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Abstract

Abundance-occupancy relationships (AORs), namely the generally positive relationship between species’ mean local abundance and regional distribution represent the most ubiquitous macroecological pattern found in nature. Their importance lies in that they link local population processes to larger-scale population structure. However, they exhibit much variability in shape and form and attempts to untangle the variety of processes proposed to underlie them indicates that interpretation of AORs is highly context specific and dependent on the temporal and spatial scales of both data and analyses. 
The overarching theme of this thesis was to examine the cross-scale temporal behaviour of AORs, by using long-term copepod time-series and varying the extents and resolutions of analyses through space and time. To increase the spatial resolution of the data, I used a species distribution modeling approach to interpolation, incorporating satellite data, including measures of hydrographic structure, an important driver of plankton spatial distributions. The resulting high-resolution maps of copepod abundance distribution are an important output with wide ranging application. 
I found significant heterogeneities in the relationship on decadal, inter-annual and seasonal scales, with higher-level dynamics often masking highly contrasting dynamics at lower levels. Patterns of temporal heterogeneity varied interspecifically and, consistent with theory, appear to be linked to life-history characteristics related to colonization ability. Identifying time periods or scales most relevant to species’ population dynamics allowed a better understanding of how life-history traits interact with various scales of environmental variability to generate interspecific differences in AORs. 
Identification of heterogeneities is thus an important step in linking macroecological pattern to process and leads to an appreciation of the hierarchical nature of the relationship. I also demonstrated that AORs provide an excellent framework for examining the response of species’ regional population dynamics to environmental change.
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[bookmark: _Toc289481344]General Introduction

Marine environments are under a variety of pressures from human activities including warming temperatures as a result of climate change, alterations to food web structures through over-fishing, habitat degradation, pollution and eutrophication (Halpern et al. 2008). Many pressures, particularly those associated with climate change are impacting systems on large or even global scales. Broad-scale macroecological perspectives may therefore be needed to understand the consequences of global change (Kerr et al. 2007; Mokany et al. 2012). At the same time, in a field in which experimental manipulation is either unfeasible or unethical (Brown 1995; Kerr et al. 2007), large scale ecological changes resulting from anthropogenic pressures can be viewed as pseudo-experiments, providing an opportunity to understand the processes underlying macroecological patterns (Tittensor et al. 2007; Algar et al. 2009; Sunday et al. 2012; Webb et al. 2007; Sekercioglu et al. 2008). This chapter introduces some of the challenges and opportunities of macroecological research in marine environments, introducing some of the key concepts in macroecology as well as a new study system - the zooplanktonic communities of the North Sea.
[bookmark: _Toc289481345]Macroecology
Macroecology, sits at the junction of ecology, biogeography, palaeontology and macroevolution (Gaston & Blackburn 1999) and was first formalised by Brown and Maurer (1989) as an approach to study certain classes of complex ecological systems (Brown 1999). Under a macroeocological framework, emergent patterns and processes are identified by standing back from the details of ecological complexity such ‘that the idiosyncratic details disappear and only the big, important features remain’ (Brown 1999: 20).
Since the development of the field, a number of large-scale patterns across a range of spatial scales and systems have been reported (Smith et al. 2008). Such general patterns in the statistical distribution of individuals, species and body sizes within and across systems are thought to reflect underlying organising principles dictating the structure of ecological systems (Brown & Maurer 1989; Gaston et al. 2000; Gaston & Blackburn 2008). The major impetus now is to move from describing these patterns to uncovering process. Potentially fruitful approaches include investigating the roles of life history traits (Tyler et al. 2009b; Foggo et al. 2007; Buckley & Freckleton 2010), modeling predictions of differing mechanistic hypotheses (Freckleton et al. 2005; Freckleton et al. 2006), and investigating the temporal variation in patterns (Fisher & Frank 2004; Fisher et al. 2010). Progress is also being made by comparing patterns across new taxa and environments, and here the marine environment provides a wealth of opportunity (Belgrano 2004).
[bookmark: _Toc289481346]Abundance-occupancy relationships
One of the most widespread macroecological patterns is the positive relationship between the local density of populations and their regional distributions (Brown 1984; Gaston 1996; Gaston et al. 2000) in which regionally widespread species (those that occur at many sites) tend to be locally more abundant than species occurring at few sites. Known as the abundance-occupancy relationship (AOR), it has been established across a wide range of taxa and realms (Gaston et al. 2000; Borregaard & Rahbek 2010; Blackburn et al. 2006) and has been proposed as one of the most general patterns in ecology (Gaston et al. 2000). It is important because it links local demographic processes to regional population structure (Gaston et al. 2000). Despite its pervasiveness, and a wide range of theories proposed to explain its emergence, no one mechanism has been able to account for all observed AORs (Gaston et al. 2000, Borregaard & Rahbek 2010). 
There are various ways to calculate AORs. An interspecific AOR is the relationship across different species or taxonomic entities between local abundance and number of occupied patches or cells on a grid. These relationships have received the most empirical support and are most consistently positive. As with many macroecological analyses, these interspecific AORs are generally modeled using time-averaged or single survey data and thus represent static ecological patterns (Fisher et al. 2010). A second way of examining AORs is through the dynamics of individual species through space or time (Gaston et al. 2000; Borregaard & Rahbek 2010). Temporal intraspecific AORs
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Fig 1.1 Calculation on intra-specific temporal AORs. A) Spatial location of individuals at time t1. B) Occupancy and local density measured as the number of occupied cells and mean abundance across occupied cells respectively. D-E) The process is repeated at time t2. F) Occupancy and local density (labeled as mean abundance per cell) are plotted against each other. Reproduced with kind permission from Borregaard and Rahbek 2010)

have received the most attention. These track the temporal trajectory of individual species through abundance and occupancy space (fig 1.1). Temporal intraspecific AORs reflect regional population structure and are generally more idiosyncratic than interspecific AORs, often showing no or even negative relationships, although positive relationships are still most common (Gaston 1999; Gaston et al. 2000; Borregaard & Rahbek 2010). The dynamics captured by intraspecific AORs therefore underlie long-term mean estimates used to define interspecific AORs. Considerable variation in intraspecific relationships among species of British birds, in contrast to a marked consistency across interspecific patterns, suggested that there was not enough temporal variability in intraspecific dynamics to drive changes in the interspecific pattern in this avian assemblage (Blackburn et al. 1998). However, as temporal perspectives become increasingly widely adopted in macroecological analyses, they have begun to reveal the dynamic nature of macroecological patterns on ecological time-scales (reviewed in Fisher et al. 2010). For AORs in particular, examples of intraspecific temporal dynamics strong enough to influence interspecific dynamics have now been documented for a range of taxa (Fisher & Frank 2004; Borregaard & Rahbek 2006; Webb et al. 2007).
Such considerations have slowly begun to influence our understanding of the nature of AORs. The generality of the pattern and the diversity of systems from which it has emerged resulted initially in much confusion, with multiple potential mechanisms proposed (Gaston et al. 2000; see table 1.1), often tightly associated with the particular ecological perspective and terminology of a given study (Borregaard & Rahbek, 2010). However, a number of themes consistently emerge. First, habitat distribution is an important driver (Venier & Fahrig 1998; Freckleton et al. 2006; Webb et al. 2007), through its links with species’ resource requirements defined by niche position or breadth (Brown 1984). Such niche characteristics are primarily considered to be static drivers of AORs (i.e. unchanging through time). A related mechanism proposes that a species’ local abundance and occupancy is dictated by the position of a location within its range, and changes are related to biogeographic shifts (Brown 1984; Gaston et al. 1997). While some support for such a mechanism has been documented (reviewed in Gaston et al. 2000) it fails to account fully for observed patterns, more than likely because the decline of habitat suitability towards species edges is not necessarily continuous (Sagarin & Gaines 2002).
Dynamic demographic processes leading, for example to metapopulation dynamics also predict intrinsic links between abundance and occupancy. Under this framework, AORs are generated by the connection of populations in a landscape through colonization dynamics, which are controlled by local demographic processes and dispersal. Some experimental evidence for the role of dispersal has been observed, at least in microcosms (Gonzalez et al. 1998). AORs therefore appear to generally reflect patterns of species aggregation and therefore any driver contributing (be it ecological, behavioural, demographic etc) to aggregation dynamics is likely to emerge as a potential driver (Holt et al. 2002). Ultimately, as Borregard and Rahbek (2010) state in their recent review, the various mechanisms proposed “do not constitute competing hypotheses to be supported or refuted; rather, they are descriptions of processes working at different scales and in different manners to create and modify these relationships”. Key therefore to understanding the interplay of the multitude of proposed 
Table 1.1 Summary of the details of resource and population dynamics based mechanisms of abundance-occupancy relationships (AOR)
	Explanation Type
	Hypothesis
	General Principles
	Reference

	Resource
	Resource Availability
	AORs result as species distributions and abundances vary in relation to simultaneous variations in resource availability and distributions
	Brown 1984, Hanski et al. 1993, Gaston et al. 1997

	 
	Density Dependence
	AORs arise as a consequence of density-dependent habitat selection 
	Rosenzweig 1991

	Population Dynamics
	Metapopulation Dynamics
	Local populations are maintained through immigration and AORs result from a positive relationship between immigration and site occupancy
	 Hanski et al. 1993, Hanski 2000

	 
	Vital Rates
	Population dynamics across local sites covary over time. Increases in local growth rates increases local densities as well as the number of sites with positive population growth. 
	Holt et al. 1997





mechanisms is an appreciation of the hierarchical nature of AORs and the impact of scales of investigation on the structure of the observed relationship.
[bookmark: _Toc289481347]Drivers of intra-specic temporal AORs
While strong, positive and relatively persistent relationships are more readily demonstrated in temporally static inter-specific AORs (Blackburn et al. 1998), temporal intra-specific AORs have revealed far greater variation in form and strength (Blackburn et al. 1998; Webb et al. 2007) and appear more dynamically driven by regional population dynamics. 
Approaches using regional demographic models have demonstrated how species’ characteristics, particularly relating to colonisation dynamics, and the distribution of habitat quality interact to determine the specific form and strength of the relationship. Colonisation ability is defined as the probability of an unoccupied patch becoming colonized per unit time, and is determined by the interaction of a number of factors, including dispersal ability, the total number of dispersers across the population (a function of local birth and survival rates), and the amount and spatial distribution of suitable habitat (Holt et al. 1997; Freckleton et al. 2005; Freckleton et al. 2006). When colonization ability is high, there is a linear increase in occupancy with increasing density at lower densities, with the relationships saturating at high densities as all suitable habitat is occupied (fig.1.2a). The detailed form of the relationship (fig 1.4) is then dependent on the details of habitat suitability distribution (fig 1.3; Holt et al. 1997, Freckleton et al. 2005). Species with low colonization abilities are predicted to exhibit classic metapopulation dynamics, evident in AORs as a minimum density below which populations cannot sustain themselves (fig 1.2b). In both these models there is systematic change in the slope of the relationship with increasing local population size. Allee effects - i.e. reduced fitness at low population densities - may further modulate the form of the relationship (fig 1.2c). Finally, when colonization rates are extremely low, colonization dynamics become dominated by stochasticity, abundance and occupancy dynamics are decoupled and therefore no relationship in abundance and occupancy is detected (Freckleton et al. 2005).
Freckleton et al. (2006) further explored the effect of varying habitat quality on the form and strength of AORs and found strong dependence on the precise distribution of habitat suitability (fig 1.3). The strongest AORs arose when habitat suitability is distributed in a humped shape (fig 1.4c, dominated by intermediate habitat quality) or 
 [image: ]
Fig 1.2 Abundance occupancy relationships emerging from regional population models representing different regional population structures. a) Output of the habitat-filling of high colonization rates. The value of gamma, the scaling parameter for the habitat suitability relationship. b) Outputs of metapopulation model at varying levels of population extinction probability (em). c) Outputs of model incorporating Allee effects. Alpha, the strength of the relationship between probability of extinction and density, was varied as shown in the legend. See Freckleton et al. 2005 for details

left skewed (fig 1.3a, predominantly poor quality habitat with a few high quality sites). Weaker relationships were predicted for bimodally distributed habitat quality (fig 1.4d, habitat separated into good and bad habitat) or when habitat quality distribution is right skewed (fig 1.4b, most sites habitable even at low densities). The slope of AORs appeared closely related to habitat quality distribution and the value of the slope reflects the degree to which large-scale distribution depends on local population densities (Freckleton et al. 2006). A key result of this modeling work is that positive relationships are not inevitable and require explanation (Freckleton et al. 2005; Freckleton et al. 2006). Equally, negative relationships are both expected (Freckleton et al. 2005) and observed (Fisher & Frank 2004, Webb et al. 2007). These could arise from habitat degradation or high demographic stochasticity in which high extinction 
[image: :figures:freckles figure 1 copy.png]
Fig 1.3 Distributions of habitat suitability used to produce model outputs in fig 1.2 The distributions are beta distributions. Source: Freckleton et al. 2006. A) left-skewed B) right-skewed C) humped D) bimodal. Details of model formulation can be found in Freckleton et al. 2006.

rates of low density marginal populations results in a decrease in occupancy and concurrent increase in local density across the remaining occupied sites. Alternatively the relationship could result from density dependent colonization of marginal habitats resulting in a large number of low density populations and thus a reduction in mean density across occupied sites (Webb et al. 2007). The important point is that habitat suitability leaves a mark on species’ spatial distribution, which is reflected in both the shape of AORs and the frequency distribution of local population sizes.

[image: :figures:freckles 3:Slide1.jpg]
Fig 1.4 Abundance occupancy relationships generated by distributions of habitat suitability shown in fig 1.3. A) left-skewed B) right-skewed C) humped D) bimodal. Details of model formulation can be found in Freckleton et al. 2006.
[bookmark: _Toc289481348]The importance of time
While macroecological investigations have generally tended to be static, exciting opportunities arise from incorporating temporal dimension to macroecological analyses (Fisher et al. 2010, Mokany et al. 2012). AORs have been shown to be dynamic in time (Frank and Fisher 2004, Fisher et al. 2010) and subject to perturbations from anthropogenic impacts (Webb et al. 2007, Frank and Fisher, 2004). Additionally, the role of life history differences, e.g. between birds and fish, in driving differences in AORs may be more evident on the temporal scale than spatial scale (Webb et al. 2011). The incorporation of time therefore allows us to begin to understand how dynamic population processes drive emergent patterns of spatial distribution, and is therefore key to moving from AOR pattern to process (Fisher et al. 2010).
[bookmark: _Toc289481349]The importance of scale
While the generality of macroecological patterns indicates commonality in the structure of ecological systems, it is important to note that each analysis is context specific and the inference that can be made is constrained by the specifics of the datasets and analysis, as well as how the organisms in question perceive the environment (Peterson 2000). Large-scale organisation simultaneously constrains and emerges from the interaction of a large number of small-scale processes (Levin 1992), and ecological processes acting across hierarchical scales interact to generate, maintain, and destroy ecological structure (Peterson 2000). Considering the hierarchical nature of macroecological patterns (Borregaard & Rahbek 2010; McGill & Collins 2003), it is clear that working across scales is a way to bridge the gap between macroecological patterns and the ecological processes generating them (Ricklefs & Jenkins 2011). This can also uncover heterogeneities in relationships that may be obscured by single large-scale analyses.
Given the importance of population processes and the fact that they are driven by patterns of environmental variability, scales of underlying variability are an important consideration when trying to understand AORs. Much work to determine the effect of scale on macroecological analysis has focused on the spatial dimension (Rahbek 2005)(Hartley & Kunin 2003; Blackburn & Gaston 2002) but rather less consideration has been given to the effect of the temporal resolution of analyses. This is important because temperate marine systems, for example, exhibit variability on decadal, inter-annual and season scales so AORs are a composite reflection of processes acting across all these scales, yet temporal macroecological analyses have typically examined yearly long-term trends. Clearly, the resolution of data imposes a limit on the scales at which the effect of drivers can be detected (Dungan et al. 2002); however if we wish to begin to understand how faster acting processes affect macroecological structure we need to examine patterns at an appropriate resolution.

[bookmark: _Toc289481350]Opportunities
[bookmark: _Toc289481351]Opportunities in the marine environment
The opportunities afforded by studying macroecology in marine systems have been noted (Stergiou & Browman 2005; Webb 2012), yet marine macroecology is less well developed than that of terrestrial systems (Webb 2012; Krystalli & Webb 2012). Comparative studies between marine and terrestrial systems have proven informative of macroecological structural differences between the two realms (Webb et al. 2011; Webb 2012; Sunday et al. 2012), and marine studies have increased our understanding of macroecological patterns in body size (Beaugrand 2009), biomass (Pitois & Fox 2006), biodiversity (Beaugrand et al. 2001), and macroecological niche characterization (Helaouët & Beaugrand 2007; Beaugrand et al. 2007; Beaugrand & Helaouët 2008) and its application to species distribution modeling (Beaugrand et al. 2013; Beaugrand 2014). Equally, the potential for a macroecological approach to further our understanding of marine systems and to applications such as determining the macroecological behaviour of fish stocks has also been recognized (Blanchard et al. 2009; Jennings & Blanchard 2004; Fisher & Frank 2004; Frisk et al. 2011).
Focusing on the marine environment provides important opportunities for enhancing understanding of macroecological relationships in general and AORs in particular. The seas are much more diverse at higher taxonomic levels, and therefore marine assemblages often encompass greater functional diversity than terrestrial ones (Webb 2009). Additionally the transport of materials and organisms by advection modulated by oceanographic forces extends the spatial scale of many processes, such that marine systems tend to be more open than their terrestrial equivalents (Carr et al. 2003). It is no surprise therefore that a comprehensive meta-analysis found interpsecific AORs to be strongest in the marine environment (Blackburn et al. 2006).
Marine systems are generally viewed as tightly coupled to ocean dynamics of advection and dispersal, rendering them both more responsive and more adaptable to environmental change (Steele 1991). Evidence of the high responsiveness of marine ecosystems to climactic variability abounds (Beaugrand et al. 2002b; Edwards & Richardson 2004; Drinkwater et al. 2010; Ottersen et al. 2010; Beaugrand et al. 2009) and extend to macroecological responses (Sunday et al. 2012). Such responses are not necessarily gradual, and critical thermal thresholds associated with abrupt ecosystem changes in the marine environment have been documented (Beaugrand et al. 2008). The tight coupling of biological and physical dynamics in the ocean means that studies into the effects of environmental variability and non-linearity on AORs is likely to be highly informative. Regime shifts represent a widely documented form of non-linearity in marine systems (Holliday & Reid 2001; Reid et al. 2001; Alheit & Niquen 2004; Oguz & Velikova 2010; Conversi et al. 2010) consisting of rapid and widespread shifts in community composition, often related to shifts in hydro-climatic drivers (Beaugrand 2004a). Examining the temporal behaviour of AORs through such shifts provides valuable opportunities to determine whether and how these shifts may have altered regional population structure.
Finally, comparative approaches are a key method in macroecology so expanding our understanding of the structure of AORs, and how this varies across contrasting systems, by extending investigations into new assemblages encompassing species with different life history characteristics, colonisation dynamics and demographic processes, is likely to prove fruitful. AORs have been investigated in the intertidal zone (Frost et al. 2004; Foggo et al. 2003), in benthic macroinvertebrates (Tyler et al. 2009; Webb, Aleffi, et al. 2009a), and in fish (Fisher & Frank 2004; Jennings & Blanchard 2004; Blanchard et al. 2005; Frisk et al. 2011), but to date there has been little attention on marine zooplankton, including key members of temperate marine food webs such as copepods.
[bookmark: _Toc289481352]Opportunities in Copepods
Copepods comprise up to 80% of total mesozooplankton biomass (Kiørboe 1998), are an important trophic link in the pelagic food web, and have life history characteristics that make them a useful addition to AOR case studies. They are highly responsive to environmental fluctuations (Hays et al. 2005) to which they are subjected both systematically (annual seasonal cycle) and stochastically (inter-annual variation in conditions).
Copepod responses to environmental change
Given the variety of factors that contribute to generating AORs, there is a wide range of environmental variables with the potential to modulate copepod regional population structure and therefore AORs. Temperature influences virtually all biological processes and systems spanning scales of organization from the cell to the biosphere (Gillooly et al. 2001; Brown et al. 2004). In copepods, temperature increases most demographic rates including fecundity, growth, development (Bunker & Hirst 2004; Hirst & Bunker 2003) and mortality rates (Hirst & Kiørboe 2002). Interestingly it does not affect growth and development rates equally (Forster et al. 2011b) and there are also ontogenetic differences in the effects of temperature, particularly on growth rates, which could result in fluctuations in body size at maturity (Forster et al. 2011a; Kiørboe & Hirst 2008). Body size has important implications for life history, fitness, and food web structuring (Peters 1986; Brown et al. 2004) and therefore also drives demographic changes. Food limitation also increases with temperature, and can affect growth, fecundity and mortality rates. Temporal fluctuations in both quantity (Beaugrand 2003) and quality (Edwards et al. 2001) of phytoplankton prey are likely to affect mortality rates, as are fluctuations in hydrodynamic forcing (Edwards et al. 2002) which can affect colonization dynamics through modulating dispersal and transport (Holliday & Reid 2001). 
Copepod life history characteristics
Life history traits controlling demographic changes are expected to affect intra-specific AORs, and may therefore provide insight into underlying causes (Buckley & Freckleton 2010). Such links have been empirically demonstrated in other taxa. For example, Webb et al. (2009a) showed that traits associated with aggregative behaviour such as sociability and smaller body sizes generally produced shallower AOR slopes and reduced occupancy levels for a given density in benthic macroinvertebrates. In subtidal macroinvertebrates, Foggo et al. (2007) also found that species with planktotrophic larvae tended to have high regional distribution for a given mean local abundance compared to species with lecithotrophic larvae or brooding species. Webb et al. (2007) found that the AOR had different characterstic forms in common versus rare species of British birds.
Copepod life history traits vary substantially between species in ways likely to be important for AORs. Mate availability is an important driver of copepod dynamics (Kiørboe 2006), and various traits are associated with contrasting life history strategies to cope with mating encounter limitation, each of which implies a different regional population structure. For example, the presence of seminal receptacles in many copepod species reduces the degree to which mate encounter limitation drives population dynamics by reducing the density dependence of population growth rates at low densities (Kiørboe 2006). Life history also dictates how species respond to environmental drivers. For example, the effects of both temperature and food limitation on growth rates and fecundity vary between copepod species according to whether they are broadcast or sac spawners (Hirst & Bunker 2003), while allometric models of the effects of temperature on growth and development best fit copepod data when calibrated to each species individually (Forster et al. 2011a; Hirst & Forster 2013).
Dispersal characteristics are also important. While the importance of dispersal in AORs has been demonstrated in microcosm experiments (Gonzalez et al. 1998), expectations in zooplankton based on large population sizes, perceived high dispersal capability and assumed lack of barriers to dispersal are of large-scale genetic homogeneity of pelagic populations (Palumbi 1992; Palumbi 1994; Norris 2000) with population range extents being limited more by vital rates than by dispersal (Norris 2000). Over geological timescales, high levels of dispersal ability in the copepod species Calanus finmarchicus appears to have allowed the species to track environmental changes and maintain long-term regional population stability across entire ocean basins (Provan et al. 2009). Models of the effects of colonisation ability on AORs suggest that such good dispersers should demonstrate strongly positive, linear AORs saturating when all suitable habitat is occupied (Freckleton et al. 2005). But on ecological time scales, populations of C. finmarchicus show genetic structuring at the scale of regional seas (Bucklin et al. 2000), with spatial patterns of genetic differentiation implying limited capacity for dispersal in other copepod taxa too (Lee 2000; Goetze 2003; Goetze 2005; Goetze 2011). The strength of barriers to dispersal may also vary depending on species-specific habitat requirements (Goetze 2005) while life history characteristics of some species might theoretically even leave them susceptible to Allee effects and strong positive dependence of population growth rates at low densities (Kiørboe 2006). 
One of the greatest drivers of copepod life history adaptation is the phenological response to seasonal environmental variability (Ji et al. 2010). The most pronounced scale of variability in terms of environmental conditions in temperate pelagic systems is seasonal during which pelagic organisms track the wave of seasonally-evolving productivity (Pope et al. 1994). As such, copepods have evolved elaborate behavioral and life history strategies to allow them to exploit favorable periods of the year for growth and reproduction, and to reduce the exposure of vulnerable life stages to stressful conditions. Phenological responses involve changes in population size, reproductive or developmental status and, in some species, the timing and duration of seasonal dormancy. The effect of biogeographical responses is also important (Beaugrand et al. 2009) as copepod responses to climate change will most likely take the form of biogeographic or phenological shifts (Ji et al. 2010, Hays et al. 2005).
Given that local responses to changes in habitat are dependent on regional population structure (Freckleton et al. 2005), comparative studies of regional population fluctuations in response to environmental change across species of varying life history characteristics are therefore likely to be illuminating, potentially providing insights into population dynamics as well as understanding how life history characteristics modulate responses to environmental change. For example, the precise timing of changes in planktonic species during the proposed regime shift of marine communities in the North Sea (see below) were linked to differences in life-history, spatial distribution and physiological constraints (Beaugrand 2004a).
[bookmark: _Toc289481353]Opportunities from the Continuous Plankton Recorder Survey
The goal of macroecology to integrate pattern and process across temporal and spatial scales requires datasets extensive in both dimensions. Data availability is therefore an important limiting factor and has undoubtedly contributed to the restricted number of macroecological studies in the marine realm (Tyler et al. 2011). Large scale, long-term monitoring programmes thus present a major opportunity to progress ecological understanding (Fisher et al. 2010), their value increasing as accumulating data begin to capture structures and natural phenomena at increasing spatio-temporal scales (Edwards et al. 2010). The Continuous Plankton Recorder (CPR) survey represents one of the longest running and most spatially extensive marine biological monitoring programs in the world (Richardson et al. 2006) and has been fundamental to our evolving understanding of the ecology of marine pelagic ecosystems across multiple spatial and temporal scales (Edwards et al. 2010). CPR data have been used to explore the temporal and spatial dynamics and interactions of planktonic taxa (Planque & Ibañez 1997; Kirby et al. 2006; Pitois & Fox 2006; Leterme et al. 2005), including links to commercially important fish stocks (Reid 2000; Corten & Lindley 2003); to identify biogeographic patterns and associations (Beaugrand et al. 2001; Beaugrand et al. 2002a); to characterise copepod macroecological niches (Beaugrand et al. 2007; Helaouët & Beaugrand 2007; Beaugrand & Helaouët 2008); 
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Fig 1.5 A cross-section of the CPR, its internal mechanism and CPR body. Reproduced from Richardson et al. (2006)

to improve monitoring by developing indicators of ecological change (Beaugrand 2005; Ibañez & Beaugrand 2008), and to identify ecological drivers and their links to systemic change and reorganization (Planque & Taylor 1998; Edwards et al. 2002; Beaugrand et al. 2002b), with particular focus on observed and potential future responses of the system to climate change (Beaugrand et al. 2002b; Beaugrand 2003; Beaugrand et al. 2009; Beaugrand et al. 2013). 
CPR samples are collected by the continuous plankton recorder (fig 1.5), which is towed behind ships of opportunity at approximately 7m depth. Full methods are described in Richardson et al. (2006){Richardson:2006hm} but, briefly, water passes though an aperture at the front of the device and is filtered through a continuous roll of silk. This is reeled in, in accordance to the ship's speed into a formalin chamber where the samples are preserved. For analysis, the silks are unrolled, marked and every second sample processed according to a protocol that has not altered since practices were standardised in 1958. Each sample represents a 3m3 volume of water collected along 10 nautical miles of tow. 

[bookmark: _Toc289481354]Opportunities from other data sources
A clear prerequisite for the study of AORs is data on species’ spatial distribution and abundance. While the CPR is no doubt one of the most extensive ecological datasets that exists, the relative sparseness of the data has generally resulted in analyses being confined to coarse spatial grains. As outlined above, scale is crucial and analyses need to be designed around scales at which important population processes of the species in question play out. Empirical (Mackas 1984) and theoretical work (Lévy & Klein 2004; Bracco et al. 2009) consistently identify the mesoscale (10 – 500 km) as an important component of spatial variability in zooplankton distributions, scales which CPR interpolation methods struggle to resolve but which may hold the key to many of the more interesting ecological questions to be asked of plankton, including patterns of coexistence (Bracco et al. 2000; Srokosz & Martin 2003), productivity, and export (Garçon et al. 2001; Resplandy et al. 2012). Macroecological investigations would therefore benefit from finer grain analyses, which enable examination of how processes operating on smaller spatial scales relate to macroscale patterns (Beck et al. 2012).
Environmental heterogeneity at these scales is a key driver of plankton spatial distribution so incorporating information on the spatial distribution of pertinent environmental predictors into interpolation procedures could be highly fruitful (Hansen et al. 2010). This is now feasible as ocean observing systems have resulted in the accumulation of spatially and temporally comprehensive remotely sensed datasets at high spatial resolutions (1 km2) (Manderson et al. 2011). In addition to more traditional indicators of habitat quality such as sea surface temperature (SST) and chlorophyll a (Chl a) concentration, hydrographic structure is also a key driver of pelagic environmental heterogeneity.
The importance of hydrographic structure
In the marine pelagic realm, hydrographic structure, in the form of fronts, eddies and filaments, is strong and variable across multiple temporal and spatial scales and dominated by fluctuations at the meso-scale (Stammer 1997). At these scales, observations and simulations of planktonic spatial structures suggest strong spatial associations with prior or co-evolving habitat structure (Mackas et al. 1985; Lévy & Klein 2004; Bracco et al. 2009) which is expected considering oceanic meso-scale advection processes and planktonic reaction times occur on timescales of the same order of magnitude. Such temporal coupling leads to a significant interplay between physical and biological dynamics (Bracco et al. 2009).
Coherent hydrographic structures represent barriers to diffusion and affect the ecological structure of the ocean by imposing sharp gradients and discontinuities in the spatial distribution of ecological processes. These processes include rates of primary production through control of nutrient upwelling (Falkowski et al. 1991; McGillicuddy et al. 1998), passive and active aggregation of biomass (Woodson et al. 2005; Woodson & McManus 2007), increased transport resulting from dispersive strain (Elhmaïdi et al. 1993; Bracco et al. 2004), characterization of habitat spatial heterogeneity through delineation of habitat patches (Gallager et al. 1996; Miller 2004; Berasategui et al. 2006), and determination of recruitment patterns (Woodson et al. 2012). Because it is also intrinsically linked to seabed topography (Ozsoy & Unluata 1997; Belkin et al. 2009), hydrographic structure is greatest and most dynamic in areas of complex topography such as the North Sea. Algorithms have been developed which can be applied to satellite data to detect sharp discontinuities in the distribution of a given variable producing maps of “frontal intensity” (Miller 2004; Miller 2009). These act as a proxy for hydrographic structural intensity and persistence and have been linked successfully to distribution of large mobile marine mammal taxa (Priede & Miller 2009). Their potential as predictors of planktonic spatial distributions is clear. 
[bookmark: _Toc289481355]Introduction to the Study System
[bookmark: _Toc289481356]The North Sea
The North Sea (51-61N by 4W-11E) is the most important commercial fishing region in the EU (Mardle & Pascoe 2002), has the most dense coverage of CPR data, and the ecology of the region has been well studied. Over recent decades, major shifts in the planktonic community in terms of composition (Kirby et al. 2006; Attrill et al. 2007) relative abundances (Edwards et al. 2001; Beaugrand & Ibañez 2004) and phenology (Edwards & Richardson 2004) have been observed associated with shifts in hydroclimatic forcing (Beaugrand 2004b). As such, there is great interest in determining how ecological change propagates through the food web in order to 
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Fig 1.6 Bathymetric map of the North Sea showing 50m depth contours

predict the ecological effects of climate change on plankton ecology and, ultimately, on fisheries.
Physical characteristics
The North Sea can be subdivided into three broad biogeographical regions defined primarily by their bathymetry and associated hydrographic properties (Otto et al. 1990) (Fig.3). The shallow (20-40 m) well mixed south-eastern region has a neritic character, is greatly influenced by continental run-off and heat exchange with the atmosphere and is separated from the seasonally stratified waters to the north by the Flamborough frontal structure. The northern North Sea is generally deeper (>150m) but its complex bottom topography is dominated by the deep intrusion of the Norwegian channel in the east and is the principal site of oceanic inflows, representing the center of distribution of many oceanic copepods advected into the North Sea, those of more boreal origin to the east (Heath et al. 2000) and more temperate origin to the west (Edwards et al. 2002). Between these two contrasting regions lies the transitional central North Sea in which water masses of various origins meet. These biogeographic regions vary in terms of strength of association of different copepod species (Fransz et al. 1991). 
Ecology
CPR time series in the North Atlantic have revealed important changes in the planktonic environment in recent decades, many linked to regime shifts between contrasting thermal and dynamic equilibria resulting in coupled shifts in hydro-climatic and community composition (Reid et al. 2001; Beaugrand 2004b). The most pronounced changes with regards to regime shifts have been documented in the North Sea and span all major components of the plankton. Changes in the phytoplankton include a pronounced increase in Phytoplankton Colour Index (PCI) (Beaugrand 2004b), an indication of the density of photosynthetic pigment present on the filtering silk of the CPR (Richardson et al. 2006). This increase in PCI however has not been matched by diatom increases indicating possible shifts in phytoplankton community composition which could alter energy transfer to higher trophic levels and therefore impact on zooplankton community structure (Reid et al. 2001). 
Changes in the zooplankton have also been recorded, most importantly in the copepod component, which is often the most abundant zooplankton and considered a key link between phytoplankton and fish (Beaugrand & Ibanez 2004). Most notable is the dramatic long-term decline in abundance of Calanus finmarchicus, considered an important prey item for the larvae of many commercial fish species (Corten & Lindley 2003) especially in the northern North Sea. This represents an important reduction in biomass that has not been compensated for by other copepods (Planque & Batten 2000). Overall, a long term decrease since the 80s in copepod biomass has been observed (Beaugrand 2003) encompassing reductions in both small and large copepods (Reid et al. 2001). Other notable changes in the plankton include increases in meroplanktonic echinoderm larval abundance (Kirby et al. 2007), which potentially compete for food with copepods and an increase in jellyfish abundance, which can affect zooplankton abundance through predation (Attrill et al. 2007).
Shifts in species abundance have also been accompanied by uneven shifts in phenology of various components of the North Sea planktonic community (Edwards & Richardson 2004). Much scope therefore exists for potential mismatches of fish larvae and their prey to have developed with important implications on fish stock recruitment and survival, especially under the intense fishing pressure these stocks are under. Additionally, many of the changes in the North Sea are related to large-scale biogeographic shifts spanning the whole North Atlantic, linked to temperature as well as oceanoclimatic changes (Edwards et al. 2002), which has seen substantial northward extension of southern species during the survey period (Beaugrand et al. 2009). These shifts can be viewed as natural experiments of multifaceted change providing an excellent opportunity to examine the effects of environmental change on copepod regional population structure and emergent AORs. 
[bookmark: _Toc289481357]Study organisms: Calanoid copepods
This project focuses on six well-sampled copepod species, selected to represent a wide range of recognised species assemblages (Beaugrand et al. 2002a) and encompassing some key species involved in the described regime shifts. Species represent five biogeographical associations (Beaugrand et al. 2002a) and exhibit varying demographic, life history, phenological and ecological characteristics (table 1.2). 
The larger Calanus helgolandicus and the smaller Centropages typicus belong to the same pseudo-oceanic temperate shelf sea association while Temora, also a relatively small species, is associated with neritic conditions. Calanus finmarchicus and Metridia lucens are both large oceanic copepods advected into the northern North sea. The 

	Species
	Body size (mean length mm)
	Life history
	Biogeographic Association
	Distribution
	Depth distribution
	References

	Calanus finmarchicus
	2.70
	Seminal recepticle, lipid storage
	Subarctic
	Oceanic
	Epipelagic/ mesopelagic
	(Richardson et al. 2006; R. F. Lee et al. 1972; Ohtsuka & Huys 2001; Lee et al. 2006; Beaugrand et al. 2002a)

	Calanus helgolandicus
	2.68
	Seminal receptacle, lipid storage
	European shelf edge
	Pseudo-oceanic
	Epipelagic/ mesopelagic
	Richardson et al. 2006, Lee et al. 1972, Ohtsuka & Huys 2001, Lee et al. 2006, Beaugrand et al. 2002

	Metridia Lucens
	2.27
	Seminal recepticle, lipid storage
	Temperate
	Oceanic
	Epipelagic/ mesopelagic
	Richardson et al. 2006, Lee et al. 1972, Ohtsuka & Huys 2001, Lee et al. 2006, Beaugrand et al. 2002

	Centropages typicus
	1.55
	No seminal receptacles, high fecundity
	European shelf edge
	Neritic
	Epipelagic
	 Richardson et al. 2006,, Ohtsuka & Huys 2001, Lee et al. 2006, Kiorboe 2006, Beaugrand et al. 2002

	Eucheata hebes
	2.80
	Seminal recepticle, lipid storage
	Bay of Biscay and southern European shelf edge association
	Pseudo-oceanic
	Epipelagic/ mesopelagic
	Richardson et al. 2006, Lee et al. 1972, Ohtsuka & Huys 2001, Lee et al. 2006, Beaugrand et al. 2002

	Temora longicornis
	1.00
	No seminal receptacles
	Shelf Sea
	Neritic
	Epipelagic
	Richardson et al. 2006, Ohtsuka & Huys 2001, Lee et al. 2006, Beaugrand et al. 2002


Table 1.2 Life history and biogeographic characteristics of the copepods selected for study

presence of C. finmarchicus is taken to indicate boreal influences while that of M. lucens indicates Atlantic water of a more temperate origin (Fransz et al. 1991). Euchaeta hebes is a Lusitanian species, also dependent on Atlantic inflow
[bookmark: _Toc289481358]Overview of thesis
Interpretation of AORs is highly context specific and dependent on both the temporal and spatial scale of both data and analyses. The overarching theme of this thesis is to examine this hierarchical aspect of AORs. We address this by varying the extents and resolutions of our analyses through space and time to uncover underlying heterogeneities and hierarchical structures in the dynamics. By doing so we aim to understand how both species characteristics and population trends affect the emergence of AORs, and to assess the effects of environmental fluctuations on copepod regional population structures. 
Chapter 2 examines long-term trends in intraspecific AORs in a localized area of consistent sampling throughout the entire life of the CPR survey, which removes the need for spatial interpolation and allows us to examine trends in spatially co-occuring species. As there is no spatial dimension to the analysis we define a measure of temporal occupancy, which, analogous to spatial AORs, links local temporal scale processes to inter-annual trends. We then search for heterogeneities in the long-term relationships to determine whether known ecological regime shifts have resulted in shifts in temporal population structure reflected in the strength and form of AORs. We use trends in population status and life history characteristics to infer which factors may be driving emergent AORs.
Chaptrer 3 addresses the issue of spatial resolution. A key objective of the thesis was to develop Species Distribution Models (SDMs) to produce high-resolution maps of copepod spatial distribution. We do this by combining CPR data, satellite data (front intensity maps in particular) and state of the art machine learning techniques. We conduct a formal comparison with current methods used to interpolate CPR data and discuss the relative merits and limitations of each.
Finally, in Chapter 4, we use these new high-resolution maps of copepod abundance to examine annual intra-specific AORs across the whole North Sea, and we compare trends between two copepod species of highly contrasting life-history characteristics. We implement harmonic regression methods within a mixed modeling framework, resulting in a two-staged analysis which allows us to vary the resolution of AOR analysis, and thus to determine the intra-annual variability about the relationship as well as its seasonal evolution.
Key results, implications, and avenues for future research are then discussed in the General Discussion (Chapter 5).

[bookmark: _Toc289481359]Long-term temporal behaviour of abundance-occupancy relationships in the fluctuating planktonic environment of the North Sea.
[bookmark: _Toc289481360]Abstract
The abundance occupancy relationship (AOR), namely the generally positive association between local densities and some measure of spatial distribution quantifies the extent to which local population processes influence large-scale distribution and therefore characterize regional population structure. Differences in the form and strength of AORs have been linked to life history characteristics relating to colonization dynamics, habitat distribution and trends in population status.
Large shifts in relative abundance and spatial distribution, associated with abrupt hydro-climactic fluctuations, have been documented in copepod populations of the North Sea over the past five decades. AORs therefore provides a simple framework for assessing whether such shifts have resulted in changes in large-scale population organization.
We used a local time series from the northern North Sea, spanning 52 years to fit the first temporal inter-specific AORs in five copepod species. We then proceeded to identify whether models incorporating a single break in the relationship, representing regime shifts in regional population structure, were better representations of AOR dynamics throughout the time series.
We found significant positive relationships in the overall relationship of four out of the five species investigated. However, we also found that models incorporating a regime shift best fit the data for all species. Observed AORs varied inter-specifically in strength and shape, between regime states and in the direction of change of the relationship during the regime shift. Importantly, we find that long-term AORs can mask significant temporal heterogeneities in the relationship reflecting time periods of highly contrasting regional population dynamics.
Inter-specific variability in the years identified as breaks in the relationship was also observed. However, we found convergence around specific time periods corresponding to known decadal shifts in environmental and biological parameters of the North Sea and wider North Atlantic.
Differences in the strength and shape of AORs appear to be related to a combination of differing life-history characteristics and habitat quality distribution and driven by trends in population status.

[bookmark: _Toc289481361]Introduction

Many pressures on ecological systems, particularly those associated with climate change, are impacting on large or even global scales (Kerr et al. 2007) and some of the most pronounced responses have been documented in the marine pelagic. In planktonic oceanic systems, there is overlap in the time-scales of biological and physical processes (Steele 1998) and they are generally considered much more open systems with fewer barriers to dispersal (Hays et al. 2005). This makes them highly responsive to climactic variability (Beaugrand 2002; Drinkwater et al. 2010; Edwards & Richardson 2004; Ottersen et al. 2010; Beaugrand et al. 2009) even at macroecological scales (Sunday et al. 2012) and particularly to decadal scale alterations in their physical environment (Steele 1991). Some of the most pronounced large scale biogeographic shifts have been observed in zooplankton (Beaugrand et al. 2009), the detailed geographic redistribution resulting from species specific thermal tolerances (Beaugrand et al. 2013; Beaugrand et al. 2002b) and changes in oceanographic circulation patterns (Beaugrand et al. 2001; Edwards et al. 2013; Beaugrand et al. 2014). Phenological responses also appears to be stronger in the pelagic compared to terrestrial systems (Edwards & Richardson 2004; Parmesan & Yohe 2003). Responses have not necessarily been gradual, and non-linear, abrupt ecosystem changes have often been documented (Bakun 2005; deYoung et al. 2008; Beaugrand et al. 2008; Beaugrand 2004b). Such regime shifts represent changes in the structure and dynamics of systems and marine regime shifts have often been linked to shifts between phases of differing average climatic conditions (Bakun 2005; Hare & Mantua 2000; Beaugrand et al. 2014; Beaugrand 2014).
Predicting responses to climate change hinges on understanding the spatial and temporal dynamics of abundance and distribution and the population processes that generate them. Both regime shift detection and the study of individual population dynamics have commonly been approached through time series analyses of abundance data. Here we propose to analyse temporal population dynamics from a macroecological perspective, by tracking the macroecological behaviour of populations through the abundance occupancy relationship (AOR). AORs summarise the relationship between the two most fundamental measures of abundance, namely how many sites a species occupies and how many individuals on average occupy each site (Freckleton et al. 2006). A dynamic way of implementing AORs to understand large scale population dynamics is to use them to track the temporal trajectory of abundance and occupancy in individual species (Gaston et al. 2000, Fisher et al. 2010, fig. 1.1). Temporal intraspecific AORs are generally more idiosyncratic, often showing no or even negative relationships, although positive relationships are still most common (Gaston 1996; Gaston et al. 2000; Borregaard & Rahbek 2010). They also appear to be strongest in the marine environment (Blackburn et al. 2006).
The most common positive form of the AOR, in which locally abundant species tend to also be widespread while species with more restricted distributions also tend to be locally scarce, is important because it implies common mechanisms underlying local demographic processes and regional population structure (Gaston et al. 2000) and therefore allows us to link patterns and processes across these two scales of population dynamics (Freckleton et al. 2006). Theoretical work has shown how differences in the form of AORs can emerge from models of regional population dynamics of species with varying colonisation abilities. Colonisation dynamics are driven by the interaction between relative habitat suitability distribution and species demographic and dispersal characteristics. Under conditions of global dispersal where suitable habitat is colonised as soon as it becomes available, species follow a habitat filling model and AORs reflect underlying habitat suitability distribution, or more precisely, the relationship between the number of suitable habitats (sites at which birth rates exceed death rates) and mean habitat quality (mean number of individuals found in occupied sites (Holt et al. 1997; Freckleton et al. 2006) (fig. 1.3 & 1.4). A uniform habitat distribution, the most general assumption, results in positive saturating AORs (Freckleton et al. 2005), consistent with the prediction of the vital rates hypothesis (Holt et al. 1997) proposed to mechanistically explain how generally positive AORs might arise throughout a species range. However differing habitat quality distributions can modulate the form of AORs. In particular, the slope of AORs, an important parameter quantifying the extent to which regional distribution depends on local population densities, is strongly linked to the precise form of habitat quality distribution (Freckleton et al. 2006). Strong relationships emerged (fig. 1.4a & c) when models were confronted with left skewed (where most habitat is of poor quality, fig. 1.3a) or humped distributions (where most habitat is of intermediate quality, fig. 1.3c) while weak relationships emerged (fig. 1.4b & d) in situations where most sites are habitable even at low densities (right skewed habitat distributions, fig. 1.3b) or when habitat suitability was bimodally distributed (habitat divided into good and bad sites, fig. 1.3d).
Colonisation dynamics, and therefore emergent AORs, are also modulated by population processes related to dispersal and extinction dynamics. Further work by Freckleton et al. (2005) explored the effect of varying colonisation ability on emergent AORs from models of regional population dynamics representing distinct categories of regional population organisation. They contrasted the positive saturating AORs derived under assumptions of global dispersal (fig. 1.2a) to models including a term representing metapopulation processes (Hanski 1999) arising under moderate to low colonisation rates as a result of habitat isolation and lower dispersal. They found a similarly saturating positive relationship at high densities, which was additionally characterized by a critical density below which the metapopulation becomes extinct (fig. 1.2b). As densities approach this critical threshold, both occupancy and regional population size decline precipitously resulting in steep AOR slopes. AOR responses were modulated further when Allee effects, demographic stochasticity and depensatory processes were considered (fig. 1.2c) through varying the strength of the relationship between density and the probability of extinction. Again AORs exhibit steep slopes at low densities, reflecting strong positive density dependent growth and increased probability of population extinction (Courchamp et al. 2009) but the precise form of the relationship varied between the two extremes illustrated in fig. 1.2a & b according to the rate of decline in extinction risk with density, highlighting the importance of Allee effects in mediating large-scale dynamics. Finally, in populations in which colonization rates were very low, no relationship between abundance and occupancy is expected. Thus, when metapopulation processes are important they override habitat-filling processes (Freckleton et al. 2005). It follows that life history characteristics that constrain colonisation dynamics can modulate the form of AORs (Freckleton et al. 2005; Tyler et al. 2009; Buckley & Freckleton 2010; Foggo et al. 2007).

In this study we make use of the extensive Continuous Plankton Recorder dataset and we concentrate on copepods. We focus on a well sampled localised region of the northern North Sea which has nevertheless been influenced by basin-scale biogeographic shifts, driven by changes in temperature and ocean circulation patterns (Edwards et al. 2002) and resulting in substantial northward extension of southern and retraction of northern species (Beaugrand et al. 2009; Beare et al. 2002). These have been punctuated by a number of critical transition periods, identified as spatially varying abrupt ecosystem shifts between contrasting thermal, dynamic and ecological regimes (Weijerman et al. 2005; Beaugrand 2004b; Beaugrand et al. 2014; Reid et al. 2001; Edwards et al. 2013).
A general expectation of zooplankton based on large population sizes, perceived high dispersal capacity and assumed lack of barriers to dispersal (Hays et al. 2005) is of cosmopolitanism (Palumbi 1992; Palumbi 1994; Norris 2000) with population range extents being limited largely by vital rates rather than dispersal (Norris 2000). Certainly, plankton can show dramatic changes in distribution and range expansion and contraction, in quick response to changes in temperature and oceanic current systems (Hays et al. 2005) compared to terrestrial taxa (Parmesan & Yohe 2003; Beaugrand & Reid 2002; Beaugrand et al. 2009). The dynamics of such good dispersers might therefore best be described by a habitat filling AOR model (Freckleton et al. 2005) in which the form of AORs is dictated primarily by the relationship between habitat quantity and quality. The extent to which such assumptions hold may be locally violated (Lee 2000, Goetze 2003, Goetze 2005, Goetze 2011). They could however be considered one of the closer groups to such an assumption.
We fit the first intraspecific temporal AORs in five well-studied copepod species, which however differ in important ecological and life history characteristics (table 1.2), likely to affect their perception and utilisation of relative habitat quality distribution. Ecologically they are broadly categorised by biogeographical association. These are ocean basin scale derived species associations, with partitioning driven by temperature, hydrodynamics, stratification and seasonal variability of the environment (Beaugrand et al. 2002a) and have shown distinct biogeographical responses throughout the North Atlantic (Beaugrand et al. 2009; Beaugrand et al. 2002b; Beare et al. 2002). They can therefore be used as broad contrasts of relative range position.
Spatially restricted temporal examinations can be viewed as measuring the spatial relationship between abundance and occupancy as species ranges shift relative to the study’s location. Local population AOR responses to such shifts reflect the extent to which changes in habitat quantity and quality throughout a species’ range have been linked. Theoretically, a positive relationship is often assumed, with greatest habitat quality and availability presumed near the center of a range and a decline in both towards range edges (Whittaker 1965; Brown 1984; Brown et al. 1996; Beaugrand et al. 2013; Beaugrand 2014; Gaston et al. 1997). This should theoretically translate to an overall spatial relationship between local abundance and occupancy. Changes in range position have therefore been proposed as a mechanistic driver of intraspecific AORs (Brown 1984). Previous studies have found limited evidence for such mechanisms (Gaston et al. 1997; Blackburn et al. 1999; Freckleton et al. 2006) not least because the distribution of abundance throughout ranges often deviates from the assumed in complex ways (Sagarin & Gaines 2002). However, we propose that the extensive magnitude of shifts detected in this system over the study period might be much more suitable for detecting the effects of changes in relative range position on regional population dynamics.
Regardless, the shapes of ranges, the dynamic changes in range boundaries as well as much of their internal structure, undoubtedly reflect the interacting influences of limiting environmental conditions and dispersal - extinction dynamics (Brown et al. 1996) and the balance of these processes, and consequently the form of AOR, is likely to vary throughout a species range. Local population responses to biogeographical shifts may vary according to the magnitude of change in range position, differing starting points, direction of shift (retreating or invading) and proximity to range edges. Range edges are often associated with critical thermal thresholds and in copepods, these should vary according to biogeographic associations (Beaugrand et al. 2008). Differing proximity to such critical thresholds has been implicated in interspecific differences in the timing, the nature and the spatial distribution of abrupt population shifts (Beaugrand et al. 2014; Beaugrand 2004b; Weijerman et al. 2005). We test for abrupt population shifts by searching for temporal heterogeneities in the relationship. We employ simple statistical methods to detect whether AORs are best described by a single or two separate functions, indicating a shift in regional population organisation.
Life history characteristics can also dictate the relative importance of metapopulation processes on species population dynamics and copepods can be distinguished by two contrasting strategies. The larger copepods exhibit “bet-hedging” life history characteristics, such as seminal receptacles (Kiørboe 2006) and lipid storage (Bradford-Grieve et al. 2010), which reduce the effects of mating encounter limitation (Kiørboe 2006) and temporal variability in food supply (Lee et al. 2006), allowing for capital breeding (Varpe et al. 2009) and high colonisation ability. In contrast, C. typicus exhibits a current income breeding strategy based on resources acquired during the reproductive season (Varpe et al. 2009) and characterised by boom bust dynamics. They have little lipid accumulation, high fecundities (Bunker & Hirst 2004) fast growth rates (Kiørboe 2006), short generation times, a relatively short single summer or autumn abundance peak (Bonnet et al. 2007) and dormant eggs (Halsband-Lenk et al. 2004). They can exhibit strong responses to availability of resources but their lack of seminal receptacles means they require continuous mating and high population densities to maintain fertility, theoretically leaving them susceptible to Allee effects, strong positive dependence of population growth rates at low densities (Kiørboe 2006), with small changes in abundance having the potential to produce large changes in occupancy, high demographic stochasticity and a minimum density below which populations cannot persist (Freckleton et al. 2005).
One of the greatest drivers of temperate copepod population dynamics in response to seasonal environmental variability is their phenological cycle. Many planktonic life history traits are associated with phenological adaptations which can constrain species seasonal responses to climate change (Ji et al. 2010; Edwards & Richardson 2004). Recognising the critical importance of phenological cycles, we employ a temporal measure of occupancy in our analysis by calculating occupancy as the proportion of months in which the species is present and local abundance as the mean density across months temporally occupied. This allows us to follow long-term population structure and dynamics through charting the relationship between the extent of temporal annual occupancy and average monthly density during active life cycle periods. We perform our analysis to address the following questions: a) Do copepod AORs indicate habitat filling model of population structure? Are there instances where metapopulation processes appear to be important? b) Can we detect temporal shifts in the relationship? What do the underlying forms imply about large scale population structure and dynamics prior to, during and post regime shifts. c) Are interspecific differences consistent with expectations of relative habitat quality distribution according to range position? Do contrasting life history strategies modulate AOR responses?
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Five relatively well-sampled species were selected for the study: Calanus fimnmarchicus, Calanus helgolandicus, Metridia lucens, Centropages typicus, and Euchaeta hebes. These species belong to four biogeographical associations (table 1.1, (Beaugrand et al. 2002a), two body size classes (Pitois & Fox 2006) and exhibit varying demographic, life history, phenological and ecological characteristics. The sub-arctic species C. finmarchicus, has been generally found to be retreating in the North Sea over the study period from initially high local abundance and distribution (Planque & Fromentin 1996) and is thought to be near it’s critical limit in the region (Beaugrand et al. 2013). In particular, the general warming of the North Sea and potential changes in advection patterns have generally been thought to have reduced habitat suitability for the species (Beaugrand et al. 2013). Both C. finmarchicus and M. lucens are oceanic and depend strongly on advection into the North Sea but M. lucens is associated with more mixed waters found at the boundary between warm and subarctic regions. Changes in densities of this cold-temperate association have been more modest but have generally declined in western source regions to the northern North Sea (Beaugrand et al. 2009; Beaugrand et al. 2002a). The pseudo-oceanic warm temperate species E. hebes, on the other hand represents a recent invader to the North sea as part of an northern expanding front from the Iberian Sea (Beaugrand et al. 2009). The temperate pseudo-oceanic C helgolandicus has increased in abundance in the North Sea (Planque & Fromentin 1996) and biogegraphic shifts have resulted in the northern North Sea occupying a much more central position within the associations distribution (Beaugrand et al. 2009). Finally, C. typicus shares biogeaographic association and therefore broad ecological characteristics with C. helgolandicus (Beaugrand et al. 2002a; Beaugrand et al. 2009) but stark contrasts in life history traits predict a stronger effect of metapopulation processes on species responses to environmental change (Kiørboe 2006).
[bookmark: _Toc289481364]Biological Data
CPR samples are collected by the continuous plankton recorder (fig. 1.1), which is towed behind ships of opportunity at approximately 7m depth. It is described in Richardson et al. (2006) but, briefly, water passes though an aperture at the front of the device and is filtered through a continuous roll of silk. This is reeled into a formalin chamber where the samples are preserved. On return to the laboratory, the silks are unrolled, marked and every second sample analysed according to a protocol which has remained unaltered since practices were standardised in 1958. Each sample represents a 3m3 volume of water collected along 10 nautical miles of tow.
Because we were interested in exploring differences in AORs before and after the most pronounced regime shift in the 1980s (Beaugrand 2004b), an area of consistent sampling encompassing both periods was required. However, as a result of the opportunistic nature of the sampling regime there are spatial inconsistencies in sampling of the North Sea pre and post regime shift particularly between the northern and southern areas. These areas vary dramatically in environmental conditions ranging from depth to annual SST trends, Chl a and the influence of Atlantic water inflow. To avoid biases introduced by inconsistencies in spatial sampling distribution pre and post regime shift we focused on the individual route A (fig. 2.1), which was consistently well sampled throughout the entire study period.
Many copepod species perform diurnal vertical migration with highest densities in surface waters (and in the CPR survey) generally being highest during the night (Beaugrand et al. 2001). M. lucens records for example are generally restricted to samples taken at night (Hays 1995). Route A is fortuitously a route consistently undertaken at night and therefore obviates the need to correct for time-dependent sampling biases. Additionally, regime shift detection over large areas is generally statistically challenging and requires examination of trends across sub-regions, which may present regional expressions of larger scale shifts (deYoung et al. 2008). Focusing on a single route simplifies analysis and allows us to examine the long-term local trends in co-occurring species. Our dataset therefore consisted of monthly density counts over 52 years (1958 to 2009) resulting in 4413 data points for each species.
[bookmark: _Toc289481365]Study Area
The study focuses on data from CPR tow route A in the northern North Sea which connects Aberdeen to the Shetland main island (fig. 2.1). The area lies at the northern


[image: Macintosh HD:Users:annakrystalli:Documents:THESIS:ROUTE A:Route A Workflow:outputs:figures:Map.png]Fig 2.1. Bathymetric map of the study area. Black crosses indicate the midpoint location of route A CPR samples (n = 4413) across the study period, 1958 – 2009. Colour intensity represents depth in m.

 boundary of the North Sea, a complex region where various large-scale oceanic forces compete to determine conditions (Turrell et al. 1996). It is an area of high topographic complexity, which strongly impacts on circulation patterns and water mass distribution (Otto et al. 1990) and is directly influenced by the Atlantic inflow. Advection of inflowing Atlantic water is driven by the Fair Isle current and composition of the inflow is dictated by the balance of region-wide oceano-climatic processes (Winther & Johannessen 2006). These exhibit seasonal (Turrell et al. 1992) inter-annual and decadal variability (Edwards et al. 2002). It is therefore and area where diverse water masses meet and mix (Winther & Johannessen 2006). Due to its proximity to the north-western European continental slope, planktonic community composition has also been strongly influenced by well documented northerly extensions of planktonic populations along the shelf’s edge (Beaugrand et al. 2009).

[bookmark: _Toc289481366]Generalized additive models of copepod count time series
CPR count data are inherently noisy, resulting from the sparseness of sampling and the inherent heterogeneity in the distribution of planktonic organisms. To obtain a local time-series for route A, we fitted generalised additive models (GAMs) with negative binomial error distributions and log link functions to CPR count data as a function of two temporal predictors, year and month. GAMs provide an ideal time series modelling framework for CPR data (Beare et al. 2003). They are extensions of GLMs so can handle count data through a number of distribution families and link functions, including the negative binomial which is appropriate when dealing with overdispersion, which is characteristic of CPR data. Rather than modelling the response as a linear combination of predictors however, GAMs relate the response variable to smoothed functions of the predictors. This introduces great flexibility in the definition of the relationship and allows for modelling non-linearities. To capture both seasonal and inter-annual trends in copepod counts, we model the response as a tensor product smooth interaction term of month and year using REML estimation. A tensor product was deemed most appropriate, as the two temporal variables are not isotropic (i.e. they operate on different scales). We used cubic splines as a basis for the inter-annual component and cyclic cubic regression splines, to represent the cyclical nature of the seasonal component.
The flexibility of GAMs is controlled by a combination of the parameter k, which defines the maximum allowed knots in the smooth, and lamda, which controls spline penalisation. Selection of k is rather arbitrary and requires consideration to be set according to the purpose of the analysis. As inter-annual variation in abundance is of primary interest, maximum degrees of freedom were allowed for the inter-annual trend (k1 = 51). However to avoid over-fitting of the seasonal relationship, a search for the optimum k2 was performed for each species over a range of k values. At each iteration of the search, two models were fit, m0 using k2 = ki and m1 using k2 = ki + 1 across a range of values for k = 4:11. The search stopped as soon as an increase in k did not result in a reduction in AIC or significant improvement in model fit, as determined by an ANOVA χ2 test. Once determined, the selected k for each species was used to fit the final time series GAM, which was used to generate monthly predictions across the entire study period (1958 - 2009) resulting in a total of 612 monthly density estimates for each species. We used these in turn to calculate mean yearly local density and yearly temporal occupancy.
[bookmark: _Toc289481367]Calculation of state variables
All analysis on GAM time series outputs were performed on the link scale and therefore represent log densities. Two state variables were calculated, mean yearly local density and yearly temporal occupancy. Occupancy was calculated as the proportion of months of the year occupied by a given species. This required that we first determine the months in the time series that are temporally occupied. As the negative binomial is bounded by 0, GAMs could not predict complete absence. An occupancy threshold of log(0.5) (log(25) for traverse enumerated C. typicus) was therefore set. These values represent the geometric mean between zero and the minimum density ascribed to CPR samples depending on the enumeration procedure (see chapter 3 and Richardson et al. 2006 for details). All months with predicted monthly densities above this threshold were considered occupied. Local density was the mean density across occupied months only for each year. All analyses where performed on GAM outputs on the link scale representing log densities and local density data were mean centred for each species so that intercept terms represent mean occupancy levels at mean local densities for each species.
[bookmark: _Toc289481368]Overall intraspecific AORs
Both count and proportional occupancy data are generally non-normally distributed (Williamson & Gaston 1999) and the potential for non-linearities in the form of AORs is generally high given the effect of factors such as metapopulation dynamics or saturation of the relationship at high occupancies. Nonlinear models such as a logistic model are therefore considered more appropriate (Hanski 1999; Freckleton et al. 2005; Freckleton et al. 2006). We therefore model occupancy as a binomial response variable with log local density as predictor.
First we examined intraspecific AORs across the entire study period. For each species we fit a generalised linear model (GLM) with a binomial error structure using a logit link function of the form:
occupancy ~ local density
We then proceed to determine whether models allowing for underlying heterogeneity in the relationship best fit the data.
[bookmark: _Toc289481369]Regime shift detection
We searched for abrupt changes both in the AOR relationship as well as the individual state variables. To detect a temporal shift in the relationship between occupancy and local density, we fitted a series of binomial GLMs of the form:
occupancy ~ local density * rs.id
where rs.id is a categorical identifier of whether observations are before or after rs, the year under consideration for a potential regime shift. Iteratively varying rs allowed assessment of model fit for a proposed regime for individual years across the study period. To avoid spurious breaks forced by short-term dynamics at the more uncertain ends of the time series, we set a buffer of 9 years at either side of the time series over which the potential for a regime shift was not explored. This resulted in a 34 year window between 1967 and 2000 inclusive. By comparing AICs across all rs models and comparing to the intra-specific models fit to the entire period (ie without allowing for a potential regime shift), we are able to determine whether models including a regime shift best fit the data and also to identify the year identified as describing the temporal heterogeneity in the relationship. Outputs and parameters from the best fitting models were then examined to deduce whether a regime shift in AOR is indicated for any species and the nature of that change.
We then repeated this regime shift search procedure on each state variable (occupancy and local density) individually, by fitting GLMs of the form:
state variable ~ rs.id
and again varying rs across the same time window as the AOR analysis. Final rs models were selected for each variable both for the rs year with lowest AIC but also for the rs year identified in the AOR analysis if different. Binomial GLMs were fitted to the occupancy data while a gaussian distribution was assumed for the log local density data. 

[bookmark: _Toc289481370]Phenology Analysis
To examine whether any identified regime shifts also resulted in changes in species phenology and seasonal density (note the distinction here between density which represents overall density and local density above which represents density of occupied months only) trends between pre and post time periods delimited by any identified regime shifts in a species’ AOR by fitting GAMs to the original data using factor smooth interaction terms of the form:
density ~ s(month, by = rs.id ).
Factor interaction terms in essence fit separate smooths for each factor level with the same degrees of freedom. The outputs of the models therefore represent the seasonal trends in density pre- and post- any regime shift indentified in the AOR analysis. For the form of the seasonal component we used again a cyclic cubic regression spline.

[bookmark: _Toc289481371]Results
[bookmark: _Toc289481372]Time series
Figure 2.2 shows the time series GAMs. The temporal tensor product term is highly significant across species, and models show reasonable fits with values of deviance explained ranging from around 58% in M. lucens to 74% for E. hebes. Diagnostic plots showed adequate fits.
[bookmark: _Toc289481373]Full time series AORs
All species except C. finmarchicus showed positive overall intra-specific AORs (fig. 2.3, table 2.1) with interesting inter-specific variability arising in both the form of the relationship and in species distribution in AO space. There is a clear distinction between the distribution in AO space of the smaller C. typicus and the larger species. C typicus occupies a distinct high end of the observed local density scale, the mid to lower range of occupancy and shows the second greatest effect of local density on [image: Macintosh HD:Users:annakrystalli:Documents:THESIS:ROUTE A:Route A Workflow:outputs:figures:Time series.png]Fig 2.2. Time series of mean monthly log density (log ind 3m-3) across the time period 1958 to 2009. Time series were produced by fitting interspecific negative binomial generalised additive models using a log link function to monthly CPR route A data as a tensor product function of month and year, which represents the interaction of seasonal cyclical and inter-annual smooth functions. Outputs are presented on the link scale (ie log scale, solid line) with 95% confidence intervals (shaded) for the five copepod species. The limit of the density axis represents the occupancy threshold below which each species is considered temporally absent.
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[image: Macintosh HD:Users:annakrystalli:Documents:THESIS:ROUTE A:Route A Workflow:outputs:figures:Inter AORs.png]Fig 2.3. Temporal intra-specific abundance occupancy relationships (AORs) for five copepod species calculated using outputs of GAM time-series models fit to data from CPR route A across the time period 1958 to 2009. Shaded areas represent 95% confidence intervals. Occupancy was modelled as a function of log local density using binomial generalised linear models with a logit link function. Occupancy was calculated as the proportion of months in the year in which mean monthly density outputs of the GAM time series exceeded a threshold set as the log of the midpoint between zero and each species minimum detectability (50 for C. typicus and 1 for all other species). Local density represents mean monthly density calculated using data from months considered temporally occupied. Local density units are log ind. 3m-3
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Table 2.1 Parameter estimates and model fit summaries of AOR GLM models fit to outputs of GAM time-series models fit to data from CPR route A across the time period 1958 to 2009. For each species, occupancy was modelled as a function of local density, with (rs = pre / post) and without (rs = n) a regime state interaction term and following a binomial error distribution. The best fitting regime shift AOR model was selected according to AIC. Probabilities (p) for rs = n and rs = pre refer to the comparison of parameter estimates to zero and rs = post to the comparison of the post regime state parameter estimate to that of the pre regime state. *** p < 0.001, ** p < 0.01, * p < 0.05. 

[image: :tables & figures:AOR glm table.png]
occupancy and therefore strength in the relationship (after E. hebes). The overall model also explains the second highest deviance (40%) and the smallest relative increase in deviance explained by the best rs models (deviance explained in the overall model was equal to 74% of the deviance explained by the best rs model).
Of the larger species, C. helgolandicus and M. lucens have similar AORs, although C. helgolandicus has a greater range of both local density and regional occupancy (fig. 2.3, table 2.1). The overall models for both these species explained very little deviance (15% and 6% respectively). E. hebes typically had a lower occupancy for a given density but also had the steepest slope indicating the sharpest increases in occupancy for a given change in density, with the model showing a good fit to the data (deviance explained 79%). C. finmarchicus consistently had moderate to high temporal occupancy and spanned the higher end of the observed local density range of the larger species but shows no significant AOR (the model explains only 2% deviance),
[bookmark: _Toc289481374]AOR regime shift analysis
For all species, models incorporating a shift in the relationship showed significantly better fit to the data when compared to overall AOR models without a regime shift (fig. 2.5). Most species show a clear temporal minimum in AIC (fig. 2.5) but years exhibiting additional low AIC values indicate that potentially more than one important shift in AOR dynamics may have occurred in some species. The years identified as rs years varied across species and spanned two decades. The earliest shift is identified in the dynamics of C. finmarchicus in 1975. A decade later, almost concurrent shifts in C. helgolandicus (1983) and M. lucens (1984) are identified and finally, a decade later come shifts in C. typicus (1994) and E. hebes (1997).
AORs varied inter-specifically in strength and shape, between regime states and in the direction of change of the relationship during the regime shift (fig. 2.4). The early shift in C. finmarchicus sees the relationship shift significantly from a strong positive saturating relationship to the most negative relationship observed accompanied by significant drops in local density and occupancy across the two regime states (table 2.2). A similar shift from strong positive to negative but not significant is seen in M. lucens later on. Models for these species show the lowest deviance explained of all rs models and the confidence intervals around the post-rs AOR slope parameter for both these species are wider than those of the pre rs regime state and encompass both negative and positive estimates. Similar relatively wide CIs are also seen on the parameter estimate


[image: Macintosh HD:Users:annakrystalli:Documents:THESIS:ROUTE A:Route A Workflow:outputs:figures:Intra rs AORs.png] 
Fig 2.4. Best fitting intra-specific temporal GLM AORs including a regime shift interaction term for each species.  The interaction term splits each time-series into pre (blue) and post (red) regime shift states. AORs across the entire time series are also shown in grey. Crosses indicate 95% confidence intervals surrounding pre, post and overall means for each state variable. Occupancy represent the proportion of months in each year which were considered temporally occupied and local density represents yearly mean density calculated across temporally occupied months only (log ind 3m-3)
[image: Macintosh HD:Users:annakrystalli:Documents:THESIS:ROUTE A:Route A Workflow:outputs:figures:AIC DP rs.png]
Fig 2.5. Individual state variable GLM model AICs fitted to each variable as a function of a two state (pre/post) categorical interaction with the regime shift year in the model iteratively varied as per the AOR analysis across the time period 1966 – 2001. Occupancy models were fitted as binomial GLMs and local density models (log ind 3m-3) were fitted as gaussian. Vertical lines identify the regime shift year associated with models with minimum AIC for each species and state variable. Regime shift years identified through the AOR analysis are also shown in green.

Table 2.2 Parameter estimates and model fit summary of best fitting (as judged by AIC) individual regime shift state variable models (min.id = AO). Each demographic parameter was modelled as a function of regime state (ie pre : post), occupancy models used a binomial error distribution and local density models (which are on the log scale) a gaussian distribution. Individual demographic parameter models were also fitted using the regime shift year identified by the AOR regime shift GLMs (min.id = AOR). . *** p < 0.001, ** p < 0.01, * p < 0.5. [image: :tables & figures:AO rs glm table.png]
of the post rs regime in the individual state variable analysis (table 2.2). All this points to the majority of the uncertainty in AORs of these species being associated with the post-rs states.
A year prior to the M. lucens regime shift, a distinct shift in the dynamics of C. helgolandicus was detected. This involved a modest but non significant strengthening of the relationship accompanied by a large step increase in intercept (table 2.1). Overall, the two regime states for C. helgolandicus occupy very distinct areas of AO space (fig. 2.4d), with the post-rs state being characterised by significant increases in both local density and occupancy (table 2.2, fig. 2.4d) concentrated in the top end of the range of overall values over the full study period. The large CIs around the slope parameters signify that within regime states, the AOR is highly variable and not significant and the significant intercept suggests that the main variability between regime states is that of distinct shift in temporal occupancy states.
C. typicus shows increases in the AOR slope and means of the two state variables (table 2.1 and 2.2) but again, due to increased variability during the post-rs period as indicated by wider CIs, only the shift in occupancy was significant and the interaction with regime state of the AOR shape was not. Regime state also explained very low deviance in the examination of temporal changes in the individual variables. Despite the non significance of the interaction term in the AOR model, the rs model nevertheless explained more deviance than the overall model (tables 2.1 and 2.2).
Examination of the temporal dynamics of E. hebes show that the time series documents the species’ invasion and establishment in the region in the late 1990s after a long period of virtual absence from the community (fig. 2.2). Comparisons between AOR parameter estimates should be interpreted with caution as the rs model in fact includes an initial invasion event into the area in the pre rs regime state (figures 2.5 and 2.6). The pre rs AOR is therefore a combination of a large concentration of time points registering complete absence of the species and the data associated with the preliminary abundance peak. These data cause the sharp steepening of the relationship close to the occupancy threshold, and AOR variability is primarily in terms of occupancy. The post rs state represents a period in which the population becomes more established and resulting in the largest post rs increases of all species in both local density and occupancy (table 2.2). The post rs AOR is moderate and positive (table 2.1) but with large confidence intervals encompassing both negative and positive values, which likely also relates to the small sample size of the post-rs period.
[image: ::Route A Workflow:outputs:figures:DP Timeseries.png]
Fig 2.6. Time–series of individual state variables for all five species, local density (log ind 3m3) on the left panels and occupancy on the right. Regime shift years identified by local density (blue), occupancy (yellow) and AOR GLMs are also indicated. Occupancy models use a binomial error distribution and local density models a gaussian distribution




[image: :::Route A Workflow:outputs:figures:global Timeseries.png]
Fig 2.7. Time series of global density (log ind 3m-3), which the product of occupancy and local density, for all five species, Regime shift years identified by local density (blue), occupancy (yellow) and AOR GLMs are also indicated. 

[bookmark: _Toc289481375]State variable regime shift analysis
A wider range of rs years was detected in the rs single state variable models (figure 2.6) and all showed significant differences in both local density and occupancy across all species for the rs years identified through AIC. Species show great variability in the set of rs identified years for the state variables, the sequence in which the shifts occur and the direction and magnitude of change. Most species’ state variable rs years were distinct from each other and from AOR rs years, but for some species, state variable model AICs show notable troughs in AIC concurrent with the rs years identified in the other variable (e.g. E. hebes, C. typicus; fig. 2.6) or the AOR (e.g. C. helgolandicus) suggesting links in the dynamics of the two state variables. Again AIC plots suggest potentially more than one natural break in the time series of the variables.
Overall strong relationships resulting from declining population trends are characteristic of periods during which almost concurrent shifts in both variables occur (e.g. C. finmarchicus, M. lucens pre regime shift) while time periods in which positive increases in density are detected (e.g. C. helgolandicus post regime shift, C. typicus) are usually marked by a regime shift driven by a shift in occupancy, with a resulting shift in local density following later if at all.
As previously noted, E. hebes colonisation appears to unfold with an initial invasion event in the early 1990s seen as small preliminary peaks in both occupancy and density (figure 2.7). The concurrent regime shifts in occupancy and local density in 1996 are closely followed by the AOR rs in 1997 and similarly mark the transition into a more established regime characterised by sharp increases in both state variables.
While C. helgolandicus and M. lucens share the same AOR rs year, they show very different trends in individual variables. For C. helgolandicus, the fact that occupancy and AOR rs years coincide (fig. 2.6) lends further evidence that the differences between regime states in this species is mainly in terms of occupancy which is also clear in figure 2.6. It was almost 2 decades until a significant but modest shift in local density was detected. Local density models generally explained less deviance than occupancy models in both AOR and state variable rs years, particularly for the AOR rs year, while splitting the time series by the AOR rs year resulted in only modest but nevertheless significant differences in local density across regime states.
In contrast, both M. lucens state variable rs models identify the late 60s as a pivotal period in individual state variables, preceding the AOR rs year by nearly two decades. The state variable regime shifts seem to be driven by an early period of consistently higher abundance and occupancy at the beginning of the time series. Interestingly, by splitting the time series at these earlier rs years, both models attribute significantly lower local density and occupancy to the much longer post rs period.
C. finmarchicus state variable rs models detected an earlier drop in density in 1967, preceding the 1975 AOR shift, by which time the difference in density between the two states was reduced. In terms of occupancy, C. finmarchicus appears ever present in the first decade of the time series, a state which begins to change in 1967 with regular drops in occupancy appearing throughout in the time series (figure 2.7). The AOR rs year seems to define a post rs state of more unstable conditions while the most pronounced drop in occupancy doesn't occur until 2005.
Finally, C. typicus shows an early modest shift in density in 1969, with a modest increase in occupancy occurring concurrent with the AOR rs in 1995. Splitting the local density model at the AOR rs year shows only small but still significant differences between the two rs states. The state variable models however explained very little deviance (table 2.2).

[bookmark: _Toc289481376]Phenology rs analysis
Seasonal trends associated with pre- and post- regime states identified in the AOR analysis are shown in figure 2.9. C. finmarchicus and C. helgolandicus occupy a similar part of the year, exhibiting classic seasonal peaks in abundance during spring and autumn. They vary however in the relative dominance of each peak and in their change during the regime shift. C. finmarchicus show equal distribution of density throughout the two peaks prior to the regime shift but a relative reduction in the importance of the autumn peak. For C. helgolandicus however, the autumn peak remains most important across both regime states. A notable increase in the density associated with the spring peak however is observed post regime shift.
Phenology models including a regime shift for E. hebes exhibited extremely wide confidence intervals and poor model fit. It does not seem sensible to seek differences between the two states identified as a result of the pre regime signal being swamped by the extended period of complete absence from the area during the pre-rs state. We therefore refit the model to data post 1990 when the species first appeared in the community. The species exhibits a single peak period in abundance in autumn and complete absence from the water column throughout the rest of the year.
M. lucens seasonal dynamics are characterized by an early spring peak in April, reduced abundances during early summer before increasing again into the main peak in abundance throughout autumn. The main change post- regime shift is a more gradual increase and sharper decrease in abundance during the main autumn peak.
Finally, C. typicus seasonal trends consist of a single and temporally limited peak of high density in late summer/early autumn with much uncertainty however associated with the density at the height of the peak. Post regime shift changes involve a temporal widening of the extent of the peak and higher maximum densities. However the wide confidence intervals surrounding the post regime shift smooth means there is much overlap in peak density estimates between the two regime states.
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Fig 2.9. Differences in mean species annual phenology between pre- and post- regime states.  Seasonal smooths fitted to observed data for the pre and post regime shift (rs) time periods identified by the AOR GLM analysis using negative binomial GAMs produced mean monthly estimates of density for each species and each regime state. Regime shift years identified for each species are indicated. Shaded areas represent 95% confidence intervals. Note that C. typicus plots are on a different scale resulting from the higher occupancy threshold. 
[bookmark: _Toc289481377]Discussion

In this study, we document the first inter-specific AORs in copepods over a 52 year period and in a region affected by large scale climate induced biogeographic shifts, and abrupt dynamic reorganisations of the system. Our analysis has allowed us to examine the macroecological behaviour of populations in different parts of their ranges and in response to different range trajectories. Further, searching for breaks in the relationship has allowed us to detect underlying temporal heterogeneity in species’ large-scale population organisation, providing macroecological evidence of regime shifts. We found significant positive relationships in four out of the five species over the time period examined but also significant underlying heterogeneity. Regime shift models provided better fit to the data and therefore shifts in regional population dynamics are implied in all species. When broken down into distinct time periods, a much greater variability in the form and strength of the relationship is seen including periods of strong negative relationships. Species varied in terms of timing and sequence of shifts across AORs and state variables and also in the role of the trend in each parameter in driving global density dynamics and shifts in regional population structure. They also varied in terms of importance of the shift in explaining additional variance. The variety in exact slope, general occupation of AO space and in temporal decomposition of the relationship indicates that the positive relationships observed reflect differing regional population organisation and dynamics.
C. helgolandicus and M. lucens show similar trends in long term AOR slope, their AOR regime shifts are only a year apart and they broadly overlap in AO space with M. lucens being more restricted on both dimensions. Their slopes indicate moderate synchrony in occupancy and local density trends throughout the study period. However, the contrasting decomposition of the relationship (fig. 2.5) and trajectories of occupancy, density (fig. 2.7) and regional population size (fig. 2.8) indicate clearly contrasting temporal dynamics in the two species. Weak relationships are found in C. helgolandicus during both regime states and there is no significant change in slope during the shift which appears to be driven by increases in both state variables. This seems consistent with expectation of species nearer the range core to quickly saturate all available habitat, decoupling any further changes in abundance from occupancy (Freckleton et al. 2005) and could underlie the greater resilience of core populations to environmental fluctuations (Beaugrand et al. 2013). In contrast, during the period prior to 1984, M. lucens trends are characterized by steep and correlated declines in both state variables mirroring the dynamics of C. finmarchicus. The relatively strong relationships during this period, in C. finmarchicus the strongest slope after E. hebes, demonstrate the “double jeopardy” discussed by Gaston et al. (2000) resulting from correlated declines in abundance and occupancy during habitat degradation or range retraction and are also consistent with model predictions of AORs under global dispersal and left-skewed habitat quality distribution (Freckleton et al. 2006, fig 1.2a, 1.3a). Both these species are oceanic and depend strongly on advection into the North Sea but are associated with different thermal regimes (Beaugrand et al. 2002a) and sources of inflow. Some of the shared trends in time-series and AORs therefore might reflect their shared dependence on oceanic inflow as a whole, while differences might reflect their dependence on different inflows. Certainly the parallel decline of the two species prior to their regime shifts leads to a time period during which Atlantic inflow was at an all time low (Svendsen et al. 1995; Reid et al. 2003) but this state of decline seems to be precipitated in both species by shifts in state variables in the mid to late 60s, a time period also noted for lower oceanic inflow (Reid et al. 1992). In contrast to C. finmarchicus however, abundance and occupancy dynamics of M. lucens appear to decouple during the post regime shift period accompanied by a small increase in mean temporal occupancy. The weak relationship and return to modest occupancy levels may therefore represent a period during which temporal occupancy is generally saturated at a local maximum.
C. finmarchicus generally showed high levels of occupancy and occupied an extensive range in density spanning the highest portion of the range of the larger copepods. (fig. 2.3). Despite the declines in population status documented here (fig 2.8) and regionally (Planque & Fromentin 1996; Planque & Batten 2000), the species has continued to attain moderate to high temporal occupancy in our study region. The weak overall relationship indicates that the temporal trajectories of density and occupancy have not generally been synchronous, with most of the variation being in terms of density. The broad geographic span of the regional population and high dispersal rates may lead to consistency in the temporal supply of C. finmarchicus, However, as indviduals are annually advected into the North Sea after emergence from diapause at the copepodite stage from a number of sources, it seems reasonable to expect than local densities at a given point in time and space are the result of conditions at overwintering grounds and those encountered during the particular advective history of cohorts (Gurney et al. 2001; Speirs et al. 2004; Speirs et al. 2005). The weak relationship observed overall could therefore reflect bimodality in habitat suitability (Freckleton et al. 2006). Bimodality may arise on decadal scales from contrasting thermal regime states and threshold dynamics in local hydrodynamic forcing. Such large-scale non-linearity in habitat suitability certainly has been detected in the region in the form of a biogeographical critical thermal boundary (Beaugrand et al. 2008; Beaugrand 2009).
Although the possibility that population processes became important as M. lucens and C. finmarchicus declined cannot be excluded, overall, AOR patterns in the three species discussed seem to generally support global dispersal and a habitat-filling model of population structure in which differences in AORs primarily reflect differences in the relative distribution of habitat suitability (Freckleton et al. 2005). However we also find evidence of metapopulation processes which seem to vary in importance according to range position. Our results indicate that the importance of such processes increases near range edges, and reveal the contrasting dynamics between expanding (eg E. hebes) and retracting (eg C. finmarchicus) range fronts. For example, the strongest positive slopes were observed across all models in the colonising species E. hebes and are consistent with empirical observations of invasive species (Buckley & Freckleton 2010), although the wide confidence intervals around the regime shift model parameter estimates suggest the overall model is probably the best descriptor of E. hebes dynamics. The strong positive association between occupancy and abundance, low initial densities and early susceptibility to population collapse (fig. 2.6) are indicative of positive density dependence and high demographic stochasticity and confirm the importance of metapopulation processes to the dynamics of colonizing species (Sakai et al. 2001).
A contrasting example of population processes affecting the relationship between density and extinction probability is found in C. finmarchicus. The AOR regime shift marks a change to a strong negative relationship (fig. 2.4, table 2.1). Negative relationships arise when mortality probability is disproportionally high for low density populations with their extinction leading to decreases in occupancy but concurrent overall increases in mean local density. Such patterns have been observed in northern cod stocks declines in which the frequency of high-density tows remained constant whilst all lower density tows declined (Hutchings 1996) and are consistent with the prediction of a number of proposed AOR generating mechanisms. One is the interaction between the distribution of core and marginal habitat and density dependent habitat selection (O'Connor et al. 1987) which has been shown to be an important driver of abundance occupancy trends in cod stocks (Blanchard et al. 2005). Others invoke habitat specialization as a driver (Päivinen et al. 2005). What all these mechanisms imply is that the characteristics of environmental patchiness, ie. the degree to which habitat quality is contrasting and the proportion of the two habitat conditions is crucial and negative relationships of AORs are theoretical expectations of populations near critical thresholds (Hanski 1999; Päivinen et al. 2005). The strong and contrasting dynamics underlying the weak long-term AORs captured in this analysis may therefore illustrate the succession in regional population structure as a contracting species approaches it’s range limit.
We also find evidence for metapopulation processes forming an intrinsic part of a species life history strategy. C. typicus and C. helgolandicus time series generally show considerable similarity (fig. 2.8) most likely related to their shared biogeographical association (Beaugrand et al. 2002a; Beaugrand et al. 2009). But differences in both shape of AORs and trends in local density are clearly a result of their contrasting life history strategies. C. typicus occupies a particular AO area, quite separate from the larger species. It is generally found at much higher densities for a given occupancy, characterized by many instances of high but temporally aggregated densities, consistent with high growth potential under favourable conditions and mating limitation at low densities being an important drivers of population dynamics (Kiorboe 2006). C. typicus indeed showed a moderate positive relationship and a critical threshold evident in fig 2.3 as 3.44 on a log density scale which equates to ~ 30 individuals 3m3 = 10 ind m-3. This is somewhat lower than that predicted by demographic models of the effects of mating limitation for that particular strategy (Kiorboe 2006) although adjustment of the model to reflect the much higher fecundities of the Centropagoidae and the existence of resting stages would likely bring that theoretical threshold down. The high growth potential associated with the species “current income” life history strategy (Varpe et al. 2009, Halsband-Lenk et al. 2004), is only maximised when temperature, food and mate availability is high and they are often food limited in the North Sea (Lindley & Reid 2002). All these factors lead to the requirement of strong aggregations matching strongly aggregated suitable habitat for successful population growth to ensue. The species also had the best fitting of all overall models with a much smaller increase in variance explained by the regime shift model. Increases in local density between AOR identified regime shifts have been limited and non significant and both trends in global density (fig 2.7) and rs years are driven primarily by trends in temporal occupancy. These findings suggest that the adaptability of C. typicus to longer term variability through changes in regional population structure might be limited, in particular by the maximum average temporal density the population is able to attain. Additionally it is reflective of the behaviour of stochastic demographic models confronted with density dependence. When growth is regulated by positive density dependence at low densities and negative density dependence at high population densities, the long-term growth rate is often zero, and perturbations to vital rates generally do not change this long-term behaviour (Boyce et al. 2006). This indicates that having strong adaptation to confined periods environmental variability patterns might represent a trade off against adaptability at longer temporal scales, a notion we explore in Chapter 4. Therefore, a full understanding of density dependence and population dynamics requires a good knowledge of life-history responses to population density (Bassar et al. 2010; Courchamp et al. 2009).
Overall, species fluctuations in occupancy spanned a much wider range than that found in birds (Webb et al. 2007) or plants (Buckley & Freckleton 2010) and were more consistent with occupancy ranges observed in fish (Fisher & Frank 2004). As a result of higher dispersal, fecundity, growth rates and juvenile mortality rates fish populations exhibit a wider distribution of abundance and occupancy in time compared to birds and also increased temporal variability (Fisher & Frank 2004; Webb et al. 2011; Blanchard et al. 2005) and the dynamics observed in this study seem to agree with these patterns. While this may arise in the differing definition of occupancy in our study, we propose that it is more likely related to the more dynamic processes determining spatio-temporal distribution in marine systems. Additionally, declining species of birds and plants have generally been associated with weaker slopes compared to increasing species (Webb et al. 2007, Buckley & Freckleton 2010) and the condition of rarity and small population sizes which is often the focus of “double jeopardy” considerations generally exacerbates this trend (Webb et al. 2007). Again the slopes found in copepods are more consistent with those observed in fish, where significant positive intraspecific relationships were associated with strong temporal population trends regardless of the sign of the change (Fisher & Frank 2004). These finding support a notion that the trajectory of colonization and extinction might differ between the two realms and that the processes of colonization and extinction might differ less in the marine environment. Differing roles of abundance and occupancy in the processes of colonization and extinction are also indicated in our system. Examination of patterns in individual state variable regime shifts indicate that strong relationships associated with declining populations are initiated by almost concurrent shifts in both variables (eg. C. finmarchicus and M. lucens pre, fig 2.7) while increases in density (eg. C. helgolandicus and C. typicus post, fig 2.7) are generally initiated by changes in occupancy.
The wide interspecific variability in years identified as breaks in both AOR and individual parameter analyses reflect the varied relative importance of driving factors for individual species. However, there is some consistency around specific time periods over which significant changes occurred. These time-periods and the general trends identified in our analysis are consistent with a wide body of literature which has detailed decadal fluctuations of environmental and biological parameters in the North Sea and the wider North Atlantic characterised by abrupt ecosystem shifts (Edwards et al. 1999; Holliday & Reid 2001; Edwards et al. 2002; Beaugrand 2004b; Weijerman et al. 2005; Beaugrand 2009; Beaugrand et al. 2014). Overall, they agree with thermal niche theory predictions in relation to climate-driven abrupt community shifts, namely that species response are individualistic and dependent on interspecific thermal niche characteristics, the initial thermal regime and the magnitude of the thermal shift (Beaugrand 2014). The variety of AOR patterns during regime shifts also clearly demonstrate that regimes can be highly dynamic and don’t necessarily represent stable states (Scheffer & Carpenter 2003).
Our analysis also highlights the role of biogegraphic shifts in the distribution of adaptive characteristics. In C. helgolandicus the earlier peak in late spring appears to have become more important through the study period (fig. 2.9) a pattern reflected regionally (Bonnet et al. 2005). An earlier spring peak in this species is generally associated with the phenology observed in populations to the west of Scotland (Bonnet et al. 2005). Therefore the extension of C. helgolandicus temporal occupancy appears to be the result of increased supply to the area of congers with differing phenological cycles. This has also allowed an increase in mean local density and highlights the importance of considering the transport of adaptation, particularly phenological adaptation, when predicting responses to climate change.
Overall we demonstrate the benefits in testing theories and predictions in systems with different structural and dynamic characteristics (Kerr et al. 2007) and how some theoretical advances mechanistically linking habitat distribution and population dynamics to emergent forms of AORs (Freckleton et al. 2005; Freckleton et al. 2006) can be usefully applied to understand empirical AORs, and the changes to the macroecological structure and dynamics of the populations implied by identified heterogeneities. AORs can be combined with other theoretical frameworks pertaining to explain large-scale responses of populations to temporal environmental variation, through biogeographic redistributions (Beaugrand et al. 2013) and abrupt community shifts (Beaugrand 2014), to strengthen understanding and prediction of macroecological behaviour (Mokany et al. 2012; Kerr et al. 2007). Our analyses also demonstrate the potential of AORs for detecting the strength of metapopulation processes throughout species ranges. Such approaches could find practical application in improving species distribution modelling. There has been great interest in predicting biogeographic responses to climate change, and current efforts generally call for greater incorporation of demographic processes, particularly at species edges (Schurr et al. 2012). Determination of AORs throughout a species range and under varying environmental conditions could help incorporate Allee effects and positive density dependence which are generally harder to parameterise in more process based dynamic range models (Schurr et al. 2012). Finally, we have shown that taking such a macroecological approach to regime shift detection can not only bolster evidence of regime shifts while also allowing identification of changes in large-scale population organisation, patterns in population state transitions and processes that might be affecting dynamics during different regimes. They also highlight the importance of searching for heterogeneity in macroecological patterns as important short-term dynamics might otherwise be obscured by long term examinations (Fisher et al. 2010). Finally, to determine whether the patterns observed in this study are reflected more broadly, statistical links between life history characteristics and range position could be sought by expanding this approach to a larger number of species (eg. Webb et al. 2009, Buckley & Freckleton 2010).
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[bookmark: _Toc289481379]Abstract
Data from the Continuous Plankton Recorder survey have been fundamental to our evolving understanding of the ecology of marine pelagic ecosystems across multiple spatial and temporal scales. However, issues relating to sample configuration and spacing limit the scale at which standard interpolation methods can resolve underlying spatial structures. As a result, the role of meso-scale processes and hydrographic structure, critical to plankton dynamics, cannot be adequately assessed. High-resolution satellite observations and methods developed to detect hydrographic structure from satellite maps provide information highly relevant to the determination of finer scale plankton spatial distributions. We make use of such data by employing Species Distribution Modelling machine learning techniques to produce high-resolution (1km2) maps of the distribution of five Calanoid copepod species across the North Sea. Performance of our models is comparable at coarse grain to current interpolation methods and capable of reproducing known biogeographic and seasonal patterns of distribution. At the fine scale, our model outputs reveal detailed meso-scale spatial structure consistent with known patterns of circulation and pelagic spatial structuring. Such gains in resolution have wide applicability in efforts to understand how finer scale spatial structures and processes drive pelagic ecology.
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The integration of patterns and processes across temporal and spatial scales forms an important yet challenging ecological endeavour (Dungan et al. 2002), requiring datasets extensive in both dimensions. Large scale, long-term monitoring programmes thus present a major opportunity to progress ecological understanding (Fisher et al. 2010), their value increasing as accumulating data begin to capture structures and natural phenomena at increasing spatio-temporal scales (Edwards et al. 2010). The Continuous Plankton Recorder (CPR) survey represents one of the longest running and most spatially extensive marine biological monitoring programs in the world (Richardson et al. 2006) and has been fundamental to our evolving understanding of the ecology of marine pelagic ecosystems across multiple spatial and temporal scales (Edwards et al. 2010). CPR data have been used to explore the temporal and spatial dynamics and interactions of planktonic taxa (Planque et al. 1997, Kirby 2006, Leterme et al. 2005, Pitois et al. 2012), including links to commercially important fish stocks (Reid 2000; Corten & Lindley 2003); to identify biogeographic patterns and associations (Beaugrand et al. 2001; Beaugrand et al. 2002a); to characterise copepod macroecological niches (Beaugrand et al. 2007; Helaouet et al. 2007); and to identify ecological drivers and their links to systemic change and reorganization (Planque & Taylor 1998; Edwards et al. 2002) with particular focus on observed and potential future responses of the system to climate change (Beaugrand et al. 2002b; Beaugrand 2003; Beaugrand 2009). 
Despite the extensive spatio-temporal coverage and the relatively high quality of the data due to a consistent protocol, the opportunistic nature of the survey has resulted in highly non-random spatial distribution of sampling effort, including shifts in spatial configuration and intensity of sampling over time. Most large-scale analyses therefore require spatial interpolation of observed data (Beare et al. 2003; Beaugrand et al. 2003). The interpolation methods applied to CPR data to date (Beaugrand et al. 2003; Beaugrand & Ibañez 2002) make use of the fact that ecological processes are inherently spatial (Levin 1992) and therefore the value of ecological parameters are generally more similar at locations which are closer together. The decay of similarity as a function of distance in geographical space represents the spatial structure (autocorrelation) of a variable and can be used to assign influence to sampled datapoints according to their distance from the locations being predicted. Thus, missing values are simply assigned a distance-weighted average of values from sampled locations within a set radius.
The distributions of planktonic organisms are notoriously patchy (Mackas et al. 1985), with strong spatial structuring across multiple scales emerging from the interaction between endogenous (e.g. species specific metabolic, growth, reproduction and dispersal rates) and exogenous (environmental heterogeneity) drivers. Furthermore, these drivers might have varying temporal and spatial structures and may interact in non-linear ways (Wagner & Fortin 2005). However, approaches attempting to model this spatial structure and to use this to inform spatial interpolation of CPR data suffer from a number of issues arising from a combination of characteristics of the dataset and of planktonic spatial structures. These in turn impose limitations on the potential of CPR data to expand our understanding of plankton spatial ecology.
First, the spacing and density of the original data imposes a limitation on the scale at which the underlying features of a spatial process can be resolved (Kravchenko 2003), constraining the maximum resolution of analyses and therefore inference (Dungan et al. 2002). These limits have resulted in previous macro-scale CPR analyses being confined to grain sizes of 1o (~111 latitude x ~55 longitude km at Noth Sea latitudes) or larger. Therefore, perception of the patterns and processes inferred from CPR data are based on large grain sizes, and analyses of CPR data have probably been most successful in exposing large-scale patterns and processes. However ecological pattern and process does not consistently scale homogeneously (Peterson 2000; Blackburn & Gaston 2002). The importance of accounting for local variations, particularly in response to environmental heterogeneity is thus emerging (McGinty et al. 2011; Llope et al. 2011). Empirical (Mackas 1984) and theoretical work (Lévy & Klein 2004; Bracco et al. 2009) consistently identify the mesoscale (10 – 500 km) as an important component of spatial variability in zooplankton distributions, scales which CPR interpolation methods struggle to resolve but which may hold the key to many of the more interesting ecological questions to be asked of plankton, including patterns of coexistence (Bracco et al. 2000; Srokosz & Martin 2003), productivity, and export (Garçon et al. 2001; Resplandy et al. 2012). 
Secondly, models used to represent the spatial structure of the organisms during interpolation are fitted to temporally aggregated empirical observations across the entire study region and applied globally assuming stationarity of the process (Beaugrand et al. 2003). However, planktonic spatial structures have been shown to vary in both space and time, challenging such stationarity assumptions. Inter-annual (Planque & Fromentin 1996), seasonal (Bracco et al. 2009), and regional variation in spatial structures (Planque & Ibañez 1997) have all been observed indicating that the functions used to produce interpolated surfaces may often deviate on a local scale from the true function. 
Environmental heterogeneity is a key driver of this spatial non-stationarity but it poses additional challenges through the large search neighbourhood required to interpolate sparse data. As the search radius increases so does the risk that data points which do not belong to the same group or population will be included in an interpolated estimate (Isaacs & Srivastava 1989). Failing to address sharp discontinuities in environmental conditions can result in oversmoothing of the distribution of spatial variables and loss of important detail (Lobo et al. 1998). In such cases instead of predicting the value of variables at a given location as a function of their proximity to observed data, the ecological reality of environmental gradients and discontinuities might be better integrated into analyses by instead considering environmental similarity between predicted and sampled locations (Hansen et al. 2010).
In the marine pelagic realm, hydrographic structure, in the form of fronts, eddies and filaments, is a key component of environmental heterogeneity; it is strong and variable across multiple temporal and spatial scales and dominated by fluctuations at the mesoscale (Stammer 1997). At these scales, observations and simulations of planktonic spatial structures suggest strong spatial associations with prior or co-evolving habitat structure (Mackas et al. 1985; Lévy & Klein 2004; Bracco et al. 2009) which is expected considering oceanic mesoscale advection processes and planktonic reactions times occur on timescales of the same order of magnitude (Steele 1991). Such temporal coupling leads to a significant interplay between physical and biological dynamics (Bracco et al. 2009).
Coherent hydrographic structures represent barriers to diffusion and affect the ecological structure of the ocean by imposing sharp gradients and discontinuities in the spatial distribution of ecological processes and represents both exogenous and endogenous spatial structuring processes (McManus and Woodson 2012). Because it is also intrinsically linked to seabed topography (Ozsoy & Unluata 1997; Belkin et al. 2009), hydrographic structure is greatest and most dynamic in areas of complex topography such as the North Sea. 
Considering the tight coupling of zooplankton spatial patterns to environmental heterogeneity and hydrographic structure (Boucher 1984; Berasategui et al. 2006; Molinero et al. 2008) and the dynamic nature of the latter, incorporating information on the spatial distribution of pertinent environmental predictors into interpolation procedures could be highly fruitful. This is now feasible as ocean observing systems have resulted in the accumulation of spatially and temporally comprehensive remotely sensed datasets at high spatial resolutions (1 km2) (Manderson et al. 2011). In addition to more traditional indicators of habitat quality such as sea surface temperature and chlorophyll a concentration, algorithms have been developed which can detect sharp discontinuities in the distribution of a given variable producing maps of “frontal intensity” (Miller 2004; Miller 2009) which act as a proxy for hydrographic structural intensity and persistence. Debates around the superiority of modeling spatial or environmental dependency highlight important considerations (Elith & Graham 2009), and spatial interpolation methods can outperform environmental predictors across well sampled areas for some mobile species (Bahn & McGill 2007; Franklin 2010). Nonetheless, we believe that the limitations of spatial interpolation of CPR data indicate that it may not provide the most accurate representation of zooplankton spatial distribution. In particular, failure to incorporate fine scale structure and smoothing across discontinuities can obscure patterns of abundance and thus population dynamics, and can result in misleading estimates of key ecological parameters such as primary production (Dadou et al. 1996).
Here, we adopt a Species Distribution Modelling (SDM) approach to address these shortcomings. The development and use of SDMs has increased rapidly in order both to predict where species currently occur, and where they are likely to move to in response to environmental change (Guisan & Zimmermann 2000; Franklin 2010; Elith & Leathwick 2009). Typically, SDMs correlate records of species occurrence with multiple environmental variables, often derived from remote sensing. This mapping of occurrence data to a multidimensional environmental predictor space is then used to project modeled species occurrence or abundance into geographical space (Guisan & Zimmermann 2000). In this study, we use machine learning methods and extensive environmental data to derive SDM models with very fine temporal and spatial resolutions for five species of copepods in the North Sea. We extend recent work which used CPR data to produce static maps of phytoplankton group dominance (Raitsos et al. 2008), and capture much finer scale spatio-temporal dynamics relevant to copepod populations (Otto et al. 1990) by incorporating hydrographic structure and retaining the high resolution of the environmental data in our models. In a further methodological development, we also directly model the categorical abundance measures employed by the CPR survey. We conduct a formal comparison of our SDM approach to environmentally-informed spatial interpolation with existing simple distance-based approaches, and discuss the implications for fine scale analysis of abundance and distribution patterns of these key players in marine ecosystem dynamics.
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The North Sea (51-61N by 4W-11E) is the most important commercial fishing region in the EU (Mardle & Pascoe 2002), has the most dense coverage of CPR data, and the ecology of the region has been well studied. The North Sea can be subdivided into 3 broad biogeographical regions defined primarily by their bathymetry and associated hydrographic properties (Otto et al. 1990, fig.3.1a). The shallow (20-40 m) well mixed south-eastern region has a neritic character, is greatly influenced by continental run-off and heat exchange with the atmosphere and is separated from the seasonally stratified waters to the north by the Flamborough frontal structure, evident in fig.1b. The northern North Sea is generally deeper (>150m), but with a complex bottom topography dominated by the deep intrusion of the Norwegian channel in the east. It is the principal site of oceanic inflows, and represents the centre of distribution of many oceanic copepods advected into the North Sea, those of more boreal origin to the east (Heath et al. 1997) and more temperate origin to the west (Reid et al. 2003). Between these two contrasting regions lies the transitional central North Sea in which water masses of various origins meet. These biogeographic regions vary in terms of strength of association of different copepod species (Fransz et al. 1991). They are not however equivalently sampled by the CPR survey, with relatively low and highly spatially restricted sampling of the northern North Sea, large portions of the central North Sea remaining unsampled and the densest sampling being concentrated in the southern North Sea. Differences in environmental and hydrographic characteristics of each region undoubtedly introduce non-stationarity in copepod spatial structuring processes and combined with sampling biases, raise concerns as to the extent simple spatial interpolation procedures can accurately reproduce copepod distributions. 
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Copepods represent important links in marine food webs, being important consumers of primary production, comprising up to 80% of mesozooplankton biomass (Kiørboe 1998), and representing important prey items of higher taxa including important fish stocks. Here we have chosen to model the distributions and abundances of five copepod species representing a range of ecological strategies and biogeographic affinities (Beaugrand et al. 2002a). The larger Calanus helgolandicus and the smaller Centropages typicus belong to the same pseudo-oceanic shelf sea association while Temora longicornis, also a relatively small species, is associated with neritic conditions. Calanus finmarchicus and Metridia lucens are both large oceanic copepods advected into the northern North sea. The presence of C. finmarchicus is taken to indicate boreal influences while that of M. lucens indicates Atlantic water of a more temperate origin (Fransz et al. 1991).


Figure 3.1. Examples of maps of predictors used in the SDMs. a) Bathymetry across the study region, showing 50m contours. b) Temperature front map representing a combination of front intensity and persistence. c) Map indicating whether pixels lie on the high or low side of Chla fronts. Satellite data are for May 2000. 
[image: :Figures:Figure1.png]


[bookmark: _Toc289481384]Data
Copepod Distribution and Abundance
Biological data generated by the Continuous Plankton Recorder survey were provided by the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) (Johns 2011) for the years 1997-2010 covering the whole study region amounting to a total of 14,070 CPR samples. The timeframe that could be considered was limited by the temporal availability of satellite data used as an environmental predictor (see below), which is only available after 1997. The sampling procedure is detailed in Richardson et al. (2006) but briefly, standard CPR devices are towed by ships of opportunity at a constant depth of c. 7m, with organisms collected on a continuous band of silk. The silk from each tow is subsequently sectioned into individual samples representing 10 nautical miles (18km) of tow and 3m3 of water filtered, and for each section organisms are identified to an appropriate taxonomic level and counted. The abundance of each recorded taxon is scored according to a 12 point ordinal scale (see Richardson et al. 2006 for details) each of which is associated with an ‘accepted value’ of the approximate actual number of individuals present (Rae & Rees 1947). CPR abundance data are thus generated as ordinal variables but have generally been converted back to a continuous abundance scale using the accepted values. In this study, we model CPR abundances directly in the way in which they are collected, i.e. as an ordinal variable. We have also attempted to correct for the irregularity in the width of the original CPR abundance categories (ACs) by aggregating some of the categories, resulting in the 5-point scale (plus 0) shown in table 3.1. This aggregation significantly improved model performance, in part due to the unwarranted precision, in terms of regional population size, that would be introduced into our models by separating densities of 1, 2 and 3 individuals; and is justified by the fact that even crude ordinal categorisations of continuous distributions are capable of retaining signal which can be extracted through integration whilst being more robust to the effects of measurement error (Freckleton et al. 2011).
Environmental Predictors
We selected a suite of 16 environmental predictors that have been associated with abundance and distribution patterns in copepods. A full description of the data characteristics, sources and ecological significance of each of these predictors is Table 3.1. Details of aggregation of original CPR abundance categories into the coarser AC scale used in this study. Original AC composition indicates the original ACs aggregated into each new AC. The updated breaks refer to the abundance ranges associated with each new AC under each of the two enumeration regimes. (E) refers to eye count enumeration of larger copepods (C. helgolandicus, C. finmarchicus, M. lucens) and (T) to traverse enumeration of smaller copepods (C. typicus, T. logicornis). See Richardson et al, (2006) for details.
	Aggregated AC
	Original AC composition
	Aggregated AC breaks

	 
	 
	 (E)
	 
	(T)

	0
	0
	0
	
	0

	1
	1, 2, 3
	1 - 3
	
	50 - 150

	2
	4
	4 - 11
	
	200 - 550

	3
	5, 6
	12 - 50
	
	600 - 2,500

	4
	7, 8, 9
	51 - 500
	
	2,550 - 25,000

	5
	10, 11, 12
	501 - 4000
	
	25,050 - 200,000




given in table 3.2. They include mechanistic drivers which can impact plankton dynamics through direct physiological (e.g. temperature) or resource (e.g. chlorophyll a) limitations, as well as variables that may correlate with aspects of species dynamics, either by representing proxies of more direct but harder to measure drivers or by integrating the combined effect of a number of interacting drivers in a more ecologically relevant way (e.g. North Atlantic Oscillation index). We have also chosen variables that determine species distributions across a hierarchy of scales, ranging from determinants of regional biogeographic distribution, local scale habitat quality and structure and indicators of basin scale dynamics (see table 3.2, fig. 3.2). Data on temporally varying predictors were obtained as monthly composites while the high spatial resolution allowed meso-scale habitat features to be distinguished. Temporal indices (month, year, time) were also extracted from the CPR data and included as predictors in order to account for potential temporal non-stationarity of relationships between species dynamics and predictors. 
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Table 3.2. Details of the predictor variables used in all random forest models
	Abbreviation
	Variable
	Ecological Significance
	Data Details
	Resolution
	Data Source

	Bath
	Bathymetry
	Determinant of large scale biogeographic conditions (eg coastal, neritic, shelf, oceanic) associated with characteristic copepod assemblages (Beaugrand et al., 2002) but also of finer scale circulation, mixing and stratification patterns determining finer scale spatial distribution. An important dimension in the definition of calanoid copepod macroecological niches (Helaouet & Beaugrand, 2007)
	Data derived from a Digital Terrain Model
	Supplied at 0.25o. Resampled to 1 km2
	EMODnet-Hydrography portal (http://www.emodnet-hydrography.eu/). Accessed 31 July 2012

	T
	Temperature
	Physiologically impacts growth, development and reproduction of plankton species (Halsband-Lenk et al., 2002; Hirst & Bunker, 2003), timing cue linked to zooplankton phenological variability (Ji et al., 2010). Indicator of water mass membership and origin ranging from larger scale bigeographic patterns (Beaugrand et al., 2002) to smaller scale patchiness, and has been employed as a key dimension in the definition of calanoid copepod macroecological niches (Helaouet & Beaugrand, 2007; Beaugrand et al., 2007). Determines geographical distribution (Mauchline,1998) and abundance (Lindley & Reid, 2002;) and indicator of dynamic regime of the North Sea (Beaugrand et al., 2004
	Sea Surface Temperature data (AVHRR SST)
	Data supplied as monthly composite maps at 1 km2 resolution. If data were lacking from cloud cover, 4km2 resolution were included where available.
	NEODAAS, Plymouth Marine Laboratories

	Chl a
	Chlorophyll a (Chl a)
	Proxy for phytoplankton standing stock reflecting resource availability which can affect growth and reproduction rates through food limitation (Hirst & Bunker, 2003), timing cue linked to zooplankton phenological variability (Ji et al., 2010). Indicator of water mass membership and origin (Batten & Crawford, 2005) and finer scale resource patchiness which tends towards a patchier distribution than temperature (Mahadevan & Campbell, 2002).
	Chlorophyll a, (SeaWiFS OC 5)
	
	

	SPM
	Suspendeded Particulate Matter (SPM) proxy
	Modulate primary production by influencing light penetration (Cade & Hegeman 1974), Ratio of chl a to SPM can dictate copepod food selection efficiency (Baretta & Ruardy, 1988; Chervin, 1978) and visual predation of fish on copepods.
	suspended particular material proxy (SeaWiFS LW55)
	
	

	Tf
	Temperature front
	Indicate intensity of hydrographic structure. Associated with conditions conducive to high levels of primary production (reduced mixing, elevated nutrients Falkowski et al.,) and aggregation of phytoplankton biomass (Fernadez & Pingree, 1996). Act as sites of passive or active zooplankton aggregation in areas of reduced flow (Franks, 1992; Boucher, 1984; Genin; 2004; Genin et al., 2005, Wishner et al., 2006; Woodson & McManus, 2007) and sites of increased transport resulting in areas of high dispersive strain (Elhmaïdi et al., 2004, Bracco et al., 2004). Persistent structures can restrict recruitment patterns over large temporal & spatial scales (Woodson et al., 2012). Represent ecotones separating discrete water masses of differing characteristics and potentially origins (Sournia, 1994).
	Smoothed versions of Level 4 AVHRR SST composite front maps
	
	Peter Miller, NEODAAS, Plymouth Marine Laboratories

	Chl af
	Chl a front
	Often associated with temperature fronts. Can indicate conditions of high production / aggregation of phytoplankton biomass (Pingree et al., 1975; Fernadez & Pingree, 1996) and as above can act as sites of active and passive aggregation for higher trophic levels. May also represent discontinuities in chl a associated with the edges of blooms and discrete phytoplankton patches (Miller; 2004)
	Smoothed versions of Level 4 SeaWiFS OC 5 composite front maps
	
	

	SPMf
	SPM proxy front
	Indicate sediment front
	Smoothed versions of Level 4 SeaWiFS LW55 composite front maps
	
	

	Tf.dist
	Temperature front distance
	Proximity to sites of aggregation, high resourse concentrations, edges of patches.
	Distance in number of pixels from nearest temperature front
	
	

	Chl af.dist
	Chl a front distance
	indicate hydrographic structure and in particular sites of high production / aggregation of primary production
	Distance in number of pixels from nearest Chl a front
	
	

	Tf.side
	Temperature front side
	Indicate coherent structures of contrasting thermohaline conditions and origins lying either side of fronts which are often associated with distinct plankton assemblages (Clark, 2001; Batten et al., 2005; Berasategui et al., 2006, Molinero et al., 2008)
	Relative qualitative characterisation of whether a pixel lies on the warmer or colder side of a front
	
	

	Chl af.side
	Chl a front side
	Additionally to the influences above, this metrics points more directly to contrasting trophic conditions which may mirror differences in phytoplankton and zooplankton species composition (Bouchet, 1984; Clarke, 2001; Batten et al., 2005)
	Relative qualitative characterisation of whether a pixel lies on the higher or lower chl a concentration side of a front
	
	

	NAO
	Monthly North Atlantic Oscillation (NAO) Index
	NAO represents the major mode of decadal scale variability in hydroclimatic forcing across the North Atlantic (Hurrell, 1995). In the North Sea produces responses in terms of sea surface temperature (SST), seasonal stratification patterns, wind induced inflow, shelf circulation and local climate forcing (Pingree, 2005). Strongly related to abundance and distribution patterns of many copepods (Fromentin & Planque 1996) through ecological effects including the initiation and intensity of spring bloom (Planque & Taylor, 1998), overwintering survival of C. finmarchicus (Heath et al., 1999), and seeding and advection patterns (Planque & Taylor, 1998). Can outperform local climatic factors in predicting ecological processes (Stenseth et al., 2000; Hallett et al, 2004) as plankton respond to the integrated basin scale forcing (Reid & Beaugrand, 2002; Greene et al., 2003) of a wide range of hydroclimatic parameters (Stenseth et al., 2000).
	Principal component (PC) based NAO index (time-series of the leading Empirical Orthogonal Function (EOF) of sea level pressure anomalies over the Atlantic). More optimal representations of the full spatial patterns of the NAO and may be less noisy than station based-indices (Hurrell & Deser, 2010).
	Monthly
	Climate Analysis Section, NCAR, Boulder, USA, Hurrell (2012). Updated regularly. Accessed 25 November 2012.

	NAOW
	Winter NAO
	Effect of the NAO is strongest during winter periods (Pingree, 2005) leaving a long-lasing imprint on surface conditions with ecological influence on the following growing season (Stenseth et al., 2000). For example, winter NAO conditions are considered important for overwintering survival and seeding patterns of C. finmarchicus in spring (Heath et al. 1999), having a large impact on interannual population trends in the North Sea.
	Average NAO index during preceding winter
	Index averaged from December to March and assigned to each timepoint of the successive growing season (Dec - Nov).
	

	year
	year
	Allows for interannual temporal non-stationarity in the relationships between copepod distributions and environmental predictors and incorporation of interannual temporal autocorrelation in dynamics.
	
	
	CPR metadata

	month
	month
	Represesents seasonal variation in the impact of drivers of copepod population dynamics e.g. the relationship of copepod biomass to chl a shifts according to the phase each trophic level is in (Gowen et al., 1998; Srokosz et al., 2003). Seasonal non-linearities in population dynamics as a consequence of phenological shifts in plankton in reproductive/developmental status and in some species, initiation of and emergence from seasonal dormancy (Ji et al., 2010).
	
	
	

	time
	time
	Diurnal Vertical Migration (DVM) from surface waters to depths during daylight is a widespread feature of copepod behaviour (Haney, 1988). Various utilities have been proposed (Steele & Henderson, 1998) including reducing horizontal advection and retention in areas of favourable conditions eg. C helgolandicus (Bonnet 2005, Emsley, 2005). It can have a significant effect on surface patterns of abundance and distribution which can vary spatially (Beaugrand et al., 2001). Critical consideration for some species e.g. M. lucens which are only recorded during darkness (Beare et al., 2003).
	06:00 -17:59 - Day; 18:00 - 05:59 - Night
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Ideally, response and predictor data should be available at the same spatial resolution (Guisan & Thuiller 2005) but as our data did not exhibit such coherence, all data needed to be projected onto a common grid resolution prior to model fitting. CPR data could then be spatio-temporally matched to the gridded environmental predictors. The two available options were to aggregate environmental predictors and CPR data to a resolution that would encompass individual CPR samples (i.e. >18 km2) or to downscale CPR data to match the resolution of environmental predictors (1 km2). As meso-scale dynamics are of particular interest in this study, we have chosen to develop a simple downscaling procedure of CPR data. Such artificial increase in the spatial resolution of the response variable results in pseudoreplication and may introduce noise in associations to predictor variables. However, models trained on whole CPR samples but matched to average values of spatial predictors aggregated across pixels overlapped by each sample showed reduced performance. We therefore proceeded with fitting models at the higher resolution of the predictors. 
Each CPR sample is geolocated only by the coordinates of its central point. Thus, to determine the spatial extent of each sample, the angle of direction θ of each half sample was calculated using the central location and the locations of the previous and following samples in the same tow (fig. 3.2a). Endpoints of half sample vectors were then calculated as the locations at a distance of 5 nautical miles from the central location in the directions previously determined. Where only a single adjacent sample location was available (ie the first and last sample of each tow), the same orientation was used in both directions (fig. 3.2a). Once the endpoints were determined, the full linear extent of each CPR sample was projected onto a grid of the same extent and resolution as the maps of the environmental predictors (1 km2) and the sample AC for each species was assigned to each pixel that the sample overlapped (fig. 3.2b). CPR data 'pixelated' in this way were then spatially matched to the appropriate pixels on environmental data maps (fig. 3.2c). For time-varying predictors (e.g. temperature, Chl a etc), samples were first temporally matched to the appropriate monthly map. The pixelation and matching procedure resulted in a dataset of 230,070 data rows, each row representing the AC for each species associated with each 1 km2 pixel, spatio-temporally matched to the full set of environmental predictors. 

Figure 3.1. Examples of maps of predictors used in the SDMs. a) Bathymetry across the study region, showing 50m contours. b) Temperature front map representing a combination of front intensity and persistence. c) Map indicating whether pixels lie on the high or low side of Chla fronts. Satellite data are for May 2000. 
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Figure 3.2. Matching CPR to environmental data. a) Calculation of endpoints from CPR mid point data. The angle θ was calculated, using package argosfilter, for each line connecting pairs of consecutive CPR samples within a tow. It was then used to project lengths of 5 nautical miles (half the length of tow represented by a single CPR sample) away from sample midpoints in the direction θ, representing the endpoints of samples in that direction. For points at the end of tows, the θ calculated for the preceding midpoint is used to project in both directions. Once all CPR sample endpoints were calculated, they were converted to spatial vectors (psp objects) using the spatstat package. b) Pixelation of projected CPR vector data: These were then projected onto a 1 km2 grid to match the extent and resolution of environmental data again using the spatstat package. The abundance category associated with each original CPR sample was assigned to all grid cells overlapped by each projected CPR vector. c) Environmental data matching: Each CPR pixel data was then spatially matched to the appropriate pixel on the map of each spatial environmental predictor. For temporally varying environmental parameters (e.g. temperature, front intensity etc.), CPR pixels were also temporally matched to the appropriate monthly map according to the date of CPR sampling. The example illustrates the pixelation and matching of a subset of C. finmarchicus CPR data to maps of Tf.side for May 2000. 
[image: :Figures:Tow figures.png]


Species Distribution Models
A variety of SDM modeling approaches exist (Franklin 2010; Elith & Graham 2009) and method selection can influence model performance (Pearson et al. 2006; Araújo & New 2007; Dormann et al. 2008). A formal comparison of the strengths and weaknesses of different modelling approaches is beyond the scope of this work (see (Segurado & Araújo 2004; Elith et al. 2006) for examples), so we have focused on a single method, random forests (RF), which is consistently one of the best performing algorithms (Prasad et al. 2006; Elith et al. 2006; Cutler et al. 2007) particularly when extending prediction to geographically distinct and unsampled areas (Bahn & McGill 2012). Developed by Breiman (2001), detailed descriptions of the RF algorithm and discussions of the method’s merits in ecological research can be found elsewhere (Breiman 2001; Cutler et al. 2007; Franklin 2010; Evans et al. 2011). Here we simply summarise key features of the method and how they contribute to making RFs particularly applicable to the high resolution modeling of planktonic distributions in a dynamic, heterogeneous environment. 
RFs are an extension of Classification and Regression Trees (CARTs) which, as a result of a number of ecologically relevant advantages over classical statistical methods, have gained favour in many ecological applications in recent decades (Franklin 1998; Prasad et al. 2006). CARTs are a method of constructing hierarchical decision rules on the predictor variables by recursive binary partitioning of the data across successive predictors aiming to iteratively minimise some measure of impurity of the resulting partitions in the response variable (Breiman et al. 1984). They can handle mixtures of all types of data (categorical, nominal, continuous etc.) and are non-parametric and free of distributional assumptions and requirement for data transformations (Evans et al. 2011). Of particular relevance to our study, they are able to identify and model non-linear, non-additive, high-dimensional hierarchical interactions (Prasad et al. 2006), can characterise threshold effects of variables quite naturally (Franklin 2010), and are robust to non-stationarity (Evans et al. 2011) and spatial autocorrelation (Hawkins et al. 2007). However, CARTs suffer from three major weaknesses: a tendency to severely over-fit data, sensitivity in the structure of trees to small changes in the data (Hastie et al. 2009), and, as a result of the stepwise nature of the fitting procedure, the final tree does not necessarily reflect the optimal solution.
RFs address these shortcomings in a number of ways. By aggregating prediction across an ensemble of large numbers of CARTs grown on randomly selected subsets of the data RFs remain robust to over-fitting and the effects of outliers and noise (Breiman 2001), and prediction is stabilized whilst still allowing for complex and diverse patterns in the data to be uncovered. The generalization error of RFs is inversely related to the strength of individual trees and directly to the correlation in structure of individual trees. To minimize this correlation, only a random subset of candidate predictor variables is made available at each split. This ensures diversity in the structure of individual trees and counters biases introduced by collinearity in predictor variables.
Because abundance data for all five species in this study are zero-inflated modeling proceeded as a two stage process. For each species two separate RFs were fitted. The first one was an Occupancy (OC) model, modeling species presence or absence as a binary response using the full training data set (see below), followed by a second RF modeling Abundance Category probability (AC) using only data where the species was present (y > 0). Such an approach has been shown to outperform competing models using zero-inflated data (Potts & Elith 2006), and in addition it makes ecological sense to expect that predictor variables do not relate to occupancy and abundance in the same way (Ridout & Demétrio 1998; Barry & Welsh 2002). The size of the ACmod datasets varied for each species according to species prevalence and ranged from ~128,000 pixels in which presence was recorded for C. helgolandicus to ~24,500 for M. lucens. 
The size of each forest was 300 trees at which point plots revealed error rates had converged on the minimum. To address issues of data imbalance across categories of the response variables, data used to grow individual trees were subset using a stratified sampling procedure. Rather than taking a single sample of the entire dataset, 2/3 of the examples of each response category were randomly sampled and compiled. Thus, the frequency of response categories was consistent and invariably represented across subsets, reflecting the frequency distribution in the full dataset. Although more comprehensive methods of tackling data imbalances have been suggested (Chen et al. 2004), performance improvement on rarer classes using stratified sampling as compared to sampling randomly across the entire dataset was substantial. Additionally, artificially balancing the frequency distribution of response categories in subsets supplied to each tree through bootstrapping generally reduced overall performance and introduced considerable distortion in the frequency distribution of predicted categories, particularly through marked inflation of rarer categories. More complex techniques were therefore not further considered.
A useful feature of random forests is that bootstrapping the data at each tree fit and predicting on the ‘out-of-bag’ (OOB) data points is equivalent to an internal cross validation procedure. In our case, however, the pseudoreplication resulting from the pixelation of CPR data as described above introduces high local spatial autocorrelation in the response variable. As a result, the performance of RFs as judged by OOB error rates was extremely high, comparable with testing model performance by predicting on the training data themselves (Bahn & McGill 2012). This emphasises the need to test the model against an external test set (Evans et al. 2011), especially recommended for SDMs where performance measures are influenced by the spatial proximity of test and training data (Bahn & McGill 2012). We therefore performed a sample-independent cross-validation procedure in which the data were split into 5 subsets of approximately equal size, but with each original CPR sample represented in only a single subset. RFs were grown using four of the five subsets and performance of the model was assessed against the retained sample-independent subset. The procedure was repeated 5 times, each time retaining a different subset, so that performance of models was tested over the entire dataset. The results of this assessment were used for all model calibration and performance determination. 
However, in order to retain maximum information, which is particularly pertinent in a machine learning setting, Fielding & Bell (1997) recommend maximising sample size used to fit final models. The loss of information resulting from a reduction in the size of the dataset is illustrated by a comparison of RFs where each tree was grown on a subset consisting of a single randomly selected pixel to represent each original CPR sample to RFs fitted using sample-independent cross validation of the full training set as described above. Evaluation of the performance of both methods was sample-independent, however the much reduced information in the former procedure resulted in decreased performance. Considering that, in any case, any sample independence would be lost in a combined forest of all trees generated through the cross-validation procedure, for our final spatial predictions we repeated the fitting procedure for each model-species combination a single time (without cross-validation), each time using the entire dataset available for each species. 
Model Calibration
Like most SDMs, the presence / absence RFs produce maps of probability of occurrence, so a threshold at which the species is considered present needs to be established. Most commonly the value is set to a default 0.5 (Manel et al. 2001). However, previous work has demonstrated that such a default often leads to poor predictive ability, especially in models of species in which prevalence deviates from 0.5, commonly under-predicting the presence of rare species with low prevalence and inflating the prediction of widely distributed species of high prevalence (Liu et al. 2005; Freeman & Moisen 2008b). Various criteria can be used to optimise selection of this threshold and the choice of criteria, usually dictated by the purpose for which the SDM was developed, can lead to greatly varying threshold values and ultimately model prediction maps (Nenzén & Araújo 2011). To avoid inflated estimates of the prevalence of rare species, we selected thresholds which preserved the prevalence of the original data (Freeman & Moisen 2008b). Optimization procedures for more than two categories are too complex so abundance category predictions defaulted to the category with most votes.

Performance metrics
A wide range of metrics have been developed to assess performance of SDMs. As each measures related but slightly different aspects of model performance, assessments based on several measures are advocated over reporting a single measure (Fielding & Bell 1997). Here, we assess performance using both threshold dependent metrics, calculation of which is based on a confusion matrix, and threshold independent metrics, calculated from predicted probabilities and therefore not dependent on the subjective selection of thresholds (Ferri et al. 2009; Allouche et al. 2006). The area under the receiver operating characteristic curve (AUC) is a threshold independent measure of how well models differentiate between the distribution of classes, i.e. class separability (Hand & Till 2001). It has mainly been applied to binary classification problems but calculation can be extended to a multiclass AUC (mAUC) (Hand & Till 2001), representing average separability of each class from each other class. Ranges in AUC indicate models of low accuracy (0.5-0.7), useful application (0.7-0.9), and high accuracy (0.9-1.0) (Swets 1988). It is considered a highly effective measure, independent of prevalence (Manel et al. 2001; McPherson et al. 2004) and able to capture distinct information from other measures (Ferri et al. 2009).
Given our aim of producing distribution maps, threshold dependent measures quantifying prediction error once class probabilities have been converted to class predictions are also required. The most common and simplest threshold dependent measure is overall prediction success (OPS), which is the percentage of all cases correctly classified. However this can often mask poor model performance on rare categories (Fielding & Bell 1997). Another widely adopted measure is Cohen’s kappa (κ, Cohen 1960) which describes the degree to which agreement between observed and predicted values is higher than that expected solely by chance (Liu 2009). Values range from -1 to +1 with negative values indicating poorer than chance performance, zero indicating chance agreement and +1 indicating exact agreement of model predictions with observed data (Fleiss & Cohen 1973). A useful extension of κ for evaluation of ordinal data is the weighted κ measure, κW (Cohen 1968). Contrary to κ which only considers matches on the main diagonal of a confusion matrix, κW quantifies the ‘cost’ of the deviation of prediction by including the weighted contributions of off diagonal elements according to their distance from the diagonal (Ben-David 2008). For example, predicting an AC of 2 when the observed AC was 1 would incur a much smaller penalty than if AC 5 was predicted. Therefore, κW combines the frequency and magnitude of misclassification into a single measure. Here we use a quadratic weighting scheme, which equates to calculating the Intra Class Correlation (ICC) (Fleiss & Cohen 1973).
Despite it’s popularity, κ has been criticised for being dependent on prevalence. McPherson and Jetz (2004) demonstarted a unimodal response to variation in prevalence, introducing bias when comparing species of different prevalences. In response (Allouche et al. 2006) proposed use of the true skill statistic (TSS) which corrects for such dependence whilst retaining the advantages of κ. In their empirical comparison of measures, Allouche et al. (2006) confirmed the unimodal response of κ and observed a negative relationship between TSS and prevalence, a finding they interpreted as indicating a true ecological effect of increasing commonness on predictive accuracy. A similar response to that found using the prevalence-independent AUC was interpreted as further evidence of such an ecological effect. As such, TSS may be indicative of a model’s true ecological limitations. Assessment of model performance by TSS follows the same scale as κ.
For each species and cross-validated model combination we therefore calculated OPS and TSS. For AC models we calculated mAUC and κW. For OC models we calculated AUC, κ, as well as species prevalence across the entire dataset and model sensitivity and specificity. Crude residuals of models, calculated as the difference between observed and predicted category labels, were checked for dependence on predictor variables by fitting linear models and checking both statistical significance and variance explained (r2). 
Final model and prediction maps
Once thresholds for each species had been set and the performance of individual models assessed using the cross validation test sets, final models using all available data were produced. These models were then used for each species to project occupancy and AC predictions onto 1 km2 resolution monthly maps, by overlaying occupancy as a filter over the abundance map. As densities at the depth of CPR tows (circa 7m) of species performing diurnal vertical migration are highest during the night, all maps were projected to night time only.
Variable Importance
A useful feature of the RF fitting procedure is the determination of predictor variable importance. This is achieved by randomly permuting the values of the OOB data subset for each individual variable. Variable importance is then the difference in predictive performance on the OOB data with and without perturbation of the variable in question (Breiman 2001). Variable importance was determined for all final models (OC & AC) across all species.
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Performance of interpolation methods with respect to observed CPR data
A primary aim of the study was to compare the performance of dynamic SDM models with the spatial interpolation procedures commonly applied to CPR data. We thus compared the extent to which both standard spatial interpolations and our SDM-derived predictions agreed with the original CPR data. Interpolated CPR data were sourced as a processed data product from the WinCPR v1.1 portal (http://cpr.cscan.org/)[footnoteRef:-1]. Processing involves interpolation of CPR data as a continuous variable (i.e. by converting ACs to density counts via the accepted values) by the Inverse Squared Distance (ISD) method onto a regular grid of 1o longitude and 0.5o latitude (~55 km2 in the North Sea) over an aerial extent spanning 51oN - 62oN and 4oW - 8oE at monthly intervals from 1948-2001. The ISD method simply weights the contribution of data points according to the squared inverse distance from the location being estimated. The interpolation radius used is 162 nautical miles (300km) with the minimum number of neighbours used in estimation set to 5 and the maximum to 15. Further details of CPR data processing procedures to produce WinCPR interpolated data products can be found in Vezzulli & Reid (2003). [-1: ] 

We extracted monthly maps covering the period 1997-2001 for the five species in our analyses. To facilitate comparison with categorical SDM outputs, WinCPR data were converted to ACs by binning according to the abundance breaks shown in table 3.1. Abundances lower than 0.5 (25 for traverse enumerated species) were classed as absent (0) while abundance equal or greater than 0.5 were classed as abundance category 1. A fair comparison requires that outputs of both interpolation methods to be considered at the same resolution, therefore high-resolution SDM outputs were aggregated to match the resolution of WinCPR data. Aggregation of SDM categorical AC predictions into coarser pixels was achieved by assigning the median AC of the finer pixels under aggregation. All maps were then resampled to 1 km2 to allow spatio-temporal matching to pixelated CPR raw data as described for satellite map matching. We assessed the agreement of each interpolation method with observed CPR ACs by calculating OPS and κw. The limitations of κw noted above are not relevant to the comparison of models where prevalence is constant, as here, and using the weighting gives a more ecologically relevant assessment of model performance.

Effect of interpolation method on estimates of regional population demographic parameters
Finally, we determined the effect of the different interpolation methods on the estimation of key demographic parameters. Local density (DL) which is the mean density across occupied sites, levels of occupancy (Occ) and global density (DG) which is the mean density over the entire study region, were calculated at each monthly interval using SDM predictions (at 1km2 resolution), WinCPR interpolated accepted value predictions, and observed CPR AC data. We also calculated estimates using only SDM prediction on observed data (i.e. abundance estimates along CPR sampled routes only, from the combined final RF fitted values; SDMy) to assess base level biases of the method on these variables. It should be noted that while all SDM predictions were for night-time only, SDMy used original predictor data and therefore contain predictions for both night and day. Again to avoid overinflating occupancy estimates for WinCPR, species were assumed to be absent from pixels in which their predicted abundance was <0.5 (25 for traverse enumerated species). Details of the calculation of each parameter for each data type are shown in table 3.3.
To obtain estimates of mean density from a population of ordinal AC data we used a method similar to that described in Freckleton et al. (2011). The frequency distribution of ACs across the study region for a given species at a given time is defined by the limits associated with each AC, and can be approximated as a lognormal distribution with ML parameters estimated using the optim function in R. The parameters of this fitted lognormal can be used to derive an estimate of the mean density μ across the population of ACs, as: 
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Because fitting the lognormal distribution was sensitive to the initial parameters provided to the optim function, a search across initial parameter space of all permutations of the mean and standard deviation from 0.5 to 5 at 0.5 intervals was performed, and the median value of the collection of resulting estimates was accepted. Occasionally (< 5% of the estimates for each species) the distribution of ACs exhibited negative skew or bimodality which is poorly modelled by a lognormal distribution, generally overestimating mean abundance through poor representation of the lower categories. In such cases we successively aggregated the lowest two categories until the skewness of the aggregated distribution became zero or positive.
Table 3.3. Details of the calculations of demographic parameter monthly means for each data type. DL = local density, Occ = occupacy, DG = global density. OBS = observed, SDM = SDM predictions across entire study area, SDMy = SDM predictions on observed data point only.

	
	OBS
	SDM / SDMy
	WinCPR

	DL
	mean calculated from ACs using integration method
	Mean calculated directly from Accepted Values

	Occ
	Number of CPR samples in which species recorded present
	Number of pixels in which species was predicted present

	DG
	DL x Occ




To compare interpolated monthly estimates to corresponding estimates calculated from observed data, linear models for each species and each demographic parameter were fitted, of the form:
OBS ~ PRED x mod 
where OBS is the observed mean monthly estimate of a demographic parameter from the raw CPR data, PRED is the predicted mean monthly estimate of that demographic parameter and mod is a factor indicating the interpolation method, SDM, WinCPR, or SDMy (for estimates calculated using only SDM fitted values). The interaction term allowed for the assessment of differences between interpolation method estimates. Standard linear model diagnostics included tests for influence using Cook's distance; models were re-run after excluding influential points (never exceeding two in any individual model). Coefficients and the significance of each of the interactions were extracted. The significance and magnitude of differences between WinCPR and SDM (WiinCPR-SDM) estimates was also examined. Prior to fitting the models, all monthly density estimates were log(x + 1) transformed whilst occupancy estimates were transformed using the logit transformation (after rescaling occupancy to the range 0.01-0.99).
Finally to determine the spatial correspondence of the two interpolation methods we calculated κW for each pixel across all available time-points between SDM AC predictions at 1km2 resolution and WinCPR data, converted to ACs as previously described and resampled to 1km2 resolution. High values of κW indicate high correspondence of predictions whereas low values indicate divergence of predictions as a result of either frequent but minimal difference in prediction or less frequent but severe difference in prediction.
 All analysis was performed in R (R Core Team 2013). Calculation of θ used the package ‘argosfilter’ (Freitas 2012). Vectorisation and pixelation of CPR samples was performed using package ‘spatstat’ (Baddeley & Turner 2005). All manipulation of raster maps was performed using the package ‘raster’ (Hijman, 2013). RFs were fitted and variable importance assessed using the package ‘randomForest’ (Liaw & Wiener 2002) and some outputs were produced using packages ‘raster’ or ‘maps’ (Brownrigg 2013) using colour palettes from package ‘RColorBrewer’ (Neuwirth 2011). Evaluation metrics and thresholds were calculated using packages ‘psych’ (Revelle 2013), ‘verification’ (NCAR Research Application Program 2012), ‘caret’ (Kuhn 2013) and ‘PresenceAbsence’ (Freeman & Moisen 2008a).
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The performance of individual SDM models for each species is summarized in table 3.4. All presence / absence models appear to be performing satisfactorily with relatively high OPS (>70% across all species), reasonable separability of presence and absence as indicated by AUC and predictions performing acceptably beyond chance as indicated by κ and TSS. The almost complete agreement of κ and TSS despite prevalence ranging from 0.11 (M. lucens) to 0.54 (C. helgolandicus) indicates that at least within this range, κ was not affected by prevalence. Most models are characterised by high specificity (high true negative rate) and only moderate sensitivity (low true positive rate) and the degree to which they diverge is highest for the species with the lowest prevalence while the trend is opposite and reduced in the most prevalent species (table 3.4). 
Modeling ACs proved more challenging with lower OPS and mAUC indicating poorer separability of ACs (Table 3.4, Fig. 3.3A). TSS scores were low, ranging from 0.13 to 0.19, indicating only a weak improvement of predictive ability beyond chance (Table 3.4). However, using κW to account for the degree to which estimated scores differ from observation on the ordinal AC scale results in improved model performance for all species (Table 3.4). Overall, our models are conservative and tend towards under- Table 3.4. Individual model performance of presence / absence and abundance category models calculated on sample independent 5 x cross-validated test sets.
	
	 C. helgolandicus 
	 T. longicornis 
	 C. typicus 
	 C. finmarchicus 
	 M. lucens 

	Presence / Absence models
	
	
	

	OPS
	0.72
	0.73
	0.81
	0.83
	0.89

	AUC
	0.78
	0.78
	0.83
	0.85
	0.87

	κ
	0.43
	0.40
	0.47
	0.51
	0.44

	TSS
	0.43
	0.40
	0.47
	0.51
	0.45

	Sens
	0.73
	0.60
	0.60
	0.62
	0.51

	Spec
	0.70
	0.80
	0.87
	0.89
	0.90

	Prev
	0.54
	0.33
	0.23
	0.23
	0.11

	Abundance Category models
	
	
	

	OPS
	0.47
	0.61
	0.64
	0.51
	0.63

	mAUC
	0.65
	0.60
	0.61
	0.63
	0.61

	κW
	0.35
	0.28
	0.27
	0.39
	0.36

	TSS
	0.18
	0.13
	0.14
	0.19
	0.14




prediction of abundance. For instance, the median predicted AC is always ≤ the observed AC (Fig. 3.3B), and the highest observed ACs (categories 4 and 5) are almost always under-predicted (Fig. 3.3B). 
Residuals of models were checked for dependence on predictor variables and no clear trends were detected. While some relationships were statistically significant (p < 0.05) r2 values never exceeded 0.01, indicating very small effect sizes. Spatial autocorrelation in the residuals were hard to assess formally due to the inherent high spatial autocorrelation at low range introduced by pixelation of CPR samples. The relative importance of each predictor to RF discriminatory power is shown in fig. 3.4. Some general patterns are evident although variations in variable importance also emerge. Bathymetry and temperature, indicators of broad biogeographic association, are the most important environmental predictors of occupancy and abundance respectively (fig. 3.4). Hydrographic variables such as temperature and chl a front intensity as well as distance from front generally emerge as relatively highly ranking. 

Figure 3.3. Performance of abundance category (AC) SDMs on cross-validated, sample independent test data. Top panels (A) show the frequency distribution of observed (y, black) and predicted (pr, grey) ACs. Bottom panels (B) show the distribution of predicted ACs for each observed AC.
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Figure 3.4. Variable importance for occupancy (upper panels) and abundance category (lower panels) models. Variables are ordered according to mean rank across all species for each model type. See Table 3.2 for expansions of variable abbreviations.
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Most remaining predictors, including habitat characteristics such as chl a and SPM, the seasonal signal from month and the monthly NAO contribute moderate and often equivalent discriminatory power, their relative importance varying between models and species. Time, side of front and SPM front intensity generally contribute the least across all species and models. A notable exception is the high contribution of time to occupancy discrimination for M. lucens as well as the variation in top rank variables in the C. typicus occupancy model, the main discriminatory power lying in temperature and month.
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Comparison of predictions from our SDMs with those from WinCPR shows that our SDMs achieve a comparable degree of accuracy in terms of OPS (Table 3.5). Kw however is generally lower in aggregated SDM predictions, although they perform much better at the finer spatial scales at which they were actually fitted even when testing on cross-validated data (not shown). 
To extend our comparison beyond sampled areas, we also present interpolated maps for visual comparison (Fig. 3.5). SDM predicted maps exhibit good fidelity to the known general pattern of species distributions. Models appear capable of recreating the boundaries between biogeographically distinct regions associated with neritic (e.g. T. longicornis) compared to pelagic (C. finmarchicus & M. lucens) conditions (Fig. 3.5).
Predicted distributions from SDMs and WinCPR show broad agreement however WinCPR interpolation produces much smoother spatial distributions and generally predicts greater northerly extensions of neritic species (eg T. longicornis, and C. typicus) and more limited southerly intrusions of northerly oceanic species (e.g. C. finmarchicus and M. lucens) compared to SDMs (Fig. 3.5).
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Comparisons of estimates calculated using fitted SDM predictions (SDMy) show generally good concordance to estimates calculated from observed values across species and demographic parameters (fig. 3.6, table 3.6). Most mean slope estimates verge on a value of one and all slope confidence intervals (CIs) across all demographic 
Figure 3.5. Comparison of observed CPR data (CPRAC), WinCPR, and SDM (AGG = low resolution (0.5o x 1o) and HR = high resolution (1 km2)) interpolated maps across all species. Maps of C. helgolandicus, T. longicornis, and C. finmarchicus are for May 2000, of C. typicus for September 1999 and M. lucens for October 2001. Large points on observed CPRAC data maps of M. lucens represent samples collected at night and smaller points represent samples collected during the day. Colour scale represents aggregated abundance category scale used in this study (see table 3.1).
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Figure 3.6. Comparison of monthly mean estimates of demographic parameters calculated using SDM and WinCPR predicted data across entire study region respect to estimates calculated using observed CPR data (see table 3.2 for details). Estimates calculated using only SDM predictions on observed data are also shown (SDMy). SDM, SDMy and CPR means calculated by approximating the distribution of the data by a log-normal distribution (see text for details). Top panels: mean local density (DL); Middle panels: Occupancy (Occ); Bottom panels: mean global density (DG). Local and global density units are log ind. 3m-3 while occupancy is plotted on the logit scale.
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Table 3.6. Assessment of the effect of interpolation method on the estimation of regional population demographic parameters with respect to estimates obtained from observed CPR data for all copepod species determined through linear regression. Estimates from fitted SDM values (SDMy) indicate baseline SDM model performance on observed data. WinCPR-SDM rows detail results of comparisons of WinCPR performance relative to SDM. Shown are the mean parameter estimates, 95% confidence intervals and p-values for a = intercept and b = slope parameters* indicates significance at 0.05 level, ** at 0.01 and *** at 0.01.


parameters encompass it except for C. finmarchicus DL SMDy predictions (CI = 0.60 – 0.99). Similarly, mean intercept estimates are generally small and close to zero and again, despite a few moderate mean estimates and significant p-values, all CIs include zero except for C. finmarchicus DL SMDy predictions (CI = 0.01 – 0.76). These trends are generally minor and did not cause major concern for systematic failure of SDM predictions.
Regional demographic parameters estimates from both interpolation methods were generally positively related to observed data indicated by the positive and significant slopes across all parameters and species (table 3.6). However, inter-specific differences in the precise form of these relationships are evident for most of the parameters. WinCPR interpolated estimates of DL are generally consistently lower than observed and SDM estimates (fig. 3.6 top panels). For C. helgolandicus and C. finmarchicus however, mean estimates of intercepts, although negative, are relatively small, CIs include zero and slope estimates of both methods are in close agreement to each other and to one indicating only minor differences between observed and predicted estimates, regardless of method. WinCPR mean intercept estimates for the remaining species are significantly negative (no CI overlap of zero) with respect to both observed and SDM values. WinCPR slope estimates however ranged from close to one (T. longicornis) to relatively shallow (M. lucens, b=0.22, table 3.6) indicating increasingly suppressed estimates with respect to observed. SDM predictions, in contrast, show a pronounced flattening in the relationship to observed data, characterised by large positive intercepts and small slopes and indicating a dampening of model predictions with respect to trends in observed estimates as these approach extremes of the range of observed values. SDM predictions were generally overall higher relative to WInCPR predictions, the only exception being for T. longicornis at high observed values, were SDM estimates were lower (fig. 3.6, top right panel). An important difference to note is that for 37.5% of time-points for C. typicus and 22.5% for M. lucens, WinCPR predicts DL to be zero, in contrast to the relatively high observed values for many of these timepoints (fig. 3.6). Indeed species were actually recorded absent (ie with a DL of zero) in only 7.5 & 12.5% timepoints respectively. SDM estimations on the other hand never predicted DL to be zero.
Predicted occupancies of both interpolations generally show slopes either close to, or more frequently, greater than one, indicating steeper rates of change in interpolated occupancy with respect to observed. Intercept terms for both methods are also generally relatively small, ranging in absolute magnitudes between 0.34 (CI = 0.15 – 0.53) for SDM C. helgolandicus estimates and 1.83 (CI = 1.27 – 2.40) for M. lucens SDM estimates. Deviations in estimates of occupancy as a result of interpolation are therefore generally only modest compared to observed. Nevertheless, both methods predominantly predict lower than observed occupancies for T.longicornis, which however converge at higher occupancies, and higher for C. finmarchicus, (fig. 3.6) although less so for WinCPR estimates towards the bottom of the observed occupancy range. SDMs invariably predict higher occupancies in M. lucens than both observed and WinCPR, indicated by the significant SDM intercept and SDM-WinCPR relative intercept term, with WinCPR and observed estimates generally showing good agreement. C. typicus interpolated estimates are generally lower than observed at low observed values, but while this trend continues for WinCPR predictions with increasing observed occupancy (significant intercept of -1.09 and a slope close to one), SDM predictions become increasingly higher (slope of 1.45) and predict higher occupancies than observed at higher values of the later (fig. 3.6). SDM predictions show a similar trend for C. helgolandicus while WinCPR estimates show higher predictions compared to both SDM and observed at the lower range of observed values, the estimates of both methods increasingly converging and higher than observed towards the higher end of the observed range. 
When these trends are combined in the estimate of DG, both interpolation methods predict similar regional DG estimates for C. helgolandicus to those estimated from observed data, as intercept terms are either non significant or include zero in their CI range, slopes are close to one, and the CIs of SDM-WinCPR relative slope estimates include zero, despite being significant. While WinCPR estimates continue to generally correspond well with observed estimates in C. finmarchicus and M. lucens, SDM prediction becomes increasingly higher, with intercepts and slopes significantly higher than zero and one respectively and negative WinCPR-SDM relative slopes and intercepts. C. typicus and T. longicornis interpolated DG estimates are generally lower than observed, with significant negative intercepts and WinCPR intercepts again significantly lower than SDM. Interpolated estimates however increasingly converge with each other and onto observed values as observed estimates increase, except for WinCPR estimates in C. typicus, which increasingly diverge from both observed and SDM estimates (slope significantly lower than one and WinCPR-SDM relative slope significantly less than zero). 
Spatial correspondence of predictions of the two interpolation methods across all pixels and timepoints is shown in fig. 3.7. For most species, median κW approaches or falls below 0.4, indicating generally only fair correspondence. Model predictions appear to be in greater agreement for C. helgolandicus and most divergent for T. longicornis (although C. helgolandicus also shows the highest numbers of negative outliers). 
The spatial distribution of correspondence of AC model predictions derived from the two interpolation methods is shown in fig. 3.8. As expected, correspondence is higher in areas that are relatively well sampled. However, interspecific variation in spatial correspondence is also evident. For the larger oceanic and pseudo-oceanic copepods, good correspondence is generally concentrated in the northern North Sea and is particularly poor in the southernmost shallow areas (fig. 3.8a, b and c). For the two smaller copepods, correspondence seems to be even more constrained by data availability and generally is focused in the southern North Sea and relatively well-sampled areas of the northern North Sea (fig. 3.8d and e). Overall the central North Sea, particularly the shallower western margins show the highest divergence of model predictions across all species. 

[bookmark: _Toc289481390]Discussion
In this modeling exercise, we have employed high-resolution environmental data to explore the potential of species distribution modeling approaches as a means of interpolating CPR data. This is not this is not the first time environmental data have been used with CPR data to inform prediction of spatial distributions, for example (Raitsos et al. 2008) also used satellite data to produce maps of phytoplankton dominance throughout the North Atlantic while (Beaugrand et al. 2013) discussed the potential for thermal niche modelling to predict the effects of climate change on plankton distributions. However, it is the first time such fine scale maps have been produced and equally the first time information on hydrographic structure has been incorporated into models of CPR plankton distribution. The higher resolution is an important achievement because is allows plankton meso-scale spatial structure to be resolved, a scale at which important drivers of plankton dynamics operate (Molinero et al. 2008). While sparseness of biological data has been a major barrier to the development of biological theory which successfully scales from local to regional and Figure 3.7. Overall correspondence of WinCPR and SDM interpolation predictions across entire study region measured by κW.
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Figure 3.8. Spatial distribution of SDM and WinCPR prediction correspondence as measured by κW calculated for each pixel across all available timepoints. 
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continental scales (Kerr & Ostrovsky 2003; Willis & Whittaker 2002), SDMs can facilitate the integration of sparse biological data and extensive spatially continuous environmental data (Graham et al. 2004). We have also employed state of the art machine learning techniques which are becoming increasingly relevant to ecological investigations (Olden et al. 2008) as ecology transitions from data poor to data rich as a result of automated monitoring devices, remotely sensed data and large scale monitoring surveys. Such methods seeks to uncover naturally occurring relationships in data rather than prescribing them a priori, and their lack of distributional assumptions is incredibly valuable in systems where data do not conform to conventional modeling assumptions (Hastie, et al. 2009). SDMs are also usually temporally static, but by including temporal indices we have allowed for temporal variation in relationships to be incorporated. We believe the outputs of the work not only improve understanding of plankton ecology but also have wider applicability in linking oceanographic to ecological processes and end-to-end modelling of the marine environment (Cury et al. 2008).
Our models generally perform acceptably and predictions are consistent with known biogeographical and seasonal distribution patterns. Specificity is generally lower than sensitivity implying a high false negative rate. While false positives are not necessarily biologically erroneous as organisms could well have been present but not sampled, false negatives clearly are. Such errors may be indicative of source sink dynamics linked to advection patterns and comparison to hydrodynamic model outputs could potentially confirm this. Another option would be to adjust occupancy thresholds of model outputs but this would come at a cost of reducing sensitivity. Given that the thresholds have already been selected to maintain original levels of prevalence, adjusting them to improve specificity would inevitably lead to overestimation of spatial occupancy. Models also generally underpredict the value of observed abundance categories, particularly those ACs representing higher densities. The highly aggregated nature of plankton spatial distributions results in statistical overdispersion of abundance data, creating difficulties for most modelling approaches (Beaugrand et al. 2003; Beare et al. 2003). In essence prediction becomes harder as categories become rarer. This could have obvious implications on overall estimates of abundance. However models fitted using balanced subsamples of the data, whilst demonstrating improvement in detecting the rarer categories, overall produced predicted frequency distributions highly skewed towards higher ACs resulting in grossly over-inflated overall population size predictions (data not shown). Additionally, the smoothing resulting from WinCPR interpolation appears to exacerbate the situation as this method consistently underestimates monthly abundance means compared to both SDM and raw data estimates. The important point of these comparisons is that the spatial distributions predicted by the two interpolation methods can often give highly divergent estimates of key demographic parameters and therefore give very different impressions of population dynamics. Moreover, these divergences differ substantially between species.
Performance of the SDMs at the coarsest spatial scale is generally comparable to WinCPR, although the latter approach appears to have advantages particularly in terms of κw. We do not believe this invalidates our approach, particularly given the significant gains in resolution that it offers. SDMs predict heterogeneities and spatial discontinuities at much finer scales compared to generally smoother surface of WinCPR. If the coarser pixels contain significant heterogeneity, median values may not best reflect average conditions and deviations could potentially be larger for SDMs reducing κw. Unfortunately, the integration method for converting ACs to mean estimates could not be applied to the small numbers of pixels involved in aggregating finer scale data to the courser scale selected, because the small number of points often results in AC distributions highly divergent from the log-normal. Under such conditions, the method in its current form cannot be used successfully. Both fitted and cross-validated assessments of the SMDs at the finer scale, however, outperformed WinCPR predictions across almost all performance metrics and models. 
To better evaluate the relative performance of the two methods it’s important to be aware of what the two approaches are attempting to model. SDMs based on the niche concept model species presence / abundance as a function of environmental variables considered to constrain the fundamental (physiological) niche of a species. However, the actual distribution of species in space is not necessarily at equilibrium. Disequilibrium can result from factors such as species interactions or dispersal limitation (Guisan & Thuiller 2005; Boulangeat et al. 2012). SDMs therefore predict where conditions are possible not necessarily where copepods have managed to colonise. Spatial interpolation on the other hand attempts to recreate spatial structures emerging from the spatial distribution of environmental drivers as well as endogenous processes related to aggregation, dispersal and colonisation trajectories. Under a scenario where species perfectly track the spatial structures of the environmental drivers, outputs of both approaches should be equivalent. Therefore species characteristics and particularly the extent to which species population processes allow environmental tracking dictate the balance between the two methods. 
Success of both methods can be dictated by data availability but modelling spatial structures can be particularly susceptible to data biases or sparseness. A key concern is whether the spacing of data is able to capture spatial processes at the scale of interest. The sparser the data, the worst interpolation will perform (Bahn & McGill 2007). Because they are spatially explicit, such approaches can also be susceptible to sampling biases (Solow & Steele 1995). Considering the heavy influence of CPR data on pelagic research it might be timely to ask to what extent have shits in sampling effort affected the detection of trends zooplankton distributions and abundance. While plankton certainly exhibit spatial structuring (McManus & Woodson 2012), the scale of behavioural aggregation is limited (Molinero et al. 2008), much smaller than CPR sampling scales. Such patchiness is also highly transient and dynamic in pelagic systems and coastal, shelf and areas of turbulence (such as fronts) are areas of lowest spatial autocorrelation (Jones et al. 2012). As such using hydrographic structure as a predictor is likely to be a better approximation of aggregative processes than any spatial interpolation process. Furthermore, spatial processes generally define a smooth and average relationship between abundance and geographic distance. However, if there is much variance around the function described by the inverse distance interpolation method, interpolation may smooth out important non-linearities in species distribution. Comparison of the monthly means shows that this can have an effect on estimates of regional population size. Ultimately, whether the SDMs or the WinCPR data give a better representation of monthly abundance patterns outside sampled regions cannot be resolved without external data. 
Explicit modelling of autocorrelation structures, both of predictors and response variables, is a vital component of understanding ecological patterns. The field of species distribution modelling is relatively new and is still developing, as is appreciation of its limitations (Elith & Graham 2009; Guisan & Thuiller 2005). In the present study, the requirement of satellite data precludes the analysis of years prior to 1997, as well as months lacking data due to excessive cloud cover. Random forests also provide no real measure of uncertainty, although the margin between the probability of the highest ranking category with respect to the next in rank could be used as some form of measure. Performance varied according to organism prevalence, as did patterns of sensitivity and specificity as documented in (Manel et al. 2001). Species and data characteristics should therefore guide selection of appropriate methods.
Nevertheless, we consider incorporating hydrography into models of planktonic species’ distributions as an important advance. Variable importance ranks confirm the importance of such variables on both species presence and abundance and the success of the approach mirrors that of using topographic data to produce high resolution vegetation maps (Guisan et al. 1998). More importantly it has allowed the production of high-resolution maps revealing interesting fine scale detail which appears consistent with known circulation patterns and meso-scale structuring of the ocean (fig. 3.5, Appendix 1). Filaments, eddies and large scale patchiness are all visible and so is the barrier nature of large scale hydrographic fronts. Such an approach may currently even be superior to coupled biological-physical models as these often under-resolve hydrographic features important to community dynamics (McManus & Woodson 2012). Additionally, despite their empirical nature and their “black box” reputation, SDMs undoubtedly contain mechanistic information and outputs of RFs such as partial dependence plots can produce valuable insight into non-linear relationships of response variables to predictors. Overall, we consider it a solid contribution to current efforts to link oceanographic and ecological processes, described by Cury et al. (2008) as ecosystem oceanography, in which resolution of meso-scale processes has been identified as an significant aim.
Importantly, SDMs and spatial interpolation methods are not mutually exclusive. More elaborate approaches to spatial modelling, such as co-kriging which incorporates environmental predictors, do exist, although again proper definition of the structure will be limited by the spacing of data and requires many user decisions. Applying spatial processes to the residuals from SDMs is also a possibility. Ultimately analysis of the CPR survey data may benefit from a state space approach where sampling biases are explicitly investigated and modelled to gain a better understanding of the extent to which they drive model failure (Jansen et al. 2012; Pitois & Fox 2006). Indeed recent work has shown the potential of more complex models which fit spatio-temporal processes to CPR data while also accounting for the over-dispersed nature of the data (Jansen et al. 2012). Resolution of these models is still hampered by the spacing of the CPR data so while they may represent the future, they are not currently able to contribute meaningful higher resolution outputs. For the moment, SDMs appear to be the most accessible approach to down-scaling CPR data, with the outputs of such models having wide applicability in attempts to elucidate how finer scale spatial structures and processes drive pelagic ecology.
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Abundance occupancy relationships relate species local abundance to their regional occupancy and reflect the extent to which local scale processes influence larger scale regional population structure. The importance of temporal population dynamics on the form of the relationship has been recognized but details of processes acting on a variety of temporal scales interacting to produce emergent AORs are still unclear. To address these issues, we examine how AORs vary intraspecifically when examined on an inter-annual, intra-annual and seasonal scale in two copepods species with contrasting body sizes and reproductive strategies with a view to determining whether there are specific temporal scales at which population processes underlying AORs operate. Specifically, we decompose inter-annual relationships for both species into their intra-annual components, using a mixed modelling approach to quantify variation in the strength and form of the AOR between years. We then incorporate simple harmonic regression terms to model seasonal variability in the relationship. We found that each layer in our analysis appears to be a composite of the dynamics at lower levels and the form of AORs at each resolution identify the strength of the processes acting on that particular temporal scale. What emerges is a temporally hierarchical structure of the AOR, the internal characteristics of which are governed by the strength of cross-scale interaction between processes at each scale which itself is dictated by life-history characteristics. We also find species-specific phenological cycles to be an important underlying driver of intra-annual AORs and find that the strength of the relationship can vary on a seasonal basis, linked to different phases of species seasonal cycles. 
[bookmark: _Toc289481393]Introduction
A positive association between local abundance and some measure of species’ spatial distribution is one of the most widespread macroecological patterns (Gaston et al. 2000). It has been suggested as an ecological law and studied under a variety of guises with a plethora of theories suggested to explain it, but is most commonly referred to as the abundance-occupancy relationship (AOR). It is important because it links local scale processes to those determining regional scale distribution (Freckleton et al. 2006) and key to a unified understanding of the multitude of mechanisms proposed to explain AORs is an appreciation of the hierarchical nature of the relationship and the impact of scales of investigation on the structure of observed patterns (Borregaard & Rahbek, 2010). 
There are various ways to calculate AORs. An interspecific AOR relates mean local abundance to the number of occupied patches or cells on a grid of different species or taxonomic entities. These relationships have received both most attention and most empirical support and are generally consistently positive. As with many macroecological analyses, these interspecific AORs are generally modelled using time-averaged or single survey data and thus represent static ecological patterns (Fisher et al. 2010). A second way of examining AORs is through tracking the temporal trajectory of abundance and occupancy of individual species (fig 1.1; Gaston et al. 2000). Temporal intraspecific AORs reflect regional population structure and are generally more idiosyncratic than interspecific AORs, often showing no or even negative relationships, although positive relationships are still most common (Gaston 1999; Borregaard & Rahbek 2006). The dynamics captured by intraspecific AORs therefore underlie long-term mean estimates used to define interspecific AORs. Early work found considerable variation in intraspecific relationships among species of British birds in contrast to a marked consistency across interspecific patterns and concluded that, at least in the avian assemblage examined, there was not enough temporal variability in intraspecific dynamics to drive changes in the interspecific patterns (Blackburn et al. 1998). However, as temporal perspectives become increasingly addressed in macroecolgical analyses, they have begun to reveal the dynamic nature of macroecological patterns on ecological time-scales (reviewed in Fisher et al. 2010). For AORs in particular, examples of intraspecific temporal dynamics strong enough to influence interspecific dynamics have now been documented for a range of taxa (e.g. Fisher & Frank 2004, Borregaard & Rahbek 2006, Webb et al. 2007). 
Such considerations have slowly begun to influence our understanding of the nature of AORs. The generality of the pattern and the diversity of systems from which it has emerged resulted initially in much confusion, with multiple potential mechanisms proposed (Gaston et al. 2000: table 1.1), often tightly associated with the particular ecological perspective and terminology of a given study (Borregaard & Rahbek, 2010). Ultimately it appears that AORs reflect patterns of species large-scale aggregation and therefore any factor (be it ecological, behavioural, demographic) contributing to species aggregation dynamics is likely to emerge as a potential driver (Holt et al. 2002). Habitat distribution has been identified as an important driver (Venier & Fahrig, 1998, Freckleton et al. 2006, Webb et al. 2007) through it’s links with species’ resource requirements defined by niche position or breadth (Brown 1984) and ultimately dictating the balance of vital rates (Holt et al. 1997). However, population processes related to metapopulation dynamics also predict intrinsic links between abundance and occupancy (Hanski 1991; Freckleton et al. 2005). Under this framework, AORs are generated by the connection of populations in a landscape through colonization dynamics, which are controlled by local demographic processes and dispersal (Hanski 1999). Modelling studies including metapopulation processes have shown that parameters values determining colonisation dynamics influence the form and strength of the relationship (Freckleton et al. 2005). Populations with particular regional population structures display characteristic AORs, with processes such as positive density dependent growth, high demographic stochasticity and Allee effects imprinting particular signatures on the shape of the relationship, such as steep slopes at low densities and critical local abundance thresholds below which populations cannot exist (Freckleton et al. 2005). It follows that particular life history characteristics related to colonization dynamics should result in AORs that differ in form.
AORs provide a compact expression of how species life-history characteristics dictating dispersal/extinction dynamics interact with environmental variability to structure large-scale population dynamics (Freckleton et al. 2005; Freckleton et al. 2006) and comparative examination of AORs across species with varying life history characteristics are proving to be informative (Buckley & Freckleton 2010). In European soft sediment marine benthic communities, a positive association between body size and the slope of interspecific AORs was found (Tyler et al. 2009) indicating that larger organisms are generally found at higher occupancies for a given maximum local density. They attributed the finding to either a direct scaling in dispersal ability with body size, or more likely to the fact that body size acts as a surrogate for a variety of life history characteristics determining developmental mode or reproductive output (Peters 1986). Foggo et al. (2007) found that species with planktotrophic larvae exhibited higher regional distributions for a given mean local density than lecithotrophic or brooding species. Comparisons across taxa also suggest a role for life history in structuring patterns of variability around AORs. For instance, differences in intraspecific variability within generally positive interspecific AORs between birds and fish stem from differences in the size structuring of their populations (Webb et al. 2011). However, it is clear that different life-history characteristics might lead to population responses on very different scales and that comparison of species with widely varying life history characteristics on the same scale might be misleading (Addicott et al. 1987).
The effect of spatial scale on macroecological patterns, for instance considering how the spatial resolution of the data can affect estimates of both abundance and occupancy and thus influence the form of the observed AOR, has received a lot of attention (Kunin 1998; He & Gaston 2000; Blackburn & Gaston 2002; Blackburn et al. 2006). Considering the observed variability around intraspecific AORs and the fact that hierarchical scales of variability drive AOR generating processes, it is perhaps surprising that the effects of temporal resolution have not received the same attention. Indeed, Webb et al. (2011) found differences in the relative variation in abundance and occupancy in birds and fish depending on whether studies were replicated in space or in time. In particular, life history differences between the two groups were more pronounced in the temporal domain, suggesting life history differences might be more apparent when considering temporal than spatial dynamics. While some studies have considered how interspecific AORs arise from the temporal dynamics of abundance and occupancy within species (Blackburn et al. 1998; Webb et al. 2007), there has been far less consideration of how intraspecific temporal AORs arise themselves. Thus, although AORs are ultimately the product of multiple processes, the detection of the influence of any one process is context-specific and limited by the domain and scale of the investigation. 
What are needed, therefore, are studies of AORs that consider explicitly the temporal scales at which pertinent AOR generating processes act. This requires measures of abundance and occupancy measured across a range of temporal scales, finer than the yearly means typically used to characterise temporal AORs. Such yearly data are useful for representing longer-term population maintenance and structure, and may be appropriate for long-lived organisms, but they ignore underlying seasonal dynamics and thus cannot address the intra-annual processes that generate the inter-annual relationship (Fisher et al. 2010). It is only by varying analyses across temporal resolutions that we can begin to probe the effects of processes at different temporal scales and understand how lower- and higher-level processes and patterns might interact to generate cross-scale patterns (Peterson 2000). 
Here we use Continuous Plankton Recorder survey (CPR) data and focus on copepods in the North Sea. Copepods are the dominant mesozooplankton taxon in the marine environment, comprising up to 80% of total mesozooplankton biomass (Kiørboe et al. 1997). They’re an important trophic link in the pelagic food web, and have life history characteristics that make them a useful addition to AOR case studies. They are highly responsive to environmental fluctuations (Hays et al. 2005) to which they are subjected to on a variety of temporal scales, both systematically (annual seasonal cycle) and stochastically (eg. inter-annual and decadal variation in conditions) (Steele 1985). The two species selected are both temperate and members of the same biogeographical association (Beaugrand et al. 2002a). They do however vary in important reproductive strategies and life history characteristics (Kiørboe 2006) likely to affect the scales on which demographic rates linked to AORs operate. 
For instance, fertilisation limitation is a key driver of copepod population dynamics which has led to major morphological and life history adaptation, particularly linked to mate-searching capacity (Kiørboe & Bagoien 2005). Fertilization limitation in Calanoid copepods has resulted in two distinct adaptive strategies, dictated by the presence or absence of seminal receptacles. Species with no seminal receptacles, such as the Centropagoidea, cannot store sperm and therefore each batch of eggs requires an encounter with a mate for fertilization. Many larger copepod species such as Calanus spp., on the other hand, do possess seminal receptacles and can thus retain fertility throughout the growing season after only a single mating. This difference in mate-encounter requirement leads to a number of demographic characteristics. The high mate encounter rates required by copepods lacking seminal receptacles implies positive density dependent population growth at low densities including the risk of Allee effects and the requirement of much higher densities to maintain viable populations (Kiørboe 2006). To maintain viable populations, Centropages spp. have on average approximately a 75% higher daily egg production and much higher daily fecundity at a given mass that non-Centropagoid copepods (Bunker & Hirst 2004). Although the swimming behaviour of males and females of multiple mating species maximizes mate encounters, it also leaves them more vulnerable to predation compared to single mating species in which only males follow the same risky swimming pattern (Kiørboe 2006). Overall this leads to fast population growth rates during favourable conditions but increased risk of population collapse during unfavourable periods or under predation pressure (Kiørboe 2006). Such differing life history strategies imply differing regional population structures, and are likely to modulate interspecific responses to scales of environmental variability and trade-offs between scales of adaptation (Varpe et al. 2009). These should be evident in AORs (Freckleton et al. 2005) if examined on the appropriate scale.
To address these issues, we examine how AORs vary intraspecifically when examined on an inter-annual, intra-annual and seasonal scale with a view to determining whether there are species-specific differences in the temporal scales at which population processes underlying AORs operate. Specifically, we decompose inter-annual relationships for both species into their intra-annual components, using a mixed modelling approach, which also allows us to quantify inter-annual variation in the strength and form of the AOR. We then incorporate simple harmonic regression terms to detect seasonal variability in the relationship. We assess whether interspecific differences in AOR characteristics represent population dynamics consistent with expectations resulting from interspecific life history contrasts. 
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We focused our analysis on two species, Calanus helgolandicus and Centropages typicus. These species have contrasting life history characteristics likely to affect the dynamics of AORs: C. helgolandicus is a large copepod exhibit “bet-hedging” life history characteristics. These include the presence of seminal receptacles, reducing the effects of mating encounter limitation (Kiørboe 2006), lipid storage (Bradford-Grieve et al. 2010), which reduces the effects of temporal variability in food supply (Lee et al. 2006) and allows for capital breeding, where reproduction is based on resources acquired prior to the breeding season (Varpe et al. 2009) and is generally considered to grow at high efficiencies at natural food concentrations (Mullin & Brooks 1970). 
Table 4.1 Summary of temporal distribution of monthly mean data points across months and years. Freq refers to number of data points available for the particular month or year indicated.
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These characteristics generally allow a broader occupation of the pelagic throughout the year (see Chapter 2 and Bonnet et al. 2005). C. typicus on the other hand has little lipid accumulation, exhibits “current income” reproduction based on resources acquired during the reproductive season (Varpe et al. 2009), have high fecundities (Bunker & Hirst 2004), fast growth rates (Kiørboe 2006), a relatively short summer or autumn abundance maximum (see Chapter 2 and Bonnet et al. 2007) and dormant eggs in several species of genus (Halsband-Lenk et al. 2004). The lack of seminal receptacles means they require multiple matings to maintain fertility, resulting in predictions of strong positive density dependence at low densities (Kiørboe 2006). The fast growth rates require high food concentrations and indeed, at least in the North Sea, their populations have been shown to be primarily food limited (Lindley & Reid 2002). Overall, these characteristics render them capable of fast exploitation of available resources but equally highly susceptible to population collapse.
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Both abundance and occupancy were derived from the outputs of SDM interpolating models detailed in chapter 3. These outputs consist of high spatial resolution (1 km2) maps of abundance category (AC) distribution throughout the North Sea at a monthly resolution. Data temporal distribution is summarised in table 4.1. The models combine raw CPR abundance category data with satellite data relating to habitat quality characteristics, hydrographic structure and pan-Atlantic hydro-climactic state. As such, they are limited by satellite data availability and therefore the time frame of the analysis spans 1998–2010. 
Local abundance was calculated using the integration method described in chapter 3 (see also Freckleton et al. 2011). For each month, a log-normal distribution was fit to the frequency distribution of the AC categories (across occupied pixels only) as defined by the limits in terms of numbers of individuals of each AC (see table 3.1). The parameters of this fitted distribution were used to derive an estimate of mean log abundance. Occupancy was simply the proportion of the total number of pixels for which predictions were available for each month that were predicted by the SDM to be occupied.
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AORs where fitted at inter-annual and intra-annual time scales. The response variable is always proportional occupancy, and so we use a binomial error structure and logit link in all models. Firstly, to determine the overall form of the AOR for each species we fit classic inter-annual AORs, using mean annual local abundance and occupancy, averaged across all months within each year. AORs were then fitted as binomial GLMs of the form:
inter-annual0 = occupancyyearly ~ densityyearly
To examine how the AORs emerge for each species from their annual colonization of their environment, we then fitted intra-annual AORs. Here, we used each monthly occupancy and local abundance value to fit an AOR across months for each year. To take variation between years into account, we fitted these AORs as generalized linear mixed models (GLMMs). GLMMs provide a flexible approach to modelling ecological data and can account for a number of common data characteristics which often defy treatment with classical statistics (Bolker et al. 2009). They combine the properties of GLMs, which allow for instance, modelling of proportional data, with those of linear mixed models (LMMs) which allow the incorporation of random effects. This is preferred over treating year as a fixed effect because it permits more general inference about of the form of the relationship, more likely to generalise to unsampled years. The random effects component also permits quantification of inter-annual variability in the shape of the AOR which is itself ecologically informative with respect to temporal variability in regional spatial population dynamics. Of particular relevance here are random effects associated with annual environmental variability. Furthermore, detailed paired inter-annual comparisons of AORs do not add to the focus of our questions. We proceeded by fitting GLMMs of the form:
intra-annual1 = occupancymonthly ~ densitymonthly + (1 + densitymonthly | year)
where occupancymonthly and densitymonthly are monthly occupancy and local density and the random effect term (1 + densitymonthly | year) models inter-annual random variation in the form of the relationship. In other words, for each year an AOR model was fitted across months, and both the slope and intercept of this relationship was allowed to vary across years. The random effects allow us to extract an intercept and slope for the AOR from each year, and to quantify variation in these parameters across years.
To test the significance of the random slope term we also fit a simpler model where only a random variation in the intercept was allowed, implying that inter-annual differences in dynamics do not change the general form of the relationship:
intra-annual1a = Occupancymonthly ~ densitymonthly + (1 | year)
We compared the fit of these two models using AIC. 
Examination of the residual plots of the full intra-annual1 model indicated that for both species there was systematic, seasonal variation in the residuals, linked to each species phenological cycle. This indicates that the relationship might vary on a seasonal basis. To quantify such monthly variability and to determine its links to species phenology, we incorporate each species seasonal cycle by employing harmonic regression terms. 
Incorporating trigonometric predictors is a natural approach to incorporating periodic smooth structures such as seasonal cycles into a regression framework (Doran & Quilkey 1972; Cox 2006; Artis et al. 2007). This is appropriate because the directional evolution of dynamics in the AOR (i.e. long term inter-annual signal) is beyond the scope of this study, and thus a mixed model framework with yearly random effects should be flexible enough to allow for an informative representation of the variation across years in within-year dynamics.
The most practical methods of extracting seasonal temporal trend is to express the interval of yearly periodicity in the trend as a unit and to convert temporal indices, in this case the month identifier m, to that scale. The temporal index t is then expressed as m/12. The compound angular formula describing simple harmonic motion can then be re-arranged so that the equation for the position of a point on the y axis in a Cartesian framework represents the value of the response variable y in a regression framework as a function of time and is given by:
y = α st(ω) + β ct(ω) 									[1]
where st(ω) = sin(2πt) and ct(ω) = cos(2πt). By representing the seasonal cycle by a linear mixture of sine and cosine terms, coefficients α and β can be estimated from the data through linear regression but is also easily generalisable. 
More complicated wave forms can be fitted by introducing a harmonic scale, composed of J pairs of sine and cosine basis functions whose frequencies are integer multiples of the fundamental seasonal frequency. We limit J to a maximum of two to avoid overfitting (Cox 2006), and we fit models with one and two pairs of sine and cosine functions:
seasonal1 = occupancymonthly ~ densitymonthly + (s1 + c1) + (1 + densitymonthly | year)
seasonal2 = occupancymonthly ~ densitymonthly * (s1 + c1) + (1 + densitymonthly | year)
seasonal3 = occupancymonthly ~ densitymonthly * (s1 + c1 + s2 + c2) + (1 + densitymonthly | year)
where sj = st(ωj) and cj = ct(ωj). The interaction terms in models seasonal2 and seasonal3 allow for variation in AOR parameters on a monthly basis, dependent on the specifics of each species’ annual cycle represented by the harmonic terms. We tested whether these modifications to the basic model improved fit using AIC. An overall measure of model fit was obtained by calculating the correlation between fitted and observed data.
Confidence intervals for model parameter estimates were obtained by profiling (Bates 2010), and profile pair contour plots were used to check for independence between pairs of parameter estimates. Profiling systematically varies the value of a single parameter and compares the fit to the data to the full model in which all parameter values were estimated. Fits are assessed using the likehood ratio test (LRT) statistic. The effect of varying parameter estimates on model fits can be assessed through profile zeta plots, which are plots of ζ, the signed square root transformation of deviance, versus values of each parameter being profiled. ζ values can be compared to the quantiles of the standard normal distribution and can be used to derive confidence intervals for parameter estimates. 
Density data for each species were mean centered for each species but were not standardized in order to allow inference on the original density scale and facilitate inter-specific comparisons. All analysis was performed in R (R CoreTeam 2013). GLMMs were fitted using the lme4 package (Bates et al. 2014) and wireframe plots were produced using the lattice package (Sarkar 2008).
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Classic Inter-annual AORs reveal significant positive relationships in both species (figure 4.6 a and b, table 4.3). However, the relationship across years is much stronger for C. helgolandicus (1.16 ± 0.002) compared to a very weak relationship for C. typicus (0.24 ± 0.004) in which there generally appears to be very little variability in mean annual abundance, more aggregated distribution of annual occupancy (figure 4.6 b) and the model overall explains negligible deviance. Mean annual density in C. helgolandicus is associated with much higher levels of mean annual occupancy (67 ± 0.001%) than C. typicus (29 ± 0.001%). However, consideration of the inter-annual relationship under the GLMM framework reveals a whole other level of dynamics (figure 4.6 c and d). Particularly in C. typicus, we find is that the apparently weak inter-annual relationship masks very strong intra-annual relationships in which the species’ dynamics span the entire occupancy range, most years in a relatively consistent fashion.
Individual annual GLM parameter estimates did not give concern with regards to severe deviation from a normal distribution and therefore the assumption of a randomly varying relationship was considered valid. Variance in the residuals appears relatively stable across year for all models (Figures 4.1a, 4.2a, 4.4a, 4.5a) although some notable deviations also are evident. As the general trend is uniform and because of the difficulty in incorporating variance structure through weighting in binomial models, where the weighting argument is taken up by the number of trials, we proceed without any correction for variance structure. Profile zeta plots indicate that fixed effect 

Table 4.1 Model comparison of all fitted AORs (See text for description). Values are differences from model seasonal3 (ie model with minimum AIC).
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Table 4.2 Parameter estimates of inter-annual0, intra-annual1 and seasonal3 intra-specific AORs for both copepod species (see text for details of model structure and temporal resolution). Occupancy represents estimates of spatial occupancy (proportion of pixels occupied across study region) on the logit scale and density represents mean local density (mean density calculated across occupied pixels only, units: log ind. 3m-3). Terms hsi refer to sine components of harmonic regression terms and hci refer to cosine components. Parameter labels containing : refer to interaction terms. Note that R2 in the case of the inter-annual0 model refers to deviance explained. As such a statistic is not easily determined for mixed models, R2 in the case of intra-annual1 and seasonal3 are a crude measure calculated as the correlation between observed and fitted values.
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parameters are symmetrical about the estimate with the slight sigmoidal tendency indicating minor overdispersion compared to a normal distribution but this pattern is not unexpected or cause for concern (Bates 2010). As data were centred, the intercept coefficient represents the probability of a pixel being occupied at mean density (poccupancy). C. helgolandicus is found at much higher occupancies at mean densities, logit-1(0.80) = 69% (64 – 74%) than C. typicus whose occupancy at mean density is only logit-1(-1.07) = 26% (20 – 32%). Both species exhibited a significant positive effect of density on occupancy (table 4.3). However, the effect was much stronger in the case of C. typicus 4.31 (2.60 – 6.01) compared to 0.93 (0.55 – 1.30) for C. helgolandicus. 
 C. typicus as well as having a stronger fixed effect of density also has greater between year variance in slope and intercept estimates associated with it. Evident in figure 4.6d where although for the majority of the years the slope appears consistently strong and positive, there are highly contrasting years of very small or even negative relationship. However, in relative terms, between year variance in the slope parameter in relation to the fixed effect slope estimate is similar in both species at ~67% of the fixed effect size. 
Models generally show only modest fit to the data, with R2 values of 0.27, while diagnostic residual plots indicate systematic patterns in Pearson residual variance in relation to fitted values, occupancy and density. Contrary to expectation of the mean-variance relationship expected from binomial distribution, we find high residual variance at low fitted values which decrease at the higher end of the scale (Figures 4.1d, 4.2d). Similar respective trends are found in plots of Pearson residuals as a function of density (Figures 4.1b, 4.2b). In both species, there is a clear positive relationship between Pearson residuals and occupancy, with increasingly negative residuals at low observed logit occupancy and increasing positive deviation at high occupancies (Figures 4.1c, 4.2c). 
There also appears to be seasonal element to residual variance, particularly in C. typicus where months of the second half of the year, corresponding to the months of peak seasonal activity in the population appear to often show positive residuals whereas months at the first half of the year, overlapping the periods of reduced seasonal activity show negative residuals (figures 4.2b, c and d). Pearson residuals plotted against month reveal clear seasonal patterns in the residuals corresponding to the seasonal cycles of each species (figure 4.3). Also shown is an example of the incorporation of harmonic terms into a simple linear model to capture the non-linear relationship between Pearson residuals and month. Of the harmonic models tested, the 
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Figure 4.1 Residual plots of intra-annual1 model for C. helgolandicus. a) Pearson residuals vs year b) Pearson residuals Vs (local) density (log ind. 3m-3) c) Pearson residuals vs fitted values e) distribution of intra-annual random intercepts f) distribution of intra-annual random slopes. Point colours in a-d identify the month associated with each data point.
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Figure 4.2 Residual plots of intra-annual1 model for C. typicus. a) Pearson residuals vs year b) Pearson residuals Vs (local) density (log ind. 3m-3) c) Pearson residuals vs fitted values e) distribution of intra-annual random intercepts f) distribution of intra-annual random slopes. Point colours in a-d identify the month associated with each data point.

.
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Figure 4.3 Pearson residuals from intra-annual1 models of each species plotted against month. Also shown are the outputs of simple linear harmonic regression models, modelling deviance of residuals as a function of either a single harmonic frequency (blue) or the additive combination of 2 harmonic frequency terms (terms).
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Figure 4.4 Residual plots of seasonal3 model for C. helgolandicus. a) Pearson residuals vs year b) Pearson residuals vs density (log ind. 3m-3) c) Pearson residuals vs fitted values e) distribution of intra-annual random intercepts f) distribution of intra-annual random slopes. Point colours in a-d identify the month associated with each data point.



[image: Macintosh HD:Users:annakrystalli:Documents:THESIS:SDM AORs:workflow:outputs:figures:fm4 resids centrot.png]Figure 4.5 Residual plots of seasonal3 model for C. typicus. a) Pearson residuals vs year b) Pearson residuals vs (local) density (log ind. 3m-3) c) Pearson residuals vs fitted values e) distribution of intra-annual random intercepts f) distribution of intra-annual random slopes. Point colours in a-d identify the month associated with each data point.
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Figure 4.6 Intraspecific temporal AORs for both species. Occupancy, representing the proportion of pixels occupied at each timepoint across the entire study region, was modelled as a function of local density (log ind. 3m-3) in all cases. a – b) Outputs of inter-annual0 AOR models fitted as a binomial generalised linear models (GLM) using a binomial error distribution and logit function to yearly mean data. c – d) Model outputs of intra-annual1 AOR models fitted as mixed effects binomial models to monthly data, incorporating random annual variation in the slope and intercept of relationship. Black line indicates the fixed effects.

full complexity model, incorporating two harmonic frequency terms and allowing for the interaction between harmonic terms and density had the lowest AIC in both species (table 4.2) and makes most biological sense, so we proceeded to focus on the full seasonal3 model. This model shows much better fit to the data in both species with R2 of 0.73 and 0.87 for C. helgolandicus and C. typicus respectively and indeed had the highest in R2 values of any of the models fitted (table 4.3). Patterns in residuals seem to a large extent to have been addressed (fig. 4.4 and 4.5). Particularly the strong seasonal trend in the sign of residuals observed in intra-annual1 is not evident, nor is the clear positive relationship between occupancy and Pearson residuals. 
In the full seasonal3 model, the effect size of density alone is reduced in both species, in fact non-significant in C. typicus, although differences in coefficient estimates generally follow similar relative interspecific patterns to intra-annual1. Additionally, while the gap in intercept is now larger (interspecific difference of 3.16 compared to 1.87 in intra-annual1 model), the difference in slope estimates are reduced (0.70 compared to 3.39 in intra-annual1). Species do not appear to differ in coefficients associated with the interaction of density with the harmonic terms either. The main differences between the two species lie in the effect sizes of the harmonic terms, ie the elements of the model representing the seasonal cycle of each species. 
To assess the marginal effect of density in the more complex model seasonal3 we calculated the effect of a discrete single unit increase in mean density on the probability of occupancy (poccupancy) at monthly intervals. We use each species’ model to predict poccupancy for each month m at xdensity0 = mean observed density of each species at month m (μm) and xdensity1 = μm + 0.1. As the harmonic terms of the model are fully defined by month through equation 1, linear predictor vectors x0 and x1 were generated for each month which varied only in the value of xdensity. 
∂poccupancy/∂xdensity = βx1 – βx0
Results can be seen in figure 4.7a and b. It appears that the relationship is strongest in both species during phases of sharp occupancy increases, negative during decreases and weak at peaks and troughs of the seasonal cycle, ie throughout most of it. Interestingly in C. helgolandicus, a strong relationship is only observed during the first seasonal invasion of the pelagic while occupancy and density seem largely unrelated during the second seasonal peak of activity. What is also clear is that at the same 
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Figure 4.7 Intraspecific seasonal3 AOR fixed effects. Shown are the fixed effects occupancy predictions from seasonal3 models as a function of month and local density. Colour indicates occupancy levels. It should be noted that for visual effect, predictions have been extrapolated to predict on the overall range of densities, which in reality rarely be observed within any one month across years. Colour intensity represents level of occupancy.
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Figure 4.8. Marginal effect of a 0.1 unit increase in local density (log ind. 3m-3) on occupancy calculated at monthly intervals at mean monthly density for each month for both species. Plotted against month (a – b) and against monthly mean local density (c – d).

mean monthly density, the relationship can vary. In C. helgolandicus (figure 4.7c) this can be seen at low densities where the relationship can be strong (indeed the strongest observed through the entire seasonal cycle) during the beginning of the seasonal cycle, and also neutral towards the end (fig 4.8c). In C. typicus this dual state of the relationship is observed at higher densities and swing from strong positive to moderately negative (fig 4.8d). 
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In this study we set out to detect temporal hierarchical structure in intraspecific AORs using abundance and occupancy data from highly dynamic copepod populations in the North Sea. We did this by investigating the effect of varying the temporal resolution of the analysis on the form of AORs. We relate differences in AORs across temporal scales to the time scales of processes likely to be acting on regional populations (Borregaard & Rahbek 2010). We find that indeed changes in the temporal resolution of the analysis can result in different manifestations of AORs, but that this variation is species specific. 
Inter-annual AORs are stronger in C. helgolandicus, with a very weak relationship in C. typicus which varies little across years in terms of both mean local abundance and regional occupancy. However this trend in reversed when intra-annual dynamics are considered. Annually C. typicus shows a much stronger relationship and also a much wider range of within year occupancy levels. At mean density C. typicus is also found at much lower occupancy than C. helgolandicus. C. typicus also shows greater inter-annual variation in the relationship, primarily driven by a small number of highly contrasting years in which the relationship is very weak or negative. C. typicus therefore is generally found at much higher densities than C. helgolandicus and the strong positive slope in the intra-annual1 model, which generally indicates strong dependence of large-scale distributions on local scale processes (Freckleton et al. 2005) suggests that spatial expansion of the regional population of C. typicus on an intra-annual basis, is highly and positively density dependent and may therefore be characterized by Allee effects (Courchamp et al. 1999). This is consistent with expectations of positive density dependence resulting from high mate encounter limitation (Kiørboe 2006). The few instances of weak or negative relationships are also consistent with expectations of greater vulnerability of species affected by positive density dependence to population collapse (Kiørboe 2006) and likely reflect the strong influence of demographic stochasticity on population dynamics of species exhibiting Allee effects (Courchamp et al. 1999).
What is interesting about comparisons between the inter-annual0 and intra-annual1 in C. typicus is that the contrasting forms have been linked to very different life-history and ecological traits. For example, Buckley & Freckleton (2010) found steeper slopes to be associated with invasive colonizing species (a finding which also received support in Chapter 2) while shallower slopes were found to be associated with clonal species. Indeed, the high fecundities and fast growth rates of C. typicus results in expectations of strong positive relationships, however our analysis indicates that this relationship can only be revealed if the species dynamics are examined on the time scale at which colonization dynamics are most active. On an inter-annual scale, C. typicus exhibits characteristics of species which are slower to exploit new habitat or to respond to changing environmental conditions (Buckley & Freckleton 2010). Webb et al. (2007) additionally found weaker relationships to be associated with rare species. While our analysis has shown that C. typicus is quite capable during some parts of the year to reach full spatial occupancy, it is actually absent from the water column, most likely as resting stages (Halsband-Lenk et al. 2004), or found at very low occupancies during much of the year. Conceptually, it could therefore be classed as a rare species on an inter-annual basis and variability in its relatively short period of population growth has to be considerable if it is to produce apparent variability in the dynamics at the inter-annual level. What these findings continue to highlight is the importance of context, not only for assessing the contribution of species’ population dynamics on AORs but also of life-history correlates.
C. helogolandicus on the other hand is generally found at lower densities but at much higher occupancies and the strength of the relationship is consistently positive. The fixed form of the intra-annual1 model also shows consistency with that of the inter-annual model. These findings suggest that C. helgolandicus regional population dynamics most likely conform to a habitat-filling model in which the form of the relationship is primarily dictated by habitat suitability distribution (Holt et al. 1997, Freckleton et al. 2006). The consistency in scaling of C. helgolandicus AORs could be the result of adaptations associated with capital breeding such as seminal receptacles and lipid storage which allows species dynamics to become decoupled to some degree from short term fluctuations in environmental conditions and mate availability and allows breeding to commence earlier in the season (Varpe et al. 2009). This may cause lags and feedbacks, which allow population processes to extend over longer temporal scales (Varpe et al. 2009). The observation that the breakdown of the relationship occurs not prior to the surge in population but rather during the bloom (fig. 8) may provide evidence of complex lags and feedback during the bloom creating much variability in population dynamics. 
Random effects sizes were relatively high in all models, especially C. typicus indicating that intra-annual AORs exhibit significant inter-annual variation. Such fluctuations could emerge from a variety of drivers. Bottom-up drivers such as temperature and food availability can affect growth, development and mortality rates (Hirst & Bunker 2003; Hirst & Kiørboe 2002; Kiørboe & Hirst 2008). There are also top down pressures like predation (Hirst et al. 2010). All these forces have their own periodic dynamics with associated variation but together they form a complex "network" of pressures with composite periodicities of benign and stressfull conditions. These can affect seasonal cycles by modulating development, growth rates and body size (Hirst & Forster 2013; Forster et al. 2011b; Forster et al. 2011a). Variation in interspecific responses to environmental fluctuations drive variation in the seasonal evolution of demographic rates and therefore of AORs. Ultimately, the amount of environmental variation individual species can adapt to remains constrained by life history. In systems where intraspecific dynamics appear too weak to affect the structure of interspecific AORs (Blackburn et al. 1998), this might be a reflection more of assemblage stability or low turnover rate. In assemblages with higher turnover rates inter-specific AORs may be more dynamic. Such a view point also reaffirms the importance of considering the temporal scales of ecological processes.
In the seasonal model, the effect of density is reduced in both species, as are the inter-specific differences in model slope estimates. The harmonic interaction terms with density are all significant but their effects are consistently small in both species. The main inter-specific differences appear in the effect sizes of the harmonic terms. While direct interpretation of the individual terms is rather meaningless, interspeciifc differences in harmonic term coefficients in essence represent the species-specific differences in seasonal cycles. The reduction in the fixed effect of density and the dramatic improvement in model fit indicate that the seasonal cycles are important driver of AORs, and suggest that AORs might be intimately linked to the life history traits dictating species phenological and population growth characteristics (Varpe et al. 2009). 
We also find systematic variation in AOR strength throughout the seasonal cycle. The combined effect of density on occupancy tends to be positive and strongest during periods of population growth, negative during months in which the population is declining, and weak during peaks and troughs of seasonal dynamics (fig. 4.8). Positive relationships indicate conditions in which the species increases in both spatial extent and local density, a reasonable expectation of populations undergoing seasonal population bloom (Holmes et al. 1994; Freckleton et al. 2005). Intra-specific AORS tend to be negative if occupied sites containing the lowest density of individuals are more likely to go extinct resulting in a reduction in occupancy with a concurrent increase in mean local density as only populations at higher densities persist (Freckleton et al. 2005). Equally any increase in a species spatial occupancy might involve colonization of more marginal habitat resulting in a simultaneous decrease in mean local density (Webb et al. 2007). At peaks and troughs of the seasonal cycle, occupancy is consistently high or low respectively but local abundances are decoupled from regional scale dynamics. At the peaks this might be a result of density dependence acting on regional populations close to carrying capacity and at the limit of occupancy whereas during troughs they maybe related to the stochastic nature of scarcely distributed suitable habitat. Both these predictions are consistent with regional population model predictions (Freckleton et al. 2005) and empirical observations (Webb et al. 2007, Buckley & Freckleton 2010). Interestingly, weak or negative relationships associated with decreasing populations was also found in inter-specific AORs of british birds (Webb et al. 2007) and longer term copepod population dynamics (see Chapter 2). Overall, these results demonstrate the composite cross-scale influence of colonisation dynamics on the generation of AORs and suggest that selection of life history characteristics dictating seasonal variation in demographic rates to align with a given scale of environmental variability (Boyce 1979), may result in trade-offs in adaptability to variation at other time-scales
The temporal evolution of the seasonal colonisation event may make it difficult to fit a simple binomial annual AOR. In particular, the observation there are levels of density (low in C. helgolandicus and moderate in C. typicus) at which both the strongest and the weakest or most negative effect of density is recorded could explain the high residual variance at lower or moderate densities introducing overdispersion and the difficulty in characterising random effects. This is also reflected in the generally wedge shaped residuals when plotted against density (figures 4.1b, 4.2b, 4.4b, 4.5b). This pattern is consistent with observations on bird populations (Freckleton et al. 2005) and has been generally attributed to the greater stochasticity characterizing population dynamics at lower densities but we suggest that fundamental differences between the processes of colonization and extinction during the seasonal cycle might also be a driver. 
Differences in enumeration techniques of the two species (Richardson et al. 2006) may also introduce artifactual inter-specific differences. In particular the 50-fold reduced sampling effort during enumeration on C. typicus data has the potential to lead to a compressed density scale, with inflated absences and increased local density, particularly at low occupancies and/or densities. Indeed this may be occurring, particularly a compressed density scale. However the dynamics emerging form the data, for example in the intra-annual model (fig. 4.6d) are nevertheless consistent with expectations of strong positive density dependence. A threshold density below which Allee effects become important, as viable populations are unable to become established is also expected (Freckleton et al. 2005). The density at which minimum abundance is ascribed in CPR traverse enumerated species such as C. typicus (50 ind 3m-3 = 16.7 ind m-3, see Richardson et al. 2006 and table 3.1 for details) is lower than the predicted density from demographic models of multiple mating species with limited overall mating capacity (40 ind. m-3) so should theoretically be able to capture this threshold. However the picture is complicated by a number of issues. Firstly the integration method used here to estimate mean density, combine with the aggregation of original CPR abundance categories (AC) to a reduced 5 category scale (Chapter 2) imposes a higher minimum observed density (75 m-3, the mean of the three original ACs aggregated into the first abundance category; see table 3.1 for details), which is much higher than the threshold. Additionally, we are lacking data from many winter months so have few data points on the harshest part of the cycle when population densities are lowest. Richardson et al. (2006) suggest temporal interpolation, but we considered this not appropriate in this instance given that we had only two December surveys (table 4.1). The key to understanding C. typicus dynamics through AORs therefore appears to lie in resolving the abundance and occupancy dynamics at lower densities which will require additional data not available through the CPR survey. Despite these potential biases, the patterns observed are certainly consistent with theoretical expectations.
The time scale covered by our analysis was set by the availability of high resolution, environmentally-informed modelled occupancy and abundance data (see Chapter 3), which is restricted to years with satellite data. Although this limits the number of years in our analysis, we believe the approach has a number of benefits in the context of AORs. First, the high resolution of the interpolated data should improve the estimation of occupancy, which is inevitably a function of how areas are defined and delimited (Hartley & Kunin 2003; Rahbek 2005). The use of a Species Distribution Modelling (SDM) approach means that environmental structure and patchiness is better captured which has also been advocated as a way to improve estimations of occupancy (Barwell et al. 2014). Finally, since local abundances are generally not normally distributed (McGill et al. 2007), the average value may not accurately describe species abundance at any specific point on the landscape (Borregard & Rahbek 2010). By fitting a lognormal distribution to the distribution of modelled abundance counts and using the estimated geometric mean from these distributions, we obtain a more robust measure of actual monthly average abundance. Our method should therefore produce better estimates of population density central location from ordinal abundance counts than would be obtained by averaging the accepted values associated with each abundance count.
We consider our mixed effects modelling approach appropriate to address the questions outlined in the introduction. Fitting year as a categorical fixed effect in the intra-annual models would allow estimation of AOR coefficients for specific individual years, but that is of limited interest given that the years analysed constitute only a small sample of potential manifestations of intra-annual AORs and therefore inference would not be generalisable to unsampled years. Rather, it is the variability around the overall relationship that is of most interest. Variation in AORs could result from stochasticity in the drivers of the dynamics of a species’ spatial abundance distribution, which could range from habitat quality variation to dispersal dynamics. We have no a priori expectation of how such a complex network of factors would affect the relationship and as such found a random expectation was appropriate. Furthermore, estimates from individual yearly GLMs result in a distribution of parameter estimates that does not depart substantially from normality, making this a reasonable expectation (Bolker et al. 2009). Thus, even though mixed modelling is potentially troublesome (Bolker et al. 2009) and diagnostics from our models indicate potential overdispersion and difficulty in characterizing random effects, suggesting that absolute parameter values should be interpreted with caution (especially given that CPR data themselves are only semi-quantitative; Richardson et al. 2006), we believe the qualitative results in our models to be robust.
Extension of this type of analysis to a larger time span using geostatistically interpolated CPR data is a natural next step, bearing in mind potential differences arising from differences in interpolation methods (see Chapter 3). However, further caution is required. AORs can change (potentially including qualitative state changes as well as quantitative changes in form), which mean that, for example, years sampled may not belong to the same group but members of temporal sub-groups. Methods for a priori detection of such subgroups (e.g. Chapter 2) could be useful. Evolving rather that fixed seasonality is also likely to be an important feature of the system (Lundbye-Christensen et al. 2009; Almeida et al. 2009) and our framework does not allow for this, as there is not sufficient data to allow for characterising the inter-annual variability in the slope and intercepts associated with the harmonic predictors and their interactions with density. Incorporating evolving seasonal dynamics, overdispersion and serial correlation in the residuals may prove more accurate fits to the data. However, continual model refinement to explain more variance in the model comes at a cost of reduced generality (Evans et al. 2013). We feel that the approach adopted here is a good compromise between fit and generality, and enables us to make useful conclusions about the form of AORs within and between years. For instance, the large improvements in model fit on incorporation of a seasonal component suggest that our models do capture major seasonal trends in evolution of AORs, likely due to seasonal changes in key demographic rates, matching expectations from theory (Evans & Parslow 1985; Varpe et al. 2007). This also allows us to begin to interpret the variability in population dynamics resulting from the interaction of life history strategies with environmental variability through the random effect component. 
To conclude, we found that each layer in our analysis appears to be a composite of the dynamics at lower levels and the form of AORs at each resolution identify the strength of the processes acting on that particular temporal scale. Gaston et al. (1998) showed how spatial inter-specific AORs were derived from the sum of patterns across space. Here we show the same in the temporal domain. What emerges is a temporally hierarchical structure of the AOR, the internal characteristics of which are governed by the strength of cross-scale interaction between processes at each scale which itself is dictated by life-history characteristics. We also find species-specific phenological cycles to be an important underlying driver of intra-annual AORs and find that the strength of the relationship can vary on a seasonal basis, and appears to be linked to different phases of species seasonal cycles, being strongest during population growth phases, weak during peaks and troughs of seasonal dynamics and negative of weak during the declining phase at the end of the season. 
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Abundance-occupancy relationships represent one of the most ubiquitous macroecological patterns found in nature (Gaston et al. 2000). However, they are also highly variable and attempts to untangle the variety of processes proposed to underlie them are only slowly beginning to reach some degree of consensus. What has emerged is an appreciation of the hierarchical structure of the relationship (Borregaard and Rahbek 2010), the specifics of which are dictated by the interaction of life-history characteristics related to colonization dynamics and the distribution of habitat suitability (Freckleton et al. 2005; Freckleton et al. 2006; Webb et al. 2007; Tyler et al. 2009; Webb, Aleffi, et al. 2009a; Buckley & Freckleton 2010; Blanchard et al. 2005). What has also emerged is the importance of considering the temporal dynamics of AORs in determining the processes generating them (Fisher et al. 2010). The predominately atemporal depiction of macroecological patterns can often conceal important temporal detail (Rex et al. 2000; Fisher et al. 2008) and dynamics perspectives have often challenged prevailing views on the structure of ecological assemblages (Frank 2005; Frank et al. 2006). Considering the temporal dynamics of macroecological patterns is therefore a key step in revealing processes that underlie and modify macroecological structure and dynamics on ecological time scales and a prerequisite for developing macroecological predictive capacity (Fisher et al. 2010).
Interpretation of AORs is therefore highly context specific and dependent on both the temporal and spatial scale of both data and analyses (Borregaard & Rahbek 2010). The overarching theme of this thesis was to examine this hierarchical nature of AORs using long-term copepod data of in the well sampled North Sea. We approached this by varying the extents and resolutions of our analyses through space and time to uncover underlying heterogeneities and hierarchical structures in the temporal dynamics of AORs. We performed our analysis on species of contrasting ecology and life history (table 1.1). By doing so we aimed to understand how large scale population structure of species with differing ecological and life-history characteristics respon to environmental variability through time and across scales. Our analyses were facilitated by the large scale biogeographic shifts (Beaugrand et al. 2009; Beaugrand & Reid 2002) and abrupt community shifts (Beaugrand 2004b; Weijerman et al. 2005; Beaugrand et al. 2008) documented in the region which, in a field in which experimental manipulation is either unfeasible or unethical (Brown 1995, Gaston and Warren 1997) can be viewed as pseudo-experiments providing an opportunity to extend our understanding of the processes underlying macroecological patterns (Tittensor et al. 2007, Algar et al. 2009, Sunday et al. 2012, Webb et al. 2007, Sekercioglu et al. 2007).

[bookmark: _Toc289481402]Thesis Overview 
In Chapter 2 we examined long-term trends in intraspecific AORs in a localized area of consistent sampling throughout the entire life of the CPR survey in the northern North Sea. As there was no spatial dimension to the analysis we defined a measure of temporal occupancy, which, analogous to spatial AORs, linked processes dictating temporal local density to inter-annual trends in temporal occupancy. We then searched for heterogeneities in the long-term relationships to determine whether known ecological regime shifts had resulted in shifts in temporal large scale population structure. We used trends in population status and life history characteristics to infer which factors may be driving emergent AORs.
Chaptrer 3 addressed the issue of spatial resolution. A key objective of the thesis was to develop Species Distribution Models (SDMs) to produce high-resolution maps of copepod spatial distribution. We did this by combining CPR data, satellite data (front intensity maps in particular) and state of the art machine learning techniques. We conducted a formal comparison with current methods used to interpolate CPR data and discussed the relative merits and limitations of each.
Finally, in Chapter 4, we used these new high-resolution maps of copepod abundance to examine annual intra-specific AORs across the whole North Sea, and we compared trends between two copepod species with contrasting life-history characteristics. We implemented harmonic regression methods within a mixed modeling framework, resulting in a three-staged analysis which allowed us to determine the intra-annual variability about the relationship as well as its seasonal evolution.
[bookmark: _Toc289481403]Key findings
[bookmark: _Toc289481404]Findings relating to AORs
Scale is of major importance in ecological analyses because the ecological neighborhood of organisms for a given ecological processes, ie the temporal and spatial extent within which organisms are active or have influence, varies (Addicott et al. 1987). Without considering the implications of scale, comparing results from different species in the same environment or between theoretical predictions and empirical observation can be misleading (Wiens 1989) and this will be further exacerbated when comparing species with highly contrasting life histories (Addicott et al. 1987). By linking population processes across scales through AORs and varying the temporal extents and resolution of our analysis, we have been able to identify temporal heterogeneities in the relationship both between time-periods of contrasting regional population structure (Chapter 2) and across temporal scales (Chapter 4). Identification of such heterogeneities is an important step in identifying the processes generating AORs. In particular, it allows the identification of time periods or scales during which population processes are most active and therefore differences in species’ temporal niches.
We found that the form of higher-level relationships was a composite of underlying lower-level relationships, and that the overall form could mask time periods exhibiting highly contrasting dynamics. For example, a positive relationship reflecting long-term population trends in C. helgolandicus decomposed into two time periods of similarly weak relationships, reflecting regional population shifts were driven primarily by a change in the two state variables but not in their relationship. More importantly, the weak saturating relationship observed in C. finmarchicus masked two periods of highly contrasting dynamics, shifting from a strong positive relationship related to an overall decline in both global and local density to a period of more stable but generally lower local density and occupancy levels which were characterised by a strong negative relationship. This is an important finding because it suggests that many of the weak relationships found in previous studies in declining species (Webb et al. 2007; Buckley & Freckleton 2010) may in fact be composed of periods of strong and correlated decline in both variables followed by a period of contraction into core areas. We have also shown that taking such a macroecological approach to regime shift detection can not only bolster evidence of regime shifts but also identify large scale population state, patterns in population state transitions and population processes that might be affecting dynamics during different regimes. 
Contrasting dynamics were also observed when comparing inter-annual and intra-annual trends while the form of intra-annual AORs emerged as a composite of AOR-generating processes operating on a seasonal level, producing seasonal variability in the strength and form of the relationship. We found that the strength of metapopulation processes also influence the shape of the relationship on an intra-annual and seasonal basis, with the strongest AORs being associated with periods of sharp population increase and declines being associated with weak or negative relationships. The fact that in seasonal AORs, interspecific differences between density parameter estimates were reduced and were primarily captured by the parameters describing each species phenological cycle confirms that phenological adaptations are an important driver of regional population structure on multiple temporal scales. It reaffirms the need to appreciate the dynamic nature of AORs when searching for mechanisms underlying macroecological structure (Fisher et al. 2010). Overall, our analyses lend further support to the premise that macroecological patterns, including AORs, and the processes generating them are hierarchical in nature (Borregaard & Rahbek 2010) and therefore any inference made about regional population structure from emergent patterns in AORs requires explicit consideration of the context defined by the data and scale of the analysis. They also begin to bridge ecological scales, allowing us to begin to link macroecological patterns to processes on ecological timescales (Ricklefs & Jenkins 2011; Kerr et al. 2007; Fisher et al. 2010).
Our analyses also demonstrate the potential of AORs for detecting regional population structure and the strength of metapopulation processes throughout species ranges. Understanding geographic variation in demography is key to discerning the causes of range dynamics (Brown 1984; Brown et al. 1996; Eckhart et al. 2011) and results in Chapter 2 suggest that range position is indeed an important driver of the strength of metapopulation processes and is particularly important near invasion fronts (Sakai et al. 2001), evident as high stochasticity at low densities, and strong positive relationships (eg. E. hebes) and at range retractions where higher extinction risk of smaller populations leads to contraction of species into more favourable habitat and a negative relationship (eg C. finmarcicus; Blanchard et al. 2005; Päivinen et al. 2005). While range position as an explanation of AORs has found limited support in the literature to date (Gaston et al. 1997; Borregaard & Rahbek 2010), we suggest that the relatively large scale biogeographic shifts observed in this planktonic system (Beaugrand et al. 2009; Parmesan & Yohe 2003) might have resulted in range position shifts of a large enough magnitude to reveal changes in regional population structure. 
Evidence of positive density dependence being an intrinsic part of species life history strategy was also observed in C. typicus and we find that such traits might also constrain the extent to which regional populations of this species can respond to long-term environmental change. Therefore, projections of long term population dynamics requires a good knowledge of how life-history traits relate population responses to density (Bassar et al. 2010; Courchamp et al. 2009). 

[bookmark: _Toc289481405]Findings relating to copepod ecology
We also observed significant shifts in AORs, which were temporally consistent with well documented abrupt ecosystem shifts in the North Sea and the wider North Atlantic (Edwards et al. 2002; Beaugrand 2004b; Beaugrand et al. 2002b; Weijerman et al. 2005; Beaugrand et al. 2014) providing evidence that imply that such ecosystem shifts are associated with changes in species regional population structure. However, wide interspecific variability in AOR patterns and years identified as breaks in both AOR and individual parameter analyses was observed which agrees with thermal niche theory predictions in relation to climate-driven abrupt community shifts, namely that species responses will be individualistic and dependent on interspecific thermal niche characteristics, the initial thermal regime and the magnitude of the thermal shift (Beaugrand 2014). The variety of AOR patterns during regime shifts also clearly demonstrate that regimes can be highly dynamic and don’t necessarily represent stable states (Scheffer & Carpenter 2003).
We found significant positive relationships in the long-term relationship of four out of the five species investigated but also significant underlying heterogeneity. The larger copepods generally appeared to conform to a ‘habitat filling’ model (Freckleton et al. 2005) where colonization rates are high and regional population structure is determined by the distribution of suitable habitat. However we do observe instance where metapopulation processes become important and these appear to be linked to range position. For example, evidence consistent with positive density dependence and increased stochasticity in population dynamics of colonizing species was observed in E. hebes, The smaller C. typicus however showed evidence of strong positive density dependence and critical density threshold behaviour throughout all models, suggesting that density dependence may be a constant feature of the species’ contrasting reproductive strategy (Kiørboe 2006). 
Our approach has allowed us to develop a better understanding of how key life-history traits dictating colonization dynamics interact with environmental variability across scales to generate inter-specific cross-scale differences in AORs. Emeging patterns reflect differences in the spatio-temporal structuring of species large-scale populations. An interesting finding emerged from the comparison of inter- and intra-annual AORs in C. helgolandicus and C. typicus. The analysis revealed a stark contrast in the scales at which dynamics are strongest and at which both state variables exhibit highest variability between the two species. C. helgolandicus possesses a variety of adaptations including seminal receptacles and lipid storage, which allow individuals to spread their reproductive effort across the growing season creating asynchrony in population dynamics. This capital breeding strategy, which buffers breeding from short-term environmental variability, may allow species dynamics to extend their influence over longer periods of variability and might underlie the relative consistency of the relationship across the variety of extents and resolutions investigated. The lack of such adaptations in C. typicus on the other hand imposes a current income reproductive strategy and renders it more vulnerable to limiting factors such as mate encounter limitation. Despite increasing in global density throughout the study period in Chapter 2, there was no significant change in the dynamics between the two periods and gains in density were small, the main driver of change being still relatively modest gains in occupancy. The high growth potential associated with the species current income life history strategy (Varpe et al. 2009; Halsband-Lenk et al. 2004), is only maximised when temperature, food and mate availability is high and they are often food limited in the North Sea (Lindley & Reid 2002). All these factors lead to the a requirement of strong aggregations matching strongly aggregated suitable habitat for successful population growth to ensue, with negative density dependence likely to increase in importance as resources are consumed and begin to limit population growth (Chesson et al. 2004). 
Interestingly, this pattern is also congruent with the behaviour of stochastic demographic models confronted with density dependence. When growth is regulated by positive density dependence at low densities and negative density dependence at high population densities, the long-term growth rate is often zero, and perturbations to vital rates generally do not change this long-term behaviour (Boyce et al. 2006). This indicates that having strong adaptation to confined periods of environmental variability patterns might represent a trade off against adaptability at longer temporal scales. Therefore, while tight phenological synchrony might improve populations ability to overcome the challenge of Allee effects, too much temporal aggregation can be maladaptive (Friedenberg et al. 2007). Behaviours leading to aggregation generally slow the expansion of species ranges or the colonization of empty habitat (Reed & Dobson 1993; Stephens & Sutherland 1999; Greene & Stamps 2001) and may therefore also slow responses to environmental change within the range interior. Findings in Chapters 2 and 4 suggest that by breaking down the long-term global density trend into trends in temporal occupancy and local density allowed us to detect limits of long-term regional population structure adaptability of C, in the form of a maximum average temporal density the population is able to attain.
Such contrasting patterns in the spatio-temporal structure of AORs are also consistent with trade-offs predicted by theory developed to explain co-existence of species in pulsed environments where resource pulses provide axes of ecological differentiation between species. Species are differentiated by their response to resource availability, the level of resource availability at which persistence is limited and their strategies for coping with interpulse periods (Chesson & Pacala 2001) which result in unique patterns of population growth and resource consumption over time as species respond at different rates to environmental variability (Chesson et al. 2004; Chesson 2000). In temperate planktonic communities, environmental seasonality annually resets population states and results in an annual recolonisation of the pelagic. Transitional rather than asymptotic dynamics are therefore a constant feature of the system and an appreciation of the impacts of such dynamics is required to further our understanding of the structure and dynamics of these systems (Hastings 2001; Hastings et al. 2004). For example, dispersal limitation might be most important at the beginning of the seasonal cycle whilst resource limitation and the importance of biotic interactions might increase later on (Chesson et al. 2004; Hein & Gillooly 2011). Incorporation of harmonic representations of seasonal cycles as implemented in chapter 4 demonstrates the potential of AORs to enhance our understanding of transient dynamics throughout the seasonal cycle by allowing us to observe the seasonal evolution in regional population structure and quantify the strength of interaction between local and regional processes. Both transitional and asymptotic dynamics are dependent on life history traits and the vital rates they are associated with them which determine the scales at which population processes act (Ovaskainen & Hanski 2002). Results highlight the benefit of cross scale analyses when comparing species with highly contrasting life history characteristics. Finally, it has been suggested that species are more likely to shift their seasonal cycles and distributions in response to climate change rather than evolve in situ (Parmesan 2006) and evidence of both has been found in marine plankton (Beaugrand et al. 2009; Edwards & Richardson 2004). However, our results demonstrate that the biogeographic redistribution of adaptation can in itself result in population phenological responses by bringing congeners with different seasonal responses together at the same location. 

[bookmark: _Toc289481406]Findings relating to CPR interpolation methods
The main outputs of Chapter 3 were the high-resolution, environmentally informed maps of copepod abundance distributions. However, an interesting implication of the comparison of SDM outputs to spatially interpolated maps was that different interpolation methods can impact the calculation of mean monthly estimates of important state variables such as local density and occupancy. This finding suggests that attempts to externally validate predictions of the two methods are important. Variable importance estimates in all models highlight the importance of mesoscale variability and hydrographic structure which also appear in maps as fine scale structure of filaments, eddies and sharp bathymetric boundaries (Appendix 1). In general, we consider our outputs to be a valuable resource for a wide range of ecological investigations into the spatial dynamics of zooplankton species, particularly with respect to elucidating the effects of processes acting at the meso-scale (Cury et al. 2008). Additionally we expect them to prove useful in end-to-end modelling of marine systems, both as inputs to models or to parameterise more mechanistic models.
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[bookmark: _Toc289481408]Extensions of current analyses
Although focusing on a few well-understood species has allowed us to make species specific interpretations of AOR variability, some of the findings suggest that searches for generalities by extending the analysis to a larger number of species would be fruitful and complementary to the notion that the more we vary the contexts of our analyses, the fuller our understanding of AOR generating processes will become. Extension to a larger number of copepod species would also allow us to determine variability in intra-specific relationships in relation to the overall inter-specific relationship (Webb et al. 2007, Buckley & Freckleton 2010). This would to a certain extent standardise the analysis, allowing for examination of species specific trends in relation to overall community dynamics and therefore a more comprehensive comparative approach. It would also allow us to begin to make statistical links between life history characteristics and range position and determine whether the patterns observed in this study are reflected more broadly. 
Understanding the distribution of abundance throughout species ranges is of paramount importance and despite the long held notion that population sizes and local densities of species decline from the core to the edges of a species range (Brown 1984), empirical examinations of density throughout species ranges have found little support for systemic pattern (Sagarin et al. 2006; Kluth & Bruelheide 2005; Sagarin & Gaines 2002a; Sagarin & Gaines 2002; Herlihy & Eckert 2005; Samis & Eckert 2007). In contrast, systemic declines in occupancy, a component of global density are more readily observed (Gaston 2003; Yakimowski & Eckert 2007). This would suggest that potentially it is not local densities but changes in levels of occupancy that drive mean declines calculated over larger grain sizes. It is clear therefore that examining the two constituent variables of global density (ie local density and occupancy) instead of global density, and in particular, their relationship through AORs could advance our understanding of the both patterns of abundance throughout species ranges and the population processes controlling them. 
Such approaches could further find practical application in improving species distribution modelling. There has been great interest in predicting biogeographic responses to climate change and SDMs have been at the forefront of such efforts. They are correlative and assume that a species niche can be determined through correlative links to environmental drivers (Guisan & Zimmermann 2000; Beaugrand et al. 2013) determined throughout current species niches and used to project species spatial distribution. Many attempts at SDMs are often data limited. However the CPR dataset represents an invaluable resource as the broad geographic span of the survey means species ranges are potentially well sampled and therefore species niches might be well characterized (Helaouët & Beaugrand 2007; Beaugrand et al. 2007) use them to project distributions under future climate scenarios (Beaugrand et al. 2013; Reygondeau & Beaugrand 2010). Current efforts in SDM modelling generally call for greater incorporation, of demographic processes, particularly at species edges (Schurr et al. 2012). However, mechanistic models require an accurate understanding of species relationships with the environment and estimates of many phenotypic parameters under a wide range of environmental conditions (Buckley et al. 2010). When such phenotypic data are lacking, determination of AORs from abundance data throughout a species range might be easier to link to environmental conditions and could therefore provide means of incorporating Allee effects and positive density dependence into process based dynamic range models (Schurr et al. 2012). More mechanistic niche models considering functional traits also hold great promise (Kearney et al. 2010). For example, the capital vs current income typology has yet to be applied in a predictive framework (Stephens et al. 2009). However If statistical links between AORs and life history characteristics could be made, they could again potentially provide simple surrogates for incorporating species differences in dictating vital rates and dispersal dynamics associated with contrasting life history strategies and could thus, be of use in identifying the likely responses of different populations to environmental change. Finally, the hierarchical nature of AORs is also evident in the spatial domain (Gaston et al. 1998). Cross-scale analyses such as those performed in Chapter 4 could therefore form the basis of more hierarchical species distribution modelling frameworks (Pearson & Dawson 2003).
The effect of specific environmental drivers on the relationship could also be explicitly sought by incorporating them as predictors in AOR models. Such an approach could potentially allow us to begin to directly link habitat quality considerations into AORs as drivers of the relationship and any underlying heterogeneity. In the case of the copepod species studied, the environmental variables identified as important in our SDMs (e.g. bathymetry, frontal intensity) might form a good starting point of selecting appropriate environmental predictors. Indeed, despite their reputation for being “black box” models, our random forest SDMs result in partial dependence plots which represent the non-linear relationship of species’ occurrence or categorical abundance probability in relation to individual environmental predictors (Cutler et al. 2007; Evans et al. 2011). They therefore allow for detailed examination the relationship between predicted outputs and the underlying predictors. In addition, our regime shift approach could be adapted to identify spatial heterogeneities in AORs indicating potential non-linearities in the relationship between environmental gradients and large scale population organization and dynamics (Gaston 2003). Therefore, by determining the variability of AORs throughout a species range we can begin to incorporate spatially variability in the strength of metapopulation processes and improve the accuracy of projections. 
[bookmark: _Toc289481409]Extensions into new fields
Ultimately, understanding the form that geographic ranges take, their causes and consequences are key issues in ecology and evolutionary biology (Gaston 2009). An avenue of exploration of particular personal interest is to examine whether AORs could be used to differentiate whether responses to environmental change can be attributed to evolutionary or phenotypic adaptation. By combing abundance, occupancy and genetic data, it may be possible to determine whether different modes of adaptation result in different alterations of demographic parameters and thus may lead to different forms of AORs. Such methods could also potentially be used to determine whether population changes are driven by local scale or regional scale adaptations.





[bookmark: _Toc289481410]APPENDIX 1: Random Forest Outputs

Monthly random forest outputs for selected years for all five species modelled. Scale represents abundance categories.
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