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Abstract

Personalised medicine is redefining the present and future of healthcare by increas-

ing treatment efficacy and predicting diseases before they actually manifest. This in-

novative approach takes into consideration patient’s unique genes, environment, and

lifestyle. An essential component is physics-based simulations, which allows the out-

come of a treatment or a disease to be replicated and visualised using a computer. The

main requirement to perform this type of simulation is to build patient-specific models.

These models require the extraction of realistic object geometries from images, as well

as the detection of diseases or deformities to improve the estimation of the material

properties of the studied object.

The aim of this thesis was the design of a general framework for creating patient-

specific models for biomechanical simulations using a framework based on statistical

shape models. The proposed methodology was tested on the construction of spine

models, including vertebrae and intervertebral discs (IVD).

The proposed framework is divided into three well defined components:

The paramount and first step is the extraction of the organ or anatomical structure

from medical images. In the case of the spine, IVDs and vertebrae were extracted from

Magnetic Resonance images (MRI) and Computed Tomography (CT), respectively.

The second step is the classification of objects according to different factors, for

instance, bones by its type and grade of fracture or IVDs by its degree of degeneration.

This process is essential to properly model material properties, which depends on the

possible pathologies of the tissue.

The last component of the framework is the creation of the patient-specific model

itself by combining the information from previous steps.

The behaviour of the developed algorithms was tested using different datasets of

spine images from both computed tomography (CT) and Magnetic resonance (MR)

images from different institutions, type of population and image resolution.
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Research is to see what everybody else has seen, and to think what nobody else has

thought...

Albert Szent-Gyorgyi
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Chapter 1

Introduction

1.1 Motivation

Computer-based simulations and virtual reality have been established as an important

tool in the medical field [1]. They are being employed to help physicians to study

diseases or conditions [2,3], estimating outcomes of treatments [4–6], practising surg-

eries [7] or predicting the circumstances for some medical conditions to develop [8,9].

An important building block of these simulations is the patient-specific anatomical

model that represents the shape of the organ or anatomical region to study. These

anatomical regions are commonly extracted from one or more images of the same or

different modalities, and they are required to have anatomically correct geometries.

An object geometry is considered as anatomically correct when it does not contain

overlaps, unrealistic orientations or impossible separations between its parts.

In the literature, one of the most common type of simulations is the one employing

finite element methods [10–12]. This kind of methods requires the anatomical model

to be a volumetric mesh (VM). This VM is composed of different elements that com-

monly contain values to indicate the material properties of the studied object. Two

important ingredients to compute the material properties are the intensity of the image

and a label in each segmented structure that provides information of the tissue type and

conditions for computing the material properties. For instance, the degree of degener-

ation of intervertebral discs is an indicator of its amount of water and collagen, which

1



Chapter 1: Introduction 2

influence the viscosity, resistance and other material properties.

The process of extracting the region of an image corresponding to the different

tissues or structures of interest is called segmentation. In the area of biomechanical

simulations, segmentations are commonly achieved by manual means [13]. Accurate

and automatic medical image segmentation is an open problem, which has been tack-

led with multiple approaches. Such as region-based [14, 15], probability- [16–18],

template- [19] or model-based approaches [20–23].

Once the structures are segmented, the labelling of different objects is a classifica-

tion problem. There exist a myriad of classification algorithms [24–31] available in the

literature. The most common approach requires as first step the computation of shape

and/or intensity features from the object to classify.

In these two applications statistical shape models (SSM) [32] and statistical appear-

ance models (SAM) [33] are commonly employed as a mean to encode the shape and

intensity variation of objects within a selected population. In segmentation, this prior

information enables the possibility of restricting the shape and intensity of objects

into those of the population used to create the models. In classification, the common

approach is to use the parameters extracted from the models in a standard classifier,

although the SSM or SAM may be used as a classifier by itself.

In this PhD thesis, SSMs were extensively used and two new types of statistical

models were proposed: The Statistical Interspace Model (SIM), which encodes in-

formation of the spatial relationship between objects (Chapter 4) and the rebalanced

multi-level statistical shape model (R-MLSSM), which integrates the information of

factors stratifying the population, such as of diseases, disorders or anatomical posi-

tions. In this dissertation, the term Statistical Models (SM) will be used to refer to the

group of all the previous models.

1.2 Thesis Objectives

The goal of this PhD thesis is to design a framework based upon SM, to efficiently

generate patient-specific anatomical models to be used in computer-based simulations
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to allow the prediction of pathological conditions, outcome of treatment and other

medical related issues.

These models require the extraction of patient-specific and anatomically correct ob-

ject geometries from images. An object geometry is considered as anatomically correct

when it does not contain overlaps, unrealistic orientations or impossible separations

between its parts. In the case that volumetric meshes are required for the simulation,

these models should be labelled according to the different grades of diseases, deformi-

ties or conditions that are relevant for the estimation of their material properties, such

as the grade of fracture, which provides information about the resistance of the verte-

bra. The experiments were performed using human spines because of its complexity

and medical relevance:

• They contain soft (intervertebral discs) and bone (vertebrae) tissues, which must

be extracted from different image modalities.

• They are articulated multi-object structures, containing various intervertebral discs

(IVDs) and vertebrae.

• Vertebral processes are complex to model and the inter-process space is com-

monly invisible with standard image resolutions.

• There exist deformities and diseases that affect the image intensity and material

properties, such as IVD degeneration or vertebral fractures.

• A large population suffers from diseases and disorders related to the spine, such

as scoliosis or low back pain.

The previous requirements led to the following objectives:

Development of a Segmentation Framework that extracts anatomically correct

object shapes with SSMs: Current segmentation frameworks using SSM do not con-

sider the issue of overlap between neighbouring structures. For instance, in the case of

vertebra segmentation, where interprocess space may be smaller than the image reso-

lution, overlaps are prompt to occur, resulting in shapes, which are not anatomically
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correct. This issue is commonly ignored in the methodologies from the literature be-

cause current metrics, such as Dice Similarity Index or Surface-to-Surface distance,

mask the effect of these artefacts. However, it is critical for the correct modelling of

the biomechanical interactions.

Development of a classification method that can be integrated in the segmen-

tation framework: Diseases, conditions and deformities that affect the material

property of objects commonly contain differences in the shape and/or intensity that

could be used to improve the segmentation at the same time as labelling the object.

Thus, this thesis aims at not only finding a robust classification method but to embed

it in the segmentation framework.

Development of an alignment method to merge articulated anatomical structures

from different images: Having segmented and labeled structures from different im-

age modalities that belong to the same anatomical object, it is necessary to align them

into a single multi-object structure. In the case study, two structures are found: IVDs,

extracted from T2-weighted magnetic resonance (T2 MR) images, and vertebrae, ac-

quired from computed tomography (CT) images. This alignment process must cover

two different challenges. On the one hand, it should consider that the pose of the pa-

tient in MR and CT are different, and on the other hand, the alignment results should

be anatomically correct.

Part of the research presented in this thesis was developed in the context of the

MySpine project [34]. The steps were integrated in a full pipeline from medical im-

age databases to biomechanical simulations, which was used to process around 200

patients susceptible of lumbar spine surgery.

1.3 Thesis Structure

The thesis is structure into 5 main sections: Literature review of SSMs (one chapter),

First objective - The segmentation framework (two chapters), Second objective - The

Classification framework (two chapters), Third objective - The alignment framework

(one chapter), and the Conclusions of the thesis (one chapter).
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Chapter 2 presents an overview of the types of SSMs and SAMs that exist, the

general principle for their creation and their main applications. In particular, it will be

provided a detailed description of the two applications most relevant to this thesis: the

standard segmentation method using SSMs, the Active shape model (ASM) and the

procedures to classify objects using these models.

In Chapter 3, a generic segmentation method, based on ASM with a new type of

feature set is presented. This strategy produces accurate segmentations and it is not

computationally expensive. Its main issue is manifested when dealing with multi-

object structures, such as the spine, because each object is segmented individually,

which may produce overlaps and/or excessive separation between individual objects.

In the case of the IVDs, this issue is never present, because of the large separation

between individual objects. However, the separation between vertebral processes is

rather small, allowing these issues. Thus, a new segmentation framework was devel-

oped (Chapter 4) to overcome this limitation. This method employs a novel statis-

tical model, named statistical interspace model (SIM), to provide information about

the space between neighbouring objects. This new framework produces accurate and

anatomically correct segmentations, however, it requires a higher computational time.

Thus, the previous framework is still preferred for IVD segmentation.

Chapter 5 introduces a method to classify IVDs according to their degree of de-

generation. The method was intended to work using solely the mid-sagittal slice of a

T2 MR image since this procedure is the clinical standard, and it could be employed

in a context where a 3D segmentation is not available. The accuracy of this method

was at the same level as that from experts on the field but more objective. The main

drawback is that this classification is specific for IVDs and do not fulfil the objective

of creating a framework that exploits the natural synergy between segmentation and

classification. Thus, Chapter 6 introduces a new type of technique for creating models

with multiple factors, such as the grade of vertebral fracture or the stage of a disease.

The technique was named rebalanced Multi-level component analysis (R-MLCA) and

it was used to create rebalanced multilinear SSMs (R-MLSSM). These models encode

the variation in shape of an object according to different factors, allowing higher re-
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construction power as well as the ability to classify objects according to these factors

simultaneously.

Since IVDs and vertebrae were segmented from different image modalities, the sur-

face meshes corresponding to these two structures are not in the same location or pose.

However, these rigid and non-rigid structures form a single articulated object. Thus,

Chapter 7 presents a mechanism to align structures of articulated objects extracted

from different images, and to create the patient-specific mesh of the whole spine.

Chapter 8 presents a summary, the conclusions and discusses future lines of re-

search. Finally, Appendix A provides a real case of use of the presented method in the

context of the European MySpine project [34].



Chapter 2

Statistical Shape and Appearance

Models

Statistical Shape models (SSMs) and Statistical Appearance Models (SAMs) were in-

troduced by Cootes and Taylor [32] as a mean to represent the possible variations in

shape and appearance of an object that belongs to a specific population. Since then,

SSMs and SAMs have been successfully employed in a large number of unalike ap-

plications, such as object tracking [35], segmentation [36, 37] or visual speech recog-

nition [38]. In general, they have been proven to be a powerful tool for image anal-

ysis [39] and SSMs are going to be the main pillar on which most of the developed

algorithms are based on.

This chapter presents an overview of the types of SSMs and SAMs that exist in

the literature, the different steps for their creation, and their main applications. In

particular, it will be provided a detailed description of their use in segmentation and

classification, which are the most relevant applications for understanding this thesis.

The chapter is based on one of the articles published out of this dissertation [40].

7



Chapter 2: Statistical Shape and Appearance Models 8

2.1 Statistical Shape and appearance model generation

2.1.1 Shape representation

Shape parameterisation is an essential but not trivial task, commonly achieved through

the use of meshes. A mesh consists of a collection of vertices at specific locations and

cells defining how they are interconnected. With respect to their dimensionality, there

exist three types of meshes: contours to cover 2D areas [41–44], surface meshes to de-

scribe the surface of 3D volumes [45–47], and volumetric meshes (VM) that represent

not only the surface but also the interior of the object [48, 49].

Although meshes generally produce an efficient representation of objects, there ex-

ist applications where other representations are more appropriate. For instance, when

level sets [20] are used, objects are represented with distance maps [50, 51]. Another

type of representation is the direct intensity image within the segmented object of in-

terest [52], which provides both shape and appearance information.

(a) (b) (c) 

Figure 2.1: Example of the main three types of shape representation in 2D: meshes (a),
distance maps (b) and segmented image intensity (c).

Other approaches for shape representation are B-splines grid points [53], Fourier

surfaces [54] or medial axis [55, 56].

2.1.2 Appearance representation

The pattern of intensities in and around the object of interest is called the object ap-

pearance. Two different types of representation are found:
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Intensity on the borders (IB): This type was introduced by Cootes et al. [32] as a

mechanism to warp shapes within an image to segment the objects of interest. The

segmentation framework was named Active Shape Models and it will be explained in

Section 2.3.1. IB represents the intensity patterns around the boundary of an object.

In its simplest form, it utilises intensity profiles along the perpendicular direction to a

surface mesh or contour at each landmark location [42, 46, 57]. However, in order to

improve the description of boundaries, new methods employ rectangular patches of

pixel intensities around the points of interest [36, 44].

Intensity in the object (IO): This representation contains the intensity within an

object. It is commonly used when the object contains a characteristic texture, for

instance in face images [36, 58], or when the goal is to reconstruct a 3D shape or

image volume from one or multiple 2D scans (Section 2.3.3) [47, 59–61].

(a) (b) 

Figure 2.2: Example of the two types of intensity representation, intensity of the bor-
ders (a) and intensity inside the object (b). The whole image and the lines that represent
the shape are shown on the top and the intensity that is stored at the bottom.

2.1.3 Shape and appearance correspondence

Having selected the type of representation, it is necessary to normalise the shape to a

standard reference. This process ensures that each shape has a unique representation.

First, all the training shapes are to be described in a consistent manner. For instance,
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in the case of meshes, each shape is required to have the same number of landmarks

and these landmarks must be located in the same anatomical location. The second

part is the elimination of the global orientation, location and scale of each shape. This

second step is commonly achieved through the generalised Procrustes alignment [62].

For the definition of the landmarks anatomical correspondence, there exist different

approaches:

Manual placement: It is the most common approach for 2D images. An expert

pinpoints the landmarks in the same anatomical positions at each of the training sam-

ples [42, 43, 63–66]. The immediate extension to 3D is impractical because of the

difficulty of visually finding the point correspondence. However, it is feasible to

select a small amount of landmarks consistently across the training set, and then, au-

tomatically distribute a fixed number of points over the segmented surface with some

criterion to maintain the correspondence [67].

Mesh Deformation: A reference mesh is warped to fit each of the shapes in the

training set. Subsequently, the reference shape is changed by the mean shape of the

newly aligned set, and the process is iteratively repeated until convergence. For the

mesh warping Free Form Deformation (FFD) [46, 68] or Thin Plate Splines (TPS)

[30,47] are the usual choices. The training samples may be of different nature, usually

meshes [69] or intensity volumes [70] (binary volumes, distance maps, etc.).

Volume to volume: This procedure is fairly common in the case of 3D shapes for

SAM [52], SSM [40] and SSM together with SAM [47,61,71,72], but it has also been

applied to 2D SAM [41]. This approach requires either a reference image [47, 61] or

its segmentation [71] to be deformed to the training samples. In the case of an SSM,

the transformations are subsequently applied to the mesh that represents the reference

image to result in the training set surfaces. Observe that performing the registration on

the segmentation volumes instead of on the intensity image provides higher accuracy

but it is necessary to manually segment the whole training set, which is highly time-

consuming [60].
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Parameterization to parameterization: It employs a bijective map between the

shapes and a reference domain [73, 74]. The most common domain is a circle in

2D, and a sphere in 3D, but the most suitable one depends on the topology of the

shapes.

Population-based optimization: A common issue of previous methods is that they

are biased with respect to the reference shape used to maintain the correspondence

between objects. To overcome this limitation, an iterative process with reference

refinement is usually applied, but it is not guaranteed that the optimal solution will be

achieved. Population-based methods try to find the best parameterisation in the whole

training-set at once, so that the optimal solution is attained [75, 76].

2.1.4 Dimensionality reduction

The previous step provides a set of aligned shapes with landmarks correspondence for

SSM or an aligned set of intensities representing the interior of an object for the SAM.

Each of which could be understood as a point in a high dimensional space. Thus, the

distribution in the studied population can be described as a probability density function

(pdf) in this high dimensional space. Assuming this pdf takes the form of a Gaussian

distribution [32], we can use Principal Component Analysis (PCA) to attain the main

axes of the cloud of points. The SSM or SAM represents each case in the population

by the mean, s, and a linear combination of a set of orthonormal principal components

(PC), Φm, m = 1, . . . ,M . As a result, it is described the possible variations in shape

of appearance of the population with respect to the mean

ŝSSM = s+ bΦ (2.1)

where b represents the so-called SM parameters, which gives a compact encoding of

each shape. As a rule of thumb, the parameters b are limited to 3 times the standard

deviation, σm, of each PC m, which measures their relative influence

−3σm ≤ bm ≤ 3σm, ∀m = 1, . . . ,M.
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The aim of this restriction is to avert shapes from deforming excessively (Fig. 2.3

and Fig. 2.4). In a 1-dimensional Gaussian the limit of 3 standard deviations means

that 99.7% of the reconstruction ability is preserved. Although, in a N-dimensional

Gaussian this is not longer true, it provides a good boundary for the model parameters.

-3σ +3σ mean 

Mode 1 

Mode 2 

Figure 2.3: Example of the shape deformation given by the modes of variation of an
SSM. The figure shows the first two modes of a model created with 30 L3 vertebrae.

-3σ +3σ mean 

Mode 1 

Mode 2 

Figure 2.4: Example of the intensity deformation given by the modes of variation of an
SAM. The figure shows the first two modes of a model created with 30 L3 vertebrae.

In the literature, different techniques to perform the dimensionality reduction are

found. PCA is by far the most common technique, but it holds the assumption of

Gaussianity. This assumption is related to the definition of the optimisation problem
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that leads to PCA:

argmin
Φ,s

‖s− s− bΦ‖2 (2.2)

Three of the most common procedures were compared in the work of Fritscher et

al. [29]. They employed PCA, independent component analysis (ICA) and locally

linear embedded (LLE) to construct the models with the aim of being used to detect

femur fracture. They claimed that PCA and LLE performance was superior to that of

ICA at predicting the femur “peak-torque to breakaway” and its bone mineral density

(BMD).

Other dimensionality reduction techniques used in medical image analysis include a

combination of Gaussian distributions [76,77], multi-level component analysis (Chap-

ter 6), maximum autocorrelation factor (MAF) [78] and minimum noise fraction (MNF)

[79].

2.1.5 Combined intensity and shape models

Statistical Shape Models may be used on its own, without combining it with an SAM,

to perform different applications such as the reconstruction of 3D shapes or images

from one or more 2D scans [80, 81] or fracture risk estimation (FRE) [82–84]. How-

ever, the combination of both types of models is more common.

In the literature, three different techniques are employed to combine the two models.

Two independent models: The straightforward approach is to construct both models

independently and use them together in the application [43, 47, 66, 83, 85]. However,

this approach does not take into account the possible correlations between them.

Model of models: This is the most common approach [22, 41, 86–88]. The construc-

tion of this model requires PCA to be applied three times. As in the previous case,

two independent models are constructed. Subsequently, all the cases are described

with these two models and the model parameters are concatenated to be used as input

of the third PCA. This approach was proposed by Cootes et al. [33] in the context of

active appearance model (AAM).
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Shape and Intensity Model: This type of SM combines both shape and intensity into

one single representation. In the literature, this process is achieved through different

procedures: In the InShape model [71], shapes are parameterised using an image de-

formation fields for x,y, and z coordinates and the appearance using the image inten-

sity. In the model proposed by Yao et al. [89], a volumetric mesh (VM) is employed

with shapes being represented by the location of the barycentric coordinate of each

cell and intensities at each volumetric cell as a Bernstein polynomial function.

2.2 Categories of statistical models

Regardless the type of application for which SSMs and SAMs are used, there exist

three categories according to the capacities they provide:

Generative models: A generative model is able to create new instances of a particular

object with the same characteristics as the training population. Their main application

is in the context of segmentations [42, 90–92], providing a regularisation procedure

for the output shapes. They have been also employed for 3D reconstructions either

from one or few 2D images [48,61], or from neighbouring structures [43,93] in order

to estimate the missing information. In addition, they are simple but powerful tools to

create an infinite number of artificial shapes with the desired characteristics to perform

simulations [68].

Matching models: This category of models is able to assess the similarity between

an object, or part of it, and objects from a specific population. The most common

example is an intensity model of the borders to be used in a segmentation framework

[45, 46, 94], but models using the intensity inside the object has been also employed

[17, 95, 96].

Descriptors: The shape or appearance of an object can be described by its corre-

spondent model parameters. Since, they usually have much less components than the

original data, they may be employed to reduce the data dimensionality for compres-

sion or, more commonly, be used as features for a classifier or regressor [84, 85, 97].
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These categories are not mutually exclusive, so that SM may belong to more than

one category.

2.3 SSM and SAM applications

There exist a large number of different applications where SSM and SAM have been

applied. In this thesis, these models have been mainly employed for segmentation and

classification.

2.3.1 Segmentation

Segmentation is the process of identifying an object or region of interest in an image.

The segmented object allows the subsequent extraction of clinical parameters [26,98],

or the classification of patients, organs or tissues into different categories [47,99,100],

or even the construction of patient-specific Volumetric meshes for biomechanical sim-

ulations [101–104].

SSMs have been mainly employed as a regularisation tool for 2D and 3D segmen-

tation, so that output shapes hold the same characteristics as the training population

used to create the SSM. The segmentation process begins with a model initialisation,

consisting on the translation, rotation and scaling of an initial shape, so that, it overlaps

with the targeted shape as much as possible. This initialisation process may be either

semi-automatic [22, 43, 63] or automatic [42, 64, 71, 94, 105, 106].

After the initialisation, the shape is deformed to match the information contained

in the image. There exist different approaches using SSM and/or SAM to perform this

step.

Shape and intensity border models

This framework is characterised by the iterative process of deforming a shape within an

image using an intensity border model and regularising the output with an SSM. The

most popular example of this type of segmentation approach is Active Shape Models

(ASM) [24, 42, 43, 107]. An initial shape s is provided. Subsequently, this shape is
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deformed within an image to match the object of interest. This deformation process is

divided into three stages that are repeated iteratively until convergence:

1. Displace each individual landmark of the shape s following the normal direction

of the surface mesh at each landmark position. This process locally optimises the

fitting with respect to the SAM to obtain a new shape, sSAM. The SAM employed

in ASM does not use a dimensionality reduction procedure, it directly charac-

terises the probability density function (pdf) by the mean and covariance matrix

for each landmark intensity profile. The searching algorithm is based on min-

imising the Mahalanobis distance [32] between the extracted profile of intensities

and the computed mean profile at each landmark.

2. Find the scale, rotation and translation that minimises the distance between s

and sSAM to get the shape saligned. This process is commonly performed using

Procrustes alignment [62].

3. Project saligned into the SSM to obtain the new shape s.

b = (T−1(saligned)− s)ΦT , s̃ = T (s+ bΦ)

b̃m =


−3σm if bm ≤ −3σm

3σm if bm ≥ 3σm

bm otherwise

∀m = 1, . . . ,M.
(2.3)

where M is the number of modes, σm is the standard deviation associated to the

mode m and Φ is the matrix with all the modes. The transformation T represents

a similarity transformation (scale, rotation and translation) from the mean shape

of the model, s, to the shape at each iteration, s.

In order to increase the speed, it is a common practice to repeat the second and third

step independently until convergence, before going back to the first step.

This framework is widely used because of its simplicity and robustness. Notwith-

standing, ASM suffers from several drawbacks:

• The main limitation of the SSM is the large training dataset required to build a
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model with enough degrees of freedom. This issue may be overcome with two

different approaches:

1. Adding a relaxation step after the convergence of the ASM to allow more

degrees of freedom to the outcome of the segmentation [46, 69] (refer to

Chapter 3).

2. Using the statistical model as an energy instead of as a constraining space.

This means, a shape will not be projected onto the model space, it will rather

be penalised when is outside of the SSM space [108, 109](refer to Chapter

4).

• The intensity models employ single profiles of intensities and assume Gaussian-

ity. New approaches substitute these profiles with patches of intensities around

the points and robust classifiers to improve the detection [44, 94, 110, 111].

• The landmark displacement does not take into account the intensity around neigh-

bouring landmarks, which may improve the detection of object regions with non-

clear boundaries (Fig. 2.5).

Figure 2.5: Representation of the issue that may rise when using the standard ASM.
The white arrows show the unclear separation between an intervertebral disc (IVD)
and a muscle, which may be predicted using the separation between the IVD and the
vertebrae.

• Although ASM is robust against random outliers, it does not perform properly

when a relatively large region of the image has artefacts or noise. Thus, the correct

identification of those landmarks and subsequent elimination may improve the

results of the segmentation. In the literature, there exist different approaches to

equip ASM with a mechanism robust against outliers [96, 112–114].
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Shape and appearance model

This framework employs an SAM and an SSM to perform the segmentation. The first

and most common type is Active Appearance Model (AAM), introduced by Cootes

et al. [33]. This segmentation procedure employs a model of models (Section 2.1.5).

Similar to ASM, this algorithm is iteratively optimised. The searching algorithm is

based on minimising the squared difference between the input image (gS) and the re-

constructed appearance from the model (gM),

Error = ‖δg‖2, δg = gS − gM. (2.4)

This minimisation process is carried out by linearly relating the difference in the model

parameters δc = Aδg with the difference between the two images δg. The most

common improvement for the AAM is the technique to construct the matrixA [22,45,

115].

Although AAM is by far the most common framework, there exist other approaches

that employ different models and/or searching techniques. For instance, Fritscher et

al. [71] employed the model InShapes (Section 2.1.5) to represent the intensity and

shape, and level sets as search algorithm.

Shape model without appearance

This framework follows the same strategy as previously presented ASM. The differ-

ence lies in that the shape is deformed within the image without the use of an SAM

(Section 2.1.2). For instance, in [92] an atlas-based segmentation was employed for

this purpose, in [105] a graph cuts approach [116] was used and in [69] a group of

trained features were employed.

2.3.2 Classification

SMs have been applied to the classification of objects into different categories follow-

ing two different approaches.
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Model parameters as features

The SSM or SAM is used to represent an object that has been already segmented.

Then, these model parameters are used as features in a standard classifier, such as

neural network, Logistic Regression or Support vector machine [24–26, 29, 30].

SSM or SAM as classifier

In this scenario the classification is based on the relationship between the shape or

intensity of the object with respect to the SSM or SAM [117, 118]. The simplest ap-

proach is to create a model for each of the different classes for which the objects can

be classified. For instance, if a database contains the shape of hearts with a specific

pathology and healthy hearts, two models, SSMHealthy and SSMPathological , can be cre-

ated one for healthy hearts and one for unhealthy ones. Then, given a new case s, to be

classified, it is projected into the two models, using the method described in third step

of the ASM, to obtained sPathological and sHealthy. The classification may be computed by

measuring the Euclidean distance between s and sPathological and between s and sHealthy

and selecting the class with smaller distance.

In Chapter 6, it is proposed a new statistical model that contains different levels, al-

lowing more accurate segmentations and the possibility of simultaneous classification.

2.3.3 Other applications

2D→3D reconstruction methods

SSMs and SAMs play an important role in the reconstruction of 3D shapes and in-

tensity volumes from a single or multiple 2D scans. In this application, the models

are constructed from 3D shapes and images but they are applied to patient-specific 2D

images. The most common approach is to use a model of the appearance and minimise

the error between the 2D scans and the digitally reconstructed radiography (DRRs) of

the 3D model instance [47, 48, 59, 61, 73, 119]. DRR is a projection of a 3D volume

following a specific direction to achieve a 2D image simulating the characteristics of

the 2D scans. Another common strategy is to perform a mesh registration, adapting
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the 3D mesh to the boundaries of the 2D images [80, 81, 120–123] using the SSM for

regularisation.

Prediction

Statistical Models have been also embedded in methods to enable the prediction of dis-

eases or deformities in patients before they actually occur. These methods commonly

employ the model parameters as features in regressors to estimate the probability that

a certain patient will suffer from the anomaly. Examples of this use are found for

heart diseases [124, 125], vertebral fracture [52, 82–84] and osteoarthritis from tibia

and femur [126].

2.4 Conclusions

Statistical Shape and Appearance models (SSMs and SAMs) encode the possible vari-

ations, in shape and appearance, of objects within a particular population. This in-

formation has been proved to be valuable in the medical imaging field. For instance,

state-of-the-art methods employ model parameters to discriminate between healthy

and unhealthy hearts [127, 128] or healthy and fractured bones [93, 97, 129]. In the

area of segmentation, active shape models (ASM) have been extensively used owing

to its high accuracy and low computational time. However, ASMs come with some

inherent disadvantages such as the Gaussian assumption in the intensity model or the

increment of required training samples for the SSM with the complexity of the shapes.

In the following chapters of this thesis, new SSMs and other type of statistical models,

together with segmentation frameworks that exploit them, are introduced to solve sev-

eral of these problems. The aim is to achieve robust segmentation and classification

methods to create anatomically correct patient-specific volumetric shapes for being

used in biomechanical simulations.



Chapter 3

Segmentation of Intervertebral Disc

(IVD) from 2D MRI sequences using

Active Shape Models (ASM) with

feature-based searching

This chapter introduces a general framework for segmentation using ASM with a new

feature-based searching technique. The framework was tested on T2 magnetic res-

onance (MR) images to segment the two structures composing intervertebral discs

(IVD), the annulus fibrosus and the nucleus pulposus. However, this framework is

generic and it could be applied to other organs, or different image modalities as shown

in [130], where vertebrae were accurately segmented from computed tomography (CT)

images. However, this method segments each object independently and owing to the

small separation between vertebral processes, it was found overlaps between neigh-

bouring vertebrae. This issue led to the creation of a different segmentation framework,

explained in Chapter 4.

In the case of 2D MR protocols, 3D images are created by dividing the section of a

patient’s body into a set of slices containing a matrix of tissue voxels. In general, the

size of these voxels in the direction perpendicular to the slice is much larger than in

the other two. Thus, it is a common clinical practice to acquire images for which the

21
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slices are created following different directions. As explained in the introduction, one

goal of this thesis is to provide the intensities of the images in the segmented object,

since this information is a requirement to properly estimate the material properties.

Thus, a fusion algorithm to combine the intensities from the different views is proposed

along this chapter to decrease the size of the voxels by combining the values from the

different acquisitions.

Along this chapter, it is also introduced the first labelling of IVDs. The method only

discerns between two types, separating IVDs between those whose nucleus pulpous is

visible in MR and those which are not. In Chapter 5, a more advanced method is

proposed to label IVDs according to their degree of degeneration, which also provides

enough information to assess whether the nucleus pulposus is present in the MR image

or not.

In terms of improving the ASM framework, two different lines were followed. On

one side the searching technique is modified from the intensity boundary model to a

feature-based searching technique. On the other side, a relaxation technique is em-

ployed to provide more flexibility in the segmentation to compensate for low number

of training cases.

This chapter was adapted from the publication of the author of this thesis et al. [69].

3.1 Motivation

The intervertebral discs (IVDs) are cartilaginous tissues responsible for the spinal

movements. They lie between every two vertebral bodies (VB) to absorb and distribute

the loads that the back stands. However, they usually undergo degenerative changes

due to age, genetics and lifestyle [131], which are commonly associated with low back

pain [132].

IVDs have two well-defined parts, the nucleus pulposus, whose water content dras-

tically varies with the degree of degeneration, and the annulus fibrosus, of nearly con-

stant low water content.

Magnetic resonance imaging is considered the state-of-the-art for IVD visualisa-
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tion, since it is non-invasive and the soft tissue contrast is especially high [133]. Physi-

cians base their radiological diagnosis of disc degeneration on 2D analysis of T2-

weighted MR images, since this modality can measure water content correlated with

the degree of degeneration (Fig. 3.1).

In order to help physicians in the understanding, diagnosis, and/or evaluation of

surgical options for low back pain, biomechanical models may be employed [134,135].

In the case of the spine, a critical input is the 3D patient-specific geometries of the

IVDs, which are usually achieved by manual segmentation of the medical images [13].

Therefore, an automatic method to perform IVD segmentation can greatly ease the

modelling process. Segmentation of the IVDs may also be employed to extract medical

information such as the height of the IVDs, which is commonly used to follow-up

patients and suffer from an important inter and intra observer variability.

(a) (b)

Figure 3.1: The IVD is presented in this figure, showing one of the most common
cause of low back pain, a herniation, in (a) and its two different anatomical structures,
the annulus fibrosus and nucleus pulposus, in (b).

However, disc segmentation is a difficult task, since the annuli and muscles intensi-

ties are similar. Therefore, algorithms such as region growing [136], watershed [137]

or snakes [138] may leak to neighbour structures. In addition, low-resolution images

can occlude thin annulus walls, leaving the nucleus and vertebra connected in the im-

age, which might have similar intensity values. Furthermore, the intensity-levels vary

between different patients and along the spine, which complicates the use of Intensity

Appearance Models (IAM) [23], Fig. 3.2 shows various of these problems.

These difficulties have resulted in not much research on this field, despite the clin-

ical relevance of the 3D segmentation of IVDs. The previous work is mainly focused

on the 2D annulus fibrosus segmentation from mid-sagittal slice [16, 21, 57, 139–143].

Seifert et al. [144] introduced a 3D segmentation algorithm for cervical IVDs and
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Figure 3.2: Difficulties of IVD segmentation. (a) The white arrow shows a thin annu-
lus’ wall, which may hardness the segmentation of the IVD, since the intensity of the
nucleus and vertebra are similar in this case. (b) White arrows point at the intersection
between the IVD and the muscle, which is not clear since the intensity of both tissues
are similar.

other cervical soft tissues. Their approach is based on segmenting each MR slice in-

dependently and then, merging them to achieve the 3D segmentation. However, the

evaluation of the method was performed in the 2D segmentations, and resulted in a

mean error higher than a 1.5 pixels.

Recently, the author of this thesis et al. [23] proposed a method based on Active

Shape Models (ASM) to achieve 3D segmentations. However, it was only applied

to L3-L4 discs and it performed poorly on degenerated IVDs. Furthermore, it was

necessary to manually pinpoint the centre of the IVDs. To solve this last problem

Neubert et al. [145], first detected the spinal cord in order to place the initial position

of the IVDs and then they were segmented using ASM. Although they reported good

accuracy, the evaluation was performed on a small database of 14 healthy subjects. In

general, processing diseased IVDs is substantially more challenging than healthy ones.

Another recent work based watershed approach was proposed by Chevrefils et

al. [146] to reduce the over-segmentation of their previous work [137], although not

completely.

The work of Haq et al. [147] is an interested case of using mechanical models for

segmentation. In their paper, a simplex model is used to deform an ellipsoid mesh

into the image intensities using the Newtonian motion equation to move the vertices,

constrained by an internal energy to enforce smoothness. This method follows the

same principal as snakes and therefore has the same weakness, which is the leaking

problem to the muscles.

The use of probabilistic approaches to perform localisation and then segmentation
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has been also tackled [148, 149]. These methods have two steps: First the probability

of each pixel to be the centre of an IVD is computed. Second, the probability of the

pixels surrounding the centres to be part of the IVD is calculated. The main issue

is that this approaches employ only intensity similarity to find the boundaries. Thus,

leakage is prompt to happen in the coronal direction. To solve this issue, in [149] the

location of the pixels with respect to the centre was employed as an extra information.

However, it is not explained how this relative distance information is used.

To the best of the knowledge of the author of this thesis, no method has been pro-

posed to handle 3D MR segmentation of the nucleus pulposus in humans. However,

there exists the work of Bechara et al. [150], in which the nucleus pulposus of rabbits

were semi-automatically segmented. The method requires the user to draw a square

around the IVD and select the best isoline that defines the nucleus.

The proposed pipeline to obtain 3D segmentation of IVD’s nuclei and annuli em-

ploys T2-weighted MR images (Fig. 3.3). This type of protocol has the drawback of a

large inter-slice space.

Thus, a fusion algorithm that creates high-resolution volumes (Section 3.2.1), from

various acquisitions, was included by improving the work of Yao et al. [151].

The segmentation technique used for IVD segmentation is based on Active Shape

Models (ASM). This framework employs an intensity energy explained in section

2.3.1. However, this standard procedure do not provide good results with the em-

ployed image modality. The variation of the MR intensities with respect to the patients

is very different to that of a Gaussian shape.

In the literature, there are different approaches to deform a shape within the inten-

sities as part of an ASM-based segmentation method [36, 92, 105, 152, 153]. Among

these techniques, feature-based approaches has been proven to be accurate and reli-

able [111]. These methods are based on extracting a patch of intensities surround-

ing the point that is to be displaced. Subsequently, a group of features is computed,

such as SIFT [153, 154], Haar-features [44] or statistics over the histogram of inten-

sities [36, 152]. Then, a classifier [36, 152, 153] or a regressor [44, 111] is used to

estimate the best position to move the point. In order to eliminate the use of a classifier
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or a regressor and speed up the process, herein it is proposed a new algorithm, based

only on a set of features.

The segmentation using ASM is followed by a relaxation step (Section 3.2.5) to

increase the accuracy of the results based on a mesh to mesh morphing based on B-

splines [155]. Although the segmentation procedure is finalised, in the case of nucleus

segmentation, an additional step is required to detect whether the nucleus is present or

not in the image (Section 3.2.6).

The main contributions of the research explained in this chapter are:

• An improved algorithm to fuse coronal and sagittal MR acquisitions.

• An algorithm to select the best features to segment different tissues.

• A detection step to discern whether the nucleus is present or not in an image.

• A relaxation step based on a non-rigid registration using B-Splines.
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Figure 3.3: Pipeline of the method. The Statistical Shape Model (SSM) creation is
depicted in the top part of the figure, whereas the Segmentation procedure is below the
former.
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3.2 Annulus and nucleus segmentation

3.2.1 Image Fusion

Due to the large spacing between slices in common protocols of MR images, an algo-

rithm to fuse coronal and sagittal acquisitions was developed. The outcome is a denser

volume with isotropic voxels of 0.68×0.68×0.68 mm3. The algorithm is based on

the work of [151], who developed a fusion algorithm based on a bi-linear interpola-

tion. The main drawback of their approach is the requirement of a linear correlation

between the intensity of the input volumes, which is not the case in MR images, since

they suffer from local intensity bias [156]. Thus, herein it is proposed a new non-local

rescaling technique, based on the intensities of overlapping voxels (Fig. 3.4) to over-

come this problem. An extension of the bi-linear interpolation technique for the case

of having more than 2 images is presented in the Appendix B.

The intensity rescaling step starts by dividing the sagittal and coronal acquisitions

into cubes of the size of the slice gap, centred in the intersection between the two MR

image slices. For each cube, the mean value of the ratio between the overlapping voxels

(sagittal over coronal) is computed (Fig. 3.5) and stored to create a matrix of weights.

This matrix is used to rescale the coronal volume by multiplying the intensities inside

each cube by the correspondent weight.

3.2.2 Image segmentations and ground truth.

All the manual segmentations were delineated using the fused images, presented in

the previous section, since they provide clearer edges in all directions. I performed

the segmentations of the 295 annuli and nuclei using the open source software ITK-

SNAP [157], under an expert supervision. These segmentations were used as a ground

truth (GT) for measuring the accuracy of the segmentations. In order to evaluate the

intra and inter-observer variabilities, a group of 10 patients (50 nuclei and annuli) was

selected (further information is provided in Section 3.4.2).
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Figure 3.4: Interpolated coronal slice using different approaches. (a) From only a
sagittal volume, the resolution is 0.68×4 mm2, which makes the boundaries look
blurred. (b) Image fusion algorithm without the intensity rescaling. (c) Image fusion
with intensity-rescaling and bi-linear interpolation.

3.2.3 Statistical Shape Models (SSM).

SSMs were introduced in Chapter 2. These models are powerful tools to restrict the

object shapes to the most likely outcome within the variability of a certain population.

For the IVDs of the lumbar spine, 10 different SSMs were built, two for each indi-

vidual IVD (one for the annulus and one for the nucleus).

As common practice, the least influential modes are usually discarded, since the

SSM usually contains noise. The simplest mechanism is to eliminate those eigenvec-

tors whose eigenvalues contribution is lower than a certain threshold, commonly 5%

or 10%. With the latter, it results in 21, 21, 20, 19, 16 modes from L1-L2 to L5-S1,

respectively. The first two modes of variation of the L3-L4 IVD are shown in Fig. 3.6.

3.2.4 Segmentation process: ASM with feature-based searching

The segmentation process follows the ASM framework explained in Chapter 2.3.1.

A mesh is deformed within the image intensity and projected onto the SSM space,

iteratively until convergence. In addition, a relaxation step was added after the con-

vergence of the ASM step, in order to allow the segmentation to be outside the SSM

space, owing to a limited training set.
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Figure 3.5: Fusion algorithm scheme. Sagittal and coronal slices are located in the
same reference system. The white squares in the axial slice represents the cuboids
used for the interpolation. For each cubic, a weight is computed using the mean of a
vector of values. This vector contains the ratio between the sagittal and coronal voxel
intensities, when they both overlap in the same spatial position.

As explained in the introduction 3.1, the standard ASM does not work properly,

since the intensities in the MR images vary across the patient population and spinal

position. Thus, herein it is proposed a new algorithm to compute the energy needed

for the point displacement, before the SSM projection. This energy is based on the

following features or sub-energies:

1. Directional derivative along the normal profile pointing outwards. This fea-

ture searches for changes from high to low intensity values in the image.

2. Directional derivative along the normal profile pointing inwards. This feature

searches for changes from low to high intensity values in the image.

3. Intensity in the profiles. This feature searches for the minimum intensity in the

profile.

4. Opposite of the intensity profile. This feature searches for the maximum inten-

sity in the profile.

5. Distance to the initial point in each iteration. This feature serves as a spring

energy, which penalises large movements.
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Figure 3.6: The mean shape and the first two modes of variation of the SSM, varying
between −3 and +3 standard deviations (σ).

6. Mahalanobis distance to the mean intensity profile. This feature seeks the dis-

placement that achieves the minimum mahalanobis distance between the profile

and a trained mean profile [32].

The weighted average of the features is used to calculate the energy of every can-

didate position, which is selected as the one with the minimum energy. These weights

were calculated with an algorithm that searches the values that maximise the measure-

ments explained in Section 3.4.2.

This algorithm is divided into two stages and is optimised using a multi-resolution

greedy approach to speed-up. In the first stage, the weight of each feature is individ-

ually optimised using m iterations. The first time a set of n numbers between 0 and

1 ( 1
n+1

, 2
n+1

, · · · , n
n+1

) is selected. The whole training set (Section 3.4.2) is segmented

using each of these n values as feature weight throughout each iteration of its optimi-

sation. The value that provides the highest accuracy is selected for the next iteration.

In the following m−1 iterations, the set of n numbers will range between the previous

and the next values of the selected one.

In this algorithm, the error between the automatic segmentation and the GT was

selected as the percentile 95 of the surface-to-surface distance. In addition, the values

for m and n were selected as a trade-off between speed and accuracy, n = 4 and

m = 3. This values provide an error below 1.6%, higher accuracy does not provide
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Algorithm 1 Features and weight selection
1: - i represents each feature.
2: - j represents each possible weight for feature i.
3: - n number of possible weights for the features.
4: - selection{i} ← true in all positions. It contains the selected features.
5: - BW{i} ← the best weight for each feature
6: - BCI ← Minimum error between the automatic segmentation and the GT
7: between segmented and ground truth meshes.
8: - CW{i} ← current value of the weights for the features.
9: for iteration from 0 to 1 do

10: - IP{i} ← 0 initial position for each feature.
11: - EP{i} ← 1 end position for each feature.
12: for Each scale m do
13: for each feature i do
14: CW{i} ← BW{i} Copy best weights to the current weights.
15: step← EP (i)−IP (i)

n+1
16: if selection(i) == true then
17: for j = 1 to n do
18: CW (i)← IP (i) + j ∗ step
19: Compute the segmentation of the training set
20: using features when selection == true, and weights = CW.
21: CI ← Percentil 95 of the surface-to-surface distance
22: between segmented and ground truth meshes.
23: if CI < BCI then
24: BCI ← CI
25: BW (i)← CW (i)
26: IP (i)← CW (i)− step
27: EP (i)← CW (i) + step
28: for each feature do
29: if BW (i) < 0.05 then
30: selection[i]← false
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visual difference in the segmentations.

Once, the whole set of weights is achieved, they are sorted and normalised. Then,

an accumulative summation is performed and weights, whose values are over 0.95,

meaning their contribution is smaller than 5%, are removed and the process is repeated

with only the selected features.

The algorithm selected three features for the annulus, the directional derivative

pointing outwards, the intensity in the profile, and the distance from the current po-

sition. Therefore, the cost function to minimise in each profile is:

pnewi = argmin(αI(vi) + βn̂(s) · ∇I(vi) + γE(vi,pi)) (3.1)

Where pi is the old position of the mesh point i and pnewi is the new one, vi is a vector,

whose values are the global positions along the normal direction of the surface mesh

at point pi, I is the image intensity and n is the direction of pi from inside to outside

the IVD. E(u, v) represents the Euclidean distance between u and v, u · v is the inner

product. The trained weights were α, β and γ .

In the case of the nucleus segmentation, the algorithm did not select the Euclidean

distance and the directional derivative was selected pointing inwards instead of out-

wards.

Having displaced all the points of the mesh, a shape s is created and is then projected

on the SSM space as explained in Chapter 2.3.1.

3.2.5 Relaxation step

The use of SSMs has the drawback of requiring a large training shapes to achieve a

model with enough degrees of freedom. To overcome this limitation, in this thesis it is

proposed to use a relaxation step in order to improve the segmentation result of those

IVDs whose shape is out of the SSM generalisation ability. This step is similar to the

one proposed in [46], but using B-splines instead of a connected graph smoothed by

an optimal graph-searching algorithm.

This relaxation step follows the same procedure as the above-mentioned segmen-

tation algorithm. However, instead of projecting the shape into the SSM space, it is



33 3.2 Annulus and nucleus segmentation

projected into the B-splines space, whose degree of freedom is higher.

The number of steps was set up to two for the annulus and six for the nucleus,

because further iterations did not improve the results on the training set.

3.2.6 Nucleus detection

Having segmented nucleus and annulus, it is necessary to verify whether the nucleus

exists or the statistical model created a shape, when no boundaries were found (Fig.

3.7). The classification between nucleus and no-nucleus was computed by calculating

the ratio of the mean intensity inside the nucleus and that inside the annulus. When this

value was greater than a threshold, it was considered to be a real nucleus and discarded

otherwise.

Nucleus Intensity − Annulus Intensity
Nucleus Intensity

> threshold (3.2)

(a) (b) (c) (d) (e) 

Figure 3.7: Example of the five different degrees of IVD degeneration, I to V going
from (a) to (e). The degree of degeneration is related to the nucleus intensity.

The threshold was visually selected by choosing a point in the elbow region of the

ROC curve. Equation 3.2 was used, selecting thresholds from 0 to 1, with a step of

0.05. Plotting Sensitivity and Specificity with different thresholds gave an area under

the curve (aROC) of 0.98 (Fig. 3.8).

Specificity =
FP

FP + TN
Sensitivity =

TP

TP + FN
(3.3)

TP, FP, FN and TN stand for true positive, false positive, false negative and true

negative, respectively.



Chapter 3: Segmentation of Intervertebral Disc (IVD) from 2D MRI sequences using Active Shape
Models (ASM) with feature-based searching 34

Figure 3.8: ROC of the nucleus detection. The black points represent the obtained
values with a defined threshold, which goes from 0 to 1 and with a step of 0.05 . The
points at (0,0) and (1,1) were extrapolations, since there was no threshold giving such
values. The grey circle represents the selected threshold (value = 0.2).

3.3 Data

The employed database consists of T2-weighted MR coronal and sagittal acquisitions

of 59 human lumbar spines. 30 of them were collected using an open 0.4T MR ma-

chine (Hitachi, Twinsburg, OH) at the National Center for Spinal Disorders (NCSD)

located in Budapest, Hungary. The remaining 29 images were acquired with a 1.5T

MR machine from the CETIR Grup Medic (Barcelona, Spain). Patients were 33 males

and 26 females with a mean age of 40 (age interval: 27-62 years). Those patients

were selected for participating in the European MySpine project [34]. This project re-

quired patients with low back pain (LBP), but without having diseases or deformities

that highly alter the normal shape of the spine, such as high degree of scoliosis. The

study design received approval of the institutional review board and written informed

consent was retrieved from all subjects.

All the images have a resolution of 0.68×0.68 mm2 and a spacing between slices

of 4.0 mm or 4.4 mm when collected from NCSD or CETIR, respectively.

Pfirrmann classification [158] was employed to group the IVDs by their degree of

degeneration (grades I to V). The total number of discs was 295 and the number per

degree of degeneration and position is presented in Table 3.1.
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Table 3.1: number of IVDs per position and degree of degeneration.
Lumbar Degree of degeneration
segments I II III IV V

L1-L2 5 23 29 2 0
L2-L3 5 25 24 5 0
L3-L4 12 18 20 9 0
L4-L5 6 7 21 23 2
L5-S1 2 9 18 21 9
Sum 30 81 113 60 11

3.4 Results

3.4.1 Implementation details

The proposed framework employs:

• the weights for the annulus features: 1.0mm/in for the directional gradient,

0.5in−1 for the intensity and 0.3mm−1 for the distance feature.

• the weights for the nucleus: 1.0mm/in for the directional gradient, 0.4in−1 for

the intensity of nucleus features.

• two SSMs per IVD, one for the Annulus and one for the nucleus. Each of them

with 1200 landmarks.

• the number of modes for each SSM was selected as the number that keeps 95%

of the total variation. This results in 21, 21, 20, 19, 16 for the annuli and 26, 24,

22, 19, 18 for the nuclei.

• a B-Splines grid of 10 × 8 × 6 points.

• The criteria to stop the segmentation was that 99% of the landmarks do not move

more than 0.2 times the size of a voxel in the direction of the normal at the specific

landmark. This criteria resulted in 10 to 15 iterations. In addition, the maximum

number of iterations were set to 20.

• The size of the profiles was set individually for each landmark p of the mesh. In

the first iteration, it was set to 15 voxels in the direction pointing outwards and
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min(15, a) voxels pointing inwards. The value a is half of the number of voxels

from p to the intersection of the mesh and a line following the normal direction

of the mesh at p. In the last iteration, they were set to 4 voxels inwards and 4

outwards.

• The number of resolutions was kept to one, since the initialisation already locates

the IVDs in a good location.

• The step size for the relaxation step was 3 voxels inwards and outwards.

where the unit in represents the unit of the image intensity.

3.4.2 Evaluation of the method

Evaluation metrics.

Dice Similarity Index (DSI) [159] between the segmented shapes and ground truths

were computed to evaluate all the experiments.

DSI =
2× (GT ∩ SM)

GT + SM
× 100% (3.4)

Equation 3.4 defines the DSI measurement, where GT represents the Ground Truth and

SM stands for the Segmented Mesh.

In addition, the surface-to-surface distance from the segmented shape to the GT

was employed for the evaluation. The mean absolute value (MASD) and the percentile

95 (95-p) were computed from this measurement, as well as the Hausdorff distance,

which represents the maximum surface-to-surface distance.

The set of 59 patients was divided into two sub-groups, a training set (29 patients)

for the features, weights (Section 3.2.4) and the threshold selection (Section 3.2.6) and

a testing sets (30 patients) for the evaluation of the algorithm. Then, leave-one-out tests

were performed over the testing set. For each IVD in the testing set, an SSM was built

with all the cases, in both the training and testing sets, except the case being evaluated.

In addition, the MASD and 95-p were computed for the reconstructed IVD and

ground truth. A reconstruction is defined as the best instance of an SSM for a particular
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ground truth. This measurement provides the best result that the SSM is capable to

produce and therefore, segmentations using only an SSM are upper bounded to this

value.

Inter- and intra-observer variabilities.

The intra- and inter-observer variabilities provide an estimation of the ground-truth

reliability. Due to the amount of time that a 3D manual segmentation requires, the

evaluation of these two parameters was performed in a sub-set composed of 5 patients

from each hospital (set A1). The same expert that segmented the 295 annuli and nuclei

segmented the subset of 50 annuli and nuclei once more (set A2). And other two

clinical experts segmented the same 10 patients (set B and set C). For each measure,

presented in Section 3.4.2, the intra-observer variability was calculated using the set

A1 as ground truth and set A2 as the segmented version, and vice versa and then,

taking their mean. The inter-observer variability was attained by following the same

procedure with set A1, set B and set C. Then, all the possible combinations among

them were computed and the result was the average.

The computation of the inter- and intra-observer variabilities requires the selection

of the most adequate sub-group of patients. The selection criterion was the group of

patients that best represents the distribution of disc degeneration in each spine segment

across the population. The search of this group was performed employing a forward

sequential feature extraction algorithm [160].

Experiments to evaluate each algorithm component.

In order to evaluate the performance of each part of this framework, the accuracy

measures from Section 3.4.2 were computed in the following versions of the algorithm:

1. Complete pipeline: The measurements for this evaluation were computed in the

testing dataset using the fused volume, the set of trained features and the relax-

ation steps.

2. Complete pipeline except fusion: The fused image was substituted by the sagittal
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volume, because it provides better visualisation than the coronal acquisition.

3. Complete pipeline except the relaxation step: The relaxation step was not per-

formed.

4. Complete pipeline without the SSM: The mesh shape was every time projected

into the same B-spline space as in the relaxation step.

5. Complete pipeline without the trained features: The Intensity appearance model

proposed by [32] was used instead of the trained features.

The first experiment was compared to the other four using a Two-Sample t-test.

3.4.3 Quantitative and Qualitative Evaluation of the method

The accuracy of the segmentation in the complete pipeline (first experiment), for both

annulus and nucleus, is presented in Table 3.2. Fig. 3.9 presents a comparison among

all the experiments presented in Section 3.4.2, using the measures introduced in Sec-

tion 3.4.2. These experiments were performed for both the annulus and nucleus. How-

ever, only the results of the annulus are shown in the figure, since the performance of

the algorithm in both anatomical structures follow the same pattern with respect to the

dataset. Therefore, conclusions extracted from the results of the annulus segmentation

can be applied to that of the nucleus.

In addition, Fig. 3.10 presents examples of the segmentations with the whole frame-

work.

Table 3.3 shows the reconstruction error, which is the error of the best possible

outcomes using the SSM with respect to the ground truth.

Table 3.4 presents the inter- and intra-observer variability of the manual segmenta-

tions.

Table 3.5 presents the sensitivity and specificity of the classification between the

existence or non-existence of the nucleus in the MR image.
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Table 3.2: Accuracy of the IVD (annulus and nucleus) segmentation per degree of
degeneration (I to V) with the full pipeline. DSI stands for Dice Similarity Index,
MASD is the mean absolute surface-to-surface distance, 95-p is the percentile 95 of
the surface-to-surface distance and Hausdorff is the Hausdorff distance.

Structure Error measure I II III IV V Global

Annulus

Mean DSI 88.5% 89% 89.4% 86.4% 82% 88.4%
2xSTD of DSI 9.1% 5.7% 4.6% 7.4% 12% 7.2%
MASD (mm) 0.72 0.66 0.64 0.7 0.68 0.68

95-p(mm) 1.96 1.82 1.73 1.9 1.87 1.84
Hausdorff(mm) 5.24 4.4 4.3 4.71 5.57 4.63

Nucleus

Mean DSI 74.8% 82.5% 83.9% - - 77.9%
2xSTD of DSI 23.8% 24.3% 27.4% - - 32%

Mean ND (mm) 1.55 1.67 2.11 - - 1.88
95-p (mm) 5.47 5.78 7.44 - - 6.63

Hausdorff(mm) 9.05 9.44 9.63 - - 8.31

Table 3.3: Annulus fibrosus reconstruction error per degree of degeneration. This table
shows the average errors across the testing dataset, between the best possible outcome
of the SSM for a particular IVD, and its ground truth.

Error measure I II III IV V Global
MASD (mm) 0.48 0.52 0.53 0.57 0.65 0.55

95-p (mm) 1.25 1.35 1.40 1.51 1.76 1.46
Hausdorff(mm) 2.77 3.18 3.18 3.36 4.2 3.34

Table 3.4: Intra and inter-observer variability of the ground truth of the annuli and
nuclei.

Error measure Annulus Nucleus
Intra Inter Intra Inter

Mean DSI 95.1% 85.4% 93.1% 79.3%
2 x STD of DSI 6.4% 8.6% 7.2% 30.8%
MASD (mm) 0.08 1.14 0.22 1.81

95-p (mm) 0.4 3.17 0.6 3.77
Hausdorff(mm) 2.6 5.7 3.8 7.1
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(a) (b)

Figure 3.9: Experiments of the evaluation of each component of the algorithm. The
abscissae correspond to different experiments. They are organised in the same order
as they were explained in Section 3.4.2. The two asterisks over the last experiments
shows the t-test comparing with the results from the complete pipeline provides a p <
0.01. The rest of the experiments were correlated.(a) Mean DSI as a bar diagram and
the standard deviation represented as black line. (b) Mean surface-to-surface distance
(black), the 95-percentil (dark grey) and the mean Hausdorff distance (light grey). Note
that distances are in millimetres, where the DSI measurements are in percentages.

Table 3.5: Detection rate of the IVD nuclei by visual inspection provided by three
experts and the proposed automatic approach. The gold standard was defined as the
consensus detection by the three experts using major voting.

Measure Observers Automatic method
First Second Third

Sensitivity 71.43% 76.19% 80.95% 92.1%
Specificity 8.51% 2.27% 5.84% 3.12%

3.4.4 Computational Cost

The results were obtained using a PC with Intel(R) Xeon CPU E5620 at 2.40 Ghz with

8 GB of RAM and running a 64-bit Windows 7 operating system. All the code was

written in C++ using the libraries from the Insight Toolkit [157] for mesh and image

basic manipulation. The averaging elapsed time was 61 seconds per patient.

3.5 Discussion

Five different measures were computed for an evaluative purpose: the mean and the

approximate 95% confident interval of the DSI, the mean absolute surface-to-surface
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(a) (b) (c) (d) (e) (f) 

Figure 3.10: The figure shows the results of the algorithm as well as the ground truth
for the annulus and nucleus segmentation in three different patients and in two different
slices, mid-sagittal (a),(b),(c) and mid-coronal (d),(e),(f). The discs degeneration, from
L1-L2 to L5-S1 are 3 3 3 3 5, 3 4 4 4 3, and 3 3 2 2 2, from left to right. The segmented
annulus is drawn in red, whereas the ground-truth, in green, the segmented nucleus is
in yellow and the ground-truth, in light blue.

distance (MASD), the percentile 95 (95-p) and the Hausdorff distance. The 95% con-

fident interval of the DSI was approximated as the mean ±2×STD (the Standard De-

viation).

The first experiment (first bar in Fig. 3.9) shows the accuracy of the complete

pipeline. The above-mentioned measurements of this experiment are presented in Ta-

ble 3.2, which shows that the proposed method is stable with respect to the degree

of degeneration. It is worth mentioning that, since DSI depends on the volume of

the objects and the degree V means the IVD collapsed, one voxel difference between

the ground truth and the segmented IVD implies a reduction of this measure larger

than when the IVD has less degree of degeneration. On the other hand, the surface-

to-surface distance does not have this effect as it is shown in the table. This global

accuracy is also presented in the first bar of Fig. 3.9.

The second experiment (second bar in Fig. 3.9) was performed to evaluate whether

the trained SSM contains enough information to avoid the fusion step during segmen-

tation. The algorithm was applied on images built from sagittal acquisitions instead

of using fused images. In both cases, however, the SSM was built from manual seg-

mentations of fused images. Since, a Student t-test over the results on the first and
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second experiments showed no statistical difference and no clear visual differences

were found, it was concluded that fused images does not introduce significant im-

provement in the segmentation procedure. However, this step is essential to extract the

correct intensities of the MR images and with that compute the material properties for

the models.

The segmentation accuracy without the relaxation step (Section 3.2.5) is shown in

the third column of Fig. 3.9. Although the difference in accuracy is not statistically

significant, this step is important in some cases. For instance, in Fig. 3.11, the out-

put of the statistical model (white contour) does not cover small deformations, which

usually occur in high degenerated discs or in those with a peculiar shape. The used

database contains around 10% of cases with these characteristics and only 5% of the

points in each shape belong to these deformations. Therefore, this problem does not

significantly influence the over-all evaluation but it matters for attaining highly accu-

rate results.

Figure 3.11: Segmentation result with two B-Spline relaxation steps (red contour) and
without (white contour).

Notwithstanding, the employment of B-Spline to smooth the segmentation cannot

overrule the SSM step, as it is demonstrated in the fourth experiment (fourth bar in Fig.

3.9). B-splines ensures highly detailed segmentation by allowing more flexibility in the

deformations. However, without SSM, some segmentations leak into the neighbouring

structures (Fig. 3.12) attaining lower accuracy in these cases. A segmentation was

considered to have a leakage problem only when the size of the leakage was larger

than the half of the height of a standard IVD. From visualisation, it was confirmed

that non-accurate segmentations due to leaking problems were reduced around 7 times
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by using the SSM. Therefore, the best performances were obtained by allowing small

deformations with B-splines after the segmentation with the SSM converged.

Figure 3.12: The use of the statistical model allows the method to properly recover
the shape of the IVD (a). However, when it is not used the segmentation leaks to the
muscle structure (b).

The last experiment presented in Section 3.4.2, was performed to evaluate the im-

portance of the trained features. From the last bars in Fig. 3.9, it can be inferred that

the use of these features has the main contribution to the high accuracy of the results.

This conclusion is also evident in Table 3.3, since the magnitude of the reconstruction

errors (Section 3.4.2) is similar to those obtained with the proposed method. As afore-

mentioned, the large errors given by the Hausdorff distance were due to herniations,

protrutions and other deformations, as well as less common shapes that were faded

away in the trained SSM due to their low rate of occurrence.

A qualitative evaluation of the segmentation is presented in Fig. 3.10, which con-

tains the sagittal and coronal views of three different patients with different types of

degenerations and shapes. This figure also shows the nucleus segmentation, whose

quantitative evaluation is presented in Table 3.2. This table presents the results using

the complete framework, where it may be observed lower accuracy than in the case

of the annulus, mainly due to the intensity variability and difficulty to find the borders

of the nucleus. Notwithstanding, the results are proved to be accurate, since the inter-

observer variability (Table 3.4) is close in magnitude to the results obtained using the

automatic method. In the case of the annulus, the segmentation error was lower than

the inter-observer variability.

Furthermore, the evaluation of the threshold selection for the nucleus existence

(Section 3.2.6) is compared with the inter-observer variability of 3 experts. The gold

standard was selected to be the most voted value (exist or not) for each nucleus and



Chapter 3: Segmentation of Intervertebral Disc (IVD) from 2D MRI sequences using Active Shape
Models (ASM) with feature-based searching 44

this was compared with the three experts’ evaluation as well as the automatic method

(Table 3.5).

If the image resolution is considered, the performance of the proposed method is

higher than those in the literature [145–147, 149]. However, the database employed

by [146] contains patients with scoliosis, and therefore, it is more difficult to achieve

high accuracy. On the contrary, [145] used only healthy subjects for the experiments,

thus did not tackle IVD deformities. This information is summarised in Table 3.6.

Table 3.6: Comparison with state-of-the-art methods. Healthy and unhealthy repre-
sents a database with cases of all degeneration grades.

Authors Error Measures Type of Image
DSI MASD database resolution(mm3)

Chevrefils et al. [146] 77% - Scoliotic 1× 1× 1
Neubert et al. [145] 89% 0.55 mm Healthy 0.34× 0.34× 1

Chen et al. [149] 86% 1.3 mm Healthy and unhealthy 1.25× 1.25× 2
Haq et al. [147] - 0.61 mm Healthy and unhealthy 0.5× 0.5× 0.9

Proposed Method 88% 0.68 mm Healthy and unhealthy 0.68× 0.68× 4

3.5.1 Limitations

One limitation of the presented method is the need of manual intervention for select-

ing the centre of the IVDs in the mid-sagittal view. To overcome this problem, any

automatic IVD centre detection algorithm may be used [27, 28, 161, 162].

Another important limitation of the proposed method when used in multi-object

structures such as vertebrae is that each object has its own SSM. Thus, when these

objects are too close to each other overlaps may occur. Furthermore, the shape infor-

mation that each object contains about its neighbours is lost with the current strategy.

All these issues are handled with the framework that is presented in Chapter 4.

3.6 Conclusions and Future Work

This chapter focuses on the segmentation of 3D intervertebral discs in T2-weighted

MR images, which is the best modality for visualizing IVDs. However, the segmenta-

tion method may be applied to any other type of object. The method starts by merging
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coronal and sagittal MR acquisitions to achieve a dense volume, three trained features

and a statistical model were used for the segmentation stage and then, a relaxation step

based on B-splines was applied. It was evidenced that the use of trained features pro-

vides the highest increase of accuracy among all the components of this method with

respect to the standard ASM. On the contrary, the segmentation of volumetric data ob-

tained via multi-view fusion introduced little improvement compared to only sagittal

view. However, it is important to employ fusion to improve the image quality for man-

ual segmentation, based on which the SSM was built. This statistical model contains

the relationship between different parts of the IVDs and therefore, it was key to reduc-

ing the chance of the mesh leaking into neighbouring structures, but at the cost of a loss

in accuracy. This last drawback was overcome with the relaxation step, which allows

uncommon shapes, such as protrusions, or rare bumps, to be segmented. In the over-

all, this method is ready to be used in a clinical environment to create patient-specific

models for any type of medical applications.

Several lines of research may be followed to further improve this method. First, the

addition of new features, which could be trained with the same procedure introduced in

Section 3.2.4. The second area of research is the extension to a multi-object approach

in order to take into account the relationship between objects, since the shape and

pose of the different IVDs are correlated. A novel framework that follows this idea

is presented in the following chapter (Chapter 4). Finally, if the inter-slice spacing is

really large, one could resource to SSM fitting strategies, as that presented in [121],

that deals with sparse data. Unfortunately, since the material content of the IVDs is

related to the intensity of the MR images, this line of research will not be followed

along this thesis.
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Statistical Interspace Model (SIM) and

its application to articulated 3D Spine

Segmentation from CT data enforcing

correct spinal geometry

In the previous chapter (Chapter 3) was introduced a segmentation framework that fol-

lows the strategy of ASM. The method modifies the standard intensity model, used to

warp the mesh, for a feature-based searching technique. This method also includes

a relaxation step to allow shapes to be outside the SSM variational space. Although

it is a generic framework that provides accurate vertebra segmentation [130], the re-

sults did not fulfil all the properties required to be used in biomechanical simulations.

The main issues were overlaps between vertebral processes and excessive separation

between IVDs and vertebrae, which are translated into unrealistic geometries. In this

chapter, a new segmentation framework is introduced to solve these issues. The pro-

posed method is based on combining the shape information encoded in the SSM and a

newly proposed Statistical Interspace Models (SIM). The latter includes the knowledge

about the space between objects, interconnecting pairs of vertebrae.

In terms of solving drawbacks of the ASM, the proposed framework studies the use

of SSM as an energy, so that shapes are not forced to remain in the SSM space. This

46
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results in more flexibility in the segmentation that compensates for a low number of

training cases. In addition, this framework allows pathological cases to be accurately

segmented with SSMs trained with healthy cases.

This chapter was adapted from the publication of the author of this thesis et al.

[109].

4.1 Motivation

Statistical Shape Models (SSM) [32] are commonly employed to extract the shape

characteristics of a certain population. However, the direct use of such models to char-

acterise multi-object or complex structures requires a large training dataset to properly

represent new cases. The reason is that not only the shape of each individual sub-

structure must be modelled, but also the relative positions and orientations among all

of them. A possible solution is to use an individual SSM per object. However, this

strategy ignores the inter-relationships between them, which can involve both shape

and pose, especially for the neighbour structures. This problem may be solved by the

use of conditional or hierarchical models [93, 163] that contain information about the

shape inter-relationship between objects. However, these approaches do not specifi-

cally model the variability of the regions and relative positions between near-contact

structures in neighbour objects. This is reflected by the appearance of:

• Overlaps.

• Excessive separation of neighbouring structures.

• Unrealistic orientations between neighbouring objects.

To solve these issues, this chapter introduces a new statistical model coined statisti-

cal interspace model (SIM), introduced in Section 4.4, embedded into a new segmen-

tation framework, Section 4.5. SIM directly addresses the neighboring relationship

between regions in different objects (or even in the same) of a multi-object structure

by learning the statistical distribution of the interspace between them. SIM completely

avoids overlaps, and imposes soft constrains on the acceptable poses and shapes.
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This model may be applied in different applications concerning segmentation, reg-

istration, reconstruction, etc. For example, it may be employed to model the interspace

between the two hemisphere of the brain, to restrain the separation between articulated

bones, to control the relative position of the annulus and the nucleus of the Interverte-

bral discs (IVDs) or to maintain under control the separation between the two lungs to

achieve realistic configurations, among possible applications.

As proof of concept, the proposed framework was tested on vertebra segmentation,

since they are complex bodies (Fig. 4.1) that form a multi-object structure when com-

bined to constitute the vertebral column. The aim is not only to provide high accurate

segmentations but also to handle the problem of inter-process or vertebral body over-

lap (Fig. 4.2) as well as to avert unrealistic configurations. This issue is important for

a range of application such as patient-specific biomechanical modeling [164, 165] or

computer-assisted spine surgery [166]. For biomechanical models the correct defini-

tion of the processes and its correct geometry are essentials to perform realistic simu-

lations; even high accurate segmentation will not be acceptable, if they have overlaps.

In spinal fusion surgery, the correct delineation of processes and correct definition of

the interspace between them is crucial for the precise placement of the screws.

The remaining of the chapter is structured as followed. Section 4.2 aims at pro-

viding a literature review of methods that employ overlap control or could be used

for this purpose. Section 4.3 introduces the type of shape parameterisations that will

be used along this chapter. These shapes will have an important role in each of the

energies that will be used in the segmentation framework ( Section 4.5). The SIM is

introduced in Section 4.4, where its construction procedure is depicted. The results of

the method applied in the segmentation of vertebrae is presented in Section 4.7. The

last two sections are the Discussion and conclusions of the method applied to vertebra

segmentation.
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4.2 Background

4.2.1 Zero Overlap Segmentation Methods

Overlap between objects may be avoided by the use of multi-label strategy classifica-

tion, where each image pixel or voxel only has one value [167, 168]. These methods,

however, do not necessarily employ the information of the relative position between

objects and therefore, the vertebral inter-process space might be wrongly segmented.

Another general methodology that produces zero overlap segmentations is labels

propagation methods [19, 169], which performs the segmentation by warping a previ-

ously segmented image (source) into the space of the to-be-segmented image (target).

This approach is generally employed with several sources and the results are combined

to increase the accuracy. However, small regions such as the inter-process vertebral

space might be ruled out in an image-to-image registration and a special treatment

must be employed. In addition, these methods are usually computationally expensive.

The same issues may be applied to level set segmentation frameworks [18, 170].

4.2.2 Vertebra Segmentation Methods

The segmentation of vertebrae is an important first stage for many applications as pre-

viously explained. Thus, there is a vast literature of segmentation from X-rays and

Dual-energy X-ray Absorptiometry (DXA) images [42, 63, 87, 90, 93, 94, 171], from

CT images [105, 170, 172–180], and from MR images [145, 181, 182]. However, this

section focuses on the methods that directly or indirectly address the vertebral overlap.

Shen et al. [183] proposed a method to avert vertebrae from leaking to other struc-

tures using information extracted from detected planes between vertebrae. This infor-

mation was included in a level-set framework. Kim et al. [184] employed a 3D fence

to create a wall between the articular processes of the vertebrae in order to be able

to segment a vertebra using region growing. These two methods reduce the overlap

between vertebrae by estimating the separation between them. However, they do not

employ any prior information based on the training population, which could greatly

improve the performance.
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Figure 4.1: Anatomy of a human vertebra.

Prior information to avoid vertebral intersection may be acquired by constructing

an SSM of the full spine as a single object. However, as mentioned earlier this model

would require a large training dataset to achieve sufficient degrees of freedom. Al-

though, it is possible the addition of relaxation steps, based on Active Contour Mod-

els [42] or Free Form Deformations [46], the segmentation will commonly leak into

neighboring structures or will be deformed more than required when the best fit of the

SSM do not closely resemble the real shape.

A more elegant solution was proposed by Kindler et al. [185]. They designed a

vertebral segmentation algorithm based on a statistical pose model (SPM) of the spine,

following the work of Boisvert et al. [186]. In this framework, shapes are deformed

by minimising an energy based on the image gradient and penalised by the distance to

the pose given by the SPM. Since, inter-process overlap is reduced but not completely

avoided, the authors added a new energy term that penalises the overlap between ver-

tebrae. However, it still does not prevent them completely. The author of this thesis’

assumption is that in doing so the accuracy would decrease due to the SPM exces-

sively restricting the possible outcomes. An analogous strategy to avoid overlaps and

maintain under control the distance between structures was proposed in [187]. The

approach was based on a modified spring energy employed in a mesh-to-mesh regis-

tration framework tested on wrist bones. A similar approach as using the SPM was

proposed by Kadoury et al. [188], in which the relationship between the individual
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Figure 4.2: The overlap in the vertebral process is a common problem in vertebral
segmentation, mainly in the articular processes (a) where the separation is rather small
but it can also happen in the spinous process as shown in (b).

shape variations are correlated to the global deformations with a series of rigid trans-

formations and embedded into a Markov random field segmentation framework.

In [189] a model of the full spine was employed. However, the relative rotations

and translations given by the spine articulated movements were removed and a SPM

was trained for that purpose. Even though, this approach still requires a larger training

dataset. This method was extended to MR images [190].

In an earlier work [130], the author of this thesis et al.proposed a segmentation

strategy for vertebral segmentation. The process employs an Active Shape Model ap-

proach [32], with a novel set of trained features for the shape to image adaptation step

to partially address the overlap problem.

A multilabel strategy for vertebra segmentation was proposed by Forsberg [191].

As explained before, this technique does not allow overlaps, but has other issues. In

order to avoid the processes leaking to to the ribs, and to eliminate wrong rotations

and distance between vertebral bodies, the method initialises the position based on

detecting the IVD and the spinal cord. Nevertheless, this method does not handle the
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issue of two processes collapsing to each other.

4.3 Parameterisation of the Shapes

4.3.1 Point Correspondence

The point correspondence represents the idea that shapes are described by the same

number of landmarks, sp, p = 1, . . . , P , and those landmarks are located in the same

anatomical position.

The complete set of points concatenated in a 3 × P matrix will be denoted as S,

assuming 3D shapes.

This concept is essential to build SSMs and SIMs. In this work, the point corre-

spondence was achieved by an iterative registration approach, based on B-splines.

This procedure began deforming a template mesh to all the shape meshes of the

training set. Thereafter, the mean shape at each spinal position was computed. Sub-

sequently, the template mesh was changed by the mean shape and the process was

iteratively repeated until the convergence of the means. The template mesh was cre-

ated by smoothing and decimating a selected L3 vertebra and the ground-truth meshes

were obtained using Marching cubes [192] in the binary masks achieved through man-

ual segmentation.

4.3.2 Unconstrained Shape Instance

An unconstrained shape instance is created by the independent displacement of the

landmarks that represents the shape. In the proposed segmentation framework, this

type of shape instance is used only for the fitting to the image (SI), analogously to the

usual ASM segmentation [32] (Section 4.5.3).

4.3.3 Constrained Shape Instance by the Use of Statistical Shape Models (SSM)

An SSM describes the variability of a shape within a selected population. In general,

apart from the point correspondence, the pose and scale of the cases are removed by

aligning them to a reference shape with a similarity transformation. This normalisation
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is performed by generalised Procrustes alignment, which generates the mean shape, S,

simultaneously with the aligned shapes.

Each aligned shape may be considered as being a sample from a 3P probability

density function (pdf). Assuming this pdf takes the form of a Gaussian distribution

[32], Principal Component Analysis (PCA) can be used to attain the main axes of

the cloud of points. The SSM represents new shapes by the mean, S, and a linear

combination of a set of orthonormal principal components (PC), Φm, m = 1, . . . ,M .

ŜSSM = S +
M∑
m=1

bmΦm (4.1)

where the coefficients bm are called the SSM parameters and the relative influence of

each PC is given by its corresponding standard deviations, σm. In addition, the bm

parameters are limited to 3 times σm,

−3σm ≤ bm ≤ 3σm, ∀m = 1, . . . ,M.

New instances, including pose and scaling, may be attained by applying a similarity

transformation to the shape ŜSSM:

SSSM = aRŜSSM + c. (4.2)

Thus, the instance is a function of the SSM parameters, bm, a scaling factor, a, a

translation vector c, and a rotation matrix,R.

For multiple objects, each with an individual SSM and similarity transformation,

the model is:

ŜSSM
v = Sv +

M∑
m=1

bv,mΦv,m and SSSM
v = avRvŜ

SSM
v + cv, (4.3)

where the index v runs along the set of objects, v = 1, . . . , V .
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4.3.4 Constrained Shape Instance by the Use of B-splines

In addition to the previous instances, it was also considered, SB
v , which are given by

smooth B-spline transformation from any chosen reference shape, S0
v, parameterised

by displacements, zv,f , at a grid of control points, f = 1, . . . , F . Each point in SB
v is

then located at

sB
v,p = s0v,p +

F∑
f=1

Bf

(
s0v,p
)
zv,f (4.4)

where the Bf are the B-spline weights.

The output of the segmentation will be a B-spline instance. The advantage of this

type of shape instance is twofold. First, it allows more flexibility than that of the SSM.

In fact, this additional flexibility is required for the incorporation of the SIM into the

segmentation framework, otherwise the SIM would restrict a large region of the SSM

parameters values as incompatible. Second, the use of a B-spline instance ensures

smooth segmentations, in contrast with the unconstrained type, that would require an

extra regularisation term [193].

4.4 Statistical Interspace Model (SIM)

For an articulated multi-object structure, individual SSMs together with an SPM pro-

vide a complete set of parameters to generate instances of this object. However, using

only these two models does not prevent unrealistic configurations, including overlaps,

excessive separation between objects or unnatural orientations of neigbouring sub-

structures. In the spine, for example, this affects the vertebral processes, which can

intersect between them. Thus, low signal or high noise within the image intensity may

lead to incorrect segmentations including these artefacts.

A way to partially overcome these limitations is by the use of spring models, which

are employed to maintain deformations under control by penalising large distance to a

reference position. For instance, the approach of Klinder et al. [185] employs this type

of model as part of the energy problem to handle vertebral overlaps.

However, the drawback of spring models for this purpose is twofold. First, they
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cannot guarantee zero-overlap. In fact, the only reduce the amount of overlapped vol-

ume. Second, they do not model the statistical variation in size of the separation in the

population.

An elegant solution to handle this limitation is to model the interspace between

the objects. Therefore, the change in variation of an object O1 affects the interspace

between this object and its neighbour O2, which produces O2 to change in shape. In

order to model the interspace between object it was employed the relative position

vector between landmarks of neighbouring objects. Consider two points (o1d, o
2
d) from

two different objects or from the same one. The relative position vector δd is a vector

that starts in o1d and finishes in o2d.

Therefore, the first step to construct the SIM is to select the points sd with d = 1...D

being an index running along all the points for which the SIM is going to be computed.

In the mean shape, for each landmark sd, it is necessary to find the closest landmark

that belongs to the object that is sharing the interspace with. These pair of landmark

connections are propagated across all the training set and the relative position vector

between them are employed for the SIM construction.

4.4.1 Individual Point Reference Frame

The computation of δd requires a reference frame (ĝ1d, ĝ
2
d, ĝ

3
d) that is irrespective to the

object shape and pose (Fig. 4.3). The reason for this is to measure vectors that go from

one landmark to another and not only their magnitude.

In this work, it is proposed for ĝ3d to be the normal vector of the object surface

at point sd. For all cases, an edge is selected in the triangular mesh from sd to a

neighbour point, defining the vector t. The second vector is obtained by projecting t

in the perpendicular plane given by ĝ3d:

g2d = t− (t · ĝ3d)ĝ
3
d , ĝ2d =

g2d
‖g2d‖

(4.5)

And ĝ1d is their cross product ĝ1d = ĝ2d × ĝ
3
d.

Having the reference frame (ĝ1d, ĝ
2
d, ĝ

3
d) allows us to define the relative position
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vector between the different pair of points, in a coherent way among all the sample

cases. Thus, the local frame provides local relative position correspondence, analogous

to the point correspondence required for the landmarks in the SSM.

g3 d 
^ 

g2 d 
^ 

g1 d 
^ t 
s d 

s d 
Neighbor 

Figure 4.3: Description of the local reference system for the point sd. The vector t
goes from sd to a previously selected neighbor (sNeighbour

d ). The vector ĝ3d is the normal
of the object surface at point sd, whereas ĝ2d is obtained by projecting t onto the surface
tangent plane perpendicularly to ĝ3d. Finally, ĝ1d is the cross product of ĝ2d and ĝ3d.

4.4.2 Separation Between Magnitude and Directional Vector

Having computed the relative position vector δd for each landmark sd in the SIM,

a statistical interspace model might be created in the same fashion as the standard

SSM. However, this approach would assume a Gaussian distribution (linear approach)

on the relative position vectors of x, y and z. Since, a Gaussian shape is symmetric

with respect to its mean position, the consequence of this assumption is that negative

distances are allowed, which results in the overlaps and other unrealistic geometries.

Thus, it is necessary to find a non-linear representation that properly models δd.

Since, the aim is to control the magnitude and orientation of δd, a proper representation

was the separation of δd into its magnitude γd and a unit vector ωd that represents the

orientation.
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δd = γdωd (4.6)

This separation maps R3 → R+ ⊗ S2. Thus, both factors R+ and S2 are manifolds.

In particular, R+ is a Lie group for the real product, which endows it with a natural

Riemannian geometry. Therefore, the tangent space of the magnitude is the natural

logarithm of real positive numbers. The implication of using such model in an energy-

driven segmentation is that the gap between the objects cannot be zero. Thus, two

landmarks from different objects cannot share the same position. However, two objects

could touch each other or even have an overlap with only this energy, which represents

the logarithm of the distance between the points. This energy tries to maintain the

points close to any position in the surface of a sphere with radius equal to the mean

distance between the landmarks that were used for training the model.

The directional vector was modelled as the space S2, which can be seen as a unitary

sphere when embedded into a Euclidean space. In this case, the tangent space used for

computing all the measurements, was selected as the tangent space at the centre posi-

tion of the training samples in S2. This implies that it was considered the arc-lengths

from each training sample to the mean vector, to belong to a Gaussian distribution. The

addition of this model ensures that each pair of points is closely aligned to the direction

given by the mean vector. However, this energy does not guaranteed a zero overlap in

the segmentation process, since it measures the arc-length between two points in S2,

whose maximum value is π. Notwithstanding, an overlap implies rotations close to π

degrees which will increase the energy substantially. Although, it was not found any

overlap in the experiments, a solution to a possible one is employing the same idea

as in Active Shape Model (ASM) [32], where deformations were restricted to a max-

imum of ±3× the standard deviation, in their case given by the eigenvalues. Another

solution, is to extend the values so that π represents the infinity.

The separation between magnitude and unitary vector was tested by different Gaus-

sianity tests. To prove that magnitude samples lie in a log-gaussian distribution, the

“Lilliefors’ composite goodness-of-fit test” [194] and the “Jarque-Bera hypothesis test

of composite normality” [195] were employed using as input the logarithm of the dis-
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tances. Both of them could not reject the null hypothesis of the data being normally

distributed at the 5% significance level. In the case of the unitary vector, it is assumed

that the data in the tangent space at the mean position behaves as Gaussian. Since, this

is a 2-dimensional distribution, the same tests were not available. Thus, it was em-

ployed the test “Henze-Zirkler’s Multivariate Normality Test” [196], which could not

reject the null hypothesis of the data being normally distributed at the 5% significance

level.

Observe that SIM is not a generative model, meaning it cannot create an instance of

the objects by itself. However, when it is employed with an SSM (or SSM and SPM)

prevents impossible configurations and geometries in the instances.

4.4.3 Mean and Covariance Computations

In order to model the interspace between objects, the following four statistics are re-

quired: The mean of ω in S2 (ωd), the covariance matrix of ω in Tω(S2) (Cd), the

mean magnitude (γd) and the variance of the magnitude ld.

In order to compute the mean and covariance in a non-euclidean manifold, it was

adopted the methodology proposed by Fletcher et al. [197] to compute the Principal

Geodesic Analysis (PGA). Their method assumes that the tangent space at the mean

position of all the samples (µ) behaves as an Euclidean space. In this proposed method,

the mentioned samples are going to be the individual magnitude (γ) and the individual

directional vectors (ω) of each δd. Thus, µ = {ω, γ} and it is defined as:

µ = argmin
u

∑
q

D(uv, u)2 (4.7)

where D denotes the geodesic distance between two points in the manifold. The

subindex v runs along the different cases in the dataset. In this context, u would be

either γd or ωd.

The intrinsic mean (µ) was computed following the approach proposed by Fletcher

et al. [197]. The process begins by selecting a random sample as the mean (µ) and

projecting all the samples to the tangent space at this point ( Tµ(M)). In this space the
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mean of the projected samples (κ) is computed and transformed back to S2 (Expµ(κ))

to obtain the new µ. This process is repeated until convergence.

Since the magnitude belongs to the Lie group R+, the distance function is defined

as:

D(γ1d , γ
2
d) = log

γ1d
γ2d

(4.8)

However, since this is a 1-dimensional problem, γ and ld can be analytically computed

as the standard mean and variance of all the log-magnitudes [198].

For two directions, the geodesic distance in S2 is given by the arc length between

them:

D(ωd
1,ω2

d) = acos(ω1
d · ω2

d) (4.9)

where ω1
d · ω2

d is the dot product of ω1
d and ω2

d.

For the sphere S2, it is necessary to define the manifold logarithm that projects a

sample in S2 into the tangent space, TωS2. This operation requires two orthonormal

vectors (ĥ
1
, ĥ

2
) toω. Their orientation in the tangent plane is irrelevant, but they need

to be consistent across the training dataset. The reference frame (ĥ
1
, ĥ

2
, ĥ

3
) is then

defined as the frame that results after rotating (ĝ1, ĝ2, ĝ3) so that ĥ
3

coincides with ω.

The logarithm is then given by:

Logω(q̂) =

(
q̂ · ĥ

1 α

sin(α)
, q̂ · ĥ

2 α

sin(α)

)
with α = acos(q̂ · ω)

(4.10)

Observe that by identifying TωS
2 as the tangent plane to S2 embedded in R3, the

output of the logarithm is the projection of q̂ into TωS2 rescaled so that its length is

equal to α (Fig. 4.4).

Once each sample point in S2 has been identified with its logarithm in the tangent

space, the usual sample covariance matrix can be computed as that of an Euclidean

space.
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Figure 4.4: Description of the projection of a point q̂ that belongs to the S2 manifold
to Tω(S2). The plane defined by the vectors ĥ

1
and ĥ

2
is parallel to Tω(S2). Then,

Logω(q̂) is the orthogonal projection of q̂ to Tω(S2), rescaled to have the angle α as
length, instead of sinα.

4.5 Segmentation Framework

4.5.1 Initialisation

As commonly required in segmentation procedures, the proposed framework needs a

rough initialisation of the shape in the image. For a multi-object structure, this may be

performed by locating each individual object independently or with some constrains.

For the application to vertebral segmentation, it was applied the same initialisation

method as in [130]. The mean shape of each vertebra, Sv, is individually aligned to

the image by means of a similarity transformation. This transformation is based on the

approximate intervertebral discs (IVD) centre points that were manually pinpointed in

the image.

During the training step, the upper and lower endplate middle landmarks, of the

mean meshes at each vertebral position, were selected. These two points were em-

ployed to calculate the centre of the vertebral body (VB), c1 and the directional vector

from the lower to the upper endplate, u1, of each initial vertebra.

In the segmentation phase, the IVD centres in the image were manually selected.

These points define the centre of the VB, c2, in the image and a new vector that goes

from the lower IVD to the upper one in each vertebra u2. Then, a translation vector is

given by the difference between c2 and c1, the scaling factor (e) is given by a scaled
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ratio of the magnitudes of u2 and u1 and the rotation matrix (Ro) was computed using

the Rodrigues’ rotation formula [186]:

e = k
‖u2‖
‖u1‖

(4.11)

Ro = U +B +
BB

1 + û1 · û2 and B = û1û2,T − û2û1,T (4.12)

where U is the identity matrix and the scaling factor k (k = 0.9) was used to compen-

sate the difference between the real height of the VB and the distance between two

consecutive IVD centres.

4.5.2 Statistical Shape Model Energy

The statistical shape model energy is commonly expressed as the squared Euclidean

distance between the closest shape that can be represented with the SSM, SSSM, and

the segmentation result, in this case SB.

ESSM(SB,SSSM) =
1

2

∑
v,p

‖sB
v,p − sSSM

v,p ‖2 (4.13)

where the squared distance is summed up for all points and objects.

4.5.3 Image Energy

The image energy is computed for each landmark independently following same strat-

egy as explained in the previous chapter (Chapter 3.2.4). Thus, the resultant shape SI

is an unconstrained shape instance (Section 4.3.2). This image energy is based on the

oriented derivative from high to low intensity and the intensity itself, whose parameters

were obtained using the training database, explained in Section 4.6. Thus, the energy

function for these features is:

EI
v,p(S

I, I) = (w1I(sI
v,p) + w2(n̂ · ∇I(sI

v,p))) (4.14)

where n̂ is the normal direction at point sB
v,p from inside to outside the mesh, I is
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the image intensity.

The image energy has a second component that relates the result segmentation shape

SB and SI:

EI-B(SB,SI) =
1

2

∑
v,p

‖sB
v,p − sI

v,p‖2 (4.15)

4.5.4 Statistical Interspace Model Energy

Having computed the SIM model for a group of objects means that for each relative

position vector δd there exist a γd, ld, ωd andCd (Section 4.4). Hence, the energy of a

new δd is achieved by:

ESIM =
P

2D

∑
d

εdC
−1
d ε

T
d + log

(
γd
γ̄d

)2

ld
−1

with δd = γdωd and εd = Logω(ωd)

(4.16)

The coefficient P
2D

is used to compensate the difference in the number of points be-

tween ESIM and the rest of energies. The value P is the total number of landmarks in

the whole structure and D is the number of relative position vectors (pair of points) in

the structure that employs the SIM.

4.5.5 Segmentation Problem

The segmentation algorithm is based on minimising a linear combination of the previ-

ously presented energies:

SB = argmin
SB

min
SI,SSSM

E(SB,SI,SSSM, I) where (4.17)

E(SB, I,SI,SSSM) = EI(SI, I) + wB-IEB-I(SB,SI) (4.18)

+wSSMESSM(SB,SSSM) + wSIMESIM(SB)

Each of the shapes represents an instance of all the objects that composed the multi-

object structure. I denotes the image to be segmented, which is a constant for the en-

ergy minimisation. SB is the output segmentation, whereas SI and SSSM are auxiliary
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shapes. Nevertheless, all three shapes must be optimised to minimise the energy, even

though only SB is of interest.

4.5.6 Optimisation

In order to solve the aforementioned problem, it is proposed an alternating optimisation

technique, where each of the three shapes involved SB, SI, and SSSM are iteratively

optimised in turns.

Shape Initialisation

The mean shape of each object, Sv, is scaled, translated and rotated (similarity trans-

formation) according to some strategy (Section 4.5.1), attaining S0. This provides the

initialisation for the three shapes: SI = SB = SSSM = S0.

Alternating Optimisation

Having initialised the three shapes, they are optimised as follows:

1. Only two energies involve SI. Thus, this optimisation only needs to minimise the

terms

EI(SI, I) + EB-I(SB,SI), (4.19)

since the others are constant. This optimisation is performed at each landmark

independently, following the typical strategy used in ASM. Observe that because

the optimisation is alternating between shapes, at each iteration the shape SI is

obtained by displacing the landmarks of the SB from the previous step and not

the previous SI.

2. Optimisation of SSSM. The only term involving SSSM is

ESSM(SB,SSSM) (4.20)

The shape SSSM contains two type of parameters: the similarity transformation of

the shape and the SSM parameters for the PCs. These two sets are optimised also
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alternating:

(a) Exact optimisation of similarity transformation. Fixing the SSM param-

eters allows the optimisation of the similarity transformation by a single al-

gebraic operation using Procrustes.

(b) Exact optimisation of the SSM parameters. Fixing the similarity transfor-

mation allows ESSM to be optimised in the SSM parameters by projecting the

shape into the PC basis.

These two operations can be repeated several times until convergence of the full

SSSM optimisation.

3. Gradient descent step for the shape SB. This shape involves three terms of the

energy:

wI-BEI-B(SB,SI) + wSSMESSM(SB,SSSM) + wSIMESIM(SB) (4.21)

The optimisation is achieved through a gradient step procedure. The number of

iterations in the gradient step was reduced to a maximum of 5 iterations, since the

full optimisation process is repeated iteratively until the convergence of the SB.

The shape SB is a linear function of the control point displacements, zv,f , as was

shown in (4.4). The gradient involved in the optimisation of the energy with respect to

SB is given by the derivatives

∂E

∂zv,f
=
∑
p

∂sB
v,p

∂zv,f
· ∂E
∂sB

v,p

=
∑
p

Bf (s
0
v,p)

∂E

∂sB
v,p

(4.22)

where
∂E

∂sB
v,p

= wSSM∂E
SSM

∂sB
v,p

+ wI-B∂E
I-B

∂sB
v,p

+ wSIM∂E
SIM

∂sB
v,p

. (4.23)

The derivatives of the first two energies are simply

∂ESSM

∂sB
v,p

= sB
v,p − sSSM

v,p and
∂EI-B

∂sB
v,p

= sB
v,p − sI

v,p. (4.24)
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The derivatives of the ESIM are

∂ESIM

∂sB
v,p

=
∑
d

∂sB
v,p

∂δd

∂ESIM

∂δd
(4.25)

where ∂sB
v,p/∂δd is a signed selector, whose value is -1 if the landmark sp is the origin

of the relative position vector δd, +1 if it is the end of δd, and 0 if it is not contain in

the SIM. The second factor can be computed from (4.16):

∂ESIM

∂δd
=

P

2D

[(
I

γd
− δd

Tδd
γd3

)
Rh
dR

g
d

∂εd
∂ω̂d

Cd
−1εd

T

+
δd
γd2

Ld
−1 log

γd
γ̄d

] (4.26)

where

∂εd
∂ω̂d

=
α

sinα


1 0

0 1

βεd,1 βεd,2

 with β =
cosα

α sinα
− 1

α2
, (4.27)

and εd,1, εd,2 denote the components of εd. The rotation matricesRg
d andRh

d, transform

the world coordinate system to the individual reference system (ĝ1, ĝ2, ĝ3), and from

this reference frame to (ĥ
1
, ĥ

2
, ĥ

3
), respectively (Section 4.4.3). Both matrices and

both (ĝ1, ĝ2, ĝ3) and (ĥ
1
, ĥ

2
, ĥ

3
) must be recomputed at each iteration.

4.6 Data

Three datasets were employed for the validation of the proposed segmentation frame-

work.

4.6.1 Dataset 1: Lumbar Spine of Healthy Subjects

It is composed of 30 CT scans from patients suffering from low back, collected at the

National Center for spinal disorders (Budapest, Hungary). Patients were 13 males and

17 females with a mean age of 40 (age interval: 27-62 years). Those patients were

selected for participating in the European Commission funded MySpine project [34].
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Image resolution: Axial in-plane resolution of 0.608×0.608 mm2 with a spacing

between slices of 0.625 mm.

Training and testing division: This dataset was divided into a testing set, compound

of 25 CT images, and a training set of 5 for the feature training [130]. The SSM and

SIM were evaluated in a leave-one-out manner. Therefore, for each vertebra in the

testing set a model of 29 vertebrae was employed.

Ground-truth information: The ground truth meshes were manually created using

the open source software ITK-SNAP [157].

4.6.2 Dataset 2: Lumbar Spine of Pathological Subjects

This database belonged to the spine web [199] and it was collected for vertebral de-

tection purposes (DataSet 3 in the webpage). Thus, images did not have ground-truth,

the resolution and image quality was poor, and it contains a large variation of diseases

and regions of the spine. Ten images were selected from this database following the

criterion of ensuring that the whole lumbar region was in the image and that patients

show high degree of scoliosis. In addition, 4 out of the 10 images contain at least one

fracture and 3 of them contain calcifications.

Image resolution: The axial in-plane resolution was 0.35×0.35 with a spacing be-

tween slices of 2.5mm.

Training and testing division: The whole dataset was used as testing using the

training information from Dataset 1. The features remained the same as in Dataset 1

and the SSM and SIM were constructed with the 30 cases from Dataset 1.

Ground-truth information: The ground truth meshes were manually created using

the open source software ITK-SNAP [157].

4.6.3 Dataset 3: Thoracic and Lumbar Spine of Healthy Subjects

This database consists of 15 thoracic and lumbar CT scans used in the MICCAI chal-

lenge 2014 “Computational Methods and Clinical Applications for Spine Imaging -
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Spine and Vertebrae Segmentation” [200]. This dataset is held in the spineWeb [199]

as Dataset 2.

Image resolution: Images have an axial in-plane resolution of 0.5×0.5 and a spacing

between slices of 1.0mm.

Training and testing division: The MICCAI challenge organisers arranged a group

of 10 cases for training purposes and 5 for the testing stage. Thus, features, SIM and

SSM were trained with 10 cases.

Ground-truth information: The ground truth meshes were provided by the organ-

isers. However, the training set was corrected to increase its accuracy. The testing

remained the same for benchmarking purposes and owing to its higher quality.

4.7 Results

4.7.1 Implementation details

The proposed framework employs an optimisation algorithm with four different ener-

gies to acquire the segmentation (Section 4.5.6). In the experiments the weights were

kept to 1 for practical reasons, since the framework is not very sensitive to these values.

Notwithstanding, other applications may require a further optimisation of the weights.

The second parameter is the number of grid points for the B-splines shape instance

(Section 4.3.4). In the experiments, it was shown that set of values ranging from 5 ×

10×10 to 15×30×30 per vertebra performed equally well. Smaller values did not have

enough flexibility and results lacked accuracy and larger values allowed non-smooth

shapes. For the experiments, the smallest grid was employed, 5× 10× 10, meaning an

averaged spacing of 9.3× 9.75× 8.25mm3.

Other parameters are:

• The number of landmarks in each vertebra was 4000.

• An SSM per vertebra was employed.
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• The number of modes for each SSM was selected as the number that keeps 95%

of the total variation. This results in 10,10,10,10,11 when trained with Dataset 1

and 8 from T1-T9 and 7 from T10-L5 when using Dataset 3.

• The weight of the features involving EI were 0.5 mm/in for the directional

derivative and 0.3in−1 for the intensity, where the unit in represents the unit of

the image intensity.

• The criteria to stop the segmentation was that 99% of the landmarks do not move

more than 0.2 times the size of a voxel in the direction of the normal at the specific

landmark. This criteria resulted in 5 to 20 iterations. In addition, the maximum

number of iterations were set to 30.

• The size of the profiles was set individually for each landmark p of the mesh. In

the first iteration, it was set to 20 voxels in the direction pointing outwards and

min(20, a) voxels pointing inwards. The value a is half of the number of voxels

from p to the intersection of the mesh and a line following the normal direction

of the mesh at p. In the last iteration, they were set to 4 voxels inwards and 4

outwards.

• The number of resolutions was kept to one, since the initialisation already locates

the IVDs in a good location.

4.7.2 Evaluation Metrics

The segmentations were evaluated in two different manners. First, the accuracy was

measured using Dice Similarity Index (DSI) [159] between the segmented shapes and

ground truths the surface-to-surface distance from the segmented shape to the ground

truth. It was computed the mean absolute surface distance (MASD), 95-percentil (95-

p) and the maximum or Hausdorff distance (HD).

Second, the overlap between the different vertebrae across the spine was measured.

The employed metric for this purpose was the mean intersection volume in voxels and

mm3 in the lumbar and thoracic spine, separately, for each Dataset.
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The training databases were employed to create the features, weights, SSM and

SIM as explained in Section 4.6.

4.7.3 Quantitative Evaluation of the Method

The attained accuracy measurements for the three datasets are presented in Tables 4.1,

4.2 and 4.3. Each table contains the values with and without the use of the SIM in

order to evaluate its importance.

Results show that the SIM increases the accuracy of the segmentations. The rea-

son is that the SIM controls the relative distances of the vertebral bodies and spinous

process, allowing the method to find better edges in the global optimisation. In addi-

tion, Table 4.4 presents the overlap between adjacent vertebrae in number of voxels

and in volume, for all the databases with and without the proposed SIM. It can be seen

from the results that the proposed approach eliminates completely the overlap between

processes. For all the datasets and vertebrae, it was not encountered a single case of

overlap between the structures, which shows the robustness of the SIM. In contrast, the

segmentations without this model induce significant overlap, in average over 25mm3

per vertebra in healthy spines going beyond 125mm3 in pathological cases. The better

definition of the inter-vertebral relative positions also translates in an overall improve-

ment of the segmentation accuracy as shown in Tables 4.1, 4.2 and 4.3.

Table 4.1: Vertebra segmentation accuracy in Dataset 1 (healthy lumbar spine) with
and without SIM

SIM Error measure L1 L2 L3 L4 L5 Global

No

Mean DSI(%) 93.3 93.7 93.6 93.6 93.8 93.8
2xSTD of DSI(%) 3.2 3.2 3.3 3.2 3.2 3.2

MASD(mm) 0.5 0.49 0.48 0.50 0.56 0.51
95-p(mm) 1.11 1.09 1.09 1.09 1.24 1.10
HD(mm) 4.4 4.3 4.7 4.8 5.6 4.8

Yes

Mean DSI(%) 94.7 95.1 94.9 94.8 93.7 94.8
2xSTD of DSI(%) 1.8 1.7 1.8 2.1 4.5 2.8

MASD(mm) 0.48 0.46 0.48 0.47 0.52 0.48
95-p(mm) 1.02 0.99 0.98 1.03 1.19 1.03
HD(mm) 4.1 4.1 4.3 4.4 5.2 4.5
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Table 4.2: Vertebra segmentation accuracy in Dataset 2 (pathologic lumbar spine) with
and without SIM

SIM Error measure L1 L2 L3 L4 L5 Global

No

Mean DSI(%) 84.6 83.5 83.3 84.8 85.9 84.4
2xSTD of DSI(%) 7.4 13.1 6.8 5.5 2.8 7.8

MASD(mm) 1.36 1.5 1.6 1.41 1.31 1.44
95-p(mm) 3.9 4.5 4.8 4.1 3.6 4.2
HD(mm) 8.6 10.4 12.4 10.8 7.2 9.9

Yes

Mean DSI(%) 88.2 87.9 87.3 89.5 88.1 88.2
2xSTD of DSI(%) 4.7 7.3 7.8 3.5 4.5 5.9

MASD(mm) 0.94 0.99 1.0 0.89 1.06 0.98
95-p(mm) 2.48 2.64 2.83 2.33 2.94 2.65
HD(mm) 5.2 6.0 7.1 6.2 6.3 6.2

Table 4.3: Vertebra segmentation accuracy in Dataset 3 (healthy thoracic and lumbar
spine) with and without SIM.

SIM Error measure T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

No

Mean DSI(%) 86.9 88.2 86.4 89.1 90.9 89.7 89.4 90.3 91.5 90.2
2xSTD of DSI(%) 1.2 4.2 3.7 2.9 1.1 2.5 0.5 2.0 0.8 2.1

MASD(mm) 1.52 0.54 0.63 0.53 0.46 0.54 0.58 0.54 0.53 0.69
95-p(mm) 2.3 1.51 1.76 1.42 1.16 1.44 1.49 1.43 1.34 2.0
HD(mm) 6.1 5.2 5.3 4.0 5.0 5.0 4.7 4.1 4.3 5.0

Yes

Mean DSI(%) 86.2 87.8 86.6 89.2 91.4 89.6 89.9 90.9 91.1 91.0
2xSTD of DSI(%) 2.6 4.3 4.3 1.2 0.7 3.3 1.9 1.7 1.7 2.3

MASD(mm) 0.72 0.58 0.6 0.51 0.43 0.52 0.55 0.52 0.55 0.59
95-p(mm) 2.1 1.5 1.68 1.37 1.08 1.38 1.45 1.33 1.45 1.59
HD(mm) 6.0 4.9 5.5 4.1 5.8 5.0 4.8 3.9 4.9 4.8

SIM Error measure T11 T12 L1 L2 L3 L4 L5 Lumbar Thoracic

No

Mean DSI(%) 90.6 91.6 91.6 92.5 92.3 92.4 91.8 92.1 89.6
2xSTD of DSI(%) 2.5 2.0 2.2 1.6 1.8 1.7 1.9 1.7 5.2

MASD(mm) 0.72 0.63 0.69 0.52 0.54 0.59 0.61 0.57 0.66
95-p(mm) 1.93 1.75 1.49 1.28 1.31 1.48 1.47 1.39 1.66
HD(mm) 4.8 4.5 5.8 3.8 5.2 4.7 4.7 4.8 4.8

Yes

Mean DSI(%) 91.3 91.3 91.9 93.0 92.9 92.9 92.8 92.7 89.7
2xSTD of DSI(%) 1.9 2.9 0.6 2.5 2.8 2.2 2.6 2.2 4.2

MASD(mm) 0.62 0.69 0.50 0.47 0.50 0.50 0.50 0.49 0.58
95-p(mm) 1.73 1.93 1.31 1.23 1.31 1.29 1.28 1.28 1.56
HD(mm) 4.4 5.0 5.9 4.1 6.0 4.7 3.9 4.8 4.8

4.7.4 Visual Results

A qualitative evaluation is presented in Figures 4.5, 4.6 and 4.7. Figures 4.5 and 4.7

show the segmentation and ground-truth contours, superimposed to a sagittal and coro-

nal slices of one patient from the Dataset 1 and another from the Dataset 3, respectively.

On the other hand, figure 4.6 does not contain the ground-truth contour. It shows the

segmentation of a patient from the Dataset 2 with and without the SIM, in order to
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Table 4.4: Mean inter-process overlap in voxels and in cubic millimeters for the case
of using SIM and without for all the databases.

Spine Mean Number of voxels Mean Volume (mm3)
position No SIM With SIM No SIM With SIM

D1: L1 - L5 897.2 0 200.26 0
D2: L1 - L5 2554.9 0 574.8 0

D3: T1 - T12 530 0 132.5 0
D3: L1 - L5 0 0 0 0

D1: Dataset 1 - Only Lumbar vertebrae of healthy subjects.
D2: Dataset 2 - Only lumbar vertebrae of pathological cases.
D3: Dataset 3 - Thoracic and lumbar vertebrae of healthy subjects.

visualise the improvement given by this model. This patient contains a fracture in the

L4, which produces the spinous processes of the L3, L4 and L5 to collide. The use

of the SIM maintains the separation between these processes under control ensuring

not only zero-overlap but also high accuracy. Furthermore, the endplates of these three

vertebrae are close to each other leading to overlaps when the SIM is not employed.

(a) (b) 

Figure 4.5: Segmentation slices in sagittal and coronal view of one patient CT scan
from the Dataset 1. The red contour represents the segmentation and the white contour
the ground truth. Check online colour version for better visualisation.
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Figure 4.6: Segmentation slices in sagittal and coronal view of one patient CT scan
from the Dataset 2. Figures (a) and (c) represent the segmentation using the SIM and
figures (b) and (d) without the SIM. It shows that the spinous processes of the L3, L4
and L5 vertebrae merged together because the L4 is fractured. This issue produces
large errors and overlaps when the SIM is not employed.

4.7.5 Sensitivity to the Initialization

As explained in Section 4.5.1, the segmentation process requires the centre location

of the IVDs. In order to test the sensitivity to this manual input, various patient CT

images were segmented pinpointing the centre in different positions within the IVD

region. However, the evaluation measures resulted in similar results all the time with

and without the SIM. The main difference was the location of overlap regions. An

example of large overlap due to a complicated initialisation is presented in Fig. 4.8.

The segmentation without using the SIM deforms the L1 vertebra unnaturally, allowing

more overlap than in a normal setting, where the SIM still prevent the overlap and

maintain the same accuracy than when the initial positions are closer to the real IVD

centres.

4.7.6 Comparison with the State-of-the-art

Although image resolution, type of database or the CT machine can influence the per-

formance of different techniques, Table 4.5 presents a comparison of the accuracy
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Figure 4.7: Segmentation slices in sagittal and coronal view of one patient CT scan
from the Dataset 3. The red contour represents the segmentation and the white contour
the ground truth. Check online colour version for better visualisation.

between the state-of-the-art methods. In this table, the shown accuracy was obtained

using CT images and evaluating the performance of the segmentation in the whole ver-

tebra (VB + processes). The Dataset 2 was the only one employed for this comparison,

since various state-of-the-art methods were tested in pathological cases. Therefore, the

accuracy measurements from all the methods presented in Table 4.5 are only from the

Lumbar region. An important difference with the results shown in Table 4.2 is that

the SSMs and SIMs were created in a leave-one-out fashion using solely the Dataset 2

instead of being computed from the Dataset 1. It can be seen that the proposed tech-

nique compares favourably to the existing studies on the topic, while ensuring extra

robustness to extract non-overlapping and anatomically meaningful segmentations of

the vertebrae.
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Figure 4.8: Improvement obtained by employing the SIM in the segmentation scheme
with a bad initialisation. The image a) is the initial shape, the image b) is the segmen-
tation without using the SIM and the image c) is when the SIM is employed. The main
difference is the correction of the process in the L1.

In addition, Table 4.6 presents a comparison of the results of the methods participat-

ing in the MICCAI Challenge 2014 on spine imaging [200]. The dataset used for this

challenge (Dataset 3) included healthy subjects only, without evident vertebral patholo-

gies. Thus, the incorporation of the SIM does not improve greatly the mean accuracy

(see Section 4.8). Its main contribution is the reduction of large errors, which may be

measured by the 95 percentile, Hausdorff (maximum) distance, or by specific-purpose

measures as the overlapping volume. However, only mean measures (mean DSI and

MASD) were computed in the Challenge. The issue of only using this type of measures

is appreciated in Table 4.6, where the MASD and mean DSI of the proposed method

are less accurate than those using the methodology from Chapter 3 [130], but the 95

percentile and Hausdorff distance are clearly improved. This effect is also observed

when comparing the results with those of the method proposed by Korez et al. [201],

since they provided additional measurements for the training set. The reported MASD

(0.35) and mean DSI (93.1) were better than ours (mean DSI of 90.8, MASD of 0.52),

but their Hausdorff distance (5.73mm) was not as accurate (ours: 4.6mm). Another

example is the method introduced in [170] (Table 4.5), which has a better DSI than
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Table 4.5: Comparison of the State of the Art Methods
Study Image resolution DSI (%) Surface error (mm)

Mean STD1 MASD2 MPSD3 95-p4 HD5

Weese et al. [175] 0.48× 0.48× (0.72− 2)mm3 0.93 6.14
Kadoury et al. [188] 0.8× 0.8× (1− 2)mm3 2.8± 1.9

Rasoulian et al. [189] 0.6× 0.6× 0.6mm3

to 0.9× 0.9× 3.2mm3 1.38 3.8 8.91

Klinder et al. [185] 0.32× 0.32 - 0.98× 0.98mm2

thickness: 0.8− 2.8
0.73− 0.79

Huang et al. [170] 1.0× 1.0× 1.5mm3 94 2 10.06± 1.71
Proposed method 0.35× 0.35× 2.5mm3 90 5.1 0.82 0.78 2.1 5.5

1: standard deviation, 2: mean absolute surface distance, 3: mean point to surface distance, 4: percentile 95 of the
surface to surface distance, 5: Hausdorff distance.

ours but the Hausdorff distance is almost double. For future reference, it was added

the 95 percentile and Hausdorff distance in the table.

Table 4.6: Comparison of the Methods That Used the Dataset 3
Study DSI (%) Surface error (mm)

Mean STD1 MASD2 95-p3 HD4

Forsberg et al. [191] 92 0.47

Seitel et al. [190] 87 1.1

Hammernik et al. [202] 95 0.38

Korez et al. [201] 95 0.37

Castro-Mateos et al. [130] 93 4.1 0.55 1.52 6.2

Proposed Method 91 3.4 0.55 1.47 4.8

1: standard deviation, 2: mean absolute surface distance, 3: percentile 95 of the surface to surface distance, 4:
Hausdorff distance.

4.8 Discussion

Herein a new model (SIM) that represents the interspace between objects in a multi-

object structure has been presented. It was tested in the segmentation of the lumbar

and thoracic spine, demonstrating its effectiveness to avoid segmentations with unnat-

ural geometries, such as overlaps, that may cause simulations to result in unrealistic

outcomes, even when the global accuracy is high.

Since normal metrics do not take into account this overlap effect, it was explicitly
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measured the overlap with and without the use of the SIM, showing that this model

completely avert overlaps.

However, As mentioned in Section 4.4, the SIM does not guaranteed zero over-

lap mathematically speaking. However, the likelihood of happening is so small that it

never occurred in the experiments. The main difference with other approaches is the

employment of a model of the interspace between objects to guarantee that the shapes

are not deformed in an unnatural manner as well as decreasing the likelihood of over-

lapping to almost 0. For instance, the probability of having an infinitesimal overlap is

equally likely with or without the energy that blocks overlaps introduced in [185]. In

contrast, this probability is much smaller when employing the SIM.

In addition, this model partially controls the possible configurations of the segmen-

tation by restricting the shape of the separation between the objects. This is similar

to Statistical Pose Models [186], however less restricted. As shown in Tables 4.1, 4.2

and 4.3, the accuracy of the results does not change greatly by the addition of the SIM

when segmenting healthy subjects. In general, the segmentation depends on the inten-

sity, the SSM and the SIM energies. In the case of healthy subjects, the SSM contained

enough flexibility to accommodate the shapes with a small error and the borders of the

images were clear enough for the intensity energy to drive the shape to the right posi-

tions. Thus, the SIM did not influence the resultant shape in a great manner. However,

in the case of pathological cases, the SSM energy tried to deform the shape to be simi-

lar to the closest healthy vertebra within its scope, which could have large differences.

In addition, the borders were not clear and the intensity energy failed at finding the

correct borders. Under these circumstances the SIM had a great impact at controlling

the separation between the vertebral bodies and processes to find the most realistic

shape. Observe that there are two factors for unclear borders: the first one is due to the

pathology and not to the image quality (collision of vertebrae, decalcification, etc...),

the second is due to the image protocol (voxel size, windows type, etc...). Dataset 1

and 3 did not have any issues whereas dataset 2 contain unclear borders due to both

factors, large voxel size, fractures, etc...

The SIM and the SSM restrict the possible shapes of the segmentation. However,
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the intensity energy is the only one that deforms the shape within the image. The

method employed in this framework is based on the selection of a group of features

(Chapter 3) that was proven to be accurate in the case of dataset 1 [130]. However, it

may happen that other energies provide more accurate results for other datasets. Since,

this energy is interchangeable for any other while maintaining the same framework

with the SSM and SIM, it could be possible to use one of the proposed energies from

the methods in Table 4.6 to improve the border detection.

4.8.1 Limitations

The proposed method requires the manual selection of the IVDs centre. To overcome

this limitation an automatic centre detection, such as the one proposed by [91], may be

employed. Another issue of the method is that an SIM is created to model the variations

of the space between two surfaces. Therefore, the external objects in the structure,

which are vertebrae T1 and L5 in the thoracic and lumbar spine, may over-segment to

external structures that are not considered in the model (Fig. 4.9). A feasible solution

may be to include a part of objects that are outside the structure, vertebrae C6, S1, to

model the interspace.

4.8.2 Computational Cost

The experiment were run using a PC with Intel(R) Xeon CPU E5620 at 2.40 Ghz with

8 GB of RAM and running a 64-bit Windows 8.1 operating system. All the code was

written in C++ using the libraries from the Insight Toolkit [157] for basic manipula-

tion of mesh and images. The proposed framework requires around 50 seconds per

vertebra to perform the segmentation and only 1 second to initialise all the vertebra

after manually selecting the centre of the IVDs. In contrast, the standard Active Shape

Model [32] or the methodology from Chapter 3 [130] only requires 15 seconds per

vertebra. The reason for the increase to 50 seconds is that the proposed framework

employs a steepest gradient descent algorithm to do the optimisation because it does

not have a closed-form solution. Observe that by removing the SIM but maintaining

the same segmentation framework the process requires 49 seconds, it is only around
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Figure 4.9: The SIM requires two surfaces in order to model the space between them.
Therefore, in the low spine segmentation paradigm the L1 and L5 may leak into their
top and bottom vertebra, respectively. In this figure, this issue is shown with a blue
arrow in the L5.

1s faster per vertebra.

4.9 Conclusions

In this chapter, it was introduced the statistical interspace model (SIM), embedded in

a framework for segmenting a multi-object structure. This method was tested on three

databases of CT images of the spine. The SIM was employed to avoid the overlap

in the vertebral and spinous processes and to maintain the correct separation between

vertebral bodies.

The results show that SIM not only prevent vertebral overlaps but also increases

the accuracy of the segmentation by maintaining the relative position of the vertebral

bodies and the spinous processes. This control was found to be necessary in pathologi-

cal cases, where vertebral bodies and/or spinous processes collapse with neighbouring

structures.

Furthermore, the proposed framework is not restricted to vertebra segmentation, it
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could be applied to other anatomical parts such as intervertebral disc (IVD), knees,

heart or any other multi-object structure, where the control of the relative position

among the individual objects is required to restrict rotations, translation and/or to pre-

vent overlap between different tissues. However, as mentioned at the beginning of

Chapter 3 the SIM does not provide a greater improvement in the case of segmenting

IVDs, since their separation is large enough to avoid overlaps and excessive separa-

tion. Thus, the higher computational time of this framework makes it less appealing

for IVD segmentation than the previously introduced ASM with feature-based search-

ing (Chapter 3.2.4).



Chapter 5

Prediction of the degree of

degeneration of IVDs

The previous two chapters were dedicated to the study of segmentation frameworks to

provide anatomical models from medical images. The current and following chapter

deal with the labelling of the structures according to some medical conditions, which

are able to alter their material properties. In particular, this chapter provides a method

to classify IVDs according to their degree of degeneration. This degenerative process

induces a reduction of the IVD water content and a variation of the amount and type

of its collagen. Therefore, the automatic detection of the IVD degeneration grade is

essential for the proper computation of the material properties of the IVDs.

The proposed method extracts a set of designed shape and intensity features from

the segmentation of IVDs to train a neural network. Although, this method may be

used in 2D or 3D, it was decided to employ the mid-sagittal MR image solely and use

2D segmentations of IVDs. The reason behind this choice was that the examination of

the central T2 MR slice is the medical standard for evaluating IVD degeneration. This

process allows this approach to be used in the case of having MR images with one or

few number of slices. The segmentation was performed with a simplification of the

method proposed in Chapter 4. In this simplification, the SIM model was not used,

the SSM was changed by a geometrical energy and the B-splines parameterisation

was substituted by the internal energy of the snakes [138]. The first simplification

80
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was performed to remove the need of training exploiting that the IVD shape in 2D

is closely related to an ellipse. The second simplification was used to speed up the

process, by allowing the method to be optimised using a greedy approach instead of

gradient descent. Observe that this segmentation approach may be explained using the

snakes framework by using as external energy the image energy presented in Chapter

4.

This chapter is adapted from two previous publications [31, 57].

5.1 Motivation

Intervertebral disc (IVD) degeneration or Degenerative Disc Disease (DDD) is associ-

ated with genetic and environmental factors [203]. In addition, It is believed that many

IVD disorders are due to mechanical origins producing, in many cases, changes in the

IVD morphology and histology [204]. Thus, the quantification of the degeneration is

a common parameter, used to estimate the material properties of the IVDs in order to

perform biomechanical and mechanobiological simulation of the spinal conditions and

treatments [205].

Since the biological process of IVD degeneration and its clinical consequences are

still unclear in many details, there have been some studies to correlate DDD with other

disorders, such as low back pain [132, 206] or osteoarthritis of the facet joint [207].

These studies are often performed with the recruitment of hundreds or even thou-

sands of subjects. In the everyday clinical practice, the follow-up of disc degeneration,

in a given patient, may be important in understanding the progress of the patient’s

symptoms. In addition, the manual classification of disc degeneration suffers from a

relatively high intra- and inter-observer variability. Therefore, a reliable method for the

automated classification of IVD degeneration would be a very helpful and time saving

tool.

In clinical routine, clinicians base their diagnosis of disc degeneration on 2D anal-

ysis of Magnetic Resonance (MR) images. The most common view for this purpose

is the mid Sagittal slice, since most of the herniations occur close to the spinal cord,
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because of the curved shape of the spine.

In the literature, different grading system has been proposed [158,208–210]. In this

article, the Pfirrmann grading system [158] was selected because it is widely used in

clinical practice and most of the methods performing automatic classification of IVD

degeneration use this grading system. This criterion divides the degeneration into five

degrees as depicted in Fig. 5.1.

Grade I Grade II Grade III 

Grade IV Grade V 

Figure 5.1: Example of the five degrees of degeneration from (a) to (e).

Herewith it is presented a quasi-automatic 2D segmentation method of interverte-

bral discs on mid-Sagittal slice, which is further employed to extract a set of shape and

intensity features that are used for evaluating the degree of degeneration of IVDs.

As previously mentioned, the most common medical procedure to evaluate the de-

generation of the IVDs is the examination of the mid-sagittal slice of T2 MR image.

Thus, to allow the method to be used when only this slice is present, it was decided to

use solely the information from this 2D image to compute the classification. The direct

implication of this decision was that the segmentation was required to be performed in

2D images. Although the same framework explained in Chapter 3 or 4 may be used,

the SSM needed to be recomputed. However, the shape of an IVD in 2D is close to

that of an ellipse and an important feature for the proper detection of the degree of IVD

degeneration is the ration between the width and the height of the IVD in 2D, which

coincides with the long and short axis of an ellipse. These two arguments led to the

development of a segmentation method that employs a geometrical energy based on

an ellipse to provide the prior information that in previous chapters had been obtained

using SSMs. This approach avoids the need of training allowing the method to be
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reimplemented in other institutions that do not have a training database.

5.2 Methodology

The proposed method requires an initial selection of the centre of the IVD, which is

used to initialise an elliptical contour that is deformed using a variation of active con-

tour models [211] and further improved using Fuzzy C-means [212]. The classification

of the degree of degeneration is based on eight features: the short axis over the long

axis of the interpolated ellipse of the segmentation, the mean and standard deviation of

the intensity of the IVD’s nucleus after applying fuzzy logic in two different manners

and the ratio of the intensity inside and outside the nucleus in the original image and

after the two different fuzzy clustering. The classification is performed using a Neural

Network [213] trained with these eight features. The validation of the method was

carried out on a database of 240 Lumbar IVDs, from 48 different patients.

5.2.1 Intervertebral disc segmentation

Background

Early work on 2D segmentation of the mid-saggital slice was carried out by Chwialkowski

et al. [139] and Roberts et al. [140].

More recently, Ruiqiong et al. [141] developed an automatic segmentation method

based on a edge detection algorithm within a small windows, which was slid along the

left side of the previously segmented spinal cord, however the results were not accurate.

A watershed approach was proposed by Chevrefils et al. [142], the main disadvantage

was the over-segmentation. An atlas-based 2D segmentation method was developed

by Michopoulou et al. [21], in which a combination of ASM and Fuzzy C-means was

employed to segment the IVDs. Its drawback is the need for a manual rigid registration

and large data training for the statistical model. A recent work published by Ayed et

al. [16] carried out the segmentation using Graph Cuts, the method was completely

automatic but the results were not highly accurate. A different methodology was pro-

posed by Law et al. [143]. Their approach was based on anisotropic oriented flux,
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which provides highly accurate results. However, it employs a large number of steps,

which harden the extension of the algorithm to other body tissues.

Initialisation

This method assumes that a rough centre position of the IVD is provided. From the

centre, three lines are thrown at 0, 25 and 50 degrees and the point within every line

with a maximum intensity is selected. If the intensity of any of the points is much

lower than the other two, it is erased. Then, the point with the minimum distance to

the centre is selected as the position of the marrow. Afterwards, a square, centred in

the manual point, with double size of the distance from the centre to the marrow is

cropped out as the Region of Interest (ROI).

Having selected the ROI, the contour of the IVD is initialised as a 60-point ellipse,

which was placed in its centre with a vertical axis of 0.2×size of the ROI and the

horizontal axis of 0.4×size of the ROI.

Active contour model

Active contour models or Snakes are energy minimising and deformable splines, closed

or open, which adapt to contours by means of different constraints. In general, the

equation of the snake’s energy can be written as :

ESnake =

∫
Einternal(v(s)) + Eimage(v(s)) + Eaux(v(s))ds (5.1)

where v(s) describes the position of the control point s in the image. Greedy al-

gorithms [214] are commonly used to adapt the snakes to the object of interest, by

displacing every point in the contour within a neighbourhood inside the image, in an

iterative manner. In the proposed method, the neighbourhood of a point s was cho-

sen to be a line, whose direction is the normal to the curve at s. The three energies

were computed using this intensity profile, and the pixel with the minimum value was

selected as the new position for that point.
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The internal Energy is usually described as:

Einternal =
1

2

(
α(s)

∥∥∥∥dv(s)

ds

∥∥∥∥2 + β(s)

∥∥∥∥d2v(s)

ds

∥∥∥∥2
)

(5.2)

The first part of the energy maintains the distance of the control points with similar

length, whereas the second term penalises sharp curvature. α and β are the weights,

which may be updated during the process in order to increase or decrease their values,

when the energy is too high or low, respectively. Since the new positions are along the

normal direction of the curve at the control points, the αwas set to 0 in the experiments.

On the other hand, β is modified with the following equation.

β(s) =


1.2 β(s) if Einternal > 2β0 and β(s) < 4β0

β(s)/1.2 if Einternal < β0/2 and β(s) > β0/4

β(s) otherwise

(5.3)

The image energy usually involves the gradient on the neighbourhood of the pixel.

In this approach, it was used a directional derivative for an energy that finds its mini-

mum in changes from low to high intensities:

Eimage = γ(s) n̂(s)·∇I(v(s)) = γ(s)
∂I(s, p)

∂p
, where I(s, p) ≡ I (v(s) + p · n̂(s))

(5.4)

p is the position along the normal direction n̂(s) at v(s), pointing outwards of the con-

tour. The weight of the external energy γ(s) is computed using the following equation:

γ(s) = γ0 ×

1 +

∂I(s, p)

∂p

∣∣∣∣
p=pselected

max(I(s, p))−min(I(s, p))

 (5.5)

where the value of γ0 was set to 4.

As explained in the introduction, a new energy (geometrical energy) was added

into the proposed segmentation framework in order to achieve similar results to those

obtained with SSM but without the need of training. In order to compute this new

energy, a simplified geometrical shape (based on the knowledge on the target object)
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must be fitted to the control points of the snake. Then, a distance map image is created

by filling every pixel with its distance to the border of the aforementioned geometrical

shape. In the case of IVDs, the selected geometrical shape was an ellipse.

Since the purpose is to maintain the contour close to a geometrical form in shape

but allowing small deformations, the distance map is exponentiated with a value ρ as

follows:

Eaux = ρDistance Map(v(s)) (5.6)

where ρ was selected as 1.25. Thus, small distances have little influence but large ones

are prohibited. Observe, that this energy could employ an SSM in the same manner as

the ellipse fitting is used.

Fuzzy logic

A usual problem when dealing with an active contour model is to ensure that the se-

lected number of points is large enough to obtain a properly segmented shape, but

small enough to maintain a sufficiently large distance between the points to avoid fake

internal energies. In the proposed method, the number of points was reduced when

the distance between them was inadequate but it was never increased. Therefore, in

order to deal with a segmentation that has insufficient detail, fuzzy C-means was em-

ployed to create an image with the probability of each pixel belonging to the IVD.

This post-processing technique assesses every point in the contour by means of the

largest decrease in probability and allows a movement of up to two pixels normal to

the contour to acquire a more accurate shape (Fig. 5.2).

5.2.2 Classification of the degree of degeneration

The study addressed in this section aims to classify the IVDs into healthy (Grade I and

II), low-level degeneration (Grade III), high-level degeneration (Grade IV) and col-

lapsed space (Grade V). There exist two different components that are to be optimised:

features and classifier.
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(a) (b)

Figure 5.2: (a) The searching algorithm is shown, where the red dots are the points in
search and their neighbours, the blue ones are the predicted contour by the snake, the
green dots are the searching line and the black one the new best position. The back-
ground is the fuzzy classification. (b) The original image is shown in the background
and the output from Snakes (in blue) and the final result with Fuzzy Logic (in white)
are superimposed.

Grades I and II were merged due to the large inter-variability found among the

three experts. Furthermore, the database contains a small number of cases hindering

the classification between these two grades. Nevertheless, these grades are considered

to be healthy, and in general, it is rare to find IVDs of grade I in adults, since IVDs

undergo the degeneration process with age.

Background

Despite of the clinical significance of the classification of the intervertebral discs, most

of the methods in the literature only consider healthy and unhealthy discs [139, 215–

219]. This separation corresponds to the difference between degrees I, II and III, IV, V

in the Pfirrmann classification.

In contrast, Lootus et al. [220], proposed a method to perform a three level classifi-

cation of the IVD by using a ±1 precision. Thus, neighbour grades are considered to

be the same. Their approach extracts the IVD region using a vertebral body segmen-

tation approach. Subsequently, a group of features is extracted from the IVD region

and the degeneration grade is estimated using a regression model. A recent work, de-

veloped by Ruiz-España et al. [221], produces a full classification of the IVDs using

the intensity across the height of the IVD. Although, these intensities are well suited
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as features, they are not decisive on their own.

In addition, previous methods do not provide a detailed evaluation of the perfor-

mance, hindering the comparisons with their approaches. In contrast, we present a

comprehensive evaluation, specifying the results by different IVD positions and de-

generation degrees.

Features

In his article [158], Pfirrmann classified the degree of degeneration into five categories

employing the following information (Pfirrmann’s features):

P1: Signal intensity in the nucleus.

P2: Homogeneity of the intensity. Is there any cracks or dark spots in the nucleus?

P3: Distinction of the nucleus and annulus.

P4: Height of the IVD.

In this article, a set of eight features was employed to classify the IVDs in an attempt

to emulate the idea behind Pfirrmann’s rationale.

Three images were employed to compute the proposed set of features.

• Image A: Original T2-weighted image.

• Image B: Image as a result of a fuzzy clustering, considering only the segmented

region of the studied IVD.

• Image C: Image as a result of a fuzzy clustering, considering the whole ROI for

the studied IVD as explained in section 5.2.1.

In both derived images B and C, the fuzzy clustering method created an image with the

probability that a pixel belonged to the darkest cluster within the segmentation area.

The number of clusters was manually selected as 2, since the classification should sep-

arate between annulus and nucleus. A fuzzy clustering considering only the segmented

region, Image B (Fig. 5.3 - b), allows a large intensity separation between the nucleus

and annulus, providing information between grade 3 and 4. On the other hand, the use
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of the whole ROI , image C (Fig. 5.3 - c), provides large intensity separation between

annulus and nucleus when the grade are 1 or 2, and permits the integration of spots and

cracks information that improve the separation between grade 2 and 3.

In addition, a region A within the IVD to roughly represent the nucleus was defined.

This region was described as an ellipse with a short axis of 0.9×b and a long axis 1.5×b

(red ellipse in the images in Fig. 5.3).

The eight features and their correlation with the Pfirrmann’s features are depicted

in Table 5.1.

Table 5.1: Description of the eight features used for the classification of the IVD ac-
cording to their degeneration grade. The third column provides the Pffirmann’s feature
that is being explained. The flatness of the IVD was computed as the ratio between the
short axis (b) and long axis (a) of the fitted ellipse to the IVD segmentation.

Features Explanation Pfirrmann’s
features

Feature 1 (F1) MIA of image B P1
Feature 2 (F2) MIA of image C P1
Feature 3 (F3) SDA of image B P2
Feature 4 (F4) SDA of image C P2
Feature 5 (F5) RIA of image A P3
Feature 6 (F6) RIA of image B P3
Feature 7 (F7) RIA of image C P3
Feature 8 (F8) Flatness of the IVD P4

MIA: Mean intensity in region A.
SDA: Standard deviation of the intensities in the region A.
RIA: Ratio between the mean intensity in region A and the mean intensity in the
whole IVD except region A.

The Classifier

Although the selection of the set of features is the most important information to per-

form proper classifications, the classifier may also influence the accuracy of the results.

In this work, the classifier was selected by comparing the sensitivity that different clas-

sifiers achieved on the training set.

Table 5.2 shows the sensitivity of the IVD classification according to their degree

of degeneration, employing different classifiers and parameters. The results, shown in
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Long Axis 

Short Axis 

Image A  

Image B 

Image C  

Figure 5.3: Representation of the eight features for the classification of the IVD image
(a). The first and third features are the mean and variance intensity of the pixels within
the small ellipse (region A) in image (b) and the second and fourth ones are the same
values in image (c). The next three features are the ratios between the intensity in the
small ellipse and the intensities in the segmented area but the small ellipse, in images
(a), (b) and (c). The last feature is the long axis divided by the short axis of the large
ellipse

the table, are organised according to the sensitivity that was achieved in the training

set. The classifiers and their parameters are:

• NN-1: Neural network (NN) with a random initialisation. This classifier con-

tained 1 hidden layer with 12 neurons.

• Ad: Adaboost with 10 iterations.

• SVM-1: Support Vector machine with a polynomial of order 3.

• LR: Logistic Regression with a polynomia of order 3.

• SVM-2: Support Vector machine with Gaussian radial bases.

• NN-2: Neural network (NN) with Swarm optimization. This classifier contained

1 hidden layer with 12 neurons.

The parameters, such the order of the polynomial or the number of iterations of

adaboost. Since a separation between training and validation set would result in a low
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number of cases, the training of these parameters was performed in a leave-one-out

manner. When training a Neural network, the training set was divided into a validation

set of 15%, and training set of 85% to avoid over-fitting.

Table 5.2: Sensitivity obtained with different Classifiers.
Classifiers NN-1 Ad SVM-1 LR SVM-2 NN-2
Sensitivity 0.86 0.89 0.90 0.90 0.90 0.91

Although the performance of the classifiers is not very different, the NN-2 was

selected.

5.3 Data

A database of T2-weighted MR images of 240 human low back intervertebral discs,

using an open MR machine of 0.4 Tesla (Hitachi, Twinsburg, Ohio) was collected at

the National Center for Spinal Disorders (Budapest, Hungary). All the images have a

resolution of 0.68x0.68 mm2.

Patients were 25 males and 23 females with a mean age of 44 (age interval: 27-

62 years). Those patients were selected for participating in the European MySpine

project, which had received approval of the institutional review board as well as a

written informed consent from all subjects.

Using Pfirrmann’s classification (grades I to V) to group the IVDs according to their

degree of degeneration led to table 5.3.

Table 5.3: Degeneration Grade in the Dataset
Degeneration Grade I II III IV V

Discs in L1-L2 positions 0 14 30 3 1
Discs in L2-L3 positions 0 21 21 6 0
Discs in L3-L4 positions 5 17 17 7 2
Discs in L4-L5 positions 4 10 13 17 4
Discs in L5-S1 positions 2 6 19 9 12
Discs per degeneration 11 68 100 42 19
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5.4 Results

5.4.1 Implementation details

In the proposed scenario, there are two main group of parameters involving segmenta-

tion and classification. The segmentation is based on a Snake framework that contains

the four parameters (α, β, γ, and ρ) introduced in Sec. 5.2.1. Although these weights

are optimised with the algorithm, their initial value influences the speed and conver-

gence. In our experiments, their values were:

• α: 0.

• β: 3

• γ: 4

• ρ: 1.25.

The classification parameters are the selection of the classifier and specific values

in the feature computation. The selected classifier was Neural Network with Swarm

optimisation [213]. The classifier employed one hidden layer and 12 neurons.

5.4.2 Evaluation of the method

The evaluation of the segmentation was performed by using two standard measures,

Dice Similarity Index (DSI) between the segmented disc (SD) and its ground truth

(GT), and Root Mean Square Error (RMSE) between the contours of the SD and the

GT. The GT was created by an expert using ITK-SNAP [222].

DSI =
2× (GT ∩ SD)

GT + SD
× 100% (5.7)

RMSE =

√√√√ 1

M

M∑
i=1

‖SDi −GTi‖2 (5.8)

where, M was the total number of pixels surrounding the segmented shape, SDi are

the points in the segmented Disc and GTi the points in the Ground truth.
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To evaluate the accuracy of the classification algorithm, three experts manually la-

belled the cohort of 240 IVDs and the most voted value for each IVD was selected as

the ground truth. For the creation of the ground-truth, the experts were allowed to look

through the different slices of the same image. However, in the case of the automatic

method, the mid-sagittal slice was the only input.

This dataset was divided into a training and validation set (140 IVDs) and testing

set (100 IVDs). This division was performed automatically, trying to preserve the same

relative quantity of the five different type of degeneration at each lumbar position using

the method implemented in [69].

The inter-observer variability was computed as the mean of the specificity and sen-

sitivity of each observer compared to the ground truth. In order to evaluate the per-

formance of the proposed automatic method, its specificity and sensitivity were also

computed against the ground-truth and compared with the inter-observer variability,

Specificity =
TN

TN + FP
, Sensitivity =

TP
TP + FN

(5.9)

where TP, TN, FP and FN are the number of true positives, true negatives, false pos-

itives and false negative, respectively. In addition, their 95% confidence interval (CI)

was computed. This CI was computed assuming a Gaussian approximation of the bi-

nomial distribution (mean ± 2×standard deviation), since it is a common approach

that can be used for benchmarking.

Var(Spe) =
Spe(1-Spe)

TN+FP
, Var(Sen) =

Sen(1-Sen)
TP+FN

(5.10)

Observe that when the number of samples is small or the Sensitivity or specificity

is close to 0 or 1, this approximation fails. Thus, a Wilson confidence interval (WCI)

was also employed, this interval has better coverage than the ’exact’ interval (Clopper-

Pearson interval) and it does not have any Bayesian influence (Jeffrey interval) [223].

Furthermore, we employed the score test [224] to measure the similarity between

the inter-observer variability and our results, since this test has been proved to be the

most powerful test when the tested values are close to each other.
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5.4.3 Segmentation results

The quantification of the segmentation results is presented in Table 5.4. Several typi-

cal examples of segmentation performed on discs with each type of degeneration are

shown in Fig. 5.4.

Table 5.4: Accuracy of the segmentation. SD stands for standard deviation and CI for
confidence interval.

Degeneration Grade I II III IV V Global
Mean DSI 90.9% 92.5% 92.6% 90.2% 87.5% 91.7%

2 x SD of DSI 4.7% 4.5% 3.5% 7.0% 7.5% 5.6%
Mean RMSE (mm) 0.97 0.78 0.75 0.97 0.91 0.82

95% CI(mm) 1.08 0.82 1.09 1.81 1.69 1.36

Comparison with the state of the art

Table 5.5 presents a comparison with the state-of-the-art methods. The proposed seg-

mentation method achieves comparable or more accurate results than those in the state-

of-the-art. In fact, only the method of Law et al. [143] has slightly better DSI values,

but their RMSE was clearly higher.

Table 5.5: Comparison with state-of-the-art methods
Type of Mea-
surement

DSI All IVDs DSI Degener-
ated IVDs

DSI Non-
degenerated
IVDs

RMSE All
IVDs in (mm)

Michopoulou
[21]

- 87.4% 91.7% -

Ayed [16] 88% - - 2.73
Law [143] 92.04% - - 0.98
Proposed
Method

91.73% 91.37% 92.21% 0.82

5.4.4 Classification results

Table 5.6 presents both the Gaussian approximation of the CI (GCI) of the sensitivity

(sen) and specificity (spe), as well as the respective WCI obtained from the testing set

(Section 5.4.2). Observe that the confidence intervals for the global specificity were
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not computed since these intervals are only valid for binomial distributions and the

global specificity is a multinomial distribution.

In order to compare the inter-observer variability and the results from the proposed

method, the score test was used. The p-values obtained with this test were always

above 0.97, meaning that is not possible to ensure that both values are not equal.

Table 5.6: Accuracy of the classification, by measuring the specificity (spe) and sen-
sitivity (sen) ± 2 standard deviations and the Wilson confidence interval (WCI). The
ground truth was selected as the most voted value of each IVD among the three experts
manual labelling. The accuracy of these experts is shown in the observers’ rows (Ob).
The automatic method (AM) required a training set of 140 IVDs and the result was
assessed with a testing set of 100 IVDs.

Degeneration Grade I & II III IV V Global
GCI Sen Ob. 81.3%±8.0% 85.0%±6.4% 90.0%±7.9% 100%±0% 85.2%±4.6%
GCI Spe Ob. 94.8%±3.0% 92.7%±3.9% 94.2%±2.9% 97.8%±1.7% 94.4%
GCI Sen AM 87.5% ± 11.7% 85.7%±10.8% 83.3%±17.6% 100%±0% 87.3%±4.4%
GCI Spe AM 93.1% ± 6.0% 88.3% ±8.3% 97.7%±3.2% 100%±0% 95.5%
WCI Sen Ob. 72.3% - 87.8% 77.6% - 90.1% 80.1% - 96.0% 86.2% - 100% 79.3% - 89.6%
WCI Spe Ob. 91.1% - 97.1% 88.0% - 95.7% 90.6% - 96.4% 95.5% - 99.0% -
WCI Sen AM 71.9% - 95.0% 72.2% - 93.3% 60.8% - 94.2% 67.6% - 100% 78.2% - 93.9%
WCI Spe AM 84.8% - 97.0% 77.8% - 94.2% 91.9% - 99.4% 96.2% - 100.0% -

In order to provide the relative influence of each feature, Table 5.7 presents the

sensitivity and specificity of each feature together with the eighth feature. Observe

that at least two features are necessary to train the classifier and since the eighth feature

only provides meaningful information for the separation between the fifth degree and

the rest, it was considered the most appropriate for this test.

Table 5.7: Comparison of the classification power of each individual feature together
with the eighth feature.

Degeneration Grade I & II III IV V Global
Sen/Spe F1 & F8 68/91% 81/72% 75/93% 75/100% 75/90%
Sen/Spe F2 & F8 0/100% 17/92% 25/93% 100/100% 50/75%
Sen/Spe F3 & F8 81/87% 77/79% 63/95% 100/100% 78/92%
Sen/Spe F4 & F8 0/100% 14/84% 25/80%% 50/96% 43/69%
Sen/Spe F5 & F8 36/73% 65/51% 75/90% 50/100% 55/78%
Sen/Spe F6 & F8 0/100% 84/100% 38/71% 0/100% 41/68%
Sen/Spe F7 & F8 72/81% 70/73% 50/95% 75/100% 70/88%
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Figure 5.4: Examples of segmentation of all the degrees of degenerations, the red
contour is given by the algorithm and the white one is the Ground Truth. Every row
contains a different degree of degeneration, the column starting with (a) is Grade I (b)
is Grade II (c) is Grade III (d) is Grade IV and (e) is Grade V. Herniations can be
observed in (e) and (j). Setting parameters: α = 0, β = 3, γ = 4, ρ = 1.25

5.4.5 Computational time

The algorithm was tested in a Windows 7, 64-bit computer with Intel(R) quad-core

Xeon CPU E5620 at 2.40 Ghz with 8 GB of RAM. All the code was written in MAT-

LAB and the averaging elapsed time was 1.13 seconds per disc.

5.5 Discussion

The aim of this study is twofold. On the one hand, a new method for IVDs seg-

mentation, which could be extended to other anatomical parts such vertebral bodies,

livers, bladders, etc. was proposed. On the other hand, a method to classify IVDs

by the degree of the degeneration was presented, which could help physician to focus

on problematic IVDs. This classification plays a key role, together with the IVD seg-

mentation, for automatically detecting spinal diseases, as well as for patient-specific
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predictive systems to treat various spinal pathologies [225].

5.5.1 Discussion of the segmentation algorithm

The segmentation method relies on snakes. It employs a new term, the geometrical

energy, in order to control disc border leakage to neighbouring edges, which could not

be controlled only with internal energy (Fig. 5.5). The method also employs a fuzzy

clustering step to improve the accuracy in contour details, which were smoothed due

to the distance on the snake control points.

Figure 5.5: Segmentations (a) to (c) were obtained cancelling the elliptical distance
map contribution with the setting parameters presented along this work (α = 0, β =
3, γ = 4, ρ = 0), (d) to (f) were achieved by using the distance map (ρ = 1.25)

The mean DSI goes from 87.5% to 92.6% of accuracy with a global mean value of

91.73% (Table 5.4). Therefore, the method was found to be accurate and stable with re-

spect to the type of degeneration. It is important to remark that degree of degeneration

5 means the disc collapsed, thus reducing its area. Therefore, a pixel of variation has

a higher impact on the DSI in this sort of IVDs than in the ones with lower degree. A

standard measure, which does not suffer this problem, is the RMSE of the points of the

segmented shape to the ground truth contour. As it is shown in Table 5.4, the RMSE

remains stable across the different degrees of degeneration. A qualitative evaluation

is presented in Fig. 5.4, it can be appreciated that the ground truth and the automatic

segmentation overlap in most of the contours.

Furthermore, the proposed method achieves similar results to those of the state-

of-the-art (Table 5.5) with a less complex algorithm that can be easily extended to
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other anatomical parts as shown in Fig. 5.6. This figure illustrates the segmentation of

vertebrae in MR and CT using the same weights as for IVDs. However, the distance

map was changed to a rectangular shape and the oriented derivative was modified to

find the maximum in a high to low intensity jump.

Another extension of this method is to employ statistical shape models when the

shape cannot be expressed in a geometrical manner. The ellipse or square fitting should

be replaced by the projection into the SSM space and the same technique may be

employed. Observe, that by using this methodology, the results are more robust to all

the previously mentioned drawbacks of ASM (Chapter 2), such as large training sets.

In fact, only an affine transformation over the average shape could replace the SSM

projection on this framework.

Figure 5.6: Automatic segmentation of vertebrae (in red) L1 to L5 in CT (a)-(e) and L1
to L5 in MR (f)-(j) of the same patient using an square distance map with α = 0, β =
3, γ = 4, ρ = 1.25

5.5.2 Discussion of the classification

The results of the classification of the degeneration are presented in Table 5.6. These

results can be considered accurate enough since the inter-observer specificity and sen-

sitivity are in the same range as those achieved with the proposed algorithm. Moreover,

the inter-observer variability and the results from the proposed method were compared

using the score test. The p-values obtained with this test were always above 0.97,
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meaning that is not possible to ensure that both values are not equal. However, the

WCI intervals were rather wide, reviling that the number of cases is small.

In overall, the proposed method achieved accurate results with no subjectivity. And,

although the CI ranges are wide, showing that more cases are required, the lowest value

of all of the intervals is still above 60%, which proves its reliability. Notice that the

observers’ interval are narrower than the automatic method because they were obtained

using the whole dataset instead of the testing set. The robustness of the classifier was

also proved by checking that it always kept the error within ±1, meaning that if the

real degeneration grade was 3, it never chose 1 or 5.

The selection of the classifier was based on their performance in the training dataset.

Observe that the difference given by initialising the optimisation with the Swarm op-

timisation is due to using a gradient-based optimiser. In particular, the optimisation

technique used for the NN was stochastic gradient descent. This technique has the

drawback of getting stuck in local minima. Thus, the swarm optimisation decreases

the likelihood of this to happen by initialising the optimisation search close to the

global minima. However, employing other optimisers such the quasi-Newton may also

solve this issue.

Observe, that the current method for classification does not require highly accurate

segmentation, because the type of features are statistics over a normalized intensity and

the region of the nucleus position is an ellipse approximation. Furthermore, this type

of features is robust against different type of MRI machines and resolutions. Since,

the current database did not have images from different machines, this robustness was

evaluated by reducing the in-plane resolution of all the images to be 1.5mm× 1.5mm

and running all the experiments. Although the segmentation slightly changed (Fig.

5.7), the classification remained exactly the same.

5.5.3 Limitations

A limitation of the method is the need of user interaction for selecting the centre of

an ellipse. This step could be automatised by detecting the centre of the intervertebral

disc using one of the methods in the literature [27, 28, 161, 162].
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(a) (b) 

Figure 5.7: Comparison of the Snake segmentation with Low (a) and normal resolution
(b).

Another limitation is the low number of cases, which implied large confidence in-

tervals in the classification results. Although, this issue hinders the evaluation of the

method, the minimum values of the confidence intervals were not extremely low (above

60%).

In addition, the type of grading system could be considered as a limitation of the

method. Pfirrmann degeneration grading has been extensively used in research and

requires the standard T2-weighted MR image. The main drawback is the selection of

a gold standard for evaluating the classification methods, which are commonly subjec-

tive because of the vague definition of the different degrees of degeneration. In order

to solve this issue, the gold standard was selected as the most voted value of the clas-

sification provided by 3 experts. However, there exist new grading systems that define

the degrees in a different manner in an attempt to be more objective and they could be

a choice for future research work [209, 210].

The last limitation is the image modality. Although, there exist correlation between

other type of image modalities, such as T1-ρ or T2*, and the Pfirrman’s grading system

[226, 227], the standard T2-weighted was employed because of its direct relationship,

since Pfirrmann was inspired from this modality. In addition, T2-weighted is still the

standard modality in many hospitals.

5.6 Conclusions

This chapter presents an automatic and accurate method to classify the IVD’s degen-

eration based on the ellipticity of the IVD and the intensity in the nucleus pulposus.
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This information was extracted from a previous segmentation of the intervertebral disc

using Active Contour models and Fuzzy C-means.

This method opens the way to a better quantification of the IVD degeneration that

could help physicians in large-scale population studies and also in the automation of

patient-specific techniques used in personalised medicine. Moreover, the proposed

automatic IVD segmentation method provides numerical information about the bio-

logical and biomechanical features of the tissue even when these correlations with the

MR signals are not fully understood.



Chapter 6

Rebalanced Multi level Component

Analysis (R-MLCA):

In this chapter, we address the following casualty dilemma: The classification of an

object tends to be more precise when its proper segmentation is provided. But, on the

other hand, the segmentation of an object is more accurate when having extra informa-

tion that can be computed with a classification method, such as the stage of a disease.

Thus, an important objective of this thesis is to be able to create a framework that ex-

ploits the commonality between classification and segmentation in order to provide a

better performance for both applications. In the literature, there exist a group of meth-

ods to perform this tasks using multi-linear techniques. However, they do not have all

the properties that are desired, as it will be mentioned in the Motivation. Therefore, this

chapter provides with the mathematical base of a new type of multi-linear technique,

the rebalanced multi-linear component analysis (R-MLCA). This technique permits

the creation of SSMs and SAMs with multiple factors, such as the stage of a disease or

the inter-subject variability. This information is employed to achieve different levels

of modes of variation. For instance, assume an SSM is going to be created using the

R-MLCA with a database of vertebrae in different spinal positions and with different

stage of scoliosis. The first level would comprise the modes of variation correspond-

ing to changes in the spinal position, the second one would comprise the modes of

variation corresponding to the additional differences in disease stage, and the third one

102
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would encode the inter-subject variability.

R-MLCA allows SSMs and SAMs to achieve more accurate segmentations and the

possibility to classify the segmented objects according to these factors.

6.1 Motivation

Statistical shape models (SSM) and Statistical appearance models (SAM) were devel-

oped to incorporate knowledge on the statistical variability of shape and appearance

of the object of interest into image analysis [32]. This type of models provides infor-

mation on the normal variability of a population. It also allows the generation of new

object instances (s) that resemble the studied ones through the linear combination of a

group of modes of variation (Φ) and the mean across the population (s̄):

s = s̄+ bΦ (6.1)

These models only consider one factor, which is usually the cross-subject variabil-

ity. Thus, when facing hierarchical, or nested, data structures, SSMs and SAMs do not

consider the different factors on which the data is dependent. This drawback is evident

in applications of different areas, such as: Cardiac modelling where it may be nec-

essary to model the variability stemming from both subject and cardiac phase. Brain

modelling in which it might be interested to obtain the variation across subjects, age-

ing, and a specific disease or disorder, such as dementia, in order to compute the factor

risk of developing such disorder. Bone modelling where it could be desirable a model

that depends on the variability across subjects, degree of osteoporosis and ageing, so

that the relationship age and osteoporosis for specific patients is encoded.

The generation of an SSM or SAM involves generally a dimensionality reduction

of the original object descriptors to a reduced number of principal modes. For this

purpose Principal Component Analysis (PCA) is commonly used, because it contains

a series of properties that are desirable for the method and the obtained modes. In

the case of a Multi-linear SSM or SAM, it would be appealing to achieve equivalent

properties:
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1. Robustness to unbalanced and missing data: The construction of models with

different factors requires a database stratified according to their factor values. The

method should be robust against unevenly distributed data among these groups or

even missing groups.

2. Orthogonality and independence: The model should ensure orthonormality be-

tween the modes of each factor and independence between the different factors.

3. Close-form solution: The extraction of the modes of variation as well as the

reconstruction procedure of a given object should have a close-form solution.

4. Optimal truncation: The selection of a subgroup of modes of variation (Φ) from

the model should yield the best lower multilinear rank approximate [228]. This

is an important property that enables the truncation of Φ by removing the least

significant modes, typically considered noise.

In the literature, the multilinear models have been described in a multiplicative

manner, so that the modes of variation (Φ) are stored in a tensor of order L+1, being L

the number of factors. The reconstructed object is thus expressed as

s = Φ×2 bf1 · · · ×L+1 bfL (6.2)

where bfa are the model parameters of each factor a = 1 . . . L. These models are

constructed using a tensor-based learning technique on the data, such as high order

singular value decomposition (HOSVD) ( [229], [230]), multilinear subspace analysis

with missing values (M2SA) [231], bayesian tensor decomposition (BTD) [232] or

simultaneous tensor decomposition and completion (STDC) [168], among others.

However, none of these methods simultaneously guarantees the four desired proper-

ties. Thus, different extensions have been proposed in the recent years to solve specific

issues. For instance, in the case of bilinear models, Mpiperis et al. [193] proposed an

extension of the HOSVD technique to handle the case of missing and unbalanced data.

Vlasic et al. [233] dealt with the missing data issue by formulating the problem into

a probabilistic framework that was solved using probabilistic PCA (PPCA). Another

solution for the case of bilinear models and when one factor is periodic was proposed
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by Figueras et al. [234], where the bilinear coefficients were approximated by Fourier

functions allowing the recovery of missing temporal phases in the cardiac cycle.

Lecron et al. [235] proposed to employ an additive method, based on Multi-level

component analysis (MLCA) [236], which handles all the previous properties. How-

ever, the method was only formulated for a bilinear case, and with a notation too spe-

cific to their particular problem. A more systematic reformulation of their method

for multilinear models would be introduced in section 6.2. In addition, they did not

provide any method to reconstruct or classify new input shapes.

In addition, the method proposed by Lecron et al.does not handle an important is-

sue. In many databases the distribution of cases with different combination of factors

may not be a faithful representation of their distribution in the real population. A sam-

ple scenario is having two datasets of human spines, one with thoracic and lumbar

vertebrae and another with only lumbar ones. If not correctly addressed, the model ris-

ing from the two databases together will give more importance to the lumbar vertebrae,

since there are more available cases.

A straightforward solution is to use only a balanced subsample. But this would

produce a reduction of the statistical significance of the estimated model. In general,

the available data is scarce and expensive, and there could be even cases with missing

combination of factors in the sample. The formulation of MLCA employed by [235]

ignores this effect. Its direct application to an unbalanced data would introduce some

bias, giving more relevance to some factor values, not justified by their abundance in

the population.

Herein, the MLCA is revised, taking into consideration that the distribution of cases

into different factors in the training dataset may not properly represent their real dis-

tribution in the population (Section 6.2.1). For clarity, the new method is named re-

balanced MLCA (R-MLCA). Although, both methods coincide for balanced datasets

it is shown that the R-MLCA improves the performance of the original MLCA for

unbalanced ones. This technique was used to create rebalanced multi-level statistical

shape models (R-MLSSM). In addition, the derivation of a method to reconstruct un-

seen shapes depending on the available information (Section 6.2.4) and a classification
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algorithm that employs the R-MLSSM, embedded in a Bayesian framework (Section

6.2.5), are provided. In order to evaluate the model and both the reconstruction and

classification methods, it was compared the reconstruction error and the specificity and

sensitivity of the classification between the R-MLSSM and the standard SSM in differ-

ent experiments (Section 6.3). The results of these experiments are shown in Section

6.4. Lastly, the discussion and conclusions are in Section 6.5 and 6.6.

6.2 Method

6.2.1 Multi-linear model construction

This section introduces the rebalanced MLCA and its use to build statistical shape

and appearance models. For simplicity, we will refer only to shape models, named

rebalanced multi-level SSM (R-MLSSM), along the paper as all experiments have been

carried out on shapes.

Consider a dataset ofK cases, each of them, i ∈ [1, K] described by aN -dimensional

vector si. For point distribution models, N = d × P , where d is the dimension of the

space, and P the number of points.

The cases are also classified according to a set of factors {f1, f2, . . . , fL}, with

each fa taking qa different values. Thus, each case i is also described by a vector

of factor values, {(f1(i), . . . , fL(i)}. These factors are organized hierarchically in L

levels. Each level a is formed by all factors included in the previous level, a − 1, and

the factor a. Thus, we will denote by Fa = {f1, f2, · · · , fa} the factor values involved

in the hierarchy level a. In general, the last hierarchy level L denotes the patient

variability within each group. Therefore, this last hierarchy level contains individual

objects and it will be treated differently in various steps of the derivation of the R-

MLCA.

Let us define the set of all cases that are used to create the model as C. Then, for

each Fa, its corresponding subset of cases is denoted CFa = {i ∈ C|Fa(i) = Fa}, with

cardinality KFa = n(CFa). If F0 = 0 is considered, then CF0 = C and KF0 = K.

Note that it is not required that all the combinations of factor values are covered by
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the cases, and that more than one case may have the same combination.

The multi level SSM (MLSSM) represents each case si as:

si = φ(0) + b
(1)
F1(i)

Φ(1) + b
(2)
F2(i)

Φ(2) + · · ·+ b(L)FL(i)
Φ(L) + ei

=
∑
a

b
(a)
Fa(i)

Φ(a) + ei = s̃i + ei

with b
(0)
F0(i)

= 1 and Φ(0) = φ(0)

(6.3)

where s̃i are the instances of the model, φ(0) is a constant vector, the matrices Φ(a)

are formed by the modes of variation corresponding to each level a, and b(a)Fa(i)
are the

corresponding model parameters, which only depend on the factors associated to its

level, Fa(i) = {f1(i), f2(i), · · · , fa(i)}, and they are independent of the rest of them.

In addition, each Φ(a) is orthonormal and the model parameters b(a)Fa(i)
are uncorrelated

within its level and between the different levels.

In [236], the MLCA is described as the least square problem:

E =
∑
i∈C

‖si − s̃i‖2 (6.4)

under the same constraints stated previously, so that

〈b(a)b(c)〉 = 0 ∀a, c ∈ 0, . . . , L with a 6= c (6.5)

Observe that, since b(0) = 1, this equation is implicitly imposing that each b(a) has

null mean. However, this formulation ignores the effect of having different group

proportions in the training set as that in the real population. This means that if a

training dataset contains KFa cases with a specific combination of factor values, for

instance L1 vertebrae in a lumbar spine dataset, it is implicitly assumed that KFa/K

is the probability of having L1 vertebrae not only in the dataset but also in the real

population. In general, this may not be true, and the real probability αFa may be

different to KFa/K. For the purpose of illustration, let us assume we want to construct

a model of a vertebra, taking into account the position across the spine and the subject

variability. Let also assume that we have two databases, one containing vertebrae of the
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whole spine and another of only cervical vertebrae. This means that a model created

using (6.6) will consider cervical vertebrae to be more likely to exist than thoracic or

lumbar ones, which is not true in the human population. Thus, herein it was derived

an extended version of the MLCA robust to unbalanced data, using partial results from

the work in [236] and [237].

In a Gaussian setting, it is common to estimate the modes of variation and model

parameters by minimising the cases and their approximation as instances of the model

(s̃i):

E = 〈‖e‖2〉 = 〈‖s− s̃‖2〉 (6.6)

In the case of (6.6), the probability of each si is given by the probability of occurrence

of each shape in the dataset, meaning 1/K for each xi. Therefore, this value is a

constant and can be neglected in the minimization process. However, in reality the

probability of each xi should be the probability in the real population. This probability,

named wFL−1
, is defined as the probability of a shape to have a specific combination

of factors αL−1 in the real population divided by the number of patients with this

combination in the training dataset, KFa:

E =
∑
i∈C

wFL−1(i)‖si − s̃i‖2

wFL−1
=
αFL−1

KFL−1

(6.7)

Observe that it is defined in terms of the proportions in the hierarchical level L − 1

instead of L. As previously explained, the last factor, fL, identifies the subject, while

αFL−1
is the probability of finding a subject with factors values f1, · · · , fL−1. It is also

required the same constraints stated in (6.5). Observe, that the formulation presented

by Timmermann [236] only coincides with the proposed formulation when the sample

of K cases contains the same proportion of factors as in the real population. In other

terms, KFL−1
= αFL−1

K.
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6.2.2 Derivation of the model

As stated in (6.5), a constraint of the model is that the parameters b(a)Fa
are to be uncorre-

lated across the different levels. This allows a separation of the minimisation problem

of (6.7) into a set of subproblems:

E(a) =
K∑
i=1

wFL−1(i)

∥∥si − b(a)Fa(i)
Φ(a)

∥∥2 ,∀a ∈ 0 . . . L (6.8)

In the article presented by [236], the readers can find a rigorous proof of this result

for the energy presented in (6.6), which can be straightforwardly adapted for (6.7).

The new subproblems are still dependent to each other by their constraints. This

dependency can be eliminated by creating a set of energies, whose unconstrained min-

imisation is equivalent to that of the constrained original problem. In order to find the

new energies, the same procedure as stated in Appendix 1.B from [237] was employed.

This procedure creates the equivalent set of energies by demonstrating that they pro-

vide the solution, which automatically hold all the restrictions specified in (6.5). The

resulting energies are:

Ẽ(a) =
K∑
i=1

wFL−1(i)

∥∥s(a)Fa(i)
− b(a)Fa(i)

Φ(a)
∥∥2 ∀a = 0, . . . , L (6.9)

This set of energies employs the following set of group-wise means:

s
(a)
Fa

=

∑
i∈CFa

wFL−1(i)s
(a)
i∑

i∈CFa
wFL−1(i)

s
(a+1)
i = s

(a)
i − s

(a)
Fa(i)

 ∀a = 0, 1, . . . , L− 1 (6.10)

obtained recursively with

s
(0)
i = si

Observe that this group-wise means are robust against an unfaithful representation of

the cases in the dataset and the real population.

In these expressions, it was employed all the data at each level a. However, the

new energies only require the group-wise mean at each factor value. Therefore, the
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problem may be compacted by taking into consideration that:

Ẽ(a) =
K∑
i=1

wFL−1(i)

∥∥s(a)Fa(i)
− b(a)Fa(i)

Φ(a)
∥∥2

=
∑
Fa

( ∑
i∈CFa

wFL−1(i)

)∥∥s(a)Fa
− b(a)Fa

Φ(a)
∥∥2

=
∑
Fa

α
(a)
Fa(i)

∥∥s(a)Fa
− b(a)Fa

Φ(a)
∥∥2

(6.11)

where

α
(a)
Fa

=
∑
i∈CFa

wFL−1(i) ∀a = 0, 1, . . . , L

are the marginal probabilities for the corresponding factors.

Hence, the energy minimisation problem is finally defined as:

Ẽ(a) =
∑
Fa

α
(a)
Fa

∥∥s(a)Fa
− b(a)Fa

Φ(a)
∥∥2 ∀a = 1, . . . , L (6.12)

with

φ(0) = s
(0)
F0

. This energy is under the constraints that each Φ(a) is orthonormal. Thus, each indi-

vidual energy may be minimised independently using weighted PCA [238].

6.2.3 Selection of the number of modes of variation

The modes of variation describe the normal variability of the population from the mean

shape. However, they are estimated from a limited training set and part of these com-

puted modes encode noise instead of useful information. Thus, it is common to retain

a subset of the most relevant modes. In the case of the R-MLSSM, this selection must

be performed at each level. The most common criteria is to select the group of modes

that describes 95% of the total variation, given by the PCA eigenvalues. This, however,

often overestimates the correct number of modes, producing over-fitting. Thus, it was

used the Cattel’s scree test [239] for this purpose. Although this test is subjective to

the user, it is usually more robust than the standard 95% of the total variation.
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6.2.4 Reconstruction process

A generative statistical model is characterized by the capacity to generate samples of

the object described. Given a new case, s, not present in the training set, its best

representation with the model parameters is named the reconstruction of the case, s̃. It

is typically obtained by minimizing the quadratic difference between s and s̃:

b = argmin
b

‖s− φ(0) − bΦ‖2 = (s− φ(0))ΦT and s̃ = φ(0) + b∗Φ. (6.13)

where b∗ is obtained by restricting each bk, between −3σk and 3σk, with σk being

the standard deviation of the mode k in Φ. This projection, in general, is considered

to remove noise and spurious variations with respect to the normal variability of the

object. This justifies the use of this reconstruction as a filter, for instance, in active

shape model (ASM) [32].

For R-MLSSM, an analogous projection process can be obtained for the reconstruc-

tion of a new case.

bc = argmin
b
(1)
F1
,...,b

(L)
FL

∥∥∥∥∥s− φ(0) −
L∑
a=1

b
(a)
Fa

Φ(a)

∥∥∥∥∥
2

(6.14)

This minimisation problem may be solved by concatenating all the b(a) to create bc,

and the matrices of modes Φ(a) to create Φc, and then, deriving the problem by the

group of model parameters, bc, achieving:

bc = argmin
bc

‖s− φ(0) − bcΦc‖2

with bc = (s− φ(0))ΦT
c

(
ΦT
cΦc

)−1 and s̃ = φ(0) + b∗cΦc.

(6.15)

However, two different scenarios are distinguished for the reconstruction. In the

scenario considered for equation (6.15), the factors corresponding to the new case have

been implicitly considered as unknown. A second scenario appears when those factor

values, {f1, . . . , fL−1}, are known. In that case, the model parameters up to level L−1

can be the identified with the estimated ones in the model construction, b(a) = b
(a)
Fa

, for
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a = 1, · · · , L− 1. The solution to this problem is:

b
(L)
FL

= (s− s̃FL−1
)Φ(L)T

with s̃FL−1
= φ(0) +

L−1∑
a=1

b
(a)
Fa

Φ(a)

s̃ = s̃FL−1
+ b

∗(L)
FL

Φ(L)

(6.16)

This second scenario does not usually occur, it is the one implicitly assumed in the

construction of the MLCA and R-MLCA. This assumption is related to the imposition

of the model parameters until level L− 1 to be the same for two different shapes if the

combination of factor values are the same. In general, this scenario appears when inte-

grating external information. For instance, a clinician or an accurate automatic method

can evaluate the degeneration degree of an intervertebral disc (IVD) and provide this

information in order to improve the IVD segmentation accuracy.

6.2.5 Classification

In the scenario of having a new shape with unknown factor values, FL−1, there exists

the question of whether they could be estimated from the statistical shape model. This

issue is essentially a classification problem, which can be solved in two different man-

ners: the model parameters are used as features in a standard classifier, such as neural

network, Logistic Regression or Support vector machine [24–26, 29, 30]. The second

option is to use the SSM or SAM as classifier [117]. In general, PCA does not produce

vectors that are optimal for the separation of classes, and therefore, the second option

has not been fully explored in previous works. However, since this paper aims at de-

veloping a new type of SSM and exploiting its possibilities, it seems more appropriate

to follow the second type. In this paper, we propose to solve the probability problem

by the maximum a posteriori probability in a Bayesian framework:

FL−1
∗ = argmax

FL−1

P (FL−1|s) (6.17)

where

P (FL−1|s) ∝ p(s|FL−1)P (FL−1)
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with a proportionality factor independent of the factor values. The prior probabilities,

P (FL−1), are the expected proportions considered in the model construction, αFL−1
.

The likelihood p(s|FL−1) is the probability distribution with the combination of fac-

tors values {f1, . . . , fL−1}. Given the R-MLSSM properties, this likelihood follows a

multi-dimensional Gaussian distribution. Thus,

p(s|FL−1) = N
(
sFL−1

,Σ(L)
)

with fa = 1, . . . , qa ∀i = 0, 1, . . . , L− 1
(6.18)

The covariance matrix is usually computed as Φ(L)D(L)Φ(L)T, with D(L) the diag-

onal matrix collecting the variances of every principal mode. However, this form is

commonly not full rank, since the number of degrees of freedom in the input repre-

sentation, s multiplied by the dimensions is usually much higher than the number of

training cases. A non-degenerate positive-defined covariance matrix can be estimated

by the method proposed in [108]:

Σ(L) = Φ(L)D(L)Φ(L),T + σε

(
I −Φ(L)Φ(L),T

)
(6.19)

The standard deviation σε corresponds to that of the residual modes of variation, and it

should be smaller than the standard deviation of the last principal mode, 0 < σε < σ
(L)
K ,

with σ(L)
K being the lowest standard deviation. In general, this value is relatively small,

and in the experiments, it was found that a good candidate was σε = σ
(L)
K /2.

In case it is necessary to estimate only a subset, S ⊂ [1, L − 1], of factors, FS =

{fc | c ∈ S}, the corresponding probabilities can be obtained by marginalising over

the non-desired ones:

P (FS |s) =
∑
FS

P (FS , FS | s), (6.20)

where the summation runs through all the combination of values for the factors in the

complementary set S = [1, L− 1] \ S .

In the case of the standard SSM, an analogous classification procedure could be

employed. Each combination of factor values defines a class for which a corresponding

SSM is to be built. Similar to using the R-MLSSM, the probability for each class would



Chapter 6: Rebalanced Multi level Component Analysis (R-MLCA): 114

have a corresponding mean. However, the covariance matrix Σ(L) in the R-MLSSM is

common for all the classes, estimated from the whole dataset, whereas in the case of

individual SSMs, each class has its own covariance matrix computed independently.

This implies that the estimation with individual SSMs requires larger datasets for a

reliable estimation.

Observe that if the training database does not contain a single case with specific

combination of factor values, it will be not possible to compute the probability for

those combinations. For instance, having a training database of IVDs with no cases of

degeneration grade three at the spinal position L1-L2 precludes the model from con-

sidering such combination. However, the variation in shape due to common medical

related factors, such as the stages of a disease, the grade of fractures, or the stage of

other disorders, is usually continuous. Thus, it is possible to approximate the missing

shapes as the average among its neighbouring shapes. For instance, in the previous

case scenario with no cases of level three of IVD degeneration at the spinal position

L1-L2, a synthetic shape can be created by averaging the IVD mean shapes at T12-L1

and L2-L3 with degeneration 3 and L1-L2 with grades 2 and 4.

However, the variation in shape due to some factors is expected to be progressive.

This is the case of the IVD degree of degeneration, the vertebral fracture severity, or the

vertebral position along the spine. In those cases, it is possible to approximate the mean

of the missing class by the average between the mean of the classes corresponding to

the previous and next factor values. In the case scenario of an IVD dataset with no

cases of degeneration grade 3 at L2-L3, a synthetic shape can be created by averaging

the IVD mean shapes at L1-L2 and L3-L4 with degeneration degree 3.

6.3 Experiments and Data

6.3.1 Data

Two databases of meshes were considered. They were obtained from semi-automatic

segmentation of several CT and MRI datasets. The total number of vertebrae is 405,

separated into 15 cases for each of the 12 thoracic vertebral positions and 45 cases
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for each of the 5 lumbar positions. These vertebral meshes were segmentations of 15

thoracic and lumbar spine CTs from the spine web [199] and 30 lumbar spine CTs

from the project MySpine [34].

The total number of IVDs is 1280 IVDs, 256 for each lumbar position. The total

number of IVDs per position and degree of degeneration following the Pfirrmann clas-

sification [158] is presented in Table 6.1. These IVD meshes were segmentations of

256 patients from the project MySpine [34].

Table 6.1: number of IVDs per position and degree of degeneration.
Lumbar Degeneration grade
segments I II III IV V

L1-L2 22 95 116 21 2
L2-L3 28 97 101 28 2
L3-L4 39 87 87 39 4
L4-L5 27 46 66 96 21
L5-S1 12 43 51 115 35
Sum 128 368 421 299 64

The point correspondence, required to create the SSMs, was achieved using a free

form deformation technique to adapt a template mesh to all the ground-truth meshes.

To reduce the dependency of the initial shape, the process was iteratively repeated

changing the template by the updated mean of all the meshes at each iteration [109].

6.3.2 Models

The following models are used for the evaluation of the proposed R-MLCA technique:

• Complete bilinear model of Vertebrae, the whole vertebra database is used. The

first factor is the position across the spine and the second one being the subject.

• Complete trilinear model of IVDs: The whole database is employed. The first

factor is the position across the spine, the second factor is the degree of degener-

ation and the third factor is the subject.

• Non-complete bilinear model of Vertebrae: This model contains the whole

dataset except those in the same spinal position as the case being evaluated. For
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instance, if the experiment is performed in L1 vertebra the R-MLSSM will not

contain a single case of L1. The first factor is the position across the spine and

the second one being the subject.

• Non-complete trilinear model of IVDs: This model contains the whole dataset

except those in the same spinal position and degeneration as the case being eval-

uated. For instance, if the experiment is performed in L1-L2 IVD with degener-

ation grade 3, the R-MLSSM will not contain a single case of L1-L2 IVD with

degeneration 3. The first factor is the position across the spine, the second factor

is the degree of degeneration and the third factor is the subject.

• Global Model: This model is constructed using all the shapes, vertebrae or

IVDs altogether, regardless their position or degeneration grade. The result was

a unique model for IVDs and another for vertebrae.

• Positional Model: These models were built by stratifying the datasets according

to the spinal position. This results in 17 models for the thoracic and lumbar

vertebrae and 5 for the lumbar IVDs.

6.3.3 Evaluation of the models

The two applications depicted in section 6.2: reconstruction (section 6.2.4) and clas-

sification (section 6.2.5) were evaluated using a leave-one-out cross validation in the

following set of experiments:

• Reconstruction and classification of both datasets in a leave-one-patient-out scheme

using both the vertebral and the IVD R-MLSSM.

• Reconstruction of both datasets in a leave-one-group-out scheme using the R-

MLSSM with known factor values. In this experiment, the factor values until the

level L− 1 were provided and not estimated.

• Reconstruction and classification of both datasets in a leave-one-group-out scheme

using a Non complete R-MLSSM. In this experiment, one level, a is selected.
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Then, all the shapes that contain the same factor values on this level as the shape

to be reconstructed were removed in the model construction step.

• Comparison of the specificity and sensitivity of the classification using the po-

sitional, global, Non-complete R-MLSSM and R-MLSSM models of both IVDs

and vertebrae.

As explained in the last paragraph of section 6.2.5, the classification in the case of

the Non complete R-MLSSM was performed by computing the missing average shapes

as the mean of their neighbouring shapes.

In addition, two other experiments were performed.

• Evaluation of rebalancing the model: A group of 100 patients were selected

from the IVD database maintaining the distribution of the number of cases with

each degeneration grade at each position as homogeneous as possible. Subse-

quently, a model was constructed and evaluated using the whole 256 patients of

the database.

• Uncorrelation of the modes of variation: An important property of the R-

MLSSM is that the modes of variation at each level are uncorrelated to the modes

of the other levels. Although, this property was imposed in the constraints defin-

ing the model, we propose an experiment to test it. The evaluation of the uncor-

relation was carried out by computing the covariance matrix between the model

parameters at different hierarchy levels. These matrices should have all their val-

ues equal to zero. Thus, their maximum value was used for the evaluation.

6.3.4 Point Correspondence

The point correspondence, required to create the SSMs, was achieved using a free

form deformation technique to adapt a template mesh to all the ground-truth meshes.

To reduce the bias, the process was iteratively repeated changing the template by the

updated mean of all the meshes at each iteration [109].



Chapter 6: Rebalanced Multi level Component Analysis (R-MLCA): 118

6.4 Results

6.4.1 Parameters Selection

Retained number of modes: 4, 4 and 20 at each level in the R-MLSSM of IVDs,

and, 5 and 25 in the vertebral R-MLSSM.

Number of landmarks: 1200 for each IVD and 4000 for each vertebra.

Number of shapes: 1280 IVDs, 280 at each lumbar position. 405 vertebrae, 15 at

each thoracic position and 45 at each lumbar position.

6.4.2 Reconstruction Error

Fig. 6.1 shows the reconstruction error, measured as the mean Euclidean point to point

distance, between the ground truth meshes of each of the 1280 IVDs (a) and 405 verte-

brae (b) and their reconstructions. This process was performed in a leave-one-patient-

out basis for three types of models: two standard SSMs and the R-MLSSM. The latter

was used with two different reconstructions scenarios: providing all the factor values

of the case that is reconstructed, named R-MLSSM with known factor values, and with-

out having them, named R-MLSSM. This figure also presents the reconstruction error

of the Non-complete R-MLSSM model, where all the cases with the same factor values

as the one being reconstructed (same position and degeneration for IVDs, and same

position for vertebrae) were not included.

Fig. 6.3 shows a comparison between four reconstructed vertebrae with the R-

MLSSM from random patients at positions T2, T7, T11, L5 and the original shapes.

Table 6.2 and 6.3 show the mean, percentile 95 (95-p) and maximum value of the

vertebrae and IVD reconstruction error, respectively. The number of modes of varia-

tion was given by the scree test (Section 6.2.3).

Since the database contains 15 cases of thoracic spines and 45 cases of lumbar

spines, the positional model of the thoracic vertebrae have only 14 modes of variation.

Thus, the reconstruction error using the positional model does not highly improve

when the used number of modes approaches 19 (14+5 modes from the first level).
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Figure 6.1: Reconstruction error with respect to the number of modes of variation for
IVDs and vertebrae using a leave-one-out validation. The positional SSM contains
one model for each spinal position (5 for IVDs and 17 for vertebrae). In the case
of the R-MLSSM, the number of modes were given to each level in increasing order,
until reaching the selected retained number of modes (Section 6.2.3). The R-MLSSM
with known factor values corresponds to the reconstruction for which the position or
position and degeneration were provided. Non-complete R-MLSSM curve shows the
mean error achieved with models that do not contain shapes with the same position or
position and degeneration, as the one being reconstructed.
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Table 6.2: Mean, percentile 95 (95-p) and maximum vertebral reconstruction error at
each spinal position with 5 and 25 modes of variation for the first and second level,
respectively. These values were selected using the scree test (Section 6.2.3).

Error measures T1 T2 T3 T4 T5 T6 T7 T8 T9
Mean (mm) 0.74 0.46 0.43 0.51 0.55 0.54 0.56 0.58 0.54
95-p (mm) 1.74 0.91 0.82 1.04 1.10 1.05 1.09 1.15 1.01

Maximum (mm) 3.28 1.94 2.24 2.21 2.03 2.24 2.46 1.86 3.32
Error measures T10 T11 T12 L1 L2 L3 L4 L5 Global

Mean (mm) 0.64 0.70 0.76 0.81 0.81 0.83 0.85 0.93 0.73
95-p (mm) 1.23 1.43 1.54 1.67 1.62 1.72 1.72 1.90 1.57

Maximum (mm) 2.83 2.91 3.50 3.70 3.53 3.59 3.42 4.29 3.18

Table 6.3: Mean, percentile 95 (95-p) and maximum IVD reconstruction error at each
spinal position with 4, 4 and 20 modes of variation for the first, second and third level,
respectively. These values were selected using the scree test (Section 6.2.3). The
positions go from L1-L2 to L5-S1.

Error measures L1-L2 L2-L3 L3-L4 L4-L5 L5-S1 Global
Mean (mm) 0.33 0.31 0.30 0.35 0.41 0.34
95-p (mm) 0.47 0.41 0.44 0.51 0.62 0.50

Maximum (mm) 0.84 0.72 0.72 0.85 0.97 0.82

This issue, caused by having a low number of cases, does not occur when using the

R-MLSSM, because each level is constructed with the whole database.

In the case of the IVDs, some groups of position and degeneration were too small

to create an SSM. In contrast, the R-MLSSM with three hierarchical levels is able to

acquire the information of the degeneration at each position and provide much lower

reconstruction error than the global or the positional models. This second advantage

was further tested using a Non-Complete R-MLSSM. In the case of the vertebrae, where

the experiment is done eliminating all the shapes with the same spinal position, the

error was of more important (Fig. 6.1) than in the case of the IVDs where, only those

with the same position and degeneration were excluded. However, this second scenario

is more common in the reality. For instance, vertebral shapes are mostly extracted from

medical images. Thus, these databases contain similar amount of vertebrae at each

spinal position. However, vertebral fractures are not very common and a database with

fractures at each spinal position is rare [240].

Observe that the difference between the reconstruction using the R-MLSSM and
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R-MLSSM with known factors is that the first modes of variations of the R-MLSSM are

used to estimate the correct mean shape at each level, whereas in the R-MLSSM with

known factors, these means are provided. Thus, the R-MLSSM curve is shifted towards

the left direction, respect to that of the R-MLSSM with known factors, as many modes

as used to estimate the first levels shapes. This advantage of having already selected

the mean shape is also shared when using the positional SSM.

6.4.3 Classification

The results of the classification are presented in Tables 6.4, 6.5 and 6.6. The specificity

and sensitivity of the classification using R-MLSSM was compared with that obtained

by employing the same method presented in Section 6.2.5 but using a standard SSM

for each spinal position (Spe/Sen Positional SSM in the tables) or an SSM for each

degree of degeneration. In addition, the three tables show the classification of the spinal

position or degeneration using a non-complete R-MLSSM. In this last experiment, the

mean shape of the group of shapes that is missing was estimated by the average of the

group-wise means of its two neighbouring positions.

For the sake of completeness, the sensitivity and specificity are defined below:

Specificity(Spe) =
TN

TN + FP
Sensitivity(Sen) =

TP
TP + FN

(6.21)

where TP, TN, FP and FN are the number of true positives, true negatives, false posi-

tives and false negative, respectively.

Table 6.4: Specificity and Sensitivity of the classification of the whole database (1280
IVDs) according to their degree of degeneration (deg: I to V) using a leave-one-out
cross validation. The table also shows a comparison among the R-MLSSM, Non-
complete R-MLSSM (NC-R-MLSSM) and using a single SSM per each position.

Classification I II III IV V Global
Measures

Spe R-MLSSM 78.3% 100.0% 94.7% 100.0% 100.0% 83.9%
Sen R-MLSSM 40.0% 84.6% 44.4% 35.1% 62.9% 62.9%

Spe Degeneration SSM 55.5% 61.5% 57.4% 60.7% 91.2% 63.4%
Sen Degenration SSM 40.7% 26% 25% 35.9% 46.9% 35.2%

Spe NC-R-MLSSM 34.7% 65.4% 42.2% 76.4% 86.1% 54.4%
Sen NC-R-MLSSM 36.0% 19.8% 28.3% 11.3% 52.9% 23.0%
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Table 6.5: Specificity and Sensitivity of the classification of the whole database (1280
IVDs) according to their lumbar position (L1-L2 to L5-S1) using a leave-one-out cross
validation. The table also shows a comparison among the R-MLSSM, Non-complete
R-MLSSM (NC-R-MLSSM) and using a single SSM per each position.

Classification L1-L2 L2-L3 L3-L4 L4-L5 L5-S1 Global
Measures

Spe R-MLSSM 100% 100% 99.8% 99.4% 99.8% 99.8%
Sen R-MLSSM 100% 100% 96.9% 97.7% 100% 98.9%

Spe Positional SSM 100% 100% 99.8% 99.4% 99.4% 99.7%
Sen Positional SSM 100% 100% 95.9% 97.3% 100% 98.5%
Spe NC-R-MLSSM 99.0% 90.7% 94.7% 98.9% 100% 96.6%
Sen NC-R-MLSSM 57.7% 100% 96.2% 96.1% 88.5% 87.7%

Table 6.6: Specificity (Spe) and Sensitivity (Sen) of the classification of the verte-
bra datasets according to their spinal position using a leave-one-out cross validation.
The table also shows a comparison between the R-MLSSM, Non-complete R-MLSSM
(NC-R-MLSSM) and using a single SSM per each position.

Measures T1 T2 T3 T4 T5 T6 T7 T8 T9
Spe R-MLSSM(%) 100 99.5 99.5 99.7 99.7 100 100 100 100
Sen R-MLSSM(%) 100 93.3 86.7 86.7 93.3 100 100 100 100

Spe Positional SSM(%) 100 99.3 99.5 99.7 99.7 100 100 100 100
Sen Positional SSM(%) 100 93.3 80.0 86.7 93.3 100 100 100 100
Spe NC-R-MLSSM(%) 100 97.0 98.2 98.8 93.6 98.2 94.1 95.4 98.2
Sen NC-R-MLSSM(%) 73.3 80.0 80.0 66.7 66.7 86.7 73.3 80.0 60.0

Measures T10 T11 T12 L1 L2 L3 L4 L5 Global
Spe R-MLSSM(%) 100 100 100 99.1 99.3 98.3 99.3 99.7 99.7
Sen R-MLSSM(%) 100 100 86.7 95.6 91.1 91.1 93.3 100.0 94.2

Spe Positional SSM(%) 100 100 100 99.1 98.3 98.3 99.7 99.3 99.6
Sen Positional SSM(%) 100 100 86.7 95.6 93.3 86.7 91.1 100.0 93.9
Spe NC-R-MLSSM(%) 98.8 100 95.2 99.2 90.2 93.9 94.3 100 96.7
Sen NC-R-MLSSM(%) 53.3 80.0 93.3 77.8 61.1 61.2 55.6 44.4 72.3

The results show that the R-MLSSM is able to accurately classify the position of

both vertebrae and IVDs. However, similarly to the reconstruction, the main advantage

of this model is that it allows the classification of factors for which no representative

exists or their number is very small. This is demonstrated with the Non-complete R-

MLSSM. Notice that in the case of the positional SSM, a Non-complete version cannot

be constructed, because of its own definition.

In the case of the Non-complete R-MLSSM, there were no mean shapes that rep-

resent the missing groups. However, the shape of both vertebrae and IVDs varies

continuously across the position and across the degree of degeneration. Thus, these
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mean shapes can be approximated by computing the average of the neighbouring mean

shapes or by performing an extrapolation when the missing shapes were the first or the

last one. This interpolation and extrapolation procedures are less accurate for shapes

with particular features as the L5. Thus, the classification of the L5 and the L4 (that

was estimated using L3 and L5) were not as accurate as the rest of the vertebrae.

In the case of the IVDs, although its shape is affected by the degeneration, this influ-

ence is smaller than the inter-subject variability. This means that the reconstruction im-

proved by taking the degeneration into account, but the classification results are rather

poor. Thus, a proper classification of the degeneration grade cannot be attained using

solely shape information. This statement complies with Pfirrmann’s criterion [158]

that remarks the importance of the nucleus pulposus intensity in T2-weighted MRI to

grade the degeneration.

On the other hand, the IVD and vertebral shape variation caused by the spinal posi-

tion is sufficiently large to allow a precise classification.

6.4.4 Influence of the rebalancing in the MLCA

As shown in Section 6.2.1, it is possible to construct a model, for which the propor-

tion of cases with different factors in the population is known and different from the

proportion of cases with these factors in the training sample. In order to test the im-

provement of this rebalanced model, a subset of 100 patients’ IVDs were selected,

trying to maintain the number of cases across the different positions and degenerations

as uniform as possible. Then, MLSSM with and without rebalancing were constructed.

The rebalancing was performed to maintain the proportions observed in the complete

dataset, shown in Table 6.1. The reconstruction error obtained from each of the two

models was evaluated in a leave-one-out fashion using the complete dataset. Fig. 6.2

shows the higher accuracy attained by the rebalancing MLSSM.

6.4.5 Qualitative results

For visualisation purposes, this section only includes vertebrae images, since IVDs do

not exhibit as visually evident characteristic features as vertebrae. Fig. 6.3 shows the



Chapter 6: Rebalanced Multi level Component Analysis (R-MLCA): 124

Number of modes
0 5 10 15 20 25 30 35 40

R
ec

on
st

ru
ct

io
n 

er
ro

r 
(m

m
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Vertebrae

R-MLSSM
MLSSM

Figure 6.2: Reconstruction error curve of the MLSSM and R-MLSSM. The models
were constructed with 100 patients from the IVD database, trying to maintain the dis-
tribution across the different positions and degenerations as uniform as possible. The
error was computed in a leave-one-out fashion over the whole database of 256 patients.

manual segmentations superimposed to their reconstructions of a T2, T7, T11 and L5

vertebra from four random patients. This figure illustrates the apparent good recon-

struction of the model regardless the spinal position.

In addition, the first mode of variation of the two hierarchical levels of the vertebral

model are presented in Fig. 6.4 and Fig. 6.5. The former presents the variation of the

first mode in the first hierarchical level. This level encodes the variation of the spinal

positions and successfully shows that the vertebral shape deforms from a top thoracic-

like shape to a low-lumbar-like one. The latter image presents the variation in shape

of the first mode variation in the second hierarchical level (inter-subject variability). In

this second scenario, the mean shape of different spinal positions were used to visualise

the effect of the deformations in different type of vertebrae.

6.4.6 Uncorrelation of the modes of variation

The R-MLSSM definition includes as constraint that the model parameters from dif-

ferent levels must be uncorrelated between each other. This property was checked
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(d) (c) 

(a) (b) 

Figure 6.3: Superimposition of reconstructed vertebral shapes (white meshes) in dif-
ferent spinal positions and the original vertebrae (red meshes), from randomly chosen
subjects. Images (a) to (d) show the spinal positions T2, T7, T11 and L5, respectively.

mean -3σ1 3σ1 

Axial view 
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Figure 6.4: First mode of variation of the first hierarchical level of the vertebral model.
Two different views are presented to properly show that the variation in shape corre-
sponds to the variation across the spine.
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Figure 6.5: First mode of variation of the second hierarchical level of the vertebral
model. This figure presents the variation in shape across subject population at different
spinal positions.

numerically by estimating the covariances
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∀a, c ∈ 1 · · ·L with a 6= c.

(6.22)

where k represents each case in the dataset. The maximum value was 1.24 × 10−5,

which is sufficiently small to be considered as numerical noise.

6.5 Discussion

From the experimental results, it was observed that the advantage of the R-MLSSM

is twofold: First, its reconstruction and classification abilities are always equal or su-

perior to that of having individual SSMs for each factor value. Second, it is capable

of modelling the information of groups of data CFa , for which the number of cases

KFa is small or even zero. The latter leads to a much higher reconstruction power as

shown with the IVDs (Fig. 6.4.2), and allows the classification into level values that

are not present in the training database, as shown with the Non-complete R-MLSSM in
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Tables 6.5 and 6.6. This classification is not possible with individual SSMs per degree

of degeneration and position, since they cannot be generated for level values where no

training case exists.

Another advantage of the proposed formulation is the possibility of rebalancing

the model when the real proportions of the cases in the population are known, and

are different to those in the training database. In this work, two datasets of the spine

covering different regions are used. The number of vertebrae in each spinal position

is different in each dataset and therefore, the R-MLSSM requires being rebalanced to

represent the real population.

6.5.1 Reconstruction

Section 6.2.4 presented two different scenarios for reconstruction: the first one when

the model parameters until level L − 1 are known and the second when they are un-

known. The former is implicitly assumed in the construction of the R-MLSSM yield-

ing the most reliable reconstructions. However, this information is usually unknown

and it is commonly expected to be computed during the process. Nevertheless, the

results show that the reconstruction with unknown (R-MLSSM) factor values provides

results as accurate as those with known ones (R-MLSSM with known factor values).

6.5.2 Classification

The classification technique introduced in Section 6.2.5 was developed to exploit the

advantages of the R-MLSSM. For instance, it allows a prior probability that corre-

sponds to the α factors introduced in Section 6.2.1 for the rebalanced formulation. It

employs a covariance matrix with the whole training database, in order to produce

more reliable results than the standard SSM when the number of training samples is

rather small. It allows the computation of the classification when the number of train-

ing samples for a specific combination of factors is zero, which is not possible with the

standard SSM.
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6.5.3 Limitations

The Gaussian assumption of the SSM is also valid for each hierarchical level of the

R-MLSSM. Another limitation is originated in the construction of the R-MLSSM,

which is performed by extracting the information given by pathologies, positions, etc.

Thus, the final hierarchical level contains solely the information of the inter-subject

variability from the entire database. This implies that this inter-subject variation must

be shared across the whole database. For instance, an extreme case would be the cre-

ation of a vertebral R-MLSSM with a first hierarchical level separating vertebral bodies

(VB) and vertebral processes. The resultant model would combine the processes and

VB deformations, allowing the VB to deform in the same manner as processes and

vice versa.

6.6 Conclusions

Herein it has been introduced a new Multi linear SSM, which in contrast with the

state-of-the-art models, holds all the properties that are expected, such as working on

databases with missing and unevenly distributed data or producing optimal selection of

a subset of modes of variation. The proposed model enables more accurate reconstruc-

tions than the standard SSM and it allows the classification of new objects according

to the factors at each level, even when the training set contains very few or no samples

with such combination of factors. It has been also shown that this model takes into

account the case where the training database does not contain a faithful representa-

tion of the distribution of the factor values in the population. Although the model has

only been tested for the case of shape models, it could be used for intensity appear-

ance. This appearance model could be combined with the shape one to provide more

accuracy in the classification of objects. For instance, the classification of the IVD

degeneration lacks of accuracy, because the shape is not as good discriminant of the

IVD degeneration as the intensity is. However, these experiments were not performed

in this thesis and they have been left for future work. The reason is that the method for

IVD classification introduced in Chapter 5 provides results as accurate as the values
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given by the experts and therefore, they are still used for the final purpose.



Chapter 7

Combining all source of information:

fusing multimodal 3D spine-related

models into a personalised Volumetric

model

In this dissertation, it has hitherto been described methods to perform different tasks

for the creation of patient-specific models for simulations. This chapter provides the

necessary tools for combining the segmented structures and creates the personalised

volumetric model. From Chapter 3 and Chapter 4, it was acquired the segmentation

of IVDs and vertebrae from MR and CT images, respectively. Therefore, this chapter

begins with the introduction of a method that aligns the IVDs and vertebrae surface

meshes into a single complete anatomical model. This method employs an adaptation

of the segmentation framework explained in Chapter 4 in order to avoid overlaps be-

tween vertebrae. Finally, a mesh morphing algorithm, based on B-splines, is employed

to map a template volumetric mesh to the patient-specific surface mesh. This morphing

reduces possible misalignments and guarantees the convexity of the model elements.

This morphing method was not developed by the author of this thesis. Instead, an

already existing method was employed for this step. This method is, nevertheless,

commented in the methodology for completeness.

130
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This chapter follows the publication [241].

7.1 Motivation

The construction of patient-specific biomechanical models for simulation is an impor-

tant task for the uprising computational medicine. These models may be employed

in many applications, such as the study of diseases or conditions [2, 3], estimating

outcomes of treatments [4–6] or predicting the conditions for bone fractures, or other

disorders [8, 9].

This chapter focuses on the creation of patient-specific volumetric meshes (VM),

adapted to the anatomy of the patient using one or several medical images. In order to

facilitate the estimation of material properties, the intensities from the medical images

are stored in each cell as well as the degree of degeneration or fracture.

This process can be decomposed into two steps: Alignment of the anatomical struc-

tures into a single anatomical surface model and the generation of the volumetric mesh.

In the literature, the alignment process is not commonly required, since all the struc-

tures are usually extracted from the same image.

The alignment or matching of an anatomical structure into a medical image is a

common problem in image-guided intervention. Although, these anatomical structures

usually belong to the same patient as the image, they may have been extracted from

a different image modality and/or different time point. Thus, this process is usually

solved with an image to image registration [242,243]. The drawback of this procedure

when applied to articulated structures, such as the spine, is that acquiring images from

different modalities or different time points implies that the patient changed his or her

pose. Therefore, a rigid registration cannot be used (Fig. 7.1). In addition, a non-

rigid registration approach is not desirable either, because this procedure may change

the shape of the vertebrae. Nonetheless, there exist registration procedures that allows

to define objects as rigid to overcome this limitation [244, 245], however, these type

of approaches are usually more computationally expensive, because they need all the

image information, or they require segmentations in both MR and CT, or they produce
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gaps and overlaps that result in unrealistic configurations. Moreover, these registration

methods either do not completely restrict the deformations to be rigid or they could

allow the overlap or collapse of two vertebrae. Thus, in this thesis it was developed a

mesh to image registration technique for the alignment step. The method is based on a

strategy similar to the segmentation framework from Chapter 4. However, it restrains

the shape to rigid motions instead of to the B-splines space.

(a) (b) (c) 

Figure 7.1: Example of CT-MR registration. Original CT image (a), original MR
image (b), Aligned CT image and superimposed to the MR image (c). The latter shows
that different vertebra should be aligned independently and thus a rigid registration is
not accurate enough.

There exist different types of volumetric mesh generation methods:

• Method A: The volumetric mesh is generated directly from the patient-specific

surface mesh. The simplest example is the generation of a tetrahedral mesh filling

the interior of a triangular mesh [246].

• Method B: A template volumetric mesh is deformed using the intensity of a med-

ical image [6, 247]. This strategy combines in a single process the segmentation

and the generation of the volumetric mesh. It is, however, difficult to apply when

more than one image is required.

• Method C: The segmentation of the structure of interest is directly used by con-
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sidering the voxels as cells of a volumetric mesh [101,102]. This approach allows

fast simulations to be performed, but models are not precise since the size of the

cells is not flexible, producing not satisfactory boundaries that lead to inaccurate

finite element analysis [248].

• Method D: A template volumetric mesh is morphed to adapt to the patient-

specific surface mesh [103, 104].

In this study, a mesh morphing technique was also introduced (Method D) to de-

form a template volumetric mesh to the previously built patient-specific surface mesh.

This technique propagates the geometrical and topological characteristics of the tem-

plate volumetric mesh to the patient-specific anatomical surface mesh. Vertices and

cells of the generated patient-specific volumetric mesh have one-to-one anatomical

correspondences with the template. This facilitates the propagation of the material

properties and boundary conditions from the template.

7.2 Automatic creation of patient specific volumetric meshes

7.2.1 Vertebrae alignment on MR data

The proposed matching technique requires an initial alignment of the vertebrae and

IVDs. This process starts by defining the upper and lower centre of each vertebra

endplate and computing the vertebral body (VB) centres (c1). Subsequently, the unit

vector pointing from the bottom to the top endplate is computed (û1). The same pro-

cess is repeated using consecutive pairs of IVDs, with each IVD centre corresponding

to a vertebral endplate. Thus, the corresponding vertebral centre (c2) is computed as

well as the unit vector pointing from the bottom to the top IVD (û2). Then, the rigid

transformation is given by the translation from c1 to c2 and by the rotation matrix Ro

is attained with the Rodrigues rotation formula [186]:

Ro = I +B +
B2

1 + û1 · û2
with B = û1û

T
2 − û2û

T
1 (7.1)

where I is the identity matrix.



Chapter 7: Combining all source of information: fusing multimodal 3D spine-related models into a
personalised Volumetric model 134

After being initalised, vertebrae are rigidly displaced towards the vertebral bound-

aries in the MR image (Fig. 7.3) with a similar procedure to that introduced in Chapter

4. However, in this new scenario, no statistical shape model (SSM) or B-Spline con-

strained are employed, since only rigid transformations at each vertebra are allowed.

For the sake of clarity, the group of energies, instances and indexes employed in

this chapter and related to those in Chapter 4 are explained below:

v: Index running across all the vertebrae composing the region of the spine being

used.

p: Index running across all the points of one particular vertebra.

SB
v : Instance of a vertebral shape that is restricted to a rigid transformation from the

initial one. Each point of this shape is represented by sB
v,p. Observe that in Chapter 4,

this parameterisation was performed using B-splines. Thus, its representation in this

chapter is different and given by:

sB
v,p = Rvs

o
v,p + cv (7.2)

with Rv being a rotation matrix, s0v,p the points in the initial shape S0
v of vertebra v

and cv a translation vector.

SI
v: Free instance that is obtained by displacing each individual landmark using the

energy EI(SI, I).

I: The image intensity, in this chapter the MR image.

ESIM(SB): Energy involving the SIM model, the definition is given in (4.16).

EI-B(SB,SI): Energy that relates shapes SB
v and SI

v for all v. This energy is defined

in Section 4.5.3 as:

EI-B(SB,SI) =
1

2

∑
v

‖SB
v − SI

v‖2F (7.3)

EI(SI, I): This energy is computed as the weighted summation of a group of fea-

tures. In the alignment process, there exist two new set of features, one for the region
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surrounding the vertebra foramen and another for the vertebral body (VB). The pro-

cesses were not used in this setting, because they are not well visualised in the MR

image and therefore did not provide useful information.

The features used in the foramen were:

1. Directional derivative along the normal direction pointing inwards. This

feature searches for changes from low to high intensity values in the image.

2. Negative Intensity. This feature searches for the maximum value in the profile

of intensities extracted along the normal direction of the mesh at each vertex.

For the VB:

1. Directional derivative along the normal direction pointing outwards. This

feature searches for changes from high to low intensity values in the image.

2. Intensity. This feature searches for the minimum intensity in the profile.

3. Distance to the initial point at each iteration. This feature serves as a spring

energy, which penalises large movements.

As in Chapter 4, the energy problem is based on minimising a linear combination

of the individual energies given by:

SB = argmin
SB

min
SI

E(SB,SI, I) where (7.4)

E(SB, I,SI) = wIEI(SI, I) + wB-IEB-I(SB,SI) (7.5)

+wSIMESIM(SB)

In order to solve this energy, the same alternating optimisation process introduced

in Section 4.5.6 may be employed. However, since the SSM is not used, the process

can be reduced to only two steps:

Optimisation for the shape SI. First SI is achieved through the optimisation of

EI(SI, I) + EB-I(SB,SI). This optimisation is performed at each landmark indepen-

dently, following the typical strategy used in ASM.
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Gradient descent step for the shape SB. This shape involves two terms of the

energy:

wI-BEI-B(SB,SI) + wSIMESIM(SB) (7.6)

SB is parameterised by a set of angles ψv and translation vectors cv, defining the

rotation and translation of the shape with respect to its previous step. As usual, the

gradient descent requires the computation of the partial derivate of the energies with

respect to all the variables to be optimised (ψv and cv), which are:

∂EI-B

∂ψv,k
=
∑
p

(
Rvs

o
v,p + cv − sBv,p

)T
∂Rv

∂ψv,k
sov,p

∂EI-B

∂cv
=
∑
p

(
Rvs

o
v,p + cv − sBv,p

)T

∂ESIM

∂ψv,k
=
∂sB

v,p

∂ψv,k

∂ESIM

∂sB
v,p

= so,T
v,p

∂Rv

∂ψv,k

∂ESIM

∂sB
v,p

∂ESIM

∂cv
=
∂sB

v,p

∂cv

∂ESIM

∂sB
v,p

=
∂ESIM

∂sB
v,p

(7.7)

withψv,k being each of the componentsψv,x, ψv,y, ψv,z of the angleψv and ∂ESIM/∂sB
v,p

being describe in (4.25).

7.2.2 Morphing of the template volumetric mesh into the patient-specific surface

mesh

Two steps are used in the morphing. Firstly, an iterative closest point (ICP) [249]

method is used to perform an affine registration. Secondly, a mesh-to-mesh non-rigid

registration based on B-splines is employed to adapt a template volumetric mesh to the

patient-specific surface mesh. In registration, cubic B-splines are commonly used to

parameterise with continuous and smooth transformations, with the additional benefit

of a reduced number of degrees of freedom [250]. This transformation is controlled by

a regular grid of points.

The proposed framework includes an internal energy that aims at preserving the

size and proportions of the volumetric mesh. This energy is based on elastic properties
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(d) (a) 

(e) 

(f) 

(b) 

(c) 

Figure 7.2: An example of the initial alignment of the L1 vertebra using only IVD
information ((a) - (c)) and of the full alignment with the addition of the MR information
((d) - (f)). Observe that using only the centre of the IVD produces already similar
results to those achieved through the rigid registration CT-MR. Top images show the
aligned vertebra superimposed to the transformed CT image and MR image, middle
images show the aligned vertebra and MR image, and the bottom images show the
contour of the aligned vertebra in one MR slice.
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relative to the volumetric cell edge lengths and solid angles, assuming a continuous

material with homogeneous Young’s modulus.

The similarity metric contains two symmetric energies, which are computed as the

weighted squared summation of the point to surface distance from the target mesh to

the moving one and vice versa. The weights were defined as 1 minus the squared dot

product of the normals. The goal of having two symmetric energies is to avoid the

registration process to fail in narrow structures, such as the transverse processes. The

point to surface distance is computed with respect to specific regions. Therefore, a

vertex belonging to the surface mesh of an L1 vertebra can be only attracted by the

surface of the volumetric mesh belonging to the L1 vertebra.

The employed optimisation technique was steepest gradient descent, because of the

simplicity of its implementation.

7.2.3 Mapping image intensities from the MR and CT to the patient-specific

volumetric mesh

The segmentation of the IVDs and vertebra defines the region of interest in the MR and

CT images. Since the material properties are correlated to the image intensity, it was

also created a method to map these intensities into the volumetric mesh. In order to

cope with the difference in size between the cells in the volumetric mesh and the image

voxels, a weighted average of the voxels that completely or partially intersect with the

volumetric mesh was used. The weight factors were proportional to the intersection

volume.

7.3 Data

The dataset contains lumbar CT and MR images from 13 males and 17 females with

a mean age of 40 (age interval: 27-62 years) as well as the surfaces meshes from the

segmentation of the vertebrae and IVDs. All the images were collected at the National

Center for Spinal Disorders (NCSD) located in Budapest, Hungary. Patients were

selected for participating in the European MySpine project [34].
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7.3.1 Magnetic resonance image of Lumbar Spine

T2-weighted MR coronal and sagittal acquisitions from an open 0.4T MR machine

(Hitachi, Twinsburg, OH). The in-plane resolution was 0.7×0.7mm2 with a spacing

between slices of 4.0mm. These two type of images were fused, using the method

from Chapter 3, to achieve an isotropic size of 0.7mm at each direction.

7.3.2 Computed Tomography of Lumbar Spine

Direct CT scans from patients suffering from low back pain using a bone window. The

Axial in-plane resolution is 0.608×0.608 mm2 with a spacing between slices of 0.625

mm.

7.3.3 Surface and volumetric meshes

The surface meshes were obtained using the methods from Chapter 3 and Chapter 4.

The template volumetric mesh comprises the annulus fibrosus, nucleus pulposus,

vertebrae and string representations of the major muscles and ligaments connected to

the lumbar spine. The latter did not have any correspondence in the surface meshes.

7.4 Results

7.4.1 Implementation details

• The weights of the vertebral body features were: 1.0mm/in for the directional

derivative, 1.0in−1 for the intensity and 0.5mm−1 for the distance feature.

• The weights of the vertebral foramen features were: 1.0mm/in for the directional

derivative, 0.5in−1 for the intensity.

• The morphing employs 4 scales, with number of grid control points from 8×4×4

to 64× 32× 32 doubling at each scale.

• The criteria to stop the alignment was that 100% of the landmarks do not move

more than 0.2 times the size of a voxel in the direction of the normal at the specific
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landmark. This criteria resulted in 3 to 5 iterations. In addition, the maximum

number of iterations were set to 20.

• The size of the profiles was set individually for each landmark p of the mesh. In

the first iteration, it was set to 20 voxels in the direction pointing outwards and

min(20, a) voxels pointing inwards. The value a is half of the number of voxels

from p to the intersection of the mesh and a line following the normal direction

of the mesh at p. In the last iteration, they were set to 4 voxels inwards and 4

outwards.

• The number of resolutions was kept to one, since the initialisation already locates

the IVDs in a good location.

where the unit in represents the unit of the image intensity.

7.4.2 Visual results

The results were visually evaluated by an expert, who first assessed the vertebral sur-

face alignment and subsequently the volumetric mesh. The alignment was found ac-

curate (Fig. 7.3) as well as the models in all cases (Fig.7.4). The alignment was

considered accurate when the contours of the aligned vertebrae in MR could have been

delineated by an expert. However, in few patients was found that the vertebral body

height in MR and CT did not coincide. Therefore, if the vertebral contours slightly

overlapped the IVD region because of this reason, the alignment was still considered

accurate. For the volumetric meshes this effect is partially compensated by the mesh

morphing algorithm.

7.4.3 Quantitative evaluation

An expert manually delineated the contour of the lumbar spine in the mid-sagittal and

mid-coronal slices of 15 randomly selected patients (Fig. 7.5). This contouring was

repeated twice, obtaining contours A and B, to compute the intra-observer variability.

Table 7.1 presents the mean and 95 percentile of the point to surface distance from the

contours A and B to the surface meshes after the alignment and to the surface of the
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(a) (b) (c) (d) 

Figure 7.3: An example of the vertebral alignment of two patients. Sub-figures (a) and
(c) show the whole vertebrae whereas (b) and (d) only the section belonging to the MR
slice.

(a) (b) (c) (d) 

Figure 7.4: An example of two patient-specific volumetric meshes. Sub-figures (a) and
(c) show the whole vertebrae whereas (b) and (d) only the section belonging to the MR
slice.
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volumetric mesh. This table also presents the intra-observer variability computed as

the distance from contours A to contours B.

(a) (b) (c) (d) 

Figure 7.5: Example of the two contours delineated in the Sagittal and coronal MR
images. Observe that the boundaries are not clear, producing error higher than a voxel
size.

Table 7.1: Mean, 95 percentile (95-p) and maximum value of the point to surface
distance (PSD) from contour A and B to the lumbar spine surface meshes (SM) and
volumetric meshes, and from contours A to B.

Measures contour A contour B Contour A
to SM to VM to SM to VM to B

mean PSD 1.11 1.01 1.15 1.09 0.81
95-p PSD 1.69 1.84 1.73 1.57 1.21

Maximum PSD 2.9 2.8 2.8 2.7 2.1

7.4.4 Computational time

The experiment were run using a PC with Intel(R) Xeon CPU E5620 at 2.40 Ghz with 8

GB of RAM and running a 64-bit Windows 7 operating system. All the code was writ-

ten in C++ using the libraries from the Insight Toolkit (ITK) and Visualisation toolkit

(VTK) [157, 251] for basic manipulation of mesh and images. The alignment requires

1 minute for each vertebrae whereas the morphing takes 1 hours and 50 minutes for

each patient (four scales) as average.
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7.5 Discussion

The proposed method begins with an initial alignment of the vertebral surface meshes

using the centre of the IVDs in MR. Subsequently, their position is adjusted by match-

ing the vertebral mesh borders to those in the MR image. Finally, a morphing technique

is used to create the volumetric mesh by adapting a template to the IVD and vertebral

meshes after the alignment.

The current methodology w The process was evaluated using the point to surface

distance from manual contours to the aligned meshes (and the surface of the volu-

metric mesh). The mean distance to the ground truth was 1.11mm (1.15mm), a value

between 1 and 2 voxel size (0.7mm), and slightly larger than the intra-observer vari-

ability (0.81mm). These results support the relatively good accuracy of the method.

However, the errors are not negligible, due to thick and blurry vertebral borders ob-

served in MRI, which also affects the manual delineations.

Although, it was not proposed a method to compute boundary conditions, material

properties and other important parameters for biomechanical models, the proposed

method facilitates the propagation of most of these parameters to the patient-specific

model. In addition, the process allows the extraction of the intensity values from the

image, which is an important step towards the material property calculation.

7.6 Conclusions

A pipeline for the creation of patient-specific volumetric meshes for biomechanical

simulations has been proposed and tested in images and segmentations of vertebrae

and intervertebral discs of the lumbar spine. The process exploits the fact that the spine

is an articulated object. It begins with a rigid alignment of the individual vertebrae in

between the corresponding IVD pairs. Subsequently, vertebrae are aligned individually

using the MR intensities. This second step exploits the high intensity of the spinal cord

and the location of the IVDs to adjust the vertebrae properly.

The second part is the morphing of a template volumetric mesh to the spine seg-

mentation using a mesh morphing process. This process was not developed during the
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thesis and it was only employed to finalise the construction of the volumetric mesh.

This two-step method has the advantage of allowing the morphing to correct small

vertebra-IVD misalignment prompt to occur given the thick and blurry borders of the

vertebra in the MR images.



Chapter 8

Conclusions and Outlook

8.1 Overview

This thesis posed the challenge of developing a framework to automatically construct

patient-specific anatomical and labelled models. As a proof of concept, spine models

were constructed from CT and MR images, resulting in the following contributions:

• A new statistical model that encodes the information of the separation between

objects, named Statistical Interspace model (SIM), similarly as SSM encodes the

inner variation of an object (Chapter 4).

• A new technique that extends PCA to multi linearity, named rebalanced Multi-

level component analysis (R-MLCA), that allows the creation of SSMs with mul-

tiple factors, such as the grade of fracture of a vertebra (Chapter 6).

• A method to train intensity features for the matching algorithm of point-based

segmentation frameworks (Chapter 3).

• The development of a segmentation framework, which minimises a set of energies

given the SIM, a group of SSMs and the intensity energy (Chapter 4) to attain

anatomically correct and accurate segmentations.

• A fusion algorithm for merging images of the same modality and patient to in-

crease the resolution while providing more realistic voxel intensities for the com-

putation of the material properties (Chapter 3).

145
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• A novel method to perform mesh to image rigid registrations in order to align ar-

ticulated structures, such as vertebrae and IVDs, extracted from different images

(Chapter 7). In order to avoid overlaps, the method includes the SIM model.

8.2 Conclusions

Personalised medicine is the future of health care. In spine, the diagnosis almost al-

ways has got some patient-specific details and the treatment should be individualised

in most of the cases. In more complicated cases the importance of the surgical planning

has been already emphasised by other authors [252] and in the future patient specific

rapid prototyped implant manufacturing can be the dominant surgical approach for in-

strumented spinal surgeries. Different - preliminary - computer simulation methods

are already available for the surgical planning and some of these tools are connected

with the intraoperative surgical navigation systems [253]. The platform for the patient-

specific simulation of different treatment of the whole lumbar spine has been already

developed too [34]. In these decision-supporting, surgical-planning and/or outcome

predictive computational systems, the proper, 3D segmentation of the spinal elements,

and their to build the patient spine model are the key starting points for the workflow.

In this thesis statistical models were employed, and new ones were developed, to

construct anatomically correct spine models for biomechanical simulations. This work

can be structured into three parts, addressing each of the three objectives presented in

Chapter 1.

In addition, the models originated from the proposed pipeline were used in a real

clinical setting (Appendix A). The results showed that the current pipeline provides

patient-specific models that are suitable for simulations.

8.2.1 Development of a Segmentation Framework that extracts anatomically

correct object shapes with SSMs

In this thesis, two different segmentation frameworks has been proposed, each of them

solving different issues that the state-of-the-art methods using SSMs have. Among
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them, the segmentation framework proposed in Chapter 4, using Statistical interspace

model (SIM), provides the greatest improvement in terms of accuracy and in reducing

the need for a large database for creating SSMs. The latter improvement is the conse-

quence of two different factors: First, it is no longer necessary to have a model of the

whole spine, but rather one for each individual vertebra, and second, since the SSMs

are used as an energy in a framework where B-splines controls the possible shape de-

formations, the segmentation has a greater degree of freedom allowing more precision

with fewer training samples. However, the clear benefit of using this novel framework

is that, to the best knowledge of the author of this dissertation, it is the only framework

that has successfully prevented overlaps, excessive separation between objects and un-

realistic rotations. All these issues may not significantly influence the accuracy of the

segmentation using standard measurements, but prevent the models to be employed for

simulations.

This new framework appears to have two main limitations: The employed energy to

warp the mesh within the intensity image may not be considered as completely optimal.

However, since the group of energies are integrated modularly in the framework, any

of them could be replaced by another energy of the same type. A further limitation is

that to optimise the set of energies to obtain the segmentation, there exists no closed

form solution, as with the standard SSM. Thus, the optimisation procedure may not

attain the global minimum and also has slower convergence.

8.2.2 Development of a classification method that can be integrated in the seg-

mentation framework

Patient-specific volumetric meshes for biomechanical simulations require the computa-

tion of material properties. For this process, the identification of the stage of a disease,

or disorder affecting these material properties is of utmost importance. In addition,

this labelling of anatomical structures may improve the segmentation results if it is

smartly combined within a unique framework. During the development of this thesis,

a classification framework that labelled IVDs according to their degree of degeneration

was created, which attains results of similar accuracy to that of an expert in the field.
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However, as stated in Chapter 5, this framework was specific to IVDs and it could

not be embedded in a unique framework with the segmentation. Thus, in Chapter 6,

a new technique was proposed, named rebalanced multilevel component analysis (R-

MLCA), that allows the creation of models with respect to multiple factors, such as a

stage of a disease or the grade of a bone fracture.

The clear limitation of this technique is that it does not provide a set of modes

that only modify one factor. For instance, assume that a database of lumbar spine CT

includes patients with different stages of scoliosis and vertebrae with different grades

of fracture. A model created with R-MLCA will have a level, with a set of modes

controlling all the possible stages of scoliosis, and second one controlling all possible

stages of scoliosis and grade of fractures at the same time, instead of having a level

that solely influences the grade of fracture. In the literature, different frameworks that

do not have this issue have been proposed [168, 231, 232], but, on the other hand, they

have other drawbacks as mentioned in Chapter 6.

8.2.3 Development of an alignment method to merge articulated anatomical struc-

tures from different images

Chapter 7 includes the procedure to align articulated structures from different images.

Since vertebrae are rigid objects, whose shape should not change with the patient’s

posture, each vertebra was rigidly aligned between their correspondent IVDs. The pro-

posed approach employs the SIM model to avoid inter-vertebral overlaps, excessive

separation and other issues that are common in the alignment of articulated objects.

This method was specifically design for our purpose and it is preferable with respect

to the state-of-the-art methods, which employ image-to-image registration with a rigid

penalisation. The reason is that the latter is either more computationally expensive,

they require segmentations in both images, or do not completely restrict the defor-

mations to be rigid, since otherwise, they could allow the overlap or collapse of two

vertebrae, which is not desirable either.
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8.3 Future lines of research

The possible addition to this thesis are fourfold.

8.3.1 Automation of the initialisation

In this thesis, the initialisation of the vertebrae or IVD has been performed by manually

selecting the centre of the IVDs either in CT or MR, allowing the user to select the

number of vertebrae and IVDs. However, the automation of this step could facilitate

the creation of models when the number of vertebrae and IVDs is known and a large

number of models must be created. Examples of methods to perform such tasks are:

[27, 28, 161, 162].

8.3.2 Rebalanced multi-linear statistical appearance model (R-MLSAM)

The R-MLCA proposed in Chapter 6 could be used to create appearance models, by

employing the same approach presented in [33] with PCA. This model may allow

the possibility of classifying the IVDs according to their degree of degeneration but

experiments would be required to demonstrate it is feasibility.

8.3.3 Statistical interspace model with generation ability

The SIM, introduced in Chapter 4, contains the covariance matrix and the mean values

of the relative position vectors between pairs of points on both sides of the space that

is being modelled. A future line of research is to study the possibility of creating

a model with a similar procedure to that of the SSM. This model will combine the

information of multiple points and will require the use of a dimensionality reduction

technique to acquire its possible modes of variation. The resultant model will encode

the relative information between different pairs of points as the SSM does. This extra

information may improve the relative position of whole objects, which is not precise

with a point-wise model.
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8.3.4 Substituting CT images for VFA or DXA

The main issue of using CT images is the radiation that patients are exposed to. Thus,

the use of 2D modalities, such as X-rays, VFAs or DXAs to create 3D objects with the

use of SSMs [47,48,59,61,73,119,123,254] is a cutting-edge technique that could be

integrated into the proposed model construction framework. The goal would be to re-

formulate the segmentation framework proposed in Chapter 4 to have a reconstruction

method that employs the SIM. This model would control the relative position between

vertebrae avoiding overlaps, which are an issue in the state-of-the-art methods, such

as [47].

8.3.5 Detection of the facet joint osteoarthritis

The SIM encodes the information of the possible shapes of the space between objects.

This ability has been exploited to eliminate overlaps between processes, particularly, in

the facet joints where the separation is usually smaller than the voxel size. An impor-

tant disease that have been reported to be related to IVD degeneration is facet joint os-

teoarthritis [207]. This disease is visualised in CT as a narrower intervertebral process

and/or an increase of bone formation around the joint and/or black artefacts. These

characteristics should not influence greatly the performance of the propose method,

neither in the segmentation nor in the alignment. But more importantly, the SIM could

be used to classify patients according to this disease. The SIM models the interpro-

cess space using the relative position vectors, which act as local descriptors of the

interspace between objects. Therefore, these vectors could be used as features for a

standard classifier, such as neural network, logistic regression, adaboost or any other

presented in chapter 5, to perform the classification of patients according to the severity

of this disease.
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Appendices

Appendix A - Clinical use of the Biomecanical models

Part of the research presented on this thesis was developed in the context of the MySpine

project [34], whose consortium was composed of seven european institutions. Among

these institutions, one of them designed the template biomechanical model, and an-

other created a set of equations to compute the material properties using the image

intensities and the anatomical object labels provided in the proposed framework. The

created models, with materials properties, were used to perform biomechanical simu-

lations that were employed to estimate the best possible treatment for patients suffering

from low back pain. The near 200 patient-specific biomechanical models showed that

the current pipeline provides models that are suitable for simulations.

In addition, a user-friendly graphical interface (GUI), Fig. 9.1, was also imple-

mented within the GIMIAS platform [255]. This GUI was used to allow partners from

other institutions to create the models and visualise them. It was divided into five

components or modules to allow the user to perform only one part:

• XNAT window: Access to an internet database to extract the CT and MR im-

ages. The XNAT platform and this particular component of the GUI was not

developed by the author of this dissertation.

• MR Discs: Segmentation of the IVDs, it is requires for the user to click the

centre of the IVDs that are going to be processed.
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• CT Discs: Segmentation of the vertebrae, it is required for the user to click the

centre of the IVDs right below of the vertebrae that are going to be processed.

• VertAlignmentMR: Alignment of the vertebra in the MR image, no input from

the user is needed.

• CreateFEM: Creation of the Biomechanical model. This particular component

of the GUI was not developed by the author of this dissertation.

In addition, joining the different modules into a single GUI was not carried out by the

author of this dissertation.

Appendix B - Extension of the Interpolation technique to more than

2 views

In this appendix, the initial bi-linear interpolation process presented by Li et al. [151]

is extended to the case of having more than 2 views. Although, their method includes

a second step based on wavelets, that step does not have any restriction on the number

of volumes to be fused. Observe that the different views of MR images are commonly

perpendicular. Therefore, it is reasonable to expect this property, as assumed in [151].

However, for the sake of completeness, the equations in the case of a non-perpendicular

case are also presented in the last part of this appendix.

Perpendicular problem

This setting is similar to that in Fig. 3.5 with the addition of a third volume in the

axial view. Thus, the result is an image volume with cuboids inside that does not have

their intensity defined. The facing problem is to find the value of each point p within

these cuboids. As shown by Li et al. [151] for the 2D case, the first step is to find

the closest voxels with intensities surrounding each of the voxels p (Fig. 9.2 - a).

Then, two triangular pyramids are constructed joining three different points of the set

v1, · · · , v6 and p. Observe that there exists 4 possible combinations of opposed pair

of triangular pyramids, as it was proposed in [151], the pair of triangular pyramids for
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which the summation of all the sides is minimum is selected. To simplify the notation,

let us define an index k identifying each of the pyramids (k = 1, 2) and an index i

running along the three vertices of each pyramids different to p, so that the vertices

v1, · · · , v6 become vi,k with i = 1, 2, 3.

For each of the pyramids k, it is required to compute the value of its height hk and

the pixel intensity at point qk. These qk points are the projection of p to the plane given

by vertices vi,k ∀i.

I(qk) =
∑
i∈M

αiI(vi,k) with αi,k =

∑
j∈M−{i} dj,k∑
j∈M dj,k

(9.1)

where I(qk) represents the intensity of the point qk, M is the set with numbers 1,2 and

3 and di,k are the distance from vi,k to qk ∀i, k as shown in Fig. 9.2.

Having computed hk and I(qk), the interpolation of point p is performed with the

standard linear interpolation.

I(p) =
h2

h1 + h2
I(q1) +

h1
h1 + h2

I(q2) (9.2)

Thus, the objectives are to find the values of di,k, and the values of hk using the

distances from each vi,k to p, named xi,k.

First, the values hk may be obtained using the formula to compute the volume of a

triangular pyramid.

Vk =
1

3
Akhk =⇒ hk =

3Vk
Ak

(9.3)

where Ak is the area of the triangle base.

Since the angles between the different xi,k are rectangles, the volume of the pyramid

can also be computed as:

Vk =
1

3

(
1

2
x2,kx3,k

)
x1,k =

∏3
i=1 xi,k

6
(9.4)

In addition, the bi,k are obtained using the Pythagoras theorem and Ak using the
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Heron’s formula:

Ak =
√
tk(tk − b1,k)(tk − b2,k)(tk − b3,k) with tk =

1

2

3∑
i=1

bi,k

b1,k =
√
x21,k + x23,k b2,k =

√
x21,k + x22,k b3,k =

√
x22,k + x23,k

(9.5)

leading to the solution of hk:

hk =

∑3
i=1 xi,k

2
√
tk(tk − b1,k)(tk − b2,k)(t− b3,k)

(9.6)

Having acquired hk, the di,k are computed using Pythagoras theorem di,k =
√
x2i,k − h2k.

Non perpendicular problem

In the case that images are not perpendicular to each other, the same method as intro-

duced in the previous section may be used. The only difference is the computation of

hk, which may be performed by using the following equation:

3∑
i=1

bi,k
2

√
s2i,k − h2k = Ak (9.7)

where si,k are the slant heights (Fig. 9.3) and Ak is computed using (9.5) with bi,k

being described using the law of cosines as follows:

b1,k =
√
x21,k + x23,k − 2x1,kx3,k cosα1,k

b2,k =
√
x21,k + x22,k − 2x1,kx2,k cosα2,k

b3,k =
√
x22,k + x23,k − 2x2,kx3,k cosα3,k

si,k = 2

√
ti,k(ti,k − xi,k)(ti,k − xj,k)(ti,k − bi,k)

bi,k

with ti,k =
xi,k + xj,k + bi,k

2
and j = mod(i− 1, 3)

(9.8)

The value of hk may be obtained with an optimisation technique or by the resolution

of the polynomial that the expansion of this equation leads to.
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(a)

(b)

Figure 9.1: Graphical User Interface (GUI). It is composed of five parts: XNAT, seg-
mentation of IVDs, segmentation of vertebrae, Alignment of vertebrae in MR and
model creation. Each of them was separated in case the user only desires one of the
steps.
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Figure 9.2: Description of the problem. Fig. (a) illustrates a point p that needs to be
interpolated using the six values vi from the six image slices that surrounds it. Joining
three vi and p creates the pyramid (b), whose base was named Ak and it is represented
in (c).
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Figure 9.3: Triangular side of figure 9.2 - b, with the slant height (si,k). The value i is
each of the three sides and the value j = mod(i− 1, 3).
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[157] Ibánez L., Schroeder W., Ng L., and J. C., The ITK Software Guide, Kit-

ware, Inc. ISBN 1-930934-15-7, http://www.itk.org/ItkSoftwareGuide.pdf, sec-

ond edition, 2005.

[158] Pfirrmann C., Metzdorf A., Zanetti M., Hodler J., and Boos N., “Magnetic

resonance classification of lumbar intervertebral disc degeneration,” in Spine,

2001, vol. 26, pp. 1873–1878.

[159] Zijdenbos A. P., Dawant B. M., Margolin R. A., and Palmer A. C., “Morpho-

metric analysis of white matter lesions in MR images: method and validation,”

IEEE T Med Imaging, vol. 13, no. 4, pp. 716–724, 1994.

[160] Pat L., Selection of relevant features in machine learning, Defense Technical

Information Center, 1994.

[161] Stern D., Vrtovec T., Pernus F., and Likar B., “Automated determination of the

centers of vertebral bodies and intervertebral discs in CT and MR lumbar spine

images,” in Proceedings of SPIE, 2010, vol. 7623, p. 762350.

[162] Peng Z., Zhong J., Wee W., and Lee J.-h., “Automated vertebra detection and

segmentation from the whole spine MR images,” in Eng Med Biol Soc Ann.

IEEE-EMBS, jan 2005, pp. 2527–2530.

[163] Okada T., Yokota K., Hori M., Nakamoto M., Nakamura H., and Sato Y., “Con-

struction of hierarchical multi-organ statistical atlases and their application to

multi-organ segmentation from ct images,” in Lect Notes Comput Sc (MICCAI),

pp. 502–509. Springer, 2008.



177 BIBLIOGRAPHY

[164] Lim T. H., Eck J. C., An H. S., Hong J. H., Ahn J.-Y., and You J. W., “Biome-

chanics of transfixation in pedicle screw instrumentation,” Spine, vol. 21, no.

19, pp. 2224–2229, 1996.

[165] Jahng T., Kim Y., and Moon K., “Comparison of the biomechanical effect of

pedicle-based dynamic stabilization: a study using finite element analysis,” The

Spine Journal, vol. 13, no. 1, pp. 85–94, 2013.

[166] Schlenzka D., Laine T., and Lund T., “Computer-assisted spine surgery,” Euro-

pean Spine Journal, vol. 9, no. 1, pp. S057–S064, 2000.

[167] Bae M.-H., Pan R., Wu T., and Badea A., “Automated segmentation of mouse

brain images using extended mrf,” Neuroimage, vol. 46, no. 3, pp. 717–725,

2009.

[168] Chen X., Graham J., Hutchinson C., and Muir L., “Automatic generation of

statistical pose and shape models for articulated joints,” IEEE T Med Imaging,

vol. 33, no. 2, pp. 372–383, 2014.

[169] Heckemann Rolf A., Hajnal Joseph V., Aljabar P., Rueckert D., and Hammers

A., “Automatic anatomical brain mri segmentation combining label propagation

and decision fusion,” NeuroImage, vol. 33, no. 1, pp. 115–126, 2006.

[170] Huang J., Jian F., Wu H., and Li H., “An improved level set method for vertebra

CT image segmentation,” Biomedical engineering online, vol. 12, no. 1, pp. 48,

2013.

[171] Mahmoudi S. and Benjelloun M., “A new approach for cervical vertebrae seg-

mentation,” Progress in Pattern Recognition, Image Analysis and Applications,

pp. 753–762, 2007.

[172] Mastmeyer A., Engelke K., Fuchs C., and Kalender W. A., “A hierarchical 3D

segmentation method and the definition of vertebral body coordinate systems for

QCT of the lumbar spine,” Med Image Anal, vol. 10, no. 4, pp. 560–577, 2006.

[173] Tan S., Jianhua Y., Ward M., Yao L., and Summers R., “3D multi-scale level set

segmentation of vertebrae,” in I S Biomed Imaging (ISBI), 2007, pp. 896–899.



BIBLIOGRAPHY 178

[174] Stern D., Likar B., Pernus F., and Vrtovec T., “Parametric modelling and seg-

mentation of vertebral bodies in 3D CT and MR spine images,” Physics in

medicine and biology, vol. 56, no. 23, pp. 7505–7522, 2011.

[175] Weese J., Kaus M., Lorenz C., Lobregt S., Truyen R., and Pekar V., “Shape

constrained deformable models for 3D medical image segmentation,” in Infor-

mation Processing in Medical Imaging. Springer, 2001, pp. 380–387.

[176] Kaminsky J., Klinge P., Rodt T., Bokemeyer M., Luedemann W., and Samii

M., “Specially adapted interactive tools for an improved 3D-segmentation of

the spine,” Comput Med Imag Grap, vol. 28, no. 3, pp. 119–127, 2004.

[177] Naegel B., “Using mathematical morphology for the anatomical labeling of

vertebrae from 3D CT-scan images,” Comput Med Imag Grap, vol. 31, no. 3,

pp. 141–156, 2007.

[178] Ma J. and Lu L., “Hierarchical segmentation and identification of thoracic verte-

bra using learning-based edge detection and coarse-to-fine deformable model,”

Comput Vis Image Und, pp. 19–27, 2013.

[179] Zhang J., Yan C., Chui C., and Ong S., “Fast segmentation of bone in ct images

using 3d adaptive thresholding,” Computers in biology and medicine, vol. 40,

no. 2, pp. 231–236, 2010.

[180] Kirschner M., Becker M., and Wesarg S., “3D active shape model segmenta-

tion with nonlinear shape priors,” in Medical Image Computing and Computer-

Assisted Intervention–MICCAI 2011, pp. 492–499. Springer, 2011.

[181] Carballido gamio J., Belongie S. J., and Majumdar S., “Normalized cuts in 3D

for spinal MRI segmentation,” IEEE Trans Med Imaging, vol. 23, pp. 36–44,

2004.

[182] Szu-Hao H., Yi-Hong C., Shang-Hong L., and Novak C., “Learning-based ver-

tebra detection and iterative normalized-cut segmentation for spinal MRI,” IEEE

T Med Imaging, vol. 28, no. 10, pp. 1595–1605, Oct.



179 BIBLIOGRAPHY

[183] Shen H., Litvin A., and Alvino C., “Localized priors for the precise segmenta-

tion of individual vertebras from ct volume data,” in Medical Image Comput-

ing and Computer-Assisted Intervention–MICCAI 2008, pp. 367–375. Springer,

2008.

[184] Kim Y. and Kim D., “A fully automatic vertebra segmentation method using 3D

deformable fences,” Comput Med Imag Grap, vol. 33, no. 5, pp. 343–352, 2009.

[185] Klinder T., Ostermann J., Ehm M., Franz A., Kneser R., and Lorenz C., “Au-

tomated model-based vertebra detection, identification, and segmentation in CT

images.,” Med Image Anal, vol. 13, no. 3, pp. 471, 2009.

[186] Boisvert J., Pennec X., Labelle H., Cheriet F., and Ayache N., “Principal spine

shape deformation modes using Riemannian geometry and articulated models,”

in Articulated Motion and Deformable Objects, pp. 346–355. Springer, 2006.

[187] Van De Giessen M., Streekstra Geert J., Strackee Simon D., Maas M., Grim-

bergen Kees A., Lucas J V. V., and Vos Frans M., “Constrained registration of

the wrist joint,” Medical Imaging, IEEE Transactions on, vol. 28, no. 12, pp.

1861–1869, 2009.

[188] Kadoury S., Labelle H., and Paragios N., “Spine segmentation in medical im-

ages using manifold embeddings and higher-order mrfs,” Medical Imaging,

IEEE Transactions on, vol. 32, no. 7, pp. 1227–1238, 2013.

[189] Rasoulian A., Rohling R., and Abolmaesumi P., “Lumbar spine segmentation

using a statistical multi-vertebrae anatomical shape+ pose model,” IEEE T Med

Imaging, vol. 32, no. 10, pp. 1890–1900, 2013.

[190] Seitel A., Rasoulian A., Rohling R., and Abolmaesumi P., “Lumbar and thoracic

spine segmentation using a statistical multi-object shape+ pose model,” in Re-

cent Advances in Computational Methods and Clinical Applications for Spine

Imaging, pp. 221–225. Springer, 2015.



BIBLIOGRAPHY 180

[191] Forsberg D., “Atlas-based segmentation of the thoracic and lumbar vertebrae,”

in Recent Advances in Computational Methods and Clinical Applications for

Spine Imaging, pp. 215–220. Springer, 2015.

[192] Lorensen William E. and Cline Harvey E., “Marching cubes: A high resolution

3D surface construction algorithm,” SIGGRAPH Comput. Graph., vol. 21, pp.

163–169, August 1987.

[193] Mpiperis I., Malassiotis S., and Strintzis Michael G., “Bilinear models for 3-

D face and facial expression recognition,” Information Forensics and Security,

IEEE Transactions on, vol. 3, no. 3, pp. 498–511, 2008.

[194] Lilliefors H.-W., “On the kolmogorov-smirnov test for the exponential distribu-

tion with mean unknown,” Journal of the American Statistical Association, vol.

64, no. 325, pp. 387–389, 1969.

[195] Jarque C. and Bera Anil K., “A test for normality of observations and regression

residuals,” International Statistical Review/Revue Internationale de Statistique,

pp. 163–172, 1987.

[196] Trujillo-Ortiz A., Hernandez-Walls R., Barba-Rojo K., and Cupul-Magana

L., “Hzmvntest: Henze-zirkler’s multivariate normality test,” A MATLAB

file. URL http://www. mathworks.com/matlabcentral/fileexchange/loadFile.do,

2007.

[197] Fletcher P., Lu C., Pizer S., and Joshi S., “Principal geodesic analysis for the

study of nonlinear statistics of shape,” Medical Imaging, IEEE Transactions on,

vol. 23, no. 8, pp. 995–1005, 2004.

[198] Dryden I. L. and Mardia K. V., Statistical shape analysis, vol. 4, John Wiley &

Sons New York, 1998.

[199] S., “Spineweb,” http://spineweb.digitalimaginggroup.ca/, 2013, Accessed:

2015-03-24.

[200] Yao J., Glocker B., Klinder T., and Li S., “Recent advances in computational

methods and clinical applications for spine imaging,” 2015.



181 BIBLIOGRAPHY

[201] Korez R., Ibragimov B., Likar B., Pernuš F., and Vrtovec T., “Interpolation-
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