 1) means the number 1.

3.2.3 A symbolic semantics of computer programs

We now have all we need to define the semantics of a computer program. Our

aim is to define the semantics so that the meaning of a program is a vector of

polynomial rationals.

The syntax and semantics of a modern, high level computer programming lan-

guage is very large (see, for example, ISO/IEC, 1998). However, it is common

practice for compilers to be split into a ‘front end’ and a ‘back end’. The front

end translates a computer program written in a high level language (such as

Fortran or C++) into an intermediate level language which has a much simpler

syntax. This intermediate code is then passed to the back end to be turned

into an executable for the target machine (Aho et.al., 2007). GIMPLE (Merril,

2003) is an example of such an intermediate language. So, rather than give a se-

mantics of a high-level computer programming language, we give the semantics

of a typical intermediate language.

Any computer program that analyses this intermediate language can be attached

to the front end of a compiler to make it capable of analysing a high level

computer language. In this way, a semantics of an intermediate level language

implies a semantics for any high-level language. For simplicity, we omit the

semantics of subroutines as these are taken to have the standard semantics.
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The meaning of a computer program is taken to be a vector of polynomial

rationals in input variables. Each element of the vector represents the value

of some variable, so we can think of this as a function, Y = F (X), from a

vector of input variable values, X, to a vector of output variable values Y . The

meaning of a <variable> or an <arrayvariable> is the vector whose elements

are all zero except for the element that represents that variable, whose value is 1.

The meaning of a <boolean> is a Heaviside step function on a polynomial. The

Heaviside step function is taken to be the limit of an infinite series of polynomial

functions of increasing degree. We use the following notation:

(F )n is the nth power of F

F (X)n is the nth element of F (X)

I is the identity matrix

H(X) is the Heaviside step function

~1 is the vector whose elements are all 1

mT is the transpose of m

N is the maximum number of times a loop is repeated in the program of interest;

since we are restricting ourselves to the basic recursive functions, this is

always provably finite.

Our semantics of computer programs can be expressed in the following way

(we omit the semantics of arithmetic expressions, as this is dealt with in the

following chapters):

1. <program> ::= main() {<codeblock>}
mprogram = mcodeblock

2. <codeblock> ::= <codeblock><statement>

mcodeblock = mstatement(mcodeblock)

3. <codeblock> ::= <statement>

mcodeblock = mstatement

4. <statement> ::= end

mcodeblock = I
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5. <statement> ::= loop <integer> {<codeblock>}
mstatement = (mcodeblock)minteger

6. <statement> ::= <variable>=<expression>

mstatement(X) = (I −mT
variablemvariable)X +mexpressionmvariable

7. <statement> ::= while(<boolean>) {<codeblock>}
mstatement = (mbooleanmcodeblock + (1−mboolean)I)N

8. <statement> ::= if(<boolean>) {<codeblock 1>} else {<codeblock
2>}
mstatement = mboolean ∗mcodeblock1 + (1−mboolean) ∗mcodeblock2

9. <statement> ::= <arrayvar>[<variable>] = <expression>

mstatement(X) =

X+
(
mexpression − (marrayvar ·X)( 2mvariable·X

D−1 − 1)
)
L( 2mvariable·X

D−1 −1)marayvar

where

D is the dimension of the array

L(i, x) =
∑N−1
i=0 li(x)li(i)

and

li(x) is the ith (D − 1)th degree Lagrange basis on the equidistant points

on the interval [−1 : 1]

10. <statement> ::= <integervariable> = <expression>5

mstatement(X) = (I −mT
intvariablemintvariable)X + V mvariable

where

V = H(mexpression−231)231 +H(mexpression−H(mexpression−231)231−
230)230+H(mexpression−H(mexpression−H(mexpression−231)231−230)230−
229)229...

11. <boolean> ::= <expression-1>‘>’<expression-2>

mboolean = H(mexpression−1 −mexpression−2)

12. <boolean> ::= <expression-1>‘<’<expression-2>

mboolean = H(mexpression−2 −mexpression−1)

5Note that this treatment of integers does not account for overflow, so the output of code

that depends on the overflow of integers may compute different values than the analysis.

Other than in the creation of random numbers, treated separately, this is not considered to

be a problem for physical simulation code.
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13. <boolean> ::= <boolean-1>&&<boolean-2>

mboolean = mboolean−1mboolean−2

14. <boolean> ::= <boolean-1>||<boolean-2>

mboolean = mboolean−1 +mboolean−2 −mboolean−1mboolean−2

15. <boolean> ::= !<boolean>

mboolean = (1−mboolean) .

3.3 Random numbers

We now show how a random number generator with a top hat probability distri-

bution can be used to generate random numbers with any arbitrary distribution.

Theorem 3.3.1. Given a random number, r, generated with a probability dis-

tribution given by a top hat probability distribution function

P (R = r) =

 1
2 if− 1 ≤ r ≤ 1

0 otherwise

then for any arbitrary distribution P (X = x)

P (X = x)dx = P (R = r)dr

where

x = C−1

(
X =

r + 1
2

)
and C−1(X = x) is the inverse of the cumulative probability function of P (X =

x)

Proof. Let R be a random variable so that P (R = y) has a top hat probability

distribution as above. Let f(y) be any monotonically increasing function and

let X be the image of R under the transformation f . It is a standard result that

P (X = f(y))df(y) = P (R = y)dy (3.1)

integrating both sides from −∞ ≤ y ≤ r gives∫ f(r)

f(−∞)

P (X = y)dy =
r + 1

2
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for −1 ≤ r ≤ 1, but the left hand side of this equation is just the definition of

the cumulative probability function of P (X = y), call it C(X = y). So

C(X = f(r)) =
r + 1

2

so, if we let C−1(X = x) be the inverse of the resulting cumulative probability

distribution then

f(r) = C−1

(
X =

r + 1
2

)
substituting this into equation 3.1 gives the required result.

Although there does not always exist an analytic function for the inverse of the

cumulative probability, C−1(y), for a given P (y), this can always be approxi-

mated to any arbitrary precision by using, for example, a polynomial fit or some

other analytic approximation.

3.4 Conclusion

In this chapter we have seen how a computer program can be converted into

a vector of functions of the form Q
R where Q and R are polynomials. Simple

examples were given to illustrate how a computer program can be converted

into such a vector, approximated and turned back into a computer program

that approximates the original.

However, this chapter is meant to provide a theoretical grounding, there re-

main many practical considerations to be addressed before this method can be

applied to computer programs of more realistic complexity. In the next two

chapters we introduce the techniques necessary to develop this into a working

implementation, and describe a number of numerical experiments that we have

performed to test these techniques.
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Chapter 4

Experiments with

Chebyshev Polynomials

4.1 Introduction

A number of numerical experiments were performed to test the method of ap-

proximating programs described in the previous chapter. To do this, a program

was written in C++ which analyses programs written in C++ and approxi-

mates them. We called this program iGen. The main obstacle that needed to

be addressed in a practical implementation of this method was the exponen-

tial explosion of the degree of the polynomial rationals. For simple programs

as in the examples given in the previous chapter (and for many not so simple

programs) it is possible to explicitly calculate the polynomial rational for each

of the program’s output variables; modern computers are powerful enough to

easily manipulate polynomials with thousands of terms. However, for many real

world models the equivalent polynomials are of much too high an order to be

stored or manipulated explicitly. A model of the atmosphere that integrates

over only a few tens of timesteps, for example, would be equivalent to a vector

of polynomials exceeding many millions of terms.

To deal with this, we began by representing variables as polynomials in the

Chebyshev basis. The Chebyshev basis is a sequence of polynomials defined, for
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all integers n as

Tn(x) = cos
(
n cos−1(x)

)
on the interval −1 ≤ x ≤ 1. This is known as the nth Chebyshev polynomial of

the first kind. As a consequence of De Moivre’s theorem, which can be stated

as:

cos(nx) + i sin(nx) = (cos(x) + i sin(x))n

and of the identity

sin2(x) + cos2(x) = 1

it can be seen that Tn(x) can be expressed as an nth degree polynomial in x.

The first few of which are:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1 .

Any polynomial P (x) of degree m, can be uniquely expressed as a sum of Cheby-

shev polynomials:

P (x) =
m∑
n=0

anTn(x)

as can be seen by solving for degree m and working our way down to zero, so

the set of coefficients an uniquely defines a polynomial P .

The Chebyshev basis was chosen for this implementation because of its good

approximation properties. It is a well known result (see, e.g. Mason and Hand-

scomb, 2003) that a close to optimal nth degree approximation of an (n+m)th

degree polynomial can be found by simply setting the highest m coefficients of

a Chebyshev series to zero. Although there exists a unique, optimal nth degree

approximation and an algorithm to find it (Remez’ algorithm, see, e.g. Ch-

eney, 2000), this algorithm uses an iterative search method and so is much more

computationally expensive to calculate than the Chebyshev method. The extra

computational time necessary to find the optimal approximation is generally

considered to be rarely worth while (e.g. Press et.al., 2007).
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4.2 Approximate algebra with Chebyshev bounds

Our program implemented an approximate algebra on pairs (P, ε), where P is a

multivariate Chebyshev polynomial and ε is a constant bound on the absolute

error between P and the exact value of the variable it represents. So, (P, ε)

represents the interval [P − ε : P + ε]. We call these pairs “Chebyshev bounds”.

When a Chebyshev bound, (P, ε), becomes too large to manipulate efficiently,

P is replaced by a (smaller) approximation and a constant bound on the error

introduced by the approximation is added to ε. The approximation is found by

ordering the terms of P by the absolute value of their coefficient. The coefficient

with the smallest value is removed from P . Since each Chebyshev polynomial

basis function is bounded by ±1, the magnitude of the error introduced by

removing this term is bounded by the magnitude of its coefficient, so this is

added to ε. Then the next smallest term is removed and the absolute value of it’s

coefficient added to ε. This process is repeated until the remaining polynomial

reaches a certain size or a limit on the acceptable error is reached. This process

can be summarised as

(A+ e, ε) = (A, ε+B(e))

where B(e) is a function that returns the sum of the absolute values of the

Chebyshev coefficients of e. Closer bounds than B(e) could have been found

by first converting e to a Bernstein polynomial. Rababah (2003) shows how

the conversion can be done and Cargo and Shisha (1966) show how Bernstein

polynomials can be used to obtain bounds. This method was implemented but

it was found that the increase in accuracy of the bounds was outweighed by the

computational effort of calculating them; better accuracy being achieved when

the computational time was used to retain more terms of A instead.

4.2.1 Addition, Subtraction and multiplication

Addition, subtraction and multiplication of Chebyshev bounds is straightfor-

ward and implemented using the rules

(P, ε1) + (Q, ε2) = (P +Q, ε1 + ε2)

(P, ε1)− (Q, ε2) = (P −Q, ε1 + ε2)

(P, ε1)× (Q, ε2) = (P ×Q,B(P )ε2 +B(Q)ε1 + ε1ε2)
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where B(P ) is a bound on the absolute value of the polynomial P given by the

sum of its Chebyshev coefficients.

4.2.2 Division

Division of Chebyshev bounds is somewhat more complicated because of the

need to maintain formal bounds. We would like to solve

P =
Q± εq
R± εr

=
Q

R
± εp

for εp. A little manipulation gives

P =
Q

R
±
(
B

(
1
R

)
εq +B

(
P

R

)
εr

)
However, this involves calculating B( 1

R ) and B(PR ). This could be done explic-

itly by performing the polynomial divisions but this would be computationally

expensive. Alternatively the inequality

B

(
P

R

)
≤ B(P )
Bl(R)

could be used, where Bl(R) is a lower bound onR. CalculatingBl(R) accurately,

however, would also be computationally expensive (Cargo and Shisha, 1966; Lin

and Rokne, 1995; Stahl, 1995; Cornelius and Lohner, 1984).

Reciprocation of a Chebyshev bound, on the other hand, has a neater form. We

would like to solve

P =
1

R± εr
=

1
R
± εp

which gives

P = 1/R± εrB(P 2)

B(P 2) can be calculated without having to square P by using the inequality

B(P 2) ≤ B(P )2 .

So, division of Chebyshev bounds was performed by multiplication of the nu-

merator with the reciprocal of the denominator. From the arguments above,

reciprocation of Chebyshev bounds follows the rule

1
(R, ε)

=

(
1
R
, εB

(
1
R

)2
)
.
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It was found that during the analysis of realistic programs, division was much

less common than multiplication, addition and subtraction of Chebyshev bounds.

For this reason it was deemed more computationally efficient to approximate

reciprocals of polynomials as polynomials, so that subsequent operations would

be on polynomials rather than polynomial rationals.

For ease of implementation, reciprocation of a polynomial, R, was performed by

first scaling the range of R to lie in the interval [−1 : 1], then using the recursion

Pn+1 = Pn(2− PnR)

which converges on P = 1
R in the region bounded by P = 0 and P = 2

R . Nu-

merical experiments showed that the best first-order value for P0 that optimises

the rate of convergence is

P0 = 2.9938− 2.172R

if the range of R can be shown to be contained by the interval [0 : 1],

P0 = −2.9938− 2.172R

if the range of R can be shown to be contained by the interval [−1 : 0] and

P0 = 1.8045R

otherwise. Loose bounds on the range of R were calculated as [r0 −B(R− r0) :

r0 + B(R − r0)] where r0 is the zeroth degree coefficient of R. Here, it doesn’t

matter that the bounds are loose as it doesn’t effect the result, just the rate of

convergence to the result.

One advantage of this algorithm is that the residual is known at each iteration

since it is given by 1− PnR. Iteration stops when the residual can be bounded

below the desired accuracy.

A more computationally efficient algorithm could be written by finding the

polynomial P that satisfies PR = 1 for all coefficients up to the degree of P .

In the Chebyshev basis, if the degree of P is known, this just involves solving a

set of simultaneous equations. However, we do not know a-priori the degree of

P necessary to obtain a given accuracy so some guesswork would be involved.

Alternatively, R could be transformed to a power series polynomial. In this

basis PR = 1 can be solved in linear time by solving for the lowest orders first

and working upwards to higher orders. The algorithm could continue in this
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fashion until the desired accuracy is achieved. However, in this basis, much

higher degree terms would need to be calculated to achieve the same bound on

accuracy as in the Chebyshev basis.

4.3 Transcendental functions

Strictly speaking, the transcendental functions (log, exp, cos etc.) cannot be

expressed as polynomials. However, all computer implementations of these func-

tions use algorithms that reduce to polynomials (e.g. Kropa 1978). These could

be analysed symbolically using the methods described above. However, by im-

plementing versions designed especially for symbolic evaluation, the analysis can

be made much more efficient.

4.3.1 Non-integer powers of polynomials

Non-integer powers of Chebyshev bounds were implemented by noting that any

power xn can be expressed in the form

xn =


Bu(x)n(( x

Bu(x) )
q)N

x if n < 1

Bu(x)n
((

x
Bu(x)

)q)N
otherwise

where N is the lowest integer not smaller than n
2 , 1 ≤ q < 2 and Bu(x) is an

upper bound on x. Since raising polynomials to an integer power N is easily

implemented in O(ln(N)) multiplications, this reduces the problem to that of

finding Rq for a polynomial whose range is in the interval [0 : 1]. This can be

easily implemented as a Chebyshev polynomial P (x, q) which approximates xq

over the necessary ranges, giving Rq = P (R(x), q)± εp, where εp is a bound on

the error due to the approximation in P . Composition of Chebyshev polynomials

was reduced to a sequence of additions and multiplications using Clenshaw’s

recurrence (Clenshaw, 1962; Press et.al., 2007).

4.3.2 Exponentiation of polynomials

The function eP on a polynomial P was implemented by noting that

eP = e(P
′+c0) = ec0

(
e

P ′
M

)M
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where M is a the lowest integer that bounds P ′ above and below and c0 is the

zeroth degree coefficient of P . It is clear that −1 ≤ P ′

M ≤ 1, so e
P ′
M can be

approximated by composition with a Chebyshev polynomial that approximates

exponentiation over this range.

4.3.3 Sine and cosine

Sine and cosine functions can be implemented with help from the trigonometric

definition of the Chebyshev polynomials:

Tn(x) = cos
(
n cos−1(x)

)
so that

cos(x) = cos
(
N cos−1

(
cos
(
x+ 2πM

N

)))
where N is the smallest integer not smaller than Bu(x)

2π +M and M is the smallest

integer not smaller than Bl(x)
2π (Bu and Bl are upper and lower bounds on x).

So

cos(x) = TN

(
cos

(
x+ 2πM

N

))
.

The cosine on the right hand side is now bounded between [0 : 2π] and can be

approximated by a Chebyshev polynomial.

The sine function can then be trivially implemented as sin(x) = cos(x+ pi
2 ).

4.4 Random numbers

Integration over random numbers was performed analytically on the Chebyshev

polynomials using the identity on Chebyshev polynomials (Mason and Hand-

scomb, 2003)

∫
Tn(x)dx =


1
2

(
Tn+1(x)
n+1 − T|n−1|(x)

n−1

)
if n 6= 1

1
4T2(x) if n = 1 .

Error bounds are unchanged on integration since∫ ∞

−∞
(R(r)± ε)P (r)dr =

∫ ∞

−∞
R(r)P (r)dr ± ε

∫ ∞

−∞
P (r)dr

but ∫ ∞

−∞
P (r)dr = 1 .
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If a program calls the rand() function many thousands of times then adding

an extra variable for each call would be undesirable as it would lead to an

unnecessarily large number of variables. In this case the random numbers are

considered to be created by a pseudo random number generator r(n, s) where

s is a random ‘seed’ which gets the generator started and r(n, s) is the nth

random number to be generated (see, e.g. Press et.al., 2007, chapter 7). We

then integrate over the value of the seed rather than integrate separately over

each random number. In this way, we introduce only one extra variable, s,

for any number of calls to rand(). This method can be justified by the same

argument as used to justify Monte-Carlo simulations (Metropolis and Ulam,

1949).

Most standard pseudo-random number generators rely on modulo algebra, bit

operations or overflow of variables. Analysis of these tends to produce very high

order polynomials so a direct analysis of a random number generator would

not be ideal for our purposes. Instead, we use an alternative generator that

returns polynomials of any desired order and is constructed in the following

way: Choose any m seeds s1...sm for a standard pseudo random number gen-

erator r(n, s). In our implementation, we chose the Gauss-Lobatto collocation

points on the interval [−1 : 1] as the seeds. During an analysis, the nth call to

rand() returns the unique mth order polynomial in s that passes through the

points (s1, r(n, s1))...(sm, r(n, sm)) (this can be found in O(mlog(m)) time for

the Gauss-Lobatto points by using an FFT). Note that the calls to r are with

actual values, not polynomials. To average over s, rather than integrating using

a top-hat function for the distribution of s, use the distribution

P (s) =
∑m
l=1 δ(s− sl)

m

where δ is the Kronecker delta function. The result after integration is equal

to that of averaging over m monte-carlo simulations using the standard pseudo

random number generator. Doing this symbolically, rather than as a Monte

Carlo simulation has the advantage that it allows approximations to be made

that may reduce the amount of computation required to calculate the averages.

If this method is not sufficient for some application, a more powerful method

could be implemented: Since the analysis of the program can be done in any

order, we could choose to evaluate it starting with the output and working our

way backwards towards the input. The first call to rand() that is encountered in
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the analysis will be the last to be executed and can be immediately integrated

over before analysis continues backwards. In this way, random numbers are

eliminated as soon as they are encountered and any number of calls to rand()

can be encountered without introducing large numbers of variables.

In some cases, backward evaluation can also be more efficient than forwards

evaluation. Similar results have been found for the same reasons in the different

context of automated differentiation of programs (Werbos, 2006).

4.5 Lorenz equations

iGen was tested on a source program which simulates the Lorenz equations:

dX

dt
= σ(Y −X)

dY

dt
= rX − Y −XZ

dZ

dt
= XY − bZ

where σ, r and b are constants. The simulation used a simple forward finite

difference method to integrate the equations, as shown in figure 4.1.

Unless otherwise stated, the start state of the simulation was that used by

Lorenz:
x = 0.0

y = 1.0

z = 0.0

s = 10.0

b = 8
3

r = 28

∆t = 0.01 (the timestep).

The Lorenz code was wrapped in three different ways, as shown in table 4.1.

An execution of the source code over 150 timesteps takes around 1200 multi-

plications and 1050 additions. So, to calculate the average values of the three

parameterisations using an ensemble run of, say, 20 explicit simulations would

take round 24000 multiplications and 21000 additions. iGen analysed the three

wrapped codes and produced three parameterisations with much improved ex-

ecution times, as shown in table 4.2.
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void lorenz(double r, int I, double &X, double &Y, double &Z) {

const double s = 10.0;

const double b = 8.0/3.0;

const double Dt = 0.01;

double dx,dy,dz;

int iteration;

for(iteration = 0; iteration < I; ++iteration) {

dx = s*(Y-X);

dy = r*X - Y - X*Z;

dz = X*Y - b*Z;

X += dx*Dt;

Y += dy*Dt;

Z += dz*Dt;

}

}

Figure 4.1: Program to integrate the Lorenz equations
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iGen took less than one second to produce a parameterisation on a 1.66GHz

Intel Core-2 processor. Memory usage was less than 1Mb.

4.6 Ideal Gas

The next test was a program that simulates an atom bouncing around a 2-

dimensional box of unit dimension. The input to the program is the start

position and velocity of the atom. The output was the pressure on the right

wall, given by the average impulse per second:

Ī =
2Nmvx

t

where N is the number of impacts with the wall during the simulation, m is

the mass of the atom (taken to be of numeric value 1), vx is the velocity of the

atom perpendicular to the wall and t the simulated duration of the simulation.

The model was wrapped so that its input is the speed of the atom. This was

converted to the simulation’s input by randomly choosing the atom’s position

and direction of motion so as to give an isotropic, homogeneous distribution

within the box.

Thermodynamics tells us that the pressure on the wall should be proportional

to the temperature of the gas, and kinetic theory tells us that the temperature

is proportional to the square of the speed of the atom.

iGen was executed with this wrapped program as input in order to find the first

moment of pressure in terms of the speed of the atom. The program correctly

identified the proportionality between the pressure on the wall and the square

of the speed of the atom. The time taken by the analysing program was less

than one second on a 1.66GHz Intel Core-2 processor. Memory usage was less

than 1Mb.

4.6.1 Reasoning with Heaviside functions

The presence of if statements in this program meant that the analysis involved

Heaviside functions. These were not expanded into their approximate polyno-

mials but kept as separate terms. Without any extra reasoning, the number

of terms in the output polynomial would double for each time an if statement
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Parameterisation 1 The initial value of Y was unknown, but lies

somewhere in an interval [Ymin, Ymax] with a flat

distribution. The output was the average value

of Y after 150 timesteps.

Parameterisation 2 The initial value of r is unknown but lies some-

where in an interval [rmin, rmax] with a flat dis-

tribution. The output was the average value of

X after 150 timesteps.

Parameterisation 3 The initial value of r is unknown but lies some-

where in an interval [rmin, rmax] with a flat dis-

tribution. The output was the average value of Y

after 150 timesteps.

Table 4.1: The three wrapped concrete functions of the Lorenz equations

Parameterisation Multiplications Additions Accuracy (sig. figs)

Parameterisation 1 9 8 5

Parameterisation 2 44 43 5

Parameterisation 3 100 99 3

Table 4.2: The execution speed and accuracy of the parameterisations
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double atomicTheory(double x, double y, double vx, double vy) {

const double DT = 0.01; // timestep

const double TMAX = 10.0; // duration of simulation

double p = 0.0; // pressure

double t = 0.0; // time

while(t < TMAX) {

x = x + vx*DT;

y = y + vy*DT;

if(x > 1.0) {

x = 2.0 - x;

p = p + (2.0 * vx);

vx = -vx;

}

if(x < 0.0) {

x = -x;

vx = -vx;

}

if(y > 1.0) {

y = 2.0 - y;

vy = -vy;

}

if(y < 0.0) {

y = -y;

vy = -vy;

}

t = t + DT;

}

p = p/TMAX;

return(p);

}

Figure 4.2: Program to simulate an atom bouncing around a 2-dimensional box
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double kineticTheory(double s) {

const double PI = 3.14159; // pi

double angle; // initial angle

double p; // pressure

double x; // x-position

double y; // y-position

double vx; // x-velocity

double vy; // y-velocity

// set up initial position and angle at random

x = Rand();

y = Rand();

angle = 2.0 * PI * Rand();

vx = s*sin(angle);

vy = s*cos(angle);

p = atomicTheory(x,y,vx,vy);

return(p);

}

Figure 4.3: Wrapper for the atomicTheory simulation
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is executed, and so the size of the representation would explode exponentially.

To prevent this, a number of reasoning rules were applied to the representation

whenever its size became too large.

If the argument to a Heaviside function could be proved not to cross zero then

the Heaviside could be replaced with 0 or 1:

H(A) = 1 if Bl(A) > 0

where Bl(A) is a lower bound on A.

H(A) = 0 if Bu(A) < 0

where Bu(A) is an upper bound on A. Lower and upper bounds on Chebyshev

polynomials were calculated using a0 ±B(A− a0), where a0 is the zeroth order

coefficient of A.

To simplify the form of complex booleans, the following identities were used

whenever the left hand sides were encountered.

1−H(A) = H(−A)

H (H(A)P +H(−A)Q) = H(A)H(P ) +H(−A)H(Q)

if H(A)H(B)H(−C) = 0

and H(−A)H(C)H(−B) = 0

then H(A)H(B) +H(−A)H(C) = H(B)H(C) .

The final identity is proved by noting that

H(A)H(B)(H(C) +H(−C)) +H(−A)H(C)(H(B) +H(−B)) =

H(B)H(C) +H(A)H(B)H(−C) +H(−A)H(C)H(−B) .

This may seem like a rather arbitrary piece of reasoning, but because of the

way if statements split the input space into two partitions, this structure was

found to occur quite often. Its effect is to join together neighbouring partitions

that have the same approximation.

Products of Heaviside functions of the form

H(P1)H(P2)...H(PN )

can sometimes be proved to be trivially true or false, and so replaced by 1 or

0 respectively. The problem reduces to that of deciding whether a set of in-

equalities on polynomials is satisfiable. Algorithms exist that can always detect
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this but they tend to be inhibitively slow to execute. The first algorithm was

due to Tarski (1951) but this ran in worse than exponential time. Exponential

time algorithms were found by Seidenberg (1954) and later by Collins (1975).

More recently, a sub-exponential time algorithm has been found by Grigorev

and Vorobojov (1988) but execution times remain high for our purposes.

It was found that a simple and fast algorithm based on the Gaussian elimi-

nation method was sufficiently powerful to detect all instances encountered in

the ‘kinetic theory’ program. The algorithm first transforms the inequalities to

equalities in the following way: Each Heaviside term H(Pn) is equivalent to the

inequality Pn > 0. Since Pn can be bounded above by Bu(Pn) (as calculated

using the sum of its Chebyshev coefficients) then there exists a yn in the range

0 < yn ≤ Bu(Pn) that satisfies Pn − yn = 0. If we let

yn =
B(Pn)(1 + zn)

2

then zn is in the range [−1 : 1] and can be treated as a normal Chebyshev

variable. This leads to a set of equalities

P ′n = Pn −
B(Pn)(1 + zn)

2
= 0

for all 0 < n ≤ N .

Once in this form, the highest degree terms that occur in more than one equation

can be successively removed by Gaussian elimination. At each stage, the bounds

of the remaining polynomials are checked. If any has an upper bound that is

below zero or lower bound above zero, the equation cannot be satisfied and so

there is no solution. Note that if an equation is reduced to a sum of first degree

terms, Bu and Bl become tight bounds so it can immediately be seen whether

the equation is satisfiable or not.

An equation P ′n was removed if it was implied by the set of earlier equations

P ′1...P
′
m where m < n. Implication was proved if P ′n could be reduced to a form

zn = Q and Q could be bounded by the interval [−1 : 1].

A possibly better algorithm is as follows: Satisfaction of the simultaneous equa-

tions implies that

S =
N∑
n=1

(
Pn −

B(Pn)(1 + zn)
2

)2

= 0 .

This polynomial is strictly non negative. If it can be shown to be bounded above

zero over the range of all variables then the equations cannot be satisfied and
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the product of Heaviside functions must not be satisfiable. To check whether

a polynomial is bounded above zero, first convert it to Bernstein form. If all

Bernstein coefficients are above zero, the polynomial cannot be equal to zero

anywhere (Cargo and Shisha, 1966). The converse is not true; if there exists a

negative or zero Bernstein coefficient, the polynomial doesn’t necessarily touch

the S = 0 plane. In this case, take the coordinates of the maximum of the

Bernstein polynomial that has the negative coefficient and use them as the

start point of a Newtonian approximation to get a better approximation of the

value of the minimum (since S is strictly non-negative, if it touches S = 0, it

must be at a minimum point).

4.7 Rayleigh-Benard convection

The Lorenz equations are themselves a simplified model of Rayleigh-Benard con-

vection. To show that the compiler can cope with finite difference equations on

gridded data, a governing model was written that simulates laminar convection

on a 80x28 grid. The model was wrapped so that its inputs were the Lorenz

parameters x, y and z, the integration was over a single timestep with r = 28

and b = 8
3 . The output was the change in x, y and z divided by the timestep.

iGen analysed the source code and produced the following simplified code:

input(x,y,z)

dx_dt = 9.95076*y - 9.94443*x

dy_dt = -0.991175*x*z - 0.999187*y + 27.9712*x

dz_dt = -2.65625*z + 0.997019*x*y

output(dx_dt, dy_dt, dz_dt)

which differs from the Lorenz equations by less than 0.9% in the constants and

represents an increase in execution speed of 5 orders of magnitude compared to

the wrapped model. The slight difference between the analysis and the Lorenz

equations is attributed to the finite resolution of the wrapped model’s grid,

the finite time over which the integration was performed and the accuracy of

the algorithm used to solve the Poisson equation in the simulation. The error

between the outputs of the simplified model and the wrapped model is bounded

by 0.1% of the maximum value of each output variable.

75



iGen was used to make an alternative set of equations which model Rayleigh-

Benard convection more accurately than the Lorenz equations for the variables

and timestep used by Lorenz (0.01τ = 675µs). This was done by wrapping the

model so that its inputs were the Lorenz parameters x, y and z, the integration

was over a duration of 0.01τ and the output was the change in the Lorenz

parameters divided by the duration of integration. The resulting simplified

program was

input(x,y,z)

Dx_Dt = -0.04088*x*z + 9.554*y - 8.401*x

Dy_Dt = -0.04140*y*z - 0.9398*x*z + 0.1897*y + 26.74*x

Dz_Dt = -2.629*z + 0.02103*y*y + 0.9521*x*y + 0.05570*x*x + 0.07673

output(Dx_Dt, Dy_Dt, Dz_Dt)

Where the acceptable error in each output, compared to the wrapped model,

was specified as 0.1% of the maximum value of each output variable.

4.8 Mie scattering

A program was written to simulate the scattering of parallel light by spherical

water droplets. This was done using Mie theory (see, for example, Bohren and

Huffman, 1998). The equations solved by the program are given in appendix A.

The program was wrapped to calculate the scattering cross section per unit mass

of water for light of wavelength 500nm scattered by a thin layer of cloud made

up of spherical water droplets with complex refractive index of 1.33 + 1× 10−8ı

relative to the surrounding air. This was done by leaving the radius of the

droplets unspecified, and instead giving a probability distribution over possible

radii. The probability distribution was specified to take the form of a gamma

distribution, given by

P (r) = Arα exp−βr

where

α =
1
ve
− 3.0

and

β =
1
vere
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and A is a normalisation factor, ve is the relative ‘effective variance’ of the

distribution and is set to 0.172, and re defines an ‘effective radius’ of the droplets.

re was taken as the input of the wrapped model, and defined to lie in the range

5µm to 40µm. The output of the wrapped model was defined to be the reciprocal

of the scattering cross section per unit mass.

iGen was used to analyse this wrapped model and produced the simplified model

for the scattering cross section Ksca:

Ksca =
1

660.1re − 2.188× 10−4

with an error bounded by 4m2kg−1. This is plotted in figure 4.4 together with

the exact result calculated using numerical integration.
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Figure 4.4: Plot of scattering cross section for fixed radius droplets (solid line),

numerically integrated over the droplet radius distribution (dashes), and iGen’s

simplified model (dots). For clarity, a smaller portion is reproduced in the lower

plot.
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Chapter 5

Experiments with DeSelby

Polynomials

5.1 Introduction

The experiments with Chebyshev polynomials described in the previous chapter

showed that the Chebyshev basis is a powerful tool for approximating computer

programs. However, the experiments also uncovered a number of drawbacks to

this representation. It was found that the multiplication of Chebyshev poly-

nomials was a significant computational bottleneck. In order to multiply two

monovariate Chebyshev polynomials of N terms each, it takes O(N2) computer

operations using the näıve algorithm of multiplying each term separately. Even

worse, in the D dimensional case, it takes O(N22D) operations. This repre-

sents a significant computational load when dealing with polynomials of many

thousands of terms. Another problem was encountered when the value of a

polynomial spans more than about 15 orders of magnitude over the domain of

the input. In this case, the Chebyshev coefficients become very large and the

value of the polynomial depends on the cancellation of these very large basis

terms. Analytically this is not a problem but when the Chebyshev coefficients

are stored in computer memory as finite precision floating point numbers, trun-

cation errors in floating point arithmetic become significant.

The final problem concerns the interaction between higher and lower order bases.
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When we are given a program to approximate, its inputs can be represented by

first order polynomials, so these can be represented very easily. The outputs also

will generally be quite smooth, perhaps with the exception of a few discontinu-

ities in the higher order rates of change, so there does exist a good polynomial

approximation of reasonable size (i.e. that will fit in the memory of a PC). This

is a consequence of the fact that any well conditioned problem should be insen-

sitive to small perturbations in the inputs. The problem with the Chebyshev

basis is that although the inputs and outputs are representable, there may be

a necessity for extremely large polynomials to represent the value of variables

mid way through a simulation. This is because a change in a very high order

Chebyshev coefficient of a mid-way-through variable can have a non-trivial ef-

fect on the low order coefficients of the output. This is a consequence of the way

Chebyshev polynomials multiply: when two high degree polynomials are multi-

plied, the values of their high order coefficients affect the low order coefficients

of the result as well as the high. This is not the case for all bases. For exam-

ple, the power series polynomials do not have this property: multiplying two

power-series terms can only lead to a higher-power term. However, power-series

polynomials also lack the good approximation properties of the Chebyshevs.

What we need for our purposes is a polynomial basis that combines the mul-

tiplicative qualities of the power series with the approximative qualities of the

Chebyshev polynomials, in this way we can indefinitely avoid the exponential

explosion in polynomial size while producing close to optimal approximations.

5.2 DeSelby polynomials

For this purpose, a new type of polynomial was invented which we decided to

call the DeSelby polynomials1. The polynomial can be thought of as consisting
1Rather than follow the somewhat egocentric tradition of naming polynomials after their

inventor, I instead name these polynomials after the much more deserving but largely un-

recognised DeSelby. Very little is known about the details of DeSelby’s life and personality,

aside from his inability to distinguish between the sexes; famously referring to the Countess

Schnapper as ‘that cultured old gentleman’ and to his own mother as ‘a man of stern habits’

and ‘a man’s man’. DeSelby had no children. Of his work, the largest remaining evidence is

the so called ‘Codex’: a collection of some two thousand sheets of foolscap closely hand-written

on both sides. The true import of the manuscript is not at all clear and has engendered more

than a little debate. On this matter O’Brein (1993) writes “Attempts made by different com-

mentators to decipher certain passages which look less formidable than the others have been
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Figure 5.1: The first 9 DeSelby basis functions, grouped into shells. The first

shell is at the bottom, the fourth at the top. The arrow shows the points at

which one basis function has a value 1 and all functions of higher degree have a

value 0

of a sequence of ‘shells’, each of successively higher order than the last (see

figure 5.1). The first shell is just a constant, which can be thought of as a zeroth

order approximation. The next shell gives 2nd order perturbations to the first

shell. The sum of the first and second shells gives a 2nd order approximation.

The next shell is a 4th order perturbation to the 2nd order approximation, and

so on for the 8th, 16th, 32nd...order approximation.

This basis has the important property that the nth basis function can be asso-

ciated with a point at

xn =

 cos
(

π2n
2bln2(n)+1c

)
if n < 2

cos
(

π2n+1
2bln2(n)+1c

)
otherwise

characterised by fantastic divergences, not in the meaning of the passages (of which there is

no question) but in the brand of nonsense which is evolved. One passage, described by Bassett

as being ‘a penetrating treatise on old age’ is referred to by Henderson (biographer of Bassett)

as ‘a not unbeautiful description of lambing operations on an unspecified farm’.”
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which is equal to 1 in the nth basis function and 0 in all basis functions of higher

degree. This entails that when two polynomials are multiplied, PQ = M ,

the higher degree coefficients of P and Q have no effect on the lower degree

coefficients ofM (see theorem 5.5.1). So, lower orders can be correctly calculated

without knowledge of the higher orders. In addition, the error introduced by

truncating an entire shell can be bounded by twice the bound on the error

introduced by Chebyshev truncation to the same degree (see theorem 5.5.2). So

DeSelby polynomials also have the multiplicative and approximative properties

we required.

5.2.1 Computing with DeSelby polynomials

The problem of dealing with polynomials that span many orders of magnitude

was solved by developing an algorithm that converts between the DeSelby rep-

resentation and the Gauss-Lobatto representation in O(N) operations, where

N is the number of terms in the polynomial.

The Gauss-Lobatto representation of an N th degree polynomial consists of a set

of coefficients y0...yN that are just the values of the polynomial at the collocation

points

xNi = cos
(
πi

N

)
, 0 ≤ i ≤ N .

So, a set of Gauss-Lobatto coefficients y0...yN represents the unique N th degree

polynomial that passes through the points (x0, y0), ..., (xN , yN ). In this repre-

sentation, arithmetic operations can be performed without loss of precision even

if the value of a polynomial spans many orders of magnitude.

In common with the Chebyshev polynomials, an exact conversion to or from the

Gauss-Lobatto representation takes O(NlogN) operations to perform. How-

ever, an algorithm was devised that allowed an approximate transformation to

be performed between DeSelby and Gauss-Lobatto representation in only O(N)

operations (see section 5.6.1). This allowed the polynomial to be efficiently

transformed to DeSelby representation without causing a computational bot-

tleneck. This allowed the development of algorithms for all necessary functions

that took only O(N) operations. This is a very significant result, particularly in

the case of multiplication. As mentioned above, the näıve algorithm to multiply

two Chebyshev polynomials takes O(N22D) operations, where N is the number

of terms and D is the number of variables. So, for a 5-variable polynomial with
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2000 terms that’s something of the order of 128×106 operations. With DeSelby

polynomials this is reduced to just 2, 000 operations, over 60, 000 times faster.

The approximate transformation algorithm was extended to allow fast, approx-

imate differentiation of DeSelby polynomials (see section 5.6.2). This algorithm

is, to the author’s knowledge, new. It is significant not only in the context

of differentiating DeSelby polynomials but could also be adapted to allow dif-

ferentiation on uniform grids. This means that it could be used as a much

higher-order accurate replacement for finite difference calculations without sig-

nificant penalty in speed. This algorithm has the additional advantage that

bounds can be put on the error between the calculated rate of change and the

exact value.

It is important to note that, although arithmetic is done in Gauss-Lobatto form,

this is not the same as simply evaluating the program at a grid of collocation

points. A set of values at collocation points makes no claim about the values

in-between the collocation points. A DeSelby polynomial, on the other hand,

defines the value at every point in the domain. In this way, bounds can be put on

the error in the final approximation. In addition, the nature and ordering of the

DeSelby basis functions implies a very special set of collocation points that would

have non-trivial cardinal functions. This amounts to a type of adaptive mesh

refinement which can substantially reduce the number of points in comparison to

a grid of collocation points, especially in multivariate domains. For example, a

9th order accurate approximation of a function in 5 variables can be represented

in a little over 2,000 DeSelby coefficients, whereas a 5-dimensional grid of 9

collocation points along each side would contain just over 59,000 points.

5.3 DeSelby bounds

The DeSelby polynomials extend naturally to the DeSelby bounds (P, ε) where P

is a DeSelby polynomial and ε is an associated bound on error, in the same way as

Chebyshev bounds. These obey the same rules of algebra as described in section

4.2. However, it remains to define a way of bounding DeSelby Polynomials and

multiplying them together.
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5.3.1 Bounding DeSelby polynomials

Two algorithms were devised that bound a DeSelby polynomial in O(N) oper-

ations where N is the number of coefficients. These are described in sections

5.6.4 and 5.6.5.

Many algorithms exist that give tighter bounds on polynomials than these al-

gorithms, but all have computational complexities worse than O(N). See, for

example, Cornelius and Lohner (1984), Lin and Rokne (1995), Smith (2009).

5.3.2 Addition/Subtraction of DeSelby polynomials

Addition and subtraction of DeSelby polynomials is performed in O(N) oper-

ations by the straightforward process of adding and subtracting bases respec-

tively.

5.3.3 Multiplication of DeSelby polynomials

An algorithm was devised that combines the tasks of multiplying two degree

N polynomials, truncating the result and calculating bounds on the truncation

error. The algorithm completes in O(N) operations. As mentioned earlier the

multiplication itself is done in the Gauss-Lobatto representation, this is not new.

However, Gauss-Lobatto multiplication alone does not allow bounds to be put on

the resulting truncation error. Traditionally, the fastest algorithm that bounds

error involves interpolating the multiplicands, performing the multiplication,

transforming to Chebyshev form (or other pseudo-spectral form) then truncating

the result. The interpolation and subsequent transformation to Chebyshev form

would traditionally require algorithms that take O(Nlog(N)) time. DeSelby

polynomials can be interpolated in O(N) time, so this method could be used

to perform fast multiplication. In order to achieve a slightly greater increase in

speed, however, we devised an algorithm in which the interpolation need not be

done at all. This was achieved by noting that, in the DeSelby representation, the

product of a term in the mth shell and a term in the nth shell, where m ≤ n has

its highest order term in the (n+1)th shell. This means that only multiplications

that involve terms from certain combinations of shells can result in truncation

error. For example, in the monovariate case, a DeSelby multiplication can be
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expressed as the form

PQ = (p00 + Pl + Ph)(q00 +Ql +Qh)

where Ph andQh consist of the terms in the highest shell of P andQ respectively,

p00 and q00 are the first shell coefficients (which are just constants so cannot

cause truncation error) and Pl and Ql are the remainder of terms. By bounding

these terms, we can bound the truncation error by

Btrunc = B(Pl + Ph)B(Qh) +B(Ph)B(Ql +Qh) .

This can be done in O(N) operations, without the need for interpolation.

5.4 Testing with a Cloud Resolving Model

A simple, 2 dimensional simulation of dry, turbulent convection was written in

C++ in order to test program approximation using DeSelby polynomials. The

model was based on that of Klemp and Wilhelmson (1978) with all moisture

variables and microphysics removed.

The model was used to simulate dry convection over 30 simulated minutes on

a 20x7 grid. 30 minutes was chosen as it is the typical duration of a single

timestep of a global model so is relevant to the parameterisation of processes

for global models. The domain was horizontally periodic with solid boundaries

at the top and bottom.

The model was wrapped so that its inputs were the horizontally averaged tem-

perature perturbations at each vertical level and the outputs were the average

heat fluxes across each vertical boundary. When transforming the input, initial

velocity was taken to be zero and initial sub-grid perturbations of temperature

were taken to be sinusoidal with a period equal to the width of the domain. The

average temperature perturbations of each vertical level were defined to be in

the range [0 : 0.06]K, which is typical of values found during convective events.

Parameterisations showed speed increases of the order of 1000 compared to the

high resolution model for 0.1% error compared to the maximum value of each

output variable.
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5.5 Mathematical development

The basis of the DeSelby polynomials is a set of functions defined on the interval

[−1 : 1] of the form

CNj (x) = (−1)(j+1) (1− x)2

cjN2(x− cos(πjN ))
dTN (x)
dx

where TN (x) is the N th degree Chebyshev polynomial and

cj =

 2 if |j| = N

1 if |j| < N

These are known as the ‘Chebyshev-Gauss-Lobatto’ cardinal functions (see, e.g.,

Boyd, 2001), they have the important property that CNj is zero at the points

xi = cos(πiN ), i 6= j.

Using these, we define the nth DeSelby basis function as

Dn(x) =

 C2
2n(x) if n < 2

C2bln2(n)+1c

2n+1 (x) otherwise

where bic denotes the floor operator which gives the highest integer not larger

than i. A univariate DeSelby polynomial is a sum over this basis

P (x) =
N∑
n=0

dnDn(x) + d00

where d00 is an ‘extra’ coefficient which defines P (0). Multivariate polynomials

can be defined on this basis in the normal way.

Theorem 5.5.1. The product of two DeSelby basis functions DnDm, where

n ≤ m, is a DeSelby polynomial whose coefficients of degree less than or equal

to n are all zero.

Proof. This can be seen by noting the position of the zero’s of the DeSelby basis

functions. Since CNj is zero at the points xi = cos(πiN ), i 6= j, then since the

DeSelby basis functions are defined as:

Dn(x) =

 C2
2n(x) if n < 2

C2bln2(n)+1c

2n+1 (x) otherwise

the set of zero’s of the nth DeSelby basis is

D0
n =

 {xi : xi = cos(πi2 ) ∧ i 6= 2n} if n < 2

{xi : xi = cos( πi
2ln2(n)+1 ) ∧ i 6= 2n+ 1} otherwise.

86



From this it can be seen that for any DeSelby basis Dr there exists a point at

x =

 cos( π2n
2ln2(r)+1 ) if n < 2

cos( π2n+1
2ln2(r)+1 ) otherwise

that is not a zero of Dr but is a zero of all Ds where s > r. Finally we note

that all Dr have a zero at x = 0.

If we now express the product of two DeSelby bases as

DnDm =
∑
r

drDr + d00

then, starting with the extra coefficient, d00, since all DeSelby basis functions

have a zero at x = 0, the product DnDm must also have a zero at x = 0. So,

at x = 0 the product reduces to Dn(0)Dm(0) = 0 = d00. So d00 = 0. Moving

then onto d0; since all Dr are zero at x = −1 when r > 0 then so is the product

DnDm as long as n > 0. D0 is not zero at x = −1 so at this point the product

reduces to Dn(−1)Dm(−1) = 0 = d00 + d0D0(−1). Since d00 = 0 then d0 = 0.

This process of induction can continue at least until we reach the (n−1)th basis

function.

Theorem 5.5.2. Suppose we have a DeSelby polynomial P whose highest non-

zero coefficient is in shell N . We truncate P by removing all terms in shell

N , to give a truncated DeSelby polynomial Pd = P + εd. We also truncate P

by expanding in the Chebyshev basis and truncating all Chebyshev terms above

2N−1 so that Pc = P + εc and Pc and Pd have the same number of coefficients.

Then the bound on εd is twice the bound on εc. That is, the error introduced

by the DeSelby truncation can be bounded by twice the bound due to Chebyshev

truncation.

Proof. When the Gauss-Lobatto cardinal function is expressed as a Chebyshev

expansion it is given by (Boyd, 2001)

CNj (x) =
2

Npj

N∑
m=0

1
pm

Tm(xj)Tm(x) =
N∑
m=0

cNjmTm(x) (5.1)

where

pi =

 2 if i = 0, N

1 otherwise
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since, by definition xj = cos(πjN ) and Tm(x) = cos(m cos−1(x)) then, by substi-

tution into equation 5.1, the mth degree Chebyshev coefficient is proportional

to

cNjm =
2 cos

(
mπj
N

)
Npjpm

letting m = N
2 + n

cNjm =
2 cos

(
π
(
j
2 + nj

N

))
Npjpm

.

This implies that for any odd j,

cN
j( N

2 −n)
= −cN

j( N
2 +n)

.

All DeSelby bases other than those in the first shell have odd j so their Cheby-

shev coefficients are reflected about their mid-point coefficient. From this, a

weighted sum of all DeSelby bases in a shell also has a Chebyshev expansion

with coefficients that are reflected about its mid-point. So, if we let the original

polynomial, P , have a Chebyshev expansion given by

P (x) =
N∑
n=0

CnT (x)

then

εd =
n= N

2∑
n=0

(
CN
j( N

2 −n)
TN

2 −n
− CN

j( N
2 −n)

TN
2 +n

)
.

The Chebyshev truncation error is bound by the sum of the absolute values of

the coefficients above N
2 so

B(εc) =
N∑

n= N
2 +1

|Cn| .

DeSelby truncation error is bounded by the sum of all coefficients in the trun-

cated shell

B(εd) =

N
2∑

m=0

|Cn|+ |Cn| .

Since cN
2

= 0

B(εd) = 2B(εc) .
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5.6 Algorithms

5.6.1 O(N) Gauss-Lobatto/DeSelby conversion

A Gauss-Lobatto representation can be converted to a DeSelby representation

with less than 0.5% error and with bounds on the error by using the following

algorithm.

Given a polynomial, P , that passes through points y0...yN at the Gauss-Lobatto

points x0...xN such that

xi = cos
(
πi

N

)
it is well known (e.g. Mason and Handscombe, 2003) that under the transfor-

mation x′ = cos−1(x), P (x′) can be expressed as the discrete cosine transform

of the points y0...yN . It follows that P (x′) can also be expressed as the discrete

Fourier transform of yN ...y1, y0, y1...yN . The discrete Fourier transform can be

written in the form

F (x) =
1

2N

N∑
j=−N

yj sin(N(x− xj)) cot
(
x− xj

2

)
(5.2)

where

xj =
πj

N
.

We define the interpolation points

x′i =
π
(
i+ 1

2

)
N

, −N ≤ i < N .

At these points, from equation 5.2,

F (x′i) =
1

2N

N∑
j=−N

yj(−1)(i−j) cot
(
x′i − xj

2

)
. (5.3)

To calculate this sum explicitly for all interpolation points would take O(N2)

operations. However, this can be reduced to O(N) by approximating the cot

function with an approximant of the form

cot(x) ≈

 A1e
−k1x +A2e

−k2x if 0 < x < π

−A1e
k1x −A2e

k2x if − π ≤ x < 0
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(cot(x) is not defined at x = 0). Using this approximation, equation 5.3 can be

expressed as

F (x′i) ≈ 1
2N (

−
∑i−1
j=i−N yj(−1)(i−j)A1e

k1(xj−x′i) −
∑i−1
j=i−N yj(−1)(i−j)A2e

k2(xj−x′i)

+
∑i+N−1
j=i yj(−1)(i−j)A1e

k1(x
′
i−xj) +

∑i+N−1
j=i yj(−1)(i−j)A2e

k2(x
′
i−xj)

)
where yj = y(2N−j) when j > N .

If we let

S+
n (i) =

i+N∑
j=i+1

yj(−1)(i−j)Anekn(x′i−xj)

and

S−n (i) = −
i∑

j=i−N+1

yj(−1)(i−j)Anekn(xj−x′i)

then

F (x′i) ≈
1

2N
(
S−1 (i) + S+

1 (i) + S−2 (i) + S+
2 (i)

)
.

The algorithm makes use of the observation that, in the range 0 ≤ j ≤ N ,

S+
n (i− 1) =

i+N−1∑
j=i

yj(−1)(i−1−j)Ane
kn(x′i−1−xj)

= −
i+N∑
j=i+1

yj(−1)(i−j)Anekn(x′i−xj)e
−knπ

N +
(
yi + (−1)Ny(i+N)e

−knπ
)
Ane

−knπ
2N

= −S+
n (i)e

−knπ
N +

(
yi + (−1)Ny(i+N)e

−knπ
)
Ane

−knπ
2N

and, similarly

S−n (i+1) =
i∑

j=i−N+1

yj(−1)(i−j)Ane−kn(xj−x′i)e
−knπ

N +
(
yi+1 + (−1)Ny(i−N+1)e

−knπ
)
Ane

−knπ
2N

= −S−n (i)e
−knπ

N +
(
yi+1 + (−1)Ny(i−N+1)e

−knπ
)
Ane

−knπ
2N .

In addition, we observe that

S+
n (N) = S−n (N − 1)

and

S+
n (0) = S−n (−1) .

From these relationships, the complete set of interpolation points can be approx-

imated in O(N) operations by supposing that S−n (−1) = 0, sweeping forward
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from y0 to yN , calculating the values of S−n (n) as we go, then sweeping backward

from yN to y0, calculating S+
n (n) as we go then finally sweeping forward again

to correct for the initial assumption of S−n (−1) = 0.

This algorithm can be used to calculate the DeSelby coefficients from the Gauss-

Lobatto coefficients by starting at the lowest DeSelby shell and working to

successively higher shells, calculating the values at the interpolation points and

subtracting from the Gauss-Lobatto points to find the perturbations in each

shell.

It was found that by optimising the parameters A1, A2, k1 and k2 so as to

minimise the error at the points evaluated in equation 5.3, the error in the

approximation could be bounded to around 0.5% of the final value. For lower

degree shells, this level of accuracy could be achieved with only one exponential.

By placing bounds on the error of our approximation of cot, bounds on the error

of a given transformation can be calculated by error tracking in the usual way.

5.6.2 O(N) differentiation

A DeSelby polynomial can be differentiated with respect to a variable using the

following algorithm.

The rate of change of a Gauss-Lobatto cardinal function at the ith Gauss-

Lobatto point is given by

dCNj
dx

∥∥∥∥∥
xi

=

 0 if i = j

0.5(−1)(i−j)
cot(π(i−j)

2 )√
1−x2

i

otherwise.

So, for some DeSelby polynomial F (x) of degree N

F ′(xi) =
1

2
√

1− x2
i

N∑
j=0,j 6=i

yj(−1)(i−j) cot
(
π(i− j)

2

)
but the sum in this equation is of exactly the same form as equation 5.3 which

describes interpolation. So, exactly the same type of algorithm can be used.

If the differentiation is performed using the same values of kn and An as used

during interpolation, the rate of change and interpolated values could both

be calculated from the same calculation, saving some operations if both are

required. However, because the cot term is evaluated at different points during

differentiation than those used during interpolation, slightly greater accuracy
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can be achieved by using values of kn and An that are optimised for these

points.

5.6.3 DeSelby/Gauss-Lobatto to Chebyshev conversion

Converting from DeSelby to Chebyshev basis is easily performed in O(NlogN)

operations by transforming each DeSelby shell using the a fast cosine transform,

then summing the results.

To convert a polynomial from Gauss-Lobatto form to Chebyshev form one could

convert first to DeSelby form, then to Chebyshev. Alternatively, an algorithm

was developed that converts directly from the Gauss-Lobatto form to Chebyshev

form in O(Nlog(N)) operations. The algorithm makes use of a natural general-

isation of Smolyak’s algorithm (Smolyak, 1963; Wasilkowski and Wozniakowski,

1995) to allow for the shell structure of the DeSelby polynomial.

Transforming from Gauss-Lobatto to Chebyshev is easy in the case when the

grid points form a Cartesian grid; one would just use a fast cosine transform.

However, a difficulty arises because, in the multivariate case, the shell structure

of the DeSelby basis does not generally lead to a Cartesian grid. However, this

grid structure can be described as the union of a number of Cartesian grids (i.e.

a number of Cartesian grids superimposed on each-other), and the Chebyshev

form can be built up out of the fast cosine transforms of these Cartesian grids.

Let each shell of a d-variate polynomial be identified by a d-dimensional vec-

tor, i. Each element of i identifies the degree of the shell in one variable by

numbering the shells consecutively in order of increasing degree. Each shell can

then be thought of as belonging to the Cartesian grid formed from itself and

all shells whose degree is lower than or equal to itself in all variables. The new

development is the concept of the ‘valency’ of a shell, i, in a polynomial, P ,

which we define as:

v(i) =
∑

a∈{0,1}d,s(i+a)∈P

(−1)|a|

where s(n) ∈ P if and only if P contains a shell with identity n, and |a| is the

sum of the elements of a (i.e. its 1-norm). This is a natural generalisation of

the multiplier in Smolyak’s algorithm for a polynomial of total degree j, which
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is defined as:

b(j) =
∑

a∈{0,1}d,|a|≤j

(−1)|a| .

If we let Ci be the polynomial formed from the Cartesian grid to which shell i

belongs, then we have the relation

P =
∑
s(i)∈P

v(i)Ci

the proof of this follows naturally from that for Smolyak’s algorithm (Smolyak,

1963) and is not given here.

By the nature of the discrete cosine transform, the Ci’s can be inductively built

up from each other, starting with the lowest degree, allowing the sum to be

calculated in O(Nlog(N)) time.

5.6.4 Bounding a polynomial

An algorithm was devised to bound a DeSelby polynomial above and below in

O(N) operations with similar tightness as obtained by the summing of Cheby-

shev coefficients.

The algorithm works by bounding each DeSelby shell. The polynomial is then

bounded by the interval-sum of the bounds of the shells. Each shell can be

bounded by removing variables one at a time. Consider first a monovariate

polynomial, P (x). The value at any given point, x = cos−1(x′), is equal to

s(x′) =
N/2−1∑
j=−N/2

d‖j‖
1

2N
sin(N(x′ − x2j+1)) cot(0.5(x′ − x2j+1))

where dj are the DeSelby coefficients and xj = πj
N . Since

sin(N(x′ − x2j+1)) = − sin(Nx′)

then

s(x′) < d

j
Nx′
2π

k
−1∑

j=−N
2

sin(N(x′ − x2j+1)) cot(0.5(x′ − x2j+1))
2N

−d
N
2 −1∑

j=dNx′
2π e−1

sin(N(x′ − x2j+1)) cot(0.5(x′ − x2j+1))
2N
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where d and d denote the maximum and minimum DeSelby coefficient. Letting

D̄ = d+d
2 and ∆ = d−d

2

s(x′) < D̄ + ∆


j

Nx′
2π

k
−1∑

j=−N/2

sin(N(x′ − x2j+1)) cot(0.5(x′ − x2j+1))
2N

−
N/2−1∑

j=dNx′
2π e−1

sin(N(x′ − x2j+1)) cot(0.5(x′ − x2j+1))
2N

 .

The sums are now independent of the DeSelby coefficients so their maximum

value can be calculated off line and stored in a lookup table for all degrees of

polynomial we are likely to encounter. If we denote this as MN then

s(x′) < D̄ + ∆MN .

An analogous calculation gives the minimum bound.

The same treatment extends naturally to multivariate shells by bounding one

dimension at a time using the relation

P (x0, ..., xn) =
∑

j0,...,jn

d(‖j0‖,...,‖jn‖)

n∏
m=0

Cjm(xm)

=
∑

j0,...,jn−1

d′(‖j0‖,...,‖jn−1‖)

n−1∏
m=0

Cjm(xm)

where

d′(‖j0‖,...,‖jn−1‖) =
∑
jn

d(‖j0‖,...,‖jn‖)Cjn(xn) .

Solving this gives bounds

s(x′) < D̄ + ∆Mm
N

where m is the number of variables.

5.6.5 Bounding a polynomial (alternative method)

A tighter way of bounding a polynomial in O(N) operations was discovered,

but not implemented. Begin by considering the univariate case, P (x). Under

the transformation x′ = cos(x), the value at any point is given by

P (x′) =
N∑

j=−N

d|j|

2N
sin(N(x′ − xj)) cot(0.5(x′ − xj))
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but if we let x′ = xk + ∆x then

P (x′) =
∑
j

d|j|

2N
sin(N(∆x+ xk − xj)) cot(0.5(∆x+ xk − xj))

but N(xk − xj) is always a multiple of π so

P (x′) = sin(N∆x)
∑
j

d|j|

2N
(−1)j−k cot(0.5(∆x+ xk − xj))

applying the same approximation of cot as in section 5.6.1 allows the ∆x to be

taken outside the sum

P (x′) ≈ sin(N∆x)(A1e
k1∆x+A2e

k2∆x)sgn(∆x)
∑
j

dj
2N

(−1)j−k cot(0.5(xk−xj))

where sgn(∆x) is 1 if ∆x is positive and -1 if ∆x is negative. The sum in the

above equation can be calculated for all k in O(N) operations using the same

method as used to differentiate polynomials described in 5.6.2. The term when

j = k contains a singularity at ∆x = 0 and the approximation loses accuracy,

so this term is treated separately and bound above and below in the region

− π
2N ≤ ∆x ≤ π

2N by

1− 2N(1− y0.5)
π

∆x ≤ 1
2N

sin(N∆x) cot(0.5∆x) ≤ 1− 4N2(1− y0.5)
π2

∆x2

where

y0.5 =
cot
(
π

4N

)
2N

.

The sum of other terms can be bounded using the inequalities

2N∆x
π

≤ sin(N∆x) ≤ 4N∆x
π

− 4N2∆x2

π2

in the region 0 ≤ ∆x ≤ π
2N and

4N∆x
π

+
4N2∆x2

π2
≤ sin(N∆x) ≤ 2N∆x

π

in the region − π
2N ≤ ∆x ≤ 0. The exponential terms are bounded above by A

and below by Ae−k
π

2N . In this way, the region is bounded by quadratics whose

maxima/minima can be found immediately.

This can be extended to the bounding of multivariate shells by bounding one

dimension at a time and using interval arithmetic to calculate the bounds-on-

bounds. It can also be extended to the bounding of a complete multivariate
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polynomial directly, rather than by bounding shells individually. However, deal-

ing with multiple variables is a little more complicated in this case since we need

to deal with the situation when the DeSelby shells describe a set of collocation

points that do not lie on a square grid. In this case, bounds must additionally

be put on the higher shells individually, and these bounds must be added to the

shells which do not contain these higher orders.
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Chapter 6

Entrainment in marine

stratocumulus

6.1 Introduction

iGen was used to analyse a simulation of a non precipitating, stratocumulus

topped, well mixed boundary layer (STBL) overlying a sea surface. Climato-

logical observations (e.g. McDonald, 1938; Hartmann and Short, 1980) have

shown that this regime of “marine stratocumulus” is persistently found over

large areas of the ocean where there is large scale subsidence. Because of the

large area of coverage and the very different radiative properties of a stratocu-

mulus covered ocean compared to an exposed sea surface, marine stratocumulus

has an important role to play in the Earth’s radiative equilibrium. Understand-

ing how marine stratocumulus reacts to climate forcings, then, is crucial to

understanding climate change. Bony and Dufrence (2005) showed that there

was great disagreement between climate models in their estimation of radiative

forcing due to marine stratocumulus under increased sea surface temperature.

They also showed that it is in the simulation of marine stratocumulus extent

that climate models differ most when compared to present day observations. A

more recent study (Dufrence and Bony, 2008) shows that this situation has not

improved with time.

The large scale structure and dynamics of this regime has been described by
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Lilly (1968). Typically, there is a well mixed layer from sea surface up to cloud

top where, due to strong turbulent mixing, the total water and liquid potential

temperature is close to homogeneous. The well mixed layer is capped at cloud

top by a strong inversion leading into a much warmer and dryer free atmosphere.

The turbulence is driven partly by surface fluxes of heat and moisture but

predominantly by strong radiative cooling at cloud top and, to a lesser extent, by

radiative warming at cloud base due to the temperature difference between the

cloud base and the sea surface. This turbulence causes some of the warmer, drier

free-atmosphere air to be mixed, or ‘entrained’ into the boundary layer. Given

the rate of this entrainment, the large scale dynamics of the system is easily

calculated from budgets of mass, energy and moisture. However, no analytic

derivation of this entrainment rate has been found. Lilly (1968) derives upper

and lower bounds and Stevens (2002) gives details of various parameterisations.

It was proposed to use iGen to analyse a cloud resolving model in order to derive

a fast, approximate way to calculate entrainment from the large scale state of

the STBL, thereby closing the large-scale equations of motion.

6.2 A Cloud Resolving Model for stratocumulus

A simple, 2-dimensional cloud resolving model was written in C++ in order

to simulate entrainment in stratocumulus under nocturnal, rain-free conditions.

A new cloud resolving model was written, rather than using existing code, for

two reasons: firstly, iGen can at present only analyse C++ programs, while the

existing models available to the author are written in Fortran; secondly, writing

a new model gave us much more freedom to test iGen to see how it performed

with different schemes and algorithms. The model was based on that of Klemp

and Wilhelmson (1978) with modifications detailed in Skamrock and Klemp

(1994).

It was decided to write a 2-dimensional model, rather than a 3-dimensional

model, so that simulations and analyses could be performed in a reasonable

time on a desktop computer, as the project did not have funding for supercom-

puter time. This remains a valid test of the analysis techniques as one would

expect something like two orders of magnitude increase in processing power on

a supercomputer compared to a desktop. This means that what can be done
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on a desktop computer in 2-dimensions can be done on a supercomputer in

3-dimensions in around the same amount of time.

A number of changes were made to the Klemp and Wilhelmson (hereafter KW)

model to better suit our needs. It was found that the second-order finite dif-

ference vertical advection scheme described in KW did not cope well with the

steep gradients at cloud top. This caused ‘ringing’ effects which led to unrealis-

tic cooling below cloudtop and heating above. To deal with this, a flux limiting

advection scheme was used instead (Nikiforakis, 2007). This calculated advec-

tion as a mix between a fourth order, centred finite difference scheme and an

upstream scheme. The flux limiting function used was

φ(r) =


0 if r < 0

2r if 0 ≤ r ≤ 1
2

1 otherwise.

Other changes are as follows:

• A more accurate version of Teten’s formula was used (Emmanuel, 1994).

• Temperature was stored as liquid water potential temperature.

• Liquid water was stored as total specific water content, cloud being diag-

nosed when this exceeds saturation.

• In order to simulate longwave radiative heating/cooling, the radiation

scheme described in Larson et.al (2007) was added.

• Prognostic variable and equation for rain was removed.

• Surface fluxes of heat and moisture as a function of velocity were added.

The full set of equations are given in Appendix B.

6.2.1 Testing the model against observation

The model was compared against observations and other cloud resolving models

by performing a simulation of the first research flight of the second “dynamics

and chemistry of marine stratocumulus” field study (DYCOMS-II). This case

was chosen as it has been used in an intercomparison study of large eddy mod-

els (Stevens et.al., 2005). As part of this study, a detailed specification of an
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idealised simulation was given, and results from an ensemble of large eddy mod-

els from ten different modelling centres are available, allowing our model to be

compared against these commonly used models.

Our model showed a longer spin-up period than the models in the intercompar-

ison (figure 6.1) and this was attributed to the 2-dimensional turbulence of the

model, compared to the 3-dimensional turbulence of the models in the intercom-

parison. The cascade of turbulent kinetic energy and vorticity is known to be

different in 2 and 3 dimensions (Kraichnan, 1967). During this spin-up period,

the low turbulent kinetic energy led to low entrainment and so the prescribed

large scale subsidence caused the cloudtop to descend. In order to account for

this descent during the spin-up period, the initial cloudtop height was raised by

10m, this had the effect of bringing the cloudtop height in-line with the other

models at 2-hours into the simulation when the spin-up period was over.

From 2-hours into the simulation to the end of the simulation the model was in

good agreement with both observation and the models of the intercomparison.

Cloudtop height, and therefore entrainment, was very close to the ensemble

average (see figure 6.2). Cloudbase height was also very close to the ensemble

average (see figure 6.3).

6.2.2 Wrapping the CRM to calculate entrainment

The cloud resolving model was wrapped so that it calculated the mean and

standard deviation of the entrainment velocity for a given specification of the

large scale state. The large scale state could be specified using the variables

• Temperature jump across cloudtop

• Jump in qt at cloudtop

• Height of cloudtop

• Down-welling radiation just above cloudtop

• Average boundary layer liquid water potential temperature

• Average boundary layer qt

• Sea surface temperature
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Figure 6.1: Cloudtop height of DYCOMS-II simulation: Solid line shows results

from our 2D CRM. The inner error bars show the first and third quartiles of the

ensemble of models in the Stevens et.al. (2005) intercomparison, the outer error

bars show the maximum and minimum values of the ensemble. The mid-points

of the error bars are marked by crosses and plus signs respectively.
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Figure 6.2: DYCOMS-II simulation: Cloudtop height from two hours into the

simulation. The solid line shows the results from the 2D CRM. Inner error bars

show the first and third quartiles of the ensemble of intercomparison models,

the outer error bars shows the maximum and minimum values of the ensemble.
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Figure 6.3: DYCOMS-II simulation: Cloudbase height from two hours into the

simulation. The solid line shows the results from the 2D CRM. Inner error bars

show the first and third quartiles of the ensemble of intercomparison models,

the outer error bars shows the maximum and minimum values of the ensemble.
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where qt is the specific total water content. However, by transforming the

variables to the set

qlct Specific liquid water content at cloud top

∆qt Jump in specific total water at cloud top

∆B Jump in Buoyancy at cloud top

F0 Down-welling radiation just above cloud top divided by average boundary

layer temperature

F1 Up-welling radiation just below cloud base divided by average boundary

layer temperature

θlbl Average boundary layer liquid water potential temperature

∆Tsst Difference between sea surface temperature and boundary layer temper-

ature

the dependency on boundary layer temperature was shown to be very weak over

the range of values we expect to experience.

In order to find the mean and standard deviation of entrainment rate for some

large scale state, X, we follow our abstraction theory and average over the high

resolution states γX. Calculating this explicitly would involve finding the prior

probabilities of the high-resolution states and writing a program to calculate γ

as described in chapter 2. The analysis would then average over the seed to

the random number generator used during the calculation of γ. However, if

we assume that the system is ergodic then the moments of the instantaneous

entrainment averaged over all random seeds are equal to the moments of a single

simulation, averaged over a sufficiently long period of time, where the large scale

state is held constant.

In order to keep the large scale state constant, a set of fluxes were calculated

at 12 second intervals and added at each timestep. The boundary layer height

was kept constant by adding a homogeneous, large-scale divergence. This was

calculated according to:

∇ · v =
md + h−H

5∆t

H

where md is the gradient of the least squares linear fit to the total entrainment

over the duration of the simulation so far, h is the measured height of the
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boundary layer, ∆t is the time between updates (12 seconds) and H is the

required height. The height of the boundary layer was defined to be the average

height of the isoline of total water content half way between the large-scale

boundary layer and free atmosphere values.

In order to keep boundary layer temperature and moisture constant a total

water flux and temperature flux was added. Total water flux was added to the

sub-cloud portion of the boundary layer. This included a flux that tended to

homogenise the field and was calculated at each gridpoint as

∂qt
∂t

= mq +
qtbl − qt

8∆t

where mq is the gradient of the least squares linear fit of the total flux from the

beginning of the simulation, qtbl is the large-scale total water in the boundary

layer and qt is the field of actual total water. The homogenisation is not physical

but is justified on the grounds that we want to find a formula for entrainment

in order to close the large scale dynamics of the boundary layer. However,

the large scale dynamics is only valid under the assumption of a homogeneous

boundary layer so we are merely enforcing the assumption made by the large

scale dynamical view. In terms of abstraction theory, this can be viewed as

skewing the value of γX, for some large scale state, X, towards a homogeneous

boundary layer; which is implicit in the assumptions of the large scale dynamical

view. The homogenisation has the advantage that it reduces the sensitivity of

the output to small-scale structure, this will be discussed at greater length in

the next section.

The flux of liquid water potential temperature was calculated so as to add a

constant buoyancy to the whole boundary layer from the ground up to the

isoline of temperature half way between the large-scale boundary layer and

free atmosphere values. In this way, the dynamics of the boundary layer is

not affected by the flux. The calculation was performed by first calculating a

homogeneous buoyancy flux

∂B

∂t
= mb +

θlbl − θ̄l
30θlbl∆t

where θ̄l is the average liquid water temperature between 200m and 100m below

cloud top and mb is the gradient of the least squares linear fit of the total flux

of buoyancy since the beginning of the simulation.
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The flux of liquid water potential temperature necessary to achieve a given

change in buoyancy ∆B over a single timestep, given a change in total water

∆qt, was calculated and added at the end of each timestep. The change in

liquid water potential temperature ∆θl at each gridbox was calculated using

the following procedure: In the absence of liquid water

∆θl,dry = θlbl (∆B − 0.61∆qt) ∆t

in the presence of liquid water

∆θl,wet = θlbl

(
∆B −∆qt

(
0.61 + (

γ

θlbl
− 1.61)

)(
1− ∂qsat

∂qt

))
where ∂qsat

∂θl
is the rate of change of saturation with θl at constant qt, and ∂qsat

∂qt

is the rate of change of saturation with qt at constant θl. In the case that the

flux causes a transition between clear sky and cloud, it is necessary to calculate

the fraction of buoyancy and qt change that occurs in cloud and the fraction in

clear sky and to add these contributions separately. When going from clear sky

to cloudy, the fraction in clear sky is given by

m =
qsat − qt

∆qt − ∂qsat

∂θl
∆θl,dry

.

When going from cloudy to clear, the fraction in cloudy sky is

m =
qt − qsat(

1.0− ∂qsat

∂qt

)
∆qt− ∂qsat

∂θl
∆θl,wet

.

The side boundaries of the simulated domain were periodic, the lower boundary

was solid (no fluxes across the boundary) and the upper boundary was defined

to have no sub-grid turbulent fluxes. Air entered through the top of the domain

at the large-scale, free-atmosphere state in order to replace that lost by large

scale subsidence. More details of the boundary conditions are given in appendix

B.

The initial state of the atmosphere was a homogeneous boundary layer and

homogeneous free atmosphere separated by a linear transition of 25m height.

Initial velocities were zero everywhere and there was no sub-grid turbulent ki-

netic energy. Pressure was initialised to the hydrostatic value. In order to break

symmetry, a random perturbation of ±0.0025K was added to each gridbox be-

low 100m and within 100m below the inversion. Geostrophic winds were not

included for the same reason as presented in Moeng et.al. (1996): If we are to
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include geostrophic winds, this raises the question of the orientation of the 2D

domain in relation to the wind direction. Since roll motions tend to be aligned

closely to the wind direction, the natural choice would be perpendicular to the

wind direction, meaning no geostrophic wind across the domain.

6.3 The ill conditioning of entrainment

A numerical experiment was performed on the wrapped model to test the sen-

sitivity of entrainment rate to the initial random perturbation of ±0.0025K to

each gridbox in the lowest 100m of the boundary layer and within 100m below

the inversion. The large-scale state was chosen to be around the centre of the

expected ranges of each value:

Boundary layer θl = 290K

Boundary layer qt = 8× 10−3Kg Kg−1

∆θl at inversion = 8.5K

∆qt at inversion = −6× 10−3Kg Kg−1

Net radiation flux above inversion = −55W m−2

Net radiation flux at cloud base = 22W m−2

∆θl at sea surface = 1K (sea surface warmer).

The domain size was 1166m horizontally and 770m vertically. The inversion

height was 600m above the bottom of the domain.

Six simulations were made with random perturbations provided by the C++

rand() function, seeded at the beginning of the simulation by the current state

of the computer’s internal clock. The fluxes of heat and moisture which keep

the boundary layer at a constant large scale state were turned off in order to

discount them as the source of sensitivity. The resulting total entrainment of

the simulations are shown in figure 6.4. After 6 hours there was a 10% spread

in total entrainment, showing that there is significant sensitive dependence on

initial conditions under these conditions.

Debugging showed no memory leaks or out-of-range references in the program,

which could have caused the differing behaviour. Running the simulations with
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Figure 6.4: Total entrainment against simulated time for six simulations differ-

ing only in a 0.0025K perturbation to the initial conditions.

the same random seed at various times and on different computers always re-

turned exactly the same result. Simulations were also made with constant large-

scale divergence in order to discount feedbacks with the divergence as the source

of sensitivity. Results still showed sensitivity to initial conditions. Different do-

main geometries did not show any overall reduction in sensitivity. Sensitivity

was reduced to around 5% when the large-scale boundary layer state was held

constant by turning on the fluxes of heat and moisture.

This sensitivity would explain the large range of results obtained from the en-

semble of simulations presented in Stevens et.al. (2005), despite the presence in

these simulations of negative feedbacks in the form of a vertical gradient of sub-

sidence velocity and a vertical gradient of temperature in the free atmosphere.

One would expect to see fluctuations in entrainment due to small scale turbulent

eddies. However, these should manifest themselves as high frequency noise in

the total entrainment. The fluctuation due to this noise, as a percentage of the

total entrainment, should reduce in proportion to 1
sqrt(N) where N is the number

of small-scale turbulent entrainment events that have occurred. For small scale
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turbulence, N should be very high when averaged over 6 hours. This suggests

that either the amplitude of the small scale fluctuations is very high compared to

the average, or there are lower frequency fluctuations coming from larger-scale,

longer-lived events.

What we require of an analysis of entrainment in terms of the large scale state

is a value of entrainment averaged over a typical timestep of a large scale model.

This would be of the order of 10s of minutes. However, the large scale state

simply does not contain enough information to say what rate of entrainment

one should expect when averaged over this length of time. Our initial question

was shown to be ill-posed.

In light of this, it is imperative to render the definition of entrainment into a

form that is well conditioned. It is clear that entrainment cannot be modelled as

a simple deterministic function of large scale state. The way to proceed comes

naturally out of our theory of abstraction. We have an abstract, large-scale

model of entrainment, αfγ, made out of a wrapped, high-resolution model.

The output of this is a distribution over possible entrainment values. In this

case, the distribution is quite wide, so if we want to model it we must do so with

a stochastic model, for which we need to know the moments of the output. At

each timestep of the large scale model, an entrainment value is chosen at random

from a distribution given by the moments. Mathematically, this is known as a

random walk (see e.g. Weiss, 1994). A random walk consists of a number of

steps (i.e. timesteps of the large-scale model), and at each step the entrainment

is chosen at random from a fixed probability distribution.

A 15 hour simulation was made with the same large scale state as above, but this

time with all fluxes turned on. The resulting total entrainment was recorded

at 12 second intervals. A histogram of the amount of entrainment in each 12

second interval is shown in figure 6.5.

This clearly shows a Gaussian distribution, as would be expected from the

central limit theorem if the entrainment is made up of the action of a large

number of random turbulent events. This means that a random walk should be

a good model of the long term behaviour of entrainment. Figure 6.6 shows six

simulated random walks. Each step spanned 80 seconds and had a Gaussian

distribution. The plot is presented for comparison to figure 6.4.
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Figure 6.5: Histogram showing the amount of entrainment in 12 seconds. Sam-

pled over a 15 hour simulation.

In order to re-pose the problem into a well conditioned form, then, we assume

that entrainment is caused by the action of turbulent eddies and that these can

be modelled on the large-scale as a random walk with a Gaussian distribution.

Our aim is to find the mean and standard deviation of the step of this random

walk. Accordingly, the output of the wrapped model was made to be the mean

entrainment rate and the mean of the entrainment rate squared, with samples

taken every 12 simulated seconds. This assumption implies that, in the large-

scale model, the fluctuations in the entrainment of neighbouring gridboxes are

uncorrelated; or at the very least that any correlations do not affect the large

scale dynamics. This is plausible, but future study may show that this is not

the case. For example, it may turn out that entrainment is caused by some

ordered structure or wave that travels between gridboxes. Further experiment

would be necessary to discount this possibility.

It is interesting to note that the Gaussian nature of this distribution, when com-

bined with the fact that entrainment predominantly occurs in only one direc-

tion (from the free atmosphere into the boundary layer) allows us to calculate
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Figure 6.6: Six random walk simulations. Each step spanned 80 seconds and

had a Gaussian distribution. Units were chosen to give a walk of the same

magnitude as the entrainment shown in figure 6.4
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an order of magnitude lower bound on the size/timescale of the process that

dominates entrainment. Since entrainment only goes one way, the steps of the

random walk must predominantly go forward. For this to be the case, the mean

must be larger than the standard deviation, so the time scale of the process

of entrainment must be no smaller than that where the standard deviation of

each step equals its mean. By fitting a Gaussian to figure 6.5 we get a mean of

0.08ms−1 and a variance of 0.008m2s−2 so the mean would equal the standard

deviation at a step of 0.008×12
0.082 = 15s. If we suppose a characteristic velocity of

1ms−1 this gives a characteristic size of 15m.

6.4 Analysing entrainment

Since, in a random walk, the standard deviation of the velocity scales as T−
1
2 ,

where T is the duration of the walk, we express standard deviation as that

when averaged over a 30 minute period. This can be converted to any averaging

period, T , by multiplying by
√

1800
T , where T is in seconds.

Because of the essentially Gaussian nature of entrainment, formal bounds on

the mean and standard deviation are neither appropriate or useful in this case.

Suppose, for example, we are given a sample of output from a random process

with a Gaussian distribution. Even though we can calculate the statistical mean

and standard deviation of the sample, no formal bounds can be put on the mean

or standard deviation of the process. Although it is very unlikely that the mean

and standard deviation of the process is very far from the statistical values, there

remains a finite probability that the process could have any values we care to

mention, and so this possibility cannot be formally discounted. In the case of

entrainment, then, the appropriate bound is the standard deviation of the mean,

defined as
√

( σN ) where σ is the variance between samples of entrainment of the

wrapped model and N is the number of samples used to form the mean. This

gives us a measure of uncertainty in the mean entrainment due to the finite

number of samples over which we average. It was found that a simulation of

6 hours with 2 hours spin-up gave a standard deviation of the mean around

2.5%. In any case, if the resulting model of entrainment is to be used with

a timestep of a typical GCM of, say 30 minutes, then averaging over 4 hours

makes the standard deviation of the mean 1√
(8)

times the standard deviation of

the entrainment. It would also be possible to calculate the standard deviation
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of the standard deviation, but it is not clear what practical use this value would

have, so it was not calculated.

6.4.1 Sensitivity of the wrapped model to domain geom-

etry

Numerical experiments were performed to find the sensitivity of the wrapped

model output to the domain geometry of the CRM. The reference geometry was

770m vertical by 1166m horizontal, with the inversion at 600m. The following

perturbations to the reference geometry were tested:

• 5,500m horizontal

• 1,200m vertical

• inversion at 1100m, 1270m vertical.

In all cases, the values of the large scale inputs to the model were chosen to be

the value at the centre of the expected range of values, as follows:

ql,ct = 5.5× 10−4KgKg−1

∆qt = −6.0× 10−3KgKg−1

∆B = 0.215ms−2

F0 = 55Wm−2

F1 = 22Wm−2

θl,bl = 290K

∆Tsst = 1K .

In addition, sensitivity to boundary layer liquid water potential temperature

(with all other variables fixed) was tested by performing a simulation at 295K,

the upper limit of the expected range.

All simulations were performed at 5mx11m gridbox resolution. The simulations

lasted 15 simulated hours and the initial spin-up period was 9 hours.

The resulting entrainments of the simulations are shown in figure 6.7 as a func-

tion of time. The gradients of the least squares fits are shown in table 6.1.

The results show that the reference geometry, although small, gives values for

entrainment that agree well with different geometries, considering the intrinsic

standard deviation of entrainment.
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Figure 6.7: Entrainment of the CRM for different geometries and different

boundary layer temperature.

Simulation Entrainment (ms−1)

Reference 7.45× 10−3

Wide 7.28× 10−3

Free Atmosphere 7.59× 10−3

1100m Boundary layer 7.31× 10−3

θl,bl = 295K 7.50× 10−3

Table 6.1: The least squares fit of the rate of entrainment for different domain

geometries.
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6.4.2 Analysis

The expected ranges of the large scale variables were calculated from the re-

sults of a number of field campaigns and idealised cases of nocturnal marine

stratocumulus as shown in table 6.2.

Based on these values, the ranges used for iGen’s analysis of the wrapped model

were:

• 1× 10−4 ≤ ql,ct ≤ 1× 10−3KgKg−1

• −8.0× 10−3 ≤ ∆qt ≤ −2.0× 10−3KgKg−1

• 0.065 ≤ ∆B ≤ 0.5ms2

• 20 ≤ F0 ≤ 110Wm2

• 7 ≤ F1 ≤ 33Wm2.

In light of the insensitivity of entrainment to θl,bl, given the other state variables,

it was decided to set θl,bl to 290K, the centre of its range. ∆Tsst was held fixed

at +1K. Atmospheric pressure at sea level was assumed to be 1× 105Nm2.

6.4.3 Results

iGen was left running for 28 days on a desktop computer with 1.8GHz Intel Core-

Duo. On return, the analysis had terminated after calculation of all DeSelby

shells up to 10th degree for both mean entrainment and standard deviation.

Convergence of the resulting mean entrainment polynomial was shown by con-

verting it to Chebyshev form and extracting the highest order terms (i.e. the

terms for which all other terms have at least one variable of lower degree). The

absolute value of the sum of the highest order terms was then compared against

the standard deviation of the mean. As the polynomial converges, we would

expect the highest order terms to reduce in amplitude to the level of ‘noise’ due

to the standard deviation in the mean. At this point we would expect the sum

of the highest degree terms to lie within 0.674 standard deviations of the mean

50% of the time. The polynomials of high order terms and standard deviation of

the mean were evaluated at 10,000 randomly chosen points in the input domain.

The proportion of points for which the high order polynomial was found to lie
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within 0.674 standard deviations was found to be 49.85%, so the polynomial

was assumed to have effectively converged.

The polynomials for mean and standard deviation that resulted from the analy-

sis are shown in full in appendix C. These can be converted into a program that

evaluates the mean and standard deviation at any point in just over 2000 multi-

plications and additions by using Horner form evaluation. Approximations that

require fewer operations can easily be created by truncating the polynomial,

by finding the minimax polynomial fit using Remez’ algorithm (Press et.al.,

2007) or by finding the least squares fit by solving the appropriate set of linear

equations (Press et.al., 2007).

The polynomials were tested against the ensemble of DYCOMS-II CRM sim-

ulations (Stevens et.al., 2005). The ensemble-average large-scale state for the

final hour of the simulations was used as input to the polynomial, and the en-

trainment over 1 hour was predicted to be 5.27×10−3±0.62×10−3ms−1. This

compares very well with the ensemble average of the CRM’s entrainment rate

which was 5.2× 10−3 ± 0.8× 10−3ms−1. It is interesting to note that because

of the very short simulation lengths used in the DYCOMS-II ensemble study,

much of the variation between simulation results can be explained by the natural

variation of the ‘random walk’ of entrainment.

6.5 Conclusion

iGen has analysed a wrapped, high-resolution cloud resolving model of entrain-

ment and from this has derived a model of entrainment in terms of the large scale

state. This model can be used as a closure of the large scale dynamics of the

stratocumulus topped boundary layer and could be used as a parameterisation

of entrainment in a global climate model.

It was also found that entrainment was sensitive to sub-grid scale structure. It

was proposed that this could be modelled using a stochastic model, evidence

was presented to show that the process can be described as a Gaussian random

walk. Further theoretical and empirical studies would be useful to ascertain

whether an alternative set of large-scale variables exists which are better pre-

dictors of entrainment. On the theoretical side, the author proposes that iGen

could be extended to automatically generate good large-scale variables by using
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techniques from automatic polynomial decomposition (Corless et.al., 1999) and

from artificial intelligence to search the space of possible prognostic variables.

The biggest limitation of the large-scale model presented here is that it is based

on a 2-dimensional simulation and, as already mentioned, 2-dimensional turbu-

lence is known to have different characteristics than 3-dimensional turbulence.

The similarity in results between our model and the 3-dimensional models in

the DYCOMS-II case, however, would suggest that this does not necessarily

affect entrainment rates. This is rather surprising but is in line with Moeng

et.al. (1996) who also show a similar insensitivity of entrainment rate to model

dimensionality. Nevertheless, it would be worthwhile repeating this experiment

with a 3-dimensional simulation. It would also be worthwhile treating bound-

ary layer temperature and sea surface temperature as input variables in order

to formally show their functional role in entrainment.
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Chapter 7

Further work and

Conclusion

In these pages we have shown that existing climate models lack the ability

to formally justify claims about the real climate system and have shown how

formal methods can be used to generate models that can be used to formally

justify claims about reality. We have presented a new ‘theory of abstraction’

which links statements about computer programs to statements about dynamic

systems. We used this theory to show how error in computer models should be

dealt with, and drew attention to certain types of error that are not properly

treated in existing climate models. We showed how this theory reduces the

problem of model generation to that of approximating computer programs and

presented a method of approximating computer programs by analysing their

code. This was illustrated by analysing some simple examples. We introduced

a new type of polynomial, the DeSelby polynomial, and presented a number

of algorithms that allow them to be used to efficiently approximate computer

programs. These methods were implemented in a computer program, iGen,

which analyses high resolution computer models and automatically produces

fast, low resolution approximations of these high resolution models. We used

iGen to generate a number of models of simple dynamical systems and, finally,

to generate a new model of entrainment in marine stratocumulus. In this way

we presented a solution to a problem that has been identified as a large source

of uncertainty and error in existing climate models (Bony and Dufrence, 2005;

119



Dufrence and Bony, 2008).

The methods and experiments we have described here are in no way complete

but are meant to lay down a foundation onto which further techniques can

be built; the ultimate aim being to create a new generation of epistemically

responsible climate models. There remains much scope for the development of

algorithms to improve the accuracy, efficiency and capability of iGen’s analysis.

For example, DeSelby polynomials can be used to implement a type of adaptive

mesh refinement. The author has already devised an algorithm and written code

to ‘grow’ a DeSelby polynomial by adaptively adding shells where uncertainty

is greatest. A formal analysis of the convergence properties of this ‘growing’

process in the multivariate case remains to be done. This process could also be

extended to adaptively add individual terms within shells.

iGen’s analyses could be made more efficient by adding automatic differentiation

of the program code (see, e.g. Rall, 2006). This would allow iGen to calculate

the response of the model’s output to the addition of small perturbations at any

point during the model’s execution, and so allow iGen to make a higher order

analysis of points in the program’s execution that sensitively affect the output,

while leaving lower sensitivity parts with lower order analyses. Taking this

further, the sensitivity information obtained by the automatic differentiation

could be combined with the functional information of the DeSelby polynomial

analysis to create a higher order accurate analysis. This reduces to solving

a set of simultaneous equations so could quite easily be done. This could be

generalised even further by extending the automatic differentiation to allow the

calculation of higher order rates of change, at which point the analysis becomes

a synthesis of DeSelby polynomials and ‘Taylor Models’ (Berz and Hoffstatter,

1998).

In order to make iGen execute efficiently on parallel computers, it may be ap-

propriate to modify the DeSelby basis functions to functions that are zero over a

large part of their domain. This would reduce the need for inter-processor com-

munication and thus speed up analysis. Mathematically, this technique falls

under the classification of ‘wavelet analysis’ (see, e.g. Meyers et.al., 1993).

There is also a great potential for increased efficiency in the deeper analysis of

loops. The work of Pop et. al. (2005, 2006) has been developed by the author

into the ‘ΠΣ-algebra’ which is a formalism for dealing with loops. This remains
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to be fully developed.

Another important development of iGen is to give it the ability to analyse

programs ‘in the limit’ that a certain variable goes to zero (see section 1.1.2).

This is certainly possible by developing the arithmetic on DeSelby bounds to

include formal limits. At the moment, iGen’s analysis gives an error bound

compared to the high resolution model. However, this raises the question of

how trustworthy the high-resolution model is. With the inclusion of limits, this

problem is removed and the error reported is that compared to the underlying

equations of motion. At this limit, many traditional numerical algorithms for

solving partial differential equations become formally equivalent, so it may be

appropriate to present the user of iGen with higher level functions that hide

these details. This would make model specification faster and easier for the

scientists by allowing them to express themselves in a language very close to the

form of the underlying equations of motion. At the same time it would allow

iGen to intelligently choose appropriate algorithms based on its analysis of the

underlying equations.

iGen’s ability to deal with probabilistic bounds should also be developed further.

As the stratocumulus case showed, upper and lower bounds on the moments are

not always appropriate. The arithmetic on DeSelby bounds could be extended

to deal with a ‘Gaussian noise’ bound. Information would need to be held on

co-variances and higher order moments. Further research would have to be

done on how best to deal with truncation of higher order moments, although

there seem to be no fundamental difficulties. This would allow iGen to deal

better with the deterministic generation of ‘noise’ by chaotic systems. In this

case, because of the sensitive dependence of the output on initial conditions,

any attempt at automatic differentiation would fail (this has been confirmed in

numerical experiments by the author).

The efficiency of the program generated by iGen could potentially be improved

by searching the space of programs that calculate the equivalent, simplified

polynomial. This could include calculating the Padé approximant (Guillaume

and Huard, 1998; Matos, 2007), approximate polynomial decomposition (Corless

et.al., 1999; Gathen et.al., 2003), and approximate polynomial factorisation

(Lecerf, 2007; Gao et.al, 2004).

It would be very interesting to explore the implications of the algorithm given

121



in section 5.6.1 for converting between DeSelby and Gauss-Lobatto form. This

was presented as an approximate algorithm but could equally be interpreted as

an exact algorithm to convert to a non-polynomial basis. If this basis could

be shown to have good convergence properties (as one certainly would expect,

based on its close similarity to the DeSelby basis) then it could be used as a

new basis for computationally efficient approximation. This basis could also be

used to induce a basis which closely approximates the Chebyshev basis.

These are just a few of the ways that formal model building could be developed.

It only remains for me to thank the reader for their tenacity in battling through

this thesis despite the challenges of certain formidable passages and to express

my hope that I have managed to give some feeling for the enormous potential

of this approach, and it’s importance for bringing the use of computer models

squarely into the Scientific Method.
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Appendix A

Mie Theory

We now give the equations necessary to calculate the scattering cross section,

Csca, of parallell light incident on a trasparent sphere. For a detailed description

of Mie theory and derivations of these equations, see Chapter 4 of Bohren and

Huffman (1998).

We take as given:

a The radius of the sphere

λ The wavelength of the incident radiation

N The refractive index of the surrounding medium

N1 The (complex) refractive index of the sphere

Let the wave number be defined as

k =
2πN
λ

.

Let the size parameter be defined as

x = ka =
2πNa
λ

.

Let the relative refractive index be defined as

m =
N1

N
.

Let the Logarithmic Derivative Dn be a function from complex numbers to

complex numbers such that

Dn−1(ρ) =
n

ρ
− 1
Dn(ρ) + n

ρ
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with boundary condition

D∞ = 0 + 0i .

Let χn(x) be a function from reals to reals such that

χn+1(x) =
2n+ 1
x

χn(x)− χn−1(x)

and

χ−1(x) = − sinx

χ0(x) = cosx .

Let ψ and ξ be the Ricatti-Bessel functions. ψ is from reals to reals such that

ψn+1(x) =
2n+ 1
x

ψn(x)− ψn−1(x)

and

ψ−1(x) = cosx

ψ0(x) = sinx

ξ is from reals to complex numbers such that

ξn(x) = ψn(x) + iχn(x) .

Now define

an =
(Dn(mx)

m + n
x )ψn(x)− ψn−1(x)

(Dn(mx)
m + n

x )ξn(x)− ξn−1(x)

and

bn =
(mDn(mx) + n

x )ψn(x)− ψn−1(x)
(mDn(mx) + n

x )ξn(x)− ξn−1(x)
.

The scattering cross section is now given by

Csca =
2π
k2

∞∑
n=1

(2n+ 1)(ana∗n + bnb
∗
n)

in the numerical implementation, this sum is truncated to the first N = bx +

4x
1
3 +2c terms, where x is the size parameter, similarly, the boundary condition

for the logarithmic derivative is set to D(N+15) = 0, following Bohren and

Huffman (1998).
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Appendix B

Cloud Resolving Model

Equations

B.1 Symbols

B.1.1 Prognostic variables

uj Velocity in j direction

π perturbation of the Exner function from equilibrium

θ potential temperature

qt total specific water content

Km Measure of turbulent kinetic energy (Km = 0.2lE
1
2 )

B.1.2 External parameters

∆x Horizontal grid spacing

∆z Vertical grid spacing

T0 Equilibrium ground temperature

p0 Equilibrium ground pressure

θ̄v Equilibrium virtual potential temperature
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B.1.3 Constants

cp = 1015.0JKg−1K−1 heat capacity of air at constant pressure

Rd = 287.1JKg−1K−1 Gas constant for dry air

cv = Cp −R heat capacity of air at constant volume

g = 9.8ms−1 gravitational acceleration

L = 2.47× 106Jkg−1 latent heat of vaporization

Es = 0.984 Emissivity of seawater

Cm = 0.2 turbulence constant

Ce = 0.2 turbulence constant

B.1.4 Diagnostic variables

fui
slow processes in acceleration

Tl liquid water temperature

θe Equiv. potential temp perturbation from equilibrium

p̄ Equilibrium pressure

ρ̄ Equilibrium density

Π̄ Equilibrium Exner function

B Buoyancy

l turbulence length scale

T Temperature

θ̄v Equilibrium virtual potential temperature

c̄ Speed of sound in equilibrium conditions

qv specific water vapour content

ql specific liquid water content

qvs saturation specific water content (over water)

B Turbulence creation due to buoyancy

S Turbulence creation due to shear

B.2 Equilibrium state

Π̄ = 1− gz

cpθ̄v

p̄ = p0Π̄
cp
Rd

ρ̄ =
p0

RdT0
π̄

cv
Rd
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c̄2 =
cpRdπ̄θ̄v

cv

B.3 Diagnostic equations

γ =
L

cpΠ̄
(B.1)

θe = θl + γqt (B.2)

l = (∆x∆z)
1
2 (B.3)

T = θ(Π̄ + π) ≈ θΠ̄ (B.4)

Tetens formula:

pvs = 611.2e
17.27(T−273.15)

(T−35.85) (B.5)

qvs = 0.622
pvs

p− 0.378pvs
(B.6)

Saturation was calculated from liquid water temperature using the method de-

scribed in Sommeria and Deardorff (1977). This involves calculating qvs using

the above equation, then if qvs ≤ qt the value is correct, otherwise multiply by

the correction factor
1 + βqt
1 + βqvs

where

β = 0.622
L2

RCpT 2
l

qv =

 qt if qt < qvs

qvs otherwise
(B.7)

ql = qt − qv (B.8)
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B.4 Prognostic equations

The prognostic equations are the fully compressible equations of fluid motion.

Acoustic waves were integrated by splitting forcings into fast and slow parts and

integrating them separately, as described by Kelmp and Wilhelmson (1978) and

Skamrock and Klemp (1994). In order to improve numerical stability, a filter

term is added to the prognostic equations for velocity, as described in Skamrock

and Klemp (1994). This has the effect of gently filtering acoustic waves. The

turbulence parameterisation is that of Klemp and Wilhelmson (1978). In the

following, the Einstein summation convention is used, so repeated indices are

implicitly summed over.

∂ui
∂t

= −cpθ̄v
∂π

∂xi
+ +

αd
ρ̄

∂

∂xi

∂(ρ̄uj)
∂xj

fui
(B.9)

∂π

∂t
= − c̄2

cpρ̄θ̄2v

∂ρ̄θ̄vuj
∂xj

+ fπ (B.10)

∂qt
∂t

= Dqt
− uj

∂qt
∂xj

(B.11)

∂θl
∂t

= Dθl
− uj

∂θl
∂xj

+ fr (B.12)

∂Km

∂t
= −uj

∂Km

∂xj
+
c2ml

2

2Km
(B + S) +

1
2
∂2(K2

m)
∂x2

j

− ceK
2
m

2cml2
(B.13)

where

B = 3gKm

(
(1−H(ql))

−1
θ

∂θ

∂z
+H(ql)(−A

∂θe
∂z

+
∂qc
∂z

)
)

(B.14)

where H is the Heaviside step function and

A =
1
θ̄

(
1 + 1.61Lqv

RdT

1 + 0.622L2qv

cpRdT 2

)

and

S = Km

(
∂ui
∂xj

+
∂uj
∂xi

)2

(B.15)
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B.4.1 Turbulence fluxes

Dui
=

∂

∂xj

(
Km

(
∂ui
∂xj

+
∂uj
∂xi

)
+

2
3c2ml2

δijK
2
m

)
(B.16)

For φ ∈ {θ, qt}

Dφ = 3
∂

∂xj

(
Km

∂φ

∂xj

)
(B.17)

B.4.2 Slow (non-acoustic) waves

Slow forcings on the velocity fields are those due to buoyancy, turbulence and

advection:

fui = δi3g

(
θl + γql

θ̄
− 1 + 0.61qt − 1.61ql

)
+Dui − uj

∂ui
∂xj

(B.18)

B.4.3 Radiative fluxes

In-cloud radiative fluxes were calculated using the scheme described in Stevens

et.al. (2005) and Larson et.al. (2007) where the rate of change of liquid water

potential temperature is given by

fr =
1

Cpρ̄π̄

∂

∂z

(
F0e

−Q(z,∞) + F1e
−Q(0,z)

)
(B.19)

where

Q(a, b) = κ

∫ b

a

ρqtdz

where, following Larson et.al. (2007), κ = 119m2kg−1.

B.4.4 Surface fluxes

The surface fluxes of latent and sensible heat were calculated using a simple

bulk aerodynamic formulation described in Krishnamurti and Bounoua (1995).

Fluxes were added to the lowest gridbox of each column according to

∂θ

∂t

∣∣∣∣
surf

=
1

∆z
‖u10‖Ch(Tsst − T ) (B.20)

and
∂qt
∂t

∣∣∣∣
surf

=
1

∆z
‖u10‖Cq(qsat − qt) (B.21)
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where T and qt are the temperature and total water of the lowest gridbox,

respectively, and

u10 = ux
log( 10.0

z0
)

log( ∆z
2z0

)

z0 is the roughness length, which was taken to have a constant value at 5×10−4m

based on figures in Stull (1988). The exchange coefficients were set constant at

Ch = 1.4 × 10−3 and Cq = 1.6 × 10−3 based on figures in Krishnamurti and

Bounoua (1995).

B.5 Numerical implementation

The equations were integrated on a staggered grid in which pressure, tempera-

ture and total water are defined on one grid, while horizontal velocity is repre-

sented at points displaced half a grid spacing to the right and vertical velocity

is represented at points displaced half a grid spacing below the thermodynamic

variables.

Integration was done on using a leapfrog scheme, following Klemp and Wilhelm-

son (1978).

B.6 Numerical treatment of timesplitting

Pressure and velocity fields were updated on a smaller timestep than that of the

other fields in order to account for acoustic waves. The prognostic equations

for each small timestep are given in equations B.9 and B.10, where fui and fπ

are taken to be constant and evaluated at the leapfrog mid-point. During the

integration, the vertical variation of the speed of sound was ignored and taken

to be fixed at the top-of-domain value.

B.7 Boundary conditions

The left and right boundaries are periodic in all variables. The upper and lower

boundaries each lie on v grid points. At the ground u and v have the Dirichlet

boundary condition of v = 0 and u = 0. Other variables have the condition

that ∂π
∂z goes to zero in order that there is no sub-grid turbulent flux across
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the boundary, allowing surface fluxes to be dealt with separately. At the top

of domain boundary, v = −Dh where D is the large scale divergence and h is

the height; u goes to zero since we are assuming no geostrophic wind in the

free atmosphere air entering the top of the domain; π goes to zero (above is in

equilibrium, π is a perturbation) qt and θl go to the large-scale free atmosphere

values and Km has the boundary condition ∂Km

∂z = 0 in order to ensure that

there is no sub-grid turbulent flux of turbulence.
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Appendix C

Polynomials for

entrainment

C.1 Mean entrainment

The mean entrainment polynomial, in Chebyshev form, is:

0.000120718F 2
0F

8
1 +9.21863×10−05F0F

8
1−0.000141767∆B2F 8

1 +0.000526718∆BF 8
1−

1.13686×10−05∆qt2F 8
1 +0.000141682∆qtF 8

1 +6.8708×10−05ql2F 8
1 +0.000117345qlF 8

1−
0.000158558F 8

1−8.4255×10−05F 2
0F

7
1−0.000110234F0F

7
1−0.000102062∆B2F 7

1 +

0.000118472∆BF 7
1 − 0.000110617∆qt2F 7

1 − 4.82755× 10−05∆qtF 7
1 − 1.86547×

10−06ql2F 7
1 +0.000176195qlF 7

1−0.000180746F 7
1 +0.000266137F 2

0F
6
1 +0.00023476F0F

6
1 +

0.000427795∆B2F 6
1−0.000422387∆BF 6

1 +0.000253881∆qt2F 6
1−0.000177268∆qtF 6

1 +

0.000299972ql2F 6
1 + 0.000242528qlF 6

1 + 0.000831622F 6
1 + 0.000446523F 2

0F
5
1 +

6.72172×10−05F0F
5
1 +0.000236846∆B2F 5

1−5.13986×10−05∆BF 5
1 +0.000252128∆qt2F 5

1 +

0.000148603∆qtF 5
1 + 0.000294844ql2F 5

1 − 0.000115784qlF 5
1 + 0.000700522F 5

1 −
4.98684×10−05∆B2F 4

0F
4
1 +0.000147548∆BF 4

0F
4
1 +2.06662×10−05∆qt2F 4

0F
4
1 −

3.5955 × 10−05∆qtF 4
0F

4
1 + 0.000106293ql2F 4

0F
4
1 + 7.97842 × 10−05qlF 4

0F
4
1 +

1.7325×10−05F 4
0F

4
1 +2.2407×10−05∆B2F 3

0F
4
1 +0.000109838∆BF 3

0F
4
1 +5.39368×

10−05∆qt2F 3
0F

4
1 +0.000122118∆qtF 3

0F
4
1 +0.000137683ql2F 3

0F
4
1 +0.000142811qlF 3

0F
4
1 +

9.67008 × 10−05F 3
0F

4
1 − 8.33753 × 10−05∆B4F 2

0F
4
1 + 0.000157462∆B3F 2

0F
4
1 +

2.5246×10−05∆qt2∆B2F 2
0F

4
1−4.22562×10−05∆qt∆B2F 2

0F
4
1 +1.8974×10−05ql2∆B2F 2

0F
4
1 +

1.73125×10−05ql∆B2F 2
0F

4
1 +9.78452×10−05∆B2F 2

0F
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0F
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1 +
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0.000198925∆qt∆BF 2
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0F1+0.000270268F 4

0F1+0.000160038∆B4F 3
0F1−0.000200513∆B3F 3

0F1−
8.62838×10−05∆qt2∆B2F 3

0F1+0.000184039∆qt∆B2F 3
0F1−4.72721×10−05ql2∆B2F 3

0F1+

8.87596×10−05ql∆B2F 3
0F1+1.66153×10−05∆B2F 3

0F1+0.00029302∆qt2∆BF 3
0F1−

0.000357636∆qt∆BF 3
0F1 +0.000240265ql2∆BF 3

0F1−0.000121319ql∆BF 3
0F1 +

0.000547985∆BF 3
0F1 − 0.000119222∆qt4F 3

0F1 − 5.43741 × 10−05∆qt3F 3
0F1 +

9.2672×10−05ql2∆qt2F 3
0F1+8.2427×10−05ql∆qt2F 3

0F1+3.68642×10−05∆qt2F 3
0F1−

7.55501× 10−05ql2∆qtF 3
0F1 − 0.000169636ql∆qtF 3

0F1 + 0.00027631∆qtF 3
0F1 +

9.36292× 10−05ql4F 3
0F1 + 2.02719× 10−05ql3F 3

0F1 + 3.14469× 10−05ql2F 3
0F1 +

2.08655×10−05qlF 3
0F1−4.99327×10−05F 3

0F1−3.18824×10−05∆qt2∆B4F 2
0F1−

0.000131163∆qt∆B4F 2
0F1−9.07491×10−05ql2∆B4F 2

0F1−1.60762×10−05ql∆B4F 2
0F1−

0.000126715∆B4F 2
0F1+6.17264×10−05∆qt2∆B3F 2

0F1+0.000141882∆qt∆B3F 2
0F1+

0.000162537ql2∆B3F 2
0F1+2.88022×10−05ql∆B3F 2

0F1+3.23423×10−05∆B3F 2
0F1+

5.06039×10−05∆qt4∆B2F 2
0F1+0.000208613∆qt3∆B2F 2

0F1−3.87982×10−05ql2∆qt2∆B2F 2
0F1+
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4.3587×10−05ql∆qt2∆B2F 2
0F1−7.82437×10−05∆qt2∆B2F 2

0F1+0.000220401ql2∆qt∆B2F 2
0F1+

0.000240731ql∆qt∆B2F 2
0F1−0.00010524∆qt∆B2F 2

0F1+3.08921×10−05ql4∆B2F 2
0F1+

0.000122379ql3∆B2F 2
0F1−7.89069×10−05ql2∆B2F 2

0F1+5.20763×10−05ql∆B2F 2
0F1−

6.41122×10−05∆B2F 2
0F1−8.02309×10−05∆qt4∆BF 2

0F1−0.000346998∆qt3∆BF 2
0F1+

2.29055× 10−05ql2∆qt2∆BF 2
0F1 − 2.74053× 10−05ql∆qt2∆BF 2

0F1 − 4.25421×
10−05∆qt2∆BF 2

0F1−0.000420327ql2∆qt∆BF 2
0F1−0.000205355ql∆qt∆BF 2

0F1+

0.00010954∆qt∆BF 2
0F1−5.04491×10−05ql4∆BF 2

0F1−0.000203544ql3∆BF 2
0F1−

0.000131878ql2∆BF 2
0F1−5.14511×10−05ql∆BF 2

0F1−1.86549×10−05∆BF 2
0F1+

1.71732×10−05ql2∆qt4F 2
0F1+4.71936×10−05ql∆qt4F 2

0F1−3.29518×10−06∆qt4F 2
0F1−

1.83957×10−05ql2∆qt3F 2
0F1−0.000262011ql∆qt3F 2

0F1+0.000162924∆qt3F 2
0F1−

2.52318×10−05ql4∆qt2F 2
0F1+2.48294×10−05ql3∆qt2F 2

0F1−3.934×10−05ql2∆qt2F 2
0F1+

0.000140906ql∆qt2F 2
0F1 + 0.000106111∆qt2F 2

0F1 − 0.000137668ql4∆qtF 2
0F1 −

6.28547×10−06ql3∆qtF 2
0F1 +0.000182232ql2∆qtF 2

0F1 +0.0002927ql∆qtF 2
0F1 +

3.16572 × 10−05∆qtF 2
0F1 − 3.89656 × 10−05ql4F 2

0F1 + 0.000162008ql3F 2
0F1 +

1.92084×10−05ql2F 2
0F1−8.94125×10−05qlF 2

0F1+0.000259068F 2
0F1−0.000218287∆qt2∆B4F0F1+

6.41221×10−05∆qt∆B4F0F1−0.000159444ql2∆B4F0F1−0.00013521ql∆B4F0F1−
0.000407793∆B4F0F1+0.000413488∆qt2∆B3F0F1−0.000320299∆qt∆B3F0F1+

0.000291237ql2∆B3F0F1 + 0.000201619ql∆B3F0F1 + 0.000609896∆B3F0F1 +

0.000112906∆qt4∆B2F0F1+0.000238157∆qt3∆B2F0F1−3.62297×10−05ql2∆qt2∆B2F0F1−
0.000218879ql∆qt2∆B2F0F1−0.000154714∆qt2∆B2F0F1−3.16025×10−05ql2∆qt∆B2F0F1+

0.000202951ql∆qt∆B2F0F1−0.000189078∆qt∆B2F0F1+7.99244×10−05ql4∆B2F0F1−
1.02053×10−05ql3∆B2F0F1−0.000137334ql2∆B2F0F1−0.00027156ql∆B2F0F1−
0.000270915∆B2F0F1 +0.000128121∆qt4∆BF0F1−0.00039538∆qt3∆BF0F1−
0.000156346ql2∆qt2∆BF0F1+0.000276776ql∆qt2∆BF0F1−0.000314352∆qt2∆BF0F1+

0.00020509ql2∆qt∆BF0F1−0.000170786ql∆qt∆BF0F1+0.000726576∆qt∆BF0F1+

1.36336×10−05ql4∆BF0F1−1.42757×10−05ql3∆BF0F1−0.000207951ql2∆BF0F1+

0.000434053ql∆BF0F1− 0.000897152∆BF0F1 +5.64186× 10−05ql2∆qt4F0F1−
0.000117079ql∆qt4F0F1+0.000112256∆qt4F0F1+1.51001×10−05ql2∆qt3F0F1−
9.87671×10−05ql∆qt3F0F1+0.000203676∆qt3F0F1+7.84638×10−05ql4∆qt2F0F1+

0.000135717ql3∆qt2F0F1+7.4455×10−06ql2∆qt2F0F1−0.000171409ql∆qt2F0F1+

3.58926×10−05∆qt2F0F1−0.000128145ql4∆qtF0F1−0.000130074ql3∆qtF0F1+

0.000126553ql2∆qtF0F1+0.000693288ql∆qtF0F1−0.000121373∆qtF0F1−0.000107458ql4F0F1+

0.000168636ql3F0F1−0.000119686ql2F0F1−0.000232811qlF0F1+0.000701499F0F1−
0.000156075∆B8F1+9.01551×10−05∆B7F1−8.11741×10−05∆B6F1+6.79178×
10−07∆B5F1−3.14007×10−05∆qt4∆B4F1+0.000105685∆qt3∆B4F1−3.85079×
10−05ql2∆qt2∆B4F1−0.000109857ql∆qt2∆B4F1−7.27349×10−05∆qt2∆B4F1−
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3.07487×10−05ql2∆qt∆B4F1+0.000218922ql∆qt∆B4F1−0.000234977∆qt∆B4F1−
6.58122 × 10−05ql4∆B4F1 − 0.000280622ql3∆B4F1 − 0.000235263ql2∆B4F1 +

0.000149974ql∆B4F1− 6.18216× 10−05∆B4F1 +5.21471× 10−05∆qt4∆B3F1−
8.52997×10−05∆qt3∆B3F1+0.000139895ql2∆qt2∆B3F1+0.000212534ql∆qt2∆B3F1+

1.09501×10−05∆qt2∆B3F1+6.02265×10−05ql2∆qt∆B3F1−0.000165682ql∆qt∆B3F1+

0.000233075∆qt∆B3F1 + 6.74264× 10−05ql4∆B3F1 + 0.000497595ql3∆B3F1 +

0.000405494ql2∆B3F1−0.00028194ql∆B3F1−0.00026199∆B3F1+0.000155423ql2∆qt4∆B2F1+

2.87742×10−05ql∆qt4∆B2F1+0.000181945∆qt4∆B2F1−0.000103839ql2∆qt3∆B2F1−
0.000198929ql∆qt3∆B2F1−7.28204×10−06∆qt3∆B2F1+8.66813×10−05ql4∆qt2∆B2F1−
0.000138752ql3∆qt2∆B2F1−0.000114288ql2∆qt2∆B2F1+0.00013099ql∆qt2∆B2F1−
0.000159735∆qt2∆B2F1−0.000172378ql4∆qt∆B2F1+0.000487712ql3∆qt∆B2F1+

0.000217166ql2∆qt∆B2F1−0.000160228ql∆qt∆B2F1+7.72373×10−07∆qt∆B2F1+

0.000133319ql4∆B2F1−0.000205367ql3∆B2F1−0.000564629ql2∆B2F1+0.000810376ql∆B2F1+

0.000558867∆B2F1 − 0.000192652ql2∆qt4∆BF1 + 0.000174833ql∆qt4∆BF1 −
0.000263602∆qt4∆BF1+7.31126×10−05ql2∆qt3∆BF1−0.000178115ql∆qt3∆BF1+

6.77581×10−05∆qt3∆BF1−0.000211338ql4∆qt2∆BF1+0.000220988ql3∆qt2∆BF1−
8.903×10−05ql2∆qt2∆BF1−0.00038295ql∆qt2∆BF1+0.000236667∆qt2∆BF1+

0.000231592ql4∆qt∆BF1−0.00100414ql3∆qt∆BF1−0.000543998ql2∆qt∆BF1+

0.00123902ql∆qt∆BF1+5.13378×10−05∆qt∆BF1−0.0002966ql4∆BF1+0.000141384ql3∆BF1+

0.000656474ql2∆BF1−0.00191251ql∆BF1−0.00138252∆BF1+3.03159×10−05∆qt8F1+

0.000111867∆qt7F1 + 0.000190144∆qt6F1 + 7.18311× 10−05∆qt5F1 + 1.3048×
10−06ql4∆qt4F1+1.25722×10−06ql3∆qt4F1+0.000123831ql2∆qt4F1+0.00012782ql∆qt4F1+

0.000244611∆qt4F1 + 1.6379 × 10−05ql4∆qt3F1 + 3.61185 × 10−05ql3∆qt3F1 −
5.48585×10−05ql2∆qt3F1−0.000386054ql∆qt3F1−0.000209316∆qt3F1+8.41949×
10−05ql4∆qt2F1−4.2575×10−05ql3∆qt2F1−5.87096×10−05ql2∆qt2F1+0.000181408ql∆qt2F1−
0.000238766∆qt2F1−0.000106127ql4∆qtF1+0.000683062ql3∆qtF1+0.000488954ql2∆qtF1−
0.000378626ql∆qtF1−2.72315×10−05∆qtF1−0.000251916ql8F1−0.00037798ql7F1−
0.000150533ql6F1−0.000108607ql5F1+0.00018764ql4F1+3.11339×10−05ql3F1−
0.000104654ql2F1 + 0.00201383qlF1 + 0.00190027F1 − 5.2741× 10−05∆B2F 8

0 −
8.59695×10−05∆BF 8

0−0.000197199∆qt2F 8
0 +3.53831×10−05∆qtF 8

0−0.000117695ql2F 8
0 +

0.000123664qlF 8
0−0.000275129F 8

0−4.73354×10−05∆B2F 7
0 +8.99336×10−05∆BF 7

0−
0.000106721∆qt2F 7

0 +3.06345×10−05∆qtF 7
0 −9.67874×10−05ql2F 7

0 +1.04212×
10−05qlF 7

0 − 0.000172208F 7
0 + 6.92044 × 10−05∆B2F 6

0 + 0.000128112∆BF 6
0 +

0.000155362∆qt2F 6
0−4.52479×10−05∆qtF 6

0 +2.36421×10−05ql2F 6
0−0.000164638qlF 6

0 +

0.000205378F 6
0−0.000114148∆B2F 5

0 +0.00039244∆BF 5
0 +6.0453×10−05∆qt2F 5

0 +

0.000159965∆qtF 5
0 + 5.93101× 10−05ql2F 5

0 − 6.63619× 10−05qlF 5
0 + 9.65608×
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10−05F 5
0 +2.80767×10−05∆qt2∆B4F 4

0 +8.48678×10−05∆qt∆B4F 4
0 +0.000110729ql2∆B4F 4

0 +

4.4007×10−05ql∆B4F 4
0 +0.000118024∆B4F 4

0−0.00010386∆qt2∆B3F 4
0−0.000147058∆qt∆B3F 4

0−
0.000334432ql2∆B3F 4

0−0.000350058ql∆B3F 4
0−0.000275009∆B3F 4

0−0.000195587∆qt4∆B2F 4
0 +

0.000199319∆qt3∆B2F 4
0−5.60329×10−05ql2∆qt2∆B2F 4

0−1.22659×10−05ql∆qt2∆B2F 4
0−

3.40556×10−05∆qt2∆B2F 4
0−3.31099×10−05ql2∆qt∆B2F 4

0−4.24792×10−06ql∆qt∆B2F 4
0−

4.24681× 10−05∆qt∆B2F 4
0 − 0.000330994ql4∆B2F 4

0 − 0.00010208ql3∆B2F 4
0 +

2.8828×10−05ql2∆B2F 4
0 +0.000113781ql∆B2F 4

0 +0.000431608∆B2F 4
0 +0.000380366∆qt4∆BF 4

0−
0.000252748∆qt3∆BF 4

0 +0.000210234ql2∆qt2∆BF 4
0 +0.00024608ql∆qt2∆BF 4

0 +

0.000259178∆qt2∆BF 4
0 +9.36046×10−05ql2∆qt∆BF 4

0 +7.35902×10−05ql∆qt∆BF 4
0 +

0.000169009∆qt∆BF 4
0 +0.000510243ql4∆BF 4

0 +0.000202012ql3∆BF 4
0 +0.000282753ql2∆BF 4

0 +

0.00025375ql∆BF 4
0 −0.000462602∆BF 4

0 −3.54033×10−05ql2∆qt4F 4
0 −9.91655×

10−05ql∆qt4F 4
0−0.000173555∆qt4F 4

0 +6.25744×10−06ql2∆qt3F 4
0−0.000165532ql∆qt3F 4

0 +

0.000119911∆qt3F 4
0 − 6.99456 × 10−05ql4∆qt2F 4

0 − 0.000171518ql3∆qt2F 4
0 −

9.64406×10−05ql2∆qt2F 4
0 +6.82583×10−05ql∆qt2F 4

0 −8.02396×10−05∆qt2F 4
0 −

8.52277×10−05ql4∆qtF 4
0−6.19954×10−05ql3∆qtF 4

0−4.74703×10−05ql2∆qtF 4
0 +

0.000212418ql∆qtF 4
0 +4.05012×10−05∆qtF 4

0−0.000371236ql4F 4
0−0.000151582ql3F 4

0−
0.00016836ql2F 4

0 +3.24065×10−05qlF 4
0 +0.000223197F 4

0 +9.16361×10−05∆qt2∆B4F 3
0−

6.2406×10−05∆qt∆B4F 3
0 +9.32136×10−05ql2∆B4F 3

0 +0.000178129ql∆B4F 3
0 +

0.00028045∆B4F 3
0−0.00013123∆qt2∆B3F 3

0 +0.000125876∆qt∆B3F 3
0−0.00026754ql2∆B3F 3

0−
0.000385776ql∆B3F 3

0 − 0.000354458∆B3F 3
0 − 3.08316 × 10−05∆qt4∆B2F 3

0 +

0.000151987∆qt3∆B2F 3
0−6.73673×10−05ql2∆qt2∆B2F 3

0−0.00018676ql∆qt2∆B2F 3
0−

7.66353×10−05∆qt2∆B2F 3
0 +0.000280317ql2∆qt∆B2F 3

0 +0.000372886ql∆qt∆B2F 3
0 +

8.10831×10−05∆qt∆B2F 3
0 +1.35933×10−05ql4∆B2F 3

0−0.000302851ql3∆B2F 3
0−

2.46262× 10−05ql2∆B2F 3
0 + 0.000206734ql∆B2F 3

0 + 5.30058× 10−05∆B2F 3
0 +

9.5078×10−05∆qt4∆BF 3
0−0.000363218∆qt3∆BF 3

0 +0.000215909ql2∆qt2∆BF 3
0 +

0.000398379ql∆qt2∆BF 3
0 +0.000344011∆qt2∆BF 3

0−0.000658579ql2∆qt∆BF 3
0−

0.0010462ql∆qt∆BF 3
0−0.000410076∆qt∆BF 3

0 +0.000207101ql4∆BF 3
0 +0.000247613ql3∆BF 3

0 +

0.000441942ql2∆BF 3
0 +0.00035709ql∆BF 3

0−0.00032412∆BF 3
0−3.81342×10−05ql2∆qt4F 3

0−
0.000140432ql∆qt4F 3

0 −1.587×10−05∆qt4F 3
0 −0.000126538ql2∆qt3F 3

0 −4.5656×
10−05ql∆qt3F 3

0 +0.00010373∆qt3F 3
0 +5.59828×10−05ql4∆qt2F 3

0−0.000121365ql3∆qt2F 3
0−

0.00012522ql2∆qt2F 3
0 −0.000167773ql∆qt2F 3

0 −0.000354973∆qt2F 3
0 −1.67172×

10−05ql4∆qtF 3
0−7.08416×10−05ql3∆qtF 3

0 +0.000393808ql2∆qtF 3
0 +0.000584161ql∆qtF 3

0−
5.58875×10−05∆qtF 3

0 +0.000185513ql4F 3
0−0.000240618ql3F 3

0−0.000310779ql2F 3
0 +

6.84401 × 10−05qlF 3
0 − 0.000606536F 3

0 − 6.43734 × 10−05∆B8F 2
0 − 8.81199 ×

10−05∆B7F 2
0 +0.000185225∆B6F 2

0−3.45622×10−06∆B5F 2
0−3.79683×10−05∆qt4∆B4F 2

0 +

0.000140422∆qt3∆B4F 2
0−3.16393×10−05ql2∆qt2∆B4F 2

0 +3.72363×10−06ql∆qt2∆B4F 2
0 +
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6.80165×10−05∆qt2∆B4F 2
0 +1.21128×10−05ql2∆qt∆B4F 2

0 +0.000135801ql∆qt∆B4F 2
0−

0.000206551∆qt∆B4F 2
0 +0.000107807ql4∆B4F 2

0 +9.38098×10−05ql3∆B4F 2
0 −

7.669 × 10−05ql2∆B4F 2
0 − 0.000257618ql∆B4F 2

0 + 6.66935 × 10−06∆B4F 2
0 −

7.2317×10−05∆qt4∆B3F 2
0 +1.3357×10−05∆qt3∆B3F 2

0 +7.01314×10−05ql2∆qt2∆B3F 2
0 +

8.83862×10−05ql∆qt2∆B3F 2
0−4.44549×10−05∆qt2∆B3F 2

0 +1.4784×10−05ql2∆qt∆B3F 2
0−

0.000374102ql∆qt∆B3F 2
0 +1.41095×10−05∆qt∆B3F 2

0−0.000257699ql4∆B3F 2
0−

0.000110376ql3∆B3F 2
0 +0.000144298ql2∆B3F 2

0 +0.0004948ql∆B3F 2
0 +0.000265006∆B3F 2

0−
0.000191655ql2∆qt4∆B2F 2

0−0.00019759ql∆qt4∆B2F 2
0−6.62182×10−05∆qt4∆B2F 2

0 +

4.47738×10−05ql2∆qt3∆B2F 2
0 +0.000100199ql∆qt3∆B2F 2

0−9.33408×10−06∆qt3∆B2F 2
0−

8.43787×10−05ql4∆qt2∆B2F 2
0−0.000195871ql3∆qt2∆B2F 2

0−5.16969×10−05ql2∆qt2∆B2F 2
0 +

4.70792×10−05ql∆qt2∆B2F 2
0−1.80742×10−05∆qt2∆B2F 2

0−6.21239×10−05ql4∆qt∆B2F 2
0 +

7.5995×10−05ql3∆qt∆B2F 2
0 +1.64598×10−05ql2∆qt∆B2F 2

0 +4.38201×10−05ql∆qt∆B2F 2
0 +

0.00010047∆qt∆B2F 2
0 + 5.89757× 10−05ql4∆B2F 2

0 − 0.000192384ql3∆B2F 2
0 −

3.42368×10−05ql2∆B2F 2
0 +0.000225081ql∆B2F 2

0−0.00029669∆B2F 2
0 +0.000209786ql2∆qt4∆BF 2

0 +

0.000314427ql∆qt4∆BF 2
0 +0.0001844∆qt4∆BF 2

0−8.63157×10−05ql2∆qt3∆BF 2
0−

0.000478685ql∆qt3∆BF 2
0−8.65534×10−05∆qt3∆BF 2

0 +0.000208802ql4∆qt2∆BF 2
0 +

0.000363977ql3∆qt2∆BF 2
0 +3.54891×10−05ql2∆qt2∆BF 2

0−0.000206315ql∆qt2∆BF 2
0 +

0.000108691∆qt2∆BF 2
0−6.48825×10−05ql4∆qt∆BF 2

0−0.000631046ql3∆qt∆BF 2
0−

0.000142871ql2∆qt∆BF 2
0 +0.000933083ql∆qt∆BF 2

0 +3.00213×10−05∆qt∆BF 2
0 +

5.46617× 10−05ql4∆BF 2
0 +0.000562701ql3∆BF 2

0 +7.46434× 10−06ql2∆BF 2
0 −

0.000911618ql∆BF 2
0−1.10541×10−05∆BF 2

0−3.27416×10−05∆qt8F 2
0−0.000205275∆qt7F 2

0 +

3.38702×10−05∆qt6F 2
0 +2.30659×10−05∆qt5F 2

0 −6.29047×10−05ql4∆qt4F 2
0 +

2.27231×10−06ql3∆qt4F 2
0 −9.30304×10−05ql2∆qt4F 2

0 −0.000114734ql∆qt4F 2
0 +

0.000122444∆qt4F 2
0 +3.86402×10−05ql4∆qt3F 2

0 −2.44687×10−05ql3∆qt3F 2
0 −

2.88259×10−05ql2∆qt3F 2
0 +0.000199945ql∆qt3F 2

0−0.000182864∆qt3F 2
0−8.21286×

10−05ql4∆qt2F 2
0−0.000298691ql3∆qt2F 2

0−3.49421×10−05ql2∆qt2F 2
0 +0.000155835ql∆qt2F 2

0−
0.000242198∆qt2F 2

0−7.52979×10−05ql4∆qtF 2
0 +0.00019522ql3∆qtF 2

0 +2.90558×
10−05ql2∆qtF 2

0−0.000275578ql∆qtF 2
0 +0.000482911∆qtF 2

0−0.000219277ql8F 2
0 +

5.87329×10−05ql7F 2
0 +9.78857×10−05ql6F 2

0 +0.000100481ql5F 2
0 +0.000133769ql4F 2

0−
0.00059146ql3F 2

0 −4.39654×10−05ql2F 2
0 +0.000474691qlF 2

0 −0.000505332F 2
0 +

0.000150863∆B8F0−0.000273683∆B7F0−3.88641×10−06∆B6F0+0.000221198∆B5F0−
0.000106047∆qt4∆B4F0+0.0001403∆qt3∆B4F0−3.93433×10−05ql2∆qt2∆B4F0−
0.000111045ql∆qt2∆B4F0−0.000214988∆qt2∆B4F0+0.000194676ql2∆qt∆B4F0+

0.000333815ql∆qt∆B4F0+0.000135294∆qt∆B4F0+4.9781×10−05ql4∆B4F0+

5.97634×10−05ql3∆B4F0−0.00020065ql2∆B4F0−0.000490302ql∆B4F0−0.000263378∆B4F0+

0.000172101∆qt4∆B3F0−0.000135381∆qt3∆B3F0+0.000291057ql2∆qt2∆B3F0+
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0.000393678ql∆qt2∆B3F0+0.000401412∆qt2∆B3F0−0.000564196ql2∆qt∆B3F0−
0.000902961ql∆qt∆B3F0−0.00044465∆qt∆B3F0+8.82359×10−05ql4∆B3F0−
0.000527192ql3∆B3F0+0.00051971ql2∆B3F0+0.00137498ql∆B3F0−0.000301827∆B3F0−
1.37882 × 10−05ql2∆qt4∆B2F0 − 1.56792 × 10−05ql∆qt4∆B2F0 − 5.96197 ×
10−07∆qt4∆B2F0+1.2456×10−05ql2∆qt3∆B2F0+0.000218688ql∆qt3∆B2F0+

4.39431×10−05∆qt3∆B2F0−0.000222369ql4∆qt2∆B2F0−0.000255366ql3∆qt2∆B2F0−
7.05612×10−05ql2∆qt2∆B2F0+0.000355401ql∆qt2∆B2F0+0.000310851∆qt2∆B2F0+

0.000211264ql4∆qt∆B2F0+0.000354655ql3∆qt∆B2F0+1.38368×10−05ql2∆qt∆B2F0−
0.000221827ql∆qt∆B2F0 − 0.000159002∆qt∆B2F0 − 0.000275615ql4∆B2F0 +

0.000269838ql3∆B2F0−0.000182685ql2∆B2F0−0.000103795ql∆B2F0+0.0012259∆B2F0−
2.66927×10−05ql2∆qt4∆BF0+0.000162987ql∆qt4∆BF0−0.00022601∆qt4∆BF0−
0.00013087ql2∆qt3∆BF0−0.00058152ql∆qt3∆BF0+1.9347×10−05∆qt3∆BF0+

0.000189613ql4∆qt2∆BF0+0.000803963ql3∆qt2∆BF0−0.000231672ql2∆qt2∆BF0−
0.00140208ql∆qt2∆BF0−0.000864435∆qt2∆BF0−0.000456354ql4∆qt∆BF0−
0.000784042ql3∆qt∆BF0+0.000913012ql2∆qt∆BF0+0.00185222ql∆qt∆BF0+

0.000648262∆qt∆BF0+0.000220221ql4∆BF0+0.000309872ql3∆BF0−0.000229923ql2∆BF0−
0.00176254ql∆BF0−0.00247321∆BF0−3.86444×10−05∆qt8F0−0.000205448∆qt7F0+

4.18135 × 10−05∆qt6F0 + 0.000210994∆qt5F0 − 2.60768 × 10−05ql4∆qt4F0 −
1.87467×10−05ql3∆qt4F0+1.79599×10−05ql2∆qt4F0+0.000116717ql∆qt4F0+

6.04722×10−05∆qt4F0+0.000249272ql4∆qt3F0+0.00021727ql3∆qt3F0+0.000152048ql2∆qt3F0+

4.68862×10−05ql∆qt3F0−0.000448782∆qt3F0−0.000223736ql4∆qt2F0−8.71044×
10−05ql3∆qt2F0+9.65038×10−05ql2∆qt2F0+0.000404013ql∆qt2F0+0.00066015∆qt2F0+

4.90151×10−05ql4∆qtF0+0.000186076ql3∆qtF0−0.000379504ql2∆qtF0−0.000428542ql∆qtF0+

0.000322418∆qtF0−0.000103433ql8F0−0.000192317ql7F0−7.84763×10−05ql6F0−
2.61942×10−05ql5F0−0.00053312ql4F0+0.000395559ql3F0−0.000120493ql2F0+

0.00167644qlF0+0.00454505F0−6.55797×10−05∆qt2∆B8+5.18006×10−05∆qt∆B8−
0.000183888ql2∆B8−6.66352×10−05ql∆B8−0.000287395∆B8−0.000262145∆qt2∆B7−
5.57782×10−05∆qt∆B7+8.0444×10−05ql2∆B7+0.000151114ql∆B7−0.000165533∆B7+

0.000404586∆qt2∆B6−0.000117837∆qt∆B6+2.65762×10−05ql2∆B6−0.000248674ql∆B6+

0.000484541∆B6− 0.000185335∆qt2∆B5 +1.75698× 10−06∆qt∆B5− 7.2966×
10−05ql2∆B5−0.000426014ql∆B5−0.000608746∆B5+4.71269×10−05ql2∆qt4∆B4+

9.90105×10−05ql∆qt4∆B4−3.57382×10−05∆qt4∆B4+0.000129917ql2∆qt3∆B4−
0.000177134ql∆qt3∆B4+0.000230597∆qt3∆B4−4.53723×10−06ql4∆qt2∆B4+

2.58749×10−05ql3∆qt2∆B4−4.1452×10−06ql2∆qt2∆B4−9.17309×10−05ql∆qt2∆B4+

3.15775×10−05∆qt2∆B4+0.00015826ql4∆qt∆B4−3.29288×10−05ql3∆qt∆B4−
4.96333 × 10−05ql2∆qt∆B4 + 0.000173263ql∆qt∆B4 − 0.000613023∆qt∆B4 −
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6.73349×10−05ql4∆B4−0.000111285ql3∆B4−0.000344691ql2∆B4+0.000569809ql∆B4+

0.000989295∆B4−0.000245507ql2∆qt4∆B3−0.000297999ql∆qt4∆B3−0.000109302∆qt4∆B3−
0.000127ql2∆qt3∆B3+0.000244249ql∆qt3∆B3−0.000120389∆qt3∆B3−0.000124313ql4∆qt2∆B3−
0.000247203ql3∆qt2∆B3+0.000166817ql2∆qt2∆B3+0.000560476ql∆qt2∆B3+

0.00037811∆qt2∆B3 − 0.000190002ql4∆qt∆B3 + 7.92679× 10−05ql3∆qt∆B3 −
9.08993×10−05ql2∆qt∆B3−4.59519×10−05ql∆qt∆B3+0.000912115∆qt∆B3−
7.99321×10−05ql4∆B3+0.000153816ql3∆B3+0.000921984ql2∆B3−0.00117288ql∆B3−
0.00192004∆B3 − 0.000179318∆qt8∆B2 + 0.000160337∆qt7∆B2 + 6.63862 ×
10−05∆qt6∆B2−4.04301×10−05∆qt5∆B2−0.000254464ql4∆qt4∆B2−9.55125×
10−05ql3∆qt4∆B2−3.02451×10−05ql2∆qt4∆B2+7.69339×10−05ql∆qt4∆B2+

0.000382109∆qt4∆B2+0.000265741ql4∆qt3∆B2+7.35708×10−05ql3∆qt3∆B2−
2.17618×10−05ql2∆qt3∆B2−0.000125089ql∆qt3∆B2−0.000491448∆qt3∆B2−
2.75182×10−05ql4∆qt2∆B2−0.000228685ql3∆qt2∆B2−0.00011998ql2∆qt2∆B2−
0.000125177ql∆qt2∆B2−0.000643597∆qt2∆B2−0.00023594ql4∆qt∆B2+0.000270591ql3∆qt∆B2−
0.000148361ql2∆qt∆B2−0.00161477ql∆qt∆B2−0.00089148∆qt∆B2−0.000141134ql8∆B2+

0.00040993ql7∆B2+0.00026276ql6∆B2+6.78085×10−05ql5∆B2+0.000596241ql4∆B2−
0.000542758ql3∆B2−0.000263051ql2∆B2+0.00533575ql∆B2+0.00503697∆B2+

0.000223761∆qt8∆B − 0.00039347∆qt7∆B − 0.000166305∆qt6∆B − 3.24971×
10−05∆qt5∆B+0.000473171ql4∆qt4∆B+0.000284001ql3∆qt4∆B+0.000235958ql2∆qt4∆B+

0.000124124ql∆qt4∆B−0.000465947∆qt4∆B−0.000618466ql4∆qt3∆B−0.000236678ql3∆qt3∆B+

8.18646 × 10−05ql2∆qt3∆B + 0.000151977ql∆qt3∆B + 0.00121855∆qt3∆B +

0.000122174ql4∆qt2∆B+0.00042485ql3∆qt2∆B+5.63849×10−05ql2∆qt2∆B−
5.43893 × 10−05ql∆qt2∆B + 0.000757395∆qt2∆B + 0.000746547ql4∆qt∆B −
0.000639995ql3∆qt∆B+0.000654805ql2∆qt∆B+0.00437121ql∆qt∆B+0.0018448∆qt∆B−
0.000106196ql8∆B−0.000710075ql7∆B−0.000430784ql6∆B−0.000168713ql5∆B−
0.000908575ql4∆B+0.000638193ql3∆B−0.000471842ql2∆B−0.0114916ql∆B−
0.0114296∆B−5.22747×10−05ql2∆qt8+1.45783×10−05ql∆qt8−0.00033418∆qt8−
0.000154631ql2∆qt7+0.000151886ql∆qt7−0.000125299∆qt7−4.89834×10−05ql2∆qt6−
7.13843×10−05ql∆qt6+4.43747×10−05∆qt6−5.48264×10−05ql2∆qt5−0.000305599ql∆qt5−
8.50055 × 10−05∆qt5 − 0.000277301ql4∆qt4 − 0.000131579ql3∆qt4 + 1.90158 ×
10−05ql2∆qt4 + 0.000116326ql∆qt4 + 0.000414899∆qt4 + 0.000286375ql4∆qt3 +

3.09619×10−05ql3∆qt3−0.000119755ql2∆qt3+0.000383241ql∆qt3−0.000669632∆qt3−
0.000220448ql8∆qt2+5.23092×10−05ql7∆qt2+5.12563×10−06ql6∆qt2+9.62054×
10−05ql5∆qt2+0.00011172ql4∆qt2−0.000147831ql3∆qt2+6.02448×10−05ql2∆qt2−
0.000289859ql∆qt2 +1.67262× 10−05∆qt2 +5.80634× 10−05ql8∆qt+3.82173×
10−06ql7∆qt+2.43975×10−05ql6∆qt+1.1973×10−05ql5∆qt−0.000178314ql4∆qt+
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0.000703461ql3∆qt − 0.00025309ql2∆qt − 0.00450494ql∆qt − 0.00228695∆qt −
0.000514976ql8+0.000276427ql7+0.000149689ql6+0.000169212ql5+0.000617858ql4−
0.000476485ql3 + 0.000465312ql2 + 0.0102646ql + 0.0125835.

C.2 Standard deviation

The polynomial to calculate standard deviation, in Chebyshev form, is:
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10−05ql4∆qtF 2

1−2.73987×10−05ql3∆qtF 2
1 +9.83754×10−05ql2∆qtF 2

1 +0.000132666ql∆qtF 2
1 +

6.93173×10−06∆qtF 2
1 −1.40242×10−05ql8F 2

1 −2.05407×10−05ql7F 2
1 −1.73905×

10−05ql6F 2
1 − 7.88961× 10−06ql5F 2

1 + 0.000189078ql4F 2
1 + 0.000168875ql3F 2

1 −
0.000152757ql2F 2

1 − 0.000151503qlF 2
1 +0.000133345F 2

1 − 3.5169× 10−05F 8
0F1−

5.27289×10−05F 7
0F1−2.46949×10−05F 6

0F1 +1.74729×10−05F 5
0F1−8.77761×

10−05∆B4F 4
0F1+0.000187464∆B3F 4

0F1+0.000109731∆qt2∆B2F 4
0F1+6.15154×

10−05∆qt∆B2F 4
0F1+8.39725×10−05ql2∆B2F 4

0F1−3.41783×10−05ql∆B2F 4
0F1+

0.00011191∆B2F 4
0F1−0.000218555∆qt2∆BF 4

0F1−0.000120978∆qt∆BF 4
0F1−

0.000153123ql2∆BF 4
0F1 +8.65783× 10−05ql∆BF 4

0F1− 0.000415767∆BF 4
0F1 +

7.95461×10−06∆qt4F 4
0F1−1.74824×10−05∆qt3F 4

0F1+8.90357×10−06ql2∆qt2F 4
0F1+

3.5184×10−05ql∆qt2F 4
0F1+0.000121067∆qt2F 4

0F1+7.51351×10−06ql2∆qtF 4
0F1−

4.00578×10−07ql∆qtF 4
0F1+8.01007×10−05∆qtF 4

0F1+1.84684×10−06ql4F 4
0F1−

9.69957× 10−06ql3F 4
0F1 + 7.80804× 10−05ql2F 4

0F1 − 1.33081× 10−05qlF 4
0F1 +

0.0001899F 4
0F1−0.000103078∆B4F 3

0F1+0.000179919∆B3F 3
0F1+0.000141566∆qt2∆B2F 3

0F1−
6.15759×10−05∆qt∆B2F 3

0F1−0.000101417ql2∆B2F 3
0F1−0.000265454ql∆B2F 3

0F1−
6.39756×10−05∆B2F 3

0F1−0.000265384∆qt2∆BF 3
0F1+9.32241×10−05∆qt∆BF 3

0F1+

0.0001657ql2∆BF 3
0F1+0.00050131ql∆BF 3

0F1−5.81225×10−05∆BF 3
0F1−1.15255×

10−05∆qt4F 3
0F1 + 1.12829 × 10−05∆qt3F 3

0F1 − 7.4801 × 10−06ql2∆qt2F 3
0F1 −

2.94688×10−05ql∆qt2F 3
0F1+0.000116953∆qt2F 3

0F1+3.04566×10−08ql2∆qtF 3
0F1+

1.24884×10−05ql∆qtF 3
0F1−3.50688×10−05∆qtF 3

0F1+4.51186×10−05ql4F 3
0F1+

5.04593×10−05ql3F 3
0F1−0.000107782ql2F 3

0F1−0.000314774qlF 3
0F1−1.27786×

10−05F 3
0F1 + 7.16604× 10−05∆qt2∆B4F 2

0F1 − 6.46939× 10−06∆qt∆B4F 2
0F1 −

2.23642×10−05ql2∆B4F 2
0F1−2.33841×10−05ql∆B4F 2

0F1+0.000166376∆B4F 2
0F1−

0.000119893∆qt2∆B3F 2
0F1+7.05358×10−05∆qt∆B3F 2

0F1+5.97323×10−05ql2∆B3F 2
0F1+

6.4654×10−05ql∆B3F 2
0F1−0.000275338∆B3F 2

0F1+4.99081×10−05∆qt4∆B2F 2
0F1−

5.69968×10−06∆qt3∆B2F 2
0F1+6.25813×10−05ql2∆qt2∆B2F 2

0F1+0.000152979ql∆qt2∆B2F 2
0F1+

6.39535×10−06∆qt2∆B2F 2
0F1−5.49875×10−05ql2∆qt∆B2F 2

0F1−0.000184281ql∆qt∆B2F 2
0F1+

3.65435×10−05∆qt∆B2F 2
0F1+2.4859×10−05ql4∆B2F 2

0F1−3.36861×10−05ql3∆B2F 2
0F1−

1.31981×10−05ql2∆B2F 2
0F1+0.000191837ql∆B2F 2

0F1+4.2835×10−05∆B2F 2
0F1−

5.8421×10−05∆qt4∆BF 2
0F1+1.95455×10−05∆qt3∆BF 2

0F1−0.000102321ql2∆qt2∆BF 2
0F1−

0.000285706ql∆qt2∆BF 2
0F1+9.9757×10−05∆qt2∆BF 2

0F1+8.05187×10−05ql2∆qt∆BF 2
0F1+

0.000331718ql∆qt∆BF 2
0F1−0.000217565∆qt∆BF 2

0F1−2.1565×10−05ql4∆BF 2
0F1+

9.51804×10−05ql3∆BF 2
0F1−9.29156×10−05ql2∆BF 2

0F1−0.00056263ql∆BF 2
0F1+

9.77337×10−05∆BF 2
0F1+1.32344×10−05ql2∆qt4F 2

0F1+5.64165×10−06ql∆qt4F 2
0F1+
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3.99421×10−05∆qt4F 2
0F1−1.80998×10−05ql2∆qt3F 2

0F1−1.83329×10−05ql∆qt3F 2
0F1+

1.8486×10−05∆qt3F 2
0F1+6.27644×10−06ql4∆qt2F 2

0F1−6.70267×10−07ql3∆qt2F 2
0F1+

1.84026×10−05ql2∆qt2F 2
0F1+6.73084×10−05ql∆qt2F 2

0F1−0.000108041∆qt2F 2
0F1+

4.8004×10−06ql4∆qtF 2
0F1+3.92614×10−06ql3∆qtF 2

0F1−1.75672×10−05ql2∆qtF 2
0F1−

9.68016×10−05ql∆qtF 2
0F1+5.78999×10−05∆qtF 2

0F1−7.71623×10−06ql4F 2
0F1−

2.59304×10−05ql3F 2
0F1+6.83555×10−06ql2F 2

0F1+0.00019574qlF 2
0F1−1.89065×

10−05F 2
0F1 + 6.29128× 10−05∆qt2∆B4F0F1 + 9.11128× 10−05∆qt∆B4F0F1 +

4.52428×10−06ql2∆B4F0F1−0.000101304ql∆B4F0F1+9.12231×10−05∆B4F0F1−
0.000121047∆qt2∆B3F0F1−0.000211872∆qt∆B3F0F1+7.15882×10−05ql2∆B3F0F1+

0.000282272ql∆B3F0F1−0.000120001∆B3F0F1−2.80255×10−05∆qt4∆B2F0F1+

0.000228661∆qt3∆B2F0F1+5.45455×10−05ql2∆qt2∆B2F0F1+0.000150902ql∆qt2∆B2F0F1+

3.6399 × 10−05∆qt2∆B2F0F1 − 6.22955 × 10−05ql2∆qt∆B2F0F1 + 5.34875 ×
10−05ql∆qt∆B2F0F1−0.000139122∆qt∆B2F0F1−6.51772×10−05ql4∆B2F0F1−
0.000203277ql3∆B2F0F1+2.8571×10−05ql2∆B2F0F1+0.000380572ql∆B2F0F1+

0.000257706∆B2F0F1+5.10627×10−05∆qt4∆BF0F1−0.0003942∆qt3∆BF0F1−
8.03196×10−05ql2∆qt2∆BF0F1−0.000257499ql∆qt2∆BF0F1+5.99611×10−05∆qt2∆BF0F1+

7.11628×10−05ql2∆qt∆BF0F1−0.000122687ql∆qt∆BF0F1+0.000432996∆qt∆BF0F1+

0.000234889ql4∆BF0F1+0.000562925ql3∆BF0F1−9.4112×10−05ql2∆BF0F1−
0.00122475ql∆BF0F1 − 0.000508352∆BF0F1 + 1.32169× 10−05ql2∆qt4F0F1 +

3.8545×10−05ql∆qt4F0F1+5.866×10−06∆qt4F0F1+8.19191×10−06ql2∆qt3F0F1−
3.10819×10−05ql∆qt3F0F1+0.000243708∆qt3F0F1+4.2533×10−05ql4∆qt2F0F1+

5.6448×10−05ql3∆qt2F0F1+4.80401×10−05ql2∆qt2F0F1+6.9606×10−05ql∆qt2F0F1−
7.34389×10−05∆qt2F0F1−1.72457×10−05ql4∆qtF0F1−7.59203×10−06ql3∆qtF0F1−
8.0112×10−05ql2∆qtF0F1+6.85074×10−05ql∆qtF0F1−0.000287157∆qtF0F1−
0.000208256ql4F0F1−0.000348886ql3F0F1−6.9362×10−06ql2F0F1+0.00058656qlF0F1+

0.000340666F0F1−6.12831×10−05∆B8F1 +6.78023×10−05∆B7F1−6.20806×
10−05∆B6F1+7.60566×10−05∆B5F1−8.88478×10−05∆qt4∆B4F1+7.78373×
10−05∆qt3∆B4F1−9.97485×10−06ql2∆qt2∆B4F1−8.20026×10−05ql∆qt2∆B4F1+

0.00018576∆qt2∆B4F1+0.00011095ql2∆qt∆B4F1+0.000285602ql∆qt∆B4F1−
0.00019247∆qt∆B4F1−0.000170502ql4∆B4F1−0.000232357ql3∆B4F1+6.95224×
10−06ql2∆B4F1+1.89197×10−05ql∆B4F1+0.000484534∆B4F1+0.000133415∆qt4∆B3F1−
0.000202266∆qt3∆B3F1+5.49969×10−05ql2∆qt2∆B3F1+0.000217682ql∆qt2∆B3F1−
0.000275093∆qt2∆B3F1−0.000150893ql2∆qt∆B3F1−0.000514514ql∆qt∆B3F1+

0.000497184∆qt∆B3F1+0.000217502ql4∆B3F1+0.000343407ql3∆B3F1+8.14537×
10−05ql2∆B3F1 + 3.08574 × 10−05ql∆B3F1 − 0.000918119∆B3F1 + 9.98512 ×
10−05ql2∆qt4∆B2F1+8.1919×10−05ql∆qt4∆B2F1+6.14909×10−05∆qt4∆B2F1−
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2.60232×10−05ql2∆qt3∆B2F1+0.000140965ql∆qt3∆B2F1−0.000107517∆qt3∆B2F1+

4.89624 × 10−05ql4∆qt2∆B2F1 − 7.40854 × 10−06ql3∆qt2∆B2F1 − 5.22169 ×
10−05ql2∆qt2∆B2F1+8.0263×10−05ql∆qt2∆B2F1−0.000105011∆qt2∆B2F1−
7.92278×10−05ql4∆qt∆B2F1+1.68685×10−06ql3∆qt∆B2F1+0.000200897ql2∆qt∆B2F1−
0.000173528ql∆qt∆B2F1+6.51445×10−05∆qt∆B2F1+4.7205×10−05ql4∆B2F1−
0.000177542ql3∆B2F1−0.000391593ql2∆B2F1+0.000273656ql∆B2F1+0.000355472∆B2F1−
0.000182827ql2∆qt4∆BF1−0.000185947ql∆qt4∆BF1−0.000260731∆qt4∆BF1+

3.23168×10−05ql2∆qt3∆BF1−0.000295294ql∆qt3∆BF1+0.000474732∆qt3∆BF1−
0.000119541ql4∆qt2∆BF1−5.19877×10−05ql3∆qt2∆BF1−3.29937×10−05ql2∆qt2∆BF1−
0.00045127ql∆qt2∆BF1 +0.000443635∆qt2∆BF1 +0.000100259ql4∆qt∆BF1−
9.40643×10−05ql3∆qt∆BF1−0.000235662ql2∆qt∆BF1+0.00104734ql∆qt∆BF1−
0.000600961∆qt∆BF1−0.000203548ql4∆BF1+0.000190523ql3∆BF1+0.000657979ql2∆BF1−
0.000875447ql∆BF1+6.74919×10−05∆BF1+1.90256×10−05∆qt8F1−1.26127×
10−05∆qt7F1 − 1.07886 × 10−05∆qt6F1 − 6.99447 × 10−05∆qt5F1 + 2.11172 ×
10−05ql4∆qt4F1 + 2.05284 × 10−05ql3∆qt4F1 + 8.52002 × 10−05ql2∆qt4F1 +

3.52399 × 10−05ql∆qt4F1 + 0.000107394∆qt4F1 − 8.63095 × 10−06ql4∆qt3F1 −
3.61284×10−06ql3∆qt3F1−1.83852×10−05ql2∆qt3F1+0.000123229ql∆qt3F1−
9.38645× 10−05∆qt3F1 + 0.000104896ql4∆qt2F1 + 9.05198× 10−05ql3∆qt2F1 −
1.82671 × 10−05ql2∆qt2F1 + 8.1185 × 10−05ql∆qt2F1 − 0.000320748∆qt2F1 −
5.159× 10−05ql4∆qtF1 + 4.7694× 10−05ql3∆qtF1 + 8.01902× 10−05ql2∆qtF1 −
0.000510545ql∆qtF1 + 0.000206193∆qtF1 − 3.25219 × 10−05ql8F1 − 7.59334 ×
10−05ql7F1−5.64898×10−05ql6F1−6.30394×10−05ql5F1 +0.000135085ql4F1 +

2.00873× 10−05ql3F1− 0.000269391ql2F1 +0.000656058qlF1 +0.000239835F1 +

0.000119169∆B2F 8
0 − 0.000262584∆BF 8

0 +1.79305× 10−05∆qt2F 8
0 − 3.61173×

10−05∆qtF 8
0 + 9.07319× 10−06ql2F 8

0 + 1.85164× 10−05qlF 8
0 + 0.000141945F 8

0 −
0.000151795∆B2F 7

0 +0.000223059∆BF 7
0 − 1.90999× 10−05∆qt2F 7

0 − 5.05524×
10−05∆qtF 7

0 + 1.5029 × 10−05ql2F 7
0 + 5.62673 × 10−05qlF 7

0 − 0.00017814F 7
0 −

9.48909×10−05∆B2F 6
0 +0.000137885∆BF 6

0−2.52939×10−05∆qt2F 6
0 +2.31102×

10−05∆qtF 6
0 + 1.06967× 10−05ql2F 6

0 + 2.20361× 10−05qlF 6
0 − 0.00011659F 6

0 +

4.35978 × 10−05∆B2F 5
0 − 5.23656 × 10−05∆BF 5

0 + 7.6068 × 10−06∆qt2F 5
0 +

8.13252×10−06∆qtF 5
0 +1.41353×10−05ql2F 5

0 −2.88743×10−05qlF 5
0 +6.02364×

10−05F 5
0 − 2.20769× 10−05∆qt2∆B4F 4

0 − 4.416× 10−05∆qt∆B4F 4
0 − 2.57715×

10−05ql2∆B4F 4
0 +1.70679×10−05ql∆B4F 4

0 −7.51311×10−05∆B4F 4
0 +6.67336×

10−05∆qt2∆B3F 4
0 + 8.51284× 10−05∆qt∆B3F 4

0 + 5.46832× 10−05ql2∆B3F 4
0 −

4.89266×10−05ql∆B3F 4
0 +0.000127402∆B3F 4

0 +6.05994×10−05∆qt4∆B2F 4
0 −

2.26646×10−05∆qt3∆B2F 4
0 +5.02645×10−05ql2∆qt2∆B2F 4

0−6.20061×10−05ql∆qt2∆B2F 4
0−
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3.02312×10−05∆qt2∆B2F 4
0 +3.40182×10−05ql2∆qt∆B2F 4

0 +7.93059×10−06ql∆qt∆B2F 4
0 +

0.000132779∆qt∆B2F 4
0 +0.00013736ql4∆B2F 4

0 +0.000159041ql3∆B2F 4
0 +4.21916×

10−05ql2∆B2F 4
0−0.000116705ql∆B2F 4

0−0.000165257∆B2F 4
0−0.000125302∆qt4∆BF 4

0 +

6.93028×10−05∆qt3∆BF 4
0−8.24249×10−05ql2∆qt2∆BF 4

0 +0.000128586ql∆qt2∆BF 4
0−

1.94562×10−05∆qt2∆BF 4
0−4.34321×10−05ql2∆qt∆BF 4

0 +3.68372×10−05ql∆qt∆BF 4
0−

0.000352433∆qt∆BF 4
0−0.000301997ql4∆BF 4

0−0.000295407ql3∆BF 4
0−0.000163279ql2∆BF 4

0 +

0.000252983ql∆BF 4
0 +0.000188551∆BF 4

0 −1.83432×10−05ql2∆qt4F 4
0 −9.1372×

10−06ql∆qt4F 4
0 +4.54804×10−05∆qt4F 4

0 −2.0141×10−06ql2∆qt3F 4
0 −1.57855×

10−05ql∆qt3F 4
0 −3.78942×10−05∆qt3F 4

0 −2.47408×10−05ql4∆qt2F 4
0 −3.69296×

10−05ql3∆qt2F 4
0 +4.03359×10−05ql2∆qt2F 4

0−3.1069×10−06ql∆qt2F 4
0 +1.53886×

10−05∆qt2F 4
0 +4.27444×10−05ql4∆qtF 4

0 +6.47891×10−05ql3∆qtF 4
0 +2.34663×

10−05ql2∆qtF 4
0−5.59834×10−05ql∆qtF 4

0 +0.000124126∆qtF 4
0 +0.000100894ql4F 4

0 +

0.000119758ql3F 4
0 + 8.08496 × 10−05ql2F 4

0 − 6.69642 × 10−05qlF 4
0 − 4.60173 ×

10−05F 4
0 +2.94347×10−05∆qt2∆B4F 3

0 +2.68226×10−06∆qt∆B4F 3
0 −3.52724×

10−05ql2∆B4F 3
0 − 0.000167714ql∆B4F 3

0 − 7.92834× 10−05∆B4F 3
0 + 8.78956×

10−06∆qt2∆B3F 3
0−9.37886×10−06∆qt∆B3F 3

0 +0.000119855ql2∆B3F 3
0 +0.000350024ql∆B3F 3

0 +

0.000247825∆B3F 3
0−4.65732×10−05∆qt4∆B2F 3

0 +8.26594×10−05∆qt3∆B2F 3
0 +

0.000165907ql2∆qt2∆B2F 3
0 +0.000182231ql∆qt2∆B2F 3

0 +0.000144379∆qt2∆B2F 3
0−

0.000100458ql2∆qt∆B2F 3
0−0.000141895ql∆qt∆B2F 3

0−0.000123725∆qt∆B2F 3
0−

2.62288×10−05ql4∆B2F 3
0 −0.00011569ql3∆B2F 3

0 +5.37664×10−05ql2∆B2F 3
0 +

8.69783× 10−05ql∆B2F 3
0 − 5.09485× 10−05∆B2F 3

0 +0.000120645∆qt4∆BF 3
0 −

0.000201975∆qt3∆BF 3
0−0.000332619ql2∆qt2∆BF 3

0−0.000370218ql∆qt2∆BF 3
0−

0.000267529∆qt2∆BF 3
0 +0.000282526ql2∆qt∆BF 3

0 +0.000318754ql∆qt∆BF 3
0 +

0.000308192∆qt∆BF 3
0 + 6.94749 × 10−05ql4∆BF 3

0 + 0.000181788ql3∆BF 3
0 −

0.0002102ql2∆BF 3
0−0.000441079ql∆BF 3

0−0.000206238∆BF 3
0 +6.81199×10−06ql2∆qt4F 3

0 +

1.45186×10−05ql∆qt4F 3
0 −3.08861×10−05∆qt4F 3

0 −4.19184×10−05ql2∆qt3F 3
0 −

3.15297×10−05ql∆qt3F 3
0 +4.11571×10−05∆qt3F 3

0 −5.62808×10−06ql4∆qt2F 3
0 +

4.43534 × 10−07ql3∆qt2F 3
0 + 0.000187433ql2∆qt2F 3

0 + 0.000206439ql∆qt2F 3
0 +

9.35848×10−05∆qt2F 3
0 +1.21328×10−05ql4∆qtF 3

0 −1.39585×10−05ql3∆qtF 3
0 −

8.07845 × 10−05ql2∆qtF 3
0 − 8.7814 × 10−05ql∆qtF 3

0 − 9.6418 × 10−05∆qtF 3
0 −

4.45516×10−06ql4F 3
0−0.000136432ql3F 3

0 +6.50828×10−05ql2F 3
0 +0.000295827qlF 3

0−
2.61501×10−05F 3

0−0.000136602∆B8F 2
0 +0.000231105∆B7F 2

0−0.000184856∆B6F 2
0 +

0.000111873∆B5F 2
0−6.04087×10−05∆qt4∆B4F 2

0 +8.83875×10−05∆qt3∆B4F 2
0−

6.75385×10−05ql2∆qt2∆B4F 2
0−0.000112207ql∆qt2∆B4F 2

0−3.13722×10−05∆qt2∆B4F 2
0 +

1.1286×10−05ql2∆qt∆B4F 2
0 +7.1965×10−05ql∆qt∆B4F 2

0−8.12905×10−05∆qt∆B4F 2
0−

9.98402×10−05ql4∆B4F 2
0−8.91989×10−05ql3∆B4F 2

0 +9.77875×10−07ql2∆B4F 2
0 +
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4.59138×10−05ql∆B4F 2
0 +0.000197928∆B4F 2

0 +8.58672×10−05∆qt4∆B3F 2
0 −

0.000118198∆qt3∆B3F 2
0 +0.000136444ql2∆qt2∆B3F 2

0 +0.000206315ql∆qt2∆B3F 2
0 +

4.74605×10−05∆qt2∆B3F 2
0−4.47845×10−05ql2∆qt∆B3F 2

0−0.000150556ql∆qt∆B3F 2
0 +

8.22004×10−05∆qt∆B3F 2
0 +0.000166741ql4∆B3F 2

0 +0.000187118ql3∆B3F 2
0 +

2.49797 × 10−05ql2∆B3F 2
0 − 7.9011 × 10−05ql∆B3F 2

0 − 0.000446223∆B3F 2
0 −

2.84996 × 10−05ql2∆qt4∆B2F 2
0 − 9.78098 × 10−05ql∆qt4∆B2F 2

0 − 6.72524 ×
10−05∆qt4∆B2F 2

0−1.79515×10−05ql2∆qt3∆B2F 2
0 +3.41684×10−05ql∆qt3∆B2F 2

0 +

4.13326×10−05∆qt3∆B2F 2
0 +9.00317×10−05ql4∆qt2∆B2F 2

0 +7.68062×10−06ql3∆qt2∆B2F 2
0−

0.000108253ql2∆qt2∆B2F 2
0−0.000137299ql∆qt2∆B2F 2

0−0.00020447∆qt2∆B2F 2
0 +

2.60895×10−05ql4∆qt∆B2F 2
0 +6.84739×10−05ql3∆qt∆B2F 2

0 +5.90438×10−05ql2∆qt∆B2F 2
0−

6.24527×10−06ql∆qt∆B2F 2
0 +5.34906×10−05∆qt∆B2F 2

0 +7.06788×10−05ql4∆B2F 2
0 +

6.7496 × 10−05ql3∆B2F 2
0 − 0.000127236ql2∆B2F 2

0 − 0.000194475ql∆B2F 2
0 +

0.000121782∆B2F 2
0−9.18273×10−07ql2∆qt4∆BF 2

0 +0.000113887ql∆qt4∆BF 2
0 +

2.29519×10−05∆qt4∆BF 2
0 +5.65224×10−05ql2∆qt3∆BF 2

0−6.81336×10−05ql∆qt3∆BF 2
0 +

4.38261×10−05∆qt3∆BF 2
0−0.000141108ql4∆qt2∆BF 2

0−4.71436×10−05ql3∆qt2∆BF 2
0 +

4.69794×10−05ql2∆qt2∆BF 2
0 +8.90002×10−05ql∆qt2∆BF 2

0 +0.000311354∆qt2∆BF 2
0−

1.86496×10−05ql4∆qt∆BF 2
0−6.3828×10−05ql3∆qt∆BF 2

0−0.00010836ql2∆qt∆BF 2
0 +

4.72743× 10−05ql∆qt∆BF 2
0 − 0.000261422∆qt∆BF 2

0 − 0.000307958ql4∆BF 2
0 −

0.000297386ql3∆BF 2
0 +0.000225555ql2∆BF 2

0 +0.000505307ql∆BF 2
0 +0.000279403∆BF 2

0−
2.98766 × 10−07∆qt8F 2

0 + 4.5324 × 10−05∆qt7F 2
0 − 9.12435 × 10−06∆qt6F 2

0 +

3.17887×10−05∆qt5F 2
0 +3.84826×10−05ql4∆qt4F 2

0 +6.97279×10−05ql3∆qt4F 2
0−

1.95818× 10−06ql2∆qt4F 2
0 − 0.000134674ql∆qt4F 2

0 − 3.41783× 10−05∆qt4F 2
0 −

3.76093×10−05ql4∆qt3F 2
0−7.41479×10−05ql3∆qt3F 2

0−3.66577×10−05ql2∆qt3F 2
0 +

9.06111 × 10−05ql∆qt3F 2
0 − 4.19557 × 10−05∆qt3F 2

0 + 0.00010684ql4∆qt2F 2
0 +

4.70812×10−05ql3∆qt2F 2
0−4.82647×10−05ql2∆qt2F 2

0−8.89725×10−05ql∆qt2F 2
0−

0.000173702∆qt2F 2
0 + 2.60711 × 10−05ql4∆qtF 2

0 + 8.83879 × 10−05ql3∆qtF 2
0 +

8.70428× 10−05ql2∆qtF 2
0 − 3.28308× 10−05ql∆qtF 2

0 +9.70745× 10−05∆qtF 2
0 −

2.33951×10−05ql8F 2
0 −4.01894×10−05ql7F 2

0 −3.48326×10−05ql6F 2
0 +3.31066×

10−06ql5F 2
0 +0.000129397ql4F 2

0 +0.000106376ql3F 2
0−0.000104108ql2F 2

0−0.000225534qlF 2
0−

1.89594×10−07F 2
0−5.5175×10−05∆B8F0+0.000138162∆B7F0−0.000123818∆B6F0+

9.56027×10−05∆B5F0−3.12355×10−05∆qt4∆B4F0+6.37526×10−05∆qt3∆B4F0−
7.03608 × 10−05ql2∆qt2∆B4F0 − 4.96057 × 10−05ql∆qt2∆B4F0 − 4.86572 ×
10−05∆qt2∆B4F0+6.73559×10−05ql2∆qt∆B4F0+9.0776×10−05ql∆qt∆B4F0+

3.16854×10−05∆qt∆B4F0−1.65908×10−05ql4∆B4F0+2.96691×10−05ql3∆B4F0−
1.61566×10−05ql2∆B4F0+4.18396×10−05ql∆B4F0+5.10879×10−05∆B4F0+

5.51278×10−05∆qt4∆B3F0−7.74477×10−05∆qt3∆B3F0+8.87474×10−05ql2∆qt2∆B3F0+
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4.95319×10−05ql∆qt2∆B3F0−2.11101×10−05∆qt2∆B3F0−0.000154486ql2∆qt∆B3F0−
0.000203065ql∆qt∆B3F0−0.000119216∆qt∆B3F0+7.80897×10−05ql4∆B3F0−
7.66223×10−05ql3∆B3F0 +8.85149×10−06ql2∆B3F0−0.000128694ql∆B3F0−
0.000460675∆B3F0−3.0976×10−05ql2∆qt4∆B2F0−6.22394×10−05ql∆qt4∆B2F0−
4.92292×10−05∆qt4∆B2F0+1.98759×10−05ql2∆qt3∆B2F0+4.41849×10−05ql∆qt3∆B2F0+

2.81912×10−05∆qt3∆B2F0+8.54343×10−06ql4∆qt2∆B2F0−1.85364×10−05ql3∆qt2∆B2F0−
0.000151006ql2∆qt2∆B2F0−8.31121×10−05ql∆qt2∆B2F0−2.60112×10−07∆qt2∆B2F0−
3.88125×10−05ql4∆qt∆B2F0−9.33724×10−06ql3∆qt∆B2F0+9.66478×10−05ql2∆qt∆B2F0+

0.000116496ql∆qt∆B2F0+9.86198×10−06∆qt∆B2F0+7.8624×10−05ql4∆B2F0+

0.000192928ql3∆B2F0 − 0.000139473ql2∆B2F0 − 5.76823 × 10−05ql∆B2F0 +

0.000736064∆B2F0+4.2099×10−05ql2∆qt4∆BF0+0.000107927ql∆qt4∆BF0+

1.62688×10−05∆qt4∆BF0−3.78417×10−05ql2∆qt3∆BF0−8.75487×10−05ql∆qt3∆BF0+

8.51877×10−05∆qt3∆BF0+5.29495×10−06ql4∆qt2∆BF0+0.000159818ql3∆qt2∆BF0+

0.000203765ql2∆qt2∆BF0+8.14891×10−06ql∆qt2∆BF0+6.67153×10−06∆qt2∆BF0+

6.75042×10−05ql4∆qt∆BF0+3.97739×10−05ql3∆qt∆BF0−5.08859×10−05ql2∆qt∆BF0+

3.88591×10−05ql∆qt∆BF0+5.13987×10−05∆qt∆BF0−0.000156305ql4∆BF0−
0.000165762ql3∆BF0+0.000225102ql2∆BF0−1.16594×10−05ql∆BF0−0.00109057∆BF0+

2.53347 × 10−05∆qt8F0 − 1.46228 × 10−05∆qt7F0 − 4.18202 × 10−05∆qt6F0 +

2.97133×10−05∆qt5F0+1.77008×10−05ql4∆qt4F0+3.12619×10−05ql3∆qt4F0−
4.81047 × 10−05ql2∆qt4F0 − 0.000132107ql∆qt4F0 − 7.06084 × 10−05∆qt4F0 +

3.96837×10−06ql4∆qt3F0−2.06081×10−06ql3∆qt3F0+7.17097×10−05ql2∆qt3F0+

0.00010929ql∆qt3F0 − 2.84074 × 10−06∆qt3F0 + 1.8128 × 10−05ql4∆qt2F0 +

3.72127×10−07ql3∆qt2F0−8.85339×10−05ql2∆qt2F0−8.59463×10−05ql∆qt2F0+

9.37759× 10−05∆qt2F0 − 5.61292× 10−05ql4∆qtF0 − 4.985× 10−06ql3∆qtF0 −
9.89047×10−05ql2∆qtF0−0.000199959ql∆qtF0−5.96116×10−05∆qtF0−4.45111×
10−05ql8F0−8.56219×10−05ql7F0−3.96396×10−05ql6F0−2.251×10−05ql5F0−
2.63755×10−05ql4F0+0.000133088ql3F0−8.8354×10−05ql2F0+0.000162668qlF0+

0.00108563F0−0.000187655∆qt2∆B8+4.42756×10−06∆qt∆B8−0.00020984ql2∆B8−
0.000124061ql∆B8−0.000377489∆B8+0.000324273∆qt2∆B7−2.82965×10−05∆qt∆B7+

0.000374764ql2∆B7+0.000231527ql∆B7+0.000630581∆B7−0.000304767∆qt2∆B6+

5.28674×10−05∆qt∆B6−0.000316534ql2∆B6−0.000123827ql∆B6−0.000502354∆B6+

0.000158206∆qt2∆B5+6.92472×10−05∆qt∆B5+0.000211552ql2∆B5+2.90532×
10−06ql∆B5+0.000237562∆B5−8.73023×10−05ql2∆qt4∆B4−2.9854×10−05ql∆qt4∆B4−
0.00013564∆qt4∆B4+5.97473×10−05ql2∆qt3∆B4−1.30861×10−05ql∆qt3∆B4+

0.000108405∆qt3∆B4−7.22708×10−05ql4∆qt2∆B4−6.30152×10−05ql3∆qt2∆B4+

5.19995×10−05ql2∆qt2∆B4+0.000160396ql∆qt2∆B4+0.000248568∆qt2∆B4−

154



4.94362×10−05ql4∆qt∆B4−3.37283×10−05ql3∆qt∆B4−9.03365×10−05ql2∆qt∆B4−
9.5699×10−05ql∆qt∆B4−0.000244158∆qt∆B4−0.000160643ql4∆B4−0.000179985ql3∆B4+

0.000287085ql2∆B4+0.000686505ql∆B4+0.000890953∆B4+0.000108838ql2∆qt4∆B3−
1.40072×10−05ql∆qt4∆B3+0.000159098∆qt4∆B3−7.62879×10−05ql2∆qt3∆B3+

3.65177×10−05ql∆qt3∆B3−0.000132664∆qt3∆B3+0.000122426ql4∆qt2∆B3+

4.57389×10−05ql3∆qt2∆B3−0.000104725ql2∆qt2∆B3−0.000182987ql∆qt2∆B3−
0.000626181∆qt2∆B3+0.000151726ql4∆qt∆B3+0.00014236ql3∆qt∆B3+0.000147486ql2∆qt∆B3+

0.000225513ql∆qt∆B3+0.000386996∆qt∆B3+0.00022752ql4∆B3+0.000303362ql3∆B3−
0.00071398ql2∆B3−0.00143746ql∆B3−0.00206996∆B3+0.000155001∆qt8∆B2−
7.67737×10−06∆qt7∆B2−0.000164042∆qt6∆B2−8.17153×10−05∆qt5∆B2 +

8.36758×10−05ql4∆qt4∆B2+4.89937×10−05ql3∆qt4∆B2−1.3771×10−05ql2∆qt4∆B2−
4.7366×10−05ql∆qt4∆B2−0.000127234∆qt4∆B2−0.000116839ql4∆qt3∆B2−
0.000162947ql3∆qt3∆B2−3.68123×10−05ql2∆qt3∆B2+7.24203×10−05ql∆qt3∆B2+

7.51081×10−05∆qt3∆B2+6.84232×10−05ql4∆qt2∆B2+7.64265×10−05ql3∆qt2∆B2−
0.000194795ql2∆qt2∆B2 − 0.000217048ql∆qt2∆B2 + 0.000264964∆qt2∆B2 −
3.05621×10−05ql4∆qt∆B2+5.03643×10−05ql3∆qt∆B2+9.03406×10−05ql2∆qt∆B2−
0.000520433ql∆qt∆B2−0.000542198∆qt∆B2+0.000130616ql8∆B2+2.54425×
10−05ql7∆B2−0.000175501ql6∆B2+2.61642×10−05ql5∆B2−0.000151694ql4∆B2−
0.000161975ql3∆B2+0.000427605ql2∆B2+0.0016374ql∆B2+0.00186388∆B2−
0.000271865∆qt8∆B+6.46175×10−05∆qt7∆B+0.00024116∆qt6∆B+0.000240509∆qt5∆B−
0.000131476ql4∆qt4∆B−1.02385×10−05ql3∆qt4∆B−8.33841×10−05ql2∆qt4∆B+

1.67774×10−05ql∆qt4∆B+5.0835×10−05∆qt4∆B+0.000220168ql4∆qt3∆B+

0.000248984ql3∆qt3∆B + 0.000103066ql2∆qt3∆B − 0.000181392ql∆qt3∆B −
0.000119662∆qt3∆B−0.000203907ql4∆qt2∆B−0.000190458ql3∆qt2∆B+0.000427361ql2∆qt2∆B+

0.000553154ql∆qt2∆B+0.000232744∆qt2∆B−0.000159803ql4∆qt∆B−0.000274049ql3∆qt∆B−
0.000201409ql2∆qt∆B+0.00119639ql∆qt∆B+0.000805873∆qt∆B−0.000234194ql8∆B−
3.49241×10−05ql7∆B+0.000284516ql6∆B−7.53026×10−05ql5∆B+0.000151511ql4∆B+

0.000103479ql3∆B−8.1764×10−05ql2∆B−0.00229247ql∆B−0.00193273∆B+

3.91128× 10−05ql2∆qt8 + 4.808× 10−05ql∆qt8 + 0.000177892∆qt8 − 8.52208×
10−06ql2∆qt7−7.09359×10−05ql∆qt7+8.20805×10−06∆qt7−1.04906×10−05ql2∆qt6+

1.4973× 10−05ql∆qt6 − 0.000157856∆qt6 + 6.0172× 10−05ql2∆qt5 + 5.04307×
10−05ql∆qt5−1.28068×10−05∆qt5+0.000106321ql4∆qt4+7.61288×10−05ql3∆qt4+

7.85808×10−05ql2∆qt4−6.18722×10−05ql∆qt4−7.23798×10−06∆qt4−0.000126451ql4∆qt3−
0.000162061ql3∆qt3− 0.000136534ql2∆qt3 +7.28316× 10−05ql∆qt3− 7.44136×
10−05∆qt3 + 4.37787 × 10−05ql8∆qt2 + 6.47746 × 10−05ql7∆qt2 − 5.47124 ×
10−05ql6∆qt2−0.000103773ql5∆qt2+0.000182459ql4∆qt2+0.000332405ql3∆qt2−
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0.000155585ql2∆qt2−0.000528351ql∆qt2−0.000173342∆qt2−9.06463×10−05ql8∆qt−
9.18625×10−05ql7∆qt+4.91132×10−05ql6∆qt+0.000153591ql5∆qt+1.66816×
10−06ql4∆qt−0.000110246ql3∆qt+1.67276×10−05ql2∆qt−0.00065211ql∆qt−
0.000378374∆qt+0.00011546ql8−6.79246×10−06ql7−0.000228526ql6−4.54201×
10−05ql5−3.29703×10−05ql4+7.14734×10−05ql3+0.000106582ql2+0.00152204ql+

0.00178699.
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