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Abstract

This thesis is focussed on the shape analysis and tracking of neutrophil cells to
facilitate the understanding of their behaviour. Neutrophil, one of the important
type of white blood cell, protects humans and animals from infections and inflam-
mations. The underlying mechanism is believed to be that when inflammation
happens, a changing chemotaxis field causes neutrophils to move to inflammatory
sites. During this migration process, neutrophils also change shapes. For exam-
ple, pseudopod protrusions are formed on the boundary in response to the local
gradient of the chemotactic field. After inflammation resolution, some neutrophils
go to "sleep" and some move back but what drives these mechanisms are still not
fully understood. If the mechanisms were known, it would be helpful to accelerate

or slow down the process of treating some diseases.

The thesis attempts to provide a quantitative analysis based on time lapse
microscopic images of in vivo zebrafish animal models. The underlying premise
governing the analysis is to identify if cell states from their motion and shape.

The thesis begins with cell centroid tracking and uses three common kinematic
models commonly used in the target tracking literature. The interacting multiple
model framework, which is underpinned by multiple Kalman filters, is used to
determine probabilities of most likely model to explain the cell motility pattern.
These different models are then compared to identify if the motion pattern (motil-
ity) can be attributed to different cell behaviours. This is then followed by cell
shape tracking to characterise not only the cell shape but also to identify regions
of protrusions. It addresses the problem of estimating the chemotactic field that
acts to recruit neutrophil cells to the inflammation sites based only on observed
cell tracks, without any direct measurement associated with the external cell envi-
ronment. By assuming that the cell velocity is proportional to the local chemotactic
gradient, a least squares method in combination with the Kalman filter, was used
to estimate this field. Results on a set of real data show the estimated field.

Cell shapes were modelled as B-spline parametric active contours. By casting
the parametric active contour model in state space form, Kalman filter was em-
ployed to track the shapes. Shape tracking required solving the problem of cell
boundary association between two time frames which required identification of
correspondence points at cell boundaries. This required improvement to a nearest
neighbour filter method to give continuity of the cell shapes of the same neu-
trophils across the different frames. Characterisation of cell shape was carried out
by employing Fourier descriptors from which two features, magnitude of the high-

est descriptor and the magnitude of the lowest frequency, were chosen as proxy for
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associating cell shapes with cell states. These features for instance are associated
with cell roundedness. Both tracking methods, cell centroid and shape tracking,
are employed on the real data and results shown to demonstrate the effectiveness
of the methods.

This thesis makes the following novel contributions. Firstly, a new framework
was established to solve the cell centroid and shape tracking towards character-
ising cell shape behaviour. Secondly, the nearest neighbourhood filter employed
to solve the association problem was improved to solve the problem of neutrophil
cells disappearing and reappearing in image frames. Thirdly, the low frequency
Fourier descriptor, combined with other methodologies, was successfully imple-
mented in detecting the modes of neutrophil behaviour. In addition, the chemotac-
tic field was estimated by using the centroid velocities. Furthermore, the multiple

model filter was used for behavioural mode detection of cells.
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Chapter 1

Introduction

This thesis is mainly focused on applying tracking methodologies to neutrophils’
problems, including centroid tracking, shape tracking, dynamic behaviour anal-
ysis, together with uncovering the process and mechanism of neutrophils when

they respond to inflammation.

1.1 Background

Before presenting the research on neutrophils, relevant medical background detail
will be considered, starting from the immune system.

Immune systems are highly significant for biological systems since they can
protect health by ingesting invaders. They can identify the non-self (foreign bod-
ies that are not from the host), find them, destroy or remove them. However,
immune systems are not effective against all foreign bodies such as the human
immunodeficiency virus (HIV).

Usually, there are three steps in respect of the working process of an immune
system [14]. Firstly, the immune system distinguishes the non-self. Then it de-
stroys all invaders, most of which are dangerous, such as bacteria. Finally, the
immune system eradicates diseased cells or tissues, such as cancer.

The immune response of higher vertebrates, such as human beings, can be
grouped into two types, that is, innate immunity and acquired immunity [14].
The former, also called natural immunity, has an effective defence before an in-
vader appears with all animals and plants having innate immunity [98]. There are
more than 30 proteins that can usually recognise and eliminate invaders in higher
vertebrates [14]. If the innate immunity cannot destroy invaders, the acquired im-
munity comes into effect and relies on lymphocytes, which can be divided into B
and T classes. The lymphocytes remain inactive until they meet antigens. The ac-
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quired immunity response is very slow since its processes are complex. However,
a trait called immunologic memory can reduce the response time, by recognising
the same invader and triggering the response [14]. The immune system, with other
systems such as the vascular, propagates and matures the inflammatory response.

Inflammation is a complex biological process in which harmful stimuli are
eliminated to heal the host. The mechanism of inflammation has been described by
Henson [66]. Usually, inflammation is beneficial to the host. For example, Haslett
[64] reported the mechanism of the process in which the apoptosis neutrophils in
inflamed tissues are cleaned. However, sometimes, it will cause an allergic reaction
and attack the tissues or cells of the host. Haslett [63] put forward the idea that
if neutrophilic inflammation were not resolved, it would cause irreparable tissue
damage.

Inflammation can be divided into two classes: acute and chronic. The former
is the process during which plasma and leukocytes (especially granulocytes) move
to the stimuli site in increasing numbers. Usually, acute inflammation lasts a short
time. However, chronic inflammation, where destruction and healing happen at
the same time, lasts longer.

According to Lieschke [96], in vivo models are used in the only effective studies
on inflammation. In vivo models are different from in vitro ones. The former uses
a living organism while the latter uses a dead organism. Understanding human
inflammation mechanisms requires the identification of a substitute animal for in
vivo models. The neutrophil analysis in humans is the ultimate goal to finding
treatments for humans; however, it is not easy to carry out experiments on human
beings. As such, having an animal for an in vivo model which is wild, visualizable
and contains many individual immune cells such as neutrophils is necessary, since

in vivo models are significant to research into inflammation.

The traditional animal models used in research are Drosophila and mice [95].
Recently, powerful substitutes have emerged, such as zebrafish. Lieschke [95] re-
ported that the traditional animal models, such as Drosophila and mouse, are not
as good as the zebrafish in respect of complexity and suitability. Given the trans-
parency of zebrafish larvae, they can easily be stained with fluorescent proteins to
observe the immune system cells in vivo [128]. There are additional advantages of
utilizing zebrafish as a model, according to Thisse and Zon [153], such as reducing
the space required for feeding. Applications of zebrafish to in vivo investigation in-
clude Jong and Zon [78] who showed the process of hematopoiesis and Crowhurst
and Lieschke [34] who undertook research on leukocytes. Neutrophils, a type of
leukocytes, can be stained by fluorescent protein and have the fastest response of
all leukocytes. Using a zebrafish, an in vivo model can, to some degree, show in-
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flammation. As such, neutrophils in zebrafish in vivo are an excellent testing bed
for the study of inflammation.

Neutrophils, also called neutrophil granulocytes, are a type of white blood
cells. White blood cells, also referred to as Leukocytes (also spelled "Leucocytes"),
are cells that protect human’s body from a large number of diseases. Neutrophils
account for approximately 50% to 70% of human white blood cells, while only
10% to 25% exist in mice [106]. According to [89], neutrophils move to the in-
flammatory site and clean the infection from both the experimental data and the
clinical data. Furthermore, research [162] and [38] showed that some human im-
munodeficiency is caused by a decreasing number of neutrophils. Therefore neu-
trophils play an important role in protecting the body by preventing the invading
pathogens, making them highly significant for humans and other animals. How-
ever, excessive neutrophils will also lead to some tissue damage [139].

Initially, neutrophils were only thought to be useful to pro-inflammatory ef-
fects. However, increasingly, experimental data has shown that there are other
actions, such as anti-inflammatory [89]. Another effect shown by Fournier and
Parkos [48] was that neutrophils are significant for wound debridement. Addi-
tionally, according to Jablonska et al. [73], neutrophils have a positive effect on the
growth and spread of tumour.

Since too many neutrophils can damage tissues, numbers should be controlled.
Often, bio-chemical mediators can increase or decrease the number of neutrophils
by controlling the response of phagocytes [139].

Neutrophils are generated in the bone marrow. The lifecycle of neutrophils is
very short, no greater than 12 hours for mice and 5.4 days for human beings [122].
Some mature neutrophils can live outside the bone marrow in tissues in certain
circumstances and stay in organs, such as the liver or lungs [146] [120]. They
are helpful to some degree, but they can also damage other cells [89]. Usually,
neutrophils die in two ways: a normal death and the neutrophil extracellular traps
(NETs). The former means that neutrophils are cleared in organs, such as the liver,
bone marrow [68] [141], and vasculature. NETs will be introduced later in this
chapter. Once neutrophils died, signals were given out which attracted monocytes
and these then "ate" the dead neutrophils and other dead cells in tissue [143].

Research [112] [44] [67] has explained of the process in which the mechanism
kills microbes. Usually, there are three kinds of protection mechanisms (both

intracellular and extracellular) when neutrophils work, namely:

e Phagocytosis (the process of swallowing virus)

e Degranulation (the process of delivering soluble anti-microbial)



4 1.1. Background

e NETs

The phagocytosis process is when neutrophils "eat" the virus, after which re-
active oxygen species or antibacterial proteins will kill the viruses, as per the liter-
ature [27]. This process belongs to the intracellular mechanism.

In the degranulation process, antibacterial proteins are released into the sur-
rounding environment, killing the virus. This process belongs to the extracellular
mechanism.

NETs are an extension of antimicrobials [27]. First reported by Brinkmann
et al. [28], it was believed that when inflammation occurs, neutrophils can re-
lease intracellular chemical substances, into extracellular circumstances and this is
called NETs. This process can either kill pathogens [58], called apoptosis, or not
kill [105], called necrosis. The reason has not been clear until recently, and the
literature [89] offers some hypotheses. However, according to Saitoh et al. [135],
NETs is ineffective in respect of HIV. The mechanism of NETs formation is still not
clear. This process belongs to the extracellular mechanism.

Neutrophils can generate lethal hits against microbes, but at the same time,
they may kill other tissues. Neutrophils are mostly dormant cells. When infection
happens, neutrophils are activated and increased by the tuning act of granulocyte
colony stimulating factor (G-CSF). Usually, the number of neutrophils increases,
while the production of G-CSF decreases.

The zebrafish is transparent and therefore can be observed in brightfield in-
travital microscopy. Historically, intravital microscopy has been used to observe
some thin and transparent tissues [103]. The advantage of this method is that it
can observe mobile cells, such as neutrophils. Atherton and Born [8] pioneered
this work. About 25 years ago, it became popular and widely used [155]. More
recently, thicker tissue and higher resolution have been possible via powerful mi-
croscopies. In this current study, both high resolution neutrophils and low reso-
lution were used for different goals. Fluorescence microscopy was also involved
in the pre-processing work. Neutrophils and macrophage were labelled by green
fluorescent protein (GFP) and red fluorescent protein (RFP), respectively.

It should be noted, particularly in respect of this research, that neutrophils are
special cells. Firstly, they always change their shapes to respond to the chemo-
taxis change, while most of the other cells cannot change shapes. For this reason,
online shape tracking was required as part of this current study. Furthermore,
the motion and morphology of neutrophils are important to understand the pro-
cess of neutrophils responding to chemotaxis. Secondly, the pseudopod always
emerges during movement to the inflammatory site, while most other cells do not

have pseudopods. Therefore, shape tracking, especially on pseudopods, is signif-
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icant to understand the mechanism of neutrophil movement. Finally, neutrophils
in either tail transection experiments or the normal situation, have several modes
which are active, "dead", and the mode changing between the other two. The
"dead" mode means the neutrophils move randomly around some small areas.
The numbers of neutrophils in the three modes differ between cases. For example,
in the tail transection experiment, the number of active neutrophils was obviously
larger than that of the other two modes. It is believed that because of the three
modes, neutrophils must maintain an optimum number since too many or too
few are likely to cause damage. Therefore, the mode detection of neutrophils does

help to understand their complex mechanism.

During the whole programme, many methodologies were applied. Most are
well known and frequently used in other areas. For example, the Kalman filter
(KF) was used in the Apollo program. As such, the related works and applications
will be introduced and reviewed.

Computer vision, as an important area, was firstly introduced. According to
[140], computer vision mainly deals with images or videos, including processing
and analysis. It usually acquires real, high-dimensional data. After being pro-
cessed and analysed, the data is transformed into special forms which can be
understood by computers. The process can be generalised as "looking", "think-
ing", and "deciding". Its origin can be traced back to the 1960s. However, it
underwent rapid development in the 1980s [140]. Computer vision includes video
tracking, image restoration, and its applications encompass navigation, and , most
significantly, medical image processing, which is highly significant for patients’
diagnoses [74]. For instance, Nuclear Magnetic Resonance (NMR) is always used
to check tumours inside the body. Medical image processing has been used in
this research, for data pre-processing. This application area mainly relies on the
information extracted from images, which are usually X-ray or tomography. Ma-
chine vision is perhaps another prominent area, different from medical image
processing. Usually, programs are preinstalled to finish particular tasks. For ex-
ample, a robot arm can be programmed to catch a specific tool. In addition and
as a new subject, autonomous vehicles have become increasingly popular with
the application in unmanned aerial vehicles (UAV) being one of the most famous.
More related works, including edge detection and threshold, are referred to in the
next chapter. Applications of B-Spline and Fourier descriptor (FD) will also be
addressed.

Another important area is aerospace engineering namely aircrafts and space-
crafts [20]. Usually it is structured in aeronautical engineering and astronautical

engineering. Aerospace engineering dates back one hundred years ago with Sir
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George Cayley regarded as the pioneer in this area, with the Wright brothers hav-
ing flown successfully in 1903. Aerospace engineering developed quickly, due to
military reasons and its wide applications include control engineering. Aircraft
and spacecraft are the most famous applications. For example, the moon have
not seem mysterious since the spacecraft landed on it in Apollo program. Radar
and target tracking are also important applications, such as bearings-only track-
ing [130]. Those algorithms in radar and target tracking area has been used in
this research, such as the Kalman filter in both centroid tracking and shape track-
ing. More related works, including the nearest neighbourhood filter (NNF), are
referred to in the following chapters.

Recently, cell tracking has become more popular. It was first applied more than
30 years ago and has developed rapidly in the last 10 to 15 years. More advanced
tracking methodologies have been applied, including particle filters (PF) used in
mitotic cell tracking [124]. E. Meijering and Smal plotted a figure to show the
increment of research on cells and tracking in recent years [42]. Cell tracking also
covers a large number of areas, such as image processing, in addition to having a
wide range of applications. The NNF is used in a large number of cell tracking
applications, because it can effectively fix the index and keep the continuity. It is
also suitable for online tracking, another reason for its wide use. Therefore, it has
been also used in this research. Velocity estimation is another application, with
instantaneous velocity having been measured by J.B. Beltman and de Boer [76].
However, the velocities on the shape boundary contain more useful information.
Therefore, they have been estimated in this research in order to further uncover

the mechanism.

1.2 Motivation

The project merits investigation because the morphology and motion research on
neutrophils could help to further understand the inflammation mechanism and
processes. A more thorough understanding of the processes and mechanism could
lead to new therapeutic functions for both animals and humans.

The morphology and motion of neutrophils were obtained from processing
the initial data by mathematical and engineering techniques. The initial data was
received from pre-processing data, which was translated from raw time lapse im-
ages in vivo and the time lapse images in vivo were obtained from observing ze-
brafish. The whole process has developed a new methodology for researching and
analysing neutrophils and other cells.

The interest can be generalised as the following aspects. Firstly, it is believed
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that a field, similar to a magnetic field, makes neutrophils move to the inflamma-
tory site. This was invisible but could be expressed, just as the magnetic field was
expressed by the distribution of iron sand. Therefore, the problem could be sim-
plified to another mathematical expression. This mathematical expression could
be considered as a mathematical model, which was established by using engineer-
ing techniques. It is interesting not only because it is a new application, but also
because the medical phenomenon of the neutrophil moving mechanism is solved.
Secondly, during the moving process of neutrophils to the inflammatory site, the
neutrophils” morphology changed. For instance, pseudopods emerged in some
frames and the shapes of most of the neutrophils changed in each frame. It is
believed that the morphology changes were driven by the mechanism. Therefore,
further understanding of the morphology changing will help to better understand
the mechanism. The problem was consequently transformed into the tracking of
the morphology changing. The problem of tracking the morphology changing can
be effectively solved by the new framework of shape tracking in this thesis. Fi-
nally, an effective tool to analyse the changes of the morphology is needed with
the low frequency descriptor (LFD) being considered.

The challenges were listed as follows. Firstly, the pre-processing of the raw
data was the challenging. The raw data was figures from the Volocity 5, shown
in Figure 1.1. Since the data was three-dimensional images, they had to be trans-
formed to two-dimensional binary matrices, which were imported in Matlab. Sec-
ondly, traditional mass point tracking methodologies were applied to the new
application in neutrophils and other cells. However, the mathematical model of
neutrophil centroid trajectory tracking was difficult to establish. The motion of
neutrophils was complex and, therefore, it cannot be expressed as any commonly
used model. As such, establishing the mathematical model became the challenge.
Thirdly, the mathematical model for the shape tracking presented additional dif-
ficulty. As the morphology of neutrophils changed in each frame, the boundary
points were difficult to fix in the same position. In addition, indices of shape
boundary points rotated in different frames. The above reasons led to the chal-
lenge of establishing the mathematical model. Fourthly, maintaining the continu-
ity of the same neutrophil in different frames was another issue. The traditional
multi targets tracking had the ability but whether the neutrophils were the same,
or not, in the two consecutive frames could not be guaranteed. Therefore, it had
to be combined with other techniques to solve the problem. Finally, determining
an effective tool to analyse the characteristics was difficult. The FD was a good
choice, however, it is usually used in a one dimensional area. Therefore, the final

challenge was to analyse the neutrophils” characteristics using an effective tool.
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Figure 1.1: The initial neutrophils T00001C02Z004

This is the raw data from the software called Volocity 5 (Improvision, Perkin Elmer Inc.). It is from
the tail experiment. It records the first zebrafish one hour after the experiment. The name
T00001C02Z004 is the combination of different important information, where T00001 means the
first frame; C02 means channel two; and Z0004 means the fourth height. It is the low resolution
data. In the figure, the white areas are neutrophils and all the other black areas are background. It
should be noted that neutrophils are minimal. However, the figure is the best one in the raw data.
This figure will be preprocessed and the details will be introduced in the next chapter.
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1.3 Rationale for Research Study

The initial step in solving the problem was to prove the existence of the field. As
with iron sand in the magnetic field, neutrophils should be considered as mass
points. The neutrophils” dynamic distribution had to prove the existence of the
chemotaxis field. Therefore, it was thought traditional centroid tracking method-
ologies would help. However, all the traditional tracking methodologies require
an accurate mathematical model and having considered the motion of neutrophils,
none of the regularly used mathematical models was deemed suitable. Therefore,
a combination of the commonly used models was required. Generally, the multi-
ple model (MM) filter is used to establish the mathematical model of neutrophils.
Then the KF is used to estimate both the position and the velocity of neutrophils.
Information about the positions and velocities, as per the iron sand, were thought
to be relevant in respect of proving the existence of the chemotaxis field and esti-
mating the chemotaxis field.

After determining the centroid information, ascertaining the shape informa-
tion is key. Therefore, the second step is to track and estimate the neutrophils’
shape. Given the knowledge of traditional tracking, the aim was to consider the
shape boundary as the combination of a large number of mass points. Neverthe-
less, guaranteeing that a point on the boundary is the same point in the next frame
generates an additional challenge, yet a methodology from computer vision could
offer a solution. The parameter active contour can transfer the position to con-
trol points and vice versa. Therefore, the shape information is transferred to the
information of control points. The combination of tracking and parameter active
contour could estimate the positions of the shape and other information of the
feature. The only problem would be the continuity of the neutrophils. Based on
continuity, the NNF was requested and it was hoped the combination of the above

methodologies would solve the shape tracking problem.

An effective analysis tool was needed for both the centroid and the shape
information. Therefore, the final step was to analyse those data. In addition, the
analysis tool was required to be combined the tracking methodologies above. FD
was a good choice, however, LFD was more suitable, since it could detect the mode

of neutrophils in addition.

After undertaking the above three steps, the new framework had been estab-
lished to solve the problem and allowed for a better understanding of the neu-

trophils” mechanism.
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1.4 Organization

Having considered the rationale underpinning the research, this dissertation has
been divided into three parts: the centroid tracking, the shape tracking and the
shape analysing. It comprises seven chapters: the introduction, literature review,
the centroid tracking, the shape tracking, the shape descriptor, the combining

methodology and the conclusion. A synopsis of each chapter follows.

In this introduction chapter, the medical background especially of neutrophils,
has been introduced in detail. The motivation for the research has been expounded
and the thesis’ structure presented. Innovation and contributions to research are
given and finally the data is introduced including the raw data.

The literature review focuses on the core academic knowledge of signal and
image processing. With relevant background details having been discussed in the
introduction, several specific methods are presented, including filter based signal
processing, model based signal process, and image processing. The descriptors

are also introduced in detail. Finally, the pre-processing is presented.

The centroid tracking chapter is considered the basic research target, com-
pleted in the first year of this PhD. The key assumption is to consider a neutrophil
as a mass point. Based on this assumption, a huge number of methods and en-
gineering techniques could be used to track and analyse the trajectory, such as
the KF [130]. However, neutrophils always change their modules caused by the
changing chemotaxis. Therefore, multiple models were established to adapt to the
changing of modules and probability was calculated to determine which model
was to be selected in each frame. By mathematical derivation, the velocity square
(v?) has a relationship with the chemotaxis field. Therefore, it is also introduced
in this chapter, as an analysis tool for the chemotaxis field estimation. The chapter
has been organised as follows. Background of tracking algorithms is introduced
in the introduction section. In the next section, the MM algorithm and interacting
multiple model (IMM) algorithm are introduced. The derivation of both algo-
rithms is complex with a large amount of probability calculation, so this is not
covered. The derivation details can be found in relevant papers and books, such
as [10]. In the results section, this thesis” the high resolution data is presented. The
KF and the MM filter were implemented in this section and the parameters, such
as Q, tested to discover the "best". Finally, the analysis undertaken to estimate the
chemotaxis field with the conclusion presented at the end of the chapter.

The shape tracking chapter is considered to be an upgraded form of centroid
tracking and the second year of this PhD was devoted to it. Based on the state

space model, the neutrophil shape boundary can be viewed as a combination of
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all the points on the shape boundary with position (and velocity) as the mea-
surement output. Therefore, the problem changed to a familiar case, as per the
centroid tracking. However, problems still exist, such as fixing the index of bound-
ary points and determining the state is. B-Spline, as an effective tool, is introduced
to consider the "control points" as the state, and its potential to retrieve the shape.
However, the index must be known, otherwise it can only work in individual
frames and cannot work in continuous ones. The NNF solved this problem by
determining the index in the different frames. Finally, the KF was used to esti-
mate the state, which replaced the control points and calculated the velocity of the
boundary. The above methods were combined as the methodology of shape track-
ing. This not only reduced the calculation complexity but also "read" the velocity
(which had not previously been considered) as a tool to analyse neutrophils, part
of the work in the subsequent chapter. The shape tracking chapter is organised
as follows. In the introduction, the background of the shape tracking algorithm
is introduced. In the second section, a high order state space model (also called
the augmented state space model), B-Spline, the NNF and the KF for the velocity
estimation are proposed with formulae. The improved NNF (INNF) was also in-
troduced to solve the problem of neutrophils disappearing in some frame k and
reappearing in the subsequent frame k + 1. In the results section, B-Spline, NNF,
INNE, and the KF are implemented with low resolution data. Estimated velocity
on the boundary is also retrieved. A conclusion to this section is provided.

The shape descriptor chapter is considered as a tool to analyse the results from
shape tracking chapter. It comprised the third year work of this PhD. In the previ-
ous chapter, the information of shape boundaries was obtained. The focus of this
chapter is the analysis of the shapes. The FD as an effective tool was selected for
analytical work. In addition to the FD, other descriptors were implemented, such
as the LFD. The pseudopod was also analysed. The organization of the chapter is
as follows. In the introduction, the FD is detailed. The height descriptor is intro-
duced as well and the radius descriptor is mentioned in respect of future work.
In the results” section, The FD is implemented. As the FD is the frequency do-
main of a two-dimensional shape without physical meaning, tests are undertaken
to verify hypotheses and basic properties. After verification, the shape descriptor
is combined with shape tracking to obtain the results. The height descriptor was
implemented to determine the relationship between the height of the FD and the
roundness. LFD is also implemented with a very good result being achieved, since
it, to some degree, can classify the neutrophil module. In the pseudopod analysis,
an active positive moving neutrophil was found. The FD and shapes are compared

with the subsequent two frames. Finally, a conclusion section is presented at the
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end of this chapter.

The combining methodology chapter has its focus on assimilating and synthe-
sising the previous chapters to present a new methodology, which can deal with
similar problems or other cells. In this chapter, only results are given. The chap-
ter is divided into the following sections. The first offers a comparison between
the mode from centroid tracking and LFD which was undertaken to ascertain if
a relationship exists. It combined mode detection obtained from the MM filter in
chapter three and the shape descriptor in chapter five. In the second section, cen-
troid velocity was combined with LFD to determine the connections. It combines
the velocity estimation from chapter three with the shape descriptor from chapter
five. Then shape velocity distribution was compared with LFD. It links the shape
velocity estimation from shape tracking in chapter four to the shape descriptor in
chapter five. However, from the above comparisons, it has been extremely diffi-
cult to illustrate any relationship separately, due to the complexity of neutrophils.
Therefore, the combination of all the methods would appear to be the best so-
lution to this complex issue. In the neutrophil tracking and analysis section, as
mentioned above, the combination result was presented as a new methodology.
The concluding section of this chapter is given as a summary.

The conclusions’” chapter is the final one of this thesis. It provides a summary
section and suggestions for future work. In the summary, all the results, innova-
tion, and contributions are noted. In the future work section, methods which can
be improved and new ideas are proposed. These include improving the INNF to
determine the index of neutrophils even when the neutrophil disappears in frame
k and reappears in frame k + i, where i is a positive integer greater than 1.

1.5 Innovation and Contributions

This section considers the innovation and contributions offered during this PhD re-
search. The chemotaxis field was estimated using centroid velocity and it formed
a part of the paper [82]. The MM filter was implemented and used for cell be-
havioural mode detection based on neutrophil centroid information. The tradi-
tional NNF was improved to solve the problem of neutrophils disappearing and
reappearing. Shape tracking techniques were implemented and the information of
shape boundary velocity and the behaviour of the characteristics were extracted,
based on shape information. New descriptors were applied, such as LFD. Neu-
trophil features were identified by using a shape descriptor. The information on
centroid and shape was integrated for neutrophil behavioural characteristics.

This work’s most important contribution is the establishment of a framework



Chapter 1. Introduction 13

to track both the centroid and shape of neutrophils systematically. It also tracked
the velocities on the shape boundary of neutrophils. Furthermore, the framework
can automatically analyse the features of neutrophils. In addition, it is also suitable
for other cells and it, therefore, formed a methodology to deal with tracking and

analysis of cells.

1.6 Data Introduction

1.6.1 Ethics Statement

All the experiments on zebrafish were performed according to guidelines and leg-
islation set out in UK law in the Animals (Scientific Procedures) Act 1986. Ethical
approval was given by the University of Sheffield Local Ethical Review Panel.

1.6.2 Data Acquisition

The data used in the thesis was from the zebrafish larva transection experiment,
shown in Figure 1.2. The experiment is the same as one described in [128] and
[82]. Figure 1.2 illustrated that the tail fin of a zebrafish larva was transected and
therefore inflammation occurred. Due to the inflammation, all the neutrophils
moved to the inflammatory site. In the experiment, the neutrophils were stained
with GFP, as shown in Figure 1.2. The video microscopy data was recorded to
describe the experimental process. Finally, the process was performed in Volocity
5 (Improvision, Perkin Elmer Inc.) by time lapse images. The raw data of the first
zebrafish in the tail transection experiment from Volocity 5 is shown in Figure 1.3
and the neutrophils are shown in Figure 1.1.

The video frames were first transformed to a sequence of three-dimensional bi-
nary images automatically in Volocity 5. Then those images (raw data) were com-
pressed into two-dimensional binary images. After a double threshold method,
the two-dimensional binary images were transformed to the spare matrices. The
above process was pre-processing which will be explained in the next chapter and
the data obtained is referred to as the initial data in this thesis.
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Figure 1.2: The experiment on zebrafish.

The tail fin of zebrafish larva was transected and all the neutrophils stained with GFP moved to the
inflammatory site in the experiment. This experiment mainly focused on the neutrophil response
to the inflammation and was the same as described in [128] and [82].
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Figure 1.3: The initial zebrafish T00001C01Z004

This is the raw data from the software called Volocity 5 (Improvision, Perkin Elmer Inc.). It is from
the tail experiment. It records the first zebrafish one hour after the experiment. The name
T00001C01Z004 is the combination of different important information, where T00001 means the
first frame; CO1 means channel one; and Z0004 means the fourth height. In the figure, the outline,
the skeletons, and the vessels of the zebrafish are clear. Even the transection is clear on the right.



Chapter 2

Signal and Image Processing

The previous chapter mainly focused on the introduction of the medical back-
ground. The research motivation and the dissertation’s structure were also ex-
plained, together with its innovation and contributions. Finally, the data acquisi-
tion was illustrated with raw data images and the image of the transection exper-
iment. This chapter covers the literature review and the data pre-processing. The
literature review consists of three parts: signal processing, image processing and
descriptors. The data pre-processing has been used to study the data presented in

the previous chapter.

2.1 Introduction

According to Moura [111], signal is defined as physical information utilized to
present the change in time domain and/or space domain at the beginning. Signal
was also used to show abstract information or a sequence, such as the combination
of genetic codes. Processing is a type of operation, such as filtering. Therefore,
signal processing is an operation utilized to deal with signals.

The history of signal processing is very long with the earliest signal processing
dating back to classical numerical analysis, 400 years ago according to Oppenheim
and Schafer [113]. The range of signal processing applications is considerable, in-
cluding engineering and medicine. It is applied not only in military and indus-
trial areas but also in consumer electronics with home entertainments, such as TVs
using signal processing [114]. As technology advances, wireless communication
equipment, such as smart phones, increasingly rely on signal processing. Oppen-
heim et al. believed in the future, signal processing would play an increasingly
important role in consumer, industrial and governmental areas [114]. As such, the

importance of signal processing is assumed.

16



Chapter 2. Signal and Image Processing 17

According to Oppenheim et al., signal processing is a sophisticated process
including representation and transformation [114]. Usually, digital signal process-
ing and analog signal processing exist. The latter applies when both the input
and output are continuous time values. Digital signal processing is a discrete time
signal, whereby either the input or the output is a sequence instead of a contin-
uous waveform. Signal processing was analogue because of the continuous time
system technique at the beginning; however, with the development of comput-
ers and techniques, such as fast Fourier transform (FFT), digital signal processing
developed rapidly. Currently, signal processing always means the digital type.
The foundation of digital signal processing is sampling. Based on the sampling
technique, a significant amount of continuous time input can be sampled into a
sequence. This is the input of digital signal processing. Then after processing, the
discrete time output can be retrieved to a continuous time signal, as the system’s
output. In most engineering cases, the system is a real time one. This leads to the
requirement that the sampling rate must be kept the same between both input and
output. Spectral analysis is another area of signal processing, with its core idea
being to estimate parameters and evaluate the frequency response. Traditional
signal processing deals with one dimensional signals. However, with techniques
advancing, multi-dimensional signals are required in some areas, for example,
medical imaging. Recently, not only traditional engineering but also biomedical
engineering have increasingly focused on signal processing and signal processing
has gained in popularity.

Image processing is the upgraded form of signal processing. Its input is image
and its output is either image or feature. Image processing always considers the
input as a two-dimensional signal while traditional signal processing is single in-
put. As such, most signal processing techniques can be used in image processing.
Other techniques, for image processing only, such as edge detection, are presented
later in this chapter. Image processing, when mentioned, always means digital im-
age processing, but there is also analog image processing. Since its cost is low and

the algorithm is simple, image processing is increasingly popular in many areas.

2.2 Filter based Signal Processing

Filter based signal processing refers to signal processing using filter techniques.
Usually, it is related to frequency domain, however, in some special cases, filter
based signal processing works in a spatial domain, such as smoothing a two-
dimensional vertical signal (in special cases, it is referred to as an image). The
frequency filter can be implemented either in the transfer function or in frequency
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domain methods, such as the Fourier transform.

2.2.1 Transfer Function

The transfer function, also called a system function, shows the relationship be-
tween the input and the output in the s-plane. It is based on the Laplace transform.

It is usually used in a single input single output linear time invariant system and
Y(s)
X(s)
and input; s = ¢ + j * w is the complex Laplace operator and usually, o = 0, that

expressed as G(s) = =, where Y(s) and X(s) are the Laplace transform of output
is, s = j * w, which changes the Laplace transform to the Fourier transform with
the frequency w. It is commonly used as a filter in signal processing and famous
filters include the Butterworth filter, the Chebyshev filter (Type I), the Chebyshev
filter (Type II) and the Gaussian filter with overviews of these presented below.

The Butterworth filter has a property of maximally flat frequency response in
the passband. This filter is widely used in frequency analysis especially when plot-
ting Bode plots. Butterworth’s pioneering work included showing the low-pass
filter and providing a general definition of filter, which deleted noise frequencies
and had uniform sensitive wanted frequency.

The Chebyshev filter was based on the Butterworth filter but with modifica-
tions in sharp cutoff and flat in stopband (Type I) or flat in passband (Type II).
The Chebyshev filter was named after Pafnuty Chebyshev since the mathematical
characteristics were derived from Chebyshev polynomials.

The Gaussian filter refers to one where the impulse response is or approxi-
mates to a Gaussian function. The Gaussian filter has minimum group delay and
no overshoot to a step input. Based on the properties above and the properties of
Gaussian function, the Gaussian filter is an ideal time domain filter and commonly

used in many areas, such as telecommunication systems.

2.2.2 Frequency Domain

The frequency domain, different from time domain, always refers to the math-
ematical analysis based on frequency. For example, in time domain, a signal is
analysed based on a time variable, while in the frequency domain, a signal is
analysed by different frequencies. In the frequency domain, the spectrum or spec-
tral density is always used as a presentation of a signal. Another commonly used
tool is the power spectral density. There are two parameters, which are magnitude
and phase, in the frequency domain. Magnitude is the amplitude of the complex
signal and phase is the angle of the signal. Fourier transform is widely used in the

frequency domain, because it has the ability to change from time to frequency and
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vice versa. Z transform and wavelet transform are widely used in signal process-
ing and image processing. Laplace transform, as the more general form of Fourier

transform, is used in control systems and electronic circuits.

2.2.3 DFT and FFT

Discrete Fourier transform (DFT) is one of the most effective and commonly used
algorithms in digital signal processing, according to Lyons [100]. DFT is a straight-
forward method to discretize the continuous time Fourier transform into the dis-
crete frequency sequence. The mathematical expression of DFT is as follows:

I — Nzl tje_iznjk/N (2.1)
j=0

where T is the Fourier sequence with frequency k; ¢; is the j" sampling value
from the continuous time variable; N is the length of the sampling sequence; i is
the complex symbol with i2 = —1.

It should be noted that the input and output of DFT are finite. DFT is linear, in-
vertible and periodical Fourier transform, which means the inverse of DFT exists.
The output of DFT represents different frequencies and both are orthogonal.

The disadvantage of DFT is its expensive cost. However, in 1965, Cooley and
Tukey [33] first proposed an algorithm, FFT, which reduces the calculation time
and increases the efficiency even for thousands of points DFT. FFT is equal to DFT
when the length N of DFT is an integral power of two. However, the calculation
cost of FFT is obviously cheaper than that of DFT, especially when N is consid-
erable. An example was given in [100] to illustrate the effect of FFT in reducing
calculation time and increasing efficiency. The core idea of FFT is to divide DFT
into odd sequences and even sequences, then to transform the sequences with
mathematics and Euler’s formula. There are many FFT algorithms, such as the

Cooley-Tukey FFT algorithm and the Prime-factor FFT algorithm.

2.3 Model based Signal Processing

Model, in this current work, means a mathematical model and is a description
of a system using mathematics. A simple mathematical model always helps to
reduce the complexity of the target. Therefore, a simple and effective model plays
a highly significant role in researching the behaviour and making a prediction.
The commonly used model in classical control theorem is the transfer function

mentioned above. Until the 1960s, with the development of mathematics and
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modern control theorem, the state space model became increasingly important
and popular. The state space model represents the input output relationship with
first order differential equations (continuous time system) or difference equations
(discrete time system) for a linear system. The advantage of state space is that it
can represent a multiple input multiple output system and it can deal with a time
domain system directly instead of using Laplace transform and the inverse of
Laplace transform. It also reduces the computation cost and time. The commonly

used formula is as follows:

x=Ax+u+w

2.2)
y=Cx+Du+v
for continuous time system and
X1 = Fxp +up +w
k+1 k k k 2.3)

Yk = Hxp + Duy + vy

for discrete time system.

Where x is the first order derivative of x; x and xj are the states which have
different physical meanings based on different systems; A and F are system ma-
trices which decide the system characteristic; # and uj are the control variables;
w, v, wy, and vy are white noises; y and yj are the outputs of the system; C and
H are the observation matrices; D is the feedforward matrix and always equal to

zero or zero matrix; x41 is the state at time k + 1.

In addition to the state space model representation, commonly used physical
models are needed. Generally, there are three basic and commonly used physical
models, namely: the constant acceleration model, the constant velocity model and

the random walk model.

The constant acceleration model is one of the most commonly used physical
models. It is called the constant acceleration model because the expected acceler-
ation remains unchanged, although, the acceleration is randomly perturbed from
this constant value by white (Gaussian) noise. As such, there are three dimensions
(3D or 3 states, that is, position, velocity, and acceleration) in each coordinate axis.
As only a discrete time system has been used in this thesis, the continuous time
system is not discussed in this current work. The discrete time model with state

space representation is as follows:

X1 = Fxp + wy (2.4)
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where & is sampling time, cov(w) is the discrete time covariance of the white

noise input.

The output function is

Y = Hxy + v (2.9)
1 00000

H = (2.10)
000100

The constant velocity model is also a commonly used physical model and the
velocity is expected to maintain a fixed constant value. White (Gaussian) noise
which disturbs the constant value exists. There are two dimensions (2D or 2 states,
that is, position and velocity) in each coordinate axis. The discrete time model with
state space representation is the same as the constant acceleration, however, the

parameters have different sizes and expressions as follows:
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The output parameter is
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The random walk is a mathematical concept, first introduced by Pearson in
1905 [118]. There are many kinds of random walk models [32]. The model used
in the program is nearly the same as the already discussed models. There is only
one dimension (1D or 1 state, that is, position) in each coordinate axis. The change
of the position is caused by the white (Gaussian) noise. The parameters are as
follows:

Xk = (Sx5y,) (2.16)

10
P:(O 1) (2.17)

cov(w) = ( (1) (1) > (2.18)

The output parameter is

10
HZ(O 1) (2.19)

Model based signal processing is a type of tracking algorithm based on the
three mathematical models above, with state space representation applying to sig-
nal processing, as per the application of the KF in signal processing.
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2.3.1 Kalman Filter

The KF is named after the Hungarian-American scientist Rudolf Emil Kalman. The
KF’s main contribution is that it solves the problem of filtering in the prescience
of stochastic disturbance and noise, by using the state space model representation.
Therefore, it is widely used in aerospace and tracking, such as the Apollo pro-
gram. The phase-locked loop (which appears in most electronic communication
equipment, such as radio) is the most commonly used continuous time KF in the
applications. However, in most applications, the discrete time KF is widely used
based on the calculations by computers. The history of tracking and the KF is
summarised below.

The pioneering work of statistical signed process first appeared in astronomy
work [52]. Fisher [47] proposed the maximum likelihood estimate, which can
solve problems effectively. A famous Russian mathematician, Kolmogorov [90],
published a book about probability and random process theory in 1933. Wiener
contributed (the Wiener-Hopf integral equation and its solution, and the Wiener
filter), to the linear filters and prediction for random processes in [156]. The
Wiener filter was the first statistical filter and the predecessor of the KF. How-
ever, the Wiener filter was based on the transfer function, which led to complex
computing. From the basic work, some extensions were done. The finite-memory
of the Wiener-Hopf integral equation was solved by Zadeh and Ragazzini [161].
Another simple solution of the Wiener-Hopf integral equation was given by Bode
and Shannon [24]. The non-stationary case was studied by Booton [26]. Wiener
also solved the nonlinear filter problem in [157]. Fourier analysis and the trans-
fer function (frequency domain) were widely used to obtain useful information.
However, this is a extremely difficult method because of the calculation complex-
ity and difficulty of understanding physical meanings. As mathematics, especially
probability and random process knowledge, advanced, tracking algorithms based
on the pioneering work for time domain were determined. Tracking means filters.
The earliest and best filter for the linear Gaussian model case is the KF, first devel-
oped by Kalman in 1960 [83]. The KF uses several first order differential equations
(state space representation) instead of high order differential equations (the trans-
fer function representation, also known as the Wiener filter) and solves those first
order differential equations in parallel. However, it was not accepted in1960. Un-
til the Apollo program, scientists had focused on the KF. The algorithm is very
simple, therefore it has been widely used. It is an optimal recursive Bayesian es-
timator. For linear and Gaussian cases, no nonlinear filter can improve on the KF,
however, for nonlinear or non-Gaussian cases, the KF loses efficacy.

The expression x ~ N(0, Q) means the random variable x satisfy the normal



24 2.3. Model based Signal Processing

distribution with mean 0 and variable Q.

Consider a discrete time system [5] given by

X1 = Fxg + wi (2.20)

Yy = Hxy + o

where wy ~ N(0, Q) is the signal noise; v ~ N(0, R) is the observer noise; F
is the discrete time system matrix; H is the discrete time observation matrix; xy is
the state vector at time k; yy is the output vector at time k.

The main iterative formulae of the KF are as follows:

Pyy—q = FP_1F' +Q (2.21)

Ky = Pyy—1H" (HPyy_H" + R)™" (2.22)
Py = Py — Kk HPy_4 (2.23)

R = Ffx—1 + Ki(yx — HF%_1) (2.24)

where £ is the estimated state vector at time k; Ky is called the Kalman gain;
Py i—1 is the covariance of the state vector at time k given the output from y; to
Yk—1, Py is the covariance of the state vector at time k given the output from y; to
Yk

In the KF formulae, the parameters Q and R represent the signal noise covari-
ance and the observer noise covariance respectively, which are not known but the
design value of Q and R need only to be in the same scale as the true values.
Theoretically, these two parameters need to be semi-positive definite or positive
definite. However, in practice, sometimes even when the noise covariance satisfies
the condition of non-negativity, the KF performance can suffer. The reason for
this is that considerable or minimal eigenvalues of the covariance cause the matrix
inversion to be singular and the iteration cannot proceed. Therefore, these two
parameters are highly significant when the KF is implemented.

The state estimation problem can be divided into three parts based on the data
information:

Filter: The filter uses the measurement data information up to time ¢t. The
filter recovers information from the noise corrupted measurement. This filter is

always used in discrete systems. However, there is also a continuous time KF and
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Algorithm 2.1 Kalman Filter Algorithm

Assume the initial condition %4y and covariance matrix Py are normal distri-
bution
fori =1to N do
Calculate the estimated state prediction £;);_; and the prediction of covariance
matrix P;j; 4
Calculate Kalman gain K;, the upgrade covariance matrix P; and the state
estimator X;
end for

the solution to the continuous time KF is related to the continuous time Riccati
equation.

Smoother: The smoother uses the measurement data information up to time
tm, which is greater than time t. Therefore, the immeasurable information can be
smoothed and the result should be more accurate.

Predictor: The predictor uses the measurement data information up to time t,,
to forecast future information at time ¢.

These can be summarised as

o filter, when t = ¢,
e smoother, when t < t,,

e predictor, when t > t;,

The KF algorithm was shown in Algorithm 2.1.

Based on the simple KF formula, other filters were developed to give an equiv-
alent implementation, such as the information filter, and the square root filter.
The former, utilizing the Matrix Inversion Lemma, uses an information matrix in-
stead of the inverse covariance matrix and makes it computationally simpler and
solvable for specific classes of problems. The latter, first proposed by Potter [13],
decomposes the error covariance matrix into the square root form. Anderson [4]
made some extensions on decomposing the covariance update formula. Morf and
Kailath [110] also undertook some extensions on calculating the filter gain with

different formulations.

2.3.2 EKE UKF and Other Filters

Since many real systems are nonlinear, a transform of the KF was developed, called
the extended Kalman filter (EKF). The main idea of the EKF is that it linearizes

and approximates the nonlinear term or function by using Taylor expansion. The
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EKF usually means the first order case. There are other orders of EKF in the
literature [75] [134]. Nevertheless, an obvious disadvantage is the expensive com-
putation cost, especially when the order of Taylor expansion is high. It requires
a huge number of calculations to compute the covariance and gain of the EKF.
Furthermore, the EKF will diverge when the initial guess is wrong, while KF will
rectify the initial guess. Therefore, high order EKF is rarely applied. In addition
to EKF, there are many nonlinear filters including optimal nonlinear filters and
suboptimal nonlinear filters. Grid-based methods were one of the optimal nonlin-
ear filters. The finite difference method (FDM), the finite element method (FEM),
and so forth, belong to grid-based methods. However, the disadvantages are that
these methods must guarantee the number of finite states, and the computation
cost increases with the number of states. Bene$ and Daum filters are also optimal
nonlinear filters. The Daum filter was the upgraded version of the Benes filter.
Both are used for finite dimensions. Schmidt [137] implemented the Daum filter
as an application.

The unscented Kalman filter (UKF) was a representative of suboptimal non-
linear filters. The difference between EKF and UKF is that EKF approximates the
nonlinear function, while UKF approximates posterior probability density. UKF
uses statistical linearization and the formulae and the derivation were illustrated
in [130]. UKF seemed to be more robust than EKF [79], however, Gustafsson and
Hendeby showed that the performance of second order EKF was better than that
of UKF [60]. Several variants of UKF exist. For instance, Julier and Uhlmann [80]
modified the traditional unscented transform (UT) into the scaled UT.

The MM filter, as a type of Gaussian sum filter, belonged to suboptimal nonlin-
ear filter and will be introduced in the next chapter. PF [125] have been popular re-
cently. PF, as a kind of suboptimal nonlinear filter, was the extension of sequential
Monte Carlo (SMC). They calculated the probability densities of particles. Ham-
mersley and Morton [61] first proposed the idea of sequential importance sam-
pling, which is the core idea of SMC. The ideas were developed in the literature
[62] and [1]. However, because of computation, they were not acceptable until
Gordon et al. [54] proposed the resampling step. Since then, PF has developed
rapidly. However, the disadvantage is that PF needs a sufficiently large number
of particles and a very good estimating state of the past. Other commonly used
filters include the fixed coefficient filter (also called the « - f filter), which was the

first target tracking algorithm. It is simple, but not accurate.
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2.4 Image Processing

Image processing usually means digital image processing which is a digital image
processed by computer. According to Gonzalez and Woods [53], there are three
kinds of image processing, low level, mid level, and high level. Low level image
processing is usually called pre-processing. It mainly focuses on noise reducing
and contrast increasing. The characteristic of low level image processing is that
both the input and output are images. Mid level image processing focuses on
special tasks, such as segmentation. The characteristic is that though the input
is image, the output is special features from the initial image input. High level
image processing tries to make the image or the features understood by humans
after processing.

Image processing stemmed from newspaper industry in the 1920s. Pictures
were encoded and transmitted by submarine cable then decoded at the receiving
end, which reduced transmission time considerably. Printing methods, such as
selecting the distribution of gray level, appeared to improve the quality of digital
images. By late 1921, a new technique, perforated tapes, had replaced traditional
recovering technique. Later and to current time, with the development of com-
puters and data technology, such as storage and display, image processing has
developed rapidly. The application of image processing is extensive and in many
fields. It has been used in astronavigation area since the 1960s. One famous ex-
ample was the image of the moon taken from Ranger 7. Image processing has also
been used in medicine from 45 years ago. An example is computerized tomogra-
phy (CT), which was invented during that time.

2.4.1 Segmentation

Segmentation is a process which partitions an image into several regions or objects
to be analysed easily. It is usually divided into several parts according to the
results. Some of the results are contours from using edge detection methods.
Some are intensity from using threshold. Others are colours. There are a huge
number of methods, which have not been introduced in this current work, with
the exception of edge detection and threshold.

Edge Detection

Usually, there are three types of edges: step edge, ramp edge and roof edge. The
first is the edge where intensity changes from 1 to 0 (or from 0 to 1) ideally and
suddenly at the distance of one pixel. A ramp edge is one where intensity changes

from 1 to 0 (or from 0O to 1) slowly and where distance is a set more than one pixel.
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It appears in the real situation because of the noise in the image. Therefore, the
edge could be any point in the set. A roof edge is one which is used to detect lines
across a region and when intensity changes from 1 to 0 to 1 again (or from 0 to
1 to 0 again) also at a distance of one pixel. Gonzalez and Woods [53] undertook
an experiment on a ramp edge to illustrate the importance and the sensitivity to
noise of the first and second order derivative of ramp edges. Based on the results,

smoothing the image to reduce the noise is highly significant.

The basic edge detection method is based on the first order derivative. The first
order is also understood as gradient. Usually, a two-dimensional mask is needed
in a diagonal edge situation. Roberts [131] firstly used Roberts cross-gradient
operators as a two-dimensional mask to deal with edge detection. Prewitt [123]
made a modification by using a three by three mask, adding centre point in and
filtered for the whole image with Roberts operators. In the same year, Sobel [142]
also made modifications based on Roberts operators. He multiplied a number
2 in the centre location as a parameter. The advantage of Prewitt masks is that
they are easy and simple, both in expression and in implementation, compared
with Sobel masks. Yet, Sobel masks have the ability to smooth the noise based on
the formulae. However, the advantage of Prewitt masks is so minimal that it can
be ignored. Smoothing and thresholding methods were introduced to reduce the
noise and obtain a better result [53].

Senior edge detection methods were based on the second order derivative and
considered the image noise. The earliest senior edge detection, proposed by Marr
and Hildreth [101], had two significant features. Firstly, a differential operator was
needed to calculate the discrete time first order and second order derivative pixel
by pixel. Secondly, large and small operators for scale invariant were required. A
large operator was used for detecting fuzzy edges and a small one for sharp edges.
Based on these two features, Laplacian of Gaussian (also expressed as V2G) was
selected as the most suitable one, where V? is the Laplacian operator, and G is a
Gaussian function. Due to the shape, V2G is also called Mexican hat. It is always
simple and effective by using the zero-crossing approach. However, if there were
not enough zeros crossing positions, another modification proposed by Huertas
and Medione [71] would determine the subpixel positions. In 1986, Canny [29]
proposed another senior edge detection method called the Canny edge detector.
The core idea was to determine the optimal solution under the given conditions.
However, there is no such a solution. Therefore, a Gaussian noise was added in
the one dimensional step edge to calculate the numerical solution, which is the
first order derivative of Gaussian. For a two-dimensional edge, there are four

steps to calculate the Canny edge detector. Firstly, reduce the input noise by using
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the Gaussian filter. Secondly, calculate the magnitude and angle of the gradient.
Thirdly, determine the local maxima by using nonmaxima suppression. Finally,
use the double threshold method to obtain the edge.

Threshold

Thresholding is a method to separate the objects from the background based on
an image’s intensity distribution. A simple iterative threshold method has been
widely and effectively used, introduced in Algorithm 2.2, where AT is the prede-
termined parameter which controls the speed of the algorithm. Considering the
number of iterations, some modifications were made, such as Newton’s method.
A commonly used threshold algorithm based on the probability, is Otsu’s method
[115]. The advantage of this method is that it uses probability to calculate the
optimal solution, which divides the image into two parts. Moreover, it transfers
the problem into probability on a histogram, which is one dimensional variable.
However, according to the information above, the noise cannot be reduced by
threshold and it would affect the result of thresholding. Therefore the best op-
tion is to smooth the input image first, then to threshold the image. Sometimes,
even if the input image is smoothed before thresholding, the result can still not
be obtained. For example, in the case of a very tiny cobblestone in a large black
background, the result was not satisfactory. Based on the example result, the
modification using edge detector methods first was widely adopted. Usually, one
single threshold (the methods mentioned above) is suitable, while in some cases,
multiple thresholds are needed. Fukunaga proposed multiple threshold methods
based on Otsu’s method in [51]. However, there was no physical meaning for so
many thresholds. Usually, two thresholds or double thresholds are widely used in
gray level problems. More than two threshold methods are always used in colour
images.

It should be noted that in the Algorithm 2.2, T; is the selected threshold; k is
the number of iteration; N is a large number and usually it is equal to 5; the size
of the image is m * n; I]’fi is the intensity at the point (j,i) at k" iteration; M1 and
M2 are vectors which are used to save the points; m1 and m2 are the mean of M1
and M2; T; is the threshold at kth iteration; AT is the preinstalled error.

2.5 Descriptor

There are different kinds of shape descriptors, mainly divided into two parts. One
is Contour-Based Methods, and the other is Region-Based Methods. Both can be
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Figure 2.1: The classification of shape description

The shape descriptor can be divided into two methods: the contour-based methods and the
region-based methods. The main characteristics are listed in the figure. For each method, there are
two approaches: the structural approaches and the global approaches. The differences are also
explained in the figure.
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Algorithm 2.2 Simple Iterative Threshold Algorithm

Select a single threshold T;
fork=2to N do
for j =1 tom do
fori=1tondo
if I]kl = Tk_1 then
Save I, in M1
else
Save I]’.‘i in M2
end if
end for
end for
Calculate m1 = M1, m2 = M2, and T = "152
if T, — Ty_1 < AT then
Break FOR loop
end if
end for

further divided into: Structural Methods and Global Methods separately, as noted
in Figure 2.1.

2.5.1 Contour-Based Methods

As mentioned above, Contour-Based Methods extract shape features based only
on the shape boundary. As shown in Figure 2.1, Global Methods and Structural
Methods will be introduced separately in the following paragraphs.

Global Methods

Global methods usually use all the boundary information and shape matching in
either spectral space or spatial space. Several global methods are introduced in
the following paragraphs.

Simple Shape Descriptors

According to Yong et al. [160], there are several simple shape descriptors, for
example, area. Peura and livarinen [121] added other simple shape descriptors,
such as, elliptic variance. The main drawback of this kind of simple shape de-
scriptors is that only large differences can be found, therefore, they usually filter
shape fault separately or together.

Its advantage is simplicity while the disadvantage is inaccuracy. Therefore,
this kind of method usually works with other descriptors.

Correspondence-Based Shape Matching
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The core idea of correspondence-based shape matching is utilizing the point to
point method of different shapes as a measurement of shape similarity. Therefore,
all the points on the boundary are feature points. This kind of methods works
mainly in the space domain. Correspondence-based shape matching includes nu-
merous methods, for instance, Hausdorff distance.

Hausdorff distance (also called Hausdorff metric or Pompeiu-Hausdorff dis-
tance) was proposed by Hausdorff in 1914. The core idea of this method is cal-
culating the distance of two shapes. As such, it is usually used to check the
measurement of shape similarity between frames. The mathematics expression of
Hausdorff distance is given as

Du(A,B) = mM(ig/}z ;2£d<“fb>'§‘;g inf d(a,b)) (2.25)
where, Dy (A, B) is the Hausdorff distance between A and B; sup is the supre-
mum and inf is the infimum; d(a, b) is the Euclidean distance between any point
a in the set A and any point b in the set B.
One shortcoming of this method is that if there is a noise on the boundary or an
outlier point, the distance measured is not accurate. Thus, Rucklidge [132] made
a modification by changing the expression of Hausdorff distance. The modified

formula is as following

Dy(A, B) = max(D(A, B), D(B, A))

. (2.26)
D(A, B) = f e aminpepd(a,b)

where, " is a th power to the value of f where f is a value in the area [0,1]
and usually f = 0.5 [30].

Both methods above share the advantage that they can match point-to-point.
Nevertheless, their disadvantage is that neither has the property of translation,
scale or rotation invariance, which are significant to shape descriptors when match-
ing shapes.

Chamfer distance transform was proposed by Chetverikov and Khenokh [30].
The contribution of [30] is that this method reduced the computation complexity.
An example was given in [132] to demonstrate the expensive cost of the computa-
tion complexity is despite its good effect.

The new development was a new method called shape contexts, proposed by
Belongie et al. to overcome the limitation of Hausdorff distance [15]. The idea
of shape contexts is that a vector is set up for any point on the boundary as the
starting point, with all other points on the boundary as the terminal points. Based
on the length and angle, the histogram for that point is created. All the histograms
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of all the points on the boundary make up the shape contexts. Usually, log-polar
space is used to distinguish the points around and points far away.

Generally, correspondence-based shape matching is suitable for offline calcu-
lation, not for online shape matching.

Shape Signature

Shape signature methods are based on the boundary points and usually have
the invariant property of translation and scale. Many methods exist, including
centrical profile [37] and centroid distance. These methods are not rotation in-
variant, therefore, another technique, shift matching, is needed. However, this is
too expensive for online matching. Secondly, these methods are not robust. For
example, if there is a noise, the shape matching will lead to error.

Boundary Moments

Boundary moments are improvements on shape signature. According to [144],

th

the n'" moment M,, and the n'" central moment MC, can be calculated by the

following formulae, given shape signature m(i).

1;1 (2.27)
Y [m(i) — My]"

where N is the number of points on the boundary; M; is the first order moment
that is the centroid. To make the boundary moments translation, rotation, and

scale invariant, the formulae above can be normalized as:

M, = Mn
MC?2

M C2 (2.28)
MC, = —
MC;

Generally, this method is easy to implement and robust, however, it is also
extremely difficult to explain the higher order moments in physics.

Elastic Matching

This method was proposed by Bimbo and Pala [17]. They set up a parameter
energy function and minimized it by a neural network method.

Owing to the expensive computation and matching complexity, this method
is not popular for online implementation. A comparative example was given in
[164] to show the expensive computation complexity.

Stochastic Method

The core idea of stochastic method is that for an autoregressive (AR) model,



34 2.5. Descriptor

the parameters are calculated by the least square (LS) method [40]. Since those
parameters have the property of translation, rotation, and scale invariance, they
are considered as shape descriptors. Disadvantages also exist. For the complex
shape boundary, the parameters needed are considerable. Furthermore, most of

the parameters do not have physical meanings.
Scale Space Method

Scale space method is also a spatial domain method, like most of the tech-
niques outlined above. Given its insensitivity to noise, this method has been im-
plemented in some applications. The core idea of this method is using a vari-
able width low-pass Gaussian filter to those boundary points. Different widths
of Gaussian filter have different effects. A contrastive example [164] was given to
illustrate the effect of the width, that is, the Gaussian filter smoothed the shape
boundary as width increases. "Fingerprint" or an interval tree was formed as the
result of smoothing. The interval tree was first explained by Asada and Brady
[7]. They used the Gaussian filter and the second derivatives of Gaussian filter
methods to get the interval tree. Mokhtarian and Mackworth [108] made some
extension based on [7]. Curvature scale space (CSS) was first called and obtained
from the scale space signature by their extension. This method was used because
of its compact characteristics, although the implementation and matching is diffi-
cult. The group of Mokhtarian et al. made some extensions on the shape retrieval
based on the CSS method. The new matching algorithm to compare two peaks is
their innovation though it is unstable according to Jeannin [77]. Eberly [43] then
proposed a geodesic distance measurement. Geodesic topology as another expla-
nation of scale space method was first proposed by Daoudi and Matusiak [36]
who changed the matching process with the geodesic distance measurement. If
the shape boundary is complex or contains many points, the result will be a very
high interval tree.

Spectral Transform

Spectral transform is widely used because the methods are noise insensitive
and do not consider the shape boundary complexity. The FD and the wavelet
descriptor (WD) are most well known spectral transform methods.

Traditional FD can only solve a closed curve. Mitchell and Grogan [107] and
Lin and Chellappa [97] made modifications, which solved partial shapes using
FD. Arbter [6] proposed the affine-invariant FD and K.Arbter et al. [84] showed
the application of the method on 3-D objects. A modification called short-time
Fourier descriptor (SFD) was proposed by Eichmann et al. [45]. The advantage
of SFD is that it can obtain accurate local boundary information. For a disjointed

or articulated contour shape, Rauber [126] introduced a new modification, called
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UNL FD (UNL is the name of university). Its weak point is that the high dimension
vector of UNL FD leads to computation complexity. Rui et al. [133] modified the
distance measurement of classifying similarity by using Fourier coefficients. In
2001, Zhang and Lu [165] determined the disadvantage of SFD, namely, that it
cannot capture global boundary information. Therefore, Zhang and Lu believed
the traditional FD is better for global boundary information.

There are several advantages to FD as follows. Firstly, the computation of FD
is very simple. Secondly, specific physical meaning of FD exists. Thirdly, it is very
simple to normalise the FD. However, the FD does not need to be normalised for
all cases. For example, the LFD F(w = 2) uses the unnormalised value. Finally,
the FD can deal with both global and local shape boundary information.

Compared with other global descriptors, FD is noise insensitive, easily nor-
malised, together with being well understood and implemented. Therefore, FD is
popular in global descriptors.

Compared with FD, WD can deal with not only spectral space but also spatial
space. However, Tieng and Boles [154] gave an example to show the disadvantage
of WD, which is that it is not as accurate as FD in frequency resolution. Another
disadvantage of WD is that its impractical online shape retrieval was caused by
matching complexity, as noted by Yang et al. [159].

Structural Methods

Primitives were usually used in these methods. Primitives were defined as shape
boundary segments. According to the different selections of primitives, several
common decompositions exist. Pavlidis [117] gave some details of the decomposi-
tion methods, such as curve fitting.

A general form for this kind of method exists:

S =[s1,52,...,54] (2.29)

where s; has different meanings based on different methods. For example, in
B-spline method, s; represents spline. S is a vector which is usually used directly
or combined with other higher level method.

Chain Code Representation

Freeman [49] first proposed a method using line segments to encode arbitrary
geometric configurations in 1961. The key idea of this method is the shape bound-
ary discretization. Using the approximation points instead of the real boundary
points and choosing any selected point as a starting point, chain code is gener-

ated. The disadvantage of the normalized chain code is scale variant. An example
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in the literature [164] was given for two same sized boundary shapes with differ-
ent shape numbers. The disadvantage of this kind of method is that chain code
method is not noise insensitive and has high dimensions. Therefore, it is usually
combined with other methods. Iivarinen and Visa [72] made some modifications
known as chain code histogram (CCH). This method used probability and solved
scale invariance compared with the traditional chain code method. However, it is
not rotation invariant. Based on the above reasons, another method was proposed
as a modification. The new method is called normalized CCH (NCCH). It recal-
culated the probability and reduced the dimensions. However, this method is still
noise sensitive.

Polygon Decomposition

The core idea of this kind of method is to consider a shape boundary as a poly-
gon, by using line segments [57], with vertices that contain feature information.
Usually four elements, which are x and y coordinates, distance and internal angle,
are used for every vertex. The literature [164] gave a fixed number for shape ver-
tices based on efficient and robust reasoning. Mehrotra and Gary [104] proposed
a method which combined chain code and the polygon method to present an ex-
ample in the paper. However, the disadvantage is that this kind of method is only
positive for man-made objects [164].

Smooth Curve Decomposition

Tokens were defined by Berretti et al.. A horse shape example was given in the
literature [16]. The three features are: maximum curvature, orientation and dis-
tance between two tokens. Therefore, this is a rotation variant method. However,
Berretti et al. cannot avoid the disadvantage. The implementation process was
given in the literature [164]. Zhang and Lu also mentioned another disadvantage
which is the inefficiency. The efficiency of this method relies on the number of
tokens.

Scale Space Method

Dudek and Tsotsos [41] first proposed a new method, which is different from
the other structural methods. The traditional structural methods use a feature-by-
feature matching, then model-by-model matching. The new method uses a model-
by-model matching first, and then a scale space is formed in order to modify
robustly and computation complexity is requested. However, this method is not
scale invariant. Moreover, parameters as mentioned in [164] are important for
the implementation and application. As such, this method is neither popular nor
widely used.

Syntactic Analysis

Syntactic analysis is similar to the composition of language. Fu [50] gave an
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example to show how syntactic analysis worked in the composition of language.
The idea of syntactic analysis is to divide a shape into different sets of parts, just
like words, which are built up by alphabets. Sonka et al. [144] gave an example
to illustrate how this method works. With this method, a shape can be built up
by a "word" which is a set of different "alphabets". Therefore, the matching can be
simplified by using "grammar". However, the syntactic analysis method also has
drawbacks. It is not used widely because its grammar is not suitable for general
cases. For any special case, prior background knowledge is needed, which means

different cases have different alphabets, words, and grammar.
Shape Invariants

This kind of method has sought to use something invariant under various
transformations. Usually there are three directions: geometric invariants, algebraic

invariants, and differential invariants.

References as per the literature [70] [92] [144] [145] gave examples of three
shape invariants. The difference is that when the shape can be divided into
straight lines or algebraic curves, the first and second method can work well;
in other cases, the differential invariants can work.

The disadvantages of shape invariants are as follows. Usually, they are de-
rived from boundary geometric transformations while the real shape changes do
not follow the boundary geometric transformations. In addition, like many other
methods mentioned above, they are not noise insensitive so small noise turbu-
lence can make the method inaccurate. Furthermore, it is extremely difficult to
create new descriptors of shape invariants. Finally, they are, like above methods,
extremely difficult in respect of matching shapes.

Recently, as for the previous disadvantage, the literature [92] and [145] made
modifications. They used subgraph matching to determine an acceptable result in
an acceptable time instead of the best solution. This is also called a "suboptimal

solution".

Invariant signature, first proposed by Kliot and Rivlin, was another shape in-
variant descriptor [88]. The basis of this method is using invariants to derive
invariant signatures, which were also named multi-valued signature, and to use
signatures to make up a matrix for matching. An example was given to test and
illustrate the efficiency in the literature [164]. Squire and Caelli [145] gave another
invariant signature. They used probability density function as an invariant signa-
ture based on simple transformations, such as scale and rotation. A histogram was
also used to match. However, the results of this method did not seem as effective

as shape signatures.
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2.5.2 Region-Based Methods

These methods are different from the contour-based methods. The difference
is that all the pixels are considered in region-based methods, while only shape
boundary information is considered in contour-based methods. Moments are usu-
ally used in region-based methods. This kind of method can be divided into two
areas: global methods and structural methods. Both of these will be outlined

separately.

Global Methods

As contour-based methods, global methods also consider the shape as a whole.
However, the difference is that these methods are robust. Some global methods
will be introduced as follows.

Geometric Moment Invariants

Hu first proposed two-dimensional shape recognition using moment invariants
in [69]. The idea stems from the theory of algebraic forms. The formula was given
as follows:

M;j = Z;sitjf (s,t) (2.30)

wherei,j=0,1,2,...

The moments were combined and formed a set called a geometric moment.
Due to invariant property (translation, rotation, and scale), this method was also
named moment invariants. However, this method can only consider lower or-
der moments. Higher order moments were extremely difficult to derive and not
addressed. Kennedy et al. [86] made modifications with a normalised implemen-
tation called score normalization. A test was done to confirm the conclusion that
geometric moment invariants perform better in simple shapes.

Algebraic Moment Invariants

Taubin and Cooper [147] first proposed this method. The algebraic moment in-
variants were calculated from the central moments. The advantage of this method
is that algebraic moment invariants are useful to lower order moments and higher
ones. In addition, algebraic moment invariants are useful to affine transforma-
tions. However, there are disadvantages with the main one being unstable per-
formance. References in the literature [136] gave comparable results to show
sometimes it worked well but other times it was poor. The conclusion is that
the configuration of the outline is highly significant to this method.

Orthogonal Moments
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The advantage of this kind of method is that it is easy and robust. The dis-
advantage is that there are no physical features corresponding to higher order
moments.

Based on the idea of Teague [149], Legendre moments and Zernike moments
belong to orthogonal moments.

The formula of Legendre moments is as follows:

L. — (2m + 1 (2n+1) ZZP (x,1) (2.31)

where, P,(x) = ﬁd%(xz —1)"

As the forms of the moments were the same as the orthogonal polynomials,
which are called Legendre polynomials, these orthogonal moments were named
Legendre moments.

The formula of Zernike moments is as follows:

n+1
ZZSW X, y)f(x,y)

(2.32)
S.T.x? +y <1
Sum(x,y) = Spym(pcosb, psinb)
= Rum(p)exp(jm0)
n72\m\ (n B k)l (2.33)
Rum(p) = Z (_1)k : PniZk

=S L ]

where p is the radius; 6 is the angle.

The disadvantages are as follows. Firstly, the calculation of the kernel of
Zernike moments is difficult and the shape needs to be normalized. Secondly,
the radial features are in spatial domain, while the circular features are in spec-
tral domain. Finally, the circular features sometimes lost important features when
calculating each order.

Teh and Chin [150] compared some famous orthogonal moments and obtained
results. The most significant contribution by Teh and Chin is that the error of
orthogonal moments decreases and then increases. This means that higher order
moments usually have larger noise error. They also gave a criterion, called SNR,
to select the number of moments. They believed that the Zernike moments and
pseudo-Zernike moments are better than the other orthogonal moments. Based
on their work, Liao and Pawlak [94] made extensions focussing on accuracy and
efficiency. It was determined that accuracy has a relationship with image resolu-

tion. For example, a finer image will have less accurate moments. The alternative,
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which extended Simpson’s rule, was used to increase the speed of calculation as

their last contribution.
Generic Fourier Descriptor

This method, which mainly made modifications to compensate for the disad-
vantages of Zernike moments, was first proposed by Zhang and Lu [163]. It is
easy to compute. Moreover, the features are all in spectral domain. Furthermore,

for the multi-resolution case, it has good retrieval performance.
Grid Based Method

This method was first proposed by Lu and Sajjanhar [99]. Its idea is to use a
binary vector to show the shape feature. The prerequisite is that this method must
be normalized first. An example was given in the literature [164]. The advantage
is that it is very easy to implement and represent. The disadvantage is that this
grid based method is rotation variant. In addition, it is also noise sensitive.

Shape Matrix

Shape Matrix was first proposed by Goshtasby [55]. Taza and Suen [148] made
modifications. They used a weighed shape matrix instead, based on the inconstant
sampling density in the shape matrix methods. The disadvantage is that shape

matrix methods are sensitive to noise.

Structural Methods

As with those mentioned in contour-based methods, these methods also divide the
shape into several parts. There are several methods, which will be summarised

below.
Convex Hull

When extracting shape boundary by some methods or other segmentations, it
always formed some noises? which made the shape irregular such as forming a
convex. The convex hull focuses on the structure of the shape and removes the
convex instead of the traditional computation. It transfers the shape matching to

a string or a graph matching as its most observable advantage.
Medial Axis

This method uses a region skeleton to represent shape. It eliminates the re-
dundant information and keeps the topological information as a structure. It also
transfers the shape matching to a graph matching. The disadvantage is that the
computation is extremely difficult. Additionally, it is noise sensitive. A solution to
its drawbacks was proposed, that is, pre-processing the shape and using polygonal

approximation.
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Algorithm 2.3 Pre-Processing Algorithm

for iFrame =1 to N do

Read in the three-dimensional raw time lapse images

Transform those images into matrices

Sum the matrices together

Double threshold the obtained result (the two-dimensional matrix)
end for

2.6 Pre-Processing of Time Lapse Image

As mentioned above, the time lapse images were the raw data, and pre-processing
was needed to obtain useful information via MATLAB. The process of pre-processing
is described as follows. The first step was to read in the time lapse images of the
same frame by MATLAB automatically. Then those images had to be transformed
into matrices using the program. After, compressing those images of different
heights was achieved by adding all the gray level values of different heights to-
gether. The final step was to double threshold the matrices. These steps can be
summarised as Algorithm 2.3.

It should be noted that the initial data used in this thesis was the data after
pre-processing.

The validation was also done. All the initial three-dimensional figures were
summed into two-dimension. The two-dimensional figure was compared with
the figure plotted from the algorithm result to ascertain whether any neutrophil
was missing. The validation result has not been shown in the thesis. In addition,
the literature [129] also used the same algorithm to deal with neutrophils in pre-
processing section. Therefore, the algorithm is effective.

The old data was implemented in the first year of this PhD. Currently, new
data has been implemented. The old data was high resolution data, while the new
data was low resolution. All the data was from zebrafish given by the University
of Sheffield and legal to UK law in the Animals (Scientific Procedures) Act 1986.
Neutrophils were fluorescent for the tracking experiments.



Chapter 3

Neutrophil Model Identification
from Centroid Dynamics

The previous chapter introduced signal processing, image processing, the descrip-
tors and the pre-processing. Based on the relevant literature, several methods
have been considered as effective tools to solve the problem. This chapter is about
tracking the centroid of neutrophils through using some of the methods discussed
in the previous chapter. By using the centroid information of neutrophils, some

important characteristics can be obtained.

3.1 Introduction

Centroid tracking is a form of target tracking. The central idea of centroid track-
ing is to consider each neutrophil as a mass point and use tracking algorithms,
based on the centroid information, to extract useful behavioural information. Neu-
trophils show different dynamic behaviours when they are in different states or
modes. Tracking the centroid of the neutrophils should provide useful informa-
tion to identify neutrophil behavioural characteristics.

Farina [46] offered a definition of classical tracking. It is a set of algorithms
with the following characteristics after detections that can: recognise the pattern of
target; estimate parameters; extrapolate parameters; distinguish different targets;
distinguish a false detection; refine the setting of threshold; and manage detections
efficiently. Khare and Tiwary [87] gave an updated definition of tracking, which
dealt with the transformed target in a sequence of frames. According to Kaawaase
et al. [81], tracking can be divided into deterministic and non-deterministic types.
The difference between the two types is whether the noise is ignored or not. The

non-deterministic type with the noise can be considered as a stochastic process. In

42
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most cases, the noise cannot be ignored and therefore a stochastic process frame-
work is adopted.

In addition to tracking algorithms, the correlation of targets is important. Com-
monly used algorithms include the NNF and the joint probabilistic data associa-
tion (JPDA) filter. The latter uses a statistical approach and considers the error
distribution of tracking. It assumes that some of the candidates are the targets
and the rest are false alarms.

There are several applications of target tracking in biology. Ray et al. [127]
proposed a method which combined the KF and the active contour. This method
guarantees that the central tracking position of leukocytes in vivo is accurate by
reducing the location error. Rathi et al. [125] used the PF instead, which provided
robust tracking. Li et al. [91] combined the adaptive IMM filter with geometric
active contours technique to analyse the stem cell and the proposed method is
effective for different behaviours and the changing of behaviours.

3.2 Multiple Model Filter

The MM filter, as mentioned in the previous chapter, is a type of Gaussian sum
filter. It adds the systems to a Bayesian framework. It is suitable for a target which
changes its behaviours frequently.

The three models (constant acceleration model, constant velocity model, and
random walk model) run the KF separately and the probability of all the three
models was calculated in each frame. The "best" model (the biggest probability)
was selected compared with the probability in each frame. It is a acknowledged
that this "best" model can be different in different frames.

The probability of switching models can be calculated as follows.

b = [333]7 is the initial guess of the probability, where i € {1,2,3} represents
the model index. Assume that at the beginning, all three models have the same
probability, that is, %

Firstly, start with the initial condition probability of all three models y} and
the normalization constant E{( can be calculated as follows.

& = P{Mly1x 1} = Z% Pijlk_1 (3.1)
1=

where r = 3 is the total number of models; j € {1,2,3} represents the model
index, too; E{C is the normalization constant; y;;_l is the likelihood of model i at
time k — 1; p;; is the transition probability for the Markov chain according to which

the model switches from i to j. It is believed that the main diagonal values of the
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transition matrix should be between 0.8 and 0.98 [10]. Therefore, in this case, it

was chosen as follows:

09 0.05 0.05
P,.=1| 005 09 0.05 (3.2)
0.05 0.05 0.9

It should be noted that the elements in Equation 3.2 were selected as the fol-
lowing rules. According to Bar-Shalom et al., the main diagonal element should be
any value in the range between 0.8 and 0.98, which causes the neutrophil to keep
the same model in the next frame with a large probability and receives an accept-
able peak error and root mean square error, that is, an acceptable bandwidth. If
the value of the main diagonal element were less than 0.8, the peak error would be
small, however, the root mean square error was considerable which led to a large
bandwidth. In this case, the main diagonal element was 0.9. The other elements
should be the same with the value (1 —0.9)/2, unless there is an obvious reason
that the neutrophil prefers some model.

Secondly, run the KF separately for all the three models and calculate the
likelihood expression A{; for the neutrophils.

The mathematical model is as follows (no matter whether the chosen model
is constant acceleration, constant velocity, or random walk, it has the same form.
Nevertheless, the differences among those three models are the size of the matrix
Fi, G/, H/, and D’):

X = Fixl _ 4+ Glwy_4 (33)
yl = Hix 4 Diy, (3.4)

where the wy and vy are the white noise, x;{ is the state of ]'th model and y{; is
the measurement of the j model.

So the likelihood expression A;( can be calculated as follows:

AL = p{|M, y1x 1}

= p{wI My, X1, P}

: (3.5)

=1
SO P
= e 2% Sk Uk

Nl—

det(27S})

where vi = Y — Hf'l-"f'a’c’,.c is the residual of the jth observer, and S;{ = R +
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Algorithm 3.1 Multiple Model Filter Algorithm

Initialise parameters u} and the transition probability matrix Py,
fork=1to N do

Calculate the normalization constant E{c

Run Kalman filter for three models separately and calculate the estimated
state 3?;{ and the covariance matrix P,];

Calculate residual vi and the variance S{(

Calculate the likelihood A;{

Calculate the normalization constant c

Calculate the probability y;
end for

HI [PfP] F'' + Q/|H’ is the variance of the j" observer. A] is the likelihood with
mean H’ F75E’ and variance S]

Thirdly, calculate the normalization constant c based on the above steps.
r .o
¢ = plulyea} = ) NG (3.6)
j=1

Finally, obtain the probability ;4;( and repeat the steps.

= p{M]|y1}

_ Pyl My, yrae—1 } p{M Y1}
pvklyix—1}

kZP{M]|Mk Y1 PAME g [y} (3.7)

T
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where ;4{( represents the posterior probability of model ; at time k.

The initial condition of the probability u} and the transition matrix p;; are
important to the MM algorithm.

The transition probability describes a Markov chain process. Therefore, the
different values of the elements can make some changes in the performance of the
MM filter. The algorithm of MM was shown in Algorithm 3.1.

The MM estimator can be divided into the following two types according to
[130]: the static MM estimator [2] and the dynamic MM estimator [11].
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The IMM filter is one of the most popular dynamic MM estimators [130] based
on merging. There are other dynamic MM estimators based on pruning [59].
The idea of the IMM filter was first posed by Blom [21], and became widely

known via the literature [22].

The formulae of IMM are nearly the same as MM. The difference is that IMM

does not need to calculate the normalization constant. Instead of the normaliza-

tion constant, IMM calculates the mixing probabilities L;J]_ , which was shown as

follows.

l;clj—l = p{MIic—llMi/ylzkfl}
_ Pijt (3.8)
Yio pij]";cq

Therefore, the update equations were shown as follows.

. roo
J,C\;c—l = Z ‘2']—1’2;«—1 (3.9
i=1
Pl =Y (P + @ —8 )@ —2 D) (3.10)
i=1

The mode probabilities y{; were, therefore, updated as follows.

. A] r gl
i—1 Ny Xiz1 Pijly_4

The IMM filter is extensively used in tracking maneuvering targets, because of
its "self-adjusting variable-bandwidth" ability. Furthermore, it has a better balance
of complexity and performance in [10], [22], and [25].

Bar-Shalom and Blom [10] indicated that the advantage of the IMM is that
it reduces the computation cost compared with the input estimation [25]. Blom
and Bar-Shalom [23] and Helmick et al. [65] showed the IMM smoother. However,
IMM, like other filters, loses efficacy when the probabilities of mixture components
do not merge [130]. In addition, when the numbers of models increased obviously,
the performance of IMM decreased [22]. Based on the IMM algorithm, other al-
gorithms, such as the Interacting Multiple Bias Model (IMBM) and the Interacting
Multiple Acceleration Model (IMAM), were proposed and implemented.
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3.3 Results

In this chapter, both the high resolution data and the low resolution data are im-
plemented. The former is the data which focuses on a few neutrophils or a small
part of zebrafish in high resolution images; while the latter is the data which in-
cludes the whole zebrafish and therefore the images are in low resolution. In
addition, the high resolution data has a longer record time. Usually, the length of
record time in high resolution data is three times that of low resolution data. How-
ever, no matter what kind of data is chosen, similar conclusions can be achieved.
Therefore, most of the results in this chapter contain high resolution data.

3.3.1 Kalman Filter Implementation

In this part, the KF is implemented with a random walk model based on Algorithm
2.1. The high resolution data is applied to show the tracking effect of the KF.
It should be noted that no comparison results are illustrated between the low
resolution and high resolution data since both have the same conclusion, that
is, the KF can be used in centroid cell tracking and have an acceptable tracking
result. The centroid tracking result is shown in Figure 3.1. From the top of Figure
3.1, it is clear that the KF tracked the initial data very well both in the x and
y position. A similar tracking effect is also illustrated in the centroid trajectory
tracking on the bottom left of Figure 3.1. The centroid trajectory tracking is not
perfect, because the mathematical model of neutrophils is not accurate and it is
believed that several simple mathematical models working together will effectively
express the mode of neutrophils. For this reason the MM filter will be applied later
in this chapter. The absolute distance error is shown on the bottom right of Figure
3.1. It is clear that the maximum absolute distance error is less than 3.5um. The

KF, therefore, is implemented in cell centroid tracking.

3.3.2 Kalman Parameters Q and R Test

Firstly, the parameters of the KF will be tested. From the updated formulae, there
are two parameters, the signal noise covariance matrix Q and the observed noise
covariance matrix R, affecting the tracking performance. The different values of
these two parameters can affect the estimated results. Therefore, selecting suitable
values of these two parameters is highly significant. In the following part, only
the random walk model running on the high resolution data result is represented
to show the relationship between different values of Q or R and the performance.
It should be noted that the results of the other two models and the low resolution
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Figure 3.1: The implementation result of the KF run by random walk model.

Tracking results based on the x and y direction are illustrated on the top left and on the top right
respectively; the centroid trajectory tracking result is illustrated on the bottom left. All the red lines
are estimated trajectories by the KF and all the blue lines are real trajectories in the above three
figures. The black arrow is the starting point of the trajectory as mentioned on the bottom left

figure. The absolute distance error is illustrated on the bottom right figure.
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data have nearly the same conclusions as the random walk model and therefore
they have not been illustrated in this current work.

Q Test

The aim of Q Test is to test the tracking performance when the signal noise covari-
ance matrix Q is changed and the other parameter, the observed noise covariance
matrix R, is fixed. According to the white noise assumption in the KF formula
2.20, Kalman parameter Q is a diagonal matrix. All the elements in the diagonal
are assumed the same (with the value Q) in order to simplify the problem. In this
part, different values of Q; are tested and compared to determine any connec-
tion and relationship between the performance and the parameter. The compared
tracking results are illustrated in Figure 3.2 and Figure 3.3. From Figure 3.2, it is
clear that not all trajectories tracked well since all of them have the same starting
point but different finishing points. Most of the tracking trajectories are nearly
the same as the real centroid trajectory, except for Q; = 0.01. The trajectory of
Qg = 0.01 is obviously inaccurate from Figure 3.2. The reason is that the parame-
ter Q has the ability to compensate for the tracking error without considering the
uncertainty of model selection. Furthermore, if Q, is small, the states cannot ad-
just themselves to an effective range. For example, if Q is a scalar and Q; = 0.01,
the states x; can only adjust within the square root of Q; which is £0.1 to the
new states xj.1, however, it is not enough to find the "BEST" solution of xy1. In
addition, the mode and module of neutrophils probably do not match the model
selected. Therefore the parameter Q; = 0.01 is too small to make the KF track the
centroid trajectory well. Furthermore, the parameter Q does have the ability to
affect the tracking result. An unsuitable value of Q; can worsen the tracking. Fig-
ure 3.3, to some degree, shows the conclusion clearly. In most of the time range,
the Q4 = 0.01 trajectory has a larger absolute distance error than the other values.
Additionally, the absolute distance error is large and unacceptable. The Q; = 0.1
trajectory has obviously a smaller amplitude of error in most of the time range
than that of the Q; = 0.01 trajectory. However, at some times, the error is too large
to be considered acceptable. This can be also found in the tracking trajectory in
Figure 3.2. Some parts of the Q; = 0.1 trajectory deviate from the real centroid
tracking trajectory. The other three values of Q; are acceptable. Therefore, it is
clear that the larger Q; is, the less error the tracking has. The other two mod-
els had the same conclusion and have not been illustrated in this current work.
Finally, the conclusion drawn is that for a fixed model run by the KF, a larger
number should be selected as the diagonal value Q; of parameter Q in order to

compensate for the error of state tracking.
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Figure 3.2: The comparison of centroid tracking trajectories between different
diagonal values of the signal noise covariance matrix Q.

Q, is the diagonal value of signal noise covariance matrix Q. The signal noise covariance matrix Q
is a diagonal matrix based on the white noise assumption. All the trajectories have the same
starting point as pointed in the figure but different finishing points. This test is based on the
random walk model and the other parameter R is fixed with the diagonal value of R; = 10/3.
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Figure 3.3: The absolute distance errors between different diagonal values of
the signal noise covariance.

In the legend, Q; is the diagonal value of signal noise covariance matrix Q and ABS is short for the
absolute. The other parameter R and the model are the same as stated in Figure 3.2.

R Test

R Test is nearly the same as Q Test. The aim of R Test is to test the tracking
performance when the observed noise covariance matrix R is changed and the
other parameter, the signal noise covariance matrix Q, is fixed. According to the
white noise assumption in the KF formula 2.20, Kalman parameter R is also a
diagonal matrix. All the elements in the diagonal are assumed the same (with
the value Ry) in order to simplify the problem. In this part, different values of R;
are tested and compared to ascertain any connection and relationship between the
performance and the parameter. The compared tracking results are illustrated in
Figure 3.4 and Figure 3.5. From Figure 3.4, it seems that almost all the tracking
trajectories are acceptable. All have the same starting point, and nearly the same
finishing point. Although in some parts of the trajectory they are different, the
difference is minimal. It is extremely difficult to distinguish which value of Rj
is better than the others. Figure 3.5 solves the above problem and provides the
conclusion. From Figure 3.5, it is clear that the absolute distance error of R; = 10
trajectory is larger than the others across most of the time range. The error of
R4 = 10 is small and acceptable most of the time range, however, in some frames,
the error is large which leads to differences in tracking trajectory as per Figure
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Figure 3.4: The comparison of centroid tracking trajectories between different
diagonal values of the observed noise covariance matrix R.

R, is the diagonal value of the observed noise covariance matrix R. The observed noise covariance
matrix R is a diagonal matrix based on the white noise assumption. All the trajectories have the
same starting point as shown in the figure and nearly the same finishing point. This test is also
based on the random walk model and the other parameter Q is fixed with the value of Q; = 100.
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Figure 3.5: The absolute distance error between different diagonal values of
signal noise covariance.

In the legend, R; is the diagonal value of the signal noise covariance matrix R and ABS is short for
the absolute. The other parameter Q and the model are the same as stated in Figure 3.4.

3.4. Since the absolute error of all the others is small enough, the parameters
of the others can be acceptable and it is clear that the less value the observed
noise covariance matrix is, the less error the tracking has. This conclusion can be
also explained by the formula. For instance, the difference between the real output
and the estimate output is in the range between the negative square root of R; and
the positive square root of R;. If the value of R; had been small, the difference
would have been small, which would have meant the estimate output was close
to the real output and the estimator was acceptable. The other two models have
the same conclusion and have not been illustrated in this current work. Finally,
the conclusion drawn is that for a fixed model, run by the KF, a smaller number
should be selected as the diagonal value R; of parameter R in order to reduce the

tracking error.

In general, the parameters Q and R do have the ability to change the perfor-
mance of the KF. If a system is to be run only by the KF, the diagonal value Qg
of the parameter Q should be chosen a little larger and the diagonal value R; of
the parameter R should be smaller. However, if the system is to be run by other
filters accompanying the KF, such as the MM filter, the diagonal value Q; of the
parameter Q should be chosen smaller to compensate for any loss of efficacy and
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the diagonal value R, of the parameter R should be smaller for accuracy.

It should be noted that the error can be derived straightforwardly by using the
Matrix Inversion Lemma but the derivation has not been illustrated in this current
work. It is clear that in the formula, when the diagonal values of the matrix
Q or R~ increase, the error decreases. However, the formula is not inversely

proportional to Q, or R, or QR™.

3.3.3 Three Physical Models Run by Kalman Filter

Three commonly used physical models are the constant acceleration model, con-
stant velocity model, and random walk model. Usually, these models are used
separately to describe the characteristics of motion. For example, the process of a
plane flying from city A to city B can be considered as a constant velocity model
without considering the departure and arrival. The motion of neutrophils is com-
plex and therefore these three commonly used models are tested separately to
determine which model is more suitable for the motion mode of neutrophils. The

centroid tracking trajectories of all three models are compared in this part.

Figure 3.6 shows the comparison of both the centroid trajectories and the abso-
lute distance error of the three models. At the top of Figure 3.6, all three estimated
centroid trajectories are compared with the original one, which is the centroid
trajectory from the data. All have the same starting point, but different finish-
ing points. In some parts of the centroid trajectories, several models can track
the real centroid well, however, in other parts, some of them could not achieve
that. Therefore, it is clear that none of the three models tracks the centroid trajec-
tory perfectly and none is suitable for neutrophil motion mode individually. This
is probably because there are several modes and modules of neutrophils, which
means that no single model can track perfectly. At the bottom of Figure 3.6, it is
clear that none of the three models has small error all the time. In some frames,
the constant acceleration model tracks better (with less absolute distance error); in
some frames, the constant velocity model tracks better; in other frames, the ran-
dom walk model tracks better. This is probably because neutrophils run different
modes in different frames. For example, in some frames, the neutrophil runs the
constant acceleration mode, and therefore, the constant acceleration model works
better than the other two models in those frames. Therefore, a method that com-
bines the three models is required and emerged. This method is called the MM
filter and the advantage is that it can select the model automatically to solve the
problem of the complex motion mode. The relevant results will be represented in
next subsection.
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Figure 3.6: The comparison of three models separately

On the top figure, all the estimated centroid trajectories of three models are compared with the
original one. They have the same starting point, but different trajectories and finishing points. The
bottom figure illustrates the absolute distance error of three models. The red, blue and green
represent the constant acceleration model, constant velocity model and random walk model

respectively.
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3.3.4 Multiple Model Filter Implementation

As stated above, the MM filter combines all three commonly used models and
chooses the "best" model in each frame based on the probability. The details can
be found in Algorithm 3.1. However, two parameters exist, that is, the initial guess
po, which is the probability of each model at the beginning, and the transition
probability matrix P;,, which shows the transition probability from one model to
another in the algorithm. These two parameters may affect the tracking results;
therefore, they will be tested separately as detailed below.

Initial Guess pg

The initial guess py is the probability of each model in the first frame. According
to probability knowledge, the summation of probability of all three models should
be equal to 1 in each frame. In this part, four choices of the initial guess p9, which
are [1,0,0], [0,1,0], [0,0,1], [%, %, %], will be tested. Figure 3.7 shows the results.
In Figure 3.7, the blue, green and red represent the constant acceleration model,
constant velocity model, and random walk model respectively. The neutrophils’
mode changes in the frame where the black lines appear and therefore, the black
lines are called switching points. In Figure 3.7, the switching points are not perfect
at the crossing point. This is most likely because the probability trajectory is
continuous, while the probability calculated from the program is discrete.

From Figure 3.7, it is clear that after a few frames, the dominant model is the
same. The number of those frames is decided by different data, sampling time
and other parameters. For instance, in the high resolution data, it is 10" frame,
while in the low resolution data, it is 8" frame. This means that if the constant
acceleration model is the chosen module in frame 20, no matter what the initial
guess g is, the MM filter will choose the constant acceleration model in frame 20.
As such, the initial guess po only affects the initial conditions and does not affect
the tracking results after a few frames. A conclusion drawn is that no matter
what values the initial guess pg is, after a few frames, the module of neutrophils
is decided by itself. That is, all the neutrophils should have their own module
and this module does not depend on the initial guess of pg. The initial guess o
can only affect the probability in the first few frames and after that the probability
should be decided by the neutrophils” module. Interestingly, the parameter py is

similar to the initial guess £y in the KF.
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Figure 3.7: The comparison of different initial guesses p

Four different initial guesses pp were tested with the posterior probability of the MM filter while
X . 0.9 0.05 0.05 . . s
another parameter Py, was fixed with (8.82 (9095 00.095 ) The black vertical lines are the frames, in

which the previous dominant model changes to another. The blue, green, and red are the constant

acceleration model, constant velocity model and random walk model respectively.
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Transition Probability Matrix Py,

Another important parameter is the transition probability matrix Py Its main
diagonal values represent the probability of one model remaining the same in the
next frame. For example, the first element in Formula 3.2 is 0.9, which means that
if in frame k, the constant acceleration model were selected, then in frame k + 1,
the constant acceleration model would have a 90% probability of being selected
again, and only a 10% probability of changing to another model. According to
[10], the values of the main diagonal elements should be between 0.8 and 0.98. In

. . . - . . 0.9 0.05 0.05
this part, three different transition probability matrices, which are (8'82 0.9 05),

111
0.9 0,01 0.09 333 . .
(001 09 009), and (% 1 1), are implemented and compared. The result is shown
0.05 0.05 0.9 111
333
in Figure 3.8.

In Figure 3.8, the blue, green and red are the constant acceleration model, con-
stant velocity model and random walk model respectively. The black lines are
the switching points. From Figure 3.8, it is clear that different transition prob-
ability matrices P have different posterior probability trajectories and different
switching points. Therefore, the transition probability matrix P; can change the
neutrophils’ modlulels. The bottom probability trajectory (whose transition proba-

—

3 3
bility matrix is ( i1l )) in Figure 3.8 seems unstable. It is clear that in most of the
1 1

Q= W= WI|

frames, the prob;bility of the dominant model is not close to 1. This is probably
because all the elements in the transition probability matrix P, are the same (%),
which gives all the models the same probability of changing from one to another,
rather than keeping a large probability in the same model. Furthermore, the main
diagonal elements follow Bar-Shalom’s idea. Therefore, this matrix is not suit-
able for the transition probability matrix. The probability trajectory in the middle
(whose transition probability matrix is (80.89% 20'29; %893 )) seems stable. However, the
elements are not suitable. For example, the second and third elements in the first
row are 0.01 and 0.09, which means that in frame k the constant acceleration model
is selected. However, if in frame k + 1 the module changes, either the constant ve-
locity model is selected by the probability of 1% or the random walk model is
selected by the probability of 9%. It is unreasonable that the random walk model
should have a greater probability of being chosen. In addition, there is no infor-
mation shown to prove that the random walk model is preferred by neutrophils.
Therefore, this matrix is deemed not suitable for the transition probability matrix,
either. Given the abovg 9re0a05500rt)85, the top probability trajectory (whose transition

probability matrix is (g.gg 08 0.05 ) is selected as the transition probability matrix
P, 05 0.05 0.
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Figure 3.8: The comparison of different transition probability matrices P,.

Three different transition probability matrices Py, are tested with another parameter yp = [%, %, %]

The black vertical lines, the blue, green and red are the same as in Figure 3.7.
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Tracking Results

According to the analysis and tests above, the parameters are fixed and the track-
ing result is shown in Figure 3.9. It should be noted that the diagonal value Q; of
signal noise covariance Q in the MM filter is chosen as a small value in order to
make the MM sensitive. This parameter violates the rules above, but it makes the
MM filter more accurate. Otherwise, each model would have been more robust
and the results from the MM filter would have been inaccurate. On the top left
of Figure 3.9, the trajectory is separated by different colours, which represent dif-
ferent models. As mentioned above, the blue, green and red lines correspond to
the constant acceleration model, constant velocity model and random walk model
respectively. The small purple circle indicates the current position. The legend
shows the current dominant model with different colours and it changes with
time. The centroid trajectory begins at the starting point with the random walk
model as the dominant model and ends at the finishing point with the constant
velocity model being the dominant one. During the whole tracking process, dif-
ferent colour trajectories are plotted to show the dominant model. The posterior
probability of each model is shown in the middle left of Figure 3.9. The blue,
green and red correspond to the constant acceleration model, constant velocity
model and random walk model, respectively. The purple line indicates the cur-
rent time point and it shows the posterior probability of all three models. In each
frame, the maximum probability model is chosen as the neutrophil module, which
can be easily observed from the current purple line. The bottom left of Figure 3.9
shows the absolute distance error of each model. The minimum error model is
selected by MM algorithm. It should be noted that the minimum error model is
the largest posterior probability model in each frame. The blue, green, red and
purple are identical to those specified above. The right part of Figure 3.9 shows
the comparison of velocity and acceleration on both x and y directions. The central
velocity and acceleration (both plotted in black) are compared with the estimated
states from each model. The blue, green and purple are the same as the above
colours. The central velocity and acceleration are obtained via the Butterworth fil-
ter. It is clear that the estimated velocity and acceleration have very high accuracy
considering the dominant model. Therefore, the MM filter performs very well in
centroid tracking.

3.3.5 Chemotaxis Field Estimation

This is a new part from paper [82]. As an analysis tool, it is used in centroid

tracking.
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Figure 3.9: The implementation of the MM filter with high resolution data.

The top left figure shows the centroid trajectory with the starting point and finishing point.
Different colours represent the different dominant models at different frames. The legend is the

current dominant model. The blue, green and red are the constant acceleration model, constant

=
I
B3

Central velocity on x position

J

Meutraphil centroid tracking with NF method

=
=
2
£
3

;

/}-g

Titne [tinz)
Central welocity on y pasitian

9,

Wias ™

%

4
g
ol
2

Time [mins)
Cantral ccelaration o x pasition

Central acceleration
Constant Acceleration

on'y position

Tite [rins)

Central

Central act eleration

Canstant cceleration

R ra——

(s T yjacsn &

The dominant model is Constant YelosilyModel |

Finizhirg P oirt

4

(s A ) ipgoopen fi

1
420

bility of allthre e o dels

x position [ u m)

[ uny 11 ) uogeisjeose &

[ uupus 1 ] vogsisisoos &

Tirme (mins)
Theabsolute eror of three models

cxp L [StatinaPoint

64n |-

633 T

Time (pins)

Time (mins]

velocity model and random walk model respectively. The posterior probability is presented on the

middle left figure and the absolute errors of all three models are illustrated on the bottom left

figure. The blue, green and red are the same as mentioned on the middle left figure. The central

velocity and acceleration on both the x and y direction are plotted and compared with the models

on the right figures.



62 3.3. Results

Chemotaxis refers to the movements of cells or organisms provoked by a chem-
ical stimulus. For example, cells move to high concentration to find food. The food
is the chemical stimulus and the process is called chemotaxis. In other words,
chemotaxis is the process during which cells move from low concentration to high
concentration. It is similar to gradient in physics. Therefore, the estimation of the
chemotaxis field is highly significant since it will help to better understand the
neutrophil mechanism.

There are two assumptions to estimate the chemotaxis field. One is that the
field of chemotaxis can be expressed as a functional relationship of basis functions
multiplying the corresponsive weights. The other is that the changing rate of the
chemotaxis field is a proportional function of velocity.

Defining the field of chemotaxis as ® and according to the first assumption,
the formula of the chemotaxis field is as follows:

®; = Biw + Py (3.12)

where B; is a basis function; w is the corresponsive weight; @y is the initial
field as a DC component (invariant value); 7 is the frame index.

It should be noted that: both w and &, are unknown; B; can be different
bases, such as Multi-Quadric function, and it is a Gaussian basis function in this
dissertation.

Since two parameters are unknown, no method exists to calculate ®;. However,
according to the second assumption, the following formula exists:

d(P)
Ui = U7y
d(s)
_ D~ (3.13)
Siv1—Si

where v; is the velocity; u is a proportional constant; S; is the position in ‘"

frame.

While, the position S; is a proportional function of velocity as well.

Siv1 =5+ To; (3.14)

where T is the Taylor expansion coefficient.

Therefore, combining the above formulae, it follows:
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Algorithm 3.2 Chemotaxis Field Estimation Algorithm

Run Kalman smoother to calculate the velocity v;

Define parameters and the module of basis function B;

Calculate the weight w by using least square method

Calculate the chemotaxis field ®; — ®y = B;w by the basis function multiplying
the weight

AD =D — D;
= (Biy1 — Bi)w
S o
= afjo;?

where a is a constant.

From formulae 3.15, the LS method can be used to calculate the weight w, and
therefore, the chemotaxis field ®; — ®; = B;w can be calculated.

The algorithm was shown in Algorithm 3.2.

In implementing the algorithm, there are several parameters, which will be
introduced separately.

The Type of Basis Function

The type of basis function is the first parameter to be selected. Only with the fixed
type of basis function can the other parameters be fixed. This is because different
types of basis function may have different parameters.

Basis function is a mathematical term. For function space, several bases ex-
ist and the linear combination of those can form any continuous function in the
function space. Fourier basis is one of the most famous. In this current work, the
basis function means the radial basis function, first proposed by D.S.Broomhead
and Lowe [39] in 1988. The property of the radial basis function is that its values
only depend on the distance between the centre and point.

Different types of basis functions affect the results. Usually, there are four
types of commonly used basis functions [39], which are as follows.

Type 1 — Gaussian Basis Function

(x—2)'02(x—%) (3.16)

~~
I
m\
NI—=
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where x is the variable; ¥ is the mean of x; ¢ is the standard deviation of x.

Type 2 — Multi-Quadric Function

f=y/(x—2)(x—x) +02 (3.17)

Type 3

f=(x—%)(x—%)+7*)" (3.18)

where A can be any positive value. When A = 1, the basis function is called
Inverse Quadratic Function, and when A = 2, the basis function is called Inverse
Multi-Quadratic Function. In this part, A = 2 was implemented and compared
with other basis functions.

Type 4

f=E—%)(x— f)logz\/(x — %)/ (x—X) (3.19)

This basis function is also called Thin Plate Spline Function, which is a special
kind of Polyharmonic Spline Function.

The above four basis functions are commonly used, and therefore, all will be
compared and the most suitable type for neutrophils will be chosen. It should
be noted that the data used in this subsection was high resolution data from the
fourth fish and different from the data which was low resolution used in [82].

Each type of basis function has different effects. Therefore, different basis
functions are suitable for different kinds of object. It is necessary to determine
which type of basis function is more suitable for estimating the chemotaxis field
of neutrophils. The comparison result is illustrated in Figure 3.10. It should be
noted that in order to undertake a comparison, all the four types of basis functions
are changed into the same colour scale.

Figure 3.10 shows the comparison results of the estimated chemotaxis field by
different types of basis functions. It appears that the concentration of the chemo-
taxis field estimated by type 1 basis function changes in a minimal range. This
is also the case for the type 3 basis function. Conversely, type 2 and type 4 basis
functions seem to estimate the chemotaxis field in a large concentration range.
Therefore, neither type 2 nor type 4 is suitable for neutrophils. However, it is still
extremely difficult to classify which type more suitable for neutrophils since the
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Figure 3.10: The comparison of the estimated chemotaxis field by different types
of basis functions.

The estimated chemotaxis field of four types of basis functions are adjusted to the same colour

scale (from —2500 to 100). The colour scale is too large to obtain a satisfied result.



66 3.3. Results

colour scale is too large (from —2500 to 100) and the concentration range is too
small. As such, another comparison result between type 1 and type 3 is needed to
determine which type will be better for neutrophils.

Figure 3.11 compares the colour scales between typel and type 3 basis func-
tions. It is clear that the concentration of the chemotaxis field estimated by the
type 3 basis function is in a minimal range (between —10 x 10~7 and 8 x 10~7).
Therefore type 3 basis function is not suitable for the chemotaxis field estimation
of neutrophils. Based on the above results, the type 1 basis function, the Gaussian
basis function, is selected to estimate the chemotaxis field of neutrophils both in

this dissertation and in [82].

Standard Deviation of Gaussian Basis Function

Once the type of basis function had been fixed, the standard deviation was the
second parameter which could affect the results. It determines the radius of the
circles. If it is too small, the circles cannot cover each other; if it is too large, the

covered part is too large, which can lead to a redundancy calculation.

Figure 3.12 illustrates the estimated chemotaxis field by type 1 basis function
with three different values of the standard deviation ¢. The top figure is the
o = 5um case; the middle figure is the ¢ = 10um case; and the bottom figure is the
o = 20um case. The colour scales of all the three cases are the same. The parameter
o changes the circles” radius. Furthermore, it also changes the performance of the
estimation. When o = 5um (the top case), the radius of circle is too small to
connect with each other. Therefore the chemotaxis field is meaningless. It seems
that the other two cases represent the chemotaxis field. However, when ¢ = 20um
(the bottom case), the circles are over covered, and therefore, the chemotaxis field
is a redundancy calculation, which exaggerates the chemotaxis field and generates
a considerable colour scale. A comparison without the same colour scale between
o = 20um case and ¢ = 10um case is shown in Figure 3.13.

From Figure 3.13, it is clear that both the top and the bottom figures present the
estimated chemotaxis field and both have nearly the same trend, that is, very high
concentration on the top right and low concentration at the middle bottom. The
difference is the colour scales. The concentration in the top right area at the bottom
figure is nearly three times higher than the top figure and this high concentration
chemotaxis is considered as the result of redundancy calculation since the circles
are over covered by each other. Therefore, ¢ = 10um case is selected. It should
be noted that, in theory, the parameter ¢ could be any value from half of the step,
which is 7.5um to the step 15um.
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Figure 3.11: The comparison of the estimated chemotaxis field between type 1
and type 3 basis function.

The estimated chemotaxis field of type 1 and type 3 basis functions are compared and the colour
scales are different in order to determine the range. They are the same as in Figure 3.10, except for
the colour scales. The colour scale of the top figure is between —100 and 100, while it is between
—10% 1077 and 8 x 1077 at the bottom one.
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Figure 3.12: The comparison of the chemotaxis field estimation with different
.

The chemotaxis field is estimated by type 1 basis function with three different values of . The
other parameters are kept the same. The colour scales are adjusted to the same range.
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Figure 3.13: The comparison of different o

This figure is the same as Figure 3.12 except for the colour scale. Both of the figures represent the
chemotaxis field, which is high concentration on the right and low concentration on the left. The
colour range of the over covered ¢ is considerable (from —350 to 300) (shown at the bottom figure),

while the colour range of the other is small (from —150 to 100) (shown in the top figure).
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Steps between the Centroids of Gaussian Basis Function

The step was the last parameter and had a very strong connection with standard
deviation. It decided the distances between the centroid of the circles.

Figure 3.14 illustrates that different steps have different estimated chemotaxis
fields. The results are similar to the different o results above. All four figures
are adjusted to the same colour scale. In this test, all the models use type 1 basis
function and the ¢ = 10um. The first figure (the top one) is the case of step = 10um
and the circles are over covered. Based on the above situation, the chemotaxis field
is a redundancy calculation. The third figure (from the top) and the last figure (the
bottom one) are not suitable for the chemotaxis estimation because the circles do
not cover each other, in either figure. In this case, the chemotaxis field could not
be estimated accurately. It should be noted that the third figure is the critical case,
which means that the circles just connect to each other but do not cover. Therefore,
the basis function could not work perfectly because of lack of the data. It should
also be noted that the value of the step parameter should be in the range between
o and 2 * ¢, which is between 10um and 20um in this test. Therefore, it is clear that
the step decides the distances between the centroids while the standard deviation
o decides the radius of the circles. The selection of both decide the estimation
results of the Gaussian basis function.

From the above results, two conclusions are reached as follows. The first is that
the Gaussian basis function can express the chemotaxis field of neutrophils prop-
erly, when compared with the three other types of basis functions detailed above.
The second is that the selections of both the steps and the standard deviation ¢
decide the performance of the Gaussian basis function.

3.4 Conclusion

In summary, this chapter has mainly covered the centroid tracking. The introduc-
tion section focused on the background and commonly used tracking algorithms.
Several tracking algorithms were selected for the neutrophil application, including
the KE. As different parameters can affect results, all the parameters of the selected
algorithms were tested to determine the optimal ones. Therefore the algorithms
could be implemented with the optimal parameters. Finally, another algorithm
was implemented. It estimated the chemotaxis field effectively and formed a part
of [82]. Innovation and contributions are as follows. The chemotaxis field was
proved to exist and was estimated based on the information of centroid velocity.
As an effective tool, it was used to analyse neutrophils’ behaviour. Therefore, the
mechanism was better understood. The MM filter was used to establish the math-
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Figure 3.14: The comparison of different steps

The chemotaxis field is estimated and compared with different steps. All the other parameters are
kept the same. The colour scales are adjusted to the same.
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ematical model for neutrophils and it tracked the changing of neutrophil mode
effectively, which is useful to understanding neutrophils” behaviour and modes.
In addition, the MM filter implemented in the medical area was another applica-
tion area. To further understand the mechanism of neutrophils, shape tracking is

needed and will be introduced in the next chapter.



Chapter 4

Tracking the Dynamics of
Neutrophils” Boundaries

The previous chapter discussed the centroid tracking, including mode behavioural
detection by using a MM filter. The chemotaxis field was estimated by the centroid
velocity from the KF. In addition to centroid information, shape information is
also important. This chapter has, as its focus, the shape tracking of neutrophils
to obtain shape information. Usually, shape boundary of neutrophils contains a
very huge amount of information, even more than that of the centroid. Therefore,
in this chapter, shape tracking will use the information on the shape boundary
together with the boundary dynamics to obtain more knowledge.

4.1 Introduction

The central idea of this chapter is to use computer vision technique to follow the
change of neutrophils” shape from frame to frame.

A large amount of research on computer vision exists. The famous one is
this area is [102] in the early stage, which focused on a low-level process. How-
ever, low-level vision was not good, as per [19], and the theory and practice of
finding images” important features were rapidly developed thereby opposing the
low-level vision. For example, Perona and Malik [119] made efforts on feature de-
tection. Aside from the theory mentioned above, snakes were another important
field. Kass et al. [85] first proposed snakes, which was followed by a vast body of
relevant research. Scott [138] applied some extensions, using Fourier parameteri-
sation on the initial snake paper. Amini et al. [3] modified the hard constraints of
the initial paper. Snakes were first implemented by Cipolla and Blake, using the B-
Spline method [31]. Curwen et al. [35] added Lagrangian dynamics to snakes. All

73
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these methods belong to FEM [19]. Deformable templates were another method,
which appeared earlier than snakes. However, the development of snakes termi-
nated the rapid development of deformable templates. Numerous variations of
deformable templates emerged. For example, Grimson introduced visual object
recognition with a three-dimensional approach in [56]. The KFE, with the develop-
ment of active contours, has been widely used in the computer vision area, since
the end of 1980s [9]. Terzopoulos and Szeliski [152] established the connection
between snakes and the KF. Blake et al. [18] implemented B-Spline with the KF.

Recently, the shape tracking technique has been widely used in biological area.
It is believed that cells are polarised and migrated by chemoattractants [158].
Therefore, research in respect of motility and morphology is important to fur-
ther understand the mechanism. P.A. Negulescu and Cahalan [116] illustrated
the sensitivity of shape and motility. Ray et al. [127] applied active contours to
track leukocytes. Therefore, this is a method to address the current project, com-
bining an active contour with traditional tracking methods in cell tracking. The
techniques used in this chapter will be introduced separately.

4.2 Dynamic Shape Model

To address the dynamic shape changing, tracking techniques are detailed in this
section.

Four techniques are introduced: augmented state space based on shape bound-
ary, one frame B-Spline shape tracking and retrieving, time lapse multiple neu-
trophil NNF tracking, and shape boundary velocity estimation.

4.21 Augmented State Space Model

A mathematical model is also needed for neutrophil shape tracking. The basic
mathematical model in modern control is the state space model. In this current
work, the state space model is the augmented model. The difference is that the
augmented state space model considers the shape boundary as a set of a large
number of single active individual particles with each particle being one state in
the augmented state space model. Only one commonly used model (the constant
velocity model) is used in this current work instead of the combination of three
models (the constant acceleration model, constant velocity model and random
walk model).

It should be noted that the random walk model does not contain the state of
velocity. The constant acceleration model has, however, very expensive compu-

tation costs, since it has six states. Therefore, the constant velocity model was
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selected.

It is assumed that each particle on the boundary satisfied the constant velocity
model. In the constant velocity model, the velocity is expected to maintain a fixed
constant value. Then the state space model for each particle is formed the same as
the discrete time constant velocity model, discussed in chapter two.

As all the particles satisfied the same formulae above, all the particles” formu-

lae can be combined and rewritten in a new augmentation formula:

(k) = ()T, (2T, -+, (xal(k))T)" (4.1)

where the elements of the state vector are

(x1 (k)"
(x2(k))"

(3R, (@3 6)T, (3T, (03(k))T )
((200)T, (20", (300", @3 Kk)")

(4.2)

(3 ()T = ((s50)", (@300)", (s (k) (0 (k)T

where s (k) and s;(k) are the i position on x and y direction; v’,(k) and v;(k)
are the i velocity on x and y direction. All are scalars.

The state vector x describes the position and velocity of the control points
which are weighted function in B-spline (B-spline will be introduced later in this
chapter) in each spatial direction.

It should be noted that x(k) is a vector and the element x; (k) is also a vector.

Therefore, the other matrices of the augmented state space model are as fol-
lows.

F 0 0
0L --- 0
F=1 . . (4.3)
0 0 E,
1 h 0O
0100
1 2 n 00 1 & ( )
00 01
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G=(G,Gy - ,Gy)" (4.5)

2 2
Gj = <hz,h, };,h) forj=1,...,n (4.6)
4.7)

where 7 is the number of particles on the boundary.

The state transition matrix F describes a dynamic model of the cell boundary
movement driven by a constant velocity assumption.

The above formulae form the basic mathematical model for shape tracking,
and this is a module in the shape tracking together with the other algorithms.

4.2.2 B-Spline

The B-spline model is a method of parametric Active Contours and was first men-
tioned as snake in [85] and [151]. Usually, there are several important parameters,
which are introduced below.

The basis function By 4(s) is also called span matrices. According to [19], span
matrices can be solved in the formula off-line as follows:

(S — L)BL,d—l(s) + (L + d— S)BL+1,d_1(S) (48)

BL,d(s) = d—1

with the ground instance

1,if L<s<L+1
BL,1 (S) = ) (49)
0, otherwise
where By 4 is the L basis function for a spline of order d;
The placement matrices G is:
Lifi—b,=]
(Go)ij = 7 (4.10)
0, otherwise

where b, =Yg m; — d is the index and m; is knot multiplicities.
For 0 < s < 1 it follows:

x(s+0o)= (15,5 B, 4(s)Gr Qe (4.11)
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where Q. is a vector of the control points.
The metric matrix B was used in the program instead of using By 4(s) directly.
The formula was given as follows.

B= i/OL Bpa(s)B] 4(s)ds (4.12)

Therefore, based on the formulae above, the control points Q. can be solved
using the LS method. The details can be found in Algorithm 4.1. It should be
noted that the metric matrix for curves U is the function of the metric matrix g.
Using B and U in the program has reduced the computation complexity.

Algorithm 4.1 B-Spline Algorithm

Calculate the placement matrices G, and the span matrices By 4(s) off-line
given L and d
fori=0toL—1do
Find s between i and i + 1
for j = 1 to the length of s do
Calculate U = (1,5, -+ ,5" 1)B, 4(s) Go
Calculate the control points Q. = (U'U)~U’Z, where Z is the measure-
ment data, by using least square method
end for
end for

In the program, the different interval lengths of the low resolution data were
verified, with the results shown later in this chapter. As the error for different
interval lengths of the low resolution data is small, finally the interval length as
L =10 and the order of the polynomial as d = 4 were decided.

Combined with the augmented state space model in the previous subsection,
the mathematical model was established as follows:

Xk+1 = Fx + Gw
zr = Hxy + 0

(4.13)

where, x; represents the control points based on the B-spline model, containing
four elements: the control points position in x direction, the velocity of the control
points in x direction, the control points position in y direction, and the velocity of
the control points in y direction ; w and v are white noise with the same definition
as in chapter two; zj is the output, that is, the measurement at time k, only having
two elements: position measurement in x direction and the position measurement

in y direction.
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B-Spline contains not only the process of calculating the control point, but
also the process of fitting the curve and other processes, such as pose recovery.
However, those processes were not used in the thesis and program, and they will
not be presented. The process of fitting curves is generally used in a real time
system which requires very fast calculation and low computational cost, which
were validated in [12]. Usually, the process of fitting curves uses a recursive LS
estimation algorithm [12].

The B-Spline algorithm is usually combined with other tracking algorithms,
such as the KF. The application of combined algorithm will be introduced in the

velocity estimation section.

4.2.3 Nearest Neighbourhood Method

The NNF is a filter using the "nearest neighbourhood" technique. It can be widely
used in a single algorithm or as a part of a complex algorithm [93]. The nearest
neighbourhood technique in the target tracking is the "closest" to the validated
measurement compared with the predicted measurement from the previous time
period. However, a problem exists. According to [12], Bar-Shalom and Fortmann
believed that sometimes the chosen nearest neighbourhood is, probably, not the
right measurement. This might lead to incorrect tracking. For example, the neu-
trophil disappeared in frame k. Then the nearest neighbourhood measurement
either did not exist or had the wrong value. Based on these reasons, Li and
Bar-Shalom [93], using the data association method, solved the problem having
calculated the probabilities of different events.

The mathematical expression of the nearest neighbourhood measurement is as
follows:

min(D?(zx41)) (4.14)

where D?(zj1) is the square of the normalized distance, and the formula of

D?(zj,1) is defined as follows:

D*(zk11) = [2ht1 — Zxgape) Sppa [Zh41 — Ziesjel (4.15)

where zjy 1 is the validated measurement at time k +1; 2441 is the predicted
measurement at time k + 1 given the estimated measurement Z; at time k; S is
the covariance matrix of the measurement noise and usually Sy is assumed as
time-invariance, thatis, S =S, =...= 8§

The observation equation was introduced below:
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zx = Hxy + v (4.16)

where H is the discrete time observation matrix; v ~ N(0, Sx) is the observer
noise. Usually the covariance matrix Sy of the white noise v is assumed time-
invariance, thatis, S, = S, Vk € I"

It should be noted that whether the matrix H contains zero columns depends
on the model. If the model is the random walk, H does not contain zero columns.
However, if the model is the constant velocity, H contains two zero columns. If
the model is the constant acceleration, H contains four zero columns. Therefore,
H can be written as H = [Hj, 0] in general, where Hj is the corresponding matrix
of position elements and 0 is the corresponding matrix of velocity elements (or the
combination of velocity and acceleration elements or an empty matrix).

Taking the expectation of (4.16), the equation was obtained as follows:

Zx = HXy (4.17)

Combined with the KF (the KF is introduced in chapter two) formulae, the

predicted measurement £y |, can be calculated by:

Zrax = HEppqk (4.18)

However, £ 4x = F%£ (from the KF formula). Therefore the predicted mea-
surement at time k + 1 can be rewritten as a function of the estimated state £ at

time k. The formula is shown below:

21 = HF%y (4.19)

where £y is the state estimator, and F is the discrete time system matrix. In
this part, the constant velocity model and B-Spline were used in the previous work.
Therefore, £, and F have the same values as the above section in this chapter. The
nearest neighbourhood algorithm can be found in Algorithm 4.2.

The relevant results are shown later in this chapter.

The nearest neighbourhood method solved the relevant neutrophils in the con-
tinuous time index.

According to the nearest neighbourhood method, the distances, between the
estimated state of a single neutrophil at time k + 1, given the state at time k, and
the state of all the neutrophils at time k + 1, are calculated, and the minimum
distance should be the relevant neutrophil at time k and k + 1. All the neutrophils

are found in the correct order and index by using the nearest neighbourhood
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Algorithm 4.2 Nearest Neighbourhood Algorithm

for iFrame =1to N — 1 do
for m =1 to niryame do
Use B-spline to calculate the state space of control points £

iFrame
) o am
Do a one-step prediction 21} 1iFrame of an output of the state space

model as a nearest neighbourhood measurement and calculate the mean of
the output /5, 4me +1|iFrame cOMpared with the next time mean zjf, .4 of
all the particle on the boundary as a target measurement

end for

Find the minimum distance and decide whether the minimum distance is out

of the threshold

Check whether more than one cell corresponds to the same cell or some cells

disappear

Decide the new coming cells and disappearing cells

end for

m

method. Therefore, from each frame, the augmentation state space model gave
the correct information of control points based on the B-spline model, and the
nearest neighbourhood algorithm gave the correct index information from frame
to frame. The velocity of the control points was included in the information. It was
meaningless in physics and engineering. However, by using the B-Spline retrieved
technique, the velocity of particles on the boundary can be calculated. Although
the velocity does not exist, it can show the trend of neutrophils moving to the
chemoattractant field.

4.2.4 Velocity Estimation

The velocity estimation section will obtain the significative results. The core idea
of the velocity estimation is to use the KF to estimate the boundary velocity.

The velocity estimation is the extension of the state observer. Usually, the ob-
server is used to observe states which are not "read" or "seen" from instruments. It
is a mathematical method to solve the problem. For this study, although the veloc-
ity of particles on the neutrophil boundary does not exist, it is highly significant
for analysing features.

The same technique as implementing B-Spline is used to calculate the velocity
on the boundary. Formula 4.17 gave the estimation of output equation, where H
is the observation matrix. As mentioned above, H represents the transformation
from the control points to the estimation and has the following formula.

H = [Hy, 0] (4.20)
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The H matrix changed every frame and every neutrophil. Even for the same
neutrophil, the H matrix had different sizes in different frames.

Based on the above statements, two methods to calculate the velocity from the
control points exist. One uses mathematics to change the output equations; the
other is the retrieved technique based on B-Spline. For the first method, the output
equation can be transformed as follows: Z = HQ, = [H10][SqVy]’, where Z is
the measurement of shape boundary; H and Hj are the same as mentioned above;
Q. is the state vector and also known as the control points; Sg is the position state
and Vj is the velocity state. Therefore, the boundary velocity can be calculated by
Vi = H{Vg, where Vj, is the velocity on the boundary. However, in this method,
the size of velocity changes every frame and the number of velocity is equal to
the number of real boundary points. For the second method, the number of the
boundary velocity remains the same and it is easy to compare and analyse.

The comparison results are shown later in this chapter.

4.3 Results

In this section, the results are shown from the B-Spline section.

It should be noted that the results in this chapter were different from those in
the previous chapter. In this chapter, most of the results were based on multiple
targets shape tracking while the results in the previous chapter were based on
single target centroid tracking. Therefore, most of the tracking results in this
chapter were zoomed in on one neutrophil, either in a specific figure or in another
figure for a clear comparison.

It should also be noted that all the data in this chapter was low resolution data
from Fish 7.

4.3.1 B-Spline Implementation

B-Spline is a technique based on the shape tracking. It can track and follow the
shape of neutrophils very well. The following experiment verified the effect of

using B-Spline in shape tracking.

B-Spline Implementation

According to Algorithm 4.1, the control points Q. can be calculated. To verify
whether B-Spline is a good shape tracking estimator, the estimated output equa-
tion 4.17 is calculated. The estimated output £; is compared with the measurement

zk. Figure 4.1 illustrates the comparison result.
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Figure 4.1: B-Spline method implemented on neutrophils.

B-Spline is implemented and its retrieved boundary is compared with the measurement boundary.
The third neutrophil is zoomed in at the top left area of Figure 4.1. The measurement boundary is
the neutrophil shape boundary from the data. Therefore, the shapes are not smooth. Those shapes
are represented in broken blue line. B-Spline retrieved boundary is the estimated neutrophils shape
boundary and therefore, they are smooth. B-Spline retrieved boundary is shown in solid red line.
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Figure 4.2: The area error comparison between the measurement boundary and
the B-Spline retrieved boundary.

The left figure shows the area error of all the neutrophils in all the frames as a surface. The right

figure presents the error rate of area error. The colour bar was the error rate.

In Figure 4.1, all the neutrophils in Frame 40 are estimated by B-Spline in a
solid red line and all the measurement boundaries are plotted in a broken blue
line. All the neutrophils are tracked, with none missing. This is also true for the
neutrophils in other frames. On the top left area, the third neutrophil is zoomed
in. From this zoomed in figure, it is clear that B-Spline estimates the neutrophil
shape boundary well. In addition, B-Spline smooths the measurement boundary.
This also happens for the other neutrophils. To show the effect of the B-Spline
method, the area error has been shown in Figure 4.2.

The left of Figure 4.2 is the surface of area error. All the measured neutrophil
areas are recorded and compared with the calculated B-Spline neutrophil areas.
From the left of Figure 4.2, it is clear that most of area errors have minimal values.
From the program calculation, the average area of a neutrophil is 118um? in the
data. Therefore, the area error is acceptable. However, it is still unknown the
accuracy of B-Spline. In addition, the areas of different neutrophils are different.
Based on the above reasons, the area error percentage is plotted in the right of
Figure 4.2. It is clear that the area error percentage of only a few neutrophils in
a few frames is large. From the program calculation, assuming the accurate rate

is 95%, only 9% of neutrophils have a larger error in 600 neutrophils. Assuming
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that the accurate rate is 75%, only 0.17% of neutrophils have larger error in 600
neutrophils, which means that only one neutrophil in one frame has a larger error
(the 8" neutrophil in the 3" frame). The above calculation result proves that B-

Spline is an effective tool in shape tracking.

Interval Length Parameter of B-Spline

The parameters, the interval length L and the spline matrix order d, decide the
performance of B-Spline. d is the spline matrix order and it is a positive integer.
Usually, d is equal to 2, 3, and 4. The parameter, d = 2,3, or4, represents using the
combination of lines, ramp, or binomial curve to approximate the measurement
shape respectively. It should be noted that the B-Spline parameter d is fixed during
the program and it could not be changed. In this study, the parameter d was
equal to 4. L is the number of control points in B-Spline. For different resolution
cases, the best parameter L is different. In the low resolution case, a comparison
experiment was done for different parameters L = 5,10,20. The results are as
follows.

Figure 4.3 shows the performance of different numbers of control points. The
third neutrophil is zoomed in at the top left of the figure. The measurement shapes
are plotted in black lines. The red, green and blue broken lines are L = 5, 10, and
20 respectively. It is clear that when L = 5, the B-Spline shape could not represent
the measurement shape clearly, especially for the pseudopod. While for L = 10
and 20, the pseudopod on the top left is presented clearly. Moreover, the B-Spline
shapes of both cases are similar to the measurement shape. To select the best
parameter, the area errors are plotted, as shown in Figure 4.4.

Figure 4.4 illustrates the area error comparison of different numbers of control
points on the left. The area error percentage is also compared on the right. Both
the coordinate scales and the colour scales are adjusted to be the same, for easy
comparison. It is clear that the area errors of the L = 5 case are greater than
those of the other two on the left of Figure 4.4. However, it is extremely difficult
to distinguish whether the L = 10 or L = 20 case is better. On the right hand
side, the area error percentage represents the error rate. The small square with a
deep colour, such as red, is the bad estimator of B-Spline. For instance, the area
error percentage is deep red for the 8 neutrophil in the third frame of L = 5
case, which means that the shape boundary from B-Spline has a considerable area
error percentage. It is clear that the L = 5 case has a large number of those small
squares with deep red and other colours with values greater than 0.25. It appears
that L = 20 case has fewer numbers of area error percentage than those of the

other two. However, the calculation cost of L = 20 case is also larger than those
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Figure 4.3: The comparison of different control points

The measurement shapes are compared with different numbers of control points. The third
neutrophil is zoomed in. The red, green and blue broken lines represent L = 5, 10, and 20 B-Spline
shape respectively, where L is the number of control points. The measurement shape is plotted in
black line.
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Figure 4.4: The area error comparison of different numbers of control points

The area error surfaces of different numbers of control points are shown on the left. The area error
percentage is on the right. The colour scales and the coordinate scales are changed to the same.
The top, middle and bottom figures are the case L = 5, 10, and 20 respectively.
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Figure 4.5: The relationship between the error percentage and the number of
control points with 75% accurate rate

The error percentage is calculated by dividing the number of neutrophils whose error rate is larger
than 25% by the total numbers of neutrophils. The smaller the error percentage is in the figure, the
better the parameter of B-Spline estimator is. Therefore, the best choice of parameter L is any value
in 8,9, 10, 11, 12, 14, 16, 18 or 20 and the error percentage is near to zero.

of the other two. In addition, the number of area error percentage for the L = 10
case is acceptable. Therefore, based on the above reasons, L = 10 is selected as the
parameter of B-Spline in both this chapter and other chapters in this thesis.

Based on the above results, another experiment is implemented to calculate
the "best" number of control points. The number of control points from 3 to 20 is
tested and the area error percentage is calculated and plotted, as shown in Figure
4.5 and Figure 4.6.

Figure 4.5 and Figure 4.6 show the relationship between the error percentage
and the number of control points. The core idea of error percentage is dividing
the number of neutrophils whose area error percentage is greater than acceptable
by the total numbers. The different acceptable area error percentages lead to the
different error percentages. In addition, the different error percentages lead to
the different retrieved performances of B-Spline. Therefore, different area error
percentages affect the performance of B-Spline. In Figure 4.5, the accurate rate is
75% which means the area error percentage is 25% and it is clear that the B-Spline
with the number of control points from 4 to 20 have minimal error percentage.

Therefore, all the numbers from 4 to 20 can be considered as the number of control
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Figure 4.6: The relationship between error percentage and the number of control
points with 95% accurate rate

The error percentage is calculated the same way as in Figure 4.5. The best choice of parameter L is

either 16 or 20 since the accurate rate was up to 95%.

points. The best choice is 8, 9, 10, 11, 12, 14, 16, 18, or 20, since all have the smallest
error percentage. Changing the area error percentage to 5%, the result is shown
in Figure 4.6. It seems that the B-Spline with the number of control points from 8
to 20 has a small error percentage. The best choice is 16 or 20. The other numbers
of control point are also acceptable. Based on both figures, the number of control
point should be selected as 20. However, a larger control point number will lead
to larger calculation cost. Therefore, the control point number is decided as 10,
having considered the balance of both the calculation cost and the performance of
B-Spline.

Although the B-Spline method is a good shape retrieved technique, the cor-
responding neutrophils in the process of frames are still unknown. Therefore,

another technique, the nearest neighbourhood method, is needed.

4.3.2 Nearest Neighbourhood Filter Implementation

The NNF is used to find the same neutrophil between frames. This method is
based not on the shape tracking but on the centroid tracking technique. The core
idea is that the NNF predicts the centroid position in Frame k + 1 by using the cen-

troid information in Frame k, where k can be any positive integer. Then, the NNF
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compares the predicted position with the measurement position in Frame k + 1
and determines the minimum distance. If the minimum distance were less than
the acceptable value, called threshold, the neutrophil would be considered as the
same one in Frame k + 1. The details can be found in Algorithm 4.2. Therefore,
the NNF can effectively determine the index of neutrophils during the experi-
ment. The NNF is implemented and neutrophils are indexed with the measure-

ment shape in Figure 4.7.

In Figure 4.7, all the neutrophils are indexed by different colours and the mea-
surement shapes are plotted with dots of the same colours. The No. 61 Neutrophil
is zoomed in on the bottom right of the figure. It is clear that the NNF effectively
indexes all the neutrophils. However, there is a drawback in neutrophil index
tracking by using NNF. Neutrophils are always in the figure until frame k, and
disappear in next frame k + 1. Then they reappear in the following frame k + 2.
This is probably because of the pre-processing part. In pre-processing, medical
photographs of neutrophils were dealt with via the double threshold method and
during this process neutrophils might disappear then reappear. For example, in a
frame k, one neutrophil was in the figure, but in the next frame k 4 1, it changed
shape from horizontal to vertical. This might lead to its disappearance in that
frame. However, in the following frame, k + 2, it changed shape to the opposite
direction, which led to the neutrophil’s reappearance. The NNF cannot combine
the indexes of the same neutrophil in the above situation, which makes the index
number huge. Based on the above reason, the traditional NNF lost its effective-
ness in neutrophil index tracking. Therefore, the INNF was proposed to solve
the traditional NNF’s consistent problem in neutrophil application. The INNF is
implemented in Figure 4.8.

All the neutrophils are indexed with different colours in Figure 4.8. The mea-
surement shape boundaries are plotted with dots and are the same colour as the
index. No. 36 Neutrophil is zoomed in on the bottom right of the figure. Figure
4.8 proves that the INNF also has the ability to index all the neutrophils. How-
ever, by comparing Figure 4.7 with Figure 4.8, it is clear that No. 65, 39, 52, 72, 8,
9, 49 and 50 Neutrophils have exactly the same index. All the other neutrophils
have different indexes. In addition, those neutrophils of different indexes have
the same position information, meaning that those neutrophils are the same but
with different indexes. For instance, No. 61 Neutrophil in Figure 4.7 and No.
36 Neutrophil in Figure 4.8 are the same neutrophil with the same measurement
shape in the same frame and the same position information. It should be noted
that No. 36 Neutrophil appeared from Frame 17 to Frame 28 just in the right area.

Then it disappeared in Frame 29. In the next frame (Frame 30), at nearly the same
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position and nearly the same shape neutrophil, which was No. 61 Neutrophil in
the NNF, appeared. That neutrophil was still active in the right area until the
end (Frame 40). Therefore, it is reasonable to believe that No. 61 Neutrophil in
the NNF was the same neutrophil indexed 36 in INNF. It is necessary to combine
the indexes to keep the same neutrophil tracking process completely. Moreover,
the number of indexes in Figure 4.8 is less than that in Figure 4.7. Based on the
above phenomenon, the INNF solves the traditional NNF problem and reduces
the indexes. The most important contribution of the INNF is keeping the conti-
nuity of neutrophils. However, it still has some problems. It could not solve the
problem when neutrophils are missing in 2 frames or more. Neither could it solve

the problem of two neutrophils merging and separating.

4.3.3 Kalman Filter in Shape Tracking

Without the KF, both the B-Spline method and INNF method together can effec-
tively track the shape changing. However, the process is complex. Therefore, the
KF in shape tracking is considered as an effective tool to reduce noise and much of
the computation. Firstly, KF is the best estimator in linear Gaussian cases to reduce
noise and all the mathematical models in this chapter were linear Gaussian cases.
Secondly, KF with B-Spline and INNF together formed a new framework, which
reduced much of the computation; since by using the control points” information
from the first frame in B-Spline, KF calculated the estimated control points instead
of those control points from B-Spline from the second frame. The estimated con-
trol points from KF should be exactly the same as the control points from B-Spline
in theory. Therefore, KF was a good substitution of B-Spline from the second
frame. Furthermore, the velocity elements on the control points can also be read
from the KF results directly, and therefore, the velocity on the boundary can be
retrieved directly by using the new framework in the next subsection.

Figure 4.9 represents the absolute boundary point error comparison result be-
tween using KF in shape tracking and without using KF in shape tracking, to
demonstrate the KF’s effectiveness in reducing noise in shape tracking. All the
absolute boundary point errors are calculated and compared in both methods in
all the frames and for all the neutrophils. For each neutrophil, the absolute bound-
ary point error is the summation of the absolute error from each boundary point.
All the scales are adjusted to be the same to facilitate the comparison. The left
figures and the right ones are the same but from different viewed angles. The
top figures are derived from the method with KF and the bottom ones from the
method without KF. It is clear that the surface of the estimated boundary error
without KF on the left hand side is obviously sharper than that of the method
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Figure 4.7: The NNF is implemented and all the neutrophils are indexed with
the measurement shape.

All the neutrophils in each frame are indexed with different colours. No. 61 Neutrophil is zoomed
in on the bottom right of the figure. The measurement shape of No. 61 Neutrophil is plotted with
dots.
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Figure 4.8: The improved NNF is implemented and all the neutrophils are in-
dexed with the measurement shape.

All the neutrophils in each frame are indexed. If the index of neutrophils is the same with Figure
4.7, then the colour of that neutrophil must be the same, such as No. 39 Neutrophil. No. 36
Neutrophil is zoomed in on the bottom right of the figure. The measurement shape is plotted with
dots.
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Figure 4.9: The comparison of the absolute boundary point error between using
KF and without using KF

The KF combining with B-Spline and INNF is implemented and the absolute estimated boundary
point error is plotted on the top. The error surface of B-Spline combining with INNF is plotted at
the bottom. Both the left hand side are the surface and the right hand side are the same but viewed
on top. All the figures are adjusted to the same scales. The absolute estimated boundary point
error is the summation of the absolute value of the difference between the measurement boundary

point position and the estimated boundary point position.
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Figure 4.10: The comparison between different retrieved shapes and the mea-
surement shapes

All the neutrophils are plotted in different colours. No. 8 Neutrophil is zoomed in on the bottom
left area. The measurement shape (the initial shape) is plotted with solid line. The estimated shape
by KF is plotted with star. The retrieved shape by B-Spline is plotted with broken line. The
estimated retrieved shape by B-Spline is plotted with dots. It should be noted that the retrieved
shape is the shape from B-Spline retrieved technique, while the estimated retrieved shape is the

shape calculated from B-Spline output equation.
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with KF. From the right hand side, the method with KF (the top right figure) has
an obviously smaller number of errors than that of the method without KF (the
bottom right figure), since the colour indicates the low colour scale in the top right
figure. Both the left and the right figures reach the same conclusion, that the new
framework with KF in shape tracking can effectively reduce the noise. It should
be noted that there are some neutrophils whose estimated boundary point error
is always zero, in all frames. For example, No. 18 Neutrophil was one with zero
error for all frames. This did not mean that the tracking was perfect. No. 18
Neutrophil never appeared due to the INNF method. In INNE it was just No. 5
Neutrophil disappearing in Frame 7 and appearing again in Frame 8. Therefore,
the INNF combined both trajectories and considered No. 18 Neutrophil not to ex-
ist. As such, the new framework with KF in shape tracking does reduce the noise

enormously. The comparison of shape is illustrated in Figure 4.10.

Figure 4.10 compares the measurement shape boundary (initial shape) with
the other shapes from different methods. All the neutrophils are tracked with
different colours. No. 8 Neutrophil is zoomed in at the bottom left. The solid
line, star, broken line, and dot present the measurement shape (initial shape), the
estimated shape by KF, the retrieved B-Spline shape, and the estimated retrieved
B-Spline shape, respectively. It should be noted that the retrieved shape and the
estimated retrieved shape are different techniques. The retrieved shape is the
shape from the B-Spline retrieved technique and the estimated retrieved shape is
the shape calculated from the B-Spline. In other words, the retrieved shape uses
a variable s changing from 0 to 1, and then the shape position is calculated as
a function of the same variable s. Conversely, the estimated retrieved shape is
calculated by the formula zx = Hxy. It seems that various methods have nearly
the same tracking effect. However, if all the absolute errors on the boundary are
added together, the difference is huge, as shown in Figure 4.9. Based on both
Figure 4.9 and Figure 4.10, the KF in shape tracking can effectively reduce the
noise and form a new framework to reduce the calculation. In addition, the KF
with INNF in shape tracking can keep the neutrophils continuous by adding the
estimated control points and positions when neutrophils disappear. Furthermore,
the velocity, either on the boundary or on the control points, can be retrieved or
observed directly from the estimated Kalman state. Therefore, the new framework
is useful and effective in shape tracking compared with the traditional method.

It should be noted that using the Kalman smoother instead of the KF, the
tracking result should be more effective, since the Kalman smoother reduces the
shape tracking noise obviously, in theory, by using the backward method when

neutrophils disappear.
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4.3.4 Velocity Estimation

The core idea of the velocity estimation is using the KF or the Kalman smoother
to observe the velocity on the control points. Using the velocity on the control
points estimates the velocity on the boundary. As mentioned above, there are two
methods. The comparison between these two is shown in Figure 4.11. Given that
the velocity sizes on the boundary in these two methods are different, Figure 4.11
represents the shape of velocity in order to compare them.

It is clear from Figure 4.11 that both methods have the same velocity shape.
This means both the velocity estimators obtain the same results if the size is not
considered. The velocity shape comparison is similar to the comparison between
the sampling and the continuous time signal. For instance, the sine wave is a
continuous time signal, and the sampling of the sine wave can retrieve the shape
but with different sizes (only having values on the sampling time). Therefore, the
second method, B-Spline retrieved technique, is used in this current work and in
the following chapters, since the velocity has the same size and is easy to compare
and analyse. The velocity estimation is implemented and the result is in Figure
4.12.

Figure 4.12 illustrates the velocity estimation based on the neutrophil shape
boundary in Frame k and Frame k + 1. The solid line is the shape boundary in
Frame k, and the dot-dash line is the shape boundary in Frame k + 1. All the
neutrophils are coloured and tracked with velocity on the boundary pointing to
the next frame. No. 28 Neutrophil is zoomed in at the middle bottom of the figure.
It should be noted that in the first few frames, the velocity estimation was not
accurate. This is probably because that the KF needs some frames to modify the
velocity estimator. After that, the estimated velocity pointed from the boundary in
Frame k to the boundary in Frame k + 1 well, such as for the zoomed in neutrophil.
The estimated velocity, to some degree, represents the shape changing and proves
that the new framework with KF has the ability to track the neutrophils well.
Therefore, the shape boundary changing can be transferred to the velocity shape,
although the relationship is not bijection. The comparison between boundary
shape and velocity shape is represented in Figure 4.13.

It is clear that when most of the velocity shapes are located in the first quad-
rant, the shape moves toward the upper right. As the movement on x direct is
obviously greater than on y direct, the neutrophil mainly moves to the right and
with small shape changing on the top. However, there are some velocities on the
fourth quadrant, which means some parts of the neutrophil move to the lower
right. Generally, the velocity shape can represent the trend of boundary shape

changing. In addition, it proves that the chemotaxis field, which is a time variable
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Figure 4.11: The comparison of boundary velocity shapes based on two methods

The star represents the first method, which is calculated by the transformed matrix (Hj) of the
observation matrix multiplying the part of the control points (V). The dot-dash line is the second
method which is calculated by the retrieved technique of B-Spline. The different colours represent
the different neutrophils. They are the same colour as mentioned above. For example, the red is
No. 39 Neutrophil.
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Figure 4.12: Neutrophils’ shape boundary velocity estimation

All the neutrophils are estimated with boundary velocity in different colours. No. 28 Neutrophil is
zoomed in at the middle bottom. The solid line is the estimated shape in Frame 39 and the
dot-dash line is the estimated shape in Frame 40. The boundary velocities are plotted with the
same colour and with arrows starting from Frame 39.
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Figure 4.13: The comparison between the velocity shape and the estimated
boundary shape

The velocity shape is plotted on the top figure. The x and y coordinate are plotted in red. The
shape comparison is plotted at the bottom figure. The black dotted line is the shape in Frame 39
and the green broken line is the shape in Frame 40. The velocity on the boundary is plotted as
arrows starting at the shape boundary in Frame 39.
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function, exists. Furthermore, it also proves the conclusion of the previous chapter,
that the chemotaxis distributes asymmetrically. It should be noted that the chemo-
taxis field is obviously effective to the active neutrophils. No. 28 Neutrophil is an
active neutrophil, which meant that it is alive and moves to different positions
with different times by the chemotaxis. With the help of velocity on the boundary,
the chemotaxis field can be determined more clearly than the field only consider-
ing the centroid velocity. Compared with the centroid velocity, the shape contains
more information. For example, when the pseudopod is formed, the shape veloc-
ity is used for analysis. For this reason, the shape velocity is significant in shape

tracking.

4.4 Conclusion

This chapter has focused on shape tracking. At the beginning, background knowl-
edge was introduced. Several commonly used algorithms were introduced, such
as B-Spline. The results were listed after the algorithms. Parameters of algorithms
can affect the results. Therefore, a test was performed to determine the optimal
parameters. The low resolution data was implemented in all the algorithms used
in this chapter. The boundary velocities were observed and were more useful in
shape boundary dynamics. Innovation and contributions are as follows. Firstly,
the INNF solved the problem when neutrophils disappeared and reappeared in
the next frame. The combination of the KF, the INNF, and the B-Spline formed
a simple framework to track the dynamics of neutrophils and other cells. In ad-
dition, the framework reduced a huge number of calculations by using the esti-
mated control points instead of the control points from B-Spline and simplified
the process of shape tracking. Finally, the velocities of the shape boundary were
estimated. Compared with the estimation of positions, the velocities contained
much more information and it is believed that this information would help people

to better understand the mechanism.



Chapter 5

Characterisation of Neutrophil
Modes by Shape Descriptors

The previous chapter mainly focused on shape tracking. A new framework was
established to solve the similar problem of cell tracking. This chapter is primar-
ily concerned with shape analysis, which analyses the data information of shape
tracking. The commonly used method is the FD, the major method used in this
chapter. Some descriptors are also specified in this chapter, either in combination
with the FD or using other parameters.

5.1 Introduction

Shape analysis is a method that automatically analyses shape characteristics. For
example, neutrophils can change their shape with time, however, using the shape
analysis method, several kinds of features can be extracted, such as dead neu-
trophils and active neutrophils. The process of extracting the characteristics is also
called the shape descriptor, which can, usually, represent the original objects’ char-
acteristics completely. There are several methods to describe the characteristics of
a neutrophil shape.

The most important aspect of shape representation is the effective shape fea-
ture information on the boundary and the interior content [164]. A good shape
descriptor usually means a method whereby the retrieval has a rotated, trans-
lated and scaled shape invariance with a low computation complexity. However,
sometimes, a shape descriptor with only scaled shape invariance is still useful and
effective.

Generally, there are two classes of methods for shape descriptors, namely
Contour-Based Methods and Region-Based Methods. The difference between these

101
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two is from where the shape features are extracted. Contour-based methods usu-
ally extract shape features from the contour only, while region-based methods
extract them from the region. According to Zhang and Lu, the shape descrip-
tor can be divided into structural and global approaches in both contour-based
methods and region-based methods. The difference is that structural approaches
represent the shape by segments while the global approaches do it as a whole.
Several methods used in this thesis will be introduced separately in the following

sections.

5.1.1 Fourier Descriptor

As noted above, a large number of descriptors exists, however, in this section, the
FD was used in order to analyse the mobility, as per the advantages determined
in Chapter Two.

The FD uses the core idea of Fourier transform with the following formula:

F(y) = /j:of(x)e_mj"ydx, Vy € R (5.1)

where F(y) is the Fourier transform, and f(x) is the initial function.

Usually, Fourier transform is used in one-dimensional areas, however, in this
case, two-dimensional Fourier transform was required. According to the linear
properties of Fourier transform, the two-dimensional position z = [x,y]" can be
rewritten as a complex number z = x + iy, where i2 = —1, and in this case,
the two-dimensional position can be addressed using Fourier transform, too. The

formula is as follows.

F(z) = F(x) +iF(y) (5.2)

The algorithm of two-dimensional FD is shown in Algorithm 5.1

Algorithm 5.1 Two Dimensional Fourier Descriptor Algorithm

for iFrame = 1 to N do
Read in the neutrophils boundary shape u = x + iy
Calculate FFT uu = fft(u)
Delete the first element value uuT = [0; uu(2 : end)] and normalise the result
from the second element uuTN = uuT./abs(uuT(2))
Get the real and image part of the result uuTNR =
[real(uuTN);imag(uuTN)]

end for
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5.1.2 Height and Radius Descriptor

In addition to the FD, the height descriptor and radius descriptor were also used.
Based on the test result of adding a noise point (the details of the test have not
been included in this current work) and the retrieved shape characteristic, there is
another way to transform the formula with the radius and angle. The details are

as follows.

Z = HQ, = R(t,s)[cos(wt) + isin(wt)] = R(t,s)e™"

R(t,s) = \/[X(t,S) —xe(8)2+ [y(ts) — ye(s)]?

where Z is the retrieved shape boundary; Q. is the control points from the

(5.3)

previous chapter; H is the transfer matrix; ¢ is the points vector (can be also re-
treated as time vector) with the values [1,2,...,101]; s is the frame with the values
[1,2,...,40]; R(t,s) is the radius, and it is a time and space variant parameter; wt
is the speed of a point running around the shape and it is a vector with the val-
ues [360°/100,360° x2/100, ...,360° x 101/100]; therefore, w can be calculated as
3.6° or 7t/50; x(t,s) is the x-axis boundary position; y(t,s) is the y-axis boundary
position; x.(s) and y.(s) are the "centroid" position of the shape and they can be
the real centroid positions in frame s, or not. This depends on which method is
used for analysis and this method will be discussed in the future work section.
Furthermore, they are time variant parameters, that is, they may be different with
different frames.

An interesting result is produced. As Z is the function of t and s, there are two
ways to reduce the formula. One is fixing t and the other is fixing s. They are as
follows.

When s is fixed, which means in the same frame, all the retrieved shape bound-
ary points of the FD have the following formula.

Z(t) = /[x(t) = xe2 + (1) — yl2e™ (5.4)

When t is fixed, which means at the same retrieved shape boundary point but

in different frames, the FD sequence has the following formula.

Z(s) = \/[X(S) — xe(8)]2 + [y(s) — ye(s)]2e™ (5.5)

The first case shows the relationship between all the retrieved shape boundary
points in the same frame, while the second indicates the relationship between the
same point in different frames. If the FD is used, the first case is just the FD in each

frame and the second one is the FD at the same frequency but in different frames.
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The first case is a common FD and as an analysis tool is used widely. The second
one is highly significant, because when the same point on the boundary has the
same position and the same centroid position, the FD should remain the same. In
this case, this method can be used to detect whether the neutrophil changes the

shape or not.

According to the properties of Fourier transform, the formula above can be
changed in the following way.

(5.6)

where wy = 5~ = ﬁ.
For the first case, the above formula can be simplified as F(Z) = F(R(t —wy)),

and F(Z) = F(R(s)e™") for the second one, which is a shift of F(R(s)) .

The formula above has the meaning that Fourier transform of the retrieved
shape equals to Fourier transform of the radius with only the shift of shape
boundary points. However, the radius is a discrete time variable, which means
R(t — wp,s) has no physical meanings. In addition, because the shift part wy is
too small, usually, R(t — wo,s) ~ R(t,s). Therefore, it follows F(Z) ~ F(R(t,s)).
The advantage of this derivation is that it reduces the complexity of computation.
That is, changing two-dimensional FD into one dimension. Further testing and

verification based on the radius description will form part of future work.

In addition to the radius descriptor, the height descriptor is introduced. The
core idea of the height descriptor is considering the minimum of the logarithmic
FD as a feature. From the result of the test, it is clear that each FD of neutrophils
has a minimum and those minima are different for different neutrophils. The
round has the lowest minimum in the logarithm of the FD figure. In the figure,
the minimum appeared as the height of the FD, as such, it was named as the

height descriptor.

As a descriptor, the height descriptor describes the height feature, which is
different for different neutrophils. Although it is not clear whether the height
descriptor has any other function, it describes the feature of neutrophils and it
has been used in comparison with other features, such as the area, in the results

section.

It should be noted that, both the radius and height descriptor are independent
on control points. They cannot establish a link with the above chapters. Therefore,
both were considered as an assistant analysis tool compared with the FD, although
both used Fourier transform.
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5.2 Results

It should be noted that all the methods in this chapter have been used for shape
analysis. Therefore, this chapter has a close connection to the previous chapter

one.

5.2.1 Fourier Descriptor Implementation

It should be noted that the data is the low resolution data, which is exactly the
same data as that from the INNF in the previous chapter. In addition, FFT is used
to reduce the calculation. This is because the FFT result is the same as that of
Fourier transform for the real and image part. Based on the above two points, the
FD of No. 9 Neutrophil is implemented in Figure 5.1 and Figure 5.2.

Figure 5.1 shows the implementation of FD for a two-dimensional neutrophil
shape. The shape boundary of the same neutrophil in different frames is compared
on the left hand side, and the logarithms of FD are plotted and compared on
the right hand side. It is clear that the difference between shapes in Frame 39
and Frame 40 is minimal, however, the FD demonstrates an enormous difference.
Furthermore, the shape boundary sizes of the same neutrophil in different frames
are different. Therefore, it would be unreasonable to compare the FD, unless the
size had been the same.

Figure 5.2 gives a clear view that the sizes of the same neutrophil in different
frames are different. It is clear that No. 9 Neutrophil in all 40 frames has different
frequency sizes. The colour bar is the logarithmic values of FD. It is unreason-
able to compare the FD because of the different sizes. The reason for the sizes
being different is probably as follows. The FD uses the initial shape boundary
information, and in this case, the size of the shape cannot be guaranteed to be the
same. Furthermore, noises exist in the initial data. Based on these reasons, further
research on reducing noise, comparing FD with the same size, and combining the

results from the previous chapter is needed.

5.2.2 Testing and Verifying

Before testing the hypotheses, a small and simple example, called a round test, is
introduced. It is a round shape in two-dimension dealt with the FD.

Figure 5.3 gives the result of the round test. The round shape is plotted in red
on the top figure. The corresponding FD is plotted in the middle figure. There
is an impulse signal near zero and it is not an empty figure. As the impulse is
extremely difficult to distinguish and analyse, the logarithmic FD is plotted at the
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Figure 5.1: The FD is implemented and compared in different frames.

The shape of No. 9 Neutrophil is plotted on the left hand side. The blue solid line is the shape in
Frame 40, and the green dot-dash line is the shape in Frame 39. Both of the FDs are plotted on the
right hand side. Because the sizes of the same neutrophil at different frames are different, the sizes
of FDs are different. The logarithms of FD are calculated in the y direction.
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Figure 5.2: The FD distribution of No. 9 Neutrophil

The FD distribution of No. 9 Neutrophil is plotted for all 40 frames. The colour bar is the
logarithmic values of FD. Because the same neutrophil in different frames has different numbers of

boundary points, the maximum frequency of the same neutrophil is different.

Figure 5.3: Round test

The top figure is the round shape. The middle figure is the FD of the round. The bottom one is the
logarithmic values of FD. It is clear that the FD is an impulse signal around zero. It is extremely

difficult to distinguish. Therefore, the logarithm is used.
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bottom. It is clear that the logarithmic FD of the round without noise is a highly
smooth curve. There is no noise on the smooth curve, which means that there is
no high frequency noise on the shape. Therefore, this round logarithmic FD is
assumed as the basic FD, and all the others will compare both the shape and the
FD with it.

Effects of Noise

The aim of this part was to check whether the high frequency noise on the shape
boundary affected the FD or not. Usually, when a noise occurs, it always dis-
tributes all around the shape not on a point and the magnitude is always minimal.
It is usually considered as high frequency noise on the entire shape boundary. In
this test, the amplitude of noise sequence was decided as [0.01%, 0.03%, 0.1%, 0.3%].
The shape comparison is shown at the top of Figure 5.4. Since the noise is min-
imal, it is difficult to distinguish the difference in shape. However, a very huge
difference exists on the FD shown at the bottom of Figure 5.4. It is clear that when
the noise magnitude is kept in the range between 0.01% and 0.03%, the logarithmic
FD has nearly the same height as the round FD, only with a very high frequency
noise on the FD. The 0.03% noise has a larger amplitude high frequency noise
compared with the 0.01% noise. However, when the noise magnitude increases to
the range between 0.1% and 0.3%, it is clear that the FD height is higher than that
of the round. The height and magnitude of the 0.3% noise are even higher and
larger than that of the 0.1% noise. Therefore, the greater the noise is, the greater
the height of the logarithmic values of FD.

However, the test case was done under auspicious conditions. Real neutrophils
have irregular shapes, and small irregular parts, called pseudopods, were consid-
ered as noises added on the local shape, which would cause the FD to make
obvious changes and never become smooth as shown in the round test. Therefore,
undertaking the test on the local shape is needed.

Effects of Local Shape Changing

Except for the effects of noise, neutrophil pseudopods can also change the FD.
When a pseudopod occurs, it could be considered as several points, convex or
concave, on the initial shape. Therefore, in this part, a one-point-pseudopod, three-
point-pseudopod, five-point-pseudopod, and seven-point-pseudopod are tested to
determine whether the pseudopod influences the FD.

Figure 5.5 illustrates the results of pseudopod effects. FDs of one-point-pseudopod,
three-point-pseudopod, five-point-pseudopod, and seven-point-pseudopod are pre-
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Figure 5.4: The test of noise effects

A sequence of noise is added on the round and the logarithmic values of those FDs are plotted and
compared. On the top of the figure, all the shapes of both the noised round and the round without
noise are compared and plotted with different colours. Because of the small amplitude of the noise,
there are minimal differences. However, the differences of the logarithmic values are large as
shown at the bottom. The logarithmic value of a round FD is a smooth curve, while the noised one
is not smooth even if the noise is minimal. In addition, the heights of the logarithmic value of FD
are different. It seems that the greater the noise is, the greater the height of the logarithmic values

is.
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Figure 5.5: The test of local shape changing effect

When a pseudopod occurs, it can be considered as several points convex or concave on the initial
shape. Therefore, the comparison results are shown in figures. All the figures on the left hand side
are the comparison of the logarithmic values of FD between the convex pseudopod and the initial
round, and all the figures on the right are the comparison of the logarithmic FD between the
concave pseudopod and the initial round. The first row on the top is the case of the pseudopod
with only one point. The second row on the top is the case of three-point-pseudopod. The third
row on the top is the case of five-point-pseudopod, and the bottom row is the case of

seven-point-pseudopod.
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Figure 5.6: The drawing of partial enlargement of Figure 5.5

The part of Figure 5.5 is zoomed in to illustrate the comparison clearly. It only compares with the
different numbers of points, because the convex pseudopod and concave pseudopod have the same
logarithmic FD.
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sented in the first row, second row, third row, and the last row of Figure 5.5 respec-
tively. The left hand side of Figure 5.5 is the convex pseudopod and the right hand
side is the concave pseudopod. The logarithmic FD of pseudopods is compared
with the round FD values in all the figures. From Figure 5.5, it is easy to draw
several conclusions as follows.

Firstly, no matter what kind pseudopod (convex or concave), the logarithmic
FD of the same points pseudopod remains the same. This conclusion can be ex-
tended to infer that when the radius of neutrophil changes, either increasing or
decreasing at the same rate, the FD remains the same. This is related to the ra-
dius descriptor and will be presented in the section on future work. Secondly,
it is clear that for a one-point-pseudopod, there is only one vibration wave area.
The shape of this vibration wave seems to be a damped vibration whose largest
amplitude is at the mid frequency of FD. However, there are three vibration wave
regions in the three-point-pseudopod and each appears to be a damped vibration
whose largest amplitude is at the mid frequency of that wave region. The one-
point-pseudopod and the three-point-pseudopod are zoomed in, in Figure 5.6, to
compare them clearly. A similar conclusion can be drawn from the five-point-
pseudopod and seven-point-pseudopod. Therefore, it can be summarised that the
number of pseudopod points corresponds to the number of damped vibrations.
Another test, which has not been detailed in the thesis, was undertaken to demon-
strate that when the number of pseudopod points increased, the vibration region
increased and became increasingly harder to distinguish. Additionally, when the
magnitude level of the pseudopod increases, the FD height increases and the con-
clusion above seems more obvious. This conclusion can be also extended as the
number of points in the pseudopod determined the number of damped vibration
regions. This is also referred to in the future work section.

From the results of the previous chapter and the conclusion in the first part
in this chapter, the FD has to be transformed to the same size with the help of
B-Spline and it solves the comparison problem in the logarithmic FD. Therefore,
in the following results’ parts, the logarithmic FD will use the results and data

from the previous chapter.

5.2.3 Combining Fourier Descriptor with Shape Tracking

The key idea of this subsection is that the retrieved shape information is used
on the FD, and it can be obtained from B-spline, which uses the initial shape
information. The KF and INNF method can observe the estimated control points’
state and the estimated state can substitute the control points from B-Spline. This

was implemented using the initial shape boundary information in the initial frame
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working with the KF and INNF to obtain the estimated control points. Then B-
Spline technique was used to change the estimated control points into retrieved
shape boundary as intermediate result. Finally, the above intermediate result was
combined with the FD to analyse. In this case, the different sizes” problem was
solved by using the initial shape boundary information. Additionally, it reduced
the computation complexity.

According to Fourier Transform and the knowledge from the previous chapter,
a two-dimensional retrieved shape boundary and the FD of the retrieved shape

boundary can be changed into the following forms:

Z =HQ,
F(z) = F(HQY .
= F(HQC)
= Z4HQC

where Z is the retrieved shape boundary; Q. is the control points from the
previous chapter; Q. is the estimated control points from the previous chapter;
H is the transfer matrix; F(Z) is the Fourier transform on Z; Z, is a matrix with
formula Zs = [(Z2)’, (Z2)’, ..., (ZY)"]’, where N is the total number of frequency;
Z, is a vector with formula Z, = [Zl,Z%, . Z{V ] and Z; is the angle with value
7y = e /2/N_Since Z;, Z», and Z4 can be calculated offline, the FD of shape can
be reduced to the function of QC, which is the estimated control point from the
KF. The comparison result is given in Figure 5.7.

The green dot-dash line is the first method calculated by the traditional FD.
The red dotted line is the second method calculated using the formulae above.
From Figure 5.7, it is clear that the reduced method (the second method) has the
same logarithmic values of FD as the one calculated from the traditional method
(the first method). An important point should be noted that the retrieved esti-
mated neutrophil shape boundary is better than the retrieved neutrophil shape
boundary. This is because the estimated control points have self-modification abil-
ity from using the KF. In addition, a comparison is made to prove that the retrieved
estimated neutrophil shape boundary is better. The result is that the retrieved es-
timated neutrophil shape boundary is closer to the initial shape boundary in some
frames; in other frames, both the methods are close to the initial shape boundary:.
The results’ figure is not provided in this current work. Therefore, the FD being
combined with the methods in the previous chapter can reduce a huge number
of computations; it also reduces the complexity of the analysis methods. There-
fore, the Fourier analysis is a linear function of the estimated control points, which
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Figure 5.7: The logarithmic FD comparison of two methods

The green dot-dash line is the logarithmic FD calculated from the traditional method, which uses
the shape boundary information. The red star line is the logarithmic FD calculated by the reduced
method, which transfers the Fourier calculation to a factor multiplying the estimated control points.

combines the methods in the previous chapter.

5.2.4 Height Descriptor Implementation

The results of the radius descriptor and the relevant two cases mentioned above
are not provided in this current work. They are discussed in the future work
section. In this part, only the height descriptor result will be presented.

The FD is a highly significant analysis tool. However, according to the real
data analysis, the same neutrophil in different frames has different FDs, both the
height of FD and the noise on the FD. The neutrophil probably changes modules
in different frames. Therefore, the FD height probably decides the neutrophils’
module. From the conclusion in concentric circles test, which is not discussed in
this thesis, the FD height is not related to the radius. The area of neutrophils,
therefore, as the most important parameter, was considered firstly. Roundness,
another important parameter, was also considered.

The FD height of No. 9 Neutrophil is compared with the area and the round-
ness illustrated in Figure 5.8. Frankly, there is no real physical meaning for the
y axis. According to Figure 5.8, the roundness seems closely related to the nega-
tive height of FD. Although they are not perfectly matched, most of the tendency
or changing rate is nearly the same. However, the area sometimes has the same
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Figure 5.8: The relationship of three parameters

The red curve is the area of No. 9 Neutrophil. The blue is the negative height of logarithmic FD.
The green is the roundness of No. 9 Neutrophil. It should be noted that there is no y axis label or
unit. It is because that none of three parameters have the same label or unit. For instance, the unit
of area is ymz, while both negative HFD and the roundness are dimensionless. Therefore, no label
or unit is on the y axis.

tendency, while at other times, it has the opposite. Based on the results above, a
conclusion is drawn that there is no obvious relationship between the area and the
height of FD.

The roundness must be noted. The formula of roundness used in this current
work is different from the traditional formula. It is given as follows in Equation
5.8

RN = (5.8)

L
d

where, RN represents the roundness; [ is the length of neutrophil; 4 is the
width of neutrophil.

In future work, perhaps, roundness could be used to define an active neu-
trophil instead of the different FD heights. Although the relationship between the
height of FD and the roundness is not 100% certain, it, at least, establishes a link

in analysis between space domain and frequency domain for future work.

In addition to the height descriptor, another descriptor will be represented in
the following subsection.
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5.2.5 Low Frequency Descriptor F(w=2) Implementation

The LFD means the logarithmic Fourier values at frequency w = 2. There is no
relevant literature about the LFD and its physical meaning. However, it is believed
that a relationship between F(w = 2) and the roundness exists. No matter what
the exact physical meaning F(w = 2) is, it can be used to express some features
of neutrophils.

To show the relationship between the LFD and the roundness, several compar-
ison tests were undertaken and are illustrated below.

Figure 5.9 shows the distributions of all the neutrophils in all the frames in the
low resolution data between F(w = 2) and the area, and between F(w = 2) and
the roundness. In the distribution, there is no obvious conclusion. However, con-
sidering the different modules of neutrophils in different frames, it is reasonable
to believe that the distribution is the linear combination of the different modules
in different frames. Therefore, some special modules of neutrophils are extracted
and the distributions are illustrated as follows. It should be noted that many
similar modules with similar distributions in different neutrophils exist and the
examples have only been listed for those different modules.

Figure 5.10 illustrates the distribution of No. 13 Neutrophil. The top figure
represents the relationship between the LFD and the area. It seems diverged. The
bottom figure is the relationship between the LFD and the roundness. The rela-
tionship seems linear with the gradient negative. However, the No. 13 Neutrophil
is very special, because it crossed No. 12 Neutrophil and during the crossing
process, No. 13 Neutrophil and No. 12 Neutrophil covered each other and then
separated. This process is called merging and separating. The star points in the
first several frames belonged to No. 13 Neutrophil while the other frames were
No. 12 Neutrophil and this conclusion can be explored in future work. Given its
complexity, Figure 5.10 is highlighted as a special case. Other crossing neutrophils
exist but none will be indicated as analysis examples.

Figure 5.11 shows the distribution of No. 49 Neutrophil. It seems that both the
top and bottom figure represent a linear relationship with the gradient vertical. It
represents a type of neutrophil module at the bottom figure. However, as for the
other neutrophils, the area and F(w = 2) do not seem to be related.

Figure 5.12 represents the distribution of No. 28 Neutrophil. The bottom
of Figure 5.12 shows a diverging relationship between roundness and F(w=2);
while the top of Figure 5.12 has a diverging relationship pointing to the right.
This diverging relationship (the bottom figure) also expresses another module of
neutrophils.

Figure 5.13 shows the distribution of No. 9 Neutrophil. The bottom of Figure
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Figure 5.9: The LFD F(w = 2) distribution

The top figure is the LFD F(w = 2) distribution of the neutrophils” area. The bottom figure is the
LFD F(w = 2) distribution of the neutrophils’ roundness. The blue stars in both are the
neutrophils corresponding values. For instance, a star on the top figure is the area value

corresponding to a neutrophil. All the neutrophils in all the frames are counted in both of figures.
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Figure 5.10: The No. 13 Neutrophil LFD F(w = 2) distribution

The top figure seems diverged and the bottom one seems to have a linear relationship with the
gradient negative. The distribution of No. 13 Neutrophil is a special case and it is not correct since
after a few frames, No. 12 Neutrophil and No. 13 Neutrophil merged and then separated. It is an
example of merging and separating neutrophil.



Chapter 5. Characterisation of Neutrophil Modes by Shape Descriptors 119

Figure 5.11: The No. 49 Neutrophil LFD F(w = 2) distribution

Both the top figure and the bottom one indicate that a linear relationship exists. The gradient of

both seems vertical. It represents a type of neutrophil.
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Figure 5.12: The No. 28 Neutrophil LFD F(w = 2) distribution

The top figure seems to diverge toward the right hand side, while the bottom one diverges

irregularly. It also represents a type of neutrophil.
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Figure 5.13: The No. 9 Neutrophil LFD F(w = 2) distribution

The top figure shows that there are two parallels with the gradient negative. The bottom one seems
to be the combination of the piecewise linear relationship with a positive slope and a piecewise
divergence relationship. It also represents one type of neutrophil.
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5.13 illustrates the piecewise linear and piecewise diverging relationship. The lin-
ear relationship is a direct proportion and at the latter part, the relationship seems
diverging. However, in the top figure, there seems to be no relationship. Those
points look like two parallels. The segmental linear and segmental diverging rela-
tionship represent another module of neutrophils.

In addition to these examples, the distribution of F(w = 2) for all the neu-
trophils in all the frames is shown in Figure 5.14. It must be noted that F(w = 2)
is the unnormalised logarithmic FD. The left hand side and the right hand side
of Figure 5.14 are the same, but viewed from different angles. It is clear that for
some neutrophils, the colour is light blue in all the frames, while for others the
colours are yellow and red in most of the frames. Therefore, it proves that neu-
trophils have different modules, at least three. One is active, one is "dead" with
small movement randomly around the centroid and the third changes between the
other two modules in random frames.

Therefore, several conclusions are drawn as follows.

Firstly, roundness has the relationship with the LFD F(w = 2). It is simi-
lar to the conclusion from the previous subsection that only roundness has the
relationship with neutrophils” feature. Secondly, different relationships between
roundness and F(w = 2) represent different neutrophil modules. Some are dead
neutrophils, some are active neutrophils, others are neutrophils changing modules
between dead and active. The corresponding relation will be analysed in the next
chapter. Thirdly, F(w = 2) can be used to detect the module of neutrophils.

5.2.6 Pseudopod Analysis

This subsection is mainly about pseudopod analysis. It is extremely difficult to
determine an active positively moving neutrophil, therefore, No. 28 Neutrophil
in Frame 12 and Frame 13 was used as a similar example and is represented in
Figure 5.15.

Figure 5.15 shows the shape and the logarithmic FD of neutrophil in the con-
tinuous two frames when the pseudopod occurs. The top of Figure 5.15 is the
estimated retrieved shape boundary in Frame 12 and Frame 13. The blue solid
line is the shape in Frame 12 and the red one is in Frame 13. The bottom of Figure
5.15 is the corresponding FD. It is clear that when the pseudopod occurs, both
motility and morphology (shape boundary) and shape descriptor changes. Fur-
thermore, the FD height also changes. From the shape changing in the top figure,
No. 28 Neutrophil moves toward the top right. The pseudopod perhaps occurs on
the top right of No. 28 Neutrophil. The No. 28 Neutrophil first rotated to the top
right, and then the pseudopod appeared with considerable velocity in that area.
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Figure 5.14: The LFD F(w = 2) distribution of roundness.

The LFD distribution of roundness for all the neutrophils in all the frames is plotted as a surface on
the left figure. The top view is illustrated on the right. By using the distribution of roundness,
several modes of neutrophils are distinguished, such as the active neutrophil.
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Figure 5.15: The pseudopod analysis

The top figure illustrates the process of the pseudopod occurring. It is the shape boundary
comparison of the same neutrophil in the continuous two frames. Usually, a huge shape changing
(adding or subtracting) in some parts of the neutrophil exists when a pseudopod occurs. For
example, in the figure, the red top right part is a pseudopod. The bottom figure represents the
logarithmic FDs of the top figure, that is, the logarithmic FD comparison, when the pseudopod
occurred.
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At the same time, the other part of No. 28 Neutrophil also moved with small ve-
locity on the boundary. Therefore, the velocity on the boundary research is highly
significant. Since the length of No. 28 Neutrophil increases and the width changes
a little, the height in Frame 13 is less than Frame 12. It thus proves the height con-
clusion above. Therefore, it is concluded that when the pseudopod occurs, the
velocity on the boundary changes with different speeds according to the position
of the neutrophil. Additionally, the height of FD may have also change, depending

on the direction in which the pseudopod occurs.

5.3 Conclusion

The main idea of this chapter has been shape analysis with effective tools. The
first section introduced background knowledge of the shape descriptor. The FD
was introduced. The results” part followed the introduction. The FD was im-
plemented. However, the dimensions of FD were different. Therefore, the FD
cannot be used as an analysis tool. Next, several tests were implemented to ver-
ify the hypotheses. Through mathematics, the FD was transformed into a linear
function of control points, which were estimated from the previous chapter. The
validation was undertaken and the result indicated that the transform was correct.
Therefore, the problem of different sizes was solved by using the control points
instead of the real positions and the FD was added in the framework as an analy-
sis tool. Other descriptors were implemented, such as a height descriptor. Finally,
pseudopod analysis was undertaken. Innovation and contributions are as follows.
Using mathematics, the FD was combined with tracking methodologies to solve
the problem of different sizes. The FD with tracking methodologies formed a new
framework which can not only track features of the centroid and shape, but can
also analyse the features. The LFD, as a new analysis tool, seemed to have the
ability to detect the different modes of neutrophils. The distributions of LFD in-
dicated that at least three modes of neutrophils exist. Finally, the mechanism was
better understood after the pseudopod analysis.

It should be noted that, the shape’s FD is different from the FD of other param-
eters. Thus far, it is still difficult to determine which parameter or methodology
would be the best for shape analysis. Although some results are different from the
FD of shape boundary, such as the height and radius descriptor, they are probably
another way to analyse the neutrophil information and modules. The combination
between centroid tracking, shape tracking and shape descriptor will be considered
in the next chapter.



Chapter 6

Modelling Neutrophil Dynamic
from Shape and Motion

The previous chapter discussed the descriptors used to analyse neutrophils” char-
acteristics. The FD was the main analysis tool, however, the LFD was proposed
since it can detect the neutrophils’ mode. Therefore, in this chapter, the combining
of shape tracking, centroid tracking, and shape descriptor is implemented to de-
termine a new framework. Neutrophils” motion and morphology, as well as other

cells, can be analysed using this framework.

6.1 Mode from Centroid Tracking versus Low Frequency

Descriptor

This section mainly focused on the relationship between the mode from centroid
tracking and LFD. The mode from centroid tracking was the same methodology,
the MM filter, that was used in Chapter Three. There were three models: the
constant acceleration model, constant velocity model, and random walk model.
LFD F(w = 2) was as per the previous chapter. The comparison result is shown
in Figure 6.1.

The top of Figure 6.1 illustrates the centroid tracking with different models,
where the blue, green and red colours represent the constant acceleration model,
constant velocity model and random walk model, respectively. The centroid track-
ing trajectory has been plotted in black and it is covered with the colour of the
dominant models. The purple ball indicates the current position. The middle of
Figure 6.1 shows the probability of each mode. The yellow vertical lines are the
switching points. For instance, the first switching point is Frame 4, which means
in Frame 4, the neutrophils’ model changes from the constant acceleration to ran-
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Figure 6.1: The relationship between the mode based on centroid tracking and
the LFD

The top figure illustrates the centroid tracking trajectory in black. The purple ball is the current
position and currently it is at the finishing point. Therefore, the black trajectory is covered with
different colours. In the trajectory, the blue part is the constant acceleration model as the dominant
model. The red part is the random walk model as the dominant model. The green part is the
constant velocity model as the dominant model. The second figure represents the probability
distribution. The purple, blue, green and red are the current position, constant acceleration model,
constant velocity model and random walk model respectively. The yellow vertical lines are the
switching point when the dominant model changes. The bottom figure also plots the switching
point to determine whether there is any relationship. The purple line is also the current frame, but
the blue line is the LFD F(w = 2).
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dom walk. The purple line indicates the current frame. The blue, red and green
are the same as the top figure. The bottom one represents the LFD F(w = 2). The
yellow lines and the purple line are the same as the middle figure. The blue curve
is the LFD values. When the model chosen by the probability changes, the LFD
indicates no obvious response. Therefore, it is concluded that there are no obvious
connections between the LFD and the model from centroid tracking. However, the
model from centroid tracking does not represent the real neutrophil mode. For
example, Figure 5.15 shows that the pseudopod occurs with very little centroid
changing and almost retains the same mode from centroid tracking. However,
part of the neutrophil is believed to change mode, while the other part remains in
the same mode. Therefore, the best method should combine the centroid and the
shape mode to judge the relationship and the shape mode detection is likely to be

future work.

6.2 Centroid Velocity versus Low Frequency Descriptor

The aim of this section is to determine the link between the centroid velocity and
the LFD. The centroid velocity also used the same methodology from Chapter
Three. Since the neutrophils were the same as in the previous section, the modes
remained the same. The relevant result is shown in Figure 6.2.

In Figure 6.2, the blue, green and red curve are the same as the top figure
in Figure 6.1. The starting point is the first frame and the finishing point is the
final frame. At the beginning, it seems that the LFD and the centroid velocity are
independent. When the dominant model is the constant velocity, it seems that the
LFD and the centroid velocity are partially dependent. As part of the green curve
in the figure seems like two parallel lines with the gradient positive, the LFD
is considered as a direct proportion function of the centroid velocity. However,
considering the relationship in total, there is no relationship between the LFD and
the centroid velocity. Given of the small centroid velocity, this neutrophil can be
considered as "dead" and it makes some small regional random walk movement.
Therefore, based on the result from the previous section, it is better to include the

shape velocity on the boundary to obtain a more accurate conclusion.

6.3 Shape Velocity Distribution versus Low Frequency De-

scriptor

As mentioned above, the shape velocity on the boundary was needed. In this
section, the LFD and the shape velocity distribution are compared and analysed



Chapter 6. Modelling Neutrophil Dynamic from Shape and Motion 129

Figure 6.2: The relationship between the amplitude of the centroid velocity and
the LFD

The starting point and the finishing point are plotted. The blue, red and blue are the constant
acceleration dominant model, random walk dominant model and constant velocity dominant

model respectively.

to determine the internal connections. The shape velocity distribution means the
distribution of velocity on the shape boundary based on different boundary seg-
mentations and different frames. The comparison result is shown in Figure 6.3
and Figure 6.4.

The top figure of Figure 6.3 is the shape velocity distribution of No. 9 Neu-
trophil. As mentioned above, the shape distribution is based on all the boundary
points and the frames. The bottom figure is the same LFD as above. It is extremely
difficult to discover any link. Therefore, another figure with different angle views
is needed. As such, Figure 6.4 is presented. Figure 6.4 is the same as Figure 6.3
with different angle views. The top figure of Figure 6.4 is the top view distribu-
tion. The coloured bar represents the shape velocity amplitude. Compared with
other neutrophils, the amplitude of the shape velocity is small, since the No. 9
Neutrophil is changing its mode as noted above. The bottom one is the LFD,
which is identical to the one specified above. It is still extremely difficult to reach
a conclusion because the shape velocity should be analysed not only with magni-
tude but also with directions. In addition, just one neutrophil cannot represent all
neutrophils” modes. Therefore, it is necessary to analyse all the other modes and

check whether there was any connection.
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Figure 6.3: The relationship between the amplitude of the shape boundary ve-
locity and the LFD

The top figure represents the distribution of the No. 9 Neutrophil shape boundary velocity. There
are 101 boundary points and 40 frames. The bottom figure is the LFD F(w = 2) for all the 40

frames.
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Figure 6.4: The top view of the shape velocity distribution.

The top figure is the same as the top one in Figure 6.3 but viewed from the top. The colour bar
represents the amplitude of the shape boundary velocity. It is clear that the shape boundary
velocities of different points are different for the same neutrophil in different frames. The bottom is
the LFD of No. 9 Neutrophil.

6.4 Neutrophil Tracking and Analysis

Given the uncertainty of the above results, it is necessary to combine all the rel-
evant methodologies. Examples of two neutrophils will be shown to combine all
the relevant methodologies.

Example 1: No. 49 Neutrophil

No. 49 Neutrophil is a "dead" neutrophil represented in Figure 6.5. The black
solid line is the centroid trajectory. The purple square is the current centre. The
green arrow is the centroid velocity. The blue solid line is the current shape bound-
ary and the blue dotted line is the next frame shape boundary. The carmine arrows
are the shape velocities. From Figure 6.5, it is clear that the centroid trajectory is
like a random walk mode and the centroid velocity is minimal for all 40 frames.
Furthermore, the velocity on the boundary is small, although the shape of No. 49
Neutrophil is prolate. Combined with Figure 5.11, it is reasonable that the linear
relationship, with gradient vertical, between F(w = 2) and roundness, can detect
the neutrophil mode as "dead". In this current work, the "dead" neutrophil means
inactive neutrophils performing small region random walk movements.

Example 2: No. 28 Neutrophil

No. 28 Neutrophil is illustrated as an active neutrophil in Figure 6.6. All the
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Figure 6.5: The feature of No. 49 Neutrophil

The centroid trajectory is plotted in black solid line. The purple square is the current centroid
position of No. 49 Neutrophil. The green arrow is the centroid velocity. The length of the green
arrow represents the amplitude and the arrow points to the direction, which the centroid moves to
in the next frame. The blue solid line is the current shape boundary. The blue dotted line is the
shape boundary in the next frame. The carmine arrows are the shape velocity with not only the
amplitude but also the direction.
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Figure 6.6: The feature of No. 28 Neutrophil

All the colours are the same as mentioned in Figure 6.5. The difference is that the centroid

trajectory is long. So are the velocity, centroid and shape.
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legends are the same as in Figure 6.5. The differences are as follows. Firstly, the
centroid trajectory has a very long distance. Secondly, the centroid velocity mag-
nitude is considerable and the centroid velocity points in one direction. Thirdly,
the velocities on the boundary are huge. Combined with Figure 5.12, it is rea-
sonable that the diverging relationship between LFD F(w = 2) and roundness
can detect an active neutrophil mode. This kind of active neutrophil usually has
enormous movement, including the centroid movement and the shape movement
with a specific directional destination.

Combining Example 1 and Example 2, the LFD F(w = 2) can be used to detect
the mode of neutrophil.

6.5 Conclusions

This chapter concludes with a summary of the above combination work. This
chapter has consisted of five sections and the first three mainly discussed the re-
lationships between the mode from centroid tracking and LFD, between the cen-
troid velocity and LFD, and between the shape velocity distribution and LFD. The
fourth section was the summary of all the methods used in previous chapters. Fi-
nally the conclusion to this chapter is presented. In this chapter, LFD was the main
shape descriptor used and analysed, because of its effective results in the previous
chapter. Both modes from centroid tracking and centroid velocity, which were the
important results from centroid tracking, were compared with LFD to determine
the connections. Shape velocity distribution, as another important result in shape
tracking, was also compared with LFD. By using the comparison results repre-
sented above, several conclusions can be drawn. Firstly, there were no obvious
connections between the mode from centroid tracking and LFD from the results.
However, the mode was from centroid not from the shape boundary, which meant
that if the shape boundary changed, for example, a pseudopod occurred, while
the centroid mode remained the same, the mode from centroid tracking stayed
the same but LFD changed, as Figure 5.15 illustrated. LFD, as a feature of neu-
trophil, presented some information based on the shape boundary. Therefore, it
is possible that LFD had some connections with the shape mode, which will be
future work. Moreover, it perhaps yielded more interesting results by using the
connections between the centroid mode and shape mode. Secondly, there was no
obvious link between the centroid velocity and LFD. However, several modes of
neutrophils existed, and different modes had different ranges of centroid velocity.
In considering the mode of neutrophils, as per the "dead" neutrophil example,

there was perhaps an internal link since the LFD did not change in a considerable
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range except for Frame 32. A special case, like Frame 32 in the example, would
be linked to shape velocity and shape mode. Thirdly, it seemed that shape veloc-
ity distribution was independent of LFD. However, the velocity distribution only
considered the magnitude and not the angles. Furthermore, different modes of
neutrophils had different velocity distributions. Therefore, any mode from cen-
troid tracking, centroid velocity, and shape velocity distribution had no obvious
connections with LFD. However, the combination of all these, together with an
unknown feature such as the mode from shape boundary, would link to LFD. Fi-
nally, not all the neutrophils with prolate morphology were active. In addition,
LFD can detect the neutrophil mode combined with other features. Innovation
and contributions from this chapter are as follows. LFD was effective in detecting
the neutrophil mode with other features of neutrophils and it, as an effective anal-
ysis tool, combined with other techniques, together formed the whole framework.
Having concluded this chapter, a summary of the complete thesis and future work
will be presented in the next chapter.



Chapter 7

Conclusion

The previous chapter discussed the relationship between the LFD and other method-
ologies. Finally, the new framework was established through combining all the
methodologies. This chapter contains two sections, a summary and future plan.

7.1 Summary

This thesis has undertaken research of neutrophils based on the morphology and
motility. Neutrophils, as a kind of white blood cell, have a strong ability to move
to the site where inflammation happens and to protect the body by phagocyto-
sis or other powerful functions. During the process, neutrophils were thought to
change shape caused by the chemotaxis field. "Dead" neutrophils sometimes move
randomly or "sleep" in most cases. When the inflammation occurs, the chemotaxis
field changes drastically from frame to frame, which makes active neutrophils
move, accompanied by shape changing. Therefore, research on neutrophils” mor-
phology and motility is significant. When neutrophils move, a large quantity of
information exists, both on the shape boundary and on the centroid. Therefore,
this research was conducted on both the centroid tracking and shape tracking,
which was covered in chapters three and four. After obtaining significant tracking
results, the information from these were analysed using effective tools and has
been detailed in Chapter Five. By combining all the information from the above
chapters, an effective methodology to solve such a problem, was determined in
Chapter Six.

Since the movement of neutrophils is a highly complex process, it requires
more than one traditional tracking model. As such, the centroid tracking was
implemented by the MM algorithm, which calculates the probability of different
models in the same frame and chooses the maximum likelihood model as the dom-
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inant model for that frame. The square of centroid estimated velocity magnitude,
as an analysis tool, illustrated the distribution of the chemotaxis field. However,
all the above methods and analysis only considered centroid information. This
was correct, but did not comprise the whole information. There was a significant
amount of information on the boundary because the shape changing always hap-
pened during the moving process to the inflammatory site, and this information
was used in Chapter Four. Innovation and contributions in Chapter Three were as
follows. Firstly, the chemotaxis field was estimated using the centroid velocity. It
indicated that the chemotaxis field did exist. With information about the chemo-
taxis field, the mechanism of neutrophils was better understood. The chemotaxis
field would be more accurate if it were estimated using the shape velocity. Sec-
ondly, the parameters of the KF were fixed, and those parameters were used in
the subsequent chapters. Another contribution was that the centroid tracking of
neutrophils was applied by the MM filter and this was a new application field. By
changing the different models, the motion of neutrophils was estimated more ac-
curately. Finally, the centroid velocity was estimated as an important parameter to
analyse the chemotaxis field rather than considering the centroid position tracking
only.

Shape tracking is a complex tracking area, combining the fields of computer
vision, data association and traditional target tracking. Usually, there are two
requirements for shape tracking: the correctness of retrieved shape and the corre-
lation of the same neutrophils in different frames. The former can be guaranteed
by the B-Spline method, which belongs to the computer vision area, and the latter
can be guaranteed by INNF, which belongs to the data association field. The entire
process is completed by a traditional target tracking algorithm. As the focus was
on the velocity of all the shape boundary points, it is assumed that all these obey
the constant velocity model. Based on the algorithms in Chapter Four, the velocity
can be retrieved using the estimator of control points. However, only one module
was considered for the neutrophils, and the other two modules, which appeared
in Chapter Three, were not applied in Chapter Four. If the MM filter can work on
or combine with other algorithms on the shape tracking chapter, the results will
be better. Innovation and contributions in Chapter Four are as follows. Firstly,
the traditional NNF was improved to solve the problem of neutrophils missing
and reappearing. Secondly, the velocity of the boundary was estimated rather
than only considering the shape estimation. It is clear that different parts of neu-
trophils have different velocities. Given this, neutrophils” shapes changed when
they moved to the chemotaxis field. Finally, the new framework was established.
This would also be suitable for other cells and the velocity on the boundary will
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be important in further analysis, which is the future plan.

A shape descriptor is a tool to analyse the shape information as considered
in Chapter Five. The focus is the FD of the shape boundary and the descriptors
used in this chapter, including LFD. Results were produced based on tests and
algorithms detailed in the descriptor section. Innovation and contributions are
represented as follows. Firstly, the FD was implemented in a two-dimensional
medical image area. Secondly, by comparing the FD with the shape tracking, the
framework in the previous chapter was updated. The analysis tool was added
in the framework, since the entire tracking process had been simplified. Further-
more, new descriptors were employed in the analysis, such as LFD. Finally, the
pseudopod was analysed to understand the mechanism.

Finally, the combination of all the algorithms above presented a highly satisfac-
tory result in detecting the neutrophil mode and also formed a powerful method-
ology to manage the relevant problems of cells. The methodology was used to
detect the mode of neutrophils and through this, the mechanism was better un-
derstood.

Based on the limitations mentioned above, the future plan will now be consid-

ered.

7.2 Future Plan

Generally, several areas would merit improvement. Firstly, data association meth-
ods need to be used and upgraded in both the centroid tracking and the shape
tracking to improve the tracking accuracy. The data association mainly focuses
on the case of two or more neutrophils coming across, that is, two or more neu-
trophils covering each other and then separating. It also upgrades the INNF so the
neutrophils could disappear in more than one frame. It should be noted that the
new method would consider the merged neutrophil as two neutrophils coming
across. Therefore the index of both will not break. Furthermore, it will modify
the accuracy of both centroid and shape tracking. Secondly, the MM filter will be
used or combined with other algorithms in shape tracking. As noted above, the
MM filter on the shape boundary can solve a huge number of problems such as
classifying different shape modes in one neutrophil. It will also help to determine
the connections with LFDs or shape velocity distribution. Thirdly, the Kalman
smoother will be utilized to improve the results by reducing the noise and solving
the missing data problems. In some results, the Kalman smoother was imple-
mented and it is a powerful tool in reducing noise, although the results were not
represented in this thesis. Some neutrophils were missing in a frame, and the
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missing data was the estimated initial data without considering the modules and
the states. The Kalman smoother rather than the KF, can solve the problem only
in the estimated part without the need to add other programs. Finally, new de-
scriptors, such as a radius descriptor, will be explored. Based on the statements in
Chapter Five, it would seem reasonable to explore radius descriptors, which can
reduce the complex frequency process to time domain process.

The above will be implemented in the future thus concluding this thesis.
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