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Abstract

This thesis describes a path from a model of a biological system to a biologically-inspired
algorithm. The thesis commences with a discussion of the principled design of biologically-
inspired algorithms. It is argued that modelling a biological system can be tremendously
helpful in eventual algorithm construction. A proposal is made that it is possible to re-
duce modelling biases by modelling the biological system without any regard to algorithm
development, that is, with only concern of understanding the biological mechanisms. As
a consequence the thesis investigates a detailed model of T cell signalling process. The
model is subjected to stochastic analysis which results in a hypothesis for T cell activa-
tion. This hypothesis is abstracted to form a simplified model which retains key mecha-
nisms. The abstracted model is shown to have connections to Kernel Density Estimation,
through developing these connections the Receptor Density Algorithm is developed. By de-
sign, the algorithm has application in tracking probability distributions. Finally, the thesis
demonstrates the algorithm on a related but different problem of detecting anomalies in
spectrometer data.
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CHAPTER 1

Biologically-Inspired Computation

A Biologically-Inspired computational system is an information processing system whose
structure and function have been designed with inspiration from a biological system. Sys-
tems designed in this manner intend to replicate properties of a biological system, and aim
to deliver new perspectives and solutions to computational information processing problems.
Bio-inspired algorithms are a class of biologically-inspired systems restricted to algorithmic
concerns.

The development of a bio-inspired algorithm is the topic of this thesis. Particularly,
inspiration will be taken from the immune system and so the resultant algorithm is known as
an Artificial Immune System. This chapter focuses on the principled design of bio-inspired
algorithms and the connection between a biological system and a resultant bio-inspired
algorithm.

The chapter is organised as follows: Section 1.1 offers some history, along with moti-
vating arguments and challenges for the bio-inspired development of systems. Section 1.2
introduces current bio-inspired algorithm design methodologies which outline a need for
modelling biology when building algorithms. The section also gives a description of the
current state of Artificial Immune Systems and discusses the sources of its inspiration.
Section 1.3 presents factors important when modelling biological systems, and particularly
when modelling for algorithm development. Section 1.4 discusses the issue of moving from
biology to algorithms. Finally, Section 1.5 provides an outline of this thesis.

1.1 History, Motivation and Challenges

Walter Bradford Cannon in his 1932 book entitled The Wisdom of the Body [Cannon,
1932] defined the term homeostasis to describe the ability of biological systems to maintain

their internal state despite a largely varying external environment!. Toward the end of the

'Homeostasis is the concatenation of homeo- meaning similar and -stasis meaning standing, both from
Greek. The origins of the word’s concept were well established before its conception. The prominent example
being the work of Claude Bernard and his definition of the constancy of internal environment, milieu intérieur
[Bernard, 1927].

10



1.1. History, Motivation and Challenges 11

introductory chapter that defines homeostasis, is the following less well known paragraph,
[Cannon, 1932]:

It seems not impossible that the means employed by the more highly evolved
animals for preserving uniform and stable their internal economy (i.e., for pre-
serving homeostasis) may present some general principles for the establishment,
regulation and control of steady states, that would be suggestive for other kinds
of organization — even social and industrial — which suffer from distressing per-
turbations. Perhaps a comparative study would show that every complex orga-
nization must have more or less effective self-righting adjustments in order to
prevent a check on its functions or a rapid disintegration of its parts when it is
subjected to stress. And it may be that an examination of the self-righting meth-
ods employed in the more complex living beings may offer hints for improving
and perfecting the methods which still operate inefficiently and unsatisfactorily.

Remarkably, this quotation from 1932 exactly describes the bio-inspired endeavour, and
moreover presents themes in structural correspondence and fault-tolerance. These are top-
ics at the forefront of current biologically-inspired endeavours [Levi and Kernbach, 2010].
Continuing historically, the work of Turing and Von Neumann (names traditionally associ-
ated with conventional computational approaches) was concerned with biological inspiration
and modelling [Turing, 1952, 1992; Neumann, 1966]. The origins of the majority of today’s
bio-inspired fields were not, however, developed until much later?. Now research fields in-
clude and are not limited to, Evolutionary Computing [Mitchell, 1998]; Artificial Neural
Networks [Bishop, 1995]; Artificial Immune Systems [de Castro and Timmis, 2002; Timmis
et al., 2008a]; Swarm Intelligence Systems [Bonabeau et al., 1999] and Artificial Life [Bedau,
2003].

1.1.1 Motivation

There are two very general properties of biological systems that are responsible for the
interest of computer scientists in biology®. The first is the robustness of biological systems
and is related to homeostasis. Robustness is the property that allows a system to maintain
its function against internal and external perturbations, and is the “ubiquitously observed
property of biological systems” [Kitano, 2004]. All biological systems must be “robust”
enough to survive sufficiently long to reproduce. Further discussions on the origins of
robustness and its relation to evolution are given in Section 1.1.2.

As an aside, the definition of robustness is very similar to that of homeostasis. Many
authors have felt the general interpretation of homeostasis and its suffix -stasis, to be too
static. In order to convey the notion a dynamic stability, such as a return to a trajectory
when perturbed, new definitions, predominantly suffixes to homeo- have been defined. A
notable example is homeorhesis with -rhesis meaning flow [Waddington, 1957; Saunders,

2This delay is in part due to the wait for appropriate computational power to be developed.
3There are many reasons why computer scientists are interested in biology, the concepts of robustness
and self-organisation are two that currently stand out.
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1993]. However, these concepts are often invoked in sufficiently general situations that such
semantics do not matter and robustness may be the least loaded of the terms. The second
important property of biological systems is self-organisation; [Camazine et al., 2001] defines
a self-organised system as one that exhibits patterns/structure at a global scale that are
the result of many interactions at a lower scale. The defining feature is the lack of central
control. The global order is not encoded explicitly at the any level, but emerges implicitly
from local interactions between components. Such self-organised patterns are known as
emergent phenomena, and cannot be understood by examination of individual components
alone. The lower scale components are often heterogeneous in structure. In biological
systems self-organised phenomena are observed as one moves up each level of physical and
temporal scale (for example, molecules to cells, cells to organs, organs to organisms, ...)
[Cohen, 2000]. Generally conventionally engineered systems do not display this manner of
robustness and self-organisation, and a desire to have these properties has sparked quite
considerable engineering effort [Levi and Kernbach, 2010].

The immune system is an excellent example of a robust, self-organised system [Cohen,
2000], and worth special mention as the topic of this thesis. The system has quite remarkable
abilities: recognition/discrimination [Germain and Stefanova, 1999]; maintenance [Cohen,
2000]; inference from danger/context [Matzinger, 2002]; and memory [Murphy et al., 2008].
The specifics of these are largely responsible for the body of work in artificial immune
systems to date [Timmis et al., 2008a]. Immunologists have even taken computational
interpretations of the immunology [Cohen, 2007]. The immune system is regarded to take
the state of the body as input and computes an immune response as output. This view
of a biological system as an information processing system is of clear relevance to a bio-
inspired endeavour. Though, as word of caution, computation is in the eye of the beholder;
simply interpreting a biological system performing computation does not imply any eventual
contribution to biologically-inspired computation.

The concept of biological inspiration is not limited to computational concerns. A first
example is mathematics [Sturmfels, 2005; Cohen, 2004]. The references discuss that a
continued analysis of biology will not only further biological fields, it will stimulate new
mathematics. This manner of inspiration is closely related to that of computation. In a
second example, and in contrast to computational engineering discussed above, classical
engineering too has received biological inspiration [Ingber, 2010]. Related, and in some re-
spects the dual to biological inspiration, is performing computation with biological systems.
For example, slime mould is used to solve routing problems in [Adamatzky and Jones, 2009].

1.1.2 Challenges

There are details of biology which inhibit the abstraction of biological detail to conven-
tionally executable information processing. This presents no problems if the objective is
to discover new approaches to information processing without the need to turn them into
serviceable algorithms. But, challenges are presented if the resultant algorithm is to be

tractable in computational complexity in time and space.
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Biological systems are evolved, and evolved systems do not progress in the sense of
betterment, they increase in complexity [Cohen, 2000; Edelman and Gally, 2001]. The
existence of a creature, cell or molecule provides the opportunity for the interaction with
another creature, cell, or molecule. Evolution copies and mutates; a mutation may war-
rant a new interaction, but the old interaction still exists by the non-mutated copy. Over
time, evolution will make systems more complex [Cohen, 2000; Edelman and Gally, 2001].
Closely related to this evolved complexity is degeneracy, this is the ability of structurally
different components to perform the same function [Cohen, 2000]. Importantly, degenerate
components also perform different functions; there is seldom a one-to-one mapping between
function and component in biology. An example from genetics is the surprisingly small
effects that gene knockout (an experiment which involves the removal of specific genes) can
have on an organism [Edelman and Gally, 2001]. This is so even when the gene exhibits a
measurably active behaviour under normal conditions [Cohen, 2000]. This fact is related
to degenerate genes, and also (as discussed in [Cohen, 2000]) organisms self-organise their
genes during development. The absence of a gene forces an organisation around a different
gene. The development of an organism is a key process [Cohen, 2000; Waddington, 1957;
Saunders, 1993]. It seems that the continual tampering of evolution (combined with en-
vironmental perturbation) has forced biological systems to become robust to this sort of
tampering and perturbation. The implication for bio-inspired algorithms: the processes
that make the system interesting actually act against their ability to be understood and
abstracted, and an algorithm may be required to “develop”.

Biological systems process information through the substrate of chemistry, and this has
quite different properties to conventional computational substrates. For example, immunol-
ogy renders the information contained in the conformation and chemical composition of
certain molecules interpretable by molecular-recognition so-called antigen-receptors (Chap-
ter 3 provides the full background). The details of the molecular-recognition involve a
formation of a complicated non-covalent bond [Carneiro and Stewart, 1994]. It is this step
that allows the immune system to perform comparisons between effectively any molecule,
and molecular-recognition forms an important step in many information processing path-
ways. It would seem to be a desirable property, yet this molecular-recognition step is not
easily replicable in an algorithm. This point has caused consternation in many Artificial
Immune Systems (see [Stibor, 2006; McEwan and Hart, 2009] for description) and will be
the cause for discussion in this thesis. The point on substrates applies in the opposite direc-
tion: biology may have to work hard to perform certain tasks a conventional computational
system can perform easily.

The discussion now continues with an overview of methodologies with which to design
and build biologically-inspired algorithms.

1.2 Methodologies and Artificial Immune Systems

This section describes methodologies for the design of bio-inspired algorithms, and their

discussion necessarily involves historical considerations. The proceeding discussion will
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be in terms of immunology and Artificial Immune Systems (AIS), although, the general
concepts are applicable to any domain of biology and bio-inspired computing.

Early work in AIS had interdisciplinary origins and concerned furthering immunological
understanding in terms of computational concerns [Farmer and Packard, 1986; Bersini,
1992]. However, as [Stepney et al., 2005] points out, as the field grew the quality of the
biological inspiration diminished. The inspiration was often naive and many algorithm
developers were accused of “reasoning by metaphor” [Stepney et al., 2005]. Algorithms
were both poorly understood and unable to produce the behaviour of the biology that
inspired them. An account of this can be found in the majority of recent AIS review papers
[Hart and Timmis, 2008; Timmis, 2007; Timmis et al., 2008a].

To move the field back towards its original track, [Stepney et al., 2005] presented the
conceptual framework for the development of artificial immune systems. The framework
advocated careful biological modelling and abstraction to precede the development of algo-
rithms. Further, it was proposed that the modelling work should be backed up by a solid
theoretical analysis of the resulting algorithm. The steps of this framework are discussed in
Section 1.2.1. In [Stepney et al., 2005] it is also argued that this is necessarily an interdisci-
plinary process and requires the collaboration of biologists, mathematicians and computer
scientists, at the least. The outcome of an instantiation of the conceptual framework should
be a well understood algorithm with a traceable route to back to biology. Moreover, the
principled manner in which algorithms are developed should allow contributions back to
biology; the whole process should enrich both fields. It is also suggested by [Stepney et al.,
2005] that once an algorithm is developed one can apply a meta-framework to compare
commonalities between bio-inspired algorithms. This suggestion is in part related to the
observation that many population-based bio-inspired algorithms have very similar methods
[Newborough and Stepney, 2005]. This idea of comparison between models is returned to
in Section 1.4.

A recent thesis [Andrews, 2008] discusses the conceptual framework in detail and per-
forms instantiations of the framework, moving from biology to algorithms. In reflections on
the framework, [Andrews, 2008] notes that the the conceptual framework provides good, if
brief, advice and also draws attention to a circularity: if one wishes to design a bio-inspired
algorithm with an application in mind, how does one know which system to model without
modelling first? The question of identifiability of systems is returned to later in this section
and in Section 1.3. For the present, it is noted that when turning to biology for algorithmic
ideas one should expect more work than developing an algorithm conventionally.

In work following from the conceptual framework, [Timmis et al., 2008b] define the
more application oriented immuno-engineering. It supplies the conceptual framework with
additional elements related to engineering. These largely consist of the acknowledgement of
constraints of the intended application, so that given these constraints biological detail can
be discarded accordingly. The implicit message is to be inspired by the biology, and not
subject to its limitations. This is a theme common in much artificial immune systems work.
Further, [Timmis et al., 2008b] states that the modelling for bio-inspired algorithms helps
delineate which aspects are necessary to computationally re-generate a biological system’s
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behaviour, and which aspects are surplus. In [Timmis et al., 2008b] it is also advised
that developing immune algorithms applicable to a generic computational problem may
be difficult, and it may be more realistic to ground algorithm development in a specific
application. In a similar vein to the conceptual framework of [Stepney et al., 2005], and
possibly in a stronger manner, the work defining immuno-engineering [Timmis et al., 2008b]
emphasises the importance and potential of feeding results back to contribute to a biological
field.

Certainly, this chapter agrees with the concept of immuno-engineering in that one must
carefully consider the application when applying algorithms. However, the chapter also
expresses clarifications and caveats to some of the statements in the papers on immuno-
engineering and the conceptual framework. The first of these will come in the following
discussion on the connection between bio-inspired computation and biology.

1.2.1 Connections to Biology

The conceptual framework paper [Stepney et al., 2005] supplies a diagram (replicated in
[Timmis et al., 2008b]) which describes the path between biology and algorithms. This
diagram, with alteration and simplification, is given in Figure 1.1. The alteration draws
attention to the connection between biology and bio-inspired algorithms. The left of the
figure describes the biological research, the right bio-inspired algorithm development. The
defining property of the division is that all right side models contain detail or simplification
whose sole purpose is due to an intended bio-inspired algorithm. Thus, all models on the left
side have only biological concerns, and all assumptions must be made subject to biological
justification. Note that a biological model whose final purpose is an algorithm may start
on the left or right.

In any left-starting bio-inspired algorithm development there must come a point where
computational concerns force the model from left to right. It is possible to bypass the
abstracted model and jump straight to algorithms. However, one would imagine that this
would produce unsatisfactory results unless the model of biology was exceedingly abstract
and general, see Section 1.3.

Returning to a left-starting model that shifts to the right to become an abstracted
model. Once on the right the purpose of the abstracted model is to allow biological detail
to be stripped away, heading toward an algorithm, whilst retaining the desired behaviour
of the model. Assumptions can be made that are biologically invalid (though there must
come a point where it ceases to be bio-inspired). The node A on the boundary of Figure 1.1
represents all implicit and explicit details in the abstracted model which are not biologically
justifiable. Making A explicit brings to the forefront the connection between the biological
system and the bio-inspired algorithm. If an algorithm designer wishes to contribute back to
biology from this abstracted model/algorithm stage, the contributions must translate back
through A. Moreover, one can make use of assumptions A understanding the properties
that have been transferred from the biological model to the abstracted algorithm. The
purpose of node A is to comprehend what is gained and lost when one transits through A
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Biological Concerns Computational Concerns

&
\\Aj Abstracted Model

Analysis / Modelling
Experimentation :
Biology Algorithms

Figure 1.1: The path from biology to bio-inspired algorithms. Adapted from the diagram in [Stepney et al.,
2005]. And, as noted in [Stepney et al., 2005] all arrows come with a necessary bias. See text for description
of figure.

in either direction. It should be noted that the details made explicit by A are, for the most,
implicit in the discussions of frameworks in [Stepney et al., 2005; Timmis et al., 2008b].

1.2.2 The current state of Artificial Immune Systems

It is worth giving a very brief summary to the current state of AIS, which will actually lead
to suggestions of the modelling required to develop new AIS. As noted above, recent AIS
review papers [Hart and Timmis, 2008; Timmis, 2007; Timmis et al., 2008a] echo the senti-
ment of the conceptual framework [Stepney et al., 2005]. In fact, [Timmis, 2007] describes
AIS as having reached an impasse. The reasons for this become clear when one regards the
source of immunological inspiration. For effectively all pre-conceptual framework AIS, the
source of inspiration has been the major general theories of the immune system of the last
half-century: Clonal Selection Theory, including Clonal Ezpansion & Clonal Deletion and
Immune Network Theory. The details of some of these theories are discussed in Chapter 3;
for the other theories and descriptions of associated algorithms the reader is directed to
[Timmis et al., 2008a]. The concept of general theories and models is discussed in more
detail in Section 1.3, the key detail of a general model is that it applies without specifics and
so it translates well to algorithms. AIS inspiration sources since the conceptual framework
have been based on Danger Theory and the Tuneable-Activation-Threshold Hypothesis, an-
other two general theories (again, see Chapter 3 for descriptions). It should be noted that
the algorithms developed from danger theory and the tuneable-activation-threshold hypoth-
esis were developed with more detailed biological inspiration. The danger theory algorithm
[Greensmith et al., 2010] was developed in conjunction with immunologists investigating
danger theory. It has had some success, but has suffered from a lack of theoretical under-
standing, although this is changing [Stibor et al., 2009]. The algorithm based on tunable-
activation-thresholds arises from the aforementioned thesis [Andrews, 2008]. The algorithm
shows promise, but is yet to be accompanied by a theoretical explanatory analysis.

The AIS community has effectively exhausted the general models of immunology, so the
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next AIS will have to either come from a non-general theory of immunology, or it will have to
revisit the general theories. Herein lies the problem: the lure of immunology is its desirable
properties such as recognition, maintenance and memory; the difficulty of immunology is
that many of these properties are readily experimentally demonstrable, but the biological
mechanisms responsible for these properties are not well understood. As such they seem
accessible concepts but they do not have the concrete grounding that algorithms require.
As an example, immune memory can be reliably invoked; vaccinations are clear evidence
of this. Yet there is no agreed upon general model that completely accounts for immune
memory (though many models of immune memory exist). Thus, either new AIS will have
to be built from existing modelling and analysis of less general aspects of immunology, and
not claim the grandeur of the immune system’s macroscopic properties, or, AIS will have
to play a role in developing new general models of immunology. The former endeavour
seems the more realistic, and there is no reason to think it will return any less in terms of

algorithmic utility.

1.3 Modelling for Bio-inspired Algorithms

The discussions of the previous section have demonstrated the need for modelling when
building a biologically inspired algorithm. This section discusses the issue of modelling
biology in general terms and then discusses the issues when modelling for bio-inspired
algorithms.

The complexities of biology discussed in Section 1.1.2 present challenges in modelling
long before abstraction to algorithms is reached. However, an understanding of the strate-
gies that may be employed when modelling biology provides a way forward. In particular,
this discussion revolves around work of [Levins, 1966] and his discussion of model building in
population biology. The ideas apply equally in any field of biology. In particular, the work
describes an inherent trade-off in three so-called desiderata of biological models: generality,
realism and precision. The thesis of [Levins, 1966] is that one cannot maximise all three
and retain a useful model. The complexity of biology is such that maximising all three
results in a model is that complex as to be incomprehensible. The work of Levins has been
influential, and with influence came criticism [Orzack and Sober, 1993]*, a retort [Levins,
1993], and further commentary [Odenbaugh, 2002, 2005; Bullock and Silverman, 2008]. The
process has clarified the intended message of [Levins, 1966], and so it is possible to define
(still loosely) the following:

e Generality: a general model applies broadly to biology. For example, applying to all
cell types is more general than just applying to one.

o Realism: a realistic model incorporates detail about the system. For example, mod-
els with simplifying assumptions that discard detail are less realistic. For example,

4The criticism of [Orzack and Sober, 1993] largely missed the point that the trade-off was in practicality.
[Orzack and Sober, 1993] argue that one always write down another model which is more general, realistic
and precise and so there can be no trade-off.
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M 80 Figure 1.2: The trade-off between factors in modelling,
reproduced from [Levins, 1993; Odenbaugh, 2002], only
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ignoring the volume change during the differentiation of a cell.

e Precision: a precise model makes specific predictions about the system. For exam-
ple, the culmination of precision is a numerical model that can be computationally
calculated.

In [Levins, 1993] it is stated that these are not the only three considerations, but perhaps
the most important. The trade-off is described such that one can maximise two factors
at the expense of a third. Three examples are given in [Levins, 1966], which here are
converted to the immunological domain. A model that is realistic, precise and not general,
is the exact numerical calculation of the short-term trajectories of a molecule in a bio-
chemical network in a given cell type (see Chapter 3). A model that is general, precise
and not realistic, is the calculation of required immune repertoire sizes from a shape-space
model [Perelson and Weishbuch, 1997]. A model that is general, realistic and not precise,
makes qualitative arguments that are often graphical, for example assuming functions are
increasing, decreasing, concave or convex [Levins, 1966]. An example of the computational
equivalent is the Unified Modelling Language (UML) used in [Read et al., 2009]. Figure 1.2
depicts the trade-off in two dimensions. As an alternative [Levins, 1966] suggests that
rather than trying to satisfy all three requirements, one should develop a cluster of models.
All cluster models are related, but have slightly different views of the system. A total
picture of the system can be incrementally constructed which offers a more tractable route
to understanding.

Apart from being good modelling advice, these ideas have implications when modelling
for bio-inspired algorithms. If one develops a bio-inspired algorithm from an initial biological
model, then the abstraction process (right Figure 1.1) corresponds to shifts in the generality,
realism and precision. Note that abstraction is different to generality; abstracting a model
does not make it more general, but general models may be easier to abstract. This is a
manner in which bio-inspired algorithms can contribute back to biology: the abstraction of
the biological model produces a new perspective on the model. Certainly, it is likely that
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realism is lost, so the contribution of the model depends on the assumptions A (Figure 1.1),
and if the new model is a simple abstraction it may offer nothing new over the biological
model.

Regarding, the current inspiration for AIS discussed in the previous section, almost all
previous inspiration comes from general models with varying levels of realism and precision.
If one desires a new AIS it can be constructed from an existing model with any level of
generality, reality or precision (this point is noted in [Andrews, 2008]). Note that it may
require less knowledge of biology to develop a successful real and precise model, than a
general one. Good real and precise models are obtainable by focusing on one particular
area; to get a good general model often requires encompassing knowledge of many systems.

Given the arguments of the last section, on methodologies and the state of AIS, it seems
necessary that the starting place for any new AIS must be on the left hand side of Figure 1.1.
That is, the starting place must be a model for biology’s sake, with no AIS concerns. Once
the model is constructed, understood and ideally verified one can start the simplifications
to shift to the right of Figure 1.1.

Recall the statement of [Andrews, 2008] that one cannot know which system to model
without modelling. Certainly, it is necessary to chose a system by some heuristic. It is
possible to “reason by metaphor” and chose a system the looks structurally appropriate
for a solution to a given application. This must come with the caveat that there is no
guarantee that the modelling work will result in a solution suitable for the application,
especially when the model is realistic and precise. However, it may be too great a bias
to have a specific application in mind. An alternative is to choose biology with respect
to an approximate application, such that it appears to have the properties of a general
class of problems. Then, the biological system can dictate the progress, rather than the
application. A good rule of thumb on choosing systems is to select systems which look to be
reliant on the structure of interactions, rather than the specific details of them (e.g. avoid
systems which rely on molecular recognition). A further alternative is to select biological
systems which look to be performing relevant information processing and then to choose an
application based on the outcome of modelling. Clearly, the assigned application should be
suitable compared with the biology. For example, if the model requires constant interaction
between biological components and their environment then the application should also (see
discussions of embodiment in [Stepney, 2007; Timmis et al., 2008a]).

1.4 Algorithmic Development

This section concerns the point at which the shift to the right of Figure 1.1 occurs. Mod-
elling moves away from completely biological concerns towards abstract algorithm concerns.
Clearly, these steps must have an aim, it is necessary to know where one is heading with
the abstraction steps. This is the sentiment of [Timmis et al., 2008b], that it is easier to de-
velop with an application in mind as it helps to abstract the model. However, the advice of
Chapter 1 that it is better to have approximate application rather than the bias of a specific
application. Again, biology should lead the process of abstraction, not the application.
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All of the following: [Stepney et al., 2005; Timmis et al., 2008a,b,c; Stibor, 2008] have
called for a greater use of theoretical results in AIS. The abstracted model stage on the
right of Figure 1.1 is an ideal place to commence theoretical understanding of the nascent
algorithm. Note that this process is simply an extension of the biological modelling, except
the allowable steps have changed. Without including theoretical analysis the burden is
placed on an empirical investigation of the algorithm. Simply because the concepts are well
understood at the biological stage, does not imply that they will translate to the algorithm
stage. When developing for a specific or approximate application, then one can ground the
algorithm by comparison to the theoretical results of the area. This should result in a clear
understanding of the algorithm, and its relation to existing techniques. This will evaluate
the contribution of the algorithm.

It is of relevance to consider the link back to biology, and the set of assumptions A.
Certainly, the development of an algorithm should play to the expected computational
capabilities of the approximate application. Thus, it seems likely that A will grow in size
as the algorithm is developed. If attempts to make the details of A are made explicit then
an interesting opportunity arises. This relates to the meta-models of [Stepney et al., 2005]
discussed in Section 1.2. That is, it is possible to make comparison of multiple algorithm
design processes via the details of A. One would look for common transitions between
biological models and abstracted models. If nothing else a library of such transitions could

contribute to further new algorithm developments.

1.5 Outline of Thesis

This chapter has provided a brief introduction to bio-inspired algorithms. The focus has
been on the presentation of the methodologies associated with artificial immune systems.
This introduction has omitted a review of current AIS work, as stated earlier the reader is
directed to [Hart and Timmis, 2008; Timmis, 2007; Timmis et al., 2008a]. An understanding
of current AIS is not a prerequisite for understanding this thesis.

This thesis will design a new artificial immune system. The approach will adhere to the
advice and discussion of this chapter. The source of immunological inspiration will be the T
lymphocyte or T cell. This is chosen for to reasons related to its discrimination abilities and
the aforementioned Tuneable Activation Threshold Hypothesis. In line with the discussions
of this chapter, this thesis opts to investigate a realistic and precise model of T cells rather
than a general one. The model will involve specific molecular interactions both inside and
on the surface of the T cell. The thesis will be guided by the following hypothesis:

Through investigation and analysis of a realistic and precise model of T cell signalling it
is possible to abstract properties and via an abstracted model design an algorithm which

replicates the discrimination abilities of the T cell.

The hypothesis will be addressed by the following;:

e Analysis of an existing model of T cell signalling for the sake of the model, that is,

without discussion of algorithms.
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e The abstraction of results of analysis into an abstracted model of T cell signalling
and identification of an approximate application. The details of assumptions A that

connect the model and biology are made clear.

e Analysis of the abstracted model with respect to results of and methods of the ap-
proximate application, such that the resulting algorithm is well understood.

e Demonstration of the algorithm with validating theoretical results.
These steps are achieved in 5 chapters and an appendix:

Chapter 2 presents methods for modelling and analysis of biological systems. The focus
is on tools associated with chemical kinetics.

Chapter 3 first provides an introduction to immunology and then a background to T cell
signalling. Due to the constraints of this thesis an existing model of T cell signalling
[Altan-Bonnet and Germain, 2005] is analysed, the model is certainly realistic and
precise. The analysis uses the methods of Chapter 2 and the chapter culminates in a

new hypothesis for T cell activation.

Chapter 4 constructs an abstract model of T cell signalling, the hypothesis presented in
Chapter 3 dictates the detail included in this abstracted model. Careful attention is
given to the set of assumptions A and the connection to the biological model. The
approximate application of anomaly detection is assigned. Through analysis of the
abstracted model and connections with techniques from the field of anomaly detection
the Receptor Density Algorithm is developed. The algorithm is demonstrated on two
classes of anomaly detection problem.

Chapter 5 applies the receptor density algorithm to a real-world problem: the anomaly
detection in data generated by analytical chemistry devices, particularly spectrome-
ters. Two case studies are presented: anomaly detection in mass spectrometry data
and anomaly detection with a robot-mounted ion mobility spectrometer.

Chapter 6 presents conclusions of the thesis. A discussion is given of the relation between
the algorithm and the biological model and implications for the biology discovered

during algorithm development.

Appendix A provides supplementary material for the modelling work in Chapter 3.

1.5.1 Contribution of Thesis

The main contributions of this thesis are outlined below. A more detailed version of this

list may be found in Chapter 6. The contributions are listed by chapter:

Chapter 3 The compositional analysis of the SHP1/ppERK signalling model. Particu-
larly, the clarification that ppERK is not involved in positive feedback; the influence
of the negative feedback base state; and the hypothesis of T cell activation.
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Chapter 4 The development of the lattice of generalised receptors, and consequently all
theoretical properties of a generalised receptor. The definition and theoretical prop-
erties of the decay density estimate. The definition and conditions for anomaly of the
Receptor Density Algorithm.

Chapter 5 the application of the receptor density algorithm to the detection of anomalies
in spectrometer data. The details of signature anomaly matching.



CHAPTER 2

Modelling Methods

The model analysed in Chapter 3 will be defined in terms of chemical reaction equations.
This chapter gives a brief overview of the associated tools that are required in Chapter 3.

The chapter is organised as follows: Section 2.1 describes approaches to modelling chemi-
cal kinetics, the focus is on stochastic chemical kinetics and abstractions from this stochastic
picture. Section 2.2 discusses useful computational tools associated with stochastic analysis
of chemical reaction equations. Finally, describes a notation for chemical reaction equations
which will prove useful in Chapter 3.

2.1 Chemical Kinetics

Chapter 3 analyses a biological model originally presented in [Altan-Bonnet and Germain,
2005]. The model employs chemical kinetics and is described by a system chemical reaction
equations which contain of the order of 10?> molecular species that exist in copy numbers
ranging from 103 to 10% within the closed volume of a cell. The model was originally
analysed in [Altan-Bonnet and Germain, 2005] by means of ordinary differential equations.
The objective of this section is to overview the concepts associated with chemical kinetics
and to reveal the assumptions associated with ordinary differential equation analysis of
chemical kinetics.

Consider a volume QF that contains N molecular species: So, S, ..., Sy—_1, which can
interact via M chemical reaction channels: Ry, Ri,...,Ry—1. At the most fundamental
level the interactions between the molecules in Q2 are described by quantum mechanics.
Calculating the paths of molecules at this level is computationally intractable at the scale
of the model analysed in the next chapter. Any model which considers the trajectories of
individual molecules is referred to as a microscopic model, and all are intractable at the
scale of interest here.

It is possible to reduce the computational burden whilst retaining information on the
kinetics of the NV chemical species. If it is valid to assume that €2 is in thermal equilibrium
then the volume is said to be well-mixed and the spatial information of molecules may be

In the model in this thesis the volume Q will be a single cell.

23
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discarded ! and only the discrete quantities of each molecular species in € tracked. This is
known as the mesoscopic abstraction, and due to the incomplete knowledge of the system
the reactions proceed stochastically. The assumption of thermal equilibrium is justified in
the model considered in the next chapter, and all subsequent discussions are restricted to
those of a well-mixed volume €.

Denote X;(t) > 0 as the non-negative integer quantity of species S; at time ¢, then
X(t) = (Xo(t),..., Xn-1(t)) is the state of 2 at time t. Each reaction R; is defined by two
quantities, first, a state change vector v; = (o, V15, - - -, ¥(nv—1);), Such that v;; is the change
in the population of species S; as a result of the application of reaction R;. If X(t) = x and
reaction R; occurs then the system will be in state x + v;. The second defining detail of a
reaction R; is a propensity function a;:

a;(x)dt = the probability that given X(¢) = x that reaction R; will

occur somewhere in § in the next time interval [¢,t + dt). (2.1)

The above is the key concept in the formulation of stochastic reaction kinetics, and through
direct consequences of the above it is possible to derive a hierarchy of techniques that may
be used to analyse chemical reaction kinetics. It is first useful to connect the concepts of
Rj, a; and v; to the more familiar chemical reactions equations.

2.1.1 Chemical Reaction Equations

Every reaction R; can be described by a chemical reaction equation of the general form:
r
OzljSl—i-...—l—OéNjSN—j>ﬁ1j51+...+ﬁNjSN, (2.2)

the constants «;; and 3;; define the stoichiometry v;; = a;; —3;;. The reactants of a reaction
R; are the set of S; with non-zero «;; and the products of R; are the set of S; with non-zero
Bij. The constant r; is known as the reaction rate constant and combined with the number
of ways of arranging the reactants, the constant defines the propensity function a;. If the
state of the system is X(¢) = x then,

o (3 (32

The justification for the existence of a reaction rate constant is given in [Gillespie, 1992] for
two types of reaction: unimolecular and bimolecular. Unimolecular reactions have a single
reactant and bimolecular reactions have two reactants. In general higher order reactions do
not occur [Gillespie, 1992], for example, in a trimolecular reaction the probability of three
reactants colliding at the same position with the appropriate orientation to react is so small
that these reactions may be ignored. Moreover, any higher order reaction may be modelled

Mf it is invalid to consider the entirety of © to be well mixed it is often possible to divide  into disjoint
subvolumes Q; and use a reaction-diffusion modelling scheme [Stundzia and Lumsden, 1996; Andrews et al.,
2009]. Molecules may react (in the manner outlined in this chapter) within a sub-volume or they may diffuse
to a neighbouring sub-volume.
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by a sequence of lower order reactions. Specific examples of unimolecular and bimolecular

reactions are:

Unimolecular: S; 2> Sy, aj(x) = r;X;(t) (2.4)
Bimolecular: S; + Sy, —> Sq,  a;(x) = r; X;(t) Xg (1), i#k  (25)
Bimolecular Symmetric: S; 4+ S; 5, S aj(x) = i X(0)(X5(t) — 1). (2.6)

2.1.2 Stochastic Kinetics

This section returns to the stochastic formulation of chemical kinetics and considers two
direct consequences. The first is the Chemical Master Equation (CME) [Gillespie, 1992;
Kampen, 2007]. The CME is a set of differential equations describing the evolution of
P(x, t|xq,t0) which is the probability that € is in state X(¢) = x given the initial state
X(tp) = xo. The CME it is defined:

M—-1

Z a;j(x — v;)P(x — v;|x0, t0) — aj(x)P(x, t|x0, to)] (2.7)
7=0

aIP)(X t’Xo,tO

Note that the CME has an equation for every state in the state space of X(t), and the size
of this state space is exponential in N the number of molecular species. Thus, the CME
is only analytically solvable in a small number of cases. It is possible to obtain numerical
solutions for appropriately sized and structured state spaces; the details of this are discussed
in Section 2.2.

A second consequence of the stochastic formulation of chemical kinetics is the existence
of a Monte Carlo simulation algorithm known as the Gillespie Algorithm [Gillespie, 1977].
It is concerned with generating sample trajectories of molecular populations from an initial
state. Consequently, the following distribution is of importance:

p(7,j|x,t) = the probability that given X(¢) = x the next reaction
in the system will occur at time [t + 7,t + 7 + d7)

and will be reaction R;. (2.8)

Then, p(7,j|x,t) is given by,

M-1

p(r,jlx,t) = aj(x) exp(—ao(x)7),  ao(x) = >  a;(x) (2.9)
j=0

There are many variants of the Gillespie Algorithm [Gibson and Bruck, 2000; Cao et al.,
2004; Li and Petzold, 2006; McCollum et al., 2006; Phillips and Cardelli, 2007], all are
concerned with efficient sampling of (2.9). The specifics of the direct method (a well known
fundamental Gillespie algorithm variant) are given as they are illustrative of the concepts
necessary to sample (2.9). Given that €2 is in state x at time ¢ and 71, 72 are uniform random
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numbers drawn from [0, 1], then calculate:

7 =[1/ao(x)] In(1/m), (2.10)
J
j = smallest integer satisfying Z ar(x) > ag(x)ne. (2.11)
k=0

Then, the simulation time is updated t — ¢t 4+ 7 and the simulation state is updated x —
x +v;. All Gillespie Algorithm simulations in this thesis are performed with the Stochastic
Pi Machine (SPiM) [Phillips and Cardelli, 2007] which implements a variant of the direct
method.

2.1.3 Approximations to Stochastic Kinetics

Through approximations to the stochastic description of chemical kinetics it is possible to
derive other well-known modelling abstractions. In particular, the macroscopic modelling
abstraction can be derived. This is the modelling abstraction which makes use of ordinary
differential equations and is used by [Altan-Bonnet and Germain, 2005] in the original
presentation of the model analysed in the next chapter. Understanding the derivation of
the macroscopic abstraction reveals the assumptions that should hold for the results of
macroscopic analysis to be valid.

The following arguments are recounted from [Gillespie, 2000]. Consider the random
variable:

Q;(X(t), 7) = the number of occurrences of reaction R; in the

time interval [¢,¢ + 7] for 7 > 0. (2.12)

Thus, the number of molecules of species S; at time ¢t + 7 is given by:
M—1
Xi(t+7)=X;(t)+ Z Qj(X(t),T)I/Z‘j. (2.13)
j=0

Calculating the exact details of Q;(X(¢), 7) is as difficult as solving the CME (2.7). However,
if two conditions are satisfied a good simple approximation to Q;(X(t),7) can be obtained
[Gillespie, 2000]. The first condition is as follows:

Condition 2.1. Require that 7 is sufficiently small such that the propensity functions do
not change “appreciably” during [t,t + 7|. That is, for all reactions R;:

a;j(X(t)) =~ a;j(X(t)), vt' e [t t+ 7). (2.14)

Since only unimolecular and bimolecular are considered the application of a single reaction
will only change molecular populations by 1 or 2. Thus, if the sizes of all populations are
large compared to 2 then Condition 2.1 can be satisfied. Assuming that Condition 2.1 can
be satisfied then all reactions occurring in the interval [¢,t 4 7] are essentially independent
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of each other. So each @Q;(X,7) is a statistically independent Poisson random variable
P(aj(X(t),7) T. So, Condition 2.1 allows (2.13) to be approximated by:

M-1
Xi(t+7)=Xi(t)+ >_ Pla T ij- (2.15)
7=0

The second conditions is as follows:

Condition 2.2. Require T to be large enough that the expected number of occurrences of

each reaction in the interval [t,t + 7| is much greater than 1. For all reactions Rj:
E[P(a;j(X(t)),7)] = a;(X(t))T > 1. (2.16)

Condition 2.2 looks to be in difference to Condition 2.1, certainly it may be impossible
to satisfy both conditions simultaneously and in that case the following approximations
are invalid. However, if the molecular populations are sufficiently large then Condition 2.2
can hold for small 7. Condition 2.2 allows the Poisson random variable P(a;(X(t)), ) to
be approximated by a normal random variable N(a;(X(¢))7,/a;(X(t))7) . Note that a
Poisson random variable is discrete and a normal random variable is continuous, thus this
approximation converts the molecular populations to continuous real quantities. For clarity,
the vector of continuous molecular populations is written W (t), so species S; has continuous
quantity W;(t) at time ¢. Then the update equation (2.15) can be approximated by,

Wit +7) = Wi(t) + Z N(aj(X(t)7, [a;(X(2)7]2)vs;. (2.17)
Note that since N(u,0) = pu+ oN(0, 1) the above becomes:
M—1 )
Wilt+7) = W;(t) + > a;(W(t))rvy + Z a; (W (£))7]2N;(0, 1)y, (2.18)
§=0

where the each standard normal is denoted N;(0,1) so that it is explicit that there are
M statistically independent normal random variables. Observe that the expression (2.18)
is composed of both deterministic components: a;(X(t))7v;; and fluctuating components:
[aj(X(t))T]%Nj(O, 1)v;;. As Conditions 2.1 and 2.2 apply one can regard 7 as a infinitesimal
dt and, as argued in [Gillespie, 2000], the following differential formulation implied:

M-1 M-

dm;;(t) = Z a;(W(t))vij +
=0 ]:0

,_.
l\.’)\»—l

](t)VZ'j, (219)

fThe number of independent events n that occur at rate X over time ¢ has a Poisson distribution P(), t)
with probability mass function pp(n,\,t) = e (At)"/n!, expected value E[P(),t)] = At and variance
var [P(\,t)] = At.

A normal random variable N (1, o) has expectation p and variance o2 and probability density function
P (@, p,0) = (0v/2m) " exp(—(z — 1)*/(20%)).



28 2. Modelling Methods

where I';j(t) are temporally uncorrelated, statistically independent Gaussian white noises
(I'; = limg;—o N(0,1/dt)). The expression (2.19) is known as the Chemical Langevin Equa-
tion (CLE) and is a commonly used modelling abstraction. Note that the ratio of the size of
the fluctuating component of (2.19) to the size of deterministic component is [a;(W (£))] /2.
The size of the relative fluctuations is proportional to the inverse of the square root of the
reactant population sizes. If one considers the thermodynamic limit in which both Q and
the number of molecules in € go to oo such that the concentrations of each molecular
species remains constant, then the size of relative fluctuations becomes vanishingly small.
The fluctuations can be discarded and one derives the Reaction Rate Equation (RRE) the
system of ordinary differential equations that constitutes the commonly used macroscopic
abstraction. This is usually written in terms of a concentration variable Z(t) = W(t)/Q2

and requires altered propensity functions a;(W (t)):

Wi(t)2/9 for symmetric bimolecular reactions
B Wiy = Y (2.20)
a;(W(t))/Q otherwise.

Then the RRE is given:

) M-—1
dZC;t(t) = 3 ay(2(0)vy. (2.21)
=0

The advantage of this deterministic formulation is the ease with which it may be solved and
the powerful analysis tools associated with ordinary differential equations. The disadvantage
is that at least Conditions 2.1 and 2.2 must hold for the RRE to be valid. Many biological
systems, including the one analysed in Chapter 3, have molecules present in small quantities
such that the CLE and the RRE are not valid.

It is interesting to note how results are affected if the RRE is applied in a situation
where Conditions 2.1 and 2.2 do not hold. Models closely related to the one considered in
Chapter 3 are compared at a mesoscopic and a macroscopic abstractions in [Artyomov et al.,
2007; Lipniacki et al., 2008]. Both [Artyomov et al., 2007; Lipniacki et al., 2008] note that
bistabilities can exist in the stochastic model which do not exist in the deterministic model.
Sufficiency conditions for this discrepancy are given in [Artyomov et al., 2007] in terms of
the structure of the chemical reaction network and the size of molecular populations. These
sufficiency conditions are satisfied by some of the reactions in the model in Chapter 3.

The model in Chapter 3 does not always fulfil Conditions 2.1 and 2.2, and the sufficiency
conditions for a stochastic bistability described in [Artyomov et al., 2007] are satisfied for
certain reactions in Chapter 3. As a consequence the analysis in Chapter 3 will be stochastic
at the mesoscopic abstraction via the CME and the Gillespie Algorithm.

2.2 Analysis with the CME and Gillespie Algorithm

This section describes useful computational tools associated with the CME and Gillespie
Algorithm. The focus is on the CME, and particularly that the CME is a equivalent form of
the Chapman-Kolmogorov equation for Markov Processes [Kampen, 2007]. Thus, the CME
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defines a continuous time Markov Chain (CTMC). Notation conventions are now introduced
to aid the descriptions of CTMCs. First, let state vector X(t) take any state in state space
X. Second, x; € X is used to denote the state that occurs at time ¢;, so X(¢;) = x;. Finally,
yi € X is used to index over all states, so X = {yo,y1,...,yjx—1|}- Then a CTMC is
defined as follows:

Definition 2.1. A continuous time Markov chain is a continuous time stochastic process
{X(t) : t > 0} with state space X that satisfies the Markov property:

P(X(tn) = Xn|X(tn,1) = Xp—1y--- ,X(tl) = X1, X(to) = Xo) = P(X(tn) = Xn|X(tn,1) = anl)
(2.22)
Where 0 <tg <t < - <tp_1 <tp, and Xg,X1,...,Xp_1,Xn, € X.

The CTMC considers the jumps between states in X defined by the chemical reactions,

and so one can consider the transition probabilities:
pii(t) = P(X(t) = y;|X(s) = yi) for0<s<tandi,jeX. (2.23)

If P(t) is the matrix with entries p;;(t), then P(t) is described by the following differential
equation:

P(t) = GP(t), (2.24)

G is known as the infinitesimal generator matrix or rate matrix and is defined by the

propensity functions of the chemical reactions:

M—-1
Z J i—i—uk,yjak(Yi) for 7£ Js
k=0
gij = IX|—1 (2.25)
- Y g for i = j,
k=0, ki

the delta is a multi-dimensional Kronecker delta. Each g;; for i # j describes the exponential
rate of transition from state y; to y;, and g;; can be thought of as the rate of leaving state
y;, and note that:

> gi=0 Vi (2.26)
j

Using this framework three properties of CTMCs/CMEs are calculated in this thesis: first,
the time evolution of X(t) from a initial state (transient analysis); second, the long term
behaviour and equilibrium states (the stationary distribution); third, the expected time to
reach a set of states C C X from a state yy, € X (the hitting time). The calculation of each
of the three properties is now discussed in turn.

The transient distribution is given by the general solution to (2.24), if p(¢) is the row
vector with entries p; = P(X(¢) = y;) then the solution to (2.24) from an initial distribution
p(0) is given by the matrix exponential:

(tG)"
n!

(2.27)
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In this thesis the matrix exponential is calculated numerically using two methods. First,
for small full (non-sparse) G MATLAB’s expm(G) function is used, which performs a scaling
and squaring algorithm with a Padé approximation as detailed in [Moler and Loan, 2003].
Second, for large sparse G methods provided in EXPOKIT [Sidje, 1998] are employed, they

e'G is not

use Krylov subspace projection techniques to calculate p(0)e!& directly (i.e.
explicitly calculated) for an initial distribution p(0).

The long term behaviour of a CTMC is dictated by its stationary or invariant distri-
bution 7 = (71,72, ... x|) which exists if the CTMC is irreducible and recurrent [Norris,
1998]. This is the the case for the all the CTMCs considered in this thesis. The stationary

distribution may be found by solving the following;:

7©G =0,  with the condition » ;= 1. (2.28)
i
A numerical solution to the stationary distribution equation can often be difficult to find
[Philippe et al., 1996], particularly when G is large and sparse, which is often the case
in Chapter 3. The inverse iteration method [Philippe et al., 1996] is used, rather than
solve (2.28) directly, solve and scale:

v
GTw = v, then scale 77 = ——, (2.29)
1,

W, is the the column vector length |X’| which has all entries zero except for 1 in the |X'|th
position; and 1,, column vector length n with all ones.

Finally, the expected time to reach a set of states C C & can be found by calculating
the vector of expected first hit times h¢ = (h¢ : i € X), with h{ the expected time to reach
a state ¢ € C starting from state y;. The vector of hit times can be found by solving the
following [Norris, 1998]:

hS =0 fory, € C
= gihf =1 for y; ¢ C. (2.30)
J

2.2.1 A Volume Scaling

The following technique will feature in Chapter 3. The model in Chapter 3 will involve re-
ceptors on the surface of a cell. A receptor has an internal and external component, and the
receptor diffuses at a rate slower than molecules which can move freely inside the cell. Ad-
ditionally, the model in the next chapter comes supplied with molecular concentrations and
deterministic macroscopic rates, it is necessary to convert these to discrete molecule num-
bers and stochastic mesoscopic rates. The rate conversion applies to bimolecular reactions
and amounts to a change of scale and units (from mol™'s~! to s71).

The molecule numbers of the entire model in Chapter 3 are only just within range of
the Gillespie algorithm. The following applies a scaling to reduce the state space down to
the concern of a small number of molecules near a single cell-surface receptor. A fraction
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e € (0,1] is applied to the volume Q of a cell. A macroscopic rate d; is converted to a
mesoscopic rate r; for reaction R; with respect to scaling € by the following:

_ 4
 N4Q€’

T} (2.31)
N4 = 6.022 x 10?3 is the Avogadro Number, and allows simulation of exact molecule
numbers. If a molecule has an initial concentration ¢ € R then the initial discrete number
of molecules N € Z is taken to be N = [¢NaVe|. Three different choices of € are used in
Chapter 3, and justification for these choices is given in Section 3.11.1.

It is noted that the results obtained with an e scaling are not guaranteed to be valid.
However, they may provide intuition, or the correct qualitative picture. This must be
confirmed at a € = 1 level. Given the arguments in Chapter 1, small ¢ would fail to
reproduce any emergent properties present at the e = 1 level. Often in emergent systems
the basic local rules are known but the global behaviour remains to be understood. In the
Chapter 3, the basic local rules of a this cell-surface receptor are not known. The € scaling
offers a method of addressing this issue.

2.3 Reaction Equation Notation

In Chapter 3 there are many chemical reactions which apply to different species but share
a common structure. To describe reaction equations more succinctly set notation is used
to group together common reactions. A reaction applied to a set represents application of
the reaction to every member of the set, so that,

{A, B} +C 5 {A, B}C, (2.32)
represents the reactions:
A+C-5 AC and B+4+C-5 BC. (2.33)

Concatenation of terms represents a complex containing the elements of the concatenation.

Generally any set manipulation can be used to reduce the reaction description:
S=({A} x{0, B, C} x {D}) U{GH, GJ.} (2.34)

Represents:
S = {AD, ABD, ACD, GH, GJ}. (2.35)

Then reactions may be described using S, for example the binding of F may occur for all
ieS:
S+F . SF. (2.36)

Components may be supplied with indices:

A, +B-AB, n=123 (2.37)
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which represents:

A, +B -5 AB,
A, +B - AyB, (2.38)
A, +B - A3B.

Algebraic manipulations of indices apply to all values that the index is defined, for example:

An’ n= 1)2)3 - A17A27A37
An+17 n = 17273 g A27A37A4-

This notation can increase the possibility for ambiguity of determining reactants and prod-
ucts. Any ambiguities can be resolved by conservation, i.e. the same numbers of molecules
on both sides of the equation. In all reactions if a component that may be associated to a
complex and that component is not explicitly given in the reaction, then it is assumed that
the reaction may proceed with and without the component associated. For example if B
and D may be bound to A, then the reaction:

A+C-5AC, (2.39)
includes all the following reactions:
A+ C -5 AC, neither B nor D bound, (2.40)
AB + C 5 ABC, B bound, (2.41)
AD + C 5 ADC, D bound, (2.42)
ABD + C % ABDC, B and D bound. (2.43)

Finally, the next chapter discusses molecules undergoing phosphorylation, the details of this
will be given in Chapter 3. For the moment, if A has p phosphorylations it is represented
AP, If no phosphorylation state is given, i.e. A, this represents that the phosphorylation
state of A has no affect on the reaction.



CHAPTER 3

T Cell Signalling Models

This chapter describes the modelling work of this thesis. In particular, it describes stochastic
analysis of a model originally presented in [Altan-Bonnet and Germain, 2005]. The chapter
commences with a background to immunology. This is followed by a description of T cell
signalling, after which, the model will then be presented and analysed.

The immunology discussed in this chapter is that of the vertebrates. Their immune
system is more complicated than their non-vertebrate or plant counterparts, and has a rich
complexity that sparks dispute between immunologists as to the immune system’s purpose
and function. Certainly, a purpose of the immune system is to protect its host and remove
invading pathogens such as bacteria and viruses. The disputes often regard the general
concepts of this protection, and moreover, whether this protection is the limit of immune
function [Cohen, 2000]. However, all would agree that the immune system must recognise
(certain states of the body, or molecular patterns) and then respond based on the recogni-
tion. The model in this chapter regards the specifics of how one type of immune recognition
occurs. The complexities of the immune system prevent all but a small subset of immunol-
ogy that is relevant to the model from being presented here. A fuller introduction to the
mechanical components of the immune system can be found in a textbook such as [Murphy
et al., 2008]. The reference is given with the caveat that immunological textbooks often
contain gross simplifications, but are nonetheless a good starting point. It should be stated
that although the immunological background is a simplified version of the true picture, a
background is given to understand the subsequent modelling work.

3.1 The Mechanisms of the Immune System

The vertebrate immune system can broadly be split into two parts: the innate and the
adaptive. The innate immune system is passed through the germ-line, that is through the
genes of individuals. The innate is (relatively) constant during the lifetime of an individual
and adapts on an evolutionary time-scale. The blue-print of the adaptive immune system is
also passed on genetically, but the adaptive immune system has the ability to alter restricted
regions of its genome through genetic rearrangements. The result is the adaptive immune
system is able to generate proteins that were not encoded in an individual’s genome at

33
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birth. The ability to perform these genetic rearrangements is necessarily passed through
the genome but the specific rearrangements performed by an individual during its lifetime
are not passed on.

The innate immune system acts as a first line of defence for the host, communicates
information to the adaptive immune system, and performs certain maintenance tasks. The
innate response is fast (in comparison to the adaptive response), and the majority of its
defence abilities rely on detecting common molecular signatures of pathogenic material.
The molecular signatures detectable by the innate immune system are those that evolution
has found to be reliable indicators of foreign material. The reaction of the innate immune
system can be severe, many examples of allergy are situations where the innate immune
system has inappropriately responded. The communication of information to the adaptive
immune system is the result of cells in the innate immune system, namely antigen presenting
cells (APCs), sampling molecular material from across the host and then presenting this
molecular material to the adaptive immune system through interactions between APCs and
cells of the adaptive immune system.

The adaptive immune system allows an organism to be protected against pathogens to
which the innate immune system is blind. This protection is performed via a class of cells
known as the lymphocytes, which are able to recognise molecular patterns via receptors on
their surfaces. The lymphocytes have the ability to dictate the adaptive immune response,
for example some lymphocytes can kill cells and others can activate cells of the innate and
the adaptive. It is the lymphocytes to which the APCs display their collected molecular
material. This interaction between lymphocytes and antigen presenting cells is a key mech-
anism of the adaptive immune response. A more detailed description of the behaviour of

the antigen presenting cells and the lymphocytes is now given.

3.1.1 Antigen Presenting Cells

Every cell which contain a nucleus is an antigen presenting cell (APC). The term antigen
was first used for any process that could invoke antibody generation, more generally it is
a molecule that is recognised by the immune system. The antigen presenting cells take
antigenic material and process it into peptides which are short sequences of amino acids.
The peptides are then loaded in major histocompatability complex (MHC) molecules which
are then displayed on the surface of the APC. The peptide-MHC complex will be referred
to as pMHC. There are two classes of MHC: Class I and Class II.

There are two types of APC: professional and non-professional. Their differences are in
the origin of their displayed peptides. Professional APCs phagocytose molecules and certain
cells, that is, they engulf and break-down these molecules and cells. The peptides derived
from the phagocytosed proteins are then presented on the surface of the APC by MHC class
II. The non-professional APCs derive their peptides for presentation from protein present in
their cytosol (that is, present inside the cell). The non-professional APCs display peptides
by MHC class I. In summary, professional APCs display a sample of proteins present locally
to that APC, that is, they present a sample of the environmental state. The non-professional
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(b)

Figure 3.1: Left: (a) A professional APC, displaying class I and class II pMHC on its surface. Note that
fragments of the extra-cellular proteins are displayed by pMHC class II. Right: (b) A non-professional APC,
displaying class I pMHC on its surface presenting fragments of a sample of its internal proteins.

APCs, then, present a sample of their internal state. The professional APCs also present a
sample of their internal state via MHC class I, in this sense they are both professional and
non-professional. The displaying of pMHC is shown in Figure 3.1.1, note the quantities and
proportionals in this figure are cartoon-like. In reality a single pMHC molecule is many
orders of magnitude smaller than the cell. There are of the order of 10* pMHC molecules
on the surface of an APC.

As stated earlier, cells which do not contain a nucleus, for example red blood cells, do
not display MHC. The nucleus of a cell contains the cell’s DNA and a number of proteins
relevant to gene expression and cell replication. Thus, cells without a nucleus are unable to
replicate. It is interesting to speculate that a reason why non-nucleated cells do not require
this direct connection to the immune system is because they do not have the powerful
expression and replication protein machinery of a nucleated cell. This protein machinery is
often hijacked by viruses. Consequently, infected non-nucleated cells pose less of a threat
to the body, and perhaps this is a reason they do not require such close immune vetting.

3.1.2 Lymphocytes

There are two major classes of lymphocytes: the T lymphocyte (T cell) and the B lympho-
cyte (B cell). The origin of both cells is in the host’s bone marrow, but it is the location
of maturement that names the cells. The B cells remain in Bone marrow to mature; the T
cells migrate to the Thymus to mature. The B cells are responsible for antibody produc-
tion, and undergo the evolutionary-like clonal selection principle [Burnet, 1959] to generate
high quality antibodies. Since B cells play no part in the modelling in this chapter their
discussion ends here.

On the surface of a T cell are of the order of 10* T cell receptors (TCRs), every TCR on
the surface of a T cell is identical in conformation, and in general every T cell has a different
TCR. Early in the development of a T cell the cells encoding the TCR are rearranged, the
result is every T cell has a TCR with a effectively random conformation '. The TCRs bind

'For the discussions here it suffices to say that every TCR has a random conformation, counting the
possible gene rearrangements without considering issues of protein folding there are approximately 10*®
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to pMHC molecules on the surface of an APC. Depending on the strength of each TCR-
pMHC bond or the affinity between each TCR and pMHC that bind in the population,
the T cell may become activated. The affinity between a TCR and pMHC is dependent on
the conformation of the TCR, the peptide and MHC. Its complexities are well abstracted
to a single parameter: its average lifetime [Feinerman et al., 2008a]. If a T cell becomes
activated it is said to have recognised the subset of the pMHC on the APC which were
responsible for the T cell activation.

There are many classes of T cell, the two major classes being the T helper cell and
the cytotoric T cell. The T helper cell binds to pMHC class IT on APC, if the T cell
becomes activated it can then activate the APC. The meaning and implications of this
APC activation relate to B cell activation ? and are left out of this immunological review.
The cytotoxic T cell binds class I pMHC on general APCs, if activated the cytotoxic T cell
has the ability to kill its bound APC.

Clearly, the T cell has great power in the adaptive immune system and one of its major
roles is in the defence against viruses. An APC infected with a virus will display viral
peptides via the MHC on its surface, if cytotoxic T cell is able to recognise these viral
peptides with its TCR then the T cell can kill the infected cell which contributes to halting
the progression of the viral infection. A key topic in immunology is concerned with the
generation of the T cell repertoire, that is that distribution of TCRs across all T cells. The
repertoire must be such that it does not react with the host (i.e. no T cells recognise APCs
displaying normal peptides) and that there is at least one T cell that is able to recognise
any of the possible viral peptides. The fact that a working repertoire can be generated is
remarkable, given that the details of possible viral peptides cannot be known in advance.
Moreover, the conformation of a TCR is effectively randomly generated.

There are three mechanisms that allow a random repertoire to function appropriately.
First, its size, as previously stated there are approximately 10'® different possible TCRs.
Second, the maturation of T cells in the thymus includes a process known as negative selec-
tion or clonal deletion in which candidate T cells are tested against many APCs presenting
combinations of normal peptides originating from the host. Any T cells which recognise
these normal peptides are then deleted, resulting in a repertoire of T cells which under nor-
mal conditions is not activated by host peptides. The final mechanism lies in the specifics
of the T cell recognition and activation process, which is the topic of the models here.

Before moving onto the specifics of the model it is worth making a brief mention of
a few immunological theories which attempt to sum the behaviour of the immune system
macroscopically; this is done in the next section.

3.2 Immunological Theories

There are many general theories of the immune system which attribute general processes to
immune cells in an attempt to describe the governing principle of the immune system. The

different TCRs [Murphy et al., 2008]
2B cells, despite being part of the adaptive immune system are also professional antigen presenting cells
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theories are often described as competing, however it seems highly unlikely (particularly
given the points regarding degeneracy and evolution described in Chaper 1) that there is
any one process or idea that “explains” immunology. Rather (as stated in [Cohen, 2000]),
elements of all of these theories along with as yet undiscovered ideas contribute to explaining

the immune response.

The most successful theory of immunology to date is that of self-non-self discrimination,
which states that the immune system performs defence by discriminating between molecules
derived from the host and molecules derived externally. Broadly, this theory requires that
the negative selection of T cells is absolute, such that no T cell exists outside the thymus
which interact with self molecules. Whilst, there is clear evidence that this is not the case
[Germain and Stefanové, 1999; Vignali et al., 2008] (the conclusions of this chapter, Sec-
tion 3.11, require some interaction with self) the self-non-self model has served immunology

relatively well.

An alternative to the self-non-self model is danger theory [Matzinger, 2002], which pro-
poses that professional APCs are able to detect damage in their local environment. Upon
interaction with a lymphocyte, a professional APC can communicate an integrated signal
of the recent damage via immune messenger molecules known as cytokines. The cytokines
alter the probability of T cell activation, and so provide a context to the peptides presented
by the APCs. An immune theory which has received recent popularity is that of the T
regulatory cell [Vignali et al., 2008]. This is a class of T cell which specifically interacts

with self in order to regulate an immune reaction.

The final theory is that of the tuneable activation threshold (TAT) hypothesis of lym-
phocytes [Grossman and Paul, 1992], this has some relevance to the work of the chapter
and the following sub-section is devoted to its discussion.

3.2.1 The Tuneable Activation Threshold Hypothesis

First postulated by [Grossman and Paul, 1992], this states that T cells have an activation
threshold that is dependent on their recent history of interactions. The T cell is said
to be excited or stimulated by the interaction with an APC, the excitation level is then
dependent on the affinity between all pMHC and the TCR. The activation threshold defines
an excitation level which must be exceeded for the cell to become activated. This activation
threshold is tuned by the recent interactions of the cell, such that continued interactions of
comparable magnitude will not activate a cell. Consequently, T cells with a TCR with high
affinity with normal host peptides (“self”) will receive regular stimulation and so will have
a high activation threshold. That is, a peptide with significantly higher affinity than the
average host peptide is required to activate a cell. T cells with a low affinity for normal host
peptides will have little stimulation and so have a low activation threshold. In [Grossman
and Paul, 1992] a simple model of the TAT with sole purpose of explanation is presented.
The model involves an excitation level E(t) the stimulation received by the cell at time ¢;
an excitation index I(t) this is a time averaging of E(t); and an activation threshold A(t).
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These are related as follows:
f(t) =aE(t)(E(t) —1(t)), A(t) = 1(t) + o, (3.1)

a and o are positive constants. The activation condition for the cell is whenever E(t) >
A(t). The work of this chapter will be closely related to tunability. The word hypothesis
in “tuneable activation threshold hypothesis” is key, it is backed by some experimental
evidence, but largely it is an unconfirmed general theory. As discussed in the Chapter 1
the preference of this work is for models of immunology that are realistic. Spurred by the
promise tuneability, the next section grounds discussion in actual T cell signalling events.
Signalling events that have been implicated in tuning [Grossman and Paul, 2001]. The
primary focus of this chapter will be in understanding T cell signalling events, a secondary
focus will be the investigation for any inherent tunability.

3.3 T cell Signalling

The T cell must perform fine-grain discrimination between the abundant normal host
pMHC, 99.9 — 99.99% of all pMHC on an APC, and pMHC with peptides originating
from foreign pathogens or non-normal conditions such as cancers. This second class com-
prises the other 0.01 — 0.1% of the total pMHC expressed [Germain and Stefanovd, 1999]3.
The difficulty is that the affinity of each class for the TCR does not differ by the same
degree [Chan et al., 2001]. Moreover, the bond between the TCR and pMHC is low-affinity
[Valitutti et al., 1995]; it is approximately 3-7 orders of magnitude weaker than between
antibody and antigen. The lock-and-key paradigm that can be used with success to describe
antibody recognition does not apply to the TCR. An explanation of the T cell’s behaviour
can be found in the complex and dynamic signalling cascades that arise from the internal
component of the TCR. There are many T cell signalling pathways which offer a candidate
explanation for T cell discrimination, [Germain and Stefanova, 1999] offers an excellent
review of many of these potential signalling mechanisms. This chapter focuses on one in
particular, which involves a set of signalling events that include kinetic proofreading, a neg-
ative influence from SH2 domain-containing phosphatase (SHP1) and a positive influence
from extracellular signal regulated kinase (ERK).

Before discussing the details of these signalling events, it should be noted that they are
all classed as early signalling events. That is, they occur immediately upon TCR pMHC
engagement and they are responsible for determining how the APC-T cell interaction will
proceed. The early signalling events precede immunological synapse formation [Bromley
et al., 2001] which is a semi-permanent association between the T cell and APC. The
signalling picture is complicated by synapse formation as each cell alters shape to generate
a large area of adhesion between the two cells. However, the early signalling events occur on
a timescale such that synapse formation can be (and is) ignored [Altan-Bonnet and Germain,

3Tt is this discrimination ability, combined with the potentially appealing properties of the TAT that
makes this T cell signalling behaviour a desirable candidate for artificial immune systems.
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2005]. In particular, the non-spatial assumptions used in [Altan-Bonnet and Germain, 2005]
and this chapter only suitably hold on the timescale of early signalling events. It should
be noted that early signalling events still are of importance to T cell discrimination; they
may dictate whether synapse formation will proceed and in the case of the cytotoxic T cell
(which is the variant considered here), the decision to kill a cell is made during these early

events.

Returning to the specifics of the signalling process considered in this chapter, they are
discussed in reference to tunability in [Germain and Stefanové, 1999; Grossman and Paul,
2001] and experimentally investigated in [Stefanova et al., 2003; Altan-Bonnet and Germain,
2005]. This signalling system has also received much modelling attention in [Chan et al.,
2001; Altan-Bonnet and Germain, 2005; Artyomov et al., 2007; Wylie et al., 2007; Lipniacki
et al., 2008]. The important quantitative and qualitative concepts that these signalling
events impose on T cell discrimination are well summarised in [Chan et al., 2001]. Altan-
Bonnet and Germain (ABG) [Altan-Bonnet and Germain, 2005] complement biological
experiment with a detailed mathematical model of these signalling events. This ABG
model is further discussed in [Feinerman et al., 2008a] and analysed in [Feinerman et al.,
2008b]. The approach taken by [Altan-Bonnet and Germain, 2005] and [Feinerman et al.,
2008b] is to model, as faithfully as possible, the bio-chemical reactions associated with the
TCR, SHP1 and ERK and to demonstrate that their model replicates biological behaviour.
To this end [Altan-Bonnet and Germain, 2005] achieves a model of 557 chemical reaction
equations which are converted to 238 ordinary differential equations. Simplified versions of
the concepts in the ABG model are produced in [Artyomov et al., 2007; Lipniacki et al.,
2008] and stochastic analysis is performed. [Artyomov et al., 2007; Lipniacki et al., 2008]
argue the importance of stochastic modelling particularly when small molecule numbers can
produce bistabilities in a stochastic model that do not exist in the deterministic model.

The simplified models analysed in [Chan et al., 2001; Artyomov et al., 2007; Lipniacki
et al., 2008] convey an understanding of the qualitative aspects of TCR, SHP1, ERK sig-
nalling. However, the exact connection between all the signalling detail in ABG model
and the qualitative understanding gained from the simplified models is still not clear. The
ABG model fits the criteria of being realistic and precise. This chapter takes the opportu-
nity to dissect the biologically detailed ABG model with the objective of gaining clarified
understanding of the biological processes that contribute to the qualitative behaviour. A
stochastic version of the ABG model? is constructed which allows investigation at the single
TCR level. The analysis starts with the behaviour of the TCR-pMHC bind and progressively
composes all elements to re-build the ABG model. This approach provides understanding
without the necessity of the simplifying assumptions such as the ones in [Lipniacki et al.,
2008].

The analysis of the model proceeds as follows: Section 3.4 provides a biological back-
ground to the model; Section 3.5 justifies the stochastic approach and overviews the mod-
elling methods used. The subsequent sections break the model and analyse sub-models.

41 am grateful to Gregoire Altan-Bonnet for providing the details of the ABG model
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Section 3.6 investigates coreceptor CD8, TCR and pMHC binding; Section 3.7 kinetic proof-
reading; Section 3.8 negative feedback; Section 3.9 the mitogen-activated protein kinase
(MAPK) MAPK cascade and protection of TCR; Section 3.10 then re-composes the entire
model; finally Section 3.11 provides discussion and conclusions.

3.4 Model Biological Background

As noted earlier, the quality of a TCR pMHC association is well abstracted by its average
lifetime [Feinerman et al., 2008a]. It may be classified by the response elicited in the cell,
taking the definitions of [Germain and Stefanova, 1999]:

e Agonist. Will induce all possible activation signals within a cell. A TCR-pMHC
lifetime of ~ 18 seconds [Altan-Bonnet and Germain, 2005].

e Antagonist. Will actively inhibit activation signals within the cell.
e Partial agonist. Will induce a subset of all possible activation signals within a cell.
e Null. Will not have any effect, activatory or inhibitory.

A range of signal strengths exists within the first three classes. It is not the case that the
signals induced by a weak agonist are necessarily stronger than those induced by a partial
agonist. Normal-host-peptides fall into antagonist, partial agonist or null classes [Germain
and Stefanova, 1999]. Three salient features of this TCR signalling model are: kinetic
proofreading, negative feedback and a destruction of the negative feedback. Figure 3.2
depicts these features and provides reference to the appropriate section for analysis.

3.4.1 Kinetic Proofreading

Kinetic proofreading was first introduced to describe the accuracy of DNA replication and
protein synthesis [Hopfield, 1974]. McKeithan [McKeithan, 1995] applied kinetic proof-
reading to T cell signalling and it is now a widely accepted model to account for ligand
discrimination [Stefanova et al., 2003]. The process entails energy consuming steps that
occur after association of pMHC to the TCR. The steps must be overcome for successful
TCR signalling. With dissociation of pMHC from the TCR the steps are rapidly reversed.
The result is step-like discrimination of pMHC ligands. Fast dissociating pMHC ligands fail
to complete all steps, conversely all p MHC that bind long enough to complete all steps sig-
nal equally well. Kinetic proofreading provides a measure of the time the TCR and pMHC
are associated. The steps involve phosphorylations® by Leukocyte-specific protein tyrosine
kinase (Lck) of Immunoreceptor tyrosine-based activation motifs (ITAMs) on the TCR’s
internal ¢, € and § chains. Kinetic proofreading is, however, insufficient to explain antago-
nism [Feinerman et al., 2008a]. Further the model also fails in the high-density low-quality
ligand case where stochastic fluctuations can allow poor quality ligands to overcome kinetic
proofreading.

5A phosphorylation is the addition of a phosphate group to an already present molecule in the system.
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Figure 3.2: The TCR signalling processes. The TCR and pMHC may bind with co-receptor CDS8, see
Boz 2 and Section 3.6 for analysis. Upon association of pMHC to a TCR kinetic proofreading may start
which involves phosphorylation of ITAMs and binding of ZAP-70 molecules. Boz / depicts a partially
complete proofreading process; Bor 2 depicts a fully completed proofreading process. See Section 3.7 for
kinetic proofreading analysis. A TCR internal chain with at least one ZAP-70 molecule may initiate negative
feedback by binding and phosphorylating SHP1, see Box 4. Phosphorylated SHP1 (pSHP1) may then bind a
TCR and upon further Lck action all phosphorylations will be lost, see Box 3. See Section 3.8 for analysis of
negative feedback. A completed proofreading process may phosphorylate an adapter protein which initiates
the MAPK cascade, resulting in high levels of ppERK, see Box 2. ppERK carries the activation signal of the
cell and may bind a TCR internal chain and protect it from the action of pSHP1, see Boz 1. See Section 3.9
for analysis of the MAPK cascade and TCR protection; see Section 3.10 for simulations of the entire system.

3.4.2 Negative Feedback

A negative feedback investigated experimentally in [Stefanové et al., 2003] may augment
proofreading to explain antagonistic behaviour. The process is initiated by phosphorylation
of SHP1 by Lck on the TCR internal complex. Phosphorylated SHP1 (pSHP1) may then
associate to the TCR and dephosphorylate TCR internal chains. Thus, the process is
initiated by proofreading steps and actively inhibits proofreading and so is a true negative
feedback. The inclusion of negative feedback provides an explanation for antagonism and
prevents large populations of low-quality ligands stochastically overcoming proofreading. A
model of proofreading with negative feedback would suggest that the highest quality pMHC
ligands would induce the largest negative feedback. However, this is not the case. There is a
point at which ligand quality increases and the pSHP1 negative signal disappears [Stefanova
et al., 2003].
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3.4.3 Breaking the Negative Feedback

An explanation for the disappearance of the negative feedback is ascribed to a positive feed-
back through doubly phosphorylated ERK (ppERK) [Altan-Bonnet and Germain, 2005].
pPPERK protects the TCR internal complexes from the action of pSHP1 by preventing
pSHP1 from binding. Completion of kinetic proofreading initiates the MAPK cascade
which results in the amplification of the proofreading activation signal by the production of
large amounts of ppERK [Altan-Bonnet and Germain, 2005]. This acts dually to break the
negative feedback and to carry the activation signal for the cell. How the activation signal
determines cell fate is beyond the scope of this work.

The ppERK signal is often labelled as digital [Altan-Bonnet and Germain, 2005] in
that it exhibits a step-like response. However, a clearer description is binary: it is either
high or low and not found in discrete steps as the term digital would imply. Moreover,
this signal is strictly not a positive feedback and it can be misleading to label it as one.
The signal breaks the negative feedback allowing kinetic proofreading to continue with no
inhibition, but only at the rate dictated by kinetic proofreading. One would expect this to be
confirmed by experiment: a T cell with SHP1 removed would exhibit no negative feedback
and allow observation of ppERK behaviour in isolation. Properties traditionally associated
with positive feedback such as explosive amplification are present but are facets of the feed-
forward MAPK cascade. A result found in Feinerman et al. [Feinerman et al., 2008b] can
be interpreted to confirm this is not a positive feedback. Variation in the concentration
of ppERK has no influence on the ability of a cell to appropriately signal. If ppERK was
involved in a positive feedback its intra-cellular concentration represents a maximum bound
on the positive signal. Thus variations in ppERK concentration would change the ability
of the cell to signal. Interpretations of results in Lipniacki et al. [Lipniacki et al., 2008]
give further weight to this argument. Changes in Lck concentration influence pSHP1 levels
far more than ppERK levels; if ppERK were in positive feedback the action of Lck would
be part of the feedback loop and so would influence ppERK levels. The behaviour of the
MAPK cascade (analysed in Section 3.9) also contributes to these results. The ppERK
signal is now referred to as a break in the negative feedback and not a positive feedback.
As discussed in Chan et al. [Chan et al., 2001] the break in the negative feedback allows
the T cell to remain sensitive to good agonists and helps to define a sharp discrimination
threshold.

The signalling mechanisms may be mapped to TCR-pMHC bind classification:

1. Agonist — pMHC remains associated sufficiently long for a high probability of inducing
MAPK cascade despite pSHP-1 dampening. The induction of the MAPK cascade will
result in a high ppERK protection and activation signal.

2. Antagonist — pMHC associates sufficiently long to produce high levels of pSHP-1 but
not to induce MAPK cascade.

3. Partial Agonist (Endogenous Ligand) — Does not induce high levels of pSHP-1, but
may induce some partial phosphorylation of TCR internal chains.
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The spreading of the pSHP-1 and ppERK signals is of interest; it is discussed in [Altan-
Bonnet and Germain, 2005] and analysed directly in [Chan et al., 2001]. pSHP1 generated
by a TCR will spread to dampen surrounding TCRs. The protection signal generated by a
TCR will spread to protect surrounding TCRs. A hypothesis discussed in [Chan et al., 2001;
Feinerman et al., 2008a] suggests that the protection signal allows endogenous ligands to
“synergise” with agonist ligands and contribute to activation signalling. This suggestion is
discussed in light of the findings of this chapter’s analysis in Section 3.11 and a clarification
to the argument is presented. The model of Chan et al. [Chan et al., 2001] investigates
the spreading of the negative feedback and protection on a lattice. No investigation to the
necessity of space to the model is given, the analysis performed here continues with the

assumptions of [Altan-Bonnet and Germain, 2005] and analyses a non-spatial model.

3.5 Modelling Methods

In contrast to the deterministic approach of [Altan-Bonnet and Germain, 2005] and [Fein-
erman et al., 2008b] the models of [Chan et al., 2001; Artyomov et al., 2007; Wylie et al.,
2007; Lipniacki et al., 2008] are stochastic in nature. In line with the arguments made in
Chapter 2, and using the methods described in that chapter the ABG model is stochas-
tically formulated. In particular, analysis is performed via the rate matrix of the master
equation/continuous time Markov chain associated with the chemical reaction equations.
Due to model size this is generally restricted to numerical solutions. As the full model is
composed the analysis is only tractable through Gillespie Algorithm simulation.

The macroscopic rates of the ABG model are supplied in Table A.2, and converted to
mesoscopic rates using the methods given in Chapter 2. The choice of three different € used
in this chapter are justified in Section 3.11.1 The definitions of names and rates are given
in Appendix A.1l; notation used in reaction equations is that described in Chapter 2.

3.6 TCR, pMHC, CDS8 Binding

The ABG model enumerates the complexes nascent to the CD8-TCR-pMHC ternary com-
plex. Reactions in and out of intermediate states TCR-pMHC, CD8-TCR, and CD8-pMHC
are included. Other models that include co-receptor binding such as [Wylie et al., 2007]
do not include CD8-TCR and CD8-MHC intermediates. The role of these intermediates
is now investigated, particularly the influence of TCR-CDS&. The reactions are depicted in
Figure 3.3 and are as follows:

Reaction 1. TCR pMHC CD8 Binding/Debinding

T+Me—2B T+C==TC, (3.2)
mq cq
A+CE2AC  A={M, C}, (3.3)
Cd
TC+M—==BC  MC+T —= BC. (3.4)

Cq X Cs Cq X Cs
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mq Ct Cd Cq
\‘ Figure 3.3: Diagrammatic representation of Reaction 1. A sin-

gle TCR, pMHC and CD8 molecule are the reactants. U gives
6 the completely unbound state, all other states are denoted by

the bound product. Arcs are labelled with the reaction rate, d
\ \ d / denotes reaction rate mgycs.

The reactions describe the following assumptions: The CD8 co-receptor acts to hook-in
pMHC to the TCR increasing the on-rate; CDS8 stabilises the TCR-pMHC by a multiplica-
tive factor ¢y < 1; CD8 may dissociate and re-associate with fast kinetics [Wyer et al.,
1999], with the exception of state TC whose on rate ¢; which is considerably smaller than
Ca-

1 is applied to scale the rates to the volume occupied by a

A volume restriction € = N,
single TCR. The stationary and transient distributions parameterised by mg4 € [0.001, 1000]
are given in Figure 3.4. The distributions show that the unbound state U and the bound
state B have the highest probability. The probability of being in state TC is orders of
magnitude lower than being in any other state nascent to BC. Write P;(j) for the probability
that given the current state is i, the next state is state j; then setting my = 1/18 and all
other rates as Table A.2:

Py(TC) < Py(B) < Py(MC). (3.5)

There is an order of magnitude difference between the three probabilities. In the opposite
direction, the probabilities for leaving state BC:

PBc(TC) = ]P’Bc(MC) < PB()(B). (3.6)

The inequality will hold if my < ¢4/cs = 1000 which is the case for realistic ligands. Then,
if 7(7) is the holding time of state ¢ (that is the expected time before leaving state 7):

7(BC) < 7(TC) =7(MC) < 7(U) < 7(B) fore=1 (3.7)
7(TC) = 7(BC) < 7(MC) < 7(B) < 7(U) for e = N;*,

7(U) ~ 7(B) and 7(BC) ~ 7(MC) for ¢ = N, and the inequalities hold for the majority of
realistic ligands. The state TC is the least likely state to enter and has one of the shortest
holding times, which explains its low probability at equilibrium.

The transient and stationary distributions are recalculated with the removal of state TC
(the new stationary distribution is labelled wT¢) and they are shown in Figure 3.4. The
stationary distributions and the trajectories are effectively identical. Under the assumption
of approximately equal TCR, pMHC and CD8 concentrations the state TC may be removed
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Figure 3.4: Left: Stationary distributions for mgq € [0.001,5]. Black dotted lines are the distribution 7,
thick grey lines are the distribution wTC. They are effectively identical behaviour across the range of mg.
The vertical line is at mq = 0.0434 and represents the point where 7y = 7 + mpc. Right: Transient
distributions for time ¢ € [107%,10%], starting in an unbound state U with mg4 = 0.05. Black dotted lines are
the distribution with all states, thick grey lines are the distribution with state TC removed. The probabilities
follow the same trajectories.

from the model. This provides a prediction that may be validated against biology, should
more than 2 x 1073% of all TCRs be found bound solely to the CDS8 co-receptor then this
is an incorrect abstraction of biology. The incorrect abstraction may not be in structure of
reactions but in choice of rate. A clear example of this is state MC which is identical to TC
except the rate from U to MC is two orders of magnitude greater than that of U to TC.
This results in approximately a three orders of magnitude increased stationary probability
in Figure 3.4.

The binding system may be analysed in general to gain an understanding of the param-
eter choices. The systems with and without the state TC are instances of a general binding
system with n intermediate state separating an unbound and a bound state,

Definition 3.1. A general binding system B, has n + 2 states, that is, n intermediates

denoted by the natural numbers: 1,2,....,n and an unbound state U and a bound state V.
The index i is used over any of the n+ 2 states, i = U,1,2,...,n, V; the index k is over the
n intermediate states, k = 1,2,...,n. A binding system B, is defined by the rate matrix
Gy:

—Sy Gul  --- Gun O

Jiu  —S81 91v

G, = , 8 = Zgij’ (3.9)
Inu —Sn  Gnv 7
0 Gul - Gon  —Sy

Guk 1S the rate from state U to the kth intermediate state, the rate g, is the rate back in

the other direction. Rates gg, and gy are defined similarly.

The binding system with TC is, then, a Bs binding system and without TC it is a Bo
system.
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The stationary distribution for B,, is 7 = (my,m1,..., T, ) and is found by solving
G, = 0, subject to ), m; = 1. Since the sum of every row of G, is zero and there is one
additional constraint there are n + 2 equations:

—SyTy + nguﬂk =0 (310)
k
JukTy — SkTk + GopTy = 0, fork=1,2,...n (3.11)

d om=1 (3.12)

The k intermediate equations (3.11) may be used to eliminate all 7; in the probability

constraint (3.12), resulting in an equation in 7, and 7,:

Guk 9ok
(HZ;;) T + (HZS:) T = 1. (3.13)
k k

For convenience, write 0o =1+ ), %&£ Then,

Sk
1
Ty = ——uu (3.14)
Oy
Substituting back into the each of the k intermediates gives m in terms of my:
+ —_
= 9ok 71'u(guko'v gvkgu). (315)
SKOy
Then, substituting the 7 back into (3.10), gives my:
—1
s
— Zkg’“ff’”’“ k : (3.16)
SuOy — Zk 9kuSy, (gukav - gvkau)
By symmetry, m, is:
B >k TevGukSy,
Ty = — . (3.17)
SOy — Zk JkvSy (gvkau - gukgv)
Returning to (3.15), it can be rearranged as follows:
T = Yok (1 —muou) + gﬂﬂ'u. (3.18)
SKOy Sk

The first term as o, in the denominator, for the choice of rates in Figure 3.3, o, is composed

as follows,
Cd mgcs mqcs
o0 = 1 ck 4+ my ck 4+ cq c+cq
a a a
2 2 2 (3.19)

9% ~ 1 + 95 + 5x107° + 5x107°.

The * superscript denotes the mesoscopic scaled association rate and ¢ ~ 1. Thus, the

ratio % ~ 107° is very small, and the quantity g,u/s; gives the greatest contribution

to (3.18). This quantity is given in Table 3.1 for the states B, TC and MC. It is both that
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State B TC MC
Guk my t <
Sk cr +myg ek +cq cy +cq

Approximate Value 3 x 1072 3 x 107° 1072

Table 3.1: The quantity gur/sk for parameters given in Table A.2

¢t is much slower than ¢, and that c¢g4 is so much faster than mgcs that contributes to the
low stationary probability of T'C.
The system with TC removed, a B system, is now solved for mg subject to the additional

constraint:

Ty = TR + TBC- (320)

The solution provides the dissociation rate at which there is equal probability of the TCR
and pMHC being bound and unbound. This gives a quadratic in my:

macgcs + ma(c + ca(ca + cats — Macs) — ¢2)
—c3 — E(mg + ¢q) — 2caCama — c2mg = 0. (3.21)

There is a single positive solution mg = 0.0434 which gives an average bind life time of
23.04 seconds, a strong agonist. The my = 0.0434 line is marked on Figure 3.4.

The analysis thus far does not apply if the concentrations of TCR, CD8 or MHC change.
The concentration of CD8 is of interest as it has been shown to be a potential parameter
for T cell tuning [Feinerman et al., 2008b; van den Berg et al., 2007]. So, define v = |C|/|T|
and then new rates: ¢, = v the association rate of T and C; ¢, = v, the association of
C to M or B. Then, recalculating the transient and stationary distributions reveals that a
difference is only observed at very high densities v > 100, so the stationary analysis should
hold for v < 100.

3.7 Kinetic Proofreading

The kinetic proofreading in the ABG model has added complexity over standard kinetic
proofreading models [McKeithan, 1995]. It is described by the following reactions:

Reaction 2. Soluble Lck Phosphorylation:
Normal Phosphorylation:

BY L= BIL B 4L, q=0,1; 2=0,1,2 (3.22)

lg

Bl + L= BIL S B 4L, m=0,1,2. (3.23)

d
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Reaction 3. CD8 association Lck Phosphorylation:
Normal Phosphorylation:

BIC &2 BICL o, BIHIC,  ¢=0,1; 2=0,1,2 (3.24)
lcd

BI'C 4 BPCL = B™lC,  m=0,1,2, (3.25)
lcd

Lck associated with CD8 is implicitly part of the C complex.

Reaction 4. ZAP-70 Binding:

BZ+Z<2BY%,, 2=0,12 (3.26)

d

ZAP-70 Debinding from TCR:

T, 24 T, 4+ Z, 2=1,2,3. (3.27)
Reaction 5. Dephosphorylation upon TCR binding/debinding:
LT, T.%Q, 2=01,23 ¢>1. (3.28)
Here if @ = B then oo = my,d = my and if @ = BC then o = ¢4, = mycs
The reactions imply the following assumptions:

e Upon association of pMHC to the TCR internal chains undergo enzymatic Lck phos-
phorylation. This may occur via cytosolic Lck or Lck associated with CD8. The
CD8 associated Lck has a greater rate of association to the TCR [l., > [,. The
phosphorylations are restricted to occur in serial in order.

e ZAP-70 may bind and protect a double phosphorylated ITAM, 3 ZAP-70 molecules
may bind in all. Three phosphorylations may occur once the third and final ZAP-70
molecule has bound.

e Dissociation of TCR and pMHC causes loss of phosphorylations not protected by
ZAP-70 via a fast acting phosphatase. The fast-acting phosphatase is not modelled
here, the phosphorylations are immediately lost upon dissociation. ZAP-70 and its
protected phosphorylations may persist between TCR, binds.

e The TCR internal chain may initiate activation signalling from a state Bf with ¢ > 1.
The specific details of the activation signalling are not included until Section 3.9.

Note that the gain and loss of phosphorylations in the kinetic proofreading reactions
appears to break conservation. This is notational convenience and the necessary phosphates
are implicitly included in the reactants and products, this convention is used throughout
this chapter.
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mg max{P(Bi, ¢ >1)} mgq max{P(Bi, ¢>1)}
0.03 1.6 x 1071 0.44 1.0 x 107°
0.06 0.3 x 1071 0.85 4.3 x 1077
0.12 4.5x%x 1073 1.64 2.5 x 1078
0.23 2.6 x 1073 3.16 2.5 x 1079

Table 3.2: Maximum probability of signalling state for various mg. This can approximate the expected
number of ligands needed to achieve activation via [max{P(B?%Zs, ¢ > 1)}]™" (the coupling between TCRs
at this stage only involves competition for Lck and CD8, as such this approximation should be reasonable).
For m;l ~ 30s about 6 ligands are needed to guarantee a signalling state; for mgl =~ 16s about 25 ligands
are required to guarantee signalling state.

The kinetic proofreading reactions do not include the negative effects of pSHP1 and so
describe the case when the TCR has been protected by ppERK. Write K for the rate matrix
describing the kinetic proofreading reactions for single TCR, pMHC, CD8 molecules. To
calculate the expected kinetic proofreading state Ef, it is necessary to assign weights w(s)
linearly to all states s € K, the set of bound kinetic proofreading states:

w(B?) =32+q+1, (3.29)
that is, w(BY) = 1,w(B) = 2,...,w(Bj) = 13. Then Ex is given:
Ex =Y w(s)P(s). (3.30)

seK
Figure 3.5 gives the transient probability for Ex over a range of mgy. The kinetic proofread-
ing behaviour may be summarised by calculating the signalling state with the maximum
probability, that is max{P(B%,¢ > 1)}. The results are given in Table 3.2.

Figure 3.5 also gives the kinetic proofreading stationary distributions over mg. The
clumping together of probabilities of mid-kinetic proofreading states at low dissociation
rates conveys the notion that all states are equally likely en route to the final state. Due
to the high concentration of ZAP-70, the states in which a new ZAP-70 molecule may bind
(B2, B2, B2) have the lowest stationary probability (= 107°).

To further analyse the time taken by kinetic proofreading and particularly the influence
of CD8 the expected hit times of TCR signalling state are calculated whilst varying v and
myg, see Figure 3.6. CD8 density v can modulate hitting times and bring them in line with
the 1-5 minute timescales discussed in [Feinerman et al., 2008a]. An explanation as to why
CD8 density is so successful at decreasing kinetic proofreading times is given in the following
Section 3.7.1.

3.7.1 Proofreading Locking Mechanism

The kinetic proofreading mechanisms analysed here produce the step-like response pre-
scribed by conventional kinetic proofreading models [McKeithan, 1995]. However the abil-
ity of ZAP-70 to “protect” TCR phosphorylations between TCR binds breaks McKeithan’s
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Figure 3.5: Kinetic proofreading transient and stationary behaviour. Left: The transient probability of Ex
from initial unbound zero phosphorylation state, calculated by e'¥, with m;l =1,3,6,12,15,18. Right The
stationary distribution. Lines represent U, ...B? and are coloured on a linear grey-scale: with Ug lightest
and B} darkest. P(Up) ~ 1 at large mg, and P(B3) ~ 1 at small m4. The inflexion between light and dark
lines can be interpreted as the point where the latter half of the kinetic proofreading process becomes more
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model. The locking mechanism is now directly investigated. Removing the locking system

amounts to changing Reaction 5 to the following:

Reaction 6. Dephosphorylation and de-binding of ZAP-70 upon TCR debinding:

01 5 T0  £=0,1,23 ¢=0,1,2,3. (3.31)

If @ = B then § = my and if @ = BC then § = mycs

Calculating non-locking kinetic proofreading transient and stationary distributions re-
veals a reduced probability of all later kinetic proofreading states. Further, the stationary
distributions do not exhibit the inflexion of Figure 3.5.

The differences between non-locking and locking proofreading are investigated by vary-
ing pMHC and CDS8 densities. Define u = |M|/|T| and new rates: m,, = um,, the association
rate of T and M; ¢}, = uve, the association rate of C and M; m,. = uc, the association rate

of M to TC; ¢, = ve, the association rate of C to B.
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Figure 3.7: Stationary probabilities of Ex for mq = 1/18, varying w and v left with ZAP-70 locking; right
without ZAP-70 locking right. The locking mechanism greatly increases the area of the (u,v)-plane with a
high expected proofreading state. This is due to u and v contributing to a greater probability of TCR-pMHC
re-association before a ZAP-70 is lost. Without locking and v < 1 results in a low expected proofreading
state.

The stationary distributions of Ex are recalculated using the new rates whilst varying
u and v. Figure 3.7 gives these distributions ¢ for a good agonist my = 1/18, this behaviour
is found to be qualitatively similar for other values of mg. High concentrations of CDS8
and pMHC result in high Ex. A high concentration of pMHC or CDS8 increases TCR
association rates and so increases the probability that the TCR and pMHC will re-associate
before a ZAP-70 is lost. Mesoscopic rates for ¢ = NT_1 are m, = 0.033, d, = 0.11. An
increase in pMHC concentration of 3.33 will make re-association of the TCR and pMHC
equally likely as the loss of ZAP-70. An increase in CD8 density v also contributes to
the completion of kinetic proofreading steps due to efficient CD8-Lck. Thus changes to
CDS8 density alter the T cell’s reactivity to a given pMHC ligand, and it is the locking
mechanism which allows the CD8 co-receptor to be efficacious. This ZAP-70 hypothesis is
confirmed in Figure 3.8 by varying ZAP-70 dissociation rate d, with the inclusion of the
locking mechanism. Decreases in d, result in increases in Ex because slow d, increases the
probability that a ZAP-70 will remain associated between TCR-pMHC associations. Due
to the high abundance of cytosolic ZAP-70 any ZAP-70 molecules lost during TCR-pMHC
association will be rapidly replaced. Thus the periods when the TCR is dissociated benefit
the most from decreases in d,. Slow dissociations of ZAP-70 increase the efficacy of serial

triggering.

3.8 Negative Feedback

The negative feedback signal is carried via cytosolic SHP-1, which may bind to a TCR
internal chain with at least one ZAP-70 molecule. The following describes the negative

5The extremes of density here are larger than would occur naturally, they are included to demonstrate the
range of behaviour, moreover the contribution to the parameters u and v could equally come from increased
association rates.
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feedback process:

Reaction 7. SHP-1 Binding, and phosphorylation to pSHP-1

B.+S°22B,8" % B, +S" =123 (3.32)
Sd

The phosphorylated pSHP-1 may load and unload from the TCR:

Reaction 8. Binding of pSHP-1
D = {T., B., B}, 2=0,1,2.
D+ 8! :d DS (3.33)
This applies for z < 3 and ¢ > 0 cases, for z = 3 there is one-step dephosphorylation:

Bi+8' B +Sh ¢=1,2,3. (3.34)

Upon Lck phosphorylation of a TCR. internal chain with pSHP1 loaded all phosphory-
lations not protected by ZAP-70 are lost:

Reaction 9. pSHP1 Dephosphorylation through Lck:

la c

BIS' + L = BIS'L & BS' +L,  ¢=0,1,2; 2=0,1,2 (3.35)
d

BIS! 4+ L <= BIS'L L BIS! + L. (3.36)
la

CD8 association Lck Phosphorylation:

BICS! 4 BICS'L k= BOCS!, ¢=0,1; n=0,1,2 (3.37)
lcd

BICS! << BYCS!L L= BYCS!. (3.38)
lcd

The Lck associated with CDS is implicitly part of the C complex.
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The above reactions taken from [Altan-Bonnet and Germain, 2005] do not include a
conversion of pSHP1 back to SHP1 and so the set of states with all SHP1 converted to pSHP1
are absorbing. To ensure that all states are irreducible and recurrent so the stationary
distribution exists and is meaningful [Norris, 1998], the following reaction is added:

Reaction 10. Dephosphorylation of pSHP1.

S! 4 Py =2 pgSl %, pg 480, (3.39)
qd

The rates qq, g. are chosen in line with the phosphatases of the MAPK cascade; ¢,
is chosen similar to the association of Lck. The association rate ¢, is rate-limiting and
pSHP1 will persist on a timescale longer than a TCR-pMHC association. This choice
of rate produces a quantitatively identical transient behaviour over the first 200 seconds
with and without Reaction 10. As a less than maximal level of pSHP1 is necessary to
contain the, subsequently discussed, rise of Ef, the inclusion of this Reaction 10 should not
significantly alter the activation threshold of the cell. Thus, the choice of rates are justified
in the sense that they do not influence initial transient behaviour which is of importance
to the concluding remarks of this model analysis, Section 3.11. Now, a potential stationary
distribution for negative feedback is calculated.

There is a discrepancy between pSHP1 dephosphorylation in the B3 case compared to
B, with ¢ = 0,1,2. An investigation is provided in Appendix A.2 and now the discussions
continue with uniform negative feedback as described in Appendix A.2. A volume restriction
of e = Np 1 gives ~ 26 SHP-1 molecules. The rate matrix for negative feedback may be

written as a block tridiagonal matrix:

Yo A

No| Q@ Y Yi:<K P>’ (3.40)
A

Q Yn

Y; is the kinetic proofreading matrix with ¢ pSHP1 molecules. K describes the basic kinetic
proofreading reactions; P and D give the binding and debinding of the pSHP1 phosphatase
respectively. A contains s. from Reaction 7 on appropriate diagonal positions. Q contains
rate g. from Reaction 10 on all diagonal positions. N is 7420 x 7420 with only 50438
non-zeros (approximately 0.09% of IN); it is amenable to the analysis methods outlined in
Section 2.2.

The influence of negative feedback will be overestimated in the stationary distribution
without the inclusion of the protection from pSHP1 by ppERK (see Section 3.9). How-
ever, the TCR must generate an activation signal at least once without ppERK and so
consideration of the non-protection case is necessary.

Similar to Ex the expected pSHP1 level Eg is calculated as follows:

max |S?|

Eg= Y iP(S'|=1). (3.41)

=1
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Figure 3.9 gives the transients of Ex and Eg. The increase of Eg lags that of Ex because
kinetic proofreading must reach state B} before pSHP1 can be produced. The level of
pSHP1 will rise, arrest and reverse kinetic proofreading to a state < Bi. With the conver-
sion of pSHP1 back to SHP1 equilibrium is reached. The existence of a non-zero kinetic
proofreading state that must be overcome before negative feedback is generated appears to
be of great importance. This state is henceforth referred to as the base negative feedback
state. If Ex and Eg are recalculated with base negative feedback state set at the zero
kinetic proofreading state (BY) then this hump in Ex and Eg is not observed. Moreover,
the expected kinetic proofreading state and consequently expected pSHP1 levels are very
low. Section 3.9 demonstrates that the existence of this base negative feedback state is of
importance at the population level. The implications of this state are discussed in detail in
the modelling conclusions (Section 3.11).

The stationary distributions of N and Eg (with the base negative feedback state rein-
stated) are given in Figure 3.10. States with zero phosphorylations not protected by ZAP-70
have the greatest probability. Write Ex (mg) and Eg(my) for the expectations parameterised
by mg. For extremes of realistic ligands: Eg(0.05) ~ 15 and Eg(1) ~ 2. Kinetic proofread-
ing of high quality pMHC ligands may be arrested by just over half-maximal pSHP1. One
would expect this behaviour could be confirmed from experimentation with cells with ERK
removed; one would look to confirm that pSHP1 will rise sufficiently to dampen kinetic
proofreading of all ligands including agonists. Observations of the phosphorylation states
of TCR internal chains would confirm the behaviour of the ZAP-70 locking mechanism.

3.8.1 Positive Tuning and Negative Feedback

In Section 3.7, particularly Section 3.7.1, it is demonstrated that CD8 and pMHC density
parameters u and v may desensitise the cell. Now their influence is investigated with the
inclusion of negative feedback. Figure 3.11 gives the stationary distributions for Ex and Eg.
Increases in v and v initially result in increases in Ex and Eg, with u being slightly more
efficacious. However, further increases in v result in a maximum in Eg. This demonstrates
that increases in v are able to maintain increased Ex despite also increasing Eg. This also
suggests that there is a v which produces maximum negative feedback. This hints towards
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Figure 3.11: Stationary distributions for Ex (left) and Es (right), varying u,v € [107%,10%], with mg4 = 1/18.
Contour lines Ex are w(B§) = 1, w(BY) = 4, w(BY) = 7 and w(BY) = 10. Contours for Es are selected values
of \Sl|. Increases in u and v result in increases in both Ex and Es. However, there is a maximum in Eg in
the v direction, which results in a decrease in Eg at high v.

the qualitative property to T cell tunability outlined in [van den Berg et al., 2007]: that a
T cell is able to desensitise to a pMHC ligand p, whilst remaining sensitive to ligand
with the dissociation rate of u, not necessarily faster than that of p,. Currently the results
do not confirm or deny this behaviour; greater modelling and analysis is required.

3.9 MAPK Cascade and Negative feedback Destruction

The MAPK cascade may be initiated from a kinetic proofreading signalling state. The ABG
model includes a generic adapter protein that connects the TCR to the MAPK cascade.
The product of the MAPK cascade, ppERK, is able to bind to the TCR internal chain and
protect it from the action of pSHP1. The reactions are as follows:

Reaction 11. Phosphorylation of Adapter

BE + A” 2 BIAC B, BI L AL g > 0.
k

d

(3.42)

These reactions do not occur for S' bound to B.
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Reaction 12. Dephosphorylation of Adapter

Al 4Py 24 Alp, B A0 4P, (3.43)
kq

Reaction 13. Phosphorylation of Raf1

RO+ Al 22 ROAL Fe, gL AL (3.44)
kq

Reaction 14. Dephosphorylation of pRaf1

kq »
R! + Pg == R'Pg %= RO + Pp. (3.45)

d

Reaction 15. Phosphorylation of Mek/pMek

K" 4+ R! &2 K"R! %o K71 (Rl n=0,1. (3.46)
kq

Reaction 16. Dephosphorylation of pMek/ppMek

K" 4 Pg == K"Pg X< K1 4 Py, n=1,2. (3.47)
k

d

Reaction 17. Phosphorylation of ERK/pErk

E" 4 K2 22 K2 B grtl L K2, =01 (3.48)
kq

Reaction 18. Dephosphorylation of pErk / ppERK

E" + Pg ’% E'Pp fS Bl 4 Py, n=1,2. (3.49)

d

Reaction 19. Protection of TCR by ppERK

F = {T7 B}
F+E? &% FE? & F + E% (3.50)

€d

The reaction does not occur for S! bound to F

This instantiation of the MAPK cascade follows a familiar form modelled elsewhere
[Huang and Ferrell, 1996]. It is necessary to understand its precise behaviour with the
ABG model choice of parameters. The n x n rate matrix that describes the MAPK cascade
with e = N ! has n = 21004075008 and approximately 4.3 x 10'! non-zero entries, which
is beyond computational means with the current methods. Simulation offers a tractable
solution. The MAPK cascade is simulated with a volume of restriction e = 1072; the
volume of ~ 300 TCRs. The molecule quantities are: |R| = 1000, |K| = 4000, |E| = 1000,
[Pal, |Pr|, |Px]|,|Pe| = 20. Simulations are performed for 250 seconds and with initial
|Al] € [1,9] for 2000 repeats. A! is converted back to A® through the action of Py,
however, there is no mechanism included to convert A to A'. Thus, the results give a
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Figure 3.12: Half-maximal response of ppERK in MAPK cascade simulation results. Bars read from “Runs”
axis: total bar height gives runs in which |E?| > 500 occurred; dark grey lower bar gives the runs in which
|E?| > 500 occurred and then fell below 500 within 250 seconds. Lines and error bars are read on “Time”
axis: Black line (bottom) gives the median time of first |E?| > 500 occurrence; red line (top) gives the
median time when |E?| fell back below 500. Error bars are the quartiles. Non-parametric statistics are given
as they provide clearer representation of the distribution than parametric statistics.

lower bound to the behaviour of ppERK, as one would expect A! to be produced during
the operation of the MAPK cascade. The results in Figure 3.12 are given in terms of half-
maximal ppERK response (|E?| = 500). A single A! molecule is sufficient for at least half
the simulation runs to break the half-maximal E? barrier. With |A!| > 3 the |E?| = 500
barrier is broken on all runs within 25 seconds and remains broken until &~ 220 seconds.
During this period the mean |E?| is at a plateau very close to the maximum for all [AY| (not
shown). With these parameters the MAPK cascade is sensitive, only requiring one or two
initial A! molecules for long periods of near maximum ppERK signal. The results describe
switch like behaviour of ppERK. This is potentially in line with the result of [Feinerman
et al., 2008b] that variation in ppERK concentration has little influence on the ability of
the cell to signal. If the variation is small in comparison to the “on” and “off” levels of the
ppERK switch then the variation is unlikely to influence the designation of the switch. If
small quantities of A! are sufficient to generate enough E? to be recognised as an activation
signal, then a single TCR may be sufficient to activate the cell. Further, if the levels of E?
are near maximal (or at least |E?|/|T| > 1), as the simulations suggest then it is likely that
all TCRs will receive ppERK protection. This has important implications for the spreading
of the protection signal, particularly for the hypothesis discussed in [Feinerman et al., 2008a;
Wylie et al., 2007] that endogenous ligands synergise with agonist ligands and contribute
to the activation signal. These issues are discussed in detail in the concluding comments in
Section 3.11.

Note that currently the MAPK cascade serves to guarantee a high ppERK signal if a
kinetic proofreading state is reached. This behaviour of the MAPK cascade suggests that
an extension to the experimental work of [Feinerman et al., 2008b] to investigate a variation
in all MAPK components would be more revealing than the current investigation of ERK

levels alone.
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Figure 3.13: Simulations at ¢ = 10~ with |Ms| € [1,2000] for 250 seconds and 20 repeats. Grey crosses are
the times at which a signalling state is first reached, solid black line gives the mean of these times. Dashed
black line (read on right axis) gives the number of times a protection occurred normalised by the number of

runs.

3.10 The Entire system

The components analysed thus far are now combined in a single simulation, whose size is
to e =107, ~ 3000 TCRs ”.

The influence of increasing TCR stimulation to TCR activation is now directly tested.
The pMHC is partitioned into: Mg a class of strong antigen (mg = 0.055) and Mg, a class
of weak antigen (mg = 1.0) with [M| = |[Mg| + |[Mg|. |Ms| is varied in [1,2000] and the
results are given in Figure 3.13. One or two strong ligands are as efficacious as thousands at
producing a high ppERK signal in 10% — 20% of all runs. Increasing Mg results in quicker
responses with the first signalling state being reached in the first 100 seconds.

An understanding of the activation behaviour can be gained by observing unbound
pSHP1 over time. Figures 3.14 and 3.15 show 50 simulations of 250 seconds for |[Mg| = 30
and |[Mg| = 3000 respectively. The ppERK generated by a single TCR is sufficient to protect
all TCRs from pSHP1 and in all cases the ppERK signal is close to maximal ~ e Ng. When
TCR protection occurs pSHP1 is unable to rebind the TCR resulting in a large spike in
unbound pSHP1. For |Mg| = 30, 5 activations occur throughout the first 250 seconds; for
|[Mg| = 300, only 2 activations occur and they are within the first 50 seconds. The greater
number of strong ligands produces a sharper increase in pSHP1. For ¢ > 50 pSHP1 levels
are so great that it is improbable that even a strong agonist will complete proofreading.
Figure 3.15 suggests that this point occurs when |S!| > |T|; there is at least one unbound
pSHP1 molecule for every TCR. This is in agreement with Section 3.8 that a quantity of
pSHP1 far less than maximal is sufficient to arrest the kinetic proofreading of a strong
agonist.

Figure 3.16 plots all trajectories of the 50 runs with |Mg| = 3000 whose unbound pSHP1

“In 1000 simulations with e = N;l with mg = 0.055 no runs achieve a TCR signalling state due to
the increased influence of stochastic fluctuations. However, qualitative similarities are observed between
€= N;l and € = 107" in Figures 3.19 and 3.16 respectively.
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is given in Figure 3.15. In agreement with small-e Figures 3.9, 3.19 there is a greater occur-
rence in late kinetic proofreading states early in the simulation runs (¢ < 50). Also, note
that simulation runs are generally confined to zero non-ZAP-70-protected phosphorylation
states (BY) further agreeing with small-¢ stationary distributions given in Figure 3.10.

The agonist and antagonist roles of ligands are now compared. Simulations are per-
formed varying ligand quality m;l € {1,3,6,12,16,18} for 250 seconds and 50 repeats.
Agonist tests are performed with 30 pMHC at the given mg, the other |[M|—30 pMHC have
mg = 1. Antagonist tests are performed with 30 pMHC with my = 1/18 and then other
M| — 30 pMHC are at given mg. The results are summarised in Table 3.3.

The antagonist tests show higher number of activations. Low quality ligands generate
little pSHP1 (Figure 3.10) allowing good ligands to signal uninhibited. This is unrelated
to the synergy of [Feinerman et al., 2008a], the very low quality ligands are “synergising”
by not inhibiting the high quality ligands. As pMHC ligand quality increases levels of
pSHP1 increase resulting in antagonism. Activations are seen with further increases in
ligand quality, all pMHC are now good agonists and have a higher probability of completing
kinetic proofreading (Figure 3.10).

An explanation for poor quality ligands completing kinetic proofreading is due to initial
|S'| = 0. Cells are expected to exhibit pSHP1 levels based on their recent interactions
[Altan-Bonnet and Germain, 2005] ® and particularly post-thymic T cells exhibit signifi-

8The rate at which pSHP1 is converted back to SHP1 is perhaps too great here, pSHP1 decays on the
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Figure 3.16: Histogram plot showing the occupation states S, SS' and S in time (see Section A.3 for
definition of S and advice on reading this plot), for simulations given in Figure 3.15, |[Ms| = 3000 for 250
seconds with 50 repeats. Two activations occur, they can be seen early within the lower S section. Note the
increased occupancy of the later kinetic proofreading states for ¢ < 50 before the rise of pSHP1 has occurred.
This is in agreement with small-e results in Figures 3.9, 3.19.

m;l Agonist  Antagonist
1 0 5
3 1 1
6 1 0
12 3 4
16 2 4
18 5 2

Table 3.3: Agonist and antagonist results. Second column gives simulation runs in which a high ppERK
signal occurs in the agonist tests; third column gives simulation runs in which a high ppERK signal occurs
for the antagonist tests. There is an overlap between agonist and antagonists tests, simulations with 30
pMHC with mq = 1/18 and |M| — 30 pMHC with m4 = 1 are performed only once and the results used for
agonist and antagonist cases.
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Initial |[S'| Activations Within Time /s

0 7 100

2000 6 100

3000 4 3 in 100, 1 in 900
6000 0 -

12000 1 900

8 x 10° 0 -

Table 3.4: Simulations increasing initial |S'|. The second column gives simulation runs in which a high
ppERK signal occurs; the third column gives an approximate timescale in which all ppERK signals occur.
The |S!| = 0 simulations are not repeated and the presented value is the result given in Figure 3.13, it should
be noted that this result involves simulations of 250 seconds not 1000.
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cantly increased pSHP1 [Germain and Stefanova, 1999]. Simulations are performed varying
initial pSHP1 for 1000 seconds with 50 repeats, |Mg| = 400 agonists ligands (mg4 = 0.05)
and [Mg| = 2600 weak pMHC ligands (mg4 = 1.0). The results are summarised in Table 3.4.

Increasing initial pSHP1 is able to reduce the probability of an activation signal for even
strong agonist pMHC. However, when observed over a long enough timescale (9004 seconds)
the initial pSHP1 decays to the point where stochastic fluctuations allow good agonists to
produce activations. Figure 3.17 shows the unbound pSHP1 for initial |S*| = 6000.

The result given in Figure 3.11 is examined, that increases in CD8 density produce a
maximum in Eg but not in Ex. That is, that increasing the CD8 density is able to overcome
increases in pSHP1. Figure 3.17 demonstrates zero activations in fifty with |S!| = 6000 and
v = 1. Simulations are performed with v = 2,5 for 1000 seconds with 50 repeats, other
simulation parameters are as Figure 3.17. The unbound pSHP1 for v = 2,5 is given in
Figure 3.18. Despite initial pSHP1, increases in v is able to induce activations. Agreeing
with Figure 3.11, increases in v result in greater pSHP1 but also an increased probability

minutes rather than hours timescale, this will only mean that the affect of pSHP1 could be underestimated
here.
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Figure 3.18: Simulations with |Mg| = 400; [Mg| = 2600; initial |S'| = 6000; for with v = 2 (|C| = 6000)
(left) and v = 5 (]C| = 15000) (right); for 1000 seconds with 25 repeats. Grey lines are simulation runs in
which no ppERK signal occurs, black lines are simulation runs in which kinetic proofreading is successful.
v = 2 results in 6 activations; v = 5 results in 16 activations, the most reliable activation seen thus far.

of reaching later kinetic proofreading states and so increased activations.

3.11 Discussion

This section discusses the findings of this chapter and culminates in a hypothesis for T
cell activation in Section 3.11.2. A justification for the use of volume restriction € is also
discussed in Section 3.11.1.

A biologically detailed model originally presented in [Altan-Bonnet and Germain, 2005
which concerns TCR signalling with respect to the behaviour of cytosolic SHP1 and ERK
has been analysed. This signalling system has received much modelling attention in [Chan
et al., 2001; Wylie et al., 2007; Artyomov et al., 2007; Lipniacki et al., 2008; Feinerman
et al., 2008b] who have often focused on the macroscopic or general qualitative behaviour.
However, rather than make simplifying assumptions (such as those in [Artyomov et al., 2007;
Lipniacki et al., 2008]) the analysis here has opted to retain the biological detail, to discover
how this detail maps to the identified general qualitative cell behaviours. This has been
achieved by dissecting, analysing and then re-composing the key components of the model.
In contrast to the original presentation of the ABG model [Altan-Bonnet and Germain,
2005], the analysis has been stochastic. The stochastic approach looks quite appropriate
given the small molecule numbers required to initiate the MAPK cascade (Section 3.9) and
consequently the small numbers of signalling TCRs required to generate a high ppERK
activation signal (Section 3.10). Further, [Artyomov et al., 2007; Lipniacki et al., 2008]
have clearly highlighted that stochastic effects leading to bistabilities are of importance in
TCR signalling models such as the one here. Certainly, some reactions considered fulfil the
sufficiency conditions (branching, irreversibility and feedback) for a stochastic bistability
given in [Artyomov et al., 2007]. It should be noted that the larger number of reactions in
this model complicates the issue. For example, the switch like behaviour and large molecule
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numbers of the MAPK cascade provides effective irreversibility. When observing the global
cell response to the MAPK cascade, the deterministic approach could give reasonable results.
However, the stochastic bistability conditions are effectively fulfilled by the reactions that
initialise the MAPK cascade (Reaction 11). The reactions are reversible, but the forward
rate is an order of magnitude greater than the reverse rate (Np < N4). The feedback in
the positive direction arises from many “cascading” steps of the MAPK process (see the
well known depiction of reactions in [Huang and Ferrell, 1996; Altan-Bonnet and Germain,
2005]), there is no negative feedback. Consequently small initial molecule numbers of Al
fulfil the bistability conditions. Further, with no negative feedback this stochastic switch is
weighted toward the “on” position. The result is a stochastic MAPK cascade that is far more
sensitive than the deterministic MAPK cascade (see Figure 3.12 compared in Figure S8A
in [Altan-Bonnet and Germain, 2005]). As such, a smaller activation signal from the TCRs
is required to produce a cell activation; the activations due to a single TCR in Section 3.10
are confirmation.

The results are in agreement with the qualitative behaviours discussed in [Chan et al.,
2001; Altan-Bonnet and Germain, 2005; Lipniacki et al., 2008] as outlined in Section 3.4.
Due to the approach, direct results comparisons are difficult as the focus is on differing
levels of detail to the models in [Chan et al., 2001; Altan-Bonnet and Germain, 2005;
Lipniacki et al., 2008]. However, the results are perhaps most readily comparable with those
in [Altan-Bonnet and Germain, 2005] as the underlying reactions equations are identical.
Certainly, there is agreement with the three predictions of the model given in [Altan-Bonnet
and Germain, 2005]: lengthening of ppERK response time at low ligand densities (see
Figures 3.12, 3.13, 3.14); hierarchy of antagonism, that is, superior sub-agonist ligands
produce greater negative feedback (see Figure 3.10); flexibility in ligand discrimination
undergoing differentiation, that is, the ability of a T cell to tune its response (see analysis
involving u,v and Figures 3.17, 3.18). Here the analysis has refrained from stochastically
running the numerical experiments carried out in [Altan-Bonnet and Germain, 2005] and
comparing the quantitative results. This task has been performed on a simpler model in
[Lipniacki et al., 2008]. Any quantitative differences are expected to arise at least where
the bistability conditions apply. As discussed in the previous paragraph, this includes the
sensitivity of the MAPK cascade and by a similar argument the strength of the pSHP1
negative feedback.

The key findings of the chapter are now summarised. Section 3.6 demonstrates that
rate choices should be made in unison with model structure choices. This can reveal
equivalently behaved simpler models and most importantly this provides an opportunity
to validate against biology. What remains is to return to biology to discover the occur-
rence of the CD8-TCR complex and adjust the model accordingly. A solution could be a
more complex model of CD8, TCR, pMHC binding similar to that in [van den Berg et al.,
2007]. Section 3.7 investigates the ABG formulation of kinetic proofreading and the ex-
pected step-like discrimination is observed. The phosphorylation protection of ZAP-70 is
shown to be of importance by aiding pMHC and CD8 density parameters u and v to sensi-
tise the cell. This ability is a consequence of the relative stability of the ZAP-70 association
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which allows ZAP-70 molecules to remain bound between TCR pMHC associations. Thus,
the kinetic proofreading state may be preserved between TCR pMHC binding events. It is
demonstrated that decreases in d, can cause retention of kinetic proofreading state despite
decreases in CD8 density v. The influence of this locking mechanism is largely undiscussed
in [Altan-Bonnet and Germain, 2005].

The analysis of the negative feedback behaviour in Section 3.8 demonstrates a transient
hump in expected kinetic proofreading state before a rise in expected pSHP1 level. This
is due to a non-zero kinetic proofreading state which must be reached before the negative
feedback can be generated; this is determined the base negative feedback state. Examining
the response to changes in pMHC and CDS8 density parameters shows that « and v are able
to increase expected proofreading state and pSHP1 levels. However, there is a maximum
in Eg in the v direction, as discussed in Section 3.8; this is an appropriate step towards the
necessary condition for full tunability given in [van den Berg et al., 2007].

In Section 3.9 the MAPK cascade is shown to act as an ultra-sensitive amplification
switch, amplifying small numbers of A! molecules to thousands of ppERK molecules. The
ppERK signal is near maximal and remains so for long periods of time; with sustained A!
production ppERK would remain near maximal permanently. As discussed in Section 3.9
this raises issues for the determination of the activation signal and the spreading of the pro-
tection signal. First, if a near maximal ppERK whose duration is > 200 seconds is sufficient
for a cell to recognise an activation then a single TCR may be sufficient to activate the cell.
Second, since numbers of near maximal ppERK are an order of magnitude greater than the
number of TCRs then total TCR protection is expected (as is the case in the activations
in Section 3.10) ?. This has implications for the hypothesis presented in [Feinerman et al.,
2008a] that suggests that protected endogenous ligands may contribute towards signalling.
The issue is that these ligands must still overcome kinetic proofreading. As discussed in
Section 3.4, consideration of the structure of the ppERK reactions reveal that it is not in-
volved in a positive feedback and so ppERK protection does not aid the ability of any ligand
to overcome kinetic proofreading. The discussion is eased by the following classification of
ligands based on the induced signalling;:

e (Class I: Are able to complete kinetic proofreading despite negative feedback and
generate an activation signal. Effectively agonists.

e Class II: Are unable to complete kinetic proofreading in the presence of negative
feedback 0, but are able to complete kinetic proofreading if protected from negative
feedback. Effectively antagonists.

°The TCR protection state is absorbing in this model and so all TCRs will receive protection with
probability 1 over a suitable timescale. However, protection is expected to persist on a timescale longer than
the signalling events considered here, if a loss of protection reaction were included very high levels of TCR
protection would be observed, but not total protection.

OFor the stochastic models considered here all ligands will be able to complete kinetic proofreading,
with or without negative feedback, when considered over a long enough time period. When an inability to
complete kinetic proofreading is discussed the meaning is that the probability a ligand will complete kinetic
proofreading in a time period that is relevant to the cell is effectively nil.
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e (Class III: Are unable to complete kinetic proofreading even when protected. They
are strong enough to achieve a kinetic proofreading state larger than the base nega-
tive feedback state, that is, they are able to generate negative feedback. Effectively

antagonists/partial agonists.

e (Class I'V: Are unable to complete kinetic proofreading when protected. They are also
unable to break the base negative feedback state. Effectively partial agonists/null
ligands.

The agonist, antagonist etc. labels have not been used because the definitions of the classes
differ from those given in Section 3.4. Within these classes only I & II may “synergise”
with the signalling agonists, IIT & IV will never complete kinetic proofreading. Generally
endogenous ligands are expected to be members of classes II-IV. A common hypothesis is
that endogenous ligands are most often not antagonists [Altan-Bonnet and Germain, 2005;
Feinerman et al., 2008a] and non-antagonist/non-agonist ligands are members of classes
1T & IV. Thus, the majority of endogenous ligands will not be able to synergise due to
their inability to overcome proofreading. The expected hitting time of protected kinetic
proofreading signalling state (Figure 3.6) shows a sharp increase with increases in mg4. This
suggests that whilst members of class II can complete kinetic proofreading on a suitable
timescale they may take substantially longer than members of class I and consequently
generate substantially less A'. Then, it is possible that a handful of class I ligands can
generate far more A! than a population of class II ligands. The discussions of the behaviour
of the MAPK cascade are concluded with two statements. First, if a single TCR is able
to generate a near maximal ppERK signal then synergising ligands can only contribute
by ensuring the ppERK signal remains near maximal over a longer period of time than
the original ligand could achieve. Second, if the TCRs receive total protection this is not
necessarily an indicator that all TCRs require protection, simply that this guarantees that
the TCRs of interest are protected.

Section 3.10 re-composes the entire model to perform stochastic simulations on a system
of many TCRs. The simulations demonstrate that a few agonists can be as efficacious as a
population of thousands in producing activations. Moreover, the large-e¢ results are found
to be in qualitative agreement with the small-e single TCR predictions. The justification
for € is discussed in Section 3.11.1.

It is elucidating to observe the dynamics of unbound pSHP1. The pSHP1 generated is
dependent on TCR stimulation, which is dependent on the quantity of pMHC and distribu-
tion of dissociation rates. As a consequence, simulations with zero initial pSHP1 consisting
solely of weak ligands (normally considered to be members of class IT) generate little pPSHP1
and the weak ligands can induce activations. Increased TCR stimulation results in a sharper
rise of pSHP1, the statistics of the sharp rise are related to the position of the base negative
feedback state. Once the rise has occurred it becomes very unlikely that any TCR, even a
good agonist, will complete kinetic proofreading. Performing simulations with ligands in ag-
onist and antagonist roles shows the expected agonist and antagonist behaviour. Increases
in initial pSHP1 are able to prevent weak ligands from inducing activations, with further
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increases preventing agonist pMHC from inducing any activations. Finally, the small-e v
prediction is validated, that increased CD8 density is able to increase the expected kinetic
proofreading state despite increasing the expected pSHP1.

3.11.1 Justification for ¢

Three choices for € are used in this chapter, as discussed in the Chapter 2 there is no
guarantee that results calculated for an e restricted volume will bare any resemblance to
the true system. As a consequence, the small-€ results of this chapter have only been used
to gain an intuition and understanding of the larger system, but then the behaviour must be
confirmed in the larger system (this is the objective of any modelling, to make simplifying
assumptions to gain understanding of a bigger system). The small-e results guided the
chosen analysis in Section 3.10, and as will now be discussed the small-¢ intuition is in
agreement with the large-e results. In this sense the use of € has been invaluable in this
work.

In Sections 3.6, 3.7 and 3.8 the volume of a T cell is scaled to approximately the volume
of a single TCR, so € = Nfl with N7 the number of TCRs in the ABG model. There is
qualitative agreement between small and large e (see Figures 3.16 and 3.19). All small-e
calculations in Sections 3.6-3.8 are made solely with rate matrices and unlike simulation
do not require many runs to view the entire distribution of behaviour. Assuming that
the increased stochastic noise at e = N 1'is suitably distributed then the transient and
stationary expectations may be minimally affected. Rate matrix N is the most susceptible
to noise as it analyses varying cytosolic molecule quantities. An increase of a single pSHP1
molecule at the single TCR level corresponds to a large increase in pSHP1 in the entire cell.
However, the results matched well with results obtained with a real pSHP1 concentration
parameter defined similarly to v defined in Section 3.6 (not shown).

In Section 3.9, € = 102 is used for simulations of the MAPK cascade and in Section 3.10
e = 107! for simulations of the entire system. The molecule numbers in these simulations
were found to be sufficient that stochastic fluctuations do not dominate and results were

found to be in good agreement with other large € choices, including ¢ = 1.

3.11.2 A Hypothesis for T cell Activation

Combining the results of the chapter a hypothesis for reliable T cell activation with respect
to the base negative feedback state is now discussed. If the T cell is presented with a
population comprising 0.01 — 0.1% agonists and 99.9 — 99.99% endogenous ligands and if
the expected time for agonists to complete kinetic proofreading is less than the expected
time for endogenous ligands to reach the base negative feedback state, then the T cell will be
reliably activated. This hypothesis is depicted in Figure 3.20 along with validating results
from the model. The results state that agonist ligands with mgq = u, are expected to reach
a kinetic proofreading signalling state before endogenous ligands with mg = p. reach the
base negative feedback state. The expected times given in Figure 3.20 are calculated from
the kinetic proofreading without negative feedback rate matrix K described in Section 3.7.
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Figure 3.19: Histogram plot of states S, SS* and S for 1000 simulations restricted to a single TCR. with
mq = 0.054 for 1000 seconds (see Section A.3 for definition of S and advice on reading this figure). No
simulations reach the grey signalling region. Note the increased occupancy of later kinetic proofreading states
within the first 500 seconds during the rise of pSHP1. This is in qualitative agreement with Figure 3.16.

As justification for calculating without negative feedback, it is noted that during the period
in which agonist ligands generate negative feedback the endogenous ligands do not generate
pSHP1. Since agonist ligands are in the vast minority and appealing to the assumption
that pSHP1 is not diffusion-limited then the population of endogenous ligands “absorb” the
pSHP1 generated by the agonist ligands. Further, this assumes that the endogenous ligands
comprise a sufficiently large proportion of all pMHC, that the influence of agonist pSHP1
does not significantly alter their time to base negative feedback state given in Figure 3.20.

This hypothesis requires more detailed modelling and analysis to confirm; in reality, the
negative feedback generated by the agonists will dampen their own proofreading as well
that of the endogenous ligands. However, the arguments given here certainly demonstrate
the need for further investigation.

This hypothesis suggests that a reason why the T cell can react to only 0.01-0.1% of the
total pMHC expressed [Germain and Stefanova, 1999] is because this is a very effective way
of producing T cell activation. Altan-Bonnet and Germain [Altan-Bonnet and Germain,
2005] suggest that the agonist ligands can quickly overcome the negative feedback due to
its “limited nature”. The results in this chapter suggest that the negative feedback is not
limited in nature and is capable of arresting the proofreading of any realistic ligand. A
clarification to their argument is given by adding that agonist ligands can induce activa-
tions by their ability to complete proofreading before weaker ligands can generate negative
feedback.
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Figure 3.20: Left: Depiction of reliable activation hypothesis. The hypothetical distribution of agonist
(ma = pe) ligands reaching signalling state is given on the left (dark grey), hq is the expected hit time
of signalling state. Hypothetical distribution of endogenous ligands (mq = pe) reaching base negative
feedback state is given on the left (light grey), he is expected hit time of the base state. The distributions
are purely illustrative and are sum of exponential distributions, specifically Erlang Distributions (Gamma
distribution with integer shape parameter) and as such the mean is greater than the mode. Dotted line gives
the hypothetical rise of negative feedback, again illustrative and calculated as a function of cumulative hit
time distributions, expected agonist/endogenous pSHP1 levels and assumed agonist/endogenous populations
ratio. Right: Validation of hypothesis within the model. Solid black line (hs) is expected hit time of signalling
state for agonist ligands (mq = pe) (taken from Figure 3.6), dotted line (hy,) is the expected hit time of base
negative feedback state for endogenous ligands (ma = pe). All ligands with mg < p, are expected to reach
signalling state before ligands with mq > p. reach base negative feedback state.

Note that this hypothesis does not prevent a population of agonists inducing an acti-
vation for two reasons. First, the larger population of agonists have a higher probability
of sampling a proofreading time substantially faster than the mean. Second, the negative
feedback parameters currently allow agonist ligands to complete kinetic proofreading de-
spite high pSHP1 levels via the stochastic fluctuations that occur over an increased time
period (see Table 3.4).

Biological experimentation which could test the results of the chapter is now suggested.
If APCs can be prepared which present endogenous ligands in the majority and agonist
ligands in the minority and if the concentration of agonist ligands can be incrementally
increased, then the statistics of the rise time of pSHP1 and ppERK could confirm the
details of the hypothesis in Figure 3.20. Further, the analysis suggests that the pSHP1 levels
needed to dampen a strong agonist are an order of magnitude smaller than the total SHP1.
Consequently a variation in pSHP1 less than an order of magnitude will not necessarily
inhibit a cell in producing the required pSHP1 to dampen strong agonists. However, a
reduction in SHP1 levels will reduce the rate at which pSHP1 can be produced and so
increase the time taken to reach equilibrium. This should extend the time window in which
activations can reliably occur and so cell activations will be observed over a longer time
period. One could also look for the dynamics of unbound pSHP1 which would suggest its
relationship to the protected TCR and particularly the spreading of the protection signal.
Any investigations into the time taken for kinetic proofreading of varying strength ligands,
particularly looking for the existence and position of a base negative feedback state would
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prove very useful in validating the hypothesis presented in Figure 3.20.

This chapter has analysed a biological model for the purpose of modelling biology rather
than the purpose of the construction of a bio-inspired algorithm. The approach has, hope-
fully, avoided biases that may have occurred if algorithmic development was in mind. In
the next chapter, the detail of this model is greatly simplified in an abstracted model of
T cell signalling. The abstracted model is then used to develop bio-inspired algorithm, in
particular an anomaly detection system. The majority of the detail of this chapter is not
carried through to the next. Apart from the contribution to biology, the benefit of the
detail of this chapter is that it culminated in the negative feedback base state hypothesis.

This feature will be pivotal in the behaviour of the algorithm in the next chapter.



CHAPTER 4

The Receptor Density Algorithm

This chapter takes abstractions from the previous chapter to construct an abstracted model
of T cell signalling. This abstracted model in conjunction with inspiration and grounding
in conventional machine learning approaches [Bishop, 1994] is used to develop an anomaly
detection algorithm: The Receptor Density Algorithm. The algorithm shares structure in
common with the T cell, in particular, with the internal component of the T cell receptor.
The grounding with the machine learning techniques provides some justification in approach

and understanding of the algorithm’s anomaly detection mechanisms.

4.1 Biological Inspiration and Abstraction

The T cell signalling system is a suitable candidate for a bio-inspired algorithm, particularly
due to the properties of T cell discrimination:

e The T cell is able to perform fine-grain! 2-class discrimination, where the second class

is unseen, that is, the activating agonist pMHC is unknown a priori.

e The discrimination between the two classes is dependent on a history and based on
the relative differences of examples from each class. That is, a new pMHC ligand
will fail to activate a T cell if it has a similar TCR-pMHC bond lifetime to recently
presented pMHC.

e The system fulfils the advice of Chapter 1. The structure of the system looks more
important than its specifics, kinetic proofreading is example. There is the undesired
molecular recognition in the TCR-pMHC bind, however the fact that this is not a
lock-and-key molecular recognition and is combined with signalling processes to time
this bind gives good potential for an algorithm.

In machine learning terminology, the above describes an anomaly detection system. Anomaly
detection problems are two class classification problems, the system must decide whether
samples (in this case pMHC) are members of class 1 or class 2. The distinguishing feature

!i.e. small difference between agonist and antagonist pMHC

70
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of anomaly detection problems is that only the details of class 1 are known, and so, at the
time of classification there is no description of class 2. Moreover, the anomaly detection
system of the T cell is on-line in that instances of class 1 are continually presented po-
tentially altering the discrimination boundaries. As noted in Chapter 1, this is effectively
“reasoning-by-metaphor”. There looks to be a mapping to anomaly detection techniques,
but it is necessary to become involved in specifics to confirm this suggestion. Thus, the T
cell signalling system has properties to be a good candidate for a bio-inspired algorithm,
and the approzimate application (see Chapter 1) is anomaly detection. The first step is to
create an abstracted model from the biological model. A recap of key biological concepts
relevant to understanding the subsequent abstracted model (Section 4.1.1) is now given.

The hypothesis presented at the end of the last chapter found the base negative feedback
state key in understanding T cell activation. This negative feedback barrier and other
processes associated with the internal component of the TCR have the ability to evaluate
the strength of the TCR-pMHC bond. Only a subset of the processes related to TCR
signalling are utilised in this chapter, in summary:

e Kinetic Proofreading. These are the steps that must be completed before a TCR can
generate an activation signal, the result is a step like discrimination between ligands
which are able to complete kinetic proofreading and those that are not.

e Negative Feedback € Base State. Once the kinetic proofreading process is equal to or
greater than the base negative feedback state, a negative feedback signal is generated.
This signal is generated at a rate independent of the displacement above the base
state, and so is not instantaneous, it takes time to build. The signal has the ability
to inhibit and reverse the kinetic proofreading process.

o Serial Triggering & Stimulation Spreading. A single pMHC molecule may dissociate
and re-associate to the same or a different TCR. Whilst this was not directly modelled
in the last chapter, the constraints of the T cell surface increase the probability of

re-association to the same or nearby TCRs.

e Negative Feedback Spreading. The negative feedback signal generated by a TCR will
spread to dampen the surrounding TCRs.

4.1.1 The Generalised Receptor

This section presents a computationally relevant abstracted model of a T cell receptor. To
avoid confusion, the acronym TCR refers to the biological entity and the word receptor
refers to the TCR’s computational abstraction:

Definition 4.1. A receptor is a tuple (p,n,3,¢,c) with p,n, 3, € R. That is, a receptor
has a position p > 0; a negative feedback n; a negative feedback barrier 3 > 0 and a length
{ > (. The state ¢ € C represents the classification or “activation” state of a receptor,
where C' is the set of activation states of a receptor.
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Figure 4.1: The receptor receives an input u: pushes the receptor position p;4+1 toward ¢. The receptor will
generate negative feedback if p; > 8. Should, pry1 > £ then the receptor will successfully signal with ¢ = 1.

The definition of a receptor is an abstraction of the internal component of the TCR.
The mapping between the biology and the computational description is relatively obvious,
but for clarity: p represents kinetic proofreading state (B in the terminology of the last
chapter); n represents the pSHP1 level near the TCR; 3 is the base negative feedback state
(BY)?; ¢ is the maximum kinetic proofreading state (B3); and ¢ maps to the notion of TCR
protection.

The following describes the behaviour of a receptor with the language of its definition,
it is also depicted in Figure 4.1. A receptor receives a sequence of inputs {u;} with u; € R
at discrete time points t = 0,1,2,... and us > 0. Then, a function f; updates the receptor
position and negative feedback as a function of wuy:

fe 2 (pes e, ue, B) — (Pes1s ney1)- (4.1)

If the receptor position is above the negative feedback barrier p; > 3, then negative feedback
is generated. If the receptor position reaches or exceeds the receptor length £, then a receptor
activation or classification occurs. In this case, ¢ € C' = {0,1} and ¢ = 1 is p; > ¢ and
¢ = 0 otherwise. The receptor position and negative feedback will also decay and under
repeated input u; = 0 they will return to py, ny = 0. A biological restriction is incorporated
here: the decay rate of the receptor position is faster than that of the negative feedback.
With this description of a receptor one could specify the update function f; by application

of recurrent equations as follows:

Prr1 = bpy + up — any
dnt if Dt < ,6

| (12)
dng+g ifpr>p

N1 =

with 0 < b,d < 1 the respective receptor position and negative feedback decay rates, and
b < d; a > 0 controls the negative feedback influence; g > 0 is the negative feedback growth
rate.

This definition of a receptor places much detail in assumption set A (Chapter 1). In
particular, time is discrete and the kinetic proofreading state and negative feedback is

2Due to the continuous behaviour of the receptor position 3 is referred to as the base negative feedback
barrier rather than state
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continuous. Further, the model is now deterministic and not stochastic, though input wu,
may still be stochastic. As a consequence, the action of the negative feedback on the kinetic
proofreading locking mechanism is modelled as linear influence. Moreover, much detail has
been discarded, such as the CD8 co-receptor, the MAPK cascade and the protection of
TCRs for the pSHP1. The consequences of this will be discussed in the next section where
a replication of biological behaviour is performed.

The above dynamics and slight variants are the main topic of this chapter and later
will form the basis of an anomaly detection algorithm in Section 4.6. The behaviour of
recurrences (4.2) is analysed later in Section 4.2 and again in Section 4.5. Before the
analysis, a discussion of how many receptors may interact is given.

4.1.2 The Difficulty of Many Receptors

The model in the last chapter had well-mixed assumptions, which allowed the neglection of
space. If the abstracted model followed suit, then one would collect many receptors together
with a single uniting negative feedback. A collection of u; for each ¢t would be required as
input (enough to stimulate each receptor), the receptors could be randomly matched to an
input and all positions and global negative feedback updated accordingly. If this abstracted
model behaved as the hypothesis of the last chapter suggested, then the resulting algorithm
would detect outliers in the magnitudes of the w;, but only in one direction (i.e. only
significantly larger u; than the mean would be detected). This does not seem to be of much
computational value, conventional computers have many more direct ways of solving this
problem. There are two factors at work here. First, the molecular-recognition of the TCR
is missing, in biology this maps the information stored in the conformation and chemical
composition of the peptide (and MHC) into information interpretable by the cell, i.e. time.
Second, the biological substrate must work hard to perform comparisons between many
different things, in this case the things are pMHC dissociation rates. Whereas, conventional
computers find this sort of comparison relatively easy. The possibility that the biological
substrate is performing comparisons has interesting implications. These are discussed in
more detail in Section 6.2 and Chapter 6.

The following discussion returns to the computational abstraction and outlines the start
of a solution to this problem which exploits the interesting behaviour of the TCR and so
its computational counterpart the receptor.

First, the missing molecular recognition of the TCR is addressed. Consider that a pMHC
complex is represented as a high dimension vector m, for example the vector could specify
the location of every atom of the complex. Then, consider the same for the TCR with
resulting vector t. Let x be a binding function that calculates the dissociate rate my of that
TCR and pMHC,

k(m,t) — my. (4.3)

It would be possible to then use a function like k to allow higher dimension inputs to
the generalised receptors. This, more or less, is the approach of shape-space in theoretical
immunology [Perelson and Oster, 1979] and many artificial immune systems [Timmis et al.,
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2008a]. The approach sets the dimension by the problem, if input wu; is an n-dimensional
input then the “TCR” is a n-dimensional vector and binding function s is set as to a
inverted standard distance metric. However, this is not a very immunological realistic model,
[Carneiro and Stewart, 1994] notes that the true & is highly non-linear and discontinuous.
It certainly would not behave like a metric. From a computational perspective, comparisons
such as k behave non-intuitively as n increases. [Stibor, 2006] gives good discussion of the
issues dimensionality in relation to AIS. Returning to the missing external component of
the TCR, it is possible to use a shape-space approach to convert an n-dimensional input
into a magnitude for use in the algorithm. Even if one ignores the difficulty of choosing an
appropriate s, this process shifts some of the computational difficulty out of the receptors
and in to k. This would slightly defeat the point of the whole modelling exercise. Moreover,
even with a x the issue of the simplistic outlier detection remains.

An alternative solution can be found by recalling that TCRs are arranged uniformly
on the cell surface (at least by the assumptions of the last chapter and [Altan-Bonnet and
Germain, 2005]). The same can be done for receptors, and in the next section receptors
will be arranged in a uniform lattice. The dimension of the lattice is set to the same as
the input, so an n-dimensional u; is input to an n dimensional lattice. As is seen in the
next section, each input must have a n-dimensional location and a magnitude; the input
will influence receptors near its location. High dimension concerns still apply here, but
in a slightly different manner to a function x. An algorithm resulting from a lattice of
receptors would currently be a 1-dimensional outlier detector with n-dimensional labels.
Again, not very algorithmically useful. However, through consideration of the structure
of the equations governing a lattice of receptors connections are found to a conventional
computational approach to the n-dimensional outlier detection problem. This is shown in
Section 4.3 where outlier detection is given a more formal description. In Section 4.4.2; this
connection suggests an alteration to receptor interactions which will improve the richness
of the information processing of a lattice of receptors.

4.1.3 Multiple receptors in a Lattice

Definition 4.2. A n-dimensional lattice L of receptors is a set of uniformly spaced receptors
in R™. Receptors in L are located at (kodg, k101, ...,kn—10n—1) and k; € Z and §; is the
separation between receptors in the ith dimension. The lattice is restricted to be finite, so
ki € [k k
and negative feedback for a receptor at point x are written py(x) and ni(x) respectively.

The location of a receptor in r € L is written r«, and the receptor position

Tmin? imam] :

It is necessary for each input to have a location and a strength in analogy to the respective
position of a pMHC ligand on the APC surface and the affinity of the pMHC ligand for
the TCR. The input sequence to a receptor lattice is now {v;} with v = (u,2¢), ug > 0
denotes the strength of the input and z; € R" is the location of the input. If z; falls outside
the boundaries of the lattice then the input ~; has no influence on the receptors. The
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recurrences (4.2) may now be augmented to describe the interaction between receptors:

pr1(x) = bp(x) + Ks(x,7) — ang(x)
ni+1(x) = dKn(x,n¢) + gH (pe(x) — 3), (4.4)

with x € L a point in the lattice; H(-) the Heaviside step function H(z) = 1 if > 0
and H(x) = 0 otherwise *; Kg(-) and Kx(-) describe the interaction between neighbouring
receptors. Kg is the stimulation kernel function, it is used to model the spreading of
stimulation due to a single pMHC ligand, as the ligand may serially engage to the same or
nearby TCRs. Kg is defined,

u X—Z
Kstxm) = ok (257 (4.5

with K (-) is a kernel function with width h. All kernels considered in this thesis will have

the constraints that,
K(x) >0, and K(x)dx = 1. (4.6)
Rn

Further discussions of kernel functions are given in Section 4.3. The function Ky similarly

makes use of a kernel to describe the diffusion of negative feedback through the lattice:

Ko (x, ) = hinznt(rx)z( (X_hr") (4.7)
relL

The function of the Kg and K is described in Figure 4.2. With regards to the boundaries
of the lattice, later (Section 4.4 onwards) it will be seen that it is possible to make the lattice
sufficiently large that all activity of interest will fall well within the confines of the lattice.
This is due to a restriction of negative feedback diffusion, and it is then possible to set all
boundary p¢(x),n:(x) = 0. Until then, the boundaries of the lattice will be connected as
an n-dimensional torus, and loosely speaking this models the lack of boundaries of a T cell

surface.
The above describes the lattice of receptors receiving a single input per time step, it is a
simple extension to describe a situation involving many inputs v, ¥¢,, - - - » Vt,,—1 Per time

step. The input term in the receptor position recurrence in (4.4) is augmented to:

m—1

Z Kg(x,v,) (4.8)

i=0
These definitions add additional information to the assumption set A that connects
the biological and abstracted models. Note that the generalised receptor, with additional
justification, could be regarded as being situated on the left of Figure 1.1. Certainly, it is
not a very realistic model and neither is it particularly general. So it is not a very good
model of biology, but a model of biology nonetheless. Whereas, by definition the lattice

3Note that this definition sets H(0) = 1.
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Figure 4.2: Left: A 1-dimensional lattice of receptors. Kg is shown for an input =, which falls between
two receptors, note how K dictates the contribution of 4; to the receptors surrounding z:. Ky describes
diffusion of negative feedback from a receptor L;. Right: A 2-dimensional lattice of receptors, the circles
depict contours of Ky and Kg.

of receptors added detail to alleviate the computational concerns of replicating the TCR.
However, the detail added was biological and with additional justification this too could be
regarded as a purely biological model. Whether for biology or algorithms, it is necessary
to examine whether this abstracted model can replicate the behaviour of the hypothesis of
the last chapter. This is done in the next section.

4.1.4 A Comparison with the Biology

This section replicates the behaviour of the last chapter’s hypothesis in the abstracted
model. For the sake of example, take a 1-dimensional lattice L with kyij, = 0, knax = 199,
0 = 1 resulting in a lattice of 200 receptors. Each receptor is identical with parameters
b=0.95d=0.99; g =0.26; a =1; 8 =1; £ = 4. The kernels used in Kg and Ky are the
standard normal kernel (4.38). For Kg, h = 0.75 so ~ 99% of an input’s influence is spread
over 4 receptors. For Ky, h = 15 so every time step ~ 99% of the negative feedback of a
receptor diffuses to within 45 receptors distance. This choice for Ky reflects the well-mixed
assumption used in the model in the last chapter.

Three input scenarios are chosen, in each the input is constant in time with m = 200
input points. Each input location is chosen uniformly at random within the range of the
lattice z; ~ U(Kmin, kmax). The strength of each input point are chosen at random from
differing distributions as follows:

Scenario a:  wu; ~ N(p1,01)

) N(p1,01) for (1 — p)m of the input.
Scenario b:

&

N(pg,09) for pm of the input.

Scenario ¢:  u; ~ N(u2,09),

with pu; = 1, ug = 2.75 and 01,09 = % and p = 0.05. In scenario ¢ and ¢ the magnitudes
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are drawn from the same respective distributions, in scenario b the magnitudes of 190 input
points (also chosen uniformly at random) are drawn from the distribution with the lower
mean, and 10 points are drawn from the distribution with the greater mean. The results
are given in Figure 4.3. In scenario ¢ and ¢ the negative feedback uniformly grows to
just above the mean of each input distribution and all p;(x) < ¢. In scenario b, the mean
negative feedback is not enough to contain the receptors with input N (ue, 02) and receptor
activation occurs. To map back to biology: a describes a T cell presented with a population
of poor quality ligands pMHC ligands; b describes a T cell presented with a majority of
poor quality pMHC and a minority of good pMHC; ¢ describes a T cell presented with
a population of solely high quality pMHC which pushes the cell into anergy. There are
some discrepancies between this abstracted model and the biological model. In particular,
the dynamics involving the time window before the rise of negative feedback are different.
In part, this is related to continuous representations of receptor position and the linear
application of negative feedback. If the objective was not an algorithm, it would be an
interesting exercise to return to the definitions of the abstracted model and investigate how
to achieve a better correspondence between both models. As algorithm development is the
objective, the chapter continues with the current level of agreement between the biological
and abstracted models.

The behaviour of the dynamics of a single receptor (4.2) are analysed in the following

section.

4.2 The Single Receptor: Solutions and Equilibrium

It is convenient to calculate some basic properties of the single receptor dynamics described
in (4.2). This will be of use when connecting the behaviour of a receptor to conventional
anomaly detection approaches in Section 4.3. As the discussion is of a single receptor
there is no concept of a lattice or interactions between neighbouring receptors, kernel based
functions K¢ and K do not apply. This is in analogy to the previous chapter, in that the
isolated behaviour of a receptor is investigated.
The recurrences in (4.2) may be re-written in matrix form, with state variable oy =
(pe )"
o141 = Aoy + 1. (4.9)

The 2 x 2 matrix A describes the interaction between p; and ng, the vector f; describes the

(b —a o Ut
) () o

The solution to (4.9) is,

input at time t:

t—1
oy = Alay + Z AR (4.11)

k=0
Calculating AF is of relevance, and it may be found via the eigenvalues A = b, d of A and
cigenvectors e; = (0 1)T and ey = (1 =4)T of A. Then, A¥ = EA*E~! with E = [e1 ey]
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Figure 4.3: The input (grey), receptor positions (black) and negative feedback (red) for scenarios a, b and
c. The lattice is drawn along the horizontal axis. See text for details and parameters. Note scenario b is the

only scenario in which a receptor activation occurs.
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and A the diagonal matrix of eigenvalues.

bk a(dk*bk)
AF = b—d |, 4.12
(o o (4.12)

Consequently the solution to (4.9) written for p; and ny is,

dt - bt i—1 dt—l—k o bt—l—k H .
b—d — b—d
t—1
ne =nod' +g Z H(py, — B)d =1, (4.14)
k=0

Note that a only acts to scale n, the trajectory of p; is unchanged if ¢’ = 1 in (4.13) and
g = ag in (4.14)*. Thus, a is eliminated from all further discussions.

The step in negative feedback presents some difficulties, however exact solutions for
below and above the step can be given that are only valid whilst p; remains in the relevant
region. Let ¢, = >} _,a¥ = o1 then,

a—1"
= pobt + -o 4 Sl kpt—1-k
Forpy <@ {0 P00 T Ha 2k (4.15)
ny = ding
t t
= pobt + -, 4 S kpt=1-k 9(o5—9¢p)
Forp > @3 {0 P00 T hd 0 k=0 b—d (4.16)

ny = d'ng + g¢},

The equilibrium positions and fixed points of recurrence (4.9) are now discussed.

4.2.1 Fixed Points

The parameters b, d, g, 3, ¢ define a scale with which to interpret the input u;. Assume a
constant input u; = u > 0, then the summation involving u; in (4.15) and (4.16) becomes
ugy. Then, four ranges of u: Uy, Us,Us, Uy (Figure 4.4) define four regions of equilibrium
for p; and n;. The receptor position at equilibrium is written p. and similarly equilibrium

negative feedback is written ne.

o Uy = {u:u< B(1 -0} Foru e U the negative feedback will not be broken, no
negative feedback will be generated: p. = u/(1 —b), n. = 0.

o Uy ={u:0(1-0) <u<pB(l-0)+g/(1—d)}. For u € Us, negative feedback will be
generated and it will grow and arrive at approximate equilibrium positions p. ~ 3,
with ne ~ u — 3(1 — b). The details of this are discussed further in Section 4.2.2.

o Us={u:pB(1-0b)+g/(1—-d) <u<l1l->b)+g/(l—d)} Foru € Us the negative
feedback will not be able to hold p. ~ [ and will rise to a maximum n. = g/(1 — d).
However, this maximum is enough to contain p. = u/(1 —b) + ¢g/(1 — d)(1 —b) < ¢,
and so changes in u to produce a p > £ are still of interest.

*The dashed notation denotes a new assignment of the variable
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@ | Figure 4.4: The equilibrium values of p. and n. for
@ ranges of u defined by regions U1, Uz, Us,Us, see text

=

| {u <(1=-b)p+ 1% for details.

@ u<(1-0b)p

o Uy ={u:u>l(1-b)+g/(1—d)} For u € Uy the equilibrium positions are calculated
identically as in region 3, but now p > ¢ and so this situation is not of interest.

Input u € Us,U3 can “hold” the receptor position at 3, with negative feedback directly
related to u. It is only the lower boundary of U3 that can hold p. = [/ with maximum
negative feedback, but because the negative feedback is constant for all v € U3 the input
range will be of no particular interest. Input range Us will have the most interest for
algorithmic purposes in Section 4.4.

For input in Uy, Us, Uy the (pe,ne)! are fixed points of (4.9), and (py, n¢)” will asymptot-
ically approach these points as ¢ — oco. This can be established by noting that in these input
regions the p and n recurrences only transiently experience the non-linearity of H(-) depen-
dent on initial (pg,no). After influence of the initial state has decayed the equations are
linear with distinct eigenvalues |A;| < 1 and so the fixed points are stable. This asymptotic

behaviour can also be seen with consideration of the difference operator:
AOét = Oty1 — O (417)

Then, define do¢ = @ — o4, as the distance of variable « from its equilibrium position. In
regions U1,Us,Uy the p and n differences are all of the form Aay = €d,¢ with € < 1, since
e =1—>bfor pand e =1 —d for n. Each step p and n jump toward the equilibrium by a
fraction of their distance from the equilibrium. In U, the picture is quite different, p cannot

escape the non-linearity and the system becomes periodic.

4.2.2 Region 2 Cycles

The only fixed point of the n-recurrence in (4.2) is the maximum value n. = g/(1 — d).
By definition an input v € Uy cannot hold n. at this point. So, p and n will cycle around
Pe = B, ne = u— (1 —b) as p jumps above and below 3. This behaviour is demonstrated
in Figure 4.5. For diagrammatic clarity 3 is depicted as a horizontal barrier, consequently
all discussions now regard points in the (n,p)-plane. The gradient Ap;/An; describes the
orbit around (n,p.), and p and n differences are,

Apy = (b - 1)pt +u— ng (418)
Ang = (d—1)ny + g. (4.19)
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Figure 4.5: The oscillating behaviour of p; and n; for u € Uz, with parameters are b = 0.95; d = 0.99;
g = 0.01; 8 =1; po,no = 0. Uz has 0.05 < u < 1.05, the figures plot uw = k/6 + 0.05. Left: plot p: and n:
trajectories in time. Right: The trajectories are in the (n,p)-plane. Note that the magnitude of u changes
the shape of the oscillation.

The signs of Ap; and Any partition the positive (n,p)-plane into four, clearly An; > 0
when p; >  and Any < 0 when p; < 3. The sign of Ap, is defined by the Ap; = 0 line:
p= (u—n)/(1 —b). Thus the four partitions are (arranged to match Figure 4.6),

Rg:{(n,p):pZB/\p<%} 7-\’/3:{(”’29)31725/\1921{:?}

Ri={mp):p<prp<if}  Ra={mp:ip<Brpzi3} (420

Figure 4.6 displays the four partitions along with a vector field for one choice of parameters.
From any point (ny, p;) € R; an update may leave (1411, pi+1) € R;. Note that the directions
of the region boundaries oppose the gradients in each partition and so it is also possible to
move to the next partition: R(; 41 mod 4)- These are the only possible transitions due to the
following result:

Theorem 4.1. A receptor under constant input u € Us will fall into the following cycle:
Ri1—Ro— Rz — Ry — R1. (4.21)

Proof. First, consider the simple case of Re and R4. In Ro, by definition Ap; > 0 and so
it is only possible to leave R and enter R3. Then in R4, by definition Ap; < 0 and since
p¢ > 0 it is only possible to leave R4 and enter Rq.

In Ry and Rj3 it is necessary to show that (ns, p¢) and (ng+1,pi+1) lie on the same side
of line p = (u—n)/(1 —b). In Ry, the inequalities p; < (v —n)/(1 —b) and p; < (3 hold for
a point (ng, pt), then prrq < (u—mngp1)/(1 — b) holds since:

—d
bpt+u—nt<u1_gt, (4.22)
u—mn; ng |1—d
— . 4.2
pt<1—b+b[l—b] (423)
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Figure 4.6: Left: Four partitions surrounding (ne, pe) defined by the sign of An; and Ap; which defines lines
p= B and p= 5=5. Right: A vector field for parameters b = 0.95; d = 0.99; g = 0.01; 8 = 1; and u = 0.55,
two cycles are shown which are periodic to 107'%. The larger (blue) cycle has a period of 54 and is obtained

from starting point (0,0); the smaller (black) is period 24 obtained from (ne,pe).

In R3, the inequalities py > (u — ng)/(1 — b) and p; > § hold for a point (ng,pt), then
pry1 > (v —ngp1)/(1 — b) holds since:

bpe +u —ny > W, (4.24)
b= u1_—7;t % E:ﬂ - b(lg— b’ (425)
and note that:
Tt [1 — d] — 9 <0 holds since ny < 9 (4.26)
b |1-b] b(1—b) 1-d
O

Thus, for u € Us n and p will cycle around the point (ne,pe). Two cycles are shown
which are found starting from (0,0) and (n., p.) with periods of 24 and 54 respectively. The
start and end points of each cycle match to 15 decimal places. The non-uniqueness of the
cycles is due to the discrete updates of the equations.

Due to the discrete equations governing p and n only a subset of the entire (n, p)-plane
is accessible. This is of less relevance for p; as the set of points it may occupy is a function
of u;. However, for n; the set of accessible points is a function of g and d. Let 7, denote a
time step between 0 and ¢ in which p,, > 3, if this occurs n times then 7 < <--- <7,

and so ny may only occupy points of the form,

g ~
nt:m[m—Zd ] (4.27)

k=1
This is not too concerning as t becomes large, however the one step difference n; —
{dn¢,dny + g} may be of concern. Thus for relatively smooth behaviour of n, d should
be near 1 and g should be near 0.
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The details of the possible behaviour of the cycles can be further understood by con-
sidering the points in the (n,p)-plane which are brought closer to the equilibrium by an
iteration of the n and p recurrences. Consider the sum of the squared differences between

a current point (n,p) and the equilibrium (7, pe):

de(nap) = (TL - ne)2 + (p - pe)Q- (428)

An iteration takes (n,p) — (n4,px) and the points for which de(n4,ps) — de(n,p) = 0 are
the set points whose distance (but not position for u € Uy) from the equilibrium is left
unchanged. It is necessary to calculate this distance above and below the line p = 3, which

gives:

Forp<ﬁ, (dn_ne)2_(n_ne)2+(bp+u_n_pe)2_(p_pe)2:0 (4'29)
For p > 33, (dn+g— ne)2 —(n— n6)2 +bp+u—n —pe)2 —(p— pe)2 =0. (4.30)

Each of the above has the form of a conic, and both have discriminant d?(b* —1) —b? < 0 for
0 < b,d,< 1 see (4.33), thus they are hyperbolas [Korn and Korn, 2000]. They divide the
(n, p)-plane into regions which are attracted and repulsed from (ne, pe), see Figure 4.7. For
small g the two hyperbolas are effectively identical, as g increases the hyperbola above moves
away from the point (ne,pe). In Figure 4.7 (right) the large g prevents the trajectory from
reaching the upper hyperbola, resulting in qualitatively different cycle behaviour. Since
p: > 0, if p is pushed to zero by a large negative feedback it will remain there until the
negative feedback level has decayed.

The influence of g on the two hyperbolas can be clarified by a normalisation to a standard
hyperbola form. In particular, the pn term in (4.30) results in a rotation of the hyperbola;
a removal of this rotation along with a translation to the origin brings each hyperbola into
a standard form. Hyperbola (4.30) may be expanded into the form:

A + 2appnp + appp2 + 2apn + 2app +a =0, (4.31)
with the following parameters,

Appn = d? anp, =dg+ne(l —d)+pe—u
app = —b ap, =bu+p.(l—-0) (4.32)
app =b0*—1 a =g(g—2n.)+ulu—2p).

There are three invariants with respect to translation and rotation of a conic [Korn and

Korn, 2000]:

Unn  Anp Qan
J A=lany app ap|, (4.33)

an ap @

Ann  Qnp
Q= ann + Gpp, D=

Qnp  Qpp

D is the determinant of the conic, which is a hyperbola when D < 0 as is the case (4.30)
and (4.29). The eigenvalues of the matrix whose determinant is D are also relevant and are
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p de(p, n) < de(p*vn*) de(p, TL) > de(p*an*) p de(p, n) < de(p*vn*) de(p, TL) > de(p*an*)

g =0.01 g=02

de(p, n) > de(p*vn*) de(p, n) > de(p*vn*)

Figure 4.7: Regions where the iteration (n,p) — (n«,p«) brings (n., p«) closer to (ne,pe). All parameters
are as Figure 4.5, except Left: g = 0.01 and right: g = 0.2. Top: The color maps show de (N, px) — de(n, p)
on the (n,p)-plane, marked are the hyperbolas of the zero contour. Bottom: Regions where the iteration
results in (n.,p«) closer to (ne,pe) than (n,p) (light grey) and further away (dark grey). Blue line shows
the period 24 cycle from Figure 4.5 (left) a period 66 cycle obtained when g = 0.2 (right).

the roots of the equation A2 — QA + D = 0. Then the standard form for the hyperbola is
calculated as follows:

22 P A A
==, 2 2 = ) 4.34
q% q% a )\%)\2 © )\1)\3 ( )

The standard form is given in (x,y) coordinate system which is the (n, p) coordinate system
transformed via a translation of the centre of the conic to the origin and a rotation: tan 26 =
anp/(@nn — app). Hyperbolas for a range of g are shown in Figure 4.8, note how the increase
in g shifts the focus of the hyperbola away from the origin.

Finally, Figure 4.9 shows the cycles for inputs from Us. For parameters different to those
used in Figure 4.9 the qualitative cycle behaviour is the same with the exception of large g
results in p hitting its axis (see Figure 4.7).

The discussion now turns to conventional approaches to anomaly detection, through
which connections will be made to the behaviour of a lattice of receptors.
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Figure 4.8: Hyperbolas in standard form. Param-
eters as Figure 4.5 and g = 0,0.01,k/10 for k =
1,...,10. All have asymptotes y = :I:Z—f:v = +2.36z. >
Only relevant halves of g = 0 and g # 0 hyperbolas
shown. g = k/10 hyperbolas are plotted on a linear

grey scale, k = 1 lightest and k = 10 darkest.

te 1335 1208 1609 1218 1127 1196 1269 1429 1281 1420 1354

k
ﬁ.
All from initial no = n. and po = p.. Bottom: shows the final cycle correct to 1 x 1073, Top: gives the

Figure 4.9: Cycles around (ne, pe) for parameters as Figure 4.5 and inputs u = u. + 3(1 — b), with u. =

trajectories to the point the cycle starts. t. gives the time step the cycle is first reached, p. gives the period.

1—’“2, in part this is due to —& = 1. However, it is still

and u. =1 — 2

Note the symmetry between u., = 1—’;

present to a lesser degree when 25 # 1.
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4.3 Classical Anomaly Detection and Statistical Learning

This section provides a definition of anomaly detection and gives an overview of some con-
ventional statistical anomaly detection approaches. For a superior and more comprehensive
presentation of classical anomaly detection techniques the reader is directed to [Silverman,
1986; Bishop, 1995; Scott, 1992; Duda et al., 2001; Tsybakov, 2009]. The references provide
a range of discussion on the definition of an “anomaly”, for current purposes it is convenient
to discuss anomalies in terms of a sequence of observations occurring sequentially in time.

There is an interest in the following problems,

1. Given a sequence of m observations xg,x1,...Xn—1 € R", classify a subsequent ob-
servation v normal or anomalous. This is denoted a type 1 anomaly. This is also a
manner in which one can formalise the outlier detection discussed in Section 4.1.2.

2. The classification of type I anomalies has the assumption that the previous m obser-
vations are a good model with which to evaluate v. This assumption can be addressed
by observing changes in the properties of the m observations. If the properties change
too quickly such that type I anomaly detection cannot be performed with confidence,

a type 2 anomaly occurs.

The two types of anomaly can be formalised in terms of estimates of a probability distribu-
tion assumed to underlie the m observations. First, type I anomaly detection is addressed
with the assumption that underlying distribution is static in time. Second, type 2 anomaly
detection will be addressed in Section 4.3.2 at which point the distribution of concern will
change in time.

A collection of m, n—dimensional observations xXg, X1, ..., Xm_1 € X = R™ are assumed
to be independent and identically distributed (i.i.d.) with probability density function
p(x). Anomaly detection can be discussed in terms of an estimate of the density function
p(x[%0, ..+, Xm—1).

With the estimation of distributions in mind, briefly return to the equations of the
receptor and consider a n-dimensional lattice of receptors L in which there is no negative
feedback (a = 0, or alternatively, ng = 0 and g = 0) with input v = (ug, x;). If the receptor

position is written p;(x) then,
pt+1(X) = bpt(X) + KS(X, ’)/t), (435)

the solution for p; can be calculated, for po(x) = 0,

t—1
pe(x) =D VT Kg(x, )
=0
_ ti pil-ip (XX (4.36)
2 =) .

The above equation has the form of a weighted kernel density estimate. The weighting is
by powers of b. Kernel density estimation [Silverman, 1986] (also known as Parzen Window
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Estimation after [Parzen, 1962]) is a method of estimating a distribution that is assumed
to underlie a sample. It is attractive due to its non-parametric nature and it will be the
focus of the discussions on statistical anomaly detection. Section 4.4.1 will return to the
above defined p;(x) and discuss its behaviour in detail. Kernel density estimation gives the

following estimate, [Silverman, 1986],

p(x) = mlhn mz_; K (X hxi) : (4.37)

with K(-) a kernel function with the properties given in (4.6) with width h. Since K(-) is
always positive and integrates to one, then the estimate p(x) is also a probability density

function. Common choices for the kernel K(-) are the standard multivariate normal kernel:
K, (x) = (21) ™% exp (—xTx/2), (4.38)
and the bounded multivariate Epanechnikov kernel:

K, (%) (2¢,)t(n+2)(1 —xTx) ifxTx <1 (4.30)
X) = :
‘ 0 otherwise,

cn=72/ (I'(5+1)) is the volume of the unit n—dimensional sphere. Often, more important
than choice of kernel function is choice of kernel width h [Silverman, 1986]. An understand-
ing of this can be gained by a measure of accuracy of the kernel density estimate: the mean
squared error (MSE) for a point x,

MSEx(3) = E [((x) ~ p(x))"]. (4.40)

The expectation is with respect to the sample points xg,X1,...,Xm-1. Since var p(x) =
E[p(x)?] — E[p(x)]?, then expanding the MSE, gives,

MSEx(5) = (E[p(x)] — p(x))? + var p(x). (4.41)

The non-variance term is known as the bias, expressions for the bias and the variance for
the kernel density estimator are given in [Silverman, 1986], and can be calculated from,

i) =, [ & (%57 ) ntay (4.42)
O (X . y)2p<y>dy ) (1.43)

- mh? Jp h m

Note that the bias is independent of the sample size, and that E[p(x)] is the true density
convolved with the width scaled kernel. The bias represents the systematic error caused by
smoothing with the kernel, the variance represents the random error caused by sampling.
A global measure of the accuracy of an estimator p is given by the mean integrated square
error (MISE),

MISE(p) = [ MSEy(p)dx. (4.44)
R
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Minimising the MSE or the MISE by h involves a trade-off between the bias and variance,
a small h reduces the bias but will give a large variance unless the sample size is also
large. The influences of h on a kernel density estimation are shown in Figure 4.10. An
approximation for the MSE and so the MISE is obtained in [Silverman, 1986] by truncating
a Taylor series, which requires the following assumptions on the kernel function: first, that

it is radially symmetric and then,

/ xK(x)dx =0 and / x?K (x)dx = ko # 0, (4.45)

for some constant ks, then finally that p has continuous derivatives of all orders required.
The approximation can be solved to find an approximation for the optimal kernel width A,
for the 1-dimensional case,

[ x| [ pera (.10

When substituting h,. back into the MISE, [Hodges and Lehmann, 1956] demonstrates that
it is the Epanechnikov kernel (4.39) that minimises the MISE expression. As such, the
Epanechnikov kernel is optimal in terms of MISE in the class of kernel function with the

utl=

assumptions given in (4.45). However, [Silverman, 1986] also points out that advantages
of the Epanechnikov kernel in terms of MISE are sufficiently minor that it is legitimate
to use alternative factors as the deciding criteria for a kernel. As stated above, choosing
appropriate h dominates over the choice of kernel. Alternatively, computational require-
ments are often cited as the reason for choosing one kernel over another®. However, it is
possible to calculate a kernel density estimation via a precomputed kernel [Scott, 1992]. For
a 1-dimensional estimate, this can be done as follows,

,_.

(5 (x — ;) (4.47)
k=0

1
m

0o m—1
) = ep(x) * Kp(z) = / > 6t — @) Kp(x — t)dt (4.48)

> k:O
1 m—
= Z (z — ), (4.49)
k=0

with e,(x) is known as the empirical density function of the sample; §(-) is the Dirac delta;
K} (+) is a kernel function that has been appropriately scaled by h. Consequently, p can
be computed by a convolution of Kj with e,, and Kj can be precomputed and e, can
be approximated by a histogram with appropriate bin widths. As such, computation of
p is relatively independent of the difficulty of computing K. In this thesis, due to the
inspiration arising from diffusion and for its convolution properties the standard normal
kernel is chosen.

SKernel Density Estimation techniques have been present in the literature since the 1950s, during the
last 60 years there has been a roughly exponential growth in computing power. Many discussions of com-
putational tractability from just 10 years ago do not apply today.
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An asymptotic relationship between sample size and kernel width dictates the conver-
gence of p. As described in [Parzen, 1962; Silverman, 1986; Duda et al., 2001], and under
slightly milder assumptions on the kernel than (4.45) (see references for details of assump-
tions), the kernel width dependent on sample size is h,, and if it satisfies the following,

hm — 0 and mh,, — 00 as m — 00, (4.50)

then p(x) converges to p(x) as n — oo with probability 1. The condition essentially states
that the kernel width must go to zero but not as rapidly as 1/m goes to zero.

The use of the MSE and MISE in choosing h is purely theoretical as both depend on
the unknown density p(x). In practice, one possibility is to calculate the MSE and MISE
with respect to a reference distribution. Assuming that p(x) is normal with variance o2

and assuming that a standard normal kernel is used, then the approximation for the MISE

1
4\ 5
h, = <3> om” 5.

An estimate o can be found by calculating the sample standard deviation. If the underlying

can be solved to give optimal h,,

utl=

(4.51)

distribution is not normal, and particularly if it is multimodal h, may over-smooth. A
heuristic alteration to (4.51) h is suggested by [Silverman, 1986],

h = 0.9Am5, A = min{o, IQR/1.34}, (4.52)

with IQR the interquartile range of the sample. In practice, h is usually chosen with respect
to the sample xg, X1, ...,Xm_1, one approach is the leave-one-out likelihood cross-validation
[Silverman, 1986]. This involves choosing h to maximise a score Cy(h),

m—1 m—1
1 Xi — Xj
=0 jF#i

which should result in a density estimate p(z) that is close to the true density p(x) in terms
of the Kullback-Leibler divergence [Silverman, 1986; Kullback and Leibler, 1951]6. This is

a measure of closeness between two probability distributions in terms of information. For
p(x) and p(x), it is defined,

KL(p.5) = [

n

p(x) log [gg;] dx. (4.54)
The result of choosing h by minimising KL is shown in Figure 4.10.

The discussions of this section have generally concerned vector x of n-dimensions. In
small numbers of dimensions the kernel density estimate behaves well and quite intuitively.
However, the intuition breaks down as the number of dimensions increases. Many authors
note this point [Silverman, 1986; Scott, 1992; Bishop, 1995; Duda et al., 2001], the account

5The Kullback-Leibler divergence is called a divergence as it is not a true distance measure. It is, for
example, not symmetric.
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0.6

0.5 |

0.2

Figure 4.10: The bias and variance trade off in k. The sample is m = 500 points from (N (4,0.7)+N(6,0.5)).
Left: the distribution and kernel density estimates using a standard normal kernel, for high variance h = 0.05;
high bias h = 0.7; and min KL(p, p) h = 0.21. Right: KL(p,p) for h € [0, 1], circles mark the Kullback-Leibler
divergence of the three estimates. Note the log-scale on the vertical axis. The rise of KL to the left of the
minimum is due to increasing variance of p(x), the rise to the right of the minimum is due to increasing bias
of p(x).

of [Scott, 1992] is perhaps the most detailed. An example from [Scott, 1992] is replicated
here, consider that the underlying distribution p(x) is the standard n-dimensional normal
distribution (4.38). The most probable point is clearly x = 0, and the contours of equal
probability are (n — 1)-dimensional spheres. One can then ask, what is the probability that
a point drawn randomly from p(x) falls within the 1% contour. Then note,

@ — e X' X/2 and so —X) x;
o(0) = , d o(0) Z (4.55)

and as a consequence the probability that a point lies within the 1% contour is given by,

P <zg; > 1/100> =P (x*(n) < —21In(1/100)) . (4.56)
The above gives the probability that a random point drawn from p(x) will not fall in
the 1% tails. For m = 1 the probability is 0.9996; for two dimensions the probability
is 0.9928; at 10 dimensions the probability drops to 0.36; and in twenty dimensions the
probability is just 0.02. Thus, as the dimensions increase the majority of points lie in the
tails of the distribution. The implication is that one requires exponentially larger samples
to get good estimates in high dimensions. [Silverman, 1986] illustrates this by calculating
the approximate number points required to achieve a relative mean square error at the
origin of less than 0.1. Thus, [Silverman, 1986] calculates the sample size required for
MSEq/p(0)? < 0.1, for again p(x) the standard multivariate normal and the kernel is also
standard multivariate normal with optimally chosen h,. In 1 dimension only 4 samples are
needed; 2 dimensions 19 samples; 5 dimensions 768 and in 10 dimensions 842000 samples
are needed. This renders the kernel density estimator inappropriate in many dimensions
unless one has a very large sample size.



4.3. Classical Anomaly Detection and Statistical Learning 91

4.3.1 Anomaly Classification Using Density Estimation

Methods described in [Duda et al., 2001; Bishop, 1994] can address type ! anomaly de-
tection with kernel density estimation. The procedure is as follows: given training data
X1,X2,...,Xm-1 € R" classify a new data point v € R™ to be in class C; if the v is thought
to come from the same distribution as the x; or to be in class Cy if v is thought to be
anomalous.

In [Duda et al., 2001; Bishop, 1994] this class assignment problem is formulated using
Bayesian statistics. The new data point v may belong to either class with prior probabilities
P(Cy) and P(C2) and P(Cy) + P(C2) = 1. To minimise the probability of misclassification, v
is assigned to the class with the largest posterior probability P(C;|v). So, assign v to Cp if
P(Ci|v) > P(C2|v). Bayes theorem states:

p(vIC)P(C;)

M =)

: (4.57)

and can be used to calculate the posterior probabilities, so assign v to class C; when:
p(v[C1)P(C1) > p(v[C2)P(C2). (4.58)

This condition defines a decision boundary for point in R™. If the underlying distributions
and priors are known, the condition is known as the Bayes optimal decision boundary, and
it will give the lowest probability of error [Duda et al., 2001]. The task is then to estimate
the quantities p(v|C1) and p(v|C2). The distribution involving class C; may be modelled
by a kernel density estimation of the training data. By definition nothing is known about
the distribution of anomalous data and so the simplest approach is to assume a uniform
distribution across a large region of input space. The prior probabilities P(C1) and P(Cs)
allow one to incorporate domain information regarding the occurrence of either class. How-
ever, generally in anomaly detection nothing is known about occurrence anomalies apart
from the assumption that they are expected to occur at a lesser rate than non-anomalous
data. A safe option, which weights towards false positives (classifying normal when actu-
ally anomalous) is to assume equal prior probability of C; and Cy. With this formulation
condition (4.58) is equivalent to applying a threshold to the estimated probability density
of the training data (Figure 4.11). If the distribution for the anomalous data is assumed to
be uniform with probability «, then the classification decision for a point v is as follows:

Normal  if @ < - Sl g (Y=X
Classification(v) = mh 22io ( h )

(4.59)
Anomaly otherwise.

Since the kernel density estimator will converge on the underlying distribution, the decision
boundary defined by the above condition will also converge on the Bayes optimal decision
boundary. It may seem unjustified to assume a uniform distribution of anomalous data,
certainly if the anomalous distribution was peaked in the centre of Figure 4.11 then this
approach would fail. As a consequence, this approach necessarily requires some spatial
difference between the normal and anomalous data and so the dimensions of the density
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p(vIC2)P(C2) i
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Figure 4.11: Formalism for anomaly classification of a new datapoint, adapted from [Bishop, 1994]. The
input space for v is divided into regions which are classified as either class C; or class Ca, dependent on
p(v|C1)P(C1) > p(v|C2)P(C2). The threshold « defines the anomalous distribution. The dashed lines that
divide the assignment of input space to either C; or C2 are known as the decision boundaries.

estimate must be chosen appropriately. All the classification decision really states is that if
a new point v falls in a region of low density in the density estimate (i.e. p(v) < «), then

it is likely to be anomalous. Stated in this manner the approach is simple but reasonable.

4.3.2 Distributions varying in Time

Regarding the second problem of type 2 anomaly detection, first consider the sequence
X1,X2,..., then let x; occur at time t;. Further, assume that no two samples occur at
identical times and t; < t; & i < j 7. Finally, assume that the x; are drawn from a
potentially time varying distribution p(x,¢). Define a sliding window w; of length w to be,

w; = {Xi—'w-l-l’ s 7Xi} (460)

Then it is possible to understand the rate of change of a distribution by comparing esti-
mates p(x|w;) with p(x|w;). This may be done for example via the Kullback-Leibler diver-
gence (4.54): KL(p(x|w;), p(x|w;)). Then, a threshold on the rate of change of information
divergence, v, can be defined:
KL(pelen). pxley)) _
j—i
Alternatively, the k-step difference operator can be applied:

Jj > (4.61)

App(x|wi) = p(x|wirr) — P(x|wi). (4.62)

Then, the integrated square k-step difference ISDj and the max square k-step difference

MSDy, are possible distance measures:

1SD4(0) = [ [Auilxles))* dx (4.63)

MSDy(i) = max [Arp(x|ws)]?. (4.64)

"In a situation with many observations per time step then they may be combined in the manner of
summation (4.8) and considered as a single observation
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Then thresholds can be applied to the ISD; and MSDy. The algorithm developed in this
chapter and described in Section 4.6 will perform type 2 anomaly detection, however no
explicit comparison is made to any existing technique at this task. As a consequence the
definitions regarding detection of type 2 anomalies are not developed any further here.
However, density estimates on the above presented sliding window form a key part of this

chapter and are essential to the final discussions of type 2 detection given in Section 4.7.

4.4 The Receptor and Classical Anomaly Detection

The beginning of the previous section demonstrated that the solution to p;(x) recur-
rence (4.35) had the form of a kernel density estimate. This section first develops these ideas
further, and then draws analogies between the negative feedback barrier g (Figure 4.1) and
the anomalous distribution threshold « (Figure 4.11)

4.4.1 Kernel Density Estimation and the Receptor

Consider p;(x) defined in (4.35), its solution may converted into a probability density func-
tion. First, take the lattice d; — 0, so that py(x) is evaluated at every point in R™. Then,
choose all u; identical to scale p;(x) to sum to 1,

b—1 <A b1 (X — Xy
pr(x) = W —Dhr ;b K (h> ; (4.65)

The above is a probability density function and it is a weighted kernel density estimate. The
point u;—1 has the largest weight ﬁ
the last. The estimate p;(x) is denoted the decay density estimate, and has the advantage

then each previous sample point is weighted b times

that it may be evaluated in an “on-line” manner via recursion (4.35). The concept of “on-
line” or recursive density estimators is not new, for example see [Wolverton and Wagner,
1969; Hall and Patil, 1994] which use a uniform weighting scheme. The geometric weighting
in the decay density estimate requires further investigation, note the following limits,

.ob—1 1 . b—1
MmO T A gy = ieb (4.66)

The first limit shows that the standard kernel density estimated is retrieved when b — 1.
The second limit is the infinite sum of the sequence {b'}, the relevance can be seen if this
weighting is directly applied to (4.35) an setting u; = 1 — b:

a0 = bou(x) + LV e (X ;Xt> . (4.67)

The weighting scheme is known as an exponentially weighted moving average or an exponen-
tial smoothing of {x;}. It is a common concept in the analysis of time series [Kendall and
Ord, 1990] and particularly in the analysis of financial time series [Tsay, 2002]. There are a
wide range of well developed exponential smoothing techniques, [Gardner, 2006] reviews the
state of the art and provides a classification of fifteen exponential smoothing variants with
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respect to underlying trends and seasonality. The smoothing in the decay density estimate
is the simplest class discussed in [Gardner, 2006]; certainly assumptions regarding trending
or seasonality can not be made about the sequence {x}.

A comparison is made between the decay density estimate and a standard kernel den-
sity estimate. To focus on the influence of exponential smoothing the discussions regard

the point-wise expectations and variances of each estimate. Let yu; = K (

X_hxt)7 thus gy
contribution of the sample to point x after being passed through the kernel. As such, py
has an expectation Eu; and a variance var p; which are dependent on the sample and the
kernel in a manner discussed in Section 4.3. It is assumed that the kernel does not alter the
independence of the sample, all u; are independent. The weighting techniques in the two
methods of density estimation can be compared on sequence {1, }. Let p; be the exponential
weighted smoothing of u, and w; be the equally weighted smoothing of u; by the use of a

sliding window wy, and so,

prr1 = bpy + (1 —b)py (4.68)
1 t
W= > ke (4.69)
k=t—w+1

The equal weighting recursive density estimates presented in [Wolverton and Wagner, 1969;
Hall and Patil, 1994] do not require a sliding window, and are generalisations of the form,

. t 1 X —X
() = gm0 + i (52, (1.70)

and so at time ¢ all previous samples are equally weighted. Since the concern here regards a
potentially infinite sequence of samples ...x;_1,X¢, X¢r1 ... it is necessary for an estimator
to be able to “forget” the details of old samples and so a sliding window is necessary for
w¢. The expectations and variances for p; and w; can be calculated, first asymptotically as
t — 00, such that initial pg can be ignored,

Ept =Ep  var pp = [}—;ﬂ var fig

Ast — o0 (4.71)

var p¢

Ew; = Epy  var wy = —

Thus, both p; and u; are unbiased estimators of the expectation of uy, and have equal
variance when %—j = b. Regarding convergence to the above asymptotic values, one must
walit for w time steps for the sliding window to fill before the results for w; are valid. And, in
the case of p; one must wait of the order log ¢/ log b for p; to come within € of Euy dependent
on initial pg, which in general will be a significantly longer wait than the time window that

set b. An obvious solution is to re-weight such that all weights sum to 1 for all ¢,

vb—117 , b—1
piy1="b [btﬂ_l] pr + [btﬂ_l] Ht (4.72)
1 t
*
= . 4.
Wi =3 max{1l,t — w} Z H (473)

k=min{0,t—w+1}
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pf is weighted to ensure the geometric series with terms b' sums to 1. Note there is no need
to set p§, the calculation of pf involves (b° — 1)pf, as can be seen from the solution,

bh—1 t—1
= 2 T e (4.74)
k=0

The expectation and variance for the newly weighted p; and wj, are as follows,

Ep; =E var py = [7(147)(1%”} var
Fort>14 "0 Pr= [ ] (4.75)

var fit
max{t,w}

Ew; =Ep; var wy =

Both var p; and var w; decay with time and are asymptotically equivalent when b =
(w—1)/(w + 1) as before. The convergence of variances of var p; and var w; are very
comparable with var p; < 1.3131(var wy) for all ¢ > 1. This is demonstrated by Theorem 4.2

which compares var p; and w; through the following definition:
& = var p;/var w;. (4.76)

Theorem 4.2. Moving averages p; and wi with b = (w —1)/(w + 1) and w > 2 for all
t > 1 are such that var pf > var wf and & < (e? +1)/(e? —1).

Proof. Consider the two stages of &;:

_ (t/w)[(1+b")/(1 —b")] fort<w (4.77)
T laseha - for t > w '

Demonstrating that A& > 0 for 1 <t < w and noting that A& < 0 for t > w will yield the
desired result with the maximum value of & occurring at t = w. First, consider A&, with
1<t <w:

t+17] 2pHt t [ 2b
2t b 1 1] 2ttt
:w[1—bt+1 _1—bt] w[l—bt+1+1] (479)
The requirement is A& > 0 and so it is necessary to show:
1-b 2t
¢
2tb [(1—bt)(1—bt+1)] <1—bt+1+1’ (4.80)
1—b'] 140!
t < [1_1)] oy (4.81)

Translating b = (w — 1)/(w + 1), the condition for A¢; > 0 becomes:

Lo 1 |:(w + 1)2t+1 _ (w _ 1)2t+1

1
1 ) ] -z (4.82)

2



96 4. The Receptor Density Algorithm

Then, note the following:

(w + 1)2t+1 _ (w _ 1)2t+1 (w + 1)2t+1 _ (w _ 1)2t+1

4.
(w2_1)t w2t ( 83)
2t+1 2t+1
1 2t + 1 2t + 1\ »
= E( A >wk—§ ( . >w(—1)2t+1 ] (4.84)
k=0 =0

2t+1

_ w% Z <2t+ 1) K1 — (—1)2+1—h (4.85)

- Z <2t+ 1) 2 22 (ZH > w2, (4.86)

Combining the above result with the condition for A& > 0 in inequality (4.82) produces
the following:

t
2 + 1
A+1< ) ( ;]; >w2’f—2t, (4.87)

k=0
which can be seen to hold by consideration of k = ¢ term in the summation, and so A& > 0
for t < w. As A& < 0 for t > w the maximum value of & occurs at ¢ = w. Consideration of
the behaviour of b as w grows provides a bounding for &,,. First, note that b" is increasing

as AbY > 0: "
w—1]" w w
_— _ . 4.
[w—Fl] < [w+2} (4.88)

Second, bY increases to the following asymptote:

2 w

lim b* = lim (1 — > =72, (4.89)
wW—00 wW—00 w41

Thus, b < e~2 for 2 < w < oo and this bounding implies the following bound on &,:

1+bv _ (€2 +1)
1—bv ~ (e2-1)

w = ~ 1.3130. (4.90)

Finally, noting that the variances are equal: var p} = var wj = var y; at t = 1 and again
as t — oo then the behaviour of A¢; shows that var p; > var wy. O

A demonstration of the decay density estimate in comparison with the kernel density
estimate is given in Figure 4.12. Shown are decay density estimates pq(x) and py(x), and
a kernel density estimate on a sliding window p(z|w;) with window w = 1000. Estimates
pa and p are set to have equal variance, so for p,, b = (w — 1)/(w + 1). The estimate
pp is set to have b much closer to 1 and has equivalent variance to a windowed estimate
with w = 3 x 10%. The Kullback-Leibler divergence of the standard estimate contains large
discontinuous jumps (vertical lines in Figure 4.12), these occur when samples which happen
to be correlated in time and space drop in and out of the sliding window. The estimate
py requires a smaller h to achieve the lower Kullback-Leibler divergence, this is due to
a large sample size contributing to the estimate. As such, it seems sensible to adjust h
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Figure 4.12: A comparison between the decay density estimates pq(x), pp(z) and a kernel density estimate

on a sliding window p(x|w:) length w = 1000. Samples are drawn sequentially from %(N(AL7 0.7) + N(6,0.5))

(the same as Figure 4.10). All estimates use a standard normal kernel with h = 0.18 for p, and p and
h = 0.085 for py. K (light grey) marks p(z|wiw); pa (grey) has b = 0.9980; pp (black) has b = 0.9999.
Results are taken after a settle time of 3 x 10* steps. Left: The estimates at graph time t = 2000. Right:
The Kullback-Leibler divergence between the estimates and true distribution at each time step. Note the
discontinuous jumps in the K L(p,p(x|ws,w)) occur when a succession samples correlated in space drop in
and out of the sliding window.

during the recursive evaluation of the density estimate. [Hall and Patil, 1994] discusses an
on-line method for adjusting the h: the approach is to estimate the standard deviation of
a streaming sample ...X;_1,Xs, X¢41, ... and to use this in conjunction with the “normal-
reference” method from [Silverman, 1986] given in (4.52). There are many well known
algorithms for computing the standard deviation or variance in an on-line manner (e.g. see
[West, 1979; Knuth, 1979]), however these algorithms require the sample size in advance.
An alternative is to note that the recurrence p; computes an expectation, thus to compute
the variance one can use p; to compute Ex and Ex? and so compute the variance. A further
advantage is that this variance will have been computed with the appropriate weightings for
the decay density estimate. [Bruce, 1969] takes a similar approach to recursively evaluate
the estimate but with a recurrence of the form p; in (4.68).

Some discussions of exponential smoothing state that the weightings are of benefit when
there are underlying shifts or trends in the data. This is usually based on the intuition that
the most recent data points have the greatest weight and so track changes better than
an equal weighting scheme. To investigate this effect, consider that p; ~ Bernoulli(g),
i.e. puy = 1 with probability ¢; and u; = 0 with probability 1 — ¢, and so, Eu; = ¢ and
var iy = q¢(1 —¢q¢). In general, this variance will be greater than when p; was set by sample
and kernel, and it represents the case when h — 0 and the kernel becomes like a delta
function. Then ¢, is set as follows,

U for t < t.

: (4.91)
alt —t)+u fort>t,

gt =

so ¢ changes from a constant u to linearly increasing at rate a at time t.. The expectation
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of w} can be calculated before, during and after the transition from constant to linear ¢,
assume that ¢, > w, then,

” for t < t.
Buwj = Qut g5 ((t—to)? = (t—to)) forte <t <totw. (4.92)
u+a(t—te— 2H) for t > t. +w

During the transition the expectation of w; quadratically increases toward the target ex-
pectation, after the transition the expectation is simply the Eu; at the mid point of the
window. The expectation of p; can be calculated in a similar manner, first for ¢ > ¢,

b1 t—1 L a t—1 o B
Epf = D Eub ™ =u+ o DRI ey (4.93)
k=0 b k=t,
bi=te — b
:u+1i1bt|: =3 —l—(t—l)—tc:|. (494)

The above summation is the discrete convolution (see (4.122) for details) between the se-
quence {t} and {b'} and is readily computed by application of the Z-transform [Elaydi,
1995]. Then combining with ¢ < ¢, gives,

Eor U for t < t. (4.95)
pr = " . .
' u+1_¢bt[%+(t—1)—tc} for t > t,

Once the transition has occurred p; and w}; are no longer unbiased estimators of y;. The
expectations of p; and w; may be more readily compared by calculating an approximation
of a Taylor series of Ep; around ¢ = t.. To the second order, with additional approximation
that In(b) ~ b — 1, this gives,

a(l —b)

m(t —t.)?. (4.96)

Ep; ~u+
This is of similar form to Ew} during the transition, but without the linear term which acts
to arrest the increase of Ew}. The exponential smoothing of p; is able to react quicker to
changes in p;. However, this approximation for p} is only valid near t., and in reality p; and
Ew} track very similarly. This is especially so when b and w are chosen to give equivalent
variance to p; and w; during the constant phase of ¢;. Figure 4.13 demonstrates this point
with a numerical comparison of Ep; and Ewy.

To summarise, the decay density estimate can have very comparable performance to
the standard kernel density estimate on a sliding window in terms of expectation and con-
vergence of variance. The decay density estimate has the advantage that it can be applied
recursively with no requirement to store a window of data. Moreover, the decay density
estimate does not suffer from the discontinuous influences of a sliding window (see Fig-
ure 4.12).

In the following section, negative feedback is returned to the picture and analogies
between the negative feedback barrier 3 and the anomaly threshold « are presented.
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Figure 4.13: Demonstration of w; and p; when tracking p: with g;. With v = 0.2; @ = 0.0015; t. = 100. ¢
is set a constant 0.8 for ¢ > 500. Comparisons are made between a long (w;,) and a short window (wg,),
length w, = 250 and wy = 25 respectively. The two exponentially weighted p}; and pj; have b, = Z)ZH and
by = ZZE set accordingly. Top: Shows a single trajectory of wj;, wgy, pat, Pp:, NOte the trajectories display
the 1/t decrease in variance. Bottom: Gives the mean over 50 runs, the thick lightest grey line marks Ep,
the dashed lines are the mean p,; and w};, the high variance line as p;, and wy, which still exhibit the

stochastic noise. Solid grey lines beneath give the theoretical expectations. The equivalent variance w; and

P have similar performance.

4.4.2 Bayesian Anomaly Classification and the Receptor

Without negative feedback, the receptor positions are a density estimate of the input to the
receptor lattice. The inclusion of negative feedback would result in a negative feedback level
that is relatively constant across the lattice and that reflects the mass of the density estimate
above 3. The density estimate would be lost, though some information regarding the peaks
of the underlying distribution would remain (Figure 4.14). However, if the diffusion rate
of the negative feedback was reduced the density estimate could be retained. Figure 4.14
demonstrates this point by plotting the recurrences given in (4.4) at ¢t = 100 for two choices
of K width: A = 100 and h = 1. The reduced kernel width represents diffusion limited
negative feedback. The equilibrium conditions calculated in Section 4.2 now apply in the

diffusion limited case. Thus, with appropriate parameters p;(x) will oscillate around 3 and,

ni(x) & p(x) — f(1 = b), (4.97)
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Figure 4.14: Retaining the density estimate in a lattice of receptors. The recurrences in (4.4) are iterated
from po(x),no(x) = 0 till ¢ = 100. With parameters: b = 0.95; d = 0.99; a = 1; g = 0.02; 8 = 0.05. Kg

is calculated with a standard normal kernel with h = 0.21. The input u: is drawn independently of time

from %(N(él, 0.7) + N(6,0.5)), 500 input points are drawn per time step. Ky is calculated with a standard

normal kernel for high diffusion & = 100 (left) and low diffusion h = 1 (right). Note how the low diffusion
case retains the information from the distribution.

p(x) is the decay density estimate calculated with a kernel that is the convolution of the
stimulation and negative feedback kernels. The density estimate is now retained in the
negative feedback. For ni(x) to be a good quality estimate the diffusion kernel must be
small so as to reduce the bias. Noting the convolution of two normal distributions is also
normal, the negative feedback kernel may be dropped altogether. The width of the Kg
kernel can then be set directly by the input {7;}.

The thresholding anomaly condition of (4.59) can be reconstructed through a receptor
framework. For the sake of motivating argument, the receptor positions and negative feed-
back are set statically but in agreement with equilibrium positions given Section 4.2. To
reiterate, the problem is to classify a point v normal or anomalous given a training sample
X0,X1,---,Xm—1. This may be addressed by a training phase in which the receptor positions
and negative feedback are initialised, then a test phase which evaluates v. Again, consider
the lattice of receptors in which d; — 0. The receptor position at point x is written ,(x)
and similarly the negative feedback r,(x).

Training Phase

Assume the training sample is in input regions ¢; and U (Figure 4.4). The rp(x) and 7, (x)
are set as,

(%) = g for p(x) = () = p(x) = B(1=0b) for p(x) = 3 (498)

p(x) for p(x) < g 0 for p(x) <

with p(x) the decay density estimate of the training sample.
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Test Phase

In the test phase the receptor position recurrence is applied with test point v as follows,
rpe(x) = brp(x) + Kg(x,v) — m(%). (4.99)
Then the classification of v is,

Normal  if for all x, 7 (x) < ¢

Classification(v) = (4.100)

Anomaly if there exists x, rp,(x) > £.

To clarify the above condition, note the outcome of (4.99), when = o and ¢ = max{Kg}.

bp(x) + Kg(x,v) for p(x) < «
rpt(X) = { Ks(x,v) for p(x) = « (4.101)
Ks(x,v) — p(x) —a for p(x) > «

Thus, max{ry(v)} = max{Kg} = ¢ when p(v) < a and max{ry(v)} < ¢ otherwise, which
describes the thresholding of (4.59). Further, if b = Z—j& then the expectations of (4.100)
and (4.59) will be identical and the variances related by Theorem 4.2.

The removal of negative feedback diffusion solves the second issue raised in Section 4.1.2,
the lattice of receptors now does more than 1-dimensional outlier detection. The removal of
negative feedback diffusion must be added to the set A which connects the biological model
and this abstracted model. Ignoring the differences in substrate (i.e. the implementation
details) it is important to note that the biological models and the qualitative model differ.
The biological model evaluates TCR-pMHC bond strength, the average bond strength is
communicated to all TCRs via the high diffusion negative feedback. Those TCRs associated
with pMHC ligands with a significantly stronger bond than the mean are able to complete
kinetic proofreading and produce activations (r,:(x) > ¢). Here, TCR-pMHC bond strength
is exchanged with the probability of a sample point being drawn at x. With the negative
feedback diffusion restricted the receptors now make local comparisons to decide if the
sample point at x is sufficiently improbable to cause 7p(x) > £. This point is given further
discussion in the concluding Section 4.7 and the concluding chapter of this thesis.

With connections and analogies to classical anomaly detection methods established, the
chapter returns to analysis of a single receptor. Particularly, to understand how the receptor
may dynamically break £.

4.5 The single receptor breaking ¢

This extends the results of Section 4.2 and calculates conditions for p; > ¢. Consequently

the input {u} is no longer constant. First, step increases in {u;} are considered.
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4.5.1 Step increases in u;

This scenario describes a receptor which is at the cyclic equilibrium under u € Us which
then undergoes an increase in input to w, > u the input then remains at u,. The details of
the cycle are ignored for simplicity, and the scenario is modelled by constant input u, and
initial conditions py = # and ny = u — S(1 — b) Then, the first receptor position delta is,

Apy =pe(b— 1) + us — e = ux — u, (4.102)
and £ can be broken in one time step if,
Uy —u > L — . (4.103)

If ¢ is not broken on the first time step the question of whether it will ever be broken can
be answered by the location of the maximum in p;. This requires further consideration of

the difference operator:

Apt = pr1 — pr = bAp—1 — Ang— (4.104)
Ant = Nt41 — Mt = dAnt,l. (4.105)

The differences are recurrences with interaction matrix (4.10), and have solution:
b—d
Ang = d' Any. (4.107)

t bt

Apy = b Apg + Ang (4.106)

The time of the maximum in receptor position, t,, can be found by,

. Apo(d—b)  db -t
Apy =0 which gives Ano = (4.108)

1 Apo(d —b)
= 1 1. 4.1
b {log d—logb ©8 < Ang " (1109

Taking logs:

Due to the discrete time steps, the maximum occurs after p; jumps over the line p = 9=

and so t, is the ceiling of the the solution to equation (4.108). The first deltas are:
Apy = U — U Ang=(u—pF(1—-0))(d—-1)+g. (4.110)

Then t, can be used to locate the maximum p,. Recall that the maximum occurs when p;
crosses the line p = (u, —n)/(1 —b). Thus, p, can be found by calculating the negative
feedback at maximum n, using (4.16). As t, (4.109) is a logarithm to the base % it is then
convenient to write L(x) = log%(x). So, clearly £(d) = L£(b) + 1 and there is the following
logarithmic identity, y“(*) = 2£®) . The identity may be used to swap u, and u out of the

exponent of d in the solution to n;. Consequently, the value of p; at maximum is,

1 g g\ (Bpod—b) N\
p*zl—b[u*_l—d_<u_ﬂ(1_b)_1—d>( ) )
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Figure 4.15: The time t, (left) and location p, (right) of the receptor position maximum when input is
increased from u to u,. Parameters are set as examples in Section 4.2 (b = 0.95; d = 0.99; g = 0.01; 8 = 1).
Note the effectively linear contours in both plots, and note the increase in ¢, with increase in ..

Note the occurrence of term u — 3(1 —b) — g/(1 — d) which describes the difference between
u and the upper boundary of Us, which scales the negative feedback accordingly. Thus, uy
causes £ to be broken if p, > ¢. The time and value of the maximum in p; are numerically
calculated for u, uy € Us, see Figure 4.15. Note the lengthening of ¢, with increasing u,, for
uy on the upper boundary of Us the peak is only reached asymptotically as ¢ — oco. The
linear relationship between u, u, and py is due to p, = (ux — n4)/(1 — b) and the simple
relationship ng = u — 3(1 — b).

Approximations are now calculated for this step increase in input scenario. The approx-
imations are useful rules of thumb when applying the algorithm, they are certainly of use
in the next chapter. An approximation for t, can be found by returning to the peak time
equation (4.108) and truncating the Taylor series in ¢ around t = 0, for ( %)t. A second order
approximation gives a quadratic in ¢, since the ¢, must be positive the relevant solution is,

Apo(d—b)
te & e 4.112
* logd — logb ( )

This qualitatively shows the correct behaviour for all ¢, and gives a good approximation

for t, < 30 for the parameters in Figure 4.15, beyond this point the approximation loses
Apo(d—b)

Ang log(d/b)’

for t, < 10. Rather than pursue an approximation for py, it is more useful to calculate an

accuracy. Note that the first order approximation ¢, ~ still gives good results

approximation for p; when p; > 3. The Taylor series around ¢t = 0, or the Maclaurin series
of t, in p; (4.16) is then,

pr=po+ kfjof, [(m ()t + (no (in(d)* ~m(v)*) + [12(_@1’“ B lél(fﬂ )] .

(4.113)
Taking the first order approximation with additional approximations that In(b) ~ b— 1 and
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In(d) ~ d — 1 for b and d close to 1, gives the form of the p-recurrence:

Pt = po + [(po + us) (b — 1) —no|t (4.114)
=B+ (u—u)t (4.115)

The second order approximation similarly has the form of two applications of the p-recurrence:

pe A po+ [(Po + u) (b — 1) — nglt + [(po +us)(b— 1) —ng(b+d — 2) — ¢ t; (4.116)
t2

5 (4.117)

=B+ (ue —u)t + [(B+w)(0—1)* = (u— B(1 = )(b+d —2) — g]

If P,(t) is the degree n polynomial obtained by truncating the Taylor series of f(¢), then
R, (t) is the associated error: f(t) = P,(t) + R,(t). The error term R, (t) is known as the
Lagrange Remainder [Adams, 1991] and is given by:

f(n+1) (tc)

Balt) = 01

(t — )", (4.118)
for some t. € (c,t). Here, ‘pﬁn) ‘ is maximised at ¢t = 0, thus R,, calculated with t. = 0

bounds the error of the approximation. The first and second order errors for parameters
b=10.95d=0.99; g =0.01; =1; u=0.25; uy =0.75 at t =5 are,

IRy (5)| < 0.4352 |Ro(5)| < 0.0389. (4.119)

Neither are ideal, but the method demonstrates that the terms In(b)"*! and In(d)"*! in
\R;n+1)| must be sufficiently small to combat t"*! for good approximations as ¢ increases.
Since b < d, if t"*1(d — 1)"*! < 1 the nth degree approximation should give good results
up to t. Further, the error scaled by accumulated input: R, (t)(b—1)/(us(b* — 1)) may give
a more practical measure of the early error. Under this scaled measure, the first and second
order approximations errors are reduced for large u, (potentially u, € Us,Uy), which conveys
the notion that the large input dominates over the increase in n;. This concept of large uy,
will be of interest in the next chapter. The first and second order approximations can be
solved to calculate the first time step that p; > ¢, denoted t;. Note that the solutions are
only valid for ¢y in which the approximations are valid, i.e. |Ry(t7)| < € for some acceptable
margin of error €. For the first order approximation from initial pg = 5 and ng = u—F(1-b),

t—p

Y
U*_u

to (4.120)

which exactly describes the one-step breaking condition (4.103). The second order approx-
imation gives a quadratic in ¢t (see Equation 4.116), if the approximation is valid for both
solutions then they are the times that p; breaks £ and then falls below ¢ respectively.

4.5.2 Varying input wu;,

A fuller picture can be obtained by considering varying {u;}, and the assumptions that
Po = Pe, no = N and py > [ are temporarily dropped. Recall the solution for p; (4.13), and
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writing without the specifics of ny,

t—1 t—1
pr=pob’ + Y uph™ T =N bt (4.121)

k=0 k=0
The summations involving u and n are a discrete convolution with the sequence ; = {b'},

so for u,
t
prxuy =y b Py, (4.122)
k=0

The condition for p; > £ can then be restated, if there is a ¢ such that,
Pob’ + o1 ¥ w1 = 1 kg + 4, (4.123)

then p; > ¢. A receptor performs a comparison between the growth of {u;} and the growth
of {n;}, this is depicted in Figure 4.16. The convolution equation describes the anomaly
condition for any choice of the dynamics of n;. The condition will be of use in Section 4.6.2
and the next chapter when the receptors are applied to type 2 anomaly detection. If the
summation in the convolution between {u;} and {¢;} is made, again, explicit:

t—1

Z W Ry > o1 kg1 4+ £ — pobt, (4.124)

k=0

then {u;} may be taken out of the convolution by the Cauchy-Schwartz inequality,

t—1 t—1
(Z bz(tlk)> (Z uz> > (@it %1 + £ — pob)? (4.125)
k=0 k=0
t—1
u% >
k=0

Gr1#me1+ £ —pob')>. (4.126)

1
7
Equality will hold between the left hand sides of (4.124) and (4.125) if uy = cb'~'=*, for a
constant ¢ and a particular ¢. Although, in general one must expect,

t—1 t—1 t—1 2
(Z b2<t—1—’f)> (Z u%) > (Z bt_l_kuk) , (4.127)
k=0 k=0 k=0

and so the anomaly condition is weakened as there are more {u;} for which (4.125) is true
than (4.124). If both conditions hold, then (4.125) will hold for earlier ¢ than (4.124). The
difference between the left hand sides of (4.124) and (4.125), gives the error F,

(ukbt_l_j - ujbt—l—’f) . (4.128)

If (4.125) holds at time ¢t = 7 and Z}?:TH ui < F, then (4.125) will have erroneously
predicted an anomaly. Here, t* represents some time in the future when either u; has gone
to zero or ;1 *ny—1 has increased to invalidate the condition of (4.126). Despite weakening
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— Dt

ty tq

Figure 4.16: The condition for p; > £. Top: p¢, nt ur, with parameters b = 0.95; d = 0.99; g = 0.02; 8 = 1;
po = B; no = uo — B(1 —b). ue is defined by (4.129) with p = 0.764, v = 0.2 and up = 1. I =5 and ¢, and t4
are the times when p; breaks ¢ and falls back down below ¢ respectively. Bottom: The convolutions between
the sequence ¢, us and n;. The separation between the two at time t, is £ — 3b"

the anomaly condition (4.126) provides a good and useful approximation for the time when
pt > ¢, this will be demonstrated in Section 4.6.2. Conditions (4.123) and (4.126) will be
respectively referred to as the convolution and summation conditions of type 2 anomaly, as
they describe the breaking of £ by a variable input.

It should be noted that with the current choice of negative feedback starting from py < 3
the left-hand and right-hand sides of (4.126) are not independent. With the assumption of
the scenario in Section 4.5.1 that pg = p. = [ and ng = ne = up — B(1 — b) for uy € Us
and the additional assumption that u; > ug for all ¢ then the two sides of (4.126) become
independent of u; whilst p; > 3.

Finally, consider the case where {u;} is controlled by a recurrence with the same form
as the negative feedback:

Upr1 = P + 1 (4.129)

with 0 < g < 1 and n > 0. Clearly, if ﬁ > (1 —0b) + L5 then an anomaly will eventually
occur as max{u:} is not in Us. Assuming that {u;} remains in region 2 and 7 is small
enough that it will not cause an anomaly on the first timestep, so n < £ — 3 — ug(p — 1),
then an anomaly will never occur if n < g. However, an anomaly will only occur if n > ¢
and (4.123) holds. In general the metric of the growth of {u;} being greater than that of
{n.} is a good indicator of an anomaly. Thus, if u; € Us for all ¢t and Au; < g then an ¢

will never be broken.
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4.6 The Receptor Density Algorithm

Combining the ideas of the chapter thus far a lattice of receptors can now be described as
an anomaly detection algorithm:

Definition 4.3. The Receptor Density Algorithm (RDA) is a n-dimensional lattice of re-
ceptors L, all with identical parameters b,d, g, 3,¢ and the stimulation kernel function Kg
with width h. The lattice is presented with input {v:} = {(us, z¢)} with uy > 0 and z; € R”
1s updated according to,

Pei1(x) = bpe(x) + Ks(x,7:) — ni(x) (4.130)
N1 (x) = dng(x) + gH (pe(x) — ), (4.131)

and will detect an anomaly in the input at time t if for any x: p(x) > L.

Note that the input to the RDA is a (n + 1)-dimensional vector ;. This does not imply
that if anomaly detection is desired on y-dimensional data D; € RY then the RDA should be
applied with a (y — 1)-dimensional lattice. The first dimension of 4; has a special meaning
that weights each input point. In general vy = D; and ~; = (1, D) will produce different
anomaly detection behaviour. Thus, y-dimensional data may still require a y-dimensional
receptor lattice.

A discussion is now given relating the anomaly detection of the RDA to anomaly detec-

tion problems type 1 and type 2.

4.6.1 The RDA and type 1 anomaly detection

Recall that type 1 anomaly detection involves the classification of a new sample point v
given a training sample Xg,X1,Xs,.... The RDA is able to address this problem via the
argument outlined in Section 4.4.2. The sample is presented and the negative feedback only
builds in regions where the decay density estimate is above threshold 3, and so if v falls in
a low probability region of the lattice the receptor position will immediately break ¢ due
to the lack of sufficient negative feedback. This is a one-step breaking of ¢ from p; < f.
The condition given in (4.103) describes one-step breaking from [ with negative feedback
and should not be satisfied. The requirement is that the presence of negative feedback
prevents one-step breaking but without negative feedback one-step breaking always occurs.
It is required that ¢ is broken from a point on the lattice with p(x) = 0 and n(x) = 0,
so max{Kg} > ¢ must hold. As condition 4.103 must not be satisfied, then there is the
following bound on /,

max{Kgs} — b < ¢ < max{Kg}, (4.132)

for type 1 anomaly detection to occur. By the arguments of the chapter, b < d should both
be set near 1 for a good quality density estimate and g should be set near 0 to minimise jumps
in n(x). However, in practice this scheme fails of the majority of v close to the decision
boundary. The issue is that the approach is based on the static somewhat qualitative
argument of Section 4.4.2. By virtue of the recurrences, the state of n;(x) is disturbed by
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the anomaly and one must wait for n.(x) to decay before a subsequent anomaly in the same
region can be detected. This draws attention to the fact that no discussion examining the
stochastic input {u;} in conjunction with the negative feedback and 3 has been developed in
this chapter. In reality, since § < ¢ < max{Kg} sample points near the anomaly detection
boundaries will generate a non-zero negative feedback in regions where p(x) < /3. Despite
this, the arguments of the chapter give the correct intuition to understand the behaviour,
and without making any formal arguments this problem may be solved with relative ease.
The parameters should be set such that there is non-zero but stable negative feedback over
the tails of p(x). Then ¢ may be lowered such that one-step breaking of ¢ is possible from
a region of non-zero negative feedback, and that it is not possible for the level of negative
feedback just inside the decision boundary. The stable negative feedback provides a clean
anomaly detection platform. This can be achieved by setting d close to 1, and then set g
so that maximum negative feedback ¢g/(1 —d) > 1.

A simple test is performed to evaluate the performance of the RDA at type 1 anomaly
detection in one dimension. A sequence of samples {z;} are drawn independently from
a known distribution p(z), the RDA and a standard kernel density estimate p(z|w;) are
compared at determining whether a new point z; has p(x;) < «. For the RDA this is
done by updating the recurrences and testing p;y1(x) > ¢; for the standard kernel density
estimate the anomaly condition is p(z|w;—1) < . For the sake of simplicity, p(x) is chosen as
the standard normal distribution and o« = 0.02. The parameters are set as follows: w = 500
the width of window w;; h = 0.21 the width of the kernel in K¢ and p(x), the standard
normal kernel is used; uy = (1 —b); 2z = x; b = 0.9; d = 0.999; g = 0.01; f = a = 0.02;
£ = 0.1. These parameters achieve the required stability in negative feedback. Note that b
and d lie either side of the point of equal variance w — 1/w + 1. The equality of variance
condition will not hold exactly for the density estimate carried by the negative feedback,
but w — 1/w + 1 still provides a good metric in setting b and d

The RDA and p are initialised with 500 data points, and then 40000 test points are
evaluated. The two methods are compared in terms of receiver operator characteristics
(ROC), which compares the result of a classifier against the true result. The terminology
and conditions on the RDA and kernel density estimator (KDE) are as follows,

p(xy) KDE RDA

True Positive (TP): p(x) < « Tr(vjwi—1) < @ Az pry1(z) > ¢

True Negative (TN): p(ze) > @ P(Ttlwi—1) > Vo pipi(z) < £

False Positive (FP): p(ze) > @ p(zt|lwi—1) < « Az pry1(z) > ¢

False Negative (FN): p(ze) < @ plat|lwi—1) > « Vo pipi(z) < £
There a number of common meta-statistics defined on TP, TN, FP and FN. Three considered
here are,

TP FP
True Positive Rate: TP LN False Positive Rate: FP AN
TP + TN
Accuracy:

TP + TN + FP + FN’
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KDE RDA
TP 451 492
TN 39359 39295
FP 80 144
FN 110 69

True Positive Rate 0.803922 0.877005
False Positive Rate 0.002028 0.003651
Accuracy 0.995250 0.994675

Table 4.1: Type 1 anomaly results. Boldface indicates the superior score. 561 anomalous x; were drawn
from p(z), which is appropriate given the area under the normal curve outside the decision boundaries

561/40000 = 0.014 ~ 1 + erf (- - ln(a\/27r))

The true assignment of each x; is known by inverting the normal distribution, which gives
decision boundaries at +1/—2In(av/27). Then z; is anomalous if |z;| > /—2In(av27).
For a@ = 0.02 this gives |x¢| > 2.447. The results are given in Table 4.1. The RDA and
KDE perform well and comparably. The RDA is slightly more sensitive (more likely to
determine any x; anomalous) than the KDE in that the RDA has greater TP, FP lesser
FN. The advantage of this simplest test is that the distributions of TP, TN, FP, FN can be
calculated and presented in a clear manner. During the test each x; was marked dependent
on whether it contributed to TP, TN, FP, FN. of either algorithm. The distributions are
given in Figure 4.17. No standard parametric or non-parametric significance tests [Siegel,
1988; Vargha and Delaney, 2000] find any differences between the distributions from either
algorithm for a given ROC statistic. Clearly, the mass of the FP, FN, and TN distributions
lie over the decision boundary. Observe the long tail of the RDA FP distribution toward
zero: with current parameters the RDA has greater susceptibility to noise in {z;} as receptor

activations occur in areas of dense ;.

4.6.2 The RDA and type 2 anomaly detection

This section discusses the more interesting anomaly detection problem, the type 2 anomaly,
and is driven by the example of a 1-dimensional time-varying distribution v(z). The
distribution is described by a standard normal distribution whose mean shifts at rate v,

-3 0<t<tg
1 —(z — 6;)?
wt(a:,y):mexp<2>, O =< -3+v(t—ts) ts<t<6/v+ts,
3 6/v+ts <t
(4.133)
0, is the mean of ¥ (z) with initial value y = —3. From time t;, ; increases at rate v until

0, = 3 at time 6v + t,. Samples are drawn from ;(x, ) to generate stream {z;} that is the
input to the RDA. With a rearrangement notice that the distribution of input at any one
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Figure 4.17: The distributions of TP, TN, FP, FN for RDA and KDE on a linear scale (top) and a log-scale
(bottom) . Distributions are themselves kernel density estimates calculated from the portion of the sample
that contributed to each ROC class. Note the mass of the distribution lies on the decision boundaries. The
distributions for TP, TN and FN for each algorithm are almost identical. Only the RDA FP distribution
shows a difference in the tails, which stretch toward zero.
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location x has the form of the normal distribution in time, for ts <t < 6/v + t,

1 V(= (ts + 227))°
Yi(z,v) = 2z P ( 5 ) , (4.134)

so vip(x,v) is a normal distribution with mean ¢s +

3% and variance 1/v2. Any z which
is passed by the leading edge of v, will experience the maximum change in underlying
distribution. Approximating with continuous ¢ the time of the maximum positive rate of

change in v; can be found by solving,

2
% =0 which gives t=ts+ 5 —L_ - v, (4.135)
8¢t } v
and so axq —— ¢ = . 4.136
t o X{ ot V2me ( )

Consequently all receptors with location —2 < x < 2 will experience the maximum rate of
change of the leading edge of ;. If the receptors in this range are robust to this passing
of the leading edge, then no anomaly will be detected. For example, if v < gv/2me then
the expectation, with respect to the sample, is that no anomaly will occur. The above is
closely related to the MSD defined in (4.64) in Section 4.3.2. However, it is clear from
the convolution (4.123) and summation (4.126) conditions that type two anomaly detection
in the RDA is related to an integrated MSD. Rather than define an integrated MSD it is
clearer to discuss the 1, with respect to the convolution and summation conditions of the
RDA.

This example can be modelled by considering a single receptor with input {;} (rather
than u; = u or uy = 0 as a function of z;) and it should convey the expectation of anomaly.
It is necessary to render the sequence {n;} independent of {t;} to allow calculation of
the convolution and summation anomaly conditions. Given z and v defining v; assume
that pg,ng = 0 then the time at which n; begins to grow is the smallest ¢,, such that
©t, * P, > (. The convolution and summation conditions are then calculated from time
t, using the p; > [ solution for n; (4.16). If either condition indicates an anomaly at time
ty, letting 7 = t, — 1 — t,, be the time of the anomaly with respect t,, then the anomaly is
only valid if|

r % iy — 1) — puo b7 > 6. (4.137)

The RDA is demonstrated with two 1); scenarios, a fast vy = 0.01 and a slow v5 = 0.002.
For each, demonstrations are given of the RDA tracking the shift (such that no anomalies
occur) and then RDA detecting the shift as an anomaly. The parameters are chosen by
combining the results of the chapter. A discussion of the meaning of the parameters is given
in the subsequent conclusions and discussion section. For the moment, b and d should be
chosen near 1 with d > b and g near zero, this will help smooth the noise in the sample and
provide good quality density estimates. However, b and d also define the window for the
internal density estimate in the (1 + b)/(1 — b) in the manner described in Section 4.4.1.
Thus, b and d must also be set at a rate relevant to the underlying distribution. As such,
the fast distribution requires fast rates for tracking and the slow distribution requires very
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slow decay rates to detect the slow shift as an anomaly. There is some freedom in the choice
of # and ¥, here they are set such that type 1 anomaly detection does not occur (i.e. a single
uy is insufficient to result in py(z) > (3). Arbitrarily, 3 is set at 1, this defines a scale for p;
which is greater than the underlying distribution, however n; still contains a good density
estimate and this scheme provides good results. Finally, note that the slower distribution
has a greater area for one x when evaluated in time; this combined with a slow decay rate
increases the size of the convolutions. As a consequence, this defines the scale by which it

is appropriate to set £.

The parameter setting proceeds by first choosing —2 < x < 2 which is passed by the
leading edge of 1, © = 0 is chosen. The conditions are used with the constraints of the
parameter setting described above. The results are given in Figure 4.18 for the fast shift
and Figure 4.19 for the slow shift. The corresponding parameters are given in Table 4.2.
The parameters for fast anomaly detection and slow tracking have been purposefully chosen
identical for comparison (apart from an increase in ¢ for the slow tracking). Note that as b
increases the error of the summation condition 4.128 increases, which results in a difference
in predicted time of anomaly in Figure 4.128. As stated above, the use of ¢, directly in
the anomaly conditions only describes the conditions for anomaly in the expected sense.
The true behaviour of the receptor at * = 0 may be investigated by sampling from the
time-course of ¥;. A receptor with parameters given in Table 4.2 is presented with input
u; ~ Bernoulli(y(0,v)) with v = v, vs. As noted in Section 4.4.1 this will have greater
variance than the input passed through the kernel. One thousand instances of the v are
simulated and are also presented in Figures 4.18 and 4.19. The results are given in Table 4.3,
and are as desired. The 1/10 occurrence of slow tracking anomalies can easily be reduced
by an increase in g or £. However, leaving the parameters as they are allows comparison
between fast anomaly detection and slow tracking, moreover it later provides an opportunity
to demonstrate the variance reduction of the kernel.

The results thus far have demonstrated the appropriate parameter setting for the ex-
tremes of the v distribution. Now the behaviour is examined with the full v distribution.
A 1-dimensional lattice of receptors is used with receptor separation § = 0.01 and extremes
kmin = —6 and ke = 6. The input to the lattice at time ¢ has location z; drawn from
Y¢(x,v), the magnitudes of all u; are set equal with u; = 1. A standard normal kernel is
used in function Kg, the kernel widths are given in Table 4.2. Figure 4.20 gives the results
for fast iy(x,vy) and Figure 4.21 for slow ¢;(z,v,). The desired tracking and anomaly
detection behaviour is observed. Moreover, the statistics of the tracking and anomaly de-
tection are confirmed with 1000 repetitions of the v, shift. The results are given in Table 4.3
and demonstrate that the parameters chosen for a single receptor translate well to many
receptors. The stimulation kernel Kg plays an important role in reducing the variance of
{u¢} which greatly reduces the occurrence of tracking anomalies for the slow distribution.
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Figure 4.18: Parameter setting for fast 1:(0,vy) tracking (left) and anomaly detection (right). Top: Con-
volution condition, ¢ = t, marks first satisfaction of the condition, the difference between lines is ¢ — pf;t".
Middle: Summation condition, C marks the R.H.S. of (4.126), ¢ = ¢, marks first satisfaction of the condition,
C and Y u? intersect. Note 1 step disagreement with convolution condition. Observe in top and middle
tracking occurs when function of u; grows slower than the function n,; and vice versa for anomaly detection.
Bottom: Sampling 1000 timecourses of 1;. P and N give p; and n; for a single timecourse. MP and MN
give the mean across the 1000 repeats. P and MP are read on the left axis and N, MN and 1, are read on

the right axis. For tracking the MP < ¢ and for anomaly detection MP > ¢.
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Figure 4.19: Parameter setting for slow 1:(0,v,) tracking (left) and anomaly detection (right). Top: Con-
volution condition. Middle: Summation condition. Bottom: random sampling from ;. See caption of
Figure 4.20 for detailed description. Note with increased b, the error in the summation condition increases,

resulting in a 100 time step difference in predicted anomaly.
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Figure 4.20: Type 2 anomaly detection for fast 1 (z, v¢), for tracking (top) and anomaly detection (bottom).
The three panels display snap shots of 1:(z,vy) (dashed grey, right axis); p; (z) (solid grey, right axis) the
decay density estimate estimate with the same b as used in RDA shown for comparison; p:(z) (solid black,
left axis); ne(x) (solid red, right axis). The snapshots are time the start of the shift ¢,; mid-shift 3/v+ts; and
at the end of the shift after an appropriate settle time. When tracking, the negative feedback moves with the
shift in v ensuring no anomaly occurs. For anomaly detection, the negative feedback loses correspondence
with ¢ and the receptor position builds and exceeds ¥.
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Fast: vy = 0.01 Slow: vg = 0.002

Parameter Tracking Anomaly Tracking Anomaly

b 0.95 0.99 0.99 0.995
d 0.99 0.999 0.999 0.9995
g 0.02 0.001 0.001  0.00021
¢ 5.5 10 15 30
3 1 1 1 1
wy 39 199 199 399
ny 199 1999 1999 3999
h 0.4 0.3 0.3 0.25
u 1 1 1 1

Table 4.2: Parameters for RDA tracking and anomaly detection of fast and slow ;. Additional parameters,
wp and wq, give the window size of the sliding window kernel density estimator with equivalent variance to
the decay density estimate with parameters b and d respectively.

Single Receptor Lattice of Receptors

Fast Slow Fast Slow
Tracking 1 105 2 23
Anomaly 997 1000 1000 1000

Table 4.3: Tracking and anomaly detection results, table gives number of anomalies detected for the single
receptor (Figures 4.18 and 4.19) and a lattice of receptors (Figures 4.20 and 4.21) for fast ¢ (z,vy) and slow
¢ (x,vs). All parameters are given in Table 4.2 and are identical between single receptor and lattice. All
results out of 1000 runs. Note the improvement due to the kernel in reducing erroneous tracking anomalies
in the slow distribution.

4.7 Discussion and Conclusions

This chapter began by identifying general properties of the T cell signalling processes,
that looked to be of relevance to bio-inspired algorithm development. To confirm this,
an abstracted computational model of the T cell signalling processes was defined. This
model was found to have certain properties in common with classical statistical anomaly
detection techniques. With comparison to the classical concepts, the abstracted model has
been developed into an anomaly detection system. In more detailed summary:

Section 4.1 defines an abstracted model from the details of the T cell signalling model.
The abstracted model focuses on the details of the hypothesis at the end of the last chapter,
and as a consequence discards much detail but retains the concept of the negative feedback
base state. The abstracted model defines a receptor which has a continuous position in
analogy to TCR kinetic proofreading state and a continuous negative feedback in analogy

to local pSHP1. The dynamics of a receptor are given in terms of discrete recurrent equa-
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Figure 4.21: Type 2 anomaly detection for slow v, (z, vy), for tracking (top) and anomaly detection (bottom).
See caption of Figure 4.20 for details. Additionally, note the smoothing the receptor position and negative
feedback in comparison to Figure 4.20. This is due to improvement of the density estimates by the reduction
in variance by increasing the proximity of b and d to 1. Further, in the bottom anomaly detection case, even
at t = 10* the negative feedback displays clear residue of the shift.

tions. This is a form of particular utility given the intended computational goal. The details
of combining multiple receptors presents challenges. First, the receptor lacks the molecular
recognition part of the TCR. Second, that the T cell signalling pathways perform a com-
parison task that is remarkably difficult for biology, but relatively simple for computers.
The solution to first problem is the introduction of receptors in a lattice. Then interac-
tions between multiple receptors are defined by kernel function Kg and K which describe
the spreading of input and negative feedback respectively. Figure 4.3 demonstrates the ab-
stracted model is able to replicate the hypothesis presented in the final section of Chapter 3.
This is the intent of the abstracted model: to remove detail such that the desired properties
of the biological system remain. The connection between the abstracted model and the
biological model through assumption set A are discussed concluding chapter of this thesis.

Initial theoretical properties regarding the behaviour of a single receptor are then pre-
sented in Section 4.2. The results include two basic solutions with respect to the negative
feedback barrier 3, and details of the fixed points of the recurrences. Of most interest to
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the chapter is input range Uy, for an input u € Uy the receptor position and negative feed-
back are shown to orbit an approximate equilibrium point in the (n,p)-plane. The feature
of importance is that at this equilibrium point the p becomes independent of v and the
magnitude of u is translated to n.

Section 4.3 commences with a definition of two types of anomaly of relevance to the
chapter. Type 1 anomaly detection is concerned with the problem of evaluating the sim-
ilarity between a test point v and a sample xg,X1,...,X,_1. Type 2 anomaly detection
inherently concerns a stream of samples with an underlying distribution thought to change
in time. The problem of type 2 detection is to track these changes and flag an anomaly
if the underlying distribution changes too quickly. The section then notes that a solution
to the receptor position equation has the form of a kernel density estimate. A background
to kernel density estimation and the use of the kernel density estimate in type 1 and type
2 detection is then given. Clearly, this connection to density estimation is a pivotal step
in the conversion of the abstracted computational model to the anomaly detecting RDA.
This particular connection was not a prior intent and its initial discovery was accidental
and arose when considering the summation of kernel functions.

The details of the density estimate present in the dynamics of a receptor, defined as the
decay density estimate, are then developed in Section 4.4. In particular, it is shown the
decay density estimate performs an exponential smoothing of the input. The result is an
estimator with identical bias to the standard kernel density estimator (i.e. only the bias
due to the kernel) and the ratio of variances of each estimator is bound by a constant.

Section 4.4 also unites the decay density estimate with negative feedback. In doing so,
a key step is taken in the construction of an anomaly detection system: the removal of
negative feedback diffusion. This step constitutes additions to set assumption set A and,
interestingly, destroys the mechanism with which the T cell performed “anomaly detec-
tion”. In general, one would not expect to remove the mechanism with which the biological
system performs the behaviour that inspired the algorithm development. A direct abstrac-
tion of this mechanism was of limited computational value (Section 4.1.2) because of a
missing molecular-recognition portion of the TCR and the signalling system that performs
a comparison which can be performed far more directly using conventional computation.
However, the receptor has interesting dynamical properties (Section 4.2) and the removal of
the negative feedback diffusion is the ingredient needed to bring its properties to the fore-
front. This topic is given further discussion in the concluding Chapter 6. After removing
the negative feedback diffusion, Section 4.4 also develops a connection between the negative
feedback barrier § and the anomalous distribution threshold «.

Section 4.5 returns to the single receptor to develop the conditions for breaking ¢. The
one-step breaking conditions describe the type 1 anomaly detection conditions. The step
increase from u to wu,x and varying u; conditions describe the type 2 anomaly detection.
The consideration of varying input gives the clearest picture of the behaviour of a receptor
under increasing input. The receptor performs a convolution of the input sequence {u;}
and the growing negative feedback {n;} with the sequence {b'}. If the convolution involving

the input grows significantly faster than the convolution involving the negative feedback as
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measured by their separation ¢, then an anomaly is detected. The summation condition is
then derived by the weakening of the convolution condition. It is of use it allows algorithm
parameters to be considered independently from input.

In Section 4.6 the abstracted model of biology with negative feedback diffusion re-
moved is defined as the Receptor Density Algorithm (RDA). It is important to note that
the behaviour of the algorithm can be described without any biological metaphor, this is
an important stage in the development of any biologically inspired algorithm. Certainly,
the terms such as the receptor have biological origin, but they are not necessary to the
algorithm’s description.

Demonstrations of the RDA performing type 1 and type 2 anomaly detections are given
in Sections 4.6.2 and 4.6.1 respectively. The type 1 demonstrations reveal the RDA to be
highly comparable to thresholding of a standard kernel density estimate. The major dif-
ferences in behaviour of the two techniques lie in the false positive distributions. With the
parameters used in the demonstration, the RDA was more susceptible to noise in the in-
put sample, resulting in false positive distribution tails that stretch away from the decision
boundary. Further comments on the implications of this are given below. The demonstra-
tion of type 2 anomalies presented a method for setting the parameters of the RDA by
consideration of expected extremes of change in the underlying distribution in conjunction
the the convolution and summation conditions. If the timescales associated with the pa-
rameters of the RDA are equivalent or faster than the timescale of change in the underlying
distribution then the RDA will track the change. However, if the RDA responds slower
than the change the internal density estimate is lost and an anomaly occurs.

With the contribution of the chapter summarised, a discussion of the type 2 anomaly
detection mechanism is now given. One can interpret the behaviour of the RDA at type
2 anomaly detection with a connection back to the kernel density estimate and the Bayes
optimal decision boundary (4.58). Consider a potentially time-varying probability distri-
bution with the probability density function p(x,t). It is possible to evaluate whether this
distribution is changing in time by the consideration of two estimates defined by sliding
windows: p(x|ws;) and p(x|wys). The sliding windows are of different lengths, so wy; is a
long window and contains the [ most recent x; and w; s is a short window and contains the
s most recent points. So, s <[ and w; s C wy;. Then, one evaluates every x; to identify if
it was more likely that x; was drawn from the distribution estimated by the short window
than the long window. So, assign x; to the short window distribution if,

ﬁ(xt|wt_175) > ﬁ(xt\wt_u). (4138)

This condition conveys the notion that if p(x,t) is changing the changes will be more
dominant in the short window and x; will have a greater probability given the short window
than the long window. It is a formalisation of a type 2 anomaly. Note that since the density
estimates are themselves probability density functions and sum to one, if there is a decrease
in probability in p(u,t) for some point u then there must be a distinct point v elsewhere
in the distribution which experiences an increase in probability. The issue now is that the
short window estimate, by definition, has greater variance than the long window estimate.
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To prevent this variance from erroneously indicating a type 2 anomaly, it is best to supply
the condition (4.138) with a confidence,

ﬁ(Xt!wt—l,s) > ﬁ(Xt|Wt—1,l) + 4. (4.139)

That is, the type 2 anomaly is only detected when the probabilities are separated by .
Clearly, it is not an accident that ¢ has been chosen to denote the threshold, this is in
essence the type 2 detection of the RDA. The short window estimate is the decay density
estimate contained in the receptor position, the long window estimate is contained in the
negative feedback. This is why d > b as the time scale of the negative feedback should be
longer than that of the receptor position. While there are many commonalities between the
RDA and the windowed estimates, certainly enough to make the comparison worthwhile,
the two methods are by no means equivalent.

Brief comments on the meaning of the parameters are now given. It is worth explicitly
stating that the convolution with sequence {b'} in the condition for type 2 detection is,
of course, the exponential smoothing analysed in Section 4.4.1. The RDA performs an
exponential smoothing of the difference between the input and negative feedback. The
smoothing means that an estimate of the expected value of the difference between the input
and negative feedback at reduced variance is compared to ¢. This is the reason why the
condition is appropriate.

The negative feedback barrier G deserves some discussion, the base negative feedback
state plays a crucial role in chapter 3. The importance of 5 comes from the consideration of
single receptor dynamics. It is the feature that renders the receptor position independent
of input u € Us and makes the negative feedback dependent on u. For u € Uy the trajectory
of py and ny in the (n, p)-plane orbits around the point (u — B(1 — b), 3). Then, this allows
? to be set constant across the receptor lattice and provides a clean platform for anomaly
detection. Note, that rendering one variable of a system independent of the input at the
expense of another variable in the system is common concept in Control Theory [Nise,
2000]. The single receptor can be interpreted as a simple controller which endeavours to
maintain the receptor position at level § regardless of input. The control mechanism is
then very simplistic, it is an on-off switch dependent on p > 3 8. Certainly, if the problem
is to maintain p; = G then one would discard this on-off control for one of the many more
sophisticated techniques in control theory that would prevent the large divergence of p;
from (8 when the input changed. However, it is exactly because the control mechanism is
simplistic that p; can diverge from 3 which provides the mechanism from anomaly detection.

An alternative perspective on (3 arises from the analogy with the anomalous distribution
threshold a. Clearly, 8 can be used in the methods described in Section 4.4 as an anomaly
detection threshold. However, a further interpretation of § can be gained by examining
the motivation in which the thresholding scheme was presented in [Bishop, 1994]. The
objective of [Bishop, 1994] was to construct a neural network classifier, and outlying sample
points severely hindered the minimising of the sum of squares error function used to set

8This perspective gives an alternative argument for d > b, as the negative feedback decays it will not
overshoot its equilibrium position any more than the simple switch dictates.
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network weights. The solution of [Bishop, 1994] was to use a thresholded density estimate
to remove anomalies in the training sample. So, the anomaly detection was used to improve
the performance of a different classification mechanism. In analogy here, type 2 anomaly
detection is the different and even, the more interesting, anomaly detection problem. If
type 2 detection alone is desired, type 1 detection can be used to improve its performance
by filtering the outlying samples that may alter the shape of the type 2 density estimation.
In the context of the RDA, this is not achieved by detecting type 1 anomalies, but by
setting the parameters such that a single sample is not enough to break . Thus outlying
samples will never generate negative feedback, and since § < ¢ neither will they cause an
anomaly. In this scenario, § acts like its kinetic proofreading origins, all below threshold
inputs are ignored. It is known that the performance kernel density estimation can suffer
in the tails of distribution [Silverman, 1986]. Thus, § can side-step the issue of the tails
of the distribution by simply ignoring them. It must be noted that this is a benefit in few
dimensions, but as the dimensions increase by the argument at the end of Section 4.3 this
effect of 3 becomes detrimental. To use the RDA in high dimensions it is necessary to have
a very large number of sample points contributing to the internal estimates. Therefore, b
and d must be set exceedingly close to 1, and as a consequence the RDA can only be used
to track very slow moving distributions in high dimensions. In this scenario the recursive
nature of the RDA becomes very useful as it not necessary to store the large number of

samples.



CHAPTER 5

Anomaly Detection in Spectra

This chapter presents an application of the Receptor Density Algorithm. The application
shares similarities with type 2 anomaly detection, but has some fundamental differences. In
some difference to the previous chapters the application is now related to chemistry, and is
anomaly detection in spectrometer data. The problem requires the detection of anomalies
in data originating from a device that measures chemical properties of its surroundings. In
general, this chapter will assume that these devices are not operated in controllable labo-
ratory conditions, and moreover there may be limited computational resources to process
the data.

The chapter is organised as follows: Section 5.1 gives a background to spectrometers
and gives a description of the problem; Section 5.2 describes how the RDA may be used
to address the problem of anomaly detection in spectra. Section 5.3 and Section 5.4 are
case studies, the first describes a Mass Spectrometry problem under relatively controlled
conditions; the second describes a more challenging problem involving a robot-mounted Ion
Mobility Spectrometer.

5.1 Spectrometry

An analytical chemistry device measures chemical properties of a chemical sample. The
word sample here has a quite different meaning to the sample data points of the previous
Chapter 4. Here, sample refers to a quantity of molecules (potentially in solid, liquid or
gas form). Examples of a measurable chemical property include mass, charge, and light
scattering. A spectrometer is an analytical chemistry device which measures a spectrum of
a particular chemical property. For every point in the spectrum the spectrometer gives a
measurement of the quantity of the sample with the chemical property corresponding to that
point in the spectrum. The study of the chemical properties of samples by a spectrometer
is know as spectrometry. Three relevant examples are: Mass Spectrometry [Downward,
2004] in which the spectrometer gives the distribution of molecular or atomic masses in the
sample. Ion Mobility Spectrometry [Eiceman and Karpas, 2004], in which the sample is
ionised and the distribution of ion mobilities calculated (see Section 5.4). Finally, Raman
Spectroscopy [Lewis, 2001], in which the composition of the sample is analysed by observing
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the Raman scattering of light incident to the sample. A concern of all these spectrometry
fields is the identification of chemical substances based on the signatures present in the
spectra.

The majority of spectrometry is performed in a controlled laboratory environment, there
is a degree of control over the sample and possible sources of error. The resulting spectrom-
etry data can have both high quality and resolution, and the processing of this data can
be detailed and performed off-line. However, there is a clear application for spectrom-
etry techniques outside the laboratory. For example, the detection and identification of
chemical /biological agents, explosives and drugs [Eiceman and Karpas, 2004]. At a less
dramatic level, environmental monitoring [Eiceman and Karpas, 2004] and medical applica-
tions [Westhoff et al., 2009]. These situations are often void of the luxuries of the laboratory:
sources of error are not controllable; computational processing is limited; and often immedi-
ate identification is required. A clear case in point is the detection of Improvised Explosive
Devices (IEDs): identification must be immediate; the device must be portable; and there
are likely to be many other innocuous chemical substances present. Regarding portabil-
ity, many spectrometers make use of physical size in producing high resolution data. For
example, the separation of ions by drift tube in Section 5.4. Longer drift tubes result in
higher resolution data. The applications related to harmful chemical agents and explosives
have attracted much attention from the military community. A number of devices have
been developed for military purpose including, held hand devices [Eiceman and Karpas,
2004; SmithsDetection, 2010b]; robot mounted devices [Gardner et al., 2008]; and even a
Unmanned Air Vehicle (UAV)-mounted device [SmithsDetection, 2010a]. The details of the
majority of these devices are restricted and out of the public domain.

The focus of this chapter will the construction of an anomaly detection system for the
data generated by a portable spectrometry device. The problem of anomaly detection in
spectra is now discussed.

5.1.1 Anomaly Detection in Spectra

First, it is convenient to provide a definition of the data produced by a mobile spectrometer,

Definition 5.1. A spectrum Sy = (si,t)?z_ol s a non-negative n-dimensional vector describ-
ing the chemical state of the input chemical sample at time t and s;; > 0 is the spectral
value in the ith-position at time discrete time point t > 0.

It is assumed that the device can continually sample its environment (via an air-inlet
valve, or similar) to produce the sequence of spectra. Further, since the spectrum is repre-
sented at discrete positions with a finite width, then data available from a spectrometer is
a binned and so smoothed version of the true spectrum . This chapter makes the following
assumptions on data available from a mobile spectrometer?:

!Despite the name spectrum the nature of the underlying chemical property is not required to be contin-
uous.
2These assumptions are compiled from [Eiceman and Karpas, 2004] and personal communication from
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e The value of spectrum location ¢ at time ¢ correlates with the quantity of molecular
substance with property corresponding to location 7 in the environment at a time close
to t. Thus, the spectrum is peaked and the locations and heights of the peak define
a molecular signature for the current state of the environment.

e A particular signature corresponds to the presence of many different chemical sub-
stances. In general, the signature of a mixture of substances is not guaranteed to
be a linear combination of the signatures of the individual substances. This point is
dependent on the chemistry of a particular device.

e The inlet to the spectrometer is short-range, or can be directed or restricted to limit
the number of chemical substances present in the sample at any time. As such, for a

given environment a spectrum is relatively constant.

e The spectrometer has a characteristic behaviour regarding the growth and decay of
signatures in the spectra. A common behaviour is when a substance is first present
in the sample it is immediately present in the spectra, then as the substance leaves
the sample a decaying residue is left in the spectrum. The result is a sharp initial
increase in spectra positions related to the signature, followed by a comparatively
slower decaying tail.

e In comparison to its laboratory counterpart, the mobile spectrometer is assumed to
offer lower resolution spectra with greater noise. However, the rate at which new
spectra are available is not assumed to be hindered.

e The spectrum may be subject to drift, such that an entire signature may appear at
locally shifted position in the spectrum.

Anomaly detection in spectra is the detection of the presence of new chemical substances
in the input sample by the presence of new features (peaks) in the spectra. In general, this
chapter aims for the following desirable properties of an anomaly detection system applied
to spectra: First, the system should be able to isolate a noise-reduced signature of the new
component of the spectra. This signature should be used to identify the new substance, and
the system should have the ability to learn signatures of new substances. Finally, the system
should be able to perform these tasks at a rate faster than the occurrence of anomalies.

Unfortunately, there is very little information available regarding current approaches
to this anomaly detection problem. This is due to two factors: the proprietary (military)
nature of many mobile spectrometry devices and that the publicly available work often
concerns results obtained in a laboratory [Eiceman and Karpas, 2004]. The work that is
available [Gardner et al., 2008], and the manuals of proprietary devices [SmithsDetection,
2010b], generally have a far more restricted approach to the anomaly detection. The focus

is tailoring the system to detect one or two signatures with high accuracy. Some more

Mark Neal of the University of Aberystwyth and Stuart Cairns & Peter Hickey of the Defence and Science
Technology Laboratory (DSTL).
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general anomaly detection in spectra techniques such as [Davis and Kroutil, 1990; Goubran
and Lawrence, 1991; Bell et al., 1999; Chen and Harrington, 2003] are not applicable in this
scenario. This is for reasons such as fragility to noise and the need for off-line processing.

Given the above requirements and the physical correspondence between the RDA’s lat-
tice of receptor and a spectrum S;, the RDA is readily applicable to this problem. The
details of which are developed in the next section.

5.2 The RDA and Signature Matching

To aid the development of the RDA for anomaly detection in spectra, a stochastic model

of a spectrometer is given.

Definition 5.2. A model spectrometer M generates a sequence of artificial spectra with n
locations. The spectra generated at time t is written My and has the form of a Spectrum
in Definition 5.1. The ith position of the model spectrum at time t is written m;; > 0.
Associated with a model M is a rate function: raq; which defines a Poisson rate of arrival
for location ry,, s > 0 of chemical substance with property i at time t. Thus, model location
i at time t is distributed m;y ~ Poisson(rm, ¢).

The above definition describes an appropriate qualitative picture for many spectrome-
ters, and produces data in good quantitative correspondence with the ion mobility spectrom-
etry data collected in Section 5.4. For simplicity, all instantiations of model spectrometers
will be a summation of k£ products of Gaussians and a time profile. Ion mobility spectrom-
etry peaks have the shape of a Gaussian [Goubran and Lawrence, 1991]. In Chapter 4 the
normal distribution featured heavily as either a kernel or the underlying distribution for
sample points. In this chapter the same function is used to describe the shape of a peaks in
a model spectrometer rate function. To distinguish this difference in use they are referred to
as Gaussians. Thus, G(z,y) is a normalised Gaussian with mean x and standard deviation
or width y. Then, the all rate functions have the form,

k—1

rae = Glsk, Ok)Ti(t), (5.1)

J=0

with sj the spectrum location at which each Gaussian is centred, 0y is its width, and 74 ()
defines its time profile which describes the peak’s growth and decay. For example, consider
that the appearance and disappearance of a chemical substance in the sample results in
sharp increase in a signature in the spectrum followed by a long decay. If the signature
for the chemical substance contained two peaks, then Figure 5.1 shows an example setting
of peak locations and 74 (t) that could replicate this scenario. An full instantiation of this
model will be given in a later example in Figure 5.3.

Due to the physical correspondence between a receptor lattice and the spectrum, the
RDA can be mapped to take input directly from a spectrum S;. If the receptor position at
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Figure 5.1: Example two-peaked model spectrometer M with n = 100. Each peak has identical time profile
so rme = TR(G(25,5) + G(45,5). The time profile 7(t) is defined by a scaled inverse-gamma distribution
starting at ¢ = 20 with shape and scale parameters set to 1. So, 7(¢) = 0 for ¢ <= 20 and 7(t) =
2500 exp(50/(t — 20))/(t — 20)? for ¢+ > 20. The use of the inverse-gamma is simply because it gives the
appropriate qualitative picture. Figure 5.3 shows an instantiation of this M.

spectrum location ¢ at time ¢ is written p;; and the negative feedback similarly n; ¢, then,

Dit+1 = bpir + Ki(S) — niyg (5.2)
Nig+1 = dnge + gH (piy — ), (5.3)
with parameters defined with identical constraints as Chapter 4. Note that the stimulation

kernel function, defined (4.5), has now become a K;(S;). This is a kernel function applied

to a spectrum as follows,

n—1 . .
Ki(S) =~ 3 flss0K <’ =~ ) , (5.4)

nh <
Jj=0

for some suitable kernel function K(-) with properties (4.6) and f(-) is a preprocessing
function. Note, K; is very similarly defined to the negative feedback diffusion function
Ky (4.7). Examples of preprocessing functions f(-) include a multiplication by a scalar
factor, or a logarithm. If the spectra have a non-zero background signature the RDA must
be capable of tracking this, so the result of applying K; to this background signature must
result in an input in region 2 of Figure 4.4: (max{K}f(s;+)) € Uz for all .

A discussion of appropriate parameter setting for the RDA applied to spectra is given in
Section 5.2.4. Before that, a discussion of the required anomaly detection process is given.

5.2.1 The RDA for Signature Generation

In Chapter 4 a type 2 anomaly is detected when the underlying distribution changes faster
than the growth of negative feedback. However, in this chapter more rapid changes are the
norm, for example the time profile of the model spectrometer presented in Figure 5.1. With
such immediate changes the intuition supplied by the step-increase in u; in Section 4.5.1



5.2. The RDA and Signature Matching 127

apply. The result is that the divergence of receptor position above 3 can be used to generate
a signature for the new features in the spectrum.

Definition 5.3. The time of an anomaly is t, = t. — ts, with ts the first time step when
Dit, > L andt. is the first time point after ts when no receptor is above ¢, that is p; ., < £, Vi.
Further, to > ts and t, > 0.

Definition 5.4. The signature of an anomaly is average of the distance of each receptor

above [ taken over the time of the anomaly. For an anomaly A, the signature is written

o(A):

0(A) = (040,04,5---,04, 1) (5.5)
ts—1

e DL (56)
e S 4—t,

with H(-) the Heaviside step function.

The following will use two examples to demonstrate the issues related to signature
generation. The first will concern a basic demonstration of signature generation. The
second will involve the issues sequential anomalies.

5.2.2 Example 1 — Basic signature generation

Consider a model spectrometer M with the following rate function,
rme = o(G(60,8.9) + G(120,20) + H(t — 100)G(160,8.9)), (5.7)

with a = 18000. The spectrum generated by M instantly changes from being two-peaked
shaped to three-peaked at time step 100. The details of the example are given in Figure 5.2,
note that they are not intended to be realistic, they are intended to demonstrate the concepts
of signature detection in the RDA. There are a number of important details conveyed by
Figure 5.2: First, for t < 100 the negative feedback familiarly matches the input, and
matters are improved from the Chapter 4 as there are effectively n input points per time
step rather than 1. Second, the change in 74 results in an anomaly A with ¢, = 101
and t. = 130, and signature proportional to the new peak G(160,8.9). Third, due to the
large step increase there is effectively linear growth of pigg,t to its peak. As the growth
of negative feedback is not linear the signature is elongated, and this example has been
chosen to demonstrate this point. If a time profile like that of Figure 5.1 was used, then
this effect would be less pronounced. Further, note that ¢ = 0.3 is larger than examples
in the Chapter 4. This has three closely related influences. First, it increases the upper
bound of input region Us and so greater magnitude input may be held at 3. Second, it
increases the linear growth phase of the negative feedback which reduces the distortion of
signature. Third, for input near the bottom end of U5 it increases the “bottom-out” effect
in the equilibrium cycle (Figure 4.7) where p; is pushed to zero. Consequently, these inputs
spend the majority of their Us equilibrium cycle below 3 and so contribute minimal noise
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Figure 5.2: Example of signature generation. Model spectrometer M has rate function defined in (5.7).
RDA parameters are set b = 0.84; d = 0.98; g = 0.3; 8 = 1; £ = &; f(M) = 0.01M, a standard normal
kernel is used with h = 0.5. Top right: the RDA before ¢t = 100; Top left: the RDA at t = t; = 101; Bottom
Left: The resulting signature from anomaly A caused by change o(A) 4 (3 is shown for clarity. M; denotes
before ¢ = 100 and My denotes after. o(A) is proportional to the difference M2 — M1 above 8. Bottom
right: The trajectory of the receptor at the mode of the new peak ¢ = 160.

to the signature. These benefits come at the cost of larger jumps in n;, however as will be
seen in the case studies in Sections 5.3 and 5.4 the background spectrum will be effectively
zero. With no background spectra for the negative feedback to estimate, the large jumps
in negative feedback are less costly.

5.2.3 Example 2 — Anomaly Interleaving

Section 5.1.1 discussed that the spectra will decay after a substance leaves the sample.
Figure 5.1 gave an example of such a decay. This example addresses the case when a new
anomaly occurs whilst an old anomaly is decaying. Such an occurrence is denoted anomaly
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Figure 5.3: Anomaly interleaving. Model spectrometer M with rate function (5.8), RDA parameters are
b=0.85d=0.98;,g=03; 3=1; £ =5; f(M) = 0.21M; a standard normal kernel is used with h = 0.5.
Left: The model M; Centre: Receptor position, anomalies A; and As are detected. Horizontal lines denote
ts, = 60; te, = 97; ts, = 100; te, = 137. Note that no residue of the first anomaly is in the receptor
position at the start of the second anomaly. Resulting signatures are given in Figure 5.4. Right: The
negative feedback. Note it is a smoothed version of the input, and the discontinuity of the § step is clearly
observable.

interleaving. Consider the following rate function for M with n = 100 locations,
rmye = 7(t — 50)(G(15,5) + G(35,5)) + 7(t — 90)(G(60,5) + G(80,5)),

. 0 fort <z 5 5

rit-o)= (XW fort >z (5:8)
with o = 2.5x10°. The rate function describes two sets of two peaks that have a time profile
as Figure 5.1. The first set of two peaks appears at ¢ = 50, the second at ¢ = 90. Figure 5.3
displays an instantiation of random model M with RDA receptor position and negative
feedback. Note, that the sets of peaks are detected as separate anomalies. Figure 5.4 gives
the two resulting signatures. Clearly, it is possible to generate signatures for interleaved
anomalies only if they occupy disjoint regions of the spectrum. The proximity in time of
interleaved anomalies will dictate whether they are detectable as different anomalies. This
is dependent on the size of anomalies and RDA parameters. This is discussed in the next

section.

5.2.4 Parameter setting for RDA signatures

No specific theory related to parameter setting for signatures is developed in this chapter.
The discussion will be informal, but rely on some of the results calculated in Chapter 4. In
general, the advice is as the last chapter: b,d close to 1 with d > b and g near zero. The
characteristics of a particular spectrometry device will force some parameter setting. For
example, the resolution of the spectrum and expected horizontal noise (i.e. shifts of peak
positions to left or right) will set the details of the kernel. If the spectrum is low resolution,
so it is a binned view on reality, then it may be preferable to use no kernel.
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Decay rate d should be set in reference to the expected characteristic decay of the device.
In particular, the negative feedback should decay at a rate approximately equal to but slower
than the decay of signatures in spectra. This ensures that whilst the anomaly decays in the
spectra the anomaly is not re-detected and the receptor positions are free from any residue
of the anomaly which allows interleaving with other anomalies.

As noted above, g should be set larger than in Chapter 4. Anomaly interleaving provides
another argument for larger g, an increased negative feedback growth rate decreases the
length, t,, of an anomaly. Again, there is a trade-off here as t, defines the number of
spectra that contribute to a signature in (5.5).

If the device has a characteristic baseline-noise, then ( should be set just above this
level.

Finally, a good scheme with which to set parameters for signature generation is with
reference to examples of extremes of detectable anomalies. The concerns are less for the
largest anomalies, but the parameters should be set by their desired interleaving times. The
small anomaly issues are more significant, setting the parameters incorrectly may mean that
small anomalies are missed. The summation and convolution conditions can be used as in
Chapter 4 to calculate appropriate parameters for detection of small anomalies. In general,
a good scheme is to lower £ until the anomaly is detected and that ¢, is of sufficient length
to give a good signature.

5.2.5 Signature Libraries

Recall the discussion in Section 5.1.1, it is desired that an anomaly detection system is able
to identify chemical substances via signatures and potentially learn the signatures of new
substances. This can be addressed a training sequence of labelled spectra.

Consider a sequence of spectra {S;} for ¢ > 0, and associated with this sequence are
m anomaly labels, where the kth anomaly label is written Iy = (Is,,le,, ln, ). With l5, € Z
denoting the start time of the anomaly which is the first time that the anomaly is present in
the spectra. Correspondingly, l., € Z denotes the end time of an anomaly, and so [, < l,.
Finally, {,, € Z is the anomaly type label and indicates which chemical substance produced
the anomaly. As this is a training sample assume that there is control over the anomalies



5.2. The RDA and Signature Matching 131

such that they do not overlap, lo, <ls,_,-

The RDA may be applied to {S;} to generate a signature for each anomaly. Assume
that the spacing between anomalies is such that the receptor position and negative feedback
decay to the background spectrum between anomalies. Also assume that the RDA detects
m anomalies Ay, A1, ..., Ay, and the start and end times of anomaly A are written A,
and A., respectively. The final requirement is that each of the m anomalies in the RDA
overlaps with the corresponding anomaly label, so I, < A, <,

The RDA may now be used to generate a set of signatures for a given chemical substance
labelled c. Define L. = {Ay, : [, = c} as the set of all anomalies for a chemical substance
with label c.

Definition 5.5. The signature for a set of anomalies L. is written o(L.) and given by,

= > fulo(A4)), (5.9)

A€,

with fr(-) a pre-processing function, for example a linear or logarithmic scaling.

Then, define the signature library for all chemical substances as £ = {o(L.) : for all c}.
To review, a sequence of labelled spectra can be converted into a signature library £ with
the RDA. Each library entry corresponds to the sum of the signatures of all anomalies of a
particular a chemical substance. The library may be used to classify anomalies in unlabelled
spectra. It is necessary to define a method for calculating a match between two anomalies,
here the correlation (as calculated by the dot product) is chosen.

Definition 5.6. The match between two anomalies A and B is written u(A, B) and is the

correlation between their signatures:

WA, B) = ||||G Z oA,08,, (5.10)

lo(Dlllo(B)]

1
with ||o(A)|| = [Zw 01 UA } ? the magnitude of an anomaly’s signature, and as such w(A,A) =
1.

The choice of correlation is found to be slightly more robust to horizontal shifts in the
spectra than a more conventional distance metric such as Euclidean or Manhattan distance
(or any other p-norm). The classification of a new anomaly A is performed by assigning A to
the class of the chemical substance whose library signature has the maximum match with A.
So, A is assigned to the ¢ that produces max.{u(A, L.)}. In the event of a tie, for example
(A, Le,) = u(A, L, ), then A is assigned to the library signature with the greater magnitude
scaled by the number instances in each class. So, if ||o(Le)||/|Ley| > l0(Ley)||/| Ley| then
A is assigned to class ¢1. In general, signatures with large magnitudes imply the chemical
substance was in abundance in the sample and gave a good quality signature. Thus, ties
are broken by assigning to the class with which there is a greater confidence in the quality
of the signatures.
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If this does not break the tie, then it is likely A contains signatures for both chemical
substances labelled ¢; and ¢o. In this event there a number of ways one could proceed,
for example attempting to decompose A, or assigning A to a new cjco class. However, the
details of this are left to further work. No ties of any kind, including p(A4, Le,) = p(A4, Le,),
occur in the examples in this chapter.

The procedure above for calculating a signature library and the match between anoma-
lies is relatively simplistic. Although, it performs well in the subsequent case studies. Similar
to the RDA the methods for generating signatures libraries and matching mechanisms may
be best chosen in reference to the characteristic behaviour of a spectrometer. Even careful
consideration of which example signatures are used in the library can greatly influence per-
formance [Bell et al., 1999]. On a related matter, and despite being relatively obvious, it is
worth explicitly stating that the signature library must be regenerated for every change in
RDA parameters.

Finally, an additional detail discussed in Section 5.1.1 is the ability to learn signatures
for new chemical substances. The full details of the following are, again, left to further work.
It is possible to use the above methods to perform on-line learning. A confidence threshold
wr can be applied to the matches with the signature library, so if max.{u(A4, L;)} < pr then
this method cannot resolve the identity of the anomaly with confidence. In this scenario the
signature can potentially be assigned to a new class and given a new entry in the library.
However, it is not guaranteed that this signature is representative of its class. Thus, a more
appropriate solution is to place the new signature in a pool of unclassified signatures and
progressively apply clustering techniques (there are many described in [Duda et al., 2001])
as new below threshold signatures arrive.

With the above definitions of signatures and signature libraries the chapter proceeds to

the case studies.

5.3 Case Study 1: Anomaly Detection in Mass Spectrometry
Data

This case study involves data collected from an immobile mass spectrometer. The data
was and is used in the International Conference on Artificial Immune Systems (ICARIS)
2009/2010 DSTL sponsored Anomaly Detection in Mass Spectra competition. As a con-
sequence it is available on-line [ICARIS, 2010] and may be used as a public benchmark.
The data is collected from Ionicon PTR-TOF 8000 Mass Spectrometer [Ionicon, 2010]. The
acronym PTR-TOF stands for Proton Transfer Reaction Time Of Flight. In essence, the
technology operates by ionising molecules in the input sample, that is the proton-transfer
leaves the molecules positively charged. Then, the charged ions are propelled through an
electric field, their time-of-flight through this field is use to calculate their mass. This
technology is closely related to Ion Mobility Spectrometry (see Section 5.4), but is less
susceptible to distortions in the spectra due to the presence multiple different chemical
substances [Mayhew et al., 2009].
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The important details of the ICARIS data are outlined by the following remarks. The
spectra are collected in mass/charge ratios in the range 1m/z to 270m/z at a resolution of
1m/z, thus the spectrum width n = 270. The PTR-TOF 8000 [Ionicon, 2010], is capable
of a resolution approximately 15 times greater than this, and so a binning operation has
occurred. This fact removes the need and the validity of using a kernel in the RDA. The
spectra approximately occur once every 0.34 seconds, or roughly 3Hz. The spectrometer has
an air-inlet capillary, and periodically one of 6 different substances are moved past the inlet
at varying rates. The 6 substances are Shower Gel, Shampoo, Shaving Gel, Coffee Beans,
Brewed Coffee, Olive Oil, Smoked Ham. The data is augmented with one of three strength
ratings 1 — weak, 2 — medium, 8 — strong, along with the start time (I, ), end time (I, ) and
peak time (equivalent to the time of peak in 7(¢) in Figure 5.1). All data are collected in
a laboratory, but based on the accompanying notes there are a number of sources of error,
such as changing backgrounds, contaminated samples and unlabelled anomalies.

5.3.1 MS — RDA Application and Results

The RDA performs well at this anomaly detection task, although even with the 15 times
downsampling the data is still of suitably high resolution and quality that the majority
anomalies are relatively simple to detect. The major difficulty is the size 1, weak anomalies,
whose magnitude is similar to the background spectrum. Figure 5.5 shows an example of
the background spectrum, a strong anomaly and a weak anomaly. There are two orders of
magnitude difference in the peak heights of the background spectrum and the signature of a
weak anomaly. In RDA terminology, input region Us must span at two orders of magnitude,
and so g/(1 —d) > 10%. It is a challenge to satisfy this condition and retain good anomaly
detection performance. One solution would be to use pre-processing function f (5.4) to
apply a logarithm to the input data. The disadvantage of this procedure is that the noise
is unduly scaled. The best performing solution is simply to mask out the initial portion of
the spectrum. The background peaks only occur approximately at locations < 66m/z and
are relatively constant. Thus, the preprocessing function f simply sets spectrum locations
1 - 66 to zero.

Parameter setting proceeds without difficulty using the scheme described in Section 5.2.4
and are given in Table 5.1. A signature library is generated via the methods given in
Section 5.2.5, due to the two orders of magnitude difference between weak and strong
anomalies fr, in (5.9) is set to a logarithm base 10. The application of a logarithm after
signature generation does not suffer from the same noise scaling problems. A further issue
is that the weak anomaly signatures tend to exhibit a subset of the peaks of the strong
anomaly signatures. Classification can be much improved by generating a library for each
anomaly size of each class. That is, a library of weak Olive Oil signatures, a library of
medium Olive Oil signatures, etc. Then, an anomaly is said to be classified correctly if it
matches the correct class regardless of size.

There are four files in the ICARIS data set and each contains variety of anomalies of
all strengths and a number of interleaved anomalies. The RDA is tested on the four files in
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Figure 5.5: Example spectra in the ICARIS data set.
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Parameter Value

Parameter Value

Parameter Value

b 0.82
d 0.98

16} 0.75
g 0.3

0 45
F(S)  0.045S

Table 5.1:

RDA Parameters for ICARIS Data.

Parameters are chosen by convolution and summation

conditions given in Chapter 4 on the smallest anomalies as described in Section 5.2.4.
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Detection Classification
File TP FP FN Total Labelled Correct Incorrect
1 31 8 2 33 29 1
2 12 0 1 13 12 0
3 19 0 1 20 18 1
4 54 0 0 54 53 1

Table 5.2: Results on the ICARIS data set [ICARIS, 2010]. Shown are detection and classification results,
see text for descriptions. The column “Total Labelled” gives the total anomalies in each file. True negatives
are not included as they are not meaningful in this example.

terms of detection and classification. The results are presented in Table 5.2 and are given in
terms of Receiver Operator Characteristics (see Section 4.6.1). The performance measures
are calculated between an anomaly A generated by the RDA and a labelled true anomaly
lg. A true positive (TP) occurs when [y, < ts <[, for some labelled anomaly with index
k; a false positive occurs (FP) if an anomaly is detected and there is no matching labelled
anomaly; a false negative (FN) occurs for every labelled anomaly that is not matched with
a RDA generated anomaly. The classification scores are calculated for every detection of a
true positive.

From Table 5.2 the RDA performs very well. The library signatures are given in Fig-
ures 5.6 and 5.7, note the clear similarity between the two types of coffee and the three
toiletries. The strong anomalies are very easy to detect and classify and there are 14, 7, 9, 22
anomalies in each of the four files respectively. The mis-detections, and mis-classification are
generally the weakest anomalies that have been interleaved after a larger anomaly. There
are two examples of immediately interleaved anomalies, i.e. two substances presented a
small number of time steps apart. The RDA detects these as one anomaly, which gives rise
to one mis-detection, and the resultant signature contains the signatures of the two anoma-
lies and so does not match with any anomaly. The other mis-classifications are generally
mistaken coffees or mistaken toiletries. The majority of false positives look to be unlabelled
anomalies, for example Figure 5.8. Finally, the Smoked Ham anomalies are some of the
smallest in the data set, Figure 5.9 gives an example of a very small interleaved Smoked
Ham anomaly. Despite size, the Smoked Ham has the advantage of a distinctive signature,
see Figure 5.7, so if the ham is detected it is classifies correctly.

5.4 Case Study 2: Robot-Mounted Ion Mobility Spectrome-
try

This case study concerns a demonstration of the RDA applied to data on a robot-mounted
Ion Mobility Spectrometer. The objective requires a Chemical Agent Monitor (CAM) Ion
Mobility Spectrometer [SmithsDetection, 2010b] mounted on a Pioneer Robot [Mobile-
Robots, 2010] (see Figure 5.10) to detect sources of Deep Heat in a noisy environment.
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Figure 5.6: Library of Signatures for the ICARIS data set. All signatures are normalised. Note the similarity
between Brewed Coffee & Coffee beans and between the toiletries. The signature for Smoked Ham is given

in Figure 5.7
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Figure 5.8: Example of a unlabelled anomaly and a similar size small anomaly for comparison. The structure
of the unlabelled anomaly would suggest that it is not just noise. The weak Olive Oil anomaly is that shown
in Figure 5.5.

Figure 5.9:  Very weak Smoked Ham
anomaly. The arrow indicates the loca-
tion of the distinctive peak in its signature,
shown in Figure 5.7. The anomaly is in-
terleaved the activity in the spectra before
the arrow (in time) is the decaying tail of a
much larger Brewed Coffee anomaly.
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Figure 5.10: Left: The Chemical Agent Monitor (CAM) developed by Smith’s Detection (formerly Graseby
Dynamics) [SmithsDetection, 2010b]. Size: 350 x 80 x 145mm. Weight: 1.9kg (including standard battery).
Power Source: Single 6V battery, rechargeable battery, or 4 x D-cell batteries with training adaptor. Right:
The CAM mounted on a Pioneer Robot [Mobile-Robots, 2010].

All data processing must be performed on the robot. This section only gives comment
to the data analysis and does not discuss any details of the robot platform implementa-
tion. Assuming the signature library is small, the computational complexity for anomaly
detection and classification with the RDA is O(n) in time and space with n the spectrum
width. The pioneer robot contains a simple PC which is more than capable of performing
the required computation.

5.4.1 Ton Mobility Spectrometry and the CAM

Ton Mobility Spectrometry (IMS) [Eiceman and Karpas, 2004] is a similar technology to the
PTR-TOF mass spectrometer described in the last section. IMS operates by first generating
reactant ions which then react with substances in an input sample, forming product ions.
The product-ions are shuttered into a drift tube and subject to an electric field, their drift-
time is the time take to travel the drift tube. Thus, IMS devices produce drift-time spectra
and the drift-time of an ion is related to its mobility, which in turn is related to mass, charge
and cross-sectional area [Eiceman and Karpas, 2004]. The advantage of IMS is that the
process can be performed at atmospheric temperature and pressure, and typical drift tubes
4-20cm in length and drift velocities are typically 1-10 m/s. Thus, the devices can be small,
and have a rapid response time. However, the ionisation chemistry is complicated [Eiceman
and Karpas, 2004]. The presence of certain chemicals in the sample, such as solvents, can
skew the spectra [Mayhew et al., 2009].

Under good conditions many ions travel down the drift tube in an ion bundle, for which

the drift time t4 is given by,
dy

" KyE
with d; the length of the drift tube and Kj; the mobility coefficient and E the strength of the
electric field. The important issue here is that K, is dependent on atmospheric temperature
and pressure. A normalised mobility coefficient is often used: K, = K (273/T)(P/760)

tq (5.11)
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with T' the ambient temperature in Kelvin and P the ambient pressure in Torr [Eiceman
and Karpas, 2004]. Thus, the normalisation is with respect to the ambient temperature
and pressure. One can potentially expect spectra to skew dependent on environmental
conditions and many IMS devices have mechanisms to correct for the skew.

The CAM is a hand-held Ion Mobility Spectrometer, developed by Smith’s Detection
(formerly Graseby Dynamics) [SmithsDetection, 2010b], Figure 5.10 gives the dimensions.
The CAM is highly successful device with over 70000 units deployed worldwide, and it is
configured to detect “Nerve, blood, blister, & choking agents and selected TICs” (Toxic
Industrial Chemicals) [SmithsDetection, 2010b]. The use of Deep Heat in this case study
is a consequence of the CAM. Deep Heat contains Methyl salicylate which has chemical
properties in common with Mustard Gas.

The difficulty of the CAM is that it is a proprietary device and out of the public domain.
The specifics of its IMS are unclear, for example whether there is any correction for tem-
perature and pressure. The data that is available from the CAM? is shown in Figure 5.11.
The data is significantly lower is resolution with greater noise than the mass-spectrometry
data in the last section. The spectra available through an analog-to-digital converter at a
width of n = 120. The spectra are found to be oscillating around zero, and the existence
of negative spectral values demonstrates that the spectra are not drift-times (which are
strictly positive). It is likely that the spectra are differentials of the drift-times. This is
for two reasons. First, taking differentials of spectra is a common analysis technique in the
literature [Goubran and Lawrence, 1991], and second, summing out the differences smooths
out the spectra and renders them positive in a manner that is appropriate for IMS [Eiceman
and Karpas, 2004]. The purpose of taking the differential is to effectively double the reso-
lution, by adding one minima for every maxima. Due to the details of the analog-to-digital
converter there is an uncontrollable drift in the spectra from the CAM. This results in the
need to calculate a suitable zero-point with which to sum out the differences of every spec-
trum. Since the purpose of the differential is to increase the resolution, it seems reasonable
not to reverse this step. Taking the absolute value of the differential spectra results in a
non-negative signal suitable for use with the RDA, see Figure 5.11.

A further detail of IMS chemistry is clearly visible in Figure 5.11, it is the reactant
ion-peak (RIP), which is the large peak near the bottom end of the spectra. The RIP is
the result of all reactant-ions that do not react to form product-ions with the sample. The
number of product-ions formed is dependent the chemical species and the concentration
of each substance present in the sample. The RIP can change in height, shape and even
disappear dependent on the configuration of the sample. As a consequence changes in the
RIP can be used as an indicator of changes in the chemical sample. However, the RIP
presents difficulties for the RDA, the disappearance and reappearance of the RIP can cause
an anomaly after a substance disappears from the sample. To alleviate this difficulty the
spectra are masked in a similar manner to Section 5.3 and spectra locations 0-30 are set to

Z€ero.

3The author would like to thank Mark Neal for finding the appropriate pin inside the CAM that contained
spectra information
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Figure 5.11: The spectra available from the CAM. Left: A background signature. Right: A background
signature. S gives the spectrum available from the CAM. XS is the cumulative sum, so ¥.5; = Z;:o S;. |S]
gives the absolute value used in the RDA. Note the reactant-ion-peak.

Parameter Value Parameter Value Parameter Value
b 0.88 0 1 / 5
d 0.98 g 0.22 f(S) 0.228

Table 5.3: RDA Parameters for CAM Data. Parameters are chosen by convolution and summation conditions
given in Chapter 4 based on a number of Deep Heat Anomalies.

5.4.2 IMS — RDA Application and Results

The case study demonstrates the detection of Deep Heat in a noisy environment. The CAM
has an air-inlet (white tip in Figure 5.10) that is only able to detect chemical substances in
close proximity (effectively, under the tip). As the robot moves through its environment,
the task is to signal when any chemical substance is detected and to flag (literally, see
Figure 5.10) when the detected substance correlates with a deep heat signature.

A range of Deep heat anomalies are collected and used to set RDA parameters, see
Table 5.3. The Deep Heat anomalies are then used to construct a representative signature,
see Figure 5.12. Despite the low resolution and noise of the CAM, the RDA performs well
in this case study. The system detects Deep Heat with accuracy, Figure 5.13 displays the
spectra and receptor position and negative feedback for a deep heat anomaly.

5.5 Conclusions

This chapter has discussed an alternative application of the Receptor Density Algorithm to
the type 1 and type 2 anomaly detection problems in Chapter 4. The application concerns
anomaly detection in data from spectrometers.

Section 5.1 gives definitions related to spectrometry and states the interest in mobile
spectrometers which have reduced performance in comparison to their laboratory counter-
parts. Section 5.2 demonstrates how the RDA may be applied to this anomaly detection
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Figure 5.13: A Deep Heat anomaly. Left: the spectra. Centre: receptor position. Right: negative feedback.
The anomaly has with t; = 66 and t. = 84. Note the noise removal in receptor position, and the discontinuous
growth and decay of negative feedback.

problem. Demonstrations of RDA signature generation are given, including examples on
the more difficult interleaved anomaly problems. Finally, Section 5.2 demonstrates how
signature matching and signature library generation may be performed.

Sections 5.3 and 5.4 describe case studies. The first in Section 5.3, is the application
of the RDA to mass spectrometry data. Despite downsampling of the data and anomalies
showing two orders of magnitude difference in size, the RDA performs well on detection and
classification. The second case study in Section 5.4 applies the RDA to a robot-mounted
Ion Mobility Spectrometer. This case study does not involve an experimental evaluation of
RDA performance and so is a proof-of-principle of the RDA applied in a real-world scenario.

The case studies clearly demonstrate the efficacy of the RDA at this anomaly detection
task. However, many of the idea are preliminary and require significant theoretical and
experimental development. In particular, a theoretical analysis that relates the spectra to
the RDA signatures generated is necessary, this should give insight into parameter setting
for high quality signature generation. Finally, there has been no comparison between the
RDA and other approaches to detect anomalies on the same dataset. From what has been
presented it is unclear whether the success of the RDA is due to the difficulty (or sim-
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plicity) of the problem rather than features of the RDA. However, the RDA has received
some comparison at this problem, it was the winning entry in the ICARIS 2009 DSTL
Anomaly Detection in Mass Spectra competition. It seems that detecting and classifying
the small anomalies in Case Study 1 (Section 5.3) is indeed a difficult problem at which the
RDA performed better than the other competition entrants. However, a detailed experi-
mental comparison between the RDA and alternative techniques is required to establish the
applicability of the RDA to this problem.



CHAPTER 6

Conclusions

This final chapter concludes the thesis, summarises the contribution and gives evaluation
and discussion of the bio-inspired algorithm design process. The chapter is organised as
follows: Section 6.1 presents a summary and evaluation of the work in each chapter is
presented. Section 6.2 reflects and evaluates the bio-inspired algorithm development per-
formed. Suggestions of further work are given in Section 6.3. Finally, the hypothesis of this
thesis given in Chapter 1 is reviewed in Section 6.4.

6.1 Summary and Contribution

The structure of this work of this thesis is shown in Figure 6.1. The figure depicts the
flow of work from biological model, through an abstracted model to the algorithm. The F;
mark possible directions for further work. A summary of each chapter is now given and the

contribution of each is then explicitly stated.

Chapter 1: A background and motivation for this thesis is presented along with reviews
of bio-inspired methodologies; the current state of Artificial Immune Systems; and
strategies for modelling biology. The explicit set of assumptions A that connects a
biological model and the abstracted model is introduced.

Contribution: Relatively minor — making A explicit.

Chapter 2: The focus is on models of biology that are described by chemical kinetics, and
particularly those defined by chemical reaction equations. The stochastic formulation
of chemical kinetics is introduced and definitions of the Chemical Master Equation
(CME) and the Gillespie Algorithm are given. The CME defines a continuous time
Markov Chain (CTMC) and methods to numerically solve a large sparse CTMC rate
matrix are presented. Finally, in reference to a cell-surface receptor, a method for
scaling the volume of the cell by a factor € is discussed. The method allows tractable
numerical calculation of transient and stationary distributions, with the caveat that
the results may not scale to the full system.

Contribution: The use of € to scale the volume reaction volume €.
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Chapter 4

Chapter 2 & 3

Figure 6.1: Outline of the work of this thesis. Key: ABG — The original model of T cell signalling [Altan-
Bonnet and Germain, 2005]; T, K, N, P — Individually analysed components of the stochastic ABG model,
M — The recomposed model; A; — First abstractions: the generalised receptor and the receptor lattice; M4,
— the abstracted model after applying Ai; A2 — The removal of negative feedback diffusion; M4, — the
result of applying A2 to M4, ; RDA — The Receptor Density Algorithm; S — Application of RDA to anomaly
detection in spectra. F1, Fa, F3, F4 indicate further work, see Section 6.3.

Chapter 3: The biological modelling/analysis work of thesis, no discussion of algorithms
is given. Initially a review is given of the salient concepts from immunology, and in
particular, T cell signalling. The bulk of the chapter is concerned with the analysis
of a model of T cell early signalling events originally presented in [Altan-Bonnet
and Germain, 2005]. The chapter refers to this as the ABG model. The model is
decomposed into reactions concerning the following: the binding of TCR, pMHC and
CDS; kinetic proofreading; kinetic proofreading with negative feedback; protection
of the TCR by ppERK and the MAPK cascade. These are scaled to the volume
of a single TCR via ¢, with the exception of the MAPK cascade which scaled to
€ = 1072. The most notable features discovered are the low probability of state TC;
the influence of the ZAP-70 locking mechanism; and the influence of the base negative
feedback state. The decomposed processes are re-composed into the full model and €
increased. Results at the small-e level guide the simulation at the large-e level, and
the results are in qualitative agreement. A discussion of the chosen values of € is then
given. Finally, a hypothesis for T cell activation is presented:

Good agonists that are on average able to complete kinetic proofreading be-
fore weaker endogenous ligands are able to reach the base negative feedback
state will reliably activate a T cell.
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Contribution: All results obtained at the small-¢ scale. In particular, the definition
of B,, binding systems; the low probability of state T'C; the influence of the locking
mechanism; the influence of the negative feedback base state (this was implicit
in the ABG model and to the author’s knowledge never explicitly discussed

anywhere in T cell signalling literature); the hypothesis for T cell activation.

Chapter 4: The transition from the model in Chapter 3 to an algorithm via an abstracted

model is presented. The hypothesised mechanism for T cell activation forms the ab-
stracted model in terms of a receptor. Discussions of the difficulty of combining many
receptors lead to an argument for a lattice of receptors. The elements in assumption
set A are noted, and these will be discussed in more detail in Section 6.2. Properties
of the behaviour of a single receptor are given and it is noted that a lattice of receptors
has a connection to kernel density estimation. Topics related to kernel density estima-
tion are reviewed and definitions of type 1 and type 2 anomalies are given. It is noted
that removing the negative feedback diffusion transfers the density estimate from the
receptor position to the negative feedback. This connects the abstracted model to
type 1 anomaly detection. The chapter continues with conditions for a single receptor
breaking ¢ under variable input. The Receptor Density Algorithm is then defined.
The algorithm is demonstrated on type 1 and type 2 anomaly detection problems. A
comparison is made between the RDA and a kernel density estimate with a thresh-
old; performance is found to be very comparable. As noted in the concluding section
of Chapter 4 the behaviour of the algorithm may be described without reference to
biology. This is an important step for any bio-inspired algorithm and will aid future

dissemination.

Contribution: The definitions of the generalised receptor and all associated prop-
erties. The definitions of type 2 anomalies. The definition of the decay density
estimate. The properties calculated in relation to w; and p;. Finally, the defini-
tions of anomaly conditions of the Receptor Density Algorithm.

Chapter 5: The application of the Receptor Density Algorithm to anomaly detection in

spectrometer data is presented. Discussions related to mobile spectrometers are given
along with definitions of spectra. The RDA is used to smooth the noise in spectral
data and provide a background subtracted signature of new features in the stream
of spectra. Demonstrations are given on two case studies. The first is in part proof
of concept on static immobile mass spectrometer data. The second case study con-
cerns a robot-mounted Ion Mobility Spectrometer. Both cases studies successfully
demonstrate the applicability of the RDA to this problem.

Contribution: The application of the RDA to anomaly detection in spectrometer
data. The details of the signature generation were developed with discussions
with James Hilder. The robot-platform implementation of the algorithm were de-
veloped by Mark Neal and James Hilder. All other analysis and results presented
in the chapter are the author’s own.
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6.2 Evaluation the Bio-Inspired Algorithm Development

This section evaluates the bio-inspired algorithm development of the thesis. First a discus-
sion of the biological modelling is given in Section 6.2.1. This is followed by a discussion
of the assumptions A that link the biological and the abstracted model in Section 6.2.2.
Finally, in Section 6.2.3 some comments are given on bio-inspired algorithm development
for applications.

6.2.1 Modelling for Biology and Model Choice

It is stated in Chapter 1 and Chapter 3 that the Tuneable Activation Threshold hypothesis
directed the choice of biological model. The following describes how this led to the choice of
the model presented in [Altan-Bonnet and Germain, 2005]. There are many general models
of tuneable activation thresholds [Grossman and Paul, 1992; van den Berg and Rand, 2004;
Scherer et al., 2004; Carneiro et al., 2005], and these do not deal with tunability on the
level of chemical reactions. There are also models [Chan et al., 2001; Artyomov et al., 2007;
Lipniacki et al., 2008] which deal with the same negative and so-called positive feedbacks
as [Altan-Bonnet and Germain, 2005 and Chapter 3, but contain less detail regarding
the specifics of reactants; they are less realistic. All models contain bias in abstractions
and simplifications. However, the model in [Altan-Bonnet and Germain, 2005] attempts to
faithfully reconstruct the exact chemical reactions of the T cell signalling system. It can
be regarded as the least biased, but also requires the most work to develop understanding.
Choosing this model allows the biology to dictate the algorithmic development more than
any of the alternative models. In this sense it is the next best option to developing one’s
own model. Of course, there is the risk that the analysis of a detailed model results in
abstraction to an existing model in the field. What is lost in novelty is gained in model
insight. Given the choice of model it is essential to model for the purposes of biology, as
[Altan-Bonnet and Germain, 2005] demonstrate that the model can replicate the biological
behaviour but it remains unclear how the signalling processes map the observed behaviour.
Had this thesis moved straight to an abstracted model from [Altan-Bonnet and Germain,

2005], the details of the base negative feedback state would likely have been missed.

6.2.2 The Assumptions A

This section discusses the assumptions made to make the transition from the biological
model to the abstract model. The outline of work given in Figure 6.1 depicts two sets of
assumptions A; and A, these connect abstract models M4, and M 4,. The model My,
is the abstract model before the removal of negative feedback diffusion, and M4, is the
abstracted model after, so,

4 Assumptions related to the definition of a receptor
1 -
The combination of many receptors in a lattice

Ao : The removal of negative feedback diffusion, h — 0 in K.
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In A; the assumptions regarding the definition of a generalised receptor (for example, the
continuous receptor position and negative feedback) will not be discussed further in this
thesis. They are left to further work. The model M 4, must remain an abstracted model
and not an abstract biology model (i.e. it must remain on the right of Figure 1.1) until
these assumptions are given biological discussion. The lattice of receptors is, however,
given discussion. Chapter 4 introduced the lattice to avoid replicating the behaviour of the
molecular recognition of the TCR. As this molecular-recognition is not explicitly modelled
in Chapter 3 (it is abstracted to a dissociation rate), it seems inappropriate to include any
details of molecular-recognition in the abstracted model. One could use similar reasoning to
argue against the inclusion of the lattice in the abstracted model. However, the inclusion of
the lattice is relatively computationally simple and, moreover, a high diffusion rate lattice
can give equivalent results to a non-spatial collection of receptors. The point of interest is
that the removal of the negative feedback is key in the development of an anomaly detection
system, this has interesting implications for biology:

¢ A major difference between a lattice of receptors and the biological model is that
an input wu; can only stimulate close receptors due to function Kg. Whereas, in
the ABG model a pMHC ligand can dissociate and re-associate to any TCR in the
population. As a consequence the influence of serial triggering is reduced in the ABG
model, and so the simulation should predict a greater difficulty of activation than the
hypothesis of T cell activation would suggest. Certainly, [Altan-Bonnet and Germain,
2005] derived TCR pMHC association parameters based on a surface diffusion model,
however it seems necessary to return to the original model and confirm the details of

the non-spatial assumptions.

o If the hypothesis for T cell activation is correct, then it would be necessary for every
TCR to experience the average level of pSHP1. This allows fair comparisons between
all TCRs. A high rate of negative feedback diffusion is required for this behaviour. If
in reality pSHP1 does not diffuse, as in M 4,, then the hypothesis of T cell activation
would be correct. However, agonists would locally construct maximally dense regions
of pSHP1. This would suggest that pSHP1 does indeed diffuse away, or the major
interpretations of T cell signalling in the literature are incorrect. The former seems
the more likely.

6.2.3 Comments on Application

Chapter 1 made arguments for an approximate application due to the potential bias of the
application. This thesis has corroborated that fact, in the first instance the mechanism for
discrimination was not clear until after the T cell model analysis. Second, even once the ini-
tial abstracted was defined it was still not clear what algorithm would be resultant. In fact,
the concept of type 2 anomaly detection arose purely from the consideration of receptors
performing a type 1 problem. The abstracted model defined its own application. Many ap-

plications have constraints on computational complexity, for example resource limitations in
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time/space and the need to be applicable in high dimensions. These computational details
did not become clear till late on in RDA development. Now it can be stated that the RDA is
ideally suited to high data rate streams of low dimension numerical data. Thus the RDA’s
applicability to anomaly detection in spectra. It should be noted that this application arose
by fortuitous coincidence during the development of the algorithm. Had this application
been chosen from the outset, it would not be clear which biology/immunology to model.
Even if T cell signalling had been chosen, it seems likely that the resultant algorithm would
be very different. There is, of course, nothing to prevent a bio-inspired development directed
by an application from being very successful. It is only that the approximate application
allows the biology to direct proceedings and so increasing the chances of capitalising of
interesting behaviour.

6.3 Further Work

The outline of work in Figure 6.1 depicts an four extensions for further work labelled Fy,
Fs, F3, F4. Each will be discussed in turn,

F; — Modelling methods and the T cell Signalling Model

The use of scale parameter € lacks formal justification, predominantly qualitative arguments
have been made for its use. An avenue of further work would be to investigate when, if it
all, its predictions are valid.

There are many directions in which one could extend the modelling work. The most
interesting of these would be further modelling and ideally experimental work to investigate
the influence, and even existence, of the base negative feedback state. An alternative
direction of further work would be to return to the non-spatial assumptions to investigate
if any are unfounded and whether any of the above discussed implications of the abstracted
model lattice apply.

F2 — Abstracted Model M 4,

This is the model of T cell signalling with negative feedback diffusion. An avenue of further
work would be to investigate the full implications of assumption set Aj, in particular,
connecting the definitions of the generalised receptor to biology. If the definitions could be
justified the abstracted model M4, could prove a useful tool in returning to biology.

Figure 6.1 does not depict an abstracted model defined by a collection of non-spatial
generalised receptors. This scenario was discarded as simple outlier detection, however no
formal arguments have been made on this statement. Further work could calculate the
exact anomaly conditions for many non-spatial receptors with shared negative feedback.
The anomaly conditions could be elucidating to the hypothesis of T cell activation.

In the opposite direction, there are many biological features not included in M 4,, such as
the influence of co-receptor CDS8. In particular, CD8 controls the re-association and kinetic
proofreading speed in the biological mode. This could translate across to the abstracted
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model as variable width kernel in function Kg, and variable kernel width methods have
been shown to give improvements on kernel density estimation [Silverman, 1986].

F3; — Abstracted Model M4, / Receptor Density Algorithm

The abstracted model M 4, and the Receptor Density Algorithm are essentially the same
entity. Further work here involves additional analysis of the behaviour of the single receptor
and additional consideration of the anomaly conditions of a lattice of receptors.

For example, single receptor cycles in input region 2 have not been bounded. Without
close bounding to the point (n.,p.) the assumptions for the ¢ breaking in Section 4.5 may
be unjustified. Further, the influence of the discrete jumps in the p and n recurrences
with regards the uniqueness of region 2 cycles has not been investigated. More importantly,
there has been no explicit investigation of a stochastic input u; to the receptor with negative
feedback. This will be required to fully understand the exact anomaly detection conditions.

There are many topics in Chapter 4 that have well established fields. Some comparisons
to density estimation methods are given, but other areas remain largely without comparison.
In particular, returning to exponential smoothing techniques may provide a method of
reducing the bias in shifting distributions. Certainly, control theory is likely to have a
perspective on the behaviour of the receptor equations. The concepts of anomaly detection
are clear: 3 renders the receptor position independent of input and the negative feedback
dependent on input; the convolution smooths the noise; the growth of negative feedback
defines the maximum rate of change of underlying distribution. With these concepts, one
can return to the literature on conventional techniques to investigate if better performing

conventional mechanisms can be swapped in for features originating in biological detail.

F4 — Anomaly Detection in Spectra

The work of the Chapter 5 is partially proof of concept, there are many possible exten-
sions. A deeper analysis of setting RDA parameters to maximise the quality of signatures is
necessary. Further, the signature matching is simplistic, though good enough for purpose.
An investigation of alternative signature matching techniques is necessary. Concerning im-
plementation, certainly alternative spectrometer devices are of interest, and understanding
which spectrometers produce data suitable for the RDA is an avenue of investigation. Fur-
ther, implementations of the Receptor Density Algorithm in hardware could prove very
practical in mobile-spectrometer data analysis. There seems no reason that the algorithm

could not be implemented with a constant time complexity update step.

6.4 Concluding Statements and Returning to the Hypothesis

As a concluding comment, the relatively small detail of the maximum in expected kinetic
proofreading state before the rise of expected pSHP1 in Figure 3.9, was attributed to the
relatively small detail of the non-zero kinetic proofreading required to generate phosphory-
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late SHP1 and so generate negative feedback. From Figure 3.9 onwards this concept into
the base negative feedback state has been tremendously influential on this thesis.
Chapter 1 defined a hypothesis to guide this thesis. Reproducing here,

Through investigation and analysis of a realistic and precise model of T cell signalling it
is possible to abstract properties and via an abstracted model design an algorithm which

replicates the discrimination abilities of the T cell.

Given the summaries of contribution of this chapter, it is the author’s opinion that this

thesis has been a success; the challenge of the hypothesis has been met.



APPENDIX A

Supplementary Modelling Material

A.1 Components and Rates

All components and their labels are given in Table A.1, all rates are given in Table A.2.

Component Label Comment

TCR T, T cell Receptor complex with z ZAP-70 molecules bound.

pMHC M Antigenic peptide bound to major-histocompatability complex MHC

CD8 C Co-receptor CD8

Lck L Leukocyte-specific protein tyrosine kinase (Lck)

SHP1 S SH2 domain containing tyrosine phosphatase (SHP-1). Phosphorylated
pSHP-1 represented as S*

ERK E Extracellular signal-regulated kinase (ERK). Single and double phos-
phorylated versions represented as E' and E? respectively.

ZAP-70 Z ¢-chain associated protein kinase 70 (ZAP-70)

Adapter A Adapter protein that initiates the MAPK cascade. Phosphorylated form
represented as Al.

Rafl R Part of MAPK cascade. Phosphorylated form represented as R*.

Mek K Part of the MAPK cascade. Single and double phosphorylated forms
represented as K* and K? respectively

MAPKPase Pr MAPK Phosphatase, acts dephosphorylating ERK

MAPKKPase Pk MAPK Phosphatase, acts dephosphorylating Mek

MAPKKKPase Pgr MAPK Phosphatase, acts dephosphorylating Rafl

Adapter Pase Pa Adapter Phosphatase, acts desphosphorylating Adapter

SHP Pase Ps pSHP-1 Phosphatase, acts desphosphorylating S*

TCR~-pMHC B? TCR-pMHC complex with ¢ non-protected phosphorylations and z ZAP-
70 molecules bound.

Protection CZ, T, Internal TCR complex after protection by ppERK, with ¢ non-protected

phosphorylations of the {-chain

Table A.1: Components in the model and their labels.
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Rate Value Comments

Ma 1% 10* Association rate of pMHC to TCR.

mq - Dissociation rate of pMHC from TCR.

ct 1000 Association rate of CD8 to TCR.

Ca 3 x 10° Association rate of CD8 to pMHC, TCR-pMHC complex.

cd 100 Dissociation rate of CD8 from TCR, pMHC TCR-pMHC complexes.

Cs 0.1 Stabilising effect of CD8 to TCR-pMHC complex, multiplies dissociation
rate my.

la 1x 10* Association rate of Lck to internal TCR complex.

lg 50 Dissociation rate of Lck from internal TCR complex.

le 10.4 Rate of Lck phosphorylation of the internal TCR complex.

lea 50.0 Association rate of CD8 associated Lck to ITAMs, ZAP-70 etc.

led 40.0 Dissociation rate of CD8 associated Lck from ITAMs, ZAP-70 etc.

lee 10.4 Rate of CD8 associated Lck phosphorylation of the internal TCR com-
plex.

Za 1.2 x 107 ZAP-70 association to phosphorylated ITAMs.

Zd 0.11 ZAP-70 dissociation from phosphorylated ITAMs.

Sa 2.9 x 10°  Association rate of SHP-1 to TCR complex.

Sd 0.13 Dissociation rate of SHP-1 from TCR complex.

Se 35.0 Rate of phosphorylation of SHP-1.

Pa 3.2 x 10°  Association rate of pSHP-1 to TCR complex.

Pd 0.05 Dissociation of pSHP-1 from complex.

Qa 5.0 x 10¢  Association rate of adapter to TCR complex.

€a 1.0 x 10”7  Association rate of ppERK to TCR complex.

ed 2.0 Dissociation rate of ppERK from TCR complex.

ec 3.4 Rate of protection of TCR by ppERK.

ka 1.2 x 10" Association rate of any component of MAPK cascade.

ka 0.15 Dissociation rate of any component of MAPK cascade.

ka 2.6 Rate of (de)phosphorylation of any component of MAPK cascade.

Qa 1.0 x 10*  Association rate of pSHP1 phosphatase.

qd 0.15 Dissociation rate of pSHP1 phosphatase.

e 2.6 Rate of (de)phosphorylation of pSHP1 phosphatase.

Table A.2: Macroscopic rates from the ABG model in [Altan-Bonnet and Germain, 2005]. All association

1.-1 -1
S

rates are given in mol™ all other rates have units s~ with the exception of ¢s which is dimensionless.
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Component  Quantity Comment

Q 15 x 107 Cytoplasmic volume of a T cell
Nt 3 x 10% Quantity of TCR

Ny 3 x 10* Quantity of pMHC

Nc 3 x 10% Quantity of CD8

Ny 3 x 10* Quantity of Lck

Ns 8 x 10° Quantity of SHP1

Ng 10° Quantity of ERK

Ny 1.2 x 108 Quantity of ZAP-70

Na 1.5 x 10° Quantity of Adapter

Nr 10° Quantity of Rafl

Nk 4 % 10° Quantity of Mek

Np 2000 P ={E,K,R, A, S} Quantity of all dephosphorylating phosphatases

Table A.3: Quantity of all components found in the cytoplasmic volume €, taken from [Altan-Bonnet and
Germain, 2005]

A.2 Negative Feedback

The action of pSHP1 on the TCR internal complex with 3 ZAP-70 molecules is a one step
process, see Reaction 8 (as reproduced from [Altan-Bonnet and Germain, 2005]). The action
of pSHP1 on the TCR internal chains containing 0, 1, or 2 ZAP-70 molecules is a many
step process. To clarify, if N and P are non-phosphorylated and phosphorylated complexes
respectively, L is Lck and S is pSHP1, in the standard case:

N+L+S<NL+S8, NL + S P4L+s,
lg
P+L+SZ2PS+L, PS + L =% PSL,
Pd ld
PSL % NS + L, NS + LY N4+ L +8. (A.1)
In the B3 case:
N+ L +S 22 NL + S, NL +S%P+L+s,
lg
P+L4+SEN+S+L, N+ L+SZ2NS + L. (A.2)
Pd

Rate matrix Rg describes the standard case:

—lq *pays‘ la 0 0 0 pa’S‘
lg —lg — ¢ le 0 0 0
RS — 0 0 _pa|s| pa’S‘ 0 0 (A3)
0 0 pa —Pd—la la 0
0 0 0 lg —lg — ¢ le
Pd 0 0 0 0 —Pd
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The stationary distribution given by mr Rs = 0:

PapalS|(le + la)

lapdpa|s|
¢ pz(lc + ld) + pdlalc
TR — s ¢J = . A4
s Z ¢Z pdpa|s|(lc + ld) ( )
lapdpalS|

(pa‘s|)2(lc + ld) +pa|s|lalc

The rate matrix Rg describes the B3 case:

—la_pa‘s| la 0 pa|S|
l —lg—1. l. 0
R; d d (A.5)
pa|S| 0 _pa’S‘ 0
Pd 0 0 —Pd

The stationary distribution in this case is:

papalS|(lc + la)
e, — 0 . lapapalS|
R Z 91" lalcpd
(PalS)?(le + la)

(A.6)

The stationary distributions exhibit differences dependent on |S|. For example, the differ-
ence in probability of the phosphorylated state & is:

lalcpa|S|
&= D20 1) + Lol 1) + palS|palla + 1o 1) + 1ale) (A7)
10718
T 40+ 9]
(A.8)

The approximation is taken for CD8-associated Lck phosphorylation rates and holds for
N ! < ¢ < 1. The stationary differences between the two are negligible, numerical solutions
of the transient behaviour reveal larger differences however the behaviour is qualitatively
identical.

A detailed look at the pSHP1 reaction equations reveals that doubly-phosphorylated
ITAMs are exempt from the SHP1 negative signal. This is a consequence of the precondition
for Lck binding: ¢ < 2 when z = 0,1,2 and ¢ < 3 when z = 3. A comparison is made
between the negative feedback as found in the ABG model in [Altan-Bonnet and Germain,
2005] and a uniform application of negative feedback with multi-step dephosphorylation,
and no state exempt from the action of pSHP1, this is termed uniform negative feedback.
Calculating the transient distributions reveals the two methods are qualitatively similar,
but uniform negative feedback (despite applying to a larger number of kinetic proofreading
states) gives a higher stationary probability of expected kinetic proofreading states. Further,
for ABG negative feedback the ordering of most probable my is preserved in the hump but
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is broken as the transient moves towards stationarity. The multi-step form with uniform
action on all kinetic proofreading states is deemed preferable and so all results in this thesis
use uniform negative feedback.

A.3 Histogram Plots

This section describes a technique to display the simulation results of many independent runs
of Gillespie Algorithm simulations, particularly, the technique is used to display the kinetic
proofreading progress of many simulations. It is necessary to perform many independent
runs of the stochastic Gillespie Algorithm to gain an estimate of the underlying statistics.
It is possible to lose information related to rare events and bistabilities through averaging
results across many simulations. Here a histogram plot is devised to reduce this kind of
information loss. The number of TCRs in each relevant state at time ¢ are averaged across
simulation runs and plotted. Specifically, let S by the set of all unbound and bound TCRs
in all possible phosphorylation and ZAP-70 configurations:

S = {To, T1, T2, T3, B, By, B3, BY, B}, B?, BY, B}, B3, BY, Bi, B, B3}. (A.9)

Then, the set X = {S,SS!, S} is the set of all relevant TCR states, i.e. all non-pSHP1-
bound and non-protected states, all pSHP1-bound states and all protected states. If K
independent simulations have been performed then define the following:

0;(s,t) = Number of TCRs in state s € X’ in simulation i =0,..., K — 1
at time ¢, (A.10)

then a state occupancy score ((s,t) for state s at time ¢ can by simply defined:

K—
C(s,4) = % > oils. ) (A.11)

7=

[ay

The histogram plot gives ((s,t) for all s € X and all relevant times ¢. Figure A.1 gives an
increased detail example of the S section of Figure 3.16. Figures 3.19 is the other histogram

plot in this thesis.
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Figure A.1: Example histogram plot of the S section of Figure 3.16 for ¢ € [0,50] which plots data from
50 independent simulations of 3000 TCRs. The ((s,t) values are denoted by the colour bar and the kinetic
proofreading signalling region (states B for ¢ > 0) is shaded grey.
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